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Abstract xiii

Design of a secure kernel for constrained objects

Abstract

This thesis invests the field of cybersecurity for small computer systems (embedded systems/-
connected objects/low-end devices, of type microcontroller) and more precisely aims to bring
strong memory isolation guarantees for tasks executing on them.

The heterogeneity and strong resource constraints (memory, computing power, energy) of
constrained embedded systems require tailored solutions. The embedded software life cycle
and the specific hardware platforms challenge us to reconsider the security schemes that leave
open memory vulnerability issues, still prevailing today. Furthermore, the risk of vulnerability
exploits elevates with the growing number of use cases (smart environments in general) implying
increased complexity within these systems and with the burgeoning market of the Internet-of-
Things (notably for remote update purposes). As a consequence, cyber attackers can take profit
from these vulnerabilities to take remote control of these connected systems in a very scalable
way.

In this context, the thesis proposes to design a kernel for constrained objects that is able to bring
strong memory isolation guarantees. It studies the blend of high flexibility and strong security
for this class of devices with the aim of security-by-design without functional loss. The thesis
presents two main contributions dealing with software attacks on memory.

The first contribution is an Operating System (OS) kernel, named Pip-MPU, that offers a
hardware-based isolation solution with a degree of flexibility outperforming current solutions.
Pip-MPU is adapted from the Pip protokernel initially designed for high-end/general-purpose
computers that are provided with more furnished and different hardware platforms than the
ones of constrained objects. For that, the designed kernel is a complete refactoring of Pip and
offers a security mechanism based on the Memory Protection Unit (MPU), a unit of the processor,
which enables hardware-based access control on memory resources. Despite strong limitations
due to the limited hardware platform, Pip-MPU is as flexible as its parent project Pip. With a
code base size of less than 10 Kb and about 16% extra costs in terms of performance and energy
consumption, Pip-MPU reduces the number of privileged operations by 99% and the attack
surface of the accessible application memory by 98%.

The second contribution is the demonstration of strong isolation guarantees by the use of formal
methods. Several kernel services have been proved against isolation by the use of the Coq Proof
Assistant. The proved properties are Pip’s security properties that enforce a strict memory
isolation security model. To our knowledge, no state-of-the-art solution offering MPU-based
isolation has been proved before. We develop novel proof conduct techniques and propose new
metrics to follow the proof effort and evaluate the hypotheses supporting the proofs.

All the contributions developed in this thesis are publicly released under open-source licences.

Keywords: memory isolation, constrained objects, mpu, formal verification, coq, pip, security-
by-design



xiv Abstract

Conception d’un noyau sécurisé pour objets contraints

Résumé

Cette thèse s’inscrit dans la thématique de la sécurité des petits systèmes informatiques (systèmes
embarqués/objets connectés, de type microcontrôleur) et plus précisément vise à apporter des
fortes garanties d’isolation mémoire pour les tâches qui s’y exécutent.

L’hétérogénéité et les fortes contraintes en ressources (espace mémoire, puissance de calcul,
énergie) nécessitent la mise en place de solutions sur mesure pour les systèmes embarqués
contraints. Le cycle de vie des logiciels embarqués et les architectures matérielles spécifiques
imposent de repenser la manière de mettre en oeuvre la sécurité qui, encore aujourd’hui, laisse
ouvertes des problématiques de vulnérabilité mémoire. De plus, les risques d’exploitation de ces
vulnérabilités grandissent avec l’émergence de nouveaux cas d’utilisation (environnements intel-
ligents de manière générale) impliquant des systèmes de plus en plus complexes et l’explosion
du nombre de systèmes connectés (notamment pour des besoins de mise à jour à distance). En
conséquence, des cyber-attaquants peuvent tirer profit de telles vulnérabilités pour prendre le
contrôle à distance de ces systèmes connectés de façon massive.

Dans ce cadre, la thèse propose d’élaborer un noyau destiné aux petits objets qui soit capable
d’apporter des garanties fortes d’isolation mémoire. Elle étudie l’association entre flexibilité
élevée et forte sécurité au sein d’objets contraints pour une sécurité dès la conception sans perte
fonctionnelle. Elle est constituée de deux contributions principales qui répondent aux attaques
logicielles sur la mémoire.

La première contribution est un noyau de système d’exploitation, appelé Pip-MPU, qui propose
une solution d’isolation ancrée dans le matériel et offrant une flexibilité dépassant les solutions
actuelles. Pip-MPU est adapté du protonoyau Pip initialement destiné à des ordinateurs généra-
listes dotés d’une plateforme matérielle plus fournie et différente de celle des objets contraints.
Pour cela, le noyau conçu est une refonte totale de Pip et propose un mécanisme de sécurité basé
sur la Memory Protection Unit (MPU), une unité du processeur, qui permet un contrôle d’accès
matériel aux ressources. Malgré les fortes limitations imposées par la plateforme matérielle,
Pip-MPU est aussi flexible que ce que permet la MMU en termes de sécurité. Du haut de ses
10 Ko de code et 16% de surcoût en termes de performances et de consommation d’énergie,
Pip-MPU réduit le nombre d’opérations privilégiées exécutées de 99% et la surface d’attaque de
la mémoire accessible depuis l’application de 98%.

La deuxième contribution est l’obtention de garanties fortes de l’isolation par l’usage de méthodes
formelles. Plusieurs services du noyau ont été formellement prouvés pour l’isolation à l’aide
de l’assistant de preuve Coq. Les propriétés prouvées sont les propriétés de sécurité de Pip
imposant son modèle de sécurité d’isolation stricte. A notre connaissance, aucun autre système
de l’état de l’art proposant de l’isolation par MPU n’a été formellement prouvé auparavant.
Nous développons des nouvelles techniques de conduite de preuve et proposons de nouvelles
métriques permettant de suivre l’effort de preuve et d’évaluer les hypothèses soutenant les
preuves.

Toutes les contributions de la thèse sont en source ouverte.

Mots clés : isolation mémoire, objets contraints, mpu, vérification formelle, coq, pip, sécurisé
dès la conception
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Foreword

“ You will learn it later ” - said a big sister to her little (too) inquisitive brother on the
way to school. One day, he learned that there was no Santa Claus, but kept anyway the
gifts he received, including a computer. He learned also, as the years passed, how to
conduct mathematical proofs in math class and cool stuff about computers in technology
class. In his leisure time, he also learned to break the passwords that restricted his
allowed computer time. Unfortunately for him, security increased and there was no
more material to show him the way. He faced that human knowledge had frontiers and
much more uncertainties than he once thought. Nevertheless, he heard of a profession
that regularly crafted new knowledge for others: researchers. That gave him hope to
master his computer again one day.

Now, the boy has grown up and does not need to break passwords any longer.
However, the world has also changed and the modern Santa Claus is distributing toys
embedding computers that can be remotely controlled, with about the same poor security
as the boy’s first computer. Out in the wild, script kiddies of that time have polished
their techniques and take any opportunity to annoy old classmates with much more
sophisticated tools. The time has come for the big boy to take a leap of faith in the dark
corners of small embedded systems security and make it harder for schoolchildren to
hack their toys, if only to help them discover a profession.

xix
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Technological context

On September 15, 2022, the European Commission presented to the European Parlia-

ment and the Council a new Cyber Resilience Act [69]. The proposal raises the security

standards for any digital component like software and products. Manufacturers and

retailers are required to follow mandatory cyber security requirements during the whole

lifecycle of their products. The CE-mark informs customers and businesses that the

products followed all cyber security obligations to be on the market.

The new Act comes after a series of initiatives to strengthen the cyber security of

constrained devices, among which requirements from the National Institute of Standards

and Technology (NIST) in the United States of America (USA) to improve cyber security

standards for Internet of Things (IoT) devices [129] , the obligation to provide software

updates in the European Union (UE) [67], the ETSI EN 303 645 [68] standard from

the European Telecommunications Standards Institute (ETSI) that is the first European

standard for cyber security in IoT devices, the monitoring and general public dispatch

of the top IoT device vulnerabilities by the Open Web Application Security Project

(OWASP) [137] and a trend towards more trustworthy IoT devices [76].

IoT devices are to a great proportion composed by low-cost resource-constrained

devices. Thus the questions arise: is it that such devices already include strong cyber

security measures? Or must they include these measures in new products and hence

rise the product prices? Or can low-cost cyber security be effective anyway and easily,

immediately deployed on these devices?
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2 General introduction

Unfortunately, IoT devices already demonstrated their efficiency as harmful re-

mote attack vectors, such as the theft of information on protected databases through

a hacked smart thermometer in the fish tank of an aquarium [104], or weapons as

demonstrated by security researchers by remotely controlling a car [127], by hacking a

toy for children [138], by installing a ransomware on a coffee machine [121], and worse

with real attacks such as the Mirai botnet [112] or the spread of an IoT chastity belt

ransomware [27].

Furthermore, security is associated to the notion of confidence. There is no point

to build a fortress if there is a permanent open backdoor. The ecosystem already had

appetite for strong security guarantees by the use of formal verification that leverages

mathematical techniques (more details in Section 2.2.4). The Ostrich algorithm does not

work anymore for products that affect people’s privacy and health, business and market

day-to-day operations, or political and national strategical decisions.

In this dissertation, we explore means to secure resource-constrained devices with

mathematical guarantees.

Work context

This thesis is an industrial and academical three-year partnership (thèse CIFRE, in

French) supported by Orange and University of Lille. It started on November 28, 2019.

Orange [135] is the French historical telecommunications corporation. The company

is interested in securing the devices connected to its networks in order to reduce mali-

cious traffic. Hacked devices might clog the bandwidth which would in turn impact the

quality of services, they might also attack Orange’s own infrastructure such as routers

and antennas or other more vulnerable devices to conduct massive cyber attacks profit-

ing cyber criminals and terrorist organisations. Orange sustains this work in order to

benefit the society at large and all outputs are publicly released in open-source licenses.

2XS [1] (eXtra Small, eXtra Safe) is a team part of the SEAS group [161] (Systèmes
embarqués adaptables et sécurisés) of the CRIStAL laboratory [42] (Centre de Recherche en
Informatique, Signal et Automatique de Lille). The team invests the field of cyber security

for embedded devices. One of their recent notable contribution is the development of an

operating system kernel called Pip which isolation property has been formally verified.

In this respect, the main work of this thesis has been to adapt the 2XS team’s results

for highly constrained embedded devices. This project is called Pip-MPU, derived

from the name of the parent project Pip and from a computer component present in

constrained devices that sets up protected memory regions.

Pip-MPU is also enrolled in the TinyPART project [174], a consortium of French and

German academical and industrial partners, and serves as the software basis providing

the isolation guarantees.
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Reading guide

This dissertation is split into three parts.

The first part I deals with the thesis context.

I introduce the general security challenges in embedded devices in Chapter 1 and

more particularly describe the attacker model we consider in this thesis.

Then, I present preliminary notions on operating systems with a specific focus on

security, on formal verification and low-end connected embedded devices in Chapter 2.

I continue in Chapter 3 with a detailed overview of current existing security solutions

that exhibit strong guarantees of isolation and find a gap concerning constrained devices.

Chapter 4 concludes the first part by introducing the thesis which motivates the

design of a secure kernel for constrained devices and by presenting the contributions

weaving this dissertation.

The second part II deals with the design of Pip-MPU, the adaptation of Pip for

constrained devices provided with a Memory Protection Unit (MPU).

I introduce a framework to set up nested compartmentalisation in constrained

devices based on the MPU in Chapter 6.

Pip is presented in Chapter 7, where it is adapted for constrained devices with

MPU via the specialisation of the framework. Pip-MPU is thoroughly evaluated against

Pip’s security requirements and in terms of performance, memory footprint and energy

consumption.

The third part III deals with Pip-MPU’s formal verification of the isolation property.

The formal basis and proof intuition are described in Chapter 9.

Then, I present the formal proofs of two representative Pip-MPU services conducted

in the Coq Proof Assistant [95] and analyse the proof effort. Pip’s proof workflow has

been leveraged and adapted for Pip-MPU.

Pip-MPU’s formal verification process followed a different strategy than in the Pip

project. The evolved process is presented together with leveraged proof techniques in

Chapter 11.

Finally, new proof metrics are presented in Chapter 12 to monitor the proof develop-

ment process and select an optimised proof path.

The second and third parts start with an introductory chapter laying down the

surrounding context, respectively in Chapters 5 and 8. These parts end by a review of

the proposed contributions and offer some perspectives and key takeaways.

Finally, the general conclusion in Chapter III is supplemented by material that steps

back on the design, implementation and formal verification processes by giving some



4 General introduction

insights of the followed methodologies and some intuitions, where I also engage my

personal beliefs.

I provide a fast reading track recommendation in the main chapters. The recommen-

dation highlights the important sections that the reader in a rush should read to pass

technical details but still follow the main conversation.

Furthermore, I pinpoint next references to the main contributions of this thesis for

details about:

• Pip-MPU: Chapter 7

• Pip-MPU’s proofs: Chapter 10

• leveraged proof techniques: Chapter 11

• proof metrics: Chapter 12

The contributions of this dissertation have been, or will be, shared with the scientific

community through the following scientific conferences and workshops:

• COMPAS conference 2020 [36, 53]

• RESSI conference 2020 [148, 58]

• COMPAS conference 2021 [37, 54]

• FiCloud international conference 2021 [70, 57]

• COMPAS conference 2022 [38, 55]

• IoTE international conference 2022 [97, 56] (planned in December 2022)

• Platforms and Mathematical Optimization for Secure and Resilient Future Net-

works Workshop [96]: presentation ’Formal Proof Metrics : the Developer’s Guide

to Formal Proofs’ (planned in November 2022)

Furthermore, I participated to deliverables for the TinyPART project.

In addition to that, Pip-MPU and associated evaluation as well as formal verification

of the isolation property are publicly released 12 3.

Finally, the work has also reached the general public by my participation to the

competition Ma thèse en 3 minutes (translation: My thesis in 3 minutes) organised by

Orange with a call for public vote [75, 134].

1https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/master
2https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/benchmark/benchmarks
3https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/addMemoryBlock_proof/

https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/master
https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/benchmark/benchmarks
https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/addMemoryBlock_proof/
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I use the pronoun "I" to speak about personal contributions. "We" includes my

supervisors. Authors of other referenced contributions are directly named. I use Pip-

MPU to speak about the project developed in this dissertation and refer to its parent

project as Pip or Pip (MMU). A detailed summary in French is in Appendix A.
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1.2 Attacker model 12

The weak link is the primary attack vector of cyber criminals. With connected devices

of all kinds operating in the IoT, cyber criminals turn to resource-constrained devices

in order to perpetrate their attacks. Constrained devices (also called low-end devices)

are small embedded devices that can take the shape of thermometers, light bulbs,

smoke detectors, buttons... Low-end devices swarm everywhere, from our homes to our

workplaces, pushed by the growth of the burgeoning market of the IoT. Consequently,

sensors and actuators no longer live in isolated environments but need to be connected

to respond to the intelligent ecosystems (digital twins, IoT-Cloud Continuum [77]). But

in the connected world, the devices are very close to distant attackers who can infiltrate

the private networks the devices are connected to.

When facing an attack, even outside the computer system world, one of the first

intuitions is isolation: isolation from the attacker by taking cover or isolation of the

attacker. The same goes for security issues and memory isolation is one answer to

memory vulnerabilities. For example, there is high interest in isolating the interpreters,

the networking stack, the file system or any untrusted third-party software from the core

business logic. Isolation is necessary and constitutes the fundamental security principle

otherwise software components are not isolated and may be overwritten, in such a way

that we can’t rely on their current state to infer other properties. It should be noted

though that isolation is not sufficient as a general solution. For example, a constrained
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device which upgrades its firmware with a malicious software won’t be protected by

isolation but through other security measures like digital signature and authentication.

Isolated components are no more vulnerable to a chained attack that would compro-

mise the whole system and, in a more holistic view, the ecosystem by the compromission

of a single element. Furthermore, isolation is the basic block of other security principles

such as MILS (Multiple Independent Levels of Security) and TEEs (Trusted Execution

Environments) [24, 158].

1.1 Threats and opportunities

For an operator, new devices using the networks are business opportunities. However,

networks with compromised and malicious devices are market killers in that they can

massively attack the networks causing resource shortage and breakdowns for legitimate

users. Devices lacking security are vulnerable to all kind of attacks that can be exploited

to malicious intents. It is of strategical interest to have healthy network traffics to

provide quality services to customers.

For an IoT manufacturer, not presenting the new cyber security CE-mark that is

introduced in the new Cyber Resilience Act [69] indirectly implies to the customers

that the product does not follow the cyber security obligations and suggests it is not

secure enough compared to other products having the mark. Also, a product known for

vulnerability exploits causes brand reputation damage that can significantly impact the

business.

Furthermore, the IoT knows no borders and the market shows that the progression

rate of devices joining the IoT is at least linear [168]. Arm estimates one trillion of

devices to be on the market in 2035 [166] (40 billion in 2025). Projects currently shift

from legacy isolated embedded devices to connected systems. According to the 2019

Embedded Markets Study [61], 65% of the respondents tied to the embedded world will

have one or more projects devoted to IoT (compared to 21% nowadays). According to

the Eclipse IoT Developer Survey 2019 [71], two-thirds of the respondents are currently

working on IoT projects or will be in the next 18 months. This clearly shows a movement

towards connected devices. While in the IoT, security is the top developer concerns, it is

ranked last in the embedded world. Even worse, 20% of the embedded devices don’t have

any security measures implemented at all. 26% use software-only security measures,

while only 20% use hardware measures [61]. Security of IoT devices, among them

constrained devices, is then crucial for market adoption with users having confidence in

these devices. It also globally reduces societal and economic costs [69].

In addition to that, embedded systems usually have a long lifetime (expectations

could be around 10 years for a device on battery) which also depends on their communi-
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cation frequency drawing energy and in the end impacts their software updates. Their

autonomy makes them good candidates to be in unreachable areas in the wild, for exam-

ple launched by airplane in a forest. Due to their potentially sporadic communications,

they cannot benefit from traditional IT security mechanisms like the "fail first, patch

later" approach. What is loaded on these systems might work for years without much

possible updates, which justify the use of formal methods to acquire as much confidence

as possible at design time. This embraces the trend for security kernels and especially

the security-by-design principle which suits mission-critical and high-assurance security

systems’ needs.

At last, we acknowledge the stringent needs for embedded devices taking the connec-

tivity turn. Providing an open access solution would make the technology as accessible

as possible. Furthermore, it would accelerate the development and deployment of

products that would rapidly reach the consumer and industrial markets with minimal

efforts.

1.1.1 Research questions

This thesis explores the following questions:

• Why is security so low-ranked among embedded developers and by transitivity to

the systems they develop?

• How easy is it for remote attackers to overcome connected embedded systems and

turn them into weapons for massive cyber attacks?

• How can constrained devices protect themselves against such attacks? Do they

have the necessary technological bricks available and suited for their resource-

constrained environments?

• What kind of attacks can they push back?

• What level of confidence can be expected from protected constrained devices?

• Embedded systems are known for their heterogeneity featuring different hardware

platforms. Do portable solutions exist that cover the majority of these devices?

In search for answers, we focus on security isolation for low-end embedded systems

(other security-related topics, such as remote attestation, are not investigated).

Isolation techniques are many-fold and intervene at each system layer from the

hardware up to the applications and toolchains. They can be classified in three categories:

physical isolation, hardware-based (hybrid) isolation (hardware memory protection
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components, modified or not, associated with some control logic like hypervisor-OS-

kernels) and software-only isolation (language-based, sandboxing and SFI, software

virtual machines, hypervisor-OS-kernels without hardware support [179, 164, 170]).

In this thesis, we interest us in hardware-based memory isolation solutions. We

look here at general solutions at system level, such as kernels, generic tools or modified

hardware components that set up isolation measures. We leave behind bare-metal

solutions that do not bring enough universality.

1.2 Attacker model

The attacker’s strategy is to follow the path of the weakest link and aims to take full

control of the resource-constrained device. The adversary can then modify the device to

change its behavior, violate the security of other inner software components including

the OS/kernel, corrupt data that is sent to decision makers, use the device to access re-

stricted networks and attack connected computer systems or compromise many devices

to launch a synchronised massive cyber attack.

We consider a powerful distant attacker who can install software components on an

IoT device at reach. This could result from software initially controlled by the attacker

such as a third-party software or untrusted installed application or from a primary

attack which continues.

Our attacker is nevertheless not able to perform any hardware attacks, neither from

a distant location [82], nor by close distance because of the required physical proximity

not necessarily true in the case of low-end IoT devices and high-levels of hardware

integration making them economically not attractive for an attacker [111].

This lets functional assumptions on the hardware untouched, i.e. the hardware is

reliable by being functionally correct and fully operational. Thus physical attacks are

out of scope. Side-channel attacks are also ruled out.

Software attacks are particularly harmful for the systems through the exploitation of

memory vulnerabilities such as programming errors, stack overflows, illegal memory

access, data corruption. The adversary tries to access memory out of its memory space

(read, write, execution permissions) by exploiting memory vulnerabilities like code

injection attacks, code reuse techniques, illegal read and write operations [105, 32, 111],

so by a Write-What-Where vulnerability exploit [52]. The attacker could then inject arbi-

trary code and control data, stack, heap, owned peripherals of any installed applications,

and could circumvent normal control flow by pointer or stack manipulations [153]. The

attacker manages to gain full control of the device by overtaking a privileged component

or be granted security critical privileges, known as a privilege escalation attack. This

situation is due to flawed software because we consider initial software components
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benign but containing software vulnerabilities.

Usually, software developers know the importance of testing and code analysis to

identify and lower the risks of bugs. However, despite all these efforts, bugs are still

found and vulnerabilities discovered frequently even in large open-source communi-

ties [43]. The risk is spread over the device’s lifetime and malicious components can

be installed by direct attack or by unsuspected/undetected delivery as it is common to

use SOUP (Software-Of-Unknown-Provenance) and COTS (Commercial-Off-The-Shelf)

software and other third-party solutions of doubtful trust, which may sometimes receive

remote software updates and remote commands from unknown issuers.

In any case, memory vulnerabilities are present in our systems and can be exploited.

This scenario is realistic as reflected in the figures of the Common Vulnerabilities

and Exposures (CVE) database [44] reporting a total of 144877 vulnerabilities’ entries:

• 6052 entries match the keyword ‘memory corruption’ [48]

• 13555 entries match the keyword ‘overflows’ [49]

• 23723 entries match the keyword ‘arbitrary code’ [45]

• 1779 entries match the keyword ‘kernel privileges’ [47]

• 1566 entries match the keyword ‘root privileges’ [51]

• 2212 entries match the keyword ‘privilege escalation’ [50]

• 191 entries match the keyword ‘elevate’ [46]

These keywords are used in the reports’ description such as: ”A malicious application
may be able to execute arbitrary code with system privileges”.
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This chapter draws the necessary background concerning the next two parts of this

dissertation. It gives the reader some insights over the challenges that are addressed in

this dissertation and understanding of state-of-the-art solutions presented next. The

quick reader might want to jump to the presentation of the Memory Protection Unit

(MPU)2.5.1.

2.1 Operating systems and kernel

The frontier between the Operating System (OS) and its kernel is blurred, as much as

their respective definitions.

Andrew Tanenbaum defines it as ’the software that runs in kernel mode — and even

that is not always true’ [172]. It handles two features: hardware resource management

(processor, memory, inputs/outputs,...) and abstractions for higher-level applications

(drivers, files,...).

On the contrary, Richard Stallman defines the OS as ’a collection of programs that

are sufficient to use the computer to do a wide variety of jobs’ and the kernel as ’one

of the programs in an operating system—the program that allocates the machine’s

resources to the other programs that are running’ [149]. Richard Stallman considers

then Tanenbaum’s OS as a kernel.

Modern OSes also integrate the dimension of security, in addition to previously

mentioned functionalities.

In this work, we are close to Tanenbaum’s definition and sensible to the OS security.

The next sections precisely define our view on operating systems and kernels.

2.1.1 Definitions

The Operating System (OS) of a computer system provides an abstraction of the

hardware resources that are mainly the processor or Central Processing Unit (CPU), the

memory and a set of peripherals. Applications access OS services via a well-defined API

(Application Programming Interface) that launches system calls. OS services could be

features such as storing, networking, or displaying information on a display. Thanks to

this OS abstraction, applications are portable on different platforms independently of

the underlying hardware. This is like a human who would be as comfortable using the

same application but on a different computer or a mobile version, because the interface

is the same or similar even if deeper layers are different (i.e. the OS and the computer).

Note that applications do not need an OS to run, they run bare-metal. However,

removing the OS abstraction forces applications to stick to the hardware and thus be

less portable. It is also a concern of security and safety since the application takes

more responsibility. If an application badly configures a peripheral or tries to access
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a critical part of the memory, it could endanger the system and as a consequence the

whole ecosystem it is integrated in.

The kernel is a subpart of an operating system which contains all the critical features.

What is or not a critical feature is determined by the kernel’s philosophy and that’s

why there are kernels varying in size and categorised in different families. More than

distinguishing differences in software components, this distinction between kernel

and the rest of the system can also be the basis of privilege separation [159]. Modern

OSes have two or more hardware-enforced privileged modes which restrict what less

privileged modes can do. The most privileged ones can disable interrupts, change system

settings, switch privileged modes, and reconfigure sensible hardware components among

other things. This prevents lower privileged levels to do so and potentially gives

untrusted code rights for full system control and ultimately harm the system. Privileges

can be hierarchised in protection rings (inner rings have more privileges than outer

rings). In small embedded systems, there are typically two modes nowadays: privileged

and unprivileged. In this context, when the privilege separation is associated with

hardware privileged modes, we speak of kernel space (privileged) and user space or

userland (unprivileged) because the kernel is generally the most privileged component

of the system.

Extending that, the least privilege principle means any software component should

execute with the least set of privileges required to perform its operation.

Figure 2.1: Typical scheme of hardware and software nesting. The kernel and user
spaces are the software layers whereas the hardware is represented here as a general
abstraction of the processor, memory and peripherals.
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2.1.2 Monolithic kernels versus microkernels

Two main categories of OS structures/kernels are frequently opposed: monolithic

kernels and microkernels. Monolithic kernels are usually used by general-purpose

operating systems, like Linux [119] for UNIX-like operating systems. They concentrate

all the functionalities required so to let the applications and the user interface exclusively

run in user mode. The kernel itself exposes a large API that surfaces an important

code base (Linux is composed by more than 36 million lines of code [133]). However,

customization can reduce drastically the code base (e.g. MuLinux [124]) and modules

can be loaded at runtime which makes it a modular kernel.

Instead, microkernels, like Minix [171], reject outside the kernel space most of the

core features of the monolithic kernels. Indeed, they draw the frontier of the kernel

to only keep the hardware management feature, scheduling, multiplexing and inter-

process communications, but no abstractions such as file systems and drivers. Thus, they

provide only a minimal set of system calls, automatically reducing the attack surface.

These system calls are then used by outside servers (programs) that will reproduce the

missing features of the monolithic kernels. This way, the kernel code base scales down

a lot. However, due to frequent privilege switches between kernel and user spaces,

performances are impacted.

2.1.3 Exokernel versus protokernel

Kernel types can be further trimmed down first with exokernel [64] and more drastically

with protokernels [26]. The principle is to separate security from abstractions [136].

Exokernels consider it wrong to include abstractions at all in the kernel space and

to make implementation choices. They are only concerned about the hardware level,

for memory management and secure multiplexing. All abstractions are instead moved

to the user space. Applications then choose which abstraction implementation suits

best their needs. They can be linked with what is called LibOSes (Library Operating

Systems) in charge of the interactions with the kernel [65].

Kernels from the protokernel family are just concerned about memory management

and control flow management, only focusing on security without abstraction. Everything

else, including multiplexing, must be handled outside the kernel.

2.1.4 Embedded operating systems

Operating systems for embedded systems include any form of the previously presented

OS structures. However, in the early days, they usually run bare-metal, without hard-

ware abstractions, and probably libraries like LibOSes to share features nowadays
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Figure 2.2: Kernel types, inspired by [100]

attributed to operating systems. There was no separation between kernel and user

spaces.

Modern operating systems for embedded systems (RIOT [151], Contiki [39], Zephyr [189],

FreeRTOS [73]) still do not force privilege separation or have alternatives implementa-

tions to support it.

2.2 Security

2.2.1 Cyber security, safety and dependability

Integrity and confidentiality are basic cyber security principles.

Definition 2.2.1 (Integrity). Integrity means information held by some objects cannot

be tampered (modified or destructed) by other objects.

For example, the author does not want this dissertation to be modified without him

being aware of the modifications.

Definition 2.2.2 (Confidentiality). Confidentiality means information cannot be leaked

or made available to unauthorised objects.

For example, the author wants to keep his bank card PIN number private.

(Cyber) security is a very broad term and has different definitions depending on the

context of use. We give our definition of security perceived all along this thesis and

distinguish it from safety.

Definition 2.2.3 (Cyber security). Cyber security is the capability to protect a computer

system, or set of computer systems, or intangible assets, from external factors having

read or write permissions, i.e. respectively compromising the confidentiality or the

integrity.
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What are authorised operations or not is defined in the security policy that lists

the security requirements. The security policy should never be circumvented. It is

distinct from the protection mechanism which enforces it. For example, a hardware

component attributes resources across subjects in the system. Then, a security policy

could state restrictions about some subjects and resources and a protection mechanism

should implement the policy, e.g. a reference monitor, access control abstractions,

cryptographic keys, etc...

Definition 2.2.4 (Safety). The capability of a system not to harm its environment and

assets (including human beings).

If security is about protecting from external factors, reliability is about protecting

from internal factors, which may have been caused by security issues. Reliability is

defined as the assurance of keeping the system in a safe running state despite internal

events. For example, bugs and software faults should not interfere with the system’s

missions, so some related notions are fault-tolerance techniques (the capability to face

faults) like fault-containment (faults should not propagate to other system components)

and redundancy (a failing component is backed up).

We speak about dependable systems when they are at least secure and reliable. This

gives the system’s user a certain perception of trust. These are not the only notions to

characterize a system and its users’ perception of trust since a dependable system is

influenced by multiple factors stemming from its inner components, outer components

and environment.

All these terms are sometimes confused since they participate in the holistic view

of the system and relate to other concepts such as RAMSS (Reliability, Availability,

Maintainability, Security and Safety).

It is important to note though that security is a prerequisite for both reliability and

safety. Indeed, an attacked system is in an uncertain state that may be different from

the initial design state when the assumptions to ensure reliability and safety were set.

Hence, the approach of this work is to focus on the security properties of the system.

2.2.2 Secure operating systems

Humans are not perfect and make mistakes. In the cyber world, these lead to "bugs"

and unexpected behaviors of the software or hardware. But for cyber attacks, these are

vulnerabilities and opportunities to harm a system.

Confidence in a software component is usually tied to its correctness. This is demon-

strated by experiments, tests, simulations and code reviews. The outputs are compared
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with the expected outputs given known inputs. Sufficient code coverage and absence of

evident bugs give the user a sense of assurance.

High-assurance systems are systems requiring strong guarantees of some properties.

Examples of such critical operational environments are the military or some health

services. In these environments, system failures cause significant damage.

Moreover, from Section 2.1, we implicitly understand OS security as protecting the

kernel, or other OS features, even for systems with less assurance needs. There is a

supplementary consideration with security, that is to secure the applications. They can

directly harm the system because of bugs or vulnerability exploits that force a crash or

violate the confidentiality and integrity of the kernel or other applications. For example,

in embedded operating systems where the OS and applications share the same address

space, one way to secure the OS is to set up a security policy stating the separation of

privileges of kernel and applications. The two security considerations are solved by

setting up a security policy that embraces them both. However, there is no security

policy without isolation.

2.2.3 Memory isolation

Memory isolation is a key factor in the design of an operating system or kernel. It has

the purpose of well-defining the boundaries of the system components. Isolation is

linked with the cyber security principles of information integrity and confidentiality. It

is the basis for any security polices, otherwise there are no certainties about the system

state and its properties that could be modified and eventually clash with the security

policy. It naturally helps understand the global system but also builds confidence

when it is enforced by the system. Security isolation lowers the risks of a vulnerability

exploitation [164].

Spatial separation, or spatial memory isolation, is a type of memory isolation where

data of some protected entity is correctly isolated from entities that should not access

it. In other words, isolated entities should not be able to access private data or devices

except their own. It is distinct from temporal separation that must ensure isolation of

service resources like performance or latency. Spatial partitioning is a type of spatial

separation by partition isolation [156].

Considering levels of security isolation, the airgap security is one of the most extreme

applications of components’ isolation, where these components are not connected in

any ways with each other because located on different devices or memories for example.

On the contrary, when components are just isolated by namespaces but merged together

during compilation, it only offers a shallow isolation important for the design time but

not guaranteed during the execution time. Memory isolation comes then with more or

less guarantees and could be supported by hardware components for a higher isolation
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confidence (and lower the required trust in other system components). We could export

this analogy to a home environment with two houses, yours and your neighbour’s. Your

neighbour is particularly curious and tries to break into your house. The strongest

security for the isolation of both families is to keep them separate in different houses

(airgap security) so you don’t need to trust your neighbour. In another scenario, you

could imagine moving in together, in the same house and even share rooms. In this

manner, you lower the isolation to almost nothing (really nothing or based on rules) but

inversely need a high confidence in him/her (little to no security measures). Otherwise,

you could merge both houses into one but still keep them separated by walls (security

by employing hardware components). The thicker the walls are (the more isolation

capability it shows), the less confidence you need to have in your neighbour. To extend

the analogy further, we could imagine that you and your neighbour are invited to stay

in a common friend’s house. Your host splits you in different rooms and you need to

ask permissions to do things in his home (your host is the operating system and you

and your neighbour are processes). This way you are isolated from other guests and

have different rights compared to your host. You need to ask your host for a service or

privilege to do a certain operation.

It is important to note that isolation relates to two opposite movements: isolation

from something and isolation of something, i.e. protect internal assets against external

factors versus protect external assets from internal factors. These movements could be

addressed separately by a system exposing different properties (for example, the kernel

in the kernel space has more privileges than applications in the user space). As such,

the properties differ in a system with heterogeneous levels of guarantees even if both

movements follow the same common goal of security and safety. For high-assurance

systems, isolation properties could be eventually supported by formal verification.

2.2.4 Formal verification

A software’s state space is combinatorial and assurance by testing methods masks the

rest of the reachable states that can cause troubles. This especially concerns security and

safety because usually only functional properties are tested.

Formal methods are the only way to reach strong guarantees of the system’s properties

by the use of a mathematical model. Properties proven on the model via mathematical

logic reflect properties in the real system. In other words, it replaces the demonstration

of confidence by mathematical proofs. It is always a simplification of the real system

and must be as close as possible to real behaviors.

Formal verification is a process where the goal is to demonstrate that an implemen-

tation satisfies its formal specification. The correctness of the implementation, or the
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satisfiability of the specification, is demonstrated using formal methods of mathematics,

like logical and mathematical proofs. It is different from validation which finds out if

the specification is right in a particular context. Verification can consist in verifying

invariants that are properties that should always be satisfied despite transformations

of the mathematical objects they refer to. For example, a loop invariant is a logical

condition that is true at the start of the loop and still true at the end of each iteration of

the loop. To facilitate the proof conduct, proof developers rely on theorems and lemmas.

There are two main categories of formal verification tools: abstract interpretation

and theorem provers [145].

Abstract interpretation do not need to run the program to verify the properties. It

explores the state space to prove those properties are satisfied and, if not, brings coun-

terexamples. Tools based on abstract interpretation, like model checkers, are subjects

to the state explosion problem meaning they cannot explore the whole state space.

The results could then be undetermined. States are then usually over-approximated,

giving false positives or false negatives. They usually fail to prove high-level properties

and only prove very specific properties due to the mentioned drawbacks. They are

mostly automated but might have connections with theorem provers to enable human

intervention. The main advantage is that they scale well to large code bases.

Theorem proving covers instead the whole state space and can prove high-level

properties such as functional correctness (the implementation satisfies the specification).

They largely use formal deduction. Tools are theorem provers, also called proof assistants.
However, they are not automated, thus require intense manual guidance and expertise.

Hence, formal verification of a system using a proof assistant consists in writing the

specification of the properties to prove and then to prove the specification is satisfied

within a theorem prover.

Proofs can be done at different abstraction levels. Higher-level proofs can capture

very complex properties in a simple abstracted representation of the system. Like

Edsger Dijkstra says: “The purpose of abstraction is not to be vague, but to create a new

semantic level in which one can be absolutely precise” [59]. From there, the abstract

model can be refined down to include more details until the implementation level. The

refinement is the traversal from specification level to implementation level by verifying

complex properties on the most abstracted level and preserving them down. There can

be numerous abstraction levels before reaching the binary level. Proofs can also be done

directly at implementation level.



24 CHAPTER 2. Preliminaries

2.2.5 Security kernel versus separation kernel versus partitioning kernel

Many kernels striving for security exist. We review here three types of kernels. A security
kernel is a centralised agent that controls access to system resources and gathers all

security-critical software. In a security kernel, subjects (software entities) to system

resources (hardware and software) must follow a system-wide security policy.

Rushby [155] introduced the notion of separation kernel to enhance security kernels

with local security policies. Indeed, separation kernels conceptually distribute subjects

on physically isolated machines, while they are in fact running on the same processor.

In other words, it simulates a physically distributed environment on a single machine.

The separation kernel’s role is to provide the environment and communication channels

between the isolated components (seen as virtual machines or regimes). The purpose is to

facilitate formal verification of the kernel and each system component individually.

The partitioning kernel [156] appeared in the context of avionic standards for safety

and is a type of separation kernel with a focus on fault containment. It allows to split

software components with different criticality requirements and assesses each one of

them individually. They can be assessed by certification which verifies the conformity

to a set of standards. Certification is done by an independent party that checks the

targeted standard’s requirements are met. The highest certification levels, for example

EAL7+ of the Common Criteria [35], require the use of formal techniques. Certification

of only critical components, and not all system components, reduces the costs in the

end and pushes towards a reduction of the code base. It also has the benefits to group

functions usually distributed on the same machine. There is a distinction between

spatial and temporal partitioning, respectively to ensure no control of a partition over

another (memory or private peripherals) and ensure the quality of service for a partition

is not affected in any way by another partition.

Hence, a separation kernel is a security kernel considering isolated components in

the same machine and a partitioning kernel is an enriched separation kernel that focuses

on safety.

2.2.6 Trusted Computing Base (TCB)

The Trusted Computing Base (TCB) is the minimal set of security-critical components

(hardware and software) that needs to be trusted in a system. The TCB is compared

against the rest of the system which behaviour does not affect security. In operating

systems, the TCB is usually the kernel and the hardware on which it executes, but also

all the protection mechanisms and may contain other security functions, and not only

on the system’s chip, like secure cryptoprocessors. The smaller the TCB, the better [164],

or like Andrew Tanenbaum once said in a keynote I attended: «Smaller is safer» [4] (or
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more informally, it is the application of the KISS1 principle).

2.3 Legacy embedded systems and connected devices

Opposed to general-purpose systems, embedded systems are given a specific mission.

They are, as the category name suggests, integrated into a larger system. They are thus

less visible but very present. In a home, for example, we would typically find household

appliances having embedded systems to control them: refrigerator, toaster, alarm clock,

recent TVs and their remote controllers, smoke detectors... And with a modern car

comes a dozen to a hundred of embedded devices for the different car native systems

and advanced driver-assistance systems (ADAS). In the same home, we would find only

a few general-purpose systems like computers.

In the last decades, we see more of these devices connected to other devices or

exposing an interface for humans who can access to their devices remotely. By giving the

devices the ability to speak with one another and with people, we created the Internet
of Things (IoT), a smart environment capable of sensing and interacting and serving

people. While many definitions of the IoT exist, we only focus in this dissertation

on the connectivity part of the IoT devices and their consequences, and essentially

see IoT devices as connected embedded systems. This shift to the connected world is

an accelerating trend. Indeed, according to the 2019 Embedded Markets Study [61],

65% of the respondents tied to the embedded world will have one or more projects

devoted to IoT in the next year (compared to 21% nowadays). This meets the Eclipse

IoT Developer Survey 2019 [71] where two-thirds of the respondents are currently

working on IoT projects or will be in the next 18 months. This clearly shows a movement

towards connected devices which expels the embedded world to a much higher order

of magnitude [61, 71]. High economic expectations are forecasted for the first to flood

into the market, but might also later become a required move to survive in this new

worldwide smart environment.

However, crucial differences need to be highlighted despite the convergence brought

by connectivity. Legacy embedded systems and connected devices don’t have the same

design curve and the same legacy, which is of outmost importance for the security con-

cern where the figures contrast sharply: security is the top IoT developer concern [71]

whereas it ranks last in the embedded world [61]. Furthermore, only 4% of the de-

sign time of an embedded system is spent on security/privacy threat/risk assessment.

Nevertheless, the embedded world seems to acknowledge the need for security in their

systems since security is the top 3 greatest technology challenge [61]. But the battle

1Keep It Simple Stupid, or Keep It Safe and Simple
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for security has not come to an end: on the 25 billion of IoT devices expected on the

market (2021) [76], the great majority of them will suffer from cyberattacks and the new

business ecosystem will be the playground of cybercrimes capturing 300 billion to 2

trillion dollars worldwide and every year [146].

Bringing connectivity to legacy embedded systems also exposes these devices to

cyberattacks as never before, which competes with the expected reliability of IoT devices;

sometimes we even trust them with our lives. For example, in 2015, two researchers

managed to remotely hack a Jeep Cherokee, taking control of some inboard systems

and critical physical systems such as the steering and braking, foresighting tragical

scenarios [127]. Moreover, IoT security is not only about attacks the way down to the

devices, but also the other way around. For example, the Mirai botnet which took place

in 2016 broke down major parts of the internet by taking control of a large number of

devices [112]. As the IoT is scaling up, we can easily imagine the impacts of a similar

botnet attack would be even more intense if it happened today. Examples in recent years

are the STUXNET worm, uncovered in 2010, which was specifically designed to sabotage

an Iranian nuclear facility [184] or cyber attacks on the Ukrainian power-grid in 2015

and 2016 [160, 66]. Thus, IoT devices, or connected embedded systems, have more than

a local impact and the consequences should be taken from a more holistic view. With

potentially high impacts, the ecosystem is in a stringent need of strong guarantees.

2.4 Low-end/constrained versus high-end embedded systems

2.4.1 Low-end/constrained embedded devices

A microcontroller is a small computer that contains a processor (or commonly Central

Processing Unit, CPU), memory, and various input/output (I/O) peripherals. It has

a limited memory and CPU speed to minimize the Space, Weight and Power-Costs

(SWaP-C) factors. Despite the SWaP-C factors expected to be low, embedded systems can

vary drastically in size and complexity. For example, a car might embed hundreds of

high-performance microcontrollers as opposed to the low-performance microcontroller

in a toaster.

In this dissertation, we will focus on this constrained type of devices, called low-end
devices or constrained devices, which must deal more than others with limited resources

of power and memory. Low-end devices are classified in separate categories in Table 2.1.

These characteristics lead to hard constraints in the system design. In this dissertation,

we are concerned about Class-2 IETF constrained devices.
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Name Data size (e.g., RAM) Code size (e.g., Flash)
Class 0, C0 < 10 KiB < 100 KiB
Class 1, C1 10 KiB 100 KiB
Class 2, C2 50 KiB 250 KiB

Table 2.1: Classes of constrained devices (KiB = 1024 bytes) [93]

2.4.2 High-end embedded devices

High-end embedded systems are still affected by the SWaP-C factors and provided with

similar or fewer resources than general-purpose systems, however do not exhibit as

steep resource constraints as low-end devices.

Examples are smartphones, television sets, robots or subsystems in need of powerful

computation platforms like in the avionics.

2.5 Memory Protection Unit (MPU) versus Memory Manage-

ment Unit (MMU)

Applications require memory to store their code and data, but they need to follow the

kernel’s security policy. This means memory has to be managed and access to resources

must be controlled. The Memory Protection Unit (MPU) and the Memory Management
Unit (MMU) are hardware components taking on this role.

2.5.1 The Memory Protection Unit (MPU)

The Memory Protection Unit (MPU) [15, 14] is available for small embedded systems

only. It is an optional component on many ARM Cortex-M processors [13]: Cortex

M3/4/7/0+/23/33/35P/55. Its role is to restrict memory accesses based on a memory

layout configuration. The configuration consists in a set of memory regions called MPU

regions having various permission rights (read, write, execute) and additional attributes

(caching, buffering...). That is, a system usually has a default memory map that can

be changed by configuring the MPU and each running process must stick to the active

MPU configuration. The number of MPU regions that can be configured and protected

at the same time is implementation-defined, generally 8 to 16 MPU regions. The MPU

is configured at runtime by a privileged software (typically an OS kernel). A faulty

memory access ends in a memory fault.

Systems protected by an MPU offer a higher level of security compared to their

counterpart without MPU or not using it. Naturally, this goes along with a proper

MPU configuration and self-protections in order to set up the protection measures as

intended.
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The MPU can be traced back as far as in the ARMv4t.

In the Cortex-M series, architectures ARMv6/v7/v8 support respective Protected

Memory System Architectures (PMSA) as an optional extension. The MPU implements

this extension to protect a 4GB address space. All micro-architectures of the Cortex-M

series propose an optional MPU, except Cortex-M0 and Cortex-M1 [16]. From ARMv8-M

and the introduction of the TrustZone (memory split in a secure world and a normal

world), there is one optional MPU per protection domain, so one MPU for the secure

world and one MPU or the normal world (or non secure world) which can implement

a different number of memory regions and be existent or not. In ARMv8-M, the MPU

regions are not allowed to overlap and the only restriction to set up a region is that

the starting and ending addresses must be aligned to a multiple of 32 bytes. Instead,

previous ARMv6/7 versions allowed MPU region overlapping and had strict size and

alignment constraints: the MPU regions base addresses are aligned with the region size

that is a power of 2. ARMv6/7 also provides MPU subregions, that are eight equally

sized subregions that can be independently enabled for each MPU region.

Since Arm dominates the mobile, embedded and IoT markets, it means the MPU is

de facto the most widely available hardware component to protect memory assets and

already used in many OSes for constrained devices. However, the reality is different, the

MPU is not present in all implementations or, when it is present, is set aside. Several

reasons push device manufacturers not to use the MPU: too high memory footprint,

too high energy consumption, too high performance overhead, too high time-to-market

pressure to take the time to integrate, compatibility issues, limited regions and thus

flexibility or no guarantee of system protection [194].

Equivalent units exist on other processor architectures, such as the Physical Memory

Protection (PMP) on RISC-V [152].

2.5.2 Differences with the MMU

From a broad perspective, the MPU is for small embedded systems what the Memory

Management Unit (MMU) is for general-purpose systems, since both share the memory

protection role in a similar fashion. We summarize the key differences between MMU

and MPU in Table 2.2.

MMUs organise the space by memory pages, usually of fixed size, instead of MPU

regions of variable size. However, the MPU is much more constrained and systems with

MPU support up to 16 MPU regions compared to millions of memory pages for an MMU.

Hence, the MPU ensures hardware-based memory protection similar to the MMU (read-

write-execute access control rights), but does not virtualise the memory. Furthermore,

the MPU’s configuration is stored in CPU registers while the MMU manages page tables

stored in the main memory. As with MPUs, illegal access ends up in a memory fault.
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Attributes MMU MPU
Virtual memory Yes No

Configuration mode privileged privileged
Memory region unit page MPU region

Number of memory region unit Millions 8-16
Access control (RWX) Yes Yes
Configuration storage main memory registers
Device memory size MB-GB kB

Device frequency GHz MHz

Table 2.2: MMU versus MPU.

The highlighted differences prevent us from directly transposing from an MMU-

based system to a system based on an MPU. The limited number of MPU regions,

designed accordingly to the requirements of constrained devices, does not scale with

the millions of pages protected by an MMU. Furthermore, they are configured and they

operate so differently that the configuration software should be entirely redesigned.

Since our interest lies in constrained objects, the MPU will be our central hardware

concern in the rest of the document.
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In this chapter, we review state-of-the-art hardware-based isolation solutions for low-

end embedded systems. We do not consider performance in our study because the

researched solution should first and foremost exhibit strong security guarantees. At first,

we explore existing solutions that only leverage hardware components to set up memory

isolation with various granularities. Then, we look at the combination of hardware-based

solutions with software-only solutions to strengthen the overall isolation confidence

(hardware-based solutions enhanced with language-based isolation or formal proofs, or

software-only solutions hardened by hardware components).

Our study brings to light the lack of an open secure hardware-based solution for
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constrained devices providing strong isolation guarantees, illustrated in Table 3.1.

Hence, we review corresponding solutions in high-end embedded systems where several

formally verified OS kernels are identified.

3.1 Hardware-based isolation solutions

Hardware is the foundational trust anchor in any system. Some parts are specifically

crafted for security, like processor security extensions or dedicated hardware such as

crypto modules, that are in charge of cryptographic operations.

Some hardware components can help with isolation. We review in this section the

TrustZone technology and the MPU (more insights in [163]). They are considered the

strongest forms of isolation because, if correctly configured (we will see in the problem

statement section 3.3 that this might not always be true), they cannot be easily attacked

by software. Note that we ruled out physical attacks, even as a consequence of a remote

attack, that might disturb the correct functioning of the hardware [179]. But this can

also be a disadvantage because hardware is difficult to update (it can be considered as

frozen software) and thus cannot receive security patches. A long time can separate

hardware generations and as much time for cyber criminals to exploit the security flaws.

Hence, hardware-only solutions are not realistic long-term solutions, and hardware is

rarely used without software controlling the hardware that can receive patches. For

example, the MPU does not offer isolation natively, nor protection, so a certain form of

logic must control it. This section highlights the kernels, architectural components and

tools that manipulate security hardware for isolation.

Furthermore, this section also narrates research projects that modify the hardware

to add security extensions.

3.1.1 Embedded system kernels

In the last decades, many efforts stemming from research and the industry have created

a plethora of operating systems and kernels for low-end devices. The mainstream OSes

in this category are RIOT OS, FreeRTOS, Zephyr, TinyOS, Contiki, MbedOS [165, 71].

They offer disparate isolation guarantees which will be reviewed in the following

with other appealing OSes and kernels showing some form of isolation guarantees.

Furthermore, systems using COTS security hardware might not actively provide efficient

isolation mechanisms. The MPU for instance, can be used for memory protection only

(e.g. restricted access rights for memory sections or stack canaries), which does not

imply isolation.
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TrustedFirmware-M [118] ARM Cortex-M devices incorporate the TrustZone [19], a

hardware extension (“security extension to the embedded world”) that splits the memory

into a ‘Secure World ‘ and a ’Normal world’. Trusted components and security-critical

functions are supposed to be placed in the ’Secure’ part and the untrusted code, such

as a rich OS is supposed to run in the ’Normal’ side. Code is executed in one world

or the other depending on where the execution address is, such as the trusted code is

completely isolated from the untrusted code by design.

ARM provides the TrustedFirmware-M which is their reference implementation of

a ‘Secure World‘ OS. In this way, TrustedFirmware-M runs in the ‘Secure World‘ and

another ‘non-secured’ OS runs instead in the ‘Normal World‘ (like MbedOS, FreeRTOS

and Zephyr detailed later). TrustedFirmware-M provides a Trusted Execution Environ-

ment (TEE, also called in Arm terms Secure Processing Environment or SPE), which

is the root of trust (RoT) of the IoT devices with crypto, attestation, firmware update,

secure storage (keys on internal memory and confidential data on external non trusted

memory) security features.

Figure 3.1: ARM TrustZone technology.

However, memory is split into two parts and can not be extended. For example,

trusted code is not necessarily trustworthy and could also benefit from memory isolation

between components, which is not possible to achieve alone with TrustZone. TrustZone

can nevertheless be used in conjunction with optional MPUs in each world providing a

limited set of clustered memory areas. The privileged components of the system manage

the MPUs.

RIOT OS [22]: no isolation guarantees by default with MPU-based extension for

self-stack isolation, microkernel RIOT OS has been growing in popularity in recent

years and is specifically designed for low-end IoT devices. It offers numerous ports to a

large panel of boards and CPU architectures. In its default mode, the RIOT application

is compiled together with the RIOT OS, and no isolation is enforced at runtime.
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For the devices equipped with an MPU, RIOT brings the possibility to use up to three

MPU regions: one region to prevent execution in the on-chip RAM (SRAM) and two

regions to set up stack guards for the active thread and the Interrupt Service Routine

(ISR) respectively in Thread Mode (operational mode) and Handler Mode (interrupt and

exception handling). Stack guards are defined at the bottom of the stack, such that a

write in this area will result in a memory violation.

This MPU configuration is fixed at compile-time, accessible by the privileged appli-

cation, and prevents buffer overflow attacks because of the guards and code injection

attacks because data becomes non-executable. However, this doesn’t isolate applications

from each other and leaves the possibility to directly modify the OS and as such take

control of the whole system.

Zephyr RTOS [189]: no isolation guarantees by default with MPU-based extension

for self-stack isolation, kernel data isolation, kernel stack guards Zephyr RTOS

targets connected resource-constrained devices and embedded devices, and provides a

full networking stack to this aim. User threads run in user mode, while kernel and kernel

threads run in supervisor (privileged) mode. When hardware memory management is

supported (MPU or MMU), Zephyr offers static boot-time MPU configurations to restrict

code to read-only execution, protect privileged kernel RAM, and protect privileged

peripherals by separate MPU regions. At each context switch, an MPU region also

protects the user thread stack.

Additional memory blocks can be given to a given thread (memory partitions) and

can be shared between threads, each block requiring an extra MPU region.

There is also an extension to detect (but not protect) privileged thread stack buffer

overflow by setting MPU-enabled stack guards.

If hardware memory management support is missing, Zephyr offers the option of

adding canary values to detect stack overflows. However, data could be corrupted and

there is a delay in the overflow detection.

In its most MPU-protected mode, Zephyr protects then against stack buffer overflows

and limits the execution of code and isolates kernel data. However, the high number

of static MPU regions coupled with the stack guards gives less possibility to add sup-

plementary memory blocks (since each requires an extra MPU region, bounded by the

hardware requirements). Furthermore, kernel threads run with the kernel and could

interfere with it. Finally, when threads launch their own child threads, the latter inherit

the same memory partitions as their parent forcing mutual trust and less flexibility.

FreeRTOS-MPU [74]: MPU-based kernel isolation, partial self-stack isolation, micro-

kernel In its common use, FreeRTOS offers no isolation means.
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However, the FreeRTOS-MPU variant makes use of the MPU and the privileged and

unprivileged modes to isolate the kernel from the tasks and to restrict the tasks’ scope.

Indeed, two static MPU regions are requisitioned to protect kernel code and data from

unprivileged tasks. Accessing the kernel regions from these tasks will result in a memory

fault stopping the execution. One MPU region sets the tasks’ code to read and execute

only so that no task can write in its own or in another tasks’ code area. One MPU region

is used to set the peripherals as not executable. As peripherals are usually memory-

mapped, this prevents code injection attacks by peripheral configuration. Finally, either

the task is unrestricted and allows writing in the whole RAM except the kernel data, or

the task is restricted to itself and can define three supplementary custom regions (which

can overlap regions of other tasks). In this configuration, the kernel is protected at any

time but tasks expose their data and stack to the other (potentially malicious) tasks.

Furthermore, a task can also be created as privileged and as a consequence has the

same rights as the kernel, exposing this time the kernel to vulnerabilities originating

from malicious or flawed applications.

EwoK [25]: MPU-based process and kernel isolation, MPU-based between process

isolation, MPU-based driver isolation, microkernel, use of Ada/SPARK EwoK is a

driver-oriented microkernel which isolation policy is determined at compile-time.

EwoK follows the least privilege principle: a module or kernel should not have more

rights than it should. In other words, even the kernel should not directly access the

modules. Indeed, the kernel is solely privileged, so could have access to the whole

defined memory, but when the kernel code is executed, the MPU regions dedicated to

the user modules are disabled. Hence, the MPU effectively isolates the kernel (code,

data, peripherals) from the user modules at any time.

EwoK uses the ARMv7 architecture possibility of defining eight equally-sized subre-

gions. They are enabled independently to handle drivers more finely (several subregions

could be used for one driver, or each driver uses one subregion). At context switch, the

subregions corresponding to the new active driver are enabled, as well as the peripherals

fitting the driver. This way, the drivers are isolated from the rest.

EwoK also uses SPARK which is a formally defined programming language strength-

ening the Ada strongly-typed programming language by automatically generating

verification conditions to remove runtime errors (buffer overflows, division by zero...)

and by optionally establishing functional specification (program contracts describing

the expected behaviour, pre- and postconditions...). These formal conditions are proved

automatically or may require human intervention through the interface with theorem

provers. In EwoK, the SPARK contracts cover some critical functionalities by specifying

what the subprogram should do and enforce the W^X principle.
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3.1.2 Isolation generation tools

Existing applications must be ported on these systems in order to inherit the isolation

mechanisms brought by the previously exposed kernels and operating systems. But

this comes with additional development costs and technical challenges. Research also

investigated isolation mechanisms with hardware support by using tools and toolchains

that instrument the code. They do not offer the set of functionalities provided by the

previously studied systems, but offer an alternative lightweight mechanism, usually

with a tiny separation kernel in charge of the memory space isolation preparation. They

need additional offline firmware analysis on the source code.

MINION [105]: MPU-based process isolation The MINION architecture tackles the

isolation problem together with the real-time performance issue. It proposes a per-

process switching mechanism that avoids frequent privileged mode switching. The

memory view switcher is responsible for reconfiguring the MPU at each process switch

(so a relative runtime overhead) following fixed MPU configurations computed during

compilation. It is the only code running in privileged mode; the rest are unprivileged

modules. They identified the reluctance of system designers to use the MPU and

proposed a way to statically analyse a firmware and reorder the memory sections to

group the ones of similar nature and isolate processes and kernel.

However, it does not address bare-metal systems and it is subject to vulnerabilities

because of memory view over-approximation due to the hardware’s limitations.

ACES [32]: MPU-based function to process-level isolation in bare-metal systems

ACES (Automatic Compartments for Embedded Systems) is a binary instrumentation

tool to automatically generate memory compartments. It’s an extension to the LLVM

compiler which goal is to optimise the code. Similar to MINION, fixed MPU config-

urations are computed during compilation and enforced during runtime depending

on the active protected components. The great benefits are that it doesn’t require to

modify the source code since it leverages the compiler and the process is fully automatic

once a compartmentalisation policy is chosen, making it a smooth process. For example,

the tool can be used to isolate components originating from the same source file from

the components in other source files, or by peripheral use, or by functionality. The

compartments can be smaller than a process or thread; it just needs a bit of code and

optional associated data. The developer chooses the compartmentalisation policy that

best fits the usage, at the expense of performance (frequent calls to components of other

compartments which adds compartment switching instructions) or security (mixing

together security-critical components with untrusted third-party components). Indeed,
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the ACES instrumentation stages end by lowering the number of compartments with

the actual available MPU regions (eight to sixteen depending on the target board).

Thus, compartments ideally isolated may finally be mixed in the last effort to adapt

to the hardware constraints.

OPEC [195]: MPU-based function to process-level isolation in bare-metal systems

OPEC also instruments the binary to automatically generate isolated compartments

(called operations and are independent tasks with their inner functions). It enforces strict

memory isolation (stack isolation and global data shadowing technique). It features

MPU region virtualisation with explicit MPU reconfiguration on demand during runtime

to prevent the memory-view approximation of MINION and ACES. The compartments

are created respecting an automatically generated policy, that statically analyses the

firmware. A small separation kernel is linked to the firmware image to enforce the policy

by the use of the MPU. It also emulates store and load operations on core peripherals.

Compartment switching is done by instrumenting the code with additional system calls

that trigger the isolation-safe context switch.

OPEC only targets bare-metal systems and requires the source code, so does not

support dynamically linked libraries.

MultiZone [139, 140]: MPU-based domain isolation MultiZone is a small separation

kernel for ARM Cortex-M devices.

Isolated domains are actively protected by the MPU at runtime, given a fixed config-

uration defined at compile-time.

It also offers a real-time scheduler and a communication sub-system in charge of

inter-domain communication.

Legacy applications must be ported into the user space and previously privileged

register accesses are trapped and emulated by the kernel.

3.1.3 Modified hardware components

Because of the numerous hardware limitations, some projects propose modified hard-

ware components, optionally operated by a small software; for example by extending

the CPU instructions or enhancing memory bus access logic.

While they show reasonable performance for embedded systems use cases, the

required hardware customisation may be too expensive for low-end devices.

TrustLite [111]: EA-MPU-based trustlet isolation TrustLite protects trustlets, a lim-

ited number of security-critical functionalities (e-payment, attestation module), ensured

by a modified MPU.
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The MPU is made execution-aware, meaning it controls the execution rights of the

instruction issuer in addition to monitoring the data accesses. The root cause is because

trustlets and the untrusted OS and its tasks shouldn’t access the resources equally, while

they share the MPU configuration fixed at boot time.

The execution-aware MPU (EA-MPU) first checks the rights of the requesting entity

before checking the data access rights. Rights are read-only accessible for everyone in the

Trustlet Table. The architecture also embeds the Secure Loader, a software component

which purpose is to load the trustlets, configure the MPU at boot, and eventually load

and launch the untrusted OS and its tasks (which can be trustlets). Besides, it integrates

an exception engine that saves the stack and the instruction pointers as well as general-

purpose registers in the trustlet’s protected data area before handling an exception. This

way the OS exception handlers are out of the trustlets’ TCB and prevent information

leakage.

It also provides trusted IPC (Inter-Process Communications) by implementing a

communication protocol between trustlets.

CheriRTOS [187]: task isolation by hardware capabilities CheriRTOS is an OS

providing a great number of isolated tasks. It claims hardware mechanisms such as the

MPU or the TrustZone are difficult to orchestrate and thus neglected. CheriRTOS instead

uses memory capabilities, i.e. authorization tokens with base address, top address, and

access permissions. Memory capabilities give the capability owner access to memory

segments defined by the capability. The capability model is based on CHERI [181] and

so CheriRTOS runs on a modified processor with capability extensions and a capability

co-processor.

With CheriRTOS and the modified hardware platform, performances are better

compared to using an MPU.

While the processor security extensions are not yet available for micro-controllers,

Arm developed and released in 2022 the Morello board [17], a CHERI-extended pro-

cessor for high-end devices. The Morello board enables fine-grained compartmentalisa-

tion [18]. If adapted for micro-controllers, and because the embedded sector extensively

relies on Arm, the ecosystem might change the security model.

3.2 Mix of hardware and software solutions

Obviously, hardware-based isolation mechanisms can be combined with usually software-

only solutions. The defence-in-depth concept [24, 6] acknowledges the need for several

independent layers of security to assure the system’s global security expectation, with

isolation being one of these layers.
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The thesis does not focus on software-only solutions that are not used in combination

with hardware mechanisms, even the ones exhibiting intermediate to strong security

guarantees like JavaCard Virtual Machine [98, 7] or Security MicroVisor and PISTIS [3,

83] leveraging Software Fault Isolation (SFI) [170, 180] that is a widespread technique

to isolate programs in "logical" address spaces by code instrumentation.

Dynamic selection of isolation mechanisms is not yet available for constrained

devices, like Flex-OS [113] for high-end devices. Flex-OS lets the developer choose

the mechanism that fits best the desired isolation and performance goals at compile-

time (SFI, hardware isolation like MMU or capabilities...). But this implies isolation

guarantees vary depending on the involved mechanisms.

MbedOS with TrustedFirmware-M [20]: MPU-based memory protections, Trust-

Zone-protected in conjunction with TrustedFirmware-M Nothing prevents systems

from mixing security hardware components and relying on other hardware-based solu-

tions, as MbedOS illustrates.

MbedOS is the IoT OS developed by Arm, freely open-source. It is a multi-threaded

real-time OS for embedded devices featuring storage, connectivity, and drivers to stan-

dard peripherals, among others.

The ARMv8-M port enables TrustZone support by relying on a specialised Trusted-

Firmware-M implementation [118] to host the security features. In this architecture, the

MPU is used to isolate partitions. It enables automatically the MPU to write-protect the

ROM (Read-Only Memory, where code and defined variables lie) and to execute-lock

the RAM, thereby implementing the W^X principle stating that no memory regions can

be at the same time writable and executable and so prevents code injection attacks.

However, these memory protections can be disabled when needed by an application

and can’t be extended to protect other memory regions in a fine-grained manner, which

strongly limits the applicable security policy.

TockOS [175, 115]: MPU-based process and kernel isolation, MPU-based between

process isolation, use of Rust TockOS offers process-grained isolation enforced by the

MPU.

The MPU is dedicated to the processes and is reconfigured at each context switch to

restrict the memory access rights of the current process. The MPU configurations are

mostly fixed at compile-time to protect code, data, stack, and heap of the active process.

Some MPU regions are used for Inter-Process Communications (IPC).

The kernel contains the core functionalities (scheduler, hardware layer and con-

figuration) and drivers (SPI, UART, timer...). When the kernel is executed, the MPU

is disabled, such that the kernel has total access to the whole memory. The kernel is
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thus trusted notably because it uses the Rust programming language [157]. Rust still

offers access to low-level details with the ‘unsafe‘ keyword. It has no garbage collector

meaning the memory safety properties are not ensured at runtime by the programming

language itself (like Java) but through the compiler’s static analysis at compile-time,

which makes it an efficient language suitable for embedded systems. This is to lower

the risk compared to using not-safe languages like C, which have direct access to the

hardware and the memory. This fits the needs for low-level programming but allows

risky operations from developers.

MPU-hardened Java Card Virtual Machine [30]: virtual machine, MPU-based kernel,

MPU-based context isolation This project aims to protect JavaCard applets running

on the same hardware by the use of the MPU.

Indeed, the MPU is used to guard executing contexts that each has a Java Card byte

code interpreter. Each applet is then confined in its own context with its interpreter.

The MPU configuration is fixed at compile-time and the MPU is reconfigured to always

match the executing context. The kernel has access to the entire memory and is the sole

privileged program running in kernel space while the applets all run in user space.

The virtual machine also leverages the MPU for memory protection by implementing

the W^X principle and to detect overflows on the active applet’s stack and heap.

ProvenCore-M [114, 28]: process and kernel isolation, between process isolation,

TrustZone or airgap isolation of the trusted core, fully formally verified in SMART

ProvenCore targets the ARM-empowered IoT industry by offering a trusted core ensuring

between process isolation and kernel and process isolation by formal proofs. The core is

a modified MINIX microkernel [171] and makes sure processes are isolated from each

other.

The typical configuration implies setting ProvenCore aside a rich OS (like Android

since they target specifically the mobile sector) and letting all critical security features

like authentication or e-banking be handled from ProvenCore. Indeed, ProvenCore is

meant to be placed in the ’Secure World’ of the TrustZone or a separate microproces-

sor/microcontroller in conjunction with the rich OS in the ’Normal World’. The critical

features are replaced in the rich OS by a proxy process handled from ProvenCore.

The isolation ensures the confidentiality and integrity of the protected ProvenCore

processes and the formal proofs follow a refinement strategy: first, the isolation proper-

ties are proved on an abstract model considering separate machines for each process,

then refining down to a concrete model used for the C code generator later compiled by

CompCert [186] (a formally proven compiler). At each refined layer (four in total), a
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commutation proof states the changes and checks the properties hold. They received

the Common Criteria EAL7 certification, the highest possible certification 2.2.5.

The Cortex-M variant is similar and runs on Cortex-M microcontrollers with Trust-

Zone or a supplementary microcontroller, and is the sole running OS (except the rich

OS).

3.3 Problem statement

State-of-the-art solutions show different isolation techniques that exhibit various levels

of guarantees, ease-of-use, and functionalities. Hybrid approaches combining hardware-

based and formally proven isolation expose the strongest means of isolation. However,

no solutions for constrained devices reach that level of guarantee.

Indeed, the majority does not rely on formal methods to prove isolation, which is

necessary to get a mathematical guarantee of the proposed solution.

Also, many solutions restrict the number of protected components because of hard-

ware limitations, numerous in constrained devices, which take them away from the ideal

isolation solution. Isolation is often seen as a trade-off to performance with negotiable

security guarantees.

In addition to that, many solutions are tied to a specific architecture, like Armv7-M.

Moreover, when used, the MPU is usually not accessible anymore to the developer,

who has no choice but to conform to the fixed policy decided before runtime.

When they do use formal methods, they do not address abstract notions such as

isolation at task level, do not analyse the full TCB, are also tied to a specific hardware

architecture implementation, and are still very limited in the number of protected

components. Many also require manual intervention of the system or application

developer. This is error-prone since they are almost all written in an unsafe programming

language like C and risk putting the system in a dangerous state. Some take support

from properties of the programming languages to increase security by avoiding certain

classes of memory vulnerabilities, however this does not address isolation from the

system perspective. Indeed, hardware isolation appears stronger since it treats not the

causes of the vulnerabilities but their effects.

And lastly, many current systems have no means of isolation and are vulnerable

to code injection attacks, privilege escalation, data theft or corruption, and system

corruption.

Though the technological bricks are available to build a hardware-based memory

isolation solution for constrained devices with strong guarantees, the process requires

experts in system design and formal methods. As the market has risen rapidly in recent

years, the industry was more concerned with securing sales before the devices and
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any investment in security implies additional costs to feed through expected low-cost

devices. This difficult equation left blank the field of strong security guarantees for

constrained devices as illustrated in Table 3.1. To the best of our knowledge, ProvenCore-

M is the only isolation solution to target the microcontroller sector and to expose

strong guarantees of isolation by formal proofs. The major drawback is its proprietary

classification, which is why few inner workings have been disclosed.

Finally, from the literature review arising from our field of research, there is no

solution which:

• is software-defined AND

• provides strong isolation guarantees by being at least

– hardware-based AND

– ensured by formal proofs AND

• fits constrained devices AND

• is open-source.

3.4 Hardware-based solutions in high-end embedded systems

In contrast to previous solutions, we focus now on high-end embedded systems. High-

end embedded systems have similar memory isolation hardware mechanisms to common

general-purpose systems, such as the MMU, which are well-established security mecha-

nisms.

We first review hardware-based solutions with intermediate isolation guarantees

and follow by studying solutions exhibiting strong isolation guarantees.

3.4.1 Hardware-based solutions with intermediate isolation guarantees

High-end embedded devices range from systems with a few MBs to several GBs that

are more like general-purpose systems. For this latter class, devices typically support

mainstream OSes like Linux distributions, Windows, MacOS and Android [183, 126, 8,

78]. For the rest, more specific embedded solutions exist with equivalent environments

like members of the Windows IoT family, Linux Embedded, and Fuchsia [125, 62, 79].

Virtual memory provided by the MMU is always used for high-end embedded

devices, and so they all provide isolation by using the MMU to stop the system in

case of a memory isolation violation (the famous memory management ’blue’ screen in

Windows reproduced in Figure 3.2).
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Figure 3.2: Windows 10 stepping into a memory management error.

The MMU is not the sole isolation hardware component, for example TrustedFirmware-

A [117] based on the TrustZone, equivalent to TrustedFirmware-M for high-end ARM

Cortex-A devices.

3.4.2 Hardware-based solutions with strong isolation guarantees

Many research efforts focused on verifying the correctness and security of general-

purpose systems, embedded systems, and separation kernels [192, 193, 106]. We review

here three fully formally verified OS kernels from the last twenty years, in addition

to the ProvenCore kernel already covered previously with its micro-controller variant

ProvenCore-M [28].

seL4 [109, 173, 89] : MMU-based process and kernel isolation, MMU-based process

isolation, fully formally verified in HOL

In 2004, a team from NICTA presented seL4, the first ever fully formally verified

microkernel. This means there are mathematical proofs that the kernel implementation

follows its high-level specification that encompasses isolation properties.

seL4 is a member of the L4 microkernel family [116] which provides four major

features: virtual memory management, threading, scheduling and inter-process com-

munication. seL4 also features capabilities for authorisation which associate any kernel

object with a set of access rights, limiting the behaviour of the object.

The guarantees provided by the formal verification are rooted in the hardware

making it a kernel with very strong means of isolation (notably the MMU, but not the

software capabilities). The complete verification in the Isabelle/HOL [177] theorem

prover could only happen because of the few features it provides. The proof follows

a refinement strategy, conducting verification of system and security properties on

high-level specifications and then refining down to the implementation level.

As a microkernel, seL4 can be the secure foundation of full operating systems
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featuring more system components, like the recently announced KataOS [81] (2022)

almost entirely written in Rust.

mCertiKOS-secure [41, 86, 84]: MMU-based process and kernel isolation, MMU-

based process isolation, separation kernel, fully formally verified in Coq

mCertiKOS [86] is a single-core processor kernel that derivates from the CertiKOS

kernel which also used refinement (almost 40 abstraction layers) to fully formally verify

the system’s functional correctness [84]. A variant, mCertiKOS-emb kernel, stems

from mCertiKOS and is specifically crafted for embedded systems by removing virtual

memory support and user-space interrupt handling. mCertiKOS kernel and variants

allow authorised communication channels between different user-space applications by

message passing.

In 2016, mCertiKOS-secure [41] is designed as a pure separation kernel by modify-

ing the mCertiKOS kernel. In the modified kernel, inter-process communications are

disabled. mCertiKOS-secure proves confidentiality (non-interference) by a high-level

security verification on each system call. Then, different levels of abstraction are linked

by simulation that preserves the security property down to the low-level assembly

execution. The kernel is fully formalised and verified in the Coq proof assistant [95, 40].

Pip [101, 99, 100, 26]: MMU-based process and kernel isolation, MMU-based process

isolation, separation kernel, fully formally verified in Coq

Created in 2016, Pip is designed and implemented as a member of the protokernel

family 2.1.3, drastically lowering the features to the sole memory management and

context switching features.

Pip is a separation kernel where partition isolation is formally proven and hardware-

based on the MMU, in a different way than proposed by seL4 or mCertiKOS. Pip’s formal

proofs are directly conducted on the source code, which corresponds to the lowest

specification levels in seL4, ProvenCore, or mCertiKOS so without refinement. The

small exposed feature set makes it very flexible for upper implementations, so that

designers could keep their actual project while soaking the system with strong isolation

guarantees.
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Intermediate isolation guaran-
tees

High isolation guarantees (sup-
ported by formal methods)

Low-end
embedded
devices

TrustedFirmware-M [118], RIOT
OS (MPU) [22], Zephyr RTOS
(MPU) [189], FreeRTOS-
MPU [74], EwoK [25],
MINION [105], ACES [32],
OPEC [195], MultiZone [139],
TrustLite [111], CheriR-
TOS [187], MbedOS [20],
TockOS [175], hardened Java
Card Virtual Machine [30]

ProvenCore-M [28] (proprietary)

High-end
embedded
devices

Windows IoT [125], Linux
Embedded [62], Fuchsia [79],
TrustedFirmware-A

seL4 [89], mCertiKOS-
secure [41], Pip [26, 99],
ProvenCore (proprietary) [28]

Table 3.1: Hardware-based solutions (OSes/kernels, tools, architectures) classified by
isolation guarantees for embedded and general-purpose systems.
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Academia and industry witnessed major advances in high-assurance systems in the last

twenty years through the development of fully formally verified kernels (seL4, CertiKOS,

Pip). However, these systems target high-performance computers and are not suitable

for low-end devices because of an absence of technology or economic incentives.

4.1 Thesis

The open-answer questions asked at the beginning of our dissertation 1.1.1, our initial

study exhibiting plentiful isolation solutions and even strong isolation guarantees

achieved for high-end devices based on hardware components which have equivalent

protection roles in constrained devices 3, the industrial and consumer benefits for

security in embedded systems helped by recent regulatory obligations 4, the formal

verification field maturity [91], allow us to formulate the following thesis statement:

47
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Thesis: Constrained devices, especially connected ones, gain from greater security

which is available with current technological bricks and compatible with their expected

functionalities in a dynamic ecosystem. A hardware-based security solution, imme-

diately deployable on these devices, adapted for real-world use cases, and exhibiting

strong guarantees of security, can benefit consumers and the industry.

The goal is to never let an application interfere with other applications or the

operating system in a way that would endanger the confidentiality and integrity of

protected software components or allow be granted full control of the system; for

example by exploiting a memory vulnerability.

A kernel that provides flexible strict spatial memory isolation 2.2.1 lets devices freely

evolve in a dynamic ecosystem and can prevent a remote attacker to take full control

over the device and perpetrate further attacks in the network. Formal verification of the

isolation increases user confidence in the system and contributes to the adoption of IoT

ecosystems, which in turn directly benefits the industry.

4.2 Thesis approach

This thesis narrates the path taken to secure constrained devices with immediate, effec-

tive, scalable effects.

Our approach to secure constrained objects is to design a formally-verified OS kernel

providing hardware-based flexible but strict isolation by a COTS Memory Protection

Unit (MPU) 2.5.1).

Three possibilities arose: 1) build a new formally verified kernel for constrained

devices from scratch with oriented design for isolation and verification from start

2) formalise an existing MPU-based isolation-oriented kernel and formally prove its

isolation properties, 3) adapt an existing formally verified kernel from high-end to

low-end devices.

We choose to follow the third proposed approach, which is to adapt the Pip protok-

ernel 3.4.2 to the constrained environment.

Indeed, such a secure hybrid solution fits constrained devices with minimal efforts

to keep costs as low as possible.

First, our research team developed and formally verified Pip. The team has the

system and formal verification expertise to conduct the adaptation.

Second, isolation is a basic security principle that serves security (confidentiality and

integrity to prevent tampering or leakage of information 2.2) but is also useful for other

domains by echo effect such as safety (fine-grained access control to critical functions,

attack detection,... which increase robustness for example), information hiding, fault
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isolation, subsystem recovery, software modularity, improving system structure and

easing system evolution [179]. Without isolation, no properties can hold because the

base on which the properties hold is subject to change. It is the first security barrier

when setting up a defence-in-depth strategy [169, 6] that is the principle to set up

multiple security layers to counter cyber attacks. Pip’s flexible partitioning scheme

makes it possible to design secure and flexible solutions for constrained devices. Pip

also has a minimal TCB convenient for security by reducing the attack surface, but also

participates to keep adaptation costs low.

Third, Pip provides strong isolation guarantees by formal verification with an adapt-

able proof workflow that already showed successful results with Pip. Starting from an

already formally verified kernel propagates the isolation properties and might share

similar formalisation and proofs. The full software TCB is assessed so that upper lay-

ers (e.g OSes, applications) know which guarantees or confidence they have in their

executing environments.

Fourth, Pip avoids the struggle of application verification since the partition is free

to evolve as it wishes within the (MMU or adapted MPU) hardware harness controlled

by Pip. Furthermore, two formal verification strategies are usually used for separation

kernels, either refinement from high-level specification to low-level implementation

levels or direct formal verification at implementation level [192]. Pip follows the second

proof strategy and so is not concerned by the refinement paradox (avoided in seL4 and

CertiKOS) [41].

Fifth, this approach leverages access control dedicated hardware by the MPU avail-

able for Arm architectures to set up Pip’s flexible partitioning scheme. It is a reasonable

choice because Arm dominates the market of IoT devices and legacy embedded de-

vices thanks to its power efficiency (67% of the market shares thanks to the ARMv7

architecture [71]). Such a solution gives user applications the possibility to leverage

the hardware security primitives of their chosen platforms (and not only relying on the

one-level isolation of the TrustZone, which would also be compatible with this kernel).

Furthermore, it does not require additional custom tools or embedded software to instru-

ment the code or verify the firmware when loaded on the device, which could heavily

downgrade performance. With Pip there is only a one-time cost during the design and

implementation. Pip’s cost of flexibility is compensated by the lack of flexibility in

current systems.

Sixth, a COTS MPU does not require hardware modifications that would imply addi-

tional design costs. It also prevents incompatibility with currently deployed hardware

platforms. Pip does not need an extended Instruction Set Architecture (ISA) as well. By

using widely available hardware, the adapted kernel can be used for COTS systems thus

keeping production costs low.



50 CHAPTER 4. Design a secure kernel for constrained devices

Seventh, Pip is open-source so security claims can be assessed by anyone.

Eighth, Pip is based on C and the Coq Proof Assistant which have widespread use in

different communities. The programming languages are then convenient for low-level

system developers and formal verification experts.

Ninth, the first approach incurs higher design considerations and would weaken the

psychological acceptability with yet another OS kernel without proven applicability

nor user community (Pip communicates through the Pip User Club [142]). The second

approach, in addition to the above-identified challenges, would mean distance with

the system developers, no formal verification-oriented design (Pip has been developed

with a system-proof co-design approach [99]), and usually not portable solutions with

a limited number of protected domains compared to what is proposed with Pip. Also,

an adapted MPU-based Pip would be complementary to some enclaves, for example

implemented with TrustZone-enabled devices because MPUs might be present in both

secure and non-secure worlds.

In the end, this approach enables a secure-by-design kernel immediately at the

disposal of the industry, enabling a minimal hardware-rooted TCB. Isolation for security

provides a first layer of defence against the remote attacker considered in the attacker

model 1.2 and as a consequence would prevent the attacker to gain total control of the

system by memory vulnerability exploits. It gives system and application developers

strong guarantees of isolation for software components running on the same resource-

constrained device. It covers mixed-criticality environments and enables multiple

stakeholders to securely run on the same device, with multi-process and multi-threaded

components for bare-metal and OS-based applications.

4.2.1 Challenges and knowledge gaps

The solution the thesis aims to provide is surrounded by several knowledge gaps we

here identify, based on our state-of-the-art study. In other words, these are the gaps that

should be tackled to fulfil the goal of the thesis.

First, while existing solutions adapted their system to other architectures, no isolation

kernel adapted their MMU-based system to an MPU-based system. The degree of

reusability of the system design and proofs is unknown. By experience, proof efforts are

reported very high in all formally verified kernels [100, 41, 109] and difficult to combine

with the available time frame for the project that also involves the system design.

Second, there is no system with formal proofs of the isolation by the use of an MPU.

This means the MPU is not present as assumptions of existing isolation proofs. The

MPU should then be modeled and its behaviour specified to use it in the isolation proofs

we develop.
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Third, isolation in constrained devices without isolation proofs are tightly coupled

to the hardware while we strive for a generic solution. We closely follow the memory

protection hardware trends to be able to fit current hardware and its future evolution.

Fourth, the security costs, e.g. the altered performances, are always a source of

anxiety for embedded developers. The design focus should always challenge real-time

requirements.

Overcoming these challenges are the thesis’ conditions of success and this disserta-

tion’s guidelines.

4.3 Results

This dissertation consolidates the thesis 4.1 by declining the approach in two major

parts.

The first part deals with the design of a secure kernel for constrained devices, named

Pip-MPU, which is an adaptation of the Pip kernel for devices provided with an MPU.

The kernel, Pip-MPU, is presented in Chapter 7. The design fulfils Pip’s security

policy and requirements. The kernel is implemented on an ARMv7-M (ARMv7 Cortex-

M architecture) empowered board with MPU. The prototype is evaluated to measure the

performance, memory footprint, and energy consumption costs of the solution against

security gains. Pip-MPU and its evaluation are presented in the papers [55, 56] and are

publicly released12.

Pip-MPU is a specialisation of a framework, presented in Chapter 6, which sets up

nested compartmentalisation by the use of the MPU. The framework enables the local

creation of memory sub-spaces at any level of abstraction. A unique privileged entity

is in charge of controlling the MPU. The framework can be specialised with different

security policies, like Pip’s. The framework and design rationales are presented in the

papers [54, 57].

In the second part, we demonstrate that the kernel is secure and can be trusted by

the use of formal methods. It deals with the formal verification of the memory isolation

of Pip-MPU using the Coq Proof Assistant [95] and proof metrics orienting the proof

efforts.

The first intuitions to drive the formal verification are discussed in Chapter 9.

The proof methodology is presented and provides a preliminary informal proof of

Pip’s security properties on two representative services. In order to conduct rigorous

mathematical proofs, the chapter also presents the formalisation in Coq of the isolation

1https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/master
2https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/benchmark/benchmarks

https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/master
https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/benchmark/benchmarks
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invariant, services and low-level primitives, and hardware model. The model connects

with equivalent structures and functions in the C language that are used to produce

the final executable of Pip-MPU. Step-by-step details of the key instants of the formal

proof of Pip’s security properties using Coq are presented in Chapter 10. The proof

development is evaluated using common proof metrics for formally verified kernels.

Pip-MPU’s proofs are publicly released3.

The formal verification process leverages novel proof techniques which are described

in Chapter 11. Pip’s formalism has evolved to ease some parts of the proof, as have the

proof techniques to lead the formal verification path. The proof development at system

level is steered by novel proof metrics and a novel global proof strategy presented in

Chapter 12. These proof metrics will be announced in the presentation ’Formal Proof

Metrics : the Developer’s Guide to Formal Proofs’ [96].

Subsidiary results are perspectives on the design and formal verification processes.

The results confirm the thesis by demonstrating the design and implementation of a

formally verified kernel for constrained devices.

3https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/addMemoryBlock_proof/proof

https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/addMemoryBlock_proof/proof
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Introduction to Part II

In this part, we present Pip-MPU, a kernel specifically designed for setting up isolated

memory spaces on constrained devices. To our knowledge, Pip-MPU is more flexible and

portable than any state-of-the-art solution. In contrast to the other solutions, Pip-MPU

sets up strict memory isolation which does not depend on hardware constraints or

functional requirements.

Pip-MPU leverages the Memory Protection Unit (MPU) 2.5.1 to define and protect

isolated memory spaces. Its design is an adaptation of the Pip kernel 7.2 for constrained

devices following its philosophy and methodology, hence its name.

We first study and classify existing MPU-based memory isolation solutions based on

their isolation and flexibility characteristics. We then propose a framework for nested

compartmentalisation based on the MPU that enhances both flexibility and security

compared to the state of the art. Based on this framework, we adapt the Pip kernel into

Pip-MPU, a strict memory isolation solution for constrained devices offering flexible

compartmentalisation based on the MPU. Then, we evaluate Pip-MPU by assessing

the performances, memory footprint, and security gains through quantitative metrics.

Lastly, we conclude that a rich OS can be secure-by-design by taking advantage of the

isolation provided by Pip-MPU, which becomes a security kernel.
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5.1 Motivations

Constrained devices are often seen as dumb sensors and actuators, serving one or a

limited number of functions. They act as servants for more powerful devices running

complex applications. However, nowadays constrained devices are equivalent to com-

puters from the 60s [182] and are even more powerful. For example, ARM Cortex-M

powered devices are 32-bit processors and could have Mb-Flash memory and several

kB-RAM -though very constrained compared to supercomputers- with modules allowing

access control (e.g. MPU, see section 2.5.1) as well as peripherals allowing high-speed

data transfer (e.g. DMA), networking (e.g. BLE), sensoring (e.g. temperature monitoring)

or actuating (e.g. water valves). The ecosystem around constrained devices also shows

increasing complexity with several available OSes (cf. 3) and their applications. Hence,

low-end/constrained devices 2.4.1 have the necessary resources to allow complex ap-

plications. But complex does not need to mean an obscure implementation, and for

developers, a platform difficult to use.

In this chapter, we aim to give more flexibility for developers to develop the full

potential of their chosen hardware platforms while building reliable systems inscribed
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in the secure-by-design paradigm.

5.2 Flexibility in MPU-based isolation solutions

This thesis focuses on isolation using the MPU as a first security mechanism in a

constrained device. As presented in Chapter 3, the research community already invested

many efforts in MPU-based security solutions which take multiple forms: standalone

MPU solutions or supported by customised tools, kernels, code instrumentation, and

hardware modifications. In this section, we study the security characteristics of the same

MPU-based solutions. We differentiate them based on their runtime dynamism and

flexibility (categorised in Table 5.1), hardware configuration, and exposed limitations

due to design choices.

5.2.1 Flexibility

Static systems

Static systems refer to solutions that only configure the MPU once and for all, like

TrustLite [111]. The MPU offers a fixed segmentation throughout the device’s lifetime.

These systems benefit from a global protection mechanism set up at bootime. All

protected domains share the same MPU configuration, thus limited by the number of

MPU regions. Their static nature is a major drawback in a dynamic environment like

the IoT. Upgrades, like access rights changes, service additions, or loading disparate

applications requiring a different memory layout, are restricted and do not satisfy our

search for flexibility.

Dynamic systems

Dynamic systems benefit from a changing MPU configuration, modified during runtime,

instead of a fixed global MPU configuration. The MPU is dedicated to protecting one

software component at a time, usually reconfigured each time there is a context switch

between protected domains. Each protected domain has the full MPU available for itself

and can then protect inner components at a fine grain (process or function level). While

the MPU is reconfigured during runtime, the system’s permission model can be either

immutable (generally fixed at compile-time) or mutable (changed during runtime). Only

a few systems also allow memory extension to their protection domains.

For dynamic systems with immutable permission models, the MPU configuration is

fixed for each software component before boot time. However, the MPU is constantly

reconfigured when a new protected domain is loaded, like a new process. Most of state-

of-the-art systems fall into this category like µVisor, MINION, MultiZone, ACES, OPEC,
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OS/kernel/
hypervisor/tool Dynamism Flexibility

MPU Permission Extendable Compartmentalisation Nesting
reconfiguration model memory nature

TrustLite [111] ✗ immutable ✗ process ✗
Hardened JCVM [30] ✓ immutable ✗ process ✗
EwoK [25] ✓ immutable ✗ process ✗
µVisor ✓ immutable ✗ thread ✗
ACES [32] ✓ immutable ✗ generic ✗
OPEC [195] ✓ immutable ✗ generic ✗
TockOS [175] ✓ immutable ( ✓) process ✗
Mbed [20] ✓ (mutable) ( ✓) thread ✗
RIOT (MPU) [22] ✓ (mutable) ( ✓) thread ✗
Zephyr (MPU) [189] ✓ (mutable) ( ✓) thread ✗
FreeRTOS-MPU [74] ✓ (mutable) (✓) task ✗
Pip-MPU ✓ mutable ✓ generic ✓

Table 5.1: Comparison of compartmentalisation features in MPU-based systems. Pip-
MPU is introduced in Chapter 7 as a specialisation of the framework presented in the
next Chapter 6.

EwoK, the hardened Java Card VM, TockOS [11, 105, 141, 32, 195, 25, 30, 175]. They

allow no user configuration of the protected memory spaces. Their inherent differences

on the isolation level, guarantees and enforced security policies, are translated in as

many different ways to configure the MPU.

For dynamic systems with mutable permission models, the MPU configuration is

not decided at boot time yet. There, the MPU is used for memory protection but not for

isolation. For instance, Mbed [20], RIOT (MPU) [22], FreeRTOS-MPU [74] and Zephyr

(MPU) [189] apply some memory protections (stack guards, W^X principle...) and offer

some runtime defined regions that user applications or threads can configure. However,

this is only a partial user configuration because of the limited number of user regions

available. Furthermore, this feature can cause serious security issues if badly configured

by the user.

For the vast majority of dynamic systems, software components are given a fixed pro-

tection domain size that cannot be extended at runtime. Exception is made with TockOS

that can dynamically allocate a bit of a process’ memory by enabling subregions. These

are initially disabled when the process is initialised. Of course, previously discussed

customisable regions in Mbed, RIOT (MPU), FreeRTOS-MPU and Zephyr (MPU) can be

seen as memory extensions in addition to access permission changes, but are limited in

number (without considering complete reconfiguration because they have the privileges

to do so).

5.2.2 Portability

Existing solutions answer to specific use cases and are tightly coupled with the hardware

platform. This makes them less portable. Solution designers needed to be creative to use
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the available hardware, by inventing original use of the same hardware or by modifying

it.

Original MPU use

The MPU architecture dictates the MPU features and its usage.

Two systems based on the same MPU architecture may not use the MPU features and

constraints in the same manner and for the same purposes. For example, the ARMv7

architecture integrates subregions of equal size and independently enabled, and allows

MPU region overlapping. This allows many combination for systems heavily relying

on subregions for their protection domains. We take here the examples of TockOS and

EwoK, but it extends to all proposed solutions. TockOs and EwoK both reconfigure the

MPU at context switch to match the current process or application. However, TockOS

loads one process at a time in its MPU configuration and uses the subregions for a

process’ inner workings, like expanding its memory or granting access to peripherals. In

EwoK, on the contrary, several applications coexist at a given moment within the MPU

configuration. The active application is discriminated by enabling associated subregions

while the remaining disabled subregions contain the other applications. Hence, in

TockOS, subregions of an MPU region are entirely used for a unique process, whereas in

EwoK, subregions of an MPU region are split between several applications.

Furthermore, hardware constraints differ depending on the architecture, even for

MPUs stemming from the same designer. The ARMv7 version embeds constraints like

the multiple of the region size alignment and that the region size must be a power of

two. The most recent ARMv8 architecture releases these constraints and can be seen

as a generalisation. Nevertheless, no existing solutions use the ARMv8 version, and

all proposed solutions heavily rely on ARMv7’s subregion mechanism, making them

useless for ARMv8 CPU-powered devices.

Hardware modifications

To strengthen security, hybrid approaches propose to modify the MPU. TrustLite, on

which TyTAN is based, introduces the Execution-Aware MPU. This enriched MPU works

as an MPU but includes the relation between the executing code and the data it manipu-

lates, meaning it controls the execution rights of the instruction issuer in addition to

monitoring the data accesses. ARM MPUs consider the rights separately. Apart from the

fact that the TrustLite-based systems are static, the required hardware customisation

may be too expensive for low-end devices and reduces portability.
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5.2.3 Conclusion

Small embedded systems propose to establish isolation using the MPU, acting as the

hardware root of trust. They often take advantage of privilege separation (kernel and

user modes) to manage the MPU configuration of the protected domains.

The MPU hardware constraints limit the memory protection mechanisms available

to system designers. The trade-off between hardware constraints, security, and per-

formance has often to be assessed manually even with some automated parts in the

design pipeline. Some systems had to rework their idealised protection to fit the limited

number of MPU regions scaling down the final number of protection domains, which

may lead to less security.

All the presented solutions above are designed for the ARMv7 architecture (except

MbedOS), showing more MPU constraints than the ARMv8 version, even though some

of them were created at a time the ARMv8 architecture was already released (post-

November 2015) and boards supporting the architecture already existed (first ARMv8

Cortex M33 by Nordic in 2018). Nowadays, in the early 2020s, ARMv7-CPU empowered

devices are still in the market and many mentioned solutions are still maintained,

showing no trend of change. Nevertheless, RISC-V’s equivalent unit, the Physical

Memory Protection (PMP), is more flexible and close to the inner workings of the

ARMv8 MPU version, making many of the solutions not transferable between these

architectures. TockOS supports PMP after redesigning MPU memory isolation.

For others systems, no trade-off with security is allowed and the MPU is just enough

to protect what is craved by their use case. However, any use case requiring more than

the number of MPU subregions is not qualified for the protection offered by this kernel.

This also shows how dependent some systems are on the underlying hardware.

Furthermore, most of these systems provide protection at some level of inner ab-

straction, like a process or thread, and are not protecting heterogeneous components.

Finally, some systems chose to modify the MPU which makes them less portable.

Each system tailored its memory protection at best for a specific use case, which

is translated into different uses of the MPU. This means we cannot directly reuse one

of the operating systems nor their memory protection mechanisms for another use

case without deeply modifying them. If we chose to do so anyway, this newly adapted

system would suffer from the same inconveniences of the current solutions: a specialised

solution for few use cases, not deeply customisable and not reusable directly for other

systems that are not similar, requiring users to understand concepts specific to the use

case, as well as asking them to understand how the MPU is used and what protection

it really offers, likewise the eventual hardware modifications we had to set up, and

possibly trade-offs we could have made to stick to the hardware limitations and finally

what choice made us eventually drop part of the idealised security solution by grouping
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Figure 5.1: Example of different levels of isolation. The 1-level isolation typically
corresponds to the isolation set up by an OS to isolate applications or processes. The
2-level isolation considers another abstraction level, for example using ARM TrustZone.
The n-level isolation do not consider any hardware or software limits on the number
of abstraction levels.

isolated domains together.

We do not include any bare-metal systems in our state-of-the-art review as they are

tied to their platform while we consider wider applicable solutions.
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The aim of this chapter is to introduce a framework to build a secure flexible system

using the MPU on single-core systems. As a first step, we conduct an abstract reasoning

to extract the characteristics of a flexible system. We demonstrate a nested memory

space scheme is flexible and link this scheme with simplified core MPU features. Then,

we propose an architecture composed of a centralised memory management entity that

sets up the defined flexibility using the MPU. At last, we propose an Application Pro-

gramming Interface (API) and needed metadata structures for the memory management

entity. This framework and its implementation guidelines have been presented in the

paper [57].

Fast reading path: The main components of the framework are exposed in Sec-

tion 6.2.3 which describes the overall architecture, in Section 6.2.5 which presents the

API, while the metadata structures on which it relies are provided in Section 6.3.1.

6.1 Motivations

State-of-the-art systems allow a flat isolation of protected domains, with at most two

levels of abstraction (e.g. an OS and its isolated tasks, or an application and its threads).

There is no way to configure the MPU differently beyond the attribution scheme defined

by the underlying operating system or instrumentation. That is, the MPU configuration

is pre-defined with at least some reserved MPU regions for a specific use.

However, the user might need more freedom and an alternative solution that allows

to customise the platform on which her application is running.

6.2 Definitions

6.2.1 Secure flexible systems

Flexible systems remove the hardware constraints of existing solutions and give users

total freedom of configuration, as in a bare-metal setting. The user can create and

manage as many memory spaces she wants and can reconfigure each of them at any

moment during runtime. However, doing so puts the system at risk with users being

careless about security. As our goal is security, we add a hierarchy in the software

components’ relations, naturally extending common security practices (least privilege

principle, protection rings, relations between OS and processes or between a hypervisor

and guest OSes, ...). Software components higher in the hierarchy have more privileges

than lower components (access rights and configuration). In order to keep the hierarchy,

a lower component cannot increase its privileges by itself, for instance by switching to

stronger rights.
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As such, we give users total freedom, but locally. Software components are not

required anymore to follow an externally defined policy, such as a pre-defined MPU

configuration, as long as they follow the local policy, defined by a higher component.

For example, an OS launches a process with read-write-execute rights for a sensor

measurement, and the process decides to run the measurement function only with

read-execute rights by reconfiguring the MPU with these rights.

In a certain manner, the privilege transfer by nested memory space creation resem-

bles the provenance validity and capability monotonicity protection properties of the

CHERI protection model [10, 9].

Definition 6.2.1 (Flexible system). A flexible system is a set of software components

that can autonomously evolve during runtime (on demand) and are related through a

non-strict order relationship on privileges.

6.2.2 Flexible nested memory space scheme

A scheme of autonomous nested memory spaces (i.e. several layers of subspaces) fits

our definition of a flexible system. Indeed, each nested memory space has less or equal

memory than the initial memory space (so less privileges). For example, an OS owning a

process’ memory can create a nested memory space for the process strictly containing

its memory. Typically, we consider the set of all unprivileged components nested in all

privileged components.

Note that the system can start with several initial memory spaces which can be

broken up into distinct nested memory spaces. For example, consider a flying drone

with a first initial memory space completely open for user customisation to experiment

flying programs, while a second initial memory space contains an emergency landing

procedure. If the first memory space crashes, the second memory space kicks in (for

instance by hardware) and contains memory blocks with very restricted privileges

on peripherals, completely isolated tasks, and limited access permission rights. The

user would still be able to resketch the memory space but starting with the restricted

local permission model. Hence, several global security policies with different security

requirements could coexist in the same system.

6.2.3 Security architecture for nested memory spaces

We define the architecture for a secure flexible nested memory space scheme.

Ubiquitous MPU control

Nested memory spaces are primarily management and control of memory spaces. The

MPU can take over this role by defining accessible memory regions over the active
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memory space. The flexible system allows any software component to design its inner

memory space at runtime and in particular to create and manage a nested memory

space. In the same manner, the created nested memory space holds the same ability to

create subspaces. Hence, any software component has the power to control the MPU

and can resketch its memory space on demand. We refer to the relation between the

memory space and its nested memory space as a parent-child relationship. A nested

memory space has a unique parent, whereas a parent might have several children.

Centralised MPU configuration via system calls

The MPU is part of the privileged Instruction Set Architecture (ISA) which means the

configuration should be done while in a privileged mode. For software entities to

reconfigure the MPU on demand, it is not an option to give this level of privilege to all

of them (that include not trusted components) because of security concerns. Indeed,

these software entities could attack each other by granting themselves access to other

entities’ memory spaces. Thus, we propose to give the exclusive role of configuring

the MPU to a single entity lying in the (privileged) kernel space. The other software

components run in userland. The latter should access the MPU and change the MPU

configuration via system calls to this privileged entity. Due to the high privilege and

potential to harm software entities if malicious or incorrectly configures the MPU, the

centralised privileged entity must be trusted.

In current dynamic systems, the customisable MPU reconfiguration is at most par-

tially possible, but mostly tied to the scheduler by loading the MPU configuration

associated with the current context. This proposition goes beyond these systems, letting

the user decide for each component how the MPU should be configured, dynamically at

runtime, and does not assume any reserved registers for a particular use or tied with

specific permission rights.

Customised security policy

Each software component can implement its local permission model on its nested

memory spaces. For example, that could be enforcing the W^X principle, temporary

isolated memory spaces, least privilege principle, kernel self-protection, or just allowing

shared memory. However, the components should still be restricted in their use of the

MPU reconfiguration. Otherwise, malicious components could attack other components

by expanding their own memory and by giving themselves more access rights than

originally given. This means there should be a global restriction associated with local

permissions. Our proposition is then not only locally flexible, but at the same time

globally restricted by a security policy. For example, one component could locally create
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a subspace and give it some code and data for processing, while respecting a global strict

rule to not change any memory access permission rights to the given data. The global

security policy is then reflected in each memory space definition and embedded within

the implementation of the API.

In current systems, this global security policy would be reflected in their valid

static configurations and pre-defined use of the MPU registers. However, we let the

components decide for themselves how they organise their memory to free them from

the frozen MPU segmentations (reserved MPU regions for code, data, peripherals...).

An example using this approach is detailed in the next chapter with the implemen-

tation of Pip’s security policy.

6.2.4 Leveraging the MPU features and overcoming hardware challenges
with MPU virtualisation

We explain in this section how the MPU features are leveraged to set up nested memory

spaces while overcoming the strict hardware constraints of the MPU.

The memory spaces are composed of a set of memory blocks. Memory blocks are

contiguous pieces of memory with a start address and size (or end address). Within a

memory space, memory blocks might have different access permission rights. Memory

blocks have equivalent configured MPU regions. When a memory space is enabled, the

corresponding MPU regions are configured in the MPU and access is permitted. In this

way, the MPU guards the memory space definition.

Nested memory spaces are subsets of the initial memory space, i.e. parts of the

memory blocks forming a consistent whole. To extract these parts from a given memory

space, we introduce a cut ability to the user, illustrated in Figure 6.1. Cutting splits a

memory block into two subblocks, with the location of the cut address being respectively

the end address and the start address of the two new subblocks. The same happens with

the corresponding MPU region, becoming two MPU regions which are reconfigured in

the MPU while the initial MPU region is unloaded. At this point, the user has exactly

the same access as before the cut. The inverse operation is merging two subblocks back

into the initial before-the-cut block.

However, if too many blocks are shared or created in a memory space, they will not

fit in the MPU that can typically hold 8 to 16 blocks. Existing solutions deal with the

hardware limitations by building a limited number of abstraction levels and pre-defined

MPU configurations. In the opposite, for the user of our framework, there should be

sufficient latitude to nest memory spaces independently from the effective number

of MPU regions. To overcome the MPU limitations on the number of MPU regions,

we introduce a virtual MPU. Indeed, we distinguish the full set of memory blocks

composing a memory space (the virtual MPU) from the actual active set of memory
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Figure 6.1: Example of a cut (1) at an arbitrary cut address followed by a merge (2)
within the same memory space P1. The memory space keeps track of the cut by linking
the two subblocks (pink arrow). The figure shows the MPU is reconfigured each time
there is a mutation in the memory space.

blocks configured in the MPU. In such way, we introduce MPU virtualisation and the

real MPU acts like a cache for the virtual MPU holding all the memory blocks of the

memory space. Any virtual memory blocks can be elected at some point in time to be

configured in the real MPU. The user is back to the reality of the hardware, only able

to deal with the available number of MPU regions. The rationale behind this choice

is that we consider 8 to 16 active MPU regions enough to hold the memory blocks a

typical application would need (say for code, data and some peripherals). The user can

decide to activate some memory blocks, while letting other blocks outside the real MPU

configuration, like the fragmented memory blocks remaining from cut operations.

6.2.5 The security architecture’s API

Software components interact with the centralised privileged MPU configuration entity

through system calls (services). The system calls offer the flexibility of managing

nested memory spaces. They are non-preemptible in order to complete the service in a

consistent state. The API is both dynamic and flexible.

Dynamic API

Reconfiguration of the MPU at runtime is already present in most dynamic solutions. It

usually protects a specific process and the MPU is reconfigured at context switch. This

overcomes the limitation on the number of MPU regions by reusing the same regions

with a different configuration depending on the active process instead of making all

processes coexist at the same time in the MPU configuration. Only a subset of a memory

space’s memory blocks, the active memory blocks, are configured in the MPU to deal
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with the MPU region number limitation.

However, a memory space mutates during runtime as decided by the user. We already

introduced the cut ability that breaks the memory blocks composing the memory space

in multiple pieces. The user can also share, respectively unshare, memory blocks with

nested memory spaces to extend, respectively shrink, the available memory. Memory

sharing is important for a process running short of memory, to give temporary access

to a shared peripheral or to convey a message. Note that the nested memory space will

only contain the subregions that have been shared, not the whole initial memory blocks

they stem from. Furthermore, to stick to the privilege hierarchy, the shared memory

block’s access permissions should not exceed the ones from the original block.

Memory spaces should then be extendable (increase the number of memory blocks)

and modifiable (change the characteristics of size and access permissions of memory

blocks). Nevertheless, we need to register the memory space mutations (i.e. updates),

so when a memory space receives new memory blocks or when one of its memory

blocks is cut into two subblocks. The mutations are registered in metadata structures.

User-selected memory blocks hold these metadata structures. However, for security

reasons, we do not let the user access their content. Otherwise, a user could bypass the

MPU configuration and access unmapped memory. Memory blocks containing metadata

structures must then be disabled in the MPU and inaccessible from any software entities.

The API integrates seven system calls for dynamism:

• add, remove: these system calls extend, respectively restrict, the memory space of

a nested software component. They can be used to move around memory chunks

especially to sandbox some code or convey messages.

• prepare, collect: these memory space management system calls select and set

up a memory block to hold metadata structures, respectively erase the content

of the selected block. They are supposed to be called respectively, before adding

memory and after removing memory, to split the act of extending memory from

the management operations that make the registration possible. Their content is

not accessible by the user.

• cut, merge: memory blocks are expected to grow and shrink as required by the

application. Cutting and merging blocks let a software component redefine its

attributed memory blocks.

• activate: the system call selects one memory block of the virtual MPU to be con-

figured in the MPU. The user chooses the MPU region, discarding the previously

configured memory block which is disabled.
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Flexible API

The user is free to modify the memory spaces during runtime and so is not required to

know how many levels of nested memory spaces at compile-time or boot-time.

The API integrates two system calls to enhance flexibility by creating nested memory

spaces:

• create, delete: these system calls respectively, create and destroy, a nested

memory space. The creation consists in declaring the new nested memory space.

The destruction of this nested memory space sets back any shared memory blocks

into the current memory space. They both use selected memory blocks to contain

metadata structures concerning the definition of the nested memory space. In that

respect, the content of these blocks are not accessible to the user.

This enables to break the flat memory model and, to the best of our knowledge, goes

beyond the MPU configuration use in current solutions that only enables an arbitrary

number of static layers (usually one to three) and cloned memory attribution schemes.

6.2.6 Summary

This section unveiled a framework for flexible MPU-based systems. The framework is

composed of a security architecture and an API that outreach current solutions regarding

flexibility. Indeed, they all have pre-defined limited number of abstraction levels,

while the framework is user-customisable during runtime. Our security architecture

is composed of a central entity in charge of memory management through the MPU.

The entity runs in privileged mode while the memory spaces the user can access run in

unprivileged mode. A hierarchy between software components dictates their privileges

locally. A local permission model is set up by any software component when setting

up a nested memory space, recursively. The whole creates as many implicit privileged

levels. This means the security policy is made generic and internally defined by each

component whereas current solutions usually impose a fixed memory segmentation with

a security policy externally defined. However, the implementation of the system calls

imposes a global security policy over the local permission models (for example, globally

enforcing the W^X principle). In other words, any component can implement its own

local permission model within the frame of the implemented global security policy. The

system designer decides how much freedom the software components have.

The abilities to cut and merge memory blocks are specific to systems that don’t have

pre-defined chunks of memory, like in the case of MPU-based systems. Specific system

calls are in charge of managing the list extension or shrinkage.

The user is able to perform all operations without being bothered by the MPU

constraints and does not need to follow a pre-defined MPU region attribution. This
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marks a significant difference with solutions choosing to combine MPU regions in a last

effort to stick to the hardware constraint with a trade-off made on security, while we

strive to be as close as possible to the ideal security solution.

In the next section, we detail how the MPU features are leveraged to implement this

API.

6.3 Technical implementation guidelines of the framework

We previously discussed the ability of the MPU to protect the memory space definition

by associating each memory block to an MPU region. We exposed the necessity to

hold a separate list of all the active memory blocks in a virtual MPU to deal with the

MPU region number limitation. We also mentioned mandatory metadata structures

registering the nested memory spaces. In this section, we present the content and the

role of the metadata structures as well as answers to technical challenges when using

the MPU.

6.3.1 Metadata structures

Metadata structures intervene in all system calls to register the memory space mutations.

Virtual MPU structure (or memory blocks structure)

The virtual MPU structure registers all the memory blocks of a memory space. A memory

block gathers all the information needed to configure an MPU region. It is composed

of a start address, an end address, access rights for that particular memory block, a

present flag stating the block contains block information and not the default ones, and an

accessible flag informing that the block can be selected for the list of active blocks of the

real MPU. If the present flag is not set, the block with the default information indicates

a free slot (available). A structure composed of only free slots is empty. All free slots in

a memory space are chained in a list called free slots list with the first element being

the first free slot. The structure is chained with other virtual MPU structures relating

to the same memory space. The full linked list of virtual MPU structures gathers all

memory blocks of a memory space. One can extend the number of blocks in a memory

space by adding a new structure to the chained list with the prepare system call, and

contrariwise shrink them with the collect system call if the structures are empty.

Sharing structure

The sharing structure holds the information on the nested memory spaces. For each

memory block registered in the virtual MPU structure that is shared with nested memory
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space (a child), it stores the identifier of this nested memory space and the location of

the memory block in the main structure of the nested memory space.

The sharing structure shows the hierarchy between all software components and

their parent-child relationships.

Similarly to the virtual MPU structure, the sharing structure is composed of mul-

tiple linked structures that can be extended, respectively shrunk, with the prepare,

respectively collect, system calls.

Subblocks structure

The subblocks structure traces all the cut operations. For each memory block of the

virtual MPU, it registers the relations between two subblocks split by a cut. Subblocks

stemming from the same initial block are linked. Gathering all subblocks restores the

initial memory block before the cut. Similarly to the virtual MPU structure, the sharing

structure is composed of multiple linked structures that can be extended, respectively

shrunk, with the prepare, respectively collect, system calls.

Main structure

The main structure identifies a memory space (initial or nested). The structure’s location

in memory represents its identifier. The structure stores its parent identifier and the

location of the virtual MPU, the sharing and the subblocks structures. It also contains

the list of the active memory blocks, which is used to configure the real MPU at each

modification of the list or at each context switch. Furthermore, it stores information

relating to the number of free slots, the number of metadata structures used for that

memory space, and the location of the first free slot that is the head of the free slots list

(chained list). As the virtual MPU structure has a limited number of slots, the number of

free slots is used to check if a memory block can still be registered, otherwise system

calls requiring additional slots return with an error. The number of structures and the

reference to the first free slot are required to keep a bounded complexity as discussed

in Section 6.3.2. The main structure is initialised/erased with the create and delete

system calls.

6.3.2 Performance considerations of the system calls

Common to all operations is the procedure to find a block that consists in spanning over

the virtual MPU structure. Finding a block has then a complexity of O(n), n being the

number of elements in the structure. However, we accelerated the procedure by the fact

that the memory block’s identifier is the address in the structure. Then, we just need to

span over the linked list of structures until the identifier matches the start address of



6.3. Technical implementation guidelines of the framework 73

Figure 6.2: Relations between and within the structures for the illustrated example
memory space @0. The chained blue arrows form the free slots list. The chained grey
arrows form the subblocks stemming from the same initial memory block. The chained
black arrows form the link between the multiple structures belonging to the same
memory space. In particular, memory blocks @1 and @5 are shared respectively with
the children 1 and 2, while blocks @3 and @7 are not shared. Furthermore, block @5
has been cut to form the additional subblock @7 as stated in the subblocks structure.
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the structure. The final complexity is then O(s), with s the length of the linked list of

each structure in a memory space. n and s are used in the following subsections.

create and delete

The creation consists in transforming a memory block into a main structure. But as it

should be disabled from any software components 6.2.5, the block must be discarded

from all memory spaces in the system. For each partition, we must find the block to

disable, so in O(s) as explained above. The overall complexity is then in O(s ∗ p), with

p being the number of partitions. The deletion procedure consists in setting back the

state before the creation, and thus is also in O(s ∗ p) by ranging over all memory spaces.

Creation and deletion don’t need to be fast operations as they are not used frequently

(sometimes only ones for each nested memory space at reset for static systems) and the

complexities are deemed reasonable.

add and remove

Adding/sharing a block, and reverse operations merely consist in cloning/removing

block information in a nested memory space. Since we target single-core platforms,

block copies in different memory spaces are never accessed simultaneously. Sharing

may need fast execution when conveying messages or setting up a shared memory space.

The add and remove procedures are thus thought to be as fast as possible with an O(1)

complexity.

For sharing, the block needs to be copied in the nested memory space, and there

should be a free slot where to make the copy. First, the service must find the block to

copy, in O(s). Having the reference to the first free slot in the main structure gives direct

access to an empty slot, instead of going through the whole list of memory blocks to find

one. When a free slot is used for an operation, it is pulled out of the list of free slots and

the next free slot is pointed in the memory space for a future operation. The location of

the used slot in the child is registered in the sharing structure of the parent. Retrieving

the free slot this way and making the copy perform with O(s) complexity, slightly worse

than the ideal O(1).

For unsharing, the block needs to be retrieved from the nested memory space.

Again, it must first identify the block in O(s). As it was copied into the first free slot

automatically, the user has no clue where it lies in memory. However, the sharing

structure holds the location of the memory block in the nested memory space. Thus,

retrieving the block copy is immediate when knowing the location of the original block,

which the user knows. The freed slot is inserted at the head of the free slot list where it

was taken from the beginning. All operations are then in O(s) complexity.
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Hence, memory transfers and memory sharing do not copy data around but solely

rely on memory space mutations and MPU reconfiguration which are faster operations.

prepare and collect

In order to have fast sharing and unsharing, the management operations are detached

in the prepare and collect procedures. These can be called whenever required and

especially way in advance so to not impact the fast sharing and unsharing procedures.

As seen above, structures are chained within the same memory space. The prepare

operation adds new structures at the start of the linked list. In addition to that, in order

to always have a fresh free slot, all free slots in the memory blocks list are chained at

creation of the list with prepare. The prepare operation requires to initialise every

element in the new prepared structures. It also needs to globally disable the chosen

memory block because it becomes a metadata structure, like for the create and delete

operations. The operation requires to span over potentially in all partitions to disable

the memory block, because it must span over all ancestors and their descendants where

the block has been shared, hence a O(s ∗ p) complexity, with p the number of partitions.

The reverse operation with the collect procedure scans the elements in the virtual
MPU structure to verify the emptiness of the structure. collect is also responsible to

set back the memory space to the state before the previous prepare by adjusting the

information in the main structure and by correctly rectifying the references in the linked

list of structures. Finally, collect sets back the memory block that held the structure

globally, hence an overall complexity of O(s ∗ p).

cut and merge

Cutting a block splits it into two subblocks of size determined by the location of the cut.

Cutting memory blocks merely consists in cloning the cut block in the same memory

space, adjusting the start and end addresses and linking the two subblocks. They can be

seen as add and remove operations in the same memory space, without consequences in

the nested memory space, and so also have a complexity of O(s).

However, a cut subblock is expected to be shared in nested memory spaces (otherwise

no cut would be needed). Eventually, it can be transformed into a metadata structure

in this nested memory space or in another level down the lineage, and would become

inaccessible to all memory spaces. This would clash with the accessible flag set in the

ancestors. Thus, as soon as they are cut, the blocks are globally set inaccessible (ancestors

still have the possibility to take the memory block back by deleting the child). This

requires to scan the whole virtual MPU structures of all partitions to find the shared

block, to set it inaccessible once found and remove it from the active list of memory
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System call Complexity
create/delete O(s ∗ p)
cut/merge O(s ∗ p)
add/remove O(s)
prepare/collect O(s ∗ p)
activate O(1)

Table 6.1: Complexities of the system calls. s is the number of structures in a memory
space (expected <=8) and p is the number of partitions.

blocks if necessary. The overall complexity is then O(s ∗ p), with p being the number of

partitions. For each subsequent cut, the complexity would be in the expected O(1) since

the block has already been disabled globally. The same complexity exists for the merge

operation to enable the block again in all partitions.

activate

The user decides to activate a specific memory block by identifying an MPU region

that should protect it. The operation consists of two phases: 1) replacing the identified

MPU region by reconfiguring the real MPU with the memory block’s characteristics 2)

replacing the corresponding entry in the active memory blocks list by this memory block.

The length of the active memory blocks list is fixed and small (8-16, as the number of

MPU regions) and the MPU is accessed in O(1), therefore, we have an overall complexity

of O(1) for this system call.

Overview

Our study of the complexity of the complexities shows a constant complexity for one

system call, a linear complexity for the sharing/unsharing operations and quadratic

complexities for the rest, as reported in Table 6.1.

However, we expect a linked list of structures with a length of less than eight in

implementations of the framework. In the worst case, and given a typical expected

number of eight to sixteen entries in each structure, this would represent 8*16 = 128

memory blocks in each memory space, way enough to support a use case with blocks

dedicated for code, data and peripherals. Hence, the computed quadratic complexities

are in fact bounded by the linear complexity O(p).

6.3.3 Memory fault handler

The use of the MPU implies memory space protection and the consequences of illegal

access. When the MPU detects forbidden data or instruction accesses, it triggers a



6.4. Discussion 77

memory fault that is immediately caught by the system, which in turn initiates the

memory fault handler (see section MPU presentation2.5.1). The framework’s memory

fault handler stops the current execution of the component and reports illegal access

to the parent component. The parent decides how to deal with this fault (it could be

because of insufficient memory in such case the parent could share more memory with

its child or because the child bugs or became rogue and tries to access memory it should

not have access to).

6.4 Discussion

6.4.1 Representation of the list of memory blocks

We considered first to link the memory blocks in a sorted tree structure in order to

speed up the retrieval of blocks in the system calls. But this would have encapsulated

each block in a wrapped structure containing the pointers to chain the tree together,

thereby requiring memory taken from the block which needs to be protected (usually a

minimum MPU region size of 32 bytes) and heavier processing to organise the structure.

We also considered to split enabled and disabled blocks in separated lists, instead

of packing them together in the virtual MPU list. But having split lists implies a block

transfer between the lists, as they become enabled or inaccessible, which we are glad to

avoid.

Furthermore, we could have chosen to remove the access to a memory block in a

parent partition upon sharing. Thus, the memory space would need less enabled blocks

and there is no need for more enabled blocks than MPU regions. However, there would

still subsist the temporary states when the current memory space forges blocks by the

cut operation. So if the memory space already uses all MPU regions, it would still need

additional regions to host the cut subblocks, getting back to the problem of dealing

with extra blocks than available in the MPU. And we consider block sharing by default

essential for performance, so blocks are still enabled by default when sharing.

6.4.2 Performance

We showed reasonable expected performance regarding system call complexity. How-

ever, as the cut and merge operate in the current memory space only, they could be

expected to be fast, while they do not show an O(1) complexity. Nevertheless, the

number of nested levels is not expected to be higher than 3 to 5 and the number of

elements in a memory space is bounded, which sets the upper bound. As use cases

develop, we could accelerate the operations and reduce the complexity by adding new

metadata in the sharing structure that would hold the references to the original cloned
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block in the parent.

Furthermore, all system calls depend on user inputs that could be invalid. An

additional checking phase adds up some processing and penalizes the overall complexity

for both sharing and unsharing to O(n), where n is the number of memory blocks in a

memory space, upper bounded with N the maximum allowed number of blocks. We

acknowledge the overall complexity could be critical for use cases requiring high speed

data transfer between memory spaces.

6.4.3 Automated MPU configuration

Initially, our framework [57] considered automated management of the virtual MPU

memory blocks. It consisted in reconfiguring the MPU each time a memory block of

the virtual MPU was accessed but not active. Our memory fault handler would search

for the memory block, reconfigure the MPU with this block by selecting out another

memory block in the list of active memory blocks, and redo the faulted access operation.

Of course, if the access was illegitimate, i.e. not present in any of the virtual’s MPU

memory blocks, the system would invoke the memory fault handler described above.

This solution would release the user from picking up the memory blocks to be active

and would totally abstract the MPU hardware. The procedure is similarly found in a

later paper presenting OPEC [195], which virtualises the MPU, but only those dedicated

to peripherals.

However, the presented framework also described an MPU region user selection

option, which is now preferred. Indeed, the automated process forces us to choose

an algorithm to select the active memory block to remove in order to host the faulted

legitimate block (for example, round-robin as proposed). In addition to that, because

it invokes a random replacement strategy, the selection algorithm could be called in

inefficient moments. The developer knows best which MPU configuration is the most

efficient at some point in the system’s lifetime and would match as closely as possible

the perfect cache policy.

6.4.4 MPU use

We have exposed how we make use of the MPU features to implement the framework.

Disabled blocks

Other uses of the MPU are possible to protect the disabled blocks (metadata structures

or the initial blocks of cut blocks in the ancestors).

First, these blocks could stay enabled in the MPU but with modified permissions

for privileged accesses only. Because all software components, except the centralised
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privileged MPU entity, lie in user space, they would lose access to these regions.

Second, the MPU can be configured with the background region enabled, which

is the case in our implementation. The background region roughly gives a privileged

access to all memory not configured in enabled MPU regions. We retained the solution to

pull out disabled blocks from the MPU so that the centralised privileged MPU entity can

always execute without any other operation. However, we could have directly disabled

the corresponding MPU regions in the MPU. But that would have polluted the MPU

configuration with disabled blocks while MPU regions are scarce resources.

Third, we could have chosen not to use the background region. Without the back-

ground region enabled, the centralised privileged MPU entity would not be able to

execute if not configured in the MPU, implying sharing the MPU configuration with the

unprivileged components (all memory spaces in userland) and reconfiguring the MPU

at each processor mode switch (kernel/user space switch). In such a case, performance

would be reduced drastically and implies fine-grained management to not "forget"

privileged memory when activating an unprivileged module.

Fourth, we could also have disabled the MPU when kernel code executes, as in

TockOS. However, keeping the MPU always enabled frees us from the risks of not

enabling it when it should be.

Fifth, we could also have inverted the procedure with a memory totally accessible

from the user space and placed MPU regions with no access rights on memory portions

that should not be accessed. However, given the fragmented memory layout for a

complex application, there would be more regions to disable than available MPU regions

and would require more complex design, maintenance and probably ease the strict

global memory isolation policy which is not desired.

MPU version

In addition to that, our framework and proposed implementation do not depend on the

MPU version. Indeed, we base the framework on a simplified view of the MPU, only

using its core features such as the framework is designed for and encapsulates both

ARMv7 and ARMv8 MPU programmer models, but is extendable to similar hardware

components like RISC-V Physical Memory Protection (PMP). Many of the studied

systems did not have at development time the most recent ARMv8 version enhanced

with the TrustZone and more MPU regions, which releases some of the hardware

constraints of the previous MPU version.
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Figure 6.3: MPU region alignment constraints. The MPU region size in bytes is a power-
of-two, with 4 < n < 32 so a minimum region size of 32 bytes. The MPU region’s base
address is aligned on a multiple of the region’s size, with K,M ∈ N such as 0 < @ < 4GB.
There are eight equally-sized MPU subregions in one MPU region, if the feature is
enabled, that can be in turn independently enabled.

MPU constraints

More than that, MPU regions have a minimal size but are also subject to additional

constraints like the memory region size and alignments constraints in ARMv7/v6-M

MPUs. Even though the framework is based on a simplified view of the MPU and

thus compatible with different MPU versions, it must deal with these MPU constraints.

Concerning the MPU size, we reject any trial to craft a memory block with a size

below the minimum size during a cut operation. About ARMv7/v6-M MPU region

alignment, the requirements are that the MPU region must be a power of two aligned

on a multiple of its size, as illustrated in Figure 6.3. The developer can align a memory

space’s blocks properly to satisfy the constraints, but must always deal with blocks

intended for a nested memory space. When cutting subblocks, they might become

unaligned depending on the cut address. In the meantime, unaligned memory blocks

cause memory faults because they do not satisfy the MPU constraints.

We propose a technique to partially reconfigure MPU regions with attributes satisfy-

ing the constraints. With partial reconfiguration, a memory block is configured exactly

or smaller than its normal size, but always well aligned. However, memory accesses

within the part that is not configured in the MPU (the leftover to satisfy the alignment

constraints) would then trigger memory faults. These faults are first processed in the

memory fault handler to check if that is a legitimate access on a partially configured

block, and if this is the case, partially reconfigure the MPU region with the leftover

part. The latter is again partially configured to satisfy the MPU constraints. Finally, the

handler replays the legitimate faulted operation with the new MPU configuration. The

process is completely transparent to the user. Thus, there is a penalty for fragmented
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temporary memory blocks during cut operations or badly crafted ones, while there are

no penalties for final blocks that have been properly configured.

MPU reserved regions

The framework does not reserve any kind of MPU regions for a specific use, in the

opposite of the majority of existing systems. The user has total control over the active

memory blocks in the MPU. There are two exceptions, because of the stack and because

of MPU hardware constraints.

The first exception is made for ARMv6/v7-M devices because of the constraints

discussed above. Indeed, the partial reconfiguration solves the alignment and size

constraints without considering the contents of the configured MPU regions. This

means an unaligned virtual memory block might be configured in the real MPU by

partial reconfiguration as the sequential configuration of multiple correctly aligned

MPU regions, and this breaks the consistency of the original (unaligned) memory block.

With these multiple subsets of the bigger memory block, the content is split over them.

Problems arise if the content overlaps two subsets, for example instructions or memory

accesses that result in unrecoverable memory faults because the partial reconfiguration

will always enable one of the subsets and so always leave one part aside. In other

terms, the partial MPU reconfiguration could trigger memory faults because of these

overlapping instructions or memory accesses. Considering processor instructions, there

could be three chained faults in a row because of this phenomenon: the instruction, first

operand and second operand. We solve this issue by requisitioning additional MPU

regions to cover all overlaps, so at most three additional regions. These MPU regions

could be of the minimal size of an MPU region (32 bytes) or the next partially configured

MPU region that would satisfy the MPU constraints and still stay within the bounds of

the original memory block. For these reasons, the framework progressively requisitions

the MPU regions with the highest numbers until passing the faulting instruction. At the

next legitimate fault, the MPU is reconfigured like the user wanted it in the first place,

and the execution continues. The process is completely transparent to the user, however

implies a slowdown of the execution of some instructions to handle this case.

The second exception is related to the stack. ARM Cortex-M processors save the

current context, that is a set of registers, in the current stack to later pop out the values

again to restore the context. This happens during context switching, for example to

handle an interruption or to switch active component. The issue is that the current

stack is the stack of the currently executing unprivileged software component which

is dependent on the active MPU configuration (if it were privileged, the background

region would be enabled and there would be no issue). In the case that the current stack

is not enabled in the MPU, it will trigger a memory fault when the context switching
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routine tries to save the context on the disabled stack. However, the memory fault

is also dependent on the current stack where the context is supposed to be stored

once again, thus leading to a non-recoverable double fault: the context is lost. Thus,

the stack must always be enabled in either ARMv6/v7 or ARMv8 processors. But

there is a supplementary issue again because of the hardware constraints and the

partial reconfiguration in ARMv6/v7. The situation is the following. If the block

containing the stack becomes unaligned, because of a cut operation for example, the

partial reconfiguration algorithm just enables in the MPU a part of the full unaligned

stack. As the stack grows with the execution of the application, it will eventually

reach the threshold of the partially configured MPU region. The partial reconfiguration

algorithm then kicks in, however, cannot save the context on the stack, which leads to

the double fault. Hence, the developer must ensure that the stack is always enabled in

the MPU and correctly aligned at any moment of the execution. Obviously, the stack

region is identified in the partial reconfiguration feature and is never kicked out of the

MPU.

6.5 Conclusion

In this chapter, we presented technical solutions to implement the framework. A

framework implementation requires four metadata structures: the virtual MPU structure,

the sharing structure, the subblocks structure and the main structure. We demonstrated

reasonable complexity for the system calls using these metadata structures. The services

are not preemptible (atomic) by disabling interrupts during treatment. We leverage MPU

features shared between different MPU versions and found in other MPU equivalent

units in other architectures like the RISC-V PMP. We showed the framework can deal

with additional hardware constraints on the MPU versions like the MPU region size or

alignment constraints.
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In this chapter, we present Pip-MPU, an adaptation of Pip for constrained devices,

by specialising the framework presented in the previous chapter. Pip-MPU globally

enforces a strict memory isolation security policy similar to Pip’s (cf. presentation

in Section 3.4.2 and below Section 7.2) while inheriting the flexibility offered by the

framework. Pip-MPU will be originally presented in the article [56].

Fast reading track: Pip is presented in Section 7.2 and the connection is made with

Pip-MPU particularly in Sections 7.3 and 7.4.3. Pip-MPU is then evaluated with results

presented in Section 7.5.2.

7.1 Motivations

So far, we have focused on a flexible and secure memory management MPU module.

However, memory management is not enough to run programs on conventional systems.

Therefore, we are looking for a demonstration of the use of the framework with an

adapted system that will benefit from the features of the MPU module. We choose to

adapt Pip which current memory management is based on the MMU. Pip needs flexi-

bility and has a very restrictive global security policy which makes it a good candidate

to show the framework’s possibilities. Pip is furthermore one of the lightest existing

kernels as a protokernel, only featuring memory and control flow management, limiting

the efforts of adaptation.

7.2 Pip

Pip is an OS kernel specialised in memory management and context switching. It is part

of the protokernel family and a type of a separation kernel ensuring memory isolation

between partitions (executable component).

Pip is sole privileged in the system while all the partitions run unprivileged in

userland (see Figure 7.1). The partitions provide the missing features when necessary

(for instance scheduling) as well as the applications and their support components. Pip

joins high-assurance systems in that it is almost completely formally verified for memory

isolation, that is there are proofs of the memory isolation developed in the Coq Proof

Assistant [95, 40].
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7.2.1 Partitioning model

Pip’s memory management is based on a hierarchical partitioning model. A partition
would typically reflect a process, a task or any executable piece of code along with its

respective dependent data. A partition is thus composed by one or more chunks of

memory. The main principle is that a partition can create one or several sub-partitions,

that in turn can create sub-partitions. This creates a partition tree, as can be seen in

Figure 7.1, which is a sort of genealogical tree of nested memory chunks. All partitions

descend from the root partition which is the first partition to be created after the boot

process. As an example, the root partition could be an operating system creating child

processes. The other partitions are dynamically created during the system’s lifetime.

7.2.2 Partition lineage

We define in this paragraph fundamental relationships within the partition tree, closely

resembling a family tree. The relationship between a partition and a subpartition is

referred as a parent-child relationship. A parent partition has descendants when a

child partition also has children of its own. For the descendants, this parent partition is

considered as an ancestor. The common ancestor to all partitions is the root partition.

Partitions stemming from the same parent are sibling partitions.

7.2.3 Features

Pip exposes system calls that build up the partition tree:

• createPartition: creates a child partition

• deletePartition: suppresses a child partition and retrieves all memory pages it

had

• addVaddr: shares a page with a child partition

• removeVaddr: removes a shared page from a child partition

• prepare: sets up a configuration page (holding kernel metadata structures)

• collect: retrieves a configuration page

• countToMap: returns the number of memory pages required to share (map) a

memory page with a child partition

• mappedInChild: retrieves the child partition id with whom a page has been shared,

if shared
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• yield: switches context

A parent partition can create child partitions and share memory with them. All

the memory attributed to a partition is directly accessible to this partition. The parent

can only map memory that it owns. As a result, the whole system memory is divided

into two parts: 1) Pip’s memory and 2) the rest owned initially by the root partition.

The root partition can access any partition’s memory. This is a natural consequence of

the hierarchical partitioning model, where the security of any partition is based on its

ancestors, by recursion. As such, a parent partition has always the ability to tear down a

child.

The parent decides which access permissions is associated with the shared memory.

Indeed, a partition can restrict the use of the memory to a child partition. However, it

can never increase permissions.

The partitioning tree is built up at runtime starting from the root partition.

7.2.4 Security properties

Pip’s partitioning model ensures 3 security properties:

• Vertical sharing: a parent partition can share parts of its own memory to child

partitions.

• Horizontal isolation: a memory page can only be shared to a unique child partition.

This property ensures strict memory isolation between child partitions.

• Kernel Isolation: Pip’s memory, as well as all metadata structures used for de-

scribing the partitioning model, is spatially isolated from the userland partitions.

This property protects the kernel itself and ensures no partition can change its

configuration by itself by bypassing Pip.

Figure 7.1: Pip’s partitioning scheme.
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7.2.5 Pip nomenclature

This paragraph aims at defining Pip kernel objects.

The metadata structures are Pip’s configuration information, used to track the

partitioning view and to configure the MMU with the correct information. Five internal

structures are linked and used to operate any partition:

1. Partition Descriptor: A partition is identified by a Partition Descriptor, unique

in the system for this partition. The Partition Descriptor is a metadata structure

containing the partition’s references to the other structures.

2. MMU: The MMU configuration is stored in the MMU structure. This structure is

loaded in the MMU to control the partition’s accesses. Additional information is

given to each mapped page to know if it is present and/or accessible to the current

partition.

3. Shadow 1 (Sh1): The Shadow 1 structure links mapped pages of the MMU struc-

ture to the child partitions. It mirrors (hence the name shadow) the MMU structure.

The structure gives the information if the page is shared with a child partition and

in such case which child.

4. Shadow 2 (Sh2): symmetrically, the Shadow 2 links each mapped page of the

MMU structure to the parent’s page memory that has been shared.

5. LinkedList (LL): holds the configuration pages of the current partition in a linked

list.

The kernel structures are reserved for the kernel, so never accessible from any partition

(Kernel Isolation property).

7.2.6 Summary

In a nutshell, Pip is a security mechanism of type memory isolation (access control,

confidentiality and data integrity) resting on a hierarchical TCB guarded by the MMU,

separation of privilege and atomicity (hardware support to disable interruptions during

service executions). It exhibits strong guarantees of isolation by the use of formal

verification of the isolation property on its services using Coq.

7.3 Pip-MPU’s requirements

As a kernel, Pip-MPU features more services and therefore more requirements than the

framework. This section defines the requirements that Pip-MPU must satisfy. We classify
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the requirements into four categories: security requirements, performance requirements,

functional requirements and hardware requirements. Some requirements are directly

inherited from Pip while others are only required to target resource-constrained low-end

devices.

7.3.1 Pip’s fundamental requirements

Pip-MPU inherits all Pip’s requirements, except the ones tied to the MMU. Hence, we

first state and classify the set of Pip’s fundamental requirements.

• SecReq1: Pip’s security properties Pip’s security properties described in Sec-

tion 7.2 shall be ensured.

• SecReq2: Hardware-based memory protection Any illegal access shall be blocked

and identified by the hardware-based memory protection components. Only the

kernel space has sufficient privileges to configure them.

• SecReq3: Minimal software size Pip’s code must be minimal in size in order to

be formally verified, to reduce the likelihood of vulnerabilities, and to ease the

maintenance of the code base.

• SecReq4: Limited access permissions updates Pip shall ensure that only a parent

partition can manage block access permissions (read, write, execution), that might

be changed during the partition’s lifetime. Pip shall ensure that a partition cannot

increase the rights set up by the parent partition, on itself or one of its children.

• FuncReq1: Flexible partitions The partition tree shall be determined at runtime.

Any partition can create and isolate a subspace of its own.

• PerfReq1: Reasonable performance overhead Pip shall maintain the performance

requirements existing before the port to Pip in order to address real-world sce-

narios. This includes a fast startup sequence (fast cold start) that should not

significantly impact the bootstrapping routine.

7.3.2 Specific Pip-MPU requirements

In a second step, we define additional performance and hardware requirements that

stem from the constrained nature of the targeted devices.

• HWReq1: MPU-based memory protection Pip-MPU shall specifically use the

MPU as hardware memory protection. As the MPU is only present in low-end

devices, the corollary is that Pip-MPU only targets this class of devices.
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• HWReq2: No hardware modifications Pip-MPU shall use hardware components

present in Commercial Off-the-Shelf (COTS) systems, without any hardware mod-

ifications. This is to ease its adoption and reduce development time.

• PerfReq2: Bounded execution time Pip-MPU’s algorithm complexities and im-

plemented code shall be compatible with real-time constraints. Indeed, many

low-end device scenarios have such constraints.

• PerfReq3: Low memory consumption Pip-MPU shall let enough space for real-

world scenarios to fit in a Pip-MPU-based system. Pip-MPU’s security overlay

should be compatible with low-end devices’ limited memory resources.

• PerfReq4: Low power consumption Pip-MPU’s energy consumption overhead

shall stay reasonable. Indeed, constrained devices are often powered on battery

and the power consumption dictates their lifetime, as they are expected to operate

in the wild for a long time.

7.4 Pip-MPU design

The adaptation is directed by the specialisation of the framework to Pip’s security policy

and makes the system Pip-like. It encompasses analogical equivalences and structural

connections with the framework and implementation guidance.

7.4.1 Analogy between the framework and Pip-MPU

In the framework, userland components, executing in memory spaces, can create nested

memory spaces out of their own memory space. In this way, the analogy is direct

between Pip child partitions and nested memory spaces. Nested memory spaces in

the framework are created on the fly, like child partitions, which satisfies FuncReq1.

Furthermore, the framework is MPU-based without hardware modifications and as

such perfectly fits COTS systems as required by SecReq2, HWReq1 and HWReq2. In

addition to that, they both claim minimalism in line with SecReq3. For the framework,

the compartmentalisation entity is specialised in providing only the minimal set of

required memory isolation primitives that Pip-MPU can reuse to provide memory

isolation respecting Pip’s security requirements. At last, the computational complexities

computed for the framework are in fact better in Pip-MPU because the services which

had quadratic complexities (cf. Section 6.1) do not need anymore to span the whole

partition tree to toggle the accessibility flag in all blocks requisitioned to hold protected

metadata structures. With the Horizontal Isolation property, blocks to toggle can only be

in direct ancestors, and not in parallel lineages because of a common ancestor that would
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System call Complexity
create/delete O(s ∗ k)
cut/merge O(s ∗ k)
add/remove O(s)
prepare/collect O(s ∗ k)
activate O(1)

Table 7.1: Complexities of Pip-MPU’s memory management system calls. s is the number
of structures in a memory space (expected <=8) and k is the number of direct ancestors
(expected <=4).

have shared the same block between siblings. Hence, the new complexity Table 7.1 for

Pip-MPU. But better than that, the number of direct ancestors reflects the number of

isolation levels, which is expected to be at most 4. Because we previously analysed for

the framework that the complexities of the services were bounded by linear complexities

in the worst case, they are now bounded by a constant complexity. The new computed

complexities fulfill the bounded execution requirements required by PerfReq2.

To summarize, the framework already satisfies the requirements FuncReq1, SecReq3,

HWReq1, and PerfReq2. Furthermore, it partially satisfies SecReq1 because the nested

memory spaces follow Pip’s Vertical Sharing property and because the framework

also protects the privileged compartmentalisation entity and its metadata structures

responsible for the MPU configuration against userland accesses, which is equivalent to

Pip’s Kernel Isolation property.

The remaining security requirements (SecReq4 and Pip’s Horizontal Isolation prop-

erty) are covered by the framework’s security policy specialisation in the next section.

After that, the framework implementation is guided by all the remaining requirements

related to performance metrics, which are evaluated in Section 7.5.

7.4.2 Framework security policy specialisation

The framework needs to be specialised to fully satisfy Pip’s security requirements. The

specialisation occurs within the system calls and in the metadata structures.

SecReq1 requires each child partition to be isolated from other child partitions stem-

ming from the same ancestor partitions. We must operate a framework specialisation

to restrict shared memory with and between child partitions to fully embrace Pip’s

security policy. We decided to reflect SecReq1 in the sharing structure. A unique field

identifies the child partition with whom the block is shared. The system calls then

retrieve this single value as the only possible child partition the current partition could

share this block with. Hence, from the metadata structure itself, it is impossible to

share a block with multiple children, satisfying the requirement. As a consequence
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of the specialisation, we modify the framework’s API. We removed the child partition

identification for the system calls retrieving shared blocks since only one child can

hold a shared block. SecReq4 requires restricting access permissions updates. In the

framework, access permissions are set when adding blocks to a subdomain as done with

Pip, but without restrictions. In our specialisation, the read, write and execute rights

can never be elevated (but can still be lowered) guarded by additional logic in the block

sharing system call.

7.4.3 Implementation guidance

For Pip’s adaptation, we decided to keep the same nomenclature for similar objects,

specifically the partitions for software components, and the main and sharing structure

become respectively, the Partition Descriptor (PD) and the Shadow1 (Sh1) structures.

We also remove all MMU specific and optimisation structures from Pip: the MMU, the

Shadow2 and the LinkedList structures. Only the MMU structure is (in an analogous

way) replaced by the virtual MPU structure, also called Blocks structure. Following

the same naming convention, the subblocks structure becomes the Shadow Cut (SC)

structure. We also transfer the names of Pip’s services to the framework’s API, as shown

in Table 7.2 . By taking over the same names for equivalent metadata structures and API,

Pip-MPU revives Pip’s conceptual frame. In addition to that, we add two more services:

Pip’s context switch service yield (adaptation performed by our team’s engineer based

on the work of another PhD student in our team [178]) and findBlock which scans the

virtual MPU structure in search of a block containing a user specified address. While

the first additional service is required to obtain all Pip’s features, the second service

gives the partition the possibility to inspect one of its memory blocks or the ones of its

children. Another set of additional services is under development to offer the possibility

to write in privileged registers while assuring isolation, they are not covered in this

dissertation.

For formal verification purposes, and Pip particularly, we implemented the code

directly in the Coq Proof Assistant. The framework’s system calls are settled in pipcore.

As every function had to be written in Coq for later verification, it had to be adjusted

to a functional environment and recursive loops. This impacts performance as well, as

recursive functions use more stack memory than loops.

For memory purposes, we decided to combine the metadata structures, instead of

splitting them over several memory blocks as done in Pip where the structures are

distributed over distinct memory pages. The rationale in Pip was to keep the MMU

configuration separated from the rest of the blocks’ attributes so to load the MMU

directly by pointing to the new configuration. On the contrary, the MPU needs to

be loaded register by register and there is a separate list of active memory blocks, so
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Pip (MMU) Pip-MPU

Service Target partition Service Target partition

createPartition child createPartition child
deletePartition child deletePartition child
addVAddr child addMemoryBlock child
removeVAddr child removeMemoryBlock child
prepare child prepare child || current
collect child collect child || current
countToMap child - -
mappedInChild child - -
- - cutMemoryBlock current
- - mergeMemoryBlocks current
- - mapMPU child || current
- - findBlock child || current

Table 7.2: Comparison of Pip (MMU)’s and Pip-MPU’s memory management APIs.
Equivalent services are on the same line. Note that Pip-MPU has services that target the
current partition. The dashes represent the services that are not present relative to their
counterpart API.

mixing the structures has no consequences and helps to reduce fragmentation. Hence,

the virtual MPU, the Shadow 1 and the Shadow Cut structures are merged in a single

superstructure.

For performance purposes, we enhanced the metadata structures to carry information

decreasing the complexity of the system calls and overall speeding up the code. In

order to significantly speed up the MPU configuration, we introduced a second MPU

list, besides the list registering the manual MPU mapping through the mapMPU system

call. This second list leverages the MPU packet configuration feature, allowing a fast

configuration by setting up the MPU regions fourth by fourth. It consists of a pair of

register values to be slammed directly in the MPU registers, instead of configuring each

MPU entry one by one by retrieving the information in the metadata structures. This

second list is always updated in the system calls, at the same time as the first list.

Furthermore, we limited the number of memory blocks in the metadata structures

to 64 per partition. Rejection checks in the code implementation ensure this, setting the

upper bound to the linear search in this structure. The linear search is needed in the

findBlock service.

7.4.4 Implementation of the parent-child relationship

A partition is declared as a child as soon as a PD structure is set up for that partition.

The partition inherits its identifier by the location address of the PD structure.
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The number of memory blocks NB is limited by the number of superstructures

NSS in a memory space times the number of entries NE of the virtual MPU (which is

equal to the number of entries in Shadow 1 or Shadow Cut), so formally by the formula

NB < NE ×NSS. Because the creation of a child consumes a block to store the new PD

structure, the number of children NC a partition can have is then limited by the use

of the memory blocks. More than that, a user would typically define a new partition

with a minimum of 4 memory blocks (for the PD structure, a superstructure to register

memory blocks and two memory blocks respectively for code and data). Theoretically,

the number of children NC for a single parent is then limited even more finely by the

formula NC < NE ×NSS ÷ 4. For our implementation, NB = 8,NSS = 8 then NC = 16.

Like in the framework, the PD structure holds a pointer to the parent identifier.

In our implementation, we add the PDflag attribute to the Shadow 1 structure which

indicates that a memory block is used as a PD structure. Since the Shadow 1 entries

are linked to their corresponding virtual MPU structure entries, the start address in the

virtual MPU entry gives the child’s identifier without the need of explicitly writing it

in the PDchild field (child in the framework). We give an example of a parent-child-

grandchild relationship in Figure 7.2, to be compared with the presentation of the

framework’s metadata structures of Figure 6.2. Note that resemblance is high, naming

conventions set apart. The implementation of the services sets up the global security

policy of Pip using these metadata structures.

7.4.5 Summary

Pip-MPU inherits the flexibility and the compartmentalisation features of the framework

and expresses equivalent requirements than Pip. We replaced Pip’s memory manage-

ment by the MPU module of the framework and adapted the structures and the API to

stick to Pip’s conventions. We introduced the specialised module within Pip’s pipeline

and made additional changes in the implementation to fully satisfy Pip-MPU’s require-

ments which gather Pip’s requirements and specific requirements due to the constrained

environments. Thus, a Pip user can transparently use Pip-MPU for the majority of the

services and will experience a similar system behaviour.

7.5 Evaluation of Pip-MPU

We evaluate Pip-MPU by implementing a prototype on a device based on an ARMv7

Cortex-M processor and by comparing it to a baseline scenario without Pip-MPU. The

goal of the evaluation part is to answer the following questions: 1) Is the solution usable

in practice to be implemented for constrained objects? 2) What are the solution’s costs

and benefits in terms of performance (processor cycles, energy consumption) and system
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Figure 7.2: Example of a parent-child-grandchild relationship viewed from the per-
spective of the metadata structures. Partition 0 (parent) is parent to partition 1.3 (child
of parent 0) which in turn is parent to partition 1.3 (grandchild of parent 0). Green
blocks are used as PD structures in their respective child. Purple blocks are used as
superstructures in their respective child or in their own partition (case of grandchild
1.3). The figure shows that block 1.4 has been cut several times (in blocks 1.4.2, 1.4.3,
1.4.4, and 1.4.5) which implies the original block 1.4 in the ancestors is inaccessible.
For each memory block in all the partitions, we can observe there is no elevation of
access permission rights compared to their original block, but can only be lowered (like
block 1.3). Grandchild 1.3 shows a typical state after a prepare: a new superstructure
is initialised out of block 1.4.4 from the same partition 1.3, it is placed at the beginning
of the linked list of all superstructures related to the same partition, the first free slot is
the first entry of the new superstructure and all entries have the default values except
the last entry of the virtual MPU structure that connects with the free slots list with
the previous one. Memory block 1 was shared memory between the parent 0 and the
child 1.1. In our implementation, we consider a virtual MPU structure of length equal
to eight (eight entries). Note the absence of order in the free slots list of grandchild
1.3 which resulted from previous cut and merge operations. Note as well the single
reference between superstructures 1.5 and 1.4.4 compared to the multiple references
in the frameworks between each inner structures.
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overlay (size, lines of code, initialisation time)?

7.5.1 Experimental setup

Our prototype runs on an nRF52840-DK (Nordic Semiconductor) board [131]. The

board is built around an ARM Cortex-M4 CPU (ARMv7-M architecture) running as fast

as 64MHz with 1 MB of Flash and 256 kB of RAM, with an MPU composed of 8 MPU

regions.

We perform static and dynamic analyses on 4 benchmark applications out of the

Embench IoT benchmark suite applications [72]: aha-mont64, crc32, nsichneu, prime-

count. We directly use the source files [63] without any modifications. They have been

selected because the benchmark suite is free and open-source, the applications represent

deeply embedded systems, they are compatible with our system constraints, they run

bare-metal and they don’t have any output streams. They also do not use the Floating

Point Unit (FPU), even if one is present on our board, because our prototype did not

support it at the time this evaluation was performed. The benchmark code is available

online.1

The evaluation consists of two scenarios running an application 1) in Pip’s root

partition and 2) in a child partition. The root partition sets all applications in the

unprivileged userland, making it impossible for them to run privileged operations. The

child partition further restricts the memory attributed to the application, with the cost

of abstraction. We compared each scenario against our baseline scenario consisting in

running the benchmark application in the following configuration: privileged mode,

without Pip and after the same system initialisation phase. The test application is

regularly interrupted by the SysTick clock every 10 ms which triggers either a void

handler in the baseline scenario or Pip-MPU’s interrupt management handler in the

Pip scenarios. As an end result, we present the total overhead induced by the use of

Pip-MPU at different abstraction level for each evaluation metric. The CPU runs at

a speed of 64MHz and each benchmark application is launched successively several

times within a scenario to strengthen the results disparities and extend the experiment.

An experiment associates a benchmark application with a scenario. We distinguish

four phases in the experiment illustrated in Figure 7.3: the system initialisation phase

(boot), the benchmark initialisation phase (the launch of the root partition and the child

partition), the test phase that is the benchmark executing for several runs, and the

benchmark end phase which stops the experiment and sends the collected data to the

main computer driving the evaluation. Final post-mortem analysis is carried on with

all the data collected from all the experiments to extract the information and generate

1https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/benchmark/benchmarks

https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/benchmark/benchmarks
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Figure 7.3: Evaluation phases. The evaluation consists in conducting the experiment
on each benchmark application in each scenario and finally analysing all the data.

statistics reports.

7.5.2 Evaluation results

We wrote specific Python scripts to conduct the evaluation phase, cross-mixed and

adapted from the scripts and tools offered by Embench and BenchIoT [2]. In this

section, we describe the monitored metrics and how we collected the data. The final

results present Pip’s raw overhead in Table 7.3 and what performance costs to expect in

Table 7.4.

The Source Lines of Code (SLOC) are the number of C lines of code counted after

removing all comments and empty lines from the C source files by using the gcc -

fpreprocessed option. They include lines containing only brackets, global variables

and the function parameters that could spread on several lines (though remain limited).

Table 7.3 presents the SLOC and size (in bytes) of Pip-MPU alone.

Stack usage is monitored by identifying the software components’ stacks (main

stack and app stack) and by marking them with a pre-defined value. As the stack

is growing one address after the other, the last position where this value has been

updated is the stack bottom address which witnesses the usage. In addition to the

root partition’s metadata structures, Pip-MPU’s memory footprint also encompasses the

metadata structures needed to create any runnable partition (the structures holding the

list of blocks and attributes, as well as global partition data). The memory footprint is

computed through formulas explained next. When the number of blocks in a partition

grows by cutting or receiving memory blocks, the latter needs to be registered in

supplementary structures of size S in bytes. Each supplementary structure can hold a

constant number of blocks C, fixed at compile-time. Hence, for a partition of B blocks,

we get K + (B mod C)× S bytes with K incompressible metadata. In our implementation,

K = 640, C = 8, S = 512. As any partition requires a minimum of one metadata structure

to hold the first blocks, it leads to a minimum memory footprint in RAM for each
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SLOC of C Size (B)
Memory footprint in Flash

pipcore (translated from Coq) 2483 5804
Pip handlers 789 908
MAL 843 1996
Pip init 71 772
Pip data + bss - 64

Total Pip-MPU size 4186 9544

Memory footprint in RAM (B)
Pip-MPU stack usage 516
Metadata structures:
- Per partition 640 + (Bmod 8)× 512
- Min per partition 1152
- Max per partition 4736

Deployment (#cycles)
In root In child

Pip-MPU initialisation 99022 165582

Table 7.3: Pip-MPU raw overhead. To compute Pip-MPU’s size and memory footprint,
the -Os optimisation flag was used.

partition of 1152 B, including the root partition. Furthermore, as the number of metadata

structures for a partition is bounded by MaxMS at compile-time, the maximum memory

footprint for a given partition is K + MaxMS × S. Applied to our system, it gives a

maximum footprint of 640 + 8× 512 = 4736 B. More than that, MaxMS also dictates the

maximum number of blocks a partition can hold with the formula C ×MaxMS. For our

system implementation, a partition can register 8× 8 = 64 blocks.

For the performance metrics of Table 7.4, we run the benchmark application con-

figured for each scenario (baseline, in root partition and in child partition). Each time,

we execute 3 runs in a row within the same experiment to collect data for at least 20

seconds (each benchmark application executes during 5-7 seconds). We launch each

experiment 5 times and perform statistics on the results (average µ and standard devia-

tion σ ). The indicated overhead is the observed average overhead computed for each

scenario compared to the baseline, e.g. the average on all benchmark applications of the

average overhead on all runs.

The cycles count are retrieved from the Data Watchpoint and Trace (DWT) unit of the

processor. We initialise the count just before the launch of the benchmark application

and collect its value after the end of the initialisation phase and when the application

is finished. The end of the initialisation phase marks the test phase, from where the

benchmark application executes. For the baseline scenario, the initialisation phase



98 CHAPTER 7. Pip-MPU, adaptation of the Pip kernel via framework specialisation

Metrics In root In child

Cycles
Cycles overhead:
i) in total µ = 76302131 µ = 74538344

σ = 67494444 σ = 73634323
(+16.31%) (+16.4% )

ii) during test µ = 76203107 µ = 74372762
σ = 67495112 σ = 73634647

(+16.29%) (+16.36%)
Privileged cycles over total cycles ratio:

i) in total µ = 0.86% µ = 0.92%
σ = 3.8× 10−5% σ = 3.3× 10−5%

(-99.14%) (-99.08%)
ii) during test µ = 0.87% µ = 0.92%

σ = 3.9× 10−5% σ = 3.3× 10−5%
(-99.13%) (-99.08%)

Energy consumption during test
Total energy overhead: µ = 24.76mJ µ = 26.6mJ

σ = 22.42mJ σ = 23.00mJ
(+16.7%) (+18.4%)

Energy overhead due to MPU: µ = 0.05mJ µ = 0.07mJ
σ = 0.16mJ σ = 0.11mJ

(+0.03%) (+0.04%)

Security
Accessible application memory over total memory ratio:

- Flash (code) 99.0% 6.27%
(-1.0%) (-93.73%)

- RAM (data) 99.35% 1.9%
(-0.65%) (-98.1%)

Table 7.4: Performances comparison (versus baseline). The test application is either
executed in the root partition or in the child partition, compared to the baseline.
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is almost void since it just calls the benchmark application. Moreover, the baseline

scenario is always executing in privileged mode so the cycles count is fully privileged.

On the contrary, in the Pip scenarios, the privileged cycles are monitored by counting

the cycles only spent in Pip-MPU. We provide the ratio of privileged cycles over the total

cycles from i) Pip-MPU’s start and ii) only during the test phase. They are compared to

the entirely privileged baseline.

The accessible memory areas represent the memory a partition has access to. The

application in the privileged baseline has access to the whole memory whereas by using

Pip-MPU the accessible memory areas are the blocks of the memory space. For the

root partition, the accessible memory includes the whole memory minus the TCB (Pip-

MPU and boot components). From there on, the root partition, as any other parent

partition, decides which memory blocks to pass on to its children, thereby controlling

their accessible memory areas.

The energy consumption is monitored using the Power Profiler Kit I (PPKI) [132]

mounted on the nRF52840-DK board. Our testbed is illustrated in Figure 7.4. The PPK

provides current measurements at 77kHz with 4 measures average that we multiply

with a fixed voltage and integrate over time to get the total energy consumption. As the

benchmarks use semihosting to send the performance data (cycles and stack usage) to

the computer for analysis, the debugger remains active. However, no input or output

is performed during the test phase. Furthermore, our set-up includes an additional

nRF52840-DK board to interface with the PPK and send the measurements to the

computer. We used a PPK library [185] to trigger the measurements because the desktop

application was not stable enough for our experiments and it eased the integration

with our python scripts. Nevertheless, as an upgraded version of the PPK (PPKII) was

released some years ago, the library is not maintained anymore and the integration

required to find a good match between the PPK’s firmware version and the library and

its dependencies. For our analysis, energy consumption is solely measured during the

test phase. We mark this phase by setting the processor in deep sleep mode before and

after the test phase and wake it up with an external timer. In this way, we can easily

identify the test phase from the current measurements with significant current drops

during the sleep phases (around 6mA during the test phase down to µA when sleeping),

like demonstrated in the Figures 7.5, 7.6 and 7.7. The figures represent the variation of

energy consumption during an experiment as a function of different scenarios using the

same application. The part in red corresponds to the test phase. On these figures, we

can clearly see the consumption drops before and after the test phase.
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Figure 7.4: Our testbed. At the forefront, the nRF52840-DK board controlling the PPK.
In the background, the nRF52840-DK board hosting the test application and on which
is mounted the PPK.

7.6 Discussion and limitations

The figures presented in the previous section are valuable information to consider a port

on Pip-MPU.

Pip-MPU takes respectively 1664 B (data, stack, root partition metadata structures)

and 9544 B (code) of the available 256 kB RAM and 1 MB of Flash. It then fits easily the

constraints of our targets (around 3.3% RAM and 3.8% Flash of Class 2 IETF devices)

and leaves enough space for more complex applications, thereby fulfilling PerfReq3.

Pip-MPU’s minimalism, required by SecReq3, is therefore satisfied. Hence, we expect

a good ratio for Pip-MPU’s size relative to the size of rich OSes and their applications

ported on Pip-MPU. To be noted, we considered scenarios with a correct test application,

without triggering faults or using the partial MPU reconfiguration feature inherited

from the nested compartmentalisation framework. We expect a stack usage increase in

such cases.

The accessible memory areas metric shows the extent of the attack surface. In the

baseline scenario, since the application is privileged, it can access 100% of the memory.

On the contrary, when using Pip-MPU, the partition becomes unprivileged and is limited

by the MPU. For the root partition, this value decreases by about 99%. Indeed, the root

partition owns the whole memory except the parts reserved for Pip-MPU. The further

away the active partition is from the root partition, the more the parent partition can

restrict the accessible memory and the better the metric is. For the child partition in our

implementation, we reduced its accessible memory area to respectively 2% and 6% of
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Figure 7.5: Baseline scenario. Energy consumption (mJ) as a function of time (samples).

the RAM and Flash areas. This means this child partition loses more than 94-98% of the

memory that was accessible in the privileged baseline scenario.

The evaluation reveals a minimum memory footprint in a parent partition for each

new child partition of around 1 kB for our implementation. This minimum should be

increased because of the requisitioned entries in the parent partition to register the

child’s metadata structures. Indeed, the additional entries may not fit in the fixed-

size metadata structure holding the block attributes, leading to the creation of a new

metadata structure in the parent to host these entries (supplementary 512 B in our im-

plementation). Other implementations can change the length of the structures (reducing

or extending) by compilation options. Because some blocks become inaccessible when

hosting metadata structures, one could pick a number of entries slightly bigger than the

number of available MPU regions since the MPU can only be configured with accessible

blocks. This is the case in our implementation because we choose a length equal to the

number of available MPU regions (eight), however the customised memory fault handler

needs some reserved MPU regions to deal with ARMv7-M MPU region alignment and

size requirements. This is valid for any implementation, because the number of available

MPU regions is implementation-defined and because some architectures like ARMv8-M

do not have the same strict hardware requirements.

Pip-MPU’s raw overhead is declined in two stages: the initialisation phase (for the

root and child partitions) and the test phase (the running application). The initialisation

phase shows an averaged initialisation phase lasting 99022 cycles (1.5ms@64MHz) and
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165582 (2.6ms@64MHz) respectively, for the root partition and the child partition.

This represents the pure overhead of Pip-MPU’s initialisation time over the baseline,

resonating with PerfReq1. Furthermore, we observed an execution overhead for the test

phase of about 16 % caused by Pip-MPU’s restoration context sequence when receiving

the SysTick interrupt. This latter value should be appreciated within the tested scenario

and values are expected to be higher for a rich OS ported on Pip because of multiple

interrupts causes. While the performances proved sufficient in the evaluation, there are

potential improvements areas to further optimise the system calls if deemed necessary

in the future by adding optimisation metadata structures similar to Pip. In addition to

that, Pip forces the benchmark application to run in unprivileged mode. We observe a

drop of more than 99% of the privileged cycles when using Pip that corresponds to Pip’s

execution. The opportunities to exploit the privileged operation mode are reduced as

much.

Energy consumption resulted in a 17-18% increase when using Pip-MPU. Moreover,

we launched the benchmarks while switching off the MPU. It showed a consumption

decrease of 0.02-0.2% depending on the scenarios. It demonstrates that the MPU use

(due to the context switching and permanent protection) does not impact significantly

the power consumption, contrary to what has been argued to explain the non-use of the

MPU [194]. These measurements are important for IoT devices that may operate in areas

without power line access and thus depend on a limited power battery. They satisfy

the final requirement PerfReq4. About the energy consumption, the PPK is sampling

at 77kHz, so almost 3 orders of magnitude lower than the actual processor frequency

clocking at 64MHz. This makes it impossible to detect all energy consumption peaks.

Indeed, at that frequency, a peak that lasts no more than 13µs stay undetected. However,

the peaks must be a frequent phenomenon to disturb the statistical mean of our measures

because our experiments last 20-30 seconds. Therefore, we argue here, in an informal

way, that our results are valid.

Other metrics are proposed in BenchIoT but are not evaluated here for the following

reasons. First, we did not evaluate the number of sleep cycles as Pip never puts the

CPU into sleep. Second, we did not include Data Execution Prevention (DEP) or the

enforcement of the W^X security principle, because Pip does not set them up. Indeed,

the existence of such or additional security principles (like deciding which memory

blocks to isolate) are strict partition design choices. Third, ROP gadgets and indirect

calls are known techniques for an attacker to take control of the control flow and perform

impactful attacks [153]. We evaluated the ROP gadgets and indirect calls overhead,

respectively to 1780 and 9 due to Pip-MPU (directly using BenchIoT’s tools based

on [103]). However, we do not recognise them as relevant for Pip-MPU. The rationale is

that Pip-MPU’s or ancestor partitions’ code and data are private and invisible from the
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point of view of the active partition. Illegal access trials by crafted ROP gadgets end up

in MPU memory faults caught by the ancestors. Furthermore, pipcore being developed in

Coq before C translation, it holds characteristics of a functional programming language

like a higher number of functions degrading these particular metrics. Hence, they do

not represent for us relevant metrics. It should be noted though, that Pip-MPU does

not prevent ROP attacks within the partition but against Pip-MPU and the partition’s

ancestors. Fourth, we did not single out privileged cycles and SVC cycles as they

represent the same thing for Pip-MPU. Indeed, Pip-MPU’s entry points are the SVC and

are the only privileged code that can run after the initialisation phase.

As a result, the preliminary analysis and the evaluation showed full compliance

to Pip’s requirements and requirements expected for resource-constrained devices.

Impactful security measures like privilege segregation of user and kernel/sensitive code

are sometimes not used to lower production costs or reduce energy consumption. We

showed simple applications such as those used in our evaluation can directly benefit

from Pip-MPU’s protection with almost no effort.

The scenarios explored in the benchmarks have a maximum of one isolation level.

This is sufficient for bare-metal applications but we expect another level when porting

an OS. A supplementary level implies additional abstraction to go through the partition

tree that might degrade performance.

Pip-MPU entails the presence of an MPU which is a strong limitation for embedded

systems without MPU. However, previous works [33] showed the MPU is present most of

the time in Cortex-M3/4/7-based micro-controllers, thereby supporting the applicability

of Pip-MPU. In addition to that, the compartmentalisation framework is generic to

systems supporting privileged mode segregation and has an equivalent unit to the

MPU. We believe our approach is then reproducible on processors from other vendors

providing equivalent features.

7.7 Defence against attackers and assumptions

Attackers identified in our attacker model 1.2 are not able to compromise Pip-MPU.

Indeed, when the system boots, it first initialises the hardware, including the MPU, and

Pip-MPU follows. Pip-MPU leaves kernel space and kicks off the root partition in user

space (the same procedure as in Pip). At that point in execution, the system is in a safe

state as initialised by Pip-MPU, with enforced access permissions to the unprivileged

root partition. All future operations are MPU guarded by Pip-MPU. Attackers now have

the lead but are limited by the MPU to perform their attacks. The compartmentalisation

set up by Pip-MPU in child partitions prevents the attackers from further harming the

system outside the compromised component.
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For the previous statements to hold, we must make some assumptions. First, we

must trust the firmware loader (e.g. flashing of the code on the target device). Then,

we must assume a correct bootstrapping routine, e.g. the start procedure is considered

reliable and always leaves the system in the intended initial state. We also need to

trust the compilation toolchain, IDE and used tools, and the hardware platform (MPU

included) which should work as described in its specification. We only target 32-bit

single-core ARM-based microcontrollers provided with an MPU enabled. Furthermore,

as local permissions are changed during runtime, the system developers, or attackers,

must have access to the source code of the sole component they are responsible for or the

full source code. These assumptions are realistic and the basis for many secure systems.

Further discussions on assumptions are discussed in the next chapter, enriching the list

to include the formal verification.

7.7.1 Conclusion

Pip-MPU is the Pip kernel variant based on the Memory Protection Unit (MPU) instead

of the Memory Management Unit (MMU). Pip-MPU does not require any hardware

modification on Commercial Off-the-Shelf (COTS) systems and only depends on the

MPU, which implies privilege separation (privileged/unprivileged modes). The memory

isolation offered by the MMU is transferred into MPU-based memory isolation by

specialising the framework to inherit flexibility with the MPU and to satisfy Pip’s

security requirements.

We presented an implementation guidance that is also portable to other ARM archi-

tectures such as the ARMv8 Cortex-M architecture.

Our evaluation, after full implementation on an ARMv7 Cortex-M device, shows

that Pip-MPU reduces the attack surface from 100% down to 2% while requiring 10

KB of Flash, 550B of RAM and an overhead of 16% on both performance and energy

consumption.

The framework showed compatibility with a system requiring strong flexibility and

security.
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Figure 7.6: In root partition Pip scenario. Energy consumption (mJ) as a function of
time (samples).

Figure 7.7: In child partition Pip scenario. Energy consumption (mJ) as a function of
time (samples).
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Review

Pip-MPU is Pip (MMU)’s variant adapted to constrained devices featuring a Memory

Protection Unit (MPU). Pip (MMU) is one of the simplest existing kernels offering strict

memory isolation. With Pip-MPU, it is Pip’s security-by-design that is transferred to

resource-constrained devices.

Pip-MPU extends the list of secure MPU-based memory isolation solutions. However,

it offers much more flexibility and is more portable. These notions are of utmost

importance for the expanding heterogeneous complex IoT ecosystem. IoT devices are

expected to support virtualisation [77], multi-tenancy [24], might change ownership

during their lifetime, might evolve [92, 67] and are subject to attacks or serve as a

medium for massively distributed attacks [112]. The devices would benefit from locally

and dynamically established permissions. As each nested memory space is based

on the least privilege principle, it is creating as many implicit privilege levels. For

IoT security, this means any interface with the outside world can be contained in a

partition guaranteed by the memory protection of the MPU. Pip-MPU is the first OS for

constrained devices to demonstrate such flexibility while ensuring a very strict memory

isolation policy.

According to ARM, for Cortex-M processors, "there is always a trade-off between

performance, features, against silicon size and power" [12]. Pip-MPU targets this family

of processors and does not give up security while exhibiting reasonable performance

downgrades.

107
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Pip-MPU is a specialisation of a versatile framework we designed. Agnostic and

portable MPU solutions are ongoing works in the kernel community [176]. We demon-

strated compatibility of the framework with ARMv7 Cortex-M-empowered devices

in Pip-MPU’s implementation, but claim its portability on ARMv6-M since the MPU

programmer model is close, but also ARMv8 Cortex-M-based devices and RISC-V PMP

because the leveraged features are widespread among these equivalent units for con-

strained devices. Because ARM dominates this slice of the IoT market, Pip-MPU is

available for most of the deployed devices. The framework could be used to resketch

existing solutions in order to inherit the offered flexibility by specialising their respective

security policies in the implementation of the services.

Pip-MPU is expected to host applications in need of strict memory isolation and high

flexibility. We acknowledge potential difficulties in porting existing systems upon Pip-

MPU. The reason is that OSes for constrained devices and their applications usually run

in the same address space and at the same privilege level (which makes them vulnerable

to total compromission by an attacker) [105, 34]. They are by design not suitable for

executing in the unprivileged mode and in isolated address spaces. However, our team

successfully ported the RIOT-OS [22] on Pip-MPU, with ongoing works on porting

additional drivers, which constitutes a proof of Pip-MPU’s usability but also the basis

of reproduction for future ports. The port gives us feedback to optimise performances,

with already identified leads in modifying Pip-MPU’s metadata structures, if deemed

necessary. Pip’s flexibility can also be leveraged to create a secure-by-design architecture

for containers on low-end devices [23]. This use case differs from the typical use case

for low-end devices, which consists in isolating multiple code components within a

single-thread and multi-tasking bare-metal application because it involves multiple

parties and requires reconfiguring the memory partition during the device’s lifetime.

Finally, low-end IoT devices are broadly used for embedded systems and the trend

shows an increase of IoT devices in the next years [115]. Pip-MPU aims to participate in

safer intelligent environments by hosting secure applications for low-end devices. As

vulnerabilities will certainly continue to strike the ecosystem in the near future, which

is the lecture of governments and the industry that actively invest in cyber security, our

proposition is in line with an immediate hardening of deployed constrained devices.

Perspectives

With Pip-MPU, we now have a system at least as secure as state-of-the-art solutions.

Pip-MPU claims compatibility with other MPU versions and processor architecture,

which could be demonstrated with a port on ARMv8 Cortex-M empowered devices or

on RISC-V and leverage the Physical Memory Protection (PMP) unit.
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However, one can also ask how really secure the system is. We have already spanned

over our assumptions, but there are still open questions on security. Indeed, even with a

minimal TCB, how can we be sure there are no flaws in the design? How can we know

for sure Pip’s security properties are well implemented in Pip-MPU? Testing Pip-MPU

showed only expected results, but did we cover all the cases? What are the security

guarantees of the system? All in all, we might have a secure system, but we need to trust

many elements, including the design itself. There is a way to transform the trust in the

system into a mathematical certitude. In the next chapter, we formally verify Pip-MPU

against Pip’s security properties.

Takeaways

• Low-end IoT devices are vulnerable to impactful attacks

• Current hardware-based security solutions do not offer the flexibility required for

new use cases in the dynamic IoT ecosystem

• Pip-MPU is the protokernel Pip adapted to constrained devices

• Pip-MPU is the specialisation of a framework we designed that sets up flexible

nested compartmentalisation customised with Pip’s security policy

• To our knowledge, Pip-MPU is the first and smallest isolation kernel for resource-

constrained devices which provides flexible nested compartmentalisation
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Introduction to Part III

In this part, we formally verify Pip’s security properties on Pip-MPU. The proofs elevate

our confidence in Pip-MPU’s strict memory isolation scheme by acquiring a mathemati-

cal certitude.

There are different ways to see a system as secure. Apart from the definition of

security (cf. Section 2.2), one can test, more or less extensively, the security claim

with debugging tools or testing tools. However, these methods do not cover all the

possible cases and the corner cases might introduce vulnerabilities as described in the

Preliminaries 2.

Formal methods do cover all cases. Formal verification enhances a system with math-

ematical confidence about some specified properties. The formal claim is independently

machine-checked. Anyone can challenge the proofs, and since the verification is done

by a reliable software, can have a high confidence in it (cf. Section 2.2.4).

Pip-MPU follows Pip’s proof workflow and formal proofs are conducted in the

Coq Proof Assistant [95]. Pip’s security properties constitute proof invariants (cf. Sec-

tion 2.2.4) that need to be verified for each Pip-MPU service.

It is usual for spatial separation system to be verified through a proof assistant

because the aim is a full verification for security-critical environments, they have small

software TCBs suitable for full formal verification, it is hard to represent high-level

complex properties with model checking languages, and because the last twenty years

exhibit successful projects using that method [192].

In the following, we first describe Pip-MPU’s hardware model and related assump-

tions. We express Pip’s security properties and structural properties with Pip-MPU’s

model. We demonstrate the formal proofs of the security properties on several Pip-MPU

services. The properties are first informally demonstrated before presenting machine-

checked formal proofs in the Coq proof assistant. We finally develop metrics to follow

the progress of the proof process and combine them to obtain the best-effort path to

achieve a complete verification.
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Fast reading path: the reader already acquainted with the Coq proof assistant and Hoare

logic can skip the Background section. I recommend however, to take a look at the

explanation of Pip’s proof workflow in Section 8.3.

8.1 Motivations

A system running on a Pip-MPU-empowered platform must have confidence in Pip-

MPU. But why would a user trust Pip-MPU? Some answers have already been developed

in the previous part: Pip-MPU is hardware-rooted in the MPU, is open-source, satisfy

the requirements on Pip’s security properties and we conducted a security assessment.

While it does give a sense of confidence in the design and the security, it might

not be enough for high-assurance systems. Sure enough, open-source code and a large

community is enough to create trust but not enough to avoid vulnerabilities, as can

be experienced with Linux [43]. Furthermore, informal requirements checks might

have missed a corner case introducing a vulnerability. Moreover, unit testing the

implementation might not have covered all the cases, especially at a higher level of

abstraction like compartmentalisation.
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Using formal methods remedy this situation by giving an independently machine-

checked proof of the security claim in a very reliable way. In particular, security in Pip-

MPU relies on the correct use of the MPU replicating the partitioning tree’s properties.

A hardware-based formally verified computing base gives the highest confidence to the

system.

A system based on Pip-MPU has a security that is hardware-rooted in the MPU and

is software-rooted in formally verified Pip-MPU.

8.2 Background

8.2.1 Hoare triple

Pip (MMU) uses Hoare logic [90] to formally verify its services. Hoare logic gives a

formal system to conduct the proofs of properties of a program, i.e. rigorous deductive

reasoning rules of inference.

In Hoare logic, the formal specification refers to a Hoare triple composed of a

program Q, a pre-condition P and a post-condition R. The pre- and post-conditions are

general assertions (properties) on the values of the program written in mathematical

logic.

The Hoare triple is formally expressed as {P }Q{R}.

It logically expresses that if the program Q executes and terminates, then its post-

conditions R are true at completion if the pre-condition P was true before Q executed.

Hoare triples follow the rules of inference involving consequence (for {P }Q{R}: if

the post-condition assertion R logically implies assertion S, then {P }Q{S}, and inversely,

if the pre-condition P is implied by an assertion O, then {O}Q{R}), composition (break

down a program sequence by sequence and connect Hoare triples on each sequence

to prove the full program, i.e. for a program of sequence (Q1 ; Q2) connecting the

post-condition of the first sequence’s Hoare triple with the pre-condition of the second

sequence’s Hoare triple: {P }Q1{R1} and {R1}Q2{R} then {P }(Q1;Q2){R}), iteration (the

controlling condition of a loop is false when leaving the loop).

Other researchers extended Hoare logic and proposed new formal elements. Among

them, Dijkstra proposed the weakest pre-condition (respectively strongest post-condition),

which is the least restrictive (resp. any post-condition) statement that satisfies the

post-condition (resp. is implied by the pre-condition) of a Hoare triple.

Pre- and post-conditions can hold the same properties: these are the invariants (cf.
Section 2.2.4 on formal verification).
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8.2.2 Proofs in the Coq Proof Assistant

Proof assistants are tools that help the developer to write and conduct proofs.

Coq [95] provides an interface to write programs and proof script in the Gallina

functional programming language. A proof script that satisfies the proof goal provides

a proof term.

Coq includes a small kernel that validates the constructed proof term against the

proof goal, i.e. type checking and statement matching.

Proof development in Gallina is not easy and so is simplified by a high-level proof

script language called Ltac which terms are called tactics. During the proof development,

the developer can introduce axioms to describe the formal model or facilitate the proofs,

and even leave aside some proof obligations by the admit tactic. However, a proof script

starting by the keyword P roof and ending with Qed cannot include any admitted terms.

In such a case, the only way to end the proof (for now) is with the keyword Admitted.

In Coq, one can write theorems and lemmas to solve specific proof goals exhibiting

the same pattern.

Hence, Coq helps the developer to both write programs and proof scripts. Coq

enables to construct valid proof terms in Gallina and tactics that satisfy a proof goal.

The proof goal can be further divided into sub-goals, for example by the use of Hoare

logic with intermediate statements to prove.

8.3 Pip’s workflow

Figure 8.1 shows the two paths in Pip’s workflow: proofs and executable.

So far, we have not discussed about the hardware model since we executed the

services on the hardware directly. However, proofs must be conducted on the side

effects of the services. In other words, the proofs must know the services’ effects on the

hardware to verify the properties. The proofs need an abstract hardware model to work

on. On the contrary, the executable runs on the real hardware.

Note that in Pip, the proof workflow does not start from the C implementation but

from the model up to the proofs, whereas the executable workflow starts from the model

down to the executable.

Executable workflow The real hardware is the target for the executable workflow.

First, the code of the services is automatically translated into the C language, literally

word by word, by a custom tool named Digger. Then, the low level primitives of the

HAL are manually written in C equivalent code. For obvious reasons, the hardware

model is not translated in C as we are using the real hardware. From there on, the C
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Figure 8.1: Pip workflow: proofs and executable. The proof workflow directly uses the
concrete model, composed of the services and a hardware abstraction layer (HAL), to
conduct the proofs at implementation level. The executable workflow first needs to
translate the services and the low level read and write primitives (R/W) in C, before
cross-compiling to the target platform. To be noted, the hardware model of the concrete
model (HW) is not translated during the executable workflow, as the target is the real
hardware and not a simulator.
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implementation is compiled, linked to get an executable. The latter is finally flashed on

the target platform.

The executable workflow has been used in the previous part to generate the exe-

cutable of Pip-MPU.

Proof workflow Typically, the proof workflow kicks in after the design. Then comes

the specification of the properties to prove and finally their formal verification. In

Pip (MMU), but not in Pip-MPU as will be explained later, there is a code and proof

co-design approach.

Proofs are always conducted on an abstract view of the reality. However, the abstract

level depends on the proof’s methodology. Pip’s proof methodology is to conduct proofs

at implementation level, directly on the code of the services. Thus, the abstract level is

nevertheless a concrete model.

For that, the abstract model is composed of services and a Hardware Abstraction

Layer (HAL). The services use the HAL as a library to interact with the hardware, among

which the MPU, with elementary hardware access primitives (reads and writes). In

our model, the HAL interacts with an abstract view of the hardware (and so proofs are

conducted on this abstract view) but in the implementation, the HAL interacts with the

real hardware.

All in all, we have the following model:

• the services update the kernel structures by using the low level primitives of the

HAL

• the HAL interacts with the hardware model to change the abstract system state

• the system state holds properties (including the security properties) verified in the

proofs
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This chapter focuses on the proof workflow and the connexion with the executable

workflow.

First, we expose the proof goals, which are the verification of Pip’s security properties

for each Pip-MPU service. The security properties are expressed assuming correct Pip

metadata structures and inter-partition relationships. We thus include invariants that

guard the correct structure of all partitions. These additional invariants and Pip’s

security properties form the isolation invariant.

Second, we discuss the followed proof methodology to prove the isolation invariant.

Third, we give to the reader the intuition on the proof of the security properties by

exploring the sketch of proof of two services, one which does not modify the state and

the other that modifies it.

Four, we present the formalisation in Coq of our proof model.

Five, we demonstrate the formation and propagation of properties, which constitutes

the formal basis for the proof of the security properties (see next Chapter 10 on the

formal proof of the security properties). The demonstration uses our Coq formal model.

Finally, we connect our model to the C implementation and the real hardware used

by the executable workflow.

Fast reading path: this chapter introduces many formalisation elements. I recom-

mend at least taking a look at the sketch of proof of the security properties for two

representative Pip-MPU services from Section 9.3. I focus on their proofs in Coq in the

next Chapter 10. For details on proofs in Coq at the primitive levels, that propagate

low-level properties, read also Section 9.5. Finally, it might be interesting to see how

the Coq model connects to the C code used to compile the final executable, which is

explained in Section 9.6.

9.1 Proof goals

Pip-MPU has a different design than Pip (MMU) but still aims to prove Pip’s security

properties. The security properties are invariants, i.e. properties that must be verified

whatever the system state. The security properties extract information from the meta-

data structures to construct the partitioning model on which they can reason about.

Consequently, they can only be proven on a sane/correct partitioning model which

implies the metadata structures are correctly formed. The consistency properties ensure
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the latter. They check the correctness of the configuration of the metadata structures.

The consistency properties are also invariants.

Pip-MPU has then two groups of proof invariants: the security properties and the

consistency properties. We formally define them in this section.

Furthermore, the proofs do not only serve the abstract verification of the correct

isolation in the partition tree. Indeed, the security of the system is established by the

correct configuration of the MPU, that effectively sets up the security properties to the

real system. The link between the two, MPU and correct configuration, is made in the

formal verification. Hence, the proofs aim to verify that the memory blocks loaded in

the MPU adhere to the global partition tree model and that this partition tree itself

satisfies Pip’s security properties.

9.1.1 Formal expression of the security properties S: HI , V S, KI

Pip’s security properties are: Horizontal Isolation (HI , also called partitionsIsolation),

Vertical Sharing (V S), and Kernel Isolation (KI) (cf. Section 7.2.4).

Special case of KI

The full Kernel Isolation KI security property is in fact split in two: 1) the kernel

code and data isolation from userland partitions and 2) the protection of the metadata

structures (here named Kernel Data Isolation by inheritance). Only the Kernel Data Iso-

lation property must be proven because we describe informally here that the partitions

never access kernel code and data. Indeed, partition memory is only given by ancestor

partitions originating from the root partition. Hence, partitions only own strictly less

memory than their ancestors, and so does the root partition. When Pip-MPU starts, the

root partition is loaded with the system’s memory space outside kernel code and data

memory regions. Thus, the only property that remains to be proven for Kernel Isolation

is Kernel Data Isolation (hereafter named KI instead of full Kernel Isolation).

Formal expressions

To express the properties, we formally define some design elements. We refer to the

global partition tree P artT ree. The memory blocks (accessible or not) owned by a

partition part form the set MappedBlocks[part] stored in the Blocks structure. The

subset of memory blocks that are accessible are called AccessibleMappedBlocks[part]. The

blocks holding metadata structures (configuration blocks, not accessible) are referred

to as Conf igBlocks[part]. Recall that cut blocks are not accessible in the ancestors

because we anticipate that they will become configuration blocks, however, do not
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play any role in the security properties. The children are referred to as children[part].

AllP addr[blocks] lists all addresses contained in the blocks list.

Definition 9.1.1 (Vertical Sharing V S).

∀parent ∈ P artT ree,

∀child ∈ children[parent],

∀blockAddrChild ∈ AllP addr[Blocks[child]],

blockAddrChild ∈ AllP addr[Blocks[parent]].

Definition 9.1.2 (Horizontal Isolation HI).

∀parent ∈ P artT ree,

∀child1, child2 ∈ children[parent],

∀blockAddrC1 ∈ AllP addr[MappedBlocks[child1]],

blockAddrC1 < AllP addr[MappedBlocks[child2]].

Definition 9.1.3 (Kernel Data Isolation KI).

∀partition1, partition2 ∈ P artT ree,

∀blockAddr ∈ AllP addr[AccessibleMappedBlocks[partition1]],

blockAddr < AllP addr[Conf igBlocks[partition2]].

Note that KI is not defined as a parent-child relationship because the isolation of

metadata structures from accessible memory blocks must also be satisfied within the

partitions that hold them. To be noted as well, proofs are conducted considering the

whole set of blocks and not only the active blocks configured in the MPU, because all

blocks are eventually eligible to be mapped in the MPU.

9.1.2 Formal expression of the consistency properties C

We classify the consistency properties in three categories: 1) inner structural type 2)

inner structural set 3) inter-partition. We developed a set of 27 consistency properties,

all depending on the memory state s. We formally define each property in the following.

For our formalisation, we write structure.f ield for the value of field f ield in the

metadata structure structure. Fields pick up the field names of the metadata structures
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described in Section 7.4 and use the Blocks structure denomination to refer to the virtual
MPU structure. The memory model m is composed of elements element of type T that

can only be kernel elements of type PD (PD structure), BE (memory block entry), Sh1E

(Shadow 1 entry), SCE (Shadow Cut entry) or physical addresses of type PADDR. We

write m.@ for the value located at address entry @ in m and T ypeOf (m.@) = T to indicate

the type at that address. We refer to a default element as DEFAULT (element) if their

inner elements contain only default values.

Inner structural type properties

• nullAddrExists s

• wellFormedFstShadowIfBlockEntry s

• wellFormedShadowCutIfBlockEntry s

• PDTIfPDFlag s

• AccessibleNoPDFlag s

• FirstFreeSlotPointerIsBEAndFreeSlot s

• BlocksRangeFromKernelStartIsBE s

• KernelStructureStartFromBlockEntryAddrIsKS s

• sh1InChildLocationIsBE s

• StructurePointerIsKS s

• NextKSIsKS s

• NextKSOffsetIsPADDR s

Definition 9.1.4 (nullAddrExists). Address 0 is a special entry in the memory model

taking on the role of the empty address. It must be of type PADDR.

T ypeOf (m.0) = PADDR

Definition 9.1.5 (wellFormedFstShadowIfBlockEntry). Sh1E is linked to a particular

BE by an offset Sh1of f set in the metadata superstructure.

∀@,T ypeOf (m.@) = BE =⇒ T ypeOf (m.(@ + Sh1of f set)) = Sh1E

Definition 9.1.6 (wellFormedShadowCutIfBlockEntry). SCE is linked to a particular
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BE by an offset SCOf f set in the metadata superstructure.

∀@,T ypeOf (m.@) = BE =⇒ T ypeOf (m.(@ + SCOf f set)) = SCE

Definition 9.1.7 (PDTIfPDFlag). When the PDflag of a Shadow 1 entry is set, it means

the linked block in the Blocks structure hosts a PD structure.

∀@,T ypeOf (m.@) = SHE ∧m.@.P Df lag = true =⇒

T ypeOf (m.(@− Sh1Of f set)) = BE ∧ (m.(@− Sh1Of f set)).accessible = true

∧ (m.(@− Sh1of f set)).present = true

∧ T ypeOf (m.(@− Sh1Of f set).startaddress) = PD

Definition 9.1.8 (AccessibleNoPDFlag). An accessible block cannot host a metadata

structure.

∀@,T ypeOf (m.@) = BE ∧m.@.accessible = true

=⇒ T ypeOf (m.(@ + SCof f set)) = SCE ∧m.(@ + SCof f set).P Df lag = f alse

Definition 9.1.9 (FirstFreeSlotPointerIsBEAndFreeSlot). The reference to the first free

slot has the type BE and is free.

∀@,T ypeOf (m.@) = PD ∧m.@.f irstf reeslot ̸NULL

=⇒ T ypeOf (m.@.f irstf reeslot) = BE ∧DEFAULT (m.@.f irstf reeslot)

Definition 9.1.10 (BlocksRangeFromKernelStartIsBE). Each block entry has the type

BE. The kernelStructureEntriesNb parameter bounds the index to an arbitrary value.

∀@,∀index,

T ypeOf (m.@) = BE ∧m.@.blockindex = 0∧ index < kernelStructureEntriesNb

=⇒ T ypeOf (m.(@ + index)) = BE

Definition 9.1.11 (KernelStructureStartFromBlockEntryAddrIsKS). The start of a super-
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structure has the type BE.

∀@,T ypeOf (m.@) = BE =⇒ T ypeOf (m.(@−m.@.blockindex)) = BE

Definition 9.1.12 (sh1InChildLocationIsBE). The reference to a block’s location in the

child partition has the type BE.

∀@,T ypeOf (m.@) = SH1E =⇒ T ypeOf (m.@.inChildLocation) = BE

Definition 9.1.13 (StructurePointerIsKS). The reference to the first superstructure is

the start of a superstructure.

∀@,T ypeOf (m.@) = PD =⇒ (m.@.structure).blockindex = 0

Definition 9.1.14 (NextKSOffsetIsPADDR). The value of the reference to the next linked

superstructure has the type PADDR.

∀@,

T ypeOf (m.@) = BE ∧ (m.@).blockindex = 0

∧ T ypeOf (m.(@ +NextOf f set)) = PADDR

Definition 9.1.15 (NextKSIsKS). The reference to the next element of the linked list of

superstructures is the start of another superstructure.

∀@,

T ypeOf (m.@) = BE ∧ (m.@).blockindex = 0∧m.(@ +NextOf f set)) ,NULL

=⇒ T ypeOf (m.(@ +NextOf f set)) = BE ∧m.(@ +NextOf f set).blockindex = 0

Inner structural set properties

• NoDupInFreeSlotsList s

• freeSlotsListIsFreeSlot s

• DisjointFreeSlotsLists s

• inclFreeSlotsBlockEntries s
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• DisjointKSEntries s

• noDupKSEntriesList s

• noDupMappedBlocksList s

• noDupUsedPaddrList s

• MPUInAccessibleBlocks s

These properties manipulate abstract structures, which could be implemented with

lists or arrays. We speak about the free slots list of a partition part by the access

FreeSlotsList[part]. We refer to the list of slots of a partition part with Slots[part].

The list of slots Slots contains the free slots list FreeSlotsList and the memory blocks

MappedBlocks. We use the operator NoDuplicate[list] stating all elements of list are

unique.

Definition 9.1.16 (NoDupInFreeSlotsList). Each element of a free slots list is unique.

∀partition ∈ P artT ree =⇒ NoDuplicate[FreeSlotsList[partition]]

Definition 9.1.17 (freeSlotsListIsFreeSlot). Each element of a free slots list are free.

∀partition ∈ P artT ree,∀@ ∈ FreeSlotsList[partition] =⇒ DEFAULT (m.@)

Definition 9.1.18 (DisjointFreeSlotsLists). Given all partitions of a partition tree, all

free slots lists are disjoint.

∀partition1partition2 ∈ P artT ree,

∀@a ∈ FreeSlotsList[partition1],

∀@b ∈ FreeSlotsList[partition2]

=⇒ @a ,@b

Definition 9.1.19 (inclFreeSlotsBlockEntries). The free slots list is included in the Blocks

structure.

∀partition ∈ P artT ree,∀a ∈ FreeSlotsList[partition]

=⇒ @a ∈ Blocks[partition]
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Definition 9.1.20 (DisjointKSEntries). Given all partitions in a partition tree, all slots

are unique.

∀partition1partition2 ∈ P artT ree,

∀@a ∈ Blocks[partition1],∀@b ∈ Blocks[partition2] =⇒ @a ,@b

Definition 9.1.21 (noDupKSEntriesList). In a given partition, each slot is unique.

∀partition ∈ P artT ree =⇒ NoDuplicate[Blocks[partition]]

Definition 9.1.22 (noDupMappedBlocksList). In a given partition, each mapped block

is unique.

∀partition ∈ P artT ree =⇒ NoDuplicate[MappedBlocks[partition]]

Definition 9.1.23 (noDupUsedPaddrList). In a given partition, no block overlaps another

(the set of addresses they contain are disjoint).

∀partition ∈ P artT ree =⇒ NoDuplicate[AllP addr[Blocks[partition]]]

Definition 9.1.24 (MPUInAccessibleBlocks). In a given partition, all blocks configured

in the MPU are accessible blocks belonging to that partition.

∀partition ∈ P artT ree,∀block ∈ partition.MPU

=⇒ block ∈ AccessibleMappedBlocks[partition]

Inter-partition properties

• currentPartitionInPartitionsList s

• noDupPartitionTree s

• isParent s

• isChild s

• accessibleChildPaddrIsAccessibleIntoParent s

• sharedBlockPointsToChild s
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These properties rule the relationship between partitions. AllP addr[blocks] refer to

all addresses contained in the blocks.

Definition 9.1.25 (currentPartitionInPartitionsList). The current partition belongs to

the partition tree.

currentP artition ∈ P artT ree

Definition 9.1.26 (noDupPartitionTree). All partitions belonging to the partition tree

are unique.

NoDuplicate[P artT ree]

Definition 9.1.27 (isParent). All children of a parent partition points to their parent.

∀parentchild ∈ P artT ree∧ child ∈ children[parent] =⇒ child.parent = parent

Definition 9.1.28 (isChild). All partitions pointing to the same parent are children of

this parent.

∀parentchild ∈ P artT ree∧ child.parent = parent =⇒ child ∈ children[parent]

Definition 9.1.29 (accessibleChildPaddrIsAccessibleIntoParent). All accessible addresses

in a partition (union of all addresses contained in the accessible mapped blocks) are

mapped and accessible in their parent.

∀parentchild ∈ P artT ree,

∀accessibleP addr ∈ AllP addr[AccessibleMappedBlocks[child]]

=⇒ accessibleP addr ∈ AllP addr[AccessibleMappedBlocks[parent]]

Definition 9.1.30 (sharedBlockPointsToChild). Each block in a child partition has a

corresponding block in the parent partition that contains the same addresses; block
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which points to the child (in the Shadow 1 structure).

∀parentchild ∈ P artT ree,

∀block ∈MappedBlocks[child]],

∀@ ∈ block,

∃block′ ∈MappedBlocks[child]],

@ ∈ block′∧

((m.(block + Sh1Of f set)).P Df lag = true∨ (m.(block + Sh1Of f set)).P Dchild = child)

9.1.3 Definition of the isolation invariant

Definition 9.1.31 (Isolation invariant). Pip-MPU’s isolation invariant is a conjunct of

the security properties S and the consistency properties C.

S
∧

C

To be noted, the isolation invariant is an umbrella term that hides that all properties

do not participate to the isolation property, strictly speaking.

9.2 Proof methodology

Pip-MPU inherits Pip’s proof methodology. In Pip, and so by extension Pip-MPU, the

execution of kernel code is privileged. Proving the Kernel Isolation invariant implies the

partitioning model can only be updated by privileged code, so by the kernel. Therefore,

the system state is not modified during execution of userland partitions (recall that only

kernel elements are modeled in the system state) and properties satisfied at the end

of the execution of a service are the same when calling the next service later on. Thus,

if the invariants are satisfied at the start of the execution of a service, we must prove

they are still satisfied at the end of the execution. The invariants are only required to be

true at start and end, but might have temporary states within the execution of a service

where the invariants is not satisfied, for example during a metadata structure update.

And we already know the invariants are satisfied for the first service to be called because

Pip-MPU prepared the root partition to satisfy them. In a nutshell, we only need to

prove the invariants at the end of a service execution starting from a system state that

already satisfies them.
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Transposing the previous paragraphs in Hoare logic means the following Hoare

triple:

{V S&HI&KI&C}

Pip-MPU service (parameters)

{V S&HI&KI&C}

The Hoare triple concerns each service. A proof of a service can be realised inde-

pendently from the proof of another service because the services cannot be preempted

(exceptions are disabled, see Section 6.2.5). Thus, services are called one at a time, and

Hoare triples are chained one after the other.

As there is no order in the service calls, the system state is unknown at the start of

each service execution. In order to reason about the current system state, services all

have a first phase of memory checks to uncover it and be assured the conditions are

met to run the service and be able to prove the invariants at the end of the execution.

Only then can the system state be updated in the hardware model.

9.3 Sketch of proof

From a functional point of view, Pip-MPU’s services are distributed in two categories:

pure informational services and modification services. We give the sketch of proof for

the Pip-MPU services findBlock from the first category and addMemoryBlock from the

second category. Because the proof target is Pip’s security properties, we only demon-

strate them by assuming the consistency properties hold. Obviously, the consistency

properties must be proved in the full proof.

9.3.1 Proof of pure informational services: example with findBlock

This service looks for a block in the memory space of a partition and returns all its

attributes. It takes as parameters a partition descriptor and any address contained in the

searched block. findBlock has a first phase of checks to verify the user parameters are

in their expected range and correspond to meaningful values: 1) the partition descriptor

where to search for the block exists and is either the current partition or one of its

children, and 2) the searched address is contained in one of the mapped blocks. Then,

it reads information in memory and returns them to the user: it returns the block’s

attributes. The service’s pseudo-code is given in Algorithm 1.
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Algorithm 1 Pseudo-code of FindBlock (idPD: paddr) (addressInBlock : paddr)
1: paramOK ← CheckParameters(idPD, addressInBlock)
2: if paramOK IS FALSE then
3: return NULL { parameters not OK, stop }
4: else
5: blockAddr← findBlockInMemorySpace(IdPD, addressInBlock) { find the block }
6: if blockAddr IS NULL { check the block exists } then
7: return false { no block found, stop }
8: else
9: return block { Return the block }

10: end if
11: end if

Proof goal: the isolation invariant.

{V S&HI&KI&C}

findBlock part addressInBlock

{V S&HI&KI&C}

Assumptions: the consistency properties C hold.

P roof .

The service does not modify the system state; thus the system state is the same as

before the execution of the service. We know the invariants were satisfied at start, so

they are still satisfied at the end of the service.

Qed.

We can observe that the sketch of proof is simple because of the unmodified system

state.

9.3.2 Proof of modification services: example with addMemoryBlock

The addMemoryBlock service is interesting because it deals with a parent-child rela-

tionship, manipulates almost all memory types (except PADDR) and modifies a single

partition, the child. addMemoryBlock also has a check phase of the user parameters

before modifying the state. The order of modification instructions has no importance

because we prove the security properties in the last step, when all modifications have

passed. s0 refers to the initial state at service start while s′ refers to a final state, whatever

the path of execution. We write list + +[element] to represent a list list extended by

the element element. addMemoryBlock’s pseudo-code is given in Algorithm 2 while
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Figures 9.1 and 9.2 illustrate the local view on a parent partition’s user space and one

of its children respectively before and after the block sharing operation.

Algorithm 2 Pseudo-code of addMemoryBlock (idPDchild idBlockToShare: paddr) (r w e
: bool)

1: paramOK ← CheckParameters(idPDchild, idBlockToShare, r, w, e)
2: if paramOK IS FALSE then
3: return NULL { parameters not OK, stop }
4: else
5: if [idPDchild.nbFreeSlots <= 0

or idPDChild.f irstFreeSlotP ointer IS NULL
or blockT oShareInCurrP art.accessible IS FALSE
or blockT oShareInCurrP art.present IS FALSE] then

6: return NULL { no free slots left in child or first free slot pointer in child is null
or block not accessible or block not present, stop }

7: else
8: shared← CheckBlockAlreadySharedWithChild(idBlockToShare, idPDchild)

9: if shared IS T RUE then
10: return NULL { block shared, stop }
11: else
12: blockT oShareChildEntry← insertNewEntry(IdPDChild, idBlockToShare) {

copy block in child }
13: SetBlockSharedWithChild(idBlockToShare, idPDchild) { register the shared

block in the parent}
14: return blockT oShareChildEntry { return the shared block slot in child }
15: end if
16: end if
17: end if

Proof goal: the isolation invariant.

{V S&HI&KI&C}

addMemoryBlock child blockToShare

{V S&HI&KI&C}

Assumptions: the consistency properties C hold.

P roof .

The proof has two sorts of exits: either the service is fed with incorrect user parame-

ters (values not in expected range, block not existing or not accessible and present...)
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Figure 9.1: Local view on parent partition P0 and one of its children P1 before the call
to the addMemoryBlock service. P1 does not have any blocks mapped in its memory
space. P0 has many available blocks (black blocks hold the metadata structures of the
child and are not available anymore).

Figure 9.2: Local view on parent partition P0 and one of its children P1 after the call to
the addMemoryBlock service. P1 got one block out of P0’s available memory blocks.

and stops before modifying the state; or it passes through the whole modification phase.

This shows the importance of not modifying the state before being sure the execution

will go through the whole code to prevent exits that leave the state inconsistent with

invariants that will fail.

Exit 1: incorrect user parameters Incorrect user parameters precipitate the execution

path in returning the NULL address before any updates have been done. Because of no

state modifications, the same sketch of proof as for pure informational services can be

applied. Qed.

Exit 2: Correct user parameters With correct user parameters, the service executes to

the last line. To be noted, the Vertical Sharing and the Horizontal Isolation properties

consider combinations of several partitions with parent-child relationships that could be

the parent-child relationship in addMemoryBlock. The NoDupP artitionT ree invariant

guards against impossible cases implying cycles like the parent is also its own child.

Furthermore, to assign the roles in the relationships, the isChild and isP arent invariants

support the proof.
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Vertical Sharing The service does not modify the parent’s mapped blocks, so

mappedBlocks[parent]s′ = mappedBlocks[parent]s0. On the contrary, the child’s mapped

blocks do change: mappedBlocks[child]s′ = mappedBlocks[child]s0 + +blockT oShare.

We need to show that:

∀blockAddr ∈ AllP addr[mappedBlocks[child]]s′ ,

block ∈ AllP addr[mappedBlocks[parent]]s0. So given an address addr, there are two

cases:

1) addr ∈ AllP addr[mappedBlocks[child]]s0 or

2) addr ∈ AllP addr[blockT oShare].

Case 1: addr ∈ AllP addr[mappedBlocks[child]]s0.

We know that the Vertical Sharing property is true at s0. Qed.

Case 2: addr ∈ AllP addr[blockT oShare].

We know blockT oShare ∈ mappedBlocks[parent]s0 because we retrieve the block from

that list. This means the addr already was in one of the parent’s blocks when the

property was true at s0. Qed.

Horizontal Isolation For this property, the focus is set on two children of a certain

parent partition. The children’s memory spaces must not intersect (neither their mapped

blocks nor their kernel structures). Two cases must be covered for this property: 1)

one of the children is the child modified by the service addMemoryBlock (whether it is

the first or the second child does not matter as the property is symmetric) and 2) the

children are not child.

Case 1: The check phase states that the block is not shared at s0, which means

we know that blockT oShare <mappedBlocks[child1]s0∧
blockT oShare <mappedBlocks[child2]s0. The service just modifies one of the children

as explained in Vertical Sharing, leaving the other one untouched. We take here

the example of child1. We get mappedBlocks[child1]s′ = mappedBlocks[child1]s0 + +

blockT oShare∧mappedBlocks[child2]s′ = mappedBlocks[child2]s0. For child1, there are

then two options: either a block in the initial set of memory blocks mappedBlocks[child1]s0
or it is blockT oShare. Assuming the property is true at initial state s0 implies that the

first option is trivial. Thus, remains the second option. Memory spaces are disjoint

only if blockT oShare <mappedBlocks[child2]s′ , which is equivalent to blockT oShare <

mappedBlocks[child2]s0 which follows from the check phase as stated above. Qed.

Case 2: for any partition not being the one modified in the service, their mapped

blocks remain untouched in the modified state. Hence, mappedBlocks[child1]s′ =

mappedBlocks[child1]s0∧ mappedBlocks[child2]s′ = mappedBlocks[child2]s0.
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The property is then equivalent to the property which was satisfied at s0. Qed.

Kernel Data Isolation The current partition is not modified, which means the focus

is set on the child partition child. Because the service calls only consider parent-child

relationships, three cases must be covered here: 1) partition1 and partition2 are the

same partition, 2) partition1 is partition2’s parent, and 3) partition2 is partition1’s par-

ent. All cases are split in two possibilities: a) partition1 is the child in addMemoryBlock

b) partition2 is the child in addMemoryBlock. All in all, six cases must be considered.

However, the configuration blocks are not modified for any partition, not even the child

in addMemoryBlock, so we need to prove:

∀partition1,partition2 ∈ P artT ree,

∀blockAddr ∈ AllP addr[AccessibleMappedBlocks[partition1]]s′ ,

blockAddr < AllP addr[Conf igBlocks[partition2]]s0.

This means the proof path is only crucial for changes in partition1, so possibility a).

Indeed, in any other combination with possibility b), partition1 is different from the

child in addMemoryBlock so its memory blocks are unchanged and so it leads to the

initial state s0 (AllP addr[AccessibleMappedBlocks[partition1]]s′] =

AllP addr[AccessibleMappedBlocks[partition1]]s0]) when the property is assumed true.

Qed.

Case 1 a): partition1 and partition2 are the same partition, so the child in ad-

dMemoryBlock. An accessible memory block from the child is either one of the initial

blocks or the newly copied block from the parent. Because the property is satisfied at

the initial state, if it is one of the initial blocks, the proof is trivial. If the block is the

newly added one, we know it is also part of the parent’s memory space, especially at

the initial state s0. Because there are no restrictions on relationships between partition1

and partition2 in the expression of the security property, the property is true at the

initial state, especially for partition1 being the parent partition and partition2 being

the child. The parent partition’s accessible blocks did not change after service execution,

so still the same set as at the initial state where the copied block belonged to this set.

The property was satisfied at the initial state. Qed.

Case 2 a): with the child in addMemoryBlock being partition1, we know

AccessibleMappedBlocks[child]s′ = AccessibleMappedBlocks[child1]s0++ blockT oShare

because the new added block blockT oShare becomes accessible. Hence, two sub-cases:

either we consider an address addr in the initial accessible blocks or in blockT oShare.
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Furthermore, the service does not affect any partition except the current partition and

the child in addMemoryBlock, so especially does not modify the eventual descendants

of this child. Thus, the memory spaces of the children, notably for partition2, are

unchanged compared to the initial state s0, and especially their configuration blocks:

Conf igBlocks[partition2]s′ = Conf igBlocks[partition2]s0
The first sub-case is then trivially verified because the security property is assumed

true at s0 for the same combination of partition1 and partition2. Qed.

For the second sub-case, we need to consider another combination for the security

property at s0, taking the parent (current) partition of addMemoryBlock and partition2,

i.e.:

addr ∈ AllP addr[AccessibleMappedBlocks[current]]s0,

addr < AllP addr[Conf igBlocks[partition2]]s0.

Indeed, blockT oShare ∈ AccessibleMappedBlocks[current]]s0 because of the Vertical

Sharing property and the fact that it is this block that is copied into the child partition1

during addMemoryBlock so it must be accessible as verified in the check phase of the

service.

This means addr also lies in one of the initial accessible blocks of the current partition

when the property is assumed true. Qed.

Case 3 a): partition2 is the parent (current) partition of the child in addMemory-

Block. Similarly as discussed previously, the configuration blocks of the child and the

accessible mapped blocks of the parent are untouched after executing the service, so

Conf igBlocks[partition2]s′ = Conf igBlocks[partition2]s0∧
AllP addr[AccessibleMappedBlocks[current]]s′ =

AllP addr[AccessibleMappedBlocks[current]]s0. This is equivalent to proving the prop-

erty at s0, which is assumed to be true. Qed.

9.4 Model and implementation in Coq

In this section, we introduce the abstract model on which the proofs are conducted.

Nevertheless, the abstract level is still a concrete model because it is located at the same

implementation level as the services that are literally translated in the C language.

In this section, and the rest of the document, Gallina is used for examples involving

the model while C is used for examples concerning the C implementation. We use the

bottom-up approach to present the model with corresponding implementation in a
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Figure 9.3: On the left, the real hardware composed of many elements. On the right,
the abstract hardware model used in the proofs composed of the memory model and
the MPU model.

second phase.

9.4.1 Basic abstract types

Our model defines several basic types.

paddr represents a physical address in the memory. It is bounded by the constant

maxAddr.

Record paddr := {

p :> nat;

Hp : p <= maxAddr }.

index represents a natural number. It is bounded by the constant maxIdx.

Record index := {

i :> nat ;

Hi : i <= maxIdx }.

9.4.2 Hardware Abstraction Layer (HAL)

Formal model of the hardware

As far as we are concerned, Pip’s security properties must be verified on a hardware

platform composed of a CPU, MPU, memory, peripherals, and any other hardware

components. However, the properties only depend on the kernel’s effects, i.e. how

Pip-MPU interacts with the hardware platform. This means the abstracted view does

not need to include all the hardware platform’s components because Pip-MPU just

manipulates kernel structures and the MPU. Thus, the abstracted hardware model

is just composed of a memory model and an MPU model as shown in Figure 9.3. In

particular, it does not include registers nor the current privilege mode [29] because we

only consider Pip-MPU services that always execute in privileged mode.
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Formal model of the memory The memory is modeled as an association list (list of key-

value pairs). It associates a physical address with a value, just like Pip (MMU)’s hardware

model. The value is either a kernel structure element (see below their definitions) or

another physical address (representing a pointer). Indeed, the memory model is only

filled with kernel elements because the services execute in privileged mode, reserved for

the kernel, and as such never include userland operations. Furthermore, Pip’s security

properties only concern kernel structures and never the contents of the memory blocks

of the userland partitions. Modeling these contents would then be useless to prove the

properties.

Formal model of the Memory Protection Unit The MPU configuration is modeled as

a list of block identifiers (the active memory blocks of the current partition).

MPU : list paddr ;

HMPU : length(MPU) <= MPURegionsNb

This is a very simplified view of an MPU. It does not reflect the hardware constraints

on the MPU region (size and alignments). The rationale is that Pip-MPU should be

portable on different MPU versions and architectures that might have different con-

straints. The constraints are taken into account in the C implementation of the HAL.

The adapted behavior for the considered MPU is customised manually. The partial

reconfiguration feature on ARMv7-M MPUs introduced in Section 6.4.4 is an example.

Formal model of the system state

The system state captures the evolution of the system at a certain instant. Our system

state is the same as Pip’s. It considers a system state composed of the memory state and

the current partition state. The current partition state is the identifier of a partition.

This is the partition that calls the service, i.e. the parent partition for services operating

on a child. The memory model has been introduced above. The state is updated each

time a write operation modifies the memory model or the current partition identifier.

Record state : Type := {

currentPartition : paddr;

memory : list (paddr * value)

}.

Note that the MPU model is not present in the system state. Indeed, the MPU configura-

tion depends on the partition and is stored in the PD kernel structure. As such, the MPU

model is stored in the memory model and the current partition identifier is enough to

find the PD structure and retrieve the MPU state.
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Low-level primitives and the monad

Low-level primitives read and write from memory. Pip uses a monad to withhold the

side effects of the code in a simpler form. The low-level primitives make use of the

monad to interact with the hardware model.

The monad Pip-MPU is programmed in Gallina, a functional language, which is

not easily readable for developers more acquainted with the imperative style like C.

Purely functional languages do not capture the side effects of functions in global or

local variables like imperative languages do. To bring out the side effects, Pip uses a

monadic programming style which represents computations in an abstract data type,

the monad. The monad style is better suited for formal verification using the Hoare

logic 8.2.1. The monad encapsulates a state and provides functions to access it. Hence,

the monad transforms the functional code into a more C-like structure which eases the

word-by-word translation of the code from Gallina to C in the Pip workflow. Our model

integrates the same monad as in Pip (MMU). Pip’s monad is composed of the monad

type constructor LLI and the functions put, get, ret and bind.

The LLI constructor wraps the system state in a result type (the monadic type). The

result associates any other type with the state.

Definition LLI (A :Type) : Type := state -> result (A * state).

Inductive result (A : Type) : Type :=

| val : A -> result A

| undef : nat -> state -> result A.

The put, get, ret constructors manipulate the state and return a new monad. put

modifies the state monad. get retrieves the state monad. ret gives the value of a

computation, so returns a state monad from an object of any type. bind composes a

monadic function with other monadic functions, which gives the sequential/imperative

style to the code by chaining functions one after the other.

Definition put (s : state) : LLI unit :=

fun _ => val (tt, s).

Definition get : LLI state :=

fun s => val (s, s).

Definition ret {A : Type} (a : A) : LLI A :=
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fun s => val (a , s) .

Definition bind {A B : Type} (m : LLI A)(f : A -> LLI B) : LLI B :=

fun s => match m s with

| val (a, s') => f a s'

| undef a s' => undef a s'

end.

The A and B types roughly correspond to variables and arguments of functions in the

imperative style. We also use the same Pip notation perf orm x := m in e which indicates

the use of bind between m and e, that means the sequential instructions of m and e with

e depending on the value x returned by m. Likewise, we use the notation m1; ;m2 to

translate a bind between m1 and m2 that does not depend on the returned value of m1.

modif y applies a function to the state monad. It simulates the interaction with the

real hardware.

Definition modify (f : state ! state) : LLI unit :=

perform s := get in put (f s).

Low-level primitives The low-level primitives heavily interact with the state monad

to develop the system state. They define all reads and writes to the memory model

(which includes the MPU model, as stated above).

For example, the function readPDT able in Listing 1 retrieves the structure PD at

address addr in the memory model. It first retrieves the state, looks into the memory to

find the physical address addr and either returns a monad from the structure of type

PDT at that memory address if the correct type matches, and if not is an undefined

behavior with an error code.

Listing 1 Definition of readPDTable in Coq.

Definition readPDTable (addr : paddr) : LLI PDTable :=

perform s := get in (*retrieve state*)

let entry := lookup addr s.(memory) beqAddr in (*find entry at address

addr*)↪→

match entry with

| Some (PDT a) => ret a (*entry matches the PDT type -> OK, return

structure*)↪→

| Some _ => undefined 5 (*no match -> NOK, undefined behavior*)

| None => undefined 4 (*no match -> NOK, undefined behavior*)

end.
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9.4.3 Formal model of the kernel structures

As proofs are at implementation level, the model uses the same kernel structures

presented earlier in chapter 7. Recall that kernel structures may be of two types: PD

and superstructure. They are formalised in Gallina as records.

PD structure PDT able is the type of a PD structure. It holds all previously discussed

fields. The field vidtBlock is used by the yield service relating to context switch and

exceptions and thus not discussed further in this dissertation. Note the presence of the

MPU model presented above. It is stored in the PD kernel structure as a list of block

identifiers (the active memory blocks).

Record PDTable :=

{

structure : paddr ;

firstfreeslot : paddr ;

nbfreeslots : index ;

nbprepare : index ;

parent : paddr ;

MPU : list paddr ;

vidtBlock : paddr ;

nbprepare < maxNbPrepare

}

Note the constraints on the nbprepare which limits the number of prepare of a partition

to some user-defined value.

Superstructure Superstructures are not modeled as a single type. Instead, we model

each of the superstructure entry independently, which means each of the internal

entries of the structure virtual MPU, Shadow 1 and Shadow Cut. Again, the entry fields

correspond to their respective description in the first part.

(* **virtual** MPU entry type *)

Record BlockEntry : Type:=

{

read : bool; (*read right*)

write : bool ; (*write right*)

exec : bool; (*execution right*)

present : bool; (*present flag*)

accessible : bool; (*accessible flag*)



144 CHAPTER 9. Intuition and formalisation

blockindex : index; (* index of the entry in the structure*)

blockrange : block ; (*block start and end addresses*)

Hidx : blockindex < kernelStructureEntriesNb

}.

(* block represents a contiguous region of memory addresses *)

Record block := {

startAddr : paddr; (*block start address*)

endAddr : paddr ; (*block end address*)

Haddr : startAddr < endAddr ;

}.

(* Shadow 1 entry type *)

Record Sh1Entry : Type:=

{

PDchild : paddr; (*child identifier*)

PDflag : bool; (*flag indicating the related block's content holds a PD

structure*)↪→

inChildLocation : paddr (*block initial copy address in the child*)

}.

(* Shadow Cut structure entry type *)

Record SCEntry : Type:=

{

origin : paddr; (*address of the initial block before any cut*)

next : paddr (*pointer to the next subblock*)

}.

Note the constraints on the blockindex field which should not exceed a certain user-

defined value and the constraints on the block’s start address which must be lower than

the same block’s end address.

Furthermore, we introduce now the value constructor. The type value is used in the

memory model as the value in the key-value pairs. In other words, each memory address

can only be tagged with the following types:

Inductive value : Type:=

|BE : BlockEntry -> value

|SHE : Sh1Entry -> value

|SCE : SCEntry -> value
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|PDT : PDTable -> value

|PADDR : paddr -> value.

We clearly observe the memory model is only composed of kernel structure elements

or physical addresses as stated in 9.4.2. The consistency of the superstructure is ensured

by consistency properties that are presented in the next chapter.

9.4.4 Formal model of user defined values

The user has the possibility to define some fixed values that are used at compile-time.

These values correspond to the number of entries (indexes) in a kernel structure and

to the maximum number of prepare which practically bounds the number of memory

blocks in a memory space by the formula disclosed in Section 7.4.4.

Definition kernelStructureEntriesBits := 3.

Definition nbPrepareMaxBits := 3.

Definition kernelStructureEntriesNb := kernelStructureEntriesBits ^ 2.

Definition maxNbPrepare := nbPrepareMaxBits ^ 2.

These are arbitrary numbers. Their content does not influence the proofs; however the

presence of the bounds implies to demonstrate these properties when constructing or

modifying the type.

9.4.5 Formal expression of the security properties

We define the security properties with the Coq formalism below. The formal expression

of Pip’s security properties in Pip-MPU mirrors their expression in Pip (MMU) (see later

Section 11.1.3 for comparison).

(** THE VERTICAL SHARING PROPERTY:

All used physical addresses of a random child

stem from the parent partition *)

Definition verticalSharing s : Prop :=

forall parent child : paddr,

In parent (getPartitions multiplexer s) ->

In child (getChildren parent s) ->

incl (getUsedPaddr child s) (getMappedPaddr parent s).

(** THE ISOLATION PROPERTY BETWEEN PARTITIONS,

Two different children of the same parent
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have no used physical addresses in common.*)

Definition partitionsIsolation s : Prop :=

forall parent child1 child2 : paddr ,

In parent (getPartitions multiplexer s) ->

In child1 (getChildren parent s) ->

In child2 (getChildren parent s) ->

child1 <> child2 ->

disjoint (getUsedPaddr child1 s) (getUsedPaddr child2 s).

(** THE ISOLATION PROPERTY BETWEEN THE KERNEL DATA AND PARTITIONS

No metadata structure (physical addresses within them)

is accessible from another partition. *)

Definition kernelDataIsolation s : Prop :=

forall partition1 partition2 : paddr,

In partition1 (getPartitions multiplexer s) ->

In partition2 (getPartitions multiplexer s) ->

disjoint (getAccessibleMappedPaddr partition1 s) (getConfigPaddr

partition2 s).↪→

The used addresses of a partition is the concatenation of all addresses contained

in its mapped blocks (i.e. the MappedP addr) and in its kernel structures (i.e. the

Conf igP addr of the ConfigBlocks):

1 Definition getUsedPaddr (partition : paddr) s : list paddr :=

2 let ksList := getConfigPaddr partition s in

3 let mappedblockList := getMappedPaddr partition s in

4 ksList ++ mappedblockList.

9.5 Properties propagation and proof levels

All the services use the low-level primitives, modeled as previously described, which

interact with the memory model to read or write values in it. Because they are the basic

blocks of the services, they create the context on which more abstract properties are

proven, such as the security properties. We discuss in this section how and why some

properties are constructed and propagated.
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There are two levels of proofs for each low-level primitive. The first level extracts

raw information from the memory model and propagates properties. The second level

also propagates these properties but also constructs more elaborated properties that will

be used by more abstract levels.

Propagated and elaborated properties out of low-level primitives differ again for

read-only primitives and for modification primitives.

9.5.1 Read-only primitive: propagate all properties

Read-only primitives give back information located at some address in the memory

model. Because they do not modify the state, they propagate all the properties of the

current state.

We take the example of readBlockEntryFromBlockEntryAddr which reads the

memory at some address paddr and returns the block entry at that address.

Definition readBlockEntryFromBlockEntryAddr (paddr : paddr) : LLI

BlockEntry :=↪→

perform s := get in

let entry := lookup paddr s.(memory) beqAddr in

match entry with

| Some (BE a) => ret a

| Some _ => undefined 12

| None => undefined 11

end.

The first-level proof of readBlockEntryFromBlockEntryAddr states the minimum

condition of success to get a valid result from the memory model (the weakest pre-
condition, see Section 8.2.1). We observe in the primitive three possible exits: one ret

and two undefined. The two exits respectively, represent the success and the failure

paths of the primitive.

The difference between the exits lies in the precondition: either the memory holds

the expected entry (ret) or the proof context is false (undefined). In a valid case, the

path ending with a ret, properties satisfied before the operation are propagated after.

In the false case, so a path ending in an undefined behavior, any properties are satisfied

because anything can be proven from a false hypothesis. Then, the first-level proof must

assume the value is in memory to end in the valid case, as illustrated in Listing 4, or must

find a contradiction during the proof which corresponds to ending in the undefined

path.

Note that the post-condition do not take into account the undefined path. Indeed,
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Listing 2 Proof of ret

Lemma ret (A : Type) (a : A) (P : A -> state -> Prop) :

{{ P a }}

ret a

{{ P }}.

Proof.

intros s H; trivial.

Qed.

Listing 3 Proof of undefined

Lemma undefined (A : Type)(a : nat) (P : A -> state -> Prop) :

{{ fun s => False }}

undefined a

{{ P }}.

Proof.

intros s H; trivial.

Qed.

Listing 4 First-level lemma of readBlockEntryFromBlockEntryAddr (proof hidden for
clarity)

Lemma readBlockEntryFromBlockEntryAddr (addr : paddr) (P : BlockEntry ->

state -> Prop) :↪→

{{fun s => exists addrentry : BlockEntry, lookup addr s.(memory) beqAddr

= Some (BE addrentry)↪→

/\ P addrentry s }}

MAL.readBlockEntryFromBlockEntryAddr addr

{{P}}.
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the Hoare triple holds only if the primitive terminates, which is not the case with

undefined behaviours. Such a path would reveal a contradiction in the proof context.

Thus, every lemma we will encounter proves the absence of undefined behaviours.

The second-level proof uses more abstract properties which connect to the previous

preconditions, as illustrated in Listing 5. The expected type of the value in memory is

captured in the isBE property and the post-condition states that all properties in the

precondition are propagated, that the type of the value at that address has not changed

with isBE and propagates its value through the property entryBE.

Definition isBE paddr s: Prop :=

match lookup paddr s.(memory) beqAddr with

|Some (BE _) => True

|_ => False

end.

Definition entryBE entryaddr be s:=

match lookup entryaddr s.(memory) beqAddr with

| Some (BE entry) => be = entry

| _ => False

end.

Modification primitive: partial propagation and new properties

Similarly, there are two levels of proofs for modification primitives. However, the

difference here is that the post-condition might not propagate the same properties as in

the precondition because the memory state has changed. We illustrate this case with

writeSh1InChildLocationFromBlockEntryAddr.

Listing 5 Second-level lemma of readBlockEntryFromBlockEntryAddr (proof hidden
for clarity)

Lemma readBlockEntryFromBlockEntryAddr (paddr : paddr) (P : state -> Prop)

:↪→

{{ fun s => P s /\ isBE paddr s }}

MAL.readBlockEntryFromBlockEntryAddr paddr

{{ fun (be : BlockEntry) (s : state) => P s /\ isBE paddr s /\ entryBE paddr

be s }}.↪→



150 CHAPTER 9. Intuition and formalisation

Primary considerations This example is more elaborated than the previous one be-

cause it writes in a Shadow1 field which is referenced via a block entry, i.e. located at the

offset sh1offset from that block entry. The write operation is then composed of a first

access to compute the offset (getSh1EntryAddrFromBlockEntryAddr) followed by the

write itself at that offset address (writeSh1InChildLocationFromBlockEntryAddr2).

Definition writeSh1InChildLocationFromBlockEntryAddr (blockentryaddr :

paddr) (newinchildlocation : paddr) : LLI unit :=↪→

perform Sh1EAddr := getSh1EntryAddrFromBlockEntryAddr

blockentryaddr in↪→

writeSh1InChildLocationFromBlockEntryAddr2 Sh1EAddr

newinchildlocation.↪→

In the previous example, we had a direct access to the entries in the memory model,

which is the case of the second operation writeSh1InChildLocationFromBlockEntry

Addr2 but not of getSh1EntryAddrFromBlockEntryAddr composed of different low-

level primitives with direct access.

Definition getSh1EntryAddrFromBlockEntryAddr (blockentryaddr : paddr) :

LLI paddr :=↪→

perform BlockEntryIndex := readBlockIndexFromBlockEntryAddr

blockentryaddr in↪→

perform kernelStartAddr := getKernelStructureStartAddr

blockentryaddr BlockEntryIndex in↪→

perform SHEAddr := getSh1EntryAddrFromKernelStructureStart

kernelStartAddr BlockEntryIndex in↪→

ret SHEAddr.

This shows each operation is eventually defined of several direct access read and

write operations. The first-level proof is conducted on them, one for each operation.

First-level proof We demonstrate here the first-level proof of writeSh1InChild

LocationFromBlockEntryAddr2 considering the elements of getSh1EntryAddrFrom

KernelStructureStart are proven in a similar manner for direct write operations

or like the previous example for read operations.

Again, we observe three exits to the primitive: one valid exit ending with the

modification of an entry in the memory model and two exits that went wrong with

undefined behaviours. The modify operation here changes the current state s by adding
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Definition writeSh1InChildLocationFromBlockEntryAddr2 (Sh1EAddr :

paddr) (newinchildlocation : paddr) : LLI unit :=↪→

perform s := get in

let entry := lookup Sh1EAddr s.(memory) beqAddr in

match entry with

| Some (SHE a) => let newEntry := {|

PDchild := a.(PDchild);

PDflag := a.(PDflag);

inChildLocation := newinchildlocation

|} in

modify (fun s => {|

currentPartition := s.(currentPartition);

memory := add Sh1EAddr (SHE newEntry) s.(memory) beqAddr

|})

| Some _ => undefined 12

| None => undefined 11

end.

a new value at address Sh1EAddr. It adds a new value in the memory model because all

modifications to the state are recorded as modification to the initial state. A direct read

access at this address would retrieve the current value at that address, so the last value

recorded.

The first-level proof is different from the previous read example from that not only

types but also contents of entries are important. Indeed, direct write operations must

assume a correct entry type to write a value in one of the entry’s fields. It should also

include properties that are satisfied after the change. Therefore, the precondition must

demonstrate the correct entry type and mention properties that satisfy the new state. If

the condition is met, then all satisfied properties are propagated after the operation, as

illustrated in Listing 6.

Second-level proof The second-level proof concatenates preconditions neces-

sary to perform getSh1EntryAddrFromKernelStructureStart and writeSh1InChild

LocationFromBlockEntryAddr2 and eventually deduces new properties.

Likewise, getSh1EntryAddrFromKernelStructureStart’s second-level proof con-

catenates all preconditions of the first-level proof of its direct access operations. The

corresponding Hoare triple detailed in Listing 7 illustrates this and shows the precondi-

tions to dispose of a BE type at some address, any properties satisfied at the current state

s and inner partition purely structural invariants that call a proof that the computed

offset is correct. Because the primitive does not modify the state, we recognise a similar
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Listing 6 First-level lemma of writeSh1InChildLocationFromBlockEntryAddr2 (proof
hidden for clarity)

Lemma writeSh1InChildLocationFromBlockEntryAddr2 (Sh1EAddr

newinchildlocation : paddr) (P : unit -> state -> Prop) :↪→

{{fun s => exists entry , lookup Sh1EAddr s.(memory) beqAddr = Some (SHE

entry) /\↪→

P tt {|

currentPartition := currentPartition s;

memory := add Sh1EAddr

(SHE {| PDchild := entry.(PDchild);

PDflag := entry.(PDflag);

inChildLocation := newinchildlocation |})

(memory s) beqAddr |} }}

MAL.writeSh1InChildLocationFromBlockEntryAddr2 Sh1EAddr

newinchildlocation {{P}}.↪→

post-condition to the previous example with a propagation of the satisfied properties,

the computed offset in property sh1entryAddr, and related Shadow 1 type SHE.

The second-level proof of writeSh1InChildLocationFromBlockEntryAddr groups

all preconditions and post-conditions as illustrated in Listing 8.

9.6 C implementation equivalents

This section links the Coq implementation with the C implementation and the real

hardware. The reader can directly compare the equivalent C types and data structures

with the model presented above 9.4.

9.6.1 Basic abstract types

In C, paddr is equivalent to the void* datatype.

/* Paddr */

typedef void* paddr;

maxAddr is then the maximum value of this datatype. Dereferencing a pointer of

type paddr with value 0 corresponds to NULL in C.

In C, index is equivalent to the uint32_t datatype. maxIdx is then the maximum

value of this datatype.
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Listing 7 Invariant of getSh1EntryAddrFromBlockEntryAddr

Lemma getSh1EntryAddrFromBlockEntryAddr (blockentryaddr : paddr) (Q :

state -> Prop) :↪→

{{fun s => exists entry, lookup blockentryaddr s.(memory) beqAddr = Some

(BE entry)↪→

/\ Q s

/\ wellFormedFstShadowIfBlockEntry s

/\ KernelStructureStartFromBlockEntryAddrIsKS s}}

MAL.getSh1EntryAddrFromBlockEntryAddr blockentryaddr

{{ fun sh1entryaddr s => Q s /\ sh1entryAddr blockentryaddr sh1entryaddr s

/\ exists sh1entry : Sh1Entry,↪→

lookup sh1entryaddr s.(memory) beqAddr = Some (SHE sh1entry)

}}.

Listing 8 Second-level lemma of writeSh1InChildLocationFromBlockEntryAddr

(proof hidden for clarity)

Lemma writeSh1InChildLocationFromBlockEntryAddr (blockentryaddr

newinchildlocation : paddr) (P : unit -> state -> Prop) :↪→

{{fun s => exists entry , lookup (CPaddr (blockentryaddr + sh1offset))

s.(memory) beqAddr = Some (SHE entry) /\↪→

P tt {|

currentPartition := currentPartition s;

memory := add (CPaddr (blockentryaddr + sh1offset))

(SHE {| PDchild := entry.(PDchild);

PDflag := entry.(PDflag);

inChildLocation := newinchildlocation |})

(memory s) beqAddr |}

/\ isBE blockentryaddr s

/\ wellFormedFstShadowIfBlockEntry s

/\ KernelStructureStartFromBlockEntryAddrIsKS s

}}

MAL.writeSh1InChildLocationFromBlockEntryAddr blockentryaddr

newinchildlocation {{P}}.↪→
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9.6.2 Hardware Abstraction Layer

Figure 8.1 shows that only the low-level primitives are passed on, since we use the real

hardware platform and do not need the hardware model anymore. Furthermore, the

monad has no sense in the C implementation. This is the reason the C equivalents of the

HAL must be written manually, to get rid of the monad.

9.6.3 System state

As the real hardware is used, the memory model is useless. Only the current partition

identifier is passed on to the C implementation. It is declared as a global variable and

updated at each context switch.

paddr current_partition; /* Current partition, default root */

9.6.4 Kernel structures

Each kernel structure in Gallina has a close C equivalent. This ensures that the services,

on which the proofs are conducted, manipulate equivalent kernel structures in the

implementation model than in the C implementation.

For example, the equivalent C implementation of the PDTable type is the structure:

/**

* \struct PDTable

* \brief PDTable structure

*/

typedef struct PDTable

{

struct KStructure *structure ; //!< Pointer to the first

kernel structure of the structure linked list↪→

void* firstfreeslot ; //!< Pointer to the first free

slot in one of the kernel structures (if any)↪→

uint32_t nbfreeslots ; //!< Number of free slots left

uint32_t nbprepare ; //!< Number of Prepare done on

this partition↪→

struct PDTable *parent ; //!< Pointer to the parent

partition↪→

BlockEntry_t *mpu[MPU_REGIONS_NB] ; //!< List of pointers to

enabled blocks↪→

uint32_t LUT[MPU_REGIONS_NB*2] ; //!< MPU registers'

configuration sequence↪→
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BlockEntry_t *vidtBlock ; //!< Pointer to the block

containing the VIDT.↪→

} PDTable_t;

Note that the field constraints have disappeared because they only have sense during

the proofs while in the C implementation we already use the proven services. Also, we

can observe the heterogeneous nature of the pointers. Indeed, their types are resolved in

the proofs with properties while in the C implementation we directly identify the target

structure. Equivalently, we could have used the void* type for all pointers and resolve

the structure type when dereferencing it. Moreover, we note the additional presence

of the array LUT. The latter seconds the MPU and represents the register pairs to be

slammed in the MPU configuration at context switch (cf. Section 7.4.3). It only has a

sense for the implementation and is thus transparent to our model.

9.6.5 Low-level primitives

The C low-level primitives modify the hardware as the primitives in the model equiva-

lently modify the hardware model.

For example, the equivalent primitive of readPDTable presented earlier in Listing 1

is illustrated in Listing 9.

Listing 9 C equivalent definition of readPDTable defined in Coq in Listing 1.

/*!

* \fn PDTable_t readPDTable(paddr pdaddr)

* \brief Gets the Partition Descriptor (PD).

* \param pdaddr The address where to find PD

* \return the PD table

*/

PDTable_t readPDTable(paddr pdaddr)

{

// Cast it into a PDTable_t structure

PDTable_t* pd = (PDTable_t*)pdaddr; // TODO: Exception ? Only

called with current partition↪→

// Return the pd table

return *pd;

}
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9.6.6 User-defined values

User-defined values are fixed at compile-time. For this, we use defines as defined in

Listing 10.

Listing 10 C defines of user-defined values.

#define KERNELSTRUCTUREENTRIESBITS 3

#define NBPREPAREMAXBITS 3

#define KERNELSTRUCTUREENTRIESNB (1<<KERNELSTRUCTUREENTRIESBITS) //!<

The number of entries in a kernel structure.↪→

#define MAXNBPREPARE (1<<NBPREPAREMAXBITS) //!< The maximum number of

times a partition can be prepared.↪→

9.7 Discussion and limitations

Our hardware model is simplistic because the proofs abstract away the real hardware.

Indeed, the formal HAL models low-level operations while it is manually rewritten in

C to be portable on similar hardware. The formal and C-implemented HAL, as well

as the services written in Coq and translated C code, show very close similarities that

demonstrate the smooth surface between the proof and the executable workflow. The

C-HAL also consists of optimisation and architecture-specific primitives like the partial

MPU reconfiguration due to ARMv7-M hardware constraints. This sets the limits of our

model and the reasoning basis for the proofs.

Furthermore, formal specification of the target hardware is not available. We had to

create a formal model of the MPU in the shape of the active blocks list. Unfortunately,

this is far from the ideal situation where the hardware already formally presents its

specifications. Recent efforts are heading to this direction with the ARMv8 architec-

ture [147] (not available for Cortex-M devices though). A correct specification of the

hardware is a strong assumption for our proofs.

Moreover, we do not model the CPU in our hardware model. The information about

the CPU mode (privileged/unprivileged) is not required because the services always run

privileged and we do not need to consider the partitions behavior and content to prove

the security properties. Registers are also not modeled because we are only interested in

the holistic view of the partitioning scheme and not such low-level details. This means

memory leaks on registers are out of scope of this work. We do not model caches as well

for the same reason and because they are usually implementation-defined, many times

absent and have parameterised countermeasures like cache flushing.
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9.8 Conclusion

In this chapter, we presented the proof framework and the formal proof model in Coq

for the upcoming formal proof of Pip’s security properties in the next chapter. The

proof goal is to prove the isolation invariant composed of the security properties and

invariants on the Pip-MPU data structures. We discussed proof levels which extract

properties and combine properties from low-level primitives. The formal model is

enough for the proof workflow. We also presented the C implementation of the data

structures and low-level primitives to show close equivalence with the formal model.

Because the services are translated directly from the Coq model via the custom tool

Digger, we have also set up the executable workflow. All in all, this chapter closes with a

complete functional Pip workflow to produce proofs and an executable inheriting the

proof properties. The proofs are conducted directly at implementation level, not using

refinement techniques like many formally verified state-of-the-art systems.
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In this chapter, we introduce the formal verification of Pip-MPU. The process consists

in proving that Pip’s security properties hold for Pip-MPU’s services. We demonstrate

the formal proofs on Pip-MPU’s findBlock and addMemoryBlock services via the Coq

Proof Assistant.

As earlier, we only present the proof of the security properties given consistency
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properties serve as a basis for the security properties which are the target verification.

The curious reader finds all proofs and internal lemmas online 1, including the proofs

of the consistency properties.

While independent, this chapter connects to all chapters of this second part. The

formal verification follows Pip’s proof workflow and the sketch of proof described in the

previous chapter. It applies the proof techniques described in the next chapter. And the

results, i.e. the proofs, are evaluated with elements discussed in Chapter 12. Finally, it is

the raw results of a learning path and fine adjustments presented in the last chapter.

Fast reading path: Technical knowledge and know-how on Coq is not mandatory

for this part because Coq’s reasoning language is verbose but recommended for easier

reading. Otherwise, the reader might want to skip the technical details and directly

engage in the sections 10.3 and 10.4 respectively, on the proof metrics and discussions.

10.1 Proof of findBlock

The full proof is accessible online 2.

The proof goal is:

Lemma findBlock (idPD : paddr) (addrInBlock : paddr) :

{{fun s => partitionsIsolation s /\ kernelDataIsolation s /\

verticalSharing s /\ consistency s }}↪→

Services.findBlock idPD addrInBlock

{{fun _ s => partitionsIsolation s /\ kernelDataIsolation s /\

verticalSharing s /\ consistency s }}.↪→

We said previously that the findBlock system call is a purely informational service,

i.e. with no state modification. Our previous intuition in Section 9.3.1 indicated that

we only had to propagate the properties of the initial state to the last instruction. The

properties true in the precondition, in particular the security properties, are logically

still true after the service’s execution if the state has not changed.

10.1.1 Proof context

With Hoare logic, properties are unveiled instruction by instruction. We take the

example of the penultimate instruction.

perform blockentry := readBlockEntryFromBlockEntryAddr blockAddr in

1https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/addMemoryBlock_proof/proof/
invariants

2https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/blob/addMemoryBlock_proof/proof/
invariants/FindBlock.v

https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/addMemoryBlock_proof/proof/invariants
https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/addMemoryBlock_proof/proof/invariants
https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/blob/addMemoryBlock_proof/proof/invariants/FindBlock.v
https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/blob/addMemoryBlock_proof/proof/invariants/FindBlock.v
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Listing 11 Proof of readBlockEntryFromBlockEntryAddr

1 eapply bindRev.

2 { (** MAL.readBlockEntryFromBlockEntryAddr *)

3 eapply weaken. apply readBlockEntryFromBlockEntryAddr.

4 intros. simpl. split. apply H1. intuition.

5 - (* blockAddr = nullAddr, this is false since we are in the

branch where the block is found *)↪→

6 contradict H11. apply beqAddrFalse in H3. congruence.

7 - (* blockAddr <> nullAddr*)

8 unfold isBE. destruct H12. rewrite H6;trivial

9 }

The goal for this instruction proof is to propagate the properties racked up until that

instruction. The proof context is then composed by all accumulated properties from

the previous instructions. The Coq proof part addressing that is transcribed next in

Listing 11.

This instruction is a low-level primitive and the properties it propagates have been

discussed in the last Chapter 5. Lines 1 to 3 of the instruction proof in Listing 11

respectively, isolate the instruction from the rest of the instructions in the service,

weaken the proof by requiring only the minimal set of properties, and finally apply the

primitive’s second-level proof.

The second-level proof requires two properties as precondition P s∧ isBEpaddr s.
This precondition is separated into two goals by the split tactic. The first element

requires the properties to propagate. The hypothesis H1 contains all the accumulated

properties from the proofs of all previous instructions. Applying H1 ends the first goal.

The second element requires a value to be read of type BE by the isBE property. The

check phase of the proofs gives this information. Notably, it looks for the block entry at

the address where the value is to be read. If the block entry is found, it adds a type BE

property and blockAddr <> nullAddr property. If not, the address is considered to be

default nullAddr. The accumulated properties then include the two possible paths as a

disjunction:

1 blockAddr = nullAddr \/ (exists entry : BlockEntry, lookup blockAddr

(memory s) beqAddr = Some (BE entry)↪→

The two paths must be considered for the proof. For the first, blockAddr = nullAddr,

obviously it cannot be true because a previous check has discarded that option. Indeed,

the hypothesis H3 contains the information that blockAddr <> nullAddr. This path is

then discriminated by contradiction.
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The second path is trivially true after some definition unfolding (unf old isBE),

hypothesis extraction (destruct H12) and rewriting (rewrite H6).

10.1.2 Proof of the security properties

P roof .

The same pattern is used for all instructions to propagate the accumulated properties

and especially the security properties. Hence, we need not to consider the security

properties individually because at the penultimate instruction they are still untouched

from the initial state.

Every service exit is a ret instruction due to halts in the check phase or when reaching

the last instruction. Indeed, recall that the Hoare triple holds, in other words we can

terminate the proof, only in a nominal condition free of undefined behaviors.

1 { (** ret *)

2 eapply weaken. apply WP.ret.

3 intros. intuition.

4 }

Again, the proof script weakens the properties and invokes the second-level proof of

ret. Because the ret lemma in Listing 2 requires any properties to end, it terminates the

proof.

Qed.

10.2 Proof of addMemoryBlock

The full proof is accessible online 3.

The proof goal is:

Lemma addMemoryBlock (idPDchild idBlockToShare: paddr) (r w e : bool) :

{{fun s => consistency s /\ partitionsIsolation s /\ kernelDataIsolation s

/\ verticalSharing s }}↪→

Services.addMemoryBlock idPDchild idBlockToShare r w e

{{fun _ s => consistency s /\ partitionsIsolation s /\

kernelDataIsolation s /\ verticalSharing s }}.↪→

The proof part concerning the security properties is accessible online 4.

3https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/blob/addMemoryBlock_proof/proof/
invariants/AddMemoryBlock.v

4https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/blob/addMemoryBlock_proof/proof/
invariants/AddMemoryBlockSecProps.v

https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/blob/addMemoryBlock_proof/proof/invariants/AddMemoryBlock.v
https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/blob/addMemoryBlock_proof/proof/invariants/AddMemoryBlock.v
https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/blob/addMemoryBlock_proof/proof/invariants/AddMemoryBlockSecProps.v
https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/blob/addMemoryBlock_proof/proof/invariants/AddMemoryBlockSecProps.v
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10.2.1 Proof context

The state has deeply changed with kernel structure updates. Hence, the accumulated

properties evolved after each state modification. However, the security properties

depend on this modified state. Security properties are thus simply not in the proof

context. In other words, even if the ultimate instruction is ret like in the findBlock

service, the ending is not trivial anymore because the proof context does not know if the

security properties still hold in the modified state.

Instead, the proof context contains all accumulated properties and state modifica-

tions from the initial state. Some properties emerge from the check phase similarly as

described for findBlock. Other properties come from write primitives which modify

the state. We study again the penultimate instruction involving the writeSh1InChild

LocationFromBlockEntryAddr primitive as an example for the other modification in-

structions of the service.

writeSh1InChildLocationFromBlockEntryAddr blockToShareInCurrPartAddr

blockToShareChildEntryAddr;;↪→

The proof script of writeSh1InChildLocationFromBlockEntryAddr in Listing 12

is split in four parts:

• 1: Line 2: isolates the instruction from the rest of the service instructions

• 2: Line 5: weakens the goal by invoking the second-level proof and invokes the

latter. This ends the current goal because the second-level proof states that any

properties can be propagated from its preconditions, which is kept abstract for the

moment. The goal changes to match the second-level proof’s preconditions. The

new goal is then to prove these preconditions with the proof context depending

on the new state s. Line 6: prepares the new proof context with state s.

• 3: Line 8: extracts information from the proof context that will be used for the

proof. Proof that the proof context holds these properties to propagate and that

they still hold in s. The state modification due to the operated instruction is propa-

gated as well, as an update of the previous stored state. All state modifications are

passed on until the last instruction.

• 4: Lines 10-20: proves all preconditions. Some properties to propagate depend on

an ancient state which are trivially true. Some preconditions depends on invariants

that must be locally proven.
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Listing 12 Sketch of proof of writeSh1InChildLocationFromBlockEntryAddr

1 ( 1: isolate the instruction )

2 eapply bindRev.

3 { (** MAL.writeSh1InChildLocationFromBlockEntryAddr **)

4 ( 2: weaken the goal )

5 eapply weaken. apply writeSh1InChildLocationFromBlockEntryAddr.

6 intros. simpl.

7 ( 3: construct global knowledge )

8 (*...*)

9 ( 4: proof of the preconditions in the new state )

10 + ( Proof of: exists entry , lookup (CPaddr (blockentryaddr +

sh1offset)) s.(memory) beqAddr = Some (SHE entry) )↪→

11 (* ... *)

12 + ( select the properties to propagate and proof parametrised

with the new state )↪→

13 instantiate (1:= fun _ s => ...).

14 (*...*)

15 + ( Proof of: isBE blockentryaddr s )

16 (* ... *)

17 + ( Proof of: wellFormedFstShadowIfBlockEntry s )

18 (* ... *)

19 + ( Proof of: KernelStructureStartFromBlockEntryAddrIsKS s )

20 (* ... *)
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The properties selected in the second part must be carefully chosen to propagate at

least all the properties needed for the next instructions. For example, writeSh1InChild

LocationFromBlockEntryAddr requires the BlockEntryAddr. The first and second-level

proofs of the primitive indicate which invariants to use to get this property; however, the

information about the block entry must be found in the proof context. Similarly as in

findBlock, if the information that the block entry’s presence was not delivered during

the check phase or if this information was not propagated by previous instruction proof,

then we would have missed a crucial property and we would not have been able to

terminate the proof. The next chapter discusses how to reveal the essential properties to

propagate.

10.2.2 Proof of the security properties

Proofs now reached the last instruction, ret, with a more furnished proof context than

in the findBlock case.

The proof context contains accumulated properties from informational and modifi-

cation primitives as well as all state modifications from the first instruction. Similarly

as in findBlock’s proof, the ret instruction just passes on the accumulated properties.

1 { (** ret **)

2 eapply weaken. apply WP.ret.

3 intros. simpl.

4 ( 1: construct global knowledge for the isolation invariant )

5 (* ... *)

6 ( 2: prove the isolation invariant )

7 - ( 2.1: prove the consistency properties )

8 (* ... *)

9 - ( 2.2: prove the security properties )

10 (* ... *)

However, this time, the proof is not trivial because of the state modifications. The

isolation invariant must be proven on the modified state s which is different from the

initial state. The isolation invariant can then not be directly related to the initial state

and the new proof goal is to prove the isolation invariant on s.
Proof goal:

1 consistency s /\ verticalSharing s /\ partitionsIsolation s /\

kernelDataIsolation s↪→

Assumptions: We assume the consistency properties hold to focus on the proof of

the security properties. The curious reader finds the proofs of the consistency properties
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in the full proof script. The proof of the security properties is split in three parts, one

for each security property, as can be seen in the proof script.

There are common grounds for all security properties. A first phase is to extract

from the proof context useful properties directly concerned by the security properties.

This information notably recaps kernel element types at the modified addresses, which

are then used to discriminate execution paths.

Vertical Sharing (V S)

P roof .

V S considers an arbitrary parent-child relationship. By introducing V S in the proof

context (intros tactic), the definition of incl is unrolled so that the proof context also

considers an arbitrary address addr within the child’s used addresses.

1 HnAddrInUsedChild: In addr (getConfigPaddr child s ++ getMappedPaddr

child s)↪→

The proof goal becomes to demonstrate that addr also belongs to the parent’s mapped
addresses (union of all addresses in the mapped blocks only):

1 In addr (getMappedPaddr parent s)

The parent-child relationship is operated in addMemoryBlock to share a memory

block with a child partition. In that case, both the parent and the child mutate. However,

the child endures more modifications than the parent because all kernel elements of the

child are touched by the modifications (Blocks, Shadow 1, Shadow Cut and Partition

Descriptor) while only the Shadow 1 of the parent is updated to register the sharing.

V S is interested in the inclusion of the child’s mapped blocks and kernel structures

in the parent’s mapped blocks. The current partition and the designated child in

addMemoryBlock can both take either the role of the parent or the child in V S, however,

can not take the same role (because of the consistency property NoDupInP artitionT ree).

We understand the crucial modifications are actually the child’s Blocks structure updates

because it modifies the child’s mapped blocks while the other kernel elements have no

influence on that proof goal. In other words, the challenging parent-child combination

in V S is the one where the child actually is the child in addMemoryBlock. We review in

the following all possible combinations starting from the most difficult one.

child in V S is child in addMemoryBlock The proof starts by considering this combina-

tion:

1 destruct (beqAddr child globalIdPDChild) eqn:beqchildpd.

2 - (* child = globalIdPDChild *)

3 (* *)
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This anchors the child in addMemoryBlock, globalIdPDChild, with the child in V S. We

discard first the case where the parent in V S would also be globalIdPDChild leveraging

the invariant NoDupP artitionT ree 9.1.26 which forbids cycles in the partition tree.

1 assert(HparentidpdNotEq : parent <> globalIdPDChild). (* child not

currentPart *)↪→

The parent is then directly identified as the current partition.

1 assert(Hparent : parent = currentPart).

The current partition’s mapped blocks have not changed during addMemoryBlock,

so neither the union of their containing addresses.

1 assert(HmappedparentEq : getMappedPaddr currentPart s = getMappedPaddr

currentPart s0).↪→

This is not the case of the child globalIdPDChild which mapped blocks are aug-

mented with a memory block, blockToShareInCurrPartAddr stemming from the par-

ent (current) partition. Indeed, the global knowledge hypothesis states an address in the

child’s mapped blocks equivalently belongs either to the initial blocks or to the addi-

tional block (with start and end addresses respectively (startAddr (blockrange bentry6))
and (endAddr (blockrange bentry6)):

1 assert(Hidpdchildmapped : forall addr,

2 In addr (getMappedPaddr globalIdPDChild s) <->

3 In addr

4 (getAllPaddrBlock (startAddr (blockrange bentry6))

(endAddr (blockrange bentry6))↪→

5 ++ getMappedPaddr globalIdPDChild s0))

6 by intuition. (* constructed along the way *)

However, the child’s configuration blocks have not changed, so neither their con-

tained addresses:

1 assert(Hidpdchildconfigaddr : getConfigPaddr globalIdPDChild s =

getConfigPaddr globalIdPDChild s0)↪→

Thus, the hypothesis HnAddrInUsedChild can be rewritten as

1 HnAddrInUsedChild: In addr (getConfigPaddr globalIdPDChild s0 ++

(getMappedPaddr globalIdPDChild s0 ++ getAllPaddrAux

[blockToShareInCurrPartAddr] s))

↪→

↪→

with getAllP addrAux collecting all addresses contained in a block. This can be done

via hypothesis HAddrInBT S:
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1 assert(HaddrInBTS :

2 (forall addr : paddr,

3 In addr

4 (getAllPaddrBlock (startAddr (blockrange bentry6))

5 (endAddr (blockrange bentry6))) <->

6 In addr (getAllPaddrAux [blockToShareInCurrPartAddr] s0))) by

intuition.↪→

Now, we can discriminate the cases where the addresses belong to: 1) the initial

configuration blocks, 2) the initial mapped blocks or 3) to the additional block block-

ToShareInCurrPartAddr:

1 apply in_app_or in HnAddrInUsedChild.

which are the concatenation of all addresses contained in the mapped blocks and in the

kernel structures (i.e. ConfigBlocks) of that partition:

1 Definition getUsedPaddr (partition : paddr) s : list paddr :=

2 let ksList := getConfigPaddr partition s in

3 let mappedblockList := getMappedPaddr partition s in

4 ksList ++ mappedblockList.

The first and second cases are trivially true, assuming the security property was true

at the initial state s0, with initial configuration blocks or mapped blocks.

1 assert(HVs0: verticalSharing s0) by intuition.

2 (* ... *)

3 specialize (HVs0 currentPart globalIdPDChild HparentPartTree

HchildIsChild).↪→

4 specialize (HVs0 addr).

5

6 (* ... *)

7

8 ( Case 1: In addr (getConfigPaddr globalIdPDChild s0) )

9 apply HVs0. apply in_app_iff. left. assumption.

10

11 (* ... *)

12

13 ( Case 2: In addr (getMappedPaddr globalIdPDChild s0) )

14 apply HVs0. apply in_app_iff. right. assumption.

To solve the last case, i.e. the address lies in the additional block blockToShareIn-

CurrPartAddr, we must first state that the address lies in the parent’s initial block
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because addMemoryBlock picked up all the additional block’s characteristics from the

block in the parent (the service clones the block in the child):

1 assert(HparentInMappedlist : In blockToShareInCurrPartAddr

(getMappedBlocks currentPart s0)) by intuition. (* found block in

the parent *)

↪→

↪→

Induction on the mapped blocks of the parent solves the last proof goal:

1 induction (getMappedBlocks currentPart s0).

2 (* ... *)

child in V S is the parent in addMemoryBlock Another possible combination is to get

one level up in the Pip partitioning scheme and consider the parent in V S to be the

child partition globalIdPDChild in addMemoryBlock (and so the current partition is

the grand-parent of child in V S, so outside the scope of the proof goal).

1 - (* child <> globalIdPDChild *)

2 destruct (beqAddr parent globalIdPDChild) eqn:beqparentpd.

3 -- (* parent = globalIdPDChild *)

In other words, the child in V S could be any partition not addressed in addMemoryBlock.

Again, the possible identification of globalIdPDChild and this time the child in V S

is eliminated via the NoDupP artitionT ree invariant.

1 assert(HNoDupPartTree : noDupPartitionTree s) by (unfold consistency

in * ; unfold consistency1 in * ; intuition).↪→

2 assert(HglobalChildNotEq : globalIdPDChild <> child).

This leads to the properties stating that the child in V S is untouched by addMemory-

Block operated from the grand-parent (current) partition, and so the address lies in the

initial mapped blocks of the parent globalIdPDChild.

1 assert(HusedchildEq : getUsedPaddr child s = getUsedPaddr child s0).

2 (* ... *)

3 assert(HVs0: verticalSharing s0) by intuition.

4 (* ... *)

5 specialize (HVs0 globalIdPDChild child HparentPartTree HchildIsChild

addr HnAddrInUsedChild).↪→

6 (* HVs0: In addr (getMappedPaddr globalIdPDChild s0)*)

However, we know from the global knowledge properties that the mapped ad-

dresses from the parent globalIdPDChild can be rewritten as the concatenation of

initial mapped addresses with the additional block blockToShareInCurrPartAddr as seen

above. The proof follows trivially by rewriting the proof goal.



170 CHAPTER 10. Formal proof of the security properties

1 assert(Hidpdchildmapped : forall addr,

2 In addr (getMappedPaddr globalIdPDChild s) <->

3 In addr

4 (getAllPaddrBlock (startAddr (blockrange bentry6))

(endAddr (blockrange bentry6))↪→

5 ++ getMappedPaddr globalIdPDChild s0))

6 by intuition. (* constructed along the way *)

7 specialize (Hidpdchildmapped addr).

8 rewrite Hidpdchildmapped.

9 (* using HVs0: In addr (getMappedPaddr globalIdPDChild s0)*)

10 apply in_or_app. (* Proof goal: In addr

11 (getAllPaddrBlock (startAddr (blockrange

bentry6)) (endAddr (blockrange bentry6)) \/ In addr

(getMappedPaddr globalIdPDChild s0)*)

↪→

↪→

12 right. (* select second option *)

13 assumption.

Any other combination not affected by addMemoryBlock The remaining combina-

tions do not associate the child or parent in V S with any partitions manipulated by

addMemoryBlock.

1 -- (* parent <> globalIdPDChild *)

2 (* ... *)

This last case is trivially solved because all elements are not touched by addMemoryBlock

and so can be related to the initial state where it is assumed to be true.

1 assert(HVs0: verticalSharing s0) by intuition.

2 (* ... *)

3 assert(HchildrenparentEq : getChildren parent s = getChildren parent

s0).↪→

4 (* ... *)

5 assert(HusedchildEq : getUsedPaddr child s = getUsedPaddr child s0).

6 (* ... *)

7 assert(HmappedparentEq : getMappedPaddr parent s = getMappedPaddr

parent s0) by (apply HMappedPaddrEqNotInParts0 ; intuition).↪→

8 (* ... *)

9 rewrite HusedchildEq in *.

10 rewrite HmappedparentEq in *.

11 rewrite HchildrenparentEq in*.
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12 specialize (HVs0 parent child HparentPartTree HchildIsChild addr

HnAddrInUsedChild).↪→

13 assumption.

Qed.

Horizontal Isolation (HI) (also called partitionsIsolation by inheritance)

P roof .

HI introduces a supplementary parent-child relationship compared to V S which

increases the number of combinations. The first part of the proof script extracts useful

information from the proof context that will help discard impossible combinations due

to wrong types or not respecting the NoDupP artitionT ree invariant to not have any

cycles in the partition tree.

Introducing arbitrary values for parent, child1 and child2 gives the following proof

goal:

1 disjoint (getUsedPaddr child1 s) (getUsedPaddr child2 s).

Again, the proof script glides the parent-child relationship of addMemoryBlock (current

partition and globalIdPDChild) on HI ’s parent-children relationships.

child1 in HI is the child in addMemoryBlock and child2 is anything

1 destruct (beqAddr child1 globalIdPDChild) eqn:beqchild1pd.

2 - (* child1 = globalIdPDChild *)

In this configuration, the parent in HI is the current partition of addMemoryBlock.

1 assert(Hparent : parent = currentPart).

2 { (* ... *) }

Because addMemoryBlock just considers one parent-child relationship, all other

partitions are untouched. This is the case for the addresses contained in their mapped

blocks as resumed by hypothesis HUsedPaddrEqNotInParts0:

1 forall partition : paddr,

2 partition <> globalIdPDChild ->

3 isPDT partition s0 ->

4 getUsedPaddr partition s = getUsedPaddr partition s0

Thus the proof goal can be rewritten as In addr (getUsedPaddr child2 s0) by further

unfolding of Lib.disjoint:
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1 assert(Husedchild2Eq : getUsedPaddr child2 s = getUsedPaddr child2 s0).

2 { apply HUsedPaddrEqNotInParts0 ; intuition. }

3 (* ... *)

4 unfold Lib.disjoint.

5 intros addr HaddrInchildused.

6 (* ... *)

7 rewrite Husedchild2Eq in *.

Currently, the proof context has the information that addr lies in the used addresses

of globalIdPDChild in the modified state (hypothesis HaddrInchildused) and we must

prove addr is then not in partition2’s used addresses at initial state s0. We rewrite

HaddrInchildused similarly as in the proof of V S and differentiate the cases when addr

lies in 1) the initial configuration blocks, 2) the initial mapped blocks or 3) the new

added block blockToShareInCurrPartAddr:

1 apply in_app_or in HaddrInchildused.

2 destruct HaddrInchildused.

The first two cases follows immediately after a specialisation of HI at s0.

1 assert(Hpartisolations0: partitionsIsolation s0) by intuition.

2 (* ... *)

3 (* Case 1: In addr (getConfigPaddr globalIdPDChild s0) *)

4 unfold Lib.disjoint in Hpartisolations0.

5 specialize (Hpartisolations0 addr).

6 apply Hpartisolations0.

7 unfold getUsedPaddr. intuition.

8 (* ... *)

9 (* Case 2: In addr (getMappedPaddr globalIdPDChild s0)*)

10 unfold Lib.disjoint in Hpartisolations0.

11 specialize (Hpartisolations0 addr).

12 apply Hpartisolations0.

13 unfold getUsedPaddr. intuition.

The last case requires additional preparation of the proof context. Indeed, addr

lying in the new block of the child globalIdPDChild at modified state implies addr

was also contained in the parent (current) partition at s0 because addMemoryBlock

clones the block in the parent from s0 into the child. In other terms, we must prove

blockToShareInCurrPartAddr was not already shared with child2 at s0. We prove this

by contradiction so we assume that addr lies in child2’s used addresses at initial state s0:

HaddrInChild2s0: In addr (getUsedPaddr child2 s0).
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The block is known to belong to the mapped blocks of the parent at s0:

1 assert(HparentInMappedlist : In blockToShareInCurrPartAddr

(getMappedBlocks currentPart s0)) by (rewrite HcurrPartEq in * ;

intuition). (* by found block *)

↪→

↪→

In the proof context, the block is then in the parent’s and the child2’s mapped blocks,

so shared with child2 at s0. Invariant sharedBlockP ointsT oChild implies the Shadow
1 entry in the parent to refer to the child, either by the PDflag or the PDchild fields.

However, the check phase revealed the block was not shared at s0 which concludes the

proof with a contradiction in the proof context.

1 assert(HsharedInChilds0 : sharedBlockPointsToChild s0) by (unfold

consistency in * ; unfold consistency1 in * ; intuition).↪→

2 (* ... *)

3 assert(Hsh1entryaddr : sh1entryAddr blockToShareInCurrPartAddr

sh1eaddr s0).↪→

4 { (* ... *) }

5 specialize (HsharedInChilds0 currentPart child1 addr

blockToShareInCurrPartAddr sh1eaddr HparentPartTree

Hchild1IsChild HaddrInchildused HaddrInParentBlock

HparentInMappedlist Hsh1entryaddr).

↪→

↪→

↪→

6

7 destruct HsharedInChilds0 as [Hsh1entryaddrs0 | Hsh1entrychilds0].

8 (* ... *)

9 + (* case pdchild = child1 in the block's **Shadow1** entry*)

10 (* contradiction because check phase stated that pdchild =

nullAddr *)↪→

11 + (* case pdflag = true in the block's **Shadow1** entry *)

12 (* contradiction because the check phase stated that pdflag =

false *)↪→

child1 in HI is anything and child2 is the child in addMemoryBlock

1 - (* child1 <> globalIdPDChild *)

2 destruct (beqAddr child2 globalIdPDChild) eqn:beqchild2pd.

3 -- (* child2 = globalIdPDChild *)

Like observed during the informal proof, this is the symmetric case that we proved

just before.
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child1 and child2 in HI are any partition

1 (* ... *)

2 -- (* child2 <> globalIdPDchild *)

This combination considers any children of parent that are not globalIdPDChild.

In the contrary, parent has no restriction, so could be globalIdPDChild or any other

partition.

parent in HI is child in addMemoryBlock

1 destruct (beqAddr globalIdPDChild parent) eqn:beqparentidpd.

2 --- (* globalIdPDChild = parent *)

Potential children of globalIdPDChild are untouched by the operation of addMemo-

ryBlock.

1 assert(Husedchild1Eq : getUsedPaddr child1 s = getUsedPaddr child1 s0).

2 { apply HUsedPaddrEqNotInParts0 ; intuition. }

3 assert(Husedchild2Eq : getUsedPaddr child2 s = getUsedPaddr child2 s0).

4 { apply HUsedPaddrEqNotInParts0 ; intuition. }

The proof goal can be rewritten to the property at s0 when the property was assumed

true. A specialisation of the property with the arbitrary introduced values terminates

the proof.

1 specialize (Hpartisolations0 globalIdPDChild child1 child2

HparentPartTree Hchild1IsChild Hchild2IsChild

Hchild1child2NotEq).

↪→

↪→

2 rewrite Husedchild1Eq.

3 rewrite Husedchild2Eq.

4 assumption.

parent in HI is any partition

1 --- (* globalIdPDChild <> parent *)

This is the global case with only untouched partitions. Likewise to the previous

proof, we can conclude by rewriting the proof goal to the equivalent s0 property and by

specialising the security property at s0.

Qed.
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Kernel Data Isolation (KI)

P roof .

The informal proof led us to relate the security property on the modified state s to the

initial state s0 because no kernel structure are added or removed in addMemoryBlock.

The expression of the security property is different than the other security properties

in that not only parent-child relationships are considered in KI but also relationships

with itself. Thus, the cases that were discarded in the previous proofs because of the

parent-child relationship restriction must be investigated in this new situation.

After introduction of all hypotheses, the goal is to prove, for any partition combina-

tion, that any address addr contained in the mapped blocks of the first partition do not

lie in a configuration block of the second partition:

~In addr (getConfigPaddr partition2 s)

knowing the hypothesis HaccessiblePaddr: In addr (getAccessibleMappedPaddr partition1
s).

partition1 and partition2 in KI is child in addMemoryBlock The proof starts with the

following combination:

1 destruct (beqAddr part1 globalIdPDChild) eqn:beqpart1pd.

2 - (* part1 = globalIdPDChild *)

3 (* ... *)

4 destruct (beqAddr part2 globalIdPDChild) eqn:beqpart2pd.

5 -- (* part2 = globalIdPDChild *)

Within the same partition, addr must be absent from configuration blocks. Furthermore,

we know the configuration blocks have not changed for any partition, so in particular

not for globalIdPDChild:

1 assert(Hidpdchildconfigaddr : getConfigPaddr globalIdPDChild s =

getConfigPaddr globalIdPDChild s0)↪→

2 by intuition. (* constructed along the way *)

3 (* ...*)

4 rewrite Hidpdchildconfigaddr in *.

The new proof goal is then:

1 ~In addr (getConfigPaddr globalIdPDChild s0)

This shows the intuition was correct since we now have to demonstrate a property on

the initial state s0.
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We leverage the freedom to choose any partition combination at s0 to engage the

current partition:

1 assert(HKIs0: kernelDataIsolation s0) by intuition.

2 (* ... *)

3 specialize (HKIs0 globalIdPDChild globalIdPDChild Hpart1PartTree

Hpart2PartTree).↪→

4 specialize (HVs0 addr).

The proof context now contains HKIs0 : In addr (getAccessibleMappedP addr

currentP art s0) =⇒ In addr (getConf igP addr globalIdPDChild s0). This would

end the goal if the first statement is proven true. In other words, addr which is in

the accessible memory blocks of globalIdPDChild of the modified state (hypothesis

HaccessiblePaddr) must also be in the accessible memory blocks of the current partition

at the initial state.

To prove that, we extract the information that globalIdPDChild accessible addresses

can be rewritten as a composition of initial addresses with addresses from the newly

added block blockToShareInCurrPartAddr:

1 assert(HMappedPaddrEq : In addr (getAccessibleMappedPaddr

globalIdPDChild s) ->↪→

2 In addr ((getAllPaddrBlock (startAddr (blockrange bentry6)) (endAddr

(blockrange bentry6)))↪→

3 ++ (getAccessibleMappedPaddr globalIdPDChild s0)))

4 by intuition.

5 specialize (HMappedPaddrEq HaccessiblePaddr).

We can then explore the independent cases where the address 1) lies in the initial

mapped blocks or 2) in the new block.

1 apply in_app_or in HMappedPaddrEq.

2

3 destruct HMappedPaddrEq as [HaddrInNewB | HaddrInMappedPaddrs0].

In both cases, we can prove the missing hypothesis:

1 assert(HaddrInAccessibleParent : In addr (getAccessibleMappedPaddr

currentPart s0)).↪→

Indeed, case 1 is trivially true via the accessibleChildP addrIsAccessibleIntoP arent in-

variant 9.1.29 because any accessible address in the child globalIdPDChild is also

accessible in the parent (current) partition:
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1 assert(HaccessibleInParents0 :

accessibleChildPaddrIsAccessibleIntoParent s0) by (unfold

consistency in * ; unfold consistency1 in * ; intuition). (*

consistency s0*)

↪→

↪→

↪→

2 eapply HaccessibleInParents0 with globalIdPDChild ; intuition.

Case 2 is also trivially true because the new block stems from the parent (current)

partition, and we know from the check phase the block was accessible at s0. Hence, all

addresses contained in this block, especially addr, are part of the accessible mapped

blocks (lemma addrInAccessibleBlockIsAccessibleMapped).

1 (* extract accessible information *)

2 assert(addrIsAccessible = true) by (apply negb_false_iff in

Haccessible ; intuition).↪→

3 (* ... *)

4 apply addrInAccessibleBlockIsAccessibleMapped

5 with blockToShareInCurrPartAddr ; intuition.

partition1 in KI is child in addMemoryBlock and partition 2 is anything

1 (* still in case part1 = globalIdPDChild *)

2 -- (* part2 <> globalIdPDChild *)

Similarly, for any other partition, the configuration blocks have not changed so we

can leverage the hypothesis HConf igP addrEqNotInP arts0:

1 forall partition : paddr,

2 partition <> globalIdPDChild ->

3 isPDT partition s0 ->

4 getConfigPaddr partition s = getConfigPaddr partition s0.

The proof goal can be rewritten as In addr (getConfigPaddr partition2 s0) by unfolding

the definition of Lib.Disjoint:

1 assert(Hidpart2configaddr : getConfigPaddr part2 s = getConfigPaddr

part2 s0) by (eapply HConfigPaddrEqNotInParts0 ; intuition).↪→

2 (* ... *)

3 rewrite Hidpart2configaddr in *.

4 unfold Lib.disjoint in *.

5 intros addr HaccessiblePaddr.
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Exactly in the same way as the previous combination, we use the assumption that the

security property was true at initial state s0 and specialize it with the current partition

as partition1 to retrieve the proof goal in the proof context (because we rewrote the goal

to prove that the property was true at s0, see above):

1 assumption.

partition1 in KI is anything while partition2 is child in addMemoryBlock

1 - (* part1 <> globalIdPDChild *)

2 (* ... *)

3 destruct (beqAddr part2 globalIdPDChild) eqn:beqpart2pd.

4 -- (* part2 = globalIdPDChild *)

In this combination, the proof is immediate because ’s configuration blocks are

unchange, so the same as in the initial state at s0 when the property is assumed true.

1 assert(HKIs0: kernelDataIsolation s0) by intuition.

2 (* ... *)

3 assert(Hidpdchildconfigaddr : getConfigPaddr globalIdPDChild s =

getConfigPaddr globalIdPDChild s0)↪→

4 by intuition. (* constructed along the way *)

5 (* ... *)

6 rewrite Hidpdchildconfigaddr in *.

7 specialize (HKIs0 part1 globalIdPDChild Hpart1PartTree

Hpart2PartTree).↪→

8 intuition.

partition1 in KI is anything and partition2 in addMemoryBlock is anything

1 - (* part1 <> globalIdPDChild *)

2 (* ... *)

3 -- (* part2 <> globalIdPDChild *)

Exactly as previous proof, for any other partition, the configuration blocks are

unchanged and so the proof goal is equivalent to proving the property at the initial state

s0 assumed true:

1 assert(Hconfig2Eq : getConfigPaddr part2 s = getConfigPaddr part2 s0)

by (eapply HConfigPaddrEqNotInParts0 ; intuition).↪→

2 rewrite Hconfig2Eq in *.

3 specialize (HKIs0 part1 part2 Hpart1PartTree Hpart2PartTree).

4 intuition.

Qed.
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10.3 Evaluation of Pip-MPU’s proof development

We evaluate the proof development with common metrics linked to formal verification.

10.3.1 Proof setup

The proofs are developed using the CoqIDE 8.13.1 on an ArchLinux 5.18.1 distribution.

The tools run on an HP ZenBook G4 17 provided with a 64-bit Intel i7-7820HQ 4-core

CPU, 16 GB RAM, 16 GB swap space, 155 GB SSD usable space. There is one proof script

per service and per internal function (inner functions called by the services). There

is one proof script for each proof level of the HAL primitives. There is one additional

proof script per modification service to prove the security properties apart from the

consistency properties.

10.3.2 Results

Two services have been completely proven, readMPU, findBlock, and we have proved

all security properties and most of the consistency properties in addMemoryBlock.

Table 10.1 provides proof metrics on the proof development process (formalisation

and the verification stages) and summarizes the current status of the proof development.

The formal verification of Pip-MPU is an ongoing work. At the time of writing,

two services out of the fifteen implemented services have been fully proven, and an

additional one is close to completion. The metrics on the invariants provide information

on the number of consistency properties and security properties. The invariants are

also written (specified) in Gallina and the number of SLOC reports the total size of the

properties, trimmed from comments.

The formalisation stage considers three phases: the HW specification understanding,

the design phase, and the Coq model implementation. The first phase consisted in col-

lecting, reading and combining different sources on the target HW platform [19, 14, 176,

130, 131]. The design phase includes any conversations, thinking time, methodological

reflections, paper trials that finally converged to services in pseudo-code which were

eventually translated in Python scripts for simulation purposes. The last phase required

a full model implementation by forking the Pip (MMU) project [144] and by adapting

the model to a hardware without virtual memory and modifying the kernel structures

to match Pip-MPU’s design, given the Python implementation. Duration is estimated

based on status advancement reports and code versioning history.

The proof development phase focuses on the three services that underwent a com-

plete formal verification. We do include in our time estimation the time spent to prove

the proof levels of the low level HAL primitives because they are proved along the way,
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Proof status

Services
# services 15
# fully verified services 2

Invariants
# consistency properties 27
# security properties 3
Total invariant properties 29
Consistency properties SLOC 129
Security properties SLOC 14
Total properties SLOC 143

Proof development

Formalisation
Duration of HW specification
understanding

2 months

Duration of design phase 9 months
(including 2 months Python simulation)

Duration of model implemen-
tation in Coq

2 months

Duration of service develop-
ment in Coq

2 months

readMPU findBlock addMemoryBlock
# SLOC (w/o HAL) 11 14 25

Proofs All properties Consistency
properties

Security
properties

# LOP (Lines of Proof) 76 81 6143 1516
# tactics 90 93 6838 759
Ratio #LOP/SLOC 6.9 5.8 246 60.4
Ratio #tactics/SLOC 8.18 6.6 273 30.4
Duration of proof develop-
ment

2 days 4 hours 7 months
(ongoing)

4 days

person-month (estimate) 0.09 0.02 5.5 0.18
Ratio person-month/LOC 0.008 0.0014 0.22 0.0072
Duration of proof compilation 0.5s 0.4s 939s (15.65

min)
127s (2.1

min)
Memory footprint during
proof compilation

400 MB 400 MB 5000 MB 900 MB

CPU usage during proof com-
pilation

100% 110% 115 % 105%

Proof coverage (estimate) 100% 100% 90% 100%

Table 10.1: Proof status and effort.
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when used by a service. However, because the primitives are very similar, the individual

proofs are basically small adaptations of the proofs on other primitives, so the duration

is negligible compared to the development of the services. The proof development

metrics gather the number of Gallina lines of the services and corresponding Coq proof

lines to prove them (without internal functions and lemmas). The number of lines is

computed after removing all comments. However, this method does not really capture

the number of necessary steps in the proof development process because a great number

of variables are split over several lines and because there could be several tactics on the

same line. So we also estimate the proof effort regarding the number of used tactics. The

tactics, also called hints, are terms of the language used by the prover and the way the

proof developer interacts with it. They are instructions capturing the logical reasoning

and intuition of the proof developer in understandable language to the prover. The

number of tactics is computed by removing all comments and proof specifications and

counting the number of instructions ending with a dot or semi-colon. We provide the

ratio between the service’s source code lines and the number of Lines of Proof (LoP) as

well as with the hints to give a sense of the proof script size compared to the service code

base, again without considering inner elements (functions or corresponding lemmas).

We report the human time spent during the verification of each service estimated

via the code versioning history. Note that findBlock has about the same number of SLOC

and LOP than readMPU, but is proved in some hours instead of days. Indeed, they share

a lot of common functions and lemmas, and so the findBlock proof recycled a lot from

the previous proof, drastically diminishing the proof effort.

The compilation of all proofs on the host machine in charge of the proof development

is expressed in time, CPU usage and memory footprint. The measurements are recorded

by using the psrecord tool5, as illustrated with addMemoryBlock in Figure 10.1. They

do not include the compilation time to prove their dependency lemmas (that could be

common between different services), just the main lemma.

The proof coverage estimation gives the completion rates of each service. About

addMemoryBlock, the current status at time of writing is that all security properties have

been verified on the modified state assuming all consistency properties hold. The latter

are currently in the final stage of verification.

5https://github.com/astrofrog/psrecord

https://github.com/astrofrog/psrecord
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Figure 10.1: CPU and memory usage during the proof compilation of addMemoryBlock.

10.4 Discussion and limitations

10.4.1 Proof status

The proof status reports the current status. The consistency properties are the minimal

set of properties to prove the security properties for the services. However, for reasons

discussed in the next chapter, they are believed to be incomplete even though close to

the complete set of properties. The maintenance needed to include new properties or

modify the current ones has a direct effect on all proof metrics.

10.4.2 Proof development

Many parts of the proof script were eluded for the sake of clarity by focusing on the

crucial moments of the proof. Additional constraints on kernel structures, for example

bounded values for a certain type, are not discussed here but are present in the full

proof script.

Furthermore, the proof script reflects the proof goal we want to achieve, namely the

security properties. However, how can we be sure that the expression of the properties

really corresponds to the intended properties? Indeed, we tend to simplify the model

to have simplified abstract reasoning capturing the complexity of our thoughts. There

is currently no way to be sure about that and we can prove incorrect specifications,
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even false ones. Nevertheless, the limited set of security properties and their simplicity

convince us of the correctness of the proofs.

Moreover, only two services have been completely proven whereas the other ones

are partially verified (one close to completion). However, they lay the foundations

for the other services. Indeed, all purely informational services have been proven

while addMemoryBlock represents modification services, of the type that creates kernel

elements. A future challenge is to show the proof framework is also correctly working

for the type of service that destructs kernel elements, such as removeMemoryBlock.

10.4.3 Proof metrics

Presented proof metrics give an idea of the underlying proof effort, however, must not

be taken as raw metrics without further discussion.

Concerning the Coq model implementation, the HAL primitives are introduced as

the proof of the services evolve, i.e. proof scripts are developed when needed and not

by anticipation. This methodology is discussed in the next Chapter 11 about proof

techniques. Meanwhile, it means the formalisation is still ongoing and the duration

reflects the time spent to cover the three services fully addressed until now.

Concerning the number of lines in the proof script, while it definitely shows a

quantitative measure of the proof effort, it does not indicate a transferable metric on

other systems or other developers that would develop the proofs differently according

to their style (for example in terms of structure, proof context reorganisation, or use of

lemmas to generalise situations). Duplicates are clearly indicated in the proof script for

future maintenance. The goal of this work was to prove the security properties, however

the means to achieve it are infinite and not optimised. In other words, many parts

are copies of other proofs, wordy, and might only exist for human clarity while being

useless for the prover, which does not reflect neither the time spent on the proof nor the

difficulty of the task. This is also emphasised in other formal verification projects [29].

The number of tactics is closely related to the previous remark. It also has the

additional effect that some tactics are packed together by semicolons to solve induced

sub-cases at the same time. The remark also affects the ratio of SLOC over the number

of tactics.

The proof development was not a sequential process. The duration metric is an

addition of all the times the proofs were developed. Moreover, the duration is impacted

by the proof framework set-up (enrichment in internal lemmas), which becomes more

and more effective due to permanent refactoring and optimisation discussed in the

next chapter. Thus, the proof duration is included in the absolute proof development

time, but the person-month metric estimates the actual time spent on the respective

proofs. The person-month/SLOC ratio gives us an idea of the average effort to prove a
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single line of code. In Pip-MPU, we can take the overall person-month estimate (5.79)

and the current number of verified instructions (50) to compute the estimate of 0.12

person-month by line of code. We can compare with the effort required in other formally

verified kernels, such as seL4 and CertiKOS [107, 85] In seL4, they report roughly 20.5

person-years to prove the functional correctness of a base code of about 10000 lines of

code, of which around 7500 were verified. Then, about 4.1 person-years were needed

for the security proofs. All in all, it gives the estimate of around 0.04 person-month

per line of verified code. In CertiKOS, they report 2 person-years for 6500 lines of C

and assembler for the mC2 kernel, which gives a ratio of 0.0037 person-month per

line of code. While the comparison seems bad for Pip-MPU, it should not be taken as

a reliable estimate. Indeed, the comparison is between two projects that ended their

verification and gathered experience, reusable elements and optimisations along the

way that are not shown but included in the metrics. Furthermore, the reported time

spent on the project does not include helper tools, wherein automation is made possible,

that accelerate proof development. Pip-MPU only uses the raw functionalities of Coq.

In addition to that, we could compare instead the time spent just to prove the security

properties, as it is done separately in seL4 on the abstract model and directly on the

concrete model in Pip-MPU. For seL4, this leads to a ratio of 0.0066 person-month per

line of code, whereas in Pip-MPU it is at worst 0.0072 for addMemoryBlock, so very close,

and because there is no proof effort in readMPU and findBlock it leads to an average of

0.0036 for the time being, so twice better.

The proof compilation phase takes lots of resources, especially computing power and

RAM. CoqIDE crashed many times due to insufficient resources or froze the machine

because of heavy computations. Already from the previous Pip (MMU) project, proof

scripts were tailored to fit 32 GB RAM. We followed the same approach in Pip-MPU

by splitting proofs over different files: one file per service or function, and the proofs

of the security properties alone. More than plain hardware requirements, this proof

breakdown allowed to distribute the work and work in parallel on different proof scripts.

This work organisation enables different proof developers to work on different parts

of the proof at the same time and progress differently on scripts without having to

comment code or using mock-ups.

10.4.4 Proof assumptions

Implicitly mentioned in previous sections and chapter, the proof relies on a lot of

assumptions that we explicitly exhibit in this section. Incorrect assumptions imply

a false context, which means everything can be proven out of it. Our proof goal for

Pip-MPU thus depends on correct assumptions.

Assumptions are mostly similar to Pip (MMU version) [99] and other formally
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verified kernels [89, 41, 114] in a broader perspective.

Indeed, the trustworthiness of the proofs depends on:

• the used tools

• the correctness of the model and especially the correspondence between the hard-

ware model and the hardware platform as well as between the Coq HAL and its

C/ASM implementation

• the hardware implementation and deltas with its specification

• the specification of the isolation invariant

• the atomicity of the services

• the bootstrapping phase.

First, tools must be trusted, let it be the Coq kernel, Digger, gcc or even the IDEs (In-

tegrated Development Environments) we are using. Digger provides a literal translation

from Gallina to C which we can check thanks to the minimal size of the kernel code

base. One could increase the level of trust by replacing gcc by CompCert (a formally

proven C compiler) and by replacing Digger by δx (a formally proven translator from C

to CompCert’s Abstract Syntax Tree), which are ongoing works. Critical bugs could be

discovered in the Coq kernel (as discovered in the past), however the Coq community is

obviously very concerned about these threats.

Second, we considered a simplified hardware model (memory layout, MPU) which

captures the basic functionalities of the hardware platform. There are two major con-

siderations for this item. The first consideration is that this simplification might be too

simplistic and put aside effects that might endanger our proofs. One way to increase

confidence would be to play the proofs on a formal model of the hardware. It could be

directly handed over by processor manufacturers, like recent efforts on the ARMv8-A

architecture [147], on which we would directly "plug" our proofs. However, we trust our

hardware model in that it represents simple objects that facilitate the proofs and is a

common representation, even between hardware vendors. Our hardware state assumes

the kernel manipulates a writable non-volatile memory. In the opposite case (kernel

structures in Read-Only Memory or losing information during the execution), the check

phase would not be reliable and so would the proofs. Furthermore, we assume no

external influence can affect memory without bypassing the MPU control. In particular,

we consider either peripherals like the Direct Memory Access (DMA) not existing or

disabled, like other verified kernels [29, 162]. Recent research [25, 88] showed the DMA

could be used even in strict secure environment. Pip (MMU) already does this by con-

trolling that the configuration registers of the DMA are valid to the partition accessing
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them and is currently being adapted to Pip-MPU by our development team. The second

consideration is that the low-level primitives of the HAL might not reflect the real C

implementation that is manually written and so not checked. In other words, wrongly

implemented C primitives could do something else than what was expected in the Coq

model. The probability of such an event is considered very low because the primitives

are composed of a small amount of C lines (around 5 lines on average) and directly

correspond, literally, to their Coq model counterparts, like readPDTable in C and in

Coq. Moreover, kernel structures modeled in Coq differ from kernel structures written

in C. We believe their representation in both worlds to be accurate given constraints

imposed on the Coq kernel structures to reflect C types. We specified in Coq that the

address 0 has the PADDR type to represent the NULL pointer. No kernel structures

can then be stored at that address, which is the case in the ARM implementation with 0

being reserved for the reset instruction.

Third, even if the proofs are conducted on a trusted model, we must trust a correct

implementation of the hardware platform. Not formally verified hardware specification

could contradict itself, or the silicon vendor could not implement exactly what the

specification requires (diligently because many possibilities are implementation defined or

by negligence) or could even introduce backdoors, which would all endanger the proof

base. Furthermore, the hardware might not work as expected even by strictly following

formal models because of physical failures or attacks, but this is out of scope for this

work. We assume that the MPU is working correctly and that the memory controller

correctly writes and reads the values that are passed by the HAL primitives. This holds

for the target platform but also for the development platform.

Fourth, the isolation invariant, with the security properties and all consistency

properties, could be incorrect. However, many similarities exist between Pip (MMU)

and Pip-MPU, while being developed independently and challenged to achieve the

same proof goal, which strengthens the confidence in both proof specifications. Pip

(MMU) proved an equivalence with the isolation formalised by Rushby [155, 154] and

so we are confident about our specification. We could also argue about the limited

number of invariants and their small size that convince us they are correct. In the end,

the most problematic issue with the specification is a false interpretation. From the

formal definitions, to human language to express it and popularise the concept, until

the reception and interpretation of the message by the interested reader or listener,

there might be a comprehension gap, undermining the proofs and what they really

demonstrate.

Finally, we assume a secure state at each service execution, which implies the boot-

strapping routine to prepare the system into this secure state. This involves a correct

preparation and launch of the root partition which satisfies the isolation invariant. In



10.5. Conclusion 187

particular, no Pip-MPU memory blocks are given to the root partition. The code base

is limited (see Table 7.3) and we take extra care to bootstrap the system which should

lower the risk of an assumption deviation.

To summarize, the developed proofs rely on common assumptions for formally

verified kernels. Some of them are mitigated either by replacing tools with more

trustworthy ones or by setting up procedures to control the code base. The remaining

identified assumptions are outside the scope of this work or outside our control, but

we acknowledge efforts to reduce the gap between assumptions and reality which are,

moreover, closely monitored by the other verified kernels.

10.4.5 Bug discovery during the verification

The verification process unveiled a bug in the addMemoryBlock service. Indeed, the

check phase omitted to verify if the block to be shared with the child partition was not

already shared with another partition. This would have had the undesired state that a

block is present in several children which breaks the isolation property. As a matter of

fact, the bug was discovered during the proofs of the security properties, where it was

impossible to conclude. This demonstrates the very essence of formal verification to

detect such situations. It also exhibits that severe bugs can be found even in a small code

base which focuses on security. Bug discovery is documented in other formal verification

projects [99, 29, 109].

This bug also stresses what is and what is not claimed in this formal verification

process. The only properties that are proved are the isolation invariant and no proofs

concern functional properties. This remark also refers to other security policies than

Pip’s, for example the isolation invariant is not concerned about the read, write, and

execution rights of the memory blocks.

10.5 Conclusion

This chapter focused on the proof of the security properties using the Coq Proof Assis-

tant.

Two selected services illustrate the formal reasoning that closely follows the informal

reasoning of the previous chapter. They are examples framing the proof development

of both purely informational services and modification services. While the transcribed

proof script renders important moments of the proof, many details have been omitted

for the sake of clarification. However, thanks to the mechanized proof framework, the

full proofs are available publicly and externally checked using Coq. Proofs are done at

implementation level.
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Proofs deeply question the assurance of our design. Indeed, by exhibiting the

assumptions in which the proofs are rooted, we must be confident with a small gap with

reality. However, we showed and are convinced the set of assumptions is limited, can

be further minimised, and the research community invests in the remaining identified

concerns. We created a simple formal model for the MPU because its formal specification

does not exist yet and we join Dijkstra who once said: "to whom of the two [physical

equipment and formal system] we give the primacy, that is whether it is the task of

the formal system to give an accurate description of (certain aspects of) the physical

equipment, or whether it is the task of the physical equipment to provide an accurate

model for the formal system —and I prefer the latter—" [60].

With a small TCB, the proof efforts show manageable proof development for the

kernel without the need for refinement techniques. Proof efforts were considerably

larger than the development of the services themselves. However, common proof metrics

are not easily correlated to substantial values. We explore in Chapter 12 other proof

metrics to have a better interpretation and overview on the results, which also helps

to find a way to ease proofs. In the meantime, the next chapter explores the leveraged

proof techniques that are refinements and evolutions from the techniques used during

Pip’s (MMU) formal verification.
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Previous chapters presented the formalisation of Pip-MPU and the high-level proofs of

the security properties. These proofs relied on consistency properties and properties

built up and propagated from each state modification. This chapter investigates the

proof techniques that were actually leveraged to extract these properties from the micro

perspective of a service or function. It also deals with the retained proof strategy from

the macro perspective of all services to discover the necessary consistency properties

and rapidly reach the common formal baseline of all services.

The proof development has been a personal achievement in the thesis. However, it

employs formal elements and techniques inherited from Pip’s proof development [100],

for example Pip’s proof workflow. It is intended here to clarify what has been specifically

developed during the thesis and what has been directly inherited and adapted from

previous works.

Fast reading track: an extensive comparison of Pip-MPU and Pip (MMU)’s proof

process is presented here. The reader in a rush could be interested in the expressivity

differences of the security properties 11.1.3 or the common consistency properties

11.1.4, roughly assuming the low-level proofs are the same. There is also an interest to

understand the differences in the proof approach of the modification services 11.3.1.

Furthermore, Pip-MPU introduces a new global proof strategy exposed in 11.4.

11.1 Formalisation

The main rationale for modifying Pip’s formalisation in Pip-MPU is the lack of MMU.

The intrinsic differences between MMU and MPU 2.5 imply no virtual memory and

addresses, and only physical addresses. However, the notion of memory page is broader

(it is a set of contiguous physical addresses) and the structural changes pass on to the

services, helper functions, the expression of the properties and ultimately to the security

properties to prove.

11.1.1 System state and metadata structures

At the heart of the formalisation lies the system state. It is directly borrowed from Pip

(MMU). The memory state is still an association between physical addresses and memory

types. The adaptation just modifies the current partition identifier to become a plain

physical address instead of a memory page, which does not have much impact.

However, Pip-MPU’s metadata structures are more explicit than Pip (MMU)’s.

Indeed, Pip-MPU considers five different information-rich memory types whereas

Pip (MMU) considers four related information-poor types: virtual entry, physical entry,
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virtual page and physical page. The entries are pointers to the pages. Whereas properties

could be directly observed from the rich memory types of Pip-MPU, properties in Pip

(MMU) must be inferred from the types and the context that might be very long.

Furthermore, metadata structures have similar roles and direct equivalence with

C structures at implementation level, which facilitates proof understanding without

deviating from the C implementation.

11.1.2 Loss of virtual memory

While memory pages could be interchanged with a single physical memory address in

the system state, the notion of memory page as a memory portion causes trouble in all

proofs and property expressions.

Indeed, memory pages implicitly refer to a pre-chunked memory of individual pages.

A physical memory page reference is unique in the system and pages do not overlap.

Plain physical addresses are not memory portions and Pip-MPU’s notion of memory

blocks is not really the same as memory pages. The issue is that memory blocks are

locally unique in a partition but not globally: a copied block in a child partition has the

same attributes as the block in the parent (except if access permissions are changed) but

they both are stored in their respective kernel structures and so their block identifier

is different. The virtual memory is in fact already dealing with the local identifier via

virtual memory pages that are eventually resolved in unique physical memory pages. In

Pip-MPU, it cannot be handled the same way with the metadata structures. However,

the physical addresses are unique as they follow a strict relation order. What could be

handled in the abstract notion of memory pages, can then be transformed into explicit

sets of unique physical addresses.

The loss of memory pages completely shakes the proof baseline because it is deeply

rooted in all memory types, even physical addresses that are tuples of type (page*index).

Even where physical addresses were directly used, there must be changes.

11.1.3 Security properties

The security properties are soaked with memory pages and must then be adapted.

However, the semantic should not change, because it reflects Pip’s security model as a

partition tree. Pip-MPU’s security properties are then almost identical to Pip (MMU)’s

to ensure the same properties and be confident about the semantic. The only (light)

changes are that page is replaced by paddr and the name of the root partition identifier

is changed from pageRootP artition to multiplexer (initially inherited from Pip that

later changed the name and not modified in Pip-MPU).
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(** PIP (MMU) **)

(** THE VERTICAL SHARING PROPERTY

*)↪→

Definition verticalSharing s : Prop

:=↪→

forall parent child : page ,

In parent (getPartitions

pageRootPartition s) ->↪→

In child (getChildren parent s) ->

incl (getUsedPages child s)

(getMappedPages parent s).↪→

(** THE ISOLATION PROPERTY BETWEEN

PARTITIONS *)↪→

Definition partitionsIsolation s :

Prop :=↪→

forall parent child1 child2 : page ,

In parent (getPartitions

pageRootPartition s)->↪→

In child1 (getChildren parent s) ->

In child2 (getChildren parent s) ->

child1 <> child2 ->

disjoint (getUsedPages child1

s)(getUsedPages child2 s).↪→

(** THE KERNEL DATA ISOLATION

PROPERTY *)↪→

Definition kernelDataIsolation s :

Prop :=↪→

forall partition1 partition2,

In partition1 (getPartitions

pageRootPartition s) ->↪→

In partition2 (getPartitions

pageRootPartition s) ->↪→

disjoint (getAccessibleMappedPages

partition1 s) (getConfigPages

partition2 s).

↪→

↪→

(** PIP-MPU **)

(** THE VERTICAL SHARING PROPERTY

*)↪→

Definition verticalSharing s : Prop

:=↪→

forall parent child : paddr,

In parent (getPartitions

multiplexer s) ->↪→

In child (getChildren parent s) ->

incl (getUsedPaddr child s)

(getMappedPaddr parent s).↪→

(** THE ISOLATION PROPERTY BETWEEN

PARTITIONS *)↪→

Definition partitionsIsolation s :

Prop :=↪→

forall parent child1 child2 : paddr ,

In parent (getPartitions

multiplexer s) ->↪→

In child1 (getChildren parent s) ->

In child2 (getChildren parent s) ->

child1 <> child2 ->

disjoint (getUsedPaddr child1 s)

(getUsedPaddr child2 s).↪→

(** THE KERNEL DATA ISOLATION

PROPERTY *)↪→

Definition kernelDataIsolation s :

Prop :=↪→

forall partition1 partition2 :

paddr,↪→

In partition1 (getPartitions

multiplexer s) ->↪→

In partition2 (getPartitions

multiplexer s) ->↪→

disjoint (getAccessibleMappedPaddr

partition1 s) (getConfigPaddr

partition2 s).

↪→

↪→
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However, Pip-MPU has deeper changes that the slight cosmetic modifications above

do not show. All «*Paddr» functions hide the retrieval of all addresses contained in

blocks where in Pip (MMU) it stops at the page granularity. In Pip-MPU, it is like all

physical addresses where extracted from the memory pages, here the memory blocks. For

example, getMappedPaddr, first retrieves all mapped blocks (all blocks of the mentioned

partition), and for each of these blocks collects all their contained physical addresses in

a recursive manner.

(** The [getMappedPaddr] function Returns all physical addresses

contained in all present blocks of a given partition *)↪→

Definition getMappedPaddr (partition : paddr) s : list paddr :=

let blockList := getMappedBlocks partition s in

getAllPaddrAux blockList s.

(** The [getAllPaddrAux] function Returns all addresses contained in the

given list of memory blocks *)↪→

Fixpoint getAllPaddrAux (blocklist : list paddr) (s : state) :=

match blocklist with

| [] => []

| block::list1 => match lookup block (memory s) beqAddr with

| Some (BE bentry) => getAllPaddrBlock

bentry.(blockrange).(startAddr)

bentry.(blockrange).(endAddr)

↪→

↪→

++ getAllPaddrAux list1 s

| _ => getAllPaddrAux list1 s

end

end.

(** The [getAllPaddrBlock] function Returns all addresses between the

given start and end addresses *)↪→

Definition getAllPaddrBlock (startaddr endaddr : paddr) : list paddr :=

getAllPaddrBlockAux 0 startaddr (endaddr-startaddr).

11.1.4 Consistency properties

Pip-MPU’s consistency properties presented in Chapter 9 were categorised in 3 cate-

gories: 1) inner partition purely structural, 2) inner partition set structural, 3) inter-

partition set. The same categorisation can be done in Pip (MMU). Because of the enriched

metadata structures, the two first categories are similar but quite different from Pip
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(MMU). Pip (MMU) must colour each memory entry with a meaning by a thicker context,

for example with wellFormedFstShadow.

(** PIP (MMU) **)

Definition wellFormedFstShadow (s :

state) :=↪→

forall partition,

In partition (getPartitions

pageRootPartition s) ->↪→

forall va pg pd sh1,

StateLib.getPd partition (memory s)

= Some pd ->↪→

StateLib.getFstShadow partition

(memory s) = Some sh1 ->↪→

getMappedPage pd s va= SomePage pg ->

exists vainparent,

getVirtualAddressSh1 sh1 s va =

Some vainparent.

↪→

↪→

(** PIP-MPU **)

Definition

wellFormedFstShadowIfBlockEntry

s :=

↪→

↪→

forall pa,

isBE pa s ->

isSHE (CPaddr (pa + sh1offset)) s.

The third category is even more similar, almost identical to Pip (MMU), because it

deals with the relationships between partitions which should be captured in Pip-MPU

as well, for example with isChild.

(** PIP (MMU) **)

Definition isChild s :=

forall partition parent : page,

In partition (getPartitions

pageRootPartition s) ->↪→

StateLib.getParent partition

(memory s) = Some parent ->↪→

In partition (getChildren parent s).

(** PIP-MPU **)

Definition isChild s :=

forall partition parent : paddr,

In partition (getPartitions

multiplexer s) ->↪→

pdentryParent partition parent s ->

In partition (getChildren parent s).

11.1.5 Proof framework

The proof framework is completely reused from Pip (MMU) with local adaptation for

Pip-MPU.

The proof goal is obviously the same: the isolation invariant on each service by Hoare

logic, even with the mentioned differences in the security and consistency properties.

This means the Hoare triples to prove and their Coq formal expression are the same.
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Moreover, the instruction-by-instruction unfolding, which leads to a chain of Hoare

triples to prove, is identical with the same use of weakest preconditions and invariants.

Also, the general service pattern is identical: a check phase supplemented by a

modification phase for modification services. The check phase reveals the memory state

at time of execution and, if successful, engages the modification stage. Indeed, the

user can invoke the services at any time. Only the kernel components are interesting

for Pip and not the content of user memory blocks, because Pip only manipulates the

metadata structures to ensure the partition tree. However, Pip has no notion of the

context when a service is called. The check phase rejects any parameter mismatching the

expected context to run the modifications (for example references to blocks that do not

exist). The context must be fully revealed in order to connect with the pre-conditions of

the modification instructions and is used to validate the state consistency (consistency

properties). The check phase also facilitates the proof by exiting the function without any

state modifications and thus the risk of an inconsistent state for the security properties.

Furthermore, Coq requires a termination proof for all recursively defined functions.

In Pip (MMU), this is done by announcing a fuel parameter, a natural number, that

decreases at each recursive call and thus terminates at some point. This satisfies Coq,

however, any state invariant useful for Pip’s proof might not be true if the recursive call

ends too quickly due to a too small fuel. And that parameter must have some meaning to

connect to the implementation, i.e. the reality of the algorithms. Pip (MMU) usually sets

the fuel to the maximum number of memory pages in the system: no search can exceed

this number. Similarly, Pip-MPU sets the fuel to the maximum number of physical

addresses in the system. For example, for a search in a linked list without cycles, and

the information that all elements are unique, the fuel is enough to cover any number

of elements in that list, because pointers between each element are no more than the

number of physical addresses in the system’s memory.

In addition to that, all helper functions had to be adapted due to the switch from

memory pages to physical addresses and the structural differences (no virtual memory

so no translation tables in the structures, no optimisation structures, poorer memory

types). However, they do have similar structures and are used to retain properties in the

same way.

Finally, the principle of having consistency properties that serve the proofs of security

properties is also transmitted from Pip (MMU).

11.2 Low-level local proofs (HAL)

All low-level proofs can be slightly adapted to Pip-MPU. Indeed, the system state is

very similar that makes low-level operations (the HAL) similar as well. For exam-
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ple, in readAccessible and equivalent Pip-MPU readBlockAccessibleFromBlockEn-

tryAddr, the proof script is almost identical, with local variations because of differences

in the metadata structures and property expressions (entryUserFlag and bentryAFlag).

(** PIP (MMU) **)

Lemma readAccessible (table : page)

(idx : index) (P : state -> Prop)

:

↪→

↪→

{{ fun s => P s /\ isPE table idx s

}} MAL.readAccessible table idx↪→

{{ fun (isaccessible : bool) (s :

state) => P s /\ entryUserFlag

table idx isaccessible s }}.

↪→

↪→

Proof.

eapply WP.weaken.

apply WeakestPrecondi-

tions.readAccessible .↪→

simpl.

intros.

destruct H as (H & Hentry).

apply isPELookupEq in Hentry

;trivial.↪→

destruct Hentry as (entry & Hentry).

exists entry. repeat split;trivial.

apply lookupEntryUserFlag;trivial.

Qed.

(** PIP-MPU **)

Lemma readBlockAccessibleFromBlock-

EntryAddr (paddr : paddr) (P :

state -> Prop) :

↪→

↪→

{{ fun s => P s /\ isBE paddr s }}

MAL.readBlockAccessible

FromBlockEntryAddr paddr

↪→

↪→

{{ fun (isA : bool) (s : state) => P

s /\ bentryAFlag paddr isA s }}.↪→

Proof.

eapply WP.weaken.

apply WP.getBlockRecordField.

simpl.

intros.

destruct H as (H & Hentry).

apply isBELookupEq in Hentry

;trivial.↪→

destruct Hentry as (entry & Hentry).

exists entry. repeat split;trivial.

apply lookupBEntryAccessible-

Flag;trivial.↪→

Qed.

11.3 High-level local proofs (services)

In this section, we take a look at the proof conduct from the service perspective. I first

compare the proof approaches in Pip (MMU) and Pip-MPU. While the approach is the

same for pure informational services, the code and proofs co-design approach has not

been followed in Pip-MPU, which leverages instead a technique based on list properties

propagation, proof checkpoints and full low-level proof modularity. I then specifically

describe the iterative procedure engaged to prove the services in Pip-MPU.

11.3.1 Proof approach differences

First of all, from a general perspective, the proof script patterns are the same, as

illustrated in Listing 13.
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Listing 13 Typical proof pattern used in Pip (MMU) and Pip-MPU.

(* isolate the next instruction *)

eapply WP.bindRev.

{ (** weaken the hoare triple *)

eapply weaken.

(** apply the invariant corresponding to function FFF *)

apply Invariants.FFF.

(** Prove the current properties link to the applied invariant *)

intros. simpl.

(* ... *)

}

Also, the pure informational service proofs are directly inherited from Pip (MMU).

The goal is to propagate the initial security and consistency properties all along the

instruction-by-instruction proof steps with no state modification.

On the contrary, the proof style differs for modification services.

One particular difference is the handling of temporary state, in the middle of the

service, where consistency properties might not be all true. For example, this happens

when an instruction modifies a field which is linked with another one in some of the

consistency properties. The temporary state makes the linked consistency properties

inconsistent. When reaching the end of the service, the temporary state resolves to be

consistent (or should do, the proofs ensure this). Where Pip (MMU) invoked co-design

to flip instruction order to respect the consistency at all times, Pip-MPU introduces

the concept of proof checkpoints. These checkpoints are instants in the proofs where

all consistency properties are true. Consistency properties are then only proved when

required and not at each instruction. Obviously, the high-level service’s pre-and post-

conditions include all consistency properties to start and end in consistent states.

This is illustrated with function invariants. Indeed, Pip-MPU pulls the modularity

to a more extreme level than Pip (MMU) and tries to gather in a same function any

similar operation (same instructions). The principle is that reusable functions in the

code can also be reused with proven function invariants as proof bricks in the proof

script. For example, the function insertNewEntry inserts a new entry in the Blocks

structure by filling the fields with the given parameter. This function is used in the

addMemoryBlock and cutMemoryBlock, to insert a new entry respectively in a child

partition or in the current partition. In the cut case, consistency properties are all true

after the insertion. Yet, this is a partial operation for addMemoryBlock case, because

the inserted entry must be referred in the parent to be consistent (consistency property

sharedBlockP ointsT oChild) which is not done inside this function to generalise over



198 CHAPTER 11. Proof techniques and evolution of Pip’s formal verification process

the cut operation. Thus, only a sub-set of the consistency properties can be propagated

(consistency1). In Pip (MMU), this would have been solved by another instruction

order to find a consistent configuration. However, this new method allows a fast pace

proving without going back to the design phase, especially if the instruction order

made sense for the system developer at first. In Pip-MPU, consistency properties are

split in two sets: consistency1 and consistency2. The first set consistency1 is composed

of consistency properties that have been true in all encountered function invariants,

whereas the second set consistency2 relates to different structural elements and so only

true after some consistent state modifications, especially at the proof checkpoints.

Some properties are nevertheless always propagated at each instruction, in particular

list-related properties. Lists are required for all consistency property types and are

complex to build out of a state that has been modified several times. They are then

constructed instruction-by-instruction by lemmas specifically crafted for the modifica-

tion. For example, the lemma getChildrenEqPDT proves the partition’s children have

not changed when modifying the memory state with the insertion of a PD structure at

address addr ′. To invoke the lemma and prove the equality, the conditions are: there was

a PD structure entry at the same address addr ′ in the previous state, the structure field

has not changed in the new PD structure, and the StructureP ointerIsKS consistency

property was true at the previous state.

Lemma getChildrenEqPDT partition addr' newEntry s0 pdentry0:

lookup addr' (memory s0) beqAddr = Some (PDT pdentry0) ->

(structure newEntry) = (structure pdentry0) ->

StructurePointerIsKS s0 ->

getChildren partition {|

currentPartition := currentPartition s0;

memory := add addr' (PDT newEntry) (memory s0) beqAddr

|} =

getChildren partition s0.

Note the requirement to prove StructureP ointerIsKS at the previous state in order

to invoke that lemma. All other consistency properties are not required. However,

the combination of all lists (children, partitions, memory blocks, free slots) sets the

minimum baseline for the consistency properties to prove at each instruction. The

order of the instructions and the importance of the modification (e.g. changes to the PD

flag in the Shadow1 structure imply many lists and structural changes) determine the

minimum set of necessary consistent properties to propagate.
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11.3.2 Procedure to prove a modification service

We have described in the previous sections the different low-level and high-level lemmas

invoked with a special pattern and leveraging the checkpoint technique. We interest

us now in the timing and the followed iterative procedure to prove a new service. We

take a generic example of a modification service and present some tricks to ease the

proofs and accelerate the verification. The main spirit is to rapidly span the whole proof

without proving all elements, and then come back to prove the missing elements by

increasing the complexity of the proofs at each iteration. It is a fail-fast approach with

fast identification of bugs conflicting with the security properties.

Preliminary analysis The service should be clearly understood and the expected

memory state (notably lists) at service completion must be described. The metadata

structures and modified fields engaged in the service should be listed and should

match the service understanding. Based on the expected memory state and intuition,

an informal proof should be done to prove the security properties. The latter phase

highlights potential misses in the expected memory state and eliminates evident bugs.

The check phase The check phase usually happens once because the underlying

lemmas are simple to prove on-the-go. It consists in applying the proof pattern 13 and

propagate all properties at each step.

The HAL primitives and the functions composed of checks are proved whenever

encountered via dedicated lemmas. However, the post-conditions of functions might

not be completely defined at that moment. Later, when an instruction requires a

property that should have stemmed from that function, the corresponding lemma must

be enhanced with the missing property.

The modification phase The modification phase is first simply approximated by

writing down the instructions on a paper or white board, and explicitly writing the

expected property for each instruction that is used in the next steps.

Next the proof pattern is applied again with the plain HAL proofs when required

and mock lemmas for functions. All properties are also propagated, associated with

the current state, and proof obligations are left aside for the moment (admit tactic in

Coq). Mock lemmas are used to reach the end of the proof so to reach the consistency and
security properties proofs. The important properties to propagate are the final modified

state and all temporary states in between that will be used for the final proofs. Hence,

they must be crossed once to extract the state properties.

Thereafter, we prove the security properties, isolated from the rest. They are proved
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with assumed consistency properties and based on the propagated properties (including

the modified state) and the projected modifications of the lists. The informal intuition

of the preliminary analysis is set up and proofs should end successfully.

In the case of missing properties, we must find which instruction reveals them.

Maybe the properties are there but must be combined with other ones, or they have not

been propagated correctly, or they had not been deemed necessary to be included and

should be proven. They must then be propagated all the way along to finish the proofs.

Once the security properties are proven, we iterate again from the first modification

instruction. The goal here is to prove all simple assumptions that were used previously.

Simple consistency properties, without lists, must be proven when required by the proof

obligations.

Internal functions pre- and post-conditions should be adapted to their context. As

said earlier, some consistency properties might not pass the function because of an

intermediate state, or might not link to the function pre-condition. This is the time to

identify the proof checkpoints and delay the full proofs of the consistency properties to

these points.

In a last iteration, the lists are propagated and their properties proved when ap-

propriate. This enables to prove the more complex consistency properties involving

lists. Lists must eventually be identical to the projected lists used to prove the security

properties. At the final step, all properties should connect with the context required by

the security property proofs.

11.4 Global proof strategy: horizontal and vertical exploration

strategies

We take now a holistic view on the proof process.

The overall goal is to prove all services with the techniques exposed above. They

assumed a knowledge of all consistency properties and lists used to prove the security

properties. This raises the question of the discovery of the consistency properties.

Creating consistency properties for all logical connections between kernel elements

would not be efficient because solely the properties having a purpose in the security

properties proofs matter really. Pip-MPU’s proof workflow introduces the horizontal

and vertical exploration strategies.

11.4.1 Horizontal exploration

The intuition of this strategy is that we should cover most of the proofs to unveil the

consistency properties really important for the proofs of the security properties.
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We demonstrated, already confirmed by previous experiences with Pip (MMU), that

the check phase is easier to pass than the modification phase. Hence, the horizontal

exploration strategy passes all check phases in all services. This brings up most of the

structural consistency properties.

11.4.2 Vertical exploration

The next intuition is that the more services we finish, the more properties are discovered

and will be used in the proofs of the other services. We then choose a service and finish

the proofs. We select a modification service because pure informational services do not

bring up more properties than the first exploration.

Propagation of the lists and modifications due to state changes rely on the structural

consistency properties brought by the horizontal exploration.

In a final step, the security properties proofs conclude the discovery of missing

properties to terminate the proofs.

11.5 Discussion

11.5.1 Direct inheritance from Pip (MMU)

The proof workflow and much of the formalisation have been directly inherited from Pip

(MMU). It shows the successful application of the proof workflow, at implementation

level without refinement, for another project.

There was no need for a deep change in the formalisation because the proof goal

stays the same. The memory state does not need to represent the registers or to know in

which privileged mode the code executes (like in ProvenCore [29]), because the system

traps in privileged mode to execute the services and the address level is enough to

express all properties.

However, we have seen previously that even if the system state looks similar, which

makes low-level proofs reusable, the lack of memory pages (and associated translation

tables) causes huge and deep changes to all helper functions that manipulate the meta-

data structures, such as entry read, storage and search. Furthermore, some services

have been simplified, for example createPartition that only sets up the PD structure

instead of also setting up the MMU, Shadow 1, Shadow 2 and LL structures. In addition

to that, even if Pip-MPU has some common grounds with Pip (MMU), for example the

setting of the PD flag in addMemoryBlock/addVAddr, the extreme modularity pursued

by Pip-MPU and the lack of virtual memory did not match the same instruction order

or internal functions. This led to (almost) full refactoring of the services and make Pip

(MMU)’s high-level proofs useless for Pip-MPU. This is far from the expectations at the
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beginning of Pip-MPU’s design and the maximisation of proof reuse. Moreover, Pip

(MMU)’s proofs were too deeply rooted in the concept of memory pages, so that only the

low-level proofs could be reused with light changes.

11.5.2 Pip-MPU’s local and global proof strategy

This work’s goal was two-fold: rapidly identify the consistency properties and to prove

a modification service.

The local approach with checkpoints and the global proof strategy of horizontal and

vertical explorations made this possible, however, deviated from the sequential approach

taken by Pip (MMU). The consequence is that services are no more preemptible because

we allow inconsistent states which ultimately resolve in a consistent one. Instead, Pip

(MMU) always ensured consistent states by flipping the instruction order, part of the

co-design process. Pip-MPU’s design has been frozen and thus the adopted approach

avoids coming back to the design stage. Furthermore, Pip’s services, in Pip (MMU) and

in Pip-MPU, are actually not preemptible. This is ensured by disabling the interrupts

before the service treatment and by enabling them again after. The approach has then

no real impact.

Other methodologies could have been used to discover the most important consis-

tency properties for the security properties proofs.

One of them is a preliminary analysis of the security properties themselves. They

dictate what information is required to verify them. The properties announce the

lists of children, partitions, mapped memory blocks and accessible mapped memory

blocks. A finer grain analysis also identifies the kernel elements that are crucial for the

security properties proofs, like the mapped blocks list, the PD flag or PDchild fields,

the addresses contained in the blocks, the metadata structures, and the accessible flag.

Consistency properties intervene to get the status of all these elements at the end of the

service execution.

11.5.3 Vertical exploration

This work covers the vertical exploration of FindBlock, readMPU and addMemoryBlock

in that order.

The two first services are the only pure informational services of Pip-MPU’s API.

Their proofs are therefore relatively easy to conduct that explains why we choose to

cover them first.

On the contrary, addMemoryBlock is a modification service that affects the whole

proof process. It had many characteristics that were interesting to test: the function

invariant, it modified all the memory types which touch almost all structural consistency
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properties, it modified the lists (free slots, mapped blocks and accessible mapped blocks)

by adding and removing elements, it gave memory to a child which challenges the

Vertical Sharing and the Horizontal Isolation security properties. Hence, it outlines the

proof process for all modification services.

For the next modification service to prove, it would be interesting that it involves

this time kernel structures and recursive internal functions like deletePartition that

would also demonstrate modifications of the partitions and the children lists. Some

proofs would be facilitated by that, for example, all consistency properties involving

duplicates, whereas others, typically the recursive functions are expected to be more

difficult.

11.5.4 Harmonise Pip (MMU) and Pip-MPU’s proofs

Pip-MPU’s proofs largely deviated from Pip (MMU), even if Pip-MPU inherits elements

of the proof baseline. The main failure to harmonise the two projects are the memory

pages/memory blocks. Yet, both notions seems close, as later discussed in Section III.

From the proof perspective, Pip-MPU already had to lower down the concept to the

physical addresses contained in the memory blocks, instead of dealing directly with the

memory blocks like Pip (MMU) uses the memory pages. This was necessary to keep

the expressions of the security properties similar. It seems possible to lower down the

concept of memory pages in the same way, to the grain of the physical address.

Another approach could be to generalise the concepts of memory blocks to embrace

memory pages in Pip (MMU). A memory page would be a memory block with constraints

on the size and lists of memory blocks should be generalised to not depend either on the

MMU or the MPU constraints. Pip-MPU security properties would then be more similar

to Pip (MMU)’s. And Pip (MMU) could also be rewritten with enriched memory types

that would join Pip-MPU’s proof pattern and consistency properties.

While these trials would harmonise the proof baseline, and bring the security prop-

erties proofs close, the services’ algorithms and memory types differences would still

end in completely different proofs, if Pip (MMU) and Pip-MPU do not conciliate the two

approaches on a more abstract level, which would maybe change the proof approach to

a refinement strategy.

11.6 Conclusion

Pip-MPU mobilises new proof approaches while relying on the proof workflow and

formalisation of Pip (MMU). In particular, it leverages novel local and global proof

strategies (proof checkpoints and horizontal/vertical explorations).
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The aim of Pip-MPU’s design has always been to facilitate the proof of the security

properties (cf. Section III for more insights). Structural convergence and expressions

of the security properties at the grain of physical addresses also participated in proof

similarities with Pip (MMU). The low-level proofs on the HAL primitives could be

adapted with light modifications. Unfortunately, because of code and memory types

differences, none of the high-level proofs of Pip (MMU) could be reused for Pip-MPU.

Pip-MPU also pursued to accelerate the proof process with novel proof techniques.

It enables to freeze the design phase when verification starts, which means it does not

follow the co-design approach of Pip (MMU). Consistency properties are only proved

when required and split into two different subsets that gather at the proof checkpoints.

Combined with horizontal and vertical exploration strategies, it permits to rapidly find

the important properties and shape the proof baseline. Later vertical explorations might

move the consistency properties sets and could even be declined in more subsets if

necessary.

As with Pip (MMU), the proof process is very cumbersome with no automation. Also,

many duplicate proof script portions are reported and could certainly be generalised

with more efforts; however, like with Pip (MMU), the main goal is to get the proofs and

not their prettiness. Nevertheless, Pip-MPU tried to clarify the proof process for later

maintenance and verification with a clearer proof script organisation and a higher level

of modularity.
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With past formally verified projects, there are two certainties: proof development is more

demanding than code development, and proof engineering is a recent research field.

Indeed, last chapter gave us some measures of the demanding proof effort of Pip-MPU.

Furthermore, one encountered issue with Pip-MPU was the inability to communicate

proof development progress to my line of hierarchy only used to software development

processes. It implied the presentation of the proof status and an analysis of the proof

direction which should, ideally, show an optimised proof path.

State-of-the-art metrics were not enough for these two goals. This chapter goes

beyond what is currently proposed in the literature by the introduction of new proof

metrics to quantify proof development and proof effort, to compare different proof

designs, and to select the best effort proof path. We also propose a novel approach to

monitor the proof development process.

Fast reading track: Many original metrics are presented in this chapter, and they

are mostly chained together. Anyways, I would like to stress the effective reusability

metric 12.2.4 and the computation of the proof complexity 12.3.4 as a combination

of the impact score of an instruction on the properties (its disturbance level) with the

inherent proof complexity of these properties. All these metrics contribute in optimising

a global proof path strategy 12.4.1 that selects the best proof direction. We illustrate this

with Pip-MPU. Furthermore, the proof development is closely monitored by a dynamic

proof dashboard 12.5.

12.1 Existing proof metrics

The need to quantify the proof activity comes from the desire to assess the proof devel-

opment, to compare it with other verification projects, and to optimise the development

to accelerate it while reducing the proof effort.

The proof goal is to develop the proof elements that form the proof bricks for a

project’s formal verification.

12.1.1 Proof element

Definition 12.1.1 (Proof element). A proof element is an atomic statement, i.e. theorems,

lemmas and propositions, with its respective proof.

Indeed, proof elements refer to each other to build upon previous proved statements

with the aim of proving a global statement, like Pip’s security properties for all services.
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12.1.2 Metrics on proofs and metrics on the proof process

I distinguish two main categories of metrics: about the proofs themselves and about the

proof process. The latter is closely linked to the former.

Common metrics for proofs in formally verified projects [85, 109, 102] are the

number of Lines of Proof (LoP), number of theorems, number of invariants, number

of discovered bugs, and amount of verified code. We have already presented these

metrics concerning the proofs in the last chapter, as well as additional metrics such as

the amount of RAM required to conduct the proofs and the number of Coq tactics.

Some works studied relationships between these metrics, and notably found a linear

correlation between the proof effort and the proof size or a quadratic correlation between

a property’s size and the corresponding proof script in the seL4 projects, which depend

on the seL4 proof-style [167, 122].

To speak about the proof process, we first define the proof effort:

Definition 12.1.2 (Proof effort). The proof effort gives a measure of the amount of work

necessary to complete a proof (human effort).

In formally verified projects, the proof effort is usually given in person-time (days,

months, years). The proof process is impacted by the proof approach, for example

refinement at various granularity and with different number of abstraction layers, which

leads to different meaningful metrics to monitor the considered projects [5]. Other

works [21] try to identify proofs characteristics in order to quantify the proof effort

(number of theorems weighted by complexity, theorem size and number of dependencies)

or to detect potential issues (depth of the dependency tree and number of child theorems

that could complicate maintenance, similarity score between theorems revealing a bad

design).

Hence, the set of meaningful formal metrics is not yet fixed and depends on the

project. Current metrics fall short in giving a precise overview of the proof develop-

ment status and do not consider different proof strategies. In the rest of this chapter,

we present new metrics to better understand the proof process in Pip-MPU and the

relationships between proof elements in the objective to report the proof status and

select the best proof strategy.

12.2 Code and proof relationship

Like code elements (function, module, instruction) are assembled in code, so are proof

elements during the proof process. In Pip-MPU, as demonstrated in the previous

chapters, the approach is to freeze the design and to lean on the correspondence between
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each function or primitive and their respective proof element. Each function or primitive

has a main proof element and inner proof elements that help the proof development

such as property extraction or property equivalence. As a consequence, the number of

main elements, i.e. the proof bricks, is known in advance once the design is frozen.

Furthermore, it results the number of code elements (functions and primitives)

indicates the minimum number of proof elements.

Theorem 12.2.1 (Minimum number of proof elements). For the set of code elements

composed by the subset of functions F = F1,F2, ...,Ff and the subset of primitives P =

P1, P2, ..., Pp, and for the set of corresponding proof elements P E = P E1, P E2, ..., P El , then

|F|+ |P | <= |P E|

With corresponding code and main proof elements, the code and proof dependency

graphs match from a high-level perspective. The dependency graph is a polytree, a type

of directed acyclic graph which underlying undirected graph is a tree. It essentially

traces the services’ subroutines, and stops above the low-level primitives, i.e. functions

have at least two primitives. It is a subset of the call graph and control-flow graph

without representing the recursive calls or the route back from a subroutine to the main

function.

Definition 12.2.1 (Dependency graph). The dependency graph of code, respectively

proofs, is defined as the set Gf unction = (F,DC), respectively Gproof = (P E,DP ), where

the set of functions F = F1, ...,Fn are the nodes in Gf unction, respectively where the set

of main proof elements P E = P E1, ..., P El are nodes in Gproof , and the set of dependency

DC are arrows (edges) in Gf unction, respectively DP in Gproof .

12.2.1 Code and proof reuse

Relying on code reuse is the best way to also create reusable proof bricks. Of course,

proof bricks must be general enough to embrace most of the cases where the corre-

sponding code element is used. Proof reuse avoids similar proofs at different instants

in the proof script. The strategy to develop reusable lemmas or heuristics like some

tactics (proof hints) to reduce the proof effort is still researched nowadays [94]. Thus, a

modularity of proof elements mapped on the modularity of code elements represents

the minimal proof effort. In the case that proofs do not follow the code modularity,

proof effort is increased by as many components that are not reused but could be. On

the contrary, the more reused elements there are, the less development is needed (we

consider the benefits of reusability superior to the resources consumed to generalise

the elements to become reusable). We are then interested to compute the actual ratio of

reused elements on all nodes of the dependency graph.
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To compute this ratio, we define the main reused element subgraph and the full

reused element subgraph of the dependency graph G = (E,D), where E = E1, ...,En is the

set of (code or proof) elements and D the set of dependency arrows (edges).

Definition 12.2.2 (Main reused element subgraph). Main reused elements are nodes

in the dependency graph G which have multiple incoming edges (the indegrees). The

subgraph of reused elements is R = {G′ ∈ G|∀Ei ∈ G[E],deg−(Ei) > 1}.

Definition 12.2.3 (Full reused element subgraph). Any subroutines of reused elements

are obviously also reused, but might not appear in R if they have a unique incoming

edge. The full reused element subgraph is then R augmented by all elements in the

subtrees S = S1, ...,Ss, s ∈ N, rooted at a main reusable element, so Gelement_reused = {G′ ∈
G|∀Gi ∈ G,∀Rj ∈ R,∀Sk ∈ SRj

,Gi[E] ∈ Sk ∧ deg−(Gi[E]) = 1} = (Eelement_reused ,

Aelement_reused).

Definition 12.2.4 (Reused elements ratio metric). The reused elements ratio RR metric

is the ratio of the number of reused elements considering all elements in the dependency

graph. It is the ratio of the number of reused elements in Eelement_reused over the total

number of elements in the dependency graph G:

RR =
|Eelement_reused |

|E|

Note that service root nodes are never in Eelement_reused because they do not have any

incoming edges.

Reused ratio in Pip-MPU

In Pip-MPU, the modularity of code is translated in proofs, so Gf unction = Gproof = G.

For the sake of clarity and readability, we only model in Figure 12.1 elements containing

write instructions (the full dependency graph should also contain any read instructions

related elements). In this figure, reused elements are highlighted with the blue boxes.

Thus, the more blue boxes, the more reuse.

For Pip-MPU, the reused ratio, given the simplified dependency graph depicted in

Figure 12.1, is:

RR =
10
36
≈ 27.7%

12.2.2 Reused proof difference

In some situations, code and proof dependency graphs might not match, for example

because function-level lemmas are difficult to set-up or because the functions are small

and the proof effort is not worth it. It results in a difference between a potential full
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Figure 12.1: Pip-MPU dependency graph. Service entry points are on the left. Reused
elements are highlighted in the blue boxes.
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reusability of elements if dependency graphs match (equal to a full code reuse RRcode)

and the actual proof reuse RRproof .

Definition 12.2.5 (Reused proof difference).

RRcode −RRproof

The higher it is, the more it indicates missed opportunities for optimisation, ease

of proof design, duplicate proofs by creating useless additional lemmas or by writing

similar patterns in the proof script.

12.2.3 Reused proof difference in Pip-MPU

In Pip-MPU, there are no differences between the actual proof reuse RRproof and the

code reuse RRcode, so the reused proof difference is 0. Thus, the proof process leverages

the full potential of modularity and shows no additional useless proof efforts. Indeed, in

the case of Pip-MPU, the proof developer is more interested in reducing the proof effort

than having the most compact and elegant proofs at the expense of demanding efforts.

12.2.4 Effective reusability

The counterpart metric to reused ratio is its effective reusability. In other words, each

time an element is reused, it increases the metric. It is a measure of the entanglement of

all the services. The more elements are present in other services, the higher the effective

reusability metric.

To compute this metric, we need to define the unfolded dependency graph, the

no-reused-element-pruned subgraph and the reused-pruned subgraph.

Definition 12.2.6 (Unfolded dependency graph). The unfolded dependency graph

is defined as Gunf olded = (F′ ,A′) which is G without any modularity with F′ and A′

being respectively the new set of functions and dependencies. It is like following each

dependency path from the root nodes by copy-pasting all reused elements for each

path, the worst case for code/proof development and maintenance. The total number of

elements to develop is |F′ |. |F′ | is equal to the total number of elements in each subtree

SG′ = SG′1, ...,SG
′
s ⊆ G rooted in the service nodes, so |F′ | =

∑s
i=1 |SG

′
i | .

Definition 12.2.7 (No-reused-element-pruned subgraph). The no-reused-element-pruned

subgraph is the code dependency subgraph Gpruned which is G pruned away from reused

elements. That is, we are interested in Gpruned = G \Gelement_reused . We relate to its sub-

trees as SG′′ = SG′′1 , ...,SG
′′
s ⊆ Gpruned ⊆ G rooted in the service nodes.
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Finally, we can define effective reusability. The effective reusability gives the fre-

quency of appearance of the elements in the polytree G, i.e. the global reusability of

elements given any subtree of G rooted in the services.

Definition 12.2.8 (Effective reusability metric). We consider the polytrees Gelement_reused ,

Gpruned and any of its subtrees SG′′ = SG′′1 , ...,SG
′′
r ⊆ Gpruned ⊆ G rooted in the service

nodes (r ∈ N), and Gunf olded with any of its subtrees SG′ = SG′1, ...,SG
′
s ⊆ G rooted in the

service nodes (s ∈ N). Because the rooted subtrees depend on the same service nodes, we

have r = s.

Then, the effective reusability ER metric is defined as:

ER =
|Gelement_reused |+

∑r
i=1 |SG

′′
i |∑r

i=1 |SG
′
i |

=
|Gelement_reused |+

∑r
i=1 |SG

′′
i |

|F′ |

ER gives the rate of proof elements to prove with reuse compared to no reuse, and

so 1−ER gives the spared ratio of proof elements thanks to reuse.

Indeed, reused elements have a one-time design or verification cost such as they

just need to be counted once, hence |Gelement_reused | which is added to the total element

usage.

Note that the order of considering each dependency path of Gpruned from the root

nodes (each subtree) has no influence on the result.

In the following, we relate to the ER’s dividend as U and ER’s divisor as E; so

ER = U
E .

12.2.5 Effective reusability in Pip-MPU

We illustrate the benefit the effective reusability metric with the Pip-MPU memory

management services.

For Pip-MPU, we study each service subtree and compute the values reported in

Table 12.1. We obtain an effective reusability of 50% which indicates a reduction of half

of the number of proof elements to actually prove. In other words, Pip-MPU largely

relies on reusable elements, which directly benefits the proof effort by reusing formerly

proved lemmas.

12.3 Proof complexity: fine-grained analysis of properties and

code elements

The previous section demonstrated the benefit of reusability on proofs. We now study

the complexity of each proof element that helps to compute an overall estimation of the

proof effort to provide and to decide an overall proof strategy.
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Service (r = 11) |SG′′i | |SG′ |
addMemoryBlock 1 2
cutMemoryBlock 1 7
mapMPU 2 6
mergeMemoryBlocks 2 13
prepare 5 13
createPartition 2 9
collect 4 7
deletePartition 3 7
removeMemoryBlock 4 6
readMPU 1 1
findBlock 1 1

Total sum 26 72
U = |Gelement_reused | + 26 = 10+26 = 36

E = |F’| = 72
Effective reusability : U

E = 36
72 = 50%

Table 12.1: Effective reusability metric table for Pip-MPU.

We take the example of Pip-MPU to illustrate our proposal. The objective is to

be able to evaluate the complexity of the isolation invariant proofs by analysing the

instructions composing the service. The intuition here is that the complexity of a proof

depends on the impact of the instructions on the properties of the isolation invariant

(some instructions disturb more the invariants than others) and how difficult these

properties are to prove.

12.3.1 Proof impact score at the primitive level

The first proof brick in the proof process is the primitive. We have seen previously that

read instructions do not cause any particular difficulty because the memory state does

not change. However, write instructions do change the memory state.

In the case of write instructions, the impact on the proofs depends on the modifica-

tion. For example, in Pip-MPU, a modification of the access permission rights are not

decisive for the isolation invariant: it does not impact the security properties. In the

contrary, if the PDflag field of a Shadow 1 entry is modified, it inherently means the

corresponding block holds a PD structure (a child identifier) according to the consis-

tency property PDTIfPDFlag. This means there is a new child and so the partition tree

is modified which might invalidate the security properties.

We easily identify the most determinant fields for the security properties, notably

the PDflag, PDchild, the memory types (PDT, BE, SHE, SCE), and the accessible flag.

More than that, we expand the analysis to all the fields of the kernel metadata
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structures. We classify which modifications impact the isolation invariant properties the

most by an analysis of the fields used in the properties. For that, we first identify which

memory types or fields are used in the properties and bind them together, as illustrated

in Tables [ 12.2, 12.3, 12.4, 12.5].

Fields and memory types are extensively used in lists present in the security prop-

erties and some of the consistency properties. It is possible to reflect the impact of a

modification on a specific list at the modification instruction.

If we take the previous example again by setting the PDflag field of some Shadow

1 entry in a specific partition, then the list of children of that partition extends by one

and so does the partition tree list. We can then create a lemma that reports the list

modification and apply it at the modification instruction to propagate the new lists.

Hence, given some amount of work to create this lemma, the modification does not

disturb the property as much as foreshadowed anymore. Such possibility is marked by a

’*’ in the tables.

There will still be some proof work to adapt to local situations and locally prove con-

sistency properties, however on a unique state modification (contrariwise to the proofs

of the consistency properties at function level that include many state modifications).

The presence of ’*’ informs that a certain amount of proof work must be done once, and

then less each time it is encountered. Thus, they are counted separately.

The same lists are used across different properties and they are limited: get-

Partitions, getChildren, getMappedBlocks, getAccessibleMappedBlocks, getCon-

figBlocks, getMappedPaddr, getConfigPaddr, getUsedPaddr, getAccessibleMapped-

Paddr.

Table 12.6 resumes what impact is expected on the proof of properties by the

modification of a single instruction.

From Table 12.6, and given lemmas for list modifications, we conclude that any

modifications of the present flag and PDflag, consolidated by the score on BE and PDT

types, impact the properties the more, and by extension the proofs. On the contrary,

as expected, modifications of the access permissions do not disturb the properties very

much.

Each field modification is associated with the instruction operating the change. In

Pip-MPU, one primitive changes one field at a time, so we call the field change impact

matrix also the instruction impact matrix (IIM).

The more instructions and the more write instructions there are, the higher the

impact score is, and higher is the proof complexity.
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nullAddrExists - - - - 1
wellFormedFstShadowIfBlockEntry - 1 1 - -

PDTIfPDFlag 1 1 1 - -
AccessibleNoPDFlag - 1 1 - -

FirstFreeSlotPointerIsBEAndFreeSlot 1 1 1 1 1
multiplexerIsPDT 1 - - - -

currentPartitionInPartitionsList * * * - *
wellFormedShadowCutIfBlockEntry - 1 - 1 -

BlocksRangeFromKernelStartIsBE - 1 - - -
KernelStructureStartFromBlockEntryAddrIsKS - 1 - - -

sh1InChildLocationIsBE - 1 1 - -
StructurePointerIsKS 1 1 - - -

NextKSIsKS - 1 - - 1
NextKSOffsetIsPADDR - 1 - - 1
NoDupInFreeSlotsList 1 * - - *
freeSlotsListIsFreeSlot 1 1 1 1 1
DisjointFreeSlotsLists 1 * - - *

inclFreeSlotsBlockEntries 1 1 - - 1
DisjointKSEntries 1 1 - - 1

noDupPartitionTree * * - - *
isParent 1 * - - *
isChild 1 * - - *

accessibleChildPaddrIsAccessibleIntoParent * * - - *
noDupKSEntriesList 1 * - - *

noDupMappedBlocksList 1 * - - *
noDupUsedPaddrList 1 * - - *

sharedBlockPointsToChild * 1 * - *
MPUInAccessibleBlocks * - - - -

Se
cu

ri
ty verticalSharing * * * - *

partitionsIsolation * * * - *
kernelDataIsolation * * * - *

Total score 14+8* 15+13* 6+5* 3 7+14*

Table 12.2: Type changes impacts in Pip-MPU.
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nullAddrExists - - - - -
wellFormedFstShadowIfBlockEntry - - - - -

PDTIfPDFlag - - - - -
AccessibleNoPDFlag - - - - -

FirstFreeSlotPointerIsBEAndFreeSlot 1 - - - -
multiplexerIsPDT - - - - -

currentPartitionInPartitionsList - * - - -
wellFormedShadowCutIfBlockEntry - - - - -

BlocksRangeFromKernelStartIsBE - - - - -
KernelStructureStartFromBlockEntryAddrIsKS - - - - -

sh1InChildLocationIsBE - - - - -
StructurePointerIsKS - 1 - - -

NextKSIsKS - - - - -
NextKSOffsetIsPADDR - - - - -
NoDupInFreeSlotsList * - * - -
freeSlotsListIsFreeSlot * - * - -
DisjointFreeSlotsLists * - * - -

inclFreeSlotsBlockEntries 1 1 1 - -
DisjointKSEntries - 1 - - -

noDupPartitionTree - * - - -
isParent - * - 1 -
isChild - * - 1 -

accessibleChildPaddrIsAccessibleIntoParent - * - - -
noDupKSEntriesList - * - - -

noDupMappedBlocksList - * - - -
noDupUsedPaddrList - * - - -

sharedBlockPointsToChild - * - - -
MPUInAccessibleBlocks - * - - 1

Se
cu

ri
ty verticalSharing - * - - -
partitionsIsolation - * - - -

kernelDataIsolation - * - - -

Total score 2+3* 3+12* 1+3* 2 1

Table 12.3: Field change impacts on Partition Descriptor entry fields in Pip-MPU.
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nullAddrExists - - - - - - - -
wellFormedFstShadowIfBlockEntry - - - - - - - -

PDTIfPDFlag - 1 - 1 1 - - -
AccessibleNoPDFlag - - - - 1 - - -

FirstFreeSlotPointerIsBEAndFreeSlot - 1 - 1 1 1 1 1
multiplexerIsPDT - - - - - - - -

currentPartitionInPartitionsList - * - * - - - -
wellFormedShadowCutIfBlockEntry - - - - - - - -

BlocksRangeFromKernelStartIsBE 1 - - - - - - -
KernelStructureStartFromBlockEntryAddrIsKS 1 - - - - - - -

sh1InChildLocationIsBE - - - - - - - -
StructurePointerIsKS 1 - - - - - - -

NextKSIsKS 1 - - - - - - -
NextKSOffsetIsPADDR 1 - - - - - - -
NoDupInFreeSlotsList - - * - - - - -
freeSlotsListIsFreeSlot - 1 * 1 1 1 1 1
DisjointFreeSlotsLists - - * - - - - -

inclFreeSlotsBlockEntries - - 1 - - - - -
DisjointKSEntries - - - - - - - -

noDupPartitionTree - - - 1 - - - -
isParent - - - * - - - -
isChild - - - * - - - -

accessibleChildPaddrIsAccessibleIntoParent - * * * * - - -
noDupKSEntriesList - - - - - - - -

noDupMappedBlocksList - - - 1 - - - -
noDupUsedPaddrList - * * * - - - -

sharedBlockPointsToChild - * * * - - - -
MPUInAccessibleBlocks - * * * * - - -

Se
cu

ri
ty verticalSharing - * * * - - - -

partitionsIsolation - * * * - - - -
kernelDataIsolation - * * * * - - -

Total score 5 3+8* 1+10* 5+10* 4+3* 2 2 2

Table 12.4: Field change impacts on Block entry fields in Pip-MPU.
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nullAddrExists - - - - -
wellFormedFstShadowIfBlockEntry - - - - -

PDTIfPDFlag 1 - - - -
AccessibleNoPDFlag 1 - - - -

FirstFreeSlotPointerIsBEAndFreeSlot 1 1 1 1 1
multiplexerIsPDT - - - - -

currentPartitionInPartitionsList * - - - -
wellFormedShadowCutIfBlockEntry - - - - -

BlocksRangeFromKernelStartIsBE - - - - -
KernelStructureStartFromBlockEntryAddrIsKS - - - - -

sh1InChildLocationIsBE - - 1 - -
StructurePointerIsKS - - - - -

NextKSIsKS - - - - -
NextKSOffsetIsPADDR - - - - -
NoDupInFreeSlotsList - - - - -
freeSlotsListIsFreeSlot 1 1 1 1 1
DisjointFreeSlotsLists - - - - -

inclFreeSlotsBlockEntries - - - - -
DisjointKSEntries - - - - -

noDupPartitionTree - - - - -
isParent - - - - -
isChild - - - - -

accessibleChildPaddrIsAccessibleIntoParent - - - - -
noDupKSEntriesList - - - - -

noDupMappedBlocksList - - - - -
noDupUsedPaddrList - - - - -

sharedBlockPointsToChild 1 1 - - -
MPUInAccessibleBlocks - - - - -

Se
cu

ri
ty verticalSharing * - - - -

partitionsIsolation * - - - -
kernelDataIsolation * - - - -

Total score 5 + 4* 3 3 2 2

Table 12.5: Field change impacts on Shadow 1 and Shadow Cut entry fields in Pip-MPU.
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Impact score on
consistency prop-
erties

Impact score on
security proper-
ties

Ty
p

e

PDT type 14 + 5* 3*
BE type 15 + 10* 3*
SHE type 6 + 2* 3*
SCE type 3 0
PADDR type 7 + 11* 3*

Fi
el

d

pdentry.(firstfreeslot) 2 + 3* 0
pdentry.(structure) 3 + 9* 3*
pdentry.(nbfreeslots) 1 + 3* 0
pdentry.(parent) 2 0
pdentry.(MPU) 1 0
blockentry.(blockindex) 5 0
blockentry.(blockrange).(startAddr) 3 + 5* 3*
blockentry.(blockrange).(endAddr) 1 + 7* 3*
blockentry.(present) 5 + 7* 3*
blockentry.(accessible) 4 + 2* 1*
blockentry.(read) 2 0
blockentry.(write) 2 0
blockentry.(execute) 2 0
sh1entry.(PDflag) 5 + 1* 3*
sh1entry.(PDchild) 3 0
sh1entry.(inChildLocation) 3 0
scentry.(origin) 2 0
scentry.(next) 2 0

Table 12.6: Illustration of the type TFPC and field impact score matrix on the proof of
Pip-MPU.
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12.3.2 Proof impact score at the function/service level

At function level, the impact score directly depends on the instructions and their own

impact score. Only the field impact score is considered for now. The type impact score

is left aside for now because it is included in the field modification, however, will have a

role in the proof complexity described next.

To analyse the impact score at function-level, or the proof element, we must read

the previous Tables [ 12.2, 12.3, 12.4, 12.5] row-by-row instead of column-by-column.

Indeed, as the proof targets are the properties, we must sum all the scores for all

properties to prove for the set of modifications in the function.

Definition 12.3.1 (Function impact score). For the set of properties P to prove (|P | = p),

the instructions I of the function F (|I | = n) and the matrix relating the two sets M = (P , I),

the impact score IS of F is defined as

IS =
n,p∑

i=1,j=1

M[Pj , Ii]

Similarly, the impact score of a service is the sum of all scores of its proof elements.

The properties to prove include all properties of the isolation invariant, including the

security properties.

Definition 12.3.2 (Service impact score). For a service S composed of the set of proof

elements P E (|P E| = pe) which impact scores are registered in the set ISP E, and having

instructions I (|I | = n) in its own main service function, the properties P of the isolation

invariant (|P | = p), and considering the matrix relating the two sets M = (P , I), then the

impact score ISS of S is defined as

ISSS =
n,p∑

i=1,j=1

M[Pj , Ii] +
pe∑
i=1

ISP Ei +C

C = 1 is an additional impact score added to each proof element because there are always

local adjustments to apply.

We illustrate the metric with the addMemoryBlock service.

First, we compute the impact score of the inner function insertNewEntry. It has

14 instructions, of which 10 are modification instructions. By summing all impact

scores of these modification instructions given Table 12.6, we obtain a total score of:

(2+3*)+(1+3*)+(3+5*+3*)+(1+7*+3*)+(5+7*+3*)+(4+2*+1*)+2+2+2+2=24+37*.

Then, we compute the impact score of the main service function. It has 29 in-

structions, of which 2 modification instructions. The impact score of the main service
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function is then 3+3=6.

Finally, we sum everything up and get the final impact score of 30+37*. This score is

definitely higher than a service without any modification instructions, like findBlock,

which has an impact score of 0.

12.3.3 Property complexity

The impact score is not sufficient to describe the difficulty to conduct the proofs. Indeed,

the properties themselves participate in that difficulty.

I retain four property characteristics that elevate the property complexity: 1) the

size of the property (the number of sub-propositions) 2) the number of lists 3) the

number of variables involved 4) the number of final proof goals (the size of the last

sub-propositions). Concerning the size of the property, it has a direct influence on

the proof context, which must be adapted and transformed to solve the proof goal.

About lists, we have seen that the proof impact could be lowered by setting up lemmas

that state the expected list modifications. After the creation of the lemmas, only their

number implies additional proof work. Regarding the number of variables, they imply

additional combinations in the proof script. For example, if two partitions are expected,

like in the security properties, the proof must explore the different combination of these

partitions. Finally, à propos the number of final goals, they state the number of proofs to

provide to solve the global proof goal.

Given these characteristics, we end up with the property complexity matrix repre-

sented in Table 12.7 computed for Pip-MPU’s isolation invariant properties. The table

shows heterogeneous complexities, with higher complexities in the security properties,

and the properties freeSlotsListIsFreeSlot, DisjointFreeSlotsLists, accessibleChildPaddrIsAc-
cessibleIntoParent and sharedBlockPointsToChild, which means more case discriminations

in the proof script, more lists, richer proof context and more proof goals that complicate

the proof.

12.3.4 Proof complexity

The proof complexity reflects the overall difficulty that requires problem-solving capa-

bilities. It is a combination of the instruction impacts and the property complexities.

Definition 12.3.3 (Instruction proof complexity). The proof complexity P C of an instruc-

tion I is defined as the multiplication of the corresponding column in the instruction

impact matrix IIM with the total column in the property complexity matrix P CM.

P CI = IIM[I] ∗ P CM[T otal]
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nullAddrExists 1 0 0 1 2
wellFormedFstShadowIfBlockEntry 2 0 1 1 4
PDTIfPDFlag 2 0 2 4 8
AccessibleNoPDFlag 4 0 2 1 7
FirstFreeSlotPointerIsBEAndFreeSlot 2 0 2 2 6
multiplexerIsPDT 1 0 0 1 2
currentPartitionInPartitionsList 1 1 0 1 3
wellFormedShadowCutIfBlockEntry 2 0 1 2 5
BlocksRangeFromKernelStartIsBE 3 0 2 1 6
KernelStructureStartFromBlockEntryAddrIsKS 3 0 2 1 6
sh1InChildLocationIsBE 3 0 2 1 6
StructurePointerIsKS 2 0 2 1 5
NextKSIsKS 5 0 3 1 9
NextKSOffsetIsPADDR 3 0 2 1 6
NoDupInFreeSlotsList 2 1 2 3 8
freeSlotsListIsFreeSlot 6 1 4 1 12
DisjointFreeSlotsLists 4 2 2 5 13
inclFreeSlotsBlockEntries 3 2 1 1 7
DisjointKSEntries 4 2 2 1 9
noDupPartitionTree 1 1 1 1 4
isParent 3 2 2 1 8
isChild 3 2 2 1 8
accessibleChildPaddrIsAccessibleIntoParent 4 4 3 1 12
noDupKSEntriesList 2 1 1 1 5
noDupMappedBlocksList 2 1 1 1 5
noDupUsedPaddrList 2 1 1 1 5
sharedBlockPointsToChild 7 5 5 2 19
MPUInAccessibleBlocks 3 1 2 1 7

Se
cu

ri
ty verticalSharing 3 4 2 1 10

partitionsIsolation 5 5 3 1 14
kernelDataIsolation 3 4 2 1 10

Table 12.7: Property complexity matrix PCM in Pip-MPU.
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At a function level, proof complexity indicates the difficulties brought by each

instruction to prove the properties.

One particularity is the type of the entry which is modified. Indeed, types are

included in the field change, in the sense that the type must be known to modify a

value. However, from the proof point of view, the interest is not in the number of type

modifications. Indeed, if several instructions modify the same address with the same

type, we can extract the type property from the first instruction encountered and use it

in all properties that require it.

Hence, the impact of type modification must be seen from a function perspective.

It depends on which type is modified and how many different memory addresses are

modified.

Definition 12.3.4 (Type function proof complexity). Consider the map M : I → (T ,A)

mapping the instructions I to their type in the set of types T and the modified memory

address from the set of memory addresses A.

The type function proof complexity T FPC of function F is defined as the set of

tuples TA = {(t,a)|t ∈ T ∧ a ∈ A} of size s corresponding to M applied to all instructions

of F multiplied with the corresponding type impact score T IS:

T FPCF =
s∑

i=1

T IS[TAi[t]]

For example, the function insertNewEntry manipulates three different types: PDT ,

BE and SCE. For each type, only one memory address is associated, so three differ-

ent addresses. Hence, the part of the function proof complexity due to the types is

T IS[PDT ] + T IS[BE] + T IS[SCE] =14 + 8* + 15 + 13* + 3 = 32 + 24*.

Finally, we can define the function proof complexity encompassing the instructions

and the types used in the function.

Definition 12.3.5 (Function proof complexity). The proof complexity P C of a function F

composed of n instructions is defined as the sum of each instruction’s proof complexity

added to the type proof complexity of F.

P CF = T FPCF +
n∑
1

P Ci

For example, we consider the service addMemoryBlock.

The service’s modification instructions in its main function are writeSh1PDChildFrom

BlockEntryAddr, which modifies the PDchild field of the Shadow 1 entry, and writeSh1

InChildLocationFromBlockEntryAddr, which modifies the InChildLocation field of
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Instruction proof complexity
Instructions Proof complexity

writePDFirstFreeSlotPointer 13 + 3*
writePDNbFreeSlots 7 + 3*
writeBlockStartFromBlockEntryAddr 26 + 8*
writeBlockEndFromBlockEntryAddr 7 + 10*
writeBlockAccessibleFromBlockEntryAddr 33 + 3*
writeBlockPresentFromBlockEntryAddr 35 +10*
writeBlockRFromBlockEntryAddr 18
writeBlockWFromBlockEntryAddr 18
writeBlockXFromBlockEntryAddr 18
writeSCOriginFromBlockEntryAddr 18

Sub-total 193 + 37*

Type function proof complexity
Number of different PDT type addresses : 1 14+8*
Number of different BE type addresses : 1 15+13*
Number of different SHE type addresses : 0 0
Number of different SCE type addresses : 1 3
Number of different PADDR type addresses : 0 0

Sub-total 35 + 21*

Total 228 + 58*

Table 12.8: Illustration of the computation of insertNewEntry’s proof complexity.

the same Shadow 1 entry. They have respectively a proof complexity of P Csh1entry.pdchild =

6 ∗ 1 + 12 ∗ 1 + 19 ∗ 1 = 37 and P Csh1entry.inchildlication = 6 ∗ 1 + 6 ∗ 1 + 12 ∗ 1 = 24.

The function insertNewEntry has a proof complexity of P CinsertNewEntry = 228 + 58∗
as computed in Table 12.8 from IIMs [ 12.2, 12.3, 12.4, 12.5], T FPC 12.6 and P CM

12.7, if we consider all consistency properties. addMemoryBlock’s main function proof

complexity is then the sum of the two computed proof complexities : P CaddMemoryBlock =

37 + 24 + 228 + 58∗ = 289 + 58∗.
At a system level, the global proof complexity depends on the proof elements that

are the most difficult to prove.

Definition 12.3.6 (Overall proof complexity). The overall proof complexity OPC is the

highest proof complexity in the set of proof complexities P C found in the service-level

proofs:

OPC = max(P C)

12.3.5 Proof effort

The proof complexity must be distinguished from the proof effort 12.1.2.
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There are many ways to compute the proof effort. For example, it can be retro-

spectively computed as the person-hours or person-months dedicated to the formal

verification activity. Unfortunately, this measure does not consider the difficulty of the

task and the experience of the proof developers. As such, man-months is an excellent

standard measurement of the amount of work and can be used for financial tracking,

however, little does it say if the same work could be done faster and how difficult it was.

In this work, we introduce the notion of estimated proof effort.

Definition 12.3.7 (Estimated proof effort). The estimated proof effort EP E relies on the

proof complexity P C of the n (n ∈ N) proof elements to prove.

It is defined as:

EP E = n+
n∑
i=1

P Ci

n again represent the one-time cost to locally adapt the proofs to the reusable elements.

With EP E, one can plan the work in advance and has an idea of the complexity of

the task. EP E can be adapted to any project given a clear definition of the expected

proof complexity.

12.4 Proof path best effort strategy

In the previous chapter, we adopted a blind proof approach (horizontal and vertical

explorations) to cover all services and rapidly discover the properties to prove.

addMemoryBlock had been chosen for the first vertical exploration because it touched

many memory types, had an internal function, modified the state, and touched many

properties of which security properties. It allowed us to test our proof process. Retro-

spectively, with the matrix from the previous section, the service has a proof complexity

score of 289 + 53*. The score is high, but not as high as cutMemoryBlock because the

latter not only relies on the same internal function but also on additional functions.

Now that formalisation is set up and properties discovered, is it possible to opti-

mise the remaining elements to prove? In other words, the overall proof effort can

be estimated, but is there any order in the proof elements that is better than another?

In the following, we discuss the proof path strategy followed in Pip-MPU that proves

incrementally the services by minimising the proof effort at each increment.

12.4.1 Proof path strategy

The formal verification process is only finished once all proof elements are proven.

However, there are multiple ways to reach the ultimate goal; for example by proving the

services by alphabetical order or by proving first all internal functions and primitives

and later the services.
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In Pip-MPU, the chosen strategy is to provide a proof coverage metric by validating

the services one by one. It seems more reliable to be able to prove a service first, than

all internal functions, because it challenges the full isolation invariant, including the

security properties, and it allows a certain room for change in the design of unproved

elements (otherwise it implies changes in existing proofs). The order in which the

services must be proved is computed thanks to the Algorithm 3 where the goal is to

minimise the current proof effort and to maximise the proof coverage. Indeed, we favour

a service which proof effort is lower than others, but also permits to lower the proof

effort of the remaining services because its proof elements are reused. Hence, a high

reusability metric 12.2.8 provides more flexibility to chose the best proof path strategy.

Algorithm 3 Proof path best effort strategy algorithm.
1: service_order← []
2: current_proof _ef f ort← []
3: next_proof _ef f ort← []
4: repeat
5: for service in services do
6: proof _path← get_proof_path(service) { Get the proof path for service}
7: current_proof _ef f ort[service]← get_current_proof_effort(proof_path) { Com-

pute the current proof effort }
8: next_proof _ef f ort[service]← get_next_proof_effort(proof_path) { Compute

the benefit for the other services }
9: end for

10: current_proof _ef f ort_min← get_services_with_min_current_proof_effort (cur-
rent_proof_effort) {Take the minimum of the first value}

11: if length(current_proof _ef f ort_min) > 1 {if several services have the same cur-
rent proof effort} then

12: next_proof _ef f ort_max ← get_services_with_max_next_proof_effort (cur-
rent_proof_effort_min, next_proof_effort) {Take the maximum of the second
value out of the services with the minimum current effort}

13: selected_service← next_proof _ef f ort_max[1] {Always take the first service in
the list, even if several services have the same score }

14: else
15: selected_service← current_proof _ef f ort_min[1]
16: end if
17: service_order.add(selected_service) {Add the selected service in the service order

list}
18: remove_proof _path(selected_service) { Remove all elements of the chosen ser-

vice’s proof path }
19: until all services in service_order
20: return service_order{ Returns the service order}



12.4. Proof path best effort strategy 227

Iteration ad
dM

em
or

yB
lo

ck
cu

tM
em

or
yB

lo
ck

m
ap

M
PU

m
er

ge
M

em
or

yB
lo

ck
s

pr
ep

ar
e

cr
ea

te
Pa

rt
iti

on
co

lle
ct

de
le

te
Pa

rt
iti

on
re

m
ov

eM
em

or
yB

lo
ck

re
ad

M
PU

fin
dB

lo
ck

1 2/1 7/11 4/3 9/10 12/8 8/9 7/7 7/6 6/4 1/0° 1/0
2 2/1 7/11 4/3 9/10 12/8 8/9 7/7 7/6 6/4 0/0 1/0°
3 2/1° 7/11 4/3 9/10 12/8 8/9 7/7 7/6 6/4 - 0/0
4 0/0 6/10 4/3° 9/10 12/8 8/9 7/7 7/6 6/4 - -
5 - 4/7° 0/0 6/1 12/8 8/9 7/7 7/6 6/4 - -
6 - 0/0 - 4/3° 7/3 6/4 4/0 5/1 4/0 - -
7 - - - 0/0 5/0 4/1° 4/0 5/1 4/0 - -
8 - - - - 5/0 0/0 4/0 3/0° 4/0 - -
9 - - - - 5/0 - 4/0° 0/0 4/0 - -
10 - - - - 5/0 - 0/0 - 4/0° - -
11 - - - - 5/0° - - - 0/0 - -
12 - - - - 0/0 - - - - - -

Table 12.9: Proof path best effort strategy iterations of Algorithm 3 applied to Pip-MPU.
Each iteration reveals a new score depending on previously selected services. The score
is given as a tuple: current_proof _ef f ort/next_proof _ef f ort. A service is marked
with ’°’ at the iteration when it is selected. Final service order: [readMPU, findBlock,
addMemoryBlock, mapMPU, cutMemoryBlock, mergeMemoryBlocks, createPartition,
deletePartition, collect, removeMemoryBlock, prepare]

12.4.2 Illustration of Pip-MPU’s proof path strategy

We illustrate the Algorithm 3 with Pip-MPU’s proof path strategy in Table 12.9.

For the sake of simplicity, we approximate the proof effort computations. The current

proof effort on a proof path is the number of proof elements on the path. The next proof

effort is computed as a sum of all incoming edges on a proof element minus its own

incoming edge on the proof path (only keeping the additional incoming edges). Indeed,

as described earlier, incoming edges on a proof dependency path represent the reusable

lemmas which benefit other services as well.

At each iteration, the current proof effort decreases for the other services only if

they had reusable lemmas also required in the last selected service. Note that this

illustration is an example that can be deepened with more accurate proof effort based

on previously presented estimate proof effort EP E. In such case, for instance at iteration

10, we would have probably chosen removeMemoryBlocks instead of collect because

the proof complexity analysis would have shown a lower score.
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12.5 Proof dashboard

The proof dashboard is a dynamic tool that reports the proof status. It modifies the

perspective on proofs as proof development progresses. The dynamism is required given

our proof strategy, with horizontal and vertical explorations and to adjust with incoming

events like new discovered consistency properties or design modifications, as well as to

report the progress of a long-lasting activity.

At the beginning of Pip-MPU’s proof development, we have the complete view of

the proof dependency graph. The goal is to develop all the proof elements. We can then

present the proof status by a graph coverage.

However, having a coverage at the proof-element-level is not precise enough and

the proof status would not change for a long time. For example, with addMemoryBlock

it would mean to wait for the proof of insertNewEntry which takes a lot of proof

effort. In addition to that, the detailed proof complexities presented in Section 12.3

cannot be computed because consistency properties are unknown at that stage. Thus,

we would like an instruction-level rough estimation for the first moments of the proof

development.

The first estimate is based on the number of instructions which have been visited

during our Hoare instruction breakdowns. The current proof pointer gives the ratio

of proof coverage depending on the number of remaining instructions in a service. In

the horizontal exploration phase, this gives an advancement report, with underlying

formation of the formalisation and the checking primitives. The Figure 12.2 illustrates

the proof coverage after the horizontal exploration stage.

The remaining proofs are actually composed of new proof elements, such as functions

and write instructions, but also embed similar instructions to what has already been

proven, like read instructions. In such case, the proof is facilitated, only requiring local

adjustments. Figure 12.2 also shows the amount of reusable elements already proven,

which should not be difficult to pass.

However, concerning proof elements that have not yet been similarly proven, there

are uncertainties. The intuition guides us to state that the remaining proofs are not of

equal complexity if we just consider the instruction: a write instruction might be hard,

but harder to prove is a function with several write instructions. As such, we approach

the proof complexity by knowing four function characteristics that give a minimal sense

of the proof effort: 1) the number of instructions 2) the instruction modifies the memory

state 3) the instruction calls an inner function 4) the function is recursive because a loop

invariant must be found. The proof dashboard then shows, in the remaining proofs,

what amount is really challenging.
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Figure 12.2: Proof status after the horizontal exploration stage approximated by proof
elements, not considering the proof complexities.

Granularity Metric

All services Proof coverage by number of proven code instructions
For a function Proof complexity (rough estimation or fined-grain analysis)
For a service Number of proven properties of the isolation invariant

Table 12.10: Proof dashboard overview: metrics depending on the granularity.

During the vertical exploration stage, we zoom on a service. In addition to the

current proof pointer and the amount of difficult proofs, we are now able to make a

fine-grained analysis of the proof complexity as described in Section 12.3. The service’s

proof complexity score becomes the new goal and it is possible to compute the estimated

proof effort, which can be transformed in time and tasks. The dashboard then reports the

remaining proof activities to complete the proof of the service until the last instruction.

At the last instruction, the proof goal is the isolation invariant. The dashboard then

breaks the latter property by property. The amount of proven properties compared to

the complete set of properties reports the advancement.

12.6 Discussion

The world of metrics is large and the selection of meaningful metrics is hard.

For example, in Pip-MPU, because the kernel is not fully formally verified yet, we

could also add the metric of the keyword Admitted which replaces the keyword Qed

when all proof obligations have not been satisfied. But we might want a more fined-

grain analysis, so not just the fact that it is partially proven, but how much the code is
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really proven. However, this raises the issue of the proof complexity, that we provide in

Section 12.3, that can be further quantified.

The same goes for the ratio of the number of SLOC over the number of proof tactics:

give a sense of the higher effort to develop the proofs than to develop the code of the

corresponding service. But this does not consider the design time of the services which

comes before the actual development of the services. This leads to the involvement of

the design time in the proof process comparison; for example the ratio of the design

time with the service development time against the formalisation time and the proof of

all services.

The granularity which gives the sufficient sense of understanding and the minimal

set of meaningful metrics are not fixed yet.

More than that, common metrics in different verification projects might not be

computed the same and comparisons might end in false interpretations.

For example, the definition of lines of code and lines of proofs are different: does

it include comments, empty spaces, function prototypes? Also, different interactive

theorem provers are used across these projects, so the measurement of lines of proof

means different things. It also depends on the proof style of the proof developer or

the development team. In Pip-MPU, the clarity and understanding of proofs implies

many comments, proof scripts decomposition, sometimes duplicates, that penalises a

metric like the ratio of code and proof lines. This is why comments are removed from

the metric because they do not essentially mean a higher effort in proofs.

Furthermore, the proof complexity scores can be further deepened to be as close as

possible to a realistic expected proof effort.

To take an example, in any of our scores, we only considered additional instructions

as elevating the complexity. This might not always be true. As an illustration, the

simple case where an instruction writes another value at some address and just after

writes back the initial value at the same address again, does not modify the state at the

end, however disturbs the proofs and properties. Our complexity score also omits any

proof complexities on the lists because we said we created specific lemmas to apply at

the modification instruction, which reduces the complexity. However, this is without

considering that some lemmas relies on consistency properties, for example the list

getKSEntries (get the list of slots in a partition) relies on StructureP ointerIsKS in

case the modification affects a PDT type, because any change to the structure field

of the modified PD entry completely changes the list. The cost of the lemma is then

non-trivial.

Proof and code metrics must be further linked together to capture these combina-

tions.
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In addition to that, we advocate for a high code modularity that can be inherited

by the proofs. This is usually not expected from a pure software perspective, where

it has significant advantages like ease of code maintenance, however implies more

generalisation costs by a longer design time and refactoring.

Without modularity, there might be less time in the design process which would

facilitate the proofs by copy-pasting similar proof scripts. However, similar patterns

would be difficult to track and a lot of time would be lost during maintenance.

Also, a proof development largely based on proof modularity includes a pre-analysis

of the proof elements. It helps to reduce the mistakes of proving several times a similar

lemma by knowing in which other service it has been already proven.

A high reusability score entails plenty of proof bricks to assemble for further devel-

opment, for example if the API is extending to new services.

Finally, the impact scores give an idea of impacts on the current set of properties,

which is not yet final. While the horizontal exploration identified most of the consistency

properties of the system, we expect some modifications of the set, and in turn the scores.

For example, the table currently gives us the impression that the Shadow Cut fields do

not impact the properties very much, which is true for the current set of properties.

However, we expect some properties about these fields to be discovered for the services

cutMemoryBlock and mergeMemoryBlocks, which will change the score matrix.

12.7 Conclusion

Metrics enable to qualitatively or quantitatively measure some characteristics that help

the proof process during design, verification and maintenance stages.

We propose here new metrics to track and analyse the proof process. We present the

effective reusability metric that demonstrates the benefits of matching proof elements

with code modularity. We introduce proof complexity scores which depend on the

impacts on the isolation invariant and is computed from the instruction-to-the service

perspective. This enables a definition of the estimated proof effort that can be used to

split the work and track the achievements.

Furthermore, our proposal encompasses a procedure to select the best proof path

strategy. The goal is to make an informed choice of a proof direction with optimisations.

In Pip-MPU, the proof increment is the service. The order in which services are proven

is chosen to minimise the current proof effort and maximise the benefits for the other

proof elements. The proof effort progressively incorporates weighted proof complexities

in order to assess the real effort.

Moreover, we construct a proof dashboard that dynamically reports the proof

progress. The current proof view is refined by proposing different metrics for vari-
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ous proof stages (rough estimates of proof coverage or detailed analysis with complexity

scores).
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Review

Pip-MPU exhibits strong isolation guarantees by the use of formal methods. The formal

verification demonstrates that Pip’s security properties, that ensure spatial partitioning,

are satisfied by Pip-MPU. Several Pip-MPU services have been formally verified for

isolation.

Pip-MPU relies on Pip (MMU)’s proof workflow and could reuse low-level proofs

on memory manipulation. However, Pip (MMU) is too strongly rooted in the concept

of memory page due to the use of the MMU and virtual memory. This results in

totally different code bases, memory state and properties expressions, and thus totally

different high-level proofs. Nevertheless, it demonstrates the successful adaptation of

Pip (MMU)’s proof framework performed at implementation level.

The formal verification of the services also questioned the process and the proof path.

Pip-MPU did not follow the co-design process used in Pip (MMU) but rather leverages

novel techniques based on proof checkpoints. This work also modified the memory types

that revealed efficient ways to discriminate cases and simplified the proofs by requiring

a smaller proof context. Furthermore, this part unveiled proof strategies to efficiently

discover the consistency properties which depend on the memory representation and

hence different from Pip (MMU) but with some similarities. The horizontal and vertical

exploration strategies developed in this work enable a fast covering of many consistency

properties that facilitate the proofs of the first modification service and proofs thereafter.

Indeed, each time a new consistency property is discovered, it must also be satisfied
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in all other proofs already developed which severely impacts the proof effort. With a

good coverage from start, there will be less iterations on the proofs and less global proof

efforts.

The formal verification process followed a best effort proof path. Specific proof

metrics have been developed to reveal the most efficient proof path that increases the

number of proven services while having a minimal proof effort for the next service to

prove. Several subsidiary metrics have been developed to refine the analysis on the

proof effort of software components in the form of a dynamic dashboard reporting

the progress depending on the proof complexity. These metrics rely on the intrinsic

expressions of the properties and the dependency graph linking the services based on

the shared internal functions.

Perspectives

Pip-MPU and Pip (MMU) do not share the same hardware platform. However, Pip-

MPU’s verification process demonstrates that proofs can be adapted even if the hardware

base changes. Pip’s partitioning scheme could be adapted for other platforms, for

example using the SAU (Security Attribution Unit) that is close to the MPU but present

only for ARMv8 versions or even memory capabilities (much like what is currently

done on the Morello board [10]) which would challenge the design and the verification

process even more.

Furthermore, the proof metrics developed in this part are useful information to select

a verification path. Because the proof development cost easily overtakes the design cost,

it is necessary to find new metrics and proof strategies that lower the overall proof effort.

In addition to that, proofs are meant to last, especially given the verification cost and

the strong guarantees it demonstrates. Research is also investigating the maintenance of

proofs, for example proof repair tools [150], to keep the proofs up-to-date when the

code base changes.

At last, Pip-MPU’s proof assumptions are similar to Pip (MMU)’s, other formally

verified projects and Hoare logic limitations [90]. The goal is to lower them down which

erases the minimal trust required to perform the verification, e.g in tools, toolchains,

and hardware platforms. With Pip-MPU, we already have the possibility to use a trusted

toolchain from Coq to the machine code, by leveraging the δx tool and CompCert [186],

toolchain that has already been successfully utilised [188]. Nevertheless, two links are

missing to have a complete end-to-end verification from the design to the hardware:

the hardware itself and the HAL manually written in C. About the hardware, formal

hardware specification have recently being investigated [147] for different processor

architectures. A machine-readable specification could then be connected to the hardware
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model used in Pip. Concerning the HAL, we could eventually use CompCert to construct

the HAL’s AST and import it into Coq. There, it should connect or replace the current

HAL model.

Takeaways

• We formally verify that Pip-MPU follows Pip’s security properties, i.e. Pip-MPU

replicates Pip’s partition tree (notably isolation)

• We have a partial proof of the isolation property in Pip-MPU’s services (two

services fully formally verified, one almost complete), both informal and formal

by the use of the Coq proof assistant

• The proofs are conducted at implementation level

• We inherit Pip’s proof workflow with evolution on the proof techniques

• We develop novel proof metrics to drive the proof path with minimal stepwise

efforts

• We propose to track the proof progress by a dynamic proof dashboard that adapts

the metrics for various proof stages
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Contributions and perspectives

This work compiled the following main contributions:

• A framework to set up MPU-protected software components in a flexible and

hierarchical design

• Pip-MPU, the Pip protokernel adaptation for constrained devices

• The formal verification of Pip-MPU’s security properties
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• Proof techniques and proof metrics to drive the formal verification process and

communicate the proof progress to non-experts

All in all, this work demonstrated the design, implementation and verification pro-

cesses of Pip-MPU, a secure kernel for constrained devices, by adapting the proposed

framework to Pip’s strict security policy and by formally verifying Pip’s security prop-

erties by minimising the proof efforts. Pip-MPU not only thwarts cyber attacks of our

considered attacker model (cf. Section 7.7) but also do so with a high-level of confidence.

The MPU-based memory isolation solution presented in this thesis outperforms

current solutions by being way more flexible.

Beyond the formally verified Pip-MPU kernel, this work showed broader applications

of the contributions that echo to our thesis announced in Section 4.1.

A framework to set up MPU-protected software components in a flexible and hi-

erarchical design The framework is generic and portable. Operating systems and

applications with different global security policies than Pip’s can customise the frame-

work and still benefit from the flexibility for complex applications, finer-grained control

over the system components and many implicit privilege levels, while ensuring MPU-

protected domains. Furthermore, the framework also allows custom local policies,

within the frame of the global security policy, which further adjust the security model

at closest to the needs. Protection from stack smashing or from the network stack,

W^X principle enforcement, isolation of the OS from the applications and between

applications, are some examples of possible local security policies that can be set up by

the framework.

Pip-MPU, the Pip protokernel adaptation for constrained devices This dissertation

describes the successful adaptation of an MMU-based separation kernel to be MPU-

based. Despite the hard constraints on resources, we demonstrated the flexibility as well

as security could be replicated.

Pip-MPU is an isolation layer that can be deployed on most constrained devices. The

evaluation showed great security benefits for reasonable downgrades in performance

and energy. With my research teams, we are currently successful to port the RIOT OS

[151] over Pip-MPU. These are parallel activities to this work, however validate the

position of Pip-MPU as a secure-by-design basis for existing bare-metal applications

and multi-threaded operating systems in real-world scenarios. The port comes without

functional loss.

The formal verification of Pip-MPU’s security properties Confidence in an MPU-

based isolation kernel has never been so high in other systems than with Pip-MPU’s
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security properties formal proofs.

The glitch from an MMU-based to an MPU-based hardware platform showed equiv-

alent guarantees, provided deep adaptation because of divergent hardware models. This

work stressed the impacts of this glitch and also presented means to harmonise the

formalisation to increase proof reusability.

In addition to that, proofs give insights on the assumptions required to obtain the

desired properties, even hardware assumptions. With Hoare logic, changing hardware

platform changes the initial assertions, which must imply the current pre-conditions

to keep the program’s correctness, otherwise the proofs fail. It explicitly shows what is

unconsciously inferred by the developer and would have shown in Pip-MPU’s case the

impossibility to reuse the same code because the specification (the expressions of the

security properties based on an incompatible hardware model) do not match without

adaptation. The developer is not tricked into using a program in an inconsistent way

that would invalidate the proofs, and so avoids unpleasant surprises when executing

the code.

Furthermore, the Pip development team currently studies the propagation of the

proven properties to the application-level.

Proof techniques and proof metrics to drive the formal verification process Proof

development takes time and intellectual efforts, much more than the implementation

and the design phases. Applying the proof strategies presented in this dissertation,

at local (service) and global (full API) levels, can reduce them. The proof techniques

accelerate the discovery of important properties for the final proof goal. They can

be leveraged for other formal verification projects and give alternatives when other

techniques do not fit some specific proof stage like co-design of code and proofs which

implies returns to the design phase.

We also discussed new proof metrics that compare different approaches and give

a finer understanding of the properties to prove to select the best proof path. Proof

metrics are in its infancy and much is to be done in this area to comprehend the proof

development process from a proof engineering point of view. Proof efforts are still high,

and this work shows no exception; however so does testing as well as bug finding and

correction during the lifetime of a product. Proofs showing less effort could be more

cost-efficient by identifying all these bugs and undefined behaviours prior to execution

and market launch.

Open-source All the contributions developed in this work are publicly released under

open-source licences. This is the foundation for a widespread adoption of the solution

or an open inspiration for systems that want to exhibit strong security guarantees to
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participate in a global security outreach effort in the ecosystem of constrained devices,

but also to get higher market value at lower cost.

Limitations of the approach

One rigid limitation is of course the availability of the MPU, which is an optional unit.

Many reasons let developers put aside the MPU even when there is one, should it be

because of the hardware constraints, the power it drains, or the time-to-market pressure

and lack of time to set it up. However, we argue the protection it provides is sufficient

to reach a high level of security when correctly configured and Pip-MPU is formally

verified for that.

Furthermore, some changes are expected on existing MPU-based software compo-

nents or bare-metal applications to use Pip-MPU. Our current work-in-progress RIOT

OS port shows no great difficulties, however non trivial changes could be required for

other systems that want to benefit from the flexibility and determinism of some of the

system calls like systems with real-time constraints that can only be assessed by doing a

port.

Proof assumptions are minimal and similar to other formally verified kernels. One

of the most unsure assumptions is that the hardware correctly behaves. No formal

specification, and no formal verification of the hardware implementation are currently

at disposal. This work is based on a hardware specification extracted from our under-

standing of the inner workings of the hardware components. It is a simplified view that

does not capture all implementation specificities. Recent research unfortunately showed

this assumption fails for current hardware components, like Spectre and Meltdown [110,

120]. Fortunately, processor designers now aim to fill the security gap by evolving

processor architectures tampered against micro-architectural attacks, like the given

example of Arm and its Morello board. On a side note, this timing shows we enter a

mature functional era where cyber security is really being investigated at any level, from

hardware to software.

The formal verification process of Pip-MPU is not finished and most of the services

remain to be proven. The most difficult part of the verification journey has nevertheless

been reached, with a fully functional formal baseline and many developed theorems that

greatly facilitate the remaining parts to prove. The limitation is of course the size of the

elements to prove. Pip-MPU has a small code base which reduces the attack surface but

especially reduces the number of elements to fully prove. Small systems like embedded

systems are simple enough to apply formal verification in real-world scenarios.

Despite these encouraging first steps, formal verification raises supplementary diffi-

culties. The proof development is a long-lasting effort, but also requires expertise, not
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even evident for "programmers of high caliber"(Tony Hoare) [90]. Finding such human

resources are difficult, especially stemming from computer engineering grad students,

and the necessary time to train them is as much time less spent on research.

Insights and learnings on the design of Pip-MPU

The creation of Pip-MPU, by adapting the existing Pip protokernel, was not a straight-

forward journey. Overcoming this challenge meant solving several non-trivial issues by

making informed choices on the design and the methodology. I wish to give here some

insights of our thoughts and the critical choices we made for future adaptations of Pip

or other systems also required to change their hypotheses on the underlying hardware.

The following sections are partially based on work initially discussed in the paper [53].

This section is voluntarily informal and topics are approached in more general terms.

History and methodology

Trade-off is usually the golden word in embedded systems, especially constrained

devices, when it comes to satisfying their requirements. The low-end embedded system’s

expectations, notably composed of the SWaP-C factors, are evolving to reach another

level of complexity, for a more agile and secure ecosystem (for example IETF SUIT [92]

for software updates for IoT published last year (2021)).

The notions described in the previous chapters do not follow the chronological

order. Indeed, from the very start, the adaptation of Pip for constrained devices was the

target, as the flexibility and security brought by Pip would benefit the IoT ecosystem as

explained above. However, we found no example of a secure MMU-based systems that

had been adapted to MPU-based platforms. Our initial leads (cf. section III below) lifted

more challenges than answers.

We then decided to conduct a survey of state-of-the art MPU-based memory isola-

tion solutions by exploring the available documentation and source codes. Section III

indicates, with extended remarks of previous state-of-the-art comments from Chapter 3,

an active community proposing flourishing ideas to overcome some of the challenges.

However, none really fit our problematic, and as Pip requires both flexibility and se-

curity, many times presented as incompatible aspects in the state-of-the-art solutions,

we were back to our initial point. In the opposite, Pip’s genericity was compatible with

almost all, if not all, solutions as a primary basis for their memory isolation.

We elaborated Pip-MPU’s design phases as multiple feedback loops illustrated in

Figure 12.4. This activity led to multiple scenarios setting up Pip’s partitioning scheme.

Anticipated impacts on performances, algorithm complexity, memory, flexibility, proofs

were closely monitored that revealed candidate scenarios. Some scenarios shared char-
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acteristics, so we identified the ones that were the most adapted to our requirements as

developed below. Furthermore, as Pip-MPU is an adaptation of Pip (MMU), they were

initially expected to be similar, so we connected all scenarios based on the identified

characteristics that disclosed the efforts of adaptation, starting from Pip (MMU)’s design.

We selected the path reducing the efforts while reducing the impacts at most (again,

trade-offs had to be made, especially for technical details coupled with the MPU as

discussed in the previous chapters).

The scenarios pointed out that other systems might have lighter or stronger re-

quirements than Pip-MPU, which tries to be the most generic as possible. Especially

concerning the security policy, our preliminary studies showed lots of disparities in

how they use the MPU for the targeted protection. The framework (Chapter 6) was

born in this context, a generalisation of Pip’s concepts. It gives more flexibility to cur-

rent systems and allows them to customise their systems policies to match their own

requirements and use cases.

Concerning the development of the retained scenario, we used a step-by-step ap-

proach. We first developed pseudo-codes for our services, implemented them in Python

scripts with unit tests, and then transposed them in Gallina within Pip’s development

pipeline. While we forked Pip’s project for our initial intervention on the code, we ended

up to change it almost completely because the original code was too tightly coupled

with the notion of a memory page, which has no more sense for Pip-MPU (at the same

time too rigid with fixed size pages, but also too flexible with millions of available pages

at system start).

I explain in the following the different points I mentioned above. They testify our

delicate trials to select the complex combination of performance, security, and features

which composes Pip-MPU.

Initial thoughts and technological locks

High-end and low-end devices belong to different classes of devices featuring different

hardware platforms. We quickly identified that the MMU was not available on low-

end devices and that the access control role could be overtaken by the MPU. The MPU

seemed to be a good candidate given the MPU region protection with configurable access

permission rights. The MPU solved the security aspect and would be our hardware base,

the design of Pip-MPU started. But we rapidly faced the issue of flexibility.

Indeed, we first imagined a one-to-one relation between the MPU region and the

MMU memory page. This would have been possible by removing all indirection levels

of the MMU, as if we ended up with the last MMU level only with a reduced size.

However, the limitation was too strong with only an 8 (maximum 16) entry-table

for the last MMU level corresponding to the number of MPU regions. There was no
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flexibility, or immensely reduced if we considered two MPU regions per partition (code

and data regions), and peripherals were out of consideration. Hence, we formulated

the requirements for Pip-MPU: same behaviour as Pip (MMU) and so very flexible,

same guarantees of isolation and thus formally verified, adapted to constrained objects

(memory footprint, reasonable complexity depending on the operation, low impacts on

performances and energy consumption). As formal verification of Pip-MPU’s services

was required, we already targeted to keep as many Pip structures as possible because

they are tied to the underlying proofs. Our initial hope was to reuse many parts of Pip’s

proofs if we kept close to the structures (which ended up to be false, see next part on

formal verification for more insights on this matter).

Our search for flexibility led us first to conduct a survey on existing solutions using

the MPU to set up some form of memory isolation.

Preliminary studies

This section does not aim to repeat previous sections of the dissertation, but to propose

another reading grid.

A flourishing state of the art... Chapter 3 showed the existence of many systems

that offer memory isolation for constrained devices (mostly ARM Cortex-M and many

of them are open-source). We know by their sole existence and date of release that

research on this topic has accelerated in the last ten years. We also understand there is

a search for security and flexibility/agility, for example with µVisor and its sandboxes

(developed by ARM, so they also tried to find solutions for the technical hassle of the

MPU region alignment, which maybe led to the simplified ARMv8-MPU), TockOS by

loading/unloading applications on the fly, the lost effort of security by mixing ACES

compartments because of hardware limitations that OPEC proposes to solve. We also see

the industry, governmental agencies and the society in general showing more interest in

cyber security, with Arm and its Morello board [17] integrating hardware capabilities

as instruction extensions (unfortunately only available for the Cortex-A family at first,

the Cortex-M had already been second to receive updates with the adapted ARMv8

architecture), the French-German project TinyPART [174] which involves Pip-MPU, the

French National Agency for the Security of Information Systems (ANSSI) that proposed

EwoK [25] we described earlier, the French cyber warfare unit that was created in

2017 [128] or the French Cyber Campus created in 2022 [31] (this dissertation is written

in 2022), and even the media and the population speak more about it as illustrated in

Figure 12.3.
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Figure 12.3: Screenshot from the results of the keyword "cyber security" from Google
Trends [80] (27/08/2022)

...in contrast with real-world projects... However, there is a strong disparity between

the mentioned efforts and the reality of the market. Time-to-market drives the embedded

development and only 4% of the design time of an embedded system is spent on

security/privacy threat/risk assessment [61].

We should also acknowledge the shift to connectivity: from legacy embedded systems

to IoT devices. According to the 2019 Embedded Markets Study [61], 65% of the

respondents linked to the embedded world were to have one or more projects devoted

to IoT (compared to 21% at survey time). According to the Eclipse IoT Developer

Survey 2019 [71], two-thirds of the respondents were currently working on IoT projects

or were planning in the next 18 months. This clearly shows a movement towards

connected devices. Overall, on the 13-30 billions of IoT devices expected on the market

in 2022 [168, 76], even forecasted (or awaited) to be trillion in 2025 [166], the great

majority of them will suffer from cyber attacks and the new business ecosystem will be

the playground of cyber crimes capturing 300 billion to 2 trillion dollars worldwide and

every year [146].

The shift towards connectivity seems to reflect the current state of security in IoT

projects, as security is the top IoT developer concern (ranked before connectivity, data

collection and analytics, and performance [71]). And, quite expected, non-IoT develop-

ers consider security is the top 3 greatest technology challenge [61], clearly showing the

increasing need for security. Indeed, the interconnection between IoT and traditional IT

systems gives more opportunities for malicious IoT devices to have a larger impact than

non-connected devices. With potentially high impacts, the ecosystem is in a stringent

need of high-level guarantees.

While systems receive more security attention now than ever before, no solution that

we studied was suitable enough to the dynamic ecosystem of the IoT.
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...which deals with a strong human factor (IoT developers’ expectations) New tech-

nology adoption is not straightforward in the embedded world, and system designers

have their expectations [61]. It comes out that most of the designers rely on a 32-bit

architecture, with ARM architectures prevailing in this category, and they usually use

the same processor across their projects. For the operating system, they use less and less

in-house/custom OSes. If they have an OS, they are happy with the current solutions

and have no reason to switch, also to be able to maintain software compatibility and

make use of the expertise and familiarity. The reasons for changing operating system

are mostly because the hardware or processor changed or because the OS was imposed

without any involvement from the system designers. It shows they are not willing to

change their development environment without any major factor, mostly independent

of their will. Among the most important factors to choose an OS is the full access to

the source code, the availability of the technical support, the compatibility with other

software, systems and tools, no royalties and real-time performances.

Overall, it feels like the embedded designers are happy with the current state but

will be unable to catch the IoT shift in a smooth manner. Billions of devices will enter

the market, unprotected and unaware of the threats of the connected world. Given the

depicted scenario, the ecosystem is even surprisingly calm. But this builds a time bomb,

stretching over years, and industries might suffer from several waves of massive IoT

attacks in the near future.

Therefore, the current efforts in academia and the industry are worthy, and all IoT

devices would benefit from hardware-based security with strong guarantees.

Do it Pip’s way instead As the studied solutions did not satisfy our requirements, we

reversed the perspective and looked the other way around. We applied Pip’s partitioning

scheme to all mentioned systems. As the scheme is quite generic, it revealed disparities

in the partition deployment and their inner configuration, for example enforcing glob-

ally the W^X principle, isolating the kernel/OS from the executing tasks, setting up

protection stacks, setting up application containers, isolating drivers and modules from

the kernel, among other things. More than this, Pip’s flexibility gave them more features,

like extensible memory and the runtime creation of compartments/sandboxes, which

they could leverage to design even more complex applications. Exchanges with the

development team of EwoK, and reading TockOS and RIOT-MPU’s documentation con-

solidated our analysis. This successful study gave us the demonstration of the relevance

of Pip-MPU.

We did have trouble projecting Pip’s security model on some systems as they did not

consider a strict memory isolation scheme. Controlled shared memory is an example

because shared memory is possible in Pip, but two isolated partitions do not have access
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Figure 12.4: Design phases. Several approaches led to the final design, permanently
monitoring impacts on the performance, Pip’s current proofs, and flexibility while
never neglecting the security aspect.

to the shared memory at the same time, they must transfer the memory block around.

We created the framework out of these observations, to let systems define their own

local policy within the frame of a global security policy, and Pip as a specialisation of

this framework. But first we designed Pip-MPU.

Design phases of Pip-MPU

As our initial thoughts (see above) led us to an impasse, we knew we needed first

to abstract away from the technical perspective of the MMU. Thanks to the plethora

of MPU-based solutions and our thorough study of the MPU, we were also aware of

multitude of MPU feature combination that drove our technical choices all along the

design phase (see Section 6.4 speaking of the MPU background region and the disabled

blocks to name just this one).

Selected approaches to adapt Pip Pip-MPU is born from a mix of several approaches

and feedback loops. Our trials considered 1) to design Pip-MPU from scratch 2) impose

the new requirements of the constrained environment to Pip (MMU)’s design 3) borrow

and apply Pip’s design tracks 4) generalise Pip’s features and find out which are solely

tied to the hardware platform 5) find out the key characteristics of the design and make

a selection out of all considered scenarios.

As Pip-MPU’s requirements where clear from start, in terms of performance, flexibil-

ity, security and proximity with Pip’s design, they were closely monitored throughout

the whole process.
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Figure 12.5: Pip (MMU) and MMU reactions after cache hits (1) or cache misses (2-3).
In Pip, the TLB handles the cache misses, which is reloaded with pages out of Pip’s
MMU structure. During a context switch, the MMU is loaded with all the newly active
partition’s pages.

Scenarios elaboration and corresponding design impacts Out of the previous ap-

proaches, we imagined many scenarios from scratch or transforming Pip, while we

already knew we would need memory blocks, we knew all the features of the MPU and

how existing solutions leveraged them and approached the technical issues, and we

knew we had metadata structures to protect.

The direct adaptation from Pip was not obvious and forced us to revise Pip’s concepts,

like the cut ability, the source and target of the services or even the definition of a

partition. With the MMU hardware, the system starts with several hundreds to millions

of MMU pages, while the MPU does not have this luxury. Because static configurations

were out of plan in our design, we imagined the concept of cut to break/mine subblocks

out of initial memory blocks. Again, several solutions rose. For example, we considered

first the root partition as a special partition (it is already special being the only existing

partition at boot) that would be the only partition to have the cut ability, while other

partitions would need to request cuts from it. Instead, we imagined the cut could

only be performed by the parent partition on the child partition. Alternatively, we

also imagined that any partition would be able to cut at will and Pip-MPU would echo

back the cut in the ancestors only when a metadata structure needed to be protected.

And step-by-step we concluded in cutMemoryBlock and the concept of an MPU cache
replacing the TLB of the MMU as illustrated in Figures 12.5, 12.6. Only later, another

paper spoke about the same concept [195] (MPU region virtualisation).
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Figure 12.6: Pip-MPU and MPU reactions after MPU hits (MPU correctly configured)
(1), MPU updates (2) or memory faults (3-4). In Pip-MPU, the MPU is viewed as cache,
like the TLB in Pip (MMU). Indeed, neither the TLB nor the MPU dispose of the entire
set of memory pages/memory blocks. However, memory faults are not like TLB misses
because the process of reloading the MPU is manual in Pip-MPU while it is hardware
driven for the TLB in Pip (MMU). A similar working is the automated MPU reloading
proposed in the framework, but was not retained for Pip-MPU. When a memory fault
occurs in Pip-MPU, it is because of a illegitimate access (3). Exception is made with
the ARMv7-M implementation where the MPU is automatically reloaded (4) when
detecting memory faults due to the MPU region alignment and size constraints (see
Section 6.3.3). During a context switch, the MPU is loaded with the MPU cache (the
set of active blocks).
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In addition to that, this led us to reconsider the prepare/collect system calls in

their current implementations, with the extended feature to call the service on the

current partition, notion which is absent in Pip as shown in Figure 7.2. Moreover, we

questioned as far as the definition of a partition. In Pip, createPartition sets up the

first MMU indirection level to all metadata structures. The user must then provide as

many pages as structures. Instead, in Pip-MPU, createPartition only sets up the PD

structure. Equivalent to Pip at that moment, no memory blocks/pages are shared with

the new child, so the memory space is not yet completely defined. The prepare service

completes the partition initialisation phase in both systems.

This path of reflection compelled us to abstract away the technical details of the

MMU and generalise Pip’s concepts. At the same time, Pip already showed us, I guess

involuntarily, the notions that really mattered. Indeed, in Pip, all structures stand

alone, and not merged like is done in Pip-MPU. The MMU structure is directly used

by the MMU hardware as pointer to configuration tables while the MPU needs to be

configured register by register. Separate the MMU structures from the rest showed a

distinction between the memory space definition (MMU structure), the relations between

the partitions (Shadow 1, used to reconstruct the partition tree), optimisation structures

(Shadow2 and LinkedList) and the superstructure that makes the bound between all

the structures. Thus we identified the latter structure, MMU structure, and Shadow1

structure as essential for Pip. We crafted new scenarios of all possible combinations with

these structures and the Shadow Cut. We extracted the characteristics of the scenarios

and map them on a single figure to understand the relations between them and to reveal

the missing combinations, as shown in Figure 12.7.

Each scenario has also been assessed in terms of impacts on the requirements. For

that, we challenged each scenario with our requirements in an informal way. As can be

seen in Figure 12.8, candidate scenarios emerged.

Adaptation path and selected characteristics As said earlier, sticking close to the

current metadata structures has always been the target as there was hope to reuse the

formal proofs of the services. To decide which candidate scenario would suit the best this

condition, we unfolded the relations between the scenarios starting from Pip (MMU)’s

design. The Figure 12.9 gives us the adaptation path from Pip (MMU) to one of the

candidate scenarios, so the number of transformations needed to reach each one of them.

We chose a scenario close to the current design and that exposed the greatest flexibil-

ity. Furthermore, proofs are easier with simple structures as shown by past projects in

the team. Formal verification is covered in the next part.
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Figure 12.7: Scenarios mapped to their characteristics at some moment in time. Missing
combinations are represented by (?). The arrows indicate a one-step transformation of
the initial scenario to reach the final one. The flexibility zone is the set of characteristics
enough to ensure flexibility in the design.

Figure 12.8: Impacts of each scenario on memory footprint, flexibility, system call
complexity and proofs reuse. Candidate scenarios are in bold. The circled areas show
the desired range. Smaller values are closer to the centre while higher values are to be
found in the peripheries. The orange triangle represents the final retained scenario.
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Figure 12.9: Adaptation path from Pip (MMU) to the selected scenario describing the
design of Pip-MPU. The figure should be read as follows. The oval shape "Pip MMU" is
the starting point of all transformations. Each transformation changes a parameter in
the metadata structures (how the structures are merged and which information they
hold). The blue circles all around describe flexibility characteristics: fixed or variable
memory block size, number of memory blocks in a memory space, number of children
in a memory space. Hence, each transformation can be linked to a characteristic,
meaning several adaptation paths could lead to the same transformation, however the
scenarios will differ in characteristics, which will have an impact on the requirements
as discussed in Figure 12.8. The orange triangle represents the final retained scenario
and gives us the transformation to make on Pip (MMU) to reach it.
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Summary

This long section puts choices and discoveries back in chronological order.

First, the original intuition is that IoT devices are not protected as they could and

should be. However in the recent years, massive and powerful attacks were performed

remotely on low-end IoT devices. In the end, servers and computers are usually the

primary aim of the attack, and need to be protected. Strengthening low-end devices

would benefit them as well and simplify their attacker model because IoT devices

might have privilege access to protected networks and are vectors of indirect attacks,

with lateral compromise of servers and high-end devices. With the evolution of the

market landscape, because legacy embedded systems join the IoT, we observe a shift

in development mentality, but security is still not their first priority. This dissertation

demonstrates that the industry has the available technologies to secure the ecosystem.

Our adaptation path shows there was a necessity to extract the fundamental char-

acteristics of Pip, to understand the hardware, to analyse how other systems solved

some common issues to fit their use cases. Our journey showed Pip needs access control

mechanisms and metadata structures to register the partition tree. Pip-MPU could

have been designed only in software, instead of relying on the MPU hardware, but this

would have involved heavy impacts on performances and less reliable implementations.

While we did imagine Pip-MPU from scratch, we always had the requirements to stay

close to Pip’s current design and behaviour that implied previous choices (for example

that shared memory is still accessible to a parent partition when the memory block is

given to a child partition). Things would have probably been different if Pip (MMU)

did not exist yet, and that Pip-MPU were to be the first instance of Pip, which could

have been more difficult to adapt Pip (MMU) starting from Pip-MPU. Or, in a different

way, maybe Pip (MMU)’s design were to change during our design phase and would

add new requirements on our design or, in the opposite, release some requirements

by mutating Pip (MMU) to something that would ease the adaptation. We could also

have chosen to base our design on an existing MPU-based solution and adapt this one to

fit Pip (MMU)’s design, however, their lack of flexibility would not have given us the

pursued genericity.

Furthermore, the switch from MMU to MPU was not clear from start as no other

example existed to show us the way. Some projects already thought about it though, but

the other way around so from MPU to MMU like Zephyr that considers the MMU as an

MPU which entries are unlimited, still ongoing work [191, 190]. The position statement

in Pip-MPU’s current design is to state a page is a memory block of a fixed size and their

number is limited for each partition. We could see it differently: a memory block is

made of several pages of fixed size, or that a memory block and a page is just a set of

contiguous memory addresses (approach taken during the formal verification, disclosed
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in the next part of this dissertation).

Finally, the figures shown in this chapter express a lack of analysis tools in this area.

Our customised approach might have missed important combinations, or in the contrary

assures us that we were converging to an acceptable solution. The team’s know-how

regulated our choices, I tried here to present some of them that were the most important

for the reader that would also need to switch to a more limited hardware platform.

Insights and learnings on the formal verification of Pip-MPU

Pip-MPU’s trustworthiness is assessed by formal proofs. The formal verification of Pip-

MPU follows the refactoring of Pip’s design. And because the design had been deeply

changed, so had the proofs. Like previously done, this section gives more insights on

the formal verification process of Pip-MPU. Future formal verification projects, linked

to Pip or not, can find here the applied methodology, with hopes and retrospective

workarounds, and what I would have done to accelerate, improve, simplify the process.

It gives me the possibility to light up, in an informal manner, some left-aside aspects of

the topic.

History and methodology

Pip-MPU’s design was created, with the aim to recycle much of Pip’s design, followed

by the implementation, tests, and benchmarks of Pip-MPU. Only after that came the

verification process. Officially. In fact, the verification process started even before

Pip-MPU’s design.

Because of calendar constraints, the first weeks of the PhD started with an express

training on the formal verification process followed in Pip. Design choices, proof

techniques, proofs organisation, the discovery of the Coq proof assistant, everything I

needed to know on the current project, carefully laid on paper until the time I would

need these learnings again.

Furthermore, the implementation of the services was directly developed within Coq,

following Pip’s workflow, which demonstrates the formal verification was the final goal.

We have been able to apply Pip’s workflow and we strove to change the models as little

as possible to still recycle proofs with light changes (I intentionally let old terminologies,

like page, in the proofs to pinpoint exact places were proofs were fully recycled). The

followed methodology was first to implement the services in Coq from the Python

prototype, create the underlying primitives, adapt the hardware model and adapt or

remove all primitives that manipulated the old model (remove all virtual memory from

the code base). Then I restructured the files to split different intertwined verification



254 Conclusion

lemmas (while still trying to be as close as possible to Pip’s code base), adapted the

security properties and started the horizontal exploration.

On their side, proof metrics arrived early in the proof process, with the need to

communicate my progress despite the unknown and lack of expertise and experience on

the subject of both my managers and myself. The global proof status naturally gave some

sort of idea of the progress during the fast pace horizontal exploration. However, the

vertical exploration took more time, but weekly reports did not change in frequency. The

proof dashboard got enriched with finer proof analysis and I clearly saw proof patterns

matching the expression of the properties, which finally gave birth to the proposed

proof complexities.

Formal verification from scratch...

When the time arrived to apply the knowledge learned in the first weeks, the world

had the time to stop and restart several times because of the pandemic, and notes and

tips referred now to obscure notions I didn’t understand the meaning anymore. So

everything had to be built up again. In addition to that, we had some primary hopes to

recycle a lot of proof in the beginning (as discussed in Section III), but hopes became

vain from the moment we modified the hardware model, as it burst the whole formal

baseline.

The formal verification process demonstrated again the expertise and know-how

associated with it. With Pip-MPU, I rediscovered a lot of lost knowledge due to team

members pursuing other careers. The learning curve is steep to become a proof expert,

proofs are hard, environments different from software development, poor automation in

the case of theorem provers and intuitions hard to implement without digging into the

technical details (and a lot of time manuals written for mathematicians) to set them up.

Other formally-verified projects also report the high cost of formal verification [108].

Nevertheless, this thesis demonstrated it was possible for a formal verification noob

with computer engineering background to gain enough skills to conduct long and

challenging proofs (for me). Tony Hoare already warned programmers about it: ‘will it

be too onerous for a programmer to supply the necessary assertions and lemmas needed

for their proofs ? Yes indeed‘ [91]. Moreover, Pip benefited from a toy system to train

the proof skills and discover the first consistency properties [99]. Pip-MPU did not take

this course and faced rapidly many challenges to construct the proofs.

I understand all my notes again now, that can only be deeply understood by those

who walked on Pip’s formal verification path. I see now how symmetrical the verification

path of Pip and Pip-MPU have been, but could not have been projected earlier, as many

alternative paths exist. I guess we faced the same constraints at some similar moments

in the verification process that made us take the same direction. Some alternatives have
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been explored though, sometimes with inconclusive results.

...led to failed attempts...

My initial plan was to enrich the page definition so to become variable in size. This

revealed to be not enough, since Pip’s code base was completely built around the MMU

virtualisation, which does not exist in Pip-MPU. However, I was still hoping to form a

similar structure for the security properties. Because, all in all, the page just missed

a field to register the end address and they would be the same. In fact, it was not so

simple.

At issue were distinct page and block identifiers. In Pip, a page has a unique

identifier in the whole system and pages holding Partition Descriptors can be directly

identified. In Pip-MPU, a block is only identified locally to the metadata structures

and this local identifier must translated in a global perspective to find the associated

Partition Descriptor if any. This is because the system calls just act locally so there is

no need for a global identifier and mainly to accelerate the search for the block in the

system calls.

Back to the security properties, the local identifier could not capture the globalism

of pages. What if a block was cut in a child, how to check if a subblock was in the

parent with different identifiers? I was first tempted to create another abstraction of

the block, a sort of plain memory region, rejecting any unneeded block characteristics

like access permissions. But I was still missing how to express block overlapping. As

a result, I downgraded the security properties to the granularity of the address. The

security properties are still expressed the same, looks the same, means the same, but at

a finer granularity.

When the time came to prove the security properties, I discovered the issue with

lists. Indeed, I previously crossed the free slots list in addMemoryBlock service, however

this was about to remove an element from the list. Then, all the elements still in the

list satisfied all properties since they were there before, and I could propagate from the

beginning the sublist as I knew it would be the final one. In the security properties,

it was a different situation since this time lists were extended with new elements and

these lists only appeared in these properties, so I did not encounter them before in the

consistency properties. I could not apply my proof pattern anymore because I had to

deal with mutable sets, whereas it was enough to just consider single elements in the

memory state that could be deduced from any modified state, until now. Even at the

proof checkpoints, proofs were (impossible) difficult to conduct because impossible to

link with a known state.

I then shifted to an instruction-by-instruction list propagation strategy. From a
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single entry modification, I could project the modified list in relation with the previous

list. I understood at that point why all properties were proven instruction-by-instruction

in Pip. Specific entry modification lemmas for the properties had been developed for

this. However, it supposes the possibility to prove them at each instruction, which, in

the case of Pip-MPU was not possible and led to the introduction of the checkpoint

strategy. Instruction swapping could have been possible so to effectively satisfy them,

with the Pip’s co-design approach and as promoted by Edsger Dijkstra: ’the programmer

should let correctness proof and program grow hand in hand’ [59]. I still consider the

checkpoint strategy followed in Pip-MPU more efficient, because it saves time in the

first pass and allows to create reusable elements saving proof effort, where in Pip we

would probably had duplicates proof script in that code portion.

The introduced list propagation lemmas were numerous, sometimes intertwined like

getAccessibleMappedBlocks, and getMappedBlocks, both relying on the getKSEntries

list applying different flag filters. It also implied a lot of subsidiary consistency prop-

erties, and the whole set now resembled much more like Pip’s consistency properties,

which consolidated the proof strategy shift. It also increased a lot the proof effort be-

cause a lot of modification instructions involves the lists, as witnessed by the number of

’*’ in the impact score Table 12.6.

...and proof development tips and tricks.

Despite similarities, obviously numerous for an adaptation, Pip-MPU followed another

proof course and I share here some know-how tips, some of them have already been

introduced earlier but are here clearly mentioned.

Gather global properties at checkpoint The checkpoints are like reset points in the

proofs. The consistency properties are proved for that particular state, intermediate or

final, like the initial state. It is a privileged instant to gather global knowledge about the

context that is extensively used thereafter, and thereby avoiding duplicates in the proof

script.

Ease the maintenance The context is made of hypotheses that are automatically named

by Coq if not explicitly by the proof developer. The several iterations imply to go back

and forth on the proof script which modify the context at each passage. Hence, references

to hypotheses change frequently. From the second passage, I found it convenient to

name properties that are used frequently which facilitates the maintenance. Sometimes

it is difficult to name them, for example because of a very long hypothesis or properties

that might change formulation. In these cases, the automated references are kept but I

add in parenthesis hints to find the hypothesis again if necessary for a next iteration.
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Low-level invariants HAL invariants are simple to prove. The proof script can be

extensively reused with only light adaptations. One possibility, not followed in the

course of this work, would be to prove all HAL primitives at once because they are

independent of the context. However, this would slow down the proof pace for a

particular service.

Modularity The more generic the code is, the more abstract are the proofs and the

more they are reusable in different contexts. This is counter-intuitive for a programmer

that just wants an executable code. However, it can save a lot of time for the proof

developer by reusing the proven brick and it avoids code and proof duplicates which

facilitates maintenance. Furthermore, it clarifies the operation intentions and avoids

mistakes, for example forgetting to set a field that has no security implications like a

block’s access permission rights.

Enriched memory types Pip-MPU presents more memory types than Pip (MMU).

They are used to easily discriminate the cases without having to search in the context

for implications resolving the type. Hence, consistency properties which shape the

relationships between kernel elements and combined with enriched memory types

simplify the proofs.

Meta-properties Pip (MMU) already used meta properties that gather several proper-

ties that have a meaning in a certain context. For example, the meta-property isFreeSlot

carries the information that, if a Blocks entry and associated Shadow1 and ShadowCut

entries are valid, then all fields hold default values. They are naturally constructed in

the proof flow and usually detected when writing down each instruction and identifying

which property should be propagated and retrieved for a later instruction.

On-the-fly property adjustments At rare moments, I discovered that some properties

are actually false or expressed in a way that they cannot be easily invoked. In such a

case, I copy-pasted the property statement at the beginning of its proof, modified it

in a better way, and asserted it. The new proof obligation was to prove the corrected

property inheriting from the real proof context of the previous property. This possibly

implied to temporary admit some other properties. Once satisfied with the modified

property, and its proof is passed, I retroactively modify the property from the set of

consistency properties, which in turn might imply correcting the proof at other points.

Numerous small properties In search for the consistency properties, they changed

shape a lot. Finally, I found it easier to split the properties in atomic meaning, rather

than an umbrella property with many of them. First of all, this facilitates the checkpoint
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strategy by actually having the possibility to split them. But more importantly, bigger

properties lose in precision, in the sense they can implicitly imply combinations that

were not expected, and situations might show they are false. Furthermore, these bigger

properties can be deduced by proving the smaller ones that were detached.

Code and proof co-design I said earlier Pip-MPU did not follow the co-design ap-

proach of Pip. This statement is partially false (Dijkstra has been heard). Indeed, I

voluntarily added a check in the code to spare a logical connexion and so a consistency

property. The accessible flag is in fact linked to the present flag: a block cannot be

accessible if it is not present. However, a single flag checking did not impact so much the

performances but spared many proofs, because it is a read instruction with negligible

proof effort, even if the proof complexity would have been low (one additional check for

no proof effort).

Furthermore, we abandoned some design ideas to facilitate the proof. Typically, we

considered first a doubly linked free slots list, but this would have added an equivalence

property on lists that we would gladly avoid.

Isolated proof scripts for the security properties and each proof element The security

properties are the ultimate goal of the verification. The other proofs are just there to

form the proof context out of which the security properties can be proven. It then makes

sense to isolate them from the rest.

In addition to that, it was actually necessary. We already knew from Pip (MMU) that

Coq had trouble dealing with proofs that consumed more than 32 GB of RAM. Well, my

computer had only 16 GB, but even with 16 GB of swap space, Coq crashed multiple

times and before that became very slow to check a single tactic. It is then necessary

to filter out as much as possible from the proof context, simplify it, and extract proof

elements in different files.

Proof testing and final proof convergence technique I see the proof process as a

test-driven development towards the security properties. There is also a way to test the

services satisfy the properties by directly jumping to the security property proof script. It

consists in reporting the state modifications, expected list propagation and the checking

phase proof context, and trying to prove the properties. The proof is complexity-driven,

meaning I explore the hardest path to prove the properties by assuming many properties

true (with the admit tactic), letting aside proof portions with low complexities. Then, I

prove the hardest admitted lemmas, still leaving very low complexity proof properties,

until reaching a point where I have confidence in all the left-aside properties. I go back

in the other proof scripts and do the same. This means I went through the whole proof
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once, know the upcoming difficulties that I try to minimise everywhere, explored all

possible cases, and slowly converge towards a full verification. Hence, the confidence

shows an exponential convergence.

Git Git has been extensively used during the proof development and especially in

the first stage to span over all check phases of all services. Each service had their own

Git branch and one branch had common lemmas to all of them. The work could be

distributed across branches and synchronised with the one containing the common

lemmas. This methodology had the advantage of isolating each service so that proofs

would not break everywhere due to changes when reaching the vertical exploration

phase. However, it also had the unpractical disadvantage of letting partial proofs in

distributed branches, not synchronised with the latest advances and thus increasing

the complexity to merge them all once a service has been fully verified. It would have

been probably better to merge all partial proofs together after the horizontal exploration

phase, because they were synchronised with the common lemmas branch. And then,

the branch of the first proven service becomes the master proof branch, whence the

common lemmas branch can synchronise. Afterwards, we could continue the vertical

exploration with another service in a separate branch, that joins the master proof branch

at proof completion, and synchronises with the common lemmas branch.

...which turned out to become a sort of game...

Formal verification could be very recreational in its way, and there is a sort of addiction

and reward to seeing the proof progress tactic by tactic. Sometimes though, the "boss

monster" is too strong and one lacks a magic potion to facilitate some moments in

the proof. Coq’s heuristics are too limited for the junior proof developer I am. My

impression is that it could be a tedious, intellectually highly-demanding process, even

though I had experts in the field around me.

...useful in real-life.

Formal verification has a lot of benefits for Pip-MPU. To start, it spotted a critical bug (cf.
section 10.4.5) despite a 99% code coverage by unit tests in Python, later translated in C

and part of the final code base, with several security tests, and a running prototype for

months. Indeed, functional correctness was almost completely tested, however I only

partially tested the isolation property because formal verification was expected. This

bug would certainly have been found earlier with extended security tests because it was

directly related to the security properties.

However, if I affirm this, I am not sure about other more sneaky bugs that may still
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be in the code because Pip-MPU has not been fully formally verified yet. Indeed, even

Pip (MMU) reported bugs found during the verification process, which gives sense to

the process, but raises concerns about large projects where formal verification could

not even be applied because of the huge complexity. As is common knowledge in our

research team given past projects, but also known in other external projects, there is no

real certainty until formally proven (or more extreme, is worth nothing).

Formal verification also forces us to make explicit design choices in the proofs,

including implicit, obvious, or forgotten ones. It pinpoints the minimum elements on

which the proof holds, which gives another view on the code development process.

Furthermore, this calls design certitudes into question. For example, we choose some

structures in the design phase that must be assessed again during the formal verification

process regarding proof impacts.

It also allows to analyse the final proof context and what hypotheses are effectively

used to conduct the proofs. Hence, in an orthogonal direction, it highlights the most

impactful instructions, which should match our proof complexity analysis.

Personal thoughts

This last section steps back even further on the PhD and related topics lived from the

inside and looked from the outside.

According to my experience with formal verification in this work, I believe formal

verification tools still need improvements for massive and natural adoption in any

software projects. There seems to be more maturity in proving runtime errors than

higher-level properties. In my opinion, tools like Coq should include more automation, a

less steep learning curve which is also linked to a simplification of projects to verify, and

maybe other complementary tools or interfaces like graphical ones. This dissertation

also narrates my learning curve and how I approached the research questions with little

knowledge of formal verification. Hence, it shows the necessary resources to successfully

undertake this work exist, but that would not have been possible without punctual

support from my team and their expertise on the tools and past projects.

In another perspective, I lacked of reasoning methods and tools for the design and

the formal verification, so I developed my own methodology and mental framework

presented previously. This was also exacerbated by current physical equipment that

is too limited in my opinion, like blank boards, papers, numerical tools. As proof

development is much about human intuition, not needed to be explicitly exposed for

code development, I feel novelties in this sector would facilitate the manipulation of

thoughts and bring to light unconscious mental processes.

Another thing is that this work is under an open-source licence. Much of it would
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not have been done without open-source tools and developers: code inspiration for

tricky parts, review of existing MPU-based systems, benchmarking tools, Integrated

Development Environments (IDEs), programming languages... Especially for system

reviews, nothing is better than digging into the source code because the documentation

might be weak in some parts, not up-to-date or not existing at all. It shows the power of

open science and long-term gifts from the past, which continues with this work.

However, I think a flaw would be to rely too much on standards, which increases

the number of eyes and community efforts that concentrate means to control, develop

and maintain a code base for the many. Counter-intuitively, it weakens the shared

component because a vulnerability discovered directly impacts an enormous number of

devices under a great number of malicious eyes. Formally expressed by Milosch Meriac:

V alue_of _bugs = number_of _installations ∗ device_value [123]. We rely more and

more on connected objects, which can be found in critical devices such as pacemakers,

and as such gain value for widespread deployments. A large part of low-end devices are

also low-cost devices under the time-to-market pressure and limited budgets that are

the playground for security researchers but also cyber attackers.

About knowledge sharing, the COVID-19 pandemic opened access to a lot of scien-

tific resources like articles, exchange platforms and open-access conferences. Even if

scientists were alone at home, it seemed to me there was much more material to nourish

everyone’s studies. However, it also meant less informal interactions with researchers

and in my case a sole physical conference over the three-year PhD period, which besides

occurred at the end because the pandemic just started at the same time as the PhD. With

the pandemic pullback, that knowledge sharing period is over. While I do think there

are still great researchers nowadays, it comes to me that researchers have an unequal

access to knowledge, unequal fundings, publication number and time pressure, weird

rankings, heterogeneous reviewing process and committees, that are not aligned with

universal access to knowledge, fair science, massive research evolution and society

retribution with impactful discoveries.

The works undergone during this PhD have very deep roots, from OS design in the

60s, to formal verification tools in the 80s, improved by fully formally verified kernels

in the 2000s and processors from the 2010s, getting inspired by a protokernel from

a few years ago, but also Ancient Greek logical foundations and certainly way back.

There is a gift in science from past generations to the current ones, and from the current

ones to the future generations. Much of this work inhabited me for three years, equally

strengthened and improved by my supervisors; and time has come to pass it on. While I

guess this is a drop in the ocean of science, I hope it will resonate with other rain drops

and participate in a greater long-term wave.
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Finally, this has been the joyful experience of a PhD student. I stress it here as a final

note because the choice of pursuing the studies with a PhD was not obvious. I have seen

and met more stressed students than serene students, that were sometimes depressed,

engaging their soul in an existential crisis period with doubts and darknesses. While this

PhD was not easy to conduct, particularly because of the pandemic and the uncertainty

it created, the logistic considerations to be in two research teams separated by a distance

of 300km with constraints on both sides with associated moving ins and outs or the lack

of knowledge in formal verification, I do not regret this choice. It became obvious.

Closing

The curious schoolboy of the ’Foreword‘ finally arrived home after a long but pleasant

day at school and evening activities, the head full of learnings and new ideas. That night,

he will succeed to break his computer’s password restricting his computer time, and

enjoy the evening even more. We know the rest of the story. ■
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La motivation principale des travaux présentés dans ce manuscrit provient du prob-
lème de sécurité dans les systèmes informatiques contraints en ressources (mémoire,
puissance, énergie). Avec une sécurité faible et de plus en plus connectés, ces appareils
sont la cible privilégiée de cybercriminels qui peuvent en extraire des données sensibles
ou les utiliser comme points d’entrée dans des réseaux protégés. Ces objets contraints
se trouvent sous toutes les formes (ampoule, détecteur de fumée, thermomètres,...),
dans tous les milieux (domiciles, usines, entreprises...), et se connectent à l’Internet des
Objets (Internet of Things (IoT), en anglais) pour servir des écosystèmes de plus en plus
intelligents (jumeaux numériques, IoT-Cloud Continuum [77]...). En étant connecté, ces
objets rapprochent les attaquants des systèmes privés protégés.

La première intuition lors d’une attaque, même en-dehors du monde informatique,
est l’isolation : s’isoler de l’attaquant ou isoler l’attaquant. C’est aussi une solution pour
répondre aux vulnérabilités mémoire qui peuvent être exploitées par ces attaquants.
Cette propriété est nécessaire pour garantir l’état courant où d’autres propriétés pour-
raient être vérifiées. Cependant, cette solution n’est pas suffisante pour la sécurité, par
exemple un appareil qui effectue une mise-à-jour avec un microgiciel corrompu se pro-
tégera par d’autres mécanismes comme la signature électronique ou l’authentification.
Par ailleurs, l’isolation est fondamentale pour d’autres principes de sécurité tels que
MILS (Multiple Independent Levels of Security/Safety) et TEE (Trusted Execution Envi-
ronments) [24, 158].

Cette thèse est réalisée conjointement entre Orange et l’Université de Lille (thèse
CIFRE). Elle a démarrée le 28 novembre 2019. Orange [135], en tant qu’opérateur, est
intéressé par sécuriser les appareils de son réseau pour réduire les communications
malicieuses. Les appareils piratés pourraient prendre une part importante de la bande
passante et impacter la qualité de service d’appareils légitimes, mais peuvent aussi
attaquer les propres infrastructures d’Orange ou bien prendre le contrôle d’appareils
connectés pour réaliser des cyber-attaques massives à des fins criminelles ou terroristes.
Orange soutient ses travaux en publiant l’ensemble des résultats en licence ouverte.
L’équipe 2XS [1] de L’Université de Lille à laquelle je suis rattaché est spécialiste de
la sécurité des objets fortement contraints en ressources. L’objectif de la thèse a été
l’adaptation du noyau Pip développé par 2XS pour l’environnement des objets contraints.
Ce nouveau projet, appelé Pip-MPU, prend son nom du projet parent Pip et d’un
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composant informatique de protection mémoire nommé MPU. Pip-MPU est partie
prenante du projet TinyPART [174], un consortium de partenaires académiques et
industriels franco-allemand dont incluant Orange et l’Université de Lille.

A.0.1 Questions de recherche

Pour contrer les menaces pesant sur les économies et les cyber-attaques massives ayant
eu lieu ces dernières années [184, 160], les marchés des consommateurs et industriels
reçoivent désormais des obligations réglementaires et des standards qui concernent les
objets contraints [69, 68]. Les appareils vérolés sont utilisés comme vecteurs d’attaque
et d’intrusion (extraction de données client d’un casino par le piratage du thermomètre
connecté de son aquarium [104]) ou comme armes (sites web bloqués par l’attaque
massive Mirai [112], rançongiciel chargé sur ceinture de chasteté connectée [27]).

La thèse explore les questions suivantes :

• Pourquoi est-ce que la sécurité est si peu prioritaire pour les développeurs de
logiciels embarqués et par transitivité aux systèmes qu’ils développent ?

• Quelle facilité y a-t-il pour les attaquants à distance de détourner les appareils
embarqués pour les transformer en armes utilisées lors de cyber-attaques massives
?

• Comment les objets contraints peuvent-ils se prémunir contre ces attaques ? Ont-
ils les briques technologiques nécessaires et adaptése à l’environnement contraint
pour se protéger ?

• Quels types d’attaques peuvent-ils repoussés avec ces briques de sécurité ?

• Quel est le niveau de confiance attendu pour des appareils contraints protégés ?

• Est-ce que des solutions génériques et portables existent couvrant la majorité de
ces appareils malgré leur hétérogénéité ?

Pour répondre à ces questions, nous nous intéressons à l’isolation pour la sécurité
des objets contraints, en particulier les solutions d’isolation ancrées dans le matériel.
Nous recherchons des solutions applicables au niveau du système, tels que des noyaux,
des outils ou des composants matériels. Les solutions sur cible nue ne nous intéressent
pas car non universelles.

A.0.2 Modèle d’attaquant

Notre attaquant cherche à prendre le contrôle total de l’appareil, à distance, et peut
installer ses propres composants logiciels. Les attaques logicielles sont particulièrement
menaçantes pour les systèmes par l’exploitation de vulnérabilités mémoire dues à des
erreurs de programmation ou des dépassements de tampons, des accès mémoire illégaux,
des corruptions de données. Nous considérons que l’état du système initial est bénin
mais entaché de ces vulnérabilités. L’exploitation en elle-même peut se faire par injection
de code, techniques de réutilisation de code, opérations illégales de lecture et d’écriture
[105, 32, 111, 52]. L’attaquant prend le contrôle total par l’intermédiaire d’un composant
privilégié ou en réussissant à s’octroyer des droits privilégiés.



280 APPENDIX A. Résumé substantiel en français

A.0.3 Eléments préliminaires

Ce résumé est à destination de personne ayant déjà certaines connaissances en infor-
matique poussées. Nous détaillons ici certaines notions avancées, non généralistes et
propres à ces travaux de thèse tandis que le reste est considéré acquis.

Tout d’abord, les travaux de thèse sont destinés aux systèmes embarqués. Ceux-ci
dépendent fortement des facteurs SWaP-C (taille, poids, puissance et coûts). Ils peuvent
néanmoins être très hétérogènes, par exemple une voiture embarque des centaines
de micro-contrôleurs haute-performance à mettre en opposition au microcontrôleur
peu puissant du grille-pain. Nous nous intéressons particulièrement dans cette thèse
aux objets fortement contraints, de classe 2 dans le classement IETF reporté dans le
Tableau A.1, où les facteurs SWaP-C sont encore plus importants que d’autres. Nous con-
statons actuellement que les systèmes embarqués préalablement isolés (télécommande,
détecteur de fumée, thermomètre...) sont de plus en plus connectés, et ce mouvement
s’accélère selon les études [61, 71]. Cependant, il est aussi observé par lecture croisée de
ces études que les systèmes antérieurs n’adoptent pas encore les standards de sécurité
requis dans le monde connecté, alors même que nous recevons des alertes de chercheurs
en sécurité (piratage d’une Jeep Cherokee à distance permettant la prise de contrôle du
volant et des freins [127], rançongiciel sur une machine à café [121]) et que nous sommes
témoins de cyber-attaques massives (botnet Mirai [112]) et éventuellement dévastatrices
(ver informatique STUXNET développé notamment par la NSA qui s’est introduit dans
des centrifugeuses nucléaires iraniennes pour saboter le programme nucléaire iranien
[184], attaques sur le réseau électrique ukrainien en 2015 et 2016 [160, 66]).

Name Taille données (e.g., RAM) Taille code (e.g., Flash)
Classe 0, C0 < 10 Kio < 100 Kio
Classe 1, C1 10 Kio 100 Kio
Classe 2, C2 50 KiBo 250 Kio

Table A.1: Classes d’objets contraints (Kio = 1024 octets) [93]

Pour un accès contrôlé à la mémoire, les systèmes généralistes reposent sur la MMU
(Memory Management Unit). La MMU met en place une virtualisation mémoire sous
forme de pagination et attribue à chaque page des droits d’accès. Son équivalent dans les
objets contraints est l’unité facultative appelée Memory Protection Unit (MPU). Celle-ci
est aussi reconfigurable pendant l’exécution par des composants logiciels privilégiés
et de façon équivalente aux pages, protège des régions mémoire selon des permissions
d’accès définies par l’utilisateur. Una accès mémoire illégitime, aussi bien dans la MMU
que la MPU, se termine en faute mémoire. Néanmoins, ces deux unités sont aussi très
différentes. Le stockage de leur configuration se fait en mémoire principale pour la
MMU mais dans des registres pour la MPU. En effet, la MPU est beaucoup plus limitée
et ne propose que 16 régions mémoire protégées en même temps, là où la MMU propose
des millions de pages. Par ailleurs, les régions MPU sont de taille variable alors que les
pages MMU sont le plus souvent de taille fixe. ces différences sont reportées dans le
Tableau A.2 et sont autant de difficultés structurelles pour adapter un système basé sur
une unité à l’autre. La MPU est liée aux architectures ARM mais dispose d’équivalents
dans d’autres architectures de processeurs tels que la Physical Memory Protection (PMP)
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Attributs MMU MPU
Mémoire virtuelle Oui Non

Mode de configuration privilégié privilégié
Unité de région mémoire page région MPU

Nombre d’unités de région mémoire Millions 8-16
Contrôle d’accès (RWX) Oui Oui

Stockage de la configuration mémoire principale registre
Taille mémoire des appareils MB-GB kB
Fréquence CPU des appareils GHz MHz

Table A.2: MMU versus MPU.

de RISC-V [152].
Pour finir, nous nous intéressons particulièrement aux proto-noyaux, une famille de

systèmes d’exploitation illustrée dans la Figure A.1. Les communautés concevant les sys-
tèmes d’exploitation (SE, ou Operating System (OS) en anglais) voient depuis longtemps
défiler de nombreuses définitions, notamment celles données par Andrew Tanen-
baum [4] et Richard Stallman [149] qui a une vision plus large, et souvent mélangées
à la définition du noyau du SE. Nous définissons le système d’exploitation comme
l’abstraction des ressources matérielles et son noyau comme tous les sous-composants
qui contiennent les fonctionnalités critiques et qui s’exécutent en mode noyau (mode
privilégié). Ce qui est ou non considéré comme critique dépend de la philosophie de
chaque noyau. Nous distinguons habituellement les noyaux monolithiques (comme
Linux [119], contenant l’ensemble du systèmes d’exploitation dans l’espace noyau) des
micro-noyaux (seuls les fonctionnalités de gestion du matériel, d’ordonnancement, de
multiplexage et de communications inter-processus sont gardées dans l’espace noyau, le
reste est rejeté dans l’espace utilisateur, comme pour Minix [171]). D’un autre point de
vue, les exo-noyaux rejettent toutes les abstractions pour se focaliser sur la sécurité et,
encore plus drastiquement, les proto-noyaux comme Pip [143], qui ne proposent que
des services de gestion mémoire et de flot de contrôle.

Figure A.1: Types de systèmes d’exploitation, inspiré de [100]
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A.0.4 Etat de l’art

Nous nous focalisons sur les solutions d’isolation ancrées dans le matériel pour les
systèmes embarqués.

Dans le secteur des petits objets connectés, les garanties d’isolation sont faibles, voire
n’existent pas.

Les systèmes les plus connus (RIOT OS, FreeRTOS, Zephyr, TinyOS, Contiki, Mbe-
dOS [165, 71]) proposent un portage sur des systèmes dotés de MPU pour mettre en
place une isolation, mais ces portages sont bien souvent soit inefficaces, soit non util-
isés, soit non maintenus. Par exemple, dans son portage MPU, RIOT-OS [22] met en
place des garde-fous pour les piles des fils d’exécution et rend inexécutable la RAM,
mais laisse le reste des données et code des fils d’exécution et le système d’exploitation
ouverts aux modifications d’un composant malveillant ou maladroit. FreeRTOS-MPU
[74], la variante de FreeRTOS [73] avec utilisation de la MPU, propose d’utiliser la MPU
pour protéger le noyau des applications non privilégiées et limite l’accès mémoire de
certaines tâches à leur pile d’exécution et à trois zones supplémentaires arbitrairement
fixées par l’utilisateur. La MPU limite aussi les droits d’accès au code des tâches en
lecture et exécution seulement (pas d’écriture). Cette utilisation permet de détecter des
débordements de pile ou l’accès à des zones non autorisées et limite les injections de
code, tout en protégeant constamment le noyau. Mais la variante propose aussi de créer
des tâches avec accès total à toute la RAM, exposant les données des autres tâches, ou
encore permet de configurer les trois zones utilisateurs pour avoir accès aux données des
autres tâches en tant que mémoire partagée, ou vol/corruption de données dans le cas
frauduleux. Par ailleurs, le code d’une tâche est tout le temps accessible par les autres.
Et finalement, il est possible de créer des tâches privilégiées, qui aurait les mêmes droits
que le noyau et pourraient dans le cas malicieux le supplanter. Nous avons également
étudié les systèmes TrustedFirmware-M [118] et la variante basée MPU de Zephyr [189].

Les systèmes moins traditionnels ne conviennent pas non plus au problème posé
pour plusieurs raisons. Dans TockOS [175], la configuration de la MPU est dédiée
au processus courant et isole le code et les données en changeant de configuration
à chaque changement de contexte. La MPU est cette fois complétement désactivée
lorsque le noyau s’exécute. Ici, aucune région MPU ne couvre alors les parties noyau
(hormis certaines structures protégées et inaccessibles pour le processus). Le principe
d’isolation est donc entièrement respecté. En revanche, l’isolation n’est pas formal-
isée et le système ne propose qu’un seul niveau de protection, c’est-à-dire qu’il n’est
pas possible de protéger des processus enfants. Des travaux ont aussi proposés une
machine virtuelle JavaCard (JCVM) endurcie par la MPU [30]. Dans ce cas, lors d’un
changement de contexte, la MPU modifie uniquement la région MPU dédiée à pro-
téger la pile d’exécution comprenant le contexte de l’application courante. Les autres
régions MPU sont toutes partagées avec les autres applications. Aucune possibilité de
posséder des régions mémoire supplémentaires comme dans FreeRTOS-MPU. Encore
une fois, les propriétés d’isolation ne sont pas prouvées et de nombreuses régions sont
partagées, rompant le principe d’isolation. Dans EwoK [25], certaines régions MPU
sont dédiées au noyau et fixées lors de la compilation puis protégées lors de l’exécution,
les autres changent à chaque changement de contexte et protègent code, données et
périphériques de l’application courante. EwoK utilise les langages Ada/SPARK pour
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garantir aucune erreur lors de l’exécution et rédige des contrats qui spécifient les exi-
gences fonctionnelles des composantes critiques, vérifiés automatiquement. Aussi, un
contrat SPARK développé impose qu’aucune région MPU ne soit à la fois ouverte à
l’écriture et à l’exécution (principe W ^X). Le principe d’isolation est entier. Néan-
moins, les preuves d’isolation plus compliquées ne sont pas présentes, bien qu’elles
puissent être réalisées en SPARK moyennant un effort non négligeable de rédaction
de preuves. Nous avons étudié également les systèmes MultiZone [139, 140], et les
systèmes modifiant le matériel TrustLite [111] et CheriRTOS [187].

Par ailleurs, d’autres outils et architectures traitent du problème d’isolation pour
les petits systèmes. Par exemple, l’architecture MINION [105] propose une analyse du
code source afin d’obtenir des vues mémoire pour chaque processus qui s’exécutera et
configure la MPU à chaque changement de contexte pour refléter ces vues. Cela empêche
les autres processus d’accéder à une mémoire qui ne leur est pas normalement dédiée
après analyse. Mais MINION adapte ses vues mémoire au nombre de régions MPU
disponibles, et de ce fait un processus se voit attribuer des zones mémoire plus larges
que nécessaires, notamment des périphériques ou données d’autres processus. Cette
tendance est également présente dans ACES (Automatic Compartments for Embedded
Systems) [32], un outil qui instrumente le binaire pour créer des compartiments isolés.
Les compartiments sont créés en fonction de la politique de compartimentation décidée
par l’utilisateur, par exemple en rassemblant les composants issus du même fichier
source. Cependant, la dernière étape est de réduire le nombre de compartiments
au nombre de régions MPU disponibles, ce qui a pour conséquence de finalement
rassembler des composants que l’on aurait voulu isoler. Une version améliorée d’ACES
et de MINION est OPEC [195], cependant n’est destinée qu’aux systèmes sur cible nue.

Pour tous ces systèmes embarqués, majoritairement en code source ouvert, la confi-
ance demandée est plus importante qu’avec des preuves formelles d’isolation. A notre
connaissance, ProvenCore-M [114, 28] est le seul système d’exploitation qui propose les
mêmes garanties que celles visées dans cette thèse, mais étant un système propriétaire,
peu d’informations publiques existent sur sa conception et il n’est donc pas engagé dans
la diffusion de la technologie au plus grand nombre.

Du côté des systèmes embarqués avec plus du puissance et plus d’espace mémoire,
nous trouvons les SEs conventionnels comme les distributions Linux, Windows, MacOS
and Android [183, 126, 8, 78]. Plus spécifiques à l’environnement embarqué, nous
trouvons les membres de la famille Windows IoT, Linux Embedded et Fuchsia [125, 62,
79]. Ils proposent tous une isolation basée sur la mémoire virtuelle mise en place par la
MMU.

Pip [143] fait partie de la famille des proto-noyaux et est spécialisé dans l’isolation
mémoire. C’est un noyau de séparation, destiné à améliorer la sécurité des systèmes
d’exploitation [155], par exemple comme support à une architecture Multiple Inde-
pendent Levels of Security/Safety (MILS)[24]. Par ailleurs, il est open-source et donc
étudiable et adaptable et participe à une démarche de sécurité ouverte permettant de
valider la confiance dans le système. Pip mobilise le matériel pour asseoir ses garanties
d’isolation, soit la MMU, rendant une attaque à distance dans l’objectif de rompre
l’isolation difficile à réaliser. Dans ce secteur, d’autres systèmes font bonne figure, telle
que le noyau seL4 [109, 173, 89] ou mCertiKOS-secure [41, 86, 84] qui se basent aussi
sur la MMU et prouvent l’isolation par raffinement qui est une autre démarche de
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vérification formelle depuis un modèle très abstrait jusqu’à un modèle concret qui sert à
l’implémentation.

A.0.5 Problématique

Les solutions proposées de l’état de l’art présentent différentes techniques d’isolation
avec des niveaux de garanties, de facilité d’utilisation et de fonctionnalités variables.
Les solutions hybrides combinant ancrage matériel et isolation formellement prouvée
démontrent l’isolation la plus forte.

Cependant, aucun système pour objets contraints ne propose ce niveau de garantie.
En effet, la majeure partie d’entre eux ne sont pas soutenus par des méthodes formelles
qui sont nécessaires pour obtenir des garanties mathématiques. Même lorsqu’ils utilisent
les méthodes formelles, les solutions sont peu génériques, n’analysent pas la base de
confiance entière, ont une implémentation et donc des preuves fortement liées à une
architecture matérielle spécifique et sont extrêmement limités en nombre de composants
protégés. De plus, certains reposent sur les propriétés intrinsèques des langages de
programmation pour renforcer leur sécurité, cependant n’adresse pas l’isolation qui est
plus abstraite. Par ailleurs, une isolation matérielle paraît plus forte car elle traite non
plus les causes des vulnérabilités mais leurs effets. En dernier lieu, beaucoup de systèmes
n’ont aucun moyen d’isolation et sont alors vulnérables à des attaques d’injection de
code, d’élévation de privilèges, de vols ou de corruption de données, ou encore une
corruption du système sous-jacent.

Alors que les briques technologiques existent pour mettre en place une solution de
sécurité ancrée dans le matériel pour objets contraints avec de fortes garanties d’isolation,
le processus de développement nécessite des experts en conception de système et en
méthodes formelles. Avec un marché des objets connectés en forte hausse ces dernières
années, l’industrie a été plus sensible aux ventes que de sécuriser les appareils pour
maintenir un coût de production bas. Cette équation n’a pas encore trouvée de solution,
laissant ouverte un manque illustré dans le Tableau A.3. Seul le système ProvenCore-M
semble convenir à nos exigences, cependant il est propriétaire et peu d’informations
sont divulguées à son sujet. Les systèmes hybrides (solutions logicielles ancrées dans le
matériel) atteignent le niveau de garantie d’isolation désirée, cependant ils se basent sur
la MMU et donc la solution n’est pas transférable telle quelle pour les objets contraints.
Néanmoins, ils reposent plus précisément sur le rôle de contrôle d’accès de la MMU qui
a son équivalent dans les objets contraints avec la MPU.

En résumé, nous n’avons pas trouvé dans notre état de l’art un système qui :

• est un composant logiciel ;

• démontre de fortes garanties d’isolation mémoire assurées par ;

– ancrage matériel ET

– preuves formelles

• est adapté aux objets contraints ;

• open-source.
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Garanties d’isolation intermé-
diaire

Garanties d’isolation élevée
(par méthodes formelles)

Systèmes em-
barqués très
contraints

TrustedFirmware-M [118],
RIOT OS (MPU) [22], Zephyr
RTOS (MPU) [189], FreeRTOS-
MPU [74], EwoK [25],
MINION [105], ACES [32],
OPEC [195], MultiZone [139],
TrustLite [111], CheriR-
TOS [187], MbedOS [20],
TockOS [175], Java Card
Virtual Machine endurcie [30]

ProvenCore-M [28] (proprié-
taire)

Systèmes em-
barqués peu
contraints

Windows IoT [125], Linux
Embedded [62], Fuchsia [79],
TrustedFirmware-A

seL4 [89], mCertiKOS-
secure [41], Pip [26, 99],
ProvenCore [28] (propriétaire)

Table A.3: Solutions de sécurité ancrées dans le matériel pour systèmes embarqués et sys-
tèmes généralistes (SEs/noyaux, outils, architectures) classées par garanties d’isolation.

A.0.6 Thèse

Thèse: Les objets contraints, en particulier connectés, bénéficieraient d’une sécurité très
forte atteignable avec les briques technologiques existantes tout en étant compatible
avec les attentes fonctionnelles d’un écosystème dynamique. Une solution de sécurité
ancrée dans le matériel, immédiatement déployable sur ces appareils, adaptée au monde
réel et démontrant de fortes garanties de sécurité, peut faire bénéficier aussi bien les
consommateurs que les acteurs industriels.

L’objectif est de ne jamais laisser une application interférer avec d’autres applications ou
le système d’exploitation d’une manière qui pourrait mettre en danger la confidentialité
ou l’intégrité de composants logiciels protégés ou pourrait permettre de prendre le
contrôle total d’un système en exploitant par exemple une vulnérabilité mémoire.

Un noyau fournissant une isolation spatiale stricte mais flexible permet aux ap-
pareils d’évoluer librement dans un écosystème dynamique et empêche un attaquant à
distance de prendre le contrôle total de l’appareil et s’infiltrer dans les réseaux auxquels
il est connecté pour perpétrer des attaques de l’intérieur. La vérification formelle de
l’isolation renforce la confiance de l’utilisateur dans le système et participe plus large-
ment à l’adoption des écosystèmes Internet of Things (IoT), qui, à leur tour dynamisent
l’industrie.

L’approche suivie dans cette thèse pour sécuriser les objets contraints est la concep-
tion d’un noyau de système d’exploitation formellement vérifié qui fournit une isolation
stricte ancrée dans le matériel mais flexible par l’utilisation d’une MPU prise sur étagère
(Commercial Off-the-Shelf (COTS), en anglais). Nous avons choisi d’adapter un noyau
formellement vérifié destiné aux systèmes généralistes, en l’occurrence le proto-noyau
Pip, pour l’environnement des objets contraints. Le but est de minimiser les efforts pour
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maintenir un coût de conception bas. En effet, la thèse s’appuie sur l’expertise de notre
équipe de recherche qui a développé et formellement vérifié Pip. De plus, l’isolation
est un principe de base en sécurité informatique mais aussi indispensable pour d’autres
raisons telle que la sûreté de fonctionnement, la modularité logiciel, le recouvrement de
fautes, la facilitation de l’évolution d’un systèmes...[179]. Sans isolation, rien n’est moins
sûr puisque les propriétés vérifiées autrement pourraient changer. C’est une première
barrière lors de la mise en place d’une stratégie de défense en profondeur [169, 6]. Pip
dispose d’une grande flexibilité au sein de son modèle de partitionnement. Il est aussi
construit autour d’une base de confiance minimale (Trusted Computing Base (TCB), en
anglais) qui est bénéfique pour la sécurité en réduisant la surface d’attaque mais aussi
participe à garder des coûts d’adaptation bas. Par ailleurs, Pip a déjà su montrer les
résultats de son processus de preuve. Aussi, Pip évite de vérifier également l’application
qui s’exécute puisque celle-ci est libre d’évoluer telle qu’elle le souhaite au sein des murs
de sécurité érigés par Pip. De surcroît, cette approche propose d’utiliser la MPU qui est
fortement disponible sur le marché de l’IoT par la domination du concepteur Arm (67%
des parts de marché rien qu’avec l’architecture ARMv7 [71]). Une MPU prise sur étagère
ne requiert pas non plus de modifications matérielles qui augmenteraient les coûts de
conception. En héritant les caractéristiques du projet parent Pip, le noyau adapté sera
également mis en source ouverte où sa sécurité pourra être évaluée par n’importe qui.
Pip utilise également des langages de programmation adaptés et très utilisés par les
communautés expertes du logiciel (langage C) et de vérification formelle (Gallina, le
langage de spécification de l’assistant de preuve Coq). Enfin, une adaptation de Pip
permet de se détacher des solutions de sécurité existantes sur MPU qui ont une flexibilité
fortement limitée et par ailleurs s’appuie sur une communauté existante (le Pip User
Club [142]) avec des résultats précédents positifs qui renforceraient l’acceptabilité d’une
telle solution.

Cette approche permet la conception d’un noyau sécurisé dès la conception immédi-
atement disponible pour l’industrie et s’appuyant sur une base de confiance minimale
ancrée dans le matériel. Pip adapté aux objets contraints répond aux environnements à
criticité mixte, permet à plusieurs acteurs de faire tourner leurs applications de façon
sécurisée sur le même appareil, avec des composants multi-processus et multi-threadés
pour des applications sur cible nue ou bien s’appuyant sur un OS porté.

A.0.7 Obstacles

Nous listons ici les obstacles à la réalisation de la thèse et qui servent également de
lices lors du développement. En premier lieu, aucun noyau d’isolation existant n’a
adapté leur solution basée sur la MMU vers la MPU ou vice-versa. De plus, l’effort de
preuve est rapporté très important dans les noyaux formellement prouvés et difficile
à combiner pour un projet de thèse limité dans le temps qui inclut également une
refonte de la conception lors de l’adaptation [100, 41, 109]. Par ailleurs, il n’existe
à ce jour aucun système possédant la preuve formelle d’isolation par l’utilisation de
la MPU, ce qui implique de la modéliser et spécifier son fonctionnement. Aussi, les
solutions existantes sont extrêmement enracinées dans le matériel sous-jacent, ce qui les
fait perdre en portabilité, alors que nous souhaitons une solution plus globale. Enfin,
les coûts de sécurité, c’est-à-dire des performances atténuées à cause de la couche de
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sécurité, peuvent rendre difficile une utilisation dans les systèmes temps-réel.

A.0.8 Résultats

Cette dissertation consolide notre thèse A.0.6 en déclinant notre approche en deux
parties.

La première partie traite de la conception du noyau sécurisé pour objets contraints,
nommés ci-après Pip-MPU, qui est une adaptation du noyau Pip pour les appareils
disposant d’une MPU. Pip-MPU est décrit et nous montrons que sa conception satisfait
les exigences de sécurité, de performance, fonctionnelles et matérielles attendues pour
Pip et l’environnement contraint. Ce noyau est prototypé sur un kit de développement
basé sur l’architecture ARMv7 Cortex-M doté d’une MPU. Ce prototype est évalué en
termes de performances, d’empreinte mémoire, de consommation énergétique et de
gains de sécurité. Pip-MPU est présenté dans les articles [55, 56] et accessible sous
licence open-source1. Pip-MPU est une spécialisation d’un cadriciel que nous avons
développé et qui permet de mettre en place une compartimentation flexible et sécurisée
sur plusieurs niveaux d’abstraction. Une unique entité privilégiée dispose du contrôle
de la MPU. Tous les composants logiciels s’exécutent dans l’espace utilisateur et doivent
s’adresser à l’entité privilégiée pour modifier la configuration de la MPU et mettre en
place une politique de sécurité locale. Le cadriciel est présenté dans les articles [54, 57].

Dans la seconde partie, nous vérifions la propriété d’isolation de Pip-MPU par
l’usage de méthodes formelles. Les preuves sont d’abord réalisées informellement avant
d’être conduites au sein de l’assistant de preuve Coq [95]. Nous présentons la conduite
de preuve sur deux services représentatifs du noyau. Le développement des preuves
est évalué en termes d’effort humain, de ressources machine et de couverture de code
vérifié. Le processus de vérification formelle fait intervenir de nouvelles techniques de
preuves qui sont décrites dans la thèse. Nous développons aussi de nouvelles métriques
de preuve permettant la mise en place d’une stratégie globale de preuve qui minimise les
efforts de preuve à chaque étape. Ces métriques vont être présentées pour la première
fois lors de la présentation ’Formal Proof Metrics : the Developer’s Guide to Formal
Proofs’ [96].

Ces résultats confirment la thèse par la démonstration de la conception d’un noyau
pour objets contraints, son implémentation et sa vérification formelle qui présente de
fortes garanties d’isolation mémoire.

A.1 Cadriciel MPU pour espaces mémoire imbriqués sécurisés
et flexibles

A.1.1 Flexibilié pauvre dans les solutions courantes d’isolation basées sur
MPU

Les solutions existantes de l’état de l’art ne proposent qu’une isolation plane (au mieux
deux niveaux) et la MPU n’est pas librement configurable. Nous différencions ces
systèmes existants selon leur dynamisme et leur flexibilité dans le Tableau A.4. Le
dynamisme des solutions dépend de la reconfiguration de la MPU lors de l’exécution.

1https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/addMemoryBlock_proof/

https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/~/tree/addMemoryBlock_proof/
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OS/noyau/
hyperviseur/outil Dynamisme Flexibilité

Reconfiguration Modèle de Extension Nature de la Imbrication
MPU permission mémoire compartimentation

TrustLite [111] ✗ immuable ✗ processus ✗
JC VM endurcie [30] ✓ immuable ✗ processus ✗
EwoK [25] ✓ immuable ✗ processus ✗
µVisor ✓ immuable ✗ thread ✗
ACES [32] ✓ immuable ✗ générique ✗
OPEC [195] ✓ immuable ✗ générique ✗
TockOS [175] ✓ immuable ( ✓) processus ✗
Mbed [20] ✓ (variable) ( ✓) thread ✗
RIOT (MPU) [22] ✓ (variable) ( ✓) thread ✗
Zephyr (MPU) [189] ✓ (variable) ( ✓) thread ✗
FreeRTOS-MPU [74] ✓ (variable) (✓) tâche ✗
Pip-MPU ✓ variable ✓ générique ✓

Table A.4: Comparaison de la compartimentation dans les systèmes basés sur MPU.
Pip-MPU est introduit au Chapitre 7 comme une spécialisation du cadriciel présenté
dans le Chapitre 6.

Certains systèmes se contentent d’une configuration globale statique, comme TrustLite
[111]. Tous les domaines protégés se partagent alors cette même configuration. Une
configuration statique est un inconvénient dans l’environnement dynamique des objets
connectés qui limite fortement des mise-à-jour de permissions d’accès, de services ou de
chargement dynamique d’applications requérant une disposition mémoire différente.

D’autres systèmes bénéficient au contraire d’une reconfiguration de la MPU, qui
s’adapte aux besoins de protection courants. La MPU est principalement dédiée à la
protection d’un composant logiciel à la fois, et reconfigurée lors d’un changement de
contexte. Chaque domaine protégé dispose de l’entièreté de la MPU pour soi. Bien
que la MPU soit reconfigurée lors de l’exécution, elle peut soit suivre un modèle de
permission fixé au préalable et donc non modifiable (la plupart des systèmes de l’état de
l’art tels que µVisor, MINION, MultiZone, ACES, OPEC, EwoK, Java Card VM endurcie,
TockOS [11, 105, 141, 32, 195, 25, 87, 175]) ; ou bien librement modifier ce modèle
de permission (tels que Mbed [20], RIOT (MPU) [22], FreeRTOS-MPU [74] et Zephyr
(MPU) [189]), cependant la MPU est alors utilisée comme outil de protection mémoire
et non pour mettre en place une isolation.

Pour la plupart de ces systèmes, les composants logiciels disposent d’un domaine
protégé de taille fixe qui ne peut être étendu ensuite. Une exception est faite pour
TockOS qui alloue dynamiquement, et de façon limitée, un peu de mémoire aux pro-
cessus en libérant des sous-régions initialement désactivées. Bien entendu, avec un
modèle de permission variable, il est possible d’étendre sa mémoire, même de façon non
sécurisée, sans parler du fait qu’ils ont les privilèges de faire sauter complètement le
modèle de permission.

Chaque solution utilise la MPU à sa manière rendant l’ensemble très hétéroclite, mais
aussi très créatif. En revanche, certains systèmes sont fortement liés à leur plateforme
matérielle, par exemple en dépendant des sous-régions de l’architecture ARMv7, qui
disparaissent dans la version actuelle de l’architecture ARMv8. Par ailleurs, d’autres
systèmes ont plutôt décidé de modifier le matériel, comme TrustLite [111], ce qui inclut
un coût de conception supplémentaire et limite la portabilité de la solution.

Nous observons un manque de flexibilité dans les systèmes actuels. Le compromis



A.1. Cadriciel MPU pour espaces mémoire imbriqués sécurisés et flexibles 289

entre flexibilité, performances et sécurité oblige certains systèmes à revoir drastiquement
leur solution de sécurité idéale et se font imposer de fortes limitations par la MPU. Ils
sont de plus presque tous conçus pour l’architecture ARMv7 et non compatibles avec
les versions récentes qui existent pourtant depuis plusieurs années. Par ailleurs, les
solutions sont peu génériques et peu portables sur d’autres architectures.

Pour répondre à ce manque de flexibilité, nous proposons un cadriciel qui redonne
une liberté quasi-complète aux développeurs de disposer de la MPU comme ils le
souhaitent pour appliquer leur propre politique de sécurité, de façon locale, tout en
étant restreint par une politique de sécurité globale.

A.1.2 Architecture de sécurité pour espaces mémoire imbriqués

Nous définissons ci-après notre architecture de sécurité pour mettre en place un schéma
flexible d’imbrication d’espaces mémoire.

Contrôle ubiquitaire de la MPU

Le système flexible permet à n’importe quel composant logiciel de maîtriser son propre
espace mémoire lors de son exécution par le contrôle de la MPU. En particulier, il peut
définir ses propres régions mémoire accessibles et créer et gérer des espaces mémoire
imbriqués (ou sous-espaces). De même, ces derniers héritent de cette capacité.

Configuration centralisée de la MPU par appels système

La MPU ne peut être configurée en mode privilégiée. Cependant, ce niveau de privilège
est trop élevé pour les composants logiciels du système, qui comprend des composants
qui ne sont pas de confiance. En effet, ils pourraient en profiter pour attaquer d’autres
composants en s’octroyant l’accès à leur espace mémoire protégé.

Pour résoudre ces conflits, nous proposons de donner l’exclusivité du rôle de config-
uration de la MPU à une entité (privilégiée) unique de l’espace noyau. Tous les autres
composants logiciels sont rejetés dans l’espace utilisateur, sans privilèges particuliers.
Afin de leur permettre tout de même de contrôler la MPU, selon le point précédent, il
leur faut passer par l’entité privilégiée par appels système. Cette entité privilégiée doit
être de confiance au vue des risques encourus en cas de détournement d’usage ou de
mauvaise configuration de la MPU.

Dans les solutions courantes, ce niveau de personnalisation de la MPU n’est jamais
atteint et notre proposition ne suppose aucune région MPU réservée pour un usage
particulier ou liée à des droits d’accès spécifiques.

A.1.3 Personnalisation de la politique de sécurité

La personnalisation de la MPU accordée aux composants logiciels de l’espace utilisateur
leur permettent d’implémenter des modèles de permission d’accès locaux à leurs espaces
mémoire imbriqués. Par exemple, cela peut être d’imposer le principe W ^X, ou de la
mémoire partagée, ou encore la protection personnelle de composants internes, ou bien
des espaces mémoire temporaires.

Cependant, il faut que ces composants soient limités un minimum dans leur pouvoir
d’action par l’entité privilégiée, sinon nous retomberions dans une situation où ils
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auraient les pleins pouvoirs sur la MPU et pourraient en profiter pour attaquer les
autres composants. Il doit donc y avoir une restriction globale définie au sein de l’entité
privilégiée, implémentée par les services, que les permissions locales doivent respecter
en tout temps. Par exemple, il pourrait s’agir d’une interdiction de modifier les droits
d’accès initialement octroyés lors de la création d’un sous-espace mémoire.

A.1.4 Interface de Programmation Applicative (IPA)

Les composants logiciels interagissent avec l’entité privilégiée centralisée en charge de la
configuration MPU par les appels système. Ceux-ci fournissent des services de gestion
des sous-espaces mémoire. Ces services sont non préemptibles et rendent l’IPA à la fois
dynamique et flexible.

IPA dynamique

S’agissant du dynamisme, il convient de laisser un espace mémoire se transformer en
cours d’exécution selon la volonté de l’utilisateur. Celle-ci peut partager sa propre
mémoire à des sous-composants pour étendre la mémoire d’un sous-espace, symétrique-
ment récupérer cette mémoire, afin de redonner de la mémoire à un espace mémoire
épuisé, ou transmettre des messages, ou encore donner l’accès à des périphériques.
Elle peut également modifier les caractéristiques de bloc mémoire, dont leur taille par
l’introduction d’une fonctionnalité de découpage mémoire, et leurs permissions d’accès
qui ne peuvent dépasser les permissions originelles.

L’état courant d’un espace mémoire est stocké dans des structures de métadonnées.
Les métadonnées enregistrent chaque modification de l’espace mémoire. Pour des
raisons de sécurité, ces métadonnées ne sont pas accessibles à l’utilisateur qui pourrait
sinon détourner la politique de sécurité globale en les modifiant convenablement. L’IPA
dispose de sept appels système pour le dynamisme :

• add, remove: ces appels système étendent, respectivement restreignent, l’espace
mémoire d’un sous-espace imbriqué. Ils peuvent être utilisés pour déplacer des
bouts de mémoire et notamment isoler du code ou transmettre des messages.

• prepare, collect: ces appels sytème de gestion d’espace mémoire mettent en
place des structures de métadonnées, respectivement les retirent. Ils doient être
appelés avant d’ajouter, ou respectivement enlever, de la mémoire, afin de séparer
les actes d’extension mémoire des opérations de gestion qui les rendent possibles.
Leur contenu n’est pas accessible à l’utilisateur.

• cut, merge: les blocs mémoire vont grandir et se réduire selon les besoins de
l’application. Le découpage et la fusion de blocs permettent de redéfinir des blocs
mémoire attribués à un composant logiciel, dans l’optique de ne pas partager
l’ensemble d’un bloc par exemple.

• activate: cet appel système sélectionne un bloc mémoire et le configure dans la
MPU. L’utilisateur choisit quelle région MPU doit abriter le bloc.
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IPA flexible

L’utilisateur peut former autant de sous-espaces que souhaités, sans avoir besoin de fixer
la structure globale lors de la compilation ou du démarrage. L’IPA propose deux appels
système qui rendent possibles la flexibilité par la création d’espace mémoire imbriqués :

• create, delete: ces appels système créent, respectivement détruisent, un espace
mémoire imbriqué. La création consiste à déclarer le nouveau sous-espace dans un
bloc de métadonnées, tandis que la destruction redonne à l’espace mémoire parent
tous les blocs qu’il avait préalablement partagés. Le bloc contenant la structure de
métadonnées créé à l’occasion d’un create n’est plus accessible à l’utilisateur.

A.1.5 Structures de données et virtualisation MPU

Nous détaillons maintenant les structures de métadonnées nécessaires au fonction-
nement de la compartimentation flexible.

Structure de MPU virtuelle (ou blocs) Les blocs mémoire d’un espace mémoire ne sont
pas tous configurés dans la MPU. En effet, ils peuvent être plus nombreux, surtout par la
fonctionnalité de découpage, que le nombre de régions MPU. L’utilisateur sélectionne les
blocs à activer dans la MPU. En fait, la liste des blocs d’un espace mémoire est séparée
de la liste des blocs configurés dans la MPU. C’est comme si la MPU était virtualisée.

La liste de l’ensemble des blocs mémoire est contenue dans la structure de métadon-
nées MPU virtuelle, où sont enregistrées leurs caractéristiques : adresses de début et
de fin, permissions d’accès, accessibilité (éligible à être configuré dans la vraie MPU) et
d’existence (n’est pas un emplacement vide). Tous les emplacements (slots) vides sont
chainés entre eux. Une structure de MPU virtuelle accueille un nombre limité de blocs,
et alors il est possible d’étendre la liste en ajoutant une structure chainée aux autres par
le service prepare, ou au contraire la réduire par collect.

Structure de partage Pour chacun des blocs de la structure de MPU virtuelle est associé
une entrée de partage, sauvegardée dans une liste séparée. Cette entrée indique si le
bloc associé est partagé avec un sous-espace, duquel il s’agit et la localisation du bloc s’il
est partagé. De même, prepare et collect gère la taille de la liste.

Structure de découpe Chaque bloc découpé est mis en relation avec son bloc originel
pour tracer les découpages. De même, cette structure est gérée par prepare et collect.

Structure principale La structure principale stocke les liens vers toutes les autres
structures d’un espace mémoire donné, ainsi qu’un lien vers l’espace mémoire parent
s’il en a un, la liste des blocs configurés dans la vraie MPU, le nombre d’emplacements
vides et un pointeur vers le premier emplacement vide. Cette structure est créée,
respectivement détruite et par conséquence tous les sous-espaces mémoire imbriqués
que l’espace mémoire considéré abrite, par les appels système create et delete.
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A.2 Pip-MPU, adaptation du noyau Pip par spécialisation du
cadriciel

Jusqu’à ce point, nous nous sommes concentrés sur le module flexible et sécurisé de ges-
tion MPU. Cependant, ce module ne suffit pas pour faire tourner des vrais programmes.
Nous démontrons alors une utilisation possible du cadriciel avec le proto-noyau Pip que
nous adaptons aux systèmes basés sur MPU puisqu’il repose actuellement sur la MMU.
Nous appelons cette adaptation Pip-MPU. Pip a besoin d’une forte flexibilité et possède
une politique de sécurité globale très restrictive.

A.2.1 Pip

Pip est un noyau spécialisé en gestion mémoire et en changement de contexte. Il est seul
privilégié dans le système, tous les autres composants logiciels tournent dans l’espace
utilisateur. Pip démontre de fortes garanties de sécurité avec une propriété d’isolation
formellement vérifiée avec appui de l’assistant de preuves Coq [95].

Pip base son modèle de sécurité sur un arbre de partitionnement. Une partition
est typiquement un processus, une tâche ou n’importe quelle unité exécutable avec
ses données. L’espace mémoire d’une partition est composée de pages mémoire. Une
partition peut créer une ou plusieurs sous-partitions, ce qui forme un arbre généalogique.
Toutes les partitions descendent de la partition racine et sont dynamiquement créées
durant le cycle de vie du système.

Les partitions sont reliées entre elles par des relations parent-enfant. Une partition
parente peut avoir des descendants, de même qu’une partition enfant. Pour un
descendant, la partition parente est un ancêtre. Les partitions qui ont le même parent
sont des partitions soeurs.

Le modèle de sécurité de Pip garantit trois propriétés de sécurité, illustrées dans la
Figure A.2:

• Partage Vertical : une partition parente peut partager des bouts de sa propre
mémoire à l’une de ses partitions enfant.

• Isolation horizontale : une page mémoire ne peut être partagée par un parent
qu’avec un unique enfant. Cette propriété garantit l’isolation mémoire stricte
entre des partitions soeurs.

• Isolation du noyau : la mémoire attribuée à Pip, ainsi que les métadonnées qui
stockent les attributs des espaces mémoire des partitions, ne sont pas accessibles
aux partitions. Cette propriété protège le noyau et garantit qu’aucune partition ne
peut changer sa configuration en accédant aux métadonnées.

A.2.2 Exigences pour Pip-MPU

Pip-MPU propose plus de services que l’entité privilégiée du cadriciel. Nous catégorisons
en quatre catégories les exigences que doit suivre Pip-MPU pour valider l’adaptation :
sécurité, performances, fonctionnelles et matérielles. Certaines exigences sont directe-
ment héritées de Pip tandis que d’autres ne sont seulement requises pour l’adaptation à
des appareils contraints en ressources.
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Figure A.2: Modèle de sécurité de Pip.

Exigences héritées de Pip :

• SecReq1: les propriétés de sécurité de Pip Les propriétés de sécurité de Pip
présentées précédemment doivent être garanties.

• SecReq2:Protection mémoire matérielle Les accés mémoire illégaux doivent être
bloqués et identifiés par les composants matériels de protection mémoire. Seul
l’espace noyau a suffisamment de privilèges pour les configurer.

• SecReq3: Taille logicielle minimale Le code de Pip doit être minimal afin de
pouvoir être vérifié formellement, pour réduire la probabilité de vulnérabilités et
pour faciliter la maintenance de la base de code.

• SecReq4: Modifications des permissions d’accès limitées Pip doit garantir que
seule une partition parente peut gérer les permissions d’accès des blocs mémoire
(en lecture, écriture, exécution). Pip doit garantir qu’une partition ne puisse pas
élever ses droits toute seule sur elle-même ou ses partitions enfant.

• FuncReq1: Partitions flexibles L’arbre de partitionnement doit être librement
déterminé lors de l’exécution. Toutes les partitions peuvent créer et isoler des
sous-espaces issus de leur propre espace mémoire.

• PerfReq1: Dégradation des performances raisonnables Pip doit maintenir les
exigences de performances existantes avant un portage sur Pip afin de convenir
au monde concret. Cela inclut une phase de démarrage rapide qui ne doit pas
impacter significativement la routine de démarrage.

Exigences spécifiques à Pip-MPU :

• HWReq1: Protection mémoire par la MPU Pip-MPU doit spécifiquement utiliser
la MPU comme matériel de protection mémoire. Puisque la MPU n’est que
disponible dans les appareils à fortes contraintes de ressources, le corollaire est
que Pip-MPU ne ciblent que cette classe d’appareils..

• HWReq2: Pas de modifications matérielles Pip-MPU doit utiliser les composants
matériels déjà commercialisés, sans les modifier. Ceci pour faciliter l’adoption et
réduire le temps de développement.
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Appel système Complexité
create/delete O(s ∗ k)
cut/merge O(s ∗ k)
add/remove O(s)
prepare/collect O(s ∗ k)
activate O(1)

Table A.5: Analyse des complexités des appels système du cadriciel implémentés pour
Pip-MPU. s représente le nombre structures de métadonnées d’une partition donnée
(<8) et k est le nombre d’ancêtres de cette partition (attendu < 4).

• PerfReq2: Temps d’exécution limité L’analyse de complexité des algorithmes
de Pip-MPU et l’implémentation du code doivent être compatibles avec des con-
traintes temps-réel pour convenir à de nombreux scénarios d’appareils contraints.

• PerfReq3: Faible consommation mémoire Pip-MPU doit laisser assez d’espace
mémoire aux applications.

• PerfReq4: Faible consommation énergétique La consommation énergétique sup-
plémentaire due à Pip-MPU doit rester raisonnable afin de ne pas pénaliser les
appareils contraints alimentés par batterie.

A.2.3 Implémentation de Pip-MPU

Il y a une proximité évidente entre les structures de métadonnées du cadriciel et celles
de Pip qui nous permettent de valider un certain nombre d’exigences.

De plus, nous spécialisons le cadriciel pour satisfaire les propriétés de sécurité de
Pip. Tout d’abord, nous restreignons le partage de blocs mémoire avec un sous-espace
en ajoutant un champ unique identifiant le partage. Nous obligeons également dans
l’implémentation du service de partage que les permissions d’accès ne soient jamais
élevées. De plus, nous adoptons la même nomenclature que Pip et fusionnons les
structures de MPU virtuelle (devient Blocks), de partage (devient Shadow 1) et de
découpe (devient Shadow Cut), tandis que la structure principale est laissée à part
(et devient Partition Descriptor). Les relations parent-enfant sont illustrées sur deux
niveaux dans la Figure A.3.

Le flux de travail et l’organisation du code reprend les codes de Pip et les services
spécialisés du cadriciel sont implémentés directement dans l’assistant de preuves Coq.

Par ailleurs, le nombre de blocs mémoire au sein d’une partition a été limité à 64 par
partition, ce qui mène à l’analyse de complexité de chaque appels système du cadriciel
reportée dans le Tableau A.5.

A.2.4 Evaluation de Pip-MPU

Nous évaluons notre implémentation de Pip-MPU en exécutant une application au
sein de notre prototype de Pip-MPU sur un microcontrôleur basé sur un processeur
ARMv7 Cortex-M et en comparant l’exécution à une implémentation de référence sans
Pip. L’objectif de cette évaluation est double : 1) Est-ce que la solution est utilisable
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)

Figure A.3: Exemple de relations parent-enfant sur deux niveaux du point de vue des
structures de métadonnées. Partition 0 (parent) est le parent de partition 1.3 (enfant
de parent 0) qui est à son tour parent de partition 1.3 (grand-enfant de parent 0). Les
blocs verts contiennent les structures PD de leurs enfants. Les blocs violets contiennent
les super-structures de leurs enfants ou pour eux-mêmes (cas du petit-enfant 1.3).
L’illustration montre que le bloc 1.4 a été découpé plusieurs fois (en 1.4.2, 1.4.3, 1.4.4
and 1.4.5) ce qui implique que le bloc original 1.4 est inaccessible dans les ancêtres.
Pour chaque bloc mémoire des partitions, on observe aucune élévation des permissions
d’accès par rapport à leur bloc originel, mais ne peut qu’être descendu (comme pour le
bloc 1.3). Le petit-enfant 1.3 montre un cas d’école après un prepare: une nouvelle
super-structure est initialisée en consommant le bloc 1.4.4 de la même partition 1.3, et
la nouvelle super-structure est placée en tête de la liste chaînée des super-structures
de la partition, le premier slot libre est remplacé par la première entrée de la nouvelle
super-structure et toutes les entrées ont les valeurs par défaut exceptées la dernière
entrée qui est reliée à l’ancienne liste des slots libres de la partition. Le bloc 1 est de
la mémoire partagée entre le parent 0 et son enfant 1.1. Dans notre implémentation,
nous considérons une structure de MPU virtuelle avec huit entrées. A noter, l’absence
d’ordre dans la liste des slots libres du petit-enfant 1.3 du aux précédents cut et merge.
Notons également la référence unique entre les super-structures 1.5 et 1.4.4 comparées
aux multiples références dans le cadriciel entre chaque structure interne.
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Empreinte mémoire en Flash (octets/SLOC de C)
Taille totale de Pip-MPU 9544 / 4186

Empreinte mémoire en RAM (octets)
Pile de Pip-MPU 516
Structures de métadonnées:
- par partition 640 + (Bmod 8)× 512
- minimum par partition 1152
- maximum par partition 4736

Déploiement (#cycles)
Initialisation de Pip-MPU Partition racine : 99022 / Partition enfant : 165582

Table A.6: Surcoût de Pip-MPU. Pour mesurer la taille de Pip-MPU et son empreinte
mémoire, nous avons utilisé l’option de compilation -Os.

sur des objets contraints ? 2) Quels sont les surcoûts liés aux performances (cycles,
consommation énergétique) et à la présence de la couche logicielle supplémentaire
(taille, lignes de code, temps d’initialisation) pour quels gains de sécurité (mémoire
accessible, opérations privilégiées) ?

Notre prototype tourne sur un kit de développement nRF52840 Nordic Semiconduc-
tor (nRF52840-DK)[131]. La puce embarque un processeur ARM Cortex-M4 (architec-
ture ARMv7-M) s’exécutant à 64 MHZ et comprenant une mémoire flash de 1 Mo et
une mémoire vive de 256 ko, ainsi que d’une MPU composée de 8 régions MPU. Nous
conduisons des analyses statiques et dynamiques sur 4 applications issues de la suite de
tests d’évaluations Embench IoT benchmark suite [72]: aha-mont64, crc32, nsichneu,
primecount.

L’évaluation consiste en deux scénarios Pip, faisant tourner une application au sein
1) de la partition racine ou 2) d’une partition enfant. De façon identique à Pip, la
partition racine est lancée par Pip-MPU à la fin de son initialisation et est l’unique
partition au démarrage. La partition racine initialise et lance ensuite elle-même des
partitions enfant. Ces partitions enfant peuvent également créer des partitions enfant,
et ainsi de suite. Toutes les partitions s’exécutent dans l’espace utilisateur. Nous avons
comparé chaque scénario à notre scénario de référence qui est l’exécution de la même
application en mode privilégié, sans Pip et lancée après la même phase d’initialisation.
L’application est régulièrement interrompue par une interruption SysTick toutes les 10
ms. L’interruption déclenche une routine qui rend la main immédiatement dans le cas
de notre scénario de référence, ou alors traverse la routine d’interruption de Pip-MPU
dans les scénarios Pip. Une expérience associe une application avec un scénario.

Nous avons écrit des scripts Python pour piloter la phase d’évaluation, inspirés par
et adaptés selon les scripts et les outils proposés par Embench and BenchIoT [2]. Les
résultats finaux présentent le surcoût de Pip-MPU dans le Tableau A.6, et le surcoût
induit sur les performances de l’application et les gains de sécurité obtenus dans le
Tableau A.7.

Les lignes de code source (SLOC, Source Lines of Code) sont le nombre de lignes
de code source C après suppression de tous les commentaires et de toutes les lignes
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vides de tous les fichiers source C par l’utilisation de l’option GCC -fpreprocessed.
Les lignes comptabilisées incluent celles qui ne contiennent que des accolades, des
variables globales ou encore les paramètres de fonction pouvant s’étaler sur plusieurs
lignes (même si peu fréquent). Le Tableau A.6 présente les SLOC et la taille (en octets)
de Pip-MPU, qui comporte ses services principaux et ses routines d’interruption, ainsi
que les fonctions bas-niveau d’accès au matériel.

L’utilisation de la pile est mesurée sur les pile principale (main stack) et utilisateur
(user stack) en les marquant au préalable par une valeur prédéfinie. A la fin du test,
la dernière position comprenant la valeur prédéfinie témoigne de l’usage. En plus
des métadonnées requises pour la partition racine, l’empreinte mémoire de Pip-MPU
comprend les métadonnées utiles pour la création d’autres partitions, dont la partition
enfant de notre scénario. Les métadonnées des partitions comprennent les structures
encapsulant la liste des blocs mémoire et leurs attributs, ainsi que des données globales
à la partition. Lorsque le nombre de blocs d’une partition augmente, ces blocs sont
référencés dans des structures de taille S. Chaque structure peut référencer un nombre
constant de blocs C. Ainsi, pour une partition de B blocs, nous obtenons l’empreinte
mémoire de ses métadonnées par la formule

K + (B mod C)× S octets

avec K une taille de métadonnées incompressible. Dans notre implémentation, K =
640, C = 8, S = 512. Puisque chaque partition a besoin d’une structure de métadonnées
au minimum pour référencer les premiers blocs, l’empreinte mémoire d’une partition
en RAM sera d’au minimum 1152 octets (liste initiale de B = 8 blocs). Par ailleurs, le
nombre de structures de métadonnées pour une partition donnée est limité à MaxS lors
de la compilation, ce qui implique une empreinte mémoire maximum de K +MaxS × S
pour cette partition. Pour notre système, MaxS = 8 par partition, soit 640+8×512 = 4736
octets. De plus, MaxS dicte le nombre de blocs qu’une partition peut référencer au
maximum par C ×MaxS, soit ici 64 blocs.

Pour obtenir les métriques de performances du Tableau A.7, nous exécutons l’applica-
tion pour chaque scénario (référence, partition racine et partition enfant). Nous lançons
le programme principal 3 fois consécutivement pour la même expérience, ce qui nous
permet de récolter des données sur au moins 20 secondes (chaque application s’exécutant
en 5-7 secondes). Nous lançons l’expérience 5 fois et nous effectuons ensuite des
statistiques (moyenne µ et écart-type σ ) que nous moyennons pour chaque application.
Le surcoût indiqué est la moyenne du surcoût observé pour chaque scénario comparé au
scénario de référence.

Le nombre de cycles est obtenu par l’unité du processeur Data Watchpoint and Trace
(DWT). Nous initialisons le compteur juste avant le lancement de l’application et nous
récupérons le nombre de cycles écoulés après la fin de la phase d’initialisation ainsi que
lorsque l’application a terminé son travail. La fin de la phase d’initialisation marque
le début de la phase de test qui lance l’application. De plus, le scénario de référence
s’exécute toujours en mode privilégié, ce qui correspond à 100% de cycles privilégiés.
A l’inverse, dans les scénarios Pip (application s’exécutant dans la partition racine ou
une partition enfant), les cycles privilégiés sont tous ceux mesurés dans les routines de
Pip-MPU. Nous indiquons le ratio du nombre de cycles privilégiés sur le nombre total
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Métriques Partition racine Partition enfant

Cycles
Cycles :
i) au total µ = 76302131 µ = 74538344

σ = 67494444 σ = 73634323
(+16.31%) (+16.4% )

ii) pendant le test µ = 76203107 µ = 74372762
σ = 67495112 σ = 73634647

(+16.29%) (+16.36%)
Ratio des cycles privilégiés sur le total des cycles :

i) au total µ = 0.86% µ = 0.92%
σ = 3.8× 10−5% σ = 3.3× 10−5%

(-99.14%) (-99.08%)
ii) pendant le test µ = 0.87% µ = 0.92%

σ = 3.9× 10−5% σ = 3.3× 10−5%
(-99.13%) (-99.08%)

Consommation énergétique pendant la phase de test
Totale µ = 24.76mJ µ = 26.6mJ

σ = 22.42mJ σ = 23.00mJ
(+16.7%) (+18.4%)

dont causée par la MPU µ = 0.05mJ µ = 0.07mJ
σ = 0.16mJ σ = 0.11mJ

(+0.03%) (+0.04%)

Securité
Ratio de la mémoire accessible depuis l’application sur la mémoire totale:

- Flash (code) 99.0% 6.27%
(-1.0%) (-93.73%)

- RAM (données) 99.35% 1.9%
(-0.65%) (-98.1%)

Table A.7: Comparaison des performances et de la sécurité par rapport au scénario
de référence. L’application est soit exécutée au sein de la partition racine, soit dans la
partition enfant.
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de cycles 1) depuis le démarrage de la partition racine 2) seulement durant l’exécution
de l’application.

Les zones de mémoire accessible représentent la mémoire que la partition peut
accéder. L’application dans le scénario de référence a accès à toute la mémoire, soit
100%, tandis que dans les scénarios Pip les zones accessibles sont restreintes aux blocs
de l’espace mémoire. Pour la partition racine, la mémoire accessible correspond à toute
la mémoire, en retirant Pip-MPU et les composants de démarrage. A partir de là, la
partition racine, ainsi que n’importe quelle autre partition parent, décide quels blocs
mémoire sont partagés avec les partitions enfant, contrôlant de cette manière leurs zones
de mémoire accessible.

La consommation énergétique est mesurée en utilisant un Power Profiler Kit I
(PPKI) [132] monté sur la puce nRF52840-DK. Le PPK produit des mesures de courant
à 77 kHz en moyennant sur 4 mesures, que nous multiplions par une tension fixe et que
nous intégrons sur le temps écoulé afin d’obtenir la consommation énergétique totale.
Etant donné l’utilisation du semihosting pour renvoyer les données de performance à
l’ordinateur pour analyse, le débuggeur reste actif. Néanmoins, aucune entrée/sortie n’a
lieu pendant la phase de test.

Pip-MPU prend respectivement 1664 octets (données, pile, structures de métadon-
nées de la partition racine) et 9544 octets (code) des 256 Ko de mémoire vive (3.3%) et
du 1 Mo de mémoire flash (3.8%). Ainsi Pip-MPU laisse aisément de la place pour des
applications complexes (exigence PerfReq3). Cela démontre également sa minimalité
(exigence SecReq3. La métrique de mémoire accessible montre l’étendue de la surface
d’attaque. Pip-MPU réduit cette surface d’attaque de 99% pour la partition racine.
Le pourcent restant correspond à la mémoire réservée pour Pip-MPU, donc isolée et
protégée. L’empreinte mémoire due à la création d’une partition enfant s’élève à 1Ko
dans notre implémentation. Cependant, ce minimum ne comprend pas les entrées
réquisitionnées dans la partition parente pour stocker les structures de métadonnées
de l’enfant. Si ces entrées ne sont pas suffisantes, il faudrait alors créer de nouvelles
structures de métadonnées ce qui consommerait 512 octets supplémentaires. Le nombre
d’entrées des structures est défini par le développeur lors de la compilation et pourrait
donc être ajusté pour correspondre au mieux au cas d’usage.

De plus, nous observons une dégradation des performances de 16% causée ma-
joritairement par la séquence de restauration du contexte lors de la réception d’une
interruption SysTick. Cette valeur n’a de sens que pour notre scénario de test et est
attendue plus important dans le cas d’un OS porté sur Pip à cause de multiples interrup-
tions. Nous avons identifié certaines optimisations qui permettraient de réduire cette
dégradation si elle s’avère trop importante.

Le surplus de consommation énergétique est de 17-18%. La MPU n’explique que
0.02-0.2% de ce total en fonction des scénarios. Cela indique que la MPU impacte peu la
consommation ce qui était pourtant un argument avancé pour soutenir la non-utilisation
de celle-ci de façon globale dans les systèmes contraints [194].

Ainsi, notre analyse préliminaire et l’évaluation de Pip-MPU ont démontré une
parfaite concordance avec les exigences attendues. De plus, notre prototype n’est
pour l’instant compatible que pour des architectures ARMv7. Cependant, la MPU est
présente dans la majorité des appareils basés sur ARM Cortex-M3/4/7 [33] et de plus,
nous revendiquons une compatibilité étendue à ARMv8 ainsi que pour des composants
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équivalents d’autres architectures tel que RISC-V Physical Memory Protection (PMP)
[176].

Par ailleurs, Pip-MPU protège des attaques identifiées dans notre modèle d’attaque.
La MPU protège le système dès son démarrage et avant le lancement de la partition
racine. La compartimentation flexible mise en place par Pip-MPU empêche un attaquant
qui aurait réussi à compromettre un composant de se propager dans l’appareil en-dehors
du composant compromis.

Pour cela, nous faisons confiance au chargement de Pip-MPU et au lancement correct
de la partition racine, ainsi que la chaine de compilation, les IDEs et outils utilisés et
la plateforme matérielle disposant d’une MPU fonctionnant tel que compris par les
spécifications. La plupart des systèmes reposent sur cette même base de confiance, il est
donc réaliste.

A.3 Vérification formelle de la propriété d’isolation de Pip-
MPU

Malgré l’argumentation précédente soutenant que l’on pouvait faire confiance à Pip-
MPU, cela peut ne pas être suffisant dans le cas de systèmes critiques ayant besoin de
fortes garanties.

Les méthodes formelles apportent ce degré de confiance par des démonstrations
mathématiques de la sécurité vérifiées par ordinateur, comme cela a été fait pour Pip. Pip
utilise la logique de Hoare [90] pour conduire sa preuve pour vérifier que ses propriétés
de sécurité (cf. paragraphe A.2.1: Partage Vertical, Isolation Horizontale et Isolation du
noyau) sont des invariants (propriétés satisfaites à la fin de l’exécution du service si
l’exécution est terminée et que les propriétés étaient vraies au début de l’exécution). Les
preuves sont réalisées au sein de l’assistant de preuve Coq [95].

A.3.1 Objectifs de preuve dans Pip-MPU

Pip-MPU tend à vérifier l’invariant d’isolation sur ses services de la même manière que
Pip. Les propriétés de sécurité (décrites plus haut : Partage Vertical, Isolation Hori-
zontale et Isolation du noyau) reposent sur des propriétés structurelles des structures
de métadonnées, appelées propriétés de cohérence. En effet, les propriétés de sécurité
sont définies selon l’arbre de partitionnement lui-même sous-jacent aux structures de
métadonnées. Il convient alors de vérifier deux groupes d’invariants : les propriétés de
sécurité et les propriétés de cohérence.

Definition A.3.1 (Invariant d’isolation). L’invariant d’isolation de Pip-MPU est la con-
jonction de ses propriétés de sécurité S et de ses propriétés de cohérence C, soit S

∧
C.

Ainsi, il faut pour chaque service prouver le triplet de Hoare suivant :

{S&C}
service Pip-MPU (paramètres...)

{S&C}
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Concernant les propriétés de cohérence C, ils sont du nombre de vingt-sept, classées
en trois groupes : les propriétés sur les entrées mémoire, les propriétés manipulant
des structures abstraites telles des listes et tableaux, et les propriétés qui régissent les
relations entre partitions. Toutes les propriétés sont dépendantes de l’état courant,
modélisé comme l’association de la partition courante et la mémoire.

Propriétés sur les entrées mémoire :

• nullAddrExists s

• wellFormedFstShadowIfBlockEntry s

• wellFormedShadowCutIfBlockEntry s

• PDTIfPDFlag s

• AccessibleNoPDFlag s

• FirstFreeSlotPointerIsBEAndFreeSlot s

• BlocksRangeFromKernelStartIsBE s

• KernelStructureStartFromBlockEntryAddrIsKS s

• sh1InChildLocationIsBE s

• StructurePointerIsKS s

• NextKSIsKS s

• NextKSOffsetIsPADDR s

Propriétés manipulant des ensembles abstraits :

• NoDupInFreeSlotsList s

• freeSlotsListIsFreeSlot s

• DisjointFreeSlotsLists s

• inclFreeSlotsBlockEntries s

• DisjointKSEntries s

• noDupKSEntriesList s

• noDupMappedBlocksList s

• noDupUsedPaddrList s

• MPUInAccessibleBlocks s

Propriétés sur les relations inter-partitions :

• currentPartitionInPartitionsList s

• noDupPartitionTree s

• isParent s

• isChild s

• accessibleChildPaddrIsAccessibleIntoParent s

• sharedBlockPointsToChild s
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A.3.2 Résultats

Il y a deux types de services : ceux qui ne modifient pas l’état courant (uniquement des
instructions de lecture) et ceux qui le modifient (instructions d’écriture).

Pour le premier type de services, la preuve est triviale. En effet, puisque l’état n’est
pas modifié, il est le même à la fin de l’exécution du service qu’au début où les propriétés
étaient satisfaites. Nous avons vérifié de cette manière que la propriété d’isolation était
satisfaite dans les services findBlock et readMPU.

Pour le second type de services, la preuve est difficile. En effet, en modifiant l’état,
il faut également s’assurer que les propriétés sont toutes satisfaites dans l’état modifié.
Nous avons montré informellement, puis formellement dans l’assistant de preuve Coq2

que les propriétés d’isolation étaient satisfaites dans le service addMemoryBlock.

Nos preuves sont développées en utilisant CoqIDE 8.13.1 s’exécutant sur la distribu-
tion ArchLinux 5.18.1. La plateforme matérielle pour les preuves a été un ordinateur
HP ZenBook G4 17 possédant un processeur 64-bit Intel i7 7820HQ 4 coeurs, 16 Go de
RAM, 16 Go de swap, et 155 Go d’espace disque utilisable.

Le Tableau A.8 relate le statut courant du développement des preuves et les résultats
obtenus ainsi que certaines métriques de preuve courantes. Ce tableau présente tout
d’abord le nombre de services prouvés et les métriques sur l’invariant d’isolation. Il
relate également le temps passé pour la formalisation et pour le développement des
preuves des trois services prouvés. Il présente aussi le ratio de lignes de code sur lignes
de preuve ou tactiques Coq, ainsi que l’estimation en personne-temps de chaque service
et le ratio par lignes de code vérifiées.

A.3.3 Hypothèses

La validité des preuves dépendent d’un certain nombre d’hypothèses, dont les outils
utilisés (Coq, digger, IDEs), la validité du modèle matériel, la correspondance entre
les primitives bas-niveau sur lesquels reposent l’écriture des services dans Coq et leur
équivalent C réellement compilé, l’implémentation matérielle et la correction de sa
spécification, l’expression juste de l’invariant d’isolation et la phase de démarrage qui
satisfait la pré-condition des triplets de Hoare de chaque service.

A.3.4 Découverte de bugs

La vérification formelle de addMemoryBlock a révélé un bug. En effet, la phase de
vérification des paramètres omettait de vérifier qu’un bloc n’était pas déjà partagé avant
de le faire, ce qui amenait à une situation où des partitions soeurs pouvaient disposer
du même bloc mémoire, ce qui est interdit par la propriété de sécurité de l’isolation
horizontale. Le bug a été découvert par l’impossibilité de conclure la preuve de cette
propriété. La découverte de bugs est fréquente dans les projets de vérification formelle
[99, 29, 109].

2https://gitlab.univ-lille.fr/2xs/pip/pipcore-mpu/-/blob/addMemoryBlock_proof/proof/invariants/
AddMemoryBlockSecProps.v
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Statut de la preuve

Services
# services 15
# services entièrement vérifiés 2

Invariants
# propriétés de cohérence 27
# propriétés de sécurité 3
Total propriétés 29
SLOC propriétés de cohérence 129
SLOC propriétés de sécurité 14
Total SLOC propriétés 143

Développement des preuves

Formalisation
Temps de compréhension de
la spécification matérielle

2 mois

Durée de conception 9 mois
(dont 2 mois de simulation en Python)

Temps d’implémentation du
modèle Coq

2 mois

Durée d’implémentation
des services en Coq depuis
pseudo-code

2 mois

readMPU findBlock addMemoryBlock
# SLOC (sans HAL) 11 14 25

Preuves Toutes les propriétés Propriétés
de cohérence

Propriétés
de sécurité

# LdP (Lignes de Preuve) 76 81 6143 1516
# tactiques 90 93 6838 759
Ratio #LdP/SLOC 6.9 5.8 246 60.4
Ratio #tactiques/SLOC 8.18 6.6 273 30.4
Durée de développement des
preuves

2 jours 4 heures 7 mois (en
cours)

4 jours

personne-mois (estimation) 0.09 0.02 5.5 0.18
Ratio personne-mois/SLOC 0.008 0.0014 0.22 0.0072
Temps de compilation de la
preuve

0.5s 0.4s 939s (15.65
min)

127s (2.1
min)

Empreinte mémoire
pendant la compilation de la
preuve

400 Mo 400 Mo 5000 Mo 900 Mo

Utilisation du CPU
pendant la compilation de la
preuve

100% 110% 115 % 105%

Couverture de preuve (estima-
tion)

100% 100% 90% 100%

Table A.8: Efforts de preuve et statut.
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A.4 Techniques de preuves et évolution du processus de vérifi-
cation formelle

Pip-MPU a hérité du cadre formel de Pip. Cependant, toute la formalisation a dû être
modifiée, ainsi que les propriétés de sécurité puisque Pip basait son raisonnement sur
l’unité d’une page mémoire, qui n’existe pas dans Pip-MPU. Très tôt, la base de preuve a
été fondamentalement et profondément changée.

A.4.1 Formalisation

Cependant, il a été souhaité de garder de fortes similitudes là où cela faisait sens, par
exemple les propriétés de sécurité. Malgré une base formelle différente, elles sont
quasiment identiques dans leur expression, avec des différences plus prononcées dans
les définitions des fonctions internes.

(** PIP (MMU) **)

(** THE VERTICAL SHARING PROPERTY

*)↪→

Definition verticalSharing s : Prop

:=↪→

forall parent child : page ,

In parent (getPartitions

pageRootPartition s) ->↪→

In child (getChildren parent s) ->

incl (getUsedPages child s)

(getMappedPages parent s).↪→

(** THE ISOLATION PROPERTY BETWEEN

PARTITIONS *)↪→

Definition partitionsIsolation s :

Prop :=↪→

forall parent child1 child2 : page ,

In parent (getPartitions

pageRootPartition s)->↪→

In child1 (getChildren parent s) ->

In child2 (getChildren parent s) ->

child1 <> child2 ->

disjoint (getUsedPages child1

s)(getUsedPages child2 s).↪→

(** THE KERNEL DATA ISOLATION

PROPERTY *)↪→

Definition kernelDataIsolation s :

Prop :=↪→

forall partition1 partition2,

In partition1 (getPartitions

pageRootPartition s) ->↪→

(** PIP-MPU **)

(** THE VERTICAL SHARING PROPERTY

*)↪→

Definition verticalSharing s : Prop

:=↪→

forall parent child : paddr,

In parent (getPartitions

multiplexer s) ->↪→

In child (getChildren parent s) ->

incl (getUsedPaddr child s)

(getMappedPaddr parent s).↪→

(** THE ISOLATION PROPERTY BETWEEN

PARTITIONS *)↪→

Definition partitionsIsolation s :

Prop :=↪→

forall parent child1 child2 : paddr ,

In parent (getPartitions

multiplexer s) ->↪→

In child1 (getChildren parent s) ->

In child2 (getChildren parent s) ->

child1 <> child2 ->

disjoint (getUsedPaddr child1 s)

(getUsedPaddr child2 s).↪→

(** THE KERNEL DATA ISOLATION

PROPERTY *)↪→

Definition kernelDataIsolation s :

Prop :=↪→

forall partition1 partition2 :

paddr,↪→
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In partition2 (getPartitions

pageRootPartition s) ->↪→

disjoint (getAccessibleMappedPages

partition1 s) (getConfigPages

partition2 s).

↪→

↪→

In partition1 (getPartitions

multiplexer s) ->↪→

In partition2 (getPartitions

multiplexer s) ->↪→

disjoint (getAccessibleMappedPaddr

partition1 s) (getConfigPaddr

partition2 s).

↪→

↪→

En ce qui concerne les propriétés de cohérence, certaines sont différentes et attachées
à leur contexte propre, ou bien se ressemblent fortement comme isChild, ou bien
relatent de la même propriété mais, étant donné que Pip-MPU utilise une formalisation
avec des types d’entrées mémoire plus riches, il allège son contexte de preuve, comme
illustré avec dans wellFormedFstShadow.

(** PIP (MMU) **)

Definition wellFormedFstShadow (s :

state) :=↪→

forall partition,

In partition (getPartitions

pageRootPartition s) ->↪→

forall va pg pd sh1,

StateLib.getPd partition (memory s)

= Some pd ->↪→

StateLib.getFstShadow partition

(memory s) = Some sh1 ->↪→

getMappedPage pd s va= SomePage pg ->

exists vainparent,

getVirtualAddressSh1 sh1 s va =

Some vainparent.

↪→

↪→

(** PIP-MPU **)

Definition

wellFormedFstShadowIfBlockEntry

s :=

↪→

↪→

forall pa,

isBE pa s ->

isSHE (CPaddr (pa + sh1offset)) s.

(** PIP (MMU) **)

Definition isChild s :=

forall partition parent : page,

In partition (getPartitions

pageRootPartition s) ->↪→

StateLib.getParent partition

(memory s) = Some parent ->↪→

In partition (getChildren parent s).

(** PIP-MPU **)

Definition isChild s :=

forall partition parent : paddr,

In partition (getPartitions

multiplexer s) ->↪→

pdentryParent partition parent s ->

In partition (getChildren parent s).
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A.4.2 Conduite de la preuve d’un service

Pip-MPU a appliqué sensiblement la même technique de preuve que Pip pour les services
qui ne modifient pas l’état courant. Les instructions de lecture sont déroulées une par
une et chaque instruction dispose de son lemme propageant l’invariant d’isolation
jusqu’à la fin du service.

Cependant, la conduite de preuve change dans Pip-MPU pour les services modifiant
l’état. Pip-MPU introduit le concept de checkpoints, qui sont des instants dans la preuve
où toutes les propriétés de cohérence sont vraies. Effectivement, certains autres instants,
à cause de modifications de l’état, provoquent des états temporaires inconsistants où
certaines propriétés de cohérence peuvent ne plus être vraies, jusqu’à la résolution finale
aux checkpoints ou à la fin du service à prouver. Cela est différent dans Pip (MMU)
qui suit un co-développement des services et de la preuve où ces états inconsistants
seraient sans doute résolus par modification de l’ordre des instructions. Ce nouvel
ordre impliquerait que toutes les propriétés de cohérence soient vraies à chaque instant.
Pip-MPU au contraire s’abstient de modifier l’ordre par co-design pour deux raisons : la
conception du système a été au préalable gelée pour commencer la phase de vérification
formelle et parce que Pip-MPU s’appuie de façon prononcée et plus importante que
Pip (MMU) sur la modularité de code. Cela est illustré par la fonction insertNewEn-

try, utilisée dans les services addMemoryBlock et cutMemoryBlock. Là où Pip (MMU)
n’aurait pas pu généraliser cette fonction parce qu’utilisée dans des contextes modifiant
différemment l’état, Pip-MPU retarde le checkpoint une fois un état consistent retrouvé.
Ainsi, Pip-MPU divise ses propriétés de cohérence selon les checkpoints, actuellement
en deux sous-ensembles.

Par ailleurs, Pip-MPU effectue quand même une propagation des listes utilisées dans
les propriétés de l’invariant d’isolation tout comme Pip (MMU). Il est beaucoup plus
compliqué de retrouver ces modifications plus tard sur un état qui a changé de multiples
fois.

Tout particulièrement, la preuve d’un service de modification d’état se déroule de
façon itérative dans Pip-MPU. L’esprit de la technique est de rapidement traverser
l’ensemble de la preuve en propageant l’état modifié mais en ne prouvant pas les
éléments de preuve difficile, avant de revenir dessus puis d’augmenter la complexité
de la preuve à chaque itération. C’est une approche de détection rapide des bugs qui
pourraient sinon invalider les propriétés de sécurité.

Tout d’abord, il faut effectuer une analyse préliminaire pour comprendre ce que
fait le service et pour avoir une idée précise de l’état de la mémoire à sa terminaison,
notamment celles des listes impliquées dans les propriétés. Il est alors possible de
réaliser une preuve informelle des propriétés de sécurité pour éviter les bugs les plus
évidents.

Ensuite se tient la phase de vérification simple, contenant que des instructions de
lecture facilement prouvables en appliquant un motif de preuve connu. Les primitives
bas-niveau qui ne disposent pas encore de preuve sont prouvées à ce moment-là car
facile à faire.

Puis il y a la rencontre avec les instructions d’écriture. Cela se fait en plusieurs
passes. D’abord, nous écrivons sur papier ou un tableau ces instructions et dégageons
les propriétés attendues à chaque instruction. Nous pouvons ensuite appliquer le motif
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de preuve, développons les preuves des primitives bas-niveau de lecture et d’écriture
lorsqu’il le faut et simulons la preuve des fonctions internes (les admit en Coq).

A la suite de quoi nous prouvons les propriétés de sécurité, de façon isolée du reste.
La preuve se fait en supposant toutes les propriétés de cohérence vraies et avec l’état
modifié réel qui a été propagé au fur et à mesure des modifications. La preuve informelle
est alors formellement exprimée et vérifiée. Si des propriétés manquent, alors il faut
retrouver les instructions qui devraient les révéler et prouver que ces propriétés y sont
bien présentes, puis les propager, sinon cela peut être révélateur d’un bug.

Une fois les propriétés de sécurité prouvées, il nous faut réitérer depuis la première
instruction de modification pour prouver les obligations de preuve laissées de côté. Cela
se fait en deux étapes : d’abord par la preuve des propriétés de cohérence simples, sans
listes, tout du long du chemin de preuve déjà emprunté ; puis dans un second temps,
les propriétés de cohérence plus difficiles. Les pré- et post-conditions des fonctions
doivent être localement adaptées à leur contexte. C’est alors le moment d’identifier
les checkpoints et prouver l’ensemble des propriétés de cohérence à ces instants. Dans
un dernier effort, les propriétés propagées du début jusqu’à l’instant de preuve des
propriétés de sécurité doivent se connecter.

A.4.3 Stratégie globale de conduite de preuve

Nous prenons maintenant un peu plus de hauteur sur le processus de preuve. En effet,
nous avons supposé jusqu’à maintenant que nous connaissions l’ensemble des propriétés
à prouver, et nous avons des techniques pour les vérifier formellement. Cependant,
cela pose la question de leur découverte en premier lieu. Développer de multiples
propriétés de cohérence qu’il faudra prouver mais qui ne seraient jamais utilisées pour
la preuve des propriétés de sécurité s’avèrerait particulièrement inefficace. A la place,
nous proposons pour Pip-MPU les stratégies d’exploration horizontale et verticale.

Le but de l’exploration horizontale est de couvrir un maximum de services pour
révéler le plus de propriétés de cohérence possibles. Nous avons montré, déjà confirmé
avant par Pip (MMU), que la phase de vérification des paramètres était plus facile
à passer que la phase de modification. Ainsi, l’exploration horizontale va jusqu’à
atteindre la phase de modification dans tous les services et fait ressortir le maximum de
propriétés sur des entrées différentes. Le but est de prendre les devants sur les preuves
futures des autres services qui reposeront sur ces propriétés et nous aurons alors à
repasser moins fréquemment (ou plus du tout) sur la preuve d’un ancien service pour
prouver des nouvelles propriétés. L’exploration verticale, quant à elle, sélectionne un
service à prouver et va jusqu’au bout de la preuve de ce service avec la méthode décrite
précédemment.

A.5 Suivi du développement de la preuve et optimisation

Le développement des preuves de Pip-MPU a soulevé le problème de communiquer mes
avancements à ma hiérarchie non-experte. J’ai alors proposé de nouvelles métriques pour
concevoir un tableau de bord relatant l’avancement à différents instants du processus,
ainsi que la démonstration que nous suivions le chemin de preuve idéal.
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A.5.1 Métriques de preuve existantes

Je me suis intéressé à deux catégories principales de métriques : sur les preuves en
elles-mêmes et sur le processus de preuve. Ce dernier étant fortement lié au premier.

Les métriques sur les preuves communément affichées dans les projets de vérification
formelle [85, 109, 102] sont le nombre de lignes de preuve, le nombre de théorèmes et
lemmes, le nombre d’invariants, le nombre de bugs découverts et le taux de couverture
de code vérifié. Beaucoup de ces métriques ont déjà été présentées avant, ainsi que
des métriques additionnelles comme l’utilisation de la mémoire vive ou le nombre
de tactiques Coq. Certains projets voient des relations entre ces métriques, comme
une relation linéaire entre l’effort de preuve et la taille de la preuve ou encore une
relation quadratique entre la taille d’une propriété et son script de preuve, mais sont
énormément liées au style de preuve de chaque projet [167, 122].

Pour parler du processus de preuve, nous définissons d’abord l’effort de preuve :

Definition A.5.1 (Effort de preuve). L’effort de preuve est un indicateur de la quantité
de travail déployée pour réaliser une preuve (effort humain).

Dans les projets de vérification formelle, l’effort de preuve est d’habitude exprimé en
personne-temps (jours, mois, années). Le processus de preuve est impacté par l’approche
de preuve, comme le raffinement à différents étages et granularité, qui mène à des
métriques qui ont des sens différents selon le projet [5]. D’autres travaux [21] ont tentés
d’identifier des caractéristiques de preuve pour quantifier un effort de preuve (nombre
de théorèmes pondéré par complexité, taille du théorème et nombre de dépendances) ou
pour détecter des erreurs potentielles (profondeur de l’arbre de dépendance et nombre
de théorèmes imbriqués qui rendent plus difficiles la maintenance, score de similarité
entre des théorèmes identifiant une mauvaise conception).

A.5.2 Relation entre code et preuve

Nous mettons en relation les éléments de preuve (théorème ou lemmes et preuves
associées) avec les éléments de code (fonctions, modules, instructions). Tout comme
les éléments de code sont assemblés pour construire un service, les éléments de preuve
sont assemblés lors de la preuve. Dans Pip-MPU, l’approche est de faire correspondre
à tout élément de code un élément de preuve. Ainsi, le nombre d’éléments de preuve
minimum est connu à l’avance.

Theorem A.5.1 (Nombre minimum d’éléments de preuve). Pour l’ensemble des éléments
de code composés par le sous-ensemble de fonctions F = F1,F2, ...,Ff et le sous-ensemble
de primitives P = P1, P2, ..., Pp, et pour l’ensemble des éléments de preuve correspondants
P E = P E1, P E2, ..., P El , alors

|F|+ |P | <= |P E|

De plus, nous avons une correspondance entre éléments de code et éléments de
preuve, alors le graphe de dépendances de chacun est identique vu depuis un haut niveau
d’abstraction (les éléments principaux). Le graphe de dépendances est un polyarbre, un
type d’abre orienté acyclique dont le graphe non orienté sous-jacent est un arbre. Il trace
les routines internes de chaque service et s’arrête au-dessus du niveau des primitives,
soit aux fonctions qui disposent d’au moins deux instructions.
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Definition A.5.2 (Graphe de dépendance). Le graphe des dépendances fonctionnelles, re-
spectivement de preuve, est défini comme l’ensemble Gf onction = (F,DC), respectivement
Gpreuve = (P E,DP ), où l’ensemble des fonctions F = F1, ...,Fn sont les noeuds de Gf onction,
respectivement où l’ensemble des éléments de preuve principaux P E = P E1, ..., P En

sont les noeuds dans Gpreuve, et où l’ensemble des dépendances DC sont les arrêtes de
Gf onction, respectivement DP dans Gpreuve.

La réutilisabilité des fonctions bénéficie également la preuve dont l’effort de preuve
est réduit d’autant. Si la preuve ne suit pas la modularité du code, alors l’effort de
preuve grandit d’autant de composants non réutilisés mais qui aurait pu. Nous sommes
intéressés par quantifier ce taux de réutilisabilité potentielle par les preuves.

Pour cela, nous définissons d’abord le sous-graphe des éléments principaux réutilisés
et le sous-graphe complet des éléments réutilisés.

Definition A.5.3 (Sous-graphe des éléments principaux réutilisés). Les éléments princi-
paux réutilisés sont les noeuds du graphe de dépendance G dont le degré entrant est
supérieur à 1. Le sous-graphe des éléments principaux réutilisés est alors R = {G′ ∈
G|∀Ei ∈ G[E],deg−(Ei) > 1}.

Definition A.5.4 (Sous-graphe complet des éléments réutilisés). Toutes les routines
internes des éléments réutilisés sont bien entendu également réutilisées, mais pourraient
ne pas apparaître dans R si leur degré est 1. Le sous-graphe complet des éléments
réutilisés est alors R augmenté de tous les éléments des sous-arbres S = S1, ...,Ss, s ∈ N,
enracinés dans un élement principal réutilisé, donc Gélément_réutilisé = {G′ ∈ G|∀Gi ∈
G,∀Rj ∈ R,∀Sk ∈ SR[j ,Gi[E] ∈ Sk ∧ deg−(Gi[E]) = 1} =
(Eélément_réutilisé,Aélément_réutilisé).

Definition A.5.5 (Ratio d’éléments réutilisés). Le ratio d’éléments réutilisés RR est le
ratio du nombre d’éléments réutilisés Eélément_réutilisé sur le nombre total d’éléments
dans le graphe de dépendance G :

RR =
|Eélément_réutilisé|

|E|

A noter que les noeuds principaux des services ne sont jamais dans Eélément_réutilisé
étant donné qu’ils n’ont pas d’arrêtes entrantes.

Appliqué à Pip-MPU, il y a que la modularité des preuves reprend celle du code,
donc Gf onction = Gpreuve = G. Afin de rendre le propos plus clair et lisible, seuls les
éléments comportant des instructions d’écriture ont été reportés dans la Figure A.4,
cependant le graphe complet de dépendance devrait inclure l’ensemble des fonctions y
compris celles avec uniquement des instructions de lecture. Sur cette figure, les éléments
réutilisés sont indiqués en bleus. Plus il y a de bleu, plus il y a d’éléments réutilisés
donc.

Le ratio d’éléments réutilisés pour Pip-MPU considérant ce graphe de dépendance
simplifié est de :

10
36
≈ 27.7%
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Figure A.4: Graphe de dépendance de Pip-MPU. Les points d’entrée des services sont à
gauche. Les éléments réutilisés sont dans les boîtes bleues.
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A.5.3 Réutilisation effective

La précédente métrique n’inclut pas l’utilisation effective des éléments réutilisés. Autrement
dit, la fréquence de réutilisation.

Pour calculer ce taux de réutilisation effectif, nous définissons trois graphes : le
graphe de dépendance déroulé, le sous-graphe de dépendance délesté des éléments non
réutilisés et le sous-graphe délesté des éléments réutilisés.

Definition A.5.6 (Graphe de dépendance déroulé). Le graphe de dépendance déroulé
est défini comme Gdéroule = (F′ ,A′) qui est G sans aucune modularité avec F′ et A′ les
nouveaux ensembles de fonctions et de dépendances du graphe déroulé. C’est comme
si nous suivions chaque chemin de dépendance depuis les noeuds racine des services
en copiant-collant tous les éléments réutilisés à chaque passage, soit le pire pour du
développement de code ou de preuve et leur maintenance. Le nombre total d’éléments
à développer est |F′ |. |F′ | est égal au nombre total d’éléments de chaque sous-arbre
SG′ = SG′1, ...,SG

′
s ⊆ G enracinés dans les noeuds des services, soit |F′ | =

∑s
i=1 |SG

′
i | .

Definition A.5.7 (Sous-graphe de dépendance délesté des éléments non réutilisés). Le
sous-graphe de dépendance délesté des éléments non réutilisés est le sous-graphe de
dépendance de code Gdélesté = (F′′ ,A′′) qui est G délesté des éléments réutilisés avec F′′

and A′′ les nouveaux ensembles de fonctions et de dépendances du sous-graphe délesté.
C’est-à-dire que nous sommes intéressés par Gdélesté = G \Gélément_réutilisé = (F′′ ,A′′).

Nous pouvons désormais définir la réutilisation effective.

Definition A.5.8 (Réutilisation effective). Nous considérons les polyarbres Gélément_réutilisé,
Gdélesté et tous ses sous-arbres SG′′ = SG′′1 , ...,SG

′′
r ⊆ Gdélesté ⊆ G enracinés dans les

noeuds de services (r ∈ N), et Gdéroule avec tous ses sous-arbres SG′ = SG′1, ...,SG
′
s ⊆ G en-

racinés dans les noeuds de service (s ∈ N). Puisque les sous-arbres enracinés dépendent
des mêmes noeuds de service, alors r = s.

Ainsi, la réutilisation effective ER est définie par :

ER =
|Gélément_réutilisé|+

∑r
i=1 |SG

′′
i |∑r

i=1 |SG
′
i |

=
|Gélément_réutilisé|+

∑r
i=1 |SG

′′
i |

|F′ |

ER donne le taux d’éléments à prouver avec réutilisation par rapport à sans réutilisa-
tion, et 1−ER donne le taux d’éléments à prouver évité grâce à la réutilisation.

Par la suite, nous mentionnerons le diviseur de ER comme E et son dividende par U ,
soit ER = U

E .
L’ajout de |Gélément_réutilisé| correspond au coût unique de vérification des éléments

réutilisés qu’il faut connecter au reste de la preuve induisant un certain coût minimal.
La réutilisation effective dans Pip-MPU est calculée pour chaque service de gestion

mémoire dans le Tableau A.9.

A.5.4 Différence de réutilisation

Dans certaines situations, les graphes de dépendance entre code et preuve pourraient
ne pas correspondre, par exemple à cause de lemmes généralistes sur les fonctions qui
sont difficiles à implémenter ou parce que l’effort de preuve n’est pas rentable sur de
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Service (r = 11) |SG′′i | |SG′ |
addMemoryBlock 1 2
cutMemoryBlock 1 7
mapMPU 2 6
mergeMemoryBlocks 2 13
prepare 5 13
createPartition 2 9
collect 4 7
deletePartition 3 7
removeMemoryBlock 4 6
readMPU 1 1
findBlock 1 1

Total 26 72
U = |Gélément_réutilisé| + 26 = 10+26 = 36

E = |F’| = 72
Réutilisation effective : U

E = 36
72 = 50%

Table A.9: Réutilisation effective dans Pip-MPU.

petites fonctions. Il y a alors une différence entre les deux graphes qui se remarque par
la différence des réutilisations dans le code des réutilisations dans la preuve.

Definition A.5.9 (Différence de réutilisation code-preuve).

[Réutilisation code]− [Réutilisation preuve]

Plus cette différence est importante, plus cela indique des opportunités ratées
d’optimisation, de facilitation de la conception des preuves, des scripts de preuve
dupliqués ou l’utilisation de lemmes additionnels inutiles.

Dans Pip-MPU, cette différence est nulle et montre que le processus de preuve a
utilisé le plein potentiel de la modularité du code pour ne pas avoir d’efforts de preuve
supplémentaire. En effet, dans le cas de Pip-MPU, le développeur est plus intéressé par
réduire son effort de preuve plutôt que d’avoir la preuve la plus compacte et la plus
élégante moyennant d’importants efforts.

A.5.5 Complexité de la preuve : analyse fine des propriétés et des impacts
du code sur la preuve

Nous prenons maintenant du recul sur la preuve, et souhaitons estimer l’effort de preuve
global afin de pouvoir communiquer sur l’avancement de la preuve et décider d’une
stratégie qui prendrait en compte cet effort estimé. L’intuition ici est qu’une instruction
donnée aura un certain impact sur certaines propriétés mais peu sur d’autres et que l’on
peut le quantifier. Cette mesure combinée à la complexité intrinsèque des propriétés
permet de dériver une complexité globale à l’échelle du service. Les différences de
complexité nous indiquent un effort de preuve plus ou moins important qui sera notre
indicateur pour développer la stratégie globale.
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Score d’impact
sur les propriétés
de cohérence

Score d’impact
sur les propriétés
de sécurité

Ty
p

e

PDT type 14 + 5* 3*
BE type 15 + 10* 3*
SHE type 6 + 2* 3*
SCE type 3 0
PADDR type 7 + 11* 3*

C
h

am
p

pdentry.(firstfreeslot) 2 + 3* 0
pdentry.(structure) 3 + 9* 3*
pdentry.(nbfreeslots) 1 + 3* 0
pdentry.(parent) 2 0
pdentry.(MPU) 1 0
blockentry.(blockindex) 5 0
blockentry.(blockrange).(startAddr) 3 + 5* 3*
blockentry.(blockrange).(endAddr) 1 + 7* 3*
blockentry.(present) 5 + 7* 3*
blockentry.(accessible) 4 + 2* 1*
blockentry.(read) 2 0
blockentry.(write) 2 0
blockentry.(execute) 2 0
sh1entry.(PDflag) 5 + 1* 3*
sh1entry.(PDchild) 3 0
sh1entry.(inChildLocation) 3 0
scentry.(origin) 2 0
scentry.(next) 2 0

Table A.10: Illustration des impacts de modifications de types et des entrées sur les
propriétés de Pip-MPU.

Nous avons déjà vu plus tôt que l’impact d’une instruction de lecture sur la preuve
est quasiment nul, en tous cas négligeable face à une instruction d’écriture.

Pour les instructions d’écriture, l’impact sur la preuve dépend de la modification. Par
exemple, dans Pip-MPU, l’impact d’une modification des permissions d’accès ne sont
pas critiques pour l’invariant d’isolation : cela n’impacte pas du tout les propriétés de
sécurité. Au contraire, un drapeau PDflag d’une entrée Shadow 1 qui est levé bouleverse
l’arbre de partitionnement qui contiendra un élement en plus, impactant là les propriétés
de sécurité mais également des propriétés de cohérence dont PDT IFPDf lag.

Nous analysons alors l’ensemble des propriétés de l’invariant d’isolation en fonction
des modifications des entrées. A chaque fois que cela impacte une propriété, nous
augmentons de un point le score global d’impact pour ce champ d’entrée modifié. Une
exception est faite sur les listes. En effet, nous avons déjà discuté du développement de
lemmes spécifiques pour leur propagation instruction par instruction ce qui représente
un coût important mais une seule fois. Nous notons alors leur impact d’une ’*’ et devons
les additionner à part. Nous obtenons le Tableau récapitulatif A.10.
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Nous pouvons en déduire que toutes les modifications concernant les drapeaux
present et PDf lag, amplifiées par les scores d’impact sur les types BE et PDT , sont les
plus importantes pour les propriétés et par extension les preuves. Au contraire, comme
attendu, les permissions d’accès dérangent peu les propriétés.

Du point de vue de la fonction ou du service, le score d’impact dépend de l’impact
des instructions les composant.

Definition A.5.10 (Score d’impact d’une fonction). Pour l’ensemble des propriétés P à
prouver (|P | = p), les instructions I de la fonction F (|I | = n) et la matrice liant les deux
ensembles M = (P , I), le score d’impact IS de F est défini par

IS =
n,p∑

i=1,j=1

M[Pj , Ii]

De façon similaire, le score d’impact d’un service est la somme de tous les scores
d’impact de l’ensemble des éléments de preuve. Les propriétés à prouver incluent toutes
les propriétés de l’invariant d’isolation, dont les propriétés de sécurité.

Definition A.5.11 (Score d’impact du service). Pour un service S composé de l’ensemble
des éléments de preuve P E (|P E| = pe) dont les scores d’impact sont contenus dans
l’ensemble ISP E, et ayant les instructions I (|I | = n) dans la fonction principale du
service, les propriétés P de l’invariant d’isolation (|P | = p), et considérant la matrice
reliant les deux ensembles M = (P , I), alors le score d’impact ISS de S est défini par

ISS =
n,p∑

i=1,j=1

M[Pj , Ii] +
pe∑
i=1

ISP Ei +C

C = 1 est un score d’impact additionnel ajouté à chaque élement de preuve puisqu’il y a
toujours des ajustements locaux à fournir pour insérer ces éléments.

Nous illustrons ce score avec le service addMemoryBlock. D’abord nous calculons le
score d’impact de la fonction interne insertNewEntry. Celle-ci contient 14 instructions,
dont 10 sont des instructions de modification. En additionnant les scores d’impact de
chacune de ces instructions selon le Tableau A.10, nous obtenons un score d’impact
total de (2+3*)+(1+3*)+(3+5*+3*)+(1+7*+3*)+(5+7*+3*)+(4+2*+1*)+2+2+2+2=24+37*.
Puis nous calculons le score d’impact de la fonction principale du service. Des 29
instructions, seules 2 sont des instructions de modifications. Le score d’impact pour
cette fonction, selon le même tableau, est de 3+3=6. Enfin, nous additionnons le tout et
obtenons un score d’impact final de 30+37*. Ce score est plus important qu’un service
sans instructions de modifications comme findBlock qui a un score d’impact de 0.

Le score d’impact des instructions est insuffisant pour décrire la complexité de la
preuve. En effet, les propriétés ont aussi leur rôle à jouer.

J’ai retenu quatre caractéristiques qui augmentent la complexité de la preuve d’une
propriété : 1) la taille de la propriété (le nombre de sous-propositions) qui influence
directement le contexte de preuve à adapter et transformer, 2) le nombre de listes et
non leur présence car nous avons vu que l’impact pouvait être diminué en développant
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des lemmes intermédiaires de propagation des listes par instructions, 3) le nombre
de variables en jeu car cela ajoute des combinaisons de cas à traiter, et 4) le nombre
sous-propositions finales puisque c’est le nombre final de preuve à fournir pour résoudre
la preuve de la propriété.

Selon ces caractéristiques, nous obtenons la matrice de complexité des propriétés
de Pip-MPU représentée dans le Tableau A.11. Ce tableau montre de grandes dispar-
ités de complexité, avec les plus fortes complexités remarquées dans les propriétés
freeSlotsListIsFreeSlot, DisjointFreeSlotsLists,accessibleChildPaddrIsAccessibleIntoParent et
sharedBlockPointsToChild.

La complexité de preuve reflète la difficulté globale qui requiert des capacités de
résolutions de problèmes. C’est une combinaison des scores d’impact des instructions
avec les complexités des propriétés.

Definition A.5.12 (Complexité de preuve d’une instruction). La complexité de preuve
P C d’une instruction I est définie comme la multiplication de la colonne correspondant
dans la matrice d’impact des instructions IIM avec la colonne calculant le total de la
matrice de complexité de propriété P CM :

P CI = IIM[I] ∗ P CM[T otal]

Au niveau d’une fonction, la complexité de la preuve mesure la difficulté apportée
par chaque instruction pour prouver les propriétés. Une exception est faite pour le type
d’entrée qui est modifié. En effet, les types sont inclus dans la modification d’un champ,
dans le sens où le type initial doit être connu avant d’effectuer la modification. Cepen-
dant, du point de vue de la preuve, l’intérêt n’est pas dans le nombre de modifications
de types. En effet, si plusieurs instructions modifient la même adresse avec le même
type, alors la propriété de type nécessaire pour la première instruction suffit pour les
suivantes. Ainsi, l’impact d’une modification de type doit être apprécié du point de vue
de la fonction et du nombre d’adresses modifiées.

Definition A.5.13 (Complexité de preuve de type). Supposons l’association M : I →
(T ,A) associant les instructions I à leur type de l’ensemble des types T et l’adresse
mémoire modifiée de l’ensemble des adresses mémoire A. La complexité de preuve
du type pour la fonction F nommée T FPC est définie comme l’ensemble de tuples
TA = {(t,a)|t ∈ T ∧a ∈ A} de taille s correspondant à M appliquée à toutes les instructions
de F multipliée par les scores d’impact de type correspondants T IS:

T FPCF =
s∑

i=1

T IS[TAi[t]]

Par exemple, la fonction insertNewEntry manipule trois types différents : PDT , BE
et SCE. Pour chaque type, seule une adresse mémoire est associée, donc trois adresses
différentes. Ainsi, la part de la complexité pour la fonction due à la modification de type
est T IS[PDT ] + T IS[BE] + T IS[SCE] =14 + 8* + 15 + 13* + 3 = 32 + 24*.

Finalement, nous définissons la complexité de preuve d’une fonction prenant en
compte les instructions et les types utilisés dans la fonction.
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nullAddrExists 1 0 0 1 2
wellFormedFstShadowIfBlockEntry 2 0 1 1 4
PDTIfPDFlag 2 0 2 4 8
AccessibleNoPDFlag 4 0 2 1 7
FirstFreeSlotPointerIsBEAndFreeSlot 2 0 2 2 6
multiplexerIsPDT 1 0 0 1 2
currentPartitionInPartitionsList 1 1 0 1 3
wellFormedShadowCutIfBlockEntry 2 0 1 2 5
BlocksRangeFromKernelStartIsBE 3 0 2 1 6
KernelStructureStartFromBlockEntryAddrIsKS 3 0 2 1 6
sh1InChildLocationIsBE 3 0 2 1 6
StructurePointerIsKS 2 0 2 1 5
NextKSIsKS 5 0 3 1 9
NextKSOffsetIsPADDR 3 0 2 1 6
NoDupInFreeSlotsList 2 1 2 3 8
freeSlotsListIsFreeSlot 6 1 4 1 12
DisjointFreeSlotsLists 4 2 2 5 13
inclFreeSlotsBlockEntries 3 2 1 1 7
DisjointKSEntries 4 2 2 1 9
noDupPartitionTree 1 1 1 1 4
isParent 3 2 2 1 8
isChild 3 2 2 1 8
accessibleChildPaddrIsAccessibleIntoParent 4 4 3 1 12
noDupKSEntriesList 2 1 1 1 5
noDupMappedBlocksList 2 1 1 1 5
noDupUsedPaddrList 2 1 1 1 5
sharedBlockPointsToChild 7 5 5 2 19
MPUInAccessibleBlocks 3 1 2 1 7

Se
cu

ri
té Partage Vertical 3 4 2 1 10

Isolation Horizontale 5 5 3 1 14
Isolation du noyau 3 4 2 1 10

Table A.11: Complexités des propriétés de Pip-MPU.
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Definition A.5.14 (Complexité de preuve d’une fonction). La complexité de preuve
P C d’une fonction F composée de n instructions est définie comme la somme de la
complexité de chacune de ses instructions augmentée de la complexité due aux types
utilisés dans F :

P CF = T FPCF +
n∑
1

P Ci

Par example, prenons le service addMemoryBlock. Les instructions de modifications
de la fonction principale du service sont writeSh1PDChildFromBlockEntryAddr, qui
modifie le champ PDchild de l’entrée Shadow 1, et writeSh1InChildLocationFromBlock
EntryAddr, qui modifie le champ InChildLocation de la même entrée Shadow 1. Ces in-
structions ont respectivement une complexité de P Csh1entry.pdchild = 6∗1+12∗1+19∗1 = 37
et de P Csh1entry.inchildlocation = 6 ∗ 1 + 6 ∗ 1 + 12 ∗ 1 = 24.

La fonction insertNewEntry a une complexité de preuve de 228 + 58* comme
calculée dans le Tableau A.12 (cf. corps principal du document en anglais pour le calcul
détaillé), si nous considérons toutes les propriétés de cohérence. La complexité de
preuve du service addMemoryBlock’s est donc de P CaddMemoryBlock = 37+24+228+58∗ =
289 + 58∗.

Enfin, nous pouvons définir l’effort de preuve global. Il y a de multiples façons
pour le calculer. Par exemple, il peut rétrospectivement être calculé selon les personne-
mois ou personne-jours dédiés à l’activité de vérification formelle qui sont d’excellents
indicateurs standards pouvant être utilisés pour faire un équivalent monétaire. Mais
cela ne prend pas en compte les difficultés de la tâche ni l’expérience des développeurs
de preuves.

Definition A.5.15 (Effort de preuve estimé). L’effort de preuve estimé EP E repose sur la
complexité de preuve P C des n (n ∈ N) éléments de preuve à prouver et définie comme :

EP E = n+
n∑
i=1

P Ci

Avec l’EP E, il est possible d’estimer à l’avance l’effort de preuve à fournir en ayant
une idée de la complexité de la tâche. L’EP E peut être adapté à tous les projets ayant
une définition précise de la complexité de preuve.

A.5.6 Stratégie du chemin de preuve au moindre effort

Précédemment, nous avions suivi globalement les explorations horizontale et verticale
pour rapidement identifier les propriétés de cohérence et tester notre processus de
preuve. Est-il possible désormais d’optimiser le chemin de preuve des services restants ?
Autrement dit, nous disposons maintenant de métriques permettant d’estimer un effort
de preuve, mais y a-t-il un ordre meilleur qu’un autre pour prouver les éléments de
preuve ? Nous adoptons dans Pip-MPU une stratégie pour minimiser l’effort de preuve
courant tout en minimisant également l’effort de preuve restant.

Pour Pip-MPU, cela se résume à trouver l’ordre optimal de réduction de l’effort de
preuve tout en validant les services un par un pour observer l’avancement de la preuve
à l’échelle de l’IPA. Par ailleurs, c’est à la fin du service que l’invariant d’isolation est



318 APPENDIX A. Résumé substantiel en français

Complexité de preuve des instructions
Instructions Complexité

writePDFirstFreeSlotPointer 13 + 3*
writePDNbFreeSlots 7 + 3*
writeBlockStartFromBlockEntryAddr 26 + 8*
writeBlockEndFromBlockEntryAddr 7 + 10*
writeBlockAccessibleFromBlockEntryAddr 33 + 3*
writeBlockPresentFromBlockEntryAddr 35 +10*
writeBlockRFromBlockEntryAddr 18
writeBlockWFromBlockEntryAddr 18
writeBlockXFromBlockEntryAddr 18
writeSCOriginFromBlockEntryAddr 18

Sous-total 193 + 37*

Complexité de type
Nombre de modifications de type PDT à des adresses dif-
férentes : 1

14+8*

Nombre de modifications de type BE à des adresses dif-
férentes : 1

15+13*

Nombre de modifications de type SHE à des adresses dif-
férentes : 0

0

Nombre de modifications de type SCE à des adresses dif-
férentes : 1

3

Nombre de modifications de type PADDR à des adresses
différentes : 0

0

Sous-total 35 + 21*

Total 228 + 58*

Table A.12: Illustration du calcul de complexité de preuve de la fonction insertNewEn-

try.
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prouvé, et donc qui nous donne confiance dans notre conception. J’ai développé pour
cela l’Algorithme 4 où l’objectif est de minimiser l’effort courant tout en maximisant la
couverture de code globalement grâce aux éléments réutilisés. Ainsi, par une réutilisa-
tion effective élevée A.5.3, cela nous donne plus de flexibilité pour choisir la meilleure
stratégie de conduite de preuve.

Algorithm 4 Algorithme de sélection de meilleur chemin par minimisation de l’effort de
preuve.

1: ordre_services← []
2: ef f ort_preuve_courant← []
3: ef f ort_preuve_suivant← []
4: repeat
5: for service dans services do
6: chemin_preuve← get_chemin_preuve(service) { Récupère le chemin de preuve

de service}
7: ef f ort_preuve_courant[service]← get_effort_preuve_courant(chemin_preuve){

Calcul de l’effort de preuve courant }
8: ef f ort_preuve_suivant[service]← get_effort_preuve_suivant(chemin_preuve)

{ Calcul les bénéfices pour les autres services }
9: end for

10: ef f ort_preuve_courant_min← get_services_effort_preuve_courant_min
(effort_preuve_courant) { Sélectionner les services par le minimum de la 1ère
valeur}

11: if taille(ef f ort_preuve_courant_min) > 1 { si plusieurs services ont le même
effort de preuve} then

12: ef f ort_preuve_suivant_max← get_services_avec_effort_preuve_suivant_max
(effort_preuve_courant_min, effort_preuve_suivant) { Prendre le maximum de
la 2e valeur des services sélectionnés par la 1ère valeur}

13: service_slectionn← ef f ort_preuve_suivant_max[1] { Toujours prendre le pre-
mier service dans la list, même si plusieurs services ont le même score }

14: else
15: service_slectionn← ef f ort_preuve_courant_min[1]
16: end if
17: ordre_services.ajout(service_slectionn) { Ajouter le service sélectionné dans la

liste des services ordonnés}
18: enlever_chemin_preuve(service_slectionn) { Enlever tous les éléments de preuve

du chemin de preuve du service sélectionné }
19: until tous les services dans ordre_services
20: return ordre_services{ Retourner l’ordre des services }

Nous illustrons l’application de l’Algoritme 4 à Pip-MPU dans le Tableau A.13.
Pour simplifier les calculs, nous approximons l’effort de preuve par le nombre

d’éléments de preuve sur chaque chemin. L’effort de preuve suivant est calculé comme
la somme de tous les arcs entrants d’un élément sur le chemin moins l’arc entrant dû
au chemin lui-même (on ne garde que les arcs entrants additionnels). En effet, comme
décrit précédemment, les arcs entrants d’un chemin de dépendance représentent les
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1 2/1 7/11 4/3 9/10 12/8 8/9 7/7 7/6 6/4 1/0° 1/0
2 2/1 7/11 4/3 9/10 12/8 8/9 7/7 7/6 6/4 0/0 1/0°
3 2/1° 7/11 4/3 9/10 12/8 8/9 7/7 7/6 6/4 - 0/0
4 0/0 6/10 4/3° 9/10 12/8 8/9 7/7 7/6 6/4 - -
5 - 4/7° 0/0 6/1 12/8 8/9 7/7 7/6 6/4 - -
6 - 0/0 - 4/3° 7/3 6/4 4/0 5/1 4/0 - -
7 - - - 0/0 5/0 4/1° 4/0 5/1 4/0 - -
8 - - - - 5/0 0/0 4/0 3/0° 4/0 - -
9 - - - - 5/0 - 4/0° 0/0 4/0 - -
10 - - - - 5/0 - 0/0 - 4/0° - -
11 - - - - 5/0° - - - 0/0 - -
12 - - - - 0/0 - - - - - -

Table A.13: Itérations de l’Algorithme 4 de sélection du meilleur chemin de preuve
par minimisation de l’effort de preuve appliqué à Pip-MPU. Chaque itération donne
un nouveau score qui dépend des services sélectionnés précédemment. Le score est
donné comme un tuple (ef f ort_preuve_courant / ef f ort_preuve_suivant). Un service
marqué par ’°’ dans une itération indique que ce service a été sélectionné à ce mo-
ment. L’ordre final des services est : [readMPU, findBlock, addMemoryBlock, mapMPU,
cutMemoryBlock, mergeMemoryBlocks, createPartition, deletePartition, collect, remove-
MemoryBlock, prepare]
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Figure A.5: Etat de la preuve après l’exploration horizontale estimée par nombre
d’éléments de preuve et non par complexité.

lemmes réutilisables qui bénéficient aussi à d’autres services. L’exemple pourrait être
affiné par les métriques d’effort de preuve présentés précédemment, qui dépendent des
complexités de preuve. Dans ce cas, l’algorithme aurait sélectionné removeMemoryBlock
plutôt que collect à l’itération 10.

A.5.7 Tableau de bord de preuve

Le tableau de bord de preuve est un outil dynamique qui donne le statut d’avancement
de la preuve. Il modifie sa granularité en fonction des progrès sur la preuve.

Au début du développement des preuves, lors de la phase d’exploration horizontale,
le statut est estimé par l’endroit où se situe le curseur de preuve par rapport au nombre
d’instructions global, comme illustré dans la Figure A.5. Les instructions restantes sont
soit des nouvelles primitives encore jusqu’alors non rencontrées, soit des instructions
qui ont déjà été rencontrées et dont la preuve est facilitée (les lemmes réutilisables
prouvés).

Puis, lors de l’exploration verticale, l’accent est mis sur un service. De nouveau,
une première approximation est le nombre d’instructions. Cependant, nous pouvons
désormais étudier la complexité de preuve et le score de complexité du service devient
le nouvel objectif exposé dans le tableau de bord. Enfin, pour la dernière instruction, il
ne reste plus qu’à prouver l’invariant d’isolation totalement. Le tableau de bord casse
l’invariant propriété par propriété et montre la part de propriétés prouvées par rapport
à l’ensemble complet des propriétés.

A.6 Conclusion

Pip-MPU atteint le plus haut niveau de confiance pour un système avec une sécurité
ancrée dans le matériel par la MPU et vérifiée formellement par un assistant de preuve.
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La thèse a démontré des contributions concernant un cadriciel mettant en place
des espaces mémoire imbriqués sécurités et protégés par la MPU. Il a aussi été proposé
une adaptation du noyau Pip pour les objets contraints nommé Pip-MPU qui satisfait
toutes les exigences attendues pour l’adaptation. Par ailleurs, les propriétés de sécurité
(d’isolation) de plusieurs services de Pip-MPU ont été formellement vérifiées par un
développement de preuve au sein de l’assistant de preuve Coq. Enfin, de nouvelles
techniques de preuves et métriques ont été proposées pour améliorer la vision extérieure
de l’avancement de la vérification formelle à un public non-expert et choisir un chemin
de preuve minimisant l’effort de preuve.

Toutes les contributions présentées sont publiées sous licence open-source.
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Design of a secure kernel for constrained objects

Abstract

This thesis invests the field of cybersecurity for small computer systems (embedded systems/-
connected objects/low-end devices, of type microcontroller) and more precisely aims to bring
strong memory isolation guarantees for tasks executing on them.

The heterogeneity and strong resource constraints (memory, computing power, energy) of
constrained embedded systems require tailored solutions. The embedded software life cycle
and the specific hardware platforms challenge us to reconsider the security schemes that leave
open memory vulnerability issues, still prevailing today. Furthermore, the risk of vulnerability
exploits elevates with the growing number of use cases (smart environments in general) implying
increased complexity within these systems and with the burgeoning market of the Internet-of-
Things (notably for remote update purposes). As a consequence, cyber attackers can take profit
from these vulnerabilities to take remote control of these connected systems in a very scalable
way.

In this context, the thesis proposes to design a kernel for constrained objects that is able to bring
strong memory isolation guarantees. It studies the blend of high flexibility and strong security
for this class of devices with the aim of security-by-design without functional loss. The thesis
presents two main contributions dealing with software attacks on memory.

The first contribution is an Operating System (OS) kernel, named Pip-MPU, that offers a
hardware-based isolation solution with a degree of flexibility outperforming current solutions.
Pip-MPU is adapted from the Pip protokernel initially designed for high-end/general-purpose
computers that are provided with more furnished and different hardware platforms than the
ones of constrained objects. For that, the designed kernel is a complete refactoring of Pip and
offers a security mechanism based on the Memory Protection Unit (MPU), a unit of the processor,
which enables hardware-based access control on memory resources. Despite strong limitations
due to the limited hardware platform, Pip-MPU is as flexible as its parent project Pip. With a
code base size of less than 10 Kb and about 16% extra costs in terms of performance and energy
consumption, Pip-MPU reduces the number of privileged operations by 99% and the attack
surface of the accessible application memory by 98%.

The second contribution is the demonstration of strong isolation guarantees by the use of formal
methods. Several kernel services have been proved against isolation by the use of the Coq Proof
Assistant. The proved properties are Pip’s security properties that enforce a strict memory
isolation security model. To our knowledge, no state-of-the-art solution offering MPU-based
isolation has been proved before. We develop novel proof conduct techniques and propose new
metrics to follow the proof effort and evaluate the hypotheses supporting the proofs.

All the contributions developed in this thesis are publicly released under open-source licences.

Keywords: memory isolation, constrained objects, mpu, formal verification, coq, pip, security-
by-design



Conception d’un noyau sécurisé pour objets contraints

Résumé

Cette thèse s’inscrit dans la thématique de la sécurité des petits systèmes informatiques (systèmes
embarqués/objets connectés, de type microcontrôleur) et plus précisément vise à apporter des
fortes garanties d’isolation mémoire pour les tâches qui s’y exécutent.

L’hétérogénéité et les fortes contraintes en ressources (espace mémoire, puissance de calcul,
énergie) nécessitent la mise en place de solutions sur mesure pour les systèmes embarqués
contraints. Le cycle de vie des logiciels embarqués et les architectures matérielles spécifiques
imposent de repenser la manière de mettre en oeuvre la sécurité qui, encore aujourd’hui, laisse
ouvertes des problématiques de vulnérabilité mémoire. De plus, les risques d’exploitation de ces
vulnérabilités grandissent avec l’émergence de nouveaux cas d’utilisation (environnements intel-
ligents de manière générale) impliquant des systèmes de plus en plus complexes et l’explosion
du nombre de systèmes connectés (notamment pour des besoins de mise à jour à distance). En
conséquence, des cyber-attaquants peuvent tirer profit de telles vulnérabilités pour prendre le
contrôle à distance de ces systèmes connectés de façon massive.

Dans ce cadre, la thèse propose d’élaborer un noyau destiné aux petits objets qui soit capable
d’apporter des garanties fortes d’isolation mémoire. Elle étudie l’association entre flexibilité
élevée et forte sécurité au sein d’objets contraints pour une sécurité dès la conception sans perte
fonctionnelle. Elle est constituée de deux contributions principales qui répondent aux attaques
logicielles sur la mémoire.

La première contribution est un noyau de système d’exploitation, appelé Pip-MPU, qui propose
une solution d’isolation ancrée dans le matériel et offrant une flexibilité dépassant les solutions
actuelles. Pip-MPU est adapté du protonoyau Pip initialement destiné à des ordinateurs généra-
listes dotés d’une plateforme matérielle plus fournie et différente de celle des objets contraints.
Pour cela, le noyau conçu est une refonte totale de Pip et propose un mécanisme de sécurité basé
sur la Memory Protection Unit (MPU), une unité du processeur, qui permet un contrôle d’accès
matériel aux ressources. Malgré les fortes limitations imposées par la plateforme matérielle,
Pip-MPU est aussi flexible que ce que permet la MMU en termes de sécurité. Du haut de ses
10 Ko de code et 16% de surcoût en termes de performances et de consommation d’énergie,
Pip-MPU réduit le nombre d’opérations privilégiées exécutées de 99% et la surface d’attaque de
la mémoire accessible depuis l’application de 98%.

La deuxième contribution est l’obtention de garanties fortes de l’isolation par l’usage de méthodes
formelles. Plusieurs services du noyau ont été formellement prouvés pour l’isolation à l’aide
de l’assistant de preuve Coq. Les propriétés prouvées sont les propriétés de sécurité de Pip
imposant son modèle de sécurité d’isolation stricte. A notre connaissance, aucun autre système
de l’état de l’art proposant de l’isolation par MPU n’a été formellement prouvé auparavant.
Nous développons des nouvelles techniques de conduite de preuve et proposons de nouvelles
métriques permettant de suivre l’effort de preuve et d’évaluer les hypothèses soutenant les
preuves.

Toutes les contributions de la thèse sont en source ouverte.

Mots clés : isolation mémoire, objets contraints, mpu, vérification formelle, coq, pip, sécurisé
dès la conception
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