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“Even if the open windows of science at first make us shiver after the cosy indoor warmth
of traditional humanizing myths, in the end the fresh air brings vigour, and the great spaces
have a splendour of their own.”

Bertrand Russell, "What I believe", 1925
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Abstract

Statistical inference of the Gene Regulatory Networks in Arabidopsis thaliana
under rising atmospheric CO2 levels

Human activity is causing an elevation of CO2 levels in the atmosphere, that are
expected to rise from 420 ppm to approximately 1000 ppm by the end of the century.
C3 plants, a major part of cultivated crops, are particularly affected by the rise of CO2
levels. Even though a stimulation of biomass production is expected under elevated
CO2 (eCO2), this gain is met with a marked depletion of the plant mineral compo-
sition and an especially strong decline in nitrogen (N) content. This poses a ma-
jor threat to crop quality and human nutrition, that we propose to start addressing
through systems biology approaches. Promising hypotheses to explain this decline
invoke a disruption of signalling pathways associated to N uptake and assimilation,
motivating the investigation at the genomic scale of gene expression reprogramming
in the roots of the model plant Arabidopsis thaliana under eCO2. To uncover the un-
known regulators orchestrating such networks, we developed statistical methods
for Gene Regulatory Network (GRN) inference, a challenging task hindered by high
dimension and the scarcity of ground truth networks. Modelling transcriptional de-
pendencies from gene expression data can be performed by regression-based tech-
niques assuming that the expression variations of regulator genes hold descriptive
and predictive power over the expression variations of their targets. We propose
two novel approaches : (i) an extension of a Random Forest-based method, GENIE3,
via permutation procedures assessing the significance of regulatory interactions that
we include within a complete suite for GRN inference, and (ii) two integrative GRN
inference methods based on Random Forests and sparse linear regression with sta-
bility selection, integrating Transcription Factor Binding Sites (TFBSs) with gene ex-
pression. We benchmark those methods against experimental gold standards, and
show that they improve the biological relevance of inferred GRNs in Arabidopsis
thaliana. We applied the first inference approach to a combinatorial transcriptomic
dataset of root tissues under contrasted CO2 levels and nutritional conditions, and
the second to the roots of plants exposed to a gradient of CO2 concentrations. The
inferred GRNs provided candidate genes for the control of this response, and we
demonstrate that some of them regulate growth stimulation under eCO2 without
penalizing shoot nutrient content. Overall, our results indicate that key nitrate and
iron nutrition genes and their known regulators are misregulated by rising CO2, and
that pathways associated to high affinity nitrate transport systems are especially un-
favorably altered. The last objective of this work was to leverage natural genetic
variability to identify genes controlling the ionome response to eCO2. We confirmed
a mineral content decline in three populations of Arabidopsis at different geographic
scales, and showed that the variability in this response can be explained by genetic
determinants in the world-wide panel via linear mixed models. We put forward an-
other set of candidate genes, highly associated to iron, N and zinc depletion in the
shoots under eCO2 that pave the way for designing plants with sustainable nutri-
tional value for the near future.
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Chapter 1

Introduction

1.1 The increase of CO2 levels in the atmosphere reduces crops
nutritional value

1.1.1 Green House Gas emissions in the context of climate change

Human activity is unprecedentedly affecting the Earth’s climate. It has now been
established with extremely high confidence by the International Panel on Climate
Change (IPCC) that Green House Gases (GHG) emitted by the activities of the de-
veloped world are driving climate change by altering our atmosphere composition.
Several GHG are currently being emitted, each of them in varying quantities, ac-
tivity sectors, and with different potential impact on climate. Figure 1.1 shows the
quantities of each type of GHG released in the course of the last three decades, and
highlights the predominant contribution of CO2 emissions from fossil fuel, industry,
and land use to the global increase.

FIGURE 1.1: Global net anthropogenic GHG emissions colored by
type (GtCO2-eq per year) from 1990 to 2019, IPCC AR6, Working

Group III, Mitigation of Climate Change, 2022

There are several ways in which GHG emissions are affecting the planet:

1. GHG in the atmosphere are blocking infra-red heat emission of the Earth back
into space. Their accumulation thus leads to a global temperature elevation.

https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf
https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf
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As a consequence, all ecosystems are threatened by repercussions related to
climate change, like from heat stress, extreme climatic events, drought, or the
rise of ocean levels.

2. GHG elevation in the atmosphere, and especially CO2, directly and signifi-
cantly interferes with planetary equilibria including oceanic pH levels or plant
life.

Given the seriousness of this phenomena, the IPCC has led efforts to predict fu-
ture CO2 concentrations [IPCC, 2013]. Figure 1.2 is a forecast of the CO2 levels in the
atmosphere until the end of the century for several scenarios. Those scenarios de-
pend on our global choices in terms of energy production, industry, transportation,
agriculture, or lifestyle. Even though the political nature of such questions makes
predictions challenging, the baseline foresees CO2 levels between 900 and 1000 parts
per million (ppm) in 2100, approximately twice their current amount (RCP 8.5). It
is worth noting that even in the scenario in which we do not emit additional CO2
in 2100 (RCP 2.6), the CO2 concentration in 2100 is still above its current amount
because of the strong inertia of CO2 accumulation in the atmosphere.

FIGURE 1.2: Carbon emissions and CO2 concentration predictions
from 2014 to 2100 for 4 IPCC scenarios called Representative Con-
centration Pathway (RCPs), representing scenarios of GHG emissions
worldwide. a. Predictions for anthropogenic carbon emissions from
2014 to 2100 in Petagrams (1015 g) of carbon per year (equivalent to
Gigatons per year). b. Predictions of CO2 concentration in parts per
million (ppm). Historical observations show that we are currently fol-
lowing the RCP 8.5 pathway, leading to 550 ppm in the middle of the
century, and almost 1000 ppm in 2100. Data compiled by Smith and

Myers, 2018 [Smith and Myers, 2018].

CO2 has been fluctuating in the atmosphere since the origins of mankind: figure
1.3 shows that CO2 levels from 800 000 years ago to today have been oscillating
due to glacial cycles. They have, however, never been as high as in 2018, and the
predicted levels of RCP 8.5 are dramatically exceeding all prehistorical and historical
fluctuations. This highlights the unprecedented and brutal aspects of current CO2
accumulation as compared to times when human activity did not emit carbon.
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FIGURE 1.3: CO2 concentration in the atmosphere in the 800000 lead-
ing to 2018. IPCC predictions for RCP 4.5 and 8.5 extend observed

data [Lüthi et al., 2008].

1.1.2 The decline of plant mineral nutrition under rising CO2: physiolog-
ical and molecular aspects of a bad deal.

1.1.2.1 Preamble

Note: this section is intended to summarize a complete plant biology review, presented in the
next section. It should give the necessary information to understand the basic motivations
of this PhD project in terms of knowledge gaps about plant physiological and molecular re-
sponses to elevated CO2.

In addition to driving climate change and threatening cultivated crops through
extreme climatic events, elevated CO2 (eCO2) on its own can impact the physiology
of plants. CO2 is a key substrate of photosynthesis, a reaction in plants utiliz-
ing water, CO2 and light to produce biomass and emit oxygen. In particular, most
of the cultivated plants fall into the category of C3 plants, in which the photosyn-
thetic reaction is still limited by current atmospheric CO2 concentration. It is thus
expected that an increase in atmospheric CO2 will result in more primary biomass
production, and even improved agricultural yield because of this fertilization effect
[Tausz-Posch, Tausz, and Bourgault, 2019]. Still, two notable repercussions of CO2
elevation are sources of concern:

1. As compared to ambient CO2 conditions (aCO2), the efficiency of photosynthe-
sis is reduced under eCO2. This is known as the acclimation of photosynthesis
to eCO2 [Ainsworth and Long, 2020; Tausz-Posch, Tausz, and Bourgault, 2019].
As a result, more CO2 is captured under eCO2, but to a lesser extent than the-
oretically predicted, which lowers production gains compared to expectations
in the fields.

2. The mineral composition of C3 plants is depleted under eCO2. Almost all
mineral nutrients in plants, composing the ionome (e.g elements such as N,
P, K, S, Fe, Na, Mg, Mg, or Zn) are affected, and can be reduced from 5 to
25% depending on the species, element, and conditions. The nutrient that
plants need in highest quantities, nitrogen (N), is often particularly affected
[Loladze, 2014] (Figure 1.4). This mineral depletion in cultivated plants can
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lead to the consumption of food with lower amounts of protein, vitamins or
necessary oligo-elements, and poses the threat of malnutrition and impaired
human heath at a global scale [Myers et al., 2017; Smith and Myers, 2018].

FIGURE 1.4: Relative change in different mineral elements under
eCO2, in a panel of C3 species [Loladze, 2014].

Although those negative impacts have been consensually observed in both nat-
ural and artificially controlled settings, the mechanisms underlying the decline of
mineral composition under eCO2 remain unclear.

Several explanatory hypotheses have been proposed, and we summarized most
of them in Figure 1 of Publication #1. Some of them are likely to be involved in
mineral depletion under eCO2 but are not sufficient to explain, alone, all the phys-
iological and molecular observations made in these conditions. Among them are
the hypotheses of carbon dilution, reduced transpiration [Sun et al., 2022], or altered
nutrient availability in soils.

Another category of hypotheses focuses on the alteration of signalling, up-
take and assimilation mechanisms of nutrients, and especially those of N. Even
though signalling mechanisms of N nutrition have been partly mapped, they have
not been studied under eCO2, and some transcriptomic evidence shows that sig-
nalling modules could be impacted. N assimilation also exhibits signs of disruption
in the shoots, possibly caused by the alteration of photorespiration and diminished
reducing power for the assimilation reactions. Finally, the activity of root uptake sys-
tems is altered in different plants where N acquisition efficiency (in the form of NO−

3 )
was diminished [Rubio-Asensio and Bloom, 2017; Bloom et al., 2010], and where N
transport genes were reported as transcriptionnally misregulated under eCO2 (see
section "Negative impact of eCO2 on NO−

3 assimilation" in Publication #1 for details
and references). Those transcriptional changes could not lead to the identification
of clear patterns, firstly because too few data are currently available in roots tissues,
but also because those regulations may be heavily influenced by developmental and
environmental factors. This promotes the hypothesis of complex regulatory path-
ways acting upon the expression of key N nutrition genes in the roots under eCO2,
with unknown regulators orchestrating such networks.
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Two main types of solutions are identified to mitigate the effect of eCO2 on agri-
culture:

• Engineering plants in which the efficiency of nutrient uptake systems is re-
stored. This requires gaining knowledge into the molecular mechanisms of
mineral nutrition under eCO2 to identify genes to target in the context of ge-
netic manipulations. A handful of successful examples have already paved the
way (see Box 2 of the full review).

• Leveraging intraspecific natural variability to cultivate more resilient crops.
In fact, the genetic diversity of the ionome response to eCO2 has been char-
acterized in several crops of agronomic interest [Zhu et al., 2018; Myers et al.,
2014a], and some promising ecotypes are not showing any mineral depletion.
Although Genome-Wide Association studies (GWAs) have been performed on
biomass and yield-related traits [Oguchi et al., 2022] (Section "Solutions to
improve N content under eCO2" in Publication #1), similar studies could be
performed on the ionome response to eCO2 with the objective of discovering
polymorphisms involved in the control of nutrient content. Such discoveries
would provide theoretical knowledge about genetic regulations under eCO2,
while putting forward crops with a preserved nutritional quality for agricul-
ture.

1.1.2.2 Publication #1 (Published)

Note : This section has its own reference system. Citation numbers refer to bibliography items
included in the present article, and not at the end of the PhD manuscript. This manuscript
has been accepted in Trends in Plant Science and published in the February 2023
issue of the journal.



Feature Review

The decline of plant mineral nutrition under rising
CO2: physiological and molecular aspects of a
bad deal

Alain Gojon,1 Océane Cassan,1 Liên Bach,1 Laurence Lejay,1 and Antoine Martin 1,*

The elevation of atmospheric CO2 concentration has a strong impact on the phys-
iology of C3 plants, far beyond photosynthesis and C metabolism. In particular, it
reduces the concentrations of most mineral nutrients in plant tissues, posing
major threats on crop quality, nutrient cycles, and carbon sinks in terrestrial
agro-ecosystems. The causes of the detrimental effect of high CO2 levels on
plant mineral status are not understood. We provide an update on the main hy-
potheses and review the increasing evidence that, for nitrogen, this detrimental ef-
fect is associated with direct inhibition of key mechanisms of nitrogen uptake and
assimilation. We also mention promising strategies for identifying genotypes that
will maintain robust nutrient status in a future high-CO2 world.

Elevation of atmospheric CO2 has positive and negative impacts on plant nutrition
The continuous elevation of atmospheric CO2 concentration ([CO2]atm) since the preindustrial era
(from ~280 to ~415 ppm) has been unprecedented in both rate and amplitude over the past 3
million years [1,2]. In addition to being a main driver of climate change, this elevation has a strong
impact on plant nutrition owing to the pivotal substrate/signal functions of CO2.

On the positive side, because C3 photosynthesis is limited by current [CO2]atm, the increase of
this concentration is predicted to result in a significant enhancement of CO2 capture by C3 plants
(the so-called 'CO2 fertilization' effect), leading to improved primary biomass production [3,4].
This is clearly welcome because enhanced photosynthesis is an absolute requirement for
satisfying the increasing demand for food and for mitigating the [CO2]atm rise [5–7]. The 'CO2

fertilization' effect has been investigated using various experimental facilities to artificially increase
[CO2]atm, including controlled closed growth chambers or greenhouses, open-top chambers
(OTCs), and free-air CO2 enrichment (FACE) facilities in the field [8,9]. Although this depends on
the species and facilities, increases in yield of 20–30% are commonly reported for C3 crops
grown at the [CO2]atm expected during the second half of the century [9–12]. These are
substantial gains that constitute an important opportunity for securing food and feed production.
However, many studies reached the conclusion that the actual stimulation of photosynthesis and
biomass production often remains lower than theoretically predicted [3,4,9,10]. This is generally
due to a downregulation of photosynthesis efficiency in plants grown at eCO2 compared to
ambient CO2 (aCO2) (the so-called 'acclimation of photosynthesis to eCO2') that is associated
with an accumulation of non-structural carbohydrates, a decrease in leaf total protein content,
including Rubisco, and a reduced Rubisco activation state [3,8].

On the negative side, an unexpected outcome is that growing C3 plants at eCO2 has a
detrimental impact on their mineral status because it leads to lowered concentrations of the
main nutrients in most organs. Although already recorded more than 20 years ago [13–15], the

Highlights
Elevated [CO2] (eCO2) has a negative im-
pact on key physiologicalmechanismsof
nutrient acquisition and assimilation inC3
plants. The reasons are largely unknown.

eCO2 particularly lowers nitrogen con-
tent of plants tissues, possibly through
specific inhibition of nitrate uptake and
assimilation.

The altered nutrient status of plants
grown at eCO2 is one likely cause of
the acclimation of photosynthesis to
eCO2 that prevents full stimulation of
biomass production in response to
'CO2 fertilization'.

The high natural genetic variability of the
eCO2 impact on plant nutrient status
can be exploited as a promising strategy
to breed future crops better adapted to a
high-CO2 world.
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actual extent and generality of this impact have been firmly established only recently [16–20].
Although differences are observed between plant functional types [10,21], almost all C3 species
and nutrients (N, P, K, S, Fe, Mg, Zn) are concerned, and decreases in tissue concentrations
range from 5 to 25% depending on the nutrient, the eCO2 level, and the experimental facility.
This is anticipated to have at least two strong negative consequences. First, it may deteriorate
the nutritional quality of most staple crops, leading to amplified malnutrition and health problems
at the global scale [17,22,23]. Second, it will significantly modify the elemental stoichiometry in the
plant biomass (especially C/N and C/P ratios) which will have direct effects on the stability of the
soil organic matter and on the biogeochemical processes of the nutrient cycles in the soil [24].

Several lines of evidence recently supported the validity of the above predictions from eCO2

experiments. Concerning biomass production, it now appears that, at the global scale, the
'CO2 fertilization' effect is real and has already resulted in enhanced photosynthetic CO2 capture
and vegetation primary production in response to the past elevation of [CO2]atm, explaining that
the Earth has become substantially greener over the past decades [25–28]. This is considered
to be the major cause of the recent increase in terrestrial carbon sink that constitutes a strong
negative feedback on climate warming [25,26,29,30]. Concerning plant nutrient status, long-
term studies on forests showed that the foliar mineral status of trees actually declined over the past
decades [31,32]. Furthermore, analysis of archived samples confirmed that contemporary plants
have lower nutrient concentrations than did plants harvestedmore than a century ago [33,34]. Finally,
plants growing in natural eCO2 springs (volcanic sites where [CO2]atm is locally naturally elevated) have
decreased leaf N content compared to their counterparts growing nearby at aCO2 [35]. Altogether,
these studies indicate that the lowered nutrient status of C3 plants is already a visible consequence
of the past elevation of [CO2]atm.

Most importantly, the reasons and mechanisms underlying the negative impact of eCO2 on
the mineral nutrition of C3 plants are still unclear [3,19,36]. In this review we provide an over-
view of the latest developments on this topic, focusing on nitrogen (N), the mineral nutrient
required in highest amounts in plants, and which is also the nutrient often most impacted
by eCO2 [16,20].

Hypotheses for the negative impact of eCO2 on the mineral status of C3 plants
Multiple causes have been proposed for the lowered concentrations of nutrients observed in
plants grown at eCO2 compared to aCO2 (Figure 1). Restricted bioavailability of nutrients in the
soil may certainly contribute [37], but this cannot be the sole explanation because the negative
impact of eCO2 on plant mineral status is also seen in plants grown hydroponically [38–42].
Thus, it is now clear that eCO2 also acts on the plant side to impair the mechanisms involved in
nutrient homeostasis.

It is commonly postulated that the decrease in nutrient concentrations affecting plants grown at
eCO2 results from a simple 'dilution' effect due to the increase in biomass and C content of the
tissues [14,36,43]. Although this cannot be totally ruled out, compelling evidence shows that
this is not the main explanation. Indeed, there is generally no correlation between the increase
in biomass or C content and the decrease in mineral status [3,17,44]. For instance, lowered nu-
trient concentrations are recorded even in plants showing no growth stimulation in response to
eCO2 [19,21,45]. Conversely, a strong increase in biomass production can be observed without
any significant decrease in nutrient concentrations, especially in the functional groups of species
that benefit the most from eCO2, such as legumes or forest trees [13,17,46]. Furthermore, in con-
trast to what is expected from a general dilution effect, the changes in concentrations are often
very different for the various nutrients [17,21].
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Another popular hypothesis is that the negative impact of eCO2 on plant mineral status is due to a
lowering of transpiration caused by eCO2-induced reduction of stomatal conductance (gs) [47–50].
Transpiration can be reduced by ~30% by eCO2, and it is postulated that this may affect not only
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Figure 1. Main hypotheses to explain the negative impact of elevated [CO2] (eCO2) on the mineral composition and especially on N content of C3
plants. (A) An increase in biomass and C quantity in plant leaves can result in a lower mineral concentration via a dilution effect. (B) Under eCO2, transpiration is
reduced due to lower stomatal conductance. This could negatively impact on nutrient acquisition in roots because of the reduced mass flow in the soil, and because of
diminished nutrient translocation via the xylem sap in the shoots. (C) Metabolic pathways associated with photorespiration result in the production of NADH in the
cytosol, which is used as reducing power by the NO3

− reductase enzyme. As a consequence, reduced photorespiration under eCO2 might lead to insufficient NADH to
power the NO3

− reduction reaction. This would lead to less NO3
− assimilation and reduced N content in shoots. (D) NO3

− uptake systems are deregulated under eCO2 in
the roots, which might lead to a decreased rate of NO3

− acquisition and eventually of N content in plants. The signaling pathways and regulatory mechanisms involved
in this mechanism remain unknown.
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root nutrient acquisition through reducedmass flow in the soil but also nutrient accumulation in shoots
through diminished translocation via the xylem sap. Again, this certainly explains part of the altered
mineral nutrient phenotype of plants grown at eCO2, but strong evidence indicates that this effect
is not predominant. First, as alreadymentioned previously, the negative impact of eCO2 on plant min-
eral status is seen in plants grown hydroponically, thus excluding a major role of mass flow in the soil.
Second, it has been known for a long time that, unless water flux within the plant is dramatically re-
duced, root uptake and xylem translocation of nutrients are largely independent of transpiration
[51,52]. Third, and most importantly, reduced nutrient concentrations in response to eCO2 are ob-
served in C3 but not in C4 plants [16], whereas the eCO2-induced reduction of gs similarly affects
C3 and C4 species [53]. Nonetheless, recent studies confirm a possible impairment of nutrient trans-
location into the shoot in response to eCO2, but relate it to a specific effect on xylemmorphogenesis.
Indeed, Houshmandfar et al. [54] and Li et al. [55] reported that the concentrations of cations
(K+, Ca2+, Mg2+) in the xylem sap of wheat plants are reduced under eCO2 compared to aCO2, an
observation that cannot be explained by lowered transpiration. Interestingly, eCO2 represses xylem
development in tomato roots, thereby strongly decreasing root xylem area (by more than 50%),
especially under non-limiting N supply, despite a strong stimulation of root system growth [56].
Gray et al. [57] also reported a marked reduction of root metaxylem area in tomato plants after
10 days of growth under eCO2, following an initial increase between 7 and 10 days. These
observations are consistent with the finding that eCO2 leads to a ~10–20% increase in the ratio of
cortical thickness to stele radius in a wide range of species, indicating preferential cortex over stele
growth [58].

Finally, there is a growing consensus that a main cause of the negative impact of eCO2 on plant
mineral status is reduced efficiency of nutrient acquisition and/or assimilation. In many instances,
the total amount of nutrients taken up by the plant is increased in response to eCO2, but not
enough to keep pace with the stimulation of biomass production [3,12,45,59–61]. Furthermore,
this total amount can also be decreased, especially when the effect of eCO2 on growth is limited
[3,45,55,59]. Many studies have pointed out that the reduced efficiency of root nutrient uptake in
response to eCO2 is associated with physiological rather than developmental processes
[12,21,62,63]. Indeed, this reduced efficiency cannot generally be accounted for by an impaired
size or architecture of the root system because eCO2 predominantly has a positive effect on root
growth and development [64]. This suggests that a major cause of the detrimental effect of eCO2

on the nutrient status of C3 plants is downregulation of the activity of the membrane transporters
involved in root nutrient uptake, which for metabolizable ions may be associated with downreg-
ulation of the assimilatory pathways. This hypothesis is detailed in the following section specifically
for N for which it is most documented.

Negative impact of eCO2 on N acquisition
A large number of studies have investigated the effect of eCO2 on plant nutrient uptake, and espe-
cially on N. Although it may be highly variable [3,15,65], many studies show that eCO2 significantly
impedes the efficiency of N acquisition by plants by decreasing the rate of N uptake as measured
per unit of root biomass [36,66]. However, the effect of eCO2 on plant N uptake could be different
according to the form of N that is collected by plants [67]. Indeed, eCO2 appears to target root ni-
trate (NO3

−) uptake much more negatively than root ammonium (NH4
+) or organic N uptake. In

Arabidopsis thaliana (arabidopsis), Medicago truncatula, and wheat, eCO2 significantly reduced
the rate of NO3

− uptake by almost 50% [68,69]. The negative effect of eCO2 on root NO3
− uptake

has been confirmed in other species, and therefore seems to be a general observation
[39,40,62,70–72]. Asmentioned previously, the negative impact of eCO2 onNH4

+ uptake is less ev-
ident than for NO3

−. On the one hand, several studies found an effect similar to that on NO3
− uptake

[39,40,73], with a reduced rate of root NH4
+ uptake under eCO2 conditions. On another hand,
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several experiments confirmed a negative effect on NO3
− uptake but no effect or even a stimulation

of NH4
+ uptake by eCO2 [62,72]. Such a difference between NO3

− and NH4
+ uptake may result from

a more adverse effect of eCO2 on NO3
− reduction than on NH4

+ assimilation (see following section).

To explain the effect of eCO2 on N uptake systems, transcriptomic approaches have been used
as a valuable source of information. The extent of changes exerted by eCO2 on gene expression
has been tested under several conditions. However, considering the major effect of eCO2 on
plant growth and physiology, relatively few transcriptomic approaches have been performed. A
first striking observation emerging from these experiments is that eCO2 leads to little changes
in genome expression. In arabidopsis, soybean, rice, and poplar the number of genes differen-
tially regulated by eCO2 ranges from only ~10 to a few hundred [74–78]. In the tetraploid
durum wheat genome, the effect of eCO2 increases to reach ~600 differentially expressed
genes [79]. In all these experiments, several observations show that eCO2 can modify the regu-
lation of genes involved in NO3

− transport systems (NRT1/NPF and NRT2 families) (Figure 2A).
Notably, the decrease of NO3

− uptake observed inMedicago plants was associated with a down-
regulation of NO3

− transporter NRT1.1 gene expression by eCO2 [69]. In soybean leaves, two
genes corresponding to the NRT1.3 transporter are upregulated by eCO2, whereas another
NO3

− transporter is downregulated [74]. In soybean and arabidopsis roots, the NRT1.5 gene is
upregulated under eCO2 [75,80]. However, NRT1.5 is known to be involved in root-to-shoot
NO3

− transport [81], and its increased expression should not directly contribute to the negative
effect of eCO2 on shoot N content. In wheat leaves and roots, eCO2 leads to deregulation of
many NRT genes, but the effect of this deregulation can vary according to the tissue or stage
of development [82]. The most significant effect would be the downregulation of several NRT1
genes in leaves, with a potential effect of ambient temperature [80,82]. In roots, eCO2 leads to
the downregulation of some NRT2 genes, especially under high-N conditions [41]. Altogether,
the few transcriptomic experiments carried out under eCO2 reveal that eCO2 might have a
significant effect on the expression of genes involved in N transport, but the variations observed
often follow different and even contradictory directions (Figure 2A). Therefore, no clear trend has
so far emerged concerning the role of eCO2 on the regulation of N transport gene expression,
and large-scale analysis of the molecular responses of root N uptake systems to eCO2 is a priority
to address this question.

The hypothesis that eCO2 may repress N uptake efficiency while stimulating photosynthesis is at
odds with that was previously known. Indeed, stimulation of photosynthesis has always been re-
ported to also trigger a marked induction of root N uptake systems (Box 1), which is seen as a
necessary regulatory mechanism for coordinating N and C intake into the plant. However, the
stimulation of root N uptake by increased photosynthesis has generally been investigated through
short-term treatments (a few hours to a few days) with light, sugar supply, or changes in [CO2]atm.
Thesemay not be illustrative of long-term responses to eCO2. We are aware of only a single study
that compared the short-term versus long-term responses of root N uptake to eCO2 [40]. It
showed that short-term eCO2 treatment (24 h) stimulates root NO3

− and NH4
+ uptake during

early vegetative growth (but not at mid-reproductive stage), whereas long-term treatment
(>100 days) had a marked opposite effect. If confirmed, such a paradox in the short-term versus
long-term effects of eCO2will certainly deserve specific attention because it would fill an important
gap in our knowledge of the C/N interactions in plants.

Negative impact of eCO2 on NO3
− assimilation

A major component of the link between eCO2 and N metabolism is the fact that eCO2 might
diminish the ability of plants to assimilate NO3

−. Recent evidence has been acquired from several
studies involving arabidopsis and wheat plants grown under controlled [68,83] or FACE
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Figure 2. Proposed mechanisms underlying the effect of elevated [CO2] (eCO2) on nitrate transport and
assimilation pathways. (A) The effect of eCO2 on the expression of genes associated with N uptake and transport and
their regulators in plants. Summary of data collected from transcriptomic experiments in various species, showing the
effect of eCO2 on genes of the NRT1, NRT2, and NAR families and their associated regulators, in shoots or in roots (Gm,
Glycine max; Mt, Medicago truncatula; Td, Triticum durum; At, Arabidopsis thaliana). Green, genes upregulated by eCO2.
Red, genes downregulated by eCO2. The opposite effects observed for some of these genes can be partly explained by
the effect of other environmental factors (e.g., N regime or elevated temperature) or by differences in developmental stage.

(Figure legend continued at the bottom of the next page.)
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conditions [84,85], and has been confirmed in other species [86]. The negative effect of eCO2 on
NO3

− assimilation is in line with a range of more focused observations on genes and proteins in-
volved in NO3

− assimilation pathways. Indeed, a large number of studies demonstrated that
eCO2 leads to a decrease in nitrate reductase (NR) gene expression, and in nitrite reductase
(NiR) and glutamine synthetase (GS) gene expression to a lesser extent [69,73,87–89]. Accord-
ingly, the enzymatic activity of NR also tends to decrease under eCO2 conditions
[44,69,79,80,90,91]. The negative effect of eCO2 on NR activity seems to be more pronounced
in shoots [67,92], but has also been observed in roots [69]. Other mechanistic hypotheses have
been proposed to explain the negative effect of eCO2 on NO3

− assimilation. One of the most ad-
vanced hypotheses lies in the possibility that available reducing power might be limiting for NO3

−

assimilation enzymes under eCO2. Indeed, the reduction of NO3
− to NH4

+ by NR and NiR
requires a large amount of reducing power, whose level has been proposed to be the main
limiting factor for the NO3

− reduction reaction [93]. In the chloroplast, reduced ferredoxin is re-
quired for both ferredoxin-NADP reductase, which generates NADPH at the end of the electron
flux of the photosynthesis light reaction, and for NiR. Because eCO2 boosts photosynthesis,
the availability of reduced ferredoxin for NiR might be diminished under these conditions, espe-
cially because ferredoxin-NADP reductase has a higher affinity than NiR for reduced ferredoxin
[94]. Another mechanism could involve photorespiration which generates cytoplasmic NADH
that fuels NR reaction [95]. Among other mechanisms, 2-oxoglutarate (2-OG) produced by pho-
torespiration is exported to the chloroplast in exchange for malate (Mal) import into the cytosol,
which is recycled into oxaloacetate (OAA), generating NADH that is used by NR (Figure 2B).
Because photorespiration is reduced under eCO2, the level of cytoplasmic NADH decreases

Box 1. Short-term stimulation of root N acquisition by photosynthesis

Because carbon skeletons are required for amino acid synthesis, root NO3
− transporters are regulated by the production of

sugars by photosynthesis [130–132]. This regulation is characterized by fast responses (within hours) of root NO3
− uptake,

paralleling the changes in shoot CO2 fixation, and leading for instance to a marked day/night cycle with an increase of NO3
−

uptake during the day and a decrease during the night. The daytime increase of NO3
− uptake requires the presence of CO2

in the atmosphere, indicating that the upregulation mechanism does not involve light per se, but instead depends on
sugars produced by photosynthesis [130]. This conclusion is supported by the fact that addition of sugars to the nutrient
solution, when plants are in the dark, can restore the level of root NO3

− influx observed in the light [130,132]. At the
molecular level, the regulation of root NO3

− uptake by the aforementioned treatments (light/dark, sugar supply, CO2-free
atmosphere) is mirrored by similar changes in the expression of key root NO3

− transporter genes such as NRT2.1,
NRT2.4, and NRT1.1/NPF6.3 [114,131,132]. In addition, in short-term treatments, NRT2.1 and NRT1.1/NPF6.3 were
found to be upregulated in plants transferred to eCO2 for 4 h in the light [114]. This suggested the action of signaling
mechanisms because sugars produced by photosynthesis are known to be important signals that control different
aspects of plant metabolism and development [133]. In contrast to known sugar-sensingmechanisms, the sugar signaling
pathway involved in regulating root NO3

− transporters appears to be entirely distinct [134] because it was shown to
originate from the oxidative pentose phosphate pathway (OPPP) for at least NRT2.1, NRT2.4, and NRT1.1/NPF6.3
[114]. It is interesting to note that OPPP is also involved in the regulation by sugars of genes encoding enzymes for NO3

−

assimilation [135]. Furthermore, the link between OPPP and N metabolism in roots is strong because OPPP produces
the reducing power required for nitrite reductase (NiR) and glutamate synthase (GOGAT) activity [136]. If the signaling
mechanism linked to the OPPP remains unknown, recent advances suggest that the reducing power produced by the
OPPP could be involved in redox regulation of N uptake. Indeed, NRT2.1 expression has been shown to be regulated
by the redox status of the plant [112]. This mechanism could ensure the coordination of root NO3

− uptake with the produc-
tion of reducing equivalents required for the assimilation of N into amino acids ([113] for review).

Data were collected from [38,41,69,74–76,80,82,106,108,109]. (B) Schematic representation of metabolic pathways by
which eCO2 canmodify the availability of reducing power needed for the two steps of nitrate reduction. Red and green arrows
indicate the metabolic routes that can be slowed or accelerated by eCO2, respectively. eCO2 boosts the rate of the Calvin–
Benson cycle, increasing the demand of reduced ferredoxin (Fd) by ferredoxin-NADPH reductase (FNR) to provide NADPH
for the C fixation pathway. This can reduce the availability of Fd for nitrite reductase (NIR), which has a lower affinity than FNR
for Fd. At the same time, eCO2 decreases the rate of photorespiration. The reduced production of 2-oxoglutarate (2-OG) by a
lower photorespiration can decrease the export of malate (Mal) to the cytosol, which is needed to provide NADH for nitrate
reductase (NR). Abbreviation: OAA, oxaloacetic acid.
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under these conditions and could directly affect the rate of NO3
− assimilation [44,96,97]. This hy-

pothesis is supported by a recent report describing the effect of the genetic manipulation of the
chloroplast factor OsCV which is involved in rice in the repression of photorespiration-related
genes. Silencing of OsCV under eCO2 results in increased photorespiration, increased NR
gene expression, restoration of NR activity and, most notably, is associated with inhibition of
the negative effect of eCO2 on protein content [98]. Interestingly, a recent approach modeling
plant primary metabolism under eCO2 also identified the limitation of reducing power by a
lower rate of photorespiration as a mechanism that could significantly contribute to the inhibition
of NO3

− assimilation [99].

If confirmed, the specific inhibition of NO3
− uptake and/or NO3

− assimilation systems by eCO2 has pro-
found consequences for agriculture and ecology. In particular, it may explain why plants suppliedwith
NO3

− as theN source often show lower stimulation of photosynthesis and growth in response to eCO2

compared to NH4
+-fed or N2-fixing plants [83,100,101]. This suggests that NO3

− may be an inappro-
priate N source for taking full advantage of the 'CO2 fertilization' effect. Nevertheless, this hypothesis is
challenged by other studies which reported that NR activity was not affected by eCO2 under the nu-
trient conditions investigated [102,103].

Signaling mechanisms possibly involved in the regulation of N-related processes
under eCO2

In light of the deregulation of N uptake and assimilation processes by eCO2, identifying and char-
acterizing the effect of eCO2 on upstream regulatory and signaling mechanisms remains a major
challenge in the field of plant N nutrition. Although N signaling pathways and regulatory networks
are relatively well known [104,105], to date very few of them have been investigated under
eCO2. However, some evidence strongly suggests that N signalingmodulesmight bemisregulated
by eCO2. In particular, transcriptomic analyses show that the expression of some major transcrip-
tional regulators of NO3

− uptake and assimilation is deregulated by eCO2 [76,106] (Figure 2A). In
addition, several components of the C-terminally encoded peptide (CEP) pathway that is involved
in systemic signaling of the N response [107], are also deregulated by eCO2 [106,108,109]
(Figure 2A). Altogether, these observations suggest that eCO2 might disturb several steps of N sig-
naling pathways upstream of N uptake and assimilation systems. On the other hand, eCO2 could
also profoundly modify the redox properties of plants [110]. A range of key enzymes involved in
redox-based processes, such as catalases, peroxidases, and alternative oxidases, are indeed
deregulated by eCO2 [111], which might result in an accumulation of reactive oxygen species
(ROS) in plant tissues. The influence of the redox status and of ROS accumulation on the expres-
sion of genes involved in NO3

− uptake such asNRT2.1 has been recently demonstrated [112,113],
and thus the deregulation of redox properties under eCO2 could contribute to modify N uptake
systems under these conditions. In addition, several genes involved in the oxidative pentose
phosphate pathway (OPPP) are downregulated by eCO2, especially under low-N conditions
[41,82,106]. Given that the OPPP is a key signaling pathway for the regulation of root NO3

−

transporter genes [114] (Box 1), dysregulation of the OPPP might also contribute to disrupting N
acquisition by the roots under eCO2.

Solutions to improve N content under eCO2

The decline of N and protein content under eCO2 conflicts with the imperative to increase staple
crop production while maintaining its nutritional quality. For this reason there is an urgent need to
identify relevant strategies for increasing plant N content under eCO2. To achieve this objective,
two research avenues stand out. First, manipulation of the genetic determinants that regulate
plant physiology under eCO2 might be a fruitful way to develop climate-resilient crops. Indeed,
the few examples that are available in the current literature demonstrate that the response to
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eCO2 can be modulated, including its negative effect on plant nutrient content (Box 2). On the
other hand, natural genetic variability found among plant populations can be a very promising
way to understand and then overcome the deleterious effect of eCO2 on plant N nutrition. Indeed,
phenotypic variations due to intraspecific genetic diversity in the response to eCO2 have been re-
ported in a significant number of association studies [quantitative trait locus (QTL) analysis and
genome-wide association studies (GWAS)]; however, these mainly focused on yield, biomass,
and C-associated traits [115–119].

By comparison, potential genetic variations associated with phenotypic changes in N-related traits
or the ionome have been suggested by a much more limited number of studies. Although not per-
formed on large populations of plants, and therefore absent from the GWAS literature, these stud-
ies point to encouraging results. In a recent work, yield and grain composition under eCO2,
including protein and mineral content, were recorded in 10 bread wheat genotypes. Although
the opposition between biomass increase and the decrease in mineral nutrients drives most of
the phenotypic variability, strong differences among the genotypes were reported for these traits
[120]. A meta-analysis of FACE experiments on wheat, rice, field peas, soybeans, maize, and sor-
ghum, including intraspecific variations, pointed to a significant decrease in iron and zinc for all C3
plants, and a significant protein decrease in C3 grasses. More importantly, clear differences in the
zinc and iron responses between cultivars of rice were noted, and are also foreseen for other spe-
cies [17]. Similarly, in several FACE experiments, 18 rice genotypes showed diverse relative
changes not only in protein but also in iron, zinc, and four types of vitamin B. In particular, some
promising genotypes did not exhibit any significant loss of these nutrients [20]. Although such anal-
yses emphasize the value of genetic diversity as a tool for breeding plants with preserved nutritional
quality [17,20,120,121], this phenotypic variability remains largely unexplained. Interestingly, varia-
tion in gene expression between genotypes might explain in part the phenotypic variability of N-
related traits under eCO2. Indeed, natural variability was also found in the expression patterns of
genes linked to mineral nutrition and N content under eCO2 conditions. Among four durum
wheat genotypes exposed to eCO2 and water deficit, the decrease of N content was associated
with significant variation in the expression of genes encoding Rubisco subunits [122]. In a study
on arabidopsis accessions Col-0, Cvi-0, and WS exposed to eCO2, clear ecotype-specific

Box 2. Genetic manipulations to improve the response of plants to eCO2

Although a small number of genes involved in the response to eCO2 have been identified, their use might represent a
promising way to rapidly develop crops resilient to climate change. Several genes, even though their function is not fully
characterized, have the potential to modulate CO2 assimilation and biomass production under eCO2. This is the case
for the rice G protein qE9-1 whose overexpression leads to dysregulation of photosynthetic gene expression and of RBCL
genes in particular, and to improvement of CO2 assimilation and sugar production [137]. In the same line, mutant rice lines
for the 14-3-3 protein OsGF14b display an increase in shoot and root biomass which is more pronounced under eCO2

[138]. Concerning the modulation of the negative effect of eCO2 on nutrient content, a specific effect on iron metabolism
and signaling under eCO2 has been assigned toOsRab6a. Growth, yield, and photosynthetic parameters were stimulated
under eCO2 inOsRab6a-overexpressing linesmore than in the correspondingwild-type (WT) line. Most notably,OsRab6a-
overexpressing lines display a moderate reduction in iron content in response to eCO2 compared to the WT, and this was
associated with higher expression of genes involved in iron acquisition such as the iron transporter OsIRT1 [139]. Similar ex-
amples have been described regarding the negative effect of eCO2 on N metabolism and content. For instance, silencing of
the rice chloroplast factor OsCV leads to a significant reduction of the negative effect of eCO2 on protein content, and this
was associated with an increase in NR gene expression and NR activity [98]. On the other hand, direct manipulation of a cy-
tosolic glutamine synthetase (GS1) gene successfully prevented the decline of N content observed under eCO2.
Indeed, cisgenic expression of the barley GS1.1 isoform improves nitrogen use efficiency (NUE) under eCO2, leading to a
restoration of grain protein content under low-N conditions, and even to an increase in grain protein content under high-N
conditions [140]. Finally, manipulating the level of Rubisco in rice was also described as a promising strategy to improve
NUE under eCO2. RBCS-RNAi rice lines display a small reduction in their Rubisco content, and this might optimize the
allocation of N to Rubisco regarding other factors that limit photosynthesis. Consequently, RBCS-RNAi rice lines have better
CO2 assimilation and growth rates, biomass production, and most notably NUE, specifically under eCO2 conditions [141].
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divergences in gene expression were noted for several pathways including photosynthesis, amino
acidmetabolism, and Nmetabolism. As an illustration, the Nmetabolism geneNIA2was downreg-
ulated in Col-0 and Ws, whereas its expression remained stable in Cvi-0 [109]. The transcriptomic
responses of Col-0 andCvi-0were further compared in a second FACE study including timecourse
information. This work concluded that the changes observed in Col-0 under eCO2 were similar to
the changes in N-deficiency in both the short and long term, whereas Cvi-0 expression reprogram-
ming suggested better acclimation in the long term [106]. Finally, in the leaf transcriptomes of two
aspen genotypes under eCO2, a NO3

− transporter gene was differentially expressed [123], indicat-
ing that the efficiency of N uptake systems under eCO2 could be genetically driven.

In conclusion, some plant varieties have evolved with a more resilient protein content, mineral
status, or even nutrient-related gene expression. Despite this finding, attempts to link this
phenotypic and transcriptomic diversity to causal polymorphisms are lacking: association studies
between genetic determinants and the plant ionome response will be crucial to gain knowledge
about genes controlling mineral nutrition under eCO2, to elucidate the associated mechanisms,
and to design more tolerant crops.

Concluding remarks and future perspectives
In addition to other likely causes (e.g., changes in nutrient bioavailability in the soil, dilution of
biomass, reduced transpiration), the hypothesis that eCO2 has a direct negative effect on key
physiological processes of nutrient uptake and assimilation in C3 plants grown under eCO2 has
been increasingly documented in recent years. This negative effect remains largely unexplained
because the regulatory mechanisms involved in nutrient homeostasis should theoretically act to
prevent it. However, one must keep in mind that the dramatic and continuous elevation of
[CO2]atm is an environmental change that plants have not had to face for at least 3 million
years. It may then be postulated that, unlike other abiotic constraints (hydric stress, temperature,
nutrient starvation), there has been no selection pressure to drive the emergence and
conservation of adaptive responses to eCO2. Whether the negative impact of eCO2 on the
nutrient status of plants is illustrative of physiological disorders resulting from such a new
challenging environment warrants consideration.

These considerations call for a much more extensive investigation of the mechanistic aspects of
plant responses to eCO2, especially at the genetic and molecular levels [124]. This is particularly

Box 3. Impaired N nutrition efficiency as a main cause of the acclimation of photosynthesis to eCO2

The 'CO2 fertilization' effect is far from providing the expected benefits for both the mitigation of [CO2]atm elevation [27,129]
and the stimulation of crop yield [9,142]. Given the strategic aspects related to these two issues, it is crucial to understand the
causes of this limitation. Inmany instances the so-called acclimation of photosynthesis to eCO2 is involved, resulting in down-
regulation of photosynthetic efficiency triggered by excessive leaf sugar accumulation [3,4,8,143]. Acclimation is in turn often
postulated to bedue to a sink limitation created by the inability of either the source leaves to sufficiently increase phloemsugar
export [144,145] or the sink organs to use all the sugars produced [146,147]. However, there is now an impressive body of
evidence indicating that nutrient limitation, and more particularly N limitation, is a major cause of the acclimation of photosyn-
thesis to eCO2 [91,125,143,148–153]. Accordingly, increasing N supply to the plants is often a simple way to alleviate the
acclimation and to recover the full increase in photosynthesis and biomass production allowed by the 'CO2 fertilization' effect
[8,61,102,148,150,151,154]. The two aforementioned hypotheses – sink limitation orN limitation – are not exclusive because
it is likely that the eCO2-induced decrease of plant N statusmay well be the cause of the reduced growth of sink organs, thus
creating sink limitation [150]. Therefore, understanding the causes of the negative impact of eCO2 on plant N nutrition will not
only help in securing the nutritional quality of crops but will also contribute to increasing crop productivity and mitigating cli-
mate change. Moreover, this is also relevant with regard to current biotechnological strategies aimed at improving photosyn-
thesis efficiency. Indeed, many of these strategies rely on the development of synthetic pathways for increasing CO2

concentration within the chloroplast [6,155]. Thus, lessons learned from eCO2 studies, especially those related to the sink
or nutrient limitations of the 'CO2 fertilization' effect, may be highly valuable for understanding how biotechnologically im-
proved photosynthetic efficiency can actually result in enhanced growth and yield [142].

Trends in Plant Science

10 Trends in Plant Science, Month 2022, Vol. xx, No. xx

Outstanding questions
How can we resolve the paradox
between the short-term induction of
root N uptake by photosynthesis and
the long-term inhibition by eCO2? In
particular, is there a temporal aspect
beyond which the effect of eCO2

switches from positive to negative? Is
the redox status of the plant involved
in this paradox?

What are the regulatory and signaling
mechanisms underlying the negative
effect of eCO2 on plant N uptake and
assimilation? For instance, what is the
effect of eCO2 on known N local and
long-distance signaling pathways and
their regulators? Do the regulators of the
negative effect of eCO2 on N nutrition
correspond to new uncharacterized
regulators of plant C/N interaction?

Are there commonmechanisms behind
the decline of plant N content under
eCO2 and that of other microelements
such as iron, phosphate, and sulfate?
Could these potential mechanisms
lead to a global improvement of nutrient
composition in crops adapted to a
future climate?



true concerning plant nutrient status because – compared to the impact of eCO2 on C
metabolism, biomass production, and yield – its effects on the physiological and molecular
mechanisms of plant nutrient acquisition have been dramatically underinvestigated ([125] for
review). Stronger efforts must be devoted to addressing these questions, notably in the roots,
because there is a clear lack of data concerning the underground parts of the plants because
of restricted access to the root system in the vast majority of eCO2 experiments performed on
plants grown in the field or in pots (see Outstanding questions).

Finally, one main issue concerning the detrimental impact of eCO2 on plant mineral status is to
determine the extent to which it may prevent the negative feedback on climate warming
associated with the 'CO2 fertilization' effect. It appears that 'CO2 fertilization' feedback has
actually operated over the past decades and had a significant effect by recapturing as much as
15–20% anthropogenic CO2 emissions in the atmosphere [25,26,28–30]. Several reports
suggest that, in natural forests, the 'CO2 fertilization' effect will be maintained in the long term
because eCO2 also often improves N availability in the soil and N uptake by the trees
[26,61,126,127]. However, recent studies suggest that, at the global scale, the 'CO2 fertilization'
feedback will slow down this century because nutrient limitation (mostly N but also P) will prevent
any further major increase in Earth vegetation photosynthesis [27,31,128,129]. This last
hypothesis is fully consistent with the observation that, at the plant scale, impaired N nutrition
efficiency is a major cause of the acclimation of photosynthesis to eCO2 (Box 3). Therefore,
elucidating the causes of the negative impact of eCO2 on plant mineral status will not only help
in securing the nutritional quality of crops and the stability of the soil organic matter, but will
also contribute to mitigating climate change through improved photosynthesis.
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1.2 Objectives

The IPCC reports made it clear that the field of agriculture has a very important
role to play in the decades to come [IPCC, 2013]. While needing to properly feed
a growing population in more and more challenging climates, agricultural practices
should also meet sustainability criteria such as limited land use, parsimonious fertil-
izing inputs, or carbon capture objectives. Our project positions itself in the under-
standing of the lower nutritional quality of plants under eCO2, and its relation with
the biomass-related fertilization and acclimation effects. More precisely, we wish
to identify the mechanisms by which plant growth and physiology are affected by
eCO2 at the genomic scale. In the longer term, and based on the acquired knowl-
edge, we envision the proposition of resilient plants overcoming these deleterious
responses.

In light of the state of the art presented in previous sections, we defined several
objectives for this project:

1. Generate genome-wide data from biological material, especially in the
roots, to thoroughly investigate nutritional pathways under eCO2. This
encompasses transcriptomic combinatorial steady-state experiments, but also
adaptive responses to eCO2, combined to different nutritional settings. We
focus such data collection on the model plant Arabidopsis thaliana because it
is easily grown, and possesses high quantities of annotations and existing
resources.

2. Based on the generated transcriptomic dataset and other readily available
omics data in Arabidopsis thaliana, statistically infer the Gene Regulatory
Networks (GRNs) governing root responses to eCO2, especially those of
nutritional pathways. Such networks should lead to the identification of
candidate genes as key regulators of this response. To do so, we develop
and adapt statistical inference methods to reconstruct GRNs.

3. Perform a Genome-Wide-Association study (GWAs) in Arabidopsis thaliana,
with the aim of characterising the natural variability found in the mineral
status alteration by eCO2 of diverse ecotypes. Based on these phenotypes
and available sequence information, our objective is then to identify the
genetic determinants associated with the ionome response to eCO2.

4. Initiate the experimental validations of the candidate genes put forward in
points 2 and 3.

To investigate the nutritional pathways under eCO2 and carry out the identifica-
tion of candidate genes, we made use of systems biology.

1.3 Systems biology for candidate genes discovery

In contrast with historical approaches that broke down systems into isolated bits
for independent investigation, systems biology has the objective to map and model
cell function as a complex, heterogeneous, interacting whole. It is a fundamentally
multidisciplinary field, motivated by biological interrogations and employing wet
lab experiments, but also bioinformatics, biostatistics, mathematical modelling and,
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more recently, machine learning. Because of its predictive nature, systems biology
can be used to deepen existing knowledge about a system by proposing a detailed
model of its behavior, but also be a tool for making discoveries when studying novel,
uncharted responses or organisms.

One of the success stories of systems biology in the domain of plant nutrition is
the identification of the BT1-BT2 homologs as negative regulators of Nitrogen Use
Efficiency (NUE) under low nitrate conditions [Araus et al., 2016]. Rodrigo Gutier-
rez and his colleagues made use of supervised machine learning models guided by
gene ontology information [Puelma, Gutiérrez, and Soto, 2012] to infer a network of
NUE from expression micro-arrays, and extracted from this network central genes
including BT2. Experimental validations further confirmed that BT2 and BT1 are
indeed able to modulate NUE in Arabidopsis thaliana and rice plants [Araus et al.,
2016].

Large omics datasets are immensely promising for the understanding of biolog-
ical systems. They capture entire molecular layers of organisms and cells, such as
genome sequence and polymorphisms, transcript abundance, physical interactions
between DNA and other molecules, chromatin state, proteins or metabolite quanti-
ties. Such global molecular states can be generated at different moments in time to
study the dynamics of a system, and spatially to account for tissues and cell-types
specificities. The high resolution and number of features in such datasets gave rise
to new questions and practices for their statistical analysis.

1.3.1 Statistical methods for omics data analysis

1.3.1.1 Challenges in the analysis of high throughput biological data

In the following lines, some examples of common strategies to statistically deal with
omics data are presented, as well as some difficulties arising from the nature of these
data.

Answering research questions from omics data often requires dimension reduc-
tion. Principal Component Analysis (PCA) and its extensions towards non Gaussian
distributions [Chiquet, Mariadassou, and Robin, 2018] or towards data integration
[Rohart et al., 2017], have the objective to decompose the total variation of a dataset,
and to find the combination of the input variables that have the strongest influence
in a measured output. They are routinely used to visualise the biological observa-
tions in a summarized, low-dimensional space, but also to provide some quantita-
tive insight. For instance, variance decomposition can be used to determine the main
experimental conditions causing changes in one or several omic layers, and even to
pinpoint the variables contributing to outlier observations [Rau et al., 2019].

Another useful approach is feature selection. It is used in the context of ex-
ploratory and predictive modelling, and allows to select an interpretable and rea-
sonable number of variables that drive significant changes in a response of interest.
It can be used to answer questions like: what are the features of a sequence sufficient
to predict its binding by a specific TF? What are the genetic variants responsible for
a phenotype of interest? Which are the key genes influencing expression reprogram-
ming? The answer is usually a very small subset of features as compared to the
available inputs. Aside from the benefits of encoding sparsity and intelligibility in a
model for biologically relevant reasons, feature selection is often a practical require-
ment. Parametric models such as the linear model and its generalizations can not be
estimated when the number of observations is smaller than the number of input fea-
tures, and they need built-in mechanisms for feature selection. Standard approaches
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to feature selection are the LASSO [Tibshirani, 1996], Ridge and Elastic-net penalties
[Hastie, Tibshirani, and Friedman, 2001]. Such penalized predictive models are how-
ever sensitive to multicollinearity in their input features, a phenomena expected to
arise from large number of input features, especially in biology where redundancies
and clusters of similar behaviour have been documented among input features such
as genes, proteins, or other entities.

Hypothesis testing also had to be adapted to high volumes of biological data. It
has become usual to test hundreds, thousands, or even more hypotheses simultane-
ously, for example when searching for differentially expressed genes (DEGs) across
whole transcriptomes. The multiplication of statistical tests has made systems biol-
ogy vulnerable to spurious deviations from null hypotheses and data snooping, i.e
the increased chance of getting artifactually significant results by running an uncon-
trolled number of tests. Corrections for this problem include defining, prior to the
analysis, the exact test procedures that will be used, applying corrections to p-values
like Bonferroni or Benjamini and Hochberg’s false discovery rate, and independently
confirming significant results, either on test data untouched during hypothesis for-
mulation and testing, or with new wet lab experiments.

1.3.1.2 Standard analysis pipeline for transcriptomic data

Expression data has been one of the first type of omic data available for large scale
statistical analysis, first through micro-arrays and then RNA-Seq. Transcriptomes
can be leveraged to answer biological questions of high interest, like: which genes
have their expression significantly changed by a perturbation? What are the genes
with a different expression value in a genotype of interest as compared to a wild
type organism? Can we distinguish groups of genes with similar behaviours in
a set of different conditions or developmental stages? How to model interactions
and dependencies between genes in a given response? Consequently, transcriptomic
datasets have been booming in the last decades (1.5).

FIGURE 1.5: Increasing number of publications involving the word
"RNA-Seq" in PubMed

In practice, RNA-Seq data is obtained from biological material after the extrac-
tion of RNA molecules in the cells of interest, and the preparation of the samples
to the convenience of the sequencing platform. Common sequencing technologies
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like Illumina provide the sequence of nucleotides corresponding to the fragments of
mRNAs, generally of a size around 150 base pairs. Other technologies like PacBio
or Nanopore can sequence fragments of a much larger size [Hu et al., 2021], which
makes them great tools for genome assembly, but less useful for quantitative analy-
ses: they were not used in the scope of this project. Raw sequencing files in the fasta
or fastq format are the basis of a bioinformatics pre-processing pipeline:

1. The quality control of raw sequences is performed to remove low quality nu-
cleotides and to trim adapters inserted at the sequencing step. Quality control
also provides descriptive metrics like sequencing coverage, GC content or the
distribution of insert sizes [Chen et al., 2018].

2. The mapping of sequenced reads to a reference genome. At this step, an
alignment algorithm reports the unique or multiple locations in the reference
genome where the reads could be aligned, along with alignment scores, in the
bam/sam format. Many options control the stringency of the mapping, such
as the maximum number of mismatches per alignment or the minimum align-
ment length [Dobin et al., 2012].

3. The mapping results are compared to the organism gene models in the GFF
format in order to count how many reads were aligned into the genes. It is
possible to choose how to count multiple or ambiguous alignments, and the
regions of interest for the counting like entire genes, composed of the union
of all their exons, or gene isoforms to study alternative splicing [Anders, Pyl,
and Huber, 2014]. Counting the mRNA abundance of all genes in all samples
results in an expression table or matrix, with the genes in the different rows
and the N samples in columns.

4. Normalization ensures that the expression levels in each samples are compara-
ble to each other, or that the expression of genes are comparable to each other,
depending on the envisionned downstream statistical analyses. In particular,
for the statistical analyses described below, normalization techniques such as
the Median of Ratios [Love, Huber, and Anders, 2014] or TMM [Robinson and
Oshlack, 2010] correcting for different sequencing depths between samples are
required and routinely used.

Once the normalized expression table is available, it can be statistically analysed
to understand gene expression programs. Statistical analyses to answer biological
questions can be very diverse depending on the problematic, organisms, or experi-
mental designs. Listed below are some very common types of analyses performed
on RNA-Seq data to extract knowledge:

• Differential Expression Analysis (DEA) is carried out to identify genes that
have a significant change in expression between experimental conditions. DEA
in its most widespread form for RNA-Seq models gene expression as over-
dispersed counts via Negative Binomial distributions. A first step is to estimate
the over-dispersion parameter. Then, generalized linear models are fit to the
expression values of each gene, and their coefficients are used to test the signif-
icance of the experimental variations on gene expression. This results in one
p-value per gene, later corrected for multiple testing. Such models are com-
monly brought to researchers by the DESeq2 [deseq2] or edgeR [McCarthy,
Chen, and Smyth, 2012] implementations. DEA results can also be controlled
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by a minimum absolute log fold change between conditions, to enforce a suf-
ficient amplitude in expression change.

• Gene Ontology (GO) enrichment analyses are useful to understand the func-
tional content of a list of genes. Such analyses determine if genes belonging
to certain biological functions, cellular processes or compartments are signifi-
cantly over-represented in a list of interest as compared to a background (usu-
ally the entire transcriptome). Fisher’s exact test and its hypergeometric null
distribution are employed by common tools like clusterProfiler [Yu et al., 2012]
to assess the over-representation of ontologies found in a list of genes.

• Co-expression clustering is a way to determine groups of genes with a com-
mon expression behavior across available experimental conditions. The par-
titioning of genes into co-expression clusters can be solved by the k-means
algorithm, that groups genes based on their similarity across samples. Prob-
abilistic equivalents to k-means have also been explored. Instead of charac-
terizing clusters of genes by their centroids (mean gene expression in each of
the N samples) like in k-means, clusters are characterized by a N-dimensional
probability density function appropriate for count data whose parameters are
estimated via Expectation-Maximization methods. Tools like coseq [Rau and
Maugis-Rabusseau, 2018] bring such approaches to the community.

• Network inference uses transcriptomic data to reconstruct the complex struc-
ture of expression reprogramming in a given response. In order to model a
specific response, network inference is usually restricted to a set of genes of
interest, typically derived from DEA or co-expression clusters of interest. Sta-
tistical network inference from expression profiles is a central topic in systems
biology, and various statistical frameworks have been developed to make pre-
dictions about the interactions between genes in the context of transcriptional
regulation. Network inference is further introduced in section 1.3.2.

These steps of statistical analyses were performed on all the transcriptomic datasets
we generated in the course of this project, but also on existing datasets that we
directly analysed for methods development purposes. In particular, we make this
pipeline available in the DIANE suite, with a precise choice of statistical methods
for each step (Publication #2).

The investigation of transcriptomic data through statistics, whether by combin-
ing DEA, GO enrichment, clustering, network inference or other type of analyses,
often results in the formulation of new research hypotheses. Such hypotheses ex-
tend existing knowledge and make new claims about the biological systems under
study: they are to be tested in new experiments until they are either confirmed or
not, and finally contribute to establishing knowledge.

1.3.2 Reconstructing Gene Regulatory Networks

1.3.2.1 The regulation of gene expression

Modelling gene regulation relies on some prior understanding of the biological prin-
ciples at stake. The regulation of gene expression, that is to say the quantity of mes-
senger RNA (mRNA) of genes, is at the core of cell function and acts in various
molecular levels.
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1. During transcriptional regulation, one or several Transcription Factors (TFs)
bind to the gene regulatory region and contribute to the recruitment of the
RNA polymerase that transcribes the gene into a mRNA. TFs bind to DNA as
they recognize specific sequences of nucleotides, also called cis-regulatory mo-
tifs, or binding sites (TFBSs). TFBSs are usually localized in the gene promoter,
but can also extend to other regions, like introns, or distant enhancers. Distant
enhancers coming in contact with the promoter to regulate transcription have
not been, however, much documented in Arabidopsis thaliana like in human or
other mammals.

2. Epigenetic regulation refers to all non sequence-encoded forms of regulation.
These epigenetic regulations are chemical modifications (such as methylation)
of nucleic acids or histones that can impact the ability of proteins to bind to
DNA and proceed to transcription, but also mRNA stability or translation.

3. Post-transcriptional regulations target mRNA transcripts before their transla-
tion, in the way they are capped, spliced, or exported from the nucleus. Three
prime untranslated regions also contain regulatory instructions, and microR-
NAs or proteins can bind to those regions to inhibit translation or decrease
the expression level of mRNAs. Moreover, mechanisms acting upon the sta-
bility and degradation rates of mRNA can regulate gene expression, as well as
chemical modifications added to mRNAs like the methylation mark m6A.

Combined, those different layers of regulation allow cells and multi-cellular or-
ganisms to grow and adapt to their environment. Given that plants are sessile organ-
isms, they are especially vulnerable to environmental changes, relying on fine-tuned
and efficient gene expression reprogramming [López-Maury, Marguerat, and Bäh-
ler, 2008]. Regulatory programmes in higher organisms such as plants responding
to the environment have several characteristics, described in the following lines.

First, gene expression reprogramming is proportionate and dynamic. After an
external perturbation, gene expression is temporally impacted, with the expression
of transcription factors and genes peaking or dropping in regulatory cascades, and
then returning to a former or new steady-state [Li, Varala, and Coruzzi, 2015]. In
Arabidopsis roots, the temporal response to N induction exhibits such characteristics
[Varala et al., 2018; Brooks et al., 2019]. The intensity of expression changes was also
shown to be positively correlated to the intensity of the environmental stimulus in
several settings. [López-Maury, Marguerat, and Bähler, 2008]

Second, gene expression reprogramming displays tissue-specificity. Different
organs or cell types can respond in a specialized and coordinated way. Different
tissues may also adapt the expression levels of some gene modules responsible for
short or long-distance signalling influencing the expression of target genes in other
tissues. This was, for instance, observed in the signalling of nitrate starvation in
Arabidopsis with the differential expression of glutaredoxins [Tabata et al., 2014;
Ota et al., 2020], and with shoot-to-root signals carried by the small peptids of the
CEP family.

Thirdly, gene expression reprogramming is noisy. As compared to gene expres-
sion in the course of development, gene expression resulting from environmen-
tal perturbations exhibits high levels of variability between cells and individuals
[López-Maury, Marguerat, and Bähler, 2008; Cortijo et al., 2019]. This variability
likely provides beneficial phenotypic diversity in the context of adaptation and even
evolution. However, this causes technical challenges when statistically deciphering
such noisy signals.
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1.3.2.2 Modelling biological systems as networks

The regulation of gene expression involves thousands of genes, mRNA, proteins,
connected through several layers of cellular processes. A network model suits the
representation of such processes quite well, because it describes in a single object a
set of entities and their relations to each other. More formally, a network or graph
G = (V , E) is composed of:

1. A set of nodes, also called vertices V . They represent biological entities of
interest like genes, proteins, or transcripts. Several types of vertices can coexist
in the same network.

2. A set of links, also called edges E , that are pairs of vertices ∈ V . The set E is
included in VxV . Edges represent the interactions between biological entities,
and can also be of several types, for example activation, inhibition, regulation,
co-expression, etc. Edges can be undirected or can be attributed a certain ori-
entation, in this case the graph is said to be directed and E must be composed
of ordered pairs of vertices ∈ V . Some types of graphs can contain at the
same time directed and undirected edges [Perković, Kalisch, and Maathuis,
2017], for example when networks are built from various sources of informa-
tion. Links can also be weighted by a certain value, for example to quantify
the strength of the interaction (Figure 1.6).

FIGURE 1.6: Examples of network types: directed (a), undirected (b),
and weighted (c), where the weights are represented by edge thick-
ness. Note that a weighted network can be directed or undirected.
Source Gene Regulatory Networks, 2019 [Sanguinetti and Huynh-

Thu, 2019]:

A biological network has a strong duality: it can be topologically described with
the abstract tools of graph theory and discrete mathematics, while telling a semantic
story about the biology of living organisms. This dual nature requires the cautious
definition and disambiguation of its components in order to extract reliable interpre-
tations. The meaning of a network stems from the type of its biological entities, the
type of links between them, and the way that those links are constructed. Here are
some examples of different kinds of biological networks:

• Protein-protein interaction networks. Nodes are proteins, and an undirected
link is present between two proteins if they were reported as physically inter-
acting.

• Co-expression networks. A relation of co-expression between two genes means
that their expression levels vary in conjunction in all the experimental samples
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available. Edges in co-expression networks are not directed, as co-expression
is a symmetric relationship.

• Gene Regulatory networks (GRNs) contain oriented edges that represent a
relationship of regulation between a regulator and its target.

To describe networks, topological properties are routinely used. The density of
biological networks is often low, which means that biological networks are sparse
[Leclerc, 2008; Koutrouli et al., 2020; Campos and Freyre-González, 2019; Hayes,
Sun, and Pržulj, 2013]. Network density is defined as E

Emax
, with E the number of

edges of the network, and Emax the maximal number of edges of a network with the
same nodes. For example, in a co-expression network with N nodes, Emax = N(N−1)

2 .
In an oriented regulatory network with T genes in total and R regulators, Emax =
R(T − 1). Well characterized networks, when investigated, reveal densities between
0.1 and 0.001, with density decreasing as the number of nodes increases [Campos
and Freyre-González, 2019; Hayes, Sun, and Pržulj, 2013]. Figure 1.7 shows this
trend with several networks taken from the literature or protein-protein interactions
in several organisms.

The degree distribution in biological networks is heavy-tailed, and has been
traditionally approximated by power-law distributions [Koutrouli et al., 2020]. Even
though the ubiquity of scale-freeness among real-world networks is under debate
[Broido and Clauset, 2019], the degree distribution of biological networks is usually
such that many nodes have a low degree, while rare genes have a high degree and
behave like hubs.
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FIGURE 1.7: Log10 of protein-protein interaction network densities as
reported in [Hayes, Sun, and Pržulj, 2013], depending on the number

of entities in the network. (Log10(0.1) = −1. Log10(0.001) = −3)

Finally, biological networks have the tendency of being globally sparse, but to
locally form tightly connected communities. This property can be measured via the
transitivity metric, also called clustering coefficient [Koutrouli et al., 2020].
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The network representation of a biological process offers great visualization pos-
sibilities. Software like Cytoscape or R packages like igraph or vizNetwork are great
tools to explore and interact with networks in different layouts. Networks can be the
foundation of biological discoveries. For example, topological communities can be
delimited and studied, to retrieve groups of entities sharing common neighbors and
biological roles. In co-expression networks and GRNs, gene communities are often
mined for functional enrichment, as co-expressed genes or groups of co-regulated
targets are likely involved in common pathways. Under this assumption, a GRN
was used to successfully predict the function of unknown TFs as related to ROS
signalling, based on their topological neighborhood [Clercq et al., 2021].

Networks are also often used to identify prevalent nodes, representing important
entities in a response. The study of network centralities suits this purpose, and
different types of centralities can be considered. Degree centrality of a node is the
most trivial centrality measure, defined as the number of connections made by that
node. Other centrality metrics can be used, for example eccentricity, which is the
longest path from the considered node to any other node, or betweenness, which is
the number of shortest paths in the network connecting all possible pairs of nodes
passing through the considered node. In several works in Arabidopsis thaliana, such
metrics calculated in inferred transcriptional networks were used to describe genes,
rank them by order of importance and put forward candidate genes [Cheng et al.,
2021; Araus et al., 2016; Clercq et al., 2021].

Main network reconstruction types The means of obtaining biological networks
can be very diverse. Two broad categories appear:

• Data extraction methods retrieve networks from existing knowledge. Text
mining algorithms and language processing can be used on literature articles
or research databases to summarise results from different sources and studies.
Their main disadvantage is their incapacity to discover new interactions.

• Statistical methods make use of experimental datasets, potentially combined
with prior knowledge, to infer biological networks. Statistical methods predict
networks from -omics data, a probabilistic model and an estimation method.
Their predictions remain to be further investigated and validated, but they
have the advantage to enable discoveries of previously unknown interactions.

What follows focuses on the category of statistical methods. Because the tran-
scriptional reprogramming of mineral nutrition pathways under eCO2 is unknown,
it can not be directly retrieved from existing literature and databases. Instead, it
needs to be statistically inferred from new experimental data, generated under
environmental conditions adapted to the question of interest.

1.3.2.3 Input data for GRN statistical inference

The type of network to be inferred conditions the choice of input data. For instance,
networks with the objective of modelling epigenetic relations will have to rely on
methylome data or chromatin conformation. Binding site networks modelling bind-
ing potential between TFs and their targets will be based on regulatory sequence in-
formation. Co-expression networks will be formed from expression data. In the con-
text of this project, the desired networks are GRNs, because they attempt to model
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causal links between regulators and target genes, and can be used to extract impor-
tant regulator genes in the eCO2 response. Consequently, we present the different
types of data that can be leveraged in the processes of GRN inference in Table 1.1. It
should be noted that the process of GRN inference goes beyond the estimation of the
network topology from the data, but also encompasses the steps of calibrating the
model parameters, and evaluating the inference performance: biological data can be
involved at any of these steps.

In addition to the data from Table 1.1, some community efforts like ATRM or
REMAP [Chèneby et al., 2019] gather information about gene regulation in the litera-
ture, and may contain data from RNA-Seq, ChIP-Seq, DAP-Seq, TARGET, TFBS mo-
tifs, but also a restricted number of more functionally characterized interactions. An-
other example of a recent database about regulation in plants is ConnecTF [Brooks
et al., 2020], that contains, for Arabidopsis, 26 ChIP-Seq experiments, 382 DAP-Seq
experiments, and the interactions from the TARGET assay applied to 33 N respon-
sive TFs identified in a dynamic study of N induction in Arabidopsis roots [Varala
et al., 2018; Brooks et al., 2019]. Such heterogeneous databases are crucial tools to
decipher gene regulation. Indeed, binding does not necessarily imply expression
modulation, and expression modulation does not necessarily imply binding: there
is a paradoxically low intersection of targets that are bound and that have their ex-
pression level altered by a TF [Alvarez et al., 2020]. Thus, the joint use of data relative
to expression changes and to the physical interactions between TFs and their targets
is of great interest to capture the complexity of GRNs.

In the following section, we detail some statistical GRN inference methods that
are based on expression data. Indeed, expression data has been historically the most
widespread type of data available genome-wide for GRN inference, from microar-
rays to, more recently, RNA-Seq. This explains the wide ecosystem of statistical
methods to infer GRN from expression only. Further in this work, the use of other
types of data in the course of inference validation, or for integrative GRN inference,
will be detailed.

1.3.2.4 GRN inference methods from expression data

The challenges of GRN inference The complexity of statistical GRN inference
from expression data mainly stems from:

• The curse of dimensionality. The complexity of a desired GRN is usually
larger in respect to available data to infer it. In fact, the order of magnitude of
the number of possible links in a GRN involving T genes will be T2. However,
the available expression data is an expression matrix of dimension T ∗ N, with
N the number of experimental samples. If T > N, which is almost always the
case, it follows that the the number of edge coefficients to infer is larger than
the total number of observations at one’s disposal, and the problem is said to
be underdetermined [De Smet and Marchal, 2010]. This means that distinct
candidate GRNs can explain the observed expression data equally well, and
that without additional heuristics and prior knowledge, it is impossible to dis-
criminate between them.

• The nature of expression data, that is likely to be noisy or subject to tech-
nical biases. In addition, there are hidden layers of regulation that are not
measured by transcriptomic datasets such as chromatin conformation, post-
transcriptional or post-translational changes. This makes it harder to predict

http://atrm.gao-lab.org/download.php
https://remap.univ-amu.fr/
https://connectf.org/


30 Chapter 1. Introduction

TABLE 1.1: Brief description of -omics data commonly used for GRN
inference in Arabidopsis thaliana, with their strengths and weaknesses.

Data Description Advantages Disadvantages

RNA-Seq
Genome-wide

transcript abundance
• Relatively low cost
• Whole transcriptome

• Can not distinguish
direct from indirect

regulations
• Does not report
regulatory events

ChIP-Seq

In vivo genome-wide
DNA binding sites
of TFs. The bound

DNA is coprecipitated,
purified, and
sequenced.

• Low technical biases
• Preserved cellular

context

• Expensive and
experimentally

challenging:
few TFs available
• No information

on expression

DAP-Seq

In vitro genome-wide
DNA binding sites
of TFs. The bound

DNA is coprecipitated,
purified, and
sequenced.

[O’Malley et al., 2016]

• Less costly than
ChIP-Seq: many

TFs available

• Loss of chromatin
context

• Specificity lower
than ChIP-Seq

• No information
on expression

TARGET

In vivo genome-wide
direct targets of TFs.

Expression changes are
measured after the

nuclear import of TFs.
The targets are direct

because of a translation
inhibitor

[Bargmann et al., 2013]

• Less costly than
ChIP-Seq: many

TFs available
• The effect of a
regulator on the

target’s expression
is captured.

Notable technical
biases:

• Done in protoplasts
• Nuclear import of

TFs too sudden
and abundant to be

realistic

TFBS motifs

Motif search
of TFs binding site in
the targets’ regulatory
sequences. Motifs can
be given in the form

of PWMs available in
databases like

JASPAR

• Very low cost
(in silico)

• The binding motif
of many TFs is

unknown
• False occurrences
during motif search
• No information

on expression

ATAC-Seq
Regions of open

chromatin, accessible
for regulation

• Restricts potential
target genes to
accessible ones

• Can uncover TF
footprints

• Expensive and
experimentally

challenging
• No information

on expression

accurate links between genes, especially if their relationship in the context of
regulation is not purely transcriptional [Banf and Rhee, 2017].

• The scarcity of validation data for GRN inference. True GRNs are not known,

https://jaspar.uio.no/
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they are at best partially mapped in certain specific conditions or model organ-
isms. This makes the use of supervised learning arduous, because supervised
models need to learn regulatory patterns from sufficiently large amounts of
known interactions. When regulatory interactions are documented, they are
usually also submitted to noise, condition specificity, or technical biases. Neg-
ative examples of regulation are also needed in supervised algorithms to learn
the features in the data that do not result in a regulatory link, but they are even
more challenging to exhibit with certainty as existing regulatory databases ex-
clusively contain links supporting regulation. Some examples of negative ex-
amples can be found in works like iGRN [Clercq et al., 2021]. Even when using
unsupervised algorithms, the scarcity of validation data complicates the tasks
of estimating the model parameters and validating the inferred GRNs. GRN
validation and available metrics are further discussed in section 1.3.2.5.

Overview of statistical approaches for GRN inference from expression data Many
literature reviews describe the vast landscape of network inference methods, detail-
ing and categorising most of the available computational and statistical approaches
[Banf and Rhee, 2017; Barbosa et al., 2018; Lecca, 2021; Mercatelli et al., 2020; Mochida
et al., 2018; Sanguinetti and Huynh-Thu, 2019]. The line between GRN and co-
expression network inference techniques can be blurry. In fact, GRN inference meth-
ods can be inspired from co-expression methods, and some co-expression techniques
are extended toward GRN inference when pruned for indirect interactions. For this
reason, a broad description of network inference methods from expression data is
given in the following lines, with their statistical formulation, advantages and draw-
backs.

1. Correlation and mutual information methods A first category of inference tech-
niques are relevance networks. They are based on similarity measures between the
expression profiles of genes, relying on correlation or information theory. Linear
correlation between the N expression values of gene 1 (vector Y1) and gene 2 (vector
Y2) is defined as:

ρ12 =
cov(Y1, Y2)

σ1.σ2

where cov(Y1, Y2) can be estimated by

Σy1∈Y1,y2∈Y2(y1 − µ1)(y2 − µ2)

N − 1

with µ1, µ2 the means of Y1 and Y2, and σ1, σ2 the standard deviations of Y1 and Y2.
The mutual information between genes 1 and 2 is defined, in the cases of discrete

data like counts, as:

I1,2 = Σy1∈Y1 Σy2∈Y2 p(y1, y2)log
( p(y1, y2)

p(y1)p(y2)

)

with p(y1, y2) the joint probability distribution of y1 ∈ Y1 and y2 ∈ Y2, and p(y1), p(y2)
are the marginal probability distributions of y1 ∈ Y1 and y2 ∈ Y2.

The core principle of correlation and mutual information methods is to quan-
tify the degree of joint evolution of the expression between all pairs of genes, and
then to select, on the basis of a threshold, the interactions of genes having the most
similar or anti-correlated expression profiles. A famous correlation-based method is
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WGCNA [Langfelder and Horvath, 2008], while well known information theoretic
approaches are ARACNE [Margolin et al., 2006] or CLR [Faith et al., 2007]. However,
the interactions predicted by such methods should be carefully interpreted because
two genes can have their expression correlated because they are under the control
of a common regulator, and thus end up linked in a relevance network, whereas it
is an indirect link. Even if methods like WGCNA, ARACNE, and CLR attempt to
prune indirect interactions by various strategies, the initial inference was still under
the assumption of symmetric undirected edges, which is closer to co-expression than
regulation and direct causation [Banf and Rhee, 2017; Sanguinetti and Huynh-Thu,
2019].

2. Partial Correlation methods An extension of correlation networks are networks
based on partial correlation, in the framework of Gaussian Graphical Models (GGMs).
Those techniques are able to infer the structure of gene networks by modelling their
conditional dependencies. In particular, GGMs are a sound statistical and computa-
tional framework designed to estimate the inverse of the variance-covariance matrix
Θ = Σ−1 of the genes, also called the precision matrix. Its dimension is T x T, with
T still the total number of genes. When Θ12 = 0, genes 1 and 2 are conditionally
independent given the T − 2 other genes under study, and they are consequently
not linked in the final network. This sparse precision matrix is usually estimated by
maximizing the likelihood under regularization constraints. To model count data,
that are not normally distributed, GGMs have been extended to Poisson Log Nor-
mal models and applied to RNA-Seq data for network inference [Choi et al., 2017].
They have also been extended to infer networks from multiple types of data [Chi-
quet, Rigaill, and Sundqvist, 2019]. A drawback of GGMs and extensions are the
challenge of the precision matrix estimation from highly correlated data and under
high dimensional settings, especially when scaling to large modern transcriptomic
data. In addition, GGMs rely on strong assumptions about the data distribution, the
relationship between genes are assumed to be linear and they only model undirected
symmetric interactions [Sanguinetti and Huynh-Thu, 2019].

3. Bayesian network approaches The definition of Bayesian networks relies on a
directed graph describing conditional dependencies. The probability of the entire
expression data can be decomposed as the product of the probability of observing
each gene conditionally on their parents in the graph:

P(Y1, Y2, ..., YG|G) = ΠG
g=1P(Yg|Parents(Yg,G))

This setting makes it easy to integrate prior knowledge about the links between
genes, and is also appealing to model causation. The exploration and evaluation
of different graph structures can be performed greedily by maximum likelihood ap-
proaches or by Markov Chains Monte Carlo sampling methods. This is however
an extensive search, that grows exponentially with the number of genes, and those
methods remain, even to date, difficult to scale to large datasets. In those models,
the interpretation of oriented edges has to be cautious as different graph structures
can represent the same set of conditional dependencies (if the graphs belong to the
same equivalence class) [Maathuis et al., 2018]. Another constraint is that Bayesian
methods require that the inferred graphs are directed and can not contain any loop
structures. This has been overcome with the Dynamic Bayesian Networks (DBNs)
introduced by [Friedman and Murphy, 1998; Murphy, Mian, et al., 1999] to model
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time series gene expression data, and allowing cycles and loops. In DBNs, the par-
ents of random variables are random variables at the previous time point. The fram-
ing of DBNs, allowing cycles, has facilitated their estimation because the conditional
probabilities could now be modeled separately by the statistical laws of choice. For
example, in the case of continuous normal variables, the parameters of a DBN model
can be estimated via linear or non-linear regression on the past expression of poten-
tial parents. This makes DBNs closely related to time-lagged regression, also called
auto-regressive models [Fujita et al., 2007; Michailidis and Buc, 2013], eventually
with a time-varying graph structure [Dondelinger, Lèbre, and Husmeier, 2013; Le-
bre et al., 2010; Kim, 2003]. DBN modelling and inference have also been extended
to model RNA-Seq data wuth a Negative Binomial distribution [Thorne, 2018] A
drawback is that DBNs can only be used when time data is available.

4. Boolean methods Boolean methods start by discretizing the expression values
as 0 or 1, standing for inactivated or activated states. With those binary values, a
model is constructed by finding one logical function per gene, depending on the bi-
nary values of other genes, or the same gene at other time points. A directed edge is
drawn from each variable used in the function toward the predicted gene. Boolean
networks permit the modelling of loops and provide very interpretable and predic-
tive networks, but discretizing expression values is very difficult because we don’t
known the threshold values for the activation of each genes, that can also depend
on the conditions. This is thus a strong limitation. They are also limited to small
datasets, as the number of nodes they model can not exceed a few tens, and can
suffer from structure incorrectness in benchmarks [Liang, Fuhrman, and Somogyi,
1998; Pušnik et al., 2022].

5. Regression methods The core principle of regression-based methods is that the
expression variations of regulator genes hold descriptive and predictive power over
the expression variations of their target genes. Regression methods thus often de-
compose the problem of learning a GRN into learning one regression function per
gene. Lets consider that the expression level of a target gene t form a response vari-
able noted Yt, and that the expression level of R potential regulator genes form the
predictive variables X = (X1, X2, ..., XR). The regression problem for the target gene
t is then framed as:

Yt = ft(X) + ϵt

with ϵt the model error. Regression based methods have predictive abilities, which
can be desirable: given the expression levels of regulator genes in new experimental
conditions, a regression model would be able to predict the expression of the target
in those new conditions. Besides, those methods are designed to model the relation-
ship between a target gene and R regulators.

Selecting influential regulators for a target gene comes down to a feature extrac-
tion problem: fitting ft enables the identification of the subset of regulators that are
sufficient to accurately explain the expression of Yt. These most influential regula-
tors, once determined, will be attributed outgoing edges toward the target in the
network. Methods based on regression mainly differ in their modelling choices for
the function ft, and in their way to perform feature selection based on ft. Two broad
categories of methods exist, based either on linear or non-linear choices.
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Firstly, linear regression techniques model the expression of a target gene yt,i in
the experimental condition i as a linear combination of the expression of the regula-
tors xr,i:

yt,i = βt,0 + ΣR
r=1βt,rxr,i + ϵt,i (1.1)

The coefficients βt,r quantify the influence of regulator r on the target gene t. It
is the conditional covariance between Yt and Xr given the other R − 1 regulators,
and divided by the variance of Rr. A direct link can be made with the framework
of Gaussian Graphical Models [Lauritzen, 1996], as βt,r can be expressed as the ratio
between two entries of the precision matrix Θ [Meinshausen and Bühlmann, 2006]:

βt,r = − θtr

θtt
. (1.2)

However, the number of regulators typically outnumbers the number of expres-
sion measures per gene. This high dimensional setting, combined with the objective
of modelling biological sparsity, mandates some form of regularization.

Regularization in high dimension are popularly performed via the LASSO, ridge,
or elastic-net operators. In the context of GRN inference, the LASSO (Least Absolute
Shrinkage and Selection Operator) is preferred as it attributes a coefficient of exactly
0 to uninformative variables, offering as a consequence sparser solutions. Under the
LASSO penalty, the coefficients in Equation 1.1 are estimated with two objectives:
minimizing the prediction error, and keeping the L1 norm of the vector of coefficients
smaller than a certain quantity. Formally, the estimated coefficients βt,r correspond
to:

argminβt

1
2N

ΣN
i=1(yt,i − ŷt,i)

2 + λΣR
r=1|βt,r|, (1.3)

with ŷt,i = βt,0 + ΣR
r=1(βt,rxr,i) and N the number of experimental conditions in

which gene expression was measured. Figure 1.8 graphically illustrates this con-
strained optimisation, and the sparsity enforced by the LASSO.

The LASSO has already been used successfully for GRN inference in methods
such as LASSO-StARS [Miraldi et al., 2019], a method that was included in the Infer-
elator [Skok-Gibbs et al., 2022], or other works [Qin et al., 2014]. Exploiting Equation
1.2, sparse linear regression with the LASSO has even been used in the context of in-
fering the precision matrix Θ of GGMs in the high dimensional setting, as a way
of selecting relevant neighboring nodes of each genes in the graph of conditional
dependencies [Meinshausen and Bühlmann, 2006]. Linear regression was also em-
ployed with another kind of feature selection: the TIGRESS method [Haury et al.,
2012] uses LARS [Efron et al., 2004], a kind of forward stepwise feature selection
closely related to the LASSO. Such regularization techniques are however vulner-
able to multi-colinearity: if several variables are highly correlated, the LASSO or
LARS approaches will become unstable and arbitrarily select one of the correlated
features with no guarantee about its relevance. Because such colinearity is to be
expected in large sets of potential regulator genes, this issue has been addressed
via Stability Selection [Meinshausen and Bühlmann, 2010] in TIGRESS and LASSO-
StARS. Stability Selection consists in running a large number of times an estimation
procedure and, at each run, re-sampling the samples and the variables. The results
are then aggregated into a more robust model for feature selection. In TIGRESS, the
influence of a regulator over a target gene is computed as its selection frequency in
a large number of LARS runs. In LASSO-StARS, Stability Selection is implemented
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FIGURE 1.8: Different choices of norm for regularisation illustrated
in a two dimensional space of coefficients. The optimal value of the
coefficients θopt without regularization would be found at the center
of the concentric ellipsoids. In the case of the L1 regularization (the
LASSO operator), θ1 is put to 0 to satisfy both the norm constraint
and the prediction error minimisation (left). L2 norm corresponds to
the ridge operator (center), and the combination of two norms is the
elastic-net operator (right). The shapes of the unit spheres of each
norm illustrates how the LASSO enforces more sparsity. Image source :

https://medium.com.

according to the StARS methods [Liu, Roeder, and Wasserman, 2010], to choose a
trade-off value of λ along the regularization path that provides both robustness in
the variable selection, and sparsity.

Linear modelling of gene expression regulation suffers from some limitations,
like:

• Linear regression makes assumptions about the normality of the data. When
normality assumptions are not met, the validity of linear regression models
can not be guaranteed. This usually forces practitioners to log-transform the
expression data before GRN inference, or to employ Generalized linear models
with a Poisson or Negative Binomial model.

• The interactions between regulators can not be modelled. As the regression
problem is already in a high dimensional settings, the addition of interaction
terms, increasing exponentially with the number of regulators, dramatically
aggravates this issue.

• The relation between the transcript levels of a regulator and the transcript lev-
els of its target is not necessarily linear: complex or non monotonous links,
as well as step functions can reasonably be expected under some scenarios of
regulation.

These arguments have motivated the choice of non linear functions for ft. En-
sembles of trees are the most popular option, and were first introduced with GENIE3
[Huynh-Thu et al., 2010]. In GENIE3, the expression of a target gene is linked to the
expression of the regulators via Random Forest (RF) regression. For each gene, a
regression tree is composed of test nodes. A test node is a decision rule that repre-
sents a condition on the expression level of a regulator. The succession of test nodes
is found by an iterative learning algorithm, testing all possible combinations of reg-
ulators and expression thresholds, and selecting the one that best discriminates the

https://miro.medium.com/max/788/1*q53XbAJdKv_l3sw-sUlCVA.png
https://miro.medium.com/max/788/1*q53XbAJdKv_l3sw-sUlCVA.png


36 Chapter 1. Introduction

expression values of the response variable. The leaves of the regression trees are
predictions of the expression of the target gene ŷt,i, computed as the mean of all
observations ending up in this leaf. Regression trees are more flexible than linear
regression because they do not make assumptions about data distribution, they can
model complex non linear relations between regulators and targets, and also take
into account interaction effects between regulators. Regression trees alone are how-
ever sensible to noise and over-fitting, so aggregating large numbers of trees into a
Random Forest allows more robust and generalizable results [Breiman et al., 2017].
Each tree of a RF is learned from a different bootstrapped set of experimental condi-
tions, and have also a restricted choice of regulators when learning each test nodes
(i.e usually drawn from a random set of only

√
R regulators), which increases diver-

sity between trees.

FIGURE 1.9: GRN inference process via Random Forests. The learn-
ing sample on the left is the basis for learning a RF in which test nodes
represent conditions on the expression of regulator genes, and predict
the expression of the target gene. This process is repeated for each tar-
get gene, for which the influence of the regulators are extracted, and

lead to a global ranking of regulatory interactions.

In the context of GRN inference, RFs are used to measure the influence of the
regulators for a target gene, by calculating their feature importance. Several types
of feature importance can then be extracted from RFs. GENIE3 uses node impurity
I(Nt), defined for a specific test node as:

I(Nt) = Nt,upstreamVar(Yt,upstream)− (Nt,leftVar(Yt,left) + Nt,rightVar(Yt,right))

with Yt,upstream, Yt,left and Yt,right the expression values of the target genes before the
test node, on the left downstream side of the test node, or on the right downstream
side of the test node. Their sizes are respectively Nt,upstream, Nt,t,left and Nt,right. Node
impurity is interpretable as the variance reduction in the response induced by the
split on a specific regulator. To get the importance of a regulator, the node impu-
rities of all test nodes concerning this regulator in a regression tree are summed,
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and then averaged across all trees in the Forest. This metric however gives a higher
importance to the regulators of genes with a large variance, so it requires the nor-
malization of the expression data so that genes have a unit variance.

Another importance metric is the relative Mean Decrease in Accuracy (MDA).
It is defined as the prediction deterioration when a regulator is randomized, as com-
pared to prediction error the original data. The prediction error of RF regression
is usually the Mean Squared Error (MSE) on Out Of Bag examples (OOB), i.e the
experimental conditions that were not sampled in the bootstrapped sets to fit the
trees.

MSEt =
1

NOOB
Σi∈OOB(yt,i − ŷt,i)

2

MDAt,r =
MSEt,r shuffled − MSEt

MSEt
∗ 100

The relative MDA metric, as defined in the above equation, has the advantage of
being computed on OOB, and is thus less sensible to overfitting, while not requiring
any prior data scaling.

To summarize, the inference procedure is as follows: one RF is learned for each
target gene, the influence of the regulators on each target are extracted from the
estimated RF, and a global ranking of all regulatory interactions is built (Figure 1.9).
This ranking of all possible pairs of regulators and target genes is made on the basis
of the chosen importance metric (Node impurity or relative MDA). To build a final
GRN, the strongest interactions can be selected. GRN inference via RFs was further
extended in the direction of temporal data with dynGENIE3 [Geurts et al., 2018],
Outpredict [Cirrone et al., 2020], or with other types of trees like Boosted Trees in
BTNET [Park et al., 2018]. Ensemble learning, and more broadly Machine Learning
(ML) has become a promising area for GRN inference, with the development of tools
unifying the use and benchmark of several ML algorithm like SVM, Boosting, RFs,
like proposed in GReNaDIne.

Finally, regression-based methods are related to other types of GRN inference,
namely temporal methods. The information of time is highly valuable in the context
of deciphering gene regulation, and can be used in mainly two contexts:

• Time-lagged models, in which the expression of the regulators in the time
point n is used to predict the expression of the target in the following time
point n + 1:

Yt,n+1 = ft(Xn) + ϵt

• Differential equation models, in which the rate of expression change of the
target gene is modelled as a function of the expression levels of the target gene
and of its potential regulators. If we note k the number of time units separating
times n and n + 1:

Yt,n+1 − Yt,n

k
= ft(Xn, Yt,n) + ϵt

In both cases of temporal schemes, ft can be determined through linear and non-
linear regression. A detailed description of temporal methods is, however, not in the
scope of this work.

https://hal.archives-ouvertes.fr/hal-02863880/document
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1.3.2.5 Evaluation of GRN inference methods

The output of GRN inference is a predictive model of gene regulation. In order to
assess to quality of predicted GRNs, several strategies have been implemented.

Experimental validation An option is to engage in wet-lab experiments to test pre-
dicted interactions between genes. For example, one could study the expression
levels of the predicted targets of a regulator in a knock-out mutant of this regula-
tor, in the environmental conditions used for network inference. Genes that have
their expression altered in the mutant genotype compared to the wild type could be
considered as the direct or indirect targets of the regulator. Other approaches like
TARGET could be set up in a lab to determine direct targets of a TF. In addition,
the generation of ChIP-Seq data for TFs of interest could be relevant to check that
a regulator binds to its targets in the predicted GRN. If they are performed in the
same environments and conditions than the transcriptomic data from network in-
ference, this is a direct and high quality way of validating a restricted number of
hypotheses derived from GRN models, like the transcriptional or phenotypic role
of candidate genes. However, a strong limitation is that experimental validations
are costly, time consuming, and could not be reasonably envisioned for the entire
set of inferred interactions of a GRN (possibly up to thousands of links). Generally,
experimental validations are only set up for genes of high interest, like candidate
genes with a central role in a GRN, but can not be sufficient to globally estimate the
performance of GRN inference. Instances of wet-lab analyses focused on candidate
regulators from GRN can be seen in several works in Arabidopsis, mostly relying on
candidate mutant phenotyping [Araus et al., 2016; Cheng et al., 2021; Clercq et al.,
2021]. These concrete examples illustrate that GRN models are an efficient way of
identifying important genes in a response.

Evaluation of inference based on external regulation databases Because of the
cost of new experiments, GRN quality is commonly estimated using readily avail-
able external data relative to regulation. Depending on the organisms under study,
the extent of available data varies a lot. In Arabidopsis thaliana, several types of omics
data are generally used, such as physical contact between TFs and DNA regions pro-
vided in vivo by ChIP-Seq or in vitro by DAP-Seq. Assays like TARGET [Bargmann
et al., 2013], were also more recently brought to a medium throughput and represent
a valuable resource. In addition, validation information can also be brought by com-
plementary information like scanning promoter regions for TFBSs. Complementary
sources of data that can be used, especially in Arabidopsis, are summarized in Table
1.1. Such external information sources relative to regulatory interactions will serve
as a reference goal for GRN evaluation, called gold standard.

The most common approach to validation is to see GRN inference as a binary
classification task predicting wether there is an interaction or not between two genes.
The predicted interactions are then compared to the gold standard. Metrics from sta-
tistical learning are used, namely true positives (the predicted interactions present
in the gold standard), false positives (the predicted interactions that are not in the
gold standard), true negatives (the interactions that are neither in the gold standard
nor in the predicted interactions), and false negatives (the interactions in the gold
standard but that were not predicted) [Schrynemackers, Küffner, and Geurts, 2013].

In machine learning, a common way to assesses classification performance is the
area under the ROC curve (AUC). The ROC curve is formed by true positive rates
and false positive rates for all possible network densities. However, GRN inference
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suffers from great class imbalance as there are far more nonexistent regulatory links
than existing ones. AUC was shown to be more sensible to class imbalance [Zhang
and Janssen, 2006], so the area under this precision-recall curve (AUPR) is now a
widely accepted metric for GRN evaluation [Banf and Rhee, 2017; Marbach et al.,
2012b].

In this case, precision and recall can be calculated. Precision measures how many
predicted interactions are accurate, while recall measures how many accurate inter-
actions are predicted:

Precision =
#True positives

#Predicted interactions
=

#True positives
#True positives + #False positives

Recall =
#True positives

#Gold standard interactions
=

#True positives
#True positives + #False negatives

To globally assess model performance, precision and recall can be computed for
all possible density values, ranging from no edges to a fully connected GRN. This
is achieved by computing precision and recall for all possible thresholds determin-
ing the prediction of an interaction or not, from the most stringent threshold to no
threshold at all. This forms the precision-recall curve (AUPR). The performance cri-
teria is then the area under such a curve.

Several community efforts have been led to compare and evaluate the ecosys-
tem of existing GRN inference methods, and employed AUPR. The most prominent
and cited one is the Dialogue on Reverse Engineering Assessment and Methods
(DREAM) initiative [Marbach et al., 2012b]. In this study, the accuracy of a broad
panel of inference methods was measured, from Escherichia coli, Saccharomyces cere-
visiae, and in silico microarray data. Gold standards were taken from RegulonDB for
E. coli, and from ChIP-binding data, conserved TF motives, or systematic transcrip-
tion factor deletions. The main findings of the benchmarks in DREAM were that no
method had a clear advantage over all others and on all datasets, and that there was
a lot of room for improving inference performance. The benchmark gave however
an advantage to GENIE3, as it shows an overall score higher than other methods
in Figure 1.10. Among linear regression techniques, TIGRESS was the overall best
performer.

Still, several drawbacks of this kind of evaluation can be exhibited and greatly
challenge GRN validation:

• Validation data is scarce. Binding experiments or regulation assays like TAR-
GET are performed on one TF at a time, and are costly. Functionally studied
and characterized interactions in the literature are even rarer. This results in a
relatively small fraction of predicted interactions involving TFs that were pre-
viously studied and for which gold standard information is available. The pre-
cision and recall can thus by estimated using a restricted subset of predicted
interaction, which is likely to increase chances of bias and reduce the confi-
dence attributed to the value of AUPR [Banf and Rhee, 2017]. This makes the
task of comparing models based on AUPR even more difficult.

• All omics datasets are a specific molecular snapshot of regulation, are thus lim-
ited to certain mechanisms, conditions, tissues, regulators, or may have tech-
nical biases. In vitro techniques like DAP-Seq are for instance, likely to miss
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FIGURE 1.10: Benchmark results from the DREAM challenge. Each
number represents a competing method, evaluated by the Area Un-
der the Precision-Recall curve on two datasets, and their overall score.
The previously described TIGRESS and GENIE3 methods are high-
lighted. Colors represent categories of methods based on their core

statistical framework [Marbach et al., 2012b]

relevant information about the cellular context. ChIP-Seq experiments have
the advantage of taking into account chromatin state, TFs combinatorics in a
specific cellular environment. However, the targets of a regulator based on
ChIP-Seq are dependent on the environment, and the condition-specific reg-
ulations predicted in GRNs can only be validated by ChIP-Seq experiments
performed under similar conditions. These series of imperfections cause gold
standard based on such data to be partly inaccurate, and contain themselves
false negatives and false positives. To address this, validation efforts are based
on simulated gold standards [Seçilmiş, Hillerton, and Sonnhammer, 2022; Bel-
lot et al., 2015], but this approach is reliant on our ability to generate realistic
gene expression data, which is debatable.

Evaluation of GRN properties Because of the imperfection of GRN inference val-
idation based on an experimental gold standard, a quality criteria can also be the
biological relevance of GRN structure [Banf and Rhee, 2017]. For example, inferred
GRNs can be compared to what is currently known about biological networks, like
the fact that they are sparse and form highly modular structure with genes commu-
nities and hubs. Such characteristics can be quantitatively measured and combined
for a complementary assessment of GRN inference. The biological relevance of in-
ferred interactions based on prior knowledge about genes has also been applied: for
example we can increase our confidence that an inferred network is accurate if co-
regulated genes share common functions and use this a validation criteria [Marbach
et al., 2012a]. Finally, certain categories of GRN inference methods are predictive,
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like regression-based methods. This makes it possible to evaluate their performance
in predicting the expression levels of target genes on experimental conditions not
seen in GRN model training. This is for example the case in the benchmark of Out-
Predict, in which prediction error, the mean square error (MSE), serves as a com-
parative indicator between competing algorithms [Cirrone et al., 2020].
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1.3.2.6 Summary of statistical contributions to GRN inference

In this manuscript, we use the term "GRN" in a narrower sense than the definition
given in section 1.3.2.2. The broad definition of a GRN allows all genes to be con-
sidered as potential regulators and act upon the expression of other genes. In this
sense, the number of candidate regulators R is equal to the total number of genes
T. In this work (and as done by others), we narrow down this definition by re-
stricting the set of candidate regulators to genes annotated as transcriptional reg-
ulators. This is done by making use of existing knowledge in Arabidopsis thaliana,
where a significant number of regulators has been identified. This setting where
R < T has two advantages:

1. It alleviates the problem of high dimension

2. It provides interpretations closer to causality by reducing the chances of
obtaining edges from co-expression rather than regulation

In light of the current state of the art, we made the decision to explore regression-
based techniques for GRN inference. Indeed, such methods are easily scalable,
multivariate, and describe regulation in a formulation oriented toward causality.
They have proven in benchmarks that, even though their performance was lim-
ited, it exceeded the performance of other statistical approaches [Marbach et al.,
2012b], especially in the case of ensemble of trees like GENIE3 [Huynh-Thu et al.,
2010].

However, regression-based methods suffer from some limitations. For exam-
ple, the extraction of regulatory influences from regression models provides a
fully connected weighted GRN, but the way to threshold this fully connected
GRN was not in the scope of GENIE3’s original publication, and there is to date,
no consensus on how to optimally obtain a sparse GRN. Given this improvement
potential, we propose in Publication #2 to refine GENIE3 inference by assessing
the statistical significance of predicted interactions, and benchmark the precision
gain of this procedure on experimental gold standards.

In addition, regression based methods suffer from the curse of dimensional-
ity, colinearity, and their performance could be limited by their exclusive use of
transcriptomic data. For these reasons, leveraging other types of omics not only
for model evaluation, but for model training as well, is considered in this work.
Publication #4 provides an overview of existing solutions for data integration in
regression-based inference while improving and exploring two popular types of
regression models for GRN inference in a context of TFBS and expression integra-
tion. Those integrative regression approaches are compared based on precision
and recall, prediction error, and biological relevance.

1.3.3 Genome Wide Association studies (GWAs)

In the previous sections, we describe the identification of candidate genes based
on GRN inference in a reference genotype responding to the environment. Instead,
important genes in a given response can also be discovered based on the natural
variation found in genetically diverse populations of individuals.
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1.3.3.1 Leveraging natural variability to identify genes of interest

The principle of association studies is to make statistical associations between one
or several phenotypic traits, and the presence of genetic polymorphisms in large
group of individuals. In this context, if a polymorphism is statistically associated
to a phenotype, this locus and its close vicinity in the genome are potential causal
elements involved in the regulation of this trait, and deserve to be prioritized in
functional studies. Conducting a GWAs requires building up a large and diverse
dataset on two levels:

1. Phenotypic measures on each individual must be obtained, and the distribu-
tion of these quantitative phenotypes should demonstrate a sufficient amount
of variability to be further explored.

2. Genotype information must be available for each individual, and inform on
wether or not they possess genetic or epigenetic variants in a high-resolution
series of loci in the genome. The information of Single Nucleotide Polymor-
phisms (SNPs) is mostly used in GWAs.

1.3.3.2 Statistical methods for genotype-phenotype associations

GWAs modelling relies on a regression framework, in which the phenotypes of
the individuals are expressed as a function of their genetic polymorphisms. Tra-
ditional approaches employ linear additive models, while more recent approaches
can be based on non-linear regression and algorithms from the machine learning
field [Nicholls et al., 2020]. The linear multivariate approach would express the phe-
notype of individual i as

yi = β0 + ΣM
k=1βkXik + ϵi

with Xik the presence or absence of the SNP k in individual i, βk the coefficient en-
coding the effect of SNP k on the phenotype, M the total number of SNPs, and ϵi
a gaussian noise centered in 0. However, the ultra-high dimension of the problem
(M >> N, with N the number of individuals in the study) does not permit its res-
olution, and it has been current practice to apply regressions using each SNP sep-
arately as a descriptor of the phenotype. In this setting, another difficulty is that
association studies often include individuals from heterogeneous population back-
grounds. Individuals from a given sample, panel or cohort can be related to each
other through hidden relatedness, or originate from different populations, causing
sample stratification. Failing to account for population structure has been shown to
inflate test statistics in association studies and subsequently lead to spurious associa-
tions [Kang et al., 2010]. Although the true relatedness status between individuals is
not known, the high-density genomic data of the sample can be used as a basis to es-
timate it. Several solutions have been proposed, namely applying a genomic control
inflation factor [Devlin and Roeder, 1999], or using the first principal components
of a genomic PCA as covariates during regression. To date, a common and success-
ful strategy has been the Linear Mixed Model (LMM). LMMs are fit to the vector
of phenotypes Y for each marker separately, modelling the impact of the marker
as a fixed effect, and taking into account the polygenic effects of other SNPs via a
random effect, also named additive genetic variance component. Let’s consider the
LMM relative to the SNP k for the individual i :

yi = β0 + βkXik + ηi Var(ηi) ∝ σ2
a Φ + σ2

e I
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where , Φ is the N ∗ N matrix of genetic relatedness between the individuals, and I
is the identity matrix. Several solutions exist in order to calculate the kinship matrix
Φ, like for example Identity By State, Astle [Astle and Balding, 2009], or VanRaden
[VanRaden, 2008]. Once βk has been estimated, the null hypothesis βk = 0 is tested
and provides a p-value relative to the significance of the effect of the marker k on
Y. Using the estimates of σa and σe, an approximation of heritability can be given
by the value of σ2

a
σ2

a+σ2
e
. The Efficient Mixed Model Association (EMMA) was among

the first variant components models [Kang et al., 2008], and was later extended and
scaled-up for large datasets by implementations like EMMA-eXpedited (EMMAX)
[Kang et al., 2010].

Results from association studies are usually presented in the form of Manhattan
plots, showing a transformation of the p-values of each marker along their posi-
tion in the genome. Peaks in a Manhattan plot indicate candidate regions with a
strong link to the phenotype. Another common representation of GWAs results is
the quantile-quantile plot (qq-plot), that displays the quantiles of the p-values dis-
tribution from LMMs against the quantiles of the p-values expected by chance (i.e
there is no association between SNPs and the phenotype). Under proper modelling,
observed p-values should mainly match random p-values, except for a small num-
ber of true causal associations departing from the expected p-values.

1.3.3.3 Validation of candidate regions obtained by GWAs

Markers attributed low p-values by LMMs are then generally investigated to estab-
lish wether there is a true association, and uncover the cause and mechanisms un-
derlying this association. Firstly, the vicinity of candidate markers is to be explored
because of linkage disequilibrium. Linkage desequilibrium is the joint conservation
of alleles at different loci in the course of recombination. This causes polymorphisms
in proximity to be almost always observed together. It is thus required to investigate
direct regions in which polymorphisms are found, but also a broader window of the
size of linkage desequilibrium around those SNPs.

The interpretations and experimental validations to engage in will depend on
the location of the strongly associated SNPs.

• If an associated SNP is found in a promoter region, or in an intron, this SNP
could act as an expression variant. Such SNPs modulate the expression of sur-
rounding genes by affecting their translation. For instance, expression variants
can be found in TFBSs, and change the likelihood that a TF will bind the a reg-
ulatory region. In order to test the effect of expression variants, the expression
of their putative target genes can be measured in individuals possessing the
variant, and in individuals that do not.

• If an associated SNP is found in the coding region of a gene, it can result in
three types of mutation. Silent or synonymous mutations do not alter the
sequence of amino acids. Nonsense mutations stop the translation of the pro-
tein, which is truncated. Finally, missense mutations change the sequence of
the amino acids of the protein. Nonsense and missense variants can be vali-
dated by the study of mutant organisms in which the candidate gene has lost
its function. If the phenotype of such mutants differs from the wild type, the
candidate gene is very likely to play an important role in this trait.

Before initiating functional experiments, genetic validations can be made by al-
lele complementation showing that the trait of interest is restored by a mutation
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induced on a candidate causal variant. Once cases of expression variants or coding
sequence alterations have been established, the mechanisms by which the pheno-
type is altered by the candidate gene can be further studied and functionally char-
acterized by new experiments.

1.3.3.4 Summary of the statistical analysis for our GWAs

In light of the current state of the art, we made the decision to rely on existing
methods for our GWAs. We chose the modelling provided by LMMs to test asso-
ciations between polymorphisms and phenotypes while adjusting for population
structure.
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Chapter 2

Statistical inference of the Gene
Regulatory Networks in
Arabidopsis thaliana under
elevated CO2 combined to
nutritional limitations

2.1 Dashboard for the Inference and Analysis of Network
from Expression data (DIANE)

2.1.1 Preamble

Before interrogating genome-wide expression data and inferring a GRN to under-
stand the adaptation to eCO2 in Arabidopsis, we first reflected on the transcriptomic
analysis methods that would compose our pipeline. This reflection lead to the choice
of a precise set of tools, and two conclusions. First, many graphical user interfaces
conducting statistical analyses on transcriptomic data provide satisfactory methods
for common steps, but more advanced statistical procedures like co-expression clus-
tering and GRN inference were rarely included. Second, we chose the GRN inference
sofwtare GENIE3. However the regulatory ranking it returns does not directly form
a GRN and it has to be sparsified to build a final parsimonious GRN. As we detail in
the introduction of Publication #2, we found that few existing solutions were both
interpretable and practical enough in the general case. We thus developed an exten-
sion to GENIE3 that is based on permutation procedures to assess the significance
of regulatory interactions.

Motivated by reproducible statistical analyses, we shared our pipeline and ex-
tension for GRN inference, via a graphical user interface deployed online, that also
comes as an R package: the Dashboard for the Inference and Analysis of Network
from Expression data (DIANE).

2.1.2 Publication #2 (Published)

Note : This section has its own reference system. Citation numbers refer to bibliography items
included in the present article, and not at the end of the PhD manuscript. This manuscript
was published in BMC Genomics in May, 2021.

https://diane.bpmp.inrae.fr/
https://oceanecsn.github.io/DIANE/
https://oceanecsn.github.io/DIANE/
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Background
Analyzing gene expression to uncover regulatory
mechanisms
A multitude of regulatory pathways have evolved in liv-
ing organisms in order to properly orchestrate develop-
ment, or to adapt to environmental constraints. Much
of these regulatory pathways involve a reprogramming
of genome expression, which is essential to acquire a
cell identity corresponding to given internal and external
environments. To characterize these regulatory pathways,
and translate these changes in gene expression at the
genome-wide level, global transcriptome study under var-
ious species, tissues, cells and biological conditions has
become a fundamental and routinely performed experi-
ment for biologists. To do so, sequencing of RNA (RNA-
Seq) is now the most popular and exploited technique in
next-generation sequencing (NGS) methods, and under-
went a great expansion in the field functional genomics.
RNA-seq will generate fragments, or short reads, that
match to genes and quantitatively translate their level
of expression. Standard analysis pipelines and consen-
sus methodological frameworks have been established for
RNA-Seq. Following quality control of data, reads map-
ping to a reference genome, and quantification on fea-
tures of interest are performed, several major steps are
commonly found in RNA-Seq data analysis. They usually
consist in proper sample-wise normalization, identifica-
tion of differential gene expression, ontology enrichment
among sets of genes, clustering, co-expression studies or
regulatory pathways reconstruction.
However, these analysis procedures often require

important prior knowledge and skills in statistics and
computer programming. In addition, tools dedicated to
analysis, exploration, visualization and valorization of
RNA-Seq data are very often dispersed. Most of RNA-
Seq data are therefore not properly analyzed and exploited
at their highest potential, due to this lack of dedi-
cated tools that could be handled and used by (almost)
anyone.

Current tools for facilitating the exploitation of RNA-seq
data
Over the last few years, several tools have emerged to
ease the processing of RNA-Seq data analysis, by bring-
ing graphical interfaces to users with little programming
experience. Among those tools are DEBrowser [1], DEApp
[2], iGEAk [3], DEIVA [4], Shiny-Seq [5], IRIS-DEA [6],
iDEP [7], or TCC-GUI [8]. All of them propose normaliza-
tion and low count genes removal, exploratory transcrip-
tome visualizations such as Principal Component Analysis
(PCA), and per-sample count distributions plots. They
also provide functions for interactive Differential Expres-
sion Analysis (DEA) and corresponding visualizations
such as the MA-plot. Gene Ontology (GO) enrichment

analysis can be performed in those applications, apart
from IRIS-DEA, DEApp, and TCC-GUI.
However, when it comes to further advanced analy-

ses such as gene expression profiles clustering or net-
work reconstruction, solutions in those tools are either
absent, or sub-optimal in terms of statistical framework or
adequacy with certain biological questions. For instance,
most of those applications perform clustering using sim-
ilarity based methods such as k-means and hierarchical
clustering, requiring both the choice of metric and crite-
rion to be user-optimized, as well as the selection of the
number of clusters. Probabilistic models such as Mixture
Models are a great alternative [9–11], especially thanks
to their rigorous framework to determine the number of
clusters, but they are not represented in currently avail-
able tools.
Regarding Gene Regulatory Networks (GRN) inference,

only three of the applications cited above propose a solu-
tion. Two of them, iDEP and Shiny-Seq rely on the popu-
lar WGCNA framework (WeiGhted Correlation Network
Analysis) [12], which falls into the category of correlation
networks. This inference method have the disadvantage
of being very vulnerable to false positives as it easily cap-
tures indirect or spurious interactions. When the number
of samples in the experiment is low or moderate, high
correlations are often accidentally found [13]. Besides,
linear correlations like Pearson coefficient can miss com-
plex non-linear effects. Lastly, WGCNA addresses the
question of co-expression networks, more than GRN.
To infer GRN, which should link Transcription Factors
(TF) to target genes, iGEAK retrieves information from
external interaction databases and binding motives. This
allows to exploit valuable information, but makes this
step extremely dependent on already publicly available
datasets. An exhaustive comparison with respect to the
features and methods handled by the described interfaces
for RNA-Seq analysis is given in Fig. 1.
Other frameworks focus on gene network reconstruc-

tion and visualization only. For instance, the web server
GeNeCK [14] makes the combination of several proba-
bilistic inference strategies easily available, but there is no
possibility to select a subset of genes to be considered
as regulators during inference. The online tool ShinyBN
[15] performs Bayesian network inference and visualiza-
tion. This Bayesian approach is however prohibitive when
large scale datasets are involved. Lastly, neither ShinyBN
nor GeNecK allow for upstream analyses and exploration
of RNA-Seq expression data.
Consequently, efficient statistical and machine learning

approaches for GRN inference (like for instance GENIE3
[16], TIGRESS [17], or PLNModels [18], see [19] for a
review) are not available, to our knowledge, as a graphical
user interfaces allowing necessary upstrem operations like
normalization or DEA.
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DEBrowser iDEP Genavi iGEAK TCC-GUI ShinySeq IRIS-EDA DEApp DIANE
Normalisation-filtering

PCA-MDS

Distributions plot

Differential expression analysis

MA-volcano plots

GO enrichment analysis

Expression based gene clustering

Clusters advanced exploration

Network inference WGCNA binding databases WGCNA + binding

Network analysis and statistics

Module detection and analysis

Reports generation

WEB Deployment

Local use Not free

Sample homogeneity and exploration
Comparing transcriptomes Feature implemented

Clustering genes Feature implemented but room for improvment (insufficient tuning possibilities, sub-obtimal methodology)

Pathways reconstruction Feature is absent

Ease of use / reproducibility

Non parametric approaches: k-means, hierarchcal clustering on heatmaps. None or limited parametrization for models/number of clusters.

Fig. 1 Comparison of tools for facilitating the valorization of expression datasets. Eight interactive tools for analysis of count data from RNA-Seq are
presented here and compared in terms of features and methodological choices. The features included are the ones we believe are the expectation
from most users willing to exploit RNA-Seq experiments and understand regulatory mechanisms, and that we included to DIANE. Although not
reported here for clarity reasons, many compared tools had their own features and specificities of interest. For instance, IRIS-DEA handles single cell
RNA-Seq and facilitates GEO submission of the data, iDEP enables to build protein-protein interaction network and has an impressive organisms
database, while Shiny-Seq can summarise results directly into power point presentations

Besides, all of the cited applications are available as
online tools or as local packages with source code,
although the useful possibility to provide both solutions
simultaneously, in order to satisfy advanced users as much
as occasional ones, is not always available. It is also worth
noting that availability of organisms in current services
varies a lot. Some of them like iGEAK are restricted to
human or mouse only.

Proposed approach
In this article, we propose a new R-Shiny tool called
DIANE (Dashboard for the Inference and Analysis of
Networks from Expression data), both as an online appli-
cation and as a fully encoded R package. DIANE per-
forms gold-standard interactive operations on RNA-Seq
datasets, possibly multi-factorial, for any organism (nor-
malization, DEA, visualization, GO enrichment, data
exploration, etc.), while pushing further the clustering and
network inference possibilities for the community. Clus-
tering exploits Mixture Models including RNA-seq data
prior transformations [11] and GRN inference uses Ran-
dom Forests [16, 20], a non-parametric machine learning
method based on a collection of regression trees. In addi-
tion, a dedicated statistical approach, based on both the
biological networks sparsity and the estimation of empir-
ical p-values, is proposed for the selection of the edges.
Step-by-step reporting is included all along the analyses,
allowing reproducible and traceable experiments.
In order to illustrate the different features of DIANE, we

have used a recently published RNA-seq data set, describ-
ing the combinatorial effects of salt (S), osmotic (M), and

heat (H) stresses in the model plant Arabidopsis thaliana
[21]. RNA-seq were performed under single (H, S, M),
double (SM, SH, MH), and triple (SMH) combinations
of salt, osmotic, and heat stresses. In the course of our
paper, we will demonstrate that DIANE can be a simple
and straightforward tool to override common tools for
transcriptome analyses, and can easily and robustly lead
to GRN inference and to the identification of candidate
genes.

Implementation and results
DIANE is an R Shiny [22, 23] application available as an
online web service, as well as a package for local use. To
perform relevant bioinformatic and bio-statistical work,
different existing CRAN and Bioconductor packages as
well as novel functions are brought together. Its devel-
opment was carried out via the golem [24] framework,
allowing a modular and robust package-driven design for
complex production-grade Shiny applications. Each main
feature or analysis step is programmed as a shiny mod-
ule, making use of the appropriate server-side functions.
In the case of local use, those functions are exported by
the package so they can be called from any R script to be
part of an automated pipeline or more user-specific anal-
yses. We also provide a Dockerfile [25] and instructions
so that interested users can deploy DIANE to their own
team servers. Figure 2 presents the application work-
flow and main possibilities. The analysis steps in DIANE
are shown in a sequential order, from data import, pre-
preprocessing and exploration, to more advanced studies
such as co-expression or GRN inference.
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Fig. 2 DIANE’s workflow. The main steps of the pipeline available in the application -data import, normalization, exploration, differential expression
analyses, clustering, network inference- alongside with some chosen visual outputs

Data upload
Expression file and design
To benefit from the vast majority of DIANE’s features,
the only required input is an expression matrix, giving
the raw expression levels of genes for each biological
replicate across experimental samples. It is assumed that
this expression matrix file originates from a standard
bioinformatics pipeline applied to the raw RNA-Seq fastq
files. This typically consists in quality control followed by
reads mapping to the reference genome, and quantifica-
tion of the aligned reads on loci of interest.

Organism and gene annotation
Several model organisms are included in DIANE to allow
for a fast and effortless annotation and pathway analy-
sis. For now, automatically recognized model organisms
are Arabidopsis thaliana, Homo sapiens, Mus muscu-
lus, Drosophilia melanogaster, Ceanorhabditis elegans,

and Escherichia coli. DIANE takes advantage of the uni-
fied annotation data for those organisms offered by the
corresponding Bioconductor organisms database pack-
ages [26–31]. Other plant species are annotated such
as white lupin, and users can easily upload their cus-
tom files to describe any other organism whenever it is
needed or possible along the pipeline. Organism specific
information needed can be common gene names and
descriptions, gene - GO terms associations, or known
transcriptional regulators.

Normalization and low count genes removal
DIANE proposes several strategies of normalization to
account for uneven sequencing depth between samples.
One step normalization can be performed using either
the Trimmed Mean of M values method (TMM) [32] or
the median of ratios strategy from DESeq2 [33]. The TCC
package [34] also allows to perform a prior DEA to remove



Cassan et al. BMC Genomics          (2021) 22:387 Page 5 of 15

potential differentially expressed genes (DEG), and then
compute less biased normalization factors using one of the
previous methods. DIANE also includes a user-defined
threshold for low-abundance genes, which may reduce
the sensitivity of DEG detection in subsequent analyses
[35]. The effect of normalization and filtering threshold on
the count distributions can be interactively observed and
adjusted.

Exploratory analysis of RNA-seq data
PCA -MDS
Dimensionality reduction techniques are frequently
employed on normalized expression data to explore
how experimental factors drive gene expression, and to
estimate replicate homogeneity. In particular, the Multi-
Dimensional Scaling (MDS) plot takes samples in a high

dimensional space, and represents them as close in a two-
dimensional projection plane [36] depending on their
similarity. Principal Component Analysis (PCA) is also a
powerful examination of expression data. Through linear
algebra, new variables are built as a linear combination
of the initial samples, that condense and summarize gene
expression variation. By studying the contribution of the
samples to each of these new variables, the experimenter
can assess the impact of the experimental conditions on
gene expression. DIANE offers those two features on
expression data, where each gene is divided by its mean
expression to remove the bias of baseline expression
intensity.
As presented in Fig. 3a, we applied PCA to the nor-

malized transcriptomes after low gene counts removal.
No normalization was applied in DIANE as raw data
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Fig. 3 Normalization and exploration of RNA-seq dataset with DIANE. a PCA analysis for the normalized expression table. The experimental
conditions have for coordinates their contributions (correlations) to the first four principal components. The scree-plot shows, for each principal
component, the part of global variability explained. b Example of normalized gene expression levels across all seven perturbations and control. c
MA-plot for the DEG in response to a single heat stress. The x-axis is the average expression, and the y-axis is the LFC in expression between heat
stress and control. DEG with FDR < 0.05 and an absolute LFC > 2 appear in green. d Log normalized expression heatmap for the DEG under heat
across all perturbations and control
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was presented as Tags Per Millions. We found consis-
tent conclusions regarding how heat, salinity and osmotic
stresses affect gene expression. The first principal com-
ponent, clearly linked to high temperature, discriminates
the experimental conditions based on heat stress while
explaining 57% of the total gene expression variability.
The second principal component, to which mannitol-
perturbed conditions strongly contributes, accounts for
12% of gene expression variability. The effect of salinity is
more subtle and can be discerned in the third principal
component.

Normalized gene expression profiles
The "expression levels" tab of the application is a simple
exploratory visualization, that allows the user to observe
the normalized expression levels of a several genes of
interest, among the experimental conditions of its choice.
Each replicate is marked as different shapes. Besides
rapidly showing the behavior a desired gene, it can provide
valuable insights about a replicate being notably different
from the others.
Using this feature of DIANE, we represented in Fig. 3b

four genes showing different behaviors in response to the
combination of stresses, and illustrating the variation that
can be found among biological replicates.

Differential expression analysis
DEA in DIANE is carried out through the EdgeR frame-
work [37], which relies on Negative Binomial Modelling.
After gene dispersions are estimated, Generalized Linear
Models are fitted to explain the log average gene expres-
sions as a linear combination of experimental conditions.
The user can then set the desired contrasts to perform
statistical tests comparing experimental conditions. The
adjusted p-value (FDR) threshold and the minimal abso-
lute Log Fold Change (LFC) can both be adjusted on the
fly. A data table of DEG and their description is generated,
along with descriptive graphics such as MA-plot, volcano
plot, and interactive heat-map. The result DEG are stored
to be used as input genes for downstream studies, such as
GO enrichment analysis, clustering or GRN inference.
Figure 3c and d represent DEG under heat perturba-

tion. Selection criteria were adjusted p-values greater than
0.05, and an absolute log-fold-change over 2. The 561
up-regulated genes and 175 down-regulated genes are
indicated in green in the MA-plot, and correspond to the
rows of the heatmap. The high values of LFC for those
genes, along with their expression pattern in the heatmap
across all conditions confirm the strong impact of heat
stress on the plants transcriptome.
In the case where several DEA were performed, it might

be useful to compare the resulting lists of DEG. DIANE
can perform gene lists intersection, and provide visualiza-
tions through Venn diagrams, as well as the possibility to

download the list of the intersection. This feature is avail-
able for all genes, or specifically for up or down regulated
genes.

GO enrichment analysis
Among a list of DEG, it is of great interest to look
for enriched biological processes, molecular functions,
of cellular components. This functionality is brought
to DIANE by the clusterProfiler R package [38], that
employs Fischer-exact tests on hypergeometric distribu-
tion to determine which GO terms are significantly more
represented. Results can be obtained as a downloadable
data table, a dotplot of enriched GO terms with associ-
ated gene counts and p-values, or as en enrichment map
linking co-occurring GO terms.

Gene clustering
Method
In order to identify co-expressed genes among a list of
DEGs, DIANE enables gene expression profiles clustering
using the statistical framework for inferring mixture mod-
els through an Expectation-Maximisation (EM) algorithm
introduced by [9, 10].We chose to use the approach imple-
mented in the Bioconductor Coseq package [11]. Coseq
makes it possible to apply transformation to expression
values prior to fitting either Gaussian or Poisson multi-
variate distributions to gene clusters. A penalized model
selection criterion is then used to determine the best num-
ber of clusters in the data. With DIANE, users simply have
to select which DEG should be clustered among previ-
ously realized DEA, the experimental conditions to use for
clustering, as well as the range of number of clusters to
test.

Exploring the clusters
Once clustering was performed, a new tab enables a
detailed exploration of the created clusters. It includes
interactive profiles visualization, downloadable gene data
table, GO enrichment analysis. In addition, if the exper-
imental design file was uploaded, Poisson generalized
linear models are fitted to the chosen cluster in order to
characterize the effect of each factor on gene expression.
To validate and extend the work done around our

demonstration dataset, we performed clustering analy-
sis similarly to what was done in the original paper [21].
We considered all genes from the seven DEA computed
between control and perturbation treatments, with a 0.05
FDR threshold and an absolute LFC above 2.
Figure 4 presents the clusters of interest as given by the

Poisson Mixtures estimation. They provide a gene parti-
tioning representative of all behaviors in the dataset. In
particular, we found that the 3 biggest clusters (2, 3, 6)
were composed of heat responsive genes. Among those
clusters, statistically enriched GO terms are in majority
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Fig. 4 Clustering of combinatorial RNA-seq data with DIANE. Clusters of interest generated by Coseq in DIANE. Gene expression profiles are defined
as the normalized expression divided by the mean normalized expression across all conditions. Graphical results of ontology enrichment analysis
are presented for clusters 3 and 5. Highlighted ontologies are relevant categories in line with previously published findings [21]. Ontology
enrichment plots show detected GO terms (under 0.05 in Fischer’s exact tests), color-coded by their adjusted p-value, and shifted in the x-axis
depending on the number of genes matching this ontology

linked to heat and protein conformation. Indeed, proteins
misfolding and degradation are direct consequences of
high temperatures, thus requiring rapid expression repro-
gramming to ensure viable protein folding in topology
control [39]. Two enriched ontologies involved in rhyth-
mic and circadian processes also support evidence for
disrupted biological clock. Second, the cluster 5 brings
together genes up-regulated in all stress treatments, with
the highest induction being observed in the combination
of the three perturbations. Those genes, also noted in [21]
to exhibit a synergistic response to mannitol and salt, con-
tain three ontologies related to osmotic stress and water
deprivation. Lastly, cluster 4 corroborates the existence
of genes characterized by opposite reactions to osmotic

stress and heat. They are specifically induced in all manni-
tol perturbations, except under high temperature, where
they are strongly repressed.

Gene regulatory network inference
GRN inference is a major contribution of DIANE com-
pared to similar existing applications, the latter offering
either no possibility for such task, or either limited ones,
as described in the “Background” section.

Estimating regulatory weights
GRN inference aims to abstract transcriptional depen-
dencies between genes based on the observation of their
resulting expression patterns. Each gene is represented by
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a node in the network. The aim is to recover a weight
associated with each edge (i.e. pair of nodes). This is
a complex retro-engineering process, challenged by the
Curse of dimensionality. Many methods are available,
and can be divided into two main categories : statistical
and data-driven approaches [13]. Statistical strategies rely
on assumptions regarding the data distribution, whose
parameters are estimated by maximum-likelihood tech-
niques, often in the case of Bayesian [40] or Lasso infer-
ence [17, 41]. However, the underlying modelling assump-
tions may be inaccurate or difficult to verify in practice.
In the second category, the objective is to quantify inter-
action strengths between pairs of nodes directly from the
data. This is typically achieved by using similarity mea-
sures such as correlation [12], information theory metrics
[42, 43], or feature importances extracted from regres-
sion contexts [16]. This second category is less restrictive
in terms of hypothesis. However, once the inference is
performed, the problem of defining a threshold above
which an interaction will be part of the network is far
from easy.
There is a large variety of tools available for the task of

network inference. Many of them have been benchmarked
against one another at the occasion of the DREAM chal-
lenges [44, 45]. Those challenges aim at comparing state
of the art network inference methods on both simu-
lated and validated biological data. They provide per-
formance metrics for 27 methods based on regression
techniques, mutual information metrics, correlation or
Bayesian framework among other methods. The per-
formance metrics gathered by DREAM5 [45] (i.e Area
Under Precision and Recall curves or overall scores), as
well as more recent efforts to compare new methods on
those gold standards (i.e F-meausres, ROC curves) are
useful resources to help making a choice. For example,
existing methods to learn GRN structures are WGCNA
[12], ARACNE, CLR, TIGRESS, GENIE3 (see [45] for
an exhaustive and referenced list of methods), or also
SORDER [46] or CMI2NI [47].
In DIANE, the package chosen for GRN reconstruction

is GENIE3 [16], a machine learning procedure that was
among the best performers of the DREAM challenges.
GENIE3 uses Random Forests [20] which is a machine
learning method based on the inference of a collection
of regression trees. It has the advantage of being a non-
parametric procedure, requiring very few modelling or
biological priors, while being able to capture interactions
and high order combinatorics between regulators. After
having defined a set of regulators among the genes under
study, the regression framework allows to infer oriented
edges from regulators to targets. With GENIE3, for each
target gene, a Random Forest determines the predictive
power of each regulator on the target gene expression. The
regulatory interactions can then be thresholded accord-

ing to their importance, so that the strongest links are
kept to build a sparse final network. However, choosing
such a threshold is not trivial, left as an open question by
GENIE3’s authors and ever since.

Selectingmeaningful regulatory weights
Proposed approach To avoid the unsatisfying hard-
thresholding solution, some researchers make use of TF
binding experiments, TF-perturbation assays, or literature
data to select a threshold influence measure maximiz-
ing prediction precision [48–50]. Network backboning
[51, 52] and BRANE Cut [53] are mathematical frame-
works that try to extract an informative structure from
weighted fully connected networks, but they rely onmath-
ematical modelling and assumptions that we suppose
might be too strong or not valid in the precise case of gene
regulatory network topology. Feeling the lack of an appro-
priate model-agnostic strategy with no need for external
data, we conceived a method that provides a statistical
testing framework for weighted regulator-gene pairs. The
main steps of the method, as schematized in Fig. 5, are:
Inference of the importance values for all regulator-

target gene pairs using Random Forests according to
GENIE3’s strategy [16] on a chosen list of DEG as input.
Transcriptional regulators with a very high value of non
linear correlation (typically 0.9 or 0.95) can lead to spu-
rious or missed connections in the final network, and
cause robustness issues during the regression procedure.
DIANE allows to group them together and to consider
them as unique genes.
Selection of the strongest inferred regulatory influ-

ences. As biological networks are known for their pro-
nounced sparsity [54–56], testing all possible regulator-
target pairs would be of very little interest, as well as a
waste of computation time. We therefore create a first
graph, topologically consistent with biological network
density standards, which will be further refined by statis-
tical tests.
Empirical p-values are computed for the selected

regulatory weights. To assess weather the importance
value of a pair is significant or not, the rfPermute package
[57] fits Random Forests and repeatedly shuffles the target
gene expression profile so that the null distribution of each
regulator influence is estimated. Hence, the empirical
p-value of a regulator-gene pair is given by the extreme-
ness of its importance as compared to the estimated null
distribution. For a faster and more exploratory-oriented
network inference, it is possible to skip edges testing (this
step and the following).
FDR correction for multiple testing [58] is applied to

the p-values, and only the edges above an FDR threshold
are kept to form the final network. After edges statistical
testing, graphics that show the p-values distribution and
the final number of edges depending on the FDR choice



Cassan et al. BMC Genomics          (2021) 22:387 Page 9 of 15

Fig. 5 Statistical testing procedure for edges selection among weighted regulatory links. A first network is built from the influence measures
resulting from network inference, by choosing an appropriate network connectivity density. The statistical significance of all its edges is then
assessed by empirical tests based on permutation for Random Forest importance metrics

are displayed, providing the user with additional decision
guidance.
See Additional file 1 for more details on the statistical

procedure and implementation. Thanks to this procedure,
the main user-defined parameters are the network den-
sity prior to statistical tests, and the FDR cut-off. Together,
they bring much more biological meaning and decision
help than an arbitrary importance threshold.

Benchmark of the proposed approach We benchmark
this novel procedure designed to keep the most signif-
icant interactions from a complete GRN. As GENIE3’s
performance was already assessed in several comparative
studies, we focus here only on the edges testing strategy,
that we compare to a more naive approach, hard thresh-
olding. To do so, we applied our edges selection strat-
egy to GENIE3 edges ranking on two different datasets,
for which robust regulator-gene validation information is
available.
The first expression dataset is the RNA-Seq experiment

on Arabidopsis thaliana we present in this article. We
inferred a GRN of heat responsive genes in all experimen-
tal conditions (1497 genes from C versus H DEA, LFC
≥ 1.5, FDR ≤ 0.05, containing 118 regulators). To vali-
date the inferred connections, we made use of connecTF
[59], a recent database containing regulatory interactions
in Arabidopsis thaliana obtained from in vitro and in vivo
binding experiments, as well as in planta regulation exper-
iments. We specifically chose to use the interactions in

connecTF obtained from CHIP-Seq and TARGET exper-
iments that represent the most robust data in order to
validate connections.
The second dataset is an experiment on Escherichia

coli, generated by the authors of the "Large-Scale Map-
ping and Validation of Escherichia coli Transcriptional
Regulation from a Compendium of Expression Profiles"
[60]. We restricted ourselves to a subset of this com-
pendium of experimental conditions corresponding to a
single combinatorial experiment. In the latter, bacteria
were exposed to a control treatment or to norfloaxacin
for different amounts of time, for a total of 24 experimen-
tal conditions. The 4345 genes of the organism provided
in the dataset, containing 154 transcription factors, are
used for GRN inference followed by edges testing. In order
to validate the connections of the networks generated in
DIANE, we used RegulonDB [61], a database of regu-
latory interactions built from classic molecular biology
experiments andmore recently high throughput genomics
such as CHIP-Seq and gSELEX.
For each organism, we compared the validity of network

predictions between two strategies. The first one corre-
sponds to a network obtained by applying a hard threshold
to GENIE3’s weighted regulatory associations, to achieve a
desired network connectivity density. The second strategy
corresponds to that same network, but after removing the
edges deemed spurious by our empirical testing procedure
for edges selection. By doing so, we aim at determining
weather refining edges with our testing procedure leads to
networks of higher quality.
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The performance metric we chose to assess our
method’s performance is the precision. It is computed as
the fraction of edges in the final network that are present
in the set of validated interactions, among those for which
the regulator possesses validation information in the gold
standard (for example, not all regulators were studied in
CHIP-Seq nor TARGET experiments, thus are not present
in the validated pairs from connecTF).
To provide some parameter exploration, we compare

the two strategies for two different initial connectivity
densities, and three FDR thresholds to remove spuri-
ous interactions. For all the following benchmarks, we
used Random Forests made of 1000 trees, and grouped
regulators correlated over 90%, as discussed in the previ-
ous paragraph "Proposed approach". In order to evaluate
robustness while giving an overview of the variability
inherent to RandomForest inference and statistical testing
by permutations, we launched the two strategies 20 times

for each set of parameters and performed non parametric
tests for group mean comparisons.
The results are gathered in Fig. 6a and b. They

demonstrate that a significant increase of precision can
be achieved on both datasets when choosing stringent
adjusted p-values for edges removal, independently of
prior density. This finding supports that p-values obtained
from permutations on Random Forest importancemetrics
can allowmore confidence in the inferred edges than hard
thresholding GENIE3’s fully connected network. Figure 6a
and b also illustrate the order of magnitude of the number
of connections removed by the testing strategy.
After using our empirical testing procedure for edges

removal, we stored the number of remaining edges. We
then applied hard-thresholding to GENIE3’s ranking in
order to create networks containing those same num-
ber edges. We observed that the precision of such net-
works was not as high as with our empirical testing

A B

Fig. 6 Benchmark of the proposed testing method on the E. coli and A. thaliana datasets. Boxplots compare the distributions of precision between
hard-thresholding (green) and hard-thresholding followed by the removal of non significant edges as predicted by the testing procedure (purple).
The 20 replicates for each configuration provide an estimation of the precision dispersion caused by randomness in GENIE3 and testing by
permutations. For each organism, we investigate two appropriate connectivity densities, and three adjusted p-value thresholds (FDR). On the right
of the boxplots, the number of edges kept in the final network are displayed. P-values significance of non parametric mean comparisons between
the strategies are encoded as follows : 0 ≤***< 0.001 ≤**< 0.01 ≤*< 0.05 ≤ . < 0.1. The results demonstrate that the proposed testing strategy
offers a robust gain in precision when using a stringent adjusted p-value threshold for edges removal. a Results for the GRN inferred on E. coli genes,
validated on the regulonDB database. b Results for the GRN inferred on A. thaliana heat-responsive genes, validated on the connecTF database.
Additional metrics about the number of genes, interactions to test, and computation time on DIANE’s interface are shown
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procedure. This reveals that our adjusted p-values bring
more information than GENIE3’s ranking only, even with
a hard-thresholding resulting in the same number of final
interactions.
Figure 6b shows computation times required to perform

statistical testing on A. thaliana dataset, as permitted
by DIANE’s online interface. DIANE’s online version is
hosted on a Debian 9.13 server with a 256Go RAM, and
2 Intel(R) Xeon(R) Gold 6130 2.10GHz CPUs. The paral-
lel computing for online use allows up to 16 CPU cores
(computation time reported in Fig. 6b uses 16 cores).
Altogether, this benchmarking analysis demonstrates an

added-value in terms of network precision when edges
selection is performed on the basis of p-values rather than
by hard thresholding, for a limited time of computation.

Interactive network analysis and community discovery
The last tab of the application is dedicated to network
manipulation and exploration. An interactive view of the
network is proposed, showing connections between regu-
latory genes and their predicted targets. By clicking one of
the genes, its inward and outward interactions are shown,
as well as its annotation and expression profile across
samples.
Network-related statistics are automatically generated,

delivering topological insights on genes behaviors and
network structure. For instance, in and out degree distri-
bution are displayed, and genes can be ranked based on
their number of connections. This ranking might then be
used for further identification of hub genes and candi-
date key regulators in the response of interest. In addition,
DIANE extracts gene modules, making use of the Louvain
algorithm [62]. The experimenter is then free to visualize
the results in the network as color-coded communities,
while exploring module-specific expression profiles and
GO enrichment analyses. At last, it is possible to down-
load edges and node information as csv dataframes, to
be further investigated or opened in popular network
visualization tools such as Cytoscape.
We used the GRN features of DIANE in order to infer a

GRN of the response to heat under osmotic stress, envi-
ronmental conditions that plants are supposed to face
more frequently under climate change circumstances. The
input list of genes is obtained in DIANE, by calculating
DEG between simple osmotic stress and the double heat-
osmotic perturbation (M versus HM, FDR < 0.01, LFC
> 2). 640 DEG are detected, among which 363 are up-
regulated, 277 are down-regulated, and 45 are transcrip-
tional regulators. Regulators with Spearman correlations
over 90% in all available experimental conditions were
grouped before network inference, so that a total of 27 reg-
ulators are used as predictive variables during inference.
For GRN reconstruction, we used Random Forests com-
posed of 4000 trees. A prior network density of 0.03 was

defined to select the strongest edges for permutation test-
ing, and edges under a 0.01 FDR were kept in the final
network. This network, presented in Fig. 7a, is composed
of 289 nodes and 438 edges.
The M versus MH GRN provided by DIANE revealed

two interesting groups of regulators, acting as central
nodes in their topological modules, and being connected
to a large number of target genes.
The most connected regulator of the network is com-

posed by the WRKY47-WRKY8 grouping. Along with
other top-ranked WRKY transcription factors (WRKY30,
WRKY6, WRKY55), they belong to the topological
community of genes that exhibit antagonistic behavior
between heat and osmotic stress. The expression values
of WRKY8 and WRKY47 in the experiment are pre-
sented in Fig. 7b. As already pointed out by our clus-
tering analysis in Fig. 4, those genes undergo a strong
induction after mannitol treatment while being repressed
by all high temperature conditions. This behavior can
also be observed in the intra-module expression pro-
files in Fig. 7c. Such a module is of high biological
interest, as these opposite interactions between drought
and high temperature might explain the increased dam-
ages observed in the combination of those perturbations
[21], and help to understand how heat can suppress the
adaptive response of plants to water deficit. Given that
WRKY47 and WRKY8 act as a hub in the inferred net-
work, they would be a relevant choice of candidates for
experimental pathway validation. Interestingly, WRKY47
has already been identified in rice as a positive regula-
tor of the response to drought [63], strongly reinforcing
the validity of the candidate genes from GRN inference in
DIANE.
The second most connected node is formed by the

regulators TRFL3-AT5G57150-PRR3-BBX8-PIL2-BT1-
DREB2B-FRG5-ASY1-ARR15. Those genes, sharing
highly correlated profiles across the 24 experimental
samples, respond to heat in a clear manner, as well as the
other genes inside their community as shown in Fig. 7c. It
is worthy to note that PIL2 is a member of a transcription
factor family known to be involved in the response to
temperature [64] and that DREB2B is a regulator already
characterized to act at the interaction between drought
and heat stress [65]. The other mentioned regulators
offer thus promising leads to be further explored. Three
members of the Heat Stress Transcription Factor family
(HSFA2 grouped with HSFB2B, and HSFA3) are also
found within the genes of the module.
Inside each module, both correlated and anti-correlated

expression patterns coexist, which can indicate negative
regulation between their gene members. Such opposite
variations are captured by the Random Forest algorithm,
and allow to go beyond co-expression analysis provided by
a clustering approach alone.
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Fig. 7 Network inference and exploration with DIANE. a GRN on M versus MH DEG using DIANE’s method for GNR inference, and the corresponding
degree-based ranking of the nodes. The 11 most connected nodes are presented by order of importance. The regulators mentioned in the network
analysis are pointed out by an arrow, the color of the arrow depending on the topological cluster. b Expression profiles for WRKY47 and WRKY8,
representing the most connected node of the network. c Topological modules containing the two most connected groups of regulators are
highlighted, juxtaposed to their genes expression profiles

Research reproducibility
For each step of the pipeline, automatically generated
reports can be downloaded, rendered on the fly in RMark-
down. They store the users settings, chosen strategies,
and display previews of the results. In that way, analy-
sis can be re-run, shared across users, and their settings
can be backed-up. The chosen format for those reports
is HTML, as it keeps a possibility to interact with data
tables, or even manipulate network objects outside of the
application. Additional file 2 is an example of report as
generated for the network inference described in previous
section. Besides, a seed can be set as a global setting of the
application, to ensure reproducible runs of the pipeline
steps making use of randomness.
Accessibility
DIANE is a tool designed to be as accessible as possi-

ble. However, it can be challenging for users with little
programming and command line experience to process
raw RNA-Seq data into the expression matrix needed in
DIANE. Services such as quality control, read mapping
and quantification require to handle large files transfers
and intensive computations, which are much less easily
set up on online applications. However, local programs
such as the Tuxedo suite [66], RMTA [67] or GenePattern
[68] represent well documented and adequate solutions to
most users in order to produce the expression matrices
required in DIANE.

Conclusions
To summarise this work, we presented an online graphi-
cal user interface to easily conduct in-depth analyses on
gene expression data from multi-factorial experiments,
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including gene expression profile clustering and GRN
inference. It can be downloaded and installed seamlessly
as any R package to run the pipeline locally or from
R scripts. Given that all other graphical interface tools
found in the literature are (i) more oriented toward co-
expression rather than regulation and (ii) do not provide
recent advanced methodological frameworks for pathway
reconstruction, our application positions itself as a tool of
first choice to explore regulatory mechanisms.
The demonstration of DIANE on its companion dataset

allowed to better understand the effect of combined
heat, osmotic and salinity perturbations on Arabidopsis
thaliana, consistently with the original analysis [21]. Sim-
ilar patterns in gene behaviors were highlighted, such as
the predominant influence of heat, and its aggravating
effect when combined to dehydration. Moreover, DIANE
provided new leads through its network inference features
: key genes involved in the response to high temperature
under drought were pointed out to be promising can-
didate regulators for improving crops resistance to arid
conditions and climate change.
In terms of computational cost, the final step of DIANE’s

pipeline, i.e. the statistical testing of TF-target edges,
could be improved. The R implementations of Random
forests and permutations in rfPermute are currently being
used, but a C++ version could be envisioned to shorten the
method’s execution time. Besides, the inference method
itself could be subject to improvement in the future.
First, combining the results of several inference methods
has proven to be as a robust and powerful approach on
validated datasets [45, 52]. Second, our strategy is par-
ticularly well-suited for multi-factorial and perturbation
designs, but is not optimal for time series RNA-Seq. Other
inference methods specific to time series RNA-Seq data
[69] could be available in DIANE, to bring closer to causal-
ity in the inferred transcriptionnal interactions. Lastly,
it would be valuable to add further functional features
in DIANE, notably in order to integrate external infor-
mation, such as interaction databases, or data from TF
binding or chromatin accessibility experiments.
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Random Forests inference
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1 Statistical procedure

To assess weather an importance value is significant or not, the rfPermute

package [1] fits Random Forests and repeatedly shuffles the target gene expres-
sion profile so that the null distribution of each regulator influence is estimated.
Hence, the empirical p-value of a regulator-gene pair is given by the extremeness
of its importance as compared to the estimated null distribution.

As biological networks are known for their pronounced sparsity [2, 3, 4],
testing all possible regulator-target pairs would be of very little interest, as
well as a waste of computation time. Besides, our preliminary analysis showed
that corrections for multiple testing were made unreasonably conservative by
the very large number of edges. We therefore propose to create a first graph,
topologically consistent with biological network standards, which will be further
refined by statistical testing.

More precisely, the steps of the method are :

1. Inference of the importance values for all regulator-target gene
pairs using GENIE3. The importance metric returned by GENIE3’s
Random Forests is the total decrease in node impurities from splitting
on the variable, averaged over all trees [5]. It requires the target gene
expressions to be normalized to a unit variance, so that their regulatory
importance measures can be compared without bias. In the GENIE3
framework, it was shown faster and equivalent to another importance met-
ric, the prediction error on the out-of-bag permuted data. Although both
can be used for this step, we recommend the use of the second one for
consistency reasons regarding the third step.

2. Selection of the number E of edges based on the inferred reg-
ulatory ranking. The value of E is such as it gives a superior limit to
the network density. The total number of possible edges in an oriented
regulatory network being Emax = Nregulators(Ngenes−1), and the density
being defined as d = E

Emax
, we deduce E = dNregulators(Ngenes − 1).

1



Studies such as [4] on state of the art protein-protein interaction struc-
ture found that the typical values of density in biological networks lie
approximately between 0.1 and 0.001, guiding the user’s choice for this
parameter.

3. Empirical p-values are computed for the selected regulatory weights
with the rfPermute package. For each gene involved in the selected edges,
Random Forests are fitted using its connected regulators as variables, as
defined in the network resulting from the first step. The response vari-
able is permuted nShuffle times to build the null distributions. The
empirical p-value for an edge is consequently the proportion of the null
importance values above the observed importance. We propose a default
value nShuffle = 1000, but it can be increased for more precise p-value
estimations. The importance metric to use in the Random Forests for this
step is the prediction error on Out-of-bag examples. Indeed, we observed
(data not shown) that, unlike the node impurity measure, prediction error
on OOB examples was robust to the reduced number of regulators caused
by the selection of E edges only and to over-fitting as well. Moreover, it
does not require any expression normalisation, as it is already dealt with
within the metric definition.

4. FDR adjustment [6] for multiple testing is applied to the set of p-values.

5. Only the edges above a certain FDR threshold are kept to be part
of the final network.

In brief, the main user-defined parameters are the estimated network density,
and the FDR cut-off. Together, they bring much more biological meaning and
decision help than an arbitrary importance threshold.

2 Implementation

For the implementation of this method for edges selection, the source code
of GENIE3 was modified in order to use the R implementation for Random
Forests and allow to change the importance metric. The testing procedure was
implemented in a function that benefits from CPU multi-threading to reduce
computation time, but it stays the more time consuming step. Graphics that
show the p-values distribution and the final number of edges depending on the
FDR choice are displayed, providing the user with additional decision guidance.

The method is embedded in DIANE, available either through its user inter-
face, or via functions to run from R scripts, as detailed in the package vignette.
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Chapter 2. Statistical inference of the Gene Regulatory Networks in Arabidopsis

thaliana under elevated CO2 combined to nutritional limitations

2.1.3 Afterword

More than a year after the publication of DIANE, its use in the research community
can be debriefed. DIANE has been updated several times in order to add a few func-
tional or ergonomic features. It was also updated in order to comply with the new
versions of base R and of the packages it depends on, but also after the reports of mi-
nor bugs from several users. DIANE received external code contributions and was
added to online portals from SouthGreen like the Rice Genome Hub or the Banana
Genome Hub. It has also been used in teaching for plant biology students and in
research formations.

An internal tool we developed allows to visualize the logs of the online use of
DIANE. It discloses that since its publication in May 2021, it has been increasingly
used. In octobre 2022, between 80 and 100 connections are reported weekly. Some
features are also more commonly used than others: pre-processing steps and differ-
ential expression are almost always used, while tasks in the end of the pipeline like
the statistical testing of inferred edges or GO enrichments in GRN modules are less
frequent.

FIGURE 2.1: DIANE online usage from its initial web deployment
before publication in 2020, until the 8th of october, 2022. The first
subplot displays the number of connections opened on a weekly ba-
sis. The second subplot shows the use of the different analyses pro-
posed in DIANE along time, where a dot is present if the feature was

used at least once in the considered week.

https://github.com/OceaneCsn/DIANE/pulls?q=is%3Apr
https://rice-genome-hub.southgreen.fr/
https://banana-genome-hub.southgreen.fr/
https://banana-genome-hub.southgreen.fr/
https://github.com/OceaneCsn/Network_inference_practical_session
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2.2 An inferred GRN identifies candidate genes in the root
response to elevated CO2 under limiting nitrate

2.2.1 Preamble

As presented in the introduction Publication #1, the deleterious impact of eCO2 in
C3 plants is linked to mineral nutrition in several ways. Firstly, mineral nutrition ap-
pears to be negatively altered, as the composition of the plant leaves declines under
eCO2 with N being especially affected [Loladze, 2014]. Our review puts forward the
potential existence of transcriptional networks in the plant roots governing nitrate
acquisition and metabolism genes, but such networks were not studied in whole
transcriptomes yet. Second, the effect of eCO2 on biomass gain and shoot compo-
sition depends on the nutritional status of the plant. For instance, those pheno-
typic responses seem to be modulated by the quantity of nutrients brought to the
plant during its growth, or the form of those nutrients. It is thus of great interest to
study the effect of eCO2 in combination with different nutritional conditions for the
plant. This motivated the design of a combinatorial transcriptomic dataset to eluci-
date eCO2 response under sufficient and low supply of two main nutrients for the
plant: nitrate and iron (Fe).

Because we use our combinatorial transcriptomic dataset to test the hypothesis
of N acquisition pathway alteration by eCO2, this preamble starts by establishing
some background knowledge about N nutrition in Arabidopsis thaliana, and the
key genes it involves. The macronutrient N is essential to plant growth and func-
tion, as it is a component of amino acids, proteins, nucleic acids and chlorophyll. It
can represent more than 5% of the dry mass of some plant tissue. With the exception
of atmospheric N2 fixation cases by symbiotic bacteria, N is predominantly acquired
by plant roots directly from the soil environment. In soils, N is mainly available to
the roots in the form of nitrate (the NO−

3 molecule). Even in fertilized soils where N
can be brought in the form of NH+

4 , this ion is rapidly turned into nitrate by bacterial
activity. Nitrate nutrition in Arabidopsis thaliana can be broken down into three major
categories :

• Nitrate uptake. Nitrate is absorbed in roots by multigenic families of trans-
porters. In particular, root nitrate transporters belong to the NRT1 (Nitrate
Root Transporter 1) or NRT2 (Nitrate Root Transporter 2) families, later re-
named NRT1/NPF. Depending on the external nitrate concentration, two sep-
arate classes of transporters are active [Bellegarde, Gojon, and Martin, 2017;
Crawford and Glass, 1998; O'Brien et al., 2016]. From 0.2 to 0.5 mM of NO−

3 ,
high-affinity transporters like NRT2.1, NRT2.2 or NRT1.1 are involved, while
the even higher affinity transporters NRT2.4 and NRT2.5 come into play un-
der starvation conditions. Some transporters may work with co-factors, like
NRT2.1 with NAR2.1. In contrast, under higher nitrate concentrations ( > 1
mM) low affinity transporters carry nitrate into the root cells, like NRT1.1. In-
terestingly, NRT1.1 belongs to both high and low affinity systems [Maghiaoui,
Gojon, and Bach, 2020].

• Nitrate assimilation. Once absorbed by the roots, nitrate either stays in the
roots or is transported to the foliar tissues in the xylem. At this step, the Nitrate
Reductase (NR) and its two isoforms NIA1 and NIA2 reduce NO−

3 into NO−
2 .

Then the NIR enzyme uses NO−
2 to produce NH4+4 [Vidal et al., 2020], which

can be assimilated in the course of amino acids synthesis by the Glutamine
Synthetase pathway.
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• Nitrate signalling. As N availability in natural conditions displays strong spa-
tial and temporal heterogeneity, plants have evolved mechanisms to locally
and systemically tune the rate of N acquisition and assimilation. As a conse-
quence, environmental conditions and the plant internal N status can both trig-
ger signals controlling nitrate transport and metabolism [Bellegarde, Gojon,
and Martin, 2017; O'Brien et al., 2016; Vidal et al., 2020]. Not only phosphory-
lation and calcium-modulated signals were observed [O'Brien et al., 2016], but
transcriptional regulations have been extensively documented as well. Tran-
scription factors from the TGA [Alvarez et al., 2014] and NLP [Marchive et
al., 2013] families were shown to enhance the expression of several nitrate
transporters along with NIA1, NIA2 and NIR, while TFs of the LBD family,
namely LBD37/LBD38/LBD39, are known to repress those genes [Rubin et
al., 2009]. Other instances of negative regulators are HRS1 and its homologs
HHO1/HHO2/HHO3, that were identified as repressing the expression of ni-
trate transport genes NRT2.1, NRT2.4 et NRT1.1 [Kiba et al., 2018; Safi et al.,
2021]. Finally, BT1/BT2 also act as repressors of Nitrogen use efficiency genes
[Araus et al., 2016], although they are not transcription factors but E3 ligases.
The existence of systemic, long distance signals to regulate nitrate nutrition
was also linked to mobile peptids from the CEP family. For example, low
nitrate conditions in the roots can be signalled to shoot tissues by such pep-
tids transported in the xylem, and shoot-to-root signals can be sent back by
CEPD peptids of the glutaredoxin family to induce the expression of NRT2.1
and NRT1.1 [ohkubo2017shoot; Ota et al., 2020].

In Publication #3, we study the behavior of key nitrate and iron nutrition genes
in plants grown under eCO2. We apply the statistical pipeline and methodology
provided by DIANE [Cassan, Lèbre, and Martin, 2021] (Publication #2) to infer the
root transcriptomic response to eCO2 combined with low nitrate conditions, in order
to identify candidate genes controlling this response.

2.2.2 Publication #3 (Published)

Note : This section has its own reference system. Citation numbers refer to bibliography
items included in the present article, and not at the end of the PhD manuscript. This ar-
ticle has been published in the New Phytologist, in january 2023. Code and data to
reproduce the results presented in this section are available in the github repository https:
// github. com/ OceaneCsn/ CO2_ root_ networks_ inference .

https://github.com/OceaneCsn/CO2_root_networks_inference
https://github.com/OceaneCsn/CO2_root_networks_inference
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Summary

� The elevation of CO2 in the atmosphere increases plant biomass but decreases their mineral

content. The genetic and molecular bases of these effects remain mostly unknown, in particu-

lar in the root system, which is responsible for plant nutrient uptake.
� To gain knowledge about the effect of elevated CO2 on plant growth and physiology, and

to identify its regulatory in the roots, we analyzed genome expression in Arabidopsis roots

through a combinatorial design with contrasted levels of CO2, nitrate, and iron.
� We demonstrated that elevated CO2 has a modest effect on root genome expression under

nutrient sufficiency, but by contrast leads to massive expression changes under nitrate or iron

deficiencies. We demonstrated that elevated CO2 negatively targets nitrate and iron starva-

tion modules at the transcriptional level, associated with a reduction in high-affinity nitrate

uptake. Finally, we inferred a gene regulatory network governing the root response to ele-

vated CO2. This network allowed us to identify candidate transcription factors including

MYB15, WOX11, and EDF3 which we experimentally validated for their role in the stimula-

tion of growth by elevated CO2.
� Our approach identified key features and regulators of the plant response to elevated CO2,

with the objective of developing crops resilient to climate change.

Introduction

The atmospheric concentration of carbon dioxide (CO2) is
expected to reach between 750 ppm and > 1000 ppm at the end
of the century (IPCC, 2021). Elevated atmospheric CO2 (eCO2)
will profoundly modify plant physiology, as CO2 is the primary
substrate of photosynthesis. This is illustrated by the eCO2 fertili-
zation effect, which leads in C3 plants to an enhanced photo-
synthesis, a stimulation of growth, and an accumulation of
biomass for plants grown under eCO2 condition (Ainsworth &
Long, 2021). The stimulation of plant growth by eCO2 has sig-
nificant implications, as an augmentation of green biomass and
yield is required for satisfying the increasing demand for food,
and for mitigating the rise of the CO2 concentration in the atmo-
sphere. Nevertheless, a large number of CO2-enrichment experi-
ments, conducted both in fields and in laboratories, have
returned that the gain of biomass for plants grown under eCO2 is
much lower than theoretically expected due to plant acclimation
to eCO2 (Tausz-Posch et al., 2020). Acclimation of plants to
eCO2 is usually associated with a negative feedback of photo-
synthesis due to the accumulation of sugars, and to a decrease in
leaf Rubisco content (Thompson et al., 2017; Tausz-Posch
et al., 2020; Ainsworth & Long, 2021), but the genetic basis
remains poorly understood. In addition to this, growing C3

plants under eCO2 leads to an unexpected decline of their
mineral composition (Loladze, 2014; Myers et al., 2014; Gojon
et al., 2022). Indeed, plants grown under eCO2 show a decrease
in the tissue concentrations of most mineral nutrients compared
with those grown under ambient CO2 (aCO2), especially con-
cerning nitrogen (N) and essential micronutrients like iron (Fe).
The acclimation of plants to eCO2 and the negative effect of
eCO2 on plant mineral content are concerning for food security,
and present a serious threat of increasing starvations in the com-
ing decades, especially for populations already at risk (Smith &
Myers, 2018). Several physiological hypotheses have been pro-
posed to explain this negative effect of eCO2 on plant mineral
composition. Among them, general hypotheses have been high-
lighted, such as a dilution of nutrients in higher biomass or a
reduced root-to-shoot translocation of nutrients due to a lowered
transpiration rate and lower stomatal conductance under eCO2

(Tausz-Posch et al., 2020). For instance, it was shown recently
that increasing transpiration in the aca7 mutant partially restores
the content of Fe in seeds under eCO2 (Sun et al., 2022). In Ara-
bidopsis and wheat, it has been demonstrated that eCO2 nega-
tively affects the uptake and reduction in nitrate, highlighting a
close link between eCO2 and N nutrition (Bloom et al., 2010,
2014). Strikingly, not much is known about the regulatory
mechanisms that are associated with the plant acclimation to
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eCO2 and to the negative effect of eCO2 on plant mineral com-
position. Only a handful of transcriptomic experiments analyzing
plants under eCO2 have been performed. These experiments
strongly suggested that eCO2 has a minor effect on genome
expression (Miyazaki et al., 2004; Taylor et al., 2005; Ainsworth
et al., 2006; Li et al., 2006, 2008; Tallis et al., 2010; Vicente
et al., 2019). In Arabidopsis leaves, transcriptomic markers simi-
lar to those found under N deficiency have been found under
eCO2, for example, the expression of several genes usually down-
regulated by N limitation was also lower under eCO2 condition
(Li et al., 2006). Several genes coding for major actors of Fe
acquisition, such as the transporter IRT1, have been also identi-
fied as downregulated by eCO2 in rice leaves (Yang et al., 2020).
On the other hand, despite the crucial importance of roots for
the homeostasis of nutrients and for growth, the effect of eCO2

on root genome expression has been very poorly investigated.
Several studies, nevertheless, suggested that eCO2 leads to a mis-
regulation of some genes associated with nitrate or Fe homeosta-
sis, including nitrate transporter genes from the NRT1 and
NRT2 families (Jauregui et al., 2015; Vicente et al., 2015, 2016;
Bencke-Malato et al., 2019). Collectively, these data suggest that
eCO2 has a significant impact on the regulation of signaling
pathways associated with growth and mineral nutrition. How-
ever, there is no clear view concerning the effect of eCO2 on these
signaling pathways in the roots yet, and so far, no regulators of
the response to eCO2 in the roots have been identified. The
objective of this work was to contribute to the understanding of
the effect of eCO2 on plants through the study of regulatory
mechanisms in the roots, and how they affect two main pheno-
types induced by eCO2: the stimulation of biomass production
and the alteration of mineral content.

To do so, we performed a combinatorial analysis of the effect
of eCO2 on root genome expression under contrasting provision
of nitrate and/or Fe, to reveal features by which eCO2 disrupts
the regulation of major root function, and to identify regulators
of this response through the inference of gene regulatory net-
works (GRNs). The targeted analysis of genome expression data
demonstrated that eCO2 severely disrupts the expression of regu-
latory modules associated with nutrient limitation, including the
negative regulators of nitrate signaling and of Fe starvation. In
addition, the inference of GRNs reveals several candidate genes
for the regulation of the response to eCO2 in the roots. The ana-
lysis of these candidate regulators notably demonstrated that
MYB15, WOX11, and EDF3 transcription factors are required to
reach the full potential of growth stimulation and biomass accu-
mulation in a CO2-rich atmosphere under nitrate limiting condi-
tion, without penalizing the mineral composition of plants.

Materials and Methods

Biological material

Plant growth conditions and material Arabidopsis thaliana plants
were grown in hydroponics using nutrient solution as described
by Gansel et al. (2001). Nitrate concentration was either 10 mM
(high nitrate) or 0.5 mM (low nitrate) KNO3 during all the

experiments. Fe was supplied at a concentration of 50 lM during
all the experiments for plants under Fe supply, or was removed
from the medium during the last week of growth for plants
undergoing Fe starvation. CO2 conditions in the chambers were
constantly maintained at air (c. 420 ppm, aCO2) or 900 ppm
(eCO2), under 200 μmol m–2 s–1 light intensity, and 8 h : 16 h,
light : dark, 22°C : 20°C photoperiod. Plant shoots and roots
were sampled after 5 wk of growth. Accessions and mutant alleles
used in this study are Columbia (Col), Wassilewskija (WS), rsl5
(WiscDsLox384E5), myb15 (SALK 151976), myb85 (SALK
052089), wrky59 (SALK 102984), wox11-2 (SALK 004777),
and edf3 (FLAG 606H09). Mutants were obtained from the
Nottingham and the Versailles Arabidopsis Stock Centers.

RNA extraction, quantification of transcripts, and RNA-
sequencing

Five plant roots from identical conditions were pooled together
into one biological replicate, flash frozen in liquid nitrogen, and
stored at �80°C. RNAs were extracted from root tissues using
Trizol (Invitrogen), and DNAse treated using RQ1 (Promega).
Reverse transcription was achieved from 1 lg of total RNA with
M-MLV reverse transcriptase (RNase H minus, Point Mutant;
Promega) using an anchored oligo(dT)20 primer. Accumulation of
transcripts was measured by qRT-PCR (LightCycler 480; Roche
Diagnostics, Bâle, Switzerland) using the SYBR Premix Ex TaqTM

(TaKaRa, Kusatsu, Japan). Gene expression was normalized using
UBQ10 and ACT2 as internal standards. Results are presented as
the expression relative to UBQ10. Sequences of primers used in
RT-qPCR for gene expression analysis are listed in Supporting
Information Table S1. RNA-sequencing libraries were done from
root total RNA using standard RNA-Seq protocol method (Poly-A
selection for mRNA species) by the Novogene Co. (Cambridge,
UK). RNA-sequencing was performed using Illumina technology
on a NovaSeq6000 system providing PE150 reads.

Biomass and nutrient-related measurements

In all, 15–20 rosettes were dried in an oven at 70°C for 72 h, and
plant shoot biomass was measured using a precision weighing scale.
Nitrogen and carbon composition of shoots was obtained using an
Elementar Pyrocube analyzer. Fe content was measured using acidic
digestion and a microwave plasma atomic emission spectrometer
(MP-AES; Agilent, Santa Clara, CA, USA). Nitrate uptake was
measured by supplying 15NO3

� (1 atom% excess (15N)) in hydro-
ponic solution for 72 h. Roots and shoots were then dried at 70°C
for 72 h, and the samples were analyzed for total N and atom%
15N using a continuous flow isotope ratio mass spectrometer
coupled with a C : N elemental analyzer (model Euroflash; Euro-
vector, Pavia, Italy).

Processing of raw RNASeq files

The quality control and adapter trimming of raw paired-end
FASTQ files was done with FASTP and its default parameters. Map-
ping to the TAIR10 reference genome was performed with STAR,
and the options following:
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--outSAMtype BAM SortedByCoordinate
--outFilterMismatchNmax 1
--outFilterMismatchNoverLmax 0.15
--alignIntronMin 30
--alignIntronMax 5000
Quantification of the bam files against the TAIR10 GFF3

annotation file was done using htseq-count with options:
-f bam --type gene -r pos
--idattr=Name --stranded=no

Statistical analyses of phenotypic data

We fit linear models to quantitative traits using categorical pre-
dictors via the lm() R function. We focused on the interpretation
of interaction terms, of which we assessed the significance based
on the t-test performed on each regression coefficients given by
the summary() R function.

Transcriptomic analyses

Transcriptomes normalization, principal component analysis
(PCA), and differential expression: the raw expression matrix was
normalized using the TMM method. Lowly expressed genes with
an average value across conditions under 10 were excluded from
the analysis. PCA was carried out on normalized transcriptomes
via the ADE4 R package. Differential expression was tested using
the EDGER R package as proposed in the DIANE R package (Cassan
et al., 2021), with no fold change constraint, and an adjusted
P-value threshold (FDR) of 0.05.

Multivariate expression-based gene clustering

The COSEQ (Rau & Maugis-Rabusseau, 2018) package embedded
in DIANE was used to partition genes based on their expression
changes across conditions. The underlying framework is the fra-
mework of mixture models: Gaussian mixtures were fit to each
cluster after applying a prior arcsin transformation to the normal-
ized counts. The model parameters, that is, the mixing propor-
tions and the cluster-specific distributions parameters are
estimated through an Expectation–Maximization algorithm. A
global quality score can be computed to evaluate a given cluster-
ing model: we used the Integrated Complete Likelihood. The
final number of clusters (9) was chosen where the Integrated
Complete Likelihood reached a plateau (elbow method).

GRN inference

To reconstruct the transcriptional dependencies between genes,
we relied on the network inference method GENIE3 (Huynh-
Thu et al., 2010), extended by a permutation-based approach to
sparsify its output as implemented in DIANE (Cassan et al., 2021).
GENIE3 was shown to be among the best performers in bench-
mark studies such as the DREAM challenges (Marbach
et al., 2012), and allows to quantify the strength of regulatory
influences between regulator genes and their targets. This influ-
ence is extracted from a regression framework: random forests are

fit to predict the expression of target genes using the expression
of regulator genes as predictors. In the process of fitting the
regression trees, the importance of the predictors can be extracted
so that a ranking of all regulator-target pairs is obtained. To select
the strongest regulatory interactions among that ranking, we first
built a biologically relevant network with a connectivity density
of 0.03, made of the regulatory pairs with the strongest impor-
tance values. Then, we used a permutation-based procedure to
estimate null distributions of random forest importance values
against which we tested the observed importance, and selected
the interactions with an adjusted P-value (FDR method) below
5%. Network handling and the extraction of network-related
metrics were allowed by the igraph library.

GRN validation

To validate the inferred network, we made use of the R package
ARANETBENCH. In the network evaluation process, the inferred
network is first transformed so that grouped regulators are
ungrouped, duplicating their interactions with target genes.
Then, each one-to-one regulator-to-target link is compared to
DAPSEQ, CHIPSEQ, or TARGET databases. The validation rate of
a network is computed as the number of links supported by at
least one experiment, divided by the total number of links for
which the regulator was experimentally studied. The statistical
significance of this validation rate is then assessed by comparing
it to the validation rates of a large population of networks with
randomly swapped edges. To avoid confusing biases, those ran-
dom networks and the inferred network are composed of the
same nodes, and the regulator’s degrees remain unchanged so that
the overall connectivity distribution is preserved.

Community discovery

The Stochastic Block Model (SBM) partitioning was determined
via the SBM R package. The optimal number of communities was
determined automatically, as the number of communities maxi-
mizing the inferred Block Model’s quality criteria: the Integrated
Complete Likelihood.

Gene ontology enrichment analyses

DIANE’s wrapper of CLUSTERPROFILER was used to detect signifi-
cantly overrepresented ontologies, which relies on fisher’s exact
test with an adjusted P-value threshold of 0.05. The gene back-
ground used to assess enrichments was the list of all Arabidopsis
genes.

Results

eCO2 leads to profound reprogramming of genome
expression under nutrient starvation conditions

To explore the effect of eCO2 on the root regulatory responses
under nutrient limitation, Arabidopsis plants were subjected to a
combination of treatments including CO2 (ambient, 420 ppm or
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elevated, 900 ppm), nitrate (high provision, 10 mM or low provi-
sion, 0.5 mM), and Fe (sufficient provision, 50 lM or starvation
for 1 wk) (Fig. 1a). First, we looked at the expression in the roots
of known marker genes of nitrate or Fe nutrition. We observed
that eCO2 leads to a decrease in the expression of genes involved
in nitrate uptake and assimilation such as the high-affinity root
nitrate transporter genes NRT2.1 and NRT1.1, and the nitrate
reductase gene NIA1, especially under nitrate limitation
(Fig. 1a). We also showed that eCO2 inhibits the induction of
the expression of major markers involved in the Fe starvation
response such as the Fe transporter gene IRT1 and the Fe chelate
reductase gene FRO2 (Fig. 1b). Therefore, eCO2 seems to disrupt
the expression of key actors involved in the response to nitrate or
Fe deficiencies. To fully explore the genome expression changes
in the roots induced by CO2 elevation and how they affect
responses to nutrient starvation, we performed root RNA-seq for
the eight combinations of CO2 levels, nitrate supply, and Fe
supply.

First, a PCA on the whole dataset revealed that the first princi-
pal component, which explains > 50% of gene expression varia-
tion, mainly discriminated genes differentially expressed in
response to Fe starvation (Fig. 2a,b). The second principal com-
ponent, explaining 12.9% of gene expression variation, separated
genes differentially expressed in response to nitrate provision,
especially under Fe starvation. The effect of nitrate provision
under Fe supply on the root transcriptome, mainly visible
through the third principal component, explained < 10% of gene
expression variation in the dataset. Lastly, the effect of eCO2 on
the root transcriptome was explained by further principal compo-
nents 4, 5, and 6, carrying together 11.2% of gene expression
change. Therefore, we concluded that the effect of eCO2 on the
root transcriptome was modest in comparison to those of nutri-
ent starvation.

However, a more striking observation was made when looking
at the number of genes differentially expressed by eCO2 depend-
ing on the provision of nitrate and Fe. Indeed, very few genes
were found to be differentially expressed by eCO2 when plants
were grown under sufficient nitrate and Fe provision (124 genes
upregulated or downregulated; FDR ≤ 0.05) (Fig. 2c; Tables S2–
S5). On the contrary, many more genes were found to be differ-
entially expressed when eCO2 was combined to at least one nutri-
ent limitation. Growth under eCO2 condition leads to 1550
differentially expressed genes under nitrate limitation, to 3524
genes under Fe starvation, and to 2429 genes under the combina-
tion of nitrate limitation and Fe starvation (Fig. 2c; Tables S2–
S5). Therefore, we concluded that eCO2 has a limited effect on
root transcriptome when plants grow under sufficient nutrient
conditions, but leads to profound reprogramming of genome
expression when plants grow under nutrient starvation condi-
tions.

eCO2 disrupts gene expression associated with nitrate and
Fe starvation signaling pathways

First, we adopted a targeted approach by exploring the expression
profile of marker genes involved in nitrate and Fe responses, and

their regulation. In the case of nitrate response, we observed that
an important number of genes involved in nitrate transport and
assimilation were significantly downregulated by eCO2, especially
under nitrate limitation (Fig. 3a). In line with the qRT-PCR data
shown earlier (Fig. 1b), this was the case for nitrate transporter
genes NRT2.1, NAR2.1, and NRT1.1, nitrate and ammonium
assimilation genes NIR1 and GLN1.2, and nitrate-responsive
genes like G6PD3. Other genes like NRT2.2, NIA1, or NIA2
were also downregulated but to a lesser extent (Tables S2–S5). In
parallel to this, we found that genes involved in the positive regu-
lation of the nitrate starvation response, such as NLP2, TGA4, or
CEP9 were also downregulated by eCO2. In opposition, we strik-
ingly observed that numerous genes involved in the negative reg-
ulation of nitrate transport and assimilation were upregulated by
eCO2, specifically under nitrate limitation. This was the case of
BT1 and BT2, known to downregulate the expression of high-
affinity nitrate transporters such as NRT2.1, but also for mem-
bers of the NIGT transcription factor family that repress nitrate
transporter genes under satiety conditions (Araus et al., 2016;
Kiba et al., 2018) (Fig. 3a). In addition, we also found that the
expression of LBD41, a close homolog of the LBD transcription
factors sub-clade that repress nitrate transport and assimilation
(Rubin et al., 2009), was also induced by eCO2. Altogether, these
observations show that under nitrate limitation, eCO2 markedly
affects the expression of nitrate signaling modules by upregulat-
ing the expression of negative regulators of nitrate uptake and
assimilation, and accordingly, by downregulating the expression
of nitrate uptake and assimilation genes. In the case of Fe-related
gene expression, we observed a similar deregulation of signaling
modules under eCO2. Indeed, several genes that are induced by
Fe starvation under ambient CO2, such as IRT1, FRO2, or the
coumarin transporter PDR9, were much less induced or even not
induced anymore under eCO2 (Fig. 3b). In addition to this, we
found that the regulators of Fe starvation response such as the
transcription factors FIT or BHLH39, that are induced by Fe
starvation under ambient CO2, were much less induced or even
not induced anymore under eCO2 (Fig. 3b). These observations
show that eCO2 also disrupts the Fe starvation response, and
then, more generally, that eCO2 has a strong negative effect on
the expression of signaling modules associated with deficiencies
in major nutrients.

To see whether these observations coincide with the well-
known effects of eCO2 on physiological parameters in shoots, we
measured biomass accumulation, N and Fe concentrations in
shoots under each condition. We observed that eCO2 signifi-
cantly led to increased biomass, and this regardless of nutrients
availability (Fig. 4a). While biomass is consistently increased by
eCO2, we observed contrasted effects on the mineral composition
of plants. Growth under eCO2 led to a strong and significant
decline in shoot N concentration when plants were grown under
low nitrate conditions, but not under high nitrate conditions
(Fig. 4b). From aCO2 to eCO2, N concentration dropped by
30% under low nitrate and Fe supply, and by 15% under low
nitrate and Fe starvation (Fig. 4b). Surprisingly, the growth
under eCO2 did not lead to a decrease in Fe content, regardless
of the nutritional condition (Fig. 4c), suggesting that Fe

New Phytologist (2023)
www.newphytologist.com

� 2023 The Authors

New Phytologist� 2023 New Phytologist Foundation

Research

New
Phytologist4



provision or Fe accumulation in plants was too high to be
affected by eCO2, even after 1 wk of Fe starvation. Finally, we
investigated whether the alterations in the expression of nitrate
signaling modules under eCO2 translated into altered nitrate
uptake capacities. Indeed, in accordance with the observations
made at the level of gene expression and total N concentration
levels, we clearly observed that the nitrate uptake rate was signifi-
cantly and negatively affected by eCO2 under limiting nitrate

condition, but not affected under high nitrate condition
(Fig. 4c).

eCO2 largely disrupts the response to nitrate limitation

Considering that the major effect of eCO2 on shoot biomass and
N concentration were observed under low nitrate conditions, we
investigated in a broader way the impact of eCO2 on the

Fig. 1 Combinatorial analysis of the effects of
eCO2, nitrate limitation, and Fe starvation.
(a) Design of the combinatorial experiment
combining contrasting levels of CO2, nitrate
and Fe. Arabidopsis plants were grown in
hydroponics for 5 wk under contrasted levels
of CO2, nitrate, and Fe. High nitrate
(10mm), low nitrate (0.5 mM), +Fe (50 lM),
�Fe (0 lM), Amb. (ambient CO2, 420 ppm),
and Elev. (elevated CO2, 900 ppm). For each
combination of nitrate and Fe supply levels,
three representative rosettes are shown
under aCO2 and eCO2. (b) Quantitative RT-
PCR showing the relative expression of
marker genes of nitrate and Fe nutrition in
the roots, in response to the combination of
CO2 and nitrate, or CO2 and Fe supply. High
nitrate (10mM), low nitrate (0.5 mM), +Fe
(50 lM), �Fe (0 lM), Amb. (ambient CO2,
420 ppm), and Elev. (elevated CO2,
900 ppm). Data represent mean� SD of five
biological replicates from a representative
experiment. Statistical significance was
computed using an unpaired two-tailed
Student’s t test (*, P ≤ 0.05; **, P ≤ 0.01;
****, P ≤ 0.001).
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reprogramming of genome expression by nitrate limitation. To
do so, we performed a clustering approach, focusing our analysis
on the interaction between eCO2 and nitrate limitation response.
The 1550 differentially expressed genes in response to high CO2

under nitrate limitation (Fig. 2c) were partitioned based on their
co-expression in the four (triplicated) experimental conditions
with reference and perturbation levels of CO2 and nitrate supply

(in all cases with sufficient Fe). The mixture models-based
approach we employed (Rau & Maugis-Rabusseau, 2018) led to
an organization in nine clusters (Fig. 5). In line with the profile
of nitrate-responsive marker genes (Fig. 3a), we observed that the
regulation of the expression of a large number of genes by nitrate
is strongly modified under eCO2 condition. In clusters 5 and 9,
we observed > 300 genes that are downregulated by nitrate

Fig. 2 Elevated CO2 reprograms root genome expression under nutrient deficiency. (a) Principal component analysis of the normalized root transcriptomes
under the eCO2 and nutrient limitations combinatorial design. Contributions (i.e. correlation) of each experimental condition to the six first principal
components. Each color stands for an experimental condition. Genes are shown as dots. (b) Percentage of variance explained by each of the principal
components determined by the analysis. (c) Number of genes differentially expressed by eCO2 under different conditions of nitrate and Fe provision.
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limitation under aCO2 condition, but not under eCO2 condi-
tion, as observed for HRS1, BT1, and BT2. This suppression of
regulation by eCO2 was also observed for genes induced under
nitrate limitation; in clusters 7 and 8, > 200 genes have their
expression induced by nitrate limitation under aCO2 condition
but not under eCO2 condition, as observed for CEP9, NLP2,
and NRT1.1. In an even more pronounced way, we observed that
growth under eCO2 reversed the regulation by nitrate availability
of several hundreds of genes, found in clusters 2, 3, and 6.
Finally, cluster 4 contains almost 200 genes showing modest or
no expression changes induced by nitrate limitation, but that are
considerably repressed under the combination of nitrate limita-
tion and eCO2. Several nitrate transport or assimilation genes,

such as NRT2.1, NAR2.1, NIR, or GLN1.2, belong to this clus-
ter. Based on this co-expression study, we show that the growth
under eCO2 either lessens, cancels, or even reverses nitrate-
induced regulation of the expression of a large number of genes.
This strengthens the hypothesis that eCO2 severely affects regula-
tory pathways involved in the adaptation to nitrate limitation.

GRN inference yields insightful genes communities and
candidate regulators of the response to eCO2 under low
nitrate

Second, we adopted a non-targeted approach to identify in the
roots the regulators that drive the response mediated by eCO2,

(a)

(b)

Fig. 3 Elevated CO2 disrupts the expression
of key nitrate and Fe marker genes
specifically under nitrate limitation and Fe
starvation. Heatmap representation showing
the Z-score of normalized expression levels
of genes important for nutrition in the
transcriptomic dataset. (a) Regulation by
eCO2 of genes involved in nitrate transport
and assimilation and in their regulation,
under high or limiting nitrate conditions. (b)
Regulation by eCO2 of genes involved in Fe
transport and in their regulation, under Fe
supply or Fe starvation.
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and that would be able to modulate the stimulation of growth or
the alteration of N concentration under eCO2. To do so, we
inferred a GRN using the 1550 genes found differentially
expressed by eCO2 under low nitrate supply (Table S5). Using as
input the expression values obtained under aCO2, eCO2,
limiting or abundant nitrate supply (12 samples in total), we
employed random forest regressions combined with
permutation-based statistics (Huynh-Thu et al., 2010; Cassan
et al., 2021) to draw connections between regulator and target
genes. To do so, we used a list of regulators composed of
Arabidopsis transcription factors, enriched with indirect regula-
tors of gene expression (i.e. chromatin regulators) and previously
known indirect regulators of nitrate-related gene expression such
as BT1/BT2 (Table S6). In this approach, a regulator was linked
to a target if its expression was a robust predictor of the expres-
sion of the target in the input samples (see the Materials and
Methods section). The resulting GRN is made of 796 nodes
(647 target genes and 149 regulators) and 1700 connections
(Fig. S1).

To validate the inferred edges against known regulatory
interactions, we leveraged the CONNECTF database (Brooks
et al., 2021), composed of in vitro (DAPSEQ) and in vivo (CHIP-
SEQ) binding experiments, as well as in planta regulation assays.
Considering all the regulators for which validation information is
available, 31.3% of the predicted interactions in the inferred net-
work were supported by at least one experiment in CONNECTF

(Fig. S2). To determine the significance of this validation
percentage, we compared it to the validation percentages of a
population of 200 shuffled networks, in which the interactions
between the same genes were randomly unmatched. No random
network had a higher validation rate than our inferred network,
leading us to conclude that our inference approach captured con-
sistent biological information linked to the regulation of gene
expression in the roots by eCO2 under low nitrate conditions
(Fig. S3).

We tested the presence of the known regulators of the nitrate
response signaling pathway and their targets on this GRN, to
appreciate their influence on the effect of eCO2 on root genome
expression under low nitrate conditions (Fig. 6a). Surprisingly,
most of the important actors of nitrate uptake and assimilation
such as NRT2.1, NRT1.1, or NIA genes were not present in the
network, with the exception of NAR2.1 and NIR1. By contrast,
an important number of known regulators of the nitrate response
signaling pathway were found in the GRN. Notably, BT1, BT2,
and HRS1 were grouped together because of the high correlation
value of their expression profiles in the 12 samples, which sup-
ports their similar function in the repression of nitrate limitation
signaling pathways. To continue the general analysis of this
GRN, we used the SBM framework to analyze the topological
structure of the GRN and identify gene communities. This
revealed a modular and disassortative topology, typical of biologi-
cal networks (Fig. 6b). In each of the eight gene communities

Fig. 5 Clustering analysis of the 1550 DEGs
by eCO2 under low nitrate, on the four
combinations of aCO2 or eCO2, and high or
low nitrate. Expression profiles are defined as
the normalized expression, divided by the
mean normalized expression in all conditions.
Genes were partitioned between nine
clusters. In some clusters, gene names
previously identified as key actors of nitrate
nutrition are highlighted, either in green (for
actors or positive regulators) or red (for
negative regulators). We identified three
cluster categories based on the interpretation
of their expression changes, as represented
by the color of the expression profiles. Green,
cancels/lessens starvation regulations;
orange, reverses starvation regulations; blue,
specific regulations. In each cluster,
horizontal lines, whiskers and circles
correspond to medians, first quartiles and
expression of individual genes, respectively.
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identified, we performed gene ontology (GO) enrichment. Nota-
bly, genes included in the communities 1 and 3 displayed signifi-
cant enrichment for GO related to N like ‘response to N
compound’, ‘response to nutrient levels’, or ‘response to nitrate’
(Fig. S4). This supports again the hypothesis according to which
eCO2 severely affects the regulation of genome expression asso-
ciated with N and with nitrate in particular.

MYB15, EDF3, andWOX11 regulate the stimulation of
plant growth by eCO2 under low nitrate

To identify candidate regulators of the response to eCO2, we
hypothesized that the regulators displaying the highest degree of
connectivity to target genes are the most relevant to control a
large part of the GRN, and thus of the response to eCO2.

(a)

(c) (d)

(b)

Fig. 6 Inferred gene regulatory network (GRN) of the root response to eCO2 under low nitrate. In each network panel, round nodes are target genes,
square nodes are regulator genes, and large square nodes are regulator genes grouped together because of a high correlation. (a) Network view with a
highlight on actors of nitrate acquisition, signaling and metabolism and their regulators. (b) Topological clustering in the inferred GRN. Each color
represents a community of highly connected genes. (c) Network view with a highlight on the 12 most influencing candidate regulators identified on the
basis of their overall degree. (d) Ranking of these the 12 most influencing candidate regulators in the inferred GRN, with their TAIR AGI, common name,
topological community, and overall degree.
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Therefore, we ranked the regulators present in the GRN by their
degree (Table S7). We analyzed the topological distribution of
the 12 most connected regulators (Fig. 6c,d). Most of them
belonged to the topological cluster 1, which is enriched for genes
associated with the response to N compounds, nutrients, or
nitrate. We used knockout mutant lines for several of these most
connected regulators to test their involvement in the plant’s
response to eCO2. Mutants for MYB15, MYB85, WOX11,
EDF3, WRKY59, and RSL5 transcription factors were grown
under eCO2 and limiting nitrate conditions, and phenotyped
for their shoot biomass and N concentration. We further
analyzed whether biomass and N concentration changes caused
by eCO2 in each genotype were statistically different from the
change observed in the wild-type (WT). First, there was no
evidence in our analysis that any of these transcription factors
were involved in the control of N concentration in the shoot
under eCO2, as no single mutation in these regulators led to a
significant change in the decrease in N concentration induced by

high CO2 compared with that of WT (Fig. 7a,b). By contrast, we
observed that the stimulation of growth induced by eCO2 was
significantly lower in myb15, wox11, and edf3 than in the WT
(Fig. 7c,d). The stimulation of growth by eCO2 was reduced by
40%, 25%, and 49% in myb15, wox11, and edf3, respectively.
In myb15 and wox11, the biomass appears already affected
under aCO2. However, the effect of myb15 and wox11 mutations
was significantly stronger on the biomass stimulation by eCO2

than on the biomass under aCO2 (Table S8). This shows that
these transcription factors have a general role in biomass
production, which is significantly exacerbated by the elevation of
CO2. In edf3, the biomass under aCO2 condition biomass
remains unaffected in comparison to the WT (Table S8).
Therefore, the strong reduction of biomass observed in edf3
under eCO2 was strictly associated with a defect of the stimula-
tion of growth induced by high CO2. This shows that EDF3 is a
major regulator of the gain of biomass that is observed under
eCO2.

(a)

(c) (d)

(b)

Fig. 7 MYB15,WOX11, and EDF3 control
the stimulation of biomass production by
eCO2 under nitrate limitation. Phenotypic
response to eCO2 of plants with mutations
for the candidate regulators rsl5,myb15,
myb85, wox11, wrky59, and edf3, as
compared with their relative wild-type (WT;
Col, Columbia;WS, Wassilewskija). Plants
were grown for 5 wk in hydroponics under
contrasted levels of CO2. Error bars represent
SD. The significance levels refer to the
P-values relative to the genotype by
environment interactions (i.e. the effect of
the mutation on the effect of eCO2), using a
linear model (*, P ≤ 0.05; ***, P ≤ 0.001).
(a, b) Leaf N concentration measured in WT
and in candidate mutant lines. (c, d) Shoot
biomass measured in WT and in the
candidate mutant lines. aCO2, ambient CO2;
eCO2, 900 ppm.
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Discussion

In this study, we analyzed the effect of eCO2 on plant growth and
on nitrate and Fe nutrition in Arabidopsis. Several studies have
explored the effect of eCO2 on plant genome expression. Most of
them concluded to a minor effect of eCO2 on genome expression,
with a relatively limited number of differentially expressed genes
(Taylor et al., 2005; Ainsworth et al., 2006; Fukayama et al., 2009;
Tallis et al., 2010; Jauregui et al., 2015; Bencke-Malato
et al., 2019). Our results show that eCO2 actually leads to modest
changes in gene expression under sufficient nutrient conditions,
but in opposition leads to a profound reprogramming of genome
expression as soon as plants grow under limiting nitrate or under
Fe starvation condition. More precisely, we demonstrated that
eCO2 has a strong effect on the expression of genes associated with
nitrate or Fe signaling. A striking contrast was observed between
the repressive effect of eCO2 on the expression of nitrate transport
and assimilation genes such as NRT2.1, NRT1.1, or NIR1, and the
opposite inductive effect on the expression of genes such as BT1/
BT2 or NIGT transcription factors, known to be among the main
negative regulators of nitrate transport and assimilation (Araus
et al., 2016; Kiba et al., 2018). The same observation made on Fe
signaling genes led us to postulate that eCO2 may broadly affect
the response to nutrient limitation at the gene expression level, by
altering the expression of major signaling modules.

Concerning nitrate, our results provide highly consistent lines
of evidence supporting the original hypothesis that the repressive
effect of eCO2 on root nitrate uptake specifically targets the high-
affinity transport system (HATS), and not the low-affinity trans-
port system (LATS). Indeed, the nitrate transport genes shown to
be markedly downregulated by eCO2 (NRT2.1, NAR2.1,
NRT1.1) all encode major contributors to the HATS activity
(O’Brien et al., 2016; Jacquot et al., 2020). In line with this, root
nitrate uptake rate is repressed by eCO2 at 0.5 mM external
nitrate (at which the HATS is largely predominant over the
LATS), but not at 10 mM external nitrate (at which the HATS
plays a negligible role as compared to the LATS). Accordingly,
total N concentration in shoots is reduced by eCO2 at 0.5 mM,
but not at 10 mM nitrate. To our knowledge, such a differential
response of the nitrate HATS and LATS to eCO2 was not pre-
viously reported, and may provide some explanation to contra-
dictory conclusions found in the literature. Indeed, the response
of root nitrate acquisition to eCO2 was found to be highly vari-
able, ranging from strong inhibition to no effect or even stimula-
tion, therefore preventing any clear conclusion on this point
(BassiriRad et al., 2001; Coskun et al., 2016; Gojon et al., 2022).
However, most studies did not precisely monitor external nitrate
availability, leaving the possibility that part of the above discre-
pancies may result from the fact that the plants in these studies
either relied on the HATS or the LATS for their N nutrition. In
opposition to root nitrate uptake, the response of shoot growth
to eCO2 was similar regardless of nutrient supply, with a large sti-
mulation in all cases. Our observations show that the responses
of the growth and mineral composition of shoots exposed to
eCO2 are not strictly correlated, which is evidence against the
hypothesis of a growth dilution of plant N under eCO2. This

supports recent reports (Myers et al., 2014; Feng et al., 2015;
Wujeska-Klause et al., 2019), and thus suggests direct negative
effects of eCO2 on plant N acquisition.

We used a machine-learning approach to infer the GRN in the
roots of Arabidopsis in response to eCO2 under nitrate limita-
tion, and to identify putative regulatory factors involved in the
plant’s response to eCO2. This revealed that large communities
of genes with a function associated with the response to nitrate or
to N were affected by the growth under eCO2, suggesting again
that rising CO2 in the atmosphere will markedly alter the physio-
logical mechanisms of plant nutrition. In addition, ranking the
regulators by their degree of connection to target genes in the
GRN led to the identification of potential actors of the response
to eCO2 in plants. By phenotyping loss-of-function mutants for
a subset of these highly connected regulators, we found that three
of them, MYB15, WOX11, and EDF3, were involved in the sti-
mulation of growth by eCO2. To date, only a handful of genes
involved in the stimulation of growth by eCO2 have been identi-
fied (Bouain et al., 2022; Oguchi et al., 2022). To our knowl-
edge, our work provides the first identification of root related
genes involved in the regulation of the stimulation of plant
growth by eCO2. We have demonstrated here that MYB15,
WOX11, and EDF3 function are essential to fully reach the
potential of eCO2 fertilization under nitrate limitation, with a
reduction in the growth stimulation by almost half in myb15 or
edf3 mutants. MYB15 has been previously identified as a regula-
tor of the expression of the PHO1;H3 phosphate transporter in
the roots (Pal et al., 2017). Interestingly, phosphate accumulation
in the shoot has been recently proposed to regulate plant growth
under eCO2, through the expression of the PHT4;3 phosphate
transporter in shoots (Bouain et al., 2022). In our data, the
expression of these two phosphate transporters was not deregu-
lated by eCO2. Two other phosphate transporter genes were
actually deregulated by eCO2, but were not predicted as MYB15
target genes in the GRN. Nevertheless, the link between the regu-
lation of growth under eCO2 by MYB15 and phosphate accumu-
lation will deserve further attention. Much less is known about
the function of EDF3, apart from its role in the transcriptional
network of N-associated growth inferred in Arabidopsis, were
EDF3 regulates essential N-associated genes such as NIR1,
NAR2.1, or GLN1.2 (Gaudinier et al., 2018). Finally, the
absence of variation in the decrease in N concentration led by the
growth under eCO2 in myb15 or edf3 mutants supports the phy-
siological observations earlier mentioned, both strongly suggest-
ing a decoupling between the growth stimulation and the
decrease in N concentration established under eCO2, at the phy-
siological and genetic levels. Altogether, the identification of
these genes as important components of the response to eCO2

paves the way for the optimization of plant biomass production
under future CO2 atmosphere without penalizing nutrient con-
tent, and nutritional value of crops.
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Chapter 2. Statistical inference of the Gene Regulatory Networks in Arabidopsis

thaliana under elevated CO2 combined to nutritional limitations

2.3 Integration of transcription factor binding sites to gene
expression data improves regression-based Gene Regu-
latory Network inference in Arabidopsis thaliana

2.3.1 Preamble

After the identification of candidate genes under a combinatorial design based on
expression measures, we reflected on possible improvements of our GRN inference
strategy. A first research direction that came to mind was the exploration of other re-
gression functions. We were especially interested in exploring different complexities
of regression models to test weather linearity assumptions or the lack of interaction
effects would still provide valuable GRN models as compared to those provided
by Random Forests. Second, we wished to complement expression data with an-
other kind of information describing gene regulation by integrating gene expression
with sequence data. We thus implemented two GRN inference methods based on
sparse linear regression and Random Forests making use of gene expression data
and guided by the presence of TFBSs of regulators in the promoters of their target.
Publication #4 describes those methods in detail, our validation procedures, and
their application to a transcriptomic dataset of the root response to nitrate induction
in Arabidopsis thaliana.

2.3.2 Publication #4 (In preparation)

Note : This section has its own reference system. Citation numbers refer to bibliography
items included in the present article, and not at the end of the PhD manuscript. This article
is in preparation, and is representative of the results in october, 2022. Before sub-
mission in 2023, changes to the methods and results are planned by the authors. In
particular, those additions will improve the inference pipelines and provide a bet-
ter understanding of the gene-specific added value of data integration. Code and
data to reproduce the results presented in this section are available in the github repository
https: // github. com/ OceaneCsn/ integrative_ GRN_ N_ induction

https://github.com/OceaneCsn/integrative_GRN_N_induction


Unpublished manuscript, 2022
PhD thesis contribution article

Integration of Transcription Factor Binding Sites to
gene expression data improves regression-based
Gene Regulatory Network inference in Arabidopsis
thaliana
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Abstract

Gene Regulatory Networks (GRNs) are abstract models of the control of transcription. In complex organisms,
the inference of GRNs is an ultimate goal but also an unsolved challenge because it involves multiple intertwined
molecular layers. Regression based-methods are popular and powerful statistical approaches traditionally
applied to expression data. More recently, integrative regression-based strategies have emerged to guide GRN
inference with complementary data, but could be extended to fit the data more accurately or model causality. In
addition, it is possible that depending on the nature of the regression model the advantages of data integration
advantages will vary.
Based on the temporal response to nitrate induction in the roots of Arabidopsis thaliana, we propose to jointly
study the impact of model choice for the regression function in GRN inference, and the benefits of integrating
Transcription Factor Binding Sites (TFBS) information to expression data. To do so, we improve upon two
promising regression strategies: an integrative version of the Random Forest algorithm (bRF), and a LASSO
generalized linear model with differential shrinkage and stability selection (LASSO-D3S). We benchmark their
predictive capabilities, and accuracy against experimentally validated Transcription Factor(TF)-target interactions.
This evaluation is carried out for a range of biologically relevant network densities and through a parameter finely
tuning the contribution of TFBS to GRN inference.
We conclude that TFBS integration improves the biological relevance of inferred GRNs for both bRF and
LASSO-D3S, and we discuss the features of inferred GRNs depending on model choice. In addition, pathways
relevant to nitrate nutrition expected in this response are realistically modeled by bRF and LASSO-D3S,
and functionally validated regulations of the nitrate transporter NRT2.1 are progressively retrieved as TFBS
contribution is strengthened. This outlines the importance of further developments in multi-omics data integration
for regression-based GRN inference. All R scripts for the bRF and LASSO-D3S functions are made available.
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Introduction
Principles of GRN Inference from transcriptomic data
Gene Regulatory Network (GRN) inference has the objec-
tive of deciphering the relationships between genes in the
context of transcription. Statistical inference methods usually
leverage high-throughput genomics to reconstruct those net-
works, in which nodes represent genes, and edges represent
a relation of regulation between those genes. Because tran-

scriptomic data are increasingly common and less costly, they
are the input of choice for most statistical approaches to GRN
inference. Gene expression profiles across environmental con-
ditions or developmental stages can be interrogated to infer
links between genes influencing each other.

In order to model regulation, it is possible to infer oriented
edges from regulator genes to other genes. Regression-based
inference often decomposes the problem of network infer-
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ence into as many regression problems as there are genes.
In those regressions, the response variable, e.g. the expres-
sion of a target gene, is approximated by a function of the
expression levels of the regulator genes. Regression-based
techniques mainly differ in their choice of regression function
to link the expression of a target gene to the expression of its
regulators. For example, TIGRESS [Haury et al., 2012] or
LASSO [Tibshirani, 1996, Tjärnberg et al., 2013] techniques
chose a linear parametric models for this task, while GENIE3
[Huynh-Thu et al., 2010] and inspired works [Geurts et al.,
2018, Cirrone et al., 2020] model non-linear relations via
Random Forests (RFs) or more broadly, ensembles of trees
or predictors. Another advantage of RFs is that they do not
make any assumption on the distribution of the input data.

Once regression models are fit, they allow the extraction
of the influence of each regulator over each gene. This is
usually followed by the ranking of all possible regulator-gene
interactions on the basis of this influence score, and then
by the selection of the strongest pairs to build a final net-
work. Biological networks such as GRNs exhibit standard
topological features, such as low densities [Koutrouli et al.,
2020, Leclerc, 2008, Hayes et al., 2013]. Under this con-
straint, only a restricted set of regulators usually regulate a
target gene [Campos and Freyre-González, 2019]: the notion
of sparsity is crucial to the accuracy and interpretability of
models describing the control of regulation. In models such
as RFs, a threshold on the influence metric can be defined
so that the final network contains a number of interactions
providing a biologically relevant network density. In simple or
generalized linear models, the high dimensional setting (when
the number of expression measure per gene far exceeds the
number of candidate regulators), also requires some form of
regularization for feature selection. In the case of TIGRESS,
Least Angle Regression is used to select the most influential
regulators, while penalizations such as the LASSO, ridge or
elastic-net are popular choices to regularize network inference
[Qin et al., 2014, Miraldi et al., 2019].

Integration of other omics Given the underdetermined na-
ture of GRN inference from expression alone, using additional
sources of data can guide the choice between several models
explaining expression data equally well. Binding experiments,
protein-protein interactions, chromatin accessibility or regula-
tory sequence information are very valuable in the description
of transcriptional events. They are however costly, often lim-
ited to a small number of TFs or scarce, especially when one
is interested in rare environmental conditions or in non-model
organisms. This is why in the majority of cases, data-driven
methods can hardly rely on these omics alone for a genome-
wide inference task. They have, however, already been used to
guide network inference in combination with expression data.
For example, GRACE [Banf and Rhee, 2017] and SCENIC
[Aibar et al., 2017] methods proceed in two steps. First, a
GRN is inferred via RFs on transcriptomic data and then re-
fined by additional knowledge about TF binding motifs. In
other works, the complementary sources of data are used to

build a consensus. IGRN [Clercq et al., 2021] combines sev-
eral types of input networks, obtained from expression data,
CHIP-Seq, chromatin accessibility and regulatory sequences
into one predictive regulatory network, trained on interactions
documented in the literature.

Integrative inference, i.e. including prior data in the GRN
estimation process, has already been adapted for different
regression-based methods, either linear or non-linear. In one
of the first attempts, a linear system of gene regulation was
solved globally with several types of regularization including
the LASSO [Qin et al., 2014]. Data integration was realised
with CHIP-X priors being integrated at the solution initialisa-
tion step. More recently, the latest version of the Inferelator
[Gibbs et al., 2022], a suite for GRN inference, includes
three methods for GRN inference based on regression and
with prior incorporation. Those three methods are BBSR, a
bayesian approach [Greenfield et al., 2013], AMuSR, a mul-
titask approach [Castro et al., 2019], and LASSO-StARS, a
LASSO approach [Miraldi et al., 2019]. They integrate prior
knowledge in the Inferelator by using TF activities (TFAs) as
predictors.

In LASSO-StARS [Miraldi et al., 2019] prior integration
is not only possible through the use of TFAs, but also via
modulating the penalty strength for each TF during the es-
timation of the LASSO models. In this setting, regulators
with prior support are less penalized than the others, so that
they are favorably included in the final GRN. This modu-
lation of the penalty strength will be further referred to as
’differential shrinkage’. LASSO-StARS optimizes a model
penalized by differential shrinkage using using StARS [Liu
et al., 2010], a stability selection method that finds the sparsest
network while guarantying edges with an acceptable robust-
ness to sub-sampling. The idea of encoding prior knowledge
via differential shrinkage was already proposed in previous
works on gene regulation [Christley et al., 2009, Studham
et al., 2014]. Those two works, however, do not infer ori-
ented edges between regulators and targets, but can link all
genes to each other, which is not ideal for GRN modelling.
Besides, none of the methods employing differential shrink-
age in LASSO regression, including the Inferelator, model
RNA-Seq data as count data, which seems to be a limitation.
Indeed, many existing tool that work with RNA-Seq data to
perform genome-wide statistical analyses such as differential
expression or co-expression clustering successfully modeled
RNA-Seq data with Poisson negative-binomial distributions
[McCarthy et al., 2012, Rau and Maugis-Rabusseau, 2018].

Regarding non-linear regression, iRafNet [Petralia et al.,
2015] introduced a way to encode prior information into RFs,
such as knock-out experiments, protein-protein interactions,
or time series gene-expression. In iRafNet, regression trees
predicting the target gene expression from the expression of
other genes are elongated in a way that increases the chance of
predictor genes supported by prior knowledge to get chosen in
each decision nodes. This has the effect of inflating the impor-
tance metric of interactions supported by the chosen prior. It
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was further adapted to time series expression data in the Out-
predict method [Cirrone et al., 2020]. However, iRafNet does
not restrict predictive variables in the regressions to regulator
genes only, which makes its outputs closer to co-expression
network than GRNs. In addition, it is limited to the node
purity importance metric to estimate the influence of the regu-
lators. This metric was proven to be ill-designed to interpret
variable importance when variables are dependent and are
interacting [Scornet, 2020, Nicodemus and Malley, 2009].
Other importance metrics less vulnerable to this issue and
more robust to over-fitting exist, namely the Mean Decrease
Accuracy (MDA) [Breiman, 2001], but are not implemented
in GENIE3 nor iRafNet.

Objectives Regression-based GRN inference techniques
historically estimated regulatory links between regulators and
target genes solely on the basis of their expression profiles. We
propose to extend them in the direction of attributing stronger
regulatory influences to interactions in which the TFBS of
the regulator is known to be present in the promoter of its
target. Indeed, they are largely available in model organisms
in the form of Position Weight Matrices (PWMs). They have
the advantage of being computationally searchable in the
regulatory regions of a genome for a very low cost, and do
not require additional experimental work. Besides, this is a
valuable source of information because it is relative to physical
interactions between TFs and DNA, which is complementary
to expression data. This has the potential to shed light on the
complexity of regulation, in the course of which binding and
regulation of expression often co-occur. Combining binding
motifs and expression has already been proven useful for
network inference, especially in complex organisms [Marbach
et al., 2012, Kundaje et al., 2007, Gibbs et al., 2022].

During data integration, it is reasonable to believe that,
depending on the characteristics of the statistical models like
linearity or their parametric nature, the performance and bene-
fits of data integration will vary. In this work, we jointly study
the impact of model choice for the regression function in GRN
inference, and the benefit of integrating TFBS information to
expression data. More precisely, we propose to improve two
existing GRN inference methods for integrative regressions in
the linear and non-linear cases.

1. An integrative version of the Random Forest algorithm,
similar to iRafNet [Petralia et al., 2015], but adapted
toward GRN inference and implementing the MDA.
This method will be referred to as biased Random
Forests: bRF

2. A LASSO-penalized generalized linear model with Sta-
bility Selection, in which we apply differential shrink-
age to encode prior knowledge. This is similar to
LASSO-StARS [Miraldi et al., 2019], but with ma-
jor differences: we model RNA-Seq data as count data,
we do not choose the same weighting of regulatory
edges, we do not use the same Stability Selection ap-
proach, and we propose the first R implementation of

this method. This method will be referred to as LASSO
with Differential Shrinkage and Stability Selection:
LASSO-D3S

This work leverages bRF and LASSO-D3S to model the re-
sponse to nitrate (N) induction in the model plant Arabidopsis
thaliana as a GRN. We investigate the aspects and perfor-
mance of TFBS integration on this real dataset for different
parametrizations of bRF and LASSO-D3S, a range of biolog-
ically relevant densities, and through a parameter gradually
influencing the contribution of TFBSs to GRN inference, α .
To do so, we evaluate the predictive abilities of the inferred
GRNs against experimental databases of regulatory interac-
tions, and state of the art knowledge about nitrate nutrition
pathways.

We conclude that TFBS integration improves the biologi-
cal relevance of inferred GRNs for both bRF and LASSO-D3S
in benchmarks against experimental gold standards, and that
they realistically model nitrate nutrition pathways in this case
study.

Methods
Datasets for GRN inference
Binding motifs dataset
The TFBSs, encoded by PWMs, were retrieved from the JAS-
PAR database [Castro-Mondragon et al., 2021] and The Plant
Cistrome Database [O’Malley et al., 2016]. Among the 2547
known regulators in Arabidopsis, a collection of 631 non re-
dundant PWMs was formed by the union of these two sources.

We define the promoter region of Arabidopsis genes as
the sequence from -1000 bp to +200 around the Transcription
Start Site (TSS), as this interval has been estimated to contain
86% of binding sites in plants [Yu et al., 2016]. The TSS
of genes were defined as the start of the messenger RNA in
the TAIR10 GFF reference annotation, and there are in total
31824 promoter regions in Arabidopsis.

Among the 201 nitrate-responsive regulators, 70 regula-
tors were associated to a known PWM. All the promoters were
scanned to find occurrences of the 631 PWMs using FIMO
[Grant et al., 2011]. FIMO reported all occurrences of a PWM
in a given promoter if its p-value was under the default value
of 1e−4. In the case of several significant occurrences, the
one with minimum p-value was kept. Descriptive statistics of
the TFBS search results, forming a TFBS network between
PWMs and promoters, are presented in Figure 1.

Gene expression normalization
The RNA-Seq raw counts were normalized via the TMM
method [Robinson and Oshlack, 2010], and lowly expressed
genes were removed prior to differential expression analysis.

Validation data and metrics
Validation data To evaluate the correctness of the inferred
networks from both methods, we interrogated the ConnecTF
[Brooks et al., 2020] database. ConnecTF gathers experimen-
tal regulatory interactions for a large number of TFs:
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Figure 1. Distributions of the number of distinct PWM
hits per promoter, and the number of distinct promoter
hits per PWM. Subplots a and b are genome-wide (31824
promoters and 631 PWMs), while subplots c and d are
restricted to nitrate-responsive genes (1426 promoters and 70
PWMs). The average value of each distribution is overlaid in
orange.

• Direct regulation in Arabidopsis, via the TARGET as-
say. TARGET measures the gene expression changes
after importing a specific TF from the cytoplasm into
the nucleus of modified cells [Bargmann et al., 2013].

• In vivo binding via CHIP-Seq experiments.

• In vitro binding via a DAP-Seq assay [O’Malley et al.,
2016].

In total, 60 TFs of the 201 nitrate-responsive TFs are
studied in at least one type of validation (Supp. Table S1).

Validation metrics In this study, we consider four criteria
to evaluate the relevance of the inferred oriented interactions
E . Such interactions can be either from a regulator to a target
gene, but also to another regulator.

Two of them rely on the experimental data contained in
ConnecTF. Here, we denote the set of validated regulatory
interactions in ConnecTF as C .

1. Precision is the percentage of edges validated by at
least one source of validation in ConnecTF. To compute
precision, only the interactions involving one of the 70
TFs studied in ConnecTF are considered, forming the
new set of edges E ′, as the other interactions can be
neither confirmed nor falsified.

Precision =
|E ′∩C |
|E ′|

2. Recall is the percentage of ConnecTF interactions re-
trieved by GRN inference. The validation set C is

restricted to interactions involving on both side genes
from the 1426 input nitrate-responsive genes, forming
the new set of validated edges C ′.

Recall =
|E ′∩C ′|
|C ′|

To assess the performance of GRN inference, precision
and recall can be computed for all possible density values,
ranging from no edge to the entire weighted GRN of size
R(T − 1). The area under the curve formed by all possible
density thresholds is the Area Under the Precision and Re-
call curve (AUPR). It is common to use this curve for GRN
inference benchmark. However, we did not use this metric be-
cause LASSO-D3S inference involves feature selection, and is
thus not capable of providing a weight for all regulator-target
pairs. It only permits to weight the regulators selected for a
target, and gives the same score to all non-selected regulators.
Instead of relying on an incomplete AUPR for one of the meth-
ods, we rather explore a range of common and biologically
relevant densities (from 0.005 to 0.1) for which we measure
precision and recall.

The other validation metrics we employ are statistics about
the efficiency of data integration, and the predictive capabili-
ties of GRN models:

1. The PWM support of an inferred network controls the
outcome of integrative GRN inference by measuring
the average binding site scores of the predicted edges:

Σ(t,r)∈E Πr,t

|E |

2. The ability of an inferred GRN to accurately pre-
dict the target genes expression using the selected
regulators as predictors on test data. To evaluate bRF
inference for a target gene t, we fit a RF with the incom-
ing regulators of t in the GRN as predictive variables.
MSEt is computed as the mean MSE of this RF model
on OOB examples, i.e the experimental conditions not
seen while adjusting the trees. To evaluate LASSO-D3S
inference for a target gene t, we fit a Poisson regression
with the incoming regulators of t in the GRN as predic-
tive variables. MSEt is computed as the mean MSE in
the test folds of a 5-folds cross-validation.

The global MSE of an inferred GRN is the average
MSE for all target genes in the GRN, taken to the log
scale.

Results
Integrative GRN inference methods
We give here a detailed overview of two novel integrative GRN
inference procedures based on TFBS prior information (Fig-
ure 2). The information of TFBS occurrences in the gene pro-
moters was derived from the binding motifs dataset described
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Figure 2. Illustration the bRF and LASSO-D3S integrative GRN inference methods. Input data for a target gene Y is in the
form of an expression matrix for the regulators X , and a TFBS scoring matrix Π. Π contains information about the presence or
absence of the regulators PWM in target gene’s promoter. α is a parameter controlling the force of TFBS integration
expression. For each target gene, a regression model is fit to Y with bRF or LASSO-D3S using the expression levels of the
regulators as predictive variables, and favoring the attribution of high influences to regulators with their TFBS in the target’s
promoter. For bRF, this prioritization of provided by a weighted subsampling of the regulators space when elongating the
regression trees, while it is achieved by differential shrinkage combined to stability selection is LASSO-D3S. Once all
regulator-gene pairs were ranked based on their influence in the regression models, final GRNs are built by selecting the
number of strongest interactions providing a desired network density.

in the Methods section. The TFBS prior matrix Π gives,
for each regulator-target pair (r, t) a prior value Πr,t ∈ [0,1]
defined as:

Πr,t =

{ 0 : if the PWM of r is not in the promoter of t
1 : if the PWM of r is in the promoter of t
1
2 : if the PWM of r is missing

(1)

Biased Random Forests
Non-linear regressors such as ensembles of regression trees
model complex relations between a target gene and the ex-
pression of its regulators, and combinatorics of regulators as
well. As inspired by iRafNet [Petralia et al., 2015], we model
data integration in RF by increasing the use of regulators sup-
ported by a binding site in the decision nodes of the regression
trees. A biased RF is inferred for each target gene t. At each
decision node, the most discriminating regulator is chosen
among a subset of

√
R regulators. This subset, traditionally

equiprobably sampled from all the regulators, is submitted
here to a weighted sampling where the weights encode prior
knowledge about the regulators. With a high weight, a reg-

ulator is more likely to get chosen to compete with others
among the

√
R regulators tested to create a decision node. As

a result, the importance metric of this regulator is expected to
be inflated.

The chance of a regulator r to get picked in the decision
node of a regression tree adjusted to the target gene t is the
weight wr,t . To bias the RFs toward attributing high impor-
tances to TFBS-supported variables, we define a weight wr,t
that increases with the TFBS prior Πr,t . No link function
was proposed for TFBS prior integration in the form of dis-
crete scores in [0,1] in the iRafNet publication. Defining wr,t
through a linear relation with Πr,t did not strongly increase
the importance of prior-supported regulators in our prelimi-
nary experiments (not shown). Consequently, we designed a
novel function to link the weight of each TF wr,t during biased
subsampling in RFs estimation with their value in the TFBS
prior matrix Πr,t :

wRF
r,t = 10kΠr,t α (2)

where α is chosen in [0,1] to tune the prior strength and k is
a small integer that allows to intensify the prior strength de-
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pending on the dataset. The value of k is further discussed and
chosen in the Parameter Choice section of the Experimental
analysis in Arabidopsis thaliana. We built the implementation
of this weight function upon the iRafNet code.

We also added an alternative importance metric, the MDA.
The MDA is computed as the relative increase of prediction
error induced by the permutation of a given variable, as com-
pared to the Mean Squared Error (MSE) when it is not per-
muted. The prediction error for a target gene t, measured by
the MSE, is evaluated on the Out-Of-Bag (OOB) examples
and defined as:

MSEt =
1

NOOB
Σi∈OOB(yt,i − ŷt,i)

2

When the expression values of the regulator r are random-
ized to make the prediction ŷt,i, the MSE of gene t is named
MSEt,rand(r). The MDA between regulator r and gene t is then

MDAt,r =
MSEt,rand(r)−MSEt

MSEt
∗100

The addition of the MDA metric was implemented by modify-
ing the C++ dependency of iRafNet, based on the dependen-
cies found in the randomForest R package [Liaw and Wiener,
2002].

In addition to being less sensible to over-fitting, the MDA
has the advantage of not requiring any scaling of the response
variable to get comparable importance metrics between target
genes. This is not the case in the default node purity metric
in iRafNet and GENIE3 (i.e average variance decrease in the
response due to a split using this regulator) because it depends
on the variance of the response.

The third modification of iRafNet was to allow the restric-
tion to a subset of candidate regulator genes as variables in
the regression, that was initially performed using all genes as
variables in iRafNet.

LASSO with Differential Shrinkage and Stability Selection
As RNA-Seq experiments generate count data, we model the
expression of a target gene t in the condition i as a Poisson-
distributed variable Yt,i ∼ P(µt,i). The parameter of the Pois-
son distribution µt,i is estimated on the log scale as a linear
combination of the expression values of the regulator genes,
with xr,i the expression level of regulator r in the condition i:

ln(µt,i) = βt,0 +ΣR
r=1βt,rxr,i (3)

We employ a LASSO penalty in order to overcome the
high-dimensional setting and to select the most predictive reg-
ulators. In addition, we propose to use differential shrinkage
in order to favor the selection of TFBS-supported variables.
Differential shrinkage allows to modulate the penalty strength
of each variable individually, in a way that regulators with
their binding site in the target’s promoter are less penalized
during model adjustment. We model differential shrinkage
for the LASSO using specific penalty coefficients wt,r ∈ [0,1]
defined as a linear function of the TFBS prior Πt,r:

wLASSO
t,r = 1−Πt,rα (4)

where α is chosen in [0,1] to tune the prior strength. For each
target gene t, the function to optimize for model estimation is:

argminβt

{
− 1

N
logL (βt ;X ,Yt)+λΣR

r=1wLASSO
t,r |βt,r|

}
, (5)

where λ controls the overall strength of the penalty, R is
the total number of regulator genes, N the total number of
measurements and logL (βt ;X ,Yt) is the log-likelihood func-
tion. The value of λ is learned from 5-fold cross valida-
tion: we retain the value of λ for which the minimal error
(MSE) on the test folds is reached. We relied on the glmnet
[Friedman et al., 2010] implementation of the LASSO, with
the penalty.factor argument for specifying differential
shrinkage weights.

Feature selection with LASSO can however be sensitive
to noise in the data, correlated variables, and to cross valida-
tion partitioning. In order to enable the selection of robust
and high confidence regulators, we employed Stability Se-
lection, that was shown to reduce these issues [Meinshausen
and Bühlmann, 2010, Bach, 2008], and was already used in a
GRN inference approach combined with LARS [Haury et al.,
2012]. Hence, instead of fitting one generalized linear model,
S models are adjusted with, each time, small random perturba-
tions applied to the data. More precisely, at each iteration of
the stability selection procedure with differential shrinkage:

1. N observations are sampled with replacement from the
N available experimental conditions, which is known
as bootstrapping.

2. For each regulator gene r, the differential shrinkage
weight is defined by wt,r to which is added a small
quantity, uniformly drawn between -0.1 and 0.1. This is
meant to slightly disturb the prior information, brought
here from the presence of TFBS in the promoter region
of the target gene t.

3. The N observations are randomly partitioned into 5
cross validation folds.

4. A model is fitted by minimizing Equation (5) with per-
turbed differential shrinkage weights and applied to this
bootstrapped dataset.

Noteworthily, stability selection makes LASSO regression
more comparable to the procedure of RFs, that are also learned
from bootstrapped samples. Based on stability selection, we
propose two metrics to score the regulatory influence between
a target and its regulator:

• Selection frequency, defined as the number of times a
regulator is selected in the LASSO regression divided
by S.

• The statistical significance (two-tailed p-value corre-
sponding to the coefficient z-ratio based on a Normal
reference distribution) of the coefficient βt,r associated
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with regulator r in an unpenalized Poisson regression,
where the predictive variables are limited to ‘robust reg-
ulators’, i.e. regulators with selection frequency greater
than a chosen threshold.

Final edges selection
For both integrative GRN inference methods, the final GRN is
built from the edges associated with the strongest interactions
(highest MDA for bRF, highest frequency selection or lowest
p-values for LASSO-D3S) to satisfy a user-specified network
density. Network density is defined as D = E

Etotal
with E the

number of edges (regulation relationships) in the inferred
network, and Etotal = R(T −1) the total number of edges in a
complete oriented GRN containing R regulators and T genes.
The types of scoring metric and hyperparameters settings are
explored in the experimental analysis.

Experimental analysis in Arabidopsis thaliana
Gene expression dataset
As a case study for GRN inference, we chose the transcrip-
tomic root response to nitrogen induction in the plant Ara-
bidopsis thaliana [Varala et al., 2018]. This dynamic response
has the advantage of being already well characterized, and
has been the basis of other methodological developments to
chart regulatory networks [Varala et al., 2018, Brooks et al.,
2019, Cirrone et al., 2020]. Continuing efforts to chart the
regulatory mechanisms involved in nitrate response is of great
agricultural interest, as nitrate is the main nutrient source of
plants. Gene expression was measured in the roots at times 0,
5, 20, 30, 45, 60, 90, and 120 minutes after nitrate or control
treatments 1. As each combination of time point and treat-
ment was measured in three replicates, this results in a total
of 45 samples. We selected differentially expressed genes re-
sponding to nitrate induction in time by testing the interaction
terms between nitrate treatment and time modelled as natural
splines. A total of 1426 genes had FDR adjusted p-values un-
der 0.05 for those interaction effects. Among those T = 1426
genes, R = 201 are annotated as transcriptional regulators in
the TAIR10 genome release. This set of nitrate-responsive
genes form the list of genes of interest taken as input for GRN
inference.

Parameter choice
The choice of the parameter values may depend on the dataset,
in particular on the dimension ratio between the number of
regulator genes and the number of measurements. For setting
parameters, we checked the strength of prior knowledge inte-
gration via the PWM support, i.e. the proportion of inferred
edges between a regulator and a target gene, that are supported
by the presence of the PWM associated with the regulator in
the promoter of the target gene. We expect the PWM support
to grow smoothly with the integration strength α .

1Although samples at 10 and 15 min were also available, we discarded
them, as they were extremely different from the rest in the two first axis of a
Principal Component Analysis.

Hence, all analyses involving bRF were performed with
1000 trees and the MDA as importance metric (Figure S1a)
and k = 2 (Figure S2a) to define the TFBS prior weight wRF

r,t
(Equation (2)). Stability Selection in LASSO-D3S was com-
posed of 100 iterations. The analyses involving LASSO-D3S
used a 2-step procedure with a robustness threshold of 70 %
in the stability selection step and p-values to rank the selected
(stable) interactions (Figure S3a).

TFBS integration improves the biological relevance of
inferred GRNs
In both bRF and LASSO-D3S, using TFBS prior information
increases the PWM support in the inferred GRNs (Figure
3a)). The sparsest networks, i.e. the networks with the lowest
densities D and made of the first selected interactions, globally
reach a higher PWM support than denser networks, meaning
that scoring metrics in the two approaches are higher for
TFBS-supported edges. Hence data integration is correctly
encoded in the inference processes.

Regarding precision, i.e the fraction of edges validated in
the ConnecTF experimental database, the sparsest networks
tend to perform better, indicating that the edges scores from
bRF and LASSO-D3S are informative about the biological
relevance of the interactions (Figure 3b). In addition, precision
is maximized with TFBS integration for both methods. The
highest precision is achieved by LASSO-D3S, with a value
of 43.5 %, with the sparsest network and integration strength
α = 0.5. For higher values of α , precision decreases, showing
that GRN inference in the LASSO regression case requires
a trade-off regarding TFBS contribution. In contrast, bRF
reaches its optimal precision 42.4% for α = 0.8 and stays
almost constant until α = 1.

Recall, that quantifies the percentage of the experimen-
tal gold standard retrieved by the inferred networks, is very
similar for bRF and LASSO-D3S (Figure 3c). As expected,
networks with a high density are able to retrieve more of the
ConnecTF interactions than the sparsest networks. The effect
of TFBS integration is to increase recall for both methods.

Overall, the precision and recall analysis indicates that
TFBS information is useful in the context of predicting reg-
ulatory interactions in which the TFs binds to their target in
vivo or in vitro (DAP-Seq or CHIP-Seq), or in which the TF
nuclear presence alters its target expression (TARGET).

Binding sites integration brings consensus
With no integration, the sparsest networks share few edges,
but the effect of data integration is stronger for them. In those
high-confidence LASSO-D3S and bRF networks, increasing
values of α from 0 to 0.8 increases the intersection between
their edges (Figure 3d). This discloses that prioritizing to a
certain degree the prediction of TFBS-supported interactions
captures consensual biological signal. For α values past 0.8,
bRF and LASSO-D3S contain less common edges, which
suggests that they infer different interactions for very strong
TFBSs contributions. The denser networks display a stable
fraction of shared edges.
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Figure 3. Comparison of bRF and LASSO-D3S performances depending on the integration strength α and for different
density thresholds. Each dot represents in inference run, and allow to visualize results variability for the same set of
parameters.a. PWM support of predicted interactions, i.e the frequency of TFBS supported edges in the GRN b. Precision of
inferred GRNs against the ConnecTF validation database. c. Recall of inferred GRNs against the ConnecTF validation
database. d. Fraction of inferred interactions in common between bRF and LASSO-D3S at comparable densities.
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Figure 4. Comparison of bRF and LASSO-D3S predictive capabilities and GRN structures depending on the integration
strength α and for different density thresholds. Each dot represents in inference run, and allow to visualize results
variability for the same set of parameters. a. Average MSE of genes in the inferred GRNs, on the log scale. b. Average number
of regulators per gene in the inferred GRNs. c. Number of distinct regulators in the inferred GRNs.

The predictive performance and topology of inferred GRNs
largely vary between bRF and LASSO-D3S
We also evaluated the performance of bRF and LASSO-D3S
in the task of predicting the expression levels of the target
genes in the inferred GRNs. The prediction error is measured
on test data, and is thus an estimator of the generalisation
performance in predicting the expression of target genes using
their inferred regulators.

Firstly, regardless of sparsity or TFBS integration, LASSO-
D3S commits overall more error and shows more dispersed
predictions between different runs under the same parameters.
It must be noted that the complexity of the models (Poisson
regression vs. RFs) strongly differ and impact their predic-
tive power. Still, very different patterns in prediction errors
emerge between bRF and LASSO-D3S (Figure 4a). In bRF,
the addition of TFBS information slightly decreases predic-
tion error in unseen experimental conditions, suggesting that
the prioritization of TFBS-supported regulators allows more
robust predictions and biologically relevant subsets of reg-
ulators. It is also notable in Figure 4b that the number of
regulators per target gene is diminished by TFBS contribution,
suggesting that data integration could limit over-fitting in RFs.
In LASSO-D3S, error is rather stable with PWM integration.
Remarkably, the choice of network density has a strong im-
pact on prediction error. In bRF, the sparsest networks commit
the more error, while it is the denser network in LASSO-D3S.
In the latter, error is reduced when network density increases
from 0.005 to 0.025, and then increases again in denser net-
works. This indicates that for linear regression, there might
be an optimal network density to maximize prediction gen-
eralizability, and avoid over-fitting with too many regulators
per target gene. These observations on prediction error hint
that the complexity of the model (linear regression versus non
linear regression) could act upon prediction performance and
over fitting.

Network topology between the two approaches have com-

mon features : denser networks display an elevated number
of regulators per gene while sparser networks have very few
(Figure 4b). However, without data integration, bRF results
in more regulators per target genes, and thus less target genes
in total. For high-confidence GRNs, the number of distinct
regulators is also almost half the one of LASSO-D3S, disclos-
ing that network topologies without TFBS contribution have
important differences.

As TFBSs contribution is increased, the number of regula-
tors per gene in the inferred GRNs is constant in LASSO-D3S
while it slightly decreases in bRF except for the most dense
network. The diversity in inferred GRN regulators is also
affected by TFBS integration in the sparsest networks. In
those GRNs, the increase of α causes the number of distinct
regulators to drop especially in LASSO-D3S (Figure 4c), and
in a less pronounced way for bRF. This behavior is expected
as data integration favors the selection of a restricted subset of
regulators that have their PWM in their target’s promoter. For
high values of α , is it reasonable to assume that regulators
lacking a PWM are more often rejected from the GRNs in
favor of PWM with higher values in the prior matrix Π.

Integrative GRN inference recovers regulatory mecha-
nisms of nitrate response in Arabidopsis roots
Well characterized regulatory mechanisms describing nitrate
nutrition are available in the literature [Vidal et al., 2020, Bel-
legarde et al., 2017, O'Brien et al., 2016]. Such mechanisms
are expected to be retrieved by our integrative GRN inference,
which is based on transcriptomic data measuring temporal
root response to nitrate treatment [Varala et al., 2018].

Firstly, to evaluate the biological relevance of inferred
GRNs regarding nitrate induction, we looked at the position
in the degree ranking of TFs known to play a central role in the
control of nitrate nutrition: LBD37/38/39 [Rubin et al., 2009],
HRS1/HHO2/3 [Kiba et al., 2018], TGA1/4 [Bellegarde et al.,
2017], and DIV1 [Brooks et al., 2019]. We define the relative
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Figure 5. Pathways relevant to nitrate nutrition are realistically modeled by bRF and LASSO-D3S. a. The relative degree
rank of TFs known for their role in regulating nitrate acquisition and metabolism is shown in the inferred GRN depending on α
and for several densities D. The red lines represent the average relative rank of all regulators for which the PWM is either
available or missing. b. Gene Set Enrichment Analysis (GSEA) of 5 biological processes associated to nitrate nutrition,
metabolism and signalling. The hypothesis that those processes are enriched in the most connected genes of the GRNs is tested
by the gseGO function of the clusterprofiler R package [Yu et al., 2012], taking as input the list of nodes ranked by
degree. The enrichment scores relative to node degree that are significantly enriched (FDR ≤ 0.1) are displayed and shown as a
function of α and for several densities D. c. Predictions of the regulation of NRT2.1 by NLP7, HHO3/6, LBD38/39, and BT1/2
as a function of α and for several densities D. Tiles are colored if the TF regulates NRT2.1 in the inferred GRN, with opacity
reflecting the regulation robustness in 3 runs of inference.
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rank in degree of a TF as its position in the overall ranking of
the GRN nodes, divided by the total number of nodes in the
GRN. A relative rank in degree of 1 means that a TF is the
most connected node in the GRN. Nitrate-related regulators
are in most cases among the most connected genes in the
GRNs, as their relative degree ranking is often between 0.75
and 1 (Figure 5a). This can be explained by the fact that their
expression profiles are good predictors of many target genes
responding to nitrate, regardless of TFBS information. This is
a first confirmation that the inferred GRNs recover important
players of nitrate response. As the strength of TFBS integra-
tion increases, the nitrate-relevant TFs for which the PWM
is available gain in importance and are even more connected
in the GRN for both methods. This behavior is observed
for all TFs for which the PWM is available independently of
their function, as shown by the mean relative rank in degree
of those TFs. To the contrary, the relative rank in degree
of nitrate-related TFs for which a PWM is missing is high
without integration, and decreases for very high values of α
(Figure 5a). The fact that LBD37/38/39 keep a high degree
relative to the average of other TFs with unknown PWM in
bRF shows that the lack of a PWM is not too severe: if their
expression profile is informative, they are still predicted as
central nodes for most values of α and densities. The decrease
in relative rank in degree of TFs lacking a PWM is more pro-
nounced for low densities, and for LASSO-D3S. Even when
the rank of those TFs decreases, they are not rejected from
the GRN, which is the desired behavior for such TFs with a
neutral prior. Those analyses indicate that important actors
of nitrate nutrition are accurately modeled in GRNs, but that
the effect TFBS integration on the ranking of those nitrate-
relevant TFs stays partly driven by the availability of their
PWMs.

We then investigated weather TFBS integration would
globally results in more connectivity for genes involved in
nitrogen (N) nutrition, metabolism and regulation indepen-
dently of PWM availability. We thus measured the associa-
tion between gene overall degree, and gene biological pro-
cesses relative to N compound (GO:0006807, GO:0051171,
GO:0051173), or root system development which is expected
to be regulated by nitrate availability (GO:0022622) [Belle-
garde et al., 2017]. Gene Set Enrichment Analyses (GSEA)
demonstrate that there is a significant enrichment for those
pathways among high-degree genes in the GNRs (Figure 5b).
The elevation of TFBS integration strength causes some pro-
cesses to become significantly enriched in top degree nodes,
such as the positive regulation of N metabolic process and
root system development in bRF as soon as α is sufficiently
high. In bRF, N metabolic process and its regulation are even
more enriched as TFBS contribution is increased, and so is the
positive regulation of N metabolic process in LASSO-D3S.
For dense networks, the effect of TFBS integration is lessened.
This suggests that the proposed inference methods attribute
topological importance at the system level to genes involved
in the response to nitrate and and root system plasticity, and

even more when TFBS information is utilized.
Finally, we focus on NRT2.1, a key player of the re-

sponse to nitrate in Arabidopsis root tissues. NRT2.1 be-
longs to the multigenic family of Nitrate Root Transporters
(NRT)[Bellegarde et al., 2017]. This gene transports nitrate
under low nitrate conditions from the culture medium into the
root cell. Several works have established that HRS1 and its
homologs HHO2/3 regulate NRT2.1 [Kiba et al., 2018, Safi
et al., 2021] by directly binding to its promoter. NLP7, an
established master regulator of nitrate acquisition, is also a
regulator controlling the expression of NRT2.1, and other
regulators like HHO3 [Marchive et al., 2013]. With this infor-
mation, we explored the inferred GRNs to identify predicted
regulators of NRT2.1.

We found that without TFBS integration, i.e α = 0, those
TFs are never predicted by bRF as incoming regulators for
NRT2.1 (Figure 5c). Still at α = 0 but for LASSO-D3S, only
NLP7 is predicted as a regulator of NRT2.1. In contrast, when
TFBS integration strength is pushed to values of α between
0.5 and 1, both LASSO-D3S and bRF predict HHO3 and
NLP7 as a regulator of NRT2.1. In addition, HH06, a TF
from the same family as HHO3, is also predicted to regulate
NRT2.1 in LASSO-D3S at α = 1.

Finally, we investigated the effect of the lack of PWMs
for known regulators of NRT2.1 like LBD38/39 [Rubin et al.,
2009]. Those genes are TFs but their PWM was not available
in current motif databases. However, bRF still predicts LBD39
as regulating NRT2.1 for all densities, and LBD38 for high
values of α and dense networks. Similarly, we studied the
inferred role of BT1/2, E3 ligases that do not directly bind
to DNA and thus do not possess a PWM, but can indirectly
and negatively control the expression of NRT2.1 [Araus et al.,
2016]. bRF retrieves their importance by predicting BT2
for all densities and α values, and BT1 for dense networks
and strong TFBS integration. The prediction of LBD38 and
BT1 as α is increased is striking as they do not have a strong
value in Π, but it could be explained by the ability of bRF to
model interactions between regulators. For instance, model
complexity in bRF could favor the selection of BT1 or LBD38
based on the relevance of their expression profile conditionally
on the expression of other TFBS-supported TFs retrieved as α
increases. This might explain the fact that LASSO-D3S does
not capture their action upon NRT2.1, as its linear framing
does not model interactions between regulators.

Discussion
This work shows that TFBS information is beneficial to the
accuracy and biological relevance of GRN inference in Ara-
bidopsis thaliana. We believe this study is a first step in
providing guidance on how to parameterize prior information
integration into RF and LASSO-based regressions for GRN
inference.

Both in the linear and the non-linear settings, the contribu-
tion of TFBS information relative to gene expression results
in more inferred edges confirmed in the experimental gold
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standard formed by ConnecTF. In particular, both precision
and recall can be significantly increased by TFBS integration,
which is something very desirable in the output of such classi-
fication models. A high recall might however not be as useful
as a high precision, as a experimental validations are costly
and can reasonably by implemented for a small set of high-
confidence edges. In our case study, bRF and LASSO-D3S
can both be used to make realistic models of the response to
nitrate in Arabidopsis roots. As TFBS integration is gradually
increased in bRF, genes from nitrate nutrition pathways are
attributed more connections in inferred GRNs, and state of
the art regulations of NRT2.1 can be predicted.

A hypothesis explaining the improvement brought by
TFBS integration is that it partly lifts co-linearity issues in
gene expression data. Previous work on GENIE3 inference
[Cassan et al., 2021] grouped together highly correlated reg-
ulators to prevent a biased estimation of their importance.
Data integration overcomes this issue by providing a way to
chose between regulators with extremely close expression
profiles, based on prior complementary knowledge.

While similar behaviors between bRF and LASSO-D3S
are observed regarding PWM support, recall, network topolgy,
and enrichment of nitrate-relevant genes in high degree nodes,
their benchmark outcomes differ on a set of criteria. Firstly,
LASSO-D3S does not seem to benefit from too strong TFBS
input, as shown by a clear optimum on the precision curve
(Figure 3b), while bRF performs best at high values of α .
This could mean that the two methods have different vulnera-
bilities to PWM information being missing for a significant
part of the regulators. Similarly, LASSO-D3S becomes too
severe against regulators with a neutral prior when α is ele-
vated, a limitation that does not seem to affect bRF as strongly.
This can be partly explain by the fact that the manner of in-
corporating prior information varies between the considered
approaches because of the fundamental and structural differ-
ences between the RF and LASSO models. For example,
differential shrinkage can be fully controlled by the defini-
tion of a variable-dependant coefficient for the penalty, while
prior incorporation in bRF has inherent randomness. Second,
predictions made on the expression of target genes based on
inferred regulators are overall more accurate in bRF than in
LASSO-D3S. This could be attributed to the complexity of
the predictive models, and the ability of RFs to model non
linear relationships between expression profiles, as well as
their ability to combine the expression of several regulators to
make use of interaction effects. This could also explain why
TFs of the LBD family and BT family, that have a neutral
prior value, are inferred as regulating NRT2.1 when TFBS
contribution is strengthened in bRF. Their selection may be
encouraged by the fact that co-regulators are supported
by TFBS priors.

Limitations and perspectives This study has proven that
TFBS integration may improve GRN inference and opens new
questions to be further investigated. First, the construction of
the TFBS prior might be further studied.

There are still many TFs of which the binding motifs
are unknown, a problem amplified in non-model organisms.
Such TFs, are equally penalized for all target genes, and have
a prior value of Πt,r = 0.5. Even if they are relevant TFs that
really bind to their target and influence their expression, they
are unlikely to be frequently selected as regulators in GRNs
inferred with strong values of α , because TFs with Πt,r of
1 will be favored instead. This limitation will be reduced as
PWM databases are further completed and maintained by the
community.

There is a high chance of false positives in the scanning
of PWMs in promoter regions: the presence of a binding mo-
tif can occur by chance, or may not necessarily cause binding
nor regulation in a cellular context. TFBS with low com-
plexity in PWM databases can result in hits in almost all the
promoters of an organism. This is, for instance, observed in
the heavy tails of the distributions of the number of target
promoters per PWM (Figure 1). In this analysis, regulators
with such a widespread PWM were included, but their ques-
tionable biological relevance could lead to their exclusion or
to additionally weighting regulators based on the complexity
of their PWM during GRN inference.

Applying TFBS integration to other complex organisms
could pose new challenges. In this work, the location of TFBS
was assumed to be in the promoter regions of the genes. In
organisms where regulation by distant enhancers is common,
in particular in human, the scanning of the identified enhancers
regions would be required as well.

Moreover, the form of prior values relative to TFBSs can
be diverse and choosing the optimal one may not be trivial.
For instance, instead of using the presence or absence for a
PWM hit above a significance threshold in the prior matrix Π,
the p-value or the score of the hit could be used to bring more
quantitative insights. In addition, instead of using the PWM
hit with the maximum score to build Π, more weight could be
attributed to the regulators for which the PWM have multiple
occurrences in the promoter of a target.

Also, the stability and robustness of GRN inference re-
mains a noticeable direction for further improvements. For
instance, it would be interesting to test or adapt the StARS
approach [Liu et al., 2010], that also has the objective to select
few relevant and robust edges, but differs from our current
implementation of stability selection.

Finally, our conclusion that TFBSs combined to expres-
sion improve GRN inference would be strengthened when
applied to new datasets in Arabidopsis, or even to new organ-
isms in future works.
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• The RNA-Seq data for the response to nitrate induction
was downloaded from the GEO accession GSE97500

• The PWMs used to build the TFBS dataset were re-
trieved from JASPAR and the Plant Cistrome Database.

• To identify Arabidopsis TSSs and promoter regions, we
relied on the TAIR10 GFF3 file.

• The regulators of Arabidopsis used for GRN inference
are the union between PlnTFDB and AtTFDB

• GRN validation were done against the content of the
ConnecTF database

All R scripts for the bRF and LASSO-D3S functions and
relevant code for this project are available in the github repos-
itory:
https://github.com/OceaneCsn/integrative_
GRN_N_induction
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Validation type Number of TFs

TARGET 33
CHIP-Seq 5
DAP-Seq 40

Total 60
Table S1. Representation of the 201 nitrate-responsive TFs in
each type of data in ConnecTF
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Figure S1. Comparison of importance metrics in bRF depending on the integration strength α and for different density
thresholds : the MDA (Mean Decrease in Accuracy) and the MDI (Mean Decrease in Impurity).a. PWM support in
inferred edges. b. Precision on ConnecTF of inferred edges. c. Recall on ConnecTF of inferred edges. While both importance
metrics allow an improvement of GRN predictions as more prior information is used, the MDA performs better in terms of
precision.
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Figure S2. The parameter k tunes the link function wr,t = 10kΠr,t α for prior integration in bRF, depending on the
integration strength α and for different density thresholds. a. Mean PWM support in inferred edges for different values of
k. b. Precision on ConnecTF of inferred edges for different values of k. Overall, these results suggest that k = 2 is sufficient to
permit efficient data integration and produce the highest strongest values.
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Figure S3. PWM support and precision for different scoring metrics (p-value of selection frequency), and robustness
thresholds in LASSO-D3S. a. Mean PWM support of inferred edges. b. Precision on ConnecTF of inferred edges. Selection
frequency is not the best scoring method to quantify regulatory influence. Indeed, with increasing values of α , the sparsest and
supposedly higher confidence networks do not perform better than lower confidence networks. This means that even though
this scoring metric permits to increase the PWM support of inferred GNRs, it does not rank inferred edges properly when
benchmarked on against known regulatory interactions. We thus propose to work with the second metric : the p-value of robust
regulators in unpenalized Poisson regressions. The selection frequency required at this step should not be increased over 0.7 :
indeed, it deteriorates at the same time the PWM support of the inferred GRNs, but also the biological relevance of inferred
edges for high values of α .
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2.4 Understanding the gradual gene expression reprogram-
ming under CO2 gradients and two N regimes

Note: Code and data to reproduce the results presented in this section are available in the
github repository https: // github. com/ OceaneCsn/ gradientCO2

The GRN inference results presented so far are based on steady state transcrip-
tomes under contrasted CO2 and nutrition conditions. There is, however, substantial
evidence that regulatory mechanisms occur in an adaptive manner, in time or along
the gradual change of an environmental variable. The variation of a continuous
environmental variable offers a new dimension to GRN inference by providing ex-
pression profiles at a better resolution, and allowing to model finer relations between
them.

To measure relevant expression changes in the context of rising CO2, we gener-
ated a transcriptomic dataset of the root response to gradually increasing CO2 con-
centrations. In addition to allowing a better resolution for GRN inference, measuring
gene expression under a full range of CO2 concentrations has the potential to shed
light on the dynamic of CO2 response: is gene expression linearly reprogrammed as
CO2 rises, or are there step functions and abrupt changes at specific CO2 levels? Fur-
thermore, we made the decision to investigate different types of N sources for the
plant: nitrate and ammonium nitrate nutrition. This was motivated by the observa-
tion in the literature that nitrate nutrition elicits more severe phenotypic responses
than ammonium nitrate nutrition in the face of CO2 elevation. In particular, ammo-
nium nutrition appears to be less penalized in terms of acclimation of photosynthesis
to eCO2 [Asensio, Rachmilevitch, and Bloom, 2015].

Arabidopsis Columbia ecotypes were hydroponically grown in 5 different con-
trolled chambers, differing only in their CO2 concentrations: 400, 525, 650, 775 and
900ppm. Inside a chamber, plants were separated in two groups, one receiving ni-
trate (KNO3) and one receiving an ammonium nitrate (NH4NO3) mix, both result-
ing in a N concentration equal to 0.5 mM. Plants were sampled 5 weeks after the
beginning of the experiment, and inside each combination of N nutrition and CO2
concentration, plants were separated for downstream analyses :

1. 12 plants were used for shoot biomass and N content analyses (2.4.1)

2. 4 samples were formed to be the 4 technical replicates in root transcriptomic
analyses (2.4.2). Each sample contains the root systems of approximately 5
plants pooled together.

In the following statistical analyses, we chose natural cubic splines to flexibly
model phenotypes or gene expression as a continuous non linear function of CO2.
Spline regression fits a set of piece-wise polynomials to experimental points. Natural
cubic splines are characterized by their degree of freedom (DF), which is the number
of knots delimiting the intervals of each polynomial. Increasing the number of DF
permits to model more complex response behaviors. In the case of natural cubic
splines, continuity assumptions and minimal curvature at the knots are enforced to
obtain maximal smoothness and goodness of fit. In practice, a natural cubic splines
basis for the CO2 variable is first computed for a given DF, and then taken as input by
a desired regression function like the linear model. This results in one coefficient per
DF relative to CO2 in the regression output, which can then be classically analysed
in terms of effect size, sign, and significance.

https://github.com/OceaneCsn/gradientCO2
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ted as a function of CO2 level and N nutrition (KNO3: nitrate, Mix =
ammonium nitrate). Each point is one plant, with N ∼ 12 plants per
condition. Splines interpolations are shown with 2 DF for biomass

and 4 DF for N content.

2.4.1 Phenotypic response to a CO2 gradient

Biomass production and N content responded accordingly to what was already
documented in the literature and observed in our previous combinatorial study.
Biomass production is stimulated by the rise of CO2 concentration (Figure 2.2). In
accordance with previous findings [Asensio, Rachmilevitch, and Bloom, 2015], am-
monium nitrate nutrition seems favored: as compared to nitrate nutrition, not only
plants grown with ammonium nitrate have a higher average biomass, but CO2 in-
creases even more their biomass (Table 2.1).

Second, increasing CO2 levels depletes the N content of plants from both types
of N nutrition (Figure 2.2). Interestingly, plants receiving ammonium nitrate contain
more N under ambient CO2 than plants receiving nitrate, but they contain less N
under elevated CO2, showing a more pronounced CO2 effect on N decrease (Table
2.1). In fact, a conclusion can be made from those results that ammonium nitrate
nutrition accentuates the biomass and N content responses to eCO2. It also seems
that the evolution of N content is less linear than biomass variation, as it appears
that the biggest drop in N content occurs between 525 and 650 ppm, but do not vary
as much for lower or higher concentrations. This motivated the use of 4 degrees of
freedom for N content instead of 2 for biomass in our splines models.

2.4.2 Transcriptomic response to a CO2 gradient

In order to study the transcriptomic regulations under these experimental condi-
tions and eventually explain the observed phenotypes, we first proceeded to a global
analysis of gene expression variation using RNA-Seq experiments. RNA-Seq were
generated and sequenced as in the transcriptomic dataset of Publication #3.

Raw fastq files were treated for quality control with fastp, mapped to the TAIR10
reference genome with STAR, and the expression level of each gene was quanti-
fied with htseq-count. The raw expression matrix was normalized with the TMM
method and lowly expressed genes were removed when the sum of their counts in
the 40 samples did not exceed 400. The global variation of gene expression was first
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Dry biomass (mg) N content (%)
(Intercept) 11.80∗∗∗ 6.70∗∗∗

ns(CO2, df = DF)1 22.50∗∗∗ −0.55∗∗∗

ns(CO2, df = DF)2 10.78∗∗∗ −0.33∗∗∗

N_nutritionMix 4.55∗ 0.44∗∗∗

ns(CO2, df = DF)1:N_nutritionMix 10.88∗ −0.58∗∗∗

ns(CO2, df = DF)2:N_nutritionMix 0.10 −1.01∗∗∗

ns(CO2, df = DF)3 −0.31∗∗

ns(CO2, df = DF)4 −0.57∗∗∗

ns(CO2, df = DF)3:N_nutritionMix −0.83∗∗∗

ns(CO2, df = DF)4:N_nutritionMix −0.66∗∗∗

R2 0.74 0.88
Adj. R2 0.73 0.87
Num. obs. 118 116
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

TABLE 2.1: Summaries of statistical models for dry biomass and N%
responses to eCO2. Biomass and N content are linearly modeled as
the combination of the binary N_nutrition variable and the natural
splines basis of the CO2 gradient. Natural splines are referred to as
ns. DF = 2 for biomass and DF = 4 for N content, which is why some
coefficients (relative to DF 3 and 4) are not present in the biomass

model.

investigated through a PCA analysis of the log-transformed normalized expression
(Figure 2.3). This revealed that the major driver of gene expression is the type of N
nutrition, as shown by the placement of the samples along the first principal com-
ponent (57.3% of total expression variance). The second driver of gene expression is
the CO2 concentration, as samples are gradually organized by CO2 level along the
second principal component (8.3% of the total gene expression variance). The pro-
gressive divergence of the samples from different N sources as CO2 is increased sug-
gests that CO2 elevation may trigger specific regulations depending on the source of
N.

In order to identify differentially expressed genes (DEGs) in this experiment, we
relied on the negative binomial modelling offered by EdgeR. The mean and disper-
sion of gene expression distributions were estimated under the N_nutrition*ns(CO2,
DF = 2) design. A negative binomial generalized log-linear model was then fit to
each gene, from which lists of DEGs can be established by gene-wise statistical tests
for a given coefficient. At a FDR threshold of 0.5%, 2108 genes are detected as re-
sponding to CO2 elevation in the reference N source, nitrate. 1816 genes are differ-
entially expressed by the ammonium nitrate nutrition in the reference level of CO2,
aCO2, and 4454 genes are differentially expressed by the interaction between am-
monium nitrate nutrition and CO2 elevation. This elevated number of 4454 DEGs
responding to CO2 more specifically under ammonium nitrate supply indicates that
N source is a determining factor of the response to CO2. Given the strong impact of
the type of N supplied to the plant on gene expression, and that our previous works
focused on nitrate nutrition, we decided to carry out a first detailed analysis of the
2108 CO2 responsive genes under nitrate nutrition only.
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condition, and shaped according to the replicate number. The con-
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samples coordinates. On the right, the screeplot displays how much
of the total gene expression variation is explained by each principal

component.

2.4.3 GRN inference of the response to a CO2 gradient under limiting
nitrate supply

Based on the methodology developed and explored in Publication #4, we inferred a
GRN of the root adaptation to rising CO2 using expression data combined with TFBS
information. As a first approach, we chose the bRF model. Indeed, it was shown to
have a high precision and recall against ConnecTF when modelling the root response
to N induction, and a low prediction error, but also to retrieve important interactions
between genes even in the absence of knowledge regarding the TFBS of a regulator,
which was not always the case for LASSO-D3S.

The input data for bRF was composed of :

1. The normalized expression matrix of the 2108 CO2 responsive genes under
nitrate supply only. Among those 2108 CO2 responsive genes, 316 are known
as transcriptional regulators in Arabidopsis.

2. The TFBS scoring matrix Π. Among the 316 CO2 responsive regulators, 115
have a PWM available in JASPAR or the Plant Cistrome database. After a
FIMO search for the 115 known PWM in the 2108 promoters of CO2 responsive
genes, Π was either filled with 1, 0, or 1

2 depending on weather the PWM was
found in a promoter, not found in a promoter, or is not available in the motif
databases.

Preliminary explorations showed that TFBS information was efficiently integrated
in this dataset in the course of inference (i.e all the edges of the inferred GRNs can
rapidly be supported by TFBSs), so we set the hyper-parameter k of bRF to 1. To fur-
ther investigate the effect of TFBS integration, we set the desired network density to
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0.005, which corresponds to 3329 edges, and explored the PWM support, precision
and recall against ConnecTF for a range of possible integration strengths α (Figure
2.4). This figure allowed us to set α = 0.8 because it guarantees high enough PWM
support and recall, while precision does not benefit from higher values of α. These
parameter choices lead to a final inferred GRN containing 237 regulators, 817 target
genes, with a PWM support of 79.1%, a precision of 52.9% and a recall of 1.7%.
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FIGURE 2.4: Parametric exploration of bRF applied to the CO2 gra-
dient dataset. a. PWM support of inferred GRNs, defined as the
mean of the TFBSs scores of selected edges. A PWM support of one
means that all edges of the inferred GRN are supported by a TFBS. b.

Precision against ConnecTF. c. Recall against ConnecTF.

We also checked that the inferred GRN had a precision significantly higher than
expected by chance, by comparing the observed precision to the precision of 50 ran-
dom networks with the same gene composition and similar topologies. None of
the random networks had a precision as high as our inferred GRN, the precision of
which being 9.1 standard deviations away from the precision expected by chance
(Figure 2.5). This supports the hypothesis that our GRN inference significantly cap-
tured relevant features of gene regulation. Furthermore, the inferred GRN exhibits
standard properties of biological networks such as a degree distributions showing
a small number of hub genes and a large number of lowly connected genes (Figure
2.6).

In a similar way to our previous GRN inference works, we examined the ranking
of genes based on their connectivity in the predicted network. Strikingly, an elevated
number of genes in the most connected regulators are regulators already known for
their involvement in N nutrition pathways (Figure 2.7). CDF3 (AT3G47500) has the
highest overall degree and out-degree, and has already been established to control N
response and N use efficiency in Arabidopsis and tomato [Domínguez-Figueroa et
al., 2020]. The second, fourth and sixth top ranked TFs belong to the NIGT1 family:
HHO3, HRS1 and HHO2. The role of those TFs in the regulation of nutrient acquisi-
tion and especially of N has been clearly established, as well as their ability to bind
the promoter of their targets [Kiba et al., 2018; Safi et al., 2021]. UIF1, another HRS1
homolog also known as HHO5 is the 8th most connected gene in the GRN, which
reinforces the suspected role of this family in the CO2 response. RAV1 and BZIP3
are encountered slightly lower in the nodes ranking by overall degree. Those two
TFs were more recently discovered as important players in the temporal response
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FIGURE 2.5: Permutation-based test for the inferred GRN precision.
The edges of the GRN were randomly unmatched 50 times, and
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null distribution that separate the observed precision and the preci-

sion expected by chance.

to N induction [Brooks et al., 2019]. The 16th and 35th top ranked TFs are interest-
ingly NLP6 and NLP7, master regulators of the nitrate networks in plants [Marchive
et al., 2013]. In particular, NLP7 was proven to be post-translationnally regulated
by nitrate availability, and is expected to stay strongly expressed in our experiment
conducted on 0.5 mM of N. The fact that NLP7 is differentially expressed along a
CO2 gradient hints that there may be other modes of regulation of NLP7 in the CO2
response. Other members of the NLP family (NLP1/2/3) are also found in the GRN,
but with a lower number of connections.

BT1, a negative regulator of N nutrition, was found to have 41 connections in
the GRN. BT1 does not bind to DNA but has the capacity to modulate the binding to
DNA of other TFs, and thus can not be supported by a PWM in the inference process.
Still, its expression profile was predicted as important enough to regulate 24 targets
in combination with other TFs. Finally, CCA1 is predicted as a regulator of NRT2.1
and 23 other genes. This regulator, predominantly recognized for its control of the
circadian clock in Arabidopsis, was also identified by systems biology approaches
as involved in the N signalling networks [Gutiérrez et al., 2008].

Given the topological importance attributed to TFs controlling N nutrition, we
looked at important target genes for nitrate transport, signalling and metabolism.
We first wondered if they were present in the GRN, and if so, which genes were
their regulators. The G6PD2/3, belong to the oxidative pentose phosphate pathway,
a pathway that acts upon nitrate transporters in the context of light and sugar sig-
nals [Lejay et al., 2008]. They seem to be active in the response to a CO2 gradient, as
they have an important number of incoming edges in the GRN, respectively 10 and
18. In the pathway of nitrate assimilation, NIR1 is a main enzyme responsible for
nitrate reduction, and receives 10 connections. Interestingly, GRXS13 was predicted
as having 16 regulators. This gene comes from the glutaredoxin family, a family pre-
viously identified in the regulation of N transport through systemic signals [Ohkubo
et al., 2017; Ota et al., 2020]. It was also found to be the target of many highly con-
nected regulators in our previous GRN of the CO2 response combined with nitrate
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FIGURE 2.6: In-degree and out-degree distributions of the GRN regu-
lators and target genes, and betweeness distribution of the regulators.

limitation, and consequently deserves further attention in the context of understand-
ing the CO2 response. Finally, nitrate transporters NRT1.12, NRT2.1 and NRT2.2 are
included in the GRN. They are however less connected than the previously men-
tioned genes related to N metabolism or signalling, as they have respectively 1, 2
and 3 incoming regulations.

A subnetwork of N relevant genes including the aforementioned regulators and
target genes shows that some important and functional links between genes in-
volved in N nutrition are accurately modeled (Figure 2.8). For example, it was
already shown that in mutant lines for NLP6, the expression of G6PD3 was sig-
nificantly changed [Konishi and Yanagisawa, 2014], and that NLP6 regulates NIR1
by binding to its promoter in different studies [Gaudinier et al., 2018], which is sup-
ported by our inference as well.

Overall, these results disclose a strong implication of the actors of N signalling,
metabolism and transport in the response to rising CO2. The predominance of these
genes in the structure of the inferred GRN, even though the nitrate concentration re-
mained constant in the CO2 gradient experiment, is striking. It puts even more in the
spotlight the hypothesis that regulatory networks triggered by CO2 could negatively
act upon N acquisition and assimilation.
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FIGURE 2.8: Expression and predicted interactions between highly
connected regulators previously described for controlling N nutri-
tion, and key target genes involved in nitrate transport, assimila-
tion and signalling. a. Normalized gene expression of regulators as
a function of CO2 concentration b. Normalized gene expression of
target genes as a function of CO2 concentration c. Adjacency matrix
of regulators and target genes. A cell is filled if a regulatory interac-
tion is predicted between the regulator and the target. A cell is green
if the PWM of the regulator was found in the target’s promoter or yel-
low if it was not found. A cell is purple if the PWM of the regulator
was not available in the motifs databases (like NLP6), or if the regu-

lator is not a TF and thus does not have a PWM (like BT1).
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Chapter 3

A Genome-Wide Association study
identifies candidate genes in the
ionome response of Arabidopsis
under elevated CO2

Existing literature discloses that there is intra-specific variability in the phenotypic
response to rising CO2 in Arabidopsis as well as in plants of agronomic interest
(1.1.2.2, [Zhu et al., 2018; Myers et al., 2014a]). The variability observed in the min-
eral status response to eCO2 was however never explained by genomic determi-
nants in plants, even though it has the potential to fuel the discovery of new can-
didate genes controlling their mineral depletion. In this chapter, we detail a GWAs
project with the aim to identify genetic determinants of mineral status response to
CO2 elevation. Three populations of Arabidopsis accessions were chosen to explore
different geographic scales of natural variation and maximize genetic diversity in
our screening :

• A subset of the REGMAP population [Horton and Bergelson, 2012], which con-
tains accessions originating from all around the world. It is one of the most
important population to study natural variation in Arabidopsis thaliana.

• The LANGUEDOC population [Brachi et al., 2013] which contains accessions
from the Languedoc region in France.

• The TOU-A population [Frachon et al., 2017] which contains accessions from a
single meadow, in east France.

In each population, approximately 200 ecotypes were chosen to be part of our
study. 5 plants from each ecotypes were cultivated in aCO2 and eCO2 on soil sub-
strate, and supplied with a nutrient solution containing 10 mM of nitrate. After three
weeks, plants shoots were sampled and dried. The 5 replicates of each ecotypes were
then pooled together, and their mineral content was measured using acidic digestion
and a microwave-plasma atomic emission spectrometer (MP-AES, Agilent). Nitro-
gen and carbon composition of shoots was obtained using a mass spectrometer cou-
pled with an Elementar Pyrocube analyzer. In total, the 8 elements measured were
carbon (C), nitrogen (N), sodium (Na), magnesium (Mg), manganese (Mn), iron (Fe),
zinc (Zn) and copper (Cu). An overview of the study is provided in Figure 3.1. The
design and generation of the biological material predates the start of this PhD and
was mainly carried out by Léa-Lou Pimpare, in the growth chambers provided by
the European Ecotron of Montpellier (CNRS). I was later in charge of the statistical
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analysis of the phenotypic data, and of establishing the statistical associations be-
tween genetic variants and phenotypic outcomes. I also analysed and interpreted
the output of the association studies and I was involved in planning experimental
validations.

8 phenotypes:
C
N
Na
Mg
Mn
Fe
Zn
Cu

Languedoc : ~ 200 accessions

REGMAP : ~ 200 accessions

Prairie TOUA : ~ 200 accessions

Ambiant 
CO2

Elevated 
CO2

Genotypes:
~3 million SNPs

Association 
model

(Candidate) causal 
variants for 

mineral status 
response under 

elevated CO2

- ambiant CO2
- elevated CO2
- Relative change 

between ambiant 
and elevated

FIGURE 3.1: Experimental design of the GWAs project on the mineral
status response to eCO2 in Arabidopsis thaliana.

Mineral composition measures were first processed to remove technical outliers.
For a given element and CO2 condition, the values more than 5 median absolute
deviations (MAD) away from the median were rejected. The use of the median-
based metrics was motivated by the heavy tailed distributions of the raw data with
extreme values, for which median-based estimators are more robust. The value 5
was chosen as a trade-off to remove obvious clusters of outliers while preserving
true biological variation. Relative changes due to eCO2 were then derived for each
element, and expressed as percentages :

Element change =
elementeCO2 − elementaCO2

elementaCO2

∗ 100

Those relative changes, as well as their steady state values, were the phenotypic
traits of interest in the following analyses.

3.1 The ionome response to elevated CO2 is highly variable
in three natural populations of Arabidopsis

Note: Code and data to reproduce the results presented in this section are available in the
github repository https: // github. com/ OceaneCsn/ gwas_ ionome_ CO2

The overall trend in the three populations is a decrease of mineral content (Figure
3.2), as demonstrated by predominantly negative relative changes. The results of
statistical tests comparing aCO2 and eCO2 levels of each element revealed that the

https://github.com/OceaneCsn/gwas_ionome_CO2
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elements Fe, N and Mg significantly decrease in the three populations. Cu, Mn and
Zn are significantly reduced in two populations and not significantly in the third.
C is much more stable among the three populations, being significantly increased
by eCO2 in two of them. Only Na inconsistently behaved between populations,
being significantly increased in the REGMAP population, reduced in the TOU-A
population, and stable in the LANGUEDOC population.
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FIGURE 3.2: Distributions of the relative changes (%) under eCO2
of the 8 elements, in each population, and after outlier removal. The
name of the element appears in bold if the mean of the element in
eCO2 is significantly different from the mean of the element in aCO2

(Paired wilcoxon test, significance threshold of 5%)

In order to investigate the global effect of eCO2 on mineral composition, we per-
formed a PCA on the relative changes in the 8 elements for the accessions of the
three populations. The accessions from all populations seem to have globally simi-
lar responses to eCO2, as suggested by the overlap of the populations in the two first
principal components (Figure 3.3 a). Besides, most of the variation between acces-
sions in term of mineral response is driven by a mechanism resulting in an inverse
variation between C change and the other mineral elements (Figure 3.3 b). This cap-
tures an anticipated antagonistic trend between biomass stimulation and mineral
depletion, confirming the deleterious effect of eCO2 on Arabidopsis mineral content
at a local and global scale.

Moving past this general behavior, there is a marked variability between acces-
sions in their mineral content responses, as hinted by accessions far from central
tendencies in their element changes (Figure 3.2) and accessions with extreme values
in principal components 1 and 2 (Figure 3.3 a). To explore the differences between
accessions in the mineral content response to eCO2, we clustered the accessions from
the REGMAP panel via a k-means approach. This multivariate clustering resulted in
the partitioning of accessions in three groups, one of them showing a positive min-
eral content response to eCO2 for almost all mineral elements (Figure 3.4). Indeed,
plants from cluster 2 display a resilient response, with the highest relative change for
almost all mineral elements, except for C content. These accessions were not found
to be located in the same place among the countries of origin of the REGMAP panel.
Interestingly, the fact that the accessions positively impacted by eCO2 for one ele-
ment are likely to have other mineral elements positively impacted as well promotes
the view that there are general mechanisms, probably genetically driven, involved
in the mineral status adaptation to eCO2. Those general mechanisms could be addi-
tive to other mechanisms targeting specific elements like N, as the ones inferred in
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FIGURE 3.3: PCA of the relative changes in shoot composition. a.
Accessions in the two first principal axis of the PCA. Color indicates
the population of origin. b. Contribution (correlation) of the variables
(element relative changes) to the two first principal components of the

PCA.

the previous chapter.

3.2 Association models within the REGMAP population pin-
point candidate genes for the control of N, Fe and Zn ac-
cumulation in shoots

3.2.1 Association model settings and validity

In this section, we apply the state of the art association model EMMA in order to
explain the variation of the mineral relative changes by means of genotype infor-
mation. We focus on the REGMAP population, for which we had the earliest ac-
cess in the project to genotype information at a high resolution. The 1001 Genomes
project completely sequenced a large amount of Eurasian, north African and North
American Arabidopsis accessions, that contained 413 accessions from the REGMAP
[Alonso-Blanco et al., 2016]. However, this covers slightly less than half of our 186
REGMAP ecotypes, the rest being only genotyped with the Affymetrix 250k chip.
In order to fully take advantage of the REGMAP panel, we supplemented our geno-
type dataset with an imputation of the complete sequence of accessions not included
in the 1001 Genome project, provided by the Beagle software performing a Bayesian
inference of a hidden Markov model. This tool was trained to predict the sequence of
all REGMAP accessions using as ground truth the accessions from the 1001 Genomes
project. This imputation was proven to be a reliable and accurate source of genotype
data in existing GWAs [Arouisse et al., 2020]. During the genotype matrix prepara-
tion, duplicate SNPs and SNPs with a Minor Allele Frequency (MAF) smaller than
0.04 were removed, resulting in a total of 632694 SNPs for 186 genotypes.
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FIGURE 3.4: Two views of the clustering of REGMAP accessions ac-
cording to their relative changes in mineral content. a. Boxplots of
the relative changes in each cluster and each element. b. Profiles of
the different clusters: each line is an accession, enabling the behavior
of an accession to be followed across all elements. Cluster 1:65 acces-
sions. Cluster 2: 25 accessions. Cluster 3: 69 accessions. The number
of clusters in the k-means algorithm was chosen by the elbow method

on the criteria of cluster homogeneity (within-sum of squares).

In addition to the 8 mineral elements, we added two derived phenotypes: the
N
C ratio, and the first component of the PCA on the 8 elements. We reasoned that
the first principal component (PC1) was more likely to provide candidate regions
involved in global mechanisms governing mineral nutrition under eCO2. These 10
phenotypes were available in aCO2, eCO2, but also in their relative change version
between eCO2 and aCO2. This resulted in 30 phenotypes on which we ran associ-
ation models separately. In practice, we relied on the statgenGWAS R package for
genotype data preparation and model estimation [van Rossum and Kruijer, 2020].

Before studying the results for the relative changes in mineral elements, we ex-
plored the associations involving mineral content under aCO2. Using prior knowl-
edge about N and Na nutrition in Arabidopsis allowed us to check the validity
of the study. Firstly, the Na content under aCO2 is strongly associated to SNPs
falling into the gene HKT1 (AT4G10310) (Figure 3.5), a well characterized sodium
transporter known to control sodium accumulation in the shoot already identified
through GWAs [Baxter et al., 2010]. We concurrently observe that the accessions
possessing the SNP with the lowest p-value in the HKT1 peak have a higher Na con-
tent in their shoots. Similarly, we controlled N content under aCO2, and observed
that this phenotype was in association with polymorphisms at the NIA1 locus, an
isoform of nitrate reductase. Furthermore, the accessions where the high signal vari-
ants near NIA1 are found contain less N (Figure 3.6). The fact that some major actors
of Na transport and N metabolism were found to be associated with, respectively,
Na and N shoot content under reference CO2 conditions is in accordance with ex-
isting knowledge about these genes. This demonstrates that the study design, data
collection, and analysis pipelines are valid and sound enough to retrieve important
genes controlling mineral nutrition.

To measure the strength of the biological signal present in the association results
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FIGURE 3.5: Manhattan plot for Na content under aCO2. On the top
right, the phenotype of accessions having the top SNP in the HKT1
peak (orange) is displayed against those that do not possess this SNP
(green). On the bottom right corner, the qq-plot shows observed pval-
ues from the LMMs on the y-axis against p-values expected without

associations on the x-axis.

FIGURE 3.6: Manhattan plot for N content under aCO2. On the top
right, the phenotype of accessions having the top SNP in the NIA1
peak (orange) is displayed against those that do not possess this SNP
(green). On the bottom right corner, the qq-plot shows observed pval-
ues from the LMMs on the y-axis against p-values expected without

associations on the x-axis.
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FIGURE 3.7: Qq-plots of the 30 phenotypes. They show the observed
p-values from the LMMs on the y-axis against the p-pavlues expected
without associations on the x-axis. Traits strongly associated with
variants are characterized by a clear departure from the y = x blue

line for a few variants at the end of the curve.

of all the phenotypes, we plotted their qq-plots. They revealed that sample struc-
ture was correctly taken into account and that no covariate was neglected, but also
that the degree of association varies a lot between traits (Figure 3.7). In traits of the
three first lines, there are a small number of variants with very low p-values reach-
ing a genome-wide significance level, which is expected in ideal cases of GWAs. In
contrast, other traits do not display any marked departure from the null hypothe-
sis, such as phenotypes on the three last rows. Still, such traits were not discarded
from the analysis, as variants from these models can still reach a suggestive level of
significance (like in the case of NIA1 in its association to N content).

At this step, we restricted ourselves to the study of the 10 traits of relative change
caused by CO2 elevation. Indeed, HKT1 and NIA1 are also associated with Na and
N content under eCO2, indicating that they do not play a major role in the response
of Na and N status to eCO2. We manually explored the manhattan plots of the
traits of relative changes in search for clear peaks with high p-values scores, but also
peaks of moderate intensity close to genes potentially involved in mineral nutrition.
By "close", we refer to a span of ± 25 kb centered on a SNP, the value of linkage
desequilibrium in Arabidopsis thaliana being around 50 kb. We sidelined the peaks
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falling into transposable elements and into pericentromeric regions. To prioritize the
loci that will be further characterized functionally, we compromised between high
scores of p-values and existing knowledge for genes at the vicinity of peaks. This
results so far in the selection of four peaks of interest.

3.2.2 A Fe+3 dicitrate transport permease is a candidate gene for Fe content
variation in response to eCO2

The variation of Fe content is the trait for which we found the most intense associa-
tion. Chromosome 5 harbors a strongly associated locus located near AT5G21070, a
gene annotated as a Fe+3 dicitrate transport system permease. The top SNPs close to
this gene are found in accessions that respond to CO2 elevation with an increase in
Fe content (Figure 3.8).

FIGURE 3.8: Manhattan plot for Fe relative change under eCO2. On
the top right, the phenotype of accessions having the top SNP in the
Fe+3 dicitrate transport system permease peak (orange) is displayed
against those that do not possess this SNP (green). On the bottom
right corner, the qq-plot shows observed pvalues from the LMMs
on the y-axis against p-values expected without associations on the
x-axis. The high signal region in chromosome 2 corresponds to the

pericentromeric region.

A closer look at this peak revealed that it is composed of four SNPs with high
association signal. Three of them are potential expression variants: two are located
in the promoter of the Fe+3 dicitrate transport permease and AT5G21060, and one
is in an intronic region of AT5G21060. The fourth is a structural variant inside the
coding region of AT5G21080, turning a Lysine into an Isoleucine (Figure 3.9). In
addition, the intronic variant is located inside the TFBS of TFs from the MYB family
(Figure 3.10).

In order to investigate the nature of the association between those variants and
the change in Fe content under eCO2, several validation experiments could be set-
up, like :

• Measuring the expression of AT5G21060 and AT5G21070 under aCO2 and eCO2
in two groups of accessions: one having the haplotype of interest (composed
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FIGURE 3.9: Zoomed view of the SNPs strongly associated with Fe
relative change. −log10(P) is shown as a function of chromosomic
coordinates. Tracks at the bottom show gene AGIs and annotation in

TAIR.

FIGURE 3.10: Zoomed view of the SNPs strongly associated with
Fe relative change, with TFBS information. −log10(P) is shown as
a function of chromosomic coordinates. Tracks at the bottom show
gene AGIs and annotation in TAIR, as well as TFBS retrieved from

the Plant Cistrome database.

of the 4 top SNPs), and another group with no polymorphisms those loci. Al-
though this would not shed light on which of the four SNPs are causal, a dif-
ference in expression change between the groups of accessions would confirm
that this association is due to the regulation of the expression of AT5G21060 or
AT5G21070.

• Phenotyping mutant plants for AT5G21060, AT5G21070 and AT5G21080 under
aCO2 and eCO2. If one of the mutants exhibits a different response of Fe con-
tent than the wild type, this would suggest that this candidate gene is involved
in the regulation of Fe accumulation in Arabidopsis shoots under eCO2.

The mutant lines and necessary biological material have been obtained and are
now available in the team.

http://neomorph.salk.edu/dap_web/pages/browse_table_aj.php
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3.2.3 Candidate genes for the N status response to eCO2

The relative change in N content showed less pronounced suggestive associations,
but a few regions stand out for their peak shape and their closeness to genes po-
tentially relevant to N nutrition. In particular, on chromosome three, a series of 5
variants with very low p-values are found in the promoter region of GATA4 and
its upstream neighbor AT3G60520 (Figures 3.11 and 3.12). GATA4 caught our atten-
tion, as it is a TF previously described to act upon N nutrition by repressing NRT2.1,
NRT1.1, GLN1.2 and NIA1, and modulating the phenotypic response to N limitation
[Shin et al., 2017]. Accessions with polymorphisms in the GATA4 peak have an ag-
gravated N decline in their shoots when exposed to eCO2 (Figure 3.11). Moreover,
two of the strongly associated SNPs are inside TFBSs (Figure 3.13) belonging to TFs
from the bZIP family, and to STZ, increasing the likelihood that the regulation of
the expression of GATA4 or AT3G60520 could alter N content response to eCO2. In
particular, among the bZIP TFs with an altered TFBS we find HY5, known to be
involved in C and N signalling [Bellegarde et al., 2019; Chen et al., 2016].

FIGURE 3.11: Manhattan plot for N relative change under eCO2.
On the top right, the phenotype of accessions having the top SNP in
the GATA4 peak (orange) is displayed against those that do not pos-
sess this SNP (green). On the bottom right corner, the qq-plot shows
observed pvalues from the LMMs on the y-axis against p-values ex-

pected without associations on the x-axis.

In addition, the SNP with the lowest p-value genome-wide is surrounded by pro-
tein kinases (Figure 3.11) that are still uncharacterized: AT1G66880 and AT1G66910.
More precisely, the peak is composed of 4 high signal SNPs: two of them being non
silent protein alterations in AT1G66900 and AT1G66910, two of them in intronic or
promoter regions. In proteomic experiments, the presence of AT1G66880 is asso-
ciated to the phosphorylation of NRT2.1 [Lejay and Schulze, unpublished]. Such
markers could be experimentally tested to potentially discover new actors of N nu-
trition under eCO2.

As in the previous section, the biological material to carry out validations around
GATA4 and the kinases of interest was acquired and is planned for the next phases
of the project.
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FIGURE 3.12: Zoomed view of the SNPs strongly associated with
N relative change near GATA4. −log10(P) is shown as a function of
chromosomic coordinates. Tracks at the bottom show gene AGIs and

annotation in TAIR.

FIGURE 3.13: Zoomed view of the SNPs strongly associated with
N relative change near GATA4, with TFBS information. −log10(P)
is shown as a function of chromosomic coordinates. Tracks at the
bottom show gene AGIs and annotation in TAIR, as well as TFBS re-

trieved from the Plant Cistrome database.

http://neomorph.salk.edu/dap_web/pages/browse_table_aj.php
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3.2.4 Strongly associated loci promote candidates genes for the control of
Zn content under eCO2

Lastly, we chose to present results regarding the associations found for Zn relative
change for two reasons. First, the manhattan plot of this trait shares the same peak
above the uncharacterized kinases as in the N relative change (Figure 3.14). This
makes these loci even more promising in the understanding of mineral response to
eCO2, as they could jointly modulate Zn and N content adaptation. Second, the
strongest association is observed on the fourth chromosome, in the direct vicinity
of TIP2.2, with a SNP in the promoter of TIP2.2 inside the TFBS of ATHB40 and
ATHB21. TIP2.2 was recently characterized in the context of Zn distribution from
roots to shoots, and in the regulation of Zn detoxification [Wang et al., 2022]. Our
results strongly indicate that this gene could also be major player in the control of Zn
depletion under eCO2 in Arabidopsis. Indeed, the polymorphisms of interest close
to TIP2.2 confer to the plants a preserved Zn content under CO2 elevation (Figure
3.14).

FIGURE 3.14: Manhattan plot for Zn relative change under eCO2.
On the top right, the phenotype of accessions having the top SNP near
TIP2.2 (orange) is displayed against those that do not possess this
SNP (green). On the bottom right corner, the qq-plot shows observed
pvalues from the LMMs on the y-axis against p-values expected with-

out associations on the x-axis.

All validation experiments will be part of the project of a new PhD student
commencing in october, 2022.
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Chapter 4

Discussion

This manuscript summarizes our efforts to grasp genetic regulations dictating min-
eral nutrition under elevated CO2. In particular, existing literature established the
existence of very likely, yet unknown, regulatory mechanisms in plant roots exposed
to rising CO2 and resulting in a diminished mineral content (Publication #1). This
project thus employed and developed statistical methods to model biological sys-
tems and to narrow down the search for regulatory pathways and genes involved in
the mineral depletion of C3 plants under high CO2.

4.1 Elevated CO2 triggers gene expression reprogramming that
negatively impacts mineral nutrition in Arabidopsis

4.1.1 Main physiological and molecular findings

On several levels, the joint examination of the experiments generated in this project
leads to a clearer understanding of the response of Arabidopsis plants exposed to
eCO2. Firstly, biomass was consistently increased by eCO2 in all experiments,
whether plants were grown under abundant nitrate supply, limiting nitrate supply,
limiting ammonium nitrate supply, or even iron starvation (Publication #3 and Sec-
tion 2.4). This consistent increase of biomass is a strong confirmation that eCO2 has
the potential to robustly stimulate plant growth under various environmental set-
tings, which is a promising perspective for future agricultural practices.

The fact that CO2 increased biomass in all nutritional conditions but that N con-
tent did not decrease under abundant nitrate supply and that Fe content did not
decrease at all in our combinatorial study are additional proofs that biomass stim-
ulation and mineral content can be decoupled, and that mineral depletion under
eCO2 is not caused by the so called "dilution effect" alone. This is also supported
by the discovery of mutant lines like edf3 and myb15 in which biomass stimulation
is strongly altered but not N content. In addition, the dynamics of the response of
biomass to a gradient of CO2 concentrations is fairly linear while breaking points
seem involved for N content (Figure 2.4.1). This decoupling between biomass stim-
ulation and N content is already backed up by several other works [Feng et al., 2015;
Wujeska-Klause et al., 2019; Myers et al., 2014b] (Publication #1). In order to further
investigate those effects, it would have been interesting to also measure biomass
in our panels of natural accessions and see how mineral content and biomass were
linked at the population scale. This could have led to associations between biomass
increase and genomic markers, similarly to a recent study that provided promising
candidates in the control of growth rate under eCO2 in Arabidopsis [Oguchi et al.,
2022].

Meanwhile, the phenotypic and transcriptomic datasets we generated seem to
concur on the negative impact of eCO2 on specific facets of plant mineral nutrition.
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The decline in N, Zn, Fe, Mg and Mn observed in the Arabidopsis populations of our
GWAs is similar to what was observed in Free Air Carbon Enrichment-experiments
involving diverse rice genotypes [Zhu et al., 2018] or meta-analyses encompassing
several plants of agronomic interest [Myers et al., 2014a]. Moreover, the association
models we fit between mineral content response and genotype point toward genes
involved in different kinds of Fe or Zn transport, and a candidate regulator of N nu-
trition (Section 3.1). In contrast, in the plants of our combinatorial experiment, we
did not see any significant decline in Fe content induced by eCO2 (Publication #3).
This could be explained by iron being more available to the roots in hydroponic cul-
ture as compared to soil substrate like in our GWAs. Still, even though the Fe shoot
content did not decrease, the misregulation of key Fe nutrition genes by eCO2 was
observed in our transcriptomes. In the particular case of nitrate, pathways associ-
ated to high affinity nitrate transport systems are especially unfavorably altered
by rising CO2. In the transcriptomic datasets of our combinatorial study, the co-
expression clustering of CO2-responsive genes under low nitrate revealed that the
responses to nitrate limitation usually observed under aCO2 were markedly dis-
rupted under eCO2. Furthermore, major genes involved in nitrate transport and
nitrate assimilation like NRT2.1, NIR or GLN1.2 were repressed by eCO2, while the
expression of their negative regulators was enhanced (Publication #3). Our CO2 gra-
dient study confirms the over-expression of negative regulators of N uptake as CO2
is elevated, while many of the most connected regulators of the inferred GRN of the
root response to eCO2 under low nitrate are established regulators of N acquisition
and assimilation (Section 2.4) belonging for example to the NIGT or NLP families. N
content in the shoots was significantly reduced by eCO2 in our CO2 gradient dataset
for the two types of N nutrition, in the panels used to investigate natural variation,
and in our combinatorial dataset under limiting nitrate supply. We also demonstrate
that nitrate root uptake is diminished specifically under low nitrate, reinforcing the
hypothesis that high affinity transport is negatively targeted by eCO2 (Figure 4b in
Publication #3).

4.1.2 Overview of the discovered candidate genes

GRN inference and association models predicted a list of candidate genes as im-
portant actors in the response to eCO2, either in biomass stimulation or nutrient
acquisition. Their status regarding experimental validation is also diverse, as they
were obtained at different stages of the project.

1. MYB15, EDF3 and WOX11 were identified in an inferred GRN of the root re-
sponse to eCO2 under low nitrate in contrasted conditions of nitrate and CO2.
Those three genes control the stimulation of biomass production by eCO2 un-
der nitrate limitation. Their role is supported by two independent validation
experiments, in which mutant plants for those genes were phenotyped, and
exhibited a significantly lower biomass stimulation under eCO2 (Publication
#3).

2. The most central genes of the inferred integrative GRN in the CO2 gradient ex-
periment under low nitrate supply (namely CDF3, HH03, AT2G28810, HRS1,
HB5, HHO2 in Figure 2.7) are promising candidates (2.4). They were not ex-
perimentally tested yet, but their impact on biomass and N content responses
could be assessed by the same experimental designs as for MYB15, EDF3 and
WOX11.
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3. Strongly associated loci in the GWAs were used to identify candidate genes
acting upon the relative changes in mineral content of Arabidopsis plants un-
der eCO2 (3.1). Those candidates are GATA4, associated to N relative change,
the Fe+3 dicitrate transport permease, associated to Fe relative change, TIP2.2,
associated to Zn relative change, two kinases simultaneously associated to N
and Zn relative changes, as well as the direct neighbors of those genes. No
wet-lab experiments to test their implication were performed yet, but they are
planned and the biological material has been acquired.

4.1.3 Unifying the results between the transcriptomic datasets and the
GWAs

Because our GWAs and transcriptomic datasets have the common goal to identify
regulatory pathways involved in the negative regulation of mineral nutrition under
eCO2, we detail in this section the interplay between the results provided by these
two branches of the project.

First, the expression of the candidate genes from the association models was
examined in our combinatorial and CO2 gradient transcriptomic datasets. GATA4,
the Fe+3 dicitrate transport system permease are upregulated by eCO2 in both tran-
scriptomes, significantly in the CO2 gradient experiment and suggestively in the
combinatorial experiment. Similarly, TIP2.2 is significantly repressed in the CO2 gra-
dient experiment and only suggestively in the combinatorial experiment. The neigh-
boring genes of GATA4, the Fe+3 dicitrate transport system permease and TIP2.2 were
not differentially expressed.

Second, we find that some important TFs identified as central nodes in inferred
GRNs have their TFBS altered by strongly associated SNPs. In the peak near the
Fe+3 dicitrate transport system permease associated to Fe content variation, the in-
tronic variant is located in the TFBS of several MYB TFs (Figure 3.10). One of them is
MYB93, the 10th most connected TF of the GRN of the root response to eCO2 under
low nitrate inferred in Publication #3. Similarly, the potential expression variant in
association with N change in the GATA4 promoter falls into TFBSs of the bZIP family
(Figure 3.13). bZIP3 was among the most connected regulators in the inferred GRN
of the root response to a CO2 gradient under low nitrate (Figure 2.7), and was al-
ready documented as transcriptionally modulating the response to nitrate induction
[Brooks et al., 2019]. Finally, another potential expression variant in the promoter re-
gion of GATA4 is located in the TFBS of STZ. STZ is a regulator found in the inferred
GRN of the root response to eCO2 under low nitrate (Publication #3), not among the
top 10 of central TFs, but it still has 11 predicted targets in this response.

However, the connections between those two parts of the project are limited by
differences in experimental conditions. While the GWAs material was generated
in soil substrate and under 10 mM of nitrate supply, the transcriptomic datasets and
inferred GRNs were based on plants hydroponically grown and receiving 0.5 mM of
nitrate. Hence, the intersection between lists of candidate genes will be restricted to
pathways shared among those environmental factors.

4.1.4 Perspectives

Given the presented results, several lines of research could be followed in the future.
Firstly, the GWAs project is still in an early stage in terms of analysis and re-

sults exploration. Only some specific traits like Zn, N and Fe relative changes un-
der eCO2 could be finely investigated. To go further, the Manhattan plots of the
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REGMAP panel can still be mined. For example, the exploration of the SNPs associ-
ated with the first principal component of mineral content variation could be prior-
itized in order to find genetic markers involved in aspecific mechanisms of mineral
nutrition under eCO2, and uncover the determinants of plants globally resilient CO2
elevation. Moreover, the association models on the TOU-A and Languedoc popu-
lations could be performed in next phases of the project. Genotype information for
the TOU-A population is available, which is however not the case for the Languedoc
panel yet.

Second, the recent application of integrative GRN inference to the root re-
sponse to a gradient of CO2 concentrations could be further developed and ex-
tended to ammonium nitrate nutrition. GRN inference was, to date, restricted to
modelling gene expression reprogramming under nitrate supply and CO2 elevation.
The same network inference could be implemented for the plants to which N was
supplied in the form of ammonium nitrate. The resulting inferred GRN could be
compared to the one inferred under nitrate supply in terms of network topology
and central regulators, in order to pinpoint regulatory mechanisms specific to cer-
tain types of N nutrition, or those that are common. A global GRN inference in-
cluding both types of N nutrition could also be performed to capture such shared
regulations. Following this idea, a global GRN of the response to eCO2 could be in-
ferred from the alliance of our combinatorial and CO2 gradient experiment, taking
as input the genes robustly differentially expressed by eCO2 under low nitrate in
the two experiments. In order to improve our integrative GRN inference, ATAC-Seq
data could also be generated and used as additional prior information combined to
TFBS to guide regression-based methods like bRF and LASSO-D3S.

Third, it would be very informative to carry out the GRN inference of the root
response to eCO2 under low nitrate from the combinatorial dataset with TFBS
integration. This could be performed by bRF and/or LASSO-D3S and it would
be interesting to see wether the candidate genes of Publication #3 are still highly
connected, and if new ones emerge. More generally, in the combinatorial dataset as
well as in the CO2 gradient dataset, a more extensive study of the impact of TFBS
integration though the value of α on candidate genes and network topology could
offer valuable insight.

A clear direction for future research is the investigation of the detailed physio-
logical and molecular aspects of the CO2 response in plants, and particularly the
regulations of the high affinity transport system that we consistently report. This
can be initiated by a more advanced functional characterization of the candidate
genes put forward in this work with the tools of molecular biology and plant phys-
iology. These characterizations could establish their mode of operation and precise
role in the regulatory pathways involved in CO2 adaptation.

In addition, there is tangible evidence that the root system development and
plasticity are altered by eCO2 (Publication #1). This is also supported by the fact
that three candidate genes from the GRN inferred in Publication #3 were previously
associated to functions linked to the root system architecture: WOX11, AGL14 and
MYB93. Furthermore, among the most connected genes of the inferred GRNs, on-
tologies linked to root system were enriched. This paves the way for a deeper study
of the root system under eCO2, in a reference genotype but also in mutants for our
candidate genes. In addition to its interest in the context nutrient acquisition under
eCO2, the root system is a very promising field for carbon capture, as plants en-
hanced to sustainably store biomass in soils could be a major asset in the mitigation
of atmospheric CO2 elevation [Lynch, 2022].
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Our phenotypic and transcriptomic observations leave some questions still
open.We observed that phenotypic traits under eCO2 tend to be more dispersed
than under aCO2. This could be tested by exhaustive statistical comparisons of vari-
ance between contrasted CO2 levels in large groups of plants, such as in our GWAs
dataset. Overall, this suggests that eCO2 could cause a higher degree of variability
in plant phenotypes, a phenomenon known as cryptic genetic variability. Regard-
ing gene expression, we report a consistent over-expression of negative regulators
of nitrate uptake and assimilation in all transcriptomic datasets, and a concurrent
repressing of their positive regulators. However, the main nitrate transporter under
low nitrate availability NRT2.1 is repressed by eCO2 in our combinatorial experi-
ment (Figure 3a in Publication #3), while it is over-expressed in our CO2 gradient
experiment (Figure 2.8). This unexplained instability of the expression of NRT2.1
under eCO2 was confirmed in around 10 independent experiments in the team and
partly hinders the construction of hypotheses for the decline of N in plants exposed
to eCO2. NRT2.1 is a gene regulated by a multiplicity of signals like for instance ox-
idative stress and N status, but also light and sugars [Lejay et al., 1999]. This causes
its expression to fluctuate in a 24-hours period. An explanation could be that eCO2
modifies the oscillating pattern of NRT2.1 in the course of the day, so that plants
sampled simultaneously under aCO2 and eCO2 are in fact in distinct physiological
phases regarding this cycle. Such mechanisms could be exposed by a time course
experiment in which the expression of NRT2.1 is measured for one or several days
via non invasive means, for example by placing the luciferase gene under the con-
trol of the NRT2.1 promoter. Such Arabidopsis lines and the necessary microscopy
equipment are already available in the team.

The decorrelation between the regulation of NRT2.1 and N content in the shoots
could advocate for other mechanisms in the response to CO2 such as an important
role of efflux, or a disruption of nitrate distribution between organs. Another hy-
pothesis is that the expression of NRT2.1 alone does not play an essential role in
the response to eCO2, but that it is post-translationally regulated to repress nitrate
uptake. Post-translational regulations have already been documented for NRT2.1
when environmental conditions are repressive for the transport of nitrate, through
the C-terminus phosphorylation of its protein [Jacquot et al., 2020]. Measuring the
quantity of the NRT2.1 protein and its phosphorylation status under contrasted CO2
levels would be an immediate way to investigate this hypothesis.

Finally, this project opens up the prospect of translational studies. Two research
projects in the team will shift the study of the CO2 response from Arabidopsis to
plants of agronomic interest. First, GRN inference using DIANE and a LASSO-based
approach applied to tomato roots under the combinatorial design was performed
at the occasion of a M2 intership in biostatistics. In the GRNs inferred via both ap-
proaches, MYB15 was found among the 20 most connected regulators. This suggests
that parts of the transcriptional response to eCO2 can be conserved. Mutant lines of
tomato will be acquired for the regulators MYB15, EDF3 and CDF3, and their study
under different CO2 concentrations will provide insights on the functional role of
those genes in an edible crop. Second, Durum wheat will be introduced in the team
as a model plant to understand the response of staple crops to eCO2. As in the first
step of our GWAs project, the natural variability of the mineral content response to
eCO2 in a population of Durum wheat ecotypes will be studied. The examination of
root system architecture of this crop exposed to eCO2 is also planned and could be
leveraged to propose solutions toward enhanced carbon capture.
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4.2 Prospects for regression-based modeling and inference
for systems biology

4.2.1 Summary of statistical methods used and developed

In this project, all the statistical methods chosen for candidate genes discovery have
a regression basis. Associations between genetic markers and phenotypes are un-
covered by linear regressions with variance components (LMM). The inference of
GRNs, solely on the basis of expression or combined with additional prior knowl-
edge, was composed of regression problems predicting the expression of a target
gene based on the expression of regulators. In both cases however, the end goal is
actually a matter of classification: which genetic variants are causing a phenotype
and which ones are not? Among all possible transcriptional dependencies between
pairs of genes, which ones are true and actually manifesting in a given response and
which ones are not? The reason explaining that classification algorithms are rarely
trained to directly predict causal SNPs or links between genes is that validation data
is so scarce that no supervised learning framework can be properly set up. Instead,
regressions are fit on available data, in our case gene expression, polymorphisms
and phenotypes, and the regression models are then interpreted to perform unsu-
pervised classification. In a GWAs, model interpretation is given by the regression
coefficient p-value of the SNPs. In GRN inference, regressions are used to quan-
tify the influence of candidate regulators on gene expression and ultimately extract
relevant regulators.

While our GWAs made use of existing statistical methods, we authored two
novel methodological developments for GRN inference. The first one is DIANE, a
suite for transcriptomic data exploration and GRN inference in which we extended
GENIE3 [Huynh-Thu et al., 2010] in order to refine its ranking of regulatory inter-
actions (Publication #2). This permutation-based strategy enhances GRN precision
in two organisms (Figure 6 in Publication #2), while providing more interpretable
levers to the user through a parameter controlling network density, and another
one controlling the FDR. The second development is the implementation of bRF
and LASSO-D3S, regression frameworks integrating TFBS information to guide
GRN inference from expression data. This integration is encoded into the non lin-
ear regressions of Random Forests by weighted subsampling of the regulator space
during tree elongation (bRF), and by differential shrinkage into penalized general-
ized linear models with stability selection (LASSO-D3S). Those methods were finely
studied under different strengths of data integration, and their evaluation by a series
of quality criteria confirmed that TFBS integration is beneficial to GRN inference in
Arabidopsis thaliana (Publication #4).

4.2.2 Perspectives

Direct improvements of our statistical models can be envisioned. Firstly, the LMMs
in our GWAs do not model epistasy, a mechanism by which two or more SNPs can
interact to modulate complex traits. LMMs can handle the diffuse impact of a large
number of small effect loci through their additive genetic variance components, but
can not model strong interaction effects between loci, which could be detected by
other approaches. For example, the Multi-locus Linear Mixed Model (MLMM) strat-
egy includes to the regression model SNPs in a forward fashion until the additional
genetic variance σ2

a is sufficiently reduced, which is then followed by a backward
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stepwise regression to eliminate the least significant SNPs [Segura et al., 2012]. Ma-
chine learning also has the potential to detect epistatic effects via the use of algo-
rithms modelling interactions between variables, like Random Forests or Support
Vector Machines [Nicholls et al., 2020; Yoosefzadeh-Najafabadi et al., 2022]. Ad-
vances in acceleration techniques for regularized least square estimation in sparse
linear models can even make possible the estimation of all possible interactions be-
tween variants in so-called epistatic maps [Carré et al., 2022].

An improvement that could be brought to DIANE is a more robust co-expression
clustering. The estimation of mixture models, as implemented by the Coseq pack-
age [Rau and Maugis-Rabusseau, 2018], can be very sensitive to parameter initializa-
tion, even with the small-EM startegy it includes. The tool DiCoExpress tackles this
issue by estimating a very large number of mixture models for a narrowing range
of number of clusters, which allows to choose a final model with the best Integrated
Completed Likelihood [Lambert et al., 2020].

Concerning GRN inference, the developed integrative GRN inference methods
bRF and LASSO-D3S should be directly compared to their most similar existing
equivalents, namely iRafNet [Petralia et al., 2015] and the Inferelator [Skok-Gibbs et
al., 2022; Miraldi et al., 2019]. bRF differs from iRafNet via its exclusive use of regula-
tors as variables in regressions instead of all genes, and because we chose a different
importance metric to score interactions. The benefit of this new importance metric,
the MDA, is already demonstrated in Publication #4 (Figure S1). Like LASSO-StARS
in the Inferelator, LASSO-D3S is a regularized linear regression. However, LASSO-
D3S models expression counts as Poisson-distributed whereas LASSO-StARS re-
quires normally distributed counts. Their stability selection procedure also differ,
resulting in different strategies to learn the sparsity parameter λ for each gene. In
the context of time-course expression data like the response to nitrate induction, the
performance of bRF and LASSO-D3S could also be assessed against OutPredict [Cir-
rone et al., 2020]. OutPredict relies on integrative GRN inference via biased Random
Forests inspired from iRafNet, but with two promising additions. First, the expres-
sion of target genes or their rate of change at a given time point is modelled as a
function of the expression of the regulators at the previous time points. Second, a
leave-one-out approach is used to identify the interactions between regulators and
target genes that accurately predict gene expression in a time point untouched dur-
ing model training. Comparing our methods to OutPredict could be a way to test
the importance of modelling time in GRN inference with data integration. More
generally, it would be interesting to evaluate the joint predictions of those models
and combine them, as wisdom of crowds approaches are a promising ways of deci-
phering gene regulation [Schiffthaler et al., 2018; Marbach et al., 2012b].

As regression models are primarily employed in our project to extract relevant
signal from large biological datasets, their interpretability is crucial. Many mod-
els in machine learning and even more in deep learning are considered as "black
boxes", making very accurate predictions that can not be explained. In contrast, a
model is said interpretable or intelligible if a human can easily comprehend its pre-
dictions and acquire valuable insights into a chosen problem via this model [Mur-
doch et al., 2019]. Linear models like LMMs and LASSO-D3S are easily interpretable
via the coefficients associated to each input variables and their significance. Com-
pared to other machine learning algorithms, regression trees are also interpretable
because they are actually built from successive conditions on the input features that
ultimately result in a prediction. However, the aggregation of trees into a forest
increases the number of operations to estimate the model, adding a layer of com-
plexity that reduces interpretability. It is thus important to select meaningful and
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unbiased variable importance metrics for Random Forests in order to derive bi-
ological interpretations from them. We made the decision in DIANE and bRF to
use the permutation based approach of the MDA instead of node purity (MDI) cho-
sen in GENIE3 and iRafNet, because the MDA is more reliable in the case of high
levels of correlation among input features [Nicodemus and Malley, 2009]. But even
the MDA is not imune to dependencies between variables, and it may not theoreti-
cally converge to the desired quantity in this case. To fix this, the Sobol-MDA was
proposed [Bénard, Da Veiga, and Scornet, 2021] and could replace the MDA in our
GRN inference tools. In order to further improve model interpretability, alternative
regression models could be used like SIRUS, a stable rule learning algorithm that
exhibits many desirable properties of interpretable models: stability, simplicity and
predictivity [Bénard et al., 2021].

Lastly, the ultimate form of data integration suiting this project would be the in-
tegration of our GWAs and transcriptomic datasets together into a single model
to discover candidate genes. EGRET [Weighill et al., 2022] is a model making use
of TFBS information, eQTLs, individual genotypes, protein-protein interactions and
expression data. Other works have built integrative GRNs from polymorphisms
and gene expression measured in the individuals of a population using regularized
regressions [Kim et al., 2014]. However, eQTLs or expression data in several acces-
sions should be available to use those methods, which is not the case in our GWAs.
In contrast, the method called SIGNET does not require existing eQTL associations
nor expression measured in several genotypes, but rather integrates SNPs p-values
from a GWAs with a prior GRN into a global model, a Random Markov Field [Wu et
al., 2017]. Bayesian inference is used to estimate this model and ultimately quantify
the effect of each gene on the phenotype by testing the relevant model parameter.
In the demonstration of SIGNET on human data, the prior TF-target network was
constructed from TFBS information and regulatory sequences activity from the FAN-
TOM5 project [Lizio et al., 2015], but it could be replaced by a GRN inferred by other
means such as the methods developed in this project. Finally, network-guided GWAs
are a promising area. In this category of approaches, genes are attributed an associ-
ation score from a GWAs, derived from the SNP p-values from this gene or its close
vicinity. Each gene is also characterized by a set of connections, given by a gene
network built on prior knowledge. Several approaches can then be used to find
gene modules inside this prior network enriched in association scores [Climente-
González et al., 2021]. An exciting way of combining our GWAs and GRN inference
work would be to apply this strategy, using as prior networks the inferred GRNs of
the root response to eCO2.

4.2.3 Multidisciplinary research directions

To conclude, considerations concerning multidisciplinary aspects of systems biol-
ogy can be mentioned. First, we were frequently confronted with the gap between
genome-wide models requiring a certain amount of simplifications for statistical
inference purposes, and the high granularity and diversity of entities involved in
the biological processes under study. Modelling assumptions made to ensure the
tractability and scalability of statistical methods can be at odds with the complexity
of true biological networks, and the plurality of interactions between cellular actors.
One example is the choice of the list of regulators used in GRN inference. It was
in this project composed of the union between the databases PlnTFDB and AtTFDB.
They contain TFs, but also other genes (like BT1/2) that can regulate gene expression
even if they do not directly bind to DNA. In fact, there are many possible definitions

https://www.hsls.pitt.edu/obrc/index.php?page=URL1272471619
https://agris-knowledgebase.org/AtTFDB/
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of what is a regulator. For example, oxidoreductase enzymes like ROXY15 are ca-
pable of interacting with the TFs TGA1/4 in order to regulate high affinity nitrate
transport [Ehrary et al., 2020]. Other ROXY genes were documented as interacting
with TGA1/4, suggesting that including the ROXY family to our list of regulators
could be justified and envisioned for future GRN inferences. A trade-off is nonethe-
less necessary, as using large sets of genes as potential regulators aggravates the high
dimensional setting and multi-colinearity in regressions.

An interesting perspective would be to study the dependency between model
parametrization and their application dataset. To illustrate this, we noticed that the
values of α and k in were not set to the same value when bRF was applied to the re-
sponse to nitrate induction (Publication #4, α = 1, k = 2) and when it was applied to
the CO2 gradient experiment (Section 2.4, α = 0.8, k = 1). Indeed, TFBS-supported
edges were more efficiently included to inferred GRNs in the CO2 gradient than in
the response to nitrate induction, requiring lower values of α and k to avoid the com-
plete rejection of edges with neutral priors. A hypothesis for this variation could be
that different responses are better modelled by different strengths of data integra-
tion. Another hypothesis is that the strength of data integration is influenced by the
dimension of the problem, i.e the number of expression measures per gene n and the
number of candidate regulators p, or even by the amount of noise in the data. In any
case, directly providing optimal parameters to the user appears less useful that shar-
ing important criteria and practical recipes for model parametrization. Even further,
procedures to learn those parameters from the data directly could be envisioned.

Finally, data integration raises questions about the appropriate amount of exist-
ing knowledge to use during modelling or results prioritization. For example, our
choice to manually explore Manhattan plots and prioritize genes somehow already
linked to mineral nutrition is a kind of data integration based on existing gene anno-
tation. It is however subjective and limited to current knowledge, and could be im-
proved through the use of more automated and impartial methods processing Man-
hattan plot signals like the local score [Bonhomme et al., 2019] or machine learning
tools performing SNP prioritization from GWAs results and other types of a priori
knowledge. For example, a Random Forest-based tool extending QTG-Finder2 [Lin,
Lazarus, and Rhee, 2020] found that gene structure, function and protein-protein
interactions were important additional predictors for causal eQTLs in Arabidop-
sis. The influence of each data type could be estimated from available validated
causal eQTLs and their orthologs in several plant species in plants, through feature
importance metrics [Hartanto et al., 2022]. In GRN inference, data integration re-
quired explicit action levers to precisely control the contribution of each data type,
like for example our parameter α (Publication #4), even though also clear indicators
of model quality and biological relevance help estimating those parameters.

Data integration in our GRN inference strategies was proven useful but remains
imperfect: TFBS associations can contain many false positives and the fact that not
all TFBS are available introduces a form of selection bias toward previously stud-
ied TFs. This could be solved by combining gene expression to other types of data
available genome-wide, like methylation or chromatin accessibility. This type of
data in uncharted experimental conditions can however not be obtained from exist-
ing databases, and needs to be purposefully generated along with expression data.
These are considerable motivations for building and curating large scale matched
multi-omics datasets to fuel methods development. An example of such an initia-
tive is The Cancer Genome Atlas (TCGA), for which data retrieval and pre-processing
can even be greatly facilitated by tools like TCGAbiolinks from Bioconductor [Co-
laprico et al., 2015]. The development of such datasets of matched omics in plants

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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would offer great potential for integrative statistical inference in plant genomics.
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Chapter 5

Résumé de la thèse en Français

Le manuscrit de thèse étant rédigé en anglais, il est à la demande de l’école doctorale accom-
pagné de ce document résumant en français le travail de thèse.

Objectifs

En plus d’être à l’origine du changement climatique et de menacer les cultures par
des événements climatiques extrêmes, une concentration atmosphérique élevée en
CO2 (eCO2) peut à elle seule avoir un impact sur la physiologie des plantes. En
particulier, la plupart des plantes cultivées entrent dans la catégorie des plantes C3,
dans lesquelles la réaction photosynthétique est limitée par la concentration atmo-
sphérique de CO2. On s’attend donc à ce qu’une augmentation de la concentra-
tion atmosphérique de CO2 entraîne une production accrue de biomasse primaire,
voire une amélioration du rendement agricole en raison de cet effet de fertilisation
[Tausz-Posch, Tausz, and Bourgault, 2019]. Néanmoins, une autre répercussion no-
table de l’élévation du CO2 est source d’inquiétude: la composition minérale des
plantes C3 est appauvrie sous eCO2 (Publication #1). Presque tous les nutriments
minéraux des plantes, composant l’ionome (par exemple les éléments tels que N,
P, K, S, Fe, Na, Mg, ou Zn) sont affectés, et peuvent être réduits de 5 à 25 % selon
l’espèce, l’élément et les conditions. Le nutriment dont les plantes ont besoin en
plus grande quantité, l’azote (N), est souvent particulièrement affecté [Loladze,
2014]. Cet épuisement des minéraux dans les plantes cultivées peut conduire à la
consommation d’aliments contenant des quantités moindres de protéines, de vita-
mines ou d’oligo-éléments indispensables, et constitue une menace de malnutrition
à l’échelle mondiale [Myers et al., 2017]. Bien que ces impacts négatifs aient été
observés de manière consensuelle, les mécanismes expliquant cette baisse de com-
position minérale sous eCO2 restent peu clairs, et la dilution des ions minéraux dans
une plus grande quantité de biomasse ne peut, à elle seule, expliquer ce phénomène.

Une catégorie d’hypothèses porte sur l’altération des mécanismes de signalisa-
tion, d’absorption et d’assimilation des nutriments, et notamment ceux de l’azote.
Même si les mécanismes de signalisation de la nutrition azotée ont été partiellement
cartographiés, ils n’ont pas été étudiés sous eCO2, et certaines données transcrip-
tomiques montrent que les modules de signalisation pourraient être affectés. Ces
changements transcriptionnels n’ont pas pu conduire à l’identification de modèles
clairs, d’abord parce que trop peu de données sont actuellement disponibles dans
les tissus racinaires, mais aussi parce que ces régulations peuvent être fortement in-
fluencées par des facteurs développementaux et environnementaux. Cela favorise
l’hypothèse de voies de régulation complexes agissant sur l’expression des gènes
clés de la nutrition azotée dans les racines sous eCO2, avec des régulateurs inconnus
orchestrant ces réseaux. A la lumière de cet état de l’art, nous avons défini plusieurs
objectifs pour ce projet :
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1. Générer des données à l’échelle du génome à partir de matériel biologique,
en particulier dans les racines, afin d’étudier en détail les voies de nutrition
sous eCO2. Cela englobe des expériences transcriptomiques combinatoires en
régime permanent, mais aussi des réponses adaptatives sous eCO2, combinées
à différents paramètres nutritionnels. Nous concentrons cette collecte de don-
nées sur la plante modèle Arabidopsis thaliana, et inférons statistiquement les
réseaux de régulation de gènes (GRNs) régissant les réponses des racines au
CO2 élevé, en particulier ceux des voies nutritionnelles. Ces réseaux devraient
permettre d’identifier des gènes candidats comme régulateurs clés de cette
réponse.

2. Réaliser des études d’association (GWAs) chez Arabidopsis thaliana. Nous
commençons par caractériser la variabilité naturelle trouvée dans l’altération
du statut minéral par le CO2 élevé de divers écotypes. Puis, sur la base des
phénotypes et des informations de séquence disponibles, nous identifions les
déterminants génétiques associés à la réponse du ionome sous CO2 élevé.

Les prédictions réalisées par chacun de ces points donneront lieu à la valida-
tion expérimentale des candidats les plus prometteurs.

Pour étudier les voies nutritionnelles sous eCO2 et réaliser l’identification des
gènes candidats, nous avons eu recours à la biologie des systèmes, et plus partic-
ulièrement à l’inférence de Réseaux de Régulation de Gènes (GRNs). Les GRNs
sont des modèles abstraits du contrôle de la transcription et des influences mutuelles
des gènes sur leurs niveaux d’expression. Dans les organismes complexes, l’inférence
des GRNs est un objectif ultime mais aussi un défi non résolu car il implique de mul-
tiples couches moléculaires entrelacées et des défis statistiques importants.

Afin d’adapter et d’améliorer les solutions existantes pour l’inférence de GRN,
nous avons pris la décision d’explorer les techniques basées sur la régression. En
effet, de telles méthodes sont facilement extensibles, multivariées, et décrivent la
régulation dans une formulation orientée vers la causalité. Elles ont prouvé dans des
benchmarks que, même si leur performance était limitée, elle dépassait celle d’autres
approches statistiques [Marbach et al., 2012b], notamment dans le cas d’ensemble
d’arbres comme GENIE3 [Huynh-Thu et al., 2010].

Cependant, les méthodes basées sur la régression souffrent de certaines limites.
Par exemple, l’extraction des influences régulatrices à partir des modèles de régres-
sion fournit un GRN pondéré entièrement connecté, mais la façon de seuiller ce GRN
entièrement connecté n’était pas traitée dans la publication originale de GENIE3: il
n’y a à ce jour aucun consensus sur la façon d’obtenir de manière optimale un GRN
sparse. Compte tenu de ce potentiel d’amélioration, nous proposons dans la Pub-
lication #2 d’affiner l’inférence de GENIE3 en évaluant la significativité statistique
des interactions prédites, et de comparer le gain de précision de cette procédure sur
des gold-standards expérimentaux.

En outre, les méthodes basées sur la régression souffrent du problème de grande
dimension, de forte colinéarité dans les varaibles prédictives, et leurs performances
pourraient être limitées par leur utilisation exclusive de données transcriptomiques.
Pour ces raisons, l’utilisation d’autres types de données omiques, non seulement
pour l’évaluation des modèles, mais aussi pour leur estimation, est envisagée dans
ce travail. La Publication #4 fournit un aperçu des solutions existantes pour l’intégration
des données dans l’inférence basée sur la régression tout en améliorant et en explo-
rant deux types populaires de modèles de régression pour l’inférence GRN dans
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un contexte d’intégration de TFBS et d’expression. Ces approches de régression in-
tégratives sont comparées sur la base de la précision et du rappel, de l’erreur de
prédiction et de la pertinence biologique.

Principaux résultats

Développement d’un outil interfacé et sous forme de package R pour l’analyse
statistique de données transcriptomiques et l’inférence de GRNs : DIANE

Avant d’interroger les données d’expression et d’inférer un GRN pour comprendre
l’adaptation au CO2 élevé chez Arabidopsis, nous avons d’abord réfléchi aux méth-
odes d’analyse transcriptomique qui composeraient notre pipeline. Cette réflexion a
conduit au choix d’un ensemble précis d’outils.

Motivés par les analyses statistiques reproductibles, nous avons partagé notre
pipeline et notre dévlopement méthodologique pour l’inférence de GRNs, via une
interface utilisateur graphique déployée en ligne, qui se présente également sous
la forme d’un package R : le Dashboard for the Inference and Analysis of Network
from Expression data (DIANE). Cet outil est décrit en détail dans la Publication #2,
résumée ci-dessous.

Les données transcriptomiques à haut débit sont souvent examinées pour dé-
couvrir de nouveaux acteurs et régulateurs d’une réponse biologique. À cette fin,
des interfaces graphiques ont été développées et permettent à un large éventail
d’utilisateurs de réaliser des analyses standard à partir de données RNA-seq, même
avec peu d’expérience en programmation. Bien que les solutions existantes four-
nissent généralement des procédures adéquates pour la normalisation, l’exploration
ou l’expression différentielle, des fonctionnalités plus avancées, telles que le clus-
tering de gènes ou l’inférence de réseaux de régulation, manquent souvent ou ne
reflètent pas l’état actuel de l’état de l’art. Nous avons développé ici une inter-
face utilisateur appelée DIANE (Dashboard for the Inference and Analysis of Net-
works from Expression data) conçue pour exploiter le potentiel des jeux de données
d’expression multifactorielles provenant de n’importe quel organisme grâce à un
ensemble précis de méthodes. Une session de travail interactive dans DIANE per-
met la normalisation, la réduction de la dimensionnalité, l’expression différentielle
et l’enrichissement ontologique. Le regroupement de gènes peut être effectué et ex-
ploré via des modèles de mélange configurables, et les forêts aléatoires sont utilisées
pour inférer les GRNs. DIANE comprend également une nouvelle procédure pour
évaluer la significativité statistique des mesures d’influence régulateur-cible basée
sur des permutations pour les métriques d’importance des forêts aléatoires. Tout
au long du pipeline, les rapports de session et les résultats peuvent être téléchargés
pour garantir des analyses claires et reproductibles.

Nous démontrons la valeur et les avantages de DIANE en utilisant un ensemble
de données récemment publiées décrivant la réponse transcriptionnelle d’Arabidopsis
thaliana sous la combinaison de perturbations de température, de sécheresse et de
salinité. Nous montrons que DIANE peut intuitivement effectuer une exploration
des procédures statistiques informatives sur des données RNA-Seq, effectuer un
clustering des profils d’expression génique et aller plus loin dans la reconstruction
de GRNs, en fournissant des gènes candidats pertinents ou des voies de signalisa-
tion à explorer. DIANE est disponible en tant que service web, ou peut être installé
et lancé localement en tant que package R.

Plus d’un an après la publication de DIANE, il est possible de faire le point sur
son utilisation. DIANE a été mise à jour à plusieurs reprises afin d’ajouter quelques

https://diane.bpmp.inrae.fr/
https://oceanecsn.github.io/DIANE/
https://oceanecsn.github.io/DIANE/
https://diane.bpmp.inrae.fr
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améliorations fonctionnelles ou ergonomiques mineures. Elle a également été mise à
jour afin de se conformer aux nouvelles versions de R et des packages dont DIANE
dépend, mais aussi suite aux rapports de bugs mineurs de plusieurs utilisateurs.
DIANE a reçu des contributions de code externes et a été ajouté aux portails en ligne
de SouthGreen comme le Rice Genome Hub ou le Banana Genome Hub. Cet outil
a également été utilisé dans l’enseignement par des étudiants en M1 de biologie
végétale mais également lors de formations de recherche. Un outil interne que nous
avons développé permet de visualiser les logs de l’utilisation en ligne de DIANE.
Il révèle que depuis sa publication en mai 2021, il a été de plus en plus utilisé. En
octobre 2022, entre 80 et 100 connexions sont reportées chaque semaine.

Un réseau de régulation des gènes révèle les caractéristiques et les régula-
teurs de la réponse des racines au CO2 élevé chez Arabidopsis

Comme présenté dans l’introduction Publication #1, l’impact délétère du CO2 élevé
chez les plantes C3 est lié à la nutrition minérale de plusieurs façons. Tout d’abord, la
nutrition minérale semble être négativement altérée, car la composition des feuilles
de la plante diminue sous eCO2, l’azote étant particulièrement affecté [Loladze,
2014]. Notre revue met en avant l’existence potentielle de réseaux transcriptionnels
dans les racines des plantes régissant les gènes d’acquisition et de métabolisme du
nitrate, mais ces réseaux n’ont pas encore été étudiés dans des transcriptomes en-
tiers. Deuxièmement, l’effet du CO2 élevé sur le gain de biomasse et la composition
des feuilles dépend de l’état nutritionnel de la plante. Par exemple, ces réponses
phénotypiques semblent être modulées par la quantité de nutriments apportés à la
plante pendant sa croissance, ou par la forme de ces nutriments. Il est donc très in-
téressant d’étudier l’effet du CO2 élevé en combinaison avec différentes conditions
nutritionnelles pour la plante. Ceci a motivé la conception d’un jeu de données tran-
scriptomiques combinatoires pour élucider la réponse d’eCO2 dans des conditions
d’apport suffisant et faible de deux nutriments principaux pour la plante : le nitrate
et le fer (Fe).

Nous avons démontré dans la Publication #3 qu’un niveau élevé de CO2 a un
effet très modeste sur l’expression du génome des racines en cas de suffisance de
nutriments, mais qu’en revanche, il entraîne des changements d’expression impor-
tants en cas de carence en nitrate et/ou en fer. De plus, nous avons démontré que le
CO2 élevé cible négativement les modules de signalisation de la carence en nitrate
et en fer au niveau transcriptionnel, notamment en association avec une réduction
des capacités d’absorption du nitrate à haute affinité par les racines. Nous avons
enfin inféré le GRN de la réponse à un taux élevé de CO2 sous limitation en nitrate,
au moyen de la suite méthodologique DIANE (Publication #2). Cela nous a permis
d’identifier et de valider expérimentalement les facteurs de transcription MYB15,
WOX11 et EDF3 pour leur rôle dans la stimulation de la croissance par un taux élevé
de CO2 (Figure 5.1). Notre approche a donc bien identifié les caractéristiques et les
régulateurs clés de la réponse de la plante à une concentration élevée de CO2, dans
le but de développer des cultures plus résilientes face au changement climatique.

https://rice-genome-hub.southgreen.fr/
https://banana-genome-hub.southgreen.fr/
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FIGURE 5.1: MYB15, WOX11 et EDF3 contrôlent la stimulation de
la production de biomasse par le CO2 élevé sous limitation en ni-
trate. Réponse phénotypique au CO2 élevé des plantes présentant des
mutations pour les régulateurs candidats bhlh, myb15, myb85, wox11,
wrky59 et edf3, par rapport à leur type sauvage relatif (Col, Columbia
; WS, Wassilewskija). Les effets d’interaction sont testés par modèles

linéaires.

L’intégration des sites de fixation des facteurs de transcription (TFBSs) à
des données d’expression améliore l’inférence de GRNs chez Arabidopsis
thaliana

Les méthodes de régression sont des approches statistiques populaires et puissantes
traditionnellement appliquées aux données d’expression. Plus récemment, des straté-
gies intégratives basées sur la régression sont apparues pour guider l’inférence des
GRNs avec des données complémentaires, mais elles pourraient être adaptées pour
s’adapter plus précisément aux données ou mieux modéliser la causalité. En outre, il
est possible que, selon la nature du modèle de régression, les avantages de l’intégration
de données varient. Pourtant, des analyses comparatives minutieuses font défaut
dans la littérature.

Sur la base de la réponse temporelle à l’induction du nitrate dans les racines
d’Arabidopsis thaliana, nous proposons d’étudier conjointement l’impact du choix du
modèle pour la fonction de régression dans l’inférence GRN, et les avantages de
l’intégration des TFBSs aux données d’expression. Pour ce faire, nous améliorons
deux stratégies de régression prometteuses (Figure 5.2) : une version intégrative de
l’algorithme Random Forest (bRF), et un modèle linéaire généralisé LASSO avec
rétrécissement différentiel et sélection de la stabilité (LASSO-D3S). Nous évalu-
ons leurs capacités de prédiction et leur précision par rapport à des gold-standards
déterminés expérimentalement et répertoriés dans ConnecTF. Cette évaluation est
effectuée pour une gamme de densités de réseau biologiquement pertinentes et par
le biais d’un paramètre réglant finement la contribution des TFBS à l’inférence des
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GRNs.
Nous concluons que l’intégration des TFBSs améliore la pertinence biologique des
GRN inférés à la fois pour bRF et LASSO-D3S, et nous discutons des caractéristiques
des GRNs inférés en fonction du choix du modèle. En outre, les voies de signalisa-
tion pertinentes pour la nutrition par le nitrate et attendues dans cette réponse sont
modélisées de manière réaliste par bRF et LASSO-D3S, et les régulations fonction-
nellement validées du transporteur de nitrate NRT2.1 sont progressivement retrou-
vées à mesure que la contribution des TFBSs est renforcée. Cela souligne l’importance
de nouveaux développements dans l’intégration des données multi-omiques pour
l’inférence GRN basée sur la régression. Tous les scripts R pour les fonctions bRF et
LASSO-D3S sont rendus disponibles.

Regulators

Target	gene
N	conditions

RNASeq	data	:	𝑌, 𝑋

PWM	occurrence		score	
in	the	target’s	promoter

TFBS	prior	matrix	:			Π

Target	genePromoter	region

Contribution	
of	TFBS
to	expression

𝛼

• LASSO-D3S

Unpenalized	regression	
on	robust	regulators	only

Lasso	Regression	with	Poisson	response

𝑚𝑖𝑛𝛽	(−𝐿𝑜𝑔ℒ + 	𝜆(1 − Π𝛼) ∥ 𝛽 ∥1 )
Regulators	with	high	Π are	less	and	less	

penalized	as	𝛼 increases

Stability	selection
• bRF

Weighted	sampling	of	the
regulator	space

Bootstrapped	regression	trees

TF Target MDA TF Target P-value

𝑌 = 𝑓(𝑋, 𝛼, Π	) Repeat	for	each	target	gene

Density	
threshold	D
to	keep	high	

confidence	edges

Final	Gene	
Regulatory	Networks

𝑝9:;<=>? ∝ 10BCD

FIGURE 5.2: Illustration des deux méthodes d’inférence de GRNs
basées sur la régression et intégrant expression et TFBS : bRF et

LASSO-D3S.

La reprogrammation progressive de l’expression génétique sous gradients
de CO2 pointe vers une dérégulation vers voies de signalisation de la nu-
trition azotée

Les résultats de l’inférence de GRN présentés jusqu’à présent sont basés sur des
transcriptomes à l’état stable dans des conditions contrastées de CO2 et de nutrition.
Il existe cependant des preuves substantielles que les mécanismes de régulation se
produisent de manière adaptative, dans le temps ou le long du changement graduel
d’une variable environnementale. Afin de mesurer les changements d’expression
pertinents dans le contexte de l’augmentation du CO2, nous avons généré un en-
semble de données transcriptomiques de la réponse des racines à des concentra-
tions de CO2 progressivement croissantes. De plus, nous avons décidé d’étudier
différents types de sources d’azote pour la plante : la nutrition au nitrate et au ni-
trate d’ammonium. Cette décision a été motivée par l’observation dans la littérature
que la nutrition au nitrate provoque des réponses phénotypiques plus sévères que
la nutrition au nitrate d’ammonium face à l’augmentation du CO2. En particulier,
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la nutrition à l’ammonium semble moins pénalisée en termes d’acclimatation de la
photosynthèse au CO2 élevé[Asensio, Rachmilevitch, and Bloom, 2015].

Après réalisation de l’expérience, les analyses phénotypiques ont permis de con-
clure que la nutrition au nitrate d’ammonium accentue l’augmentation de la stim-
ulation biomasse, et la diminution de la teneur en N à eCO2. Les analyses tran-
scriptomiques des racines, et plus particulièrement une analyse de réduction de di-
mension ont révélé que le principal facteur influençant l’expression génétique est
le type de nutrition azotée. Le deuxième facteur influençant l’expression génétique
est la concentration de CO2. De plus, la reprogrammation de l’expression semble
beaucoup plus marquée en nutrition ammonium nitrate.

Sur la base de la méthodologie développée et explorée dans la Publication #4,
nous avons inféré un GRN de l’adaptation des racines à l’augmentation du CO2 sous
apport en nitrate uniquement, en utilisant des données d’expression combinées aux
informations TFBS. Nous avons vérifié que ce GRN avait de bonnes performances
de prédiction contre des gold-standards expérimentaux, et ce dernier capture du
signal biologique de manière significative comme l’ont montré des approches par
permutations. Il est frappant de constater qu’un nombre élevé de gènes dans les
régulateurs les plus connectés sont des régulateurs déjà connus pour leur implica-
tion dans les voies de nutrition de l’azote (Figure 5.3). Parmis ces régulateurs, CDF3
a le degré global et le degré externe les plus élevés. Il a déjà été établi qu’il con-
trôle la réponse à l’azote et l’efficacité d’utilisation de l’azote chez Arabidopsis et
la tomate [Domínguez-Figueroa et al., 2020]. Les deuxième, quatrième et sixième
TF les mieux classées appartiennent à la famille NIGT : HHO3, HRS1 et HHO2. Le
rôle de ces TFs dans la régulation de l’acquisition des nutriments et notamment de
l’azote a été clairement établi, ainsi que leur capacité à se lier au promoteur de leurs
cibles : [Kiba et al., 2018; Safi et al., 2021]. D’autres régulateurs d’intérêts comme
UIF1, RAV1 et BZIP3 [Brooks et al., 2019] sont rencontrés légèrement plus bas dans
le classement des nœuds par degré global. Les 16e et 35e TF les mieux classés sont,
de manière intéressante, NLP6 et NLP7, maîtres régulateurs des réseaux de nitrates
chez les plantes [Marchive et al., 2013]. Ces résultats renforcent l’hypothèse que les
voies de nutrition azotée sont spécifiquement altérées par le CO2 élevé.
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FIGURE 5.3: 12 régulateurs les plus connectés du GRN inféré, par
ordre décroissant de degré total. Les gènes surlignés en bleu sont les
régulateurs déjà caractérisés comme contrôlant les gènes de transport

et d’assimilation du nitrate.
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Des études d’association identifient des gènes candidats dans la réponse
du ionome d’Arabidopsis sous des concentrations élevées de CO2

Des études récentes ont examiné plusieurs lignées génétiquement diverses de riz
cultivé et ont conclu que la diversité génétique pouvait être une source de variabil-
ité dans les changements du fer, du zinc et des protéines dans des conditions de
CO2[Zhu and Ziska, 2018] élevé. L’identification des polymorphismes expliquant à
cette diversité intra-espèce pourrait non seulement être un moyen de comprendre
cette réponse, mais aussi de sélectionner des cultures plus résilientes. Dans ce tra-
vail, nous avons passé au crible trois populations d’écotypes de Arabidopsis thaliana,
provenant d’échelles géographiques locales, régionales et mondiales, et caractérisé
la variabilité phénotypique dans leur réponse ionomique à un CO2 élevé. Nous
avons pu confirmer un déclin global du statut minéral se produisant conjointement
avec une augmentation de la teneur en carbone et identifier un sous-ensemble de
lignées plus tolérantes avec une teneur en nutriments préservée. Nous avons égale-
ment réalisé des GWAs sur les éléments minéraux sous CO2 élevé pour les accessions
de la population REGMAP [Horton and Bergelson, 2012], sur la base de modèles
mixtes linéaires (LMM). Notre analyse a mis en évidence des haplotypes d’intérêt et
des gènes candidats pour le contrôle de l’accumulation de fer, de l’azote et du zinc
dans les feuilles d’Arabidopsis sous CO2 élevé. Ces gènes candidats sont nommés
en conclusion, et la Figure 5.4 illustre les résultats obtenus pour le changement re-
latif en fer, qui mettent en évidence une région du génome très fortement associée
dans le chromosome 4.

FIGURE 5.4: Manhattan plot pour la variation relative du Fe sous
eCO2. En haut à droite, le phénotype des accessions ayant un poly-
morphisme à haut signal dans le pic d’un gène candidat impliqué
dans le transport du Fe+3 (orange) est affiché par rapport à celles qui
ne possèdent pas ce variant (vert). Dans le coin inférieur droit, le di-
agramme montre les valeurs p observées à partir des LMM sur l’axe
des ordonnées par rapport aux valeurs p attendues sans associations

sur l’axe des abscisses.
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Discussion et conclusion générale

Le CO2 élevé déclenche une reprogrammation de l’expression génétique
qui impacte négativement sur la nutrition minérale chez Arabidopsis

L’examen combiné des expériences réalisées dans le cadre de ce projet permet de
mieux comprendre la réponse d’Arabidopsis exposée au CO2 élevé. Tout d’abord,
la biomasse a été augmentée par le CO2 élevé dans toutes les expériences, que
les plantes aient été cultivées sous un apport abondant de nitrate, un apport lim-
ité de nitrate, un apport limité de nitrate d’ammonium, ou même une privation de
fer. Cette augmentation constante de la biomasse confirme que l’eCO2 a le potentiel
de stimuler fortement la croissance des plantes dans différents contextes environ-
nementaux, ce qui constitue une perspective prometteuse pour les pratiques agri-
coles futures.

Nos mesures de quantité d’azote (N) dans diverses conditions convergent vers le
fait que l’appauvrissement en minéraux sous eCO2 n’est pas causé uniquement par
le soi-disant "effet de dilution". Ceci est également confirmé par la découverte de
lignées mutantes comme edf3 et myb15 dans lesquelles la stimulation de la biomasse
est fortement altérée mais pas la teneur en azote. Ce découplage entre la stimulation
de la biomasse et la teneur en N est déjà confirmé par plusieurs autres travaux [Feng
et al., 2015; Wujeska-Klause et al., 2019; Myers et al., 2014b] (Publication #1).

En parallèle, les jeux de données phénotypiques et transcriptomiques générés
semblent concorder sur l’impact négatif du fort CO2 sur des facettes spécifiques de
la nutrition minérale des plantes. La baisse de N, Zn, Fe, Mg et Mn observée dans les
populations d’Arabidopsis de notre GWAs est similaire à ce qui a été observé dans
des expériences en champs impliquant divers génotypes de riz [Zhu et al., 2018] ou
des méta-analyses englobant plusieurs plantes d’intérêt agronomique [Myers et al.,
2014a]. De plus, les modèles d’association que nous avons ajustés entre la réponse
à la teneur en minéraux et le génotype pointent vers des gènes impliqués dans dif-
férents types de transport du Fe ou du Zn, et vers un régulateur candidat de la
nutrition azotée. Ceci suggère que l’élévation du CO2 semble perturber les mécan-
ismes d’absorption des minéraux. Dans le cas particulier du nitrate, les voies as-
sociées aux systèmes de transport du nitrate à haute affinité sont particulièrement
défavorablement modifiées par l’augmentation du CO2. Dans les jeux de données
transcriptomiques de notre étude combinatoire, le regroupement par co-expression
des gènes sensibles au CO2 sous faible teneur en nitrate a révélé que les réponses
à la limitation du nitrate habituellement observées sous CO2 ambiant étaient nette-
ment perturbées sous eCO2. De plus, des gènes majeurs impliqués dans le trans-
port et l’assimilation du nitrate comme NRT2.1, NIR ou GLN1.2 ont été réprimés
par le CO2 élevé, alors que l’expression de leurs régulateurs négatifs était augmen-
tée (Publication #3). Notre étude du gradient de CO2 confirme la surexpression des
régulateurs négatifs de l’absorption de N lorsque le CO2 est élevé, tandis que bon
nombre des régulateurs les plus liés au GRN inféré de la réponse des racines sous
CO2 élevé et faible teneur en nitrate sont des régulateurs établis de l’acquisition et
de l’assimilation de N appartenant. La teneur en N dans les feuilles a été significa-
tivement réduite par le CO2 dans tous nos jeux de données de manière spécifique à
un apport limité de nitrate. Nous démontrons également que l’absorption racinaire
de nitrate est diminuée spécifiquement en cas de faible apport de nitrate, ce qui ren-
force l’hypothèse selon laquelle le transport à haute affinité est ciblé négativement
par le CO2 élevé.
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Les modèles d’inférence de GRNs et les modèles d’associations ont prédit une
liste de gènes candidats comme acteurs importants de la réponse sous CO2 élevé,
que ce soit dans la stimulation de la biomasse ou l’acquisition de nutriments. Leur
statut concernant la validation expérimentale est également diversifié, car ils ont été
obtenus à différentes étapes du projet.

1. MYB15, EDF3 et WOX11 ont été identifiés dans un GRN inféré de la réponse
racinaire au CO2 élevé sous faible nitrate dans des conditions contrastées de
nitrate et de CO2. Ces trois gènes contrôlent la stimulation de la production de
biomasse par l’eCO2 sous limitation en nitrate d’après plusieurs validations
expérimentales.

2. Les gènes les plus centraux du GRN intégratif inféré dans l’expérience du gra-
dient de CO2 sous faible apport de nitrate (à savoir CDF3, HH03, AT2G28810,
HRS1, HB5, HHO2 sont des candidats prometteurs.

3. Les loci fortement associés dans les GWAs sont : GATA4, associé au change-
ment relatif de N, la Fe+3 dicitrate transport permease, associée au changement
relatif de Fe, TIP2.2, associé au changement relatif de Zn, deux kinases simul-
tanément associées aux changements relatifs de N et Zn, ainsi que les voisins
directs de ces gènes.

Une direction claire pour les recherches futures est l’étude des aspects physi-
ologiques et moléculaires précis de la réponse au CO2 chez les plantes, et partic-
ulièrement les régulations du système de transport à haute affinité que nous avons
rapportées. Ceci peut être initié par une caractérisation fonctionnelle plus avancée
des gènes candidats proposés dans ce travail avec les outils de la biologie molécu-
laire et de la physiologie végétale. Enfin, ce projet ouvre la perspective d’études
translationnelles. Deux projets de recherche de l’équipe feront passer l’étude de la
réponse au CO2 d’Arabidopsis à des plantes d’intérêt agronomique : le blé dur et la
tomate.

Perspectives de modélisation et d’inférence basées sur la régression pour
la biologie des systèmes

Dans ce projet, toutes les méthodes statistiques choisies pour la découverte de gènes
candidats ont une base de régression. Les associations entre les marqueurs géné-
tiques et les phénotypes sont mises en évidence par des régressions linéaires mixtes
(LMM). L’inférence de GRNs, uniquement sur la base de l’expression ou combinée
à des connaissances préalables, est composée de problèmes de régression prédisant
l’expression d’un gène cible sur la base de l’expression des régulateurs. Dans les
deux cas cependant, l’objectif final est en fait une question de classification : quels
sont les variants génétiques qui causent un phénotype? Parmi toutes les dépen-
dances transcriptionnelles possibles entre paires de gènes, lesquelles sont se man-
ifestent réellement dans une réponse donnée ? La raison pour laquelle les algo-
rithmes de classification sont rarement entraînés à prédire directement les variants
causaux ou les liens entre les gènes est que les données de validation sont si rares
qu’aucun cadre d’apprentissage supervisé ne peut être correctement mis en place.
Au lieu de cela, des régressions sont ajustées sur les seules données disponibles en
grande quantités, dans notre cas l’expression des gènes, les polymorphismes et les
phénotypes, et les modèles de régression sont ensuite interprétés pour effectuer une
classification non supervisée. Dans un GWAs, l’interprétation du modèle est don-
née par la p-valeur du coefficient de régression de chaque variant. Dans l’inférence
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GRN, les régressions sont utilisées pour quantifier l’influence des régulateurs candi-
dats sur l’expression des gènes et finalement extraire les régulateurs pertinents.

Alors que nos GWAs ont utilisé des méthodes statistiques existantes, nous
sommes les auteurs de deux nouveaux développements méthodologiques pour
l’inférence GRN. Le premier est DIANE, une suite pour l’exploration de données
transcriptomiques et l’inférence de GRN dans laquelle nous avons étendu GENIE3
[Huynh-Thu et al., 2010] afin de raffiner son classement des interactions réglemen-
taires (Publication #2). Cette stratégie basée sur la permutation améliore la précision
du GRN dans deux organismes, tout en fournissant des leviers plus interpréta-
bles à l’utilisateur par le biais d’un paramètre contrôlant la densité du réseau, et
d’un autre contrôlant le FDR. Le deuxième développement est l’implémentation
de bRF et LASSO-D3S, des cadres de régression intégrant les informations TFBS
pour guider l’inférence GRN à partir de données d’expression. Cette intégra-
tion est encodée dans les régressions non linéaires des forêts aléatoires par sous-
échantillonnage pondéré de l’espace des régulateurs pendant l’élongation des ar-
bres (bRF), et par rétrécissement différentiel dans des modèles linéaires généralisés
pénalisés avec sélection de stabilité (LASSO-D3S). Ces méthodes ont été finement
étudiées sous différentes forces d’intégration de données, et leur évaluation par une
série de critères de qualité a confirmé que l’intégration des TFBS est bénéfique à
l’inférence GRN chez Arabidopsis thaliana (Publication #4).

En termes de perspectives, bRF et LASSO-D3S devraient être directement com-
parées à leurs équivalents existants les plus similaires, à savoir iRafNet [Petralia
et al., 2015] et l’Inferelator [Skok-Gibbs et al., 2022; Miraldi et al., 2019], et ce, sur
les mêmes jeux de données. De plus, est important de sélectionner des métriques
d’importance des variables intelligibles et non biaisées pour les forêts aléatoires
afin d’en déduire des interprétations biologiques. Nous avons pris la décision
dans DIANE et bRF d’utiliser l’approche basée sur des permutations (le MDA) au
lieu de la pureté des nœuds (MDI) choisie dans GENIE3 et iRafNet, car le MDA
est plus fiable dans le cas de niveaux élevés de corrélation entre les caractéristiques
d’entrée [Nicodemus and Malley, 2009]. Mais même le MDA n’est pas insensible
aux dépendances entre les variables, et il peut théoriquement s’écarter de la quan-
tité désirée. Pour résoudre ce problème, le Sobol-MDA a été proposé [Bénard, Da
Veiga, and Scornet, 2021] et pourrait remplacer le MDA dans nos outils d’inférence.
Afin d’améliorer encore l’interprétabilité des modèles, des modèles de régression
alternatifs pourraient être utilisés comme SIRUS, un algorithme d’apprentissage de
règles stables qui présente de nombreuses propriétés souhaitables des modèles in-
terprétables : stabilité, simplicité et prédictivité [Bénard et al., 2021].

Enfin, la forme ultime d’intégration de données convenant à ce projet serait
l’intégration de nos jeux de données GWAs et transcriptomiques dans un modèle
unique pour découvrir des gènes candidats. Dans cet optique, les network-guided
GWAs constituent un domaine prometteur. Dans ces approches, les gènes se voient
attribuer un score d’association à partir d’un GWAs, dérivé des p-values des vari-
ants dans ce gène ou son proche voisinage. Chaque gène est également caractérisé
par un ensemble de connexions, donné par un réseau de gènes construit à partir
de connaissances préalables. Plusieurs approches peuvent alors être utilisées pour
trouver des modules de gènes enrichis en scores d’association à l’intérieur de ce
réseau préalable. Nous pourrions combiner nos GWAs à l’inférence de GRNs en ap-
pliquant cette stratégie, en utilisant comme réseaux d’entrée les GRN inférés de la
réponse des racines au CO2 élevé.
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