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Notations

 i⃗W

j⃗W

k⃗W

 World coordinate system

 i⃗R

j⃗R

k⃗R

 Platform coordinate system

 i⃗Xeye

j⃗Xeye

k⃗Xeye

 Frontal perception sensor coordinate system

 i⃗Xtool

j⃗Xtool

k⃗Xtool

 Proximal perception sensor coordinate system

x State vector

u Control vector

(x, y) Coordinates of a detected crop in pixels

υc Linear velocity of the platform [m/s]

ωc Angular velocity of the platform [rad/s]

IY1 Crops instance segmentation generated by YOLACT++

IY2 Weed instance segmentation generated by YOLACT++

IYs Crop segmentation based on feature extraction

Lri Reference line

(x̂vp, ŷvp) Vanishing point coordinates in pixels
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Ls Interaction matrix

s Visual features

s∗ Desired values of the visual features

J Model predictive control cost function
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1
Robotics in agricultural environments

Chapter summary

Robots have been employed to transform many global industries in the last decades,
they can effectuate tasks that human hands can not, allowing to save money and
execution time. Just like humans, robots can execute tasks completely autonomous
based on the perception of their environment. The present chapter discusses a general
review of agricultural robotics. Unlike other sectors, agricultural robots operate in
natural environments imposing great challenges. Application of these robots in digital
farming has changed traditional agriculture, one of the main interests in digital farming
is replacing pesticides by agricultural robots in order to eliminate weeds. To deal with
this, two international competitions are described where this work took place. Besides,
the contributions of this manuscript are presented.
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CHAPTER 1. ROBOTICS IN AGRICULTURAL ENVIRONMENTS

1.1 Introduction

Agriculture provides the basis of subsistence for the population through the production
of food and raw materials. From 1900 to 2022, the global population increased from
1.6 billion to 8 billion [1] and, according to the Department of Economics and Social
Affairs of the United Nations (UN), the world’s population could reach its peak at nearly
11 billion around 2100, demanding innovations in food production and technological
advancements to provide farmers with tools and resources to make farming more
sustainable. As a result of this demand, robots have been employed in the last years in
agricultural tasks reducing cost-production, execution time and manpower.

Despite these robots can interact with humans to perform different tasks, the trend
for the future is to provide them full autonomy. However, farm work is mostly done in
outdoor environments where conditions are constantly changing, which implies robots
must have a robust perception system to extract information of their environment. The
perception system allows robots the ability to make decisions, as illustrated in Figure
1.1, so that, the better the perception, the better the robot’s performance.

Figure 1.1: General scheme of the perception/decision/action loop of an autonomous robot.

The use of information technology has generated the so-called “Precision agricul-
ture”, which aims to optimize the resources needed to improve crop quality. To mention
one example: in the pest control procedure, farmers apply the same rate of fertilizers in
the field. However, some parts of the crops are less infected than others (which can be
originated by the type of soil, weather conditions, etc.), generating waste of crops and
pesticides. With the advent of precision agriculture, constant field monitoring can be
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done to provide data, indicating the most affected zones. Then, robots can effectuate
optimal pesticide spraying or implement another mechanism to eliminate weeds.

1.2 Agricultural robotics: A general review

The following review presents the use of robots in agriculture in a general way without
detailing the methods implemented for each application.

1.2.1 Soil preparation and planting

Planting is the process of putting plants into the ground, the classical way to execute
this task requires human labor to manually insert each seed into the soil. Generally, this
process is restricted by the distance between each plant to optimize its growth, which
requires a high-precision level. Before performing planting, a previous soil preparation
is carried out allowing to eliminate undesirable plants and to incorporate soil fertilizers
to replace the nutrients necessary for the development of crops.

The commercial robot Cäsar [2] can fertilize the soil autonomously or remotely
controlled. The vehicle is shown in Figure 1.2 - a), it is able to drive autonomously
using stored route plans with an accuracy of 2 to 3 cm. Although the robot possesses
an obstacle detector, the prerequisites for autonomous operation are: an unimpeded
route within an enclosed fruit plantation and trained staff in the workspace, in case
of an obstacle detection the robot makes an emergency stop, after the obstacle has
been removed it is necessary to restart the vehicle.

Another alternative to execute arable farming is the Greenbot [3] (Figure 1.2 - b)),
which is equipped with lifting devices, at the front of the robot there is a lifting device that
can lift up to 750 kg and at the rear can lift up to 1500 kg. One of its main advantages is
the four steered wheels increasing manoeuvrability, besides its user-friendly software
allows to plan its own route and soil management independently.

In the same way, a variable-rate seeding is presented in [4] for corn planters. After
performing laboratory analyses of soil samples and generating a map of the site, a
4-row pneumatic planter and a GPS receiver are attached to the tractor (Figure 1.2 - c)).
The receiver reports the seeding position and the tractor’s pose to the Android tablet,
which matches with the previous map generated. The planter-unit controller adjusts
the motor speed based on the calculations carried out by the tablet.

The development of autonomous seeding systems has been studied for several
crops [5], [6], [7]. The soil digging process plays a crucial role to ensure successful
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seed planting because seeds require specific digging depth and the seeding systems
must consider the soil moisture level to effectuate optimal planting.

Figure 1.2: Examples of platforms employed in soil preparation and planting. a) Cäsar [2]. b)
Greenbot [3]. c) John Deere tractor with pneumatic planter [4].

1.2.2 Plant monitoring and yield estimation

Plant diseases can kill or stunt plants having a direct impact in the world economy.
For this reason, a continuous inspection process have to be implemented in order
to identify the infection for implementing pesticide application to eradicate the source
infection. Traditionally, farmers observe any abnormality by themselves and apply
chemical products making this task highly time-consuming.

The plant growing stage is a factor that has to be considered during plant moni-
toring; crops in the early-middle stage present low density and small dimensions. To
achieve adequate detection, a proximal visual sensing was proposed in [8]. An opaque
box is used to act as a dark room (Figure 1.3 - a)), inside it, a rotating table allows to vary
the leaf viewing angle. The acquisition system is composed of a multi-spectral camera,
operating in the three spectral channels: green (540 nm), red (660 nm) and near infrared
(800 nm). The sensing measurements carried out from different angles, rather than per-
pendicularly to the leaf’s surface, improve the sensitivity from 9% at 0° up to 73% at 60°.

The Robot One (Figure 1.3 - b)) [9] is a multi-task agricultural robot able to detect
and classify plants using a computer vision system, the stereoscopic depth cameras
provide multiple data to the algorithms programmed in the robot allowing to produce
predictive plant growth models considering the current growing stage and disease.

The use of multispectral sensors on board of unmanned aerial vehicles has
been implemented recently [10], [11] as Figure 1.3 - c) shows, the purpose of these
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projects is to obtain quantitative data on a larger scale. The data collected by the
sensors can be recorded for a future analysis [12], [13], [14] or computed in real time,
sending the information to a base station which can estimate diverse parameters like
plant disease, yield and biomass.

Figure 1.3: Examples of platforms employed in plant monitoring and yield estimation. a)
Proximal sensing platform [8]. b) Robot One [9]. c) Multispectral sensor on board an Unmanned
Aerial Vehicle [10].

1.2.3 Spraying

Chemical substances can be sprayed on plants for pest-control, growth improvement or
fertilizers. Generally, the spraying process in farms is applied uniformly, which generates
waste of chemical products spread due to the crop infestation level is not the same.
The design and construction of an autonomous robot for spraying pesticides is exposed
in [15]. The spray system consists of a tank where the pesticide is stored, a pump
and four lateral valves controlled by an onboard microprocessor as shown in Figure
1.4 - a). The robot’s environment has to be known because its navigation is restricted
to a steel pipes guidance system, reflecting markers placed on the ground are used
to turn on and off the pump.

Auto Spray Systems commercialize the R150-ATJ electric platform [16] to help
small-scale farmers to carry out spraying and pellet spreading. The twin rotating high-
power nozzles can reach up to 12 meters spray and the container can store until 100
liters of chemical substances (Figure 1.4 - b)). The navigation system offers multiple
autonomous modes: an integrated RTK with previous routes recorded and the “follow
me” option, to make the robot follows an operator around the field.
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With the increasing implementation of aerial vehicles nowadays, DJI designed an
octocopter (AGRAS MG-1) for precision application of liquid pesticides and fertilizers
(Figure 1.4 - c)). Like any other aerial vehicle, the main restriction is the operating
payload, which is directly associated with the hovering time. A tank with a volume of 10
liters is fixed to the drone, the hovering time is around 12 minutes and the 4 nozzles
allow a maximum spray speed of 0.5 L/min (per nozzle) [17].

A more extended review on advancements of spray technologies in agriculture
is presented in [18].

Figure 1.4: Examples of platforms to perform spraying task. a) Spraying robot designed by [15].
b) Spraying system R150-ATJ [16]. c) DJI octocopter AGRAS MG-1 [17].

1.2.4 Harvesting

Harvesting is the process of picking and collecting crops. This activity can be divided in
three steps: target localization, robotic arm manipulation and activation of the cutting
mechanism. The first step implies a system recognition to identify the target; computer
vision systems predominate over other approaches to solve this problem. Then, the
robot arm has to move through crops without damaging them. Finally, the plant stem
will be cut to collect the crop.

One of the most refined harvesting robots is the Agrobot robot [19], which is
shown in Figure 1.5 - a). It is an autonomous strawberry harvestor. The flexible platform
can be adapted to fit into any farming configuration, its 24 independent arms pick
the fruit in a dedicated container. To isolate strawberries from the rest of the plant, a
fusion algorithm between color and infrared depth sensors is implemented. Grasping
without damaging the fruits has become the key difficulty. In the strawberry’s case, its
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firmness can be an obstacle due to an erroneous end-effector pressure will damage
the fruit. To deal with this, the Agrobot’s harvest does not touch the fruit, the robotics
arms grip and cut the stem.

Similarly, the design and control of an apple harvesting robot was proposed by
Zhao De-An et al. [20]. The recognition vision system performs in real-time to detect
and locate apples automatically, recognizing Fuji apples with a radius of 40 mm (which
is the average radius of Fuji apples). A joint structure with multiple degrees of freedom
was used as Figure 1.5 - b) shows. The end-effector includes a gripper and an electric
cutting device, the average harvesting time is around 15 seconds per apple. The
results report 39 apples recognized by the vision system, of which 30 apples were
picked successfully, six apples failed to be picked due to the occlusion phenomena
generated by the branches and the three remaining fell down to the ground as a result
of apples were of a smaller radius.

The major adversity to carry out harvest task is occlusion because it can disturb
two of the main stages: target localization and end-effector manipulation. Boaz Arad
et al. developed a sweet pepper harvesting robot [21], illustrated in Figure 1.5 - c). To
show the occlusion impact, the robot was tested in two scenarios: an idealized scenario
with low occlusion removing leafs and no clustering interfering, and a commercial
scenario without modifications. The success rates for fruit detection and fruit picked
in the container were 97% and 71% respectively for the idealized scenario, whereas
79% and 49% respectively for the commercial scenario.

Some other propositions have been published to collect cucumbers [22], cherries
[23], asparagus [24], tomato [25], just to mention some relevant works.

Figure 1.5: Harvesting platforms. a) Agrobot robot [19]. b) Apple harvesting robot [20]. c)
Pepper harvesting robot [21].
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1.2.5 Weeding

Weeding is the removal of weeds (any plant that grows in an unwanted place) from the
field. For many years, herbicides have been used as weed control. However, extensive
use of pesticides produces vapors that can become air pollutants, and also contaminates
soil and water. Among the weed control methods, two can be highlighted: mechanical
and chemical. The former refers to any technique that involves farm equipment, while
the latter refers to any technique that involves the application of chemical substances.

Naïo Technologies develops and commercializes agricultural robots to perform
autonomous mechanical weeding [26]. The electric Dino robot [27] uses a guidance
system that combines the RTK-GPS data and visual information to achieve a navigation
precision of 2 cm. The robot possesses multiple weeding tools like: kult parallelograms,
V-shape hoe blades, L-knife hoe blades and Finger hoes (Figure 1.6 - a)).

In a similar manner, Farming Revolution [28] rents an electrical farming robot
shown in Figure 1.6 - b). The robot’s length can be adjusted to operate in many
fields. The plant recognition system performs on up to 80 different plants (lettuce
varieties, onions, maize, sugar, ...) and can distinguish small plants (from 1 cm). Its
mechanical weeding tool executes intra-row (distance between two consecutive plants)
and inter-row (distance between two rows of plants) weeding.

One of the initial works to develop an autonomous agricultural robot for mechanical
weed control is presented in [29]. The robot has two vision systems: one to control
the weeding tool and the other to recognize rows. To implement the plant classification
in real-time, just few features were considered. The row recognition guided the robot
with an accuracy of 2 cm.

In the same way, Xiaolong Wu et al. [30] proposed a multi-camera system
for weed control, the weeds are detected and tracked across the camera system to
estimate the timing to activate the end-effector (Figure 1.6 - c)). The system combines
mechanical and chemical tools. For large weeds, a spray task is effectuated while
small weeds are stamped mechanically.

1.3 Problem statement

Although weeds are part of the ecosystem and help to protect and restore soils, they
affect crop growth reducing the amount of water, sunlight and nutrients absorbed
by crops. Apart from damaging crops, weeds increase the production cost by em-
ploying more human labor and external resources. Therefore, weed control plays a
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Figure 1.6: Weeding platforms. a) Dino robot (Naïo Technologies) [27]. b) Electrical farming
robot of Farming Revolution [28]. c) Weeding platform proposed by [30].

crucial role in agriculture.
Approximately, 3.5 million tonnes of pesticides are utilized annually worldwide

[31]; it is the weed control method most widely used in agriculture in recent years.
Figure 1.7 is a map of the pesticide consumption by country. The top three pesticide
consuming countries in the world are China, with an annual consumption of 1.76 million
tonnes, followed by the USA and Brazil, with a consumption of 408,000 and 380,000
tonnes per year, respectively.

Figure 1.7: World map shows pesticide consumption by country [32].

Another important indicator is the normalization of pesticide application per
hectare of cropland shown in Figure 1.8, which is more representative in quantita-
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tive terms. Due to China is the world’s largest grain producer, it leads the list with
an application of 13.07 kg per hectare. The USA are replaced in the second position
by Argentina, with an average application of 6.07 kg/ha and Brazil completes the top
three by applying 5.94 kg/ha.

Figure 1.8: Average pesticide application measured in kilograms per hectare [32].

However, the application of these substances generates negative side effects
on the ecosystem and human health [33]. Exposure to pesticides can be through
inhalation, ingestion or contact with the skin, resulting in more than 26 million cases
of non-fatal pesticide poisonings, about 3 million cases need hospitalization and ap-
proximately 220,000 deaths are reported [34]. Among the negative health effects
associated with pesticides are: gastrointestinal, dermatological, respiratory, neurological
and carcinogenic [35], [36].

On the other hand, the use of pesticides contaminates soil, water and they remain
in the crops. Residues of pesticides can be found in everyday consumer products
like fruit, wine, animal feeds. Moreover, washing and peeling food cannot completely
remove the residues [37]. The spraying of these substances produces vapors that can
become air pollutant and are dispersed to other sides.

The reduction of pesticide application is a pending subject in agriculture, and its
eradication is the goal in the long term. Alternatives to conventional pesticides have
been introduced recently like natural predators, biological control and hand weeding.
These alternatives achieved good results on a lesser scale, but on a larger scale in
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more realistic agriculture conditions the problem remains open.

1.4 The ROSE Challenge

In 2017, the French Ministries of Agriculture and Ecological Transition in partnership
with the French National Research Agency (ANR), launched the Robotics and sensors
at the Service of Ecophyto (ROSE) challenge [38] to solve the technological problems
identified by the agricultural community. The ROSE challenge aims to promote the
development of scientific advances in the management of weeds and its organization
is in charge of the National Metrology and Testing Laboratory (LNE) and the National
Research Institute for Agriculture, Food and the Environment (INRAE).

The ROSE challenge focuses on intra-row weed control, which is the space
between plants in the same crop line (see Figure 1.9). Multiple evaluation campaigns
were organized in an open-field of the AgroTechnoPôle at Montoldre, France in order
to measure the progress of each team.

Figure 1.9: A typical parcel with intra- and inter-row distances.

The challenge is based on three main tasks:
• Detection of weeds and plants of interest (crops)
• The weeding action
• The overall intervention of the system

Regarding the detection task, the systems are evaluated on their ability to determine
the position of weeds and plants of interest during a transition on the same parcel. For
the weeding action, each team intervenes on the parcel to achieve the weeding task
(weeds are located at indicated positions and easily visible by markers), the number
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and percentage of weeds destroyed is counted to measure the effectiveness of each
solution. Finally, the overall intervention involves the entire chain: detection, decision and
actuation. A reference parcel is utilized to compare the results of the global evaluation,
comparing the results between the proposed systems with the results obtained in the
reference parcel using conventional weed treatment.

Figure 1.10: Plants in the ROSE challenge. Plants of interest: a) Bean and b) Maize. Weeds: c)
Chenopodium, d) Matricaria, e) Moutarde, and f) Ryegrass.

The plants of interest are:
• Maize: presenting an inter-row distance of 75 cm and an intra-row distance of 15

cm. Two rows of crops are planted on the parcel with a length of 46.5 m. (see
Figure 1.11).

• Bean: presenting an inter-row distance of 37.5 cm and an intra-row distance of
7-8 cm. Three rows of crops are planted on the parcel with a length of 46.5 m.
(see Figure 1.11).

The weeds utilized during the ROSE challenge Matricaria, Chenopodium, Moutarde
and Ryegrass. Crops and weeds are illustrated in Figure 1.10

1.5 The ACRE competition

ACRE (Agri-food Competition for Robot Evaluation) is one of the autonomous robot
competitions organized by the METRICS (Metrological Evaluation and Testing of Robots
in International Competitions) project [39]. The robot performance is tested in real-
world agricultural scenarios to provide objective and repeatable results, promoting the
transition from traditional agricultural practices to Agriculture 4.0.

Like the ROSE challenge, the ACRE competition was conducted on INRAE
AgroTechnoPôle fields at Montoldre, France. An experimental field of 4 hectares is
divided in numerous parcels and put at the disposal of participants. Similarly, the plants
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Figure 1.11: Experimental field AgroTechnoPôle and crop parcel examples (Maize and Bean).

of interest and weeds are the same to those used in the ROSE challenge. The ACRE
competition involves a set of benchmarks to be performed listed below:

• Plant discrimination: To differentiate crops from weeds in the parcel. The evalu-
ation compares plant classification performance by the robot with ground truth
(human expert).

• Field navigation: To cross and move between parcels without damaging crops
(see Figure 1.12). The quantity of crop damaged and the time to complete the
task are evaluated.

• Leaf area estimation: To estimate the leaf area of the plants. The results ob-
tained by the robot are compared with the ground truth, in the same way as crop
differentiation.

• Weed destruction: For intra-row weeding without damaging crops. A parcel with
visual markers on crops and weeds is analyzed before and after the robot executes
weeding, the platform can be driven remotely.

• Biomass estimation: To estimate the above-ground biomass. The estimation
given by the robot is compared to the crop’s weight, to know the precision of each
solution.

• Intra-row weeding: Which is similar to weed destruction but for this benchmark,
the robot has to carry out the mission autonomously (weeding and navigation) and
the visual markers are removed from the parcel.

• Crop mapping: To generate a map of the crops. A mapping error is computed as
the discrepancy between the map generated by the robot and the ground truth
map.
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Figure 1.12: Parcel specifications for the field navigation benchmark.

1.6 Contributions

This thesis aims to propose an autonomous robotic system to carry out mechanical
weeding. The focus on intra-row weeding represents a great challenge due to the
compact distance between consecutive plants. The inter-row weeding is solved using
a mechanical mechanism attached in front of the platform. A general architecture is
presented in Figure 1.13. Although this architecture will be detailed in the following
chapters, in a very general manner the proposed solution can be described as a robotic
platform equipped with mechanical tools to carry out the weeding task and two multi-
modal sensors developed for this project. The first multimodal sensor was fixed in front
of the platform to execute autonomous navigation and the second multimodal sensor
was attached under the platform to manipulate the weeding tools.
Global task:

* The main contribution of this work is an autonomous mechanical solution to
perform inter and intra-row weeding. To achieve this goal, multiple tasks have been
accomplished. We propose and develop perception systems and strategies dedicated
to different purposes.
Detection task:

* Two methods to distinguish crops and weeds are proposed. The first is based on
image processing techniques using crop feature extraction and the second is learning-
based classification. The use of synthetic images in this work, allowed to reduce the
number of images needed to train the learning-based method. To create the synthetic
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images, a sample of the ground truth collected images was utilized.
Both methods perform well for crop/weed detection. However, each has some

drawbacks. Using the first method, some weeds remain after the segmentation and the
classification given by the second method generates some inconsistent masks.

* To leverage both approaches, a third detection method is proposed that consists
of the fusion of the first two methods. This new method uses the strengths of each
algorithm to improve crop/weed segmentation, solving the leakage mask issue of
semantic segmentation of plants and weeds under natural dynamic conditions.

Each one of the previous methods is able to be executed in real time on an
onboard system.

Figure 1.13: Autonomous robotic system proposed in this thesis.

Navigation task:
Having solved the crop/weed segmentation, this information is utilized for au-

tonomous navigation and autonomous mechanical weeding.
* A robust algorithm to navigate using visual perception is presented. The pro-

posed approach extracts the crop lines from the previous crop segmentation to estimate
the vanishing point. The vanishing point can be computed for any number of crop lines.
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However, the vanishing point approach can be used when crop detection is
available. In the absence of crops, other alternatives are presented.

* A navigation strategy based on a bird’s-eye view is proposed to guide the plat-
form in the absence of crop detection. This approach segments vegetation to navigate
in the transition zones. Similarly, a model predictive control is presented to navigate
without visual perception.
Weeding task:

* Finally, to perform the mechanical weeding, two methods are proposed using
the crop segmentation previously defined. The first one utilizes the proximal detection
to activate the weeding tool and the second one propagates the detected crops given
by the frontal detection. To perform crop propagation, a Kalman filter merging multiple
sensors operating at different frequencies to improve the pose estimation of the robot is
presented.
Validation task:

* To validate each one of the previous contributions, multiple realistic scenarios in
the robotics simulation environment Gazebo were created using digital twins of the real
platforms. The conditions of the experimental field were recreated in these scenarios,
besides other challenging situations.

1.7 Thesis outline

To carry out an autonomous weeding, several tasks have to be done, among them:
crop and weed detection, safe navigation and effective weeding tool actuation as
shown Figure 1.14.

The thesis is organized as follows:

Chapter 2 - Visual plant detection and segmentation: this chapter is devoted to
crop and weed detection. The proposed algorithms employ image processing tech-
niques and artificial intelligence. Their low computation cost allows to implement them
in real-time onboard an embedded system, improving some shortcomings reported in
the literature.

Chapter 3 - Autonomous navigation based on visual perception: the crop detec-
tion method introduced in the Chapter 2 is used in this chapter to navigate through
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Figure 1.14: Thesis outline

the experimental field without relying on GPS. The autonomous navigation based on
vanishing point estimation allows to cross the parcel, transit between parcels (consecu-
tive parcels separated by a transition zone) and change of parcel (half-turn to change
non-consecutive parcels).

Chapter 4 - Weeding actuation and robot localization: weeding action requires the
highest possible accuracy to eliminate weeds without damaging crops. In this chapter,
the weeding strategies employed in this work are exposed. They are aimed at an
intra-row weeding task, which is more complicated than inter-row weeding.

Multiple simulation scenarios are utilized to validate the proposed approaches.
In the same way, the obtained experimental results are presented in each one of the
previous chapters.

Chapter 5 - Conclusions and outlook: the conclusions and the outlook of the
present work are exposed.
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1.8 Conclusion

The review presented in this chapter shows the multiple sectors where agricultural
robots have been employed. Although there are some commercial and academic
propositions, it is evident that a lot of work still has to be done. Each robot possesses
different systems to execute the tasks for which it was conceived. However, this chapter
concludes that there are two in particular that are linked and play a crucial role in
agricultural robotics: perception and navigation systems.

The conditions in agricultural environments are always changing and the im-
plementation of robust algorithms to extract information is imperative. On the other
hand, most navigation systems rely on GPS technology or they are limited to a rail
system which imposes restrictions on the robot’s workspace. A poor performance of
one of these systems is going to impact the manipulation of the robot’s end-effector
(for whatever purpose it may serve).

The presentation of the ROSE challenge and the ACRE competition allows to
encourage the robotics community to substitute the use of pesticides by autonomous
weeding robots. Especially, the intra-row weeding requires a high precision performance
to eliminate weeds and protect crops. Generally, it is carried out mechanically, but there
are other alternatives like laser-weeding. The smaller the intra-row distance, the faster
and more robust the algorithms for plant detection and the weeding tool have to be.

The next chapter will address crop and weed detection, which is the first stage
in the autonomous weeding task.
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2
Visual plant detection and segmentation

Chapter summary

In this chapter, an algorithm to detect and improve plant segmentation is exposed.
This detection will serve to navigate and to activate the weeding tool. The proposed
algorithm is based on the fusion of a fully connected network (YOLACT++) and an image
processing strategy that relies on plant features, it compensates for the shortcomings
of each method performing independently. That is, the image processing strategy
fulfils plant segmentation by generating finely refined masks; however, some weeds are
segmented incorrectly. On the other hand, YOLACT++ performs well on weeds and
plants, but when it estimates inaccurate bounding boxes, imperfect masks are generated.
The algorithm can be executed in real-time on an onboard computer generating crop and
weed segmentation masks and can be extended to multiple types of crops and weeds.
To validate the performance of the algorithms, multiple experiments were conducted in
real agricultural conditions described in the introduction chapter.
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CHAPTER 2. VISUAL PLANT DETECTION AND SEGMENTATION

2.1 Introduction

Agricultural robots aim to optimize efficiency in diverse tasks and can be automatized to
execute autonomous missions. A key requirement in agricultural robotics is the ability to
detect plants for any subsequent treatment, like harvesting and picking, thinning and
pruning, weed control, chemical application, among others.

The use of visual sensing technology in agriculture for crop and weed detection is
one of the tasks that has rapidly gained popularity in companies as well as research
projects in recent years. The knowledge of weed infestation is a critical process to
prevent crop damage, impact on human health and soil pollution. Moreover, its impact
on biodiversity is incalculable. On the other hand, crop detection is part of a new concept
called ‘precision agriculture’, that aims to improve crop production, reduce working time,
and control irrigation management employing data from multiple sources.

The fact that agriculture is carried out in outdoor environments imposes a sub-
stantial number of factors to be considered. The first and most important for a visual
perception system is the unpredictable and constant illumination changes, which are
linked to the weather conditions. Then, the kind of crop/weed to be detected. Each
plant has different physical properties that can help to recognize them easily. Another
factor is the type of ground which can contrast or can be homogeneous complicating
the crop/weed detection.

To overcome some of the factors previously described, an algorithm to carry
out plant/weed detection and segmentation based on the fusion between artificial in-
telligence and image processing techniques is presented. In the following chapters,
this detection will be used to navigate in the parcel and to control the weeding tool
to eliminate weeds without damaging crops. A review of different crop/weed detec-
tion methods is exposed at the beginning of the chapter, which helps to identify the
problems to be solved. Then, the proposed algorithms are explained and finally, the
results obtained are shown.

2.2 A review of different methods for crop and weed

detection

Crop segmentation plays a major role in agriculture because a large number of agri-
cultural tasks depend on efficient segmentation such as irrigation, density estimation,
fruit pruning, disease detection, weeding, among others.
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CHAPTER 2. VISUAL PLANT DETECTION AND SEGMENTATION

Studies for crop and weed detection have been performed using computer vision
techniques, mainly including traditional image processing and artificial intelligence. The
next subsections exhibit a general review of the implemented methods for crop/weed
detection.

2.2.1 Crop detection

Within the traditional image processing techniques, different indices have been studied
to discern between crops and soil background [40],[41],[42]. Color indices present less
sensitivity to the lighting variations and the main advantage is that they can accentuate
a particular color like green vegetation.

The normalized difference vegetation index (NDVI) is one of the most commonly
used remote sensing index for monitoring global vegetation [43]. It is defined as the
difference between near-infrared and red reflectance divided by their sum.

NDV I =
NIR−RED

NIR +RED
(2.1)

The value of the NDV I will fall between -1 and +1. Values between -1 and 0
indicate dead plants or objects that contain no carbon, while values for live plants range
between 0 and 1 (see Figure 2.1). Considering that NDVI is an indicator of the plant’s
health, a study to predict ground vegetation biomass in an open agricultural area was
conducted in [44]. Weather effects like snow reflectance could perturb data collection;
to avoid this problem, authors collected data throughout spring and summer.

Figure 2.1: Normalized difference vegetation index. Left: Reflectance of healthy vegetation.
Right: Reflectance of stressed vegetation.

Thresholding techniques have been applied for plant segmentation. The thresh-
olds can be dynamic or constant. The main disadvantage of these techniques is the
difficulty in choosing the proper threshold values [45],[46],[47]. An inadequate value
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will segment erroneously, that is, a high value will merge crop pixels with other regions
which leads to under-segmentation, while a low value may lead to over-segmentation.

Despite the main interest of this review focuses on visual techniques, it is important
to mention that there are other alternatives to distinguish crops and weeds. Andujar et al.
[48] detect and discriminate maize plants and weeds from soil using the light detection
and ranging (LIDAR) technology. However, this solution depends on the material of the
scanned surface, on the angle of incidence and on the distance at which the LIDAR is
located. For these reasons, this kind of sensors can perform well to separate crop/weeds
from the ground, but their use for precision agricultural tasks is limited.

A combination between semantic segmentation and various vegetation indices
was proposed in [49] for crop classification using RGB images. The results indicate
that the proposed solution can operate online at around 20 Hz with precision and
recall values of 90%.

2.2.2 Weed detection

In a similar way, it is possible to extend the techniques presented in the previous
section to detect weeds [50], [51]. Even so, applying those techniques, crops and
weeds are still mixed. For this reason, additional processing has to be considered
to discern between them.

In general, the propositions that consider hyperspectral images are based on
reflectance and further analysis to classify weeds [52]. The use of spectral features with
different leaf colors represent a good indicator to classify crops and weeds. Cheng et al.
[53] used the mean and standard deviation of each RGB color to distinguish rice plant
from euphorbia weeds. The fact that weeds tend to be brown while rice plants are green
allows to implement spectral features and the results obtained are promising.

Plant leaves and weeds have diverse textures generated by their veins distribution.
Different approaches have been proposed to consider texture as weed discriminator.
Wavelet texture features [54] is one of the most employed image processing techniques
to extract information from images due to wavelet image decomposition provides a
representation that is easy to interpret. This technique transforms images into a
representation in which both spatial and frequency information are present [55].

In the same manner, shape features have been successfully applied in weed
recognition. Segmented regions in images are compared with previous knowledge of
perimeter, diameter, minor and major axis length and area [56], [57]. Other approaches
implement descriptors to extract pixel information [56], the mathematical representation
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of the feature descriptor is a vector with one or more dimensions. It describes elementary
characteristics such as color, shape, texture, etc.

2.3 Crop and weed detection based on machine learn-

ing

The works presented in sections 2.2.1 and 2.2.2 were one of the first approaches
to solve crop/weed detection in agriculture. Their implementation can perform well
under certain conditions, but in attempts to extend these solutions to adverse scenarios
(irregular illumination, scale factor, occlusion, etc.), learning-based models have been
developed. Although these algorithms are more robust, a significant cost of training
datasets is the main disadvantage.

In general, a machine learning process is carried out by collecting raw data of
the application to be tested. A global description is illustrated in Figure 2.2. Training
data is used to make sure the machine recognizes patterns of the data, while validation
data injects new data to the model that has not be evaluated before. After the model
is built, it is tested once again to validate that it can make accurate predictions, using
techniques of cross-validation for checking the model performance. Finally, visualization
techniques are used to classify.

The crop and weed classification problem based on their appearance using
convolutional neural networks (CNN) and deep learning has been proposed by Milioto
et al. [58]. A preprocessing to separate vegetation from soil was carried out to only
focus on vegetation, followed by a blob segmentation to extract single crops and weeds.
However, this proposition is unable to classify when overlapping is present. For this
reason, the training was done with crops and weeds at an early growth stage.

Recently, the interest in detecting each plant in an image has incremented due
to the potential to isolate each plant for a particular future application. In the machine
learning field, instance segmentation allows to achieve this purpose. The use of a
Mask R-CNN architecture was presented in [59], the readjusted of the hyperparameters
improve the detection but there are some issues to be solved. In the case of weeds, the
probability of a false detection increases when small weeds have to be detected. For the
training, the crops and weeds are manually segmented and identified by human experts.

The image segmentation algorithms generally produce incomplete masks. In
particular, plant segmentation generates deformed masks with some broken leaves. A
maize leaf segmentation system under different light conditions was proposed by Wang
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Figure 2.2: Diagram of a general learning-based model.

et al. [60]. To segment the images, a support vector machine was utilized allowing to
determine if the pixel belongs to the foreground or not. Then, a maize structure analysis
is used to determine the leaf reconstruction area.

A more detailed survey of artificial intelligence and machine learning methods
in agriculture is reported in [61].

2.3.1 Plant detection learning-based model

Machine learning is a branch of artificial intelligence (AI) that allows computer systems to
infer patterns from data. Machine learning detection models require two fundamentals:

• Data: corresponds to the examples given to the models from which the algorithm
will learn.

• Learning algorithm: is the process that, using the previous data will generate a
model. In other words, a learning algorithm models a phenomenon from examples.

Both the data and the learning algorithm are strongly linked. On the one hand, the
learning algorithm will generate an erroneous model if the data is inconsistent. On the
other hand, the performance of the model created with an inefficient algorithm will be
unsatisfactory. In machine learning there are three types of learning methods:
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1. Supervised learning: The model infers the mathematical mapping from inputs to
outputs. The training dataset is entirely labeled.

2. Unsupervised learning: The model is fed with unclassified training data. The
model tries to find similar features between test data to categorize them.

3. Semi-supervised learning: The model acquires from both supervised learning and
unsupervised learning. The model aims to infer the correct labels for the given
unlabeled data.

2.3.2 Convolutional Neural Network structure

Convolutional neural networks (CNN) are inspired by biological processes trying to
emulate the neural connectivity of the brain’s visual cortex. The overall components
of a common CNN are illustrated in Figure 2.3.

Figure 2.3: A compact representation of a Convolutional Neural Network (CNN)

Essentially, a CNN is composed of three layers [62]. The convolution layer, the
pooling layer and the fully connected layer. The convolution layer performs the first
activities of the CNN. In this step, multiple mathematical convolutions are carried out
between the input image and a sliding window (kernel) to generate feature maps. The
convolution task is executed as many times as required.

The pooling layer aims to reduce the size of the feature maps. This is performed
by decreasing the connections between layers. Among the techniques to execute this
step, Max Pooling is an operation that selects the maximum element from the region
of the feature map. The output of the feature map has to be another feature map with
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smaller dimensions but containing the most relevant features.
The weights of the different layers are varied until the network is able to rec-

ognize data. The fully connected layer is directly connected to every node in the
previous and in the next layers.

When data is processed by the network, it passes through a series of layers.
This is referred to as forward propagation. The network’s depth refers to the number
of layers within the network. Each layer l possesses a number of nodes, which is
known as the layers’ width.

The input data a is multiplied by a weight w and a bias b is added to the result

zlj =
∑
k

wl
jka

l−1
k + blj (2.2)

where j is the output node and represents the j-th node from the l-th layer, k represents
the k-th node from the previous layer and wl

jk is the weight relationship between the
two nodes from both layers. wl

jk and blj are randomly initialized.
The weighted input zlj for the j-th node in the l-th layer, is fed to an activa-

tion function f :

alj = f
(
zlj
)

(2.3)

The activation function f produces an output within a specific range in order to acti-
vate the node or not. The values generated by the activation network depend on the type
of activation function which is used. Some of the more common activation functions are:

The sigmoid function, which output values range between 0 and 1:

f (x) = σ (x) =
1

1 + e−x
(2.4)

The hyperbolic tangent, which output values range between -1 and 1:

f (x) = tanh (x) =
ex − e−x

ex + e−x
(2.5)

The Softmax function, which output values range between 0 and 1:

fi (x⃗) =
exi∑j=1
N exj

(2.6)
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2.3.3 YOLACT (You Only Look At Coefficient)

The first approach presented in this work to solve crop and weed recognition is based
on a fully-connected network, hence the interest in exposing the fundamentals of a
CNN in the previous subsection.

Crop and weed classification can be considered as the process of treating an
input image and generating a class for each plant and weed in the image. Besides
classification, detection provides not only classes of the crops/weeds in the image, but
also provides bounding boxes of the classified crops/weeds to know their localization. In
the same way, semantic segmentation aims to obtain fine inference by predicting labels.
Each pixel is labeled according to the same object class. Finally, instance segmentation
allows to separate instances of objects belonging to the same object-class. Figure
2.4 illustrates the preceding explanation.

Figure 2.4: Object recognitioairfrn: a) Image classification. b) Object detection. c) Instance
segmentation. d) Semantic segmentation.

The present work introduces YOLACT, a real time instance segmentation [63].
Figure 2.5 shows the YOLACT architecture, which is based on a fully-convolutional
model. To generate an image with semantically segmented elements, a linear combi-
nation is performed between the prototype masks, the predictive coefficients and then
crop with a predicted bounding box. The YOLACT approach can perform in real-time
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(30 FPS with ResNet-101 convolutional network [64]) due to its parallel architecture and
the masks have a higher quality because it considers the full extended image space
without loss of quality generating by pooling.

The main goal of YOLACT is to integrate a mask branch to an existing one-stage
object detection model. To do this, the instance segmentation task is divided into two
parallel tasks. The first task produces a set of image-sized (prototype masks) that do not
depend on any instance. The second task adds an extra head to the object detection
branch to predict a vector of mask coefficients for each anchor that encode an instance
representation in the prototype space as Figure 2.5 shows.

Finally, the anchors are reduced to a single bounding box per instance using the
non-maximum suppresion method and a mask is built for each instance by combining
linearly the mask coefficients for each instance and the prototype masks. The final
mask is cropped using the predicted bounding box and then encoded into binary
values using a threshold.

Figure 2.5: YOLACT architecture. Blue/yellow indicates low/high values in the prototype, gray
nodes indicate functions that are not trained [63].

YOLACT++ [65] is based on the general structure of YOLACT, a fast mask re-
scoring network is added to improve the detection and mask quality. Further, deformable
convolutions [66] are set in the backbone. Unlike the YOLACT model, this network is
added after the cropped mask and produces the IoU (Intersection over Union (IoU) is
used to evaluate the performance of object detection by comparing the ground truth
bounding box to the predicted bounding box) mask for each object category. Then,
each mask is rescored by considering the product of the predicted IoU mask for the
category and the corresponding classification confidence. Deformable convolutional
networks increase sample space locations with additional offsets by learning them
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without additional supervision. This network is added to ResNet at the 3×3 convolution
layer without using modulated deformable modules.

2.4 Plant detection based on physical characteristics

This approach aims to detect crops (plants of interest) based on easy-to-extract features
without implying machine learning techniques. Any plant can be classified into two
categories, either as monocotyledon or dicotyledon, commonly referred to as mono-
cot or dicot. Based on the number of cotyledons present in the seed, each category
possesses different physical properties, e.g., monocot leaves are narrow with parallel
veins and longer than dicot leaves, while dicot leaves are usually curved with inter-
lace veins as shown in Figure 2.6. A relevant feature to characterize plants is the
color, various chromatic coordinate indices have been studied [67], [40] in order to
distinguish living plants from soil.

Figure 2.6: Example of monocot and dicot leaves, respectively.

The first stage of the plant classification algorithm is to distinguish vegetation
(weeds included) from the background, which is highly dependent on image quality.
Image acquisition is influenced by diverse factors including:

• Weather conditions: weather may have a direct or indirect substantial effect on
plant identification, cloudy sky during image sensing will reduce natural illumination,
decreasing image quality directly. Alternatively, plant growth stage under adverse
climatic conditions tends to affect crops.

• Image acquisition system: camera parameters and position have to be chosen
depending on the application, e.g., a high fps rate on board a platform moving
very slowly becomes inefficient and computationally costly.
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• Soil conditions: soils are grouped depending on their chemical composition and
their color can be an indicative of certain soil types, for instance, Peat soils are
dark while Chalk soils have a white layer of dust.
Different chromatic indices were tested based on the fact that vegetation has

larger green indices than others, the Excess Green vegetation (ExG) presents the best
performance (see Figure 2.7) and is defined as:

ExG = 2g − r − b (2.7)

The others tested chromatic indices are:

CIV E = 0.441r − 0.881g + 0.385b+ 18.78745 (2.8)

GB = g − b (2.9)

ExR = 1.4r − g (2.10)

ExG− ExR (2.11)

where
r =

R

R +G+B
, g =

G

R +G+B
, b =

B

R +G+B

with R, G, B are respectively the red, green and blue components of the input im-
ages. The resulting near-binary image must provide leaf information to discriminate
between crops and weeds.

Due to the fact that agricultural tasks are performed mostly in outdoor environ-
ments, it is crucial to deal with changes in illumination. One way to mitigate this adverse
effect is to convert the resulting normalized image to hue, saturation, and value (HSV)
color space. HSV channels are described as follows:

• Hue: is related to the wavelength of light and represents a pure color. Pure values
contain primary colors, secondary colors and mixtures between adjacent pairs of
them.

• Saturation: represents color purity. It gives a measure of how much the true color
is diluted by white. Decreasing S value, increase whiteness.

• Value: is analog to brightness. Decreasing V value, increase blackness.
The HSV color space is a different representation of the RGB model (Figure
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Figure 2.7: a) Original image. b) CIV E. c) GB. d) ExG. e) ExR. f) ExG− ExR.

2.8). The central vertical axis of the hexcone corresponds to the main diagonal of
the color cube.

In the HSV color space, the color distribution of an object is invariant with respect
to brightness. For this reason, each HSV channel is filtered to eliminate some regions
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Figure 2.8: RGB cube and HSV hexcone representation.

in the image based on their hue, saturation and value.

IBIN (x, y) =

{
1 if δmin ≤ IHSV (x, y) ≤ δmax

0 otherwise
(2.12)

with δmin and δmax are the (h, s, v) threshold values. Another representation of the
equation (2.12) is the HSV decision tree illustrated in Figure 2.9. The objective of
the decision tree is to filter an HSV image in multiples subsets: each subset corre-
sponds to a branch of the tree and the discrimination is executed by assigning different
thresholds to each channel.

Figure 2.9: HSV decision tree.

For the proposed approach, the generated decision tree contains three branches;
the first branch is resulted from the background segmentation. Objects like rocks, soil,
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etc. are in this branch. The second branch is created by the plants detected and the
last branch is formed mostly by weeds.

The transformed HSV image was split into its hue, saturation and value chan-
nels as Figure 2.10 shows. Histograms of each channel were calculated (see Figure
2.11). Since H channel represents the pure color, it is mostly utilized to eliminate
the background. Which is equivalent to Excess Green vegetation defined in equation
(2.7). In the case of S and V channels, multiple combinations of these channels lead
to separating crops from weeds.

Figure 2.10: HSV space: a) HSV image. b) Hue. c) Saturation. d) Value

To discern between crops and weeds, some physical properties in conjunction
with the crop growing stage are considered. In particular, the maize growth stage is
divided into two phases: vegetative and reproductive growth (see Figure 2.12). The
vegetative growth begins with the emergence of the first leaf (the first leaf in maize has a
rounded tip) and ends with the tassel emergence (the last branch of the tassel is visible
at the top of the plant). While the reproductive growth begins after tassel emergence
(flowering begins when a silk is visible outside the husks) and ends with physiological
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Figure 2.11: The histogram of Hue, Saturation and Value.

maturity (a black layer forms at the base of the kernel).
The maize physical transformation during its growth is shown in Figure 2.12. Its

color changes with respect to its stage of growth. Similarly, the number and surface
area of its leaves is linked to its growing stage. Parameters that can be used to carry
out its detection. In the same manner, the bean growth stages were studied to extract
physical characteristics considering the days from planting [68]. As well as maize, bean
growth stage is divided into the same categories: vegetative and reproductive, some
of its characteristics are detailed in Appendix A.1.

Figure 2.12: Maize growing stage [69].

Afterwards, by implementing a morphological operation, small plants (part of
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weeds) and segmentation noise are removed, refining the region of interest.

A⊖B = {z | Bz ⊆ A} (2.13)

Equation (2.13) implies the erosion of A by the structuring element B. In this case,
A corresponds to the binary image (IBIN ) and B is a mask of size 4 × 4 pixel. After
labeling the N regions from the resulting binary image, moment calculation is applied
to determine the mass distribution and the location of each region’s center (x, y) in
order to estimate the exact location of the crops.

x =
M10

M00

, y =
M01

M00

(2.14)

(x, y) are given in pixels and Mij =
∑

x

∑
y x

iyjI(x, y) are the raw region’s moments.
Finally, the area of each detected plant is compared with a threshold δa to keep

plants above that value, δa depends on the crop growth stage.

2.5 YoCo-v1: plant detection based on learning-model

and physical characteristics

The previous subsections detailed two different alternatives to carry out plant and weed
recognition. However, as was explained, each proposition has some drawbacks, i.e.,
the detection based on physical characteristics fulfills crop detection by generating
finely refined masks; but some weeds are segmented incorrectly and they remain in
the generated masks (see Figure 2.13 - c)). On the other hand, YOLACT++ performs
well on weeds and partially well on crops, but imperfect masks are generated due to
inaccurate bounding box detection as Figure 2.13 - b) shows.

In this section, a novel and computationally lightweight algorithm based on the
fusion between YOLACT++ and the easy-to-extract characteristics algorithm is pre-
sented. The refined masks generated by the algorithm based on physical characteristics
are used to complete the fragmented masks generated by YOLACT++. Similarly, the
incorrectly detected weeds are removed from masks generated by the algorithm based
on physical characteristics using the YOLACT++ weed segmentation. The global ar-
chitecture of the proposed approach is shown in Figure 2.14.

The improvements resulting of this fusion are:
• A solution to the issue of mask leakage resulting from YOLACT++ semantic

segmentation of crops/weeds.
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Figure 2.13: Crop/weed detection. a) Input image. b) YOLACT++ segmentation . c)
Characteristics-based segmentation.

Figure 2.14: Overview of the proposed crop/weed segmentation network YoCo-v1.

• Reassigning the position of the bounding boxes on objects (plants/weeds) regard-
ing the location failure issue.

• Improvement of the mask quality of each instance by refining fragmented masks
and reducing false positives and negatives, increasing the mean intersection over
union (mIoU) and pixel accuracy (PA) scores.
According to the scheme presented in Figure 2.14, the input image is used by

both detection methods: YOLACT++ and the algorithm based on feature extraction. In
the case of YOLACT++, a previous training stage is necessary to execute the algorithm.
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2.5.1 Construction of synthetic images

Traditionally, training a network to perform object segmentation requires a substantial
dataset containing image samples with their corresponding ground truths. This task re-
quires labeling and usually manual segmentation in each image sample causes labeling
errors due to inadequate information used, e.g., when pixels are labeled in image data,
visual input is used instead of numeric values corresponding to the observation.

To reduce the number of image samples to carry out training, the initial stage
involves creating synthetic RGB images to build a synthetic image dataset. The pro-
posed methodology consists in designing an element of the crop/weed classes to create
“collages” from natural images. To design an image, using a cropped element from
our dataset of crop fields, a random rotation, a bicubic scaling interpolation, and a
brightness and contrast adjustment are considered by a linear multiplier. Similarly, a
random background coincident to the experimental soil is set to be segmented. Then,
the generated element is proportionally adjusted in brightness and overlapped between
elements to create samples from images obtained by the camera in natural conditions
(Figure 2.15). Finally, a mask polygon description per crop/weed is associated with
generating a properties schema regarding each image in a JavaScript Object Nota-
tion (JSON) file, it is a data format that stores structures and objects and it is easy
to integrate with different interfaces.

Figure 2.15: Samples of generated synthetic images.

2.5.2 Instance segmentation

According to the pipeline shown in Figure 2.14, each input image I is processed
to produce instance segmentation. In terms of performance, the best ranked is the
Mask R-CNN [70] based on a two-stage detector. The processing speed is also
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essential for real-time execution. The YOLACT++ method solves this issue by using
a single-stage detector. The result is a combination of the instance prototypes and
associated predicted coefficients. For training, a classification loss, a box regression
loss, and a mask loss are used.

Deficiencies can be found in incomplete and overlapping masks [71]: location
failure and leakage. The first refers to partial object localization in scenarios with many
elements, with a partial segmentation. Leakage occurs when the bounding box is not
accurate because the masks are cropped after being assembled without considering
noise removal outside the cropped region. In the same way, if the bounding box is
larger than the desired detected object, the masks of neighboring elements will also
be added to the current mask.

2.5.3 Head

Considering the architecture diagram Figure 2.14, every machine learning model might
be thought of as a backbone plus a head. The head performs the processing strategy
of the images generated by both segmentations. In particular, the head is executed
sequentially, starting with image segmentation and then mask refined.

Mask refinement

In the initial stage of the crop mask refinement, a processing path for YOLACT++
segmented instance IY and another processing path given by the feature extraction
algorithm for segmentation Is is presented.

For each input image, the first path computes Nc bounding boxes and Nc masks
of the detected crops and Nw bounding boxes and Nw masks of the detected weeds,
generating the images IY1 and IY2, respectively. The second path processes the
segmentation Is using the method explained in subsection 2.4. The previous masks
are illustrated in Figure 2.16.

To remove weeds that remain in the Is segmentation, the IY2 weed instance
segmentation is used:

Îs = Is − IY2 . (2.15)

The results of (2.15) implies that some detected weeds by YOLACT++ were already
removed in Is.

For now, and regarding the pipeline shown in Figure 2.14, there are three images.
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Figure 2.16: Obtained masks by YOLACT++ and the crop detection algorithm based on physical
characteristics.

Figure 2.17: Improved image Îs.

The first image corresponds to the crop instance segmentation IY1: for each detected
crop, the masks generated in this image are generally fragmented or incomplete. The
second image corresponds to the weed instance segmentation IY2 : these masks mostly
correspond to the true weeds; the third image is an improved image Îs of Is as a result
of the weeds detected by IY2 were removed. However, some weeds not detected in
IY2 may still remain in this improved image.

To fill the incomplete crop masks in IY1, the improved image Îs is used as a
reference to delimit the area to be filled. Thus, the mask’s contours are computed
(Figure 2.18) to produce a crop contour image Ic.
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Figure 2.18: Mask’s contours of Îs.

After defining the borders of each mask to be filled, the mask refinement is
performed using the flood fill process described in Figure 2.19.

Figure 2.19: Flood fill mask refinement process

The i-th mask IY1,i
of instance IY1 has a set of pixel coordinates Pi associated

with the the i-th mask Ici of crop contour image Ic:

Pi = {p|p ∈ IY1,i
∩ Ici} (2.16)

where p is a pixel coordinates (px, py). In other words, it indicates the position and the
class of the detected crops in the associated contour image. The idea is therefore to fill
the incomplete i-th mask IY1,i

delimited by the the i-th contour mask Ici. A randomly
selected pixel p ∈ Pi is set as a seed to fill the incomplete mask.
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Due to pixel leakage of IY , it may contain pixels out of the contour mask, i.e.,
pixels such that O = {p|p /∈ Ic} (Figure 2.20).

Figure 2.20: The red mask represents the i-th mask IY1,i , while the black contour is the i-th
contour mask Ici .

Hence, to simplify the selection of a seed in P, the mask IY1,i
is eroded to

eliminate the set O as Figure 2.21 shows.

Figure 2.21: On the left, crop instance segmentation IY1 and on the right, IY1 eroded.

The well-known flood fill queue algorithm [72], initialized by a random seed p,
is used to fill the associated class delimited by the contours Ic. Finally, each filled
mask IY1,i

is copied to a blank image to remove undetected elements and unwanted
surrounding objects of Ic:

I ′Y1
=
Nc⋃
i=1

floodfillseedi(Ic) (2.17)

The refined mask I ′Y1
shown in Figure 2.22 includes the crop class instances. Each

crop class of the mask is associated with colorimetry improvement by feature-based
segmentation. Therefore, the output is a semantic mask defined for the crops.

Instance processing

The last step consists in instance processing. The refined mask I ′Y1
corresponds to

a semantic segmentation because each pixel of the mask is classified to a category.
However, the refined mask cannot distinguish every crop detected in the image. The
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Figure 2.22: Refined mask I ′Y1

goal is to segment the refined mask I ′Y1
to generate an instance segmentation mask.

Thus, the crop instance segmentation IY1 given by YOLACT++ is used. To define the
k-th instance of I ′Y1

, the k-th instance is removed from IY1 . To the left of the Figure 2.21,
the first k-th instance is eliminated generating the mask shown in Figure 2.23.

Figure 2.23: The k-th instance removed from IY1 .

This mask is subtracted from the semantic refined mask I ′Y1
. The selection of the

k-th instance followed by the subtraction, is performed for each instance detected by
IY1. Figure 2.24 shows the results just for the first k-th instance subtraction.

Figure 2.24: Instance segmentation mask.
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Then, in the same way described above, a stage of contour extraction is performed
followed by the flood fill stage. Finally, each k-th instance of the refined mask is cropped
to generate the crop instance segmentation mask Mc presented in Figure 2.25.

The instances generated in Figure 2.25, may in some cases not correspond to the
detected crops. However, in most of the tested images, the results validate the proposed
approach. The few cases where the instances are calculated erroneously, correspond
to adverse situations where the crops are close to each other causing overlapping of
the crop leaves, as is the case of the obtained results in Figure 2.25.

Figure 2.25: Yoco-v1 instance segmentation.

Additional classes

To find the refined mask of the remaining elements (weeds), Mc is subtracted from
Is when two detected classes are set:

Mw = Mc − Is (2.18)

where {Mw}r , r = 1 · · · Nw′. For additional classes, the model is easily extended in
its architecture by adding a new head per sequentially connected class, representing
a context similar to the layers of a deep network.

Bounding boxes

For each class detected and refined (crop and weed), a bounding box is re-calculated.
TheQ pixels of each u-th ∈Mc or ∈Mw instance contours, form a set of coordinates D =
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{au, bu}Qu=1 where four characteristic pixels ⨿u are set to design the bounding box. Then:

⨿u ={(min
u

(au), bu), (au,min
u

(bu)),

(max
u

(au), bu), (au,max
u

(bu))}4u=1

(2.19)

2.6 Experimental results

A comparison between the proposed approach (Yoco-v1) and some state-of-the-art
semantic segmentation methods (Mask R-CNN, YOLACT and YOLACT++) varying the
backbone network is presented. Two metrics are introduced in order to evaluate object
detection: the mean Average Precision (mAP) and the Intersection over Union (IoU).

The mean Average Precision is calculated by finding the Average Precision (AP)
for each class and then averaging over the number of classes.

mAP =
1

N

N∑
i=1

APi (2.20)

The Average Precision (AP) summarizes a precision-recall curve as the weighted mean
of precisions achieved at each threshold, with the increase in recall from the previous
threshold used as the weight

AP =
∑
n

(Rn −Rn−1)Pn (2.21)

where Pn and Rn are the Precision and Recall. ’Precision’ is defined as the number
of true positives over the number of true positives plus the number of false positives
Eq. (2.22), while ’Recall’ is defined as the number of true positives over the number
of true positives plus the number of false negatives Eq. (2.23).

P =
TP

TP + FP
(2.22)

R =
TP

TP + FN
(2.23)

The intersection over union is obtained by

IoU =
Area of intersection of two boxes

Area of union of two boxes
(2.24)
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A comparison between computational efficiency rates was made on a 1-GPU
NVIDIA GeForce RTX 3060 laptop and on a Jetson Xavier NX embedded system without
TensorRT. The comparative models were trained on the laptop with a batch size of 8
(the batch size is a number of samples processed before the model is updated) with
the ImageNet pre-trained weights, the stochastic gradient descent was used in 20× 103

iterations with a weight decay of 5× 10−4. Note that the head attached to YOLACT++
is only activated during execution. Therefore, the behavior of YoCo-v1 was analyzed
during inference in two situations: laboratory and field experiments.

To evaluate the proposed architecture, ResNet-50-FPN and ResNet-101-FPN
were used as the benchmark for their highest fps according to [63]. An AP benchmark
was performed using a laptop and an embedded system for the considered state-of-
the-art segmentation methods. The analysis was carried out only for the evaluation
dataset since there is no comparison with YoCo-v1 in training. The evaluation of the fps
during the inference of maize and beans was done because it will be used to control the
action of the robot. Hence, Table (2.1) summarizes the compiled dataset on backbone
variation, inference method and AP results for maize and beans.

Method Backbone FPS mAP AP75 AP50 mAP AP75 AP50 FPS mAP AP75 AP50 mAP AP75 AP50

NVIDIA GeForce RTX 3060 Jetson Xavier NX
Maize Bean Maize Bean

Mask R-CNN R-101-FPN 15 0.67 0.75 0.75 0.69 0.77 0.73 7 0.58 0.67 0.59 0.55 0.68 0.66
R-50-FPN 17 0.68 0.75 0.70 0.79 0.76 0.71 8 0.59 0.63 0.65 0.57 0.64 0.61

YOLACT R-101-FPN 29 0.58 0.63 0.61 0.70 0.69 0.63 19 0.52 0.61 0.55 0.61 0.62 0.58
R-50-FPN 32 0.50 0.60 0.57 0.64 0.61 0.66 18 0.50 0.50 0.53 0.55 0.52 0.60

YOLACT++ R-101-FPN 27 0.61 0.71 0.69 0.68 0.64 0.67 17 0.63 0.67 0.69 0.60 0.67 0.68
R-50-FPN 31 0.63 0.69 0.68 0.69 0.61 0.65 18 0.61 0.68 0.68 0.55 0.59 0.64

YoCo v1 R-101-FPN 27 0.80 0.80 0.82 0.80 0.81 0.78 17 0.77 0.81 0.79 0.73 0.81 0.75
R-50-FPN 29 0.75 0.79 0.77 0.84 0.81 0.79 18 0.75 0.76 0.78 0.79 0.80 0.80

Table 2.1: Comparative results of instance segmentation methods for maize and bean. The
mAP was calculated by taking the mean AP over all classes and overall IoU thresholds.

For the Mask R-CNN, a mAP = 0.67 for maize and mAP = 0.75 for bean were
obtained using the computer system, while a mAP =0.58 for maize and mAP = 0.55
for bean were obtained using the embedded system. Nevertheless, the fps are not
satisfactory for a real-time application. Regarding YOLACT, the difference is 0.09
mAP for maize and 0.012 mAP for bean on the laptop. The difference is not relevant
concerning the implementation in the embedded system. However, processing speed
is relevant for Mask R-CNN since a rate of 19 fps was achieved using the deeper
ResNet-101-FPN network. YOLACT++ improves these results over the mAP .

On the other hand, the proposed approach results in a mAP =0.80 for maize and
mAP =0.80 for bean using the computer system, at 27 fps. For the embedded system,
mAP =0.77 for maize and mAP =0.73 for beans at 17 fps.
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Figure 2.26: Maize mask generated by the algorithm based on physical characteristics. a)
Original image. b) Maize mask.

Figure 2.27: Bean mask generated by the algorithm based on physical characteristics. a)
Original image. b) Bean mask.

Figures 2.28 and 2.29 shows a comparison between YOLACT++ and the proposed
approach Yoco-v1. The segmentation given by YOLACT++ tends to create incomplete
masks in maize, it can be attributed to its advanced growing stage. As was explained and
illustrated in Figure 2.12, the physical characteristics varied from one week to the other.
Similarly, the reduced intra-row distance between crops and weeds perturbed their detec-
tion. The research done on physical properties for both maize and bean was utilized to
adjust the parameters of the algorithm based on physical characteristics. The threshold
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Figure 2.28: Maize segmentation. Comparison between YOLACT++ and the proposed approach
Yoco-v1. a) Segmentation given by YOLACT++ with leakage and incomplete mask problems. b)
Segmentation given by Yoco-v1 with leakage corrected and refined mask.

values selected for bean segmentation were δmin =(30,35,100) and δmax =(96,255,255),
while maize threshold values were δmin =(25,52,72) and δmax =(102,255,255). The size
of the element to perform the morphological operation was 4× 4 for bean and 3× 3 for
maize. Figure 2.26 shows the mask obtained. It is a refined mask that performs well
for maize detection. However, some weeds remain in the image.

In the case of bean, the segmentation given by YOLACT++ presents problems
of leakage which, as can be observed in Figure 2.29, the leakage is around the plant
leaf and also in the space formed in the center of the plant leaves. The results given
by the algorithm based on physical characteristics are similar to those obtained in the
maize crop. The algorithm can extract a well delimited bean mask (Figure 2.27).

The crop/weed segmentation given by the proposed approach improves the
results given by the algorithms operating independently. For the case of incomplete
masks, the detection given by the algorithm based on physical characteristics fills the
plant leaf as can be seen in Figure 2.28, this is because the masks generated segment
crops perfectly. Equivalently, the leakage problem was reduced substantially using
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Figure 2.29: Bean segmentation. Comparison between YOLACT++ and the proposed approach
Yoco-v1. a) Segmentation given by YOLACT++ with leakage problem. b) Segmentation given by
Yoco-v1 with leakage corrected.

Yoco-v1. In the case of the remaining weeds in masks generated by the algorithm
based on physical characteristics, when fusion was carried out, the weeds detected
successfully by YOLACT++ allowed to remove them.

2.7 Conclusion

Three algorithms for crop and weed segmentation were exposed in this chapter: the
first one is a learning-based fully connected network, the second is based on physical
characteristics and the last algorithm resulting from the fusion of the first two algorithms.

The generation of synthetic images to train the learning-based algorithm allowed
to reduce the exhausting and tedious process of labeling the dataset. A portion of
the collected dataset was utilized to extract some crops and plants to create samples
under different conditions (multiple rotations, contrasts, scaling, background, etc.).
The segmented mask generated by this algorithm performs well on weeds. However,
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in the case of crop segmentation some problems were observed: leakage, location
failure and incomplete masks.

In the case of the algorithm based on physical characteristics, it has been shown
that the use of artificial intelligence is not mandatory to carry out crop/weed identification.
The physical characteristics chosen to execute crop/weed detection represent a trade-
off between robustness and processing time. The higher the number of physical
characteristics, the lower the estimation rate. The results given by the algorithm suggest
that it can be a solution to separate crops from different weeds. To choose the parameter
values, a compilation was conducted to describe the physical changes of maize and
bean during their whole growing stage. However, the methodology can be extended
to other crops and weeds.

The fusion between the learning-based algorithm and the algorithm based on
physical characteristics improved the results of each algorithm performed independently.
On one side, the masks generated by YOLAC++ are incomplete, the bounding box
localization sometimes does not correspond with the real object position and erroneous
elements are considered during the mask creation, resulting in the leakage problem. On
the other hand, the algorithm based on physical characteristics segments better vegeta-
tion (crops) than weeds. The results obtained by Yoco-v1 proved that the fusion of these
algorithms can improve crop/weed segmentation. The crop masks were refined using
the physical characteristics segmentation and the bounding box position was corrected.

The results obtained during the evaluation campaigns validate the proposed
algorithms, several experiments were conducted under different weather conditions
and distinct crop/weed growth stages.
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3
Autonomous navigation based on visual

perception

Chapter summary

The dual-purpose plant recognition system was used in the previous chapter to obtain
the segmentation that allows to discern between crops and weeds. This information
is given by the proximal detection and it will be used to manipulate the weeding tool
in Chapter 4. In this chapter, the secondary purpose of the plant recognition system
is exploited: autonomous vision-based navigation. The proposed approach considers
the data provided by the frontal detection and it is carried out without relying on GPS
data. The solution is based on a visual servoing technique that uses the vanishing point
estimation formed by the crop line detection. This approach allows to navigate through
the parcel, make transitions between parcels and change from one parcel to another
one (half-turn). Divers scenarios were created in the Gazebo simulator as close as
possible to real-agricultural conditions to validate the proposed approach. Likewise, the
results presented in this chapter were obtained in the ROSE challenge and the ACRE
competition.
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3.1 Introduction

Autonomous navigation is one of the most challenging tasks in robotics. In particular,
agricultural robotics imposes hard restrictions. On the one hand, agriculture is done
in outdoor environments where conditions are always changing and, moreover, can
not be controlled. On the other hand, if the robot carries out imprecise navigation,
crops can be damaged. For these reasons, navigation algorithms are still an open
problem for the robotics community.

To provide the capacity for autonomous navigation to a robot, the robot needs
to know its exact position. A variety of sensors can provide information about the
environment to position the robot on the experimental field. Two categories of sensors
can be identified, those that provide the absolute position and those that report the
relative position. The former refers to a global position, the most utilized sensor for this
purpose is the global positioning system (GPS). The latter focuses on local positions,
examples of these sensors are: gyroscopes, encoders, cameras, accelerometers, etc.

At the same time, localizing a robot in an urban terrain where GPS signal is
frequently lost requires robust algorithms to estimate its pose. Normally, the more robust
the algorithms, the processing rate tends to decrease, which dictates the compromise
between accurate pose estimation and the robot’s velocity.

Having solved the pose estimation problem, the next factor to be considered is
the type of controller to be implemented as well as the locomotion to be used. The
proposed approach in this chapter allows to navigate in the parcels of the experimental
field. The plant detection presented in the previous chapter is used to provide visual
information to control the vehicle using visual servoing. The fact that autonomous
navigation is an element of the intra-row autonomous weeding task, it is assumed that
the platform can move at low speed, which implies some considerations in the vehicle’s
wheeled locomotion. These considerations are described now on, but before a review
of navigation systems in agriculture is presented.

3.2 Navigation methods in agriculture

Nowadays, robots carry out diverse missions in agricultural fields as was exposed in
subsections 1.2.1-1.2.5. Among the tasks that they share in common, navigation is
one of the most important. As was mentioned before, two types of farming can be
distinguished: indoor and outdoor.

One of the contributions that corresponds to the first category is presented in
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[15]. It exposes the use of steel pipes as a method of guidance. To navigate along
the pipes, the authors chose nylon wheels because they can withstand heavy loads
and high temperatures. In general, the implementation of rails as navigation systems
is widely used in indoor farming due to the workspace is known and the dimensions
of these scenarios are reduced.

In the case of outdoor farming, as a consequence of most crops are sowed in
rows, different algorithms for row detection have been proposed [29], [73]. The main
problem in the row detection process is to find multiple features that allow to identify crop
lines under different conditions and in a constant way. The features extracted from crops
are used to compute line estimation. Among the first efforts, the Hough transform was
the most implemented technique. However, it performs well under favorable conditions,
which is not the case in real agricultural implementations. For example, the quantity of
the detected features is not constant and false positive detections are always present in
this kind of application. Consequently, line estimation is not robust and the processing
time to estimate the Hough space accumulator can be a factor to be considered. To
mitigate the disadvantages just mentioned, the fusion between the Hough transform
and the robot’s model was proposed in [74].

GPS technology is another alternative to perform guiding in farming. Considering
that GPS provides absolute position measurements, their values can fluctuate between
4 to 8 m accuracy, which represents an ambiguous reference in precision agriculture.
To increase the accuracy of conventional GPS systems, fusion with other sensors has
been investigated: the use of a GPS base station resulting in a Real-Time Kinematic
Global Positioning System (RTK-GPS) [75], [76], the inertial measurement unit (IMU)
and gyroscope sensors [77], [78]. The drawbacks of the GPS technology are the
obstruction of the line-of-sight to satellites, radio frequency interference and poor signal
in some regions, especially in farming environments where robots can operate under
obstacles like trees, objects, solar panels, etc.

3.3 Autonomous vision-based navigation

In this section, an autonomous vision-based navigation is presented. When the
workspace allows to extract visual information, it can be used for different purposes.
In particular, when the frontal perception system detects crops, this detection is uti-
lized to guide the platform through the parcel. The proposed approach is based on a
visual servoing technique for trajectory correction. The goal is to center the platform
in the lane formed by the crop lines.
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3.3.1 Camera modeling

The simplest camera model to describe the mathematical relationship of the projection
of points from 3-D space to an image plane is the pinhole model.

Figure 3.1: Pinhole model with associated coordinate systems.
(⃗
iW , j⃗W , k⃗W

)
is the world

coordinate frame.
(⃗
iC , j⃗C , k⃗C

)
is the camera coordinate frame and

(⃗
iI , j⃗I , k⃗I

)
is the image

coordinate frame.

Considering the pinhole camera model shown in Figure 3.1, a point in space
is represented by the coordinates PW = (XP , YP , ZP ). When projecting this point on
the normalized image plane (in metric units)

xP = f
XP

ZP

yP = f
YP

ZP

(3.1)

where f is the focal length of the camera lens. It is expressed in homogeneous
coordinates:  fXP + ZPpx

fYP + ZPpy

ZP

 =

 fx 0 px 0

0 fy py 0

0 0 1 0




XP

YP

ZP

1

 (3.2)

where (px, py) are the coordinates of the principal point, fx and fy represent the pixel
ratios in the x-axis and the y-axis. Finally, the camera coordinate and the world
coordinate frames are related by the extrinsic matrix , Xc =

[
R t

]
Xw, where

R is 3 × 3 rotation matrix and t is 3 × 1 translation matrix (Figure 3.2).
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Thus, the general mapping is given by:

x = K
[
R t

]
=

 fx 0 px

0 fy py

0 0 1


 r1 r2 r3 t1

r4 r5 r6 t2

r7 r8 r9 t3

 (3.3)

The variations of P on the normalized image plane when the robot moves and
considering f =1, we have:

d

dt
(xP ) =

d

dt

(
XP

ZP

)
=

1

ZP

ẊP −
XP

Z2
P

ŻP

(3.4)

d

dt
(yP ) =

d

dt

(
YP

ZP

)
=

1

ZP

ẎP −
YP

Z2
P

ŻP

(3.5)

Figure 3.2: Platform description. a) Side view. b) Top view. tx and ty are the translations with
respect to the robot frame and α is the camera orientation.
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and the relative velocity of the point P with respect to the camera is

Ẋ = −

 υx

υy

υz

−
 ωx

ωy

ωz

×
 XP

YP

ZP

 =⇒


Ẋ = −υx − ωyZP + ωzYP

Ẏ = −υy − ωzXP + ωxZP

Ż = −υz − ωxYP + ωyXP

 (3.6)

inserting (3.6) in (3.4) and (3.5) and grouping terms

ẋP =
(
− 1

ZP
0 xP

ZP

) υx

υy

υz

+
(

xPyP − (1 + x2
P ) yP

) ωx

ωy

ωz

 (3.7)

ẏP =
(

0 − 1
ZP

yP
ZP

) υx

υy

υz

+
(

1 + y2P −xPyP −xP

) ωx

ωy

ωz

 (3.8)

which can be written

ẋ = Lsυc (3.9)

where Ls is the interaction matrix and is given by

Ls =

(
− 1

ZP
0 xP

ZP
xPyP − (1 + x2

P ) yP

0 − 1
ZP

yP
ZP

1 + y2P −xPyP −xP

)
(3.10)

The coordinates of the vanishing point on the normalized image plane are

xvp = 0 (3.11)

yvp = 0 (3.12)

Equations (3.11) and (3.12) result from the vanishing point projection to infinity, Z =∞.
Considering the vanishing point coordinates and using the equations (3.7) and (3.8)

ẋvp =
(

xvpyvp −
(
1 + x2

vp

)
yvp

) ωx

ωy

ωz

 (3.13)

Jorge Eduardo AVILÉS MEJIA| Doctoral thesis | University of Limoges

Licence CC BY-NC-ND 3.0

74



CHAPTER 3. AUTONOMOUS NAVIGATION BASED ON VISUAL PERCEPTION

ẏvp =
(

1 + y2vp −xvpyvp −xvp

) ωx

ωy

ωz

 (3.14)

Which corresponds to the vanishing point movements in the image. From Figure 3.2,
the transformation matrix between the world frame and the robot frame is given by

TW←−R =


cos θR − sin θR 0 xR

sin θR cos θR 0 yR

0 0 1 zR

0 0 0 1

 (3.15)

with xR, yR, zR and θR are the robot absolute localization. The transformation matrix
between the robot frame and the camera frame is given by

TR←−C =


0 −1 0 −ty

sinα 0 − cosα tx sinα− tz cosα

cosα 0 sinα tx cosα + tz sinα

0 0 0 1

 (3.16)

where α, tx, ty and tz correspond with the extrinsic camera parameters. The camera
linear velocity with respect to the world frame is

υc =

 υc − tyθ̇R

txθ̇R

0


R

=


−txθ̇R(

υc − tyθ̇R

)
sinα(

υc − tyθ̇R

)
cosα


C

(3.17)

and its angular velocity written as

ωc =

 0

0

θ̇R


R

=

 0

−θ̇R cosα

θ̇R sinα


C

(3.18)

Then,

υc =

 υx

υy

υz


C

=

 −txωc

(υc − tyωc) sinα

(υc − tyωc) cosα


C

(3.19)
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ω =

 ωx

ωy

ωz


C

=

 0

−ωc cosα

ωc sinα


C

(3.20)

with (υc,ωc) the linear and angular velocities of the platform.

3.3.2 Modeling of the platforms

Two different platforms were utilized in this work. The first operates using a differential
drive and the second has an Ackermann steering mechanism.

The differential drive under consideration (Figure 3.3) assumes that the robot
wheels do not slide. The platform movements are controlled by the speed of its wheels,
forward motion is achieved when both wheels are driven at the same rate and turning
movements are achieved by controlling each wheel at a different rate.

The kinematic model is given by ẋ

ẏ

θ̇

 =

 υc cos θ

υc sin θ

ωc

 (3.21)

where q =
[
x y θ

]T
is the platform pose with respect to the world frame, υc and ωc

are the linear velocity and the angular velocity control inputs respectively.

Figure 3.3: Differential drive.

For rear-wheel driving, the vehicle configuration is given by q =
[
x y θ δ

]T
,

with (x, y) the position and θ the orientation of the platform with respect to the world
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frame {W}, and δ the steering angle of each front wheel as is depicted in Figure 3.4.
the kinematic model is derived as

ẋ

ẏ

θ̇

ϕ̇

 =


cos θ

sin θ
tanϕ

l

0

 υ1 +


0

0

0

1

 υ2 (3.22)

where υ1 and υ2 are the linear and the steering velocity, respectively. When the front
wheel is normal to the longitudinal axis of the platform, the robot becomes jammed,
which corresponds to the model singularity at ϕ = ±π

2
. To avoid this singularity, the

platforms have restricted range of the steering angle.

Figure 3.4: Ackermann steering geometry with multiple reference frames.

In the model (3.22), vertical movements are ignored, roll motion is not considered
and rear steering angles are null. Due to the platform navigates at low speed, the
simplified model (3.22) was utilized.

3.3.3 Features extraction from frontal detection

In order to carry out an autonomous navigation, sensors have to provide information to
the robot of its environment. The detection described in Subsection 2.4 aims to detect
only the plants of interest in the presence of a wide assortment of weeds.

The choice of this proposition is justified by:
1. It can detect multiple crops considering their physical characteristics.
2. It can be easily configured to adapt to different growing stages of the plant.
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3. The required processing time allows to implement the algorithm on an embedded
system.

4. The position and orientation of the frontal sensor can be modified (see Figure 3.5).

Figure 3.5: Multi-modal frontal detection onboard the experimental platform.

The points described above distinguish the proposed approach from the works
reported in the literature. First, machine learning algorithms classify plants based on
the data with which they were trained. This implies new training for different crops
or considering a dataset big enough that can integrate a wide variety of crops. The
parameters of the proposed algorithm can be modified experimentally or take into
account the physical characteristics of the plants of interest to be detected.

Then, similar to the first point, crops change their physical characteristics as
they grow. Dataset availability is hard to find for different growing stages. Normally,
the success classification rate tends to decrease when experimental conditions dif-
fer from training data.

Although it is true that the higher the number of extracted features, the better the
algorithm, its computational time increases significantly, and in some cases, their use
in real-time applications is not feasible. Moreover, the experimental field conditions
considered in this thesis impose a challenging scenario where plants are not scattered
and they are mixed with weeds, ground, and vegetation as is illustrated in Figure 3.6.
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Figure 3.6: Example of RGB images given by frontal detection. a)Bean. b)Maize.

3.3.4 Plant detection using the industrial sensor AQiT

The AQiT solution is a system that analyses hyperespectral data, RGB images and,
using CNN technology, it can classify crops and weeds. It is developed and marketed
by Carbon Bee [79]. As part of the consortium of this project, this company presents
another alternative to detect plants of interest. Due to is a commercial solution, detailed
information of its operation is limited. However, the scheme shown in Figure 3.7
describes in a general way the main elements of the sensor.

Figure 3.7: General AQiT sensor scheme

The detection of the AQiT sensor is given in .json files format which stores the
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coordinates of each polygon that represents the plant or plants detected in each image.
The purpose of integrating this sensor and its respective results is to evaluate an
industrial solution for rapid implementation in challenging detection conditions and, in
the context of this thesis to make a comparison with the proposed approach as can
be seen in the results section below.

3.3.5 Line extraction and vanishing point estimation

The autonomous navigation strategy proposed in this work is based on vanishing point
estimation. The vanishing point is the point at which the projection of parallel lines
intersect (see Figure 3.8). These lines are either extracted directly from the scene or
they have to be estimated given some image features. In this work, the image features
are given by the previous plant of interest detection.

Figure 3.8: Vanishing point estimation given the coordinates of the detected plants. The
vanishing point lies outside the image, its projection on the image plane is used for platform
trajectory correction.

From Figure 3.8, HI and WI are the height and width of the image, respectively.
The clusters are denoted by Ci with i = 1, 2 for maize crop and i = 1, 2, 3 for bean crop.
Lri is the reference line i used to generate the cluster Ci, δres is the distance between
the reference line and the edge of the cluster and FI is the image frame.

To perform line extraction, the initial position of the platform has to be near the
crop rows. That is, the platform may or may not be aligned with respect to the crops,
but they have to be inside the camera’s field of view.
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Considering that the coordinates of the detected plants are known a priori given
by the equation (2.14). The initial estimations of the reference lines Lr are initial-
ized by (3.23)

Lri : arix+ briy + cri = 0 (3.23)

where ari, bri and cri are the parameters of the reference lines, with i ∈ {1, 2}
or i ∈ {1, 2, 3} for maize and bean plants respectively.

The reasons for not applying the line detection techniques reported in the literature,
like Hough transform [80], random sample and consensus (RANSAC) [81], are:

• The plant classification is not perfect and some false positives are detected,
resulting in some outliers which perturb the precision of the line extraction.

• In some situations, very few plants are detected. For some algorithms, the more
features the better the line detection.

• The processing time is related with the navigation velocity, most of the reported
algorithms require substantial computing resources.
The reference lines are used to cluster the plants of interest detected by the

frontal multimodal sensor. To eliminate the detected false positives, the residual is
calculated. This difference between the data point and the line is compared with the
threshold value δres to create each cluster. If the residual is either less than or equal
to δres, the plant is added to the cluster Eq. (3.32); otherwise, the plant is considered
as a false detection and is ignored.

Given a point P which corresponds with the coordinates of a detected plant of
interest, and a reference line L, the line that covers the shortest possible distance from
the point to the line is the perpendicular segment PA, of distance S (see Figure 3.9).

Figure 3.9: Right triangle formed by the line L, the segment perpendicular PA and the segment
PB.

The distance between the point P with coordinates (x0, y0) and the line L is the
segment PA, so that, S = ∥PA∥. The general form of L is ax+ by + c = 0 and its slope
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is
−a
b

. Due to S is perpendicular to L, its slope is
b

a
. To find the distance S, another

line L′ is added, L′ is parallel to L and it passes through P . Similarly, S ′ is the parallel
line to S and it passes through the origin (Figure 3.10).

Figure 3.10: General scheme with the additional lines L′ and S′ to estimate the distance S.

Due to L′ is parallel to L, they have the same slope. Given that L′ passes
through P, its equation is

y − y0 = −
a

b
(x− x0) =⇒ y =

−ax+ ax0 + by0
b

(3.24)

The equation of S ′ is

y =
b

a
x (3.25)

As Figure 3.10 shows, lines L′ and S ′ intersect, using equations (3.24) and (3.25)

−ax+ ax0 + by0
b

=
b

a
x =⇒ x =

a(ax0 + by0)

a2 + b2
(3.26)

The intersection point of L′ and S ′ is

PL′−S′

(
a(ax0 + by0)

a2 + b2
,
b(ax0 + by0)

a2 + b2

)
(3.27)

Now, the intersection between L and S ′

−ax− c

b
=

b

a
x =⇒ x =

−ac
a2 + b2

(3.28)
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using x to solve for y

y =
b

a

(
−ac

a2 + b2

)
=⇒ y =

−bc
a2 + b2

(3.29)

The intersection point of L and S ′ is

PL−S′

(
−ac

a2 + b2
,
−bc

a2 + b2

)
(3.30)

Finally, using the distance formula

d =

√(
−ac

a2 + b2
− a(ax0 + by0)

a2 + b2

)2

+

(
−bc

a2 + b2
− b(ax0 + by0)

a2 + b2

)2

=
|ax0 + by0 + c|√

a2 + b2

(3.31)

Thus, to consider a detected plant with coordinates (xk, yk) as an element of the cluster
Ci, a threshold δres is defined, which is the distance in pixels to cluster the detected crops.

Ci ≡
|xkari + ykbri + cri |√

a2ri + b2ri
≤ δres (3.32)

where i = {1, 2} for maize crop or i = {1, 2, 3} for bean crop and (xk, yk)
⊤ are the co-

ordinates of the plant k with k = 0, 1, ..., N − 1. The parameters of the reference
line are ari, bri and cri.

The number of clusters is proportional to the number of crop lines. For each
cluster, a line is fitted using a linear regression analysis which leads to define the
line parameters m̂i and b̂i as:

∀(xk, yk) ∈ Ci :


m̂i =

∑
k xkyk − 1

N

∑
k xk

∑
k yk∑

k x
2
k − 1

N
(
∑

k xk)
2

b̂i =

∑
k yk − m̂i

∑
k xk

N

(3.33)

where m̂i is the slope, b̂i is the y-intercept and N is the number of plants detected. m̂i

and b̂i are the parameters of the extracted line L̂i from the cluster Ci.
The reference lines are updated with the parameters of the extracted lines Lri = L̂i

and an accumulator is set to zero R = 0. This update is carried out for each new observa-
tion. When the plants are not detected or their detection does not belong to any cluster,
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the accumulator R is increased. This accumulator allows the platform to navigate in the
absence of new detections as long as R ≤ δR. During this period the navigation is carried
out considering virtual lines Lvi created from the propagation of the reference lines.

When the number of elements in a cluster is very small with respect to the other
cluster, it could be associated with a poor detection or a reduction of the number of
plants. In that case, the reliability of the line extraction has to be considered. The
empirical entropy is introduced to measure the cluster’s heterogeneity and is given by:

HT = −
NC∑
i=1

P (Ci) log2 P (Ci) (3.34)

where NC is the number of clusters, P (Ci) is the probability of a plant being classified

as an element of the cluster Ci and is defined as P (Ci) =
NCi

N
, with NCi

is the number
of crops in the cluster Ci and N is the total number of crops. Finally, if HT ≤ δE, the
reference lines obtained in the previous iteration will be considered. The constant value
δE is defined to allow for maximum disparity between clusters.

Now that lines have been extracted from the environment, the next step is to use
them for navigation purposes. For any set of parallel crop lines in the scene, when
projected on the image frame, there exists a point where the lines intersect. This point is
called vanishing point, it can be located inside or outside the image as Figure 3.8 shows.

The proposed navigation approach estimates the vanishing point to navigate
through the parcels; the projection of the estimated vanishing point has to remain in
the center of the image to maintain the platform in the center of the lane formed
by the crop lines.

To estimate the vanishing point, the system of equations formed by the lines has to
be solved. In the case of maize crops (two rows), the linear system of equations could be
solved using one of the various algebraic methods. In contrast, the system of equations
for bean crops (three rows) will generally have no exact solution when distortion or other
error factors are present. A fast and robust least squares approximation is presented
which includes the solution for both systems of equations.

The proposed method consists in finding the least squares solution of the system
of equations given by (3.33), this is, minimizing the distance between the set of lines

(x̂vp, ŷvp) = min
x,y

JLLS(x, y) =
M∑
i=1

M∑
j=1,j ̸=i

e2ij(x, y) (3.35)

where (x̂vp, ŷvp)
T are the coordinates in pixels of the vanishing point, M is the number of
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rows and eij(x, y) = Lij = aijx+ bijy + cij, Lij is obtained by evaluating and subtracting
crop line L̂j from line L̂i.

The solution of the equation is given by[
x̂vp

ŷvp

]
= A+c (3.36)

[x̂vp ŷvp]
T are the coordinates in pixels of the vanishing point. A+ is the pseudo-

inverse of matrix A with

c = [−c12] , A =
[
a12 b12

]
(3.37)

for maize and

c = [−c12 − c13]
T , A =

 a12 b12

a13 b13

a23 b23

 (3.38)

for bean.
The Algorithm 1 allows to estimate the vanishing point given the coordinates

of the detected crops.

3.3.6 Visual servoing for trajectory correction

Visual servoing control utilizes vision data to control the motion of a robot [82]. The data
is acquired from a camera and using techniques of image processing, computer vision
or any other solution to this purpose, features are extracted from the image provided by
the camera. The aim of the vision-based control is to minimize an error e(t), defined by

e(t) = s (m(t), a)− s∗ (3.39)

the vector m(t) is a set of image measurements that are computed to generate the
vector s (m(t), a) of k visual features, in which a can represent additional knowledge
about the system and s∗ are the desired values of the features. The visual features s

consist of the coordinates of the vanishing point projection in the image s = (x̂vp, ŷvp)
⊤.

The proposed approach assumes that the platform is moving at constant linear velocity.
Consequently, the controller regulates the angular velocity ω to position the platform in

the lane’s center formed by line detection, i.e., s∗ =
(
WI

2
, 0

)⊤
, WI is the image width.
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Algorithm 1 Vanishing point estimation
Require: Coordinates of detected plants (xk, yk) k ∈ N
Ensure: Vanishing point coordinates (x̂vp, ŷvp)

1: Initialization:
2: Lri : arix+ briy + cri
3: Ci ← Lri ▷ A cluster generated for each line initialized
4: while (xk, yk) available do
5: if

(
d(xk,yk) ≤ δres

)
then

6: Ci ← (xk, yk)
7: else
8: (xk, yk) ignored
9: end if

10: Extraction of line L̂i from the cluster Ci

11: Virtual lines generation Lvi from Lri

12: Entropy estimation HT

13: if (HT ≤ δE) then
14: L̂i ← Lvi

15: else
16: L̂i ← L̂i

17: end if
18: Update Lri ← L̂i

19: Compute LLS to obtain (x̂vp, ŷvp)
20: end while

The relationship between the time variations of s and the camera velocity υc =

(υc, ωc) is given by

ṡ = Lsυc (3.40)

where Ls is the interaction matrix related to s. From equations (3.39) and (3.32) the
time variation of the error is obtained

ė = Leυc (3.41)

Considering a locally asymptotically stable control scheme that exponentially
regulates e → 0 (i.e.,ė = −λe) such that

υc = −λL̂+
e e = −λL̂+

s (s− s∗) (3.42)

with L̂+
e is the approximation of the pseudo-inverse of the interaction matrix and λ

is a constant parameter to be defined according to the desired speed of convergence.
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3.4 Autonomous navigation without crop detection

The previous section described the navigation approach using crop detection given by
the frontal sensor. However, when crop detection is not available, other alternatives
have to be used in order to perform autonomous navigation. The absence of crops can
be found in the transition zone and in any position of the field far from the parcels.

In this section, two alternatives are proposed to carry out autonomous navigation
without considering crop detection: the first is based on visual detection and the second
is a model predictive control to guide the platform.

3.4.1 Bird’s-eye view transformation

The objective of using bird’s-eye view perception is to produce a space representation
to navigate when there are not crops to be detected, like in the case of the transition
zones and the last segment of each parcel (see Figure 1.12). Bird’s-eye view transforms
the image captured by the frontal sensor into an equivalent image captured by the
virtual camera as is illustrated in Figure 3.11.

Figure 3.11: Bird’s-eye view transformation (on the right) of the image given by the frontal
sensor (on the left).

Let P = (x1, y1, z1)
T the projected point on the image plane of the real camera

and P ′ = (x2, y2, z2)
T the projected point on the image plane of the virtual camera. The

homographic mapping H [83] of the two points is the planar projective transformation
expressed by the equation (3.43)
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x2

y2

z2

 = H

x1

y1

z1

 (3.43)

The 3 × 3 matrix H is called the homogeneous matrix and H = (hij)

x̂2 =
x2

z2
=

h11x1 + h12y1 + h13

h31x1 + h32y1 + h33

ŷ2 =
y2
z2

=
h21x1 + h22y1 + h23

h31x1 + h32y1 + h33

(3.44)

In the new image generated by the virtual camera, the depth of the image cap-
tured by the frontal sensor is easily distinguishable, which corresponds with the width
of the parcel.

Using the same approach of transforming the image to the HSV color space
and after applying thresholds to separate the vegetation from the rest of the image, a
binary image is obtained. Then, a sliding window Ws centered in the image is used
for two purposes: the first is to determine if vegetation is detected inside the window.
Due to the characteristics of the experimental field, at the end of each parcel there
is an area without vegetation of approximately 5 m long (see Figure 3.12). After this
area, there is again vegetation in the center and sides of the image as Figure 3.12
shows. Thus, it is possible to distinguish when the end of a parcel has been reached.
Otherwise, when the platform crosses the transition zone, at the center of the image
there is a region without vegetation; and the second purpose is to extract a line in
the non-vegetation zone of the image. This line is used to center the platform in the
lane formed by the non-vegetation area.

The color segmentation allows to distinguish the lanes formed in the regions
where there is no vegetation, as Figure 3.14–c shows. To avoid processing the entire
image, a region of interest is defined which corresponds to the pixels that are inside
the window Ws. The dimensions of this window are 1.5 × 3 m.

Due to multiple lanes are detected in the bird’s-eye view (see Figure 3.14), this
introduces an ambiguity in identifying the lane that the platform has to follow. The
windowWs reduces the regions of the image and the extraction of the line will be carry
out inside this window, removing the other lanes.

To perform line extraction, the vegetation segmentation generates a mask where
white pixels correspond to the detected vegetation and the black pixels are related to the
non-vegetation area. Both regions are clustered and a contour detection is performed
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Figure 3.12: Image taken from autonomous navigation to illustrate the end of a parcel.

over the black pixels in order to find the lane’s border. Finally, the middle line is obtained
from the contour detection. Figure 3.13 shows a scheme of the previous description.

Figure 3.13: Bird’s-eye view scheme.

For every new image, the position ofWs is updated by centering on the position
of the parcel. Once the line has been obtained, the image features are set to s = (x, y)
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where x and y are the coordinates of the first point of the line and s∗ =
(
WI

4
, 0
)

Figure 3.14: Top-view image processing. a) Top-view image captured by Xeye. b) HSV image.
c) Green vegetation filtered. d) Line fitted within the sliding window.

3.4.2 Model predictive control

The model predictive control (MPC) [84] is the second proposed approach to perform
autonomous navigation when crop detection is not available. This methodology guides
the platform without relying on any visual detection and is utilized to move the platform
from any initial point to any desired point. This approach can be used to bring the
platform closer to the crop’s position or to change between parcels (half-turn).

The MPC predicts the future behavior of the system over a finite time horizon
(Figure 3.15). Based on the system model and the estimates of the current state of
the system, the optimal control inputs with respect to a defined control objective and
subject to system constraints is computed. However, only the first control input of the
optimal control sequence is executed. This process is repeated at the next time instant
using new available information on the system state.

In the following, some of the key concepts and techniques in MPC are presented.
Considering an arbitrary system:

xk+1 = Axk +Buk (3.45)

yk = Cxk (3.46)

where xk ∈ Rnx, uk ∈ Rnu, yk ∈ Rny are the system state, the control input and the
system output, respectively, and k is the discrete time index.

The MPC minimizes a cost function J to drive the system state to some de-
sired reference point. The controller performance is described by a quadratic cost
index of the form:
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Figure 3.15: Construction of the control action using model predictive control.

J (x0, {u0, u1, u2, ...}) =
∞∑
k=0

(
∥xk∥2Q + ∥uk∥2R

)
(3.47)

with ∥·∥2 is the quadratic form and Q, R are the weighting matrices on states and inputs.
It is assumed that R is a symmetric positive-definite matrix and that Q is symmetric
and positive semidefinite [84]. The optimal value of the cost (3.47) with respect to
minimization over admissible control sequences {uk, uk+1, uk+2, ...} is

J (xk) = min
uk,uk+1,uk+2,...

J (xk, {uk, uk+1, uk+2, ...}) (3.48)

This formulation leads to an optimal control problem, the controller is required to minimize
at time k the performance cost 3.47 subject to the constraints imposed in the states
and the inputs. More details on MPC can be found in [84] and [85].

As mentioned at the beginning of this section, the MPC is used to guide the
platform to a desired position, which corresponds to the point-stabilization or regulation
problem. To perform this task, the differential drive model similar to the presented
in Eq. (3.21) is considered:

ẋ =

 ẋ

ẏ

θ̇

 =

 υc cos θ

υc sin θ

ωc

 =

 cos θ 0

sin θ 0

0 1

u (3.49)
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with the linear velocities of the right υR and the left υL wheels define the linear velocity
υc =

υR + υL
2

and the angular velocity ωc =
υR + υL

2L
. The state and control vectores

are x = (x, y, θ)T and u =
(
υc, ωc)

T , respectively.
A reference differential drive model is defined, it possesses the desired values

for the state and control vectors. In the case of regulation problem, the values of xr

and ur are constants. For the trajectory tracking problem, the state xr and control
ur vectors have time varying values.

ẋr =

 ẋr

ẏr

θ̇r

 =

 υr cos θr

υr sin θr

ωr

 =

 cos θr 0

sin θr 0

0 1

ur (3.50)

where (xr, yr, θr)
T is the reference state vector and the reference control vector ur =

(υr, ωr)
T . The goal is to control (3.49) to the reference (3.50). Thus the error state

vector can be defined as:

xe =

 xe

ye

θe

 =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1


 xr − x

yr − y

θr − θ

 (3.51)

The error dynamic model is obtained by differentiating (3.51)

ẋe = ωcye − υc + υr cos θe

ẏe = −ωcxe + υr sin θe

θ̇e = −ωr − ωc

(3.52)

The linearized version of (3.52)

ẋe =

 xe

ye

θe

 =

 0 ωr 0

−ωr 0 υr

0 0 0

xe +

 1 0

0 0

0 1

ue (3.53)

where

ue =

[
−υc + υr cos θe

ωr − ωc

]
(3.54)

Having defined the controlled and the reference models, a control input u (t) has to
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be computed minimizing a weighted cost function given by:

J (t,xe (τ) ,ue (τ)) =

∫ t+τ

t

l (τ,xe (τ) ,ue (τ)) dτ (3.55)

where l (τ,xe (τ) ,ue (τ)) = xe (τ)
T Qxe (τ) + ue (τ)

T Rue (τ). With Q and R are the
weight matrices and T is the prediction horizon. Which can be written as:

min
u

J (t,xe (τ) ,ue (τ)) (3.56)

subject to: ẋ (τ) = f (x (τ) ,u (τ))

u (τ) ∈ U, (τ ∈ [t, t+ T ])

xe (t+ T ) = 0

(3.57)

3.5 Simulation results

Digital twins are being adopted in robotics to recreate conditions of real-life scenarios. In
particular, these tools are very useful in agriculture, where access to experimental fields
involves high costs of displacement which could be further complicated by unpredictable
weather and crop conditions.

To validate the proposed algorithms in this chapter, multiple scenarios were built
using the high-fidelity Gazebo simulator and the ROS middleware to emulate the real plat-
forms, its sensors and the crop fields. The Figure 3.16 shows the platforms employed in
this work. For more details of the platforms and their instrumentation, see Appendix A.2.

Multiple scenarios were created to replicate the conditions of the ROSE challenge
(see subsection 1.4) and the ACRE competition (see subsection 1.5). Moreover, to
validate the robustness of the navigation algorithm, some parcels were modified adding
some noise in the plant position, so that crops were not perfectly aligned (see Figure
3.17). In the same way, a portion of parcels were created with a distinct crop distribution.

One of the first tests carried out in the simulator was to evaluate the effect of
changing the position and orientation of the frontal sensor. As expected, the number
of visible plants projected on the camera will differ according to the camera orienta-
tion. Similarly, the illumination perceived by the camera will be different depending
on its position and orientation.

The simulation suggests that the perception system is able to detect the num-
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Figure 3.16: Platforms on Gazebo simulator. On the left side of the image, the differential drive
configuration and on the right, the Ackerman steering platform.

ber of plants needed to perform the navigation at an orientation between 30° and
60° with respect to the ground. For the altitude, a distance of 1.2 m with respect to
the ground was considered.

Figure 3.17: Examples of parcels built in Gazebo. On the left: a Maize parcel with artificial
markers (part of ROSE challenge scenarios). On the right: a Maize parcel without artificial
markers (part of ACRE competition).

Once the frontal sensor orientation and position have been determined, the
navigation was tested. Four situations were considered:

1. The initial position of the platform is aligned with respect to the crops as is illustrated
to the left of the Figure 3.17.

2. The initial position of the platform is not aligned with respect to the crops, but crops
remain into the field of view of the camera.

3. The initial position of the platform is far away from crops and, without relying on
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visual perception, the platform is guided at the beginning of one of the parcels
using the MPC approach.

4. The complete navigation scenario of the ACRE competition, including maize and
bean crops, transition zones and half-turn.
All the results presented below were obtained considering a constant linear veloc-

ity υc = 0.4 m/s, δres = 80 pixels for the maize parcel and δres = 60 pixels for bean parcel.
The results of the first scenario (initial position of the platform aligned with respect

the crops) are shown in Figure 3.18. The vanishing point estimation for both crops:
maize and bean remains around the reference during the autonomous navigation, the

reference being at the image center with time constant λ =
1

τ
and τ = 2.5.
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Figure 3.18: Vanishing point estimation during autonomous navigation in maize and bean crops.
The initial position of the platform was aligned with respect to the crops.

The second scenario was planned to prove the robustness of the proposed
approach. Due to the platform is not aligned with respect to the crops at the beginning
of the simulation, a larger initial error between the reference and the vanishing point
estimation is present, the value of time constant is τ = 3 However, the results indicate
that the trajectory correction algorithm is able to rectify the position of the platform and
navigate through the parcel (see Figure 3.19).

To solve the cost function J in the model predictive control, the open source tool
for nonlinear optimization CasADi [86] was used. The prediction horizon was selected
T = 10, and the considered constraints were υcmax = 0.2 m/s and ωcmax =

π

8
rad/s.
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Figure 3.19: Vanishing point estimation during autonomous navigation in maize and bean crop.
The initial position of the platform was not aligned with respect to the crops.

The weight matrices were chose:

Q =

 2 0 0

0 4 0

0 0 0.5

 , R =

[
0.8 0

0 0.1

]

The initial position of the platform was selected at the origin of the World coor-
dinate frame. However, the initial orientation of the platform was not perfectly aligned
with the crops, that is x0 =

(
0, 0,

π

8

)
. The desired pose corresponds with the be-

ginning of one of the parcels xd = (15, 5, 0) . The results of Figure 3.20 show the
trajectory performed by the platform to reach the beginning of the parcel considering
the velocity constraints imposed.

The values of the input vector generated by the model predictive control are
shown in Figure 3.21. Both velocities are restricted in magnitude due to the considered
constraints during the optimization of J .

Finally, the last results presented in this subsection correspond to the field naviga-
tion benchmark of the ACRE competition. The initial position of the platform is centered
with respect to the crops. The platform carried out the autonomous navigation through
four parcels (two maize parcels and two bean parcels) according to the Algorithm 2.

This scenario allows to test all the techniques explained in the previous sub-
sections simultaneously. As is illustrated in Figure 1.12, the first section corresponds
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Figure 3.20: Platform’s trajectory to reach one of the parcels based on model predictive control
approach.
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Figure 3.21: Linear and angular velocities generated by the model predictive control.
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Algorithm 2 Autonomous navigation
Require: RGB image
Ensure: (υc, ωc)

T

1: Initialization:
2: Accumulator R = 0
3: Accumulator T = 0
4: Ws

5: Iteration:
6: Plant detection
7: Vanishing point estimation
8: if (Vanishing point is available) then
9: Navigation using vanishing point

10: Accumulator R = 0
11: else
12: Navigation using virtual lines
13: Accumulator R ++
14: if (R > δR and line fitted byWs) then
15: Navigation using bird’s-eye view
16: Accumulator T ++
17: end if
18: if (T > δT and vegetation intoWs) then
19: Half-turn
20: Accumulator R = 0
21: Accumulator T = 0
22: end if
23: end if

to a maize parcel (two crop lines) which uses the same navigation task presented in
the ROSE challenge. Then, a transition zone without crops divides the first and the
second parcel, the second parcel was sowed with beans in three rows. Crops were
sowed in parallel lines in these parcels.

During the transition zone, the vanishing point detection is not available, the
bird’s-eye view transformation is used to guide the platform until the crops are again
observed and the vanishing point can be estimated. At the end of the second parcel, a
half turn was executed to change row. Due to the experimental field conditions, during
the half turn visual information is not available. For this reason, the platform uses the
absolute position given by the GPS guidance system and, using the MPC approach,
it can change to a new parcel. At the moment the vanishing point is available again,
the platform will navigate based on visual perception. The vanishing point estimation
for each parcel can be seen in Figure 3.22.
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Figure 3.22: Vanishing points estimation in Gazebo simulator within the ACRE scenario.

3.6 Experimental results

The results presented in this section were obtained during the ROSE challenge (sub-
section 1.4) evaluation campaigns and the ACRE competition (subsection 1.5). For
a detailed description of the experimental platforms and their instrumentation, see
Appendix A.2.

The classification algorithm was tested in two different campaigns; the first took
place in September 2019 under clear sky and sunny weather, and the second in
September 2020 under cloudy sky and cold drizzle.

The growing stages of the crops for each evaluation were not the same, they
were more advanced in the evaluation campaign of 2019 in comparison to 2020 (see
Figure 3.23).

To evaluate the classifier output quality, the Precision and Recall performance
metrics introduced in Chapter 2 are used. It is based on the well-known confusion
matrix shown in Table 3.1, which expresses all the combinations between the pre-
dicted and actual values.

The classification decision is determined by comparing the output of the proposed
classification algorithm against a human expert, that is, for each image, the values
of TP, FP and FN were counted.

The results obtained in Figure 3.24 show a better performance of the proposed
algorithm in the maize parcel with respect to the bean parcel, this is because the
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Figure 3.23: Example of images extracted from datasets recorded during the challenge cam-
paign September 2019 (bottom) and September 2020 (top).

Table 3.1: Confusion matrix.

Actual values
True Positive (TP) False Negative (FN)

Plant of interest identified correctly Plant of interest not identified
False Positive (FP) True Negative (TN)

Plant of interest identified incorrectly Not identified as plant of interest

intra-row distance is longer in maize and the weed density is more significant for beans.
In the case of beans, crops are closely spaced and phenomena such as occlusion
disturb the classification. Another point to note is that the precision was bigger in the
second evaluation campaign for both crops, this is explained by in the first evaluation
campaign, crops’ growing stage was more advanced and their physical characteristics
were less distinguishable, as Figure 3.23 illustrates.

In order to measure the performance of the proposed approach with respect
to other solutions, an accuracy comparison between the algorithm based on feature
characteristics and the AQiT sensor is presented. The same dataset obtained during
the evaluation campaigns (September 2019 and September 2020) was utilized. The
obtained results are shown in Table 3.2.

Among the points to highlight from Table 3.2, the first and very important is the
operation rate. The AQiT sensor performs crop detection at f = 5 Hz at best, which
implies some restrictions for real-time applications. The results given by the proposed

Jorge Eduardo AVILÉS MEJIA| Doctoral thesis | University of Limoges

Licence CC BY-NC-ND 3.0

100



CHAPTER 3. AUTONOMOUS NAVIGATION BASED ON VISUAL PERCEPTION

Figure 3.24: Precision-Recall curves for maize and bean crop classification.

Table 3.2: Crop detection accuracy: feature-based and AQiT sensor.

Solution Operation
rate (Hz)

Maize(1st
cam-

paign)

Bean (1st
cam-

paign)

Maize
(2nd cam-

paign)

Bean (2nd
cam-

paign)
AQiT

sensor
5 76% 74% 63% 62%

Proposed
feature

extraction
detection

20 94.33% 81.75% 97.09% 83.8%

approach were obtained at f = 20 Hz, allowing to implement the algorithm in real-
time onboard an embedded system. In the maize case, the differences between the
obtained results were even more noticeable in the second evaluation campaign. It
is associated with not retraining the AQiT sensor and like plant characteristics were
not the same, the accuracy was disturbed.

The autonomous navigation was tested with two different platforms and the
navigation task was not the same. Figure 3.25 shows the errors between the estimated
vanishing points and the reference. They were obtained within the framework of the
ROSE challenge (September 2021) where the task aimed at navigating autonomously
one full parcel. The linear velocity of the platform was constant υ = 0.2 m/s. The
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Figure 3.25: Error evolution with differential platform during the ROSE challenge.

task started with the platform centered at the beginning of the parcel and ended after
crossing the parcel until its final point.

Although GPS was not used for the navigation task in this work, to have a
reference of the trajectory carried out by the platform, two GPS-RTK were mounted in
front and at rear of the platform. With the GPS data, the position and the orientation
of the platform during the navigation task were estimated and used as ground truth
to evaluate the vision-based navigation. The platform pose was overlapping with a
seed map as Figure 3.26 shows.

The second autonomous navigation test was carried out with an Ackermann
steering configuration platform. The crops and weeds were the same as in the previous
scenario, but the plant’s sow distribution was modified for the ACRE competition.

To cross from the first parcel to the second one when the absence of plants
does not allow to estimate the vanishing point, the platform automatically switches to
virtual visual servoing using the lane formed by the non-vegetation generated by the
bird’s-eye view. When plant detection becomes available again, the vanishing point
estimation leads the platform to be aligned with respect to the plants, reducing the
error tracking as Figure 3.27 shows.

For the half-turn at the end of the second parcel, as was mentioned, the proposed
approach does not rely on any GPS reference point. To substitute the reference
points, the previous platform characterization allows to known the steering angle for
approximating the platform to the third parcel until vanishing point estimation was
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Figure 3.26: Trajectory estimation on one crop parcel using the onboard GPS and projected
on the crop field. The display included (right) is a zoom of the position and orientation of the
platform on a part of the trajectory. The red lines correspond with the platform’s orientation.

Figure 3.27: Error tracking during the experimental campaign of the ACRE competition.

available again. In Figure 3.27, the larger error at the beginning of the third parcel
(light blue color) is because after the half-turn of the platform, the vanishing point
appears at the edge of the images. As the robot approaches to the center of the
crops, the error decreases.
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The final segment of the navigation benchmark allows to verify the scope of
the proposed approach. The navigation algorithm not only performs on straight paths
but on curved paths. The orientation of the frontal sensor (Xeye) plays a crucial role.
The more perpendicular the angle formed by the optical axis of the camera k⃗Xeye and
the ground, the effect of not straight path is mitigated. However, the vanishing point
estimation tends to disappear as line projection differs from the projection assumed in
this work. In the opposite case, the reliability of the line extraction reduces considerably.
An adequate orientation allows to perceive locally straight paths even when it is not
true, as Figure 3.28 shows.

Figure 3.28: Images extracted from the autonomous navigation. a) At the beginning of the
parcel (straight path). b) At the middle of the parcel (not straight path). c) At the last segment of
the parcel (straight path).

The same idea to integrate the two GPS-RTK to the platform was carried out
for evaluation purposes. The full trajectory accomplished by the platform can be seen
in Figure 3.29. The zooms presented to the right of the Figure 3.29 corresponds to
the first and second parcels (straight path formed by the crops) and to the left of the
image, are the final parcels, which sow was modified to create a curved path. The
zoom at the bottom of the image illustrates the half-turn.

3.7 Conclusion

An autonomous vision-based navigation method was exposed in this chapter. The
plant classification algorithm based on physical features was successfully tested with
higher accuracy in maize (93%) with respect to bean crops (83%). Considering that
the detection presented in this chapter is used for navigation purposes, the plant
classification results are good enough to achieve this purpose. The proposed approach
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Figure 3.29: Field navigation benchmark during the ACRE competition. The dotted rectangles
are a zoom of some regions to highlight the platform orientation. The vehicle’s pose is given by
the RTK-GPS system.

is based on crop physical characteristics which provide significant advantages: it allows
to adapt the algorithm to a great variety of plants. Early information about the growing
stage of the crops was considered to adjust the algorithm parameters and it can be
implemented in real-time onboard an embedded system.

The obtained results suggest that vanishing point estimation can be utilized to
perform autonomous navigation in agricultural scenarios. The line extraction presented
in this chapter is able to extract crop lines under diverse adverse scenarios: in the
presence of false plant detection, change of illumination during experimental tests, at
different camera positions, to mention a few. In the same way, the least squares solution
proposed to estimate the vanishing point is a fast solution that allows to find the position
of the vanishing point for any number of crop lines.
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The transition to the bird’s-eye view guidance for navigation allows the platform
to navigate in the absence of the vanishing point. Furthermore, the use of the Gazebo
simulator to create realistic scenarios enabled to execute multiple tests to validate the
proposed approaches considering the difficulties of finding a real experimental field.

Based on the results shown in this chapter, it might be concluded that visual
information can be extracted without using techniques of artificial intelligence to perform
autonomous navigation. However, in the zones where crop extraction is not available,
the model predictive control is an alternative to perform this task. Moreover, MPC allows
to integrate different constraints to estimate the control vector.
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4
Weeding actuation and robot localization

In the previous chapters, features extraction given by the dual-purpose plant recognition
system and the autonomous navigation of the platform were presented. To complete
the chain: detection-navigation-action, the weeding actuation is exposed in this chapter.
The proposed approaches are based on proximal and frontal detection to accomplish
a mechanical weeding. The first one controls the weeding tool locally using the seg-
mentation algorithm executed in the proximal multimodal sensor (Xtool). The second
one proposes a plant propagation system to activate the weeding tool, given the plants
detected by the frontal sensor (Xeye), they are propagated from the camera’s field of
view to the weeding tool activation. Both approaches operate under the principle to
protect the plants of interest and eliminate everything else that is not detected. An
Extended Kalman Filter is conceived as data fusion algorithm to estimate the robot’s
localization when needed. Simulations and experimental results validate the proposed
approach to carry out intra-row autonomous weeding.
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CHAPTER 4. WEEDING ACTUATION AND ROBOT LOCALIZATION
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4.1 Introduction

Weeds are plants that grow in an unwanted place. When they are located close to
the crops, the crop growing stage is perturbed due to part of the natural resources
are absorbed by the weeds, for instance: the amount of water during irrigation, solar
energy, surface where they are, among others. In the same way, weeds harbor species
that can contaminate or even kill crops. For these reasons, weeding has been carried
out since the beginning of agriculture to remove undesired plants. Until not long ago
and even nowadays, it is performed by manpower.

World population growth forces to increase substantially food manufacturing.
Consequently, the eradication of weeds plays a fundamental role in crop production.
To achieve efficient weeding control, classic methods such as hand weeding by farm
workers or the use of chemical substances that affect health and the environment must
be replaced by new technologies that increase weeding speed and limit repercussions
on the environment or on human health.

Among the factors to be considered in the weeding task are: crops and disease
detection, the characteristics of the parcel and the type of mechanisms to be deployed.
In this chapter, a mechanical weeding is exposed. The mechanical weeding tools
are located under the experimental platform. The proposed approach protects crops
identified as plants of interest and eliminates weeds.

4.2 Weeding strategies

The weeding task can be divided into two categories: inter-row [87] and intra-row [75],
[87]. The first consists of removing the weeds that are between the crop rows, which is
not very difficult since the distance between crop rows is usually large enough to use
a tool (mechanical, electrical, laser device, etc.) and crossing the parcel to eliminate
them. However, the intra-row weeding is a great challenge because this task is devoted
to eliminating weeds located between crop rows and, according to the kind of crops,
the distance between two consecutive plants can be very small, increasing the difficulty
to eliminate weeds without damage the plant of interest.

The research platform WeedElec [88] is a weeding solution based on high-voltage
probe. The contactless discharge is generated between the probe and the weed
detected. The current induced by the discharge flows through the whole weed. The
spark duration can be between 0.25 and 1 second, the electrode material is stainless
steel anode and the voltage is around 60 kV pulses. Although the weeding task has
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begun to be carried out using electrical approaches, mechanical weeding predominates
among the solutions to this problem. Diverse mechanical tools have been implemented
to compare the results obtained for each one of them.

An evaluation of the performance of some mechanical weeding mechanisms was
proposed in [89]. These are the harrow, sweep, ducksfoot, rotary powered hoe and
rotary brush devices. Harrow weeders (Figure 4.1-a) can operate for both inter and
intra-row weeds but when weeds have deep roots they are ineffective. Weeders such
as sweep and ducksfoot (Figure 4.1-b and d) are used to eliminate inter-row weeds.
The sweep tools consist of a set of blades and the weed control is carried out by cutting
their roots below the surface. The duckfoot operates in a similar way to the sweep, but
the working depth increases with respect to the sweep, from 25 mm to 40 mm. Rotary
brush and hoe (Figure 4.1-c and e), are weeding tools that rotate around an axis, this
axis can be vertical or horizontal and they can be used for both types of weeding. These
rotary tools operate better during the first weeks of the growth stage.

Figure 4.1: Mechanical weeding tools. a) Harrow. b) Sweep. c) Rotary brush. d) Ducksfoot. e)
Rotary hoe.

A comparison between three mechanisms was presented by McCool et al. [90]:
an arrow hoe for tilling below surface, tines for tilling above surface and a cutting
mechanism. The authors applied the three mechanisms over a period of eight weeks.
The results show that as the plants grow, the effectiveness of the mechanisms tends to
decrease and the cutting mechanisms presented the lowest success rate among them.
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4.3 Weeding actuation

This work proposes a mechanical weeding mechanism to carry out inter and intra-row
autonomous weeding. The weeding tool used corresponds to the sweep shown in Figure
4.1-b, despite the fact this type of tool is mainly used to perform inter-row weeding, the
approach presented in this chapter allows to carry out both types of weeding.

To carry out inter-row weeding, the tools are placed in front of the platform with
their tips pointing in the same direction of the platform movement. While to carry out
intra-row weeding, the tool is placed at the rear of the platform with the tip pointing
perpendicular to the direction of the platform movement as shown in Figure 4.2.

Figure 4.2: Mechanical tools placed in front and at the rear of the platform for inter-row and
intra-row weeding.

The weeding tools at the front of the platform are always on (below the ground).
So, as the platform moves, the tools remove any weed located between the crop
rows. The intra-row weeding is carried out by activating and deactivating the weeding
tool intermittently: as previously mentioned, the proposed approach aims to eliminate
everything that is not detected as a plant of interest. Similar to inter-row weeding,
the weeding tool remains active while the platform is moving (weeding tool below the
ground) but when a plant of interest is detected, the tool is disabled to protect the
detected crop (by disabling the tool, its position is above ground). The Figure 4.3
illustrates the previous explanation.

To achieve the weeding, some assumptions were made:
• During the displacement through the parcel, the autonomous navigation algorithm

allows the platform to remain close enough to the crops and weeds, so that the
weeding tool when activated will be below ground level, allowing the removal of
the weeds.
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• The angle β formed by the position of the weeding tool (Figure 4.3-b), allows
crossing the crop line from one side to the other, ensuring intra-row weeding.

• The weeding tool is able to penetrate different types of soil under different weather
conditions: dry ground, wet ground, etc.

Figure 4.3: Intra-row weeding scenario. a) The weeding tool is disabled when a plant of interest
is detected. b) Weeding tool disabled. c) Weeding tool activated.

In order to properly control the weeding tool, its kinematic needs to be estimated.
This is accomplished using the parameter estimation approach based on the step
response for the open loop system [91]. Among the different systems, the first order
systems with time delay are described by a first order differential equation and their
main dynamic is damped.

Let a first order system G(s) given by:

G (s) =
k

Ts+ 1
e−τs (4.1)

with k the steady state gain, T the time constant and τ the time delay. These three
parameters are determined by drawing a tangent line at the inflection point of the
system step response and its intersection with the coordinate axes. The steady state
gain k is obtained from the intersection of the tangent line with the y-axis, the time
constant T is given by the double intersection of the tangent with the x-axis and the
time delay τ is the difference between the time at which the step is applied and the
time when the system reacted.

The values of the estimated parameters are given in (4.2). The Figure 4.4 shows
the step response of the weeding tool as well as its identified dynamics.

G (s) =
−70

0.04s+ 1
e−0.015s (4.2)
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Figure 4.4: The step response of the weeding tool and its parameter estimation.

Once the parameters of the tool have been obtained, the height at which the
tool will be fixed must be determined. To ensure that weeds will be destroyed not
only superficially but also from their roots, the weeding tool must penetrate the soil
at a certain depth. Figure 4.5 shows the size of the roots of some extracted weeds.
The depth range is between 1 and 5 cm. These values correspond to the evaluation
campaign where plants and weeds had the highest growth stage.

Due to weeds absorbing part of the resources necessary for crop growth (water,
sunlight, space, etc.), weeding should be performed after the first weeks of crop planting
to prevent its degradation. Depending on the weed to be removed, the depth that the
weeding tool can reach is adjusted. In the case of an intervention during the first growing
stages, the depth of the weeding tool is between 1 and 2 cm.

On the other hand, if the weeding is carried out at an advanced growing stage,
firstly, the crops could present a significant decomposition as a result of the pests formed
by weeds. Then, the intra-row distance reduces due to the advanced growing stages of
crops and weeds complicating the weeding tool intervention. Finally, when the weeding
tool cuts a dense weed population, crops can be damaged due to reduced space for
manoeuvre or when removing weeds. For these reasons, weeding is recommended
during the early stages of crop growth.

After explaining how the weeding tool operates and obtained its parameters,
the two activation methods to manipulate the weeding tool for intra-row weeding
are exposed.
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Figure 4.5: Root size of different weeds. a) Matricaria. b)Ryegrass. c) Moutarde and d)
Matricaria.

4.3.1 Weeding actuation based on proximal detection

The first approach to control the weeding tool is based on proximal detection. The
detection is given by the multimodal sensor Xtool which is located under the platform
(see appendix A). Most of the proposed solutions [92] work in this way; weeds are
constantly detected as long as they are detected in the camera’s field of view.

The proposed autonomous weeding approach performs row-wise. The camera’s
field of view distinguishes only one crop row and the weeding tool can be observed
at the border of the image. However, this proposal can be extended to operate two
or more weeding tools simultaneously either by adding an additional sensor for each
crop row or with a single sensor increasing its height with respect to the ground to
observe the number of crop rows to be weeded.

Figure 4.6: Weeding actuation based on proximal detection.
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As the platform moves, crops and weeds are captured by the camera. Using the
algorithm based on physical characteristics presented in Chapter 2, the coordinates
of the plants of interest are estimated using Eq. (2.14). Then, a zone denominated
the on/off decision zone (Figure 4.6) is defined and when a plant of interest is inside
the decision zone, the weeding tool is disabled (Eq. 4.3).

Weeding_tool =

{
1 if ȳi > δItool

0 otherwise
(4.3)

where ȳi is the y coordinate of the i-th detected plant and δItool is the size of the
decision zone in pixels.

Despite that throughout this chapter the weeding task protects the plant of interest,
with the on/off decision zone approach, it can be observed that this proposition can
be reversed. That is, considering the weed detection and when they are inside the
decision zone, the weeding tool will be activated to eliminate them, which would imply
navigating with the weeding tool deactivated.

The weeding task in the ROSE challenge was divided into two stages: during
the first stage, markers were used to easily differentiate crops and weeds, and in
the second stage, the markers were removed to perform the autonomous weeding
without any visual indicators. The description of each marker is detailed in Table 4.1
and are illustrated in Figure 4.7.

Diameter Color Center diam-
eter

Width

Crop markers 2.5 cm Blue 8 mm 3 mm
Weed markers 2 cm Red 5mm 6 mm

Table 4.1: Markers description.

The markers indicate the position and the class of plants, they are placed on the
ground and the plant stem is in the center of the marker as Figure 4.7 shows.

To identify the red markers (weeds), a color segmentation is performed. First, the
image is converted to the HSV color space for the reasons explained in Chapter 2.

IRGB (x, y) −→ IHSV (x, y) (4.4)

Then, the red color is around 180 in the H channel of HSV color space. Two thresh-
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olding operations are conducted to segment it:

IiBIN
(x, y) =

{
1 if δimin

≤ IHSV (x, y) ≤ δimax

0 otherwise
(4.5)

with δimin
and δimax are the lower and upper boundaries respectively, and i = 1, 2

corresponds to each segmentation mask resulting of the two thresholding operations.
The segmented images are merged using the logical OR operator. Finally, an opening
morphological operation deletes any undesirable segmented region.

Figure 4.7: Markers placed at the crop and weed stem.

When the intra-row weeding is performed based on proximal detection, some
points must be mentioned:

• If a weed is too close to a plant of interest, it cannot be eliminated due to the
principle of protection of plants of interest.

• If a plant of interest is occluded (by other crops or weeds, lighting disturbance,
etc.) inside the on/off decision zone, it will be destroyed even though the plant
could be detected in other regions of the image.

• If the crops are in an advanced growth stage, they can obstruct the acquisition of
the images (Figure 4.8-a). This limitation was partially solved by repositioning the
detection system and using the detection algorithm based on physical characteris-
tics allowing to detect the plants of interest from different positions and angles as
Figure 4.8-b shows.
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Figure 4.8: Xtool multimodal sensor. a) Obstruction of image acquisition. b) Xtool repositioning.

4.3.2 Weeding actuation based on frontal detection

The second proposed method to carry out the autonomous weeding utilizes the frontal
perception system to detect crops using the algorithm based on physical features.
However, other alternatives like the AQiT sensor, the learning-based models and the
fusion algorithm presented in this work can be used in order to perform crop detection.

When crops are detected, they will be projected to be propagated in the weeding
tool frame (Figure 4.9). As the platform moves, the weeding tool remains activated
to eliminate weeds and when a plant of interest is propagated to the same weeding
tool frame, it is deactivated to protect the plant.

The considered environment is defined by a 1× 4 m grid that covers the vehicle
as Figure 4.9 shows. The grid is partitioned into grid cells ci at coordinates (xi, yi, zi),
with i = 1, 2, · · · , N and zi = 0. Every grid cell is assigned a state between two
possible values Free (F ) and Occupied (O), which corresponds with the projected crop
on the occupancy grid [93], [94].

bi ∈ {0, 1} (4.6)

with bi = 1 indicating that cell ci is occupied, and bi =0 indicating that cell ci is empty.
The occupancy grid can be seen as the vector

b = [b1, b2, · · · , bN ] ∈ {0, 1}N (4.7)
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Figure 4.9: Occupancy grid. a) Top view. b) Side view.

The set b is commonly referred to a map. It is attached to the vehicle and it is
defined on a sensor independent coordinate system where the origin is defined with
respect to a fixed location on the platform such as the center of the rear axis. The
platform’s pose is assumed known and will be explained in the next subsection.

The problem is then to estimate a specific map within the set of all possible maps
with N elements given a sequence of measurement vectors

MT = [m1,m2, · · · ,mt, · · · ,mT ] (4.8)

with T representing the current sensing time. That is, 1 ≤ t ≤ T refers to the mea-
surement index, and mt ∈ {0, 1} is a binary vector.

The goal is to develop a framework for updating the posterior probability of
the occupancy of each grid cell ci associating the random variable bi, given the se-
quence of measurements MT .

To estimate the vector of cell posterior probabilities p, some proposed works factor
the joint distribution of the cell occupancy as

pb (b) =
∏
i

pb (bi) (4.9)

In the same way, the collection of measurement vectors JT is assumed to be
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factored as

pb|M (b |MT ) =
∏
i

pb|M (bi |MT ) (4.10)

which implies that the elements in the cell occupancy are conditionally independent.
Then, given the collection of T sequential observations MT , to estimate the probability
occupancy of each cell using Bayes’ rule.

p (b |M1:T , x1:T ) =
∏
i

p (bi |M1:T , x1:T ) (4.11)

where x corresponds to position of the platform, the platform position estimation
will be expose in the next subsection.

p (bi |M1:T , x1:T ) =
p (MT | bi,M1:T−1, x1:T ) p (bi |M1:T−1, x1:T )

p (MT |M1:T−1, x1:T )
(4.12)

p (bi |M1:T , x1:T ) =
p (MT | bi, xT ) p (bi |M1:T−1, x1:T−1)

p (MT |M1:T−1, x1:T )
(4.13)

where p (MT | bi, xT ) =
p (bi |MT , xT ) p (MT | xT )

p (bi | xT )
After applying Bayes’ rule and Markov

p (bi |M1:T , x1:T ) =
p (bi |MT , xT ) p (MT | xT ) p (bi |M1:T−1, x1:T−1)

p (bi) p (MT |M1:T−1, x1:T )
(4.14)

and doing the same for the free cell probability

p (¬bi |M1:T , x1:T ) =
p (¬bi |MT , xT ) p (MT | xT ) p (¬bi |M1:T−1, x1:T−1)

p (¬bi) p (MT |M1:T−1, x1:T )
(4.15)

Computing the radio of both probabilities:

p (bi |M1:T , x1:T )

p (¬bi |M1:T , x1:T )
=

p (bi |MT , xt)

1− p (bi |MT , xT )

p (bi |M1:T−1, x1:T−1)

1− p (bi |M1:T−1, x1:T−1)

1− p (bi)

p (bi)
(4.16)

The update Eq. (4.16) depends on the current measure, which is the first term of
the equation, the previous estimate related with the second term and a prior probability
which corresponds with the third term of the equation and by using the log-odds
notation can be rewritten as
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(bi |M1:T , x1:T ) = L (bi |MT , xT ) + L (bi | z1:T−1, x1:T−1)− L (bi) (4.17)

with
L (x) = log

p (x)

1− p (x)

Since multiplications are replaced by additions, Eq. (4.17) allows faster updates.

4.3.3 Robot pose estimation

This work considers two different approaches for autonomous navigation and weeding.
The former is based on relative navigation and weeding (visual servoing and weeding
based on proximal detection) and the latter considers absolute positioning to navigate in
the absence of visual information and to carry out weeding task based on propagation.
The estimate of the platform’s pose is presented using a data fusion algorithm.

4.3.4 Kalman filter: preliminaries

The Kalman filter [95] aims to estimate the state x ∈ Rn of a discrete-time process that
is described by the linear stochastic difference equation

xk+1 = Fkxk +Gkuk + vk (4.18)

with a measurement z ∈ Rm

zk = Ckxk + wk (4.19)

The random variables vk and wk are the process and measurement noise, respectively.
They are assumed to be independent between them, white and with normal probability
distribution. The n× n state matrix F , relates the state at time step k − 1 to the state
at the step k. The n × l matrix G relates the control input u ∈ Rl to the state x. The
m × n observation matrix C, relates the state to the measurement zk.

Defining x̂k|k−1 the a priori state at step k given knowledge of the process prior
to step k, and x̂k|k the posteriori state estimate at step k given measurements zk. The
a priori and a posteriori estimate errors are

e−k = xk − x̂k|k−1

ek = xk − x̂k|k
(4.20)
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The a priori and a posteriori estimate error covariances are:

P−k = E
[
e−k e

−
k
T
]

, P−k = E
[
eke

T
k

]
(4.21)

x̂k = x̂k|k−1 +K
(
zk − Ckx̂k|k−1

)
(4.22)

The Eq. (4.22) computes an a posteriori state estimate x̂k as a linear combi-
nation of an a priori estimate x̂k|k−1 and a weighted difference between the actual
measurement zk and a measurement prediction Ckx̂k|k−1. The n ×m matrix K is the
Kalman gain and is given by

Kk = P−k CT
k

(
CkP

−
k CT

k +Rk

)−1 (4.23)

Equation (4.32) is utilized when all the measurements are available When the
system dynamics are nonlinear as is the case, the Extended Kalman filter (EKF) is
used, it is not an optimal filter, it gives an approximation of the optimal estimate. The
non-linearities of the system’s dynamics are approximated by a linearized version
of the non-linear system.

The Extended Kalman Filter algorithm is stated below:
EKF time update equations:

x̂−k+1 = f (x̂k, uk) (4.24)

P−k+1 = AkPkA
T
k +Qk (4.25)

Similar to the Kalman Filter, the time update equations project the state and
covariance from time step k to step k + 1, Ak and Wk are the process Jacobians at
step k, and Qk is the process noise covariance at step k.

EKF measurement update equations:

Kk = P−k CT
k

(
CkP

−
k CT

k +Rk

)−1 (4.26)

x̂k = x̂−k +K
(
zk − h

(
x̂−k
))

(4.27)

Pk = (I −KkHk)P
−
k (4.28)
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The measurement update equations correct the state and covariance estimates with
the measurement zk, Hk and Vk are the measurements Jacobians at step k, and Rk

is the measurement noise covariance at step k.

4.3.5 Vehicle localization

The architecture of the proposed extended Kalman filter is shown in Figure 4.10. The
two GPS onboard the platform are utilized to estimate the orientation and the position
of the platform. A moving average window was used to filter the measurements given
by the inertial measurement unit, and as a result of changing the direction of motion,
the platform’s odometry was modified.

Figure 4.10: Extended Kalman filter to estimate platform’s pose.

In order to merge different sensors, we proposed the state vector defined as:

x =


ẋ1

ẋ2

ẋ3

ẋ4

 =


x

y

θ

θ̇

 (4.29)
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where:

ẋ1 = cos(x3)

(
RL

2
U1 +

RR

2
U2

)
ẋ2 = sin(x3)

(
RL

2
U1 +

RR

2
U2

)
ẋ3 = x4

ẋ4 = 0

(4.30)

where RL and RR are the radius of left and right wheels, and U1, U2 are the left
and right wheel velocities. The following initial conditions were considered:

x0 =


0

0
π

2
0

 , P0 =



(
20

3

)2

0 0 0

0

(
20

3

)2

0 0

0 0

(
120π

180

)2

0

0 0 0

(
10π

180

)2


(4.31)

The observation matrix is defined as:

Ck =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 1

0 0 1 0

 (4.32)

4.4 Simulations results

The simulation scenarios used in this chapter correspond to those described in the
ROSE challenge. The crop distribution was made considering the inter and intra-row dis-
tances specified in subsection 1.4. However, the position of the weeds was set randomly.
This means that the weeding task was validated under different conditions: weeds close
to the crops, two or more weeds sowed close to each other, scattered weeds, etc. In the
same way, markers were added in some parcels to easily recognize crops and weeds.
The rest of the parcels were designed without visual markers as Figure 4.11 shows.
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Figure 4.11: a) Parcel with markers to recognize crops and weeds. b) Parcel without markers.

The first proposed approach considering the proximal detection was tested with
and without markers. For the case of parcel with markers, the weeding configuration
was as follows: the tool remained deactivated while the platform was moving, the marker
detection algorithm was designed to detect only the red markers which correspond to
the weeds. As the tractor moves, markers are captured by the perception system. When
the red markers are detected within the decision zone, the weeding tool is activated.

For the parcel without markers, only the crops were detected. The weeding tool
operating mode was inverted. That is, when a plant of interest is detected in the decision
zone, the tool is deactivated to avoid damaging the crops. The linear velocity of the
platform is constant and υc = 0.2 m/s and the on/off decision zone has a width of 60
pixels for both cases (parcel with and without markers) which corresponds to 30 mm.

The number of weeds planted in each row was counted to make a comparison
with the number of weeds that were eliminated after the intervention of the platform.
The obtained results are presented in Table 4.2.

Crop Weeds (with
markers)

Weeds (with-
out markers)

Weeds after
weeding
(with mark-
ers)

Weeds after
weeding
(without
markers)

Maize 30 30 4 6
Bean 30 30 6 7

Table 4.2: Weeding results considering the proximal detection.

The highest percentage of weeding efficiency was 86.6% and it was obtained
in maize with markers, while the lowest was 76.6% for beans without markers. The
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beans with markers and the maize without markers presented the same percentage of
weeding effectiveness equal to 80%. The weeds that remained after the intervention
reported in Table 4.2, most correspond to weeds located next to a crop.

The second proposed approach was tested in the same scenarios previously
described. However, the weeding could not be carried out considering the markers due
to their dimensions they are not detected by the frontal sensor. In the case of the parcel
without markers, crop detection was performed. The image given by the camera and
the crop projection on the occupancy grid is shown in Figure 4.12.

Figure 4.12: Bean propagation over the occupancy grid.

To perform the autonomous weeding, the plants detected by the perception system
were propagated on the occupancy grid. The velocity of the platform remained constant
vc = 0.2 m/s, the weeding tool was deactivated when the crops were detected in the
cells corresponding to the decision zone. Regardless of the parcel to be weeded, the
number of crop rows detected is propagated in the occupancy grid. Figure 4.13 shows
the weeding task on a maize parcel formed by two crop rows.

In the same way, the results reported in Table 4.3 show the number of weeds
planted and the number of weeds that remained after performing the weeding task.
Unlike proximal detection, this approach allows weeding to be performed simultaneously
in each crop row as shown by the results in Table 4.3.

The highest weeding efficiency was in the maize parcel with 93.3% and 86.6%
for the first and second row, respectively. These efficiency rates are higher than those
obtained in the bean parcel (73.3%, 70% and 80% for the first,second and third row,
respectively) as they are associated with the greater intra-row distance which allows
better detection and the larger working space of the weeding tool.
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Figure 4.13: Maize propagation over the occupancy grid.

Crop Weeds (with
markers)

Weeds (with-
out markers)

Weeds after
weeding
(with mark-
ers)

Weeds after
weeding
(without
markers)

Maize 1st row 30 30 - 2
Maize 2nd row 30 30 - 4
Bean 1st row 30 30 - 8
Bean 2nd row 30 30 - 9
Bean 3rd row 30 30 - 6

Table 4.3: Weeding results considering the frontal detection.

On the other hand, in the bean parcel, the crops are sowed close to each other at
an intra-row distance of 8 cm, which reduces the execution time and the work space of
the weeding tool. As a result of weeding was carried out under the premise of protecting
crops, the number of preserved weeds was higher.

4.5 Experimental results

The weeding approach based on proximal detection was tested in two different evaluation
campaigns of the ROSE challenge. With the crops and weeds at different growth
stages:in the first evaluation campaign, the crops presented a growth stage VE according
to Figure 2.12, and in the second evaluation campaign, the crops were in a growth stage
between V4 and V6 according to Figure 2.12. While the second weeding approach
based on frontal detection was tested only in the last evaluation campaign.

The two proposed approaches were tested. To remove weeds with markers, the
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weeding tool remained deactivated while the platform was moving on the parcel and
when a red marker was detected in the activation zone, the tool was activated.

In the parcel without markers, the algorithm for detection of plants of interest based
on physical characteristics was used to perform the weeding. With this approach, the
weeding tool remains active while the platform moves and deactivates when detecting
a plant of interest in the decision zone to avoid damaging the crops and eliminate
everything that is not detected as a plant of interest. Figure 4.14 shows two images
taken from both methods of weeding tool operation: the first focuses on protecting crops
when they are located in the activation zone of the weeding tool and the second is
devoted to eliminating weeds when red markers are detected in the activation zone.
The on/off decision zone has a width of 80 pixels.

Figure 4.14: Autonomous weeding task. a) Detected crops to be protected. b) Weeds marker
detection.

The obtained results after the intervention in the parcels with and without markers
are shown in Table 4.4. The weeding efficiency for the maize parcel with markers
was 85.7%, while the maize parcel without markers and the bean parcel with markers
presented the same efficiency as 75.8%. The bean parcel without markers could not be
weeded due to an electronic failure of the weeding tool, which was unable to execute
the command estimated by the activation algorithm.

The weeds that are preserved after the weeding task, both in the simulation
subsection as well as in this experimental subsection, are mostly weeds that are close
to the crops as shown in Figure 4.15. The weeds that are not close to the crops can
be eliminated using the proposed approach.
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Crop Weeds (with
markers)

Weeds (with-
out markers)

Weeds after
weeding
(with mark-
ers)

Weeds after
weeding
(without
markers)

Maize 14 14 2 3
Bean 14 14 3 -

Table 4.4: Weeding results considering the proximal detection.

Figure 4.15: Weed examples. a) Weed positioned far enough to be weeded by the proposed
approach. b) Weed positioned very close to the crops.

The second proposed approach could not be validated in the experiments as
a result of the crop’s advanced stage of growth. When executing the crop detection
algorithm based on the physical features, crops are captured by the frontal sensor. Due
to the leaf dimensions, the algorithm can differentiate crops from the rest of the image
but it is unable to isolate each plant. The detected crops projected on the occupancy
grid form constant cell patterns that do not allow to perform weeding as Figure 4.16.

Although the weeding considering the frontal detection could not be validated
experimentally, the results of the platform position estimation are presented. The
Extended Kalman filter allows to estimate the platform’s pose during its transition
through the experimental parcel. Figure 4.17 corresponds to the estimation of the
position in the plane x− y. It can be verified that the estimated states by the Kalman
filter for the position of the platform converge quickly to the real trajectory.

The other two states estimated by the Kalman filter correspond to its orientation
and its angular velocity. At the end of the parcel, the platform performed a full turn to
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Figure 4.16: Autonomous weeding considering frontal detection. a) RGB image. b) Crops
detection. c) Detected crops projected on the occupancy grid.

Figure 4.17: Position estimation of the platform using the Extended Kalman filter.

return to the beginning of the parcel, which can be seen in Figure 4.18.
The initial position of the platform is located at the beginning of one of the parcels

with an orientation of 82°. This orientation corresponds to the alignment of the platform
with respect to the crop lines. As the tractor moves, its orientation estimation remains
around the same value. At the same time, the estimated angular velocity remains close
to zero, which corresponds to the displacement of the platform in the straight line.
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Figure 4.18: Orientation and angular velocity estimation of the platform using the Extended
Kalman filter.

4.6 Conclusion

Two alternatives to carry out autonomous mechanical weeding were presented in this
chapter. The difference between them is the acquisition system considered: the first
proposition uses a proximal detection and the second approach is based on a frontal
detection. Due to the characteristics of the considered mechanical weeding tool, the
weeds that are located very close to the crops can not be eliminated to avoid damaging
them, regardless of either of two proposed solutions.

The first weeding approach allows to identify crops/weeds in a close manner.
Most published solutions work in this way. However, when crops and weeds are in an
advanced growing stage, the detection system could be obstructed by the plants and,
consequently, the weeding task can not be carried out. The proposed approach deals
with this problem by allowing modifying the position and orientation of the detection
system to perform weeding under different situations. On the other hand, the drawback
is that a plant can be detected when it is projected in the image, but if it is obstructed in
the activation area, it will be eliminated since the tool activation system only considers
the plants detected in the on/off decision zone of the image.

The second weeding approach differs from the methods commonly found in the
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literature. The plants detected by a frontal acquisition system are propagated from the
front of the platform to the weeding tool position. With this approach, the occlusion
problem present in the first contribution is solved because once the crops are detected
they are propagated on an occupancy grid up to the position of the weeding tool. One
of the main tasks to solve when using this approach is the platform location. It was
performed using the extended Kalman filter to estimate the position of the platform. The
constraint with this method is when crops are in a very advanced growing stage, when
projected on the occupancy grid, they occupy more than one cell, generating a pattern
of multiple occupied cells without the capacity to isolate each plant.

Jorge Eduardo AVILÉS MEJIA| Doctoral thesis | University of Limoges

Licence CC BY-NC-ND 3.0

131



5
Conclusions and outlook

Table of contents

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2.1 Visual perception . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2.2 Autonomous navigation . . . . . . . . . . . . . . . . . . . . . . 135

5.2.3 Weeding tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2.4 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Jorge Eduardo AVILÉS MEJIA | Doctoral thesis | University of Limoges

Licence CC BY-NC-ND 3.0

132



CHAPTER 5. CONCLUSIONS AND OUTLOOK

5.1 Summary

This thesis has proposed a solution to carry out autonomous mechanical weeding.
Multiple tasks have been solved to achieve this goal. First of all, the ability to iden-
tify the working environment of the platform was developed. Due to this thesis is
focused on agricultural robotics, the experimental validation was carried out in out-
door environments where working conditions are constantly changing, which increases
the complexity of this work.

The proposed approach is based on crop and weed detection to protect the former
and eliminate the latter. Thus, their identification implied a fundamental stage in this
work. The proposed algorithms based on physical characteristics, machine learning and
the fusion of both allowed to identify crops/weeds efficiently. Despite the fact that both
algorithms operated correctly separately, their fusion allowed to improve the deficiencies
of each one of them performing independently.

Crop detection was used to solve other autonomous weeding subtasks such
as autonomous navigation. The proposed approach estimates the vanishing point
formed by crop lines to use it in platform trajectory correction (the vanishing point
must remain in the image center as long as the platform is moving). The use of visual
information discards the dependence on global positioning systems normally used to
perform autonomous navigation.

To provide complete autonomous navigation, the platform must be able to navigate
not only in the parcel, but also to make the transition from one parcel to another. Both
scenarios were solved in this work; to navigate through the parcels, the estimation of
the vanishing point was used as a reference and to carry out the transition, the bird’s
eye view transformation allowed transit between parcels.

The inter and intra-row weeding were performed with the same category of
mechanical weeding tool. Two solutions were proposed: the first was carried out using
the proximal detection and the second considering the frontal detection. The weeding
actuation principle was the same in both cases: the weeding tool was activated while the
platform was moving, eliminating any weeds and, when a plant of interest was detected,
the tool was disabled to avoid damaging crops. However, the crop identification was
different. In proximal detection, it only focuses on the detection of plants projected in the
camera’s field of view. On the other hand, considering the frontal detection, the detected
crops were propagated from the front of the platform to the position of the weeding tool.

Numerous simulation scenarios were created in the Gazebo simulator to validate
each one of the subtasks and the global autonomous weeding task. Usually, the
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availability of an agricultural experimentation space is challenging. For this reason,
the use of digital twins allowed generating the experimentation scenarios as close
as the experimental validation site.

The reported results in this work were obtained within the framework of two compe-
titions: the ROSE challenge and the ACRE international competition. During the ROSE
challenge, various evaluation campaigns were organized which allowed to test the algo-
rithms under diverse weather conditions and different growth stages of crops and weeds.

The proposed detection systems (Xeye and Xtool) developed for this project
allowed efficient data acquisition under various conditions. Furthermore, the conception
of the detection system allowed to protect the multiple sensors during the experimental
validation as well as its easy installation on different experimental platforms.

5.2 Outlook

Based on the proposed approach, several extensions can be planned, which are
listed below.

5.2.1 Visual perception

First, the proposed crop detection algorithm was tested considering maize and beans,
which suggests contemplating more crops to be detected by the algorithm. In the same
way, despite multiple weeds were considered during the experiments, the integration
of new ones can be conceivable. Similar to the scenarios presented in the ROSE
challenge, the detection of new crops must be carried out during their multiple stages
of growth. In this way, a database can be generated relating the parameters needed
by the algorithm to their respective growth stage for a variety of crops.

Another study that can be carried out considering the detection algorithm is to
modify the position of the data acquisition systems and compare the obtained results
for each position and orientation. In this way, according to the physical characteristics
of each crop and weed, certain characteristics can be perceived easily from different
positions and orientations according to the crop/weed to be detected.

Finally, the use of the frontal and proximal perception systems leads to merging
both sources of information. This fusion should compensate for some characteristics
not perceived by each of them operating independently. The problems mentioned
in the proximal detection (occlusion, false detection, etc.) could be improved with
additional information. In this context, for proximal detection, more cameras can be
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added to have more images from different positions and not just from one sensor, which
will allow to perform tasks such as reconstruction of the plant of interest, a robust
identification of the plant stem, etc.

5.2.2 Autonomous navigation

Regarding navigation, a free-obstacle environment was considered. However, in order
to increase the platform’s autonomy, an obstacle detection system could be integrated.
The first proposal to develop consists of the detection of statical obstacles. Some
realistic objects frequently found in farms that can be associated to this category of
obstacles are: signposts, parcel delimitation indicators, tools, objects lying on the floor,
etc. Subsequently, an extension to dynamic obstacle detection could be considered.
In this way, the platform could interact in parallel with humans in agricultural tasks
and avoid causing any harm to people.

Once the obstacles are detected, the platform has to decide what to do. Commonly,
the easiest decision is to stop the system until receiving a new command from the
operator. However, a supplementary system that allows the platform to perceive its
environment will allow it to make its own decisions. That is, a trajectory replanning
strategy without damaging the crops, returning to the beginning of the mission to be
able to find a route to navigate. If the obstacle is dynamic, the robot will be able to
estimate the dynamic of the obstacle to avoid collision, etc.

Despite the fact that the navigation proposal is based mainly on the extraction
of visual information, in some cases the available information may not be enough to
allow the robot to navigate autonomously. To solve this problem, a data fusion algorithm
can be programmed. In particular, during the transition zones between parcels where
there is an absence of crops or weeds, in this case, classical positioning systems such
as GPS can provide greater robustness to the system.

5.2.3 Weeding tool

Despite having carried out some experimental tests of autonomous weeding, the failure
of the weeding tool restricted increasing the number of validation tests, so the first
perspective regarding weeding is to increase the number of field tests carried out.
Furthermore, the autonomous weeding considering frontal detection could not be
validated experimentally, which implies carrying out these tests.

The mechanical weeding tool can be replaced by any other weeding alternative to
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compare the obtained results with the proposed approach and the obtained results with
the new weeding methods. The fact of working with a weeding tool that only has one
degree of freedom considerably limits the weeding task. The conception of a weeding
tool with higher performance is under development.

The proposal of new algorithms to control the weeding tool must be carried out.
An analysis to know the execution time of the weeding under different meteorological
conditions and different characteristics of the soil should be considered. This will
determine the maximum speed at which the platform can be moved and carry out in
parallel the weeding task with the new weed mechanism.

Similar to the proposal made in the detection, the new weeding tool must be
tested with different crops and weeds. According to the physical properties of the
plants and their growth state, the weeding system will obtain different success rates
for autonomous weeding. With this information, a database can be generated in which
will be displayed the periods for each plant in which weeding should be performed
to obtain optimal performance.

5.2.4 Platform

Although in the present work two different experimental platforms were used: an
Ackermann configuration and a differential vehicle. The proposed approach can be
extrapolated to other configurations of experimental platforms with an adaptation stage
considering the dynamics of the new platform, its control inputs, and its constraints.

To improve the performance of the experimental platforms, dynamic models that
consider all the factors like the platforms sliding, the lateral forces actuating over the
platform, better mass distribution of the platform, etc. have to be considered.

The lighting system can be replaced with another more sophisticated, instead
of having a constant intensity as provided by the system used in this work, the light
emitted by the lamps can be gradually controlled, taking into account to the experimental
conditions, which will improve the crop/weed detection.

5.2.5 Scalability

Agricultural tasks are carried out in open environments and frequently correspond
to large tracts of land that can restrict the operation range of a single robot, since it
depends on its autonomy. In order to increase the range of operations and coverage in
agricultural robotics, a multi-agent system can be implemented which will allow multiple
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robots to operate in a greater geographical area.
The same task can be carried out by multiple robots in parallel, reducing operation

times in the case of large agricultural areas. Task optimization algorithms can be
implemented to increase the effectiveness of the mission. However, collaboration to
perform the same task is not the only one that can be done. The use of unmanned aerial
vehicles can be a supplementary source of information to be exploited. In the case
of crop detection, the larger-scale images provided by the aerial system can reinforce
the detection. For autonomous navigation, the UAV will be able to communicate
additional navigation routes due to the fact that it has a parcel wide field perception
of the work environment.

5.2.6 Simulations

The scenarios generated in the Gazebo simulator considered the real conditions of
the experimental field. However, if the proposals described above are implemented,
the scenarios must be modified to integrate the suggested perspectives. In particular,
static and dynamic obstacles must be integrated.

5.3 Publications

• Avilés-Mejia, J. E., Soto, D., Stéphant, J., & Labbani-Igbida, O. (2022, August).
Autonomous Vision-Based Navigation and Control for Intra-Row Weeding. In
2022 IEEE 18th International Conference on Automation Science and Engineering
(CASE) (pp. 575-582). IEEE.
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A.1 Bean growth stages

Bean germination is the procedure in which a seed, spore or begins growth. It is affected
by divers factor like: water, light, soil conditions, etc. As bean germinates, its physical
characteristics change according to the number of days elapsed since planting. Tables
A.1 and A.2 show some characteristics during each stage of growth.

Stage General description Days from
planting

VE Hypocotyl emergence (crook stage) 7-8
VC Cotyledon (seed leaves) and unifoliolate leaves visible 8-9
V1 First fully developed trifoliolate at the third node 10
V2 Second trifoliolate (count when leaf edges no longer

touch)
19

V3 Third trifoliolate (secondary branching begins to show
in leaf axils)

29

V(n) N-th trifoliolate, but with blossom clusters still not visibly
opened

A new node ev-
ery 3 to 5 days

V5 Bush (determinate) plants may vegin to exhibit blossom
and become stage R1

50

V8 Vine (indeterminate) plants bay begin to exhibit blos-
som and become stage R1

40

Table A.1: Bean vegetative stages [68].

The bean growth stages can be classified in four categories:
• Emergence and early vegetative growth
• Branching and rapid vegetative growth
• Flowering and pod formation
• Pod and maturation

The emergence and early vegetative category corresponds to the growth stages
between VE and V3 shown in Table A.1. While the rest of the growth stages in Table
A.1 correspond to the branching and rapid vegetative category. From Table A.2, the
flowering and pod formation starts at R1 and ends at R4 stage. Finally, the last category
is developed two months after sowing.

The information shown in Tables A.1 and A.2, may differ if a weed control is
not carry out. For this reason, the elimination of weeds is suggested to be performed
during early stages of bean growth to prevent weeds absorbing nutrients, damag-
ing crop development.

Jorge Eduardo AVILÉS MEJIA| Doctoral thesis | University of Limoges

Licence CC BY-NC-ND 3.0

139



A – APPENDIX A. APPENDICES

Stage General description Days from
planting

R1 One blossom open at any node 50
R2 Pods 1/2 inch long at first blossom position (usually

node 2 to 3)
53

R3 Pods 1 inch long at first blossom position; secondary
branching at all nodes, so plant is becoming denser
but not taller, 1/2 bloom

56

R4 Pods 3 inches long (seeds not discernible; bush types
may be shorter)

59

R5 Pods 3 to 4 inches (seed discernible) 64
R6 Seeds at least 1/4 inch over long axis 66
R7 Oldest pods have developed seeds (other parts of plant

will have full-length pods with seeds almost as large as
first pods; pods will be developed over the whole plant)

72

R8 Leaves yellowing over half of plant, very few small pods
may be drying (point of maximum production has been
reached)

90

R9 Mature, at least 80% of pods showing yellow and
mostly ripe; only 40% of leaves still green

105

Table A.2: Bean reproductive stages [68].

To better interpret the previous tables, a description of the bean plant is shown
in Figure A.1.

Figure A.1: Bean description [68].
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A.2 Platform instrumentation

The experimental platforms utilized in this work consist of two compact electric tractors:
the first one was developed by Sabi Agri1 as part of the consortium created to participate
in the ROSE challenge, this tractor has a differential drive configuration (Figure A.2).
The second one is an Ackermann steering vehicle designed by XLIM and manufactured
by Elatec2, it was employed during the ACRE competition and it has an Ackermann
steering mechanism (Figure A.3).

Figure A.2: Differential drive configuration platform with multimodal sensors attached.

Each platform was equipped with the same multimodal sensors developed by
XLIM for this project. The multimodal sensors named Xeye and Xtool were fixed in front
and under the platforms respectively. In addition, for ground truth, two GPS-RTK were
installed on the platform as Figure A.3 shows to record its trajectory and orientation
and they could be used in other applications.

The multimodal sensors Xeye and Xtool including:
• A nanocomputer NVIDIA Jetson Xavier
• An 8 MP Raspberry Pi Module
• A 9-axis inertial measurement unit MPU-9250
• An Intel RealSense TM D435 camera
• A lidar-lite v3 Garmin

The lighting system was installed under the platform to control the illumination
conditions. This system consists of two 20 WLED projectors inside a black box. The data
flow and the platforms were controlled using the Robot Operating System (ROS) middle-
ware. To provide internet connection to the ROS-network, a Router RUTX11 was utilized.

1https://www.sabi-agri.com/en/home/
2https://www.elatec.fr/
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Figure A.3: Cinteo platform during the ACRE competition.

The low level control of the platform is handled by a Raspberry Pi 4. The detailed
dimensions of the Cinteo platform are indicated in Figure A.4.

Figure A.4: Cinteo platform description.
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Robotique mobile autonome en milieu ouvert

Résumé : L’agriculture joue un rôle vital dans le développement de l’humanité pour
répondre à une demande alimentaire croissante. Pour cette raison, des produits chimiques
comme les engrais, les herbicides, les fongicides, etc., sont utilisés pour protéger les cultures
contre les maladies, les ravageurs et les mauvaises herbes. Cependant, l’utilisation de ces
produits implique la dégradation des écosystèmes ainsi que des effets néfastes sur la santé
humaine. Cette thèse propose une solution de désherbage mécanique autonome afin de
remplacer/réduire l’utilisation d’herbicides. Dans un premier temps, la détection des cultures
et des mauvaises herbes s’effectue à l’aide de techniques d’apprentissage automatique et de
traitement d’image pour protéger les premières et éliminer les secondes. Ensuite, la détection
des cultures est utilisée pour naviguer de manière autonome sans s’appuyer sur les données
GPS en estimant le point de fuite formé par les rangées de cultures. Enfin, la commande
de l’activation de l’outil de désherbage est proposée en s’appuyant sur la modélisation de la
plateforme et la détection temps réel en proposant plusieurs variants. Les résultats rapportés
dans cette thèse ont été obtenus en conditions agricoles réelles dans le cadre de deux
challenges internationaux : le challenge ANR ROSE et la compétition européenne ACRE.
De la même manière, ces conditions ont été recréées à l’aide du simulateur Gazebo et des
jumeaux numériques afin de valider les approches proposées.

Mots clés : Robotique agricole, Désherbage autonome, Détection des cultures/mauvaises
herbes , Navigation basée sur la vision, Vision et apprentissage, Challenge ROSE, Com-
pétition ACRE.

Autonomous mobile robotics in open enviroments

Abstract: Agriculture plays a vital role in the development of humanity to meet a
growing demand for food. For this reason, chemicals like fertilizers, herbicides, fungicides,
etc., are used to protect crops from diseases, pests and weeds. However, the use of these
products implies the degradation of ecosystems as well as adverse effects on human health.
This thesis proposes an autonomous mechanical weeding solution in order to replace/reduce
the use of herbicides. Firstly, the detection of crops and weeds is carried out using machine
learning and image processing techniques to protect the former and eliminate the latter. Then,
crop detection is used to navigate autonomously without relying on GPS data by estimating
the vanishing point formed by the crop rows. Finally, the activation of the weeding tool is
based on the modeling of the platform and real-time detection by proposing several variants.



The results reported in this thesis were obtained in real agricultural conditions within the
framework of two international competitions: the ANR ROSE challenge and the European
ACRE competition. In the same way, these conditions were recreated using digital twins and
the Gazebo simulator in order to validate the proposed approaches.

Keywords: Agricultural robotics, Autonomous weeding, Crop/Weed detection, Vision-based
navigation, Vision and machine learning ,ROSE challenge, ACRE competition.

Université de Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
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