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Abstract

We theoretically study topological lattice models relevant to current experimental solid-

state and artificial systems. We develop an explicit analytical computation of the Chern

number in the systems we study and we compare it with other computation methods of

this topological invariant. We propose a protocol, based on the local response to a light

input, to probe the topological properties of a Haldane boson model in a photonic system.

On the kagome lattice, we investigate (i) a magnetic and topological phase transition for a

two-channel model, in relation with recently discovered quantum materials, and (ii) a time-

reversal topological model with flux, Rashba spin-orbit coupling and Hubbard interactions,

relevant for realization in cold-atom gases.
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Introduction

Topology is concerned with continuous deformations between mathematical objects. Topol-

ogy in condensed matter physics, deals with continuous deformations between Hamiltonians

describing quantum systems. It is namely applicable to systems with a gap in the energy

spectrum and for which all the states below the gap are occupied. Consider two (insulating)

lattice translation-invariant quantum systems, each of which is described by a Hamilto-

nian. If there exists continuous deformations between both Hamiltonians describing both

systems, without any gap closure, then both systems share the same topological properties.

The classification of topological phases relies on topological invariants; the dimension and

the symmetries of the system determine the associated topological invariant [1]. In this

manuscript, we are concerned with two-dimensional systems, which break or do not break

time-reversal symmetry, respectively associated to the so-called (first) Chern number and to

the Z2 topological invariant [2–5].

The study of the topological phases of matter has quite a recent history compared to

most other phases of matter, e.g. magnetically ordered phases, Bose-Einstein condensates

or superconductors. One of the first reasons is that the former are less usual and less

experimentally accessible than most other phases of matter. Another reason is that the

Ginzburg-Landau theory, a theory describing most of the phases of matter, generally fails to

describe the topological phases. This is because the latter (most often) are described by a

non-local order parameter and may appear without spontaneously broken symmetry while

Ginzburg-Landau theory is built on local order parameters and describes ordered phases
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characterized by a spontaneously broken symmetry.

In 1980, von Klitzing et al. [6] characterized a new phase of matter. They measured

the Hall conductance in a two-dimensional electron gas with strong perpendicular magnetic

field. Varying the amplitude of the latter, they observed that the Hall conductance evolves

by plateaus, each plateau corresponding to a phase with a quantized value of the Hall

conductance. Such phases are topological phases called quantum Hall phases. In a quantum

Hall phase, the bulk of the sample is insulating while states which are localized at the edges

of the sample are associated with chiral non-dissipative currents at the Fermi energy. The

quantized Hall conductance [7] can be interpreted as a topological invariant called the Chern

number. A phase with non-zero Chern number is called a Chern insulating phase. A usual

formulation of the Chern number is the integral of a curvature (called the Berry curvature)

over the momentum space [8, 9]. The Berry curvature is the rotational of the so-called Berry

connection which depends on the eigenstates of the system. The latter are defined up to a

U(1) gauge. This forms a U(1) fiber bundle; the bundle being the Brillouin zone and the

fiber being the U(1) gauge of the eigenvectors. The topology of this U(1) bundle is not trivial

if the eigenstates can not be trivially connected over the bundle [10].

In mathematics, a two-dimensional closed surface can be characterized by the integral of

a curvature (the Gaussian curvature in this case) over the surface. This integral gives a

topological invariant which is an integer (Gauss-Bonnet theorem) and which is called the

genus of the surface. It is analogue to the Chern number. Two surfaces with the same genus

can be continuously transformed into each other (without cutting and pasting) while this is

not the case for two surfaces with distinct genus. This is analogue to the impossibility of

continuously transforming two distinct Chern insulating phases into each other. The Berry

curvature and the Berry connection [9], are quantities which are comparable respectively to

the magnetic field and to the magnetic vector potential. The geometrical phase accumulated

by a particle during an adiabatic evolution of a quantum system is called the Berry phase;
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it is analogue to the Peierls phase (phase accumulated by a particle moving in a magnetic

vector potential). The Berry phase concept is essential for the understanding of topology in

condensed matter. In particular, degeneracies associated to linear dispersion relation (Dirac

points) in a two-level system are sources of Berry curvatures, and are analogues to magnetic

Dirac monopoles. The latter are quantized, so as the Chern number which counts the number

of monopoles of Berry flux inside the Brillouin zone.

In the quantum Hall effect, an external magnetic field is at the origin of non-trivial Berry

curvature which gives a non zero Chern number. In 1988, Haldane introduced a honeycomb

lattice model characterized by non-zero Chern number with a vanishing total flux in the

unit cell (no Landau levels) [5]. Such a phase is called a quantum anomalous Hall (QAH)

phase. The Haldane model has had a huge impact in topology in condensed matter, and it

led, a bit more than fifteen years later, to the birth of a topological band theory [11–14].

This theory describes time-reversal invariant topological insulators which are characterized

by counter-propagating edges states protected by time-reversal symmetry. The associated

topological phase is called a quantum spin Hall (QSH) phase and spin-orbit interaction is

crucial for this phase to appear.

These topological phases have been built and investigated in solid states systems and

also in artificial systems [15–18]. The Berry phase was first measured using an optical fiber

[19]. Artificial systems, which are highly controllable, enable to simulate and study solid

state systems. This is particularly relevant for the study of topological phases since gauge

fields can be created in artificial systems. Moreover, the latter enable to implement Hubbard

interactions and control their strength, which is very helpful for studying correlated systems.

Hubbard interactions can have an important effect on the properties of a topological system,

as it is the case in several quantum materials which have attracted a lot of attention recently

[20–29].

In this manuscript, we investigate topological models on the honeycomb and the kagome
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lattice. Nearest-neighbor tight-binding models associated to these lattice show Dirac Fermions

which are the origin of topological properties observed when these tight-binding models are

changed to topological ones. In artificial systems, the experimental implementation and the

measurement of the topological properties can be challenging. We propose a simple proto-

col, based on the response to a local light input, to probe the topological properties of a

Haldane boson system. In kagome models, the computation of the Chern number can be

tedious. We develop an explicit analytical computation of this topological invariant for the

kagome models we study. We investigate the interplay between topological phases (QAH

and quantum spin Hall phases) and magnetic phases by (i) considering the coupling between

a topological model and a spin model through a ferromagnetic Hund’s coupling term and

(ii) studying a time-reversal topological model with flux, Rashba spin-orbit coupling and

Hubbard interactions.

In Chapter 1, we introduce the formalism and we review the important discoveries and

concepts in topology in condensed matter which we use in this manuscript. The Berry phase

is one of the most important concept in this field and its connection with the integer quantum

Hall effect, the Chern number and the properties of Chern insulators is explained. We also

review the topological band theory describing time-reversal invariant topological systems

and the associated topological Z2 invariant.

In Chapter 2, we consider a circuit quantum electrodynamics (cQED) system which is

described by an effective Haldane boson model. We develop an explicit analytical computa-

tion of the Chern number for this model [5]. In one-dimensional cQED system, it has been

shown that the topological properties are measurable from the reflection of microwave light

[30]. Using the insight gained from the computation of the Chern number, we propose a

protocol to probe the topological properties through the response to a local light input. This

is potentially applicable in other boson systems for which a capacitive coupling to a probe

is realizable.
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In Chapter 3, we consider two simple topological models on the kagome lattice, one is a

Chern insulator, the other is a quantum spin Hall insulator. These topological models have

attracted much attention [31–42]. The computation of the (spin) Chern numbers has been

performed using diverse methods, however, performing an explicit analytical computation

of this invariant from a study of the U(1) gauge of the eigenstates (of the Hamiltonian

describing the system) is not an easy task and does not appear in the literature before

our publication. Motivated by this, we develop such a computation. We also consider

two spin copies of this kagome system and we compute the associated Z2 invariant. These

computations are extended, in Chapter 5, to a bit more involved model. We also investigate

the topological properties of small noisy kagome systems, thanks to numerical computations

of local observables.

In Chapter 4, we introduce and study a magnetic and topological model on the kagome

lattice [193], in relation with recently discovered quantum materials [25–28, 38, 43]. A spin

model is coupled to a topological non-interacting model on this lattice, through a ferromag-

netic Hund’s coupling term. We study the ground state of the spin model and the associated

spin-wave excitations. Depending on the parameters of the spin model, we observe two dif-

ferent magnetic phases and we study their impact on the topological properties. We discuss

the effects of external parameters, such as the temperature and the pressure, on the magnetic

and topological properties of the model. We observe a transition from a ferromagnetic out-of

plane long range order to an in-plane magnetic order (with antiferromagnetic correlations)

coupled to a topological phase transition. Depending on the amplitude of the Hund’s cou-

pling term, the topological phase transition is either a QAH phase to QSH phase transition

or a QAH phase to metallic phase transition.

In Chapter 5, we investigate a new time-reversal invariant topological model with flux,

Rashba spin-orbit coupling and Hubbard interactions on the kagome lattice [188, 246]. This

model is possibly realizable in cold atom gases which are interesting platforms for the im-
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plementation of artificial gauge fields and the study of the Hubbard interactions. First

we compute the Z2 phase diagram at vanishing Rashba spin-orbit coupling and vanishing

Hubbard interactions, for different on-site potentials configurations, extending the analytical

method we developed in Chapter 3. We explicitly show the connection between the bulk

gap closure, the choice of the U(1) gauge on the eigenvectors and the discontinuity of the

topological invariant. Then we extend the computation of the topological invariant for non-

vanishing Rashba spin-orbit. Finally, we study the effects of Hubbard interactions at 2/3

filling and vanishing Rashba spin-orbit coupling for a particular configuration of the on-site

potentials. By means of perturbation theory and mean field method [44], we investigate the

Mott transition and the magnetic order in the ground state.

Related to the work presented in this manuscript, here is a list of published articles we

wrote during the preparation of this thesis (the name of the author of this manuscript is

abbreviated ”J.L.”):

• Magnetic topological kagome systems

J. L. and K. Le Hur

Phys. Rev. Research 2, 022043(R) (2020)

• Spin-orbit coupling in the kagome lattice with flux and time-reversal symmetry

Irakli Titvinidze, J. L., Maarten Grothus, Bernhard Irsigler, Karyn Le Hur and Walter

Hofstetter

Phys. Rev. B 103, 195105 (2021)

• Hubbard model on the kagome lattice with time-reversal invariant flux and spin-orbit

coupling

Irakli Titvinidze, J. L. and Karyn Le Hur and Walter Hofstetter

Phys. Rev. B 105, 235102 (2022)

An article related to the work presented in Chapter 2, whose authors are J.L. and Karyn
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Le Hur, is currently in preparation.
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Chapter 1

Background

In this chapter, we give a general introduction about the systems we study in this manuscript:

two-dimensional Chern insulators and topological insulators. This chapter is important to

introduce and remind definitions and properties on which we rely in the following chapters.

We start by considering a cyclic adiabatic evolution of a quantum system (Sec. 1.1) and we

study the geometrical phase, called the Berry phase [9], acquired by the eigenstates during

such an evolution. This proves essential for the understanding of topology in condensed

matter. The quantum Hall effect [6] has been the starting point of intense research activity

in this domain. The topological invariant characterizing the integer quantum Hall effect can

be formulated in terms of an integration of the Berry phase over the Brillouin zone parameter

space [8]. In Sec. 1.1.3 and Sec. 1.1.4, we review the experimental discovery of the integer

quantum Hall effect and its first theoretical understanding [6, 7, 45].

Then we introduce the formalism we use to describe translation-invariant systems (Sec. 1.2),

we remind Bloch’s theorem [46] and the definition of the Wannier functions [47] that we use

in the following. As examples of translation-invariant Hamiltonians, we introduce tight-

binding models on both lattices we consider in this manuscript, the honeycomb lattice and

the kagome lattice.

The connection between the Berry phase concept and the integer quantum Hall effect (re-

viewed in Sec. 1.1) is explained via the computation of the Hall conductivity using the Kubo
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formula [8] in Sec. 1.3. This leads to the introduction of a topological invariant, the (first)

Chern number, which characterizes the topological properties of quantum Hall systems. We

also explain that the chiral edge states discussed in Sec. 1.1.4 are a fundamental consequence

of a non-vanishing Chern number which is a bulk invariant. In this section, we eventually

show the connection between non-vanishing Chern number and the charge polarization which

is an observable characterizing topological systems. The concepts introduced in this section

are widely used throughout this manuscript.

In Sec. 1.4, we review the Z2 topological band theory used to describe topological spin

systems which are time-reversal invariant. In particular, we focus on the Kane and Mele

model [11] and on a formulation of the Z2 invariant proposed by Fu and Kane [48]. The

concepts introduced in this section are relevant for Chapters 4 and 5 where we study (time-

reversal invariant) spin-orbit coupled systems.

1.1 Important paradigms in topology in condensed mat-

ter and position of this thesis

Here we want to introduce major paradigms concerning the study of topological systems

in condensed matter. Gauge fields coming from geometrical phases are at the origin of the

topological properties. One of the most important concept in topology is the Berry phase

concept [9], directly related to geometrical phases. Even though the theoretical description

of quantum geometrical phase was known long before Berry’s work, geometrical phase was

thought to have no physical effect. Berry’s important breakthrough was to realize that,

on the contrary, this geometrical phase may have very important physical effects. This

is reminiscent of the debate about the reality of the magnetic vector potential and the

Aharonov-Bohm breakthrough [49].

The magnetic vector potential has striking topological consequences on condensed matter

systems. For instance, in two-dimensional electron gas with perpendicular magnetic field, it
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leads to the (integer) quantum Hall effect, which first experimental characterization [6, 45]

marked a historic step in condensed-matter physics and have namely led to the development

of theoretical and experimental studies of topological systems [50]. The first theoretical

understanding of this topological effect, is due to Laughlin who used a quantum pump

argument [7]. Thouless et al. [8], in 1982, explained the behavior of the quantum Hall

conductance relying on the Kubo formula. We introduce their result and point out the link

with the Berry phase concept in another section (Sec. 1.3.1).

1.1.1 Aharonov-Bohm effect

Here we first remind the effect of a magnetic vector potential on a (electrically charged)

particle. This is very important for the following because the Berry gauge field, an emergent

quantity which proves essential for the understanding of topological systems, is a gauge

potential, therefore being analogous to a magnetic vector potential.

A particle with electric charge q moving along some path C in a magnetic vector potential

A acquires a phase γ such that

γ =
q

h̄

∫︂

C

dl ·A. (1.1)

This was already known from the beginning of quantum mechanics in 1926 [51]. γ is also

called a Peierls phase when used in tight-binding models. However, the magnetic vector

potential (in a region where there is neither magnetic field nor electric field) was believed

to have no physical significance [51] for at least more than thirty years after 1926. In 1959,

Aharonov and Bohm [49] first suggested that measurable effects should be expected for a

particle with electric charge q moving along some path C in a magnetic vector potential A

with vanishing local magnetic and electric field. They proposed a double-slit experiment

with confined perpendicular magnetic field to test this prediction (interferences should be

measured due to the γ phase appearing in Eq. (1.1)), prediction which was later confirmed

(see e.g. [52]).
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1.1.2 Adiabatic Hamiltonian evolution and Berry phase

The Aharonov-Bohm effect (see Sec. 1.1.1) may be interpreted using Berry phase’s concept

[9]. Berry studied the adiabatic evolution of a Hamiltonian system and showed that during

this evolution, a phase factor is acquired by the eigenstates, besides the usual ”dynamical”

phase factor exp

(︃−i
h̄

∫︁ t

0
dt′En(R(t′))

)︃

. Berry’s work is particularly important for the un-

derstanding of the topological phases. Here we introduce it, we underline the connection

with the Aharonov-Bohm effect, we perform calculations which give an important insight on

the topological systems we study in this manuscript and we try to insist on the fact that the

Berry phase concept is related to topological (measurable) properties.

Berry phase We consider a quantum system which depends on a vector of parameters

that we denote R = (X, Y, Z, ...). We are interested by the time-evolution (from t = 0 to

t = T ) of the system along an arbitrary closed path C in parameter space, i.e. R(0) = R(T ).

We write the associated Hamiltonian H(R), and

H(R) |n(R)⟩ = En(R) |n(R)⟩ , (1.2)

where En(R) and |n(R)⟩, are respectively the eigenenergies and the eigenvectors, the later

being uniquely and continuously defined along C. We choose a gauge on the phase factor

such that it is a smooth function of t. Note however that it may be multiply defined (this is

in fact necessary for a topologically non trivial system). The time-evolution of the system is

described by the Schrödinger equation

ih̄∂t |ψ(t)⟩ = H(R(t)) |ψ(t)⟩ , (1.3)

with |ψ(t)⟩ the state of the system at time t. We consider that the parameters R(t) (and

therefore the Hamiltonian) are varying slowly enough in time so that if |ψ(0)⟩ = |n(R(0))⟩,

then, the state at arbitrary time t is, up to a phase factor (to be determined), |n(R(t))⟩.

This result is known as the adiabatic theorem (for more details see Ref. [53]). Then, let us
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denote |ψ(t)⟩ = eiθ(t) |n(R(t))⟩. Reporting this in Eq. (1.3) and using Eq. (1.2) gives

− h̄ (∂tθ(t)) |n(R(t))⟩+ ih̄∂t |n(R(t))⟩ = En(R(t)) |n(R(t))⟩ , (1.4)

therefore

θ(t) = −1

h̄

∫︂ T

0

dt′En(R(t′)) + i

∫︂ T

0

dt′ ⟨n(R(t′))| ∂t′ |n(R(t′))⟩ . (1.5)

The first term in the right-hand side of the last equation is called the dynamical phase factor

and was known to appear in the expression of |ψ(t)⟩ long before Berry’s work [9] in 1984.

The second term, called the Berry phase, however, was believed not to play any physical

role before Berry showed its importance. It is interesting to underline the analogy with

the magnetic vector potential which, before Aharonov and Bohm paper in 1959 [49], was

believed to have no physical significance (see Sec. 1.1.1). The analogy goes further as we

detail in the following.

Berry vector potential and gauge choice Let us denote the Berry phase γn and notice

that the time-dependency in the integral is not required:

γn = i

∫︂ T

0

dt′ ⟨n(R(t′))| ∂t′ |n(R(t′))⟩ = i

∮︂

C

dR · ⟨n(R)| ∇ |n(R)⟩ , (1.6)

with ∇ the gradient in R-space. Let us denote An = i ⟨n(R)| ∇ |n(R)⟩ such that

γn =

∮︂

C

dR ·An. (1.7)

An is called the Berry vector potential (or the Berry connection) in analogy with the mag-

netic vector potential and the accumulated phase appearing in Eq. (1.1). The gauge choice

on |n(R)⟩ along C fix the gauge of An. Under a transformation |n(R)⟩ → eiµ(R) |n(R)⟩,

with µ(R) a unique and smooth function of R along C, the Berry vector potential changes

according to

An → An +∇µ. (1.8)
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Note however that because we chose |n(R)⟩ to be unique along C, the contribution
∮︁

C
dR·∇µ

is necessarily 2πz, with z an integer. Therefore, generally speaking, γn is defined up to 2πz

which is not a measurable quantity. Nevertheless, we notice that if γn is not equal to 2π times

an integer, it is necessarily non-vanishing, independently of the gauge choice on |n(R)⟩.

In anticipation of the application of the Berry phase concept to two-dimensional trans-

lation invariant systems, it is interesting to consider a path C around the boundary of the

first Brillouin zone. Because the Brillouin zone is a torus, C is the addition of four paths

C1, C2, C3 and C4, with C3 and C4 being respectively the paths C1 and C2 traveled in the

opposite direction. We conclude that if the Berry phase is non-vanishing, it necessarily

means that An can not be uniquely defined along C and that a smooth gauge transformation

|n(R)⟩ → eiµ(R) |n(R)⟩ (over all the Brillouin zone) has vanishing contribution
∮︁

C
dR · ∇µ.

In this case, the Berry phase around the boundary of the first Brillouin zone is a gauge

invariant (see Sec. 1.3.2).

Aharonov-Bohm effect Let us show how this approach is related to the Aharonov-Bohm

effect previously introduced. Consider electrons (and denote the associated wave-function ψ)

traveling around a closed path C which surround a solenoid. Assume that the perpendicular

magnetic field created by the solenoid is non-vanishing only in a region inside C. We denote

the magnetic vector potential A. We have

1

2m
(−ih̄∇+ eA)2 ψ = Eψ, (1.9)

from which we deduce that ψ is proportional to exp
(︂

ik · r− i
e

h̄

∫︁ r

r0
dr′ ·A(r′)

)︂

. Then the

Berry connection is

i ⟨ψ| ∇ |ψ⟩ = −k+
e

h̄
A(r), (1.10)

and the Berry phase is

γn =
e

h̄

∮︂

C

dR ·A(r), (1.11)
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which is exactly the phase an electron acquires when completing a closed path around the

solenoid.

Berry curvature Let us denote S an oriented surface whose boundary is C and dS the

oriented surface element. If all the components of An are smooth functions of R on the

surface S, then using Stokes’ theorem from Eq. (1.7) gives

γn =

∫︂

S

dS · (∇×An) . (1.12)

(∇×An) is called the Berry curvature and is analogous to the magnetic field. Glancing

back to Eq. (1.8), it is clear that the Berry curvature is gauge invariant, so is Eq. (1.12).

If An can not be chosen smoothly over all the surface S, then we may cover S with N

smaller non-overlapping regions {S1, ...,SN} which respective boundaries are travelled by the

paths {C1, ..., CN} and these paths sum up to C. An is chosen smoothly in S1 and along each

of the paths {C1, ..., CN}. Therefore we have

γn =

∫︂

C1

dR1 ·An + · · ·+
∫︂

CN

dRN ·An, (1.13)

The regions {S2, ...,SN} contain one point where An can not be chosen smoothly, therefore

in these regions we define the respective smooth gauge choices {An,1, ...,An,N}. Then we

have, using Eq. (1.8),

γn =

∫︂

C1

dR1 ·An,1 + · · ·+
∫︂

CN

dRN ·An,N + 2πz, (1.14)

with z an integer. This gives

γn =

∫︂

S1

dS1 · (∇×An,1) + · · ·+
∫︂

SN

dSN · (∇×An,N) + 2πz. (1.15)

The 2πz factor is usually not specified because it is not a measurable quantity. Moreover,

because the Berry curvatures appearing in the last equation are gauge independent, the

Berry phase is written

γn =

∫︂

S

dS · (∇×An) . (1.16)
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We shall remember that several gauge choices may be needed over the surface S to use this

last formula.

Computation of the Berry curvature without fixing the gauge Although the Berry

curvature is gauge independent, the computation of γn using Eq. (1.16) requires to correctly

define An over S. Let us now write the Berry phase in a way such that the gauge(s) of |n(R)⟩

over S has not to be specified. This is important, for instance, if we want to evaluate γn

numerically or because defining An over S and computing γn (analytically) from Eq. (1.16)

can be tricky. Moreover, this is very helpful to understand why systems with degeneracies

in their energy levels may have non-trivial topological properties.

From Eq. (1.16), we write

γn = −Im

∫︂

S

dS · (⟨∇n(R)| × |∇n(R)⟩) , (1.17)

where |∇n(R)⟩ is the vector (in R-space) defined by

(∂X |n(R)⟩ , ∂Y |n(R)⟩ , ∂Z |n(R)⟩ , . . . ) , (1.18)

and similarly ⟨∇n(R)| is defined by

(∂X ⟨n(R)| , ∂Y ⟨n(R)| , ∂Z ⟨n(R)| , . . . ) . (1.19)

We use the identity 1 =
∑︁

m |m(R)⟩ ⟨m(R)| and the fact (from the normalization relation

of the eigenvectors) that ⟨∇n(R)|n(R)⟩ is imaginary to obtain

γn = −Im

∫︂

S

dS ·
(︄

∑︂

m ̸=n

⟨∇n(R)|m(R)⟩ × ⟨m(R)|∇n(R)⟩
)︄

. (1.20)

|m(R)⟩ being orthogonal to |n(R)⟩ we notice that

⟨m(R)| ∇H(R) |n(R)⟩ = En(R) ⟨m(R)|∇n(R)⟩ , (1.21a)

⟨m(R)| ∇H(R) |n(R)⟩ = ⟨m(R)| (∇H(R)) |n(R)⟩+ Em(R) ⟨m(R)|∇n(R)⟩ . (1.21b)
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Combining both last equations enable to write

γn = −
∫︂

S

dS ·Vn, (1.22a)

Vn = Im
∑︂

m ̸=n

⟨n(R)| (∇H(R)) |m(R)⟩ × ⟨m(R)| (∇H(R)) |n(R)⟩
(En(R)− Em(R))2

. (1.22b)

The last formula now involve only the R-derivatives of the Hamiltonian, therefore we do not

have to specify smooth gauge(s) choice on |n(R)⟩ over S.

Degeneracy and two-level system From Eq. (1.22), we see that a degeneracy involving

only two states, that we denote |+(R)⟩ and |−(R)⟩, at some point R∗, i.e. E+(R∗) =

E−(R
∗), plays an major rôle in V+: for R near R∗, V+ may be approximated by

V+ = Im
⟨+(R)| (∇H(R∗)) |−(R)⟩ × ⟨−(R)| (∇H(R∗)) |+(R)⟩

(E+(R)− E−(R))2
. (1.23)

We notice that V− = −V+. This situation is important for us because the systems we study

in this manuscript are generally concerned (depending on the value of the parameters) with

degeneracies involving two energy bands.

Dirac points as sources of Berry curvature As an important application of the

Eq. (1.23), let us consider the Hamiltonian which describes Dirac-fermions

H = R · σ, (1.24)

with R = (X, Y, Z) a three-dimensional vector of parameters and σ = (σx, σy, σz) and σx,σy

and σz are the three Pauli matrices. We briefly show that the Berry phase along some paths

in parameter space is non-vanishing and we explain that this potentially leads to non-trivial

topological systems. Later (see Sec. 1.2.4 and Sec. 1.2.5) we show that simple systems on

the honeycomb and on the kagome lattice show Dirac-fermions. Therefore systems on these

lattices may have non-trivial topological properties, which explains our interest for these

systems.

16



From Hamiltonian in Eq. (1.24), we notice that the only degeneracy occurs at R = 0 and

that ∇H = σ. Using the actions of the Pauli matrices on the eigenstates |+⟩ and |−⟩, we

find

V+ =
R

2|R|3 . (1.25)

We realize here that V+ is analogue to the magnetic field generated by a magnetic monopole

at R = 0. Then we deduce that the Berry phase is half of the solid angle Ω subtended by C

at the degeneracy point R = 0.

Link with condensed matter systems and topology Here we consider a Dirac-fermions

system (see previous paragraph) and we assume that C is a path at Z = 0. Then, along C,

the Hamiltonian evolves in the two-dimensional parameter space {X, Y }. Here we have in

mind the analogy with the two-dimensional Brillouin zone of (two-dimensional) translation-

invariant systems. If C encircles the degeneracy point (called Dirac point) at X = 0 and

Y = 0, then the solid angle Ω is ±2π, giving ±π for the Berry phase. Indeed, the two-

dimensional plane which contains C (at Z = 0) also contains the Dirac point since the later

appears at R = 0. Then, Ω = ±2π which is the solid angle subtended by C at the degeneracy

point R = 0.

For an isolated energy band associated to a two-dimensional translation-invariant system,

the Berry phase along the boundary of the first Brillouin zone is 2π times an integer number

called the Chern number (see Sec. 1.3.2). It is related to the topological properties of the

system (see Sec. 1.3.1 and Sec. 1.3.4). Let us again consider an energy band |+⟩ which get

degenerate with another band |−⟩ at a Dirac point when the Z parameter vanishes. Simon

([54]) has proven that the Chern number associated to the band |+⟩ at Z ̸= 0 (i.e. when the

Dirac point degeneracy is lifted) is the sum of the Berry phases along small path surrounding

the Dirac points at Z = 0.
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Summary about the relevance of the Berry phase concept To sum up, the Berry

phase is a very important concept in topology because it links the appearance of topological

phases with two-levels degenerate systems, and explains that the degeneracy can be thought

of as sources of topology. This is particularly relevant for band systems in which degeneracy

characterized by Dirac Fermions can appear by varying the system’s parameters. As we saw,

this is the case for the hexagonal lattice (honeycomb and kagome) systems we introduced.

This is why here we introduce this Berry phase concept.

1.1.3 Integer Quantum Hall effect

The Quantum Hall effect, appearing at low temperatures in two-dimensional electron gas

with a perpendicular magnetic field, is the quantized counterpart of the Hall effect. The

later was discovered by E. Hall, in 1879, who applied a perpendicular magnetic field and a

longitudinal electric current in a two-dimensional conductor (he used a gold leaf mounted on

a plate of glass) and measured a non-vanishing transverse (compared to the direction of the

current) voltage [55]. The transverse resistivity, denoted ρxy is therefore non-vanishing, it is

called the Hall resistivity and also denoted ρH and its value characterizes the Hall effect. Its

inverse is called the Hall conductivity and denoted σH . In the classical version of the Hall

effect, we have σH = ne/B, with n the electron density, e the electron charge and B the

amplitude of the magnetic field.

80 years after Hall’s results, in the sixties, and during the following decades, the realization

of the MOSFET1, played an important role in the discovery of the quantum Hall effect.

Indeed, it enabled to design a two-dimensional electron gas and to study the interdependence

between in-plane electric fields, in-plane currents and perpendicular (to the plane) magnetic

fields. Some years after the first realization of the MOSFET it became possible to investigate

physical effects described by quantum theory in this device [56–60]; low temperatures (few

1MOSFET stands for Metal–Oxide–Semiconductor Field-Effect Transistor. It is the basic building block
of modern electronics and one of the most manufactured device in Human history.
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Kelvins) and large (perpendicular) magnetic fields (with order of magnitude 10 T) were

reachable. Then it was relevant to think about the quantum consequences in the Hall effect.

When a perpendicular magnetic field (we denote its amplitude B) is applied to a two-

dimensional gas in the quantum limit, the cyclotron orbits of the electrons are quantized and

the Schrödinger equation leads to highly degenerate energy levels (called Landau levels [61]).

The latter have energy En = h̄ωc(n + 1/2), with n is a positive integer and the cyclotron

frequency ωc = eB/m, e and m being the electric charge and the mass of the electron. This

is valid if the temperature is low compared to the energy difference between each Landau

levels, i.e. such that kBT ≪ h̄ωc, with kB the Boltzmann constant. The number of states in

each Landau level is given by

NL =
ϕ

ϕ0

=
eAB

2πh̄
, (1.26)

with ϕ the total magnetic flux through the sample, ϕ0 = 2πh̄/e and A the surface of the

sample. From this, let us define the filling factor ν, ν = N/NL, with N the total number

of particle in the system (this is the density of states in the two-dimensional electron gas

at vanishing magnetic field times the surface of the sample). We shall mention here that

the disorder present in the physical systems broadens each Landau levels, i.e. the density of

states is a sum of peaks of finite width around the energies En.

In 1980, von Klitzing et al. found that the Hall conductivity σH , at integer filling factor

ν (i.e. when the density of states at the Fermi energy is close to zero), was in fact quantized

in units of e2/h [6], with an accuracy of few parts in 106:

σH = νe2/h. (1.27)

This is called the integer quantum Hall effect; the accuracy of the measure is nowadays few

parts in 1010 [62]. When the disorder in the system is small, we observe plateaus in the

value of σH when varying B, as shown in Fig. 1.1(a). Let us mention that few years before

von Klitzing et al.’s result, Ando et al. had concluded that σH , at integer filling factor, was

quantized up to some (possibly important) correction term proportional to σxx/B [63], with
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1.1.4 Laughlin argument and edge states

The quantization of the Hall conductivity Here we describe the argument presented

by Laughlin in Ref. [7], showing that the quantum Hall conductivity is quantized in units

of e2/h. This was the first theoretical understanding of the integer quantum Hall effect in

terms of a topological argument. With this argument we understand that the phase of the

quantum state describing the system plays an important role for the topological properties.

It therefore makes a connection with previous section about the Berry phase concept and

with the following sections and chapters dealing with topological systems.

Let us consider a two-dimensional electron gas confined at the surface of a cylinder (see

Fig. 1.1(b)), which is very convenient because of translation invariance in the y direction

(we may also call it the longitudinal direction) of the sample [66]. We want to study the

transverse conductivity σxy, for this we choose to study the relation between an electric field

generated in the y direction and the current in the x direction (we may also call it the

transverse direction). The electric field E results from a time-dependent magnetic flux Φ(t)

through the cylinder and is given by Faraday’s law
∮︁

dl · E = ∂tΦ, with dl an infinitesimal

element in the longitudinal direction. The magnetic flux Φ(t) results from a magnetic field

B′(t) along the axis of the cylinder. We denote the flux ∆Φ inserted from time t = 0 to time

t = T , i.e. ∆Φ = Φ(t = T )− Φ(t = 0), we assume that the system is a bulk insulator and,

from time t = 0 to time t = T , we assume that a charge ∆Q is transferred from the lower

edge to the upper edge, i.e. in the x direction. We therefore write the transverse current

I = ∆Q/T . The transverse conductivity then reads

σxy =
I

∮︁

dl · E =
∆Q

T∂tΦ
=

∆Q

∆Φ
. (1.28)

In the last equation, the value of ∆Q depends on the value of ∆Φ so that σxy is a constant.

Laughlin noticed that at some specific value of ∆Φ, ∆Φ = h/e, ∆Q must be an integer

number times the electron charge, and then σxy must be quantized in units of e2/h̄. To

understand this, let us look at the Hamiltonian of the free electron two-dimensional gas on
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the surface of cylinder with the magnetic field B′ along the axis of the cylinder. We choose

the following gauge for the magnetic vector potential A′ = eyB
′R/2 with ey a unit vector in

the y direction, B′ the amplitude of the magnetic field and R the radial distance as sketch

in Fig. 1.1(b). The Hamiltonian is

H =
1

2m
(p− eA′)

2
=

1

2m
p2x +

1

2m

(︃

py − e
∆Φ

L

)︃2

, (1.29)

with p the momentum operator, m the electron mass, B′R2π = ∆Φ and L = 2πR.

Now, consider ∆Φ = h/e. When Φ goes from 0 to h/e, we see that it is similar to the

variation h/L in py = h̄ky, i.e a variation 2π/L in ky. From this, we deduce that (i) the

spectrum and the eigenvectors of H are the same at t = 0 and at t = T . However, the

momentum of the occupied states have all change by one increment 2π/L. Therefore, if the

bulk of the system is insulating, there can be a transfer of charges only between the edges,

and from (i) we know that it must be an integer number of electron charge(s): ∆Q = ze

with z an integer. Then we find

σxy = ze2/h̄. (1.30)

Edge states The transfer of charges between the edges of the system means that some

states, localized at the edges, must cross the Fermi level so that a charge can be accepted

or donated (depending on the edge) at the Fermi energy. Because we consider a uniform

system and from the relative orientation of the axes x and y, we know that σxy = −σyx. In

fact, considering a voltage along x, computing the resulting current along y, and using the

same argument we used in the previous paragraphs, we also find that σyx is quantized (the

proof appears this way in Ref.[7]), in agreement with σxy = −σyx. This shows that the state

localized at one edge of the system carry a chiral current; the state localized at the other edge

carry a current in the opposite direction. Halperin ([67]) showed that this state is robust

against weak disorder in the system; the reason being that there is no state available for

backscattering. Halperin ([67]) also showed, from energy and particle number conservation
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and considering weak disorder in the system, that there must also exist delocalized (also

called extended) states below the Fermi energy, in the bulk, that contribute to the electron

transport from one edge to the other during the adiabatic insertion of the flux.

Application to the quantum Hall effect In a quantum Hall system, a uniform and

constant magnetic field B is applied perpendicular to the two-dimensional electron gas;

in the cylinder geometry it would be radial, perpendicular to the surface of the cylinder.

Considering this radial magnetic field B and the axial magnetic field B′ (which produces

the electric field we need to study the quantum Hall effect), we choose the total magnetic

vector potential A+A′ = ey (B
′R/2− Bx), with B the amplitude of the magnetic field B.

It yields the Hamiltonian

H =
1

2m
p2x +

1

2m

(︃

py − e
∆Φ

L
+ eBx

)︃2

. (1.31)

We see that the Laughlin argument stays valid because translation invariance in the y di-

rection is preserved. Eq. (1.31) is the Hamiltonian of a one-dimensional harmonic oscillator

along the x direction; along the y direction it describes a free particle moving in a periodic

space. The eigenenergies are given by En = h̄ωc(n + 1/2), with n a positive integer and

each energy level is called a Landau level. The wavefunctions are the product of harmonic

oscillator states, centered at x0 (x0 is given Eq. (1.32)) and localized in real space over a

length corresponding to the so-called magnetic length lB =
√︁

h̄/eB, and plane waves in y.

The center of the harmonic oscillator states is given by

x0 =
∆Φ

BL
− h̄ky
eB

=
h

eBL

(︃

∆Φ

Φ0

− ny

)︃

, (1.32)

with Φ0 = h/e and ny is an integer given by ky = 2πny/L. We see that inserting the flux

∆Φ = h/e, which is equivalent to a variation 2π/L in ky is also equivalent to a variation of

the center of the harmonic oscillator states. Now suppose that the Fermi level lies between

two Landau levels and add a confining potential in the x direction, necessarily present in
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the real system. This results (see [67]) in the crossing of the Fermi energy only by states

localized at the edges in the x direction (and extended in the y direction) and the bulk

is insulating. From this, we conclude that inserting the flux ∆Φ = h/e corresponds to a

charge transfer between the edges along the x direction. Following the convention on the

orientation of the x axis in Fig. 1.1(b), here we find that inserting ∆Φ = h/e increases x0,

therefore there is a transfer of charge from the lower to the upper edge. At the lower edge,

a hole is created at the Fermi level, while at the upper edge an electron occupied a state

above the Fermi level. This explains why ∆Q and then σH are quantized and not vanishing

in the quantum Hall effect. When the filling factor ν = N/NL (N and NL are defined in

the previous section Sec. 1.1.3) increases by an integer number, the number of Landau levels

crossing the Fermi energy (at the edges of the sample) increases by the same integer number,

so does σH . Taking into account the narrow localization of the Landau levels in energy space,

this explains the behavior of the Hall conductivity in Fig. 1.1(a).

1.2 Systems with lattice translation symmetry

In this section we specify the general formalism we use to describe (non-interacting) lat-

tice translation-invariant systems, and we remind Bloch’s theorem and the definition of the

Wannier functions which are important for the understanding of the topological phases. As

examples of lattice translation-invariant systems, we introduce two simple tight-binding mod-

els on the honeycomb lattice and on the kagome lattice. These models are the elementary

building blocks of the models we study in this manuscript.

1.2.1 Tight-binding model and momentum space Hamiltonian

Here we introduce some of the formalism and notations we use throughout this manuscript.

We consider a non-interacting two-dimensional system with (real-space) translation symme-

try. It is described by a Bravais lattice and a basis (also called ”motif”). The former is
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mathematically represented by a set Sr which contains all the lattice translation vectors.

The latter describes the arrangement of the inequivalent sites (in a unit cell) that we distin-

guish by a ”color”. Non-interacting two dimensional systems we study are described by a

generic lattice Hamiltonian H of the form

H =
∑︂

(r,r′)∈S2
r

∑︂

α,α′

∑︂

(σ,σ′)∈{↑,↓}2

hr,r′,α,α′,σ,σ′c†r,α,σcr′,α′,σ′ . (1.33)

Here α and α′ are the index associated to the color of the site and the associated sum runs

over all the colors in a unit cell. σ and σ′ are indices associated to the spin degree of freedom.

The matrix made of the components hr,r′,α,α′,σ,σ′ , has size 2NNc × 2NNc and is hermitian,

with N the total number of Bravais lattice sites and Nc the number of colors. c†r,α,σ and

cr,α,σ are respectively creation and annihilation operators for a spin σ particle at a lattice

site described by translation vector r and color α. In this manuscript we consider either

fermionic or bosonic operators, which, we remind, satisfy the commutation relations

{c†r,σ, cr′,σ′} = c†r,σcr′,σ′ + cr′,σ′c
†
r,σ = δr,r′δα,α′δσ,σ′ (Fermions), (1.34a)

[︂

c†r,σ, cr′,σ′

]︂

= c†r,σcr′,σ′ − cr′,σ′c
†
r,σ = δr,r′δα,α′δσ,σ′ (Bosons), (1.34b)

with δ the Kronecker delta function. In the following, we consider systems for which the

matrix h couples the same sites in the lattice, the nearest neighbors in the lattice and

possibly the next-nearest neighbors in the lattice. For instance, in the simple model we

review in Sec. 1.2.4, h only couples the nearest neighbors in the lattice. It derives from

a tight-binding approximation for a crystal, which consist in considering that the electron

orbitals are localized near the atomic sites. Then, from a simple Hamiltonian made of the

kinetic term − h̄2

2m
∇2 for the electrons with mass m and of a crystal lattice potential term, h

is shown to depend on three overlap integrals, which namely gives an on-site potential term

and a nearest neighbor hopping term [68].

Momentum space description is very convenient for translation-invariant systems and is

25



widely used in this manuscript, with the following notations

H =
∑︂

k∈Sk

∑︂

α,α′

∑︂

(σ,σ′)∈{↑,↓}2

h̃k,α,α′,σ,σ′c†k,α,σck,α′,σ′ . (1.35)

where k belongs to the set Sk which contains all the reciprocal lattice vectors and which is

called the Brillouin zone. Here a is the lattice spacing, i.e. the smallest distance between

two sites in the Bravais lattice. c†k,α,σ and ck,α′,σ′ are the Fourier transforms of the operators

c†r,α,σ and cr,α,σ. The Hamiltonian decouples into a sum over the momentum space vectors

k of a 2Nc × 2Nc hermitian matrix made of the components h̃k,α,α′,σ,σ′ . This makes the

description Eq. (1.35) very convenient.

1.2.2 Bloch’s theorem and eigenstates of the Hamiltonian in mo-
mentum space

Bloch, in 1928, gave a general solution of the Schrödinger equation associated to a parti-

cle moving in a space-periodic potential [46]. His result, know as Bloch’s theorem, is very

important in condensed matter physics. Here we show a derivation of this theorem. It en-

ables to introduce some notations (namely concerning the eigenenergies and the eigenvectors

associated to a non-interacting translation invariant Hamiltonian) that we will use a lot

throughout this manuscript.

Let us consider a single particle (fermion or boson) Hamiltonian Ĥ =
p̂2

2m
+ U(r̂), with

the periodic potential U(r + R) = U(r), R ∈ Sr being a translation vector in the Bravais

lattice. Bloch’s theorem states that translation symmetry imposes that each solution |ψn,k⟩

of the Schrödinger equation Ĥ |ψn,k⟩ = En,k |ψn,k⟩ satisfy

⟨r|ψn,k⟩ = ψn,k(r) = eik·run,k(r), (1.36)

with un,k(r+R) = un,k(r). Each solution |ψn,k⟩ is identified by two quantum numbers, n is

called the (energy) band index and k is an eigenvalue of the momentum operator k̂. |r⟩ are

the eigenstates of the position operator r̂. Let us briefly give a proof of this theorem.
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We define the real space translation operator T̂R such that T̂R |r⟩ = |r+R⟩ with R ∈ Sr.

Acting with ⟨r| T̂ †

R = ⟨r+R| on an arbitrary wave function which we then expand in a

Taylor series, and using the real space representation of the operator k̂, we find that [69]

T̂R = e−ik̂·R =
∑︂

k

e−ik·R |k⟩ ⟨k| , (1.37)

with |k⟩ the eigenstates of the momentum operator k̂. The system is invariant under an

arbitrary translation R, therefore its associated Hamiltonian shall commute with the trans-

lation operator T̂R. This is directly checked from the Hamiltonian Ĥ because p = h̄k and

U(r+R) = U(r). Therefore there exist a common basis of eigenvectors |ψ⟩ that simultane-

ously diagonalizes T̂R and Ĥ. Let us consider one of these eigenvectors that we denote |ψ⟩.

We write

Ĥ |ψ⟩ = E |ψ⟩ , (1.38a)

T̂
†

R |ψ⟩ = tR |ψ⟩ . (1.38b)

Moreover, we have

⟨k| T̂ †

R |ψ⟩ = eik·R ⟨k|ψ⟩ = tR ⟨k|ψ⟩ , (1.39)

and either ⟨k|ψ⟩ = 0 or ⟨k|ψ⟩ ̸= 0 in which case tR = eik·R. Therefore, if k′ ̸= k, then

⟨k′|ψ⟩ = 0 otherwise tR = eik
′·R which is incompatible with tR = eik·R. In other words,

each eigenvectors |ψ⟩ may have non vanishing overlap with only one ket |k⟩ so that it can

be labeled by the momentum space vector k. Besides, several eigenvectors |ψ⟩ may overlap

with the same ket |k⟩ so we introduce an index n to differentiate them. We therefore write

|ψn,k⟩ instead of |ψ⟩ and the corresponding Hamiltonian eigenvalue En,k.

Now Eq. (1.38b) reads

T̂
†

R |ψn,k⟩ = eik·R |ψn,k⟩ . (1.40)

Using ⟨r| T̂ †

R = ⟨r+R| we find

ψn,k (r+R) = eik·Rψn,k (r) . (1.41)
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Let us define un,k(r) = e−ik·rψn,k(r). From Eq. (1.41), we see that un,k(r + R) = un,k(r)

which proves Bloch’s theorem.

In anticipation of further sections, where we are interested in quantities depending on

|un,k⟩ rather than |ψn,k⟩, we note that

e−ik·r̂Ĥeik·r̂ |un,k⟩ = En,k |un,k⟩ , (1.42)

with

e−ik·r̂ =
∑︂

r

e−ik·r |r⟩ ⟨r| . (1.43)

To get Eq. (1.42), we used Ĥ |ψn,k⟩ = En,k |ψn,k⟩, Bloch theorem Eq. (1.36) and the identity

1 =
∑︁

r |r⟩ ⟨r|.

1.2.3 Wannier functions

Here we briefly introduce the Wannier functions [47] and some associated properties in

one-dimensional system. These functions are useful to understand the relation between

the Chern number and the charge polarization (in two-dimensional time-reversal breaking

systems) and they are also useful to understand the relation between the Z2 invariant and

the time-reversal polarization (in two-dimensional systems with time-reversal symmetry).

We consider an isolated energy band indexed by the number n.

The Wannier functions, which we denote |wn,R⟩, where R specify the position of the

associated unit cell, are given by

|wn,R⟩ =
V

(2π)d

∫︂

BZ

ddk eik·Re−iφn(k) |ψn,k⟩ , (1.44)

where the integral is over the Brillouin zone (BZ), d is the dimension of the system (we

consider d = 1 or 2 in the following), V is the volume of the real-space unit cell and |ψn,k⟩ is

the normalized Bloch eigenvector associated to the band n. |ψn,k⟩ is defined up to an overall

phase, therefore Eq. (1.44) leaves some freedom on the definition of the Wannier states.

Here, we made this degree of freedom explicit with the introduction of the phase ϕn ∈ R.
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Following from the orthogonality of the Bloch eigenvectors, the Wannier functions |wn,R⟩

form a complete and orthogonal set of functions that span the same Hilbert space as do the

Bloch eigenvectors associated to the band n.

In one-dimension systems, it is possible to find exponentially localized (on the lattice

sites) Wannier functions [70]. The spread of the Wannier functions depends on the choice

of the phase ϕn(kx); the choice ϕn(kx) = −i
∫︁ kx
0
dk′xAn(k

′
x) maximally localizes the Wannier

functions around each (atomic) site [71]. An(kx) is the Berry gauge field associated to the

band n and it is defined in Sec.1.3.2.

1.2.4 Graphene

As a first example, we review a simple tight-binding model on the honeycomb lattice. This

model is important for several reasons. A very fundamental and general reason why graphene

is interesting is that several other allotropes of carbon are directly related to graphene [72].

For instance graphite is made of graphene stacks, fullerene [73–75] has a structure in space

which occupies the surface of a sphere and each carbon atom has three σ-bonds with neigh-

boring atoms and a carbon nanotube [76] is a sheet of graphene wrapped in a cylinder

geometry. These materials have been the focus of an important scientific and technolog-

ical interest [77, 78]. More specifically, graphene, characterized by Dirac fermions at the

degenerate energy points, has interesting topological properties. As we saw in Sec. 1.1.2,

degeneracies in two-level systems are source of Berry curvature flux and may lead to topo-

logically non trivial systems. Numerous experimental and theoretical studies of the Berry

phase in two-dimensional graphite or in other physical platforms where the graphene model

has relevance (e.g. cold atom and light systems) has been realized [79–92], in particular from

the time graphene is experimentally accessible [72]. A bit more generally speaking, topo-

logical systems related to graphene (we will introduce some in the rest of this manuscript)

have attracted and still attract a lot of attention in the scientific community [11, 78, 93–

105]. Here, we review a simple tight-binding graphene model; it proves helpful to study the
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Haldane model presented in Chapter 2, which is itself helpful before studying the current

theoretical description of the quantum spin Hall effect presented in Sec. 1.4.

Graphene [72, 78] is a two-dimensional material made of carbon atoms which disposition

in space forms a honeycomb lattice (see Fig. 1.2(a)). Each carbon atom has three sp2 orbitals

(hybridization between one s orbital, one px orbital and one py orbital) which contributes

to three σ-bonds with three other carbon atoms. This yields the honeycomb structure.

The overlapping between the pz orbitals (called π-bonds) at the nearest neighbors carbon

atoms results in the essential low energy properties of graphene. It is well described by a

tight-binding model on the honeycomb lattice with associated Hamiltonian

H = t1
∑︂

⟨i,j⟩

c†icj, (1.45)

where c†i is the creation operator for a particle at site i. t1 ∈ R, and the associated sum runs

over all the nearest neighbors i and j. In the following, we will consider half-filling because

each pz orbital contains one electron.

The honeycomb lattice has two inequivalent sites in the unit cell (that we label by two

”colors”, A and B) and its Bravais lattice is hexagonal (see Fig. 1.2(a)). Let us write the

creation operators c†i as c†r,α where α = {A,B} indicates the color at the corresponding

position given by the real-space vector r. We define the Fourier transforms of these real

space creation operators c†r,α, with α = {A,B}:

c†k,α =
∑︂

r∈Sα

eik·rc†r,α. (1.46)

We also define σx, σy, σz the three Pauli matrices acting in sub-lattice space. In Fourier

space the Hamiltonian reads

H =
∑︂

k

Ψ†
khkΨk, (1.47a)

hk = t1

3
∑︂

i=1

[cos(k · ai)σx + sin(k · ai)σy] , (1.47b)
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with Ψ†
k =

(︂

c†k,A, c
†
k,B

)︂

. The displacement vectors ai, i ∈ {1, 2, 3} and bi, i ∈ {1, 2, 3} are

defined in Fig. 1.2(a).

The graphene model has two energy bands E±,k given by [106]

E±(k) = ±|h1(k)|, (1.48)

with

h1(k) = t1

3
∑︂

i=1

exp(−ik · ai). (1.49)

To anticipate the comparison with the results of the following section, we note that

E±(k) = ±t1

⌜

⃓

⃓

⎷3 + 2
3
∑︂

i=1

cos(k · bi) . (1.50)

These energy bands are represented in Fig. 1.2(d). The associated eigenvectors are given by

|u±,k⟩ =
(︂

c†A,k ± e−iϕ(k)c†B,k

)︂

|0⟩ , (1.51)

with e−iϕ(k) =
eik·a3h1(k)

∗

|h1(k)|
. Both bands cross at both inequivalent points K =

g3 − g2

3
and

K′ =
g2 − g3

3
in the Brillouin zone (sketched in see Fig. 1.2(c)), with g2 and g3 defined by

−g2 ·b2 = 2π, g2 ·b3 = 0, g3 ·b2 = 0, and g3 ·b3 = 2π. When the bands cross, the dispersion

relation around K and K′ is linear: for small k, we have

h1(K+ k) = vF (−kx + iky), and h1(K
′ + k) = vF (kx + iky), (1.52)

with vF =
3

2
t1 the so-called Fermi velocity (in units of the lattice spacing), kx = k · ex,

ky = k · ey, ex = − 1√
3
(b2 + b3) and ey =

1

3
(b2 − b3). This leads to

E±(K+ k) = E±(K
′ + k) = ±vF |k|+O

(︁

|k|2
)︁

, (1.53)

with |k|=
√︁

k2x + k2y. A linear dispersion relation is reminiscent of massless Dirac Fermions

therefore K and K′ are called the Dirac points. At half-filling, the low energy excitations of
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the model are described by the terms in Eq. (1.47a) nearK andK′. The effective Hamiltonian

then reads [107]

H0 =

∫︂

k

Ψ̃
†

kh0,kΨ̃k, (1.54a)

h0,k = vF (−kxσxτz + kyσy) , (1.54b)

with Ψ̃
†

k =
(︂

Ψ†
K+k,Ψ

†
K′+k

)︂

and with τz the third Pauli matrix acting in the basis of kets

with two components Ψ†
K+k and Ψ†

K′+k. The integration runs over k such that |k|≪ 2π/a.

Finally, let us notice that this graphene tight-binding model respects chiral symmetry,

time-reversal symmetry and inversion symmetry.

1.2.5 Kagome tight-binding model

The kagome (shown in Fig. 1.2(b)) lattice shares common properties with the honeycomb

lattice. Namely, as we show in this section, a simple tight-binding model on this lattice is

characterized by Dirac fermions, as the graphene tight-binding model considered in the last

section. Glancing back at Sec. 1.1.2, we deduce that the kagome lattice is potentially inter-

esting to build non-trivial topological systems. In relation with the Berry phase concept, the

kagome-lattice systems are interesting because they are a good platform for the quantum

anomalous Hall effect. The (classical) anomalous Hall effect has been observed by E. Hall

one hundred and forty years ago [108] and its quantized version has been theoretically and

experimentally studied since Haldane’s work in 1988 (see Ref. [5] or Sec. 2.1 of Chapter 2).

Though it has attracted a lot of attention in the scientific community [4, 5, 109–112], the

understanding of the anomalous Hall effect is still not complete. The quantum anomalous

Hall effect appears in ferromagnetic topological materials, making the kagome-systems par-

ticularly interesting for the study of this effect. Indeed there are a lot of magnetic materials

which atom structure is (or is similar to) the kagome lattice [27, 36–38, 113–116] while this

is not the case for the honeycomb lattice. Moreover, in the kagome systems the band gap

and the ferromagnetic Curie temperature is usually larger than in the honeycomb systems,
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We consider a tight-binding model on the kagome lattice with only nearest-neighbor hop-

ping term. We show that it shares some properties with the graphene model we described in

previous section, namely linear dispersion relation near the Dirac points. The Hamiltonian

reads

H = −t
∑︂

⟨i,j⟩

c†icj, (1.55)

where c†i is the creation operator for a particle at site i. t1 ∈ R, and the associated sum runs

over all the nearest neighbors i and j.

The kagome lattice has three inequivalent sites in the unit cell (that we label by three

”colors”, R, B and G) and its Bravais lattice is hexagonal (see Fig. 1.2(b)). Let us write the

creation operators c†i as c†r,α where α = {R,B,G} indicates the color at the corresponding

position given by the real-space vector r. As we did in the previous section, we define the

Fourier transforms

c†k,α =
∑︂

r∈Sα

eik·rc†r,α. (1.56)

In Fourier space the Hamiltonian reads

H =
∑︂

k

Ψ†
khkΨk, (1.57a)

hk = −2t

⎛

⎜

⎜

⎜

⎝

0 cos(k · b1) cos(k · b2)

cos(k · b1) 0 cos(k · b3)

cos(k · b2) cos(k · b3) 0

⎞

⎟

⎟

⎟

⎠

, (1.57b)

with Ψ†
k =

(︂

c†k,R, c
†
k,B, c

†
k,G

)︂

. The displacement vectors bi, i ∈ {1, 2, 3} are defined in

Fig. 1.2(b).

Now we investigate the energy spectrum [31, 39] associated to the model we consider here

and we show the similarities with the graphene. We have

det (hk − λI) = (λ− 2t)(−λ2 − 2tλ+ 4t2f(k)), (1.58)
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with f(k) = 2
∏︁3

i=1 cosk · bi, −1/4 ≤ f(k) ≤ 2. This yields one flat energy band Eu = 2t

and two dispersive bands

Em = −t
(︂

1−
√︁

1 + 4f(k)
)︂

, (1.59a)

El = −t
(︂

1 +
√︁

1 + 4f(k)
)︂

, (1.59b)

with El ≤ Em ≤ Eu and degeneracies appear in the spectrum only at f(k) = −1/4 and

at f(k) = 2 in which cases we respectively have El = Em = −t and Em = Eu. Graphical

representation of the energy spectrum is given in Fig. 1.2(e). We have checked that hexagon-

localized states associated to alternating values of the phase 0 and π are eigenstates with

energies corresponding to the flat band [117, 118]. Such localized states are made possible

because of the specific geometry of the kagome lattice; destructive interference processes

occur in each triangle connected to the hexagon(s) where the state is localized. The equality

f(k) = −1/4 is obtained at both inequivalent points K =
g1 − g2

3
and K′ =

g2 − g1

3
in the

Brillouin zone (sketched in see Fig. 1.2(c)), with g1 and g2 defined by g1 ·e1 = 2π, g1 ·e2 = 0,

g2 · e1 = 0, and g2 · e2 = 2π and the vectors ei, i ∈ {1, 2} are defined in Fig. 1.2(b). Both

lowest bands of the spectrum are in fact identical to both energy bands of the graphene (up

to a global energy shift). Indeed we have f(k) =
∑︁3

i=1 cos
2 k ·bi−1 and defining e3 = e2−e1

so that ei = 2bi, i ∈ {1, 2, 3}, we find

1 + 4f(k) = 3 + 2
3
∑︂

i=1

cosk · ei. (1.60)

From this we deduce that for small k around K and K′, we have

Em(K+ k) = Em(K
′ + k) = −t

(︃

1− 3

2
|k|
)︃

+O
(︁

|k|2
)︁

, (1.61a)

El(K+ k) = El(K
′ + k) = −t

(︃

1 +
3

2
|k|
)︃

+O
(︁

|k|2
)︁

, (1.61b)

with |k|=
√︁

k2x + k2y, kx = k · ex, ky = k · ey, ex = − 1√
3
(e1 − e2) and ey = −1

3
(e1 + e2). At

1/3 filling, the low energy excitations of the model are described by linear relation dispersion

relation and one can identify vF =
3

2
t as for the graphene case.
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1.3 Chern number and link with measurable observ-

ables in topological systems

We now make the connection between the Berry phase and observables such as the Hall

conductivity (Sec. 1.3.1) and the charge polarization (Sec. 1.3.4) in two-dimensional sys-

tems. This leads us to introduce and study a topological invariant, the (first) Chern num-

ber (Sec. 1.3.2), characterizing these two-dimensional systems; systems with non-vanishing

Chern number are called Chern insulators. We also explain the connection between the

Chern number and the presence of the chiral edge states which energy cross the bulk gap in

an open geometry (Sec. 1.3.3). This concepts are widely used throughout this manuscript,

either for the study of Chern insulators (see Chapters 2, 3 and 4), or for the understanding

of time-reversal invariant topological insulators (see Sec. 1.4 and Chapters 3 and 5).

1.3.1 Hall conductivity and TKNN integer

Here we compute the Hall conductivity using the Kubo formula, as Thouless, Kohmoto,

Nightingale, and den Nijs did in 1982 [8]. As we will see, it has a direct link with the Berry

phase concept and in particular with Eq. (1.22). This section therefore provides another

way to understand how the Berry phase concept is related to the Hall conductivity and

the topological properties of the system. It shows the quantization of the Hall conductivity

in the QHE and it leads naturally to the introduction of the Chern number which is the

invariant characterizing two-dimensional topological systems.

We consider a lattice translation-invariant two-dimensional system. Note that if a mag-

netic field is applied to the system, considering the magnetic unit cell instead of the ”usual”

unit cell (as long as we study a ”spinless” system) and magnetic translation operators in-

stead of ”usual” translation operators restores the translation-invariance [10]. This lattice

translation-invariant system is described by Bloch states. We assume a small electric field

with amplitude ϵy applied in one direction of the system (call it the y direction); to be more
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specific we consider this electric field as an adiabatic perturbation of the Bloch Hamiltonian.

Let us compute the transverse conductance σx,y defined by

e⟨jx⟩y = σx,yϵy, (1.62)

where ⟨jx⟩y is the expectation value of the current density operator in the direction perpen-

dicular to the y direction, resulting from the electric field perturbation and e is the electron

charge. The response to the perturbation may be evaluated using linear response theory (see

for instance [119]) which leads to the so-called Kubo formula (see App. D)

⟨jx⟩y = ih̄eV
∑︂

Em<µ<En

⟨m| jx |n⟩ ⟨n| jy |m⟩ − ⟨n| jx |m⟩ ⟨m| jy |n⟩
(En − Em)

2 ϵy, (1.63)

where |n⟩ and |m⟩ are eigenstates of the system and En and Em their energies, jy is the

current density operator in the y direction, V is the volume of a unit cell, EF is the Fermi

energy and h̄ is the reduced Planck constant. This gives

σx,y = ih̄e2V
∑︂

Em<µ<En

⟨m| jx |n⟩ ⟨n| jy |m⟩ − ⟨n| jx |m⟩ ⟨m| jy |n⟩
(En − Em)

2 . (1.64)

Let us apply it to the Bloch system we want to describe. We identify V ⟨n| jx |m⟩ =

⟨n| vx |m⟩ = ⟨n| (∂kxH) |m⟩ /h̄ and V ⟨n| jy |m⟩ = ⟨n| vy |m⟩ = ⟨n|
(︁

∂kyH
)︁

|m⟩ /h̄ which gives

σx,y =
ie2

h̄V

∑︂

Em<µ<En

⟨m| (∂kxH) |n⟩ ⟨n|
(︁

∂kyH
)︁

|m⟩ − ⟨n| (∂kxH) |m⟩ ⟨m|
(︁

∂kyH
)︁

|n⟩
(En − Em)

2 . (1.65)

Then we use the eigenvalue equation

H |m⟩ = Em |m⟩ , (1.66)

and the action of ∂kj , j = {x, y} on

⟨n|H |m⟩ = 0, ∀ |n⟩ ≠ |m⟩ , (1.67)

to get

⟨n|
(︁

∂kjH
)︁

|m⟩ = (Em − En) ⟨n|
(︁

∂kj |m⟩
)︁

= (En − Em)
(︁

∂kj ⟨n|
)︁

|m⟩ . (1.68)
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Reporting this result in Eq. (1.65) gives

σxy =
e2

ih̄V

∑︂

Em<EF<En

(︁

⟨∂kxm|n⟩ ⟨n|∂kym⟩ − ⟨∂kym|n⟩ ⟨n|∂kxm⟩
)︁

. (1.69)

The eigenstates of the Hamiltonian form a complete set and the Fermi energy is supposed

to lie between two bands, therefore
∑︁

Em<EF<En
(|m⟩ ⟨m|+ |n⟩ ⟨n|) = 1, therefore

σxy =
e2

ih̄V

∑︂

Em<EF

(︁

⟨∂kxm|∂kym⟩ − ⟨∂kym|∂kxm⟩
)︁

. (1.70)

Transforming this last equation into a sum over the filled bands with index m gives

σxy =
e2

h

∑︂

filled bands

Cm. (1.71)

with

Cm =
1

2πi

∫︂

BZ

d2k · [∇×Am] , (1.72)

the so-called Chern number associated to the mth energy band (the integral in the formula

runs over all momentum in the Brillouin zone), and

d2k · [∇×Am] = d2k
(︁

⟨∂kxm|∂kym⟩ − ⟨∂kym|∂kxm⟩
)︁

. (1.73)

Eq. (1.71) was first obtained by Thouless, Kohmoto, Nightingale, and den Nijs [8], and is

often referred as the TKNN formula. Defining

σxy =
∑︂

filled bands

σxy,m, (1.74)

we see that each band n is associated with a Hall conductivity proportional to the associated

Chern number

σxy,n =
e2

h
Cn. (1.75)

Thouless, et al. originally derived the TKNN formula for a two-dimensional crystal with

perpendicular uniform magnetic field and they showed that what we called Cn here is quan-

tized. This formula is in fact directly applicable to a two-dimensional crystal with vanishing

magnetic field in the unit cell, first introduced by Haldane [5] few years later.
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Comparing Eq. (1.72) with Eq. (1.22), we see that 2π times the Chern number is the

integral of the Berry curvature over the two-dimensional Brillouin zone, i.e. the Berry phase

accumulated by a particle around a close path being the boundary of the first Brillouin zone.

In the next section we explain that Cn, that is called the Chern number, is a mathematical

object used to characterized the topology of a two-dimensional manifold and is quantized.

1.3.2 Chern number

Here we show the quantization of the Chern number, which explains the quantization of the

Hall conductivity. The derivation presented here follows Ref. [10] and is also useful for the

computation of topological invariants in further sections of this manuscript.

As introduced in the previous section the Chern number characterizing an arbitrary iso-

lated Bloch energy band with associated Bloch eigenvector Ψk(r) = eik.ruk(r) reads

C =
1

2iπ

∫︂

BZ

d2k [∇k ×Ak] · ez, (1.76)

with the so-called Berry gauge field Ak =
∫︁

d2ru∗k(r)∇kuk(r) = ⟨uk| ∇k |uk⟩. Because the

BZ is a torus, if we can find a gauge choice such that Ak is uniquely and smoothly defined

over all the BZ, then, using the Stokes’ theorem, we find that C is vanishing. Therefore, a

non-trivial topology comes from the impossibility of finding such a gauge choice that makes

Ak uniquely and smoothly defined.

Under a gauge transformation uk(r) → uk(r)e
if(k), with f a smooth function of k and

independent of r, we have Ak → Ak + i∇kf(k), so C → C. Now, suppose that the BZ is

divided into 2 domains denoted DI and DII, where the respective gauge choices |uk,I⟩ and

|uk,II⟩ are unique and smooth. We define φ(k) a smooth function of k such that |uk,I⟩ =

eiϕ(k) |uk,II⟩ and we define Ak,I = ⟨uk,I| ∇k |uk,I⟩ and Ak,II = ⟨uk,II| ∇k |uk,II⟩ which are both

uniquely and smoothly defined fields respectively inside DI and DII. Then we have

C =
1

2iπ

(︃∫︂

DI

d2k [∇k ×Ak,I] · ez +
∫︂

DII

d2k [∇k ×Ak,II] · ez
)︃

. (1.77)
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We call Γ the boundary between DI and DII and we have, from Stokes’ theorem

C = ± 1

2iπ

(︃∮︂

Γ

dk ·Ak,I −
∮︂

Γ

dk ·Ak,II

)︃

. (1.78)

Note that the sign in the previous equation depends on the choice of the domains DI and

DII and on the orientation of the one-dimensional integral over Γ on the BZ. Applications

of this formula to specific topological systems are detailed in Chapter 4, Sec. 1.1.4 and in

Chapter 5, Sec. 1.1.4. Using Ak,I = Ak,II + i∇kφ(k), we find [10]

C = ± 1

2π

∮︂

Γ

dk · ∇kφ(k). (1.79)

Along Γ, the kets |uk,II⟩ and |uk,I⟩ = eiϕ(k) |uk,II⟩ are unique functions of k and the phase

φ(k) is a smooth function of k, therefore the integral in the last formula is an integer times

2π and C is an integer. We conclude that the Hall conductivity Eq. (1.75) is quantized (in

units of e2/h).

1.3.3 Bulk-boundary correspondence

In the previous sections, we showed that a quantized value of the Hall conductivity is related

to an integer value of the Chern number, which is a bulk invariant. The quantized value of

the Hall conductivity is also related to the presence of the chiral edge states which energy

cross the bulk gap in an open geometry (see Sec. 1.1.4). Here we explain that these edge

states are in fact necessarily appearing at the interface between two systems characterized

by different Chern numbers. We use the notations introduced in Sec. 1.1.2.

Let us consider an adiabatic evolution of the Hamiltonian H(R) in parameter space; the

energies of the system vary continuously. As long as an energy band n stays isolated (no

crossing with other bands) a quantity (that we denote Cn(R)) computed from the energy

states associated to this band can only vary continuously. Therefore, in this case, a number

which is constrained to be an integer can not vary. However, if during the evolution of R, the

energy band crosses another one and after the crossing an isolated energy band reappears,
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then, there is no constrain of a continuous relation between both Cn(R) associated to the

isolated band before and after the crossing. In other words, taking Cn(R) to be the Chern

number tells us that it can vary only if the bulk gap closes.

Now we consider an interface (where the parameters R vary slowly) between a Chern

insulator and a trivial insulator. Both of these systems, away from the interface region,

are characterized by gapped bulk bands. On the other hand, from the previous paragraph,

we know that at the interface region, the gap has to close so that the topological invariant

characterizing the Chern insulator and the trivial insulator can be different. This is realized

thanks to states which are localized at the interface and which connect the bulk bands below

and above the gap. If we further assume that the system is described by a Dirac Hamiltonian

at the gap closing points, looking for an edge solution of the Schrödinger equation gives a

chiral propagating mode along the interface [2, 66].

This bulk-boundary correspondence is generalizable to an interface between two insulators

characterized by different values (say I1 and I2) of a topological bulk invariant (integer). In

such system, I1 − I2 edges states are predicted [2, 120, 121].

1.3.4 Charge polarization

The modern microscopic theory of charge polarization is quite recent and is a rich subject.

We refer the interested reader to the Ref. [122].

Here we would like to give another perspective on the relation between the Chern number

and the charge polarization [123] which is the number of charge pumped during a cycle

such as the one described in Sec. 1.1.4. Let us first consider a one-dimensional system with

associated Hamiltonian H, space coordinate x and momentum coordinate kx. We consider

an energy band labeled by quantum number n.

The Polarization is given by the center of charge of the Wannier states (in units of the
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electron charge e) [48, 68, 122, 124]

P = ⟨wn,X | x |wn,X⟩ =
1

2iπ

∫︂ π

−π

dkx An(kx) +X, (1.80)

with An(kx) = ⟨un,kx | ∂kx |un,kx⟩. Let us impose that the Bloch eigenvectors |ψn,kx⟩ are

defined continuously from kx = −π to kx = π and that |ψn,kx+π⟩ = |ψn,kx−π⟩ (note that this

however implies that un,kx+π(x) = e−i2πxun,kx−π(x)). Then from the expression of the Berry

field (see under Eq. (1.76) for instance) we see that An(kx + π) = An(kx − π) and the last

integral (right-hand side of Eq. (1.80)) can be taken on a closed loop. Now we parametrize

the Hamiltonian with say time t and we consider an adiabatic evolution of H, from an initial

time t0 to a final time t1. We assume that the Bloch eigenvectors |ψn,kx(t)⟩ are defined

continuously between t0 and t1 for all value of kx. We have

P (t1)− P (t0) =
1

2iπ

[︃∮︂

dkx An(kx, t1)−
∮︂

dkx An(kx, t0)

]︃

, (1.81)

which, gives after application of Stokes’ theorem [48]

P (t1)− P (t0) =
1

2iπ

∫︂ t1

t0

dt

∮︂

dkxF (t, kx), (1.82)

with the Berry curvature F (t, kx) = ⟨∂tun,kx(t)|∂kxun,kx(t)⟩ + c.c. and ”c.c.” denotes the

complex conjugate. The experimental access to the polarization in perovskite crystals made

possible to check that Eq.(1.82) leads to consistent physical results [125–128]. In most

experiments, we access the polarization through its derivatives (e.g. via the permittivity,

the piezoelectric tensor, the Born charge [122]). The change in the polarization expressed in

Eq. (1.81) is therefore connected to experimental measurements.

We now consider a two-dimensional real-space system and we write its Hamiltonian in

momentum space

H =
∑︂

ky

H(ky), (1.83a)

H(ky) =
∑︂

kx

∑︂

α,α′

h̃k,α,α′c†k,αck,α′ , (1.83b)
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with H(ky) = H(ky + 2π). In the thermodynamic limit where the number of unit cell goes

to infinity so that ky (and kx) varies continuously, taking t = ky and considering a periodic

pumping cycle, i.e. t0 = ky,0 and t1 = ky,1 = ky,0 + 2π, gives

P (ky,1)− P (ky,0) =
1

2iπ

∫︂

d2k [∇k ×Ak] · ez, (1.84)

where we identify the famous form of the Berry curvature for two-dimensional systems

[∇k ×Ak] · ez. The change in the polarization during a periodic pumping cycle, in units of

the electron charge e, is the Chern number. In other words, during such a periodic pumping

cycle, the center of charge of the Wannier functions is shifted by the value of the Chern

number (remind that we set the lattice parameter to unity a = 1).

1.4 Time-reversal invariant topological insulators

In this section we introduce two-dimensional topological spin systems which are time-reversal

invariant. This is particularly useful for Chapter 5 where we study such systems. As we

explain in the following section, the key physical ingredient of the topological band theory

introduced here is the spin-orbit coupling; its description and its relation with topology is

also useful for the chapter 4. Time-reversal symmetry plays a major role for the topological

properties of the systems studied here. The time-reversal operator is introduced in App. B

and some proofs of statements used in this section can also be found in this appendix.

The topological phase we study in this section is called a quantum spin Hall phase and

was first envisaged to exist in graphene by Kane and Mele who theoretically described it in

Ref. [11]. Almost at the same time, Bernevig et al [12, 13] independently studied a similar

model realizable in mercury cadmium telluride (HgCdTe) semiconductor quantum wells.

This enabled the first experimental observation of the quantum spin Hall phase few years

later [14].

The quantum spin Hall effect is the quantized version of the spin Hall effect. A spin

Hall state is characterized by electrons moving in a direction which depends on their spin
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direction [129, 130]. In a spin Hall system under an applied electric current, the Hall voltage

(difference in the Fermi levels at both edges of the sample) is vanishing but the spin Hall

voltage (difference in the Fermi levels for each spin at both edges of the sample) is finite. The

spin Hall effect appears in systems with strong spin-orbit coupling. A microscopic model

with spin-orbit coupling which shows a quantized spin Hall conductance has been formulated

in years following the first studies about the spin Hall effect [11–13]. It leads to a topological

band theory describing topological insulators [2, 131]. This was also a major step towards the

realization of the quantum anomalous Hall effect, introduced in a theoretical model almost

two decades earlier [5].

In the following section we review Kane and Mele’s model [11]. Then, in section 1.4.2, we

study a topological pump for a time-reversal invariant system and we make the connection

with the topological invariant which characterizes these systems.

1.4.1 Kane and Mele model

The Kane-Mele model [11] is a spin model on the honeycomb lattice. Kane and Mele intro-

duced this model to describe graphene with spin-orbit coupling at low energy. Then they

constructed an effective tight-binding model which, at low energy, is identical to the former

model.

Spin-orbit coupling in the low energy effective model We want to build a low-energy

topological spin model on the honeycomb lattice; our starting point is two spin copies (one

spin up copy, one spin down copy) of the low energy graphene model. Let us define

Ψ†
k =

(︂

Ψ̃
†

k,↑, Ψ̃
†

k,↓

)︂

, (1.85a)

Ψ̃
†

k,σ =
(︂

c†K+k,A,σ , c
†
K+k,B,σ , c

†
K′+k,A,σ , c

†
K′+k,B,σ

)︂

, σ ∈ {↑, ↓}, (1.85b)
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where c†k,L,σ is the creation operator for a particle with momentum k, color L = {A,B}, and

spin σ = {↑, ↓}. The extension of the Hamiltonian in Eq. (1.54) is

H0 =

∫︂

k

Ψ̃
†

kh0,kΨ̃k, (1.86a)

h0,k = vF I (−kxσxτz + kyσy) , (1.86b)

with I the identity in spin space. In this system, we want to open a topological gap at each

Dirac point and we want to keep the system time-reversal invariant, because in such a system,

the edge modes are protected by time-reversal symmetry as we explain in App. B. From the

expression of h0,k we see that a gap can be opened only thanks to a term proportional to σz

(third Pauli matrix acting in sub-lattice space).

Let us consider one Dirac point, say K. We can open an identical gap for both spin

polarizations with a term proportional to σzIs, where the identity matrix acts in the spin

space. We have θσzIsθ
−1 = σzIs (see App. B) so time-reversal symmetry imposes that at

the other Dirac point K′, we take the same term σzIs. However we know that for a spinless

system a Semenoff mass term σzIm (Im is the identity in the (K,K′) space) gives a trivial

phase. Here for a spin model it would just yield two spin copies of trivial topological systems,

so the whole system would also be trivial. Another way to open a gap is to consider, at one

Dirac point (say K), opposite masses for both spin polarizations, i.e. a term σzsz, where sz

is the third Pauli matrix acting in spin space. We want to impose that the system is time-

reversal invariant. A time-reversal transformation flips the spin (in the spin Pauli matrix

language it gives θszθ
−1 = −sz so θσzszθ−1 = −σzsz) and it sends the Bloch Hamiltonian at

k = K to the Bloch Hamiltonian at −k = K′:

θh(k = K)θ−1 = h(−k = K′). (1.87)

Therefore the system is time-reversal invariant if we set

h(K′) = −h(K), (1.88)
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i.e. the term opening the gap must be proportional to σzτzsz, where τz acts in the (K,K′)

space. We denote it HSO and we write its amplitude λSO;

HSO = λSO

∫︂

k

Ψ†
kσzτzszΨk , (1.89)

This is a spin-orbit coupling term since it couples spin and momentum quantum numbers.

This is the extension of the (effective low-energy) Haldane mass term σzτz for a time-reversal

invariant spin system.

This term is referred to as ”intrinsic” spin-orbit coupling because its physical origin comes

from the motion of the electrons in the potential created by the atoms forming the lattice

(as we explain in the paragraph ”Lattice model”). It is invariant under the z → −z trans-

formation, called mirror symmetry about the plane.

In their seminal paper [11], Kane and Mele also considered a Rashba spin-orbit term;

alone it is not sufficient to open a gap but it may vary the gap yielded by HSO through the

coupling of both spin species. It is given by

HR = λR

∫︂

k

Ψ†
k (σxτzsy − σysx)Ψk . (1.90)

As for the intrinsic spin-orbit coupling term, we study the lattice version of this term in the

next paragraph.

Lattice model The total spin Hamiltonian H = H0 +HSO is found to be the low-energy

limit of two spin copies of the Haldane model (at ϕ = π/2 and M = 0), where the sign of

the t2 term depends on the spin degree of freedom:

t1
∑︂

⟨i , j⟩
α ̸=β

c†i,αIcj,β + it2
∑︂

⟨⟨i , j⟩⟩
α

νi jc
†
i,αszcj,α, (1.91)

where we can also write explicitly c†i,α =
(︂

c†i,α,↑, c
†
i,α,↓

)︂

. The t1 term is the graphene Hamil-

tonian H0 and at low energy the t2 term gives the spin-orbit term HSO. In graphene, the

physical origin of the t2 term is the spin orbit coupling between a particle’s spin and its
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motion (characterized by the momentum p = h̄k) in the lattice potential V (due to the

atoms) [11, 109, 132], given by [133]

(∇V × p) · s ∝ L · s, (1.92)

where L is the angular momentum operator and in graphene L · s reduces to Lzsz because

the system is invariant under mirror reflection about the lattice plane. As we mentionned

in Sec. 1.2.4, two types of orbitals are found in graphene, the sp2 orbitals which contribute

to the σ-bonds and pz orbitals which are the one we took into account to describe the low

energy properties of graphene. The amplitude ⟨Ri(r)|Lzsz |Rj(r)⟩ of the term in Eq. (1.92)

between two pz orbitals |Ri(r)⟩ and |Rj(r)⟩ centered at two nearest-neighbor sites i and j

is vanishing. Indeed, consider a vertical reflection plane along the bond between i and j;

under a mirror transformation about this plane, Lz is odd and the pz orbitals are unchanged.

Therefore ⟨Ri(r)|Lzsz |Rj(r)⟩ vanishes. If i and j are next-nearest neighbors, the lattice is

not invariant under the mirror transformation about vertical reflection plane along the i-j

bond. Although Kane and Mele first estimated the amplitude of this term to be ≈ 1 meV, it

was shown few years later ([134, 135]) that this term in graphene is actually very small (10−3

meV) compared to the relevant energies of the system (remind that the nearest neighbor

hopping term has amplitude ∼ 1 eV). The quantum spin Hall effect was also predicted to

happen in HgCdTe ([12, 13]) where the amplitude of the spin-orbit coupling is large ([2,

136–138]); this effect was then experimentally observed [14, 139–141].

Hamiltonian in Eq. (1.91) is time-reversal symmetric so it is characterized by a topological

Z2 invariant, as we argue in Sec. 1.4.2. Moreover, it is inversion symmetric, so it is possible

to compute ν from the method presented in Sec. 3.3.2. In fact, ν can also be computed as a

difference of Chern numbers associated to both spin energy band since the Hamiltonian in

Eq. (1.91) does not contain spin mixing terms. From Eq. (1.91), we see that we have two

spin-copies of the Haldane model at vanishing Semenoff mass. These two copies experience

an effective opposite magnetic density (in terms of the Haldane model), therefore the total
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polarization is vanishing but the difference in polarization between both Kramers’ partner is a

topological invariant. This difference is the difference between the Chern numbers associated

to both Kramers’ partner. If the system has open boundary, at each edge of the system, two

edge modes (forming a Kramers’ pair) are localized, they propagate along the edge in opposite

directions and they are associated to opposite spin polarizations. This gives a quantized spin

Hall conductivity σs
xy which relates the difference in the spin currents along the edges and an

applied electric field in the direction perpendicular to the edges. For instance, in a system

with translation invariance along the x direction, we have J↑ − J↓ = σs
xyEy, where Jσ is the

current along the x direction associated to the σ spin species when a small electric field Ey

is applied in the y direction. As we explain in App. B, in the momentum space, the energy

associated to both partners of a Kramers’ pair cross at the time reversal invariant points.

Time-reversal symmetry protects this crossing; single-particle scattering terms (which could

open a gap) between both partners of the Kramers’ edge pair are necessarily (because of

time-reversal invariance) vanishing. The energy associated to two modes localized at different

edges can also cross at other points in momentum space; the gap can not open here because

the scattering between modes localized at different edges of the (bulk insulating) system is

not possible.

The lattice version of the Rashba spin-orbit coupling term, which corresponds to a term

(s× p) · ez, with ez a unit vector along the z direction, reads

iλR
∑︂

⟨i , j⟩

c†i
(︁

σxd
y
i, j − σyd

x
i, j

)︁

cj. (1.93)

It arises when mirror symmetry about the two-dimensional lattice plane is broken and since

it mixes the spin degree of freedom, the Z2 invariant can not be obtained as simply as we

discussed in the previous paragraph. However, small values of λR (such that the band gap

does not close) do not destroy the topological phase, as we can see from the phase diagram

of the model Fig. 1.3. Starting in the topological phase at λR = 0 and varying λR, the spin

Hall conductivity σs
xy is not conserved (and not quantized) but the topological Z2 phase is
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number would be nonvanishing, it means that the system would present physical properties

breaking time-reversal symmetry (e.g. chiral edge modes) which is in contradiction with

the fact that we consider a time-reversal invariant system. Therefore the Chern number

is necessarily vanishing and can not characterize the topology of a time-reversal invariant

system.

In a time-reversal invariant system, Fu and Kane [48] showed that the variation of the

center of charge of the Wannier states is related to the topological properties and can be used

to build a topological invariant. To be more specific, here, what matters is the difference

between the center of charge of the Wannier states associated to both states of a Kramers’

pair. Let us review this in a formal way.

Z2 pumping protocol for time-reversal invariant systems We consider a one-dimensional

time-reversal invariant system with associated Hamiltonian H, space coordinate x and mo-

mentum coordinate kx. Moreover, we consider an isolated (Kramers’) pair of energy bands,

and we label each band by the indices I and II. We assume that there is no other degeneracy

in the energy spectrum than those imposed by time-reversal invariance θHθ−1 = H (which

appear at kx = {0, π,−π}). The band I eigenstate |uI−kx
⟩ (at −kx) is the time-reversal

transform of the band II eigenstate |uIIkx⟩, up to a U(1) phase factor:

|uI−kx⟩ = eiξkxθ |uIIkx⟩ , (1.94)

with ξkx a real number. θ2 = −1 gives

|uII−kx⟩ = −eiξ−kxθ |uIkx⟩ . (1.95)

We introduce, by analogy with Sec. 1.3.4, the polarization associated to the band s =

{I, II} eigenstate [48]

P s =
1

2π

∫︂ π

−π

dkxA
s(kx), (1.96)
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with As(kx) = i ⟨uskx | ∂kx |uskx⟩. We notice that P I = P II modulo an integer. Indeed, using

Eq. (1.94) and ⟨θuIIkx | ∂kx |θuIIkx⟩ = −⟨uIIkx | ∂kx |uIIkx⟩ we find

AI(−kx) = −i ⟨uI−kx | ∂kx |uI−kx⟩ = AII(kx) + ∂kxξkx , (1.97)

therefore

P I − P II =
1

2π

∫︂ π

0

dkx
[︁

AI(kx) + AI(−kx)− AII(kx)− AII(−kx)
]︁

(1.98)

=
1

2π

∫︂ π

0

dkx∂kx (ξkx − ξ−kx) =
1

2π
(ξπ − ξ−π) .

kx = π and kx = −π being the same points of the Brillouin zone, and the kets |uskx⟩ being

uniquely defined, we know that eiξ−π = eiξπ , which means that (ξπ − ξ−π) is equal to 2π times

an integer. In other words, for a time-reversal invariant system, the Wannier state associated

to the band s has the same center of charge (up to a lattice constant) than the Wannier state

associated to the time-reversed partner of the band s. The value of P I − P II is not a gauge

invariant (e.g. consider a simple gauge transformation |uskx⟩ → eikx |uskx⟩). The complete

set of Wannier functions associated to the band s states, {|ws
X⟩}, is a set of functions which

centers of charge run over all the lattice positions. The set of centers of charge associated

to the set of Wannier functions {|ws
X⟩} is invariant under a gauge transformation because of

the periodic boundary conditions. It is possible to choose the gauge such that P I − P II, the

difference between the centers of charge of |wI
0⟩ and |wII

0 ⟩ (more generally it is the difference

between the centers of charge of |wI
X⟩ and |wII

X⟩), is exactly vanishing (not up to an integer).

With this in mind, let us now discuss a pumping protocol for the system; it will naturally

lead us to define a topological invariant for a time-reversal invariant system.

As we did in Sec. 1.3.4, we consider an adiabatic evolution of H, from an initial time t = 0

to a final time T/2 (T is one period; H(0) = H(T )). We assume that the Bloch eigenvectors

are defined continuously between 0 and T/2 for all value of kx. We assume that H is time-

reversal invariant at t = 0 and T/2 while it breaks time-reversal invariance for each time

between t = 0 and T/2. At the time-reversal points t = 0 and T/2, we know that a pair of
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Wannier states is localized over each lattice site, because of time-reversal symmetry. Let us

assume that we choose the gauge as we discuss previously, such that |wI
X⟩ and |wII

X⟩ have the

same center of charge X at time t = 0, i.e. P I(0)−P II(0) = 0. During the pumping protocol

time-reversal symmetry is broken so the Wannier states are not required to be localized by

pairs. At the end of the pumping protocol (at time T/2), both partners of a ”Wannier pair”

which had the same center of charge at t = 0 can:

(i) be associated with the same center of charge; in this case |wI
X⟩ and |wII

X⟩ keep the same

center of charge X, or

(ii) be associated with the same center of charge up to one lattice constant; in this case

|wI
X⟩ has for instance center of charge X − 1/2 and |wII

X⟩ has center of charge X + 1/2 and

|wI
X⟩ form a pair with |wII

X−1⟩ and |wII
X⟩ form a pair with |wI

X+1⟩. We say that the Wannier

states ”switch partners” (see Fig. 1.4).

In both cases, the sum of the centers of charge is constant from t = 0 to T/2 because the

total Chern number is vanishing.

If the one-dimensional system has open boundary conditions, at T/2 and at each end of the

system, it appears one occupied Wannier state for a Wannier pair. Therefore each edge yields

two degenerate states, and the ground state for a system with two edges (cylinder geometry)

is composed of four degenerate states (see Fig. 1.5). This is unusual for noninteracting

topological phases: threading half a flux in the system changes the degeneracy of the ground

state (see [66]).

Let us define Pθ(t) = P I(t)− P II(t). We notice that, for the pumping protocol discussed

in the previous paragraphs, the number ∆ defined such that ∆ = Pθ(T/2)−Pθ(0) mod 2 is a

gauge invariant because a gauge transformation would transform Pθ(T/2) and Pθ(0) equally

(look at Eq. (1.98)). Both topologically distinct pumping processes that we referred as case

(i) and (ii) are characterized by a different value of ∆. In the case (i) both partners of a

”Wannier pair” keep the same center of charge therefore ∆ = 0 while in the case (ii), the
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with A(kx) = AI(kx) + AII(kx). A very similar computation leads to

P II =
1

2π

(︃∫︂ 0

−π

dkxA(kx)− ξπ + ξ0

)︃

, (1.102)

Let us write ξπ − ξ0 as the Pfaffian of a unitary matrix w(kx). This is important to get

an expression explicitly independent of the representation given by Eq. (1.94) and to show

that P I does not break the U(2) symmetry. The components of w(kx) are the projections of

the time-reversed partner of an eigenstate at kx over an eigenstate at −kx:

ws,s’(kx) = ⟨us−kx |θus’kx⟩ . (1.103)

At the time-reversal points kx = 0 and kx = π, w(kx) is antisymmetric. Indeed, using

kx = −kx for time-reversal invariant points, writing θ = MK, with M a unitary matrix, K

the complex conjugation operator, and using M = −MT , we find

ws,s’(kx) =
∑︂

m,n

(︁

uskx
)︁∗

m
Mm,n

(︁

us’kx
)︁∗

n
= −

∑︂

m,n

(︁

us’kx
)︁∗

n
Mn,m

(︁

uskx
)︁∗

m
= −ws’,s(kx). (1.104)

Here we explicitly have

ws,s’(kx) =

⎛

⎝

0 e−iξkx

−e−iξ−kx 0

⎞

⎠ , (1.105)

For a two-dimensional matrix, the Pfaffian is the off-diagonal component: Pf [w(kx)] = e−iξkx .

This gives

ξπ − ξ0 = i log

[︃

Pf [w(π)]

Pf [w(0)]

]︃

, (1.106)

from which we write

P I − P II =
1

2π

(︃∫︂ π

0

dkxA(kx)−
∫︂ 0

−π

dkxA(kx) + 2i log

[︃

Pf [w(π)]

Pf [w(0)]

]︃)︃

. (1.107)

From the explicit form of w(kx) Eq. (1.105), we can show that

P I − P II =
1

2iπ

(︃∫︂ π

0

dkx Tr
[︁

w†∂kxw
]︁

+ 2 log

[︃

Pf [w(π)]

Pf [w(0)]

]︃)︃

, (1.108)
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and

P I − P II =
1

2iπ

(︃∫︂ π

0

dkx ∂kx log det [w(kx)] + 2 log

[︃

Pf [w(π)]

Pf [w(0)]

]︃)︃

. (1.109a)

P I − P II =
1

2iπ

(︄

2 log

[︄

√︁

det [w(π)]
√︁

det [w(0)]

Pf [w(π)]

Pf [w(0)]

]︄)︄

. (1.109b)

Let us here write
√︁

det [w(π)] = eiχ, χ ∈]− π, π], such that its logarithm is on the principal

branch and remind that det [w(π)] = Pf [w(π)]2 which imposes that Pf [w(π)] = ei(χ+zπ), with

z an integer. Each integer z mod 2 is equivalent because ei2nπ = 1 with n an integer. If z is

odd or even, Pf [w(π)] is respectively opposite or equal to
√︁

det [w(π)]. Then we get

P I − P II = zmod 2, (1.110)

which shows that P I−P II is an integer defined modulo 2. This lead to the following definition

for ∆:

(−1)∆ =
4
∏︂

i=1

√︁

det [w(Γi)]

Pf [w(Γi)]
. (1.111)

We understand that ∆ is also an integer defined modulo 2 and since it is gauge invariant it

is the Z2 topological invariant which characterizes the topological properties of the system.

When using this formula it is essential that the wave functions evolve continuously during

the pumping protocol (if we study a two-dimensional system, the wave functions must evolve

continuously on the BZ), because it is essential for the pumping protocol that only one gauge

choice is used. The same results can be found if we would have considered several Kramers’

pairs (see Ref. [48]). We notice that if the system has extra-symmetries, the computation

of ν may be simplified (see Chapter 3) and we also notice that several other formulations of

this invariant has been proposed [144–148].

In the next chapter, we show explicit computations of the Z2 invariant for the Haldane

model and for the simple kagome model studied in Sec. 3.1. This makes the connection

between the general theory we introduced in this section and practical implementations of

the Z2 invariant computation that we developed and which we use in Chapters 4 and 5.
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1.5 Conclusion

In this chapter, we have introduced the general formalism we use throughout this manuscript.

We have reviewed the important discoveries and concepts in topology in condensed matter

which are relevant for the studies we present in the following.

The Berry phase is one of the most important concept in this regard and its connection

with the integer quantum Hall effect, the Chern number and the properties of Chern insula-

tors have been explained. We have tried to make clear the connection between topological

invariant and physical observables. This concepts are widely used in this manuscript, either

for the study of Chern insulators (see Chapters 2, 3 and 4), or for the understanding of

time-reversal invariant topological insulators (Chapters 3 and 5). We also have reviewed two

tight-binding models on the honeycomb and on the kagome lattice. These are the elementary

building blocks of the models we study in the following.

Finally, we have reviewed the topological band theory describing time-reversal invariant

topological systems and the associated topological Z2 invariant. This is particularly relevant

for Chapter 5 where we study such systems. We have emphasized on the particularly im-

portant role of the spin-orbit coupling; its description and its relation with topology is also

useful for the chapter 4.
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Chapter 2

Haldane light system and local probe
of the Chern number

In this chapter, we review the Haldane model [5], we develop a computation of the associated

bands’ Chern number and we propose a protocol to probe the Haldane topological phase

diagram in a photonic system. An article related to the work presented in this chapter,

whose authors are J.L. and Karyn Le Hur, is currently in preparation.

The Haldane model (1988) is a topological model for a Chern insulator without Landau

levels on the honeycomb lattice [5]. It is characterized by a local magnetic flux density

which respects the spatial translational symmetry of the lattice but breaks time-reversal

symmetry. The total flux in the unit cell is vanishing. This is in contrast with the quantum

Hall phase [6] (see Sec.1.1.3) which implies non-vanishing flux in the unit cell (because of the

uniform external magnetic field). It was the first theoretical model predicting the quantum

anomalous Hall effect. A quantum anomalous Hall phase is a phase characterized by non-

vanishing Chern number in a system with vanishing total flux in the unit cell. Some of the

topological properties associated to such a phase were described in Sec. 1.3.2 of Chapter 1.

The Haldane model has had a huge impact in topology in condensed matter, and it led, a bit

more than fifteen years later, to the birth of topological band theory. The kagome systems

we study in Chapters 3, 5 and 4 are deeply related to the Haldane model.

The Haldane model has been realized in solid-state systems, in cold atom gases and in
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photonic systems (coupled waveguides) [112, 149, 150]. One very convenient way to realize

this model for artificial systems is to use Floquet engineering [149–154].

The most common way to probe the topological properties of a Chern insulator, in con-

densed matter systems, is to determine the Hall conductance from transport measurements

[6, 155]. The topological properties of artificial systems have been measured in many differ-

ent ways [15–18]. In cold atom gases, the measurement of the topological properties has been

realized for instance, via transport measurements (measurement of the Hall drift) [150, 156],

using interferometry [157–159], relying on the observation of chiral edge states [160, 161] or

via a measurement of the Berry curvature [162]. Let us also mention that, for condensed

matter systems and cold atom gases, it has been shown that the response to a circular drive

on the system also enables to probe the topology [163–169]. In photonics systems several

ways to measure the topological properties have also been studied. These systems gather for

instance gyromagnetic photonic crystal [170–173], arrays of coupled waveguides [149, 174,

175] optomechanical systems [176, 177] and cavity and circuit quantum electrodynamics

(cQED) [33, 178–182]. These artificial systems enable to build artificial fields [17, 183].

We are here interested in a Haldane boson model in cQED systems [18, 180, 181]. Several

cQED systems have been realized and in some cases the topological properties have been

measured [33, 178, 179]. An example of cQED system leading to an effective photon kagome

lattice Hamiltonian was proposed in Ref. [33]. In this system the microwave resonators

(which are series of LC circuits) are arranged in a honeycomb array and coupled together

via Josephson ring circulators.

In Ref. [30], a protocol to probe the topological properties of a one-dimensional LC circuit

system is proposed. In this work, the authors considered a transmission line (capacitively)

coupled to a single cell in the chain. They showed how one can rebuild the Zak phase (which

is the topological invariant characterizing the one-dimensional system the authors studied)

from the reflection coefficient. In this chapter, we consider a local light probe with capacitive
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coupling to a Haldane boson model in cQED. We show one can measure the Chern number

from the reflection coefficient at specific energy points.

This chapter is organized as follows. In Sec. 2.1, we review the Haldane model for a boson

system. First, we explain that the Haldane model is a valid simple choice for a honeycomb

tight-binding model which breaks time-reversal symmetry and which have vanishing total

flux in the unit cell. We write the associated Hamiltonian and we give its momentum-space

representation, along with some important remarks on the energy dispersion relation.

In Sec. 2.2, we perform an explicit analytical computation of the bands’ Chern numbers

for the Haldane model, starting from Eq. (1.79) of Chapter 1. We explicitly show how the

sign of the ”mass function” determines both band’s Chern numbers. Such a computation

does not appear explicitly in the literature, to the best of our knowledge. Both first sections,

Sec. 2.1 and Sec. 2.2, are written for a boson system to avoid introducing other definitions in

Sec. 2.3, however the results obtained in both first sections do not depend on the statistics.

In Sec. 2.3, we consider a local capacitive probe on the lattice and the reflection coefficient

which relates an input voltage and an output voltage in this probe. We show that the sign

of the ”bulk gap function” is encoded in this reflection coefficient at the energy of the Dirac

point at which the band gap is the narrowest. In the system we consider, which is made of

resonators of frequency amplitude in the GHz range, the sign of the ”bulk gap function” is

measurable via microwave light.

2.1 Haldane model

In this section, we introduce the Haldane model for a light system. First, we explain that,

for a honeycomb tight-binding model which breaks time-reversal symmetry and which have

vanishing total flux in the unit cell, a valid simple choice contains real nearest neighbor

hopping terms and complex next-nearest neighbor hopping terms. Then we write the Haldane

Hamiltonian and introduce the notations which we use in this chapter.
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2.1.1 Breaking time-reversal symmetry while having a vanishing
total flux in the unit cell

As explained in Sec. 1.2.4 of Chapter 1, breaking time-reversal symmetry is necessary to

open a gap in the system and therefore to possibly obtain topological energy bands. A

non-vanishing local magnetic flux density B(r) with vanishing total flux in the unit cell [5]

breaks time-reversal invariance, because the time reversal operator send B(r) to its opposite.

We can impose that B(r) respects the symmetries of the lattice. Then, the vector potential

A(r) which derives from B(r) can be chosen to have the same periodicity than the lattice.

The honeycomb lattice is such if the magnetic flux is vanishing in a unit cell, it is vanishing

in an hexagon (see Fig. 2.2(b)). Moreover, all the nearest-neighbor closed paths in the

lattice are made of an integer number of hexagons and therefore are associated to zero

magnetic flux. Therefore the nearest neighbor hopping terms (deriving from the B(r) field

that respects the symmetries of the lattice) shall not give rise to a topologically non-trivial

lattice model. Another way to reach this conclusion is to notice that all the valid choices

of nearest neighbor hopping terms are equivalent, up to a local U(1) gauge transformation,

to the ”bare” choice where all the nearest neighbor hopping terms are real. The latter is

associated to a topologically trivial lattice model so we deduce that it is the same for all the

valid choices of nearest neighbor hopping terms.

The smallest area enclosed by the next-nearest neighbors is smaller than the area of a unit

cell. Therefore it is possible to choose B(r) such that a closed path along the next-nearest

neighbors encircle a region threaded by a non-vanishing flux while the total flux in the unit

cell is vanishing (see Fig. 2.2(b)). Then the next nearest neighbor terms, associated to

complex amplitudes, break the time-reversal symmetry and may yield a topological system.

In both next subsections, we review the lattice Hamiltonian of the Haldane model and

investigate the associated dispersion relation. The computation of the topological invariant

for the bulk bands in performed in Sec. 2.2.
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2.1.2 Haldane Hamiltonian for a photonic system

We consider a circuit quantum electrodynamic (cQED) system made of an array of resonators

coupled together in such a way that the system is described by an effective photon lattice

Haldane Hamiltonian H. Such a photonic system is permanently driven to compensate for

the photon decay processes that necessarily happen [18]. A photonic system has positive

energy eigenvalues; usually, in such a system, the on-site energies are large (denoted h̄Ω0 here,

usually ∼ GHz order of magnitude) compared to the hopping amplitudes on the effective

lattice (e.g. can be ∼ 10 MHz to ∼ 100 MHz) [33, 184, 185]. The effective photon lattice

Haldane Hamiltonian H reads

H = t1
∑︂

⟨i , j⟩
α ̸=β

c†i,αcj,β + t2
∑︂

⟨⟨i , j⟩⟩
α

eiνi jφc†i,αcj,α +
∑︂

i

(h̄Ω0 + ξαM) c†i,αci,α, (2.1)

where c†i,α is the creation operator for a color-α boson at site i. t1 ∈ R, t2 ∈ R and the

associated sums respectively runs over all the nearest neighbors (therefore α and β are

different colors) and all the next-nearest neighbors i and j with color α = {A,B}. ϕ ∈ R

and νi j = +1 (−1) if the associated c†i,αcj,α term displaces a particle clockwise (counter-

clockwise) along the triangle made by the α-color sites in the concerned hexagon of the

lattice (see Fig. 2.2(a)). M ∈ R, ξA = +1 and ξB = −1 and the associated sum runs over all

sites of the lattice. This term is a color-alternate mass term first studied by Semenoff who

also considered the real nearest neighbors terms in the honeycomb lattice [186]. Varying the

amplitude M , we show in Sec. 2.2 that the Semenoff term enables to study the transition

from a trivial insulator to a Chern insulator (topological phase with finite Chern number).

h̄Ω0 is chosen such that all the energies associated to H are positive. In Ref. [5], Haldane

considered fermions and no h̄Ω0 term; in fact the first part of this chapter (Secs. 2.1 and 2.2)

does not depend on the statistics and the term h̄Ω0 has almost no effect (just a shift of the

Fermi energy) but we already specify the statistics and consider the term h̄Ω0 so that we do

not have to change notations.
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2.1.3 Momentum space and dispersion relation

A Fourier transformation gives a formulation of H in momentum space

H =
∑︂

k

Ψ†
khkΨk, (2.2a)

hk = h̄Ω0I+ 2t2 cosϕ

[︄

3
∑︂

i=1

cos(k · bi)

]︄

I+ t1

3
∑︂

i=1

[cos(k · ai)σx + sin(k · ai)σy]

+

[︄

M − 2t2 sinϕ
3
∑︂

i=1

sin(k · bi)

]︄

σz, (2.2b)

with Ψ†
k =

(︂

c†k,A, c
†
k,B

)︂

, defined in Sec. 1.2.4 and ai, i ∈ {1, 2, 3} and bi, i ∈ {1, 2, 3} defined

in Fig. 2.2. We remind that the three Pauli matrices σx, σy, σz act in sub-lattice space. We

notice that the σz term of equation (2.2b) opens a gap and the t2 term breaks time reversal

symmetry.

The Haldane model is characterized by two energy bands in momentum space E1,k and

E2,k given by

E1,k = h0(k)−
√︁

|h1(k)|2+h2(k)2, and E2,k = h0(k) +
√︁

|h1(k)|2+h2(k)2, (2.3)

with

h0(k) = h̄Ω0 + 2t2 cosϕ
3
∑︂

i=1

cos(k · bi), (2.4a)

h2(k) =M − 2t2 sinϕ
3
∑︂

i=1

sin(k · bi), (2.4b)

h1(k) = t1

3
∑︂

i=1

exp(−ik · ai). (2.4c)

From Eqs. (2.3), we see that a band crossing appears at h1(k) = h2(k) = 0. h1(k) = 0 is

reached at both inequivalent pointsK =
g3 − g2

3
andK′ =

g2 − g3

3
in the Brillouin zone (see

Fig. 2.3(a)), with g2 and g3 defined by −g2 ·b2 = 2π, g2 ·b3 = 0, g3 ·b2 = 0, and g3 ·b3 = 2π.

Moreover, we have h2(K) = 0 if M = +3
√
3t2 sinϕ and h2(K

′) = 0 if M = −3
√
3t2 sinϕ.

When the bands cross, the dispersion relation around K and K′ is linear. The K and K′ are

called the Dirac points. The energies for several values of M are represented in Fig. 2.1.
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Figure 2.2: (a) Honeycomb lattice representation and definition of the sub-lattices A and B,
of the nearest neighbors and next-nearest neighbors hopping amplitudes and of the displace-
ment vectors ai, i ∈ {1, 2, 3} and bi, i ∈ {1, 2, 3}. (b) Magnetic fluxes in the unit cell, which
contains one ”up” triangle (associated to a flux +3ϕ and delimited here by a green dashed
line with arrow) and one ”down” triangle (associated to a flux −3ϕ and delimited here by
a green dashed line with arrow). The regions shaded with the same color are equivalent up
to a lattice translation and are threaded by the same magnetic flux. This shows that the
magnetic flux in an hexagon is vanishing.

2.2 Smooth Berry gauge fields and topological proper-

ties of the Haldane model

In this section, using Eq. (1.79) of Chapter 1, we show an analytical computation of the

bands’ Chern numbers for the Haldane model introduced in Sec. 2.1. We identify how the

change of sign of the function h2 (see Eq. (2.4)) at the Dirac points results in the variation

of the topological properties of the model. In Sec. 2.3, we show that this can be measured

via a local capacitive probe on the lattice.

2.2.1 Hamiltonian and eigenvectors

In Sec. 1.2.2 of Chapter 1, we reminded that the real-space periodic part of the Bloch

eigenvector satisfy

e−ik·r̂Ĥeik·r̂ |un,k⟩ = En,k |un,k⟩ , (2.5)
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i.e. the kets |un,k⟩’s are the eigenvectors of

e−ik·r̂Heik·r̂ =
∑︂

k

Ψ†
kh̃kΨk, (2.6)

with

h̃k = t1 [1 + cos(k · b1) + cos(k · b2)] σ
x + t1 [sin(k · b1)− sin(k · b2)] σ

y, (2.7)

which we also write

e−ik·r̂Heik·r̂ =
∑︂

k

Ψ̃
†

khkΨ̃k, (2.8)

with Ψ̃
†

k =
(︂

c†k,A, e
ik·a3c†k,B

)︂

. In other words, |ui,k⟩ , i = {1, 2} is the eigenvector of hk in the

basis
(︂

c†A,k, e
ik·a3c†B,k

)︂

. Let us define the coefficients ai(k) and b̃i(k) such that

|ui,k⟩ =
(︂

ai(k)c
†
A,k + b̃i(k)e

ik·a3c†B,k

)︂

|0⟩ , (2.9)

with

|ai(k)|2 +
⃓

⃓

⃓
b̃i(k)

⃓

⃓

⃓

2

= 1. (2.10)

From the relation hk |ui,k⟩ = Ei |ui,k⟩, we get

b̃i(k) =
h1(k)

∗

h2(k)− h0(k) + Ei,k

ai(k), (2.11)

with h0, h1 and h1 defined in Sec. 2.1.3. It is useful to define bi(k) = b̃i(k)e
ik·a3 , so that

ai(k) and bi(k) are the components of the eigenvectors in the basis
(︂

c†A,k, c
†
B,k

)︂

,

|ui,k⟩ =
(︂

ai(k)c
†
A,k + bi(k)c

†
B,k

)︂

|0⟩ , (2.12)

with

|ai(k)|2 + |bi(k)|2 = 1, (2.13)

and the relation between the components of the eigenvectors reads

bi(k) =
eik·a3h1(k)

∗

h2(k)− h0(k) + Ei,k

ai(k). (2.14)
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2.2.2 Gauge choices, unique and smooth Berry gauge fields

Let us describe two gauge choices GI and GII for the eigenvectors that we respectively write

|ui,k,I⟩ and |ui,k,II⟩. Then we show how these choices enable to define the Bloch eigenvectors

so that we can compute the bands’ Chern numbers using Eq. (1.79) from Sec. 1.3.2 of

Chapter 1.

Gauge choices We define both following gauge choices:

(i) Gauge choice GI : the coefficient ai(k) is real. More precisely, we choose

ai(k) = ρi(k) , (2.15)

with

ρi(k) =
h2(k)− h0(k) + Ei,k

Ri(k)
, (2.16)

and Ri(k) =
[︂

2
(︂

h2(k)
2 + |h1(k)|2+(−1)ih2(k)

√︁

|h1(k)|2+h2(k)2
)︂]︂1/2

, and we have

bi(k) = λi(k)e
−iϕ(k) , (2.17)

with

λi(k) =
|h1(k)|
Ri(k)

and e−iϕ(k) =
eik·a3h1(k)

∗

|h1(k)|
. (2.18)

(ii) Gauge choice GII : the coefficient bi(k) is real. We choose

bi(k) = λi(k), (2.19)

and we have

ai(k) = ρi(k)e
iϕ(k). (2.20)

Let us notice that h1(k) is vanishing only at the Dirac points K and K′ and that we have

h2(k) − h0(k) + Ei,k = h2(k) + (−1)i
√︁

|h1(k)|2+h2(k)2. From this, we see that h2(k) −

h0(k) + Ei,k (and therefore R) may be vanishing only at the Dirac points K and K′. We
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|M | < 3
√
3t2|sinϕ| > 3

√
3t2|sinϕ|

sgn(h2(K)) sgn(sinϕ) sgn(M)

sgn(h2(K
′)) −sgn(sinϕ) sgn(M)

Table 2.1: Table giving the sign of h2(K) and h2(K
′) as a function of M and sgn(sinϕ).

(−1)i sgn(sinϕ) limk→K [ρi(k)] limk→K′ [ρi(k)] limk→K [λi(k)] limk→K′ [λi(k)]

+1 0 sgn(sinϕ) 1 0

−1 −sgn(sinϕ) 0 0 1

Table 2.2: Table giving the values of of ρi(k) and λi(k) at the Dirac points in the case
|M |< 3

√
3t2|sinϕ| , as a function of the sign of the Semenoff mass M and of the index of

the energy band i.

have

lim
h1→0

(h2(k)− h0(k) + Ei,k) = lim
h1→0

(︃

|h2|
(︁

sgn (h2) + (−1)i
)︁

+ (−1)i
|h1|2
|h2|

)︃

, (2.21a)

lim
h1→0

R = lim
h1→0

[︁

2h2(k)
2
(︁

1 + (−1)i sgn (h2)
)︁

+ 2|h1(k)|
(︁

1 + (−1)ih2(k)/2
)︁]︁1/2

. (2.21b)

The sign of h2 at both Dirac points is given in Table 2.1 as a function of M and ϕ.

Smooth Berry gauge fields and Chern numbers We are looking for the zeros of ρi(k)

and λi(k), which potentially yield (depending on the gauge choice) non-smooth definition

of the Berry gauge field Ak. Here we need to distinguish the cases |M |< 3
√
3t2|sinϕ|,

|M |= 3
√
3t2|sinϕ| and |M |> 3

√
3t2|sinϕ|.

(i) In the case |M |< 3
√
3t2|sinϕ|, we gathered the values of of ρi(k) and λi(k) at the

Dirac points in Table 2.2. From this table, we see that it is impossible to apply gauge choice

GI or gauge choice GII everywhere in the BZ because ρi(k) and λi(k) are vanishing at one

of the Dirac points. It follows that it is impossible to find a unique and smooth phase for

the ket |ui,k⟩ and therefore it is impossible to find a unique and smooth Berry gauge field

Ak everywhere in the BZ. Let us split the BZ into two non-overlapping domains [10]. One
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domain, which we call the DI domain containsK and the other one, the DII domain, contains

K′, as if is sketched in Fig. 2.3(a). The boundary between DI and DII do not contain neither

K nor K′. We also define P a closed path along this boundary (see Fig. 2.3(a)), surrounding

once K (and also K′ since the BZ is a torus).

Now, for (−1)i sgn(sinϕ) = +1, we applyGI for the points contained inDII andGII for the

points contained in DI while for (−1)i sgn(sinϕ) = −1, we apply GI for the points contained

in DI and GII for the points contained in DII . Then the phase of |ui,k,I⟩ (the eigenstate in

DI) and |ui,k,II⟩ (the eigenstate in DII) and the Berry gauge fields Ai,k,I = ⟨ui,k,I | ∇k |ui,k,I⟩

and Ai,k,II = ⟨ui,k,II | ∇k |ui,k,II⟩ are uniquely and smoothly defined respectively on DI and

DII . As we did in Sec. 1.3.2 of Chapter 1, we write the Chern number associated to the jth

band (remind that j = 1 or j = 2)

Cj =
1

2iπ

(︃∫︂

DI

d2k [∇k ×Aj,k,I] · ez +
∫︂

DII

d2k [∇k ×Aj,k,II] · ez
)︃

. (2.22)

Using Stokes’ theorem and considering the specific choice of path P shown in Fig. 2.3(a)

leads to

Cj =
1

2iπ

(︃∮︂

P

dk ·Aj,k,I −
∮︂

P

dk ·Aj,k,II

)︃

. (2.23)

Along P, we have |uj,k,I⟩ = ei(−1)j sgn(sinφ)ϕ(k) |uj,k,II⟩. We choose φ(k) so that it is smooth

along the whole P path and we obtain

Cj =
(−1)j sgn(sinϕ)

2π

∮︂

P

dk · ∇kφ(k). (2.24)

Ci is found by studying how φ(k) evolves when moving along P. Generally speaking, when

the P path surround a φ(k)’s divergence (here at the K or K′ point), the accumulated phase

increases or decreases by ±2πz, z ∈ Z, which gives a quantized value of C, as expected.

Here, from the expression of φ(k) (see Eq. (2.18)) and from the expression of h1(k) (see

Eq. (2.4c)), we find that φ(k) changes by −2π when moving along the entire closed path P.

One can also easily build intuition from Eq. (1.52) for a small path around K or K′. This
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gives

Ci = (−1)i+1 sgn(sinϕ). (2.25)

(ii) If |M |= 3
√
3t2|sinϕ| then the bands cross at K or K′ so the Chern number is not

defined.

(iii) In the case |M |> 3
√
3t2|sinϕ|, we gathered the values of ρi(k) and λi(k) at the Dirac

points in Table 2.3. At both Dirac points, either ρi(k) or λi(k) are non-vanishing, therefore

it is possible to find a unique and smooth phase for the ket |ui,k⟩ everywhere in the BZ which

leads to a unique and smooth Berry gauge field Ak. Depending on the value of (−1)i sgn(M),

we apply gauge choice GI or GII for all the points of the BZ, and then we can show that the

associated wave function |ui,k,I⟩ or |ui,k,II⟩ (and its phase) is uniquely and smoothly defined,

as is the Berry gauge field Ai,k,III = ⟨ui,k,III | ∇k |ui,k,III⟩. Because the BZ is a torus, we find

that the Chern numbers Ci are vanishing.

This gives the phase diagram of the Haldane phase diagram shown in Fig. 2.3(b): in

the case |M |< 3
√
3t2|sinϕ|, we have Ci = (−1)i+1 sgn(sinϕ) while if |M |> 3

√
3t2|sinϕ|,

the Chern numbers Ci are vanishing. Moreover we showed (see namely Eq. (2.21)) that

the sign of h2 at the Dirac points (see Table 2.1) indicates the value of Ci. To be more

specific, the discontinuity in the value of Ci at the transition arises from a discontinuity

in sgn(h2(K))sgn(h2(K
′)): at |M |< 3

√
3t2|sinϕ|, sgn(h2(K))sgn(h2(K

′)) = −1 while at

|M |> 3
√
3t2|sinϕ|, sgn(h2(K))sgn(h2(K

′)) = +1. In other words, when the sign of h2 is

opposite at the Dirac points, the system is a Chern insulator, while when the sign of h2 is

the same at the Dirac points, the system is a trivial insulator. In the following section, we

show how the sign of h2 at the Dirac points can be measured in a Haldane light system via

a local capacitive probe on the lattice.
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2.3.1 Capacitive coupling with a transmission line

In this section we consider a resonator (light) probe which is coupled to the Haldane photonic

system described in Sec. 2.1.2. We assume a capacitive coupling between the probe and the

system. We write Hprb the Hamiltonian associated to the probe and Hcpl the Hamiltonian

describing the coupling between the system and the probe.

Probe The probe is a resonator with a certain number of (relevant) modes, each mode

q being characterized by the frequency ωq > 0. The probe is coupled to the system at

position R0. The lattice site at position R0 belongs to the sublattice A or B; in each case we

respectively define j0 = j (R0) = 1 or j0 = j (R0) = 2. We write the Hamiltonian associated

to the probe

Hprb =
∑︂

q

ωqb
†
R0,q

bR0,q, (2.26)

with bR0,q the annihilation operators for the mode q of the probe at R0.

Coupling We assume a capacitive coupling between the probe and the resonator at lattice

site at R0. The associated Hamiltonian reads

Hcpl =
(︂

cR0 + c†R0

)︂

∑︂

q

gq

(︂

bR0,q + b†R0,q

)︂

, (2.27)

where we wrote c†R0
the creation operator for a boson at site R0. The coupling amplitude gq

is assumed not to depend on the position of the probe. Let us define g = maxq (gq). In the

following, we consider that g is small compared to the energies Ei,k of the system.

2.3.2 Response function and topological properties

Here we investigate the relation between an input voltage ⟨V in
R0
[ω]⟩ at frequency ω in the probe

at R0 and the resulting output voltage ⟨V out
R0

[ω]⟩ (still in the probe at R0), with ⟨V in
R0
[ω]⟩

and ⟨V out
R0

[ω]⟩ the Fourier transforms with respect to the time variable t of respectively (see
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App. C)

V in
R0
(t) =

∑︂

q

gq
(︁

e−iωq(t−ti)bR0,q(ti) + h.c.
)︁

, (2.28)

and

V out
R0

(t) =
∑︂

q

gq
(︁

e−iωq(t−tf )bR0,q(tf ) + h.c.
)︁

. (2.29)

ti is an initial time in distant past and tf is a final time in the distant future. We show that for

a frequency ω corresponding to the energy at one of both Dirac points, this relation between

⟨V in
R0
[ω]⟩ and ⟨V out

R0
[ω]⟩ can be used to evaluate the sign of h2 and therefore to rebuild the

Haldane phase diagram. We also mention the connection with the energy density of states.

For explicit definitions and demonstrations we refer to App. C.

Relation between ⟨V in
R0
[ω]⟩ and ⟨V out

R0
[ω]⟩

In App. C, we computed the relation between the output voltage operator in a probe at a

certain position on the lattice and the input voltage operators associated to an ensemble of

probes on the lattice. Here, considering only one probe at R0, and taking the average values

of these operators in the driven probe’s state gives

⟨V out
R0

[ω]⟩ = (1 + iJ [ω]χR0,R0) ⟨V in
R0
[ω]⟩+O(g4), (2.30)

where we remind that ⟨V in
R0
[ω]⟩ and ⟨V out

R0
[ω]⟩ are first order terms in g and with

J [ω] = 2
√
2π
∑︂

q

g2q [δ(ω − ωq)− δ(ω + ωq)] , (2.31)

and

χR0,R0 =
1√
2N

2
∑︂

i=1
k

(︄
(︁

βi
j0,k

αj0
i,k

)︁∗

−ω − Ei,k + i0+
−

βi
j0,k

αj0
i,k

−ω + Ei,k + i0+

)︄

, (2.32)

where N is the number of lattice sites and Ei,k is defined in Eq. (2.3). α1
i,k and α2

i,k are

respectively the coefficients ai(k) and b̃i(k) appearing in Eq. (2.11):

α2
i =

h1(k)
∗

h2(k)− h0(k) + Ei,k

α1
i , (2.33)
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from which we write the eigenvectors of the matrix hk (defined in Eq. (2.2b))

|Φi,k⟩ = Φ†
i,k |0⟩ =

(︂

α1
i,kc

†
A,k + α2

i,kc
†
B,k

)︂

|0⟩ , (2.34)

and the coefficients βj
i,k are defined by

a†j,k |0⟩ =
2
∑︂

i=1

βi
j,kΦ

†
i,k |0⟩ . (2.35)

Using Eqs. (2.33) and (2.34), we obtain

βi
j0,k

αj0
i,k =

1

2
+

(−1)j0+i+1h2(k)

2
√︁

|h1(k)|2+h2(k)2
, (2.36)

which is a real number.

The sign of h2 at the Dirac points

Now, we transform the variable k into a continuous variable, i.e. we consider the large

number of lattice sites limit, and we use

∫︂∫︂

BZ

dk1dk2
βi
j0,k

αj0
i,k

−ω ± Ei,k + i0+
= P

[︃∫︂

R

dE

−ω ± E

∫︂∫︂

BZ

dk1dk2β
i
j0,k

αj0
i,kδ(E − Ei,k)

]︃

− iπ

∫︂∫︂

BZ

dk1dk2β
i
j0,k

αj0
i,kδ(−ω ± Ei,k),

(2.37)

where P denotes the principal value. We obtain

√
2(2π)2χR0,R0 = −

2
∑︂

i=1

P

[︃∫︂

R

dE

−ω + E

∫︂∫︂

BZ

dk1dk2β
i
j0,k

αj0
i,kδ(E − Ei,k)

]︃

+
2
∑︂

i=1

P

[︃∫︂

R

dE

−ω − E

∫︂∫︂

BZ

dk1dk2β
i
j0,k

αj0
i,kδ(E − Ei,k)

]︃

+ iπ

2
∑︂

i=1

∫︂∫︂

BZ

dk1dk2β
i
j0,k

αj0
i,kδ(−ω + Ei,k)

− iπ
2
∑︂

i=1

∫︂∫︂

BZ

dk1dk2β
i
j0,k

αj0
i,kδ(−ω − Ei,k).

(2.38)

Let us denote 1 + iJ [ω]χR0,R0 = R(ω). From Eq. (2.30) and because J [ω] is of order 2 in g,

we have
⃓

⃓⟨V out
R0

[ω]⟩
⃓

⃓ = Re [R(ω)]
⃓

⃓⟨V in
R0
[ω]⟩
⃓

⃓+O(g4), (2.39)
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with
⃓

⃓⟨V out
R0

[ω]⟩
⃓

⃓

2
= ⟨V out

R0
[ω]⟩

(︁

⟨V out
R0

[ω]⟩
)︁∗

and the same holds for ⟨V in
R0
[ω]⟩ and Re [R(ω)]

reads

Re [R(ω)] =1− J [ω]π√
2(2π)2

2
∑︂

i=1

∫︂∫︂

BZ

dk1dk2β
i
j0,k

αj0
i,kδ(−ω + Ei,k)

+
J [ω]π√
2(2π)2

2
∑︂

i=1

∫︂∫︂

BZ

dk1dk2β
i
j0,k

αj0
i,kδ(ω + Ei,k).

(2.40)

⃓

⃓⟨V out
R0

[ω]⟩
⃓

⃓ and
⃓

⃓⟨V in
R0
[ω]⟩
⃓

⃓ are respectively the amplitudes of the average output and input

voltages in the probe at frequency ω.

Let us consider a probe with one relevant mode ω0 > 0 and an average input voltage in

the probe which is a cosine function of time with amplitude V0 (and frequency ω0) to fix the

ideas. It gives two delta peaks in the frequency space at −ω0 and +ω0. Therefore
⃓

⃓⟨V out
R0

[ω]⟩
⃓

⃓

is non-vanishing only for ω = −ω0 or ω = +ω0. The average output voltage at −ω0 and +ω0

is then respectively given by Re [R(−ω0)]V0/2 and Re [R(+ω0)]V0/2. J [ω] reads

J [ω] = 2
√
2πg2 [δ(ω − ω0)− δ(ω + ω0)] , (2.41)

therefore we have (remind that the energies Ei,k are positive numbers)

Re [R(−ω0)] = Re [R(+ω0)] =1− g2

2

2
∑︂

i=1

∫︂∫︂

BZ

dk1dk2β
i
j0,k

αj0
i,kδ(−ω0 + Ei,k). (2.42)

Now let us assume that ω0 = Ej0,k0 with k0 an arbitrary wave-vector in the BZ. We have

βj0
j0,k

αj0
j0,k

=
1

2
− h2(k)

2
√︁

|h1(k)|2+h2(k)2
. (2.43)

We notice that at the Dirac points, |h1|= 0 so 2βj0
j0,k

αj0
j0,k

= 1− sgn(h2). Therefore, if Ej0,k0

is non-degenerate at k0 = K or k0 = K′, Re [R(ω)] can be used to probe the sign of h2

respectively at k = K or k = K′. For instance, from Fig. 2.1, we observe that, at ϕ = π/2

and t2 = 0.15t1, for M > 0, Ej0,K , j0 ∈ {1, 2} is non-degenerate. In fact, at t2 ≲ 0.15t1, for

sinϕ > 0 andM/t2 > 0, Ej0,K , j0 ∈ {1, 2} is non-degenerate and for sinϕ > 0 andM/t2 < 0,

Ej0,K′ , j0 ∈ {1, 2} is non-degenerate.
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(ii) From Eq. (2.36), we notice that the density of states can be measured by summing

the responses 1 − Re [R(ω)] for both energies ω = E1,K and ω = E2,K with a probe at

j0 = 1 (sublattice A) or j0 = 2 (sublattice B). The density of states can also be measured

by summing the responses 1− Re [R(ω)] for both energies ω = Ei,K with a probe at j0 = 1

(sublattice A) and ω = Ei,K with a probe at j0 = 2 (sublattice B), for i = 1 (lowest energy

band) or i = 2 (highest energy band).

(iii) If the input is created at a site on the sublattice (A or B) and the output is measured

at a site on the other sublattice (respectively B or A), we have

βi
j0,k

αj0
i,k ∝ h1(k)

2
√︁

|h1(k)|2+h2(k)2
, (2.44)

where j0 = 2(1) if j0 = 1(2). At the Dirac points, h1 is vanishing, therefore the measure here

does not help to rebuild the topological phase diagram.

(iv) Other reflection/transmission measures have been proposed in the litterature. For

instance, in Ref. [187], the reflection coefficient gives the (Hofstatter) energy spectrum. This

differs from our system namely from the coupling considered. In this Ref. [187], the authors

(see the ”Supplementary Information” file) have considered that each resonator mode couples

to a single running wave in the probing waveguides. This is different from the (capacitive)

coupling we considered.

(v) Numerical computations of 1−Re [R(ω)] for nearest-neighbor tight binding topologi-

cal models on the kagome lattice (for several configurations of the chemical potentials) show

that it is also possible to evaluate the topological properties with this capacitive-coupling

light probe. The details of the analytical computations are more complicated than for the

honeycomb lattice (because the kagome lattice has three sites per unit cell) but it seems

possible to show analytically that this capacitive-coupling light probe indeed is informative

about the value of the Chern number. For this computation, the explicit analytical compu-

tation of the bands’ Chern numbers, as we showed in this chapter for the Haldane model, is

helpful. We perform this computation in the following chapter. More generally, it should be
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possible to make a clear link between the Chern number and the response function computed

in this section, for an arbitrary lattice model. We are currently working on this.

(vi) We also considered a protocol to probe the Chern number for a Haldane (fermion)

model with a capacitively coupled probe, described by the coupling

c†R0
cR0

∑︂

q

gq

(︂

bR0,q + b†R0,q

)︂

, (2.45)

where cR0 is a fermion annihilation operator (and bR0,q is still a boson annihilation operator).

We computed the response function which is given by the particle-hole Green’s function.

Evaluating the topological properties for such a fermion system with this capacitive-coupled

light probe protocol is a priori more complicated but maybe not impossible. We are currently

working on this.

2.4 Conclusion

In this chapter, we have introduced a boson Haldane model. We have explicitly computed

the Chern number phase diagram starting from Eq. (1.79) of Chapter 1. In the following

chapters, this method is extended to the Chern number’s computation for the kagome topo-

logical systems we consider. We have shown that the sign, at both Dirac points, of the

function that we called h2 (its expression is given in Eq. (2.4)) indicates the value of both

bands’ Chern number. h2 depends on the Semenoff mass term M and on the amplitude t2

associated to the next-nearest neighbors hopping terms of the Haldane model.

In Sec. 2.3, we have considered a local probe with capacitive coupling to the Haldane

system, for the regime of small coupling amplitudes. We have explicitly computed the

reflection coefficient, which relates an input voltage and an output voltage in this probe, as

a function of the system’s parameters. We show that the sign of the ”mass function” (h2(K)

or h2(K
′) depending on the sign of M/t2 sinϕ) is encoded in this reflection coefficient at the

energy of the Dirac point at which the band gap is the narrowest. Since the Chern number is

determined from the sign of h2 at the Dirac points, the measure of the reflection coefficient
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(for an input of energy equal to the energy of the Dirac point at which the band gap is

the narrowest) determines the Chern number phase diagram. In the system we consider,

which is made of resonators of frequency amplitude in the GHz range, the sign of the ”mass

function” h2 is measurable via microwave light.

Numerical computations indicate that evaluating the topological properties in kagome

Chern insulating boson system, with this capacitive-coupling light probe protocol is also

possible. Therefore it should be possible to realize such a measure for instance in the cQED

system proposed in Ref. [33] which leads to an effective photon kagome lattice Hamiltonian.
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Chapter 3

Kagome topological models and
computation of the topological
invariants

In this Chapter, we introduce a topological nearest-neighbor tight binding model on the

kagome lattice and we develop an analytical computation of the associated lowest band

Chern number. To the best of our knowledge this explicit computation does not appear

in the literature before our publication [188]. We also consider two spin copies of this

kagome system and we compute the associated Z2 invariant [48, 189, 190] at 2/3 filling.

These computations are extended, in Chapter 5, to the case of different chemical potential

configurations. We also investigate the topological properties of small noisy kagome systems,

thanks to numerical computations of local observables.

As we mentioned in Chapter 1, Sec. 1.2.5, the kagome lattice is particularly interesting

for studying topological effects in lattice models. Indeed, Dirac points appear in a simple

nearest-neighbor tight-binding model on the kagome lattice. The quantum anomalous Hall

effect on the kagome lattice has attracted much attention [31–38]. The computation of Chern

number has been performed, for instance, by studying the contribution of each Berry phase

flux coming from the Dirac cones, by the investigation of the edges states, or numerically,

e.g. using a method where one does not have to worry about the arbitrary gauge of the

eigenvectors resulting from the numerical computation [191]. In materials, the spin-orbit
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interaction plays an essential role for the appearance of the quantum anomalous Hall effect.

In several kagome materials, the spin-orbit interaction has relatively high amplitude and

opens a topological gap (at least at some points in the Brillouin zone) [25, 26, 36, 37, 192].

Several time-reversal invariant kagome systems with intrinsic spin-orbit interaction have also

been studied [39–42, 193].

This chapter is organized as follows. In Sec. 3.1, we explain that a kagome tight-binding

model with complex nearest neighbor hopping terms breaks time-reversal symmetry and

have vanishing total flux in the unit cell. We compute the associated energy spectrum and

briefly review [34] an analytical computation of the edge modes. In Sec. 3.2, we study the

topological properties of this kagome tight-binding model. First, we develop an analytical

computation of the lowest band Chern number, starting from Eq. (1.79) of Chapter 1. Then,

we numerically investigate the local density of states and the chiral currents in small noisy

systems. We also review another method for the determination of the Chern number, based

on the splitting of the energy bands in weak magnetic fields [34, 194]. Such computations

and methods are used in the following Chapters.

Eventually, in Sec. 3.3, we compute the Z2 invariant at 2/3 filling and we show the

appearance of edge states for time-reversal invariant kagome systems with spin and inversion

symmetries. Because the system conserves the spin in the out-of-plane direction, the Z2

invariant can be deduced from the Chern number computation [48, 189], as we explain in

Sec. 3.3.1. The system has also inversion symmetry, enabling us to use another method to

obtain the Z2 invariant [190]. This enables us to check the results obtained from the former

method.

3.1 Simple topological model on the kagome lattice

Here we introduce and study a topologically non-trivial lattice model with a local magnetic

flux density B(r), which, as described in Sec. 2.1.1, respects the symmetries of the lattice and
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for which the total flux in the unit cell is vanishing. This model is the topological building

block of the models we study in Chapters 4 and 5.

−teiϕ/3
G

R B

e1

e2

b2

b1

b3

(a)

G

R B

+ϕ

+ϕ

−2ϕ

(b)

Figure 3.1: (a) Kagome lattice representation and definition of the sub-lattices R, G and B,
of the nearest neighbors hopping amplitudes and of the displacement vectors ei, i ∈ {1, 2}
and bi, i ∈ {1, 2, 3}. (b) Magnetic fluxes in the unit cell, which contains one hexagon
(associated to a flux −2ϕ and delimited here by a green dashed line with arrow), one ”up”
triangle (associated to a flux +ϕ and delimited here by a green dashed line with arrow) and
one ”down” triangle (associated to a flux +ϕ and delimited here by a green dashed line with
arrow). The regions shaded with the same color are equivalent up to a lattice translation
and are threaded by the same magnetic flux.

3.1.1 Breaking time-reversal symmetry while having a vanishing
total flux in the unit cell

The kagome lattice has three inequivalent sites in the unit cell that we label by three ”colors”,

R, G and B as shown in Fig. 3.1. Its Bravais lattice is hexagonal. The kagome lattice is such

that a unit cell contains an hexagon, a triangle ”up” and a triangle ”down”. Therefore, as

we can see in Fig. 3.1b, it is possible to choose B(r) such that there is a finite non-zero flux

through each hexagon and triangle. Then the nearest neighbor terms, contrarily as in the

honeycomb lattice, break the time-reversal symmetry (which opens a gap) and may yield a

topological system, although the total flux in the unit cell is vanishing. The nearest neighbor

hopping amplitudes are complex and the contribution of the magnetic flux density is given by

the so-called Peierls phases exp
(︂

i
q

h̄

∫︁

dl ·A(r)
)︂

, with dl the oriented infinitesimal element
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along the hopping path.

This leads us to consider the following simple, although possibly topological, Hamiltonian

H = −t
∑︂

⟨ij⟩

e−iφνij/3c†icj, (3.1)

with t ∈ R and ϕ ∈ R. c†i is the creation operator for a particle at site i. The sum runs

over i and j nearest neighbors and νij = +1(−1) if c†icj makes the particle jumping counter-

clockwise (clockwise) inside the triangle of the kagome lattice containing sites i and j (see

Fig. 3.1a).

As we argue in Chapter 4 (see in particular Sec. 4.1.2), Hamiltonian in Eq. (3.1) is relevant

in topological kagome materials; spin-orbit coupling being the physical origin of the time-

reversal symmetry breaking. Hamiltonian in Eq. (3.1) is also relevant for light and cold atom

systems (see respectively Refs. [33, 34, 182] and Chapter 5).

3.1.2 Hamiltonian in momentum space and energies

In Fourier space the Hamiltonian reads

H =
∑︂

k

Ψ†
khkΨk, (3.2a)

hk = −2t

⎛

⎜

⎜

⎜

⎝

0 eiφ/3 cos(k · b1) e−iφ/3 cos(k · b2)

e−iφ/3 cos(k · b1) 0 eiφ/3 cos(k · b3)

eiφ/3 cos(k · b2) e−iφ/3 cos(k · b3) 0

⎞

⎟

⎟

⎟

⎠

, (3.2b)

with Ψ†
k =

(︂

c†k,R, c
†
k,B, c

†
k,G

)︂

defined in Sec. 1.2.5 and the displacement vectors bi, i ∈ {1, 2, 3}

defined in Fig. 3.1a. The eigenenergies are given by (see also [195])

El = −4t

√︃

1 + f(k)

3
cos

θ(k)

3
, (3.3a)

Em = −4t

√︃

1 + f(k)

3
cos

θ(k)− 2π

3
, (3.3b)

Eu = −4t

√︃

1 + f(k)

3
cos

θ(k) + 2π

3
, (3.3c)
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by ρ(E, r) ≡ ∑︁

Ψ δ(E − EΨ)|⟨r|Ψ⟩|2. It satisfies the following normalization condition :
∫︁

dE
∑︁

r∈R ρ(E, r) = N , with R the ensemble of all possible lattice sites and N their total

number. The eigenenergies are represented in Fig. 3.2 (for two different values of the flux

ϕ) and the numerical evaluation of the local density of states shows that the states which

dispersion relation link the bulk bands are indeed edge states.

The energy and the expression of these edge modes can be analytically determined as

shown in Ref. [34]. Let us briefly review this. We write the eigenstates as a superposition of

localized states on each atom :

Ψσ(q1) ≡
∑︂

α=R,B,G

∑︂

m

ϕα,m,σ(q1) |α,m⟩ , (3.5)

where m labels the unit cells along the direction e2. We assume that ϕG,m(q1) = 0 (because

along the edge there is no color G atom; we can also build intuition from the numerical

evaluation of the local density of states) and we use the ansatz

ϕB,R(m) = λmϕB,R(0). (3.6)

It gives the energies of the two edge modes E± and the associated values of λ±, in agreement

with the numerical solution:

E± = ±2r cos
(︂q1
2

)︂

, (3.7a)

λ+ = − cos

(︃

ϕ

2
− q1

4

)︃/︃

cos

(︃

ϕ

2
+
q1
4

)︃

, (3.7b)

λ− = sin

(︃

ϕ

2
− q1

4

)︃/︃

sin

(︃

ϕ

2
+
q1
4

)︃

. (3.7c)

If the Fermi energy lies in the bulk gap, this predicts one eigenmode located at each edge of

the system; |λ±|> 1 or |λ±|< 1 determines which mode is localized at which edge.
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3.2.1 Computation of the Chern number from a smooth field ap-
proach

Here we compute the Chern number associated to lowest energy band of the kagome-lattice

model with Hamiltonian

H = −t
∑︂

⟨ij⟩

e−iφνij/3c†icj, (3.8)

described in Sec. 3.1. We remind that the Chern number is well-defined if the energy band

is isolated from the others, which here means that ϕ /∈ {0, π}. The computation of the other

bands’ Chern number is similar.

Gauge transformation and Hamiltonian

We remind that in Fourier space the Hamiltonian reads

H =
∑︂

k

Ψ†
khkΨk, (3.9a)

hk = −2t

⎛

⎜

⎜

⎜

⎝

0 eiφ/3 cos(k · b1) e−iφ/3 cos(k · b2)

e−iφ/3 cos(k · b1) 0 eiφ/3 cos(k · b3)

eiφ/3 cos(k · b2) e−iφ/3 cos(k · b3) 0

⎞

⎟

⎟

⎟

⎠

, (3.9b)

with Ψ†
k =

(︂

c†k,R, c
†
k,B, c

†
k,G

)︂

. In the following, we rather use

H =
∑︂

k

Ψ†
khkΨk, (3.10a)

hk = −2t

⎛

⎜

⎜

⎜

⎝

0 cos(k · b1) cos(k · b2)

cos(k · b1) 0 eiφ cos(k · b3)

cos(k · b2) e−iφ cos(k · b3) 0

⎞

⎟

⎟

⎟

⎠

, (3.10b)

for the computation of the Chern number. This differs by the U(1) local gauge transformation

Ψ†
k =

(︂

c†k,R, c
†
k,B, c

†
k,G

)︂

→
(︂

c†k,R, e
−iφ/3c†k,B, e

iφ/3c†k,G

)︂

. (3.11)

The Chern number is invariant under this transformation. We use Eq. (3.10b) instead of

Eq. (3.9b) because it simplifies a bit the computations and because it describes one spin

copy of the γ = 0 limit of the system we study in Chapter. 5.
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Energies and eigenvectors

Let us denote E the energy of the lowest band and we remind that

E = −2

√︃

4t2 [1 + f(k)]

3
cos

θ(k)

3
, (3.12)

with f(k) = 2
∏︁3

α=1 cosk · bα and 0 ≤ θ(k) ≤ π defined by

θ(k) = arccos
33/2f(k) cosϕ

2 (1 + f(k))3/2
. (3.13)

As we saw to the section Sec 2.2, the kets |un,k⟩’s are the eigenvectors of

e−ik̂·r̂Heik̂·r̂ =
∑︂

k

Ψ†
kh̃kΨk, (3.14)

with, here,

h̃k = −2t

⎛

⎜

⎜

⎜

⎝

0 e−ik·b1 cos(k · b1) e−ik·b2 cos(k · b2)

eik·b1 cos(k · b1) 0 e−ik·b3eiφ cos(k · b3)

eik·b2 cos(k · b2) eik·b3e−iφ cos(k · b3) 0

⎞

⎟

⎟

⎟

⎠

, (3.15)

which we also write

e−ik̂·r̂Heik̂·r̂ =
∑︂

k

Ψ̃
†

khkΨ̃k, (3.16)

with Ψ̃
†

k =
(︂

c†k,R, e
ik·b1c†k,B, e

ik·b2c†k,G

)︂

. We write

|uk⟩ =

(︂

r(k)c†R,k + b(k)c†B,k + g(k)c†G,k

)︂

|0⟩
√︂

|r(k)|2 + |b(k)|2 + |g(k)|2
, (3.17)

the eigenvector of h(k) (defined in Eq. (3.10b)), in the basis
(︂

c†k,R, e
ik·b1c†k,B, e

ik·b2c†k,G

)︂

,

which is also the eigenvector of h̃(k) in
(︂

c†k,R, c
†
k,B, c

†
k,G

)︂

. From this relation, we get the

r(k), the b(k) and the g(k) coefficients.

Gauge choices, unique and smooth Berry gauge fields

We describe two gauge choices GI and GII for the eigenvectors that we respectively write

|uk,I⟩ and |uk,II⟩. We will see later that these choices enable to correctly define the Bloch

eigenvectors over the BZ.
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(i) Gauge choice GI : the coefficient g(k) is real. More precisely, we choose

g(k) = ρ(k) , (3.18)

with

ρ(k)eiϕ(k) = −eik·b2

[︃

Eε2(k)

2ε1(k)
+

1

2
e−iφε3(k)

]︃

, (3.19)

where ρ(k) and φ(k) are both real numbers and where we defined εα = −2t cos(k · bα).

Then we have

r(k) = −E
2 − ε23(k)

2ε1(k)
e−iϕ(k) , (3.20)

and

b(k) =
E2 − ε22(k)

ρ1(k)
ρ(k)e−iϕ1(k) , (3.21)

with

ρ1(k)e
iϕ1(k) = e−ik·(b1−b2)

[︁

Eε3(k)e
−iφ + ε1(k)ε2(k)

]︁

, (3.22)

where ρ1(k) and φ1(k) are both real numbers.

(ii) Gauge choice GII : the coefficient r(k) is real. We choose

g(k) = ρ(k)eiϕ(k). (3.23)

Then we have

r(k) = −E
2 − ε23(k)

2ε1(k)
, (3.24)

and

b(k) =
E2 − ε22(k)

ρ1(k)
ρ(k)ei[ϕ(k)−ϕ1(k)] . (3.25)

We introduce the three nonequivalent high symmetry M points, M1 = −1

2
g1, M2 =

1

2
g2

and M3 =
1

2
(g1 + g2) (see Fig. 3.3). We have ρ(k) = 0 at the M2 point. We have ρ1(k) = 0

at the M2 and the M1 points. Here, it is impossible to find a unique and smooth gauge

everywhere in the BZ. Then we split the BZ into two non-overlapping domains where we

apply different gauge choices [10] (see Fig. 3.3(a)). One domain, which we call the DII
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domain, contains the point where ρ(k) vanishes. The other one, the DI domain, contains all

the points where E2 − ε23(k) vanishes or ε1(k) vanishes. The boundary between DI and DII

do not contain any of the ρ(k) = 0, E2− ε23(k) = 0 and ε1(k) = 0 points. We also define Γ a

closed path along this boundary, surrounding once the M2 point, as sketched in Fig. 3.3(a).

Now, we apply GI gauge choice for the points contained in DI and GII gauge choice for the

points contained in DII . Then the associated wave function |uk,I⟩ and |uk,II⟩ (and its phase)

and the Berry gauge fields Ak,I = ⟨uk,I | ∇k |uk,I⟩ and Ak,II = ⟨uk,II | ∇k |uk,II⟩ are uniquely

and smoothly defined respectively on DI and DII .

As we did in Sec. 1.3.2 of Chapter 1, we write the Chern number

C =
1

2iπ

(︃∫︂

DI

d2k [∇k ×Ak,I] · ez +
∫︂

DII

d2k [∇k ×Ak,II] · ez
)︃

. (3.26)

Using Stokes’ theorem and considering the specific choice of path Γ shown in Fig. 3.3(a)

leads to

C =
1

2iπ

(︃

−
∮︂

P

dk ·Ak,I +

∮︂

P

dk ·Ak,II

)︃

. (3.27)

Along Γ, we have |uk,I⟩ = e−iϕ(k) |uk,II⟩. We choose φ(k) so that it is smooth along the

whole Γ path and we obtain

C =
1

2π

∮︂

Γ

dk · ∇kφ(k). (3.28)

Now, we find C by studying (analytically) how φ(k) evolves when moving along Γ. Gen-

erally speaking, when the Γ path surround a φ(k)’s divergence (here at the M2 point), the

accumulated phase increases or decreases by ±2πz, z ∈ Z, which gives a quantized C, as

expected. Here, from the expression of φ(k) (see Eq. (3.19)), we find that φ(k) changes by

−2πsgn (sinϕ) when moving along the entire closed path Γ. This gives

C = −sgn (sinϕ) , ϕ ∈ ]0, π[. (3.29)

We have performed this computation by (i) determining the value of ρ(k)eiϕ(k) along the lines

ε2(k) = 0 and ε3(k) = 0 (remind that εα = −2t cos(k · bα)) in the BZ (see Table 3.1) and (ii)
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k1 k2 k3 k4

E(k) < 0 < 0 < 0 < 0

ε1(k) < 0 < 0 < 0 < 0

ε2(k) 0 < 0 0 > 0

ε3(k) > 0 0 < 0 0

ρ(k)eiϕ(k) − ε3
2

⃓

⃓

⃓

k1

ei(k1·b2−φ) − Eε2
2ε1

⃓

⃓

⃓

⃓

k2

eik2·b2 − ε3
2

⃓

⃓

⃓

k3

ei(k3·b2−φ) − Eε2
2ε1

⃓

⃓

⃓

⃓

k4

eik4·b2

Table 3.1: Value of ρ(k)eiϕ(k) (see Eq. (3.19)) along the lines ε2(k) = 0 and ε3(k) = 0
(remind that εα = −2t cos(k · bα)) in the Brillouin Zone. As it is sketched in Fig. 3.3(b),
the points k1 and k3 belong to the line ε2(k) = 0 and the points k2 and k4 belong to the
line ε3(k) = 0.

studying the sign of ε2(k) and ε3(k) in the BZ (see Fig. 3.3(b)). As an example, the evolution

of φ(k) along several portions of the Γ path is shown in Fig. 3.3(b), for sgn (sinϕ) > 0.

From Eq. (3.29), we conclude that all flux ϕ ∈ ]0, π[, the lowest band associated to the

model introduced in Sec. 3.1 has non-vanishing Chern number. If the Fermi energy lies in the

gap above the lowest band, the system is a Chern insulator, and as we saw it is characterized

by one chiral edge mode.

3.2.2 Topological properties observable in small systems with dis-
order

Here we show that the local density of states and chiral currents show topological features in

a noisy 3× 3 unit cells system. We also review a method for the computation of the Chern

number which relies on the splitting of the energy bands under a weak magnetic field. We

show that this method also constitutes a way to probe the topological properties in small

noisy systems.
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Local density of states and chiral currents

Here we compute the energies, the local density of states and the currents for the system

described by Eq. (3.8)), in a plane geometry composed of 9 unit cells and adding noise on

the parameters. The local density of states reads ρ(E, r) ≡ ∑︁

Ψ δ(E − EΨ)|⟨r|Ψ⟩|2 and

satisfies the normalization condition
∫︁

dE
∑︁

r∈R ρ(E, r) = N , where the sum runs over all

the eigenstates Ψ of the system, with R the ensemble of all possible lattice sites and N = 40

their total number. The current operator between two lattice sites m and n is given by

jmn ≡ −ic†mtmncn + H.c., where tmn is the hopping amplitude (complex term, −te±iφ/3 in

our case) between m and n.

Numerical evaluation of the local density of states and of the currents shows that for

values of the Fermi energy lying between two bulk bands, we observe edge modes (see

Figs. 3.4(a) and 3.4(b)) and the localization at the edges of the current expectation value
∑︁

Ψ δ(E − EΨ) ⟨Ψ| jmn |Ψ⟩ (see Fig. 3.4(c)).

We also numerically investigated the effect of Gaussian noise on the chemical potential

µ (which is zero everywhere in the ideal case Eq. (3.8)), on the amplitude of the hopping

term t and on the flux ϕ. Results are shown in Figs. 3.4(d)-3.4(i) for increasing values of

the noise. For Figs. 3.4(d)-3.4(f) and Figs. 3.4(g)-3.4(i) the noise on µ and t is a gaussian

distribution with standard deviation respectively equals to 0.1E (t) and 0.2E (t), where E (t)

is the average value of t; the noise on ϕ is a gaussian distribution with standard deviation

respectively equals to 0.1E (ϕ) and 0.2E (ϕ) where E (ϕ) is the average value of ϕ. We refer

to these amplitudes of noise respectively as ”Gaussian noise with amplitude 10 percent” and

”Gaussian noise with amplitude 20 percent”. We observe that these rather small systems

show density of states localized at the edges and chiral currents up to rather large values of

Gaussian noise.
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Splitting of the energy bands under a weak magnetic field and noise

Here we consider a weak magnetic field B = Bẑ orthogonal to the kagome lattice plane. Let

us call the energy bands when B = 0 the ”parents bands”. Under a weak magnetic field,

each parent band i (i = 1, 2 and 3 label respectively the lowest, the middle and the highest

energy bands) is split into a certain number of subbands that we denote Di. There is a

relation between this number, the amplitude of the magnetic field and the Chern number Ci

associated to the ith parent band [34, 194]. We introduce f = qnφ where nφ =
Ba2
h/e

is the

number of flux quanta in the system and q is the area of the first magnetic Brillouin zone.

In the following, we choose B such that 1/f is an integer. Then we have:

Ci = Di −
1

f
. (3.30)

We implemented the effect of the magnetic field for the Hamiltonian in Eq. (3.8) for a

cylinder geometry (periodic boundary conditions only in one direction of the lattice) and

for a square geometry (periodic boundary conditions in both directions of the lattice). We

also considered the same gaussian noise than the one considered in the previous section,

with a smaller amplitude: the noise on µ and t is a gaussian distribution with standard

deviation respectively equals to 0.01E (t) and the noise on ϕ is a gaussian distribution with

standard deviation respectively equals to 0.01E (ϕ). We call this noise ”Gaussian noise with

amplitude 1 percent”. We investigated systems of sizes 10 × 5 unit cells and 10 × 10 unit

cells for the cylinder geometry and 27 × 27 units cells for the square geometry; the density

of states ρ(E) ≡∑︁Ψ δ(E − EΨ)/N in such systems are reported in Fig. 3.5 (for E (ϕ) > 0).

In the last equation, the sum runs over all the eigenstates Ψ of the system, and N = 40 is

the total number of lattice sites. We see that we have D1 = 4 subbands, D2 = 5 subbands

and D3 = 6 subbands, which gives, considering that we used 1/f = 5, C1 = −C3 = −1, and

C2 = 0.

It seems that larger noises makes ineffective the method for probing the Chern number.

Keeping the same system sizes or smaller, maybe if one would optimize the detection of
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(see Fig. 3.5(c) and previous subsection).

3.3 Computation of the Z2 number with spin and in-

version symmetries

In this section, we consider two spin copies of the two-dimensional Hamiltonian in Eq. (3.8),

with opposite flux associated to each spin copies (this is required to conserve time-reversal

symmetry, see Sec. 1.4):

H = −t
∑︂

⟨ij⟩

c†ie
−iφszνij/3cj, (3.31)

with c†i =
(︂

c†i,↑, c
†
i,↓

)︂

and sz is the third Pauli matrix acting in spin space, as we defined in

Sec. 1.4. We compute the Z2 in such a system, relying either on the conservation of the spin

number along the out-of-plane direction or on the conservation of the inversion symmetry.

3.3.1 Z2 number and edge states for systems with conserved spin
number along the out-of-plane direction

Z2 number If the Hamiltonian commutes with the spin operator along the out-of-plane

axis (which is the case for the system we consider here), sz/2, then each band can be labeled

by σ = {↑, ↓} which identify the eigenvalues of sz/2. We are interested by the value of

the Z2 number when the Fermi level lies in the bulk gap between the lowest bands and the

middle bands. The procedure to obtain the Z2 number if the Fermi level lies in the bulk gap

between the middle bands and the highest bands or if the Fermi level lies above the highest

bands is similar. Let us denote the σ-band Chern number Cσ and we call it the spin-σ Chern

number. When sz is conserved, the Z2 number is the difference between both spin Chern

numbers (see Sec. 1.4.1 or Refs. [48, 189]):

ν =
1

2
(C↑ − C↓) mod 2 = C↑ mod 2. (3.32)
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From Eq. (3.29), we deduce that

ν = 1 ∀ϕ ∈]0, π[, (3.33a)

ν = 0 ∀ϕ ∈ {0, π}. (3.33b)

Edge states As we explained in Sec. 1.4, the ν = 1 phase is associated with opposite-spin

counter-propagating modes at each edge of the system. We can also extend the results of the

”edge state” paragraph of Sec. 3.1, by performing the same analysis for each spin σ species,

and labelling each quantity by σ (namely ϕ → ϕσ and λ± → λ±,σ). In Fig. 3.6, we show

the energy dispersion relation for a system described by the Hamiltonian in Eq. (3.31) in a

cylinder geometry. Counter-propagating modes which connect the bulk bands appear clearly

and the numerical evaluation of the associated local density of state shows their localization

at the edges of the system. We also have λ−,↑ =
1

λ−,↓

because of the replacement ϕ↑ = −ϕ↓

and λ−,↑(q1) =
1

λ−,↑(−q1)
so we get λ−,↑(q1) = λ−,↓(−q1) which shows that opposite spin

species with opposite velocities are localized at each edge of the system.

3.3.2 Computation of the Z2 invariant in inversion symmetric sys-
tems

Here we use the invariance of the topological number under a U(1) local gauge transfor-

mation, so we consider two spin copies of the Hamiltonian in Eq. (3.10b), with opposite

flux associated to each spin copies. The purpose of this section is to show another way of

computing the Z2 invariant. We use this method in Chapter 5 to check the results obtained

from the method introduced in the previous sections.

For a two-dimensional system

For a two-dimensional system invariant under inversion symmetry (r → −r), the Z2 topo-

logical invariant ν (defined for time reversal invariant Hamiltonian, i.e. B = 0) is given by
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with g1 and g2 both reciprocal lattice basis vectors. These points correspond to the so-called

Γ point and to the three M points.

For a topological model on the kagome lattice

As in Sec. 3.3.1, we are interested by the value of the Z2 number when the Fermi level lies

in the bulk gap between the lowest bands and the middle bands. We rely on the Eq. (3.34);

we first need the parity eigenvalues p2m associated to each of the four Γ(n1,n2) points so we

need to express the Hamiltonian and the momentum space parity operator at these points.

Eq. (3.34) only implies the parity eigenvalues associated to one of the lowest band, because

the parity eigenvalues associated to the other band are identical. Here, as we mentioned in

the previous section, each band can be label by σ = {↑, ↓} which identify the eigenvalues of

sz/2. Therefore, in the following, we consider separately each of both diagonal Hσ parts of

the Hamiltonian H =
∑︁

σHσ.

The parity operator can be defined in real space by

P (cR,r, cB,r, cG,r) = (cR,−r, cB,−r−e1 , cG,−r−e2) . (3.36)

A Fourier transformation of the fermionic operators enables to see that, in momentum space,

the parity operator reads

Pk = diag
(︁

1, e−ie1k, e−ie2k
)︁

. (3.37)

Therefore, at the Γ(0,0) point, PΓ(0,0)
is diagonal so δ(0,0) = 1 and at the other points we have

PΓ(1,0)
= diag (1,−1, 1), PΓ(0,1)

= diag (1, 1,−1), and PΓ(1,1)
= diag (1,−1,−1).

Now we need to evaluate the lowest energy associated eigenvectors of Hσ(k) at Γ(1,0),
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Γ(0,1), and Γ(1,1). This is straightforward here since we have

Hσ(Γ(1,0))=

⎛

⎜

⎜

⎜

⎝

0 0 −2t

0 0 0

−2t 0 0

⎞

⎟

⎟

⎟

⎠

, (3.38a)

Hσ(Γ(0,1))=

⎛

⎜

⎜

⎜

⎝

0 −2t 0

−2t 0 0

0 0 0

⎞

⎟

⎟

⎟

⎠

, (3.38b)

Hσ(Γ(1,1))=

⎛

⎜

⎜

⎜

⎝

0 0 0

0 0 −2teiszφ

0 −2te−iszφ 0

⎞

⎟

⎟

⎟

⎠

. (3.38c)

We denote the lowest energy eigenvalue El(k) and we write the |uσ,k⟩ the σ spin species

associated eigenvector

|uσ,k⟩ =

(︂

rσ(k)c
†
R,k,σ + bσ(k)c

†
B,k,σ + gσ(k)c

†
G,k,σ

)︂

|0⟩
√︂

|rσ(k)|2 + |bσ(k)|2 + |gσ(k)|2
. (3.39)

At the points Γ(1,0), Γ(0,1) and Γ(1,1) the smallest energy eigenvalues are El = −2t and the

associated eigenvector are proportional to

(i) (−1, 0, 1) at the Γ(1,0) point,

(ii) (−2t/(λ+ El) , 1, 0) at the Γ(0,1) point,

(iii) (0, 2teiszφ/(λ− El) , 1) at the Γ(1,1) point.

Applying the parity operator on the eigenvectors, we find that the system studied here is

a topological insulator. Of course, this is valid when ϕ ̸= {0, π} which is the condition for

which the system is insulating. These results are sum up in table 3.2.

3.4 Conclusion

We have adapted several methods for the computation of the Chern number for a topological

model on the kagome lattice. These models are the elementary topological building blocks

of the models we study in the following chapters.
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(n1, n2) Eigenvalues El (rσ(k), bσ(k), gσ(k)) Parity operator (−1)ν

(1, 0) −2t (−1, 0, 1) diag(1,−1, 1)

−1(0, 1) −2t (−1, 1, 0) diag(1, 1,−1)

(1, 1) −2t (0,−eiszφ, 1) diag(1,−1,−1)

Table 3.2: Table summarizing the computation of the Z2 topological invariant ν for an
inversion and time-reversal symmetric system. (n1, n2) are defined in Eq. (3.35), and the
eigenvector’s coefficient (rσ(k), bσ(k), gσ(k)) is defined in Sec. 3.39.

First, using Eq. (1.79) of Chapter 1, we have explicitly performed the computation of

the lowest band’s Chern number in a kagome system. We notice that this computation

is more involved because the kagome lattice contains three colors per unit cell. Again,

when the system is topologically non-trivial, we made two different gauge choices for two

complementary domains in the Brillouin zone, but here, one of both domains contains one

of the time-reversal invariant momenta. We also computed the Z2 invariant relying on spin

and inversion symmetry [48, 189, 190] and we commented on the appearance of edge states

for two spin copies of the kagome system introduced in Sec. 3.1. In Chapter 5, we use these

methods for the computation of the Z2 invariant for different sets of chemical potentials.

We also showed the robustness of the topological properties in small (9 × 9 unit cells)

square systems against Gaussian noise on the parameters: even for large values of the noise,

the local density of states and the chiral currents show topological features. We compared

this with another probe of the topological features: under a weak out-of-plane magnetic

field, each (”parent”) energy bands is split into a number of subbands that depends on the

”parent band’s” Chern number [34, 194]. From the numerical evaluation of the density of

states, at magnetic field 1/f = 5 (see Sec. 3.2.2), we achieved to retrieve the bands’ Chern

number from this method only for systems of size larger than about 30 × 30 unit cells and

with Gaussian noise amplitude smaller than about 1 percent.
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Chapter 4

A magnetic and topological kagome
system

In this chapter, we propose a model on the kagome lattice which, under the variation of an

external parameter, shows a transition from a magnetic Chern insulator, to an in-plane mag-

netic order possibly associated to a quantum spin Hall phase [193]. The external parameter

is either the temperature or the pressure; we justify that the model we study is associated

to a disordered phase at high values of this external parameter.

We apply this model to the Weyl semimetal Co3Sn2S2 which has recently attracted much

attention [25–28, 38, 43]. The crystal structure of this material shows two-dimensional

stacked sheets of cobalt atoms which are arranged in a kagome lattice inside each sheet. Un-

der a variation of external parameters, such as the temperature or the pressure, this material

shows a magnetic transition, from an out-of-plane ferromagnetic phase at low temperature

and low pressure going through an {out-of-plane ferromagnetic + in-plane antiferromagnetic}

phase and possibly (depending on the temperature and the pressure) reaching a paramagnetic

phase. In this material, a large anomalous Hall effect is observed, with Hall conductivity

correlated to the ferromagnetic fraction [26, 27].

The magnetic and topological properties depend on the Coulomb-interaction strength

[196–198], which has been estimated around 4eV in Co3Sn2S2 [28]. On the other hand, spin-

orbit coupling plays an essential role for the appearance of the anomalous Hall effect and its
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quantized version [4, 109, 112]. It appears that Kagome materials are good candidates for

investigating physical effect due to spin-orbit coupling. Indeed, spin-orbit coupling is found

to open non-negligible gaps in diverse kagome materials, e.g. gaps of amplitudes ∼ 30 meV

in Fe3Sn2 [37] and in TbMn6Sn6 [192], ∼ 20 meV in Cs2Mn3F12 [36]. In Co3Sn2S2, spin-orbit

coupling also has large amplitude and is deeply related to the anomalous Hall properties

[25–28, 38, 199].

A very common framework for studying magnetic ordered phases is the Heisenberg spin

model. This model shows interesting phases on triangular lattices, because these lattices

are frustrated. On the kagome lattice, the classical limit of the Heisenberg model, which

shows a large ground state degeneracy [200–205] and its quantum limit [206–216] have been

extensively studied. Diverse numerical and analytical approaches have been employed to

tackle Heisenberg models on the kagome lattice, for instance, spin-wave theory and high-

temperature expansions [200, 201], Monte Carlo methods [202, 203], exact diagonalization

[210, 217, 218], density-matrix renormalization-group computations [213, 215, 219]. The

ground state at the isotropic (antiferromagnetic) Heisenberg point on the kagome lattice

seems to be a spin-liquid phase.

In the model we develop here, the magnetic properties are described by an anisotropic

Ising ferromagnetic Heisenberg model on the kagome lattice. We study this model first

evaluating the classical ground states and then using a spin wave approach to investigate

the stability. Exact diagonalization study of this model has been performed in Ref. [220].

In the model we introduce in this chapter, the magnetic properties result from a channel

associated to localized spins on the kagome lattice, while the topological properties result

from a channel associated to itinerant electrons on this same lattice. Both channels are

coupled via a ferromagnetic Hund’s coupling.

At the microscopic level, one channel contains half-filled orbitals, in which the spin parti-

cles experience a large on-site Hubbard interaction which gives rise to Mott physics. In this
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limit of a large Hubbard interaction, perturbation theory gives an antiferromagnetic nearest

neighbor effective spin Hamiltonian and each particle is considered to be localized on each

kagome lattice site. We study these localized spin particles in the limit of large spin. The

other channel contains low-energy mobile electrons which are coupled to the first channel

via a large Hund’s coupling [216, 221, 222] that we consider to occur along the out-of-plane

direction. We consider a double-exchange mechanism [221, 223–226] which induces nearest

neighbor ferromagnetic Jz coupling between the localized spins. The low-energy electronic

properties of our model are given by mobile electrons which are described by a tight-binding

model with spin-orbit coupling [11, 36, 227, 228].

4.1 Hamiltonian

In this section, we first build an effective spin model for the description of the half-filled

orbitals (denoted OS) in which the spin particles experience a large Hubbard interaction (or

with small exchange integral between neighbors, i.e. strong localization around the atomic

centers). This results in a Mott state with localized spin particles. Then we write the

Hamiltonian for the mobile electrons and their coupling with the localized spins.

4.1.1 Localized spins

We first consider a simple microscopic model with a nearest neighbor hopping term and a

Hubbard interaction term for the spins in the orbitals OS. The former term reads

− tS
∑︂

⟨ij⟩,σ

C†
iσCjσ, (4.1)

where tS is a real parameter, the sum runs over all lattice nearest neighbors, and Ciσ is the

annihilation operator of a spin σ particle in the orbital OS centered at the lattice site i. The

Hubbard interaction term reads

U
∑︂

i

ni↑ni↓, (4.2)
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with U ≫ t, niσ = C†
iσCiσ, where the sum runs over all lattice sites and over both spin

polarizations σ = {↑, ↓}.

Effective spin Hamiltonian We use perturbation theory to get an effective Hamiltonian

Heff (see App. F) in the strong interaction limit, i.e. U is large compared to tS. We denote

H0 = U
∑︂

i

ni↑ni↓, (4.3a)

V = −tS
∑︂

⟨ij⟩,σ

C†
iσCjσ, (4.3b)

We consider that the orbitals are half-filled, i.e. NS = N, with NS the total number of spin

particles in the orbitals OS and N the number of lattice sites. The ground states of H0 are

states with exactly one particle at each sub-lattice sites. These states are linear combinations

of the ∼ 2N states |σ1 . . . σN⟩ , with σi = {↑, ↓}, for i ∈ [1 . . . N ]. The first order terms (with

respect to tS/U) of the effective Hamiltonian, ⟨ψ′|V |ψ⟩, where |ψ⟩ and |ψ′⟩ belong to the

ground state subspace (denoted S0), vanish. Indeed, V |ψ⟩ are linear combination of states

with two particles on some site i and zero particle of some site j. The second order terms of

Heff are

⟨ψ′|Heff |ψ⟩ = t2S
∑︂

|m⟩/∈HI

∑︂

⟨ij⟩,⟨kl⟩,
σ,σ′

⟨ψ′|C†
iσ′Cjσ′ |m⟩ ⟨m|C†

kσClσ |ψ⟩
−Em

, (4.4)

with |m⟩ the eigenstates of H0 which do not belong to the ground states subspace S0 and

Em the corresponding eigenenergy. The numerator of the equation (4.4) is non vanishing

only if |m⟩ = C†
kσClσ |ψ⟩ and if |m⟩ = C†

jσ′Ciσ′ |ψ′⟩ so if k = j and l = i and for these states

Em = U . Therefore we have

Heff = −t
2
S

U

∑︂

⟨ij⟩,
σ,σ′

C†
iσ′Cjσ′C†

jσCiσ. (4.5)

Using the fermionic anti-commutation relations we get

C†
iσ′Cjσ′C†

jσCiσ = −C†
iσ′CiσC

†
jσCjσ′ + δσσ′niσ,
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and using
∑︁

σ niσ
def
=== ni = 1 (Heff acts on a ground state), we get

∑︂

σ

C†
iσCjσC

†
jσCiσ = −2Sz

i S
z
j +

1

2
,

and
∑︂

σσ′

σ ̸=σ′

C†
iσ′Cjσ′C†

jσCiσ = −2
(︁

Sx
i S

x
j + Sy

i S
y
j

)︁

,

where Sr
i =

1

2
C†

i,σσ
r
σ,σ′Ci,σ′ (implicit summation on repeated indices) and σr

σ,σ′ , r = {x, y, z}

are the Pauli matrices. This gives, up to the constant energy term −JtS/4,

Heff =
∑︂

⟨ij⟩

[︁

JtSS
z
i S

z
j + JtS

(︁

Sx
i S

x
j + Sy

i S
y
j

)︁]︁

, (4.6)

with JtS =
4t2S
U

> 0.

Let us mention that, if we also consider a nearest-neighbor spin-orbit coupling term for the

orbitals OS, the effective Hamiltonian reads, up to the constant energy term −(JtS +JλS
)/4,

Heff =
∑︂

⟨ij⟩

[︁

(JtS + JλS
)Sz

i S
z
j + (JtS − JλS

)
(︁

Sx
i S

x
j + Sy

i S
y
j

)︁]︁

, (4.7)

with JλS
=

4λS
2

U
> 0 and λS is the amplitude of the spin-orbit coupling term given by

− iλS
∑︂

⟨ij⟩,σ

νijC
†
iσσ

z
σσ′Cjσ′ , (4.8)

the sum runs over all nearest-neighbors i and j and νij = +1 or −1 if, respectively, the

particle jumps counter clockwise or clockwise inside the considered triangle of the kagome

lattice. The presence of this term has no important consequence on the study performed in

the following. In Co3Sn2S2, band-structure numerical calculations indicate that spin-orbit

coupling has a negligible effect on the magnetic properties [229].

This Hamiltonian, valid in the strong interaction limit, acts on the ground state where

there is one electron per site. As we discussed in the introduction of this Chapter, we
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treat these localized spins classically in the limit of large spin S. These spins are coupled to

itinerant electrons via a large Hund’s coupling [216, 221, 222] in the z direction. This leads

to a double-exchange mechanism [221, 223, 224] which induces nearest neighbor coupling (its

amplitude is denoted −JH) between the localized spins that we assume to be of ferromagnetic

(JH > 0). The total spin Hamiltonian then reads

HS =
∑︂

⟨ij⟩

[︁

−JzSz
i S

z
j + Jxy

(︁

Sx
i S

x
j + Sy

i S
y
j

)︁]︁

, (4.9)

with −Jz = −JH+JtS+JλS
and Jxy = JtS−JλS

. In the following we consider JH > JtS+JλS
,

i.e. Jz > 0.

We notice that this model breaks continuous rotational symmetry and may show sponta-

neous magnetization (with finite temperature phase transition) in the z direction for finite

temperature, particularly for the ”Ising ferromagnetic” regime Jxy/Jz < 1, contrarily to the

isotropic Heisenberg model for which the lower critical dimension is 2 [230]. In fact, at

zero temperature, we show in the Sec. 4.2.1 that because of the geometry of the kagome

lattice, the transition point is Jxy/Jz = 2, the classical ground state being ferromagnetic for

Jxy/Jz < 2.

4.1.2 Itinerant electrons and Hund’s coupling

Here we write the Hamiltonian associated to the itinerant spins and their coupling with the

localized spin in the orbitals OS. The itinerant electrons are assumed to belong to orbitals

(denoted Oi) with large spatial extension around the lattice site and the amplitude of the

Hubbard interaction in these orbitals is much smaller than in the OS orbitals. Here we

write a microscopic model for the itinerant electrons where we take into account a nearest

neighbor hopping term, a nearest neighbor spin-orbit coupling term and a ferromagnetic

Hund’s coupling between the itinerant electrons and the localized spins. In Co3Sn2S2, ab-

initio band-structure calculations suggest that the states near the Fermi energy are mainly

associated to the cobalt 3d orbitals [229, 231, 232].
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Nearest-neighbors hopping term The nearest neighbor hopping term (denoted Ht),

which results from the exchange integral between the orbitals Oi at nearest neighbor sites,

reads

Ht = −ti
∑︂

⟨ij⟩,σ

c†iσcjσ, (4.10)

where t is a real parameter, the sum runs over all lattice nearest neighbors, and ciσ is the

annihilation operator of a spin σ polarized itinerant electron in the orbital Oe centered at

the atomic site i. The sum runs over all lattice nearest-neighbors i and j and over both spin

polarizations for α.

Nearest neighbor spin orbit coupling The spin-orbit coupling term, which takes into

account the coupling between an itinerant electron’s spin and its motion in the lattice poten-

tial, is Lzsz because the system is invariant under mirror reflection about the lattice plane

(see Refs. [11, 36, 109, 133, 228] and also Sec. 1.4.1). The kagome lattice is not invariant un-

der the mirror transformation about vertical reflection plane along a nearest-neighbor bond,

so the nearest-neighbor spin orbit coupling is a priori not vanishing. We write this term

HSO, its amplitude λi, and we have

HSO = −iλi
∑︂

⟨ij⟩,α,β

νijc
†
iσ

zcj = −iλi
∑︂

⟨ij⟩

νij

(︂

c†i↑cj↑ − c†i↓cj↓

)︂

, (4.11)

with c†i =
(︂

c†i,↑, c
†
i,↓

)︂

, σz is the third Pauli matrix acting in spin space, the sum runs over

all nearest-neighbors i and j and νij = +1 or −1 if, respectively, the electron jumps counter

clockwise or clockwise inside the considered triangle of the kagome lattice. In fact, it is shown

in many kagome systems that this term is indeed not vanishing and that its amplitude is

large and has important electronic consequences [36, 37, 192, 199].

Ferromagnetic Hund’s coupling We define si = (sxi , s
y
i , s

z
i ) the spin operator acting on

the itinerant electron spins and Si = (sxi , s
y
i , s

z
i ) the spin operator acting on the localized

spins. As we already mentionned, we consider a strong Hund’s coupling in the ẑ direction
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between the localized spins and the itinerant electron spins. The associated Hamiltonian is

denoted Hh and reads

Hh = −hc
∑︂

i

Sz
i s

z
i = −hc

2

∑︂

i

Sz
i

(︂

c†i↑ci↑ − c†i↓ci↓

)︂

, (4.12)

where hc is the (real) amplitude of the coupling.

4.2 Magnetic order in the large spin S limit

In Sec. 4.2.1, we determine the classical ground state from a minimization of the energy

associated to this spin Hamiltonian. In Sec. 4.2.2, we investigate the stability of this ground

state against quantum fluctuations in the large spin limit.

4.2.1 Energy minimization and classical magnetic state

We now compute the ground state of this spin Hamiltonian in the classical limit of large spin

S. We write the value of the spin operators in the classical ground state ⟨Sx
i ⟩ = S sin θi cosφi,

⟨Sy
i ⟩ = S sin θi sinφi, and ⟨Sz

i ⟩ = S cos θi, with θi ∈ [0, π], and φi ∈ [0, 2π] and S is the norm

of the spins in the classical ground state. In this limit, we obtain

HS = S2
∑︂

⟨ij⟩

[−Jz cos θi cos θj + Jxy sin θi sin θj cos(ϕi − ϕj)] . (4.13)

We determine the classical ground state from a minimization of the energy associated to this

spin Hamiltonian. The magnetic state results from the competition between ferromagnetism

in the z direction and antiferromagnetism in the xy plane.

The energy reaches its minima in the parameter space made up of the θi at all the lattice

sites i if we have

θi = θj = {0, π/2, π}, (4.14)

or

−Jz
Jxy

=
tan θj
tan θi

cos(ϕi − ϕj) =
tan θi
tan θj

cos(ϕi − ϕj) ∀(θi, θj) ∈ (]0, π/2[∪]π/2, π[)2 , (4.15)
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for all j such that i and j are nearest-neighbor sites. The last condition, when considering

the nearest neighbours in a triangle of the kagome lattice, gives θi = θj
def
=== θ. Therefore,

gathering both conditions (4.14) and (4.15) gives θi = θj
def
=== θ, ∀(θi, θj) ∈ ([0, π])2 .

Now, given this constraint (all the angles θi are the same for the minimum energy), we

look for the configuration(s) of the angles ϕi which minimize(s) the energy. First let us seek

this condition for an arbitrary triangle of the lattice and then try to extend it to all the

nearest-neighbors in the lattice. When the angles are well defined, i.e. for all θ /∈ {0, π},

the energy reaches its minima in the parameter space made up of the ϕi at the three lattice

sites i forming a triangle of the lattice, for all j such that i and j are nearest-neighbor sites,

if we have

ϕi − ϕj = ±2π

3
, ∀θ /∈ {0, π}, (4.16)

with the same sign for all ordered pair (i, j) nearest neighbors inside a triangle. It is possible

to fix this condition for every other triangles of the lattice. Given the condition Eq. (4.16)

on the values of the parameters ϕi, the energy reads

E = S2
∑︂

⟨ij⟩

[︃

(−Jz) cos2 θ −
Jxy
2

sin2 θ

]︃

= 2S2N

[︃(︃

−Jz +
1

2
Jxy

)︃

cos2 θ − 1

2
Jxy

]︃

, ∀θ /∈ {0, π},

(4.17a)

E = S2
∑︂

⟨ij⟩

(−Jz) = −2S2NJz, if θ ∈ {0, π}, (4.17b)

with N the number of lattice sites. The solutions which minimize the energy in the θ

parameter space are given by

(i) if Jxy > 2Jz, writing −Jz = −1

2
Jxy + δ, with δ ∈]0, Jxy/2[, we have

E = 2S2N

(︃

δ cos2 θ − Jxy
2

)︃

, ∀θ ∈ [0, π], (4.18)

and we deduce that E reaches its minimum at θ = π/2 and is E = −S2NJxy.

(ii) if Jxy < 2Jz, replacing δ by −δ, we see that E reaches its minimum at θ ∈ {0, π} and

is E = −2S2NJz.
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(iii) if Jxy = 2Jz, then E = −S2NJxy for all θ.

The transition between ferromagnetism along the ẑ axis and in-plane antiferromagnetism,

at Jxy = 2Jz, is discontinuous.

The classical limit for Jxy/Jz > 2 has therefore vanishing out-of plane magnetic order but

120◦ spin ordering in the XY plane and each configuration is invariant under a global shift

of the parameters ϕi. This order is characterized by both following constraints: zero total

spin in each triangle of the lattice and each spin lies in the XY plane. Determining the Néel

ground state is not trivial because several inequivalent in-plane (XY) configurations satisfy

this ordering [200]. Studies performed for the antiferromagnetic Heisenberg model show that

the antiferromagnetic ground state is highly degenerate and has finite entropy per site at

T = 0 [200–202, 233–235]. This systems, similarly to the model we study here, have ground

state characterized by zero total spin in each triangle of the lattice (i.e. coplanar 120◦ spins

in each triangle of the lattice), however, there is no constraint that each spin lies in the XY

plane. Therefore, local distortions of the spin configuration are allowed and the spin wave

energy spectrum shows a flat band at zero energy [200–202]. This is not the case for the

present situation. In the next section, we study the spin wave excitations, of the classical

phases we just obtained.

4.2.2 Spin-wave analysis

Here, we are interested in the stability of the classical magnetic phases (determined in the

previous section) against spin wave excitations. We compute the energies of the spin waves

in the harmonic approximation (linear spin wave theory).

Ferromagnetic phase From Eq. (4.13) and using Sx
i =

(︁

S+
i + S−

i

)︁

/2 and Sy
i = −i

(︁

S+
i − S−

i

)︁

/2

we write

HS =
∑︂

⟨ij⟩

[︃

−JzSz
i S

z
j +

Jxy
2

(︁

S+
i S

−
j + S−

i S
+
j

)︁

]︃

, (4.19)
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In the ferromagnetic state, the spins order along the z axis so we write the Holstein-Primakoff

transformation as follows

Sz
i = S − a†iai, (4.20a)

S−
i = a†i

√︂

2S − a†iai, (4.20b)

S+
i =

√︂

2S − a†iai ai, (4.20c)

with s the spin norm and ai a boson spin-wave annihilation operator at site i. We consider

the large spin S limit of this transformation and we rewrite it, to second order in the boson

operators a†i and ai (harmonic approximation)

Sz
i = S − a†iai, (4.21a)

S−
i =

√
2S a†i , (4.21b)

S+
i =

√
2S ai, (4.21c)

Now we use the previous transformation to write the formulation of HS in a spin-wave

harmonic approximation. It reads, after a Fourier transformation (so considering periodic

boundary conditions)

HS = −2NJzS
2 + 2JzS

∑︂

k

(2δα,β + γFΛα,β) a
†
α(k)aβ(k), (4.22)

with γF = Jxy/Jz (γF ∈ [0, 2]), aα(k) is the momentum space boson spin-wave annihilation

operator associated to the color α spin sub-lattice (in the ferromagnetic phase), δα,β is the

Krönecker delta function and the Λ matrix reads

Λ =

⎛

⎜

⎜

⎜

⎝

0 cosk · b1 cosk · b2

cosk · b1 0 cosk · b3

cosk · b2 cosk · b3 0

⎞

⎟

⎟

⎟

⎠

, (4.23)

where bi, i ∈ 1, 2, 3 are the three vectors (previously defined) joining the nearest neighbor

sites on the kagome lattice (see for instance Fig. 3.1(a) of Chapter 3). The eigenvalues of Λ
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are

λ1 = −1, (4.24a)

λ2 =
1

2

(︂

1 +
√︁

1 + 4f(k)
)︂

, (4.24b)

λ3 =
1

2

(︂

1−
√︁

1 + 4f(k)
)︂

, (4.24c)

with f(k) = 2
∏︁3

α=1 cosk · bα. Let us call

υµ(k) = (υµ,1, υµ,2, υµ,3), (4.25)

the normalized eigenvectors of Λ (µ ∈ {1, 2, 3}), and we define

dµ(k) =
∑︂

α

υµ,αaβ(k), (4.26)

Then we have

HS = −2NJzS
2 + 2JzS

∑︂

k

(2 + γFλµ) d
†
µ(k)dµ(k), (4.27)

The three spin wave branches with energies ϵµ(k) = 2JzS (2 + γFλµ) are sketched in Figs. 4.1(a)

and 4.1(c) for different values of γF . We remind that the energy of the so called classical

state is
(︄

S2
∑︂

i,j

−Jz cos2 θ −
Jxy
2

sin2 θ

)︄⃓

⃓

⃓

⃓

⃓

θ=0

= −2NJzS
2, (4.28)

with N the number of spins in the system. For all values γF , except γF = 2 (transition point),

we observe a finite gap between the lowest energy associated to the spin wave excitations

and the energy associated to the classical state. λ1 = −1 so ϵ1 is a flat band and because

λ1 ≤ λ3 ≤ λ2, ϵ1 is associated to the lowest energy states. Moreover, we have checked

that hexagon-localized excitations associated to alternating values 0 and π of the azimuthal

angles are eigenstates with energies corresponding to the flat band [200]. The energy of the

spin wave excitations for the lowest dispersive band, for second order in small |k| is given by

ϵ2(k) = 2JzS
(︁

2− γF + γF
2
|k|2
)︁

. This quadratic dispersion relation is shown in Figs. 4.1(b)

and (d).
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Antiferromagnetic phase The procedure we follow is detailed in [200]. We remind that

the classical antiferromagnetic phase is characterized by a spin order in the XY plane with

angles between nearest neighbor spins ϕi − ϕj = ±2π/3. The sign of ϕi − ϕj is fixed for the

three ordered pairs (ϕ1−ϕ2, ϕ2−ϕ3, ϕ3−ϕ1) in each triangle of the lattice. It is convenient

for the study to rewrite the Hamiltonian (given by Eq. (4.9)) in a so-called rotating frame

(xi, yi, z), in which one axis (say yi axis) is aligned with the local spin at site i and the z

axis remains the same. This is done thanks to the following transformation

Sy
i = cosϕiS

yi
i − sinϕiS

xi

i , (4.29a)

Sx
i = cosϕiS

xi

i − sinϕiS
yi
i , (4.29b)

and H now reads

H =
∑︂

⟨ij⟩

[︁

−JzSz
i S

z
j + Jxy cos (ϕi − ϕj)

(︁

Sxi

i S
xj

j − Syi
i S

yj
j

)︁

+ Jxy sin (ϕi − ϕj)
(︁

Sxi

i S
yj
j − Syi

i S
xj

j

)︁]︁

.

(4.30)

We can now perform the Holstein-Primakoff transformation, writing S the spin norm and ai

a boson spin-wave annihilation operator at site i,

Syi
i = S − a†iai, (4.31a)

S+
i = a†i

√︂

2S − a†iai, (4.31b)

S−
i =

√︂

2S − a†iaiai, (4.31c)

where, because of the respective orientation of the axis in the frame (xi, yi, z), S
±
i = Sz

i ±Sxi

i .

As we did for the ferromagnetic phase, we consider the large S limit and we keep only terms

up to second order in the bosonic operators. Because the sign of ϕi − ϕj is fixed for the

three ordered pairs in each triangle of the lattice, the Sxi

i S
yj
j − Syi

i S
xj

j term in Eq. (4.30) is

canceled out when performing the ⟨i, j⟩ summation in each triangle of the lattice. H then
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reads

H = −NJxyS2+
SJxy
2

∑︂

⟨i,j⟩

[︃(︃

1

2
− γAF

)︃

(︂

aiaj + a†ia
†
j

)︂

−
(︃

1

2
+ γAF

)︃

(︂

a†iaj + aia
†
j

)︂

+ 2a†iai

]︃

,

(4.32)

with Jz = γAFJxy, γAF ∈ [0, 1/2]. Now, we restrict our analysis to the q = 0 configuration

[200] for which the magnetic unit cell contains three sites and corresponds to the kagome

lattice unit cell. In fact, this calculation would yield the same result for the
√
3 ×

√
3 unit

cell, as in Ref. [200] analysis, where only including further nearest neighbor terms lifts the

degeneracy between both configurations. A Fourier transform of H gives

H = −NJxyS2 + SJxy
∑︂

k

{︃[︃

2δα,β −
(︃

1

2
+ γAF

)︃

Λα,β

]︃

a†α(k)aβ(k) (4.33)

+
1

2

(︃

1

2
− γAF

)︃

Λα,β

(︂

aα(k)aβ(−k) + a†α(k)a
†
β(−k)

)︂

}︃

,

(4.34)

where aα(k) is the momentum space boson spin-wave annihilation operator associated to the

color α spin sub-lattice (in the antiferromagnetic phase), and the matrix Λ is the same than

in the ferromagnetic phase (see Eq. (4.23)). Here we obtain

H = −NJxyS2 + SJxy
∑︂

k,µ

{︃[︃

2−
(︃

1

2
+ γAF

)︃

λµ

]︃

d†µ(k)dµ(k) (4.35)

+
1

2

(︃

1

2
− γAF

)︃

λµ
(︁

dµ(k)dµ(−k) + d†µ(k)d
†
µ(−k)

)︁

}︃

. (4.36)

Now we define the coordinate operator Qµ(k) and the momentum operator Pµ(k) such that

Qµ(k) =
i√
2

(︁

dµ(−k)− d†µ(k)
)︁

, (4.37a)

Pµ(k) =
1√
2

(︁

dµ(−k) + d†µ(k)
)︁

, (4.37b)

[︁

Pµ(k), Q
†
ν(q)

]︁

= −iδk+q,0δµ,ν , (4.37c)

Then, using
∑︁

µ λµ = 0, we have

H = −NJxyS2 −NJxyS + SJxy
∑︂

k,µ

[︃

(1− γAFλµ)Pµ(k)P
†
µ(k) +

(︃

1− 1

2
λµ

)︃

Qµ(k)Q
†
µ(k)

]︃

,

(4.38)
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and we see that we get a well-known harmonic oscillator Hamiltonian. Therefore we define

two normal modes operators bµ(k) and b
†
µ(k) such that

Qµ(k) =

√︃

c1
2c0

(︁

bµ(k) + b†µ(k)
)︁

, (4.39a)

Pµ(k) = −i
√︃

c0
2c1

(︁

bµ(k)− b†µ(k)
)︁

, (4.39b)

[︁

bµ(k), b
†
ν(q)

]︁

= δk,qδµ,ν , (4.39c)

with c0 and c1 two constant terms. We take c0 =
√︂

1− 1
2
λµ, c1 =

√︁

1− γAFλµ and we find

H = −NJxyS2 −NJxyS +
∑︂

k,µ

ϵµ(k)

(︃

b†µ(k)bµ(k) +
1

2

)︃

, (4.40)

with

ϵµ(k) = JxyS
√︂

2 (2− λµ) (1− γAFλµ), (4.41)

which explicitly reads

ϵ1 = 2JxyS

√︃

3

2
(1 + γAF ), (4.42a)

ϵ2(k) = 2JxyS

√︃

1 + f(k)γAF − 1 + γAF

4

(︂

1 +
√︁

1 + 4f(k)
)︂

(4.42b)

ϵ3(k) = 2JxyS

√︃

1 + f(k)γAF − 1 + γAF

4

(︂

1−
√︁

1 + 4f(k)
)︂

, (4.42c)

The k-dependency of these energies is represented in Fig. 4.2. Let us compare with the

energy of the classical antiferromagnetic state which is
(︄

S2
∑︂

i,j

−Jz cos2 θ −
Jxy
2

sin2 θ

)︄⃓

⃓

⃓

⃓

⃓

θ=π/2

= −NJxyS2, (4.43)

Here we have −1/4 ≤ f(k) ≤ 2 so the flat band ϵ1 is the higher energy band. Hexagon-

localized excitations associated to alternating values of the spin Sz
i components with opposite

signs are eigenstates with energies corresponding to the flat band [200]. The energy in the

lowest dispersive band for small |k| is given by ϵ3(k) = 2Jxys
√
1− 2γAF |k|. This linear

dispersion relation is clearly shown in Figs. 4.2(b) and (d). From Eq. (4.40), we see that
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there is an energy shift ∆ between the classical state energy and the lowest energy associated

to the normal mode (b†µ(k)) particles. At the transition we have ∆ = 0, but for γAF < 1/2

(i.e. Jxy > 2Jz), we see (Fig. 4.4(a)) that ∆ < 0, reaching ∆E,min ≈ 0.043Jxy per spin

for γAF → 0. This negative energy shift destabilizes the classical state characterized by

ϕi − ϕj = 2π/3. In fact, for Jxy/Jz > 2, Changlani et al. [220] found a spin liquid phase

using exact diagonalization [236, 237] for a 36 sites system. This seems to be consistent

with the spin liquid phase found for the Heisenberg isotropic point on the kagomé lattice

[211–215].

Results of Refs. [220, 238] also show a long range ordered ferromagnetic phase at Jxy/Jz <

2 and a long range order in-plane antiferromagnetic phase (at Jxy/Jz > 2) when next nearest

neighbor spin exchange is added. This is in general relevant for real systems, for instance

in Co3Sn2S2 further than nearest neighbor spin exchange seem to play a non negligible role

[239, 240]. In this Weyl semi-metal, in the ferromagnetic phase, ferromagnetic spin exchange

between the kagome plane has also non-negligible amplitude [239, 240]. Then it seems

probable that in the antiferromagnetic phase, these couplings are also non negligible. Since

there is no frustration between the planes, this should stabilize both the ordered phases we

observed. The anisotropic Heisenberg model with ferromagnetic spin exchange term Jz along

the z direction and antiferromagnetic spin exchange term Jxy in the XY plane has also been

studied on the triangular lattice [241]. A long range ferromagnetic order at Jxy/Jz < 2 and

an antiferromagnetic in-plane 120◦ order at Jxy/Jz > 2, stable against spin-wave fluctuations,

at small temperature, was found.

4.3 Consequence of the magnetism on the topological

properties of the low-energy channel

In this section we describe a temperature or a pressure-induced magnetic and topological

transition. First we describe how varying the temperature or the pressure can be understood
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in our model as varying the ratio Jxy/Jz. This leads to a magnetic phase transition, from a

ferromagnetic phase at low temperature or ambient pressure to a spin liquid phase (or an in-

plane antiferromagnetic phase if further spin exchange nearest neighbor terms are considered)

and then to a disordered phase at high temperature or pressure. The ferromagnetic phase is

associated with quantum anomalous Hall effect while the in-plane ordered phase is associated

with a metal behavior or a quantum spin Hall effect depending on the values of the Hund’s

coupling amplitude and of the Fermi level. We have been inspired from the Weyl semimetal

Co3Sn2S2, in which a magnetic and topological phase transition as the temperature or the

pressure varies [27, 229]. It is believed that the anomalous Hall effect which is observed in

the Weyl semimetals results from the QAH effect happening in each layer [38, 155, 242–245].

This justifies a comparison between the phase transition associated to the two-dimensional

model we study and the phase transition in Co3Sn2S2.

4.3.1 Temperature or pressure phase transition

Here we consider the effect of either a variation of the temperature or a variation of the

pressure in the model we built. This gives two different physical origins for the variation of

Jxy/Jz leading to a magnetic transition.

Temperature effect

Starting in the ferromagnetic phase Jxy/Jz < 2 and approaching the transition point Jxy/Jz =

2 we saw that the amplitude of the gap between the energy of the classical state and the

lowest energy of the spin wave excitations goes to zero. Moreover, the lowest energy spin

wave excitations are degenerate and associated to a flat band. The entropy SF associated

to such degenerate states, at finite temperature T , results in a free energy term −TSF that

should lower the flat band energy given by Eq. (4.27). Therefore, before the transition point,

for Jxy/Jz < 2, this energy becomes smaller than the classical ground state energy −2NJzS
2

and it destabilizes the ferromagnetic order. In other words, when T increases, the value of
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Jxy/Jz at the transition should be decreased, from Jxy/Jz = 2 at zero temperature to some

value Jxy/Jz < 2 at finite temperature. Here we notice that the parameters Jz and Jxy are

fixed. In the following, we choose to describe this situation by keeping the transition point

fixed Jxy/Jz = 2 while varying the ratio Jxy/Jz as the external parameter (the tempera-

ture) varies. The later does not appear explicitly in the following but is responsible for this

transition.

Above a certain temperature Tm such that kBTm ∼ Jxy, the magnetic order disappears

because the Boltzmann weights of the ordered configurations decrease (classical phase tran-

sition from a Ginzburg-Landau theory). Above a temperature Tt such that kBTt ∼ ∆λi
,

where ∆λi
denotes the amplitude of the itinerant electrons gap (the gap is due to the spin-

orbit coupling term), we expect that the topological order disappears. Indeed, the energy

bands for the itinerant electrons disappear because transitions between states associated to

different bands are possible at Tt. The exchange coupling amplitudes have been estimated

around 10 − 20 meV = 100 − 200 K in Co3Sn2S2 [239, 240]. Spin-orbit gaps (appearing at

certain points in momentum space), are of order 10 − 50 meV = 100 − 500 K in Co3Sn2S2

[199]. This seems consistent with the argument developed in this paragraph and with the

magnetic and topological transition observed.

Pressure effect

In Co3Sn2S2, it is also shown that a magnetic and topological transition is observed when

the external (hydrostatic) pressure is varied [27, 229]. The increase of the pressure results

in the reduction of the rhombohedral lattice parameter which closes the half-metallic gap

[229]. For the model we built, we argue that the reduction of the rhombohedral lattice

parameter results in the increase of the amplitude of the exchange integrals, in particular

the one associated to the localized spins, tS, which we assumed small when no external

pressure is applied. This yields an increase of Jxy = t2S/U compared to Jz, which would lead

to a ferromagnetic-antiferromagnetic phase transition. This is valid as long as tS/U ≪ 1.
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Above a certain pressure, the exchange integrals are so large that the OS orbitals are not

associated to localized particles and the energy gaps associated to the itinerant electrons go

to zero, which results in a phase without magnetic and the topological order.

Gaussian distribution

Let us write R the ratio Jxy/Jz: R = Jxy/Jz. For both temperature and pressure induced

transitions, we consider that we only have access to an effective distribution law for the

random variable R which is a function of the external parameter PE (being the temperature

or the external pressure as we describe in the last section). We write R0 (PE) the mean value

of R at PE and its variance σ2 (PE).

As an example we consider a Gaussian law and write its probability density function

P (R) =
1√
2πσ

exp

(︃

−(R−R0)
2

2σ2

)︃

. (4.44)

where, as we wrote, R0 and σ2 depend on PE so P (R) does also depend on PE. We remind

that R > 0. We want to impose
∫︂ ∞

0

dRP (R) ≈ 1. (4.45)

Then we assume that for all external parameter values PE, σ(PE) ≪ R0(PE).

4.3.2 Topological model for the itinerant electrons

Here we consider two topological phases for the itinerant electrons model introduced in

Sec. 4.1.2. Let us define t =
√︁

t2i + λ2i and ϕ = 3

[︃

arctan

(︃

λi
ti

)︃

+ π

]︃

. This gives

− te−iφσzνij/3 = −(ti − iλiνijσ
z), (4.46)

The Hamiltonian associated to the itinerant electrons is

H = −t
∑︂

⟨ij⟩

c†ie
−iφσzνij/3cj −

hc
2

∑︂

i

Sz
i c

†
iσ

zci, (4.47)

We notice that we already computed the Chern numbers associated to the energy bands

given by the first term −t∑︁⟨ij⟩ c
†
ie

−iφσzνij/3cj (see Chapter 3): we have C = − sgn (sinϕ)
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(C = +sgn (sinϕ)) for the lowest energy band associated to the spin ↑ (↓) particles, C = 0

for the middle energy band associated to both spin ↑ particles and spin ↓ particles, and

C = sgn (sinϕ) (C = − sgn (sinϕ)) for the highest energy band associated to the spin ↑ (↓)

particles.

4.3.3 The magnetic transition yields a topological transition

Here we show how the magnetic order influences the topological order. In Sec. 4.2, we

found that, in the large S (for the localized spins) limit, if R < 2, the localized spin show

a ferromagnetic out-of-plane order while if R > 2 there is no out-of-plane order. This leads

to two different topological phases associated to the itinerant electrons. In the following, we

label by lσ, mσ and uσ respectively the lowest, the middle and the highest itinerant electron

spin σ energy bands. Moreover, as we mentioned, both temperature and pressure induced

transitions introduced in Sec. 4.3.1 are described by the variation of R.

Magnetic and topological transition

For R < 2, the Hund’s coupling term acts like a magnetic field:

Hh = −hc
∑︂

i

Sz
i s

z
i = −hc

∑︂

i

⟨Sz
i ⟩szi = −hcS

∑︂

i

szi . (4.48)

We consider that hc is large enough so that the energy bands l ↑ and m ↑ lie below the

bands u ↑, l ↓, m ↓ and u ↓ and that the Fermi level lies in the gap between the bands l ↑

and m ↑ and the other ones. This means that hc has at least amplitude of the order ti (the

amplitude of the nearest neighbor hopping terms). Such a situation is shown in Fig. 4.3(a).

The computation of the Chern number in Chapter 3 (see Eq. (3.29)) is directly applicable to

the present case. We consider λi > 0 so ϕ > 0. The lowest spin ↑ energy band is associated

with Chern number −1 while the middle spin ↑ energy band is associated with Chern number

0 giving C↑ = −1 (here C↓ = 0 because all the spin ↓ bands are above the Fermi level) and

a total Chern number C = −1.
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For R > 2, the out-of-plane magnetic moments vanish, therefore the hc term vanishes.

The energy bands associated to the itinerant electrons have twofold spin degeneracy. Such

a situation, with the Fermi level previously defined (Fig. 4.3(a)) is shown in Fig. 4.3(b). We

see that a convenient choice of hc and of EF makes that the Fermi level lies between the

degenerate energy bands l ↑, l ↓ and m ↑, m ↓. The computation of the topological invariant

in Chapter 3 (see Eq. (3.32)) is directly applicable to the present case and we deduce that

we a have a QSH state with ν = (C↑ − C↓) /2mod 2 = 1 (C↑ and C↓ are the Chern numbers

respectively associated to the spin ↑ and ↓ electrons) and vanishing total Chern number

C = C↑ + C↓.

Figs. 4.3(c) and (d) also show another choice for the values of hc and of EF for which

we observe a QAH phase associated to ferromagnetism but no topological properties in the

(”high temperature”) antiferromagnetic phase.

(Gaussian) distribution on R

In the large S limit, for R < 2 (ferromagnetic order), ⟨Sz
i ⟩ = S is non-vanishing, C = −1,

C↑ = −1 and C↓ = 0 (giving ν = 0) while for R > 2, there is no out-of-plane magnetic order

⟨Sz
i ⟩ = 0, C = 0, C↑ = −1 and C↓ = 1 (giving ν = 1).

Writing E(⟨Sz
i ⟩), E(C), E(C↑) and E(C↓) the values of respectively ⟨Sz

i ⟩, C, C↑ and C↓

averaged over the distribution P (R) (see Eq. (4.44)), we obtain

E(⟨Sz
i ⟩) =

∫︂ ∞

0

dRP (R)⟨Sz
i ⟩(R) = S

∫︂ ∞

1/2

dRP (R) =
S

2
erfc

[︃

1√
2σ

(︃

1

2
−R0

)︃]︃

, (4.49a)

E(C) = −1

2
erfc

[︃

1√
2σ

(︃

1

2
−R0

)︃]︃

, (4.49b)

E(C↑) = −1, (4.49c)

E(C↓) = 1− 1

2
erfc

[︃

1√
2σ

(︃

1

2
−R0

)︃]︃

, (4.49d)

where we denoted by ”erfc[]” the complementary error function. E(⟨Sz
i ⟩) depends on the

value of the external parameter PE via R0 and σ. These results are represented in Fig. 4.4(b).
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interaction which gives rise to Mott physics and a double-exchange mechanism with the

itinerant electrons [221, 223–226]. This results either in an out-of-plane ferromagnetic phase

or in an in-plane ordered phase. The in-plane ordered phase is either a spin-liquid or a long

range order phase if further nearest neighbor spin-exchange is considered [220].

The localized spins couple to the spins of the itinerant electrons through a ferromagnetic

Hund’s coupling term. The itinerant electrons are described by a nearest neighbors hopping

term with spin-orbit coupling [11, 36, 227, 228]. In the ferromagnetic phase, the ferromag-

netic Hund’s coupling term acts like a magnetic field and for certain values of the chemical

potential, the itinerant channel shows a quantum anomalous Hall effect. In the in-plane or-

dered magnetic phase, the itinerant electrons model is time-reversal invariant and, depending

on the Fermi energy, is either associated to a quantum spin Hall phase or to a metallic phase.

We applied this model to the Weyl semimetal Co3Sn2S2 in which a temperature and

pressure dependent magnetic and topological transition is observed. On the one hand, at

finite temperature, we argue that the ferromagnetic phase should be destabilized near the

transition because of the finite entropy associated to the spin wave excitations. Therefore,

increasing the temperature yields a magnetic transition and as a consequence it also results

in a topological transition because, as we explained in the previous paragraph, the later is

coupled to the former in our model. On the other hand, an increase of the pressure results

in the reduction of the rhombohedral lattice parameter [229]. In our approach, we argued

that this would results in the increase of the exchange integrals (hopping terms), which,

consequently, varies the in-plane spin-exchange term in our model and yields a magnetic and

topological transition.
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Chapter 5

Time reversal symmetric topological
insulators

In this chapter we study a new time-reversal invariant topological model for a two-dimensional

kagome lattice system. It contains flux Lzsz and Lysx nearest-neighbor terms, respectively

reminiscent of intrinsic spin-orbit coupling (see Sec. 1.4.1) and Rashba spin-orbit coupling

processes. We study this model for several on-site energy configurations. We show how

the topological phase, resulting from the flux term, is tuned by varying the amplitude(s) of

on-site energy terms and/or of the Rashba spin-orbit coupling term, at filling n = 2/3. In

the last section of this chapter, we study the effect of Hubbard interactions on the topologi-

cal properties for a specific on-site energy configuration and at vanishing Rashba spin-orbit

coupling. The work reviewed in this chapter, which results from a collaboration involv-

ing Karyn Le Hur’s group (Ecole Polytechnique, Palaiseau), and Walter Hofstetter’s group

(Goethe University, Frankfurt) was published in Refs. [188] and [246]. Walter Hofstetter’s

group was mainly concerned with the numerical investigation of the topological and magnetic

phase diagram in the non-interacting case and in the interacting case. In this chapter we

only briefly mention their numerical results; the interested reader is referred to both previous

references.

My contribution in these publications essentially concerns analytical computations. In

the non-interacting case, I determined, through several methods, the Z2 phase diagram for
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different on-site energy configurations. In particular, I performed an explicit analytical com-

putation of the spin Chern number using the method we developed in Chapter 3, Sec. 3.2.1;

to the best of our knowledge this computation does not appear in the literature before our

publication. In the interacting case, I determined the system’s ground state, for a specific

limit of the on-site energies’ amplitude, at vanishing Rashba spin-orbit coupling. I used

perturbation theory in the large Hubbard amplitude U limit and a mean-field method for

smaller U .

In two-dimensional time-reversal invariant systems, the spin-orbit interaction is essen-

tial to obtain non-trivial topological properties (see Refs. [2, 11–14, 48, 144, 145] and sec-

tion 1.4.1). Several topological insulators on the kagome lattice have been studied, for in-

stance first and second nearest neighbors intrinsic spin-orbit interaction [39–41, 193], Rashba

spin-orbit interaction [247] or intrinsic and Rashba spin-orbit coupling for the breathing

kagome lattice [42]. Related to the quantum spin Hall phase, the quantum anomalous Hall

phase on the kagome lattice has attracted much attention [31–38]. In several kagome ma-

terials, the spin-orbit interaction has relatively high amplitude and opens a topological gap

(at least at some points in the Brillouin zone) [25, 26, 36, 37, 192].

Hubbard interactions [248] on the kagome lattice leads to very interesting phases, because

of geometrical frustration in this lattice and the appearance of flat bands [117, 118, 249–260]

and namely in the limit of large Hubbard interactions at half filling, spin models become

relevants [261, 262] and have been extensively studied on the kagome lattice [200–205, 208–

216, 218, 263–268]. Recently, materials showing interplay between topological and magnetic

properties has attracted a lot of attention [20–24, 28, 29].

The experimental investigation of the model we study here is possibly reachable using cold

atom gases; the impressive experimental progress in this domain has enabled the simulation

of many topological and correlated condensed matter systems [269, 270]. Experimental

realization of Bose-Einstein condensate in 1995 has been the starting point of intense research
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activity focused on cold atom systems [269, 271–273]. Cold atom gases of fermions have

been realized few years later [274–276], as well as optical lattice traps, which have enabled

to study systems with spatial periodicity [277–280]. In particular, the kagome lattice has

been experimentally realized by overlaying two optical triangular lattices [281] and there are

also proposals based on other techniques [282, 283]. In cold atom gases, topological systems

are implementable via artificial gauge potentials [80, 284–292]. Several topological systems

have already been experimentally realized, for instance the Hofstadter Hamiltonian and the

Haldane model [150, 156, 293, 294]. More specifically, topological models with spin-orbit

coupling have been investigated theoretically on two-dimensional lattices [80, 291, 292, 295],

have been engineered [296–300] and it has been shown such spin-orbit coupled systems are

associated with spin Hall effect [301–303]. The simulation of Hubbard interactions in cold

atom systems has been achieved experimentally for bosons [304–307] and fermions [268, 308–

312]. These systems are very interesting for the study of Hubbard interactions since it is

possible to tune the amplitude of the interaction thanks to Feshbach resonances.

This chapter is organized as follows. In Sec. 5.1, we compute the Z2 invariant at vanishing

Rashba spin-orbit coupling. In this case, there is a simple link between the Z2 number and

both Chern numbers associated to each spin polarized occupied bands (see [48, 189] or

Chapter 1, Sec. 1.4). We compute these spin Chern numbers using an extension of the

method introduced in Chapter 3, Sec. 3.2.1, for several on-site potential configurations.

At vanishing Rashba spin-orbit coupling, the system is inversion symmetric therefore the

Z2 number can also be computed from the eigenvalues of the parity operator at the time-

reversal invariant points in the Brillouin zone [39, 42, 190], as we mentioned in Chapter 3,

Sec. 3.3.2. We adapt this method for our system and compare the results we obtain with

the one we obtained from the extension of the method introduced in Chapter 3, Sec. 3.2.1.

We also use another method for the (numerical) computation of the spin Chern numbers at

vanishing Rashba spin-orbit coupling, relying on the splitting of the energy bands under a
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weak magnetic field [34, 194].

Then, in Sec. 5.2 we study the effect of the Rashba spin-orbit coupling; the topologi-

cal phase diagram is readily obtained by adapting the argument introduced in Chapter 1,

Sec. 1.3.3 and computing the energy gap phase diagram. We also numerically compute the

energy spectrum, the local density of states and the currents in systems with open boundary

conditions.

Eventually, in Sec. 5.3, we study the effect of Hubbard interactions (amplitude U) added

to the topological model we introduce at vanishing Rashba spin-orbit coupling. We consider

a specific on-site energy configuration. In this case, we use perturbation theory in the large

U limit and a mean-field method for smaller U .

5.1 Quantum spin Hall phase on the kagome lattice

with color-dependent chemical potentials

In this section, we study the effect of several on-site potential configurations for a time-

reversal model on the kagome lattice with flux and conserved spin sz. We describe the

analytical computation of the Z2 number at filling n = 2/3, which means that the number

of particles in the system is 1/3 of the maximum number of particles that the system can

host (which correspond to n = 2). First, we develop two methods for this computation. One

method relies on the simple link between the Z2 number and both Chern numbers associated

to each spin polarized occupied bands [48, 189]. The challenge here is to compute analytically

these Chern numbers. The other method relies on the conservation of the inversion symmetry

[190]: the Z2 number is the product of the parity eigenvalues at the high symmetry points

of the BZ. These methods are applied to the different on-site potential cases (i), (ii) and

(iii) described in Sec. 5.1.1, for arbitrary values of the phase ϕ and the on-site potentials

amplitude λ.
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5.1.1 Hamiltonian

In Sec. 1.4.1 we reviewed a Z2 topological time-reversal symmetric model on the honeycomb

lattice. This model contains an intrinsic spin-orbit coupling term Lzsz (we also call it a flux

term) which is essential for the emergence of topological energy bands.

Here we study the effect of such a Lzsz term along only one direction of the kagome lattice

and written as an exponential phase factor. This makes it particularly relevant for a cold

atom system where this spin-dependent ”phase” term could be implemented using artificial

gauge potential [288]. Keeping the notations we previously used for the description of the

kagome lattice we write this Lzsz term

− t
∑︂

r

c†B,re
iφszcG,r + c†B,r+e3

eiφszcG,r +H.c., (5.1)

where t is the hopping amplitude for the fermions between neighboring sites in the lattice.

c†α,r =
(︂

c†α,r,↑, c
†
α,r,↓

)︂

is the operator which creates a fermion at site r for α = R, at site r+b1

for α = B, and at site r+b2 for α = G. We remind the definitions of the vectors bα and eα

in Fig. 5.1(a) where we represented the flux term introduced in Eq. (5.1). The total flux in

each unit cell is vanishing and a local flux which sign depends on the spin is inserted. If we

consider each spin species separately, this flux term breaks time-reversal symmetry.

To vary the amplitude of the topological gap, we also consider an on-site potential term,

which reads
∑︂

r

∑︂

α=R,B,G

λαnα,r, (5.2)

with nα,r,σ = c†α,r,σcα,r,σ the density operator for the spin σ and we have nα,r = nα,r,↑+nα,r,↓.

In the following we consider several configurations for this on-site potential term: (i) λB =

−λR = λ and λG = 0, (ii) λR = λ and λB = λG = 0, and (iii) λB = λ et λR = λG = 0. The

case λG = λ and λR = λB = 0 is equivalent to the case (ii).

Along the directions e1 and e2 (see Fig. 5.1(a)), we consider real-amplitude −t hopping
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−teiϕsz −t
−t

G

R B

e1

e2
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(a)

−teiϕsz
−tei2πγsx

−t

G

R B

e1

e2

b2

b1

b3

(c) (b)

Figure 5.1: (a) and (c) Kagome lattice representation and respectively Hamiltonian in
Eq. (5.3) and Hamiltonian in Eq. (5.41) hopping terms. The direction of the arrow is asso-
ciated to a positive sign in the phase of exponential for the hopping terms between the sites
G and B or R and G. (b) Definition of the Brillouin zone into two domains, each associated
to a specific gauge choice for the eigenvectors of the Hamiltonian in Eq. (5.3).

terms and the complete Hamiltonian we study is then

H = −t
∑︂

r

[︄

c†R,rIcB,r + c†R,r+e1
IcB,r + c†R,rIcG,r + c†G,rIcR,r+e2

+ c†B,re
iφszcG,r + c†B,r+e3

eiφszcG,r +H.c.

]︄

+
∑︂

r

∑︂

α=R,B,G

λαnα,r. (5.3)

We consider periodic boundary conditions in both directions of the lattice. A Fourier

transformation gives

H =
∑︂

k

ψ†
k

⎛

⎝

H↑(k) 0

0 H↓(k)

⎞

⎠ψk , (5.4)
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with

Hσ(k)=

⎛

⎜

⎜

⎜

⎝

λR ε1(k) ε2(k)

ε1(k) λB eiszφε3(k)

ε2(k) e−iszφε3(k) λG

⎞

⎟

⎟

⎟

⎠

, (5.5)

ψ†
k =

(︂

c†R,k,↑, c
†
B,k,↑, c

†
G,k,↑, c

†
R,k,↓, c

†
B,k,↓, c

†
G,k,↓

)︂

, (5.6)

εα = −2t cos(k · bα), and sz = 1 (−1) for σ =↑ (↓). We notice that if the on-site potential

terms are vanishing, we obtain the Hamiltonian in Eq. (3.10b) studied in Chapter 3. As we

mentioned in Chapter 3, this Hamiltonian only differs from the Hamiltonian describing two

spin copies of Eq. (3.8) by a U(1) local gauge transformation. It is obviously time-reversal

invariant.

5.1.2 Computation of the Z2 invariant from the spin Chern num-
bers

We now compute the lowest band spin Chern numbers Cσ associated to the model described

in the previous section (for different on-site energy configurations), by implementing the

method described in Chapter. 3, Sec. 3.2.1 [10]. The Z2 invariant ν is then given by ν =

C↑ mod 2 (see Sec. 3.3.1).

On-site potential configuration λB = −λR = λ and λG = 0

Here we consider the case for which the on-site energies are such that λB = −λR = λ and

λG = 0. We compute ν for all flux ϕ and arbitrary onsite energy λ. Both lowest energy band

(associated to opposite spin species) are described by the energy E given by

E = −2

√︃

λ2 + 4t2 [1 + f(k)]

3
cos

θ(k)

3
, (5.7)
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with f(k) = 2
∏︁3

α=1 cosk · bα and 0 ≤ θ(k) ≤ π defined by

θ(k) = arccos

33/2
(︃

f(k) cosϕ+
λ (ε22(k)− ε23(k))

8t3

)︃

2

(︄

1 + f(k) +

(︃

λ

2t

)︃2
)︄3/2

. (5.8)

From this we observe that the gap between the lowest band and the middle one only closes

at λ = ±
√
2t. It is valid for each spin species, to which associated middle band energy is

given by

Em = −2

√︃

λ2 + 4t2 [1 + f(k)]

3
cos

θ(k)− 2π

3
, (5.9)

Let us remind that we denote the three nonequivalent high symmetryM points, M1 = −1

2
g1,

M2 =
1

2
g2 and M3 =

1

2
(g1 + g2) (see Fig. 5.1(b)). At λ =

√
2t the energy bands touch

in reciprocal space at the M3 point, while at λ = −
√
2t the energy bands touch at the M1

point, and we observe that

(i) at λ ≤ −
√
2t, we have E ≤ λ, with the equality occurring at the M1 point,

(ii) at −
√
2t < λ <

√
2t, we have E < −|λ|,

(iii) at λ ≥
√
2t, we have E ≤ −λ, with the equality occurring at the M3 point.

In the following, we will only describe the computation of the lowest band Chern number

for the case λ < 0 because the case λ > 0 can be studied following almost the same steps.

Let us write

|uσ,k⟩ =

(︂

rσ(k)c
†
R,k,σ + bσ(k)c

†
B,k,σ + gσ(k)c

†
G,k,σ

)︂

|0⟩
√︂

|rσ(k)|2 + |bσ(k)|2 + |gσ(k)|2
, (5.10)

the lowest energy eigenvector of Hσ(k) in the basis
(︂

c†k,R,σ, e
ik·b1c†k,B,σ, e

ik·b2c†k,G,σ

)︂

. We now

determine the coefficients rσ(k), bσ(k) and gσ(k) for 3 gauge choices GI , GII and GIII on

the eigenvectors that we respectively write |uσ,k,I⟩, |uσ,k,II⟩ and |uσ,k,III⟩. We will see later

that these choices enable to correctly define the Bloch eigenvectors over the BZ.

(i) Gauge choice GI : the coefficient gσ(k) is real. More precisely, we choose

gσ(k) = ρσ(k) , (5.11)
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with

ρσ(k)e
iϕσ(k) = −eik·b2

[︃

(E − λ)ε2(k)

2ε1(k)
+

1

2
e−iszφε3(k)

]︃

, (5.12)

where ρσ(k) and φσ(k) are both real numbers. Then we have

rσ(k) = −E(E − λ)− ε23(k)

2ε1(k)
e−iϕσ(k) , (5.13)

and

bσ(k) =
E(E + λ)− ε22(k)

ρ1,σ(k)
ρσ(k)e

−iϕ1,σ(k) , (5.14)

with

ρ1,σ(k)e
iϕ1,σ(k) = e−ik·(b1−b2)

[︁

(E + λ)ε3(k)e
−iszφ + ε1(k)ε2(k)

]︁

, (5.15)

where ρ1,σ(k) and φ1,σ(k) are both real numbers.

(ii) Gauge choice GII : the coefficient rσ(k) is real. We choose

gσ(k) = ρσ(k)e
iϕσ(k). (5.16)

Then we have

rσ(k) = −E(E − λ)− ε23(k)

2ε1(k)
, (5.17)

and

bσ(k) =
E(E + λ)− ε22(k)

ρ1,σ(k)
ρσ(k)e

i[ϕσ(k)−ϕ1,σ(k)] . (5.18)

(iii) Gauge choice GIII : the coefficient bσ(k) is real. We choose

gσ(k) = ρσ(k)e
iϕ1,σ(k) . (5.19)

Then we have

rσ(k) = −E(E − λ)− ε23(k)

2ε1(k)
e−i[ϕσ(k)−ϕ1,σ(k)], (5.20)

and

bσ(k) =
E(E + λ)− ε22(k)

ρ1,σ(k)
ρσ(k) . (5.21)
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Notice that φσ(k) is well-defined (modulo 2π) for all k except when ρσ(k) = 0 or when

ε1(k) = −2t cosk · b1 = 0 and φ1,σ(k) is well-defined for all k except when ρ1,σ(k) = 0.

Now we have to distinguish two different cases λ < −
√
2t and −

√
2t ≤ λ ≤ 0. First, the

λ < −
√
2t case. In this case, E ≤ λ. The points for which ρσ(k) = 0 are the same than those

for which ρ1,σ(k) = 0. These are the M2 =
1

2
g2 point at which cosk ·b2 = cosk ·b3 = 0, and

theM1 point at which cosk·b1 = cosk·b3 = 0 and E = λ. In this case, we apply gauge choice

GIII for all the points of the BZ; then the wave function |uσ,k,III⟩ (and its phase) is uniquely

and smoothly defined, as is the Berry gauge field Aσ,k,III = ⟨uσ,k,III |∇k |uσ,k,III⟩. Because

the BZ is a torus, we find that the lowest band Chern numbers Cσ, are both vanishing. A

very similar proof can be done for the λ >
√
2t case. We conclude that at n = 2/3 filling, for

all flux ϕ ∈ ]0, π[, the phase associated to λB = −λR = λ and λG = 0, |λ|>
√
2t is a trivial

insulator.

Now, let us study the −
√
2t ≤ λ ≤ 0 case which includes the λ = 0 case we studied in

Chapter. 3, Sec. 3.2.1. In this case, E < λ. We have ρσ(k) = 0 at the M2 point. We have

ρ1(k) = 0 at the M2 and the M1 points. Here, it is impossible to find a unique and smooth

gauge everywhere in the BZ. Extending the study of Chapter. 3, Sec. 3.2.1, we define the DII

domain, which contains the point where ρσ(k) vanishes, and the DI domain, which contains

all the points where E(E − λ) − ε23(k) vanishes or ε1(k) vanishes (see Fig. 5.1(b)). The

boundary between DI and DII do not contain any of the ρσ(k) = 0, E(E − λ) − ε23(k) = 0

and ε1(k) = 0 points. We also define Γ a closed path along this boundary, surrounding once

M2, as it is sketched in Fig. 5.1(b). We apply GI gauge choice for the points contained in

DI and GII gauge choice for the points contained in DII and it yields unique and smooth

Berry gauge fields on each domain DI and DII . Along Γ, we have |uσ,k,I⟩ = e−iϕσ(k) |uσ,k,II⟩

and we define φσ(k) so that it is smooth (along Γ). Here we have (this is the adaptation of

Eq. (3.28) to the present case)

Cσ =
1

2π

∮︂

Γ

dk ·∇kφσ(k). (5.22)
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On-site potential configuration λR = λ and λB = λG = 0

Now we consider the case where one of the sublattices has a finite onsite energy, while on

the other two sublattices the onsite energy vanishes, λR = λ and λB = λG = 0. At γ = 0,

we compute the Z2 number for all flux ϕ and arbitrary onsite energy λ at n = 2/3 filling.

The computation is similar to the one we have done for the λB = −λR = λ and λG = 0

case. We denote λ̃ = λ/3t. Both lowest energy band (associated to opposite spin species)

are described by the energy E given by

E = 2t

√︃

λ̃
2
+

4

3
[1 + f(k)] cos

θ(k) + 2π

3
, (5.24)

with f(k) = 2
∏︁3

α=1 cosk · bα and 0 ≤ θ(k) ≤ π defined by

θ(k) = arccos
λ̃
3
+ 2λ̃

(︁

1 + f(k)− 3
4t2
ε23(k)

)︁

− 4f(k) cosϕ
[︃

λ̃
2
+

4

3
[1 + f(k)]

]︃3/2
. (5.25)

In this case, the gap between the lowest band and the middle one only closes for the parameter

value λ = −2t, at the reciprocal space M3 point. It is valid for each spin species, to which

associated middle energy band is given by

Em = 2t

√︃

λ̃
2
+

4

3
[1 + f(k)] cos

θ(k)− 2π

3
. (5.26)

We observe that

(i) for λ ≤ −2t, we have E ≤ λ, with the equality occurring at the M3 point,

(ii) for λ > −2t, we have E < λ.

Now we can proceed in the same way than in the last section. We keep the same notations

for the coefficients of the eigenvectors and we introduce 3 gauge choices.

(i) Gauge choice GIV : the coefficient gσ(k) is real. More precisely, we choose

gσ(k) = ρ2,σ(k), (5.27)

with

ρ2,σ(k)e
iϕ2,σ(k) = eik·(b2−b1)

[︃

(−E + λ)ε3(k)

2ε1(k)
e−iszφ − 1

2
ε2(k)

]︃

, (5.28)

139



where ρ2,σ(k) and φ2,σ(k) are both real numbers. Then we have

rσ(k) =
E2 − ε23(k)

ρ3,σ
ρ2,σe

−iϕ3,σ(k), (5.29)

and

bσ(k) = −E(E − λ)− ε22(k)

2ε1(k)
e−iϕ2,σ(k) , (5.30)

with

ρ3,σ(k)e
iϕ3,σ(k) = eik·b2

[︁

Eε2(k) + e−iszφσε1(k)ε2(k)
]︁

, (5.31)

where ρ3,σ(k) and φ3,σ(k) are both real numbers.

(ii) Gauge choice GV : the coefficient bσ(k) is real. We choose

gσ(k) = ρ2,σ(k)e
iϕ2,σ(k). (5.32)

Then we have

rσ(k) =
E2 − ε23(k)

ρ3,σ
ρ2,σe

i[ϕ2,σ(k)−ϕ3,σ(k)], (5.33)

and

bσ(k) = −E(E − λ)− ε22(k)

2ε1(k)
. (5.34)

(iii) Gauge choice GV I : the coefficient rσ(k) is real. We choose

gσ(k) = ρ2,σ(k)e
iϕ3,σ(k). (5.35)

Then we have

rσ(k) =
E2 − ε23(k)

ρ3,σ
ρ2,σ, (5.36)

and

bσ(k) = −E(E − λ)− ε22(k)

2ε1(k)
e−i[ϕ2,σ(k)−ϕ3,σ(k)] . (5.37)

When λ < −2t, gauge choice GV I is applicable to the whole BZ. We conclude that at

n = 2/3 filling, for all flux ϕ ∈ ]0, π[, our model with λR = λ and λB = λG = 0, λ < −2t is

characterized by a trivial insulating phase.
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consider separately each of both diagonal parts.

As we explained in Chapter. 3, Sec. 3.3, at the Γ(0,0) point, PΓ(0,0)
is diagonal and at the

other points we have

PΓ(1,0)
= diag (1,−1, 1), (5.38a)

PΓ(0,1)
= diag (1, 1,−1), (5.38b)

PΓ(1,1)
= diag (1,−1,−1). (5.38c)

At Γ(1,0), Γ(0,1), and Γ(1,1)., we have

Hσ(Γ(1,0))=

⎛

⎜

⎜

⎜

⎝

λR 0 −2t

0 λB 0

−2t 0 λG

⎞

⎟

⎟

⎟

⎠

, Hσ(Γ(0,1))=

⎛

⎜

⎜

⎜

⎝

λR −2t 0

−2t λB 0

0 0 λG

⎞

⎟

⎟

⎟

⎠

, (5.39a)

Hσ(Γ(1,1))=

⎛

⎜

⎜

⎜

⎝

λR 0 0

0 λB −2teiszφ

0 −2te−iszφ λG

⎞

⎟

⎟

⎟

⎠

. (5.39b)

On-site potentials λB = −λR = λ and λG = 0

In the case λB = −λR = λ and λG = 0, we have

(i) at the Γ(1,0) point, for λ < −
√
2t, the smallest eigenvalue is E = λ and the associated

eigenvector is proportional to (0, 1, 0) (coefficients (rσ(k), bσ(k), gσ(k)) defined in Eq. (5.10)),

while for λ > −
√
2t, the smallest eigenvalue is E = −

(︁

λ+
√
16t2 + λ2

)︁

/2, with associated

eigenvector proportional to (−2t/(λ+ El) , 0, 1).

(ii) at the Γ(0,1) point, the smallest eigenvalue is E = −
√
4t2 + λ2 and the eigenvector

associated to it is proportional to (−2t/(λ+ El) , 1, 0).

(iii) at the Γ(1,1) point, if λ >
√
2t, then E = −λ is the smallest eigenvalue and the asso-

ciated eigenvector is proportional to (1, 0, 0), while if λ <
√
2t, then the smallest eigenvalue is

E =
(︁

λ−
√
16t2 + λ2

)︁

/2, with associated eigenvector proportional to (0, 2teiszφ/(λ− El) , 1).
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Applying the parity operator and the eigenvectors, we find that the phases λ >
√
2t and

λ < −
√
2t are trivial insulators while the phase −

√
2t < λ <

√
2t is a quantum spin Hall

phase ν = 1. These results are summarized in Table 5.1.

On-site potentials λR = λ and λB = λG = 0

In the case λR = λ and λB = λG = 0, we have

(i) at the Γ(1,0) point, the smallest eigenvalue is E =
(︁

λ−
√
16t2 + λ2

)︁

/2, with associ-

ated eigenvector proportional to (−E/2t, 0, 1) (coefficients (rσ(k), bσ(k), gσ(k)) defined in

Eq. (5.10)).

(ii) at the Γ(0,1) point, the smallest eigenvalue is E =
(︁

λ−
√
16t2 + λ2

)︁

/2, with associated

eigenvector proportional to (−E/2t, 1, 0).

(iii) at the Γ(1,1) point, if λ < −2t, then E = λ is the smallest eigenvalue and the associated

eigenvector is proportional to (1, 0, 0), while if λ > −2t, then the smallest eigenvalue is

E = −2t, with associated eigenvector proportional to (0,−eiszφ, 1).

Applying the parity operator on the eigenvectors, we find that the phase λ < −2t is a

trivial insulator while the phase λ > −2t is a quantum spin Hall phase ν = 1. These results

are summarized in Table 5.2.

5.1.4 Splitting of the energy bands under a weak magnetic field

The determination of the spin Chern number may be performed using the method introduced

in Chapter 3, Sec. 3.2.2 [34, 194] which rely on the determination of the energy spectrum

under a weak magnetic field B = Bẑ orthogonal to the Kagome lattice plane. Let us show to

which extend it is applicable to the present model described by the Hamiltonian in Eq. (5.4).

Hamiltonian in Eq. (5.4) decouples into two spin independent parts. Spin up and spin

down part are associated to opposite energy bands’ Chern number. Here we only consider

the spin up part of the Hamiltonian.

We implement the effect of the magnetic field in the Hamiltonian. We compute the
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λ (n1, n2) Eigenvalues E (rσ(k), bσ(k), gσ(k)) Parity operator (−1)ν

λ < −
√
2t (1, 0) λ (0, t, 0) diag(1,−1, 1)

+1(0, 1) −
√
4t2 + λ2 (−2t2/(λ+ E) , t, 0) diag(1, 1,−1)

(1, 1)
(︁

λ−
√
16t2 + λ2

)︁

/2 (0, 2t2eiszφ/(λ− E) , t) diag(1,−1,−1)

|λ|<
√
2t (1, 0) −

(︁

λ+
√
16t2 + λ2

)︁

/2 (−2t2/(λ+ E) , 0, t) diag(1,−1, 1)

−1(0, 1) −
√
4t2 + λ2 (−2t2/(λ+ E) , t, 0) diag(1, 1,−1)

(1, 1)
(︁

λ−
√
16t2 + λ2

)︁

/2 (0, 2t2eiszφ/(λ− E) , t) diag(1,−1,−1)

λ >
√
2t (1, 0) −

(︁

λ+
√
16t2 + λ2

)︁

/2 (−2t2/(λ+ E) , 0, t) diag(1,−1, 1)

+1(0, 1) −
√
4t2 + λ2 (−2t2/(λ+ E) , t, 0) diag(1, 1,−1)

(1, 1) −λ (t, 0, 0) diag(1,−1,−1)

Table 5.1: Table summarizing the computation of the Z2 topological invariant ν for an inver-
sion and time-reversal symmetric system. In this example, we took the chemical potentials
to be λB = −λR = λ and λG = 0. (n1, n2) define the time-reversal invariant momenta (see
Chapter 3, Sec. 3.3.2), and the eigenvector’s coefficients (rσ(k), bσ(k), gσ(k)) are defined in
Sec. 5.1.2.

λ (n1, n2) Eigenvalues E (rσ(k), bσ(k), gσ(k)) Parity operator (−1)ν

λ < −2t (1, 0)
(︁

λ−
√
16t2 + λ2

)︁

/2 (−E/2, 0, t) diag(1,−1, 1)

+1(0, 1)
(︁

λ−
√
16t2 + λ2

)︁

/2 (−E/2, t, 0) diag(1, 1,−1)

(1, 1) λ (t, 0, 0) diag(1,−1,−1)

λ > −2t (1, 0)
(︁

λ−
√
16t2 + λ2

)︁

/2 (−E/2, 0, t) diag(1,−1, 1)

−1(0, 1)
(︁

λ−
√
16t2 + λ2

)︁

/2 (−E/2, t, 0) diag(1, 1,−1)

(1, 1) −2t (0,−teiszφ, 1) diag(1,−1,−1)

Table 5.2: Table summarizing the computation of the Z2 topological invariant ν for an inver-
sion and time-reversal symmetric system. In this example, we took the chemical potentials
to be λR = λ and λB = λG = 0. (n1, n2) define the time-reversal invariant momenta (see
Chapter 3, Sec. 3.3.2), and the eigenvector’s coefficients (rσ(k), bσ(k), gσ(k)) are defined in
Sec. 5.1.2.
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diagram using a numerical computation of the gap between the second lowest energy band

and the third lowest energy band. We compare these results with the one obtained by our

collaborators in Frankfurt [188] who used a numerical method based on twisted boundary

conditions [313].

5.2.1 Hamiltonian and time-reversal symmetry

Similarly to the flux term, we write the Rashba spin-orbit coupling term along only one

direction of the lattice (see Fig. 5.1(c)) and under a form potentially implementable through

an artificial gauge field in cold atom gases

− t
∑︂

r

c†R,re
−i2πγsxcG,r + c†G,re

−i2πγsxcR,r+e2
+H.c. . (5.40)

We remind that sx is the first Pauli matrix in spin space. We notice that the Rashba spin-

orbit coupling terms act as a complex amplitude hopping term with spin flip and that it

breaks inversion symmetry. The complete Hamiltonian is

H = −t
∑︂

r

[︄

c†R,rIcB,r + c†R,r+e1
IcB,r + c†R,re

−i2πγsxcG,r + c†G,re
−i2πγsxcR,r+e2

+ c†B,re
iφszcG,r + c†B,r+e3

eiφszcG,r +H.c.

]︄

+
∑︂

r

∑︂

α=R,B,G

λαnα,r, (5.41)

and in momentum space it reads

H =
∑︂

k

ψ†
k

⎛

⎝

H↑(k) HSO(k)

H†
SO(k) H↓(k)

⎞

⎠ψk , (5.42)

with

Hσ(k)=

⎛

⎜

⎜

⎜

⎝

λR ε1(k) cos(2πγ)ε2(k)

ε1(k) λB eiszφε3(k)

cos(2πγ)ε2(k) e−iszφε3(k) λG

⎞

⎟

⎟

⎟

⎠

, (5.43)

HSO(k) =

⎛

⎜

⎜

⎜

⎝

0 0 sin(2πγ)ξ(k)

0 0 0

sin(2πγ)ξ(k) 0 0

⎞

⎟

⎟

⎟

⎠

. (5.44)
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ψ†
k =

(︂

c†R,k,↑, c
†
B,k,↑, c

†
G,k,↑, c

†
R,k,↓, c

†
B,k,↓, c

†
G,k,↓

)︂

, (5.45)

εα = −2t cos(k · bα), ξ(k) = 2t sin(k · b2) and sz = 1 (−1) for σ =↑ (↓).

Let us check that the Hamiltonian in Eq. (5.41) is invariant under time-reversal sym-

metry: ΘHΘ−1 = H (see App. B). Let us rewrite e−i2πγσx

= I cos 2πγ − iσx sin 2πγ and

eiφσ
z

= I cosϕ+ iσz sinϕ and we remind that σyσxσy∗ = σx and σyσzσy∗ = σz. Then we

write H =
∑︁

k ψ
†
kH(k)ψk, with H(k) a generic notation for the momentum space Hamilto-

nian matrix which appears in Hamiltonian 5.42. We notice that we have Hσ(−k) = Hσ(k)
∗

and HSO(−k) = −
(︁

HSO(k)
†
)︁∗

and it leads to ΘH(k)Θ−1 = H(−k) therefore H is invariant

under a time-reversal transformation (see App. B).

5.2.2 Topological phase diagram

At γ = 0 the Hamiltonian in Eq. (5.41), the system is characterized by a quantum spin

Hall phase ν = 1 and hosts, at each edge, one spin σ chiral mode and its time-reversal

conjugate anti-chiral mode, and the bulk is insulating; the system in the trivial phase is a

trivial insulator. When γ ̸= 0, the analytical computation of ν = 1 relying on Eq. (1.111) is

theoretically possible but much more complicated because we would have to compute and

study the eigenstates of the 6× 6 Hamiltonian in Eq. (5.41).

In fact, using the phase diagrams we found at γ = 0 and the energy gap phase diagrams

for non-vanishing values of γ, it is possible to obtain the Z2 topological phase diagram for

non-vanishing values of γ. In Sec. 1.3.3, we showed that, during an adiabatic evolution of the

Hamiltonian, an integer bulk quantity computed from the bulk energy states can vary only

if the bulk gap closes. This is applicable to the Z2 invariant which indeed is an integer (see

Eq. (1.111)). The energy gap phase diagrams for the different configurations of the on-site

energies we considered previously are shown in Fig. 5.5. From this and the phase diagrams

at γ = 0 (see Figs. 5.3 and 5.2), we deduce the Z2 topological phase diagrams for non-

vanishing values of γ which are shown in Fig. 5.5. This figure has in fact been obtained from
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the numerical computation of the Z2 invariant performed by our collaborators in Frankfurt

[188]. The numerical method they used takes advantage of twisted boundary conditions [191,

313, 314]. Let us remind, as we explained at the end of Sec. 1.4.1 in Chapter 1, that in the

Z2 phase at γ ̸= 0, the spin Hall conductivity is not quantized and the edge modes can not

be labelled by a spin quantum number. Indeed the Rashba spin-orbit coupling term (sx)

does not commute with sz, see Eq. (5.41).

Finally let us mention that we have checked the appearance of edge modes in a cylinder

geometry (we used partial Fourier transformation on the Hamiltonian (5.41), see App. E). For

instance, Fig. 5.6 show the energy spectrum at γ = 0.05t, for the on-site energy configuration

λB = −λR = λ, λG = 0 and for two different values of λ. We have numerically evaluated the

local density of states at a Fermi energy in the bulk gap between the second lowest energy

band and the third lowest energy band (only the case in Fig. 5.6a is associated with states

in the bulk gap). Both states of a time-reversed pair in the bulk gap show localization at

the same edge of the cylinder.

5.3 Hubbard interactions

In this section, we investigate Hubbard interactions (with amplitude U) for the model we

studied, at half filling, at γ = 0 and for the on-site energy configuration λR = λ, λB = λG = 0.

The aim is to study the ground state of the system and to determine what range of interaction

amplitudes enable the topology to survive.

We consider the Hamiltonian

H = Ht +Hλ +HU , (5.46)
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Effective Hamiltonian at second order

We use perturbation theory (see App. F) in the limit λ ≫ t and U ≫ t and considering

n = 2/3 filling. The ground states of HU + Hλ are the states, that we denote |ψ⟩, with

no particles on the R-sublattice sites and one particle at each B and G sublattice sites.

These states are linear combinations of the ∼ 22N states |0, σ1,B, σ1,G, . . . , 0, σN,B, σN,G⟩,

with σi,α = {↑, ↓}, for i ∈ [1, . . . , N ] and α = B,G. The first order terms of the expansion in

t/U and t/λ, ⟨ψ′|Ht |ψ⟩ vanish. Here |ψ⟩ and |ψ′⟩ belong to the ground state subspace, that

we denote S0. Indeed, Ht |ψ⟩ is composed of states which are linear combination of states

with 2 particles on a color B or G site or 1 particle on a color R site. Theses states are

orthogonal to |ψ′⟩. The second order terms give the effective Hamiltonian (at order 2), that

we denote Heff

⟨ψ′|Heff |ψ⟩ =
∑︂

|m⟩/∈S0

⟨ψ′|Ht |m⟩ ⟨m|Ht |ψ⟩
−Em

, (5.48)

with |m⟩ the eigenstates ofHU+Hλ which do not belong to the ground state subspace S0 and

Em is the corresponding eigenenergy. Here we note that the ground state energy is E0 = 0.

The numerator in the above equation is composed of terms like ⟨ψ′| c†iσcjσ |m⟩ ⟨m| c†kσ′clσ′ |ψ⟩

with ⟨i, j⟩, and ⟨k, l⟩ two pairs of nearest neighbors in the lattice. These are non vanishing

only if |m⟩ = c†kσ′clσ′ |ψ⟩ and |m⟩ = c†jσciσ |ψ′⟩ which means k = j and l = i, because |ψ⟩

and |ψ′⟩ are linear combinations of states which all are associated to no particle on the R

sublattice sites and exactly one particle to each B and G sublattice site. The energy Em

associated with the intermediate states |m⟩ is λ if j is the position of a R sublattice site and

U if j is the position of a B or G sublattice site. We notice that if i is associated to a R

sublattice site, then the term ⟨ψ′| c†iσcjσ |m⟩ ⟨m| c†kσ′clσ′ |ψ⟩ is vanishing.

Now we use the fermionic anti-commutation relations and the fact that ⟨n̂i↑ + n̂i↓⟩ = 1

for i ∈ B,G and ⟨n̂j↑⟩ = ⟨n̂j↓⟩ = 0, for j ∈ R. Here ⟨O⟩ is the eigenvalue of the operator O

when acting on the ground state. In Heff, the terms proportional to t2/λ are constant energy
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terms; up to these terms, Heff reads

Heff =
4t2

U

∑︂

r

[︃

Sz
B,rS

z
G,r + Sz

B,r+e3
Sz
G,r

+ cos 2ϕ

(︃

Sx
B,rS

x
G,r + Sy

B,rS
y
G,r + Sx

B,r+e3
Sx
G,r + Sy

B,r+e3
Sy
G,r

)︃

+ sin 2ϕ

(︃

Sx
B,rS

y
G,r − Sy

B,rS
x
G,r + Sx

B,r+e3
Sy
G,r − Sy

B,r+e3
Sx
G,r

)︃]︃

, (5.49)

where Sr
α,r =

1

2
c†α,r,βσ

r
β,γcα,r,γ and σr

β,γ , r = {x, y, z} are the Pauli matrices.

Correlations at ϕ = 0 and ϕ = π/2

First, when ϕ = 0, the effective Hamiltonian is the one of decoupled antiferromagnetic 1D

Heisenberg spin chains. This has been studied a lot, e.g. using the bosonization technique,

and it is known to be characterized by an algebraic decay of the spin correlation function

[315, 316].

When ϕ = π/2, the transformation (that preserves the commutation relations)

Sx
B,r → −Sx

B,r, S
y
B,r → −Sy

B,r, and S
z
B,r → Sz

B,r, (5.50)

on the spin operators at the B-sublattice site in each G-B chain gives back the effective

Hamiltonian at ϕ = 0. We deduce that the z antiferromagnetic and xy ferrromagnetic

effective Hamiltonian at ϕ = π/2 is also characterized by an algebraic decay of the spin

correlation function.

Ground state at ϕ ̸= {0, π/2}

At ϕ ̸= {0, π/2} the effective Hamiltonian possesses XXZ anisotropy and also contains a

so-called Dzyaloshinskii-Moriya interaction term, Sx
i S

y
j − Sy

i S
x
j , where i and j are the B

and G nearest neighbors. Here we want to compute the ground state in the classical limit

of large spin S. We write the value of the spin operators in the classical ground state

⟨Sx
α,r⟩ = ρα,r sin θα,r cosφα,r, ⟨Sy

α,r⟩ = ρα,r sin θα,r sinφα,r, and ⟨Sz
α,r⟩ = ρα,r cos θα,r, with
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θα,r ∈ [0, π], and φα,r ∈ [0, 2π] and ρα,r is the norm of the spins in the classical ground state.

In this limit, we obtain

Heff =
4t2

U

∑︂

r

ρB,rρG,r[ cos θB,r cos θG,r + sin θB,r sin θG,r cos [2ϕ− (φG,r − φB,r)] ]

+ ρB,r+e3ρG,r[ cos θB,r+e3 cos θG,r + sin θB,r+e3 sin θG,r cos [2ϕ− (φG,r − φB,r+e3)] ],

This is similar to the effective Hamiltonian for the Hofstadter-Hubbard model on a square

lattice [317].

The classical ground state minimizing the energy associated to Heff is associated to ρB,r =

ρB,r+e3 = ρG,r, θB,r = θB,r+e3 = π − θG,r and φG,r − φB,r = φG,r − φB,r+e3 = 2ϕ − π. This

is in agreement with the results mentioned above. Indeed, in the limit ϕ = 0 and ϕ = π/2,

this is the classical ground state of respectively the antiferromagnetic Heisenberg spin chain

and the z antiferromagnetic and xy ferromagnetic spin chain.

5.3.2 Mean field method

In this section we use a mean field approach (see for instance Ref. [44]) to obtain an approx-

imation of the Hamiltonian which is quadratic in the creation and annihilation operators.

This method is applied in the next section for the computation of the ground state of the

system.

First we rewrite the Hubbard interaction term

HU =
U

2

∑︂

r

∑︂

α=R,B,G

(︁

Sα,r · Sα,r + S0
α,r

)︁

, (5.51)

with Sα,r ·Sα,r =
(︁

S0
α,r

)︁2 −
(︁

Sx
α,r

)︁2 −
(︁

Sy
α,r

)︁2 −
(︁

Sz
α,r

)︁2
, Sυ

α,r =
1

2
c†α,r,βσ

υ
β,γcα,r,γ and σ0

β,γ is the

identity and συ
β,γ , υ = {x, y, z} are the Pauli matrices. Using a mean field approximation,

i.e. neglecting the terms of order [Sα,r − ⟨Sα,r⟩]2, we find

HU ≈ U

2

∑︂

r,α

[︁

2Sα,r · ⟨Sα,r⟩ − ⟨Sα,r⟩ · ⟨Sα,r⟩+ S0
α,r

]︁

. (5.52)
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We define ⟨Sα,r⟩ = −ϕα,r. We have

HU ≈ −U
∑︂

r,α

(︃

Sα,r · ϕα,r +
1

2
ϕα,r · ϕα,r

)︃

+
U

2

∑︂

r,α

S0
α,r. (5.53)

We assume that the field ϕα,r has the translation symmetry of the lattice, i.e. ϕα,r = ϕα,r+eκ ,

with κ = 1, 2, so we write ϕα,r = ϕα. Using Fourier transformation, we get

HU ≈ −U
∑︂

k,α

(︃

ϕα · Sα,k −
S0
α,k

2

)︃

− UN

2

∑︂

α

ϕα · ϕα, (5.54)

with k the momentum space variable and N = N1N2 the total number of unit cells. We

write

HU ≈
∑︂

k

ψ†
kHintψk −

UN

2

∑︂

α

ϕα · ϕα, (5.55)

with

Hint =
U

4
I+

⎛

⎝

H↑,↑
int H↓,↑

int

H↑,↓
int H↓,↓

int

⎞

⎠ , (5.56a)

Hσ,σ
int = −U

2

⎛

⎜

⎜

⎜

⎝

ϕR,σ 0 0

0 ϕB,σ 0

0 0 ϕG,σ

⎞

⎟

⎟

⎟

⎠

, (5.56b)

H↓,↑
int =

[︂

H↑,↓
int

]︂†

=
U

2

⎛

⎜

⎜

⎜

⎝

ϕR,− 0 0

0 ϕB,− 0

0 0 ϕ−
G

⎞

⎟

⎟

⎟

⎠

. (5.56c)

Here

ϕα,σ = ϕ0
α − szϕ

z
α, (5.57a)

ϕα,± = ϕx
α ± iϕy

α, (5.57b)

with sz = 1 (−1) for σ =↑ (↓) and

ψ†
k =

(︂

c†R,k,↑, c
†
B,k,↑, c

†
G,k,↑, c

†
R,k,↓, c

†
B,k,↓, c

†
G,k,↓

)︂

. (5.58)
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We also remind that Ht +Hλ reads

Ht +Hλ =
∑︂

k

ψ†
k

⎛

⎝

H↑(k) 0

0 H↓(k)

⎞

⎠ψk, (5.59a)

Hσ(k)=

⎛

⎜

⎜

⎜

⎝

λ ε1(k) ε2(k)

ε1(k) 0 eiszφε3(k)

ε2(k) e−iszφε3(k) 0

⎞

⎟

⎟

⎟

⎠

, (5.59b)

with εγ(k) = −2t cos(k · bγ), where γ = 1, 2, 3. Gathering HU and Ht +Hλ, we obtain

H ≈
∑︂

k

ψ†
kh(k)ψk −

UN

2

∑︂

α=R,B,G

ϕα · ϕα, (5.60)

with

h(k) =
U

4
I+

⎛

⎝

h↑,↑ h↓,↑

h↑,↓ h↓,↓

⎞

⎠ , (5.61a)

hσ,σ =

⎛

⎜

⎜

⎜

⎜

⎝

λ+
U

2
ϕR,σ ε1(k) ε2(k)

ε1(k)
U

2
ϕB,σ eiφε3(k)

ε2(k) e−iφε3(k)
U

2
ϕG,σ

⎞

⎟

⎟

⎟

⎟

⎠

, (5.61b)

h↓,↑ =
[︁

h↑,↓
]︁†

=

⎛

⎜

⎜

⎜

⎜

⎝

U

2
ϕR,− 0 0

0
U

2
ϕB,− 0

0 0
U

2
ϕG,−

⎞

⎟

⎟

⎟

⎟

⎠

.

Hamiltonian in Eq. (5.60) is quadratic in the creation and annihilation operators. A

determination of the eigenstates associated to this Hamiltonian and a minimization of the

ground state energy is feasible from the matrix h(k).

5.3.3 Ordered parameter at λ≫ t and λ≫ U

We can now determine the set of parameters ϕυ
α (υ = x, y, z) which minimizes the ground

state energy Ek associated to the Hamiltonian H. We are interested in the limit λ≫ t and
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λ≫ U for which the computation is tractable. Let us write the wave function ψk as follows

ψ̃
†

k =
(︂

c†R,k,↑, c
†
R,k,↓, c

†
B,k,↑, c

†
B,k,↓, c

†
G,k,↑, c

†
G,k,↓

)︂

, (5.62)

and correspondingly the Hamiltonian h(k)

h̃(k) =
U

4
I+

⎛

⎝

h̃R(k) h̃∆(k)

h̃
†

∆(k) h̃0(k)

⎞

⎠ . (5.63)

Here

h̃R(k) =

⎛

⎜

⎝

λ− U

2
ϕR,↑

U

2
ϕR,−

U

2
ϕR,+ λ− U

2
ϕR,↓

⎞

⎟

⎠
, (5.64a)

h̃∆(k) =

⎛

⎝

ε1(k) 0 ε2(k) 0

0 ε1(k) 0 ε2(k)

⎞

⎠ , (5.64b)

h̃0(k) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−U
2
ϕB,↑

U

2
ϕB,− eiφε3(k) 0

U

2
ϕB,− −U

2
ϕB,↓ 0 e−iφε3(k)

e−iφε3(k) 0 −U
2
ϕG,↑

U

2
ϕG,−

0 eiφε3(k)
U

2
ϕG,+ −U

2
ϕG,↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5.64c)

We want to determine the four lowest eigenvalues X associated to h̃(k). The two other

eigenvalues are of order λ and do not interest us here. We have

det

(︃

h̃(k)− U

4
I−XI

)︃

= det
(︂

h̃R(k)−XI

)︂

× det

(︃

h̃0(k)−XI− h̃
†

∆(k)
(︂

h̃R(k)−XI

)︂−1

h̃∆(k)

)︃

. (5.65)

Here det
(︂

h̃R(k)−XI

)︂

̸= 0 and we write

h̃eff(k) = h̃0(k)− h̃
†

∆(k)
(︂

h̃R(k)−XI

)︂−1

h̃∆(k) . (5.66)

It reads (with implicit k dependency)

h̃eff = h̃0 −
∑︂

σ,σ′

L,L′

2
∑︂

i=1

|L, σ⟩ ⟨L, σ| h̃†∆ |Ri⟩ ⟨Ri| h̃∆ |L′, σ′⟩ ⟨L′, σ′|
Ei −X

, (5.67)
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and

h2(k) =

(︃

U

2

)︃4

|ϕB|2|ϕG|2+ε43(k)− 2ε23(k)

(︃

U

2

)︃2

ϕz
Bϕ

z
G

− 2ε23(k)

(︃

U

2

)︃2

[cos 2ϕ (ϕx
Bϕ

x
G + ϕy

Bϕ
y
G) + sin 2ϕ (ϕx

Bϕ
y
G − ϕy

Bϕ
x
G)] . (5.70)

The solution reads

X(k) = −U
2
ϕ0

± 1√
2

⎡

⎣2ε3(k)
2 +

(︃

U

2

)︃2
(︁

|ϕB|2+|ϕG|2
)︁

± U

2

√︄

(︃

U

2

)︃2

(|ϕB|2−|ϕG|2)2 + 4ε3(k)2gφ

⎤

⎦

1/2

,

(5.71)

with

gφ = (ϕB + ϕG)
2 − 4 sin2 ϕ (ϕx

Bϕ
x
G + ϕy

Bϕ
y
G) + 2 sin 2ϕ (ϕx

Bϕ
y
G − ϕy

Bϕ
x
G) . (5.72)

The spectrum associated to h(k) reads E(k) =
U

4
+ X(k). To find the classical magnetic

order associated to the system we minimize the total energy

Etot =
∑︂

i

∑︂

k

Ei(k)−
UN

2

∑︂

α=R,B,G

ϕα · ϕα, (5.73)

where the sum over i runs over all the filled bands, which is fixed by the filling factor n. In

our case n = 2/3. It means that the summation in Eq. (5.73) runs over i = {1, 2}. We look

for the set of parameters {ϕx
B, ϕ

y
B, ϕ

z
B, ϕ

x
G, ϕ

y
G, ϕ

z
G} which minimizes Etot, by computing the

solution of

∂Etot

∂ϕυ
L

=
∑︂

k

[︃

∂E1

∂ϕυ
L

+
∂E2

∂ϕυ
L

]︃

+ UNϕυ
L = 0, (5.74)

L = {B,G} and υ = {x, y, z}, associated to the lowest value of Etot. This namely yields the

following condition
(︃

U

2

)︃2
(︁

|ϕB|2−|ϕG|2
)︁2

+ 4ε3(k)
2gφ = 0, (5.75)
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which does not depend on the value of U . Let us write the magnetic order parameters

ϕx
α = |ϕα|sin θα cosφα, ϕ

y
α = |ϕα|sin θα sinφα, and ϕz

α = |ϕα|cos θα, with |ϕα|∈ [0, 1/2],

θα ∈ [0, π], and φα ∈ [0, 2π]. In these notations, we have

gφ = |ϕB|2+|ϕG|2+2|ϕB||ϕG|( cos θB cos θG + sin θB sin θG cos [2ϕ− (φG − φB)] ). (5.76)

Eq. 5.75 gives the condition |ϕB|= |ϕG|, θB = π − θG and φG − φB = 2ϕ − π, which is

in agreement with the results we obtained from perturbation theory in the limit U ≫ t.

Besides, here, the minimization of Etot also imposes the following condition on the value of

|ϕ|= |ϕB|= |ϕG| as a function of U

1

U
=

1

2N

∑︂

k

1
√︁

4ε23(k) + U2|ϕ|2
. (5.77)

This condition can be satisfied for all values of U with the appropriate choice of |ϕ| shown

in figure 5.7a.

Our collaborators (see Ref. [246]) also performed R-DMFT computations in the case

ϕ = π/2 and for large enough on-site potential λ and Hubbard interaction U . Their results

show the appearance of antiferromagnetic correlations in the z direction. This magnetic

order is one of the solutions found from the analytical approach used in this section. It

seems that the most general solution (at ϕ = π/2) found from the analytical approach is

antiferromagnetic correlations in the z direction and/or ferromagnetic correlations in the xy

plane. Nevertheless, it seems that the behavior of the order parameter |ϕ| found using both

approaches is qualitatively the same, but there it shows a small quantitative difference. At

the transition, the variation of the magnetization obtained from the R-DMFT method is

bigger than the one obtained from the analytical mean field method.

First order in 1/λ

Here we investigate the behavior of the order parameter, at order 1/λ, assuming that the

solution found at order 0 in 1/λ (|ϕB|= |ϕG|, θB = π − θG and φG − φB = 2ϕ − π) is still

159



valid. Up to the order t3/(λ ·max(U, t)) and neglecting the terms of order t3/λ2 and (t2U)/λ2

and higher order terms, we have

det

(︃

h̃eff(k) +
U

2
ϕ0
I−XI

)︃

=
h1/2−X2

λ

(︁

−λX2 − 2
(︁

ε21 + ε22
)︁

X + λh1/2− 4ε1ε2ε3 cosϕ
)︁

.

(5.78)

The solutions to det

(︃

h̃eff(k) +
U

2
ϕ0
I−XI

)︃

= 0 are

X1(k) = −
√︁

h1/2 +
2ε1ε2ε3 cosϕ

λ
√︁

h1/2
− (ε21 + ε22)

λ
, (5.79a)

X2(k) = −
√︁

h1/2 , (5.79b)

X3(k) =
√︁

h1/2−
2ε1ε2ε3 cosϕ

λ
√︁

h1/2
− (ε21 + ε22)

λ
, (5.79c)

X4(k) =
√︁

h1/2 . (5.79d)

We have

ε21 + ε22 ±
2ε1ε2ε3 cosϕ
√︁

h1/2
> 0, ∀U > 0 ∀k. (5.80)

In the limit λ≫ t, this leads to

X1(k) < X2(k) < X3(k) < X4(k). (5.81)

For each band, the spectrum is Ei(k) =
U

4
− U

2
ϕ0 +Xi(k), i = {1, 2, 3, 4}. The total energy

reads

Etot =
∑︂

i

∑︂

k

Ei(k)−
UN

2

∑︂

α=R,B,G

ϕα · ϕα, (5.82)

where the sum over i runs over all the filled bands, which is fixed by the filling factor n. In

our case, as we already mentioned n = 2/3, which means that both lowest energy bands are

filled, giving the following total energy

Etot = −2
√︁

h1/2 +
2ε1ε2ε3 cosϕ

λ
√︁

h1/2
− (ε21 + ε22)

λ
− UN

2

∑︂

α=R,B,G

ϕα · ϕα . (5.83)

We look for the value of |ϕ| which minimizes this energy. ∂φzEtot = 0 gives

1

U
=

1

2N

∑︂

k

1
√︁

4ε23(k) + U2|ϕ|2

(︃

1 +
4ε1ε2ε3 cosϕ

λ (4ε23(k) + U2|ϕ|2)

)︃

. (5.84)
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The solution of the previous equation is given in Fig. 5.7b, from numerical evaluation at

λ = 30t.

5.4 Conclusions

Motivated by the increasing experimental progress in cold atom setups [150, 156, 281, 287,

290, 293, 294, 300], we have studied the effect of flux and Rashba spin orbit coupling on

the Z2 phase diagram of a new topological model on the kagome lattice. We have shown

the appearance of Z2 topological phases for different types of on-site potentials, at filling

n = 2/3.

First have investigated the Z2 topological phase diagram, at vanishing Rashba spin-orbit

coupling. We have adapted the analytical computation developed in Chapter 3, Sec. 3.2.1

for several configurations of the on-site potentials, and arbitrary flux. From this, we have

showed explicitly how the closure of the bulk gap results in a drastic change of the gauge we

choose for the eigenstates. This yields a discontinuity in the value of the spin Chern numbers

from one gapped phase to another gapped phase. The intrinsic spin-orbit interaction opens

a topological gap and leads to a quantum spin Hall phase [11–14, 48, 144]. The topological

gap can then be varied by on-site energy terms; this leads to a transition between a quantum

spin Hall insulator and a trivial insulator. We have adapted another analytical method [190]

to check the topological phase diagram, and, in agreement with the results obtained from

the former method, we have observed that at the transition, a fundamental change in the

parity eigenvalues at the high symmetry points yields a discontinuity in the Z2 number.

Then we have generalized the results in the case of non-vanishing Rashba spin-orbit cou-

pling, relying on the energy gap diagram. The Rashba spin-orbit coupling term varies the

topological gap; the quantum spin Hall effect is not conserved, however, as long as the

Rashba term does not closes the gap, a Z2 topological phase is observed. This is analogue to

Kane and Mele’s results for a honeycomb system [144]. When the gap is closed, a metallic

161



phase is obtained. Several on-site energy configurations were considered; this led to different

phase diagrams. For a (rather large) cylinder geometry, we have checked the appearance of

a pair of counter-propagating edge modes in the Z2 topological phase.

In the last section, we have studied the effects of Hubbard interactions, at 2/3 filling and

vanishing Rashba spin-orbit coupling for a particular configuration of the on-site potentials

leading to a stripe-decoupled phase. In the case of large interaction, we have used pertur-

bation theory to build an effective Hamiltonian. The latter shows anisotropic spin exchange

coupling and depends on the flux term and its classical ground state shows antiferromag-

netic or ferromagnetic correlations. For smaller amplitude of the interactions, we have used

a mean field method [44] to investigate the ground state. We found, at zero temperature,

in-plane magnetic correlations which depend on the flux and antiferromagnetic out-of-plane

correlations. The magnetic order parameter undergoes a transition at U/t ∼ 2, from van-

ishing values to finite values. The large U limit is consistent with the perturbation theory

results and the transition observed is in agreement with the R-DMFT calculations performed

by our collaborators [246].

As we discussed in the introduction, there has been many recent achievement in cold

atom setups. The kagome lattice [281] and gauge fields [150, 156, 293, 294] have been

experimentally realized. Hubbard interactions in cold atom fermionic systems have also

been realized [268, 308–312]. It would be interesting to propose a protocol for the realization

of a kagome lattice, with tunable on-site energy terms and gauge fields, altogether, with

possibly the Hubbard interactions.
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Conclusions and outlook

In this thesis we have studied topological phases on the honeycomb lattice and on the kagome

lattice, in solid state systems and artificial systems.

First, in Chapter 2, we have studied a Haldane boson model. We have developed an

explicit analytical computation of the Chern number in this model. To the best of our

knowledge this explicit computation does not appear in the literature before our publication.

From this computation we have noticed that the U(1) gauge of the wave functions has

a special behavior at some points in parameter space. This led to the identification of

functions which sign, at the Dirac points, determines the value of the topological invariant.

Then we have considered a probe with local capacitive coupling to a Haldane cQED system.

Using the knowledge gained from the computation of the Chern number and input-output

formalism [318], we have shown how the local response of the system to a (microwave) light

input can be used to probe the topological properties of the Haldane cQED system.

The explicit analytical computation of the topological invariant has been extended, in

Chapters 3 and 5, to a tight-binding model on the kagome lattice with nearest neighbor

spin-orbit coupling and different on-site energies configurations. We have explicitly shown

how the closure of the bulk gap results in a drastic change of the gauge we may choose for

the eigenstates and therefore in a discontinuity in the value of the spin Chern numbers.

In Chapter 4, we have study a magnetic and topological model on the kagome lattice,

in relation with recently discovered quantum materials. We have considered a spin model,

coupled, through a ferromagnetic Hund’s coupling, to a topological non-interacting model
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on this lattice. Depending on the parameters of the spin model, we have found either a

ferromagnetic out-of-plane long range ordered phase or an in-plane ordered phase. Spin-wave

excitations destabilize the ferromagnetic phase near the transition and always destabilize

the in-plane (antiferromagnetic) phase. The in-plane phase is either a spin-liquid or a long-

range ordered phase if further nearest neighbor spin-exchange is considered [220]. We have

shown that each magnetic phase selects a specific topological phase of the system. Then

we have argued that a variation of the external parameters, such as the temperature or

the pressure, should result in a magnetic phase transition coupled to a topological phase

transition. Depending on the amplitude of the Hund’s coupling term, the topological phase

transition is either in a QAH phase-QSH phase transition or a QAH phase-trivial phase

transition.

In the last Chapter, we have studied a new time-reversal invariant kagome topological

model with flux and Rashba spin-orbit coupling for a cold atom system. We have computed,

with the analytical method aforementioned, the topological Z2 phase diagram when the am-

plitude of the Rashba spin-orbit coupling is vanishing and from the energy gap phase diagram

we have obtained the Z2 topological invariant at finite Rashba spin-orbit coupling. We have

also studied the effects of Hubbard interactions in this model at 2/3 filling and vanishing

Rashba spin-orbit coupling for a particular configuration of the on-site potentials leading

to a stripe-decoupled phase. By means of perturbation theory and mean field method [44],

we have investigated the ground state. We found, at zero temperature, in-plane magnetic

correlations which depend on the flux and antiferromagnetic out-of-plane correlations. The

magnetic order parameter undergoes a transition at U/t ∼ 2, from vanishing values to finite

values.

We are left with a certain number of open questions concerning the work presented in this

manuscript.

In Chapter 2, we have shown that the response to a local light input on a Haldane
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cQED system is informative about the topological properties. The general form of the

response function does not depend on the lattice system which is considered (see App. C).

In Chapters 3 and 5 we have shown explicit analytical computations of the topological

invariants for kagome systems. We observed that the closure of the bulk gap results in a

drastic change of the gauge we may choose for the eigenstates. It seems possible to observe

such a change thanks to the local response function. We have performed some numerical

computations that seems to indicate that this response function is indeed informative about

the topological invariant for kagome topological systems. It would be also very interesting

to try to make a clear link between the Chern number and this local response function for

an arbitrary lattice model.

Moreover, this protocol is not a priori restricted to cQED systems, it seems conceivable

as long as

(i) the particles are bosons,

(ii) the topological system under study is not too small; numerical computations showed

we could rebuild the topological phase diagram with a good very precision for a 50× 50 unit

cells system and with a rather good precision for smaller systems (it seems correct down to

∼ 30× 30 unit cells), and

(iii) the coupling between the probe and the system is a capacitive coupling.

Therefore, it would be very interesting to propose specific protocols for other artificial

systems, namely for cold atom gases for which the kagome lattice has already been imple-

mented and which offer the possibility to realize artificial gauge potentials. Besides, it should

be easier to realize a system having a sufficiently large size in cold atom gases compared to

cQED systems. A further very interesting outlook would be to think about a generalization

of this probe for a Z2 artificial system.

As mentioned at the end of Chapter 2, changing the statistics of the particles (considering

a fermion Chern insulator) leads to a different form of the response function (particle-hole’s
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Green function). It seems more complicated than for boson systems to define a clear topo-

logical probe. This is an open question whether or not it is possible.

In Chapter 4, we have considered a magnetic and topological model on the kagome lattice;

we have explained, qualitatively, the behavior of the system at non-zero temperature. It

would be interesting to compute the entropy of the magnetic ground state and to study

quantitatively the effect of the temperature on the magnetic and topological phases of the

system, as it has been done for a similar spin model on the triangular lattice for instance in

Ref. [241].

In Chapter 5, we have studied the effects of Hubbard interactions for a specific limit of the

topological model we studied in this chapter. We computed the ground state of this model

using a minimization of the free energy. It would be interesting to study the fluctuations

in the charge and spin channels due to possibly non zero variation of the free energy in the

ground state at second order in the variation of the Hubbard stratonovich fields [44]. Finally,

in cold atom gases, the kagome lattice [281], gauge fields [150, 156, 293, 294] and Hubbard

interactions [268, 308–312] have been experimentally realized. However, designing a protocol

for the realization and the investigation of the model we studied is not a simple task, but it

would be very interesting.
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Appendix A: Résumé en français

Nous étudions théoriquement des modèles topologiques sur réseaux, pertinents pour des
matériaux et des systèmes artificiels actuels. Nous développons un calcul analytique explicite
du nombre de Chern pour les systèmes que l’on étudie et nous comparons ce calcul avec
d’autres méthodes de calcul de cet invariant topologique. Nous proposons un protocole, à
partir d’une mesure de la réponse locale à une excitation lumineuse (micro-onde), pour sonder
les propriétés topologiques d’un modèle bosonique de Haldane, dans un système photonique.
Sur le réseau de kagomé, nous étudions (i) une transition de phase magnétique et topologique
pour un modèle à deux canaux en lien avec un matériau quantique récemment découvert,
et (ii) un modèle topologique invariant par renversement du temps et contenant un terme
de flux, un terme de couplage spin-orbite de type Rashba et un terme d’interactions de
Hubbard, dont la réalisation est pertinente dans des gaz d’atomes froids.

A.1 Chapitre 1

Dans le chapitre 1, nous introduisons le formalisme, les concepts et les découvertes impor-
tantes en topologie de la matière condensée que l’on utilise dans ce manuscrit. Nous insistons
en particulier sur deux systèmes à deux dimensions qui sont les principaux sujets d’étude de
cette thèse : les isolants de Chern et les isolants topologiques.

Tout d’abord, dans la section 1.1, nous considérons une évolution adiabatique d’un système
quantique et nous étudions la phase géométrique, appelée la phase de Berry [9], accumulée
par les vecteurs propres du Hamiltonien lors d’une telle évolution. Cette étude est très
importante pour la compréhension des systèmes topologiques en matière condensée. L’effet
Hall quantique [6] est le point de départ de l’intense activité scientifique dans ce domaine
de la topologie en matière condensée. L’invariant topologique qui caractérise l’effet Hall
quantique entier peut être formulé comme une intégrale de la phase de Berry sur la zone de
Brillouin [8]. Dans les sections 1.1.3 et 1.1.4, nous présentons la découverte expérimentale
de l’effet Hall quantique entier et sa première interprétation théorique [6, 7, 45].

Ensuite, dans la section 1.2 nous introduisons le formalisme que l’on utilise pour décrire les
systèmes invariants par translation, nous rappelons le théorème de Bloch [46] et la définition
des fonctions de Wannier [47] que l’on utilise par la suite. Comme exemples de systèmes
invariants par translation, nous présentons deux modèles dits ”tight binding” sur les réseaux
que nous considérons dans ce manuscrit, à savoir le réseau en nid d’abeille et le réseau de
kagomé.

Dans la section 1.3, le lien entre le concept de phase de Berry et l’effet Hall quantique entier
est expliqué grâce au calcul de la conductivité de Hall en utilisant la formule de Kubo [8]. Ceci
permet d’introduire l’invariant topologique (le nombre de Chern) qui caractérise les systèmes
Hall quantiques. Nous expliquons également que les modes de bords chiraux mentionnés dans
la section 1.1.4 sont fondamentalement reliés à une valeur non-nulle du nombre de Chern.
Finalement, dans la section 1.3, nous montrons le lien entre une valeur non-nulle du nombre
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de Chern et la polarisation de charge, cette-dernière étant une observable caractérisant les
isolants de Chern. Les concepts introduits dans cette section sont largement utilisés dans le
reste du manuscrit.

Dans la section 1.4, nous présentons la théorie des bandes topologiques utilisée pour décrire
les systèmes topologiques invariants par renversement du temps. En particulier, nous nous
concentrons sur le modèle de Kane et Mele [11] et sur une formulation de l’invariant Z2

proposé par Fu et Kane [48]. Les concepts introduits dans cette section sont pertinents pour
l’étude de systèmes avec couplage spin-orbite présentés dans les chapitres 4 et 5.

A.2 Chapitre 2

Dans le Chapitre 2, nous considérons un système de type circuit d’électrodynamique quan-
tique (cQED) qui est décrit par un modèle de Haldane bosonique. Nous développons un
calcul analytique explicite du nombre de Chern (section 2.2) pour ce modèle [5]. Nous mon-
trons que le signe d’une fonction que l’on appelle h2, aux points de Dirac, indique la valeur
du nombre de Chern associé à chacune des bandes d’énergie. h2 dépend de la masse de
Semenoff M et de l’amplitude t2 associée aux termes de saut seconds voisins dans le modèle
de Haldane. Dans les systèmes unidimensionnels de type cQED, il a été montré que les pro-
priétés topologiques sont mesurables via la réflexion de lumière micro-onde sur le système
[30].

En utilisant la connaissance acquise par le calcul du nombre de Chern, nous proposons un
protocole pour sonder les propriétés topologiques via la réponse à un signal lumineux local
(section 2.3). Plus précisément, nous considérons une sonde locale avec un couplage capacitif
au système (ce-dernier étant décrit par un Hamiltonien effectif de type modèle de Haldane
bosonique), dans le régime de faibles amplitudes de couplage. Nous calculons explicitement
le coefficient de réflexion qui fait le lien entre un signal entrant et un signal sortant dans la
sonde, en fonction des paramètres du système. Nous montrons que le signe de la fonction
h2, à l’un des deux points de Dirac, mentionnée dans le paragraphe précédent, peut être
rebâti par la mesure de ce coefficient de réflexion. Or, la transition de phase topologique
associée au modèle de Haldane est déterminée par le signe de la fonction h2 à l’un des deux
points de Dirac (plus précisément, au niveau du point de Dirac pour lequel le gap d’énergie
entre les deux bandes d’énergie est le plus faible). Par conséquent, la mesure du coefficient
de réflexion (pour un signal entrant d’énergie égale à l’énergie de l’état propre du système
évalué à l’un des deux points de Dirac) est suffisante pour rebâtir le diagramme de phase
topologique. Dans les systèmes de type cQED faits de résonateurs de fréquence typique
de l’ordre du GHz, le signal d’entrée dans la sonde est un signal micro-onde. Ce protocole
est potentiellement applicable dans d’autres systèmes bosoniques pour lesquels un couplage
capacitif à une sonde est réalisable.

A.3 Chapitre 3

Dans le chapitre 3, nous considérons deux modèles topologiques simples sur le réseau de
kagomé, l’un mène à un isolant de Chern (associé à l’effet Hall anormal quantique), l’autre
mène à un isolant topologique (associé à l’effet Hall quantique de spin). Ces modèles
topologiques ont attiré beaucoup d’attention dans la communauté scientifique [31–42]. Tout
d’abord (section 3.1), nous expliquons qu’un modèle simple sur le réseau de kagomé, avec des
amplitudes de saut complexes entre proches voisins, brise la symétrie de renversement par
rapport au temps et est associé à un flux total nul dans la cellule unitaire. Nous présentons le
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spectre d’énergie d’un tel modèle et nous passons rapidement en revue un calcul analytique
des modes de bord [34].

Le calcul du nombre de Chern (de spin) a été effectué via diverses méthodes, cependant,
effectuer un calcul analytique explicite de cet invariant topologique (à partir de l’étude de
la jauge choisie pour les fonctions d’onde du système) n’est pas aisé et n’apparait pas dans
la littérature avant notre publication [188]. Motivés par ceci, nous développons un tel calcul
dans la section 3.2.1. Nous définissons deux choix de jauge distincts pour les états propres du
système et nous définissons deux surfaces complémentaires dans la zone de Brillouin. Nous
appliquons un de ces deux choix de jauge pour une des deux surfaces définies dans la zone de
Brillouin (cette surface contient un des points de haute symétrie de la zone de Brillouin) et
l’autre choix de jauge pour l’autre surface (elle contient les autres points de haute symétrie
de la zone de Brillouin). Nous montrons comment la différence de phase entre ces deux choix
de jauge évolue à la frontière entre les deux surfaces et mène à un nombre de Chern entier
et non nul pour la bande énergétique la plus basse, dans le cas où l’amplitude de saut entre
proches voisins est complexe. Ce calcul se généralise aux autres bandes d’énergie du système.

Dans la section 3.2.2, nous étudions la robustesse des propriétés topologiques pour de
petits systèmes avec bruit (Gaussien) sur les paramètres du modèle, via des estimations
numériques d’observables locales. En particulier, nous évaluons la densité locale d’états et
les courants chiraux dans le système et nous montrons que ces deux observables présentent
des propriétés topologiques, même pour des valeurs assez élevées du bruit sur les paramètres.
Nous comparons ceci avec une autre sonde des propriétés topologiques : sous un champ
magnétique dont la direction est perpendiculaire au plan du réseau, chaque bande d’énergie
”parent” est divisée en un certain nombre de sous-bandes qui dépend du nombre de Chern
associée à la bande d’énergie ”parent” [34, 194]. Grâce à une évaluation numérique de la
densité d’états, nous retrouvons la valeur du nombre de Chern pour des systèmes dont la
taille est supérieure à environ 30 × 30 cellules unitaires et avec un bruit Gaussien dont
l’amplitude est inférieure à un pour cent.

Enfin, dans la section 3.3, nous considérons deux copies de spin du système précédemment
mentionné (alors le système devient invariant par renversement du temps) et nous calculons
l’invariant topologique Z2. Ce-dernier peut être obtenu à partir des nombres de Chern de
spin car le Hamiltonien ne comprend pas de couplage entre spins [48, 189]. L’invariant
topologique Z2 peut aussi être calculé en utilisant la symétrie d’inversion du système [190];
il est donné par le produit des valeurs propres de l’opérateur parité évalué aux quatre points
de haute symétrie dans la zone de Brillouin. Nous adaptons un tel calcul pour le système
que l’on considère, dans la section 3.3.2. Ces calculs sont étendus, dans le Chapitre 5, à un
système plus complexe.

A.4 Chapitre 4

Dans le Chapitre 4, nous introduisons et étudions un modèle magnétique et topologique sur
le réseau de kagomé [193], en lien avec de nouveaux matériaux quantiques [25–28, 38, 43].
Un modèle effectif de spin (associé à un canal de spins localisés) est couplé à un modèle
topologique sans interactions sur ce réseau (associé à un canal d’électrons dits itinérants),
via un terme de Hund ferromagnétique [216, 221, 222].

Le modèle magnétique est un modèle anisotropique de type Heisenberg avec un terme
d’échange ferromagnétique dans la direction perpendiculaire au plan formé par le réseau
de kagomé. L’origine microscopique de ce modèle vient d’une forte interaction répulsive
sur-site de type Hubbard qui donne naissance à une physique de Mott et un mécanisme
de double échange [221, 223–226] avec le canal d’électrons itinérants. Dans la section 4.2,
nous étudions l’état fondamental du modèle de spin et les excitations associées de type
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ondes de spin. En fonction des paramètres du modèle de spin, nous observons deux phases
magnétiques distinctes: une phase ferromagnétique dans la direction perpendiculaire au plan
formé par le réseau de kagomé ou une phase magnétique dans le plan. Cette dernière est soit
une phase liquide de spin soit une phase antiferromagnétique avec ordre à longue portée si
d’autres termes de couplage entre spins (au-delà des plus proches voisins) sont inclus dans
le modèle [220].

La transition de phase magnétique est couplée à une transition de phase topologique
(section 4.3). Les électrons itinérants sont décrits par un modèle sur le réseau de kagomé
avec un terme de saut proches voisins et un terme de couplage de type spin-orbite [11, 36,
227, 228]. Dans la phase ferromagnétique, le couplage de Hund ferromagnétique agit comme
un champ magnétique dans la direction perpendiculaire au réseau. Pour certaines valeurs
du potentiel chimique (modulant le niveau de Fermi), le canal d’électrons itinérants est
associé à une phase Hall anormale quantique. Quand le système est caractérisé par la phase
magnétique dans le plan, le modèle associé aux électrons itinérants respecte la symétrie par
renversement du temps. En fonction de la valeur de l’énergie de Fermi, ce-dernier est soit
associé à une phase Hall quantique de spin ou à une phase métallique.

Nous discutons l’effet de paramètres extérieurs, tels que la température ou la pression, sur
les propriétés magnétiques et topologiques du modèle. D’une part, à température finie, nous
justifions que la phase ferromagnétique devrait être déstabilisée proche de la transition à
cause de l’entropie finie associée aux excitations de type ondes de spin. Par conséquent, une
augmentation de la température résulte en une transition magnétique et donc aussi (en vertu
du paragraphe précédent) en une transition topologique. D’autre part, une augmentation de
la pression génère une diminution du pas du réseau [229]. Dans notre modèle, nous justifions
que ceci résulte en une augmentation des intégrales d’échange (c’est-à-dire des amplitudes
associées aux termes de saut proches voisins). Ceci mène, par conséquent, à une variation
du terme d’échange de spin dans le plan (pour le Hamiltonien effectif de spin) et induit donc
une transition magnétique et topologique.

A.5 Chapitre 5

Dans le Chapitre 5, nous étudions un nouveau modèle topologique, invariant par renverse-
ment du temps, avec un terme de flux, un terme de couplage spin-orbite de type Rashba,
différentes configurations de potentiels sur-site, et un terme d’interactions répulsives (modèle
de Hubbard), sur le réseau de kagomé [188, 246]. Ce modèle est potentiellement réalisable
pour des gaz d’atomes froids, qui sont des plateformes intéressantes pour l’implémentation
de champs de jauge artificiels et pour l’étude des interactions de type Hubbard.

Dans un premier temps (section 5.1), nous calculons le diagramme de phase topologique
(invariant topologique Z2) à remplissage 2/3, quand le terme de couplage spin-orbite Rashba
et le terme d’interactions de Hubbard sont nuls, pour différentes configurations de potentiels
sur-site, ce qui élargit la méthode analytique développée dans le Chapitre 3. Nous mon-
trons de façon explicite comment la fermeture du gap d’énergie résulte en un changement
très important du choix de jauge pour les vecteurs propres du Hamiltonien. Ceci mène à
une discontinuité dans la valeur des nombres de Chern de spin quand les paramètres du
Hamiltonien évoluent de telle façon que l’on passe d’une phase isolante à une autre (les deux
étant séparées la fermeture du gap d’énergie). Le terme de flux est très important pour
l’ouverture d’un gap d’énergie avec une phase Hall quantique de spin [11–14, 48, 144]; les
termes de potentiels sur-site permettent de varier le gap d’énergie et d’observer des transi-
tions entre des phases Hall quantiques de spin et des phases isolantes triviales. L’invariant
topologique Z2 est aussi calculé en utilisant la symétrie d’inversion du système [190]. Nous
prolongeons la méthode utilisée dans le chapitre 3 et nous obtenons des résultats cohérents
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avec la méthode précédemment mentionnée. A la transition entre une phase Hall quantique
de spin et une phase isolante triviale, nous observons un changement très important dans les
valeurs propres de l’opérateur parité aux points de haute symétrie dans la zone de Brillouin;
ceci génère une discontinuité dans la valeur de l’invariant Z2.

Ensuite, nous prolongeons le calcul de cet invariant topologique quand le terme de cou-
plage spin-orbite de type Rashba est non nul (section 5.2). Ce-dernier varie l’amplitude du
gap d’énergie et rend possible des processus de renversement de spin (≪ spin flip processes ≫).
L’effet Hall quantique de spin n’est donc pas conservé, cependant, tant que le terme de spin-
orbite Rashba ne ferme pas le gap d’énergie, une phase isolante topologique Z2 est observée.
Ceci est analogue au résultat de Kane et Mele [144]. Nous considérons différentes configura-
tions de potentiels sur-site, menant à différents diagrammes de phase. Pour une géométrie
cylindrique (conditions périodiques aux bords dans une direction seulement), nous vérifions
l’apparition d’une paire de modes de bord contre-propageants dans la phase topologique Z2.

Enfin, dans la dernière section (section 5.3), nous étudions l’effet des interactions de type
Hubbard (toujours à remplissage 2/3), quand le terme de couplage spin-orbite Rashba est
nul, pour une configuration particulière des potentiels sur-site. Pour des interactions de Hub-
bard de grande amplitude U , nous utilisons une théorie des perturbations afin d’obtenir un
Hamiltonien effectif de spin. Ce-dernier présente des termes d’échange de spin anisotropiques,
dépend du terme de flux et son état fondamental classique présente des corrélations ferro-
magnétiques et/ou antiferromagnétiques. Pour des interactions de Hubbard de plus petite
amplitude U , nous utilisons une théorie de champ moyen [44] et nous étudions l’état fon-
damental du système. A température nulle, le système présente des corrélations magnétiques
dans le plan du réseau qui dépendent du terme de flux et des corrélations antiferromagnétiques
dans la direction perpendiculaire au plan du réseau. Le paramètre d’ordre magnétique mon-
tre une transition à U/t ∼ 2 (t est l’amplitude de saut entre proches voisins). Au-delà de
cette valeur, la phase est magnétique et isolante de Mott. La théorie de champ moyen est
compatible avec la théorie des perturbations (pour de grandes valeurs de U). La transition
observée est en accord avec les calculs R-DMFT effectués par nos collaborateurs [246].
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Appendix B: Time-reversal symmetry

Time-reversal symmetry is one of the most important symmetries for the topological systems
we studied in this manuscript. It is expected that this symmetry plays an important role in
the quantum Hall effect, which, as we explained concerns systems where this symmetry is
broken. If this symmetry is conserved, it may also play a very important role, as we saw in
the quantum spin Hall effect. Here we underline some important properties of time-reversal
symmetry for the topological systems studied in this manuscript. More details can be found
in Ref. [66].

B.1 Time-reversal operators

A time-reversal transformation reverses the arrow of time. It means that this transformation
reverses the momentum quantities. Spins are momentums, therefore the time-reversal opera-
tors is expressed differently in both cases of spinless and spinful systems. For a particle with
no spin, the time-reversal operator θ is identical to the complex conjugation anti-unitary
operator K, θ = K. We have θ2 = 1.

For a spin system, things are different. The time-reversal operator θ, still anti-unitary,
reads

θ = UK, (B.1)

with U = e−iπSy a unitary operator, Sy being the spin operator along the y axis. Sy is
purely imaginary, therefore θ2 = e−i2πSy . We immediately notice the following property: a
2π rotation of an integer spin is equivalent to the identity whereas under a 2π rotation a
half-integer spin is multiplied by −1. We deduce that θ2 = +1 for a system made of integer
spins or for a system made of an even number of half-integer spins and θ2 = −1 for a system
made of an odd number of half-integer spins. This is very important because of Kramers’
theorem which we now demonstrate.

B.2 Kramers’ theorem

Consider system of particles described by the Hamiltonian H, with conserved time-reversal
symmetry, i.e. [θ,H] = 0, and with associated eigenstates |ψ⟩ and eigenvalues E, H |ψ⟩ =
E |ψ⟩. From [θ,H] = 0, we have Hθ |ψ⟩ = Eθ |ψ⟩: θ |ψ⟩ is also an eigenstate of H and θ |ψ⟩
and |ψ⟩ are associated to the same energy. θ2 = −1 constrains θ |ψ⟩ to be orthogonal to |ψ⟩.
Indeed, using −1 = θ2 = UU∗ and UU † = 1, we find U∗ = −U † and then

⟨θψ|ψ⟩ =
∑︂

m,n

(Un,mψ
∗
m)

∗ ψn = −
∑︂

m,n

(Um,n)
∗ ψmψn = −⟨θψ|ψ⟩ , (B.2)
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which leads to ⟨θψ|ψ⟩ = 0. For half-integer spin systems, i.e. systems composed of an odd
number of half-integer spin particles, and if the system is time-reversal invariant, each energy
is degenerate at least twice.

B.3 Translation-invariant systems with time-reversal

symmetry

The time reversal invariance links the Bloch Hamiltonian at momentum k and momentum
−k. Kramers’ degeneracy theorem then tells us

Let us write
H =

∑︂

k

Ψ(k)†h(k)Ψ(k), (B.3)

with Ψ(k) the fermion field annihilation operator at momentum (k), which contains the
annihilation operators ck,α,σ for a particle of momentum k, with the different color α and
both values of half-integer spin σ = {↑, ↓}. We write ci,α,σ the annihilation operator for
a particle at unit cell position i, color α and half-integer spin σ. Under time-reversal, we
have [66]

θci,α,σθ
−1 = iσy

σ,σ′ci,α,σ′ , (B.4a)

θc†i,α,σθ
−1 = −ic†i,α,σ′σ

y
σ′,σ, (B.4b)

with σy the second Pauli matrix acting in spin space and implicit summation on the repeated
indices is assumed. It gives, for the Fourier transforms of these operators

θck,α,σθ
−1 = iσy

σ,σ′c−k,α,σ′ , (B.5a)

θc†k,α,σθ
−1 = −ic†−k,α,σ′σ

y
σ′,σ. (B.5b)

This leads to
θh(k)θ−1 = h(−k). (B.6)

Then, from Kramers’ theorem, we know that if |ψ(k)⟩ is an eigenstate of the Hamiltonian,
then θ |ψ(k)⟩ is also an eigenstate with the same energy. In translation-invariant systems, we
denoted |ψ(k)⟩ the eigenstate of h(k) with energy E(k), h(k) |ψ(k)⟩ = E(k) |ψ(k)⟩. θ |ψ(k)⟩
is in fact the eigenstate of h(−k) with energy E(−k) = E(k), indeed

h(−k)θ |ψ(k)⟩ = θh(k)θ−1θ |ψ(k)⟩ = θh(k) |ψ(k)⟩ = E(k)θ |ψ(k)⟩ . (B.7)

Let us here notice that at the time-reversal invariant points of the BZ k = −k, there are at
least two degenerate states of energy E(−k) = E(k).

B.4 Scattering from a state |ψ⟩ to its time-reversal

partner

A quantum spin Hall system is characterized by at least one chiral edge mode and one anti-
chiral edge mode, the later being the time-reversal conjugate of the former. Because of the
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presence of counter-propagating modes in close proximity, we could expect that scattering
process play an important role in this system, which would be described by non-negligible
Hamiltonian coupling elements between the chiral and the anti-chiral modes. From the
Kramers’ theorem and the identity θh(k)θ−1 = h(−k), we know that the energy of the chiral
and the anti-chiral modes is crossing at the time-reversal symmetric points k = −k in the
BZ. The study of a two-level system teaches us that off-diagonal coupling elements in the
Hamiltonian operator opens a gap in the dispersion relation. Therefore, non-negligible scat-
tering process would mean a non-negligible gap in the edge modes dispersion relation which
could be important enough so that no modes cross the Fermi level, turning the spin-Hall
insulating phase (characterized by a mobility gap) to a trivial insulating phase (characterized
by a ”true” gap).

In fact, for the single particle case, if the number of chiral modes (which is the same as
the number of anti-chiral modes) is odd, the single-particle scattering process between the
chiral and the anti-chiral modes is forbidden by time-reversal symmetry. This is what we
show here, starting with the simple case with only one chiral mode |ψ⟩ and one anti-chiral
mode θ |ψ⟩. We consider a time-reversal invariant Hamiltonian H describing the possible
scattering process (a priori |ψ⟩ and θ |ψ⟩ are not H eigenstates since H is possibly composed
of non-diagonal elements coupling these states). The coupling term between |ψ⟩ and θ |ψ⟩ is

⟨θψ|H |ψ⟩ =
∑︂

m,n,p

(Um,pKψp)
∗Hm,nψn =

∑︂

m,n,p

(Um,p)
∗ ψpHm,nψn =

∑︂

m,n,p

ψp

(︁

U †
)︁

p,m
Hm,nψn,

(B.8)
Using H = θHθ−1 and θ−1 = −θ, and U being self-adjoint, we find

⟨θψ|H |ψ⟩ = −
∑︂

m,n,p,q,r

ψp

(︁

U †
)︁

p,m
Um,qH

∗
q,rU

∗
r,nψn = −

∑︂

n,p,r

ψpH
∗
p,rU

∗
r,nψn, (B.9)

and H† = H gives

⟨θψ|H |ψ⟩ = −
∑︂

n,p,r

ψpHr,pU
∗
r,nψn = −

∑︂

n,p,r

(Ur,nψ
∗
n)

∗Hr,pψp. (B.10)

Then we conclude that
⟨θψ|H |ψ⟩ = −⟨θψ|H |ψ⟩ = 0, (B.11)

i.e. the single-particle scattering between the chiral edge mode and the anti-chiral edge mode
is forbidden because the time-reversal symmetry is conserved in the system.

Now we ask whether or not a gap in a system with N chiral edge modes and N anti-chiral
edge modes can be opened (i.e. turn the mobility gap into a true gap) by single-particle
backscattering terms. To open a gap in such a system, where we have at least N twice-
degenerate energy points, it is required to consider at least N excitations which scatter to
their time-reversal conjugates; each excitation scattering term lifting the degeneracy of a
time-reversal conjugate pair. However, because we have here 2N states, if we want to inves-
tigate single-particle scattering terms only, it is required to consider at most N excitations
which scatter. Therefore, we consider exactly N excitations. We compute the probability
that N particles which occupy N edges states (these are composed of a certain number of
chiral modes plus a a certain number of anti-chiral modes) are scattered back to their N
time-reversal conjugates.

Let us denote |ψi⟩ , i ∈ [1, . . . , N ] these N occupied modes and their time-reversal conju-
gates are θ |ψi⟩. We denote Ei the vector space associated to the particle i, Hi the Hamiltonian
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operator in Ei and θi the time-reversal operator in Ei. The Hamiltonian operator describing
the possible scattering processes and the time-reversal operator for the entire system are
respectively H =

∑︁N
i=1Hi and θ =

⨂︁N
i=1 θi. The probability that the N occupied states are

scattered to their N time-reversal conjugates is proportional to the Hamiltonian coupling
element between the Slater determinant |ψ1, . . . , ψN⟩ and the Slater determinant associated
to the N time-reversal conjugates θ |ψ1, . . . , ψN⟩. We write

|ψ1, . . . , ψN⟩ =
∑︂

σ∈SN

sgn(σ)
N
⨂︂

i=1

|ψσi
(i)⟩ , (B.12)

with σ a permutation in SN which is the set containing all permutations of {1, . . . , N} and
|ψσi

(i)⟩ referring to the particle i in the state |ψσi
⟩. Let us define σ and σ

′

two permutations
in SN . First we extend both relations Eq. (B.2) and Eq. (B.10), using the assumptions
θ2 = −1 and Hi = θiHiθ

−1
i ,

⟨θiψσi
(i)|ψσ′

i
(i)⟩ = −⟨θiψσ′

i
(i)|ψσi

(i)⟩ , (B.13a)

⟨θiψσi
(i)|H |ψσ′

i
(i)⟩ = −⟨θiψσ′

i
(i)|H |ψσi

(i)⟩ , (B.13b)

From these relations, we find

(︄

θ

N
⨂︂

i=1

⟨ψσi
(i)|
)︄

H

N
⨂︂

i=1

|ψσ′
i
(i)⟩ = (−1)N

(︄

θ

N
⨂︂

i=1

⟨ψσ′
i
(i)|
)︄

H

N
⨂︂

i=1

|ψσi
(i)⟩ , (B.14)

and using Eq. (B.12), we get

(θ ⟨ψ1, . . . , ψN |)H |ψ1, . . . , ψN⟩ = (−1)N (θ |ψ1, . . . , ψN⟩)H |ψ1, . . . , ψN⟩ , (B.15)

We therefore conclude that, in an open time-reversal invariant system (with an insulating
bulk) supporting an odd number of (half-integer spin) chiral edge modes and an odd number
of (half-integer spin) anti-chiral edge modes, the single-particle scattering terms which could
open a gap are in fact necessarily vanishing so these processes can not open a gap.
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Appendix C: Local response to
capacitively coupled probes in a
two-dimensional lattice bosonic
system

C.1 System under consideration

Total Hamiltonian We consider a 2-dimensional lattice system with periodic boundary
conditions. Let us consider a set of resonant light probes which are coupled to the system.
We write the Hamiltonian

H = Hlat +Hprb +Hcpl, (C.1)

where Hlat is the (topological) lattice Hamiltonian, Hprb is the Hamiltonian associated to
the probe(s) and Hcpl is the Hamiltonian associated to the coupling between the lattice and
the probe(s).

Lattice Hamiltonian Let us call NC the number of sites per unit cell in the lattice we
consider and N the total number of unit cells. We label each sites within a unit cell with
different colors, and two different sites belonging to the same Bravais lattice are labeled by
the same color.
We define the Fourier transform of the annihilation operator of a (bosonic) particle at position
r and the inverse relation

aj,k =
∑︂

r∈Rj

e−ik.rar and ar =
1

N

∑︂

k

eik.raj(r),k, (C.2)

with Rj the ensemble containing all the lattice positions of the color-j sites and the function
j(r) returns the color index at the r site. We formally write

Hlat =
∑︂

k

Ψ†
khkΨk, (C.3)

with Ψ†
k =

(︂

a†1,k, . . . a
†
N,k

)︂

. We write hk’s associated eigenvalues Ei,k, where i ∈ {1, . . . , NC},
and we write the associated eigenvectors

|Φi,k⟩ = Φ†
i,k |0⟩ =

NC
∑︂

j=1

αj
i,ka

†
j,k |0⟩ , (C.4)
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with αj
i,k ∈ C. We have

Hlat =
∑︂

k

NC
∑︂

i=1

Ei,kΦ
†
i,kΦi,k. (C.5)

Probe(s) Each probes are resonators with a certain number of relevant modes, each mode
q being characterized by the frequency ωq. Therefore we write

Hprb =
∑︂

r∈Rp

∑︂

q

ωqb
†
r,qbr,q, (C.6)

with br,q the annihilation operators for the mode q of the probe at r ∈ Rp, Rp being the
ensemble of the positions of the nodes coupled to a probe.

Coupling We assume a capacitive coupling between each probe and a node of the lattice.
The Hamiltonian reads

Hcpl =
∑︂

r∈Rp

(︁

ar + a†r
)︁

∑︂

q

gq
(︁

br,q + b†r,q
)︁

. (C.7)

The coupling gq amplitude is assumed not to depend on the position of the probe.

C.2 Input-output analysis for a set of resonant cavity

probe coupled to the system

Here we use the input-output formalism as reviewed in Ref. [318]. Let us define the input
voltage in the probe at r

V in
r (t) =

∑︂

q

gq
(︁

e−iωq(t−ti)br,q(ti) + h.c.
)︁

, (C.8)

and the output voltage in the probe at r

V out
r (t) =

∑︂

q

gq
(︁

e−iωq(t−tf )br,q(tf ) + h.c.
)︁

. (C.9)

Let us call xr =
1√
2

(︁

ar + a†r
)︁

. The Heisenberg equation of motion (EOM) for the bjq

operator reads
ḃr,q = i [H, br,q] = −iωqbr,q − i

√
2gqxr. (C.10)

Writing ti < t the initial time in the distant past, the solution of this equation of motion is

br,q(t) = e−iωq(t−ti)br,q(ti)− i
√
2gq

∫︂ t

ti

dτe−iωq(t−τ)xr(τ). (C.11)
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Considering tf > t a final time in the distant future gives an other solution

br,q(t) = e−iωq(t−tf )br,q(tf ) + i
√
2gq

∫︂ tf

t

dτe−iωq(t−τ)xr(τ). (C.12)

Combining the previous equations and their complex conjugate counterparts we get

V in
r (t)− 2

√
2
∑︂

q

g2q

∫︂ tf

ti

dτ sin (ωq(t− τ)) xr(τ) = V out
r (t). (C.13)

We Fourier transform the previous equation with respect to the time variable t, we define
J(t) = 2

√
2i
∑︁

q g
2
q sin (ωqt) [319] and we get

V out
r [ω] = V in

r [ω] + iJ [ω]xr[ω]. (C.14)

Notice that J [ω] ∈ R. Its explicit expression is

J [ω] = 2
√
2π
∑︂

q

g2q (δ(ω − ωq)− δ(ω + ωq)) , (C.15)

where δ is the Dirac delta function. Let us notice that if the spectrum of the probe is
symmetric with respect to 0, then J [ω] is vanishing (so as J(t)). In the following, we assume
it is not the case.

C.3 Response function

Now we express xr[ω] as a function of V in
r [ω]. The Heisenberg EOM for the Φi,k modes reads

Φ̇i,k = −iEi,kΦi,k − i
∑︂

r∈Rp

(︂

α
j(r)
i,k eik.r

)︂∗∑︂

q

gq
(︁

br,q + b†r,q
)︁

. (C.16)

Using equation C.11 we have,

iΦ̇i,k(t) = Ei,kΦi,k(t) +
∑︂

r∈Rp

(︂

α
j(r)
i,k eik.r

)︂∗

V in
r (t) +O(g2), (C.17)

with g = maxq (gq) and in the limit of small g compared to the energies (Ei,k) of the system.
Now we use the Fourier transformation with respect to the time variable to write

Φi,k[ω] =
1

−ω − Ei,k + i0+

∑︂

r∈Rp

(︂

α
j(r)
i,k eik.r

)︂∗

V in
r [ω] +O(g2q0), (C.18)

and

Φ†
i,k[ω] = − 1

−ω + Ei,k + i0+

∑︂

r∈Rp

α
j(r)
i,k eik.rV in

r [ω] +O(g2), (C.19)
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Note that Φi,k[ω] = T.F. (Φi,k) [ω], T.F. denoting the Fourier transform and Φ†
i,k[ω] =

T.F.
(︂

Φ†
i,k

)︂

[ω] so Φi,k[ω] ̸=
(︂

Φ†
i,k[ω]

)︂†

.

We introduce the βj
i,k coefficients such that

a†j,k |0⟩ =
N
∑︂

i=1

βi
j,kΦ

†
i,k |0⟩ . (C.20)

Then we have

xr =
1√
2N

∑︂

k

N
∑︂

i=1

(︁

eik·r
(︁

βi
j(r),k

)︁∗
Φi,k + h.c.

)︁

, (C.21)

and we obtain
xr[ω] =

∑︂

r0∈Rp

χr,r0V
in
r0
[ω] +O(g2), (C.22)

with

χr,r0 =
1√
2N

N
∑︂

i=1
k

(︃

C∗
i,k,r,r0

−ω − Ei,k + i0+
− Ci,k,r,r0

−ω + Ei,k + i0+

)︃

, (C.23)

and
Ci,k,r,r0 = βi

j(r),kα
j(r0)
i,k e−ik.(r−r0). (C.24)

Let us notice from the last equation that adding a probe with no input does not influence
the response at the other probes (with or without input). This is because we restricted the
response to first order in gq0 .

Finally, Eq. (C.14) gives

V out
r [ω] = V in

r [ω] + iJ [ω]
∑︂

r0∈Rp

χr,r0V
in
r0
[ω] +O(g4), (C.25)

which is the equation from which we start in Chapter 2 to investigate a Haldane cQED
system.
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Appendix D: Kubo formula

In this appendix we apply linear response formalism to a fermion insulating system subjected
to a small electric, in the zero temperature limit. The general formalism presented here
enables, for instance, to show the link between the Hall conductivity and the Chern number
(see Sec. 1.3.1 of Chapter 1). For more details, we refer the reader to the Refs. [119, 320,
321].

Let us define ∆⟨O⟩(t) the change, at time t, in the expectation value of an arbitrary
observable O, from its equilibrium value ⟨O⟩eq = Tr {ρeqc O}, under an adiabatic small per-
turbation described by a Hamiltonian which we write H ′(t) = λ(t)B. B is an operator
and λ(t) is the time-dependent amplitude of the perturbation. Here, ρeqc = e−βH0/Z is the
density matrix at time t0, before the perturbation is applied, when the system is in global
canonical equilibrium at temperature β−1 and described by the Hamiltonian H0 and Z is
the canonical partition function. The density matrix at time t ≥ t0 is given by the quantum
Liouville equation.

We have [320]

∆⟨O⟩(t) =
∫︂ +∞

−∞

dt′ξOB(t− t′)λ(t′) = − i

h̄

∫︂ +∞

−∞

dt′Tr{ρeqc [O(t− t′), B]}λ(t′), (D.1)

with

ξOB(t− t′) = − i

h̄
θ(t− t′)Tr{ρeqc [O(t− t′), B]}. (D.2)

We also have

[ρeqc , B(t)] = ih̄

∫︂ β

0

dτρeqc
dB(t− ih̄τ)

dt
, (D.3)

with O(t − t′) and B(t) the interaction representations of respectively the operators O and
B

O(t− t′) = eiH0(t−t′)Be−iH0(t−t′), (D.4a)

B(t) = eiH0tBe−iH0t. (D.4b)

This gives

ξOB(t− t′) = −
∫︂ β

0

dτTr{ρeqc
dB(t− ih̄τ)

dt
O(t− t′)}. (D.5)

Let us consider an adiabatic perturbation resulting from a small uniform and static electric
field ϵ perturbation, is switched on adiabatically from t0 = −∞ to t [322]. In this case we
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write

H ′(t) = λ(t) · B, (D.6a)

λ = −eϵ lim
ζ→∞

et/ζ , (D.6b)

B =

∫︂

drn(r)r, (D.6c)

with n(r) the (number) density operator and r the positions of the particules in the system.
Using the continuity equation, we obtain dB/dt = j(t) and j(t) =

∫︁

drj(r, t), with j(r, t)
the current operator in the interaction picture defined from the continuity equation for the
number density operator. By definition, we have

j(t) = eiH0tje−iH0t. (D.7)

Moreover, we assume the electric field is along the direction eα, and we write ϵ = ϵαeα and
j = jαeα. We write ∆⟨O⟩α the resulting change in O. We have

∆⟨O⟩α = V lim
ζ→∞

∫︂ +∞

0

dte−t/ζ

[︃

(D.8)

∫︂ β

0

dτTr

{︄

ρeq
∑︂

m,n

c†mcn ⟨m|O |n⟩
∑︂

p,q

c†pcq ⟨p| jα |q⟩ ei(Ep−Eq)(t+ih̄τ)/h̄

}︄

ϵα

]︃

,

where |m⟩, |n⟩, |p⟩ and |q⟩ are the eigenstates of H0, Em, En, Ep and Eq the associ-
ated eigenenergies and cm, cn, cp and cq the associated annihilation operators. Using
Trρeqc

†
mcnc

†
pcq = δmpδnqf(En)(1− f(Em)) + δmpδmpf(En)f(Ep), with f the Fermi-Dirac dis-

tribution and δ the Kronecker delta function,
∫︂ β

0

dτe−(Ep−Eq)τ =
1− e−(Ep−Eq)β

Ep − Eq

, (D.9)

and
∫︂ +∞

0

dte−t/ζei(Ep−Eq)t/h̄ =
h̄

h̄/ζ − i (Ep − Eq)
, (D.10)

we get

∆⟨O⟩α = ih̄eV lim
ζ→∞

∑︂

m,n

f(Em)f(En)

En − Em

eβEn − eβEm

ih̄/ζ + (En − Em)
⟨m|O |n⟩ ⟨n| jα |m⟩ ϵα. (D.11)

In the zero temperature limit, from the behavior of the Fermi-Dirac distribution, we obtain,
for an insulating system (chemical potential µ in the energy gap)

∆⟨O⟩α = ih̄V e lim
ζ→∞

∑︂

m,n

IEm<µ<En
− IEn<µ<Em

(En − Em) (En − Em + ih̄/ζ)
⟨m|O |n⟩ ⟨n| jα |m⟩ ϵα, (D.12)

which leads to

∆⟨O⟩α = ih̄V e
∑︂

Em<µ<En

⟨m|O |n⟩ ⟨n| jα |m⟩ − ⟨n|O |m⟩ ⟨m| jα |n⟩
(En − Em)

2 ϵα. (D.13)

This is the equation we start from in Sec. 1.3.1 of Chapter 1.
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Appendix E: Cylinder geometry and
partial Fourier transformation

Here we give the detailed formulation of the Hamiltonian (5.41) (studied in Chapter 5) for a
cylinder geometry which we used to compute the associated spectrum and eigenvalues. The
Hamiltonian (5.41) reads

H = −t
∑︂

r

[︄

c†R,rIcB,r + c†R,r+e1
IcB,r + c†R,re

−i2πγsxcG,r + c†G,re
−i2πγsxcR,r+e2

+ c†B,re
iφszcG,r + c†B,r+e3

eiφszcG,r +H.c.

]︄

+
∑︂

r

∑︂

α=R,B,G

λαnα,r, (E.1)

and we consider open boundary conditions along the e1 direction and edges along the e2
direction.

Let us define

Ψ†
r =

(︂

c†R,r,↑, c
†
B,r+b1,↑

, c†G,r+b2,↑
, c†R,r,↓, c

†
B,r+b1,↓

, c†G,r+b2,↓

)︂

. (E.2)

We also define rα the coordinate along the eα direction and and k2 = 2k · b2 and we write

Ψ†
r1,r2

=
1√
N

∑︂

k2

eik2Ψ†
r1,k2

U †
k2
, (E.3)

with
Uk2 = diag

(︁

1, 1, e−ik2/2, 1, 1, e−ik2/2
)︁

. (E.4)

We perform a partial Fourier transformation and we obtain

H =
∑︂

r1,k2

[︂

Ψ†
r1,k2

J0(k2)Ψr1,k2 +
(︂

Ψ†
r1,k2

J1(k2)Ψr1+1,k2 +H.c.
)︂]︂

, (E.5)

with

J0(k2) =

⎛

⎝

J0,(↑,↑)(k2) J0,(↑,↓)(k2)

J0,(↓,↑)(k2) J0,(↓,↓)(k2)

⎞

⎠ , J1(k2) =

⎛

⎝

J1,(↑,↑)(k2) 0

0 J1,(↓,↓)(k2)

⎞

⎠ , (E.6)
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J0,(σ,σ)(k2) =

⎛

⎜

⎜

⎜

⎝

λR −t ε2 cos (2πγ)

−t λB −te−i(k2/2−szφ)

ε2 cos (2πγ) −tei(k2/2−szφ) λG

⎞

⎟

⎟

⎟

⎠

, (E.7)

J0,(↑,↓)(k2) = J0,(↓,↑)(k2) =

⎛

⎜

⎜

⎜

⎝

0 0 ξ(k) sin (2πγ)

0 0 0

ξ(k) sin (2πγ) 0 0

⎞

⎟

⎟

⎟

⎠

, (E.8)

J1,(σ,σ)(k2) =

⎛

⎜

⎜

⎜

⎝

0 0 0

−t 0 −tei(k2/2+szφ)

0 0 0

⎞

⎟

⎟

⎟

⎠

, (E.9)

and we remind that ε2 = −2t cos(k2/2), ξ(k2) = 2t sin(k2/2) and sz = 1 (−1) for σ =↑ (↓).
Now, we write the Hamiltonian

H =
∑︂

k2

Ψ†
k2
H(k2)Ψk2 , (E.10)

with

H(k2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Ĵ0(k2) Ĵ1(k2) 0 . . .

Ĵ1(k2)
† Ĵ0(k2) Ĵ1(k2)

0 Ĵ1(k2)
† Ĵ0(k2)

. .

. .

. .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (E.11)

and Ψk2 = (Ψ0,k2 ,Ψ1,k2 ,Ψ2,k2 , ...,ΨN,k2). The energies at each k2 are found by performing
numerical diagonalization of H(k2) (size 6N × 6N).
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Appendix F: The resolvent method
and perturbation theory

F.1 Effective Hamiltonian

Here we consider the Hamiltonian
H = H0 + V, (F.1)

where, in practice, H0 is a Hamiltonian for which the spectrum and the eigenvectors are
computable and V is a perturbation (which amplitude may be small or not). We denote by P
an orthogonal and hermitian projector which commutes withH0 andQ = 1−P the associated
complementary projector. In practice, P projects onto a subspace of eigenvectors of H0. We
write G(z) = (z −H)−1 the resolvent of the Hamiltonian H. Considering z = E + iη or
z = E − iη gives the Fourier transform (up to a factor ih̄) of respectively the retarded or
advanced Green function, which dictates the time evolution under H. We have

PG(z)P = P (zP −Heff)
−1 , (F.2)

with
Heff = PHP + PV Q (zQ−QHQ)−1QV P, (F.3)

being the effective Hamiltonian for the evolution of the system in the subspace in which P
projects.

F.2 Perturbation theory up to second order in V

We write ϵ the energy amplitude associated to V and U the energy amplitude associated to
H0. We consider ϵ≪ U .

We denote by S0 the subspace of eigenvectors of H0, corresponding to the ground state
with energy E0. To second order in ϵ/U , the effective Hamiltonian in S0 is

Heff =E0P + PV P

+ PV Q (E0 −Q (HU +Hλ)Q)
−1QV P, (F.4)

where P here projects on S0. The higher orders can be computed from Eq. (F.3). In practice,
we consider two states |ψ⟩, and |ψ′⟩ in S0, and from Eq. (F.4) we get (still at second order
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in ϵ/U)

⟨ψ′|Heff |ψ⟩ =E0 ⟨ψ′|ψ⟩+ ⟨ψ′|V |ψ⟩

+
∑︂

|m⟩/∈S0

⟨ψ′|V |m⟩ ⟨m|V |ψ⟩
E0 − Em

, (F.5)

with |m⟩ the eigenstates of H0 which do not belong to the ground state subspace S0 and Em
is the corresponding eigenenergy.
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