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Thèse présentée et soutenue à Palaiseau, le 1 juillet 2022, par

ALEXANDRA KUZNETSOVA

Composition du Jury :
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Résumé

Soit X une variété algébrique projective définie sur un corps k. L’ensemble des applications bijec-
tives algébriques f : X → X forme le groupe Aut(X) des automorphismes réguliers. Étant donné
un automorphisme régulier, on peut considérer son graphe:

Γf = {(x, f(x))| x ∈ X} ⊂ X ×X.

C’est une sous-variété de X × X telle que les projections pri : Γf → X sont des isomorphismes
pour i = 1 et 2. Plus généralement, on peut considérer l’ensemble de toutes les automorphismes
birationnels f : X 99K X. Ces automorphismes sont déterminées par une sous-variété Γf de X ×X
telle que les deux projections pri : Γf → X induisent un isomorphisme entre un sous-ensemble
ouvert pour topologie de Zariski dans Γf sur un sous-ensemble ouvert pour topologie de Zariski
dans X. La composition de deux automorphismes birationnels est birationnel donc l’ensemble de
tous les automorphismes birationnels Bir(X) forme un groupe.

Par construction Aut(X) est un sous-groupe de Bir(X). De plus, le groupe Aut(X) admet une
structure de schéma en groupes de type localement fini. Au contraire, le group Bir(X) ne peut pas
en général être doté d’une structure de schéma en groupes. Par exemple, il peut avoir une infinité de
composants et leurs dimensions ne sont pas bornées. La complexité des groupes Aut(X) et Bir(X)
dépend fortement de la géométrie de la variété algébrique. La thèse couvre divers problèmes sur des
groupes d’automorphismes réguliers et birationnels de variétés algébriques et complexes, et explore
les différences et les similitudes entre ces deux groupes.

Dans un premier temps, nous nous intéressons à la description des sous-groupes finis du groupe
des automorphismes birationnels Bir(X) d’une variété complexe rationnellement connexe X de
dimension 3. Nous prouvons que tout 3-sous-groupe peut être généré par au plus 5 éléments et
dans tous les cas sauf deux, il peut être généré par au plus 4 éléments. Nous décrivons également le
groupe des automorphismes réguliers Aut(S) d’une surface quasi-projective S définie sur un corps k
tel que char(k) = p > 0. Nous montrons que ce groupe satisfait la propriété p-Jordan. L’un des
principaux ingrédients ici est le programme du modèle minimal (MMP), qui nous permet de réduire
des questions sur les groupes finis de transformations birationnelles à la classification de groupes
d’automorphismes réguliers de variétés algébriques très particulières obtenues après application
du MMP.

Ensuite, nous considérons des automorphismes birationnels d’ordre infini, et essayons de com-
prendre quand il est possible de construire un modèle birationnel où l’automorphisme induit est
régulier. Nous nous intéressons principalement à l’exemple d’automorphismes birationnels d’une
variété rationnelle de dimension 3 introduits par J. Blanc. Cet automorphisme birationnel induit
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un pseudo-automorphisme sur un modèle birationnel spécial de P3, c’est-à-dire qu’il a un petit
lieu extrémal ; par conséquent, il est proche d’être régulier. Cependant, le résultat principal de la
deuxième partie de la thèse est que ces applications ne sont pas conjuguées à des automorphismes
réguliers. L’approche que nous adoptons dans cette partie est de nature dynamique, et l’action des
automorphismes birationnels sur les espaces de Néron-Severi joue un rôle important.

La dernière partie de la thèse porte sur la description du groupe d’automorphismes d’une classe
de variétés non-Kählériennes introduite par D. Guan et étudiée plus en détails par F. Bogomolov.
Ces variétés sont des analogues non-Kähler des variétés hyperkählériennes, et leurs propriétés sont
relativement similaires. Selon la construction de Bogomolov, ces variétés fibrent sur l’espace projec-
tif avec des variétés abéliennes comme fibres génériques; ainsi, des outils algébriques peuvent être
utilisés pour étudier leur géométrie. Plus précisément, nous prouvons que la réduction algébrique
de la variété Bogomolov-Guan de dimension 2n est l’espace projectif de dimension n, puis nous
étudions le lieu des fibres singulières d’une réduction algébrique et concluons que le groupe des
automorphismes réguliers des variétés Bogomolov-Guan est Jordan. Dans le cas de la dimension 4
il en est de même pour le groupe des automorphismes biméromorphes.
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Introduction

Let X be a projective algebraic variety defined over a field k. The set of invertible algebraic
self-maps f : X → X forms the group Aut(X) of regular automorphisms. Given a regular automor-
phism f : X → X one can consider its graph:

Γf = {(x, f(x))| x ∈ X} ⊂ X ×X.

It is a subvariety of X × X such that the projections pri : Γf → X are isomorphisms for i = 1
and 2. More generally, we may consider the set of all birational self-maps f : X 99K X. Such maps
are determined by a subvariety Γf of X × X such that both projections pri : Γf → X induce an
isomorphism between a Zariski open subset of Γf onto a Zariski open subset of X. Then for any
point x ∈ X one can define its total image: it is the set f(x) = pr2

(
Γf ∩ pr1

−1(x)
)
. A birational

automorphism may have indeterminacy locus: it is an algebraic subvariety Ind(f) ⊂ X such that
the total image of any point p ∈ Ind(f) has positive dimension. If X is normal then one has
codim(Ind(f)) > 2. The union of all irreducible subvarieties Z ⊂ X such that dim(f(Z)) < dim(Z)
is called the exceptional locus of f and we denote it by Exc(f) ⊂ X. When X is smooth, then Exc(f)
is of pure codimension 1. The composition of two birational automorphisms remains birational hence
the set of all birational automorphisms Bir(X) also forms a group.

By [Han87] the group Bir(X) has a natural structure of a k-scheme. Namely, any birational
automorphism f of X is determined by its graph Γf which is a subscheme in X × X. Thus, the
group Bir(X) can be considered as a subscheme in the Hilbert scheme Hilb(X ×X).

By construction Aut(X) is a subgroup in Bir(X). Moreover, by [MO67, Theorem 3.7] the
group Aut(X) admits a structure of a group scheme of locally finite type over k. Denote by Aut(X)0

the connected component of the identity map idX : X → X. Then it is a group scheme of finite
type (see e.g. [BSU13, Section 4.2]) and Aut(X) fits into the following exact sequence of groups:

1→ Aut(X)0 → Aut(X)→ Aut(X)/Aut(X)0 → 1.

The quotient group Aut(X)/Aut(X)0 is a constant group scheme over k associated to at most
countable abstract group with an action of the Galois group of k. Thus, the study of automorphisms
of X can be reduced to the understanding of Aut(X)0 and of the quotient group Aut(X)/Aut(X)0.

It is a fact that Bir(X) cannot be in general endowed with a structure of a group scheme,
see [Han87, Remark 2.9]. Complexity of groups Aut(X) and Bir(X) highly depends on the geometry
of the algebraic variety X defined over the field k. We will cover various problems on groups Aut(X)
and Bir(X) in this thesis, and roughly explore the differences and similarities between these two
groups.
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If X is a smooth curve, then Aut(X) = Bir(X) and one can understand the structure of this
group very well. For simplicity let us here discuss the case where k is algebraically closed. First,
if the genus of X is zero, then X = P1 and Aut(X) = PGL2(k). If the genus of X equals 1
then X is an elliptic curve and the group of points of X(k) form a subgroup of finite index in
the group Aut(X), see [HKT08, Theorem 11.94]. If the genus of X equals g > 2 then by Hur-
witz theorem Aut(X) is a finite group, see [HKT08, Theorem 11.50], and its cardinality is at
most 84(g − 1) when the characteristic of k equals 0. In the case when the characteristic of k
is positive there are also uniform bounds for the cardinality of Aut(X) depending only of the genus
of X, see [HKT08, Theorem 11.127].

If dim(X) > 2 then Aut(X) does not coincide with Bir(X) in general. For instance, if X is
a projective space Pnk over a field k, then Aut(X) = PGLn+1(k). The group Crn(k) of birational
automorphisms of Pnk , so-called Cremona group of rank n, is much bigger than the group of regular
automorphisms Aut(Pnk ) if n > 2. In particular, if we consider Crn(k) as a k-scheme then it has
infinitely many components and their dimensions are not bounded, see [BF13].

On the other hand there are many varieties X for which the groups Aut(X) and Bir(X) co-
incide. Varieties satisfying this condition are said to be birationally super-rigid. If we assume
that X is a minimal model, i.e. that the canonical class KX of X is nef, and if there are no other
minimal models in the birational class of X then one has Aut(X) = Bir(X). Important classes of
such varieties include abelian varieties and minimal surfaces of non-negative Kodaira dimensions,
see [BHPVdV04, Theorem VI.1.1]. If dim(X) > 3 we know fewer examples of birationally super-
rigid varieties. If X is a variety of general type then by [HMX13] the cardinality of Bir(X) can be
bounded solely in terms of the dimension and volume of the canonical class, thereby generalizing
Hurwitz theorem. Therefore, there exists a birational model X̃ of X such that Aut(X̃) = Bir(X̃).

In [BCHM10] there is a construction of such variety X̃, it is the canonical model of X. If the
Kodaira dimension of a variety X is negative, then X does not admit a minimal model. However,
among these varieties, some of them are still birationally super-rigid. It is a deep fact due to [IM71]
that any smooth quartic hypersurface in P4 is a birationally super-rigid Fano threefold. More ex-
amples of such phenomenon have been subsequently found, see, e.g., [Puk98], [dF13], [CP17]; see
also [Puk13].

Given a variety X, the construction of its minimal model is the subject of the minimal model
program (MMP); see, e.g., [CKM88]. The idea of this method is to single out curves intersecting
negatively KX , and to contract them (then maybe compose this with a small birational transfor-
mation). The result of MMP is a model X0 of one of the following types:

• X0 is a minimal model of X i.e. the canonical class KX0
is nef;

• there exists a dominant morphism π : X0 → B where dim(B) < dim(X), the rank of the
relative Picard group Pic(X0)/π∗ Pic(B) equals 1 and the relative anticanonical class −KX0/B

is ample.

Recall that the variety X0 as in the second case and with a restriction on its singularities is called
a Mori fiber space. The case when we get a Mori fiber space corresponds to the situation when X
admits no minimal model; nevertheless, MMP produces a model of X with nice properties which
can be used in the study of birational and regular automorphisms of X.

Here is a brief list of the main topics of this thesis. Afterwards, they will be discussed in details.
In Chapter 1, we focus on the description of finite subgroups of Bir(X) when X is a rationally

connected complex threefold. We shall also describe Aut(X) when X is a quasi-projective surface
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defined over a field k such that char(k) > 0. One of the main ingredients here is MMP, which allows
us to reduce questions about finite subgroups of Bir(X) to classifying groups of automorphisms of
very special algebraic varieties that arise as the final result of MMP.

In Chapter 2 we consider birational automorphisms of infinite order, and try to understand when
it is possible to construct a birational model where the induced automorphism is regular. We are
mainly interested in the example of a birational automorphism of a rational threefold introduced
by J. Blanc in [Bla13]. The main result here is that it is not conjugate to a regular automorphism.
Approach which we take in this part is dynamical in nature, and the action of birational maps on
the cohomology groups plays an important role.

Finally Chapter 3 is concerned with the description of the automorphism groups of non-Kähler
manifolds introduced by D. Guan [Gua94] and further studied by F. Bogomolov [Bog96]. These
manifolds are non-Kähler analogues of hyperkähler manifolds; thus, we expect that their properties
are similar. By Bogomolov’s construction these manifolds fiber over the projective space with
abelian varieties as generic fibers; thus, algebraic tools can be used to study their geometry.

Finite groups of automorphisms

In this section, we summarize the results that will be presented in Chapter 1 of this thesis. Recall
that the Cremona group Crn(k) of rank n is the group of birational automorphisms of the projective
space Pnk . Two striking results about the Cremona group of rank 2 were nearly simultaneously
published in 2009. On the one hand, I. Dolgachev and V. Iskovskikh in [DI09] gave a complete
classification of all finite subgroups of Cr2(C). On the other hand, J.-P. Serre in [Ser09] proved
that the group Cr2(k) satisfies the Jordan property for any field k of characteristic 0. The following
definition was introduced by V. Popov.

Definition 0.0.1. A group Γ is said to satisfy the Jordan property if there exists J > 0 such that
any finite subgroup G ⊂ Γ contains a normal abelian subgroup A ⊂ G with [G : A] 6 J .

Serre subsequently conjectured that the Cremona group of any rank satisfies the Jordan prop-
erty over a field of characteristic 0. Serre’s conjecture was proved by Yu. Prokhorov and C.
Shramov in [PS16]: they established the Jordan property for Cremona groups of all ranks over a
field of characteristic 0 assuming the Borisov–Alexeev–Borisov conjecture which was later proved
by C. Birkar in [Bir21]. The Serre’s conjecture inspired study of Jordan property for automor-
phisms groups of different varieties. An interesting statement of this type was proved by V. Popov
in [Pop11, Theorem 2.32]: he showed that in characteristic 0 the group of birational automorphisms
of a surface satisfies the Jordan property for all but concretely described birational classes of sur-
faces. Then S. Meng and D.-Q. Zhang in [MZ18] showed that the Jordan property holds for groups
of regular automorphisms of all projective varieties over a field of characteristic 0. The Jordan
property was also established for groups of regular automorphisms of Kähler manifolds and (pos-
sibly singular) manifolds in the Fujiki class C , see [Kim18] and [MPZ20]. Groups of birational
automorphisms of non-projective compact complex surfaces and threefolds were also proved to be
Jordan, see [PS21a], [PS20], [PS21b]. Also T. Bandman and Yu. Zarkhin in [BZ15] showed that the
group of regular automorphisms of a quasi-projective complex surface always satisfies the Jordan
property.
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Some of these results are true over a field k of positive characteristic p. For instance, Prokhorov
and Shramov managed to show that the Cremona group Cr2(k) is Jordan if k is a finite field.
However, if k is an algebraically closed field of positive characteristic the situation is much harder.
Actually, many Lie groups over such field do not satisfy the Jordan property, see Example 1.2.35.
In view of this F. Hu suggested the following analogue of the Jordan property:

Definition 0.0.2 ([Hu20, Definition 1.6]). We say that a group Γ is p-Jordan, if there exist con-
stants J(Γ) and e(Γ) depending only on Γ such that any finite subgroup G ⊂ Γ contains a normal
abelian subgroup A with

[G : A] 6 J(Γ) · |Gp|e(Γ),

where Gp is a Sylow p-subgroup of G.

This definition was motivated by the work of M. J. Larsen and R. Pink [LP11] in which they
established the p-Jordan property for the group GLn(Fp) for any prime number p and any n > 0.
Then Hu proved in [Hu20] that the group of regular automorphisms of any projective variety over
a field of characteristic p > 0 satisfies the p-Jordan property. Moreover, Y. Chen and C. Shramov
in [CS21] generalized Popov’s result to positive characteristic; namely, they proved that the group
of birational automorphisms of an algebraic surface over an algebraically closed field of charac-
teristic p > 0 satisfies the p-Jordan property for all but concretely described birational classes of
surfaces. The birational type of the surface S when Bir(S) is not Jordan is if S is the product P1 × E
where E is an elliptic curve.

We study finite subgroups in groups of automorphisms of quasi-projective surfaces, thereby
extending Bandman and Zarkhin’s theorem to positive characteristic. Here is the first result of the
thesis:

Theorem 0.0.3. If S is a quasi-projective surface defined over a field of characteristic p > 0, then
the group Aut(S) is p-Jordan.

The idea of the proof is the following (the complete proof may be found in Chapter 1). Since the
subgroup of a p-Jordan group is p-Jordan then in view of Chen and Shramov’s result the theorem
can be reduced to the case when S is birationally equivalent to the product P1 × E where E is an
elliptic curve. We construct a compactification S of S and consider the Albanese map π : S → E.
If there is an irreducible component of S \ S whose image under π is a point on E then we prove
that Aut(S) is Jordan. If S \ S consists of multisections of π then we show that the action of any
element of the group Aut(S) induces a regular automorphism of S. The proof of Theorem 0.0.3
highly relies on the fact that any unirational curve is rational. Note that this fact is not true in
higher dimensions in positive characteristic, there exist many examples of unirational non-rational
surfaces; see, for instance, [Shi74], [Kat81], [Miy76].

We now turn to a more precise discussion of finite groups of birational automorphisms of pro-
jective varieties. For n > 3 a complete description of all finite subgroups of Crn(C) is out of reach.
We shall thus focus on bounding the cardinality of the generating sets of p-subgroups in Cr3(C).
Recall that if p is a prime number then a p-group is a finite group of order pm for some m > 0.

The idea of considering such groups comes from the work [BB00] by L. Bayle and A. Beauville
where they classified all birational involutions of P2. Then T. de Fernex in [dF04] studied birational
automorphisms of P2 of prime order, and Blanc in [Bla09] described all conjugacy classes of finite
abelian subgroups in Cr2(C). Beauville in [Bea07] proved sharp bounds on ranks of abelian p-
subgroups of Cr2(C) for all prime numbers p. Prokhorov in [Pro11] and [Pro14] extended this result
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to dimension 3 and to a wider class of varieties; he proved bounds on the rank of abelian p-subgroups
in the group Bir(X) of birational automorphisms of any rationally connected threefold X.

Prokhorov and Shramov in [PS18] proved that if p > 17 is a prime number and X is a rationally
connected threefold, then a p-subgroup in Bir(X) is necessarily abelian, its rank is at most 3 and this
bound is sharp. In the work by J. Xu [Xu20] this result was generalized to all prime numbers p > 5;
this result in fact gives an estimation on the rank of p-subgroups of Bir(X) for a rationally connected
variety X of any dimension. Prokhorov in [Pro14] gave a sharp bound on the number of generators
of any 2-subgroup in Bir(X) for a rationally connected threefold X. Thus, we have a sharp bound
on the number of generators of a p-subgroup in Bir(X) for a rationally connected threefold X and
all prime numbers except p = 3.

In our work we study the last remaining case of 3-subgroups in the group Bir(X) for a rationally
connected threefold X. Prokhorov in [Pro11] proved that any abelian 3-subgroup can be generated
by at most 5 elements. We extend this result to not necessarily abelian groups and prove the
following theorem:

Theorem 0.0.4. Let X be a projective rationally connected complex threefold and let G be a 3-sub-
group in Bir(X). Then the following is true:

1. The group G can be generated by at most 5 elements.

2. If G cannot be generated by 4 elements, then G ⊂ Aut(X0) where X0 satisfies one of the
following properties:

(a) X0 is a Fano threefold with terminal singularities, the number of its non-Gorenstein
singular points is 9 and all these points are cyclic quotient singularities of type 1

2 (1, 1, 1).

(b) X0 is a Fano threefold with terminal Gorenstein singularities with Pic(X0) = ZKX0 of
genus 7 or 10 and the number of singular points of X0 is 9 or 18.

The second assertion of Theorem 0.0.4 relies heavily on the G-equivariant version of MMP,
see [Pro21]. Recall that the G-equivariant MMP which starts with a variety X with a faithful
regular action of a finite group G and its result is another variety X0 with a regular action of G
which is G-birational to X. Moreover, X0 is either a minimal model or it is a G-Mori fiber space i.e.
an equivariant analogue of a Mori fiber space. Note that a rationally connected threefold cannot
have a minimal model by [KMM92].

If X is a rationally connected threefold and G is a finite subgroup in Bir(X), then one can

construct a birational model X̃ of X such that G ⊂ Aut(X̃). Then we apply G-equivariant MMP

to X̃ with the action of G and obtain a G-Mori fiber space X0. Thus, Theorem 0.0.4 is a consequence
of the following proposition.

Proposition 0.0.5. Let G be a 3-group and let X0 be a G-Mori fiber space of dimension 3. Then G
can be generated by at most 4 elements unless X0 is a Fano threefold which satisfies properties (a)
or (b) in Theorem 0.0.4.

The equivariant MMP works in the class of complex threefolds with terminal singularities en-
dowed with an action of a finite group. Mori fiber spaces with terminal singularities are relatively
well studied, see [Pro13a], [Pro13b], [BCZ04]. Moreover, by [Isk79], [MM82] and other works there
exists a complete classification of smooth Fano threefolds. In the proof of Proposition 0.0.5 we
use also many results on the geometry of various types of Fano threefolds and on the properties of
terminal singularities.
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Recently Loginov in [Log21] has studied in more details Fano varieties which satisfy proper-
ties (a) and (b) in Theorem 0.0.4. He was able to prove that in both cases the group G can be
generated by at most 4 elements. This leads us to the following corollary.

Corollary 0.0.6. Let G be a 3-subgroup in a group Bir(X) where X is a complex rationally con-
nected threefold. Then G can be generated by at most 4 elements and this bound is sharp.

The sharpness of the bound follows from Example 1.2.33.

Regularization of birational automorphisms

In Chapter 2 we shall focus our attention on birational automorphisms of infinite order. The set-up
will be as follows. Let X be a normal projective variety defined over an algebraically closed field k
of characteristic 0. We say that a birational automorphism f : X 99K X is regularizable on Y if
there exists a birational map α : X 99K Y to a projective variety Y and g ∈ Aut(Y ) such that the
following diagram commutes:

X
f //

α

��

X

α

��
Y

g // Y

The question whether one can regularize an given birational automorphism f : X 99K X becomes
increasingly difficult when dimension of X grows. In the curve case the question is trivial: any
birational automorphism is already regular. In order to recall the known results in higher dimensions
we need the following definitions.

Let X be a smooth variety and let N i(X) be the R-vector space generated by classes of irre-
ducible subvarieties of codimension i in X modulo numerical equivalence. Let H ∈ N1(X) be an
ample divisor class on X and let dim(X) = d. One can define the class f∗(Hi) ∈ N i(X) by taking
the class of the proper preimage under f−1 for a general subvariety in the class of Hi ∈ N i(X).
Then the i-th degree of f for 0 6 i 6 d is defined as the following number:

degi(f) = (f)∗(Hi) ·Hd−i.

By [DS05] the growth rate of the sequence (degi(f
n))n>0 is a birational invariant of the pair (X, f).

In particular, it does not depend on the choice of the ample divisor H, see also [Tru20]. Moreover,
the sequence (degi(f

n))n>0 is submultiplicative in n, i.e. there exists the following limit:

λi(f) = lim
n→∞

(degi(f
n))

1
n .

The number λi(f) is called the i-th dynamical degree of the birational automorphism f . By [DN11]
and [Tru20] the numbers λi(f) are real, satisfy λi(f) > 1 and they are birational invariants of the
pair (X, f) for 0 6 i 6 d. In particular, they do not depend on the choice of the ample divisor H.
Moreover, λ1(f) = λd(f) = 1 and dynamical degrees are log-concave, i.e. one has the following
inequality for all 1 6 i 6 d− 1:

λi−1(f) · λi+1(f) 6 λi(f)2.
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Using the terminology coined in [BV99] we say that a birational automorphism f is of positive
entropy if for some 0 6 i 6 d one has λi(f) > 1. This terminology is justified by the fact that
the topological entropy of f equals log (max06i6d(λi(f))) when f is a regular automorphism of a
compact projective complex variety by theorems of Gromov and Yomdin [Gro03] and [Yom87], see
also [DS05]. Note that by the log-concavity of dynamical degrees one has f is a positive entropy
automorphism if and only if λ1(f) > 1.

By [Wei55] (see also [Dés21, Section 3.5]) if the sequence (degi(f
n))n>0 is bounded, then there

exists a birational model X0 of X such that f is regularizable on X0. Otherwise, one has an
additional structure associated with the automorphism f which allows us to understand better its
properties.

If dim(X) = 2 and the sequence (deg1(fn))n>0 is not bounded then by [BC16] the dynamical
degree λ1(f) is an algebraic number with special properties, i.e. it is either a Salem or a Pisot
number. Moreover, by [DF01] if the sequence (deg1(fn))n>0 is not bounded and λ1(f) = 1, then
(deg1(fn))n>0 grows as n or as n2. The birational types of complex surfaces which admit a positive
entropy birational automorphism are described in [Can99]; moreover, there exists many examples
of surface positive entropy automorphisms, see for instance [McM07], [Bla08] and [BK09]. The first
dynamical degree is proved to be lower semi-continuous in families of birational automorphisms of
surfaces by [Xie15].

If dim(X) = 2 the growth rate of the sequence (degi(f
n))n>0 in many situations determines

whether f is regularizable or not. By [DF01] if λ1(f) = 1 then f is regularizable if and only if
the sequence (degi(f

n))n>0 is bounded or grows as n2. By [BC16] if λ1(f) is a Salem number
then f is regularizable. Moreover, there is a more complicated criterion by [DF01]. It claims that
if λ1(f) > 1 and there exists a divisor class θ on X such that f∗θ = λ1(f)θ and θ2 = 0, then f is a
regularizable automorphism.

Positive entropy automorphisms in higher dimensions are much more complicated. Unlike the
case of surfaces a positive entropy automorphism f : X 99K X of a smooth projective variety X
such that dim(X) > 3 can preserve a fibration i.e. there can exist a dominant map π : X 99K B
to some variety B and g ∈ Bir(B) such that 1 6 dim(B) 6 dim(X) − 1 and π ◦ f = g ◦ π. If f
preserves a fibration we say that it is imprimitive. By J. Lesieutre [Les18] we get that if X is a
smooth complex projective threefold and f : X 99K X is a positive entropy birational non-regular
automorphism which can be regularized on a variety constructed by an iterated blow-up of X in
smooth subvarieties, then f is imprimitive.

Note that for any regular automorphism f : X → X the canonical class KX is f∗-invariant.
If KX is an ample or an anti-ample divisor, then one can use it in order to compute the dynamical
degree of f . Therefore, if X is a Fano threefold then there is no positive entropy automorphism
of X. Moreover, by Lesieutre’s result any iterated blow-up of a smooth complex Fano threefold
in smooth subvarieties admits no regular primitive positive entropy automorphism. Thus, it is
very complicated to construct an example of a primitive positive entropy regular automorphism
on a rational threefold. At the moment there is known only one example of such automorphism
described in [OT15].

Attempts to generalize regular positive entropy automorphisms of rational surfaces resulted in
constructions of birational automorphisms [BK14], [PZ14], [Bla13] which turn out to be pseudo-
automorphisms. Recall that a birational map f : X 99K X of a smooth variety X is called a
pseudo-automorphism if neither f nor f−1 contract any divisor in X. Note that in the case of
surfaces any pseudo-automorphism is a regular automorphism. Thus, pseudo-automorphisms form
a class of birational automorphisms which are very close to being regular. One might expect that
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any pseudo-automorphism can be regularized and under appropriate assumptions this indeed is
true, see Section 2.2.4; however, it may be false. Here we list some known constructions of positive
entropy pseudo-automorphisms of rationally connected threefolds:

Example 0.0.7 ([BK14]). This example is obtained as a generalization of a surface automorphism
construction from [BK09]. Fix a ∈ C \{0} and a primitive third root of unity ζ and consider the
birational automorphism of P3:

fa,ζ : P3 99K P3; fa,ζ(x0 : x1 : x2 : x3) = (x0x1 : x1x2 : x1x3 : ax2
0 + ζx0x2 + x0x3).

Then λ1(fa,ζ) = λ2(fa,ζ) > 1 and fa,ζ induces a pseudo-automorphism on a blow-up of P3 in several
points and curves. Moreover, fa,ζ is imprimitive and if a 6= 1 then fa,ζ is non-regularizable.

Example 0.0.8 ([BCK14]). Let a, c be complex numbers and let fa,c : P3 99K P3 be a birational
automorphism defined as fa,c = La,c ◦ J where

La,c(x0 : x1 : x2 : x3) = (x3 : x0 + ax3 : x1 : x2 + cx3);

J(x0 : x1 : x2 : x3) = (x−1
0 : x−1

1 : x−1
2 : x−1

3 ).

Thus, fa,c is the composition of a regular automorphism La,c of P3 and the Cremona involution J .
If a and c satisfy a certain quadratic equation then λ1(fa,c) = λ2(fa,c) > 1 and fa,c induces a
pseudo-automorphism on a blow-up of P3 in several points. Moreover, fa,c is primitive and non-
regularizable.

Example 0.0.9 ([PZ14], [BDK], [DO88]). This example is obtained as a generalization of a sur-
face automorphism construction from [McM07]. There exists a blow-up δ : X → P3 of several
points p1, . . . , pk in P3 and a bilinear form (, ) on the lattice H2(X,Z) which induces the structure
of the root lattice. Thus, there is a Weyl group W with a natural representation in H2(X,Z).
Moreover, for any element w ∈W there is a pseudo-automorphism

fw : X 99K X,

such that f∗w acts on H2(X,Z) as w. We denote by w0 the Coxeter element in W . If W is an
infinite group we get that λ1(fw0) = λ2(fw0) > 1 and fw0 is imprimitive.

Example 0.0.10 ([BL15]). Let Y ⊂ P4 be a smooth cubic threefold and let C1 be a smooth
curve of genus 2 and degree 6 on Y . Denote by Y1 the blow-up of Y along C1, then the linear
system | −KY1

| induces on Y1 a structure of a surjective morphism π1 : Y1 → P3 with general fiber
equal to two points. The involution corresponding to the exchange of these points is a pseudo-
automorphism τ1 : Y1 99K Y1.

The base locus of a general pencil of hyperquadric sections containing C1 is the union C1 ∪C2,
where C2 is a smooth curve of genus 2 and degree 6 on Y . Therefore, if we denote by Ỹ the
subsequent blow-up of curves C1 and C2 in Y , then the involutions associated to curves C1 and C2

as above induce pseudo-automorphisms τ̃1 and τ̃2 of Ỹ . The composition of these involutions is a
pseudo-automorphism:

fY,C1,C2 = τ̃1 ◦ τ̃2 : Ỹ 99K Ỹ ,

Moreover, one has λ1(fY,C1,C2
) = λ2(fY,C1,C2

) > 1 and f preserves the pencil of quadrics passing
through C1 ∪ C2; thus, f is imprimitive.
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Example 0.0.11 ([Bla13]). This example is obtained as a generalization of a surface automorphism
construction from [Bla08]. Let S ⊂ P3 be a smooth cubic surface. With each point p ∈ S one can
associate a birational involution σp : P3 → P3. For any collection p1, . . . , pk of k points on S consider
the following birational automorphism:

fp1,...,pk = σp1 ◦ · · · ◦ σpk : P3 99K P3.

If the points p1, . . . , pk are general and k > 3 then λ1(fp1,...,pk) = λ2(fp1,...,pk) > 1 and fp1,...,pk
induces a pseudo-automorphism on a blow-up of P3 in several points and curves.

Examples 0.0.7 and 0.0.8 are proved to be non-regularizable. Examples 0.0.9 and 0.0.10 are
non-primitive. Thus, we concentrate on the last example and prove that it is non-regularizable
under appropriate assumptions. Here is the main result of Chapter 2.

Theorem 0.0.12. Let S ⊂ P3 be a very general smooth complex cubic surface and let p1, p2, p3

be general points on S. Then the birational automorphism fp1,p2,p3 : P3 99K P3 described in Exam-
ple 0.0.11 is non-regularizable and does not preserve a fibration over a surface.

There are several criteria which allow us to prove that a birational automorphism of a threefold is
non-regularizable. By [CDX21] if deg1(fn) grows as nk where k is odd, then f is non-regularizable;
also if λ1(f) > 1 is an integer then then f is non-regularizable. By [LB19] if X is a threefold
and if the sequence (deg(fn))n>0 grows as nk where k > 4 then f is non-regularizable. Also if
the number λ1(f) does not satisfy several conditions given in [LB19, Proposition 4.6.7, 4.7.2, 5.0.1]
then f is non-regularizable. Another criterion which does not use dynamical properties of the bi-
rational automorphism f was used to prove that Examples 0.0.7 and 0.0.8 are non-regularizable.
It is based on [BK14, Corollary 1.6] which says that if f : X 99K X is a birational automorphism
of a smooth threefold X and if Y is an f -invariant surface in X such that the birational auto-
morphism f |Y : Y 99K Y is non-regularizable then f is non-regularizable. In both Examples 0.0.7
and 0.0.8 one can find an f -invariant surface Y such that λ1(f |Y ) is a Pisot non-quadratic number;
thus, by [BC16] we get that f |Y is non-regularizable.

All these arguments do not work in Example 0.0.11. Thus, in order to prove Theorem 0.0.12
we establish a new criterion. In order to formulate it recall that if f : X → X is a pseudo-
automorphism such that one has an inequality λ1(f)2 > λ2(f), then by [Tru14] there exists a
unique up to proportionality pseudo-effective divisor class θ1(f) such that:

f∗θ1(f) = λ1(f)θ1(f). (0.0.13)

Such class was successfully used in [DF01] for the necessary condition on the existence of a regu-
larization of a surface birational automorphism. Now we can formulate our criterion:

Theorem 0.0.14. Let f : X 99K X be a pseudo-automorphism of a smooth projective threefold X
such that

(1) λ1(f)2 > λ2(f); thus, there exists a class θ1(f) as in (0.0.13);

(2) there exists a curve C such that θ1(f) · [C] < 0;

(3) there exist infinitely many integers m > 0 such that C 6⊂ Ind(f−m).

Then f is non-regularizable and it does not preserve a fibration over a surface.
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Some comments are in order. By log-concavity of dynamical degrees one has λ1(f)2 > λ2(f).
Thus, the condition (1) is always true either for f or for f−1 since λ2(f) = λ1(f−1). Condition (2)
implies that the class θ1(f) is not nef and the last condition is required to avoid situations which
we describe in Section 2.2.4.

To prove Theorem 0.0.12 we show that the pseudo-automorphism model f̃p1,p2,p3 : X 99K X
of fp1,p2,p3 constructed in [Bla13] satisfies the condition of Theorem 0.0.14. The first condition

is obviously true. To show the second condition we consider a curve of indeterminacy of f̃p1,p2,p3
and prove that it intersects θ1(f̃p1,p2,p3) negatively. This curve is the proper transform of a line L
from P3 to X. The verification of the third condition is quite difficult; we prove that the line L
does not lie in the indeterminacy locus of f−mp1,p2,p3 using explicit formulas for the involutions σpi .
Most of our computations were done in Sage. Dealing with three involutions already makes our
proof tricky. We expect that our theorem is valid for any composition of at least three involutions
associated to general points on S.

Automorphisms of Bogomolov–Guan manifolds

In Chapter 3 we shall use the following convention: by a manifold we denote a locally ringed space
which is locally isomorphic to an open subset of the vanishing locus of a finite set of holomorphic
functions in Cn. In particular, manifolds are not assumed to be smooth. By a variety or an algebraic
variety we denote the vanishing locus of a finite set of polynomials in the complex projective
space Pn.

Our goal in this chapter is to study a special class of non-Kähler complex compact manifolds.
These manifolds are particularly interesting in view of their similarity with hyperkähler manifolds.
Recall that a hyperkähler manifold is a Riemannian manifold (M, g) which equipped with three
Kähler complex structures I, J,K : TM → TM , satisfying the quaternionic relation:

I2 = J2 = K2 = IJK = − id .

Any hyperkähler manifold is holomorphically symplectic i.e. admits a non-degenerate (2, 0)-form.
Conversely, a compact holomorphically symplectic manifold is hyperkähler, provided that it is
Kähler. This follows from the Calabi-Yau theorem [Yau78], see also [Bea83]. A hyperkähler mani-
foldM is called irreducible holomorphic symplectic (IHS ) if it is compact, complex, simply connected
and the group H2,0(M) is 1-dimensional.

An example of non-Kähler manifolds which are very close to IHS manifolds was constructed in
several papers by D. Guan [Gua94], [Gua95a] and [Gua95b]. Later F. Bogomolov in [Bog96] gave a
more geometric construction for these manifolds. We recall here the main steps of the Bogomolov’s
construction.

Let S be a primary Kodaira surface, i.e. a smooth complex compact holomorphic symplectic
surface which admits a structure of an isotrivial elliptic fiber space:

π : S → E,

over an elliptic curve E such that any submanifold in S which admits a structure of an algebraic
variety is either a point or a fiber of π. All fibers of π are isomorphic to an elliptic curve F . The map
π induces a structure of F -torsor on S. Denote by π[n] : S[n] → E[n] the induced map beetween
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Douady spaces of length n of S and E respectively. Denote by Alb: E[n] → E the Albanese
morphism of the algebraic variety E[n] which is isomorphic to the symmetric power Symn(E). The
following variety

W = (π[n])−1(Alb−1(0))

is a complex manifold with an action of F induced from the diagonal action of F on S[n]. Then
by [Bog96, Corollary 4.10] under appropriate conditions on the Kodaira surface S there exists a
smooth, compact, complex, simply connected manifold Q such that the group H2,0(Q) is generated
by a non-degenerate holomorphic symplectic form and which is a finite cover of W/F :

p : Q→W/F.

If n = 2 then Q is a K3-surface; if n > 3 then Q is a non-Kähler (2n− 2)-dimensional manifold.
The manifold Q constructed as described above for n > 3 is the main object of study in

Chapter 3, we call it the BG-manifold (for Bogomolov–Guan). Since the fiber Alb−1(0) is isomorphic
to the (n− 1)-dimensional projective space then the map π[n] induces the map Π: W/F → Pn−1.
Thus, the BG-manifold Q admits a surjective map to a projective space:

Φ = Π ◦ p : Q→ Pn−1. (0.0.15)

Since many properties of BG-manifols are similar to those of IHS manifolds we expect that many
results about hyperkähler manifolds can be extended to the case of BG-manifolds. Recall here
several significant results about hyperkähler manifolds. First, if M is a hyperkähler manifold then
by [Fuj87] there exists an important non-degenerate symmetric quadratic form on the cohomology
group H2(M,Z). This form is called the Beauville–Bogomolov–Fujiki form or BBF-form and it is
very useful in the study of the geometry of hyperkähler manifolds and their moduli spaces. Another
important result which later led to the proof of the Torelli theorem for hyperkähler manifolds
is the Bogomolov–Tian–Todorov theorem [Bog78], which says that the deformation theory of a
Kähler manifold with trivial canonical class is unobstructed. Groups of biholomorphic Aut(M) and
bimeromorphic Bim(M) automorphisms of a hyperkähler manifold M were studied by N. Kurnosov
and E. Yasinsky in [KY19] and by A. Cattaneo and L. Fu in [CF19]. They proved in particular that
the order of finite subgroups in the groups Aut(M) and Bim(M) are bounded. Moreover, there are
only finitely many conjugacy classes of finite subgroups in Aut(M) and Bim(M).

There are some partial extensions of these results to BG-manifolds. In [KV19] N. Kurnosov and
M. Verbitsky proved the existence of a symmetric quadratic form on the cohomology group H2(Q,Z)
on a BG-manifold Q analogues to the BBF-form. They conjectured that this form is non-degenerate
and that it satisfies all properties of a BBF-form. Moreover, the study of holomorphic symplectic
defiormations and this symmetric form led them to the generalization of the Bogomolov–Tian–
Todorov theorem to the class of BG-manifolds.

In this thesis we are going to explore the groups of biholomorphic and bimeromorphic auto-
morphisms of BG-manifolds. In order to do this we find several structures on a BG-manifold Q
which should be preserved under automorphisms. Since a BG-manifold Q is non-algebraic one can
consider algebraic submanifolds in Q. The image of an algebraic submanifold under an automor-
phism is necessarily an algebraic submanifold. One can consider an algebraic reduction of Q i.e. a
meromorphic map f : Q 99K X to an algebraic variety X such that any meromorphic map from Q
to an algebraic variety factors through f . A map f with this property is unique up to birational
conjugations. Our first result is the following description of the algebraic reduction of Q:
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Theorem 0.0.16. Let n > 3 be an integer and let Q be a BG-manifold of dimension 2n− 2. Then
the map Φ: Q→ Pn−1 described in (0.0.15) is an algebraic reduction of Q.

Then we study subvarieties of BG-manifolds. Recall that a manifold X is called Moishezon if
its algebraic reduction is a generically finite map. In particular, any algebraic variety is Moishezon.
We prove the following result:

Theorem 0.0.17. Let Q be a BG-manifold of dimension 2n − 2 and let Φ: Q → Pn−1 be its
algebraic reduction as in (0.0.15). There exists a divisor D ⊂ Pn−1 of degree 2n such that for any
point x ∈ Pn−1 one has:

(1) If x ∈ Pn−1 \D, then the fiber Φ−1(x) is an abelian variety.

(2) If x ∈ D, then the fiber Φ−1(x) is a uniruled Moishezon manifold.

Moreover, if X ⊂ Q is a submanifold such that dim(Φ(X)) > 2 then X is not Moishezon.

By this theorem if X ⊂ Q is a submanifold of a BG-manifold and Φ(X) is a point then X is
Moishezon; in the case where dim(Φ(X)) > 2 one has X is not Moishezon. We also consider the
case where dim(Φ(X)) = 1 and obtain that X may or may not be a Moishezon manifold depending
on the curve Φ(X), see Lemma 3.4.11 and Theorem 3.4.20 for more precise statements.

By definition of an algebraic reduction any bimeromorphic or biholomorphic automorphism
of a complex manifold is compatible with algebraic reduction. Therefore, we conclude that the
group Aut(Q) fits into the following exact sequence:

1→ G′′ → Aut(Q)→ G′ → 1, (0.0.18)

where G′ is a subgroup of Aut(Pn−1) and G′′ is a subgroup of Aut (A) where A is an abelian
variety Φ−1(x) and x is a point in Pn−1 \D.

Theorem 0.0.17 implies that a biholomorphic automorphism of Q induces a regular automor-
phism of the projective space Pn−1 which preserves the divisor D. Thus, we study the geometry
of D in details and prove that the group Aut(Q) satisfies the Jordan property, see Definition 0.0.1.
Here is the main result of Chapter 3:

Theorem 0.0.19. Let Q be a BG-manifold of dimension 2n − 2 and let Φ: Q → Pn−1 be its
algebraic reduction as in (0.0.15). Then the group Aut(Q) fits into the exact sequence (0.0.18)
where G′ is a finite group, G′′ ⊂ Aut(A) where A is an (n − 1)-dimensional abelian variety. In
particular, Aut(Q) is a Jordan group.

This result follows from a description of the divisor D and its singular locus. We prove that D
contains a finite set Z of n2 points of multiplicity n − 1 and that Z does not lie in a hyperplane
in Pn−1. Thus, the group of automorphisms of Pn−1 fixing D should fix also Z; therefore, it is
finite.

It would be extremely interesting to prove a similar result for the group of bimeromorphic auto-
morphisms of a BG-manifold Q. By the same reasons as in the case of biholomorphic automorphisms
the group Bim(Q) fits into the following exact sequence:

1→ H ′′ → Bim(Q)→ H ′ → 1,

where H ′′ ⊂ Aut(A) and A is an (n− 1)-dimensional abelian variety isomorphic to a general fiber
of Φ and H ′ is a subgroup in the group Crn−1(C) of birational automorphisms g of Pn−1 such that
either D lies in Exc(g) or D is g-invariant.
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In the simplest case when n = 3 and dim(Q) = 4 we managed to establish the Jordan property
for the group Bim(Q). However, in higher dimensions it is still unclear whether the group Bim(Q)
is Jordan or not.

Notation

Algebraic varieties and maps

Aut(X): The group of biregular automorphisms if X is an algebraic variety or the group of biholo-
morphic automorphisms if X is a complex manifold.

Bir(X): The group of birational automorphisms of the algebraic variety X.

Bir(X)π: The group of automorphisms of X which preserve the fiber space π : X → B.

Crn(k): The group of birational automorphisms of the projective space Pnk over a field k.

Ind(f): The indeterminacy locus of the birational map f .

Exc(f): The exceptional locus of the birational map f .

Bs(|D|): The base locus of the linear system |D|.

Jac(C): The Jacobian variety of the smooth curve C.

Gr(k, V ): The Grassmannian of k-planes in the vector space V .

Pic(X): The Picard group of the normal variety X; i.e. the group of isomorphism classes of Cartier
divisors on X modulo the linear equivalence relation.

Pic0(X): The connected component of the trivial element in Pic(X).

ρ(X): The rank of the group Pic(X)/Pic0(X).

Pic(X/B): The relative Picard group of the fiber space π : X → B; i.e. the group Pic(X)/π∗ Pic(B).

Sing(X): The singular locus of the normal variety X.

N i(X): The group of classes of subvarieties of codimension i in the variety X modulo numerical
equivalence.

λi(f): The i-th dynamical degree of the birational automorphism f .

θ1(f): The pseudo-effective class in N1(X) such that f∗(θ1(f)) = λ1(f)θ1(f) where f ∈ Bir(X).

TX,x: The Zariski tangent space to the algebraic variety X in the point x.

r(X): The index of the Gorenstein Fano threefold X with ρ(X) = 1.

g(X): The genus of the Gorenstein Fano threefold X with ρ(X) = 1 and r(X) = 1.

20



Complex manifolds and maps

Bim(M): The group of bimeromorphic automorphisms of the complex manifold M .

M(M): The field of meromorphic functions of the complex manifold M .

a(M): The algebraic dimension of the complex manifold M .

π1(M): The fundamental group of the complex manifold M .

Sym(M): The symmetric space of the complex manifold M i.e. the quotient space Mn/Sn where
the action of Sn on Mn is natural.

M [n]: The Douady space of the complex manifold M .

Groups

[G : H]: The index of the subgroup H in the group G.

Cn: The cyclic group Z /nZ.

C×n : The group of automorphisms of Cn.

Sn: The group of permutations of n elements.

GLn(A): The general linear group of degree n over the algebra A.

SLn(A): The special linear group of degree n over the algebra A.

PGLn(A): The projective linear group of degree n over the algebra A.

PSOn(A): The projective special orthogonal group of degree n over the algebra A with a fixed
quadratic form.

H3: The Heisenberg group modulo 3, i.e. the non-abelian group of 27 elements which is non
isomorphic to C3 n C9.

H̃3: The normalizer of the image of the Heisenberg group modulo 3 under the standard embed-
ding to SL3(C).
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1. Finite groups of automorphisms

1.1. Introduction

In this section we study the structure of finite subgroups in groups of automorphisms of some
varieties. We consider two different classes of finite subgroups and deduce that finite subgroups
there are bounded in some sense.

First we discuss groups of automorphisms of varieties over a field of positive characteristic.
Finite subgroups of such groups have a substantially more complicated structure than in case of
characteristic zero. We shall see for instance that the group GLn(Fp) does not enjoy the Jordan
property, see Example 1.2.35.

To remedy this issue Hu in [Hu20] has introduced a class of groups which he called p-Jordan and
is a generalization of the Jordan property to characteristic p > 0. He also obtained the following
theorem:

Theorem 1.1.1 ([Hu20, Theorems 1.7, 1.10]). Let k be a field of characteristic p > 0. Then for
any projective variety X defined over k, the group Aut(X) is p-Jordan.

Theorem 1.1.1 drove the attention of many researches that tried to extend it for groups of
birational transformations of varieties in positive characteristic. One of the most interesting results
in this area is the following analogue of Popov’s result [Pop11] in positive characteristic:

Theorem 1.1.2 ([CS21, Theorem 1.7]). Let S be an irreducible algebraic surface defined over a
field of characteristic p > 0. Then the group Bir(S) is p-Jordan unless S is birationally equivalent
to the product E × P1 of an elliptic curve E and a projective line.

Our goal is to prove an analogue of T. Bandman and Yu. Zarhin theorem [BZ15] in positive
characteristic:

Theorem 1.1.3. Let S be a quasi-projective surface defined over a field of characteristic p > 0.
Then the group Aut(S) is p-Jordan.

We now turn to finite subgroups of the Cremona group Crn(C) of rank n. Finite subgroups in
the Cremona group of rank 2 were studied in many works, see e.g. [dF04], [Bla09]. In [DI09] a
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complete classification of finite subgroups in Cr2(C) was proved. However, since the list of these
finite subgroups is very big it is more reasonable to study embeddings of finite groups of some
type to the Cremona group and estimate size of this groups. This approach was used by Beauville
in [Bea07] where he studied embeddings of groups Crp, where p is a prime number, to the Cremona
group of rank two and proved bounds on the rank r depending on p. This result was extended
by Prokhorov to the case of Cremona group of rank 3. Namely in works [Pro14] and [Pro11]
he considered abelian p-subgroups (i.e. finite subgroups of order pn for an integer n) in groups
of birational automorphisms of rationally connected threefolds. Note that the class of rationally
connected threefolds includes P3.

Theorem 1.1.4 ([Pro11, Theorem 1.2], [Pro14, Theorem 1.2]). Let X be a projective rationally
connected complex threefold, let G be an abelian p-subgroup of Bir(X). Then G can be generated
by r elements, with

r 6


6, if p = 2 and this bound is sharp;

5, if p = 3;

4, if p = 5, 7, 11 or 13;

3, if p > 17 and this bound is sharp.

Our next theorem focuses on the case of 3-subgroups and deals with not necessarily abelian
groups.

Theorem 1.1.5. Let X be a projective rationally connected complex threefold and let G be a 3-sub-
group in Bir(X). Then the following is true:

1. The group G can be generated by at most 5 elements.

2. If G can not be generated by at most 4 elements, then G ⊂ Aut(X0) where X0 satisfies one
of the following properties:

(a) X0 is a Fano threefold with terminal singularities, the number of its non-Gorenstein
singular points is 9 and all these points are cyclic quotient singularities of type 1

2 (1, 1, 1).

(b) X0 is a Fano threefold with terminal Gorenstein singularities with Pic(X0) = ZKX0
of

genus 7 or 10 and the number of singular points of X0 is 9 or 18.

The proof of Theorem 1.1.5 uses MMP. This allows us to prove that for any finite subgroup
in Bir(X) one can construct a terminal complex threefold X0 with a faithful action of G such
that X0 is a G-Mori fiber space. Thus, Theorem 1.1.5 follows from the following key assertion:

Proposition 1.1.6. Let G be a 3-group and X0 be a G-Mori fiber space of dimension 3. Then G
can be generated by at most 4 elements unless X0 satisfies properties (a) or (b) in Theorem 1.1.5.

Terminal G-Mori fiber spaces are not classified; however, there are several classes of these vari-
eties and in each case we prove a bound on the number of generators of G. We use various methods
to deal with Mori fiber spaces which base have positive dimension, Fano threefolds admitting a
terminal non-Gorenstein singular point, Gorenstein Fano threefolds which Picard number is greater
than 1; then we consider Gorenstein Fano threefolds with Picard number 1 and use the classification
of smooth Fano threefolds [Isk79] and the Namikawa smoothing [Nam97] and many other results.
Proceding case by case we prove the proposition.
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1.2. Preliminaries

1.2.1. Finite groups

Here we list well-known facts about generators of finite groups and discuss in more details the case
of the Heisenberg group.

Recall that a finite group G is a p-group if its order equals pn for some integer n. If one can
estimate the number of generators of a subgroup of a p-group this gives us the information about
the number of generators of the whole group.

Lemma 1.2.1. Let G be a p-group and H be a subgroup of G of index pn. If H can be generated
by m elements, then G can be generated by n+m elements.

Proof. Choose an element g ∈ G outside H and consider a subgroup H ′ ⊂ G generated by m
generators of H and g. We have

[G : H ′] < [G : H].

Thus, H ′ is a subgroup of index at most pn−1. We conclude by induction that G can be generated
by n+m elements.

Now consider the situation where the group G is an extension of two groups and we can estimate
numbers of generators of them.

Lemma 1.2.2. Assume that a finite group G is an extension of a group G2 by a group G1 and
each group Gi can be generated by ni elements for i = 1, 2. Then the group G can be generated
by n1 + n2 elements.

Proof. Choose sets of generators x1, . . . , xn1
and y1, . . . , yn2

of groups G1 and G2. Denote by x̃i
the image of xi in G and choose a preimage ỹj of yj in G.

Take any element z ∈ G. Then the image of z in G2 equals to a product of generators
∏
ydii .

Therefore, the product z · (
∏
ỹi
di)−1 equals to

∏
x̃j
cj . This concludes the proof.

Note however that if H is a subgroup of Gthe knowledge about the number of generators of G
gives almost no information about the number of generators of H. For example, any finite group
can be embedded to a group of permutation SN which can be generated by two its elements: a
transposition and a cycle of length N . in the case of subgroups of a direct product, we can still
extract some information.

Lemma 1.2.3. Assume that H ⊂
N∏
i=1

Gi and for each i any subgroup of Gi can be generated by ni

elements. Then H can be generated by
N∑
i=1

ni elements.
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Proof. We prove this by induction on N . If N = 1, then the assertion is trivial. Assume that the
assertion is true for N − 1 and show it for N . Denote by prN the projection from the product to
the group GN :

prN :

N∏
i=1

Gi → GN .

The groups prN (H) ⊂ GN and Ker(prN ) ∩ H ⊂
N−1∏
i=1

Gi can be generated by nN and
N−1∑
i=1

ni

respectively. The group H fits into the following short exact sequence:

1→ Ker(prN ) ∩H → H → prN (H)→ 1

By Lemma 1.2.2 we conclude that H can be generated by
N∑
i=1

ni elements.

Consider the subgroup of strictly upper-triangular matrices of GL(3,F3). This group is called
the Heisenberg group modulo 3 we will refer to it as to Heisenberg group. The following assertion
gives us several equivalent definitions of this group:

Lemma 1.2.4. Let H3 be a Heisenberg group. Then its order equals 27 and

(1) The group H3 is generated by 3 elements x, y and z with the following relations:

x3 = y3 = z3 = 1; xyx−1y−1 = z; xz = zx; yz = zy.

(2) The following matrices X and Y generate a subgroup isomorphic to H3 in SL3(C):

X =

0 0 1
1 0 0
0 1 0

 ; Y =

1 0 0
0 ζ 0
0 0 ζ2

 ;

here ζ is a primitive cube root of unity.

By the first assertion of Lemma 1.2.4 we get that the Heisenberg group can by generated by
two its elements x and y. Also we can see that the center of the Heisenberg group is generated by
the element z. Recall that for simplicity we denote by Cn the cyclic group Z /nZ. Thus, we have
the following exact sequence.

1→ C3〈z〉 → H3 → C3〈x, y〉 → 1.

Here the group C3〈x, y〉 is isomorphic to a direct product of cyclic groups C3 × C3.
The embedding of H3 to the group SL3(C) in the second assertion of Lemma 1.2.4 is called the

standard embedding of the Heisenberg group. Denote by N(H3) the normalizer of the image of the

standard embedding of H3 to SL3(C) and by H̃3 the maximal 3-subgroup of N(H3).

Lemma 1.2.5. The group H̃3 ⊂ SL3(C) fits into the following short exact sequence:

1→ H3 → H̃3 → C3 → 1

Moreover, the image of H̃3 under the projection π : SL3(C)→ PGL3(C) is isomorphic to H3.
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Proof. By [Fei71, 8.5] we get that the quotient group N(H3)/H3 is isomorphic to SL2(F3). Since
the maximal 3-subgroup of SL2(F3) is isomorphic to a cyclic group C3 we get the exact sequence.

The image of the generator z of H3 under the standard embedding to SL3(C) is a scalar matrix.
Thus, π(z) = 1 and the group W = π(H3) is generated by π(x) and π(y). Therefore, W ∼= C2

3.
Denote by m the lift of the generator of the Sylow 3-subgroup of SL2(F3) under the map

H̃3 → H̃3/H3 ⊂ SL2(F3)

By [Fei71, 8.5] there is a basis w1, w2 of W such that the conjugation by π(m) acts on W by the
following matrix:

M =

(
1 1
0 1

)
.

Thus, the group π(H̃3) is a non-abelian group of order 27 and all its elements are of order 3. Since
all groups of order 27 are either abelian, a semidirect product of groups C9 and C3 or a Heisenberg
group we conclude the result.

1.2.2. 3-subgroups in GLn(C) and PGLn(C)

In this section we give some bounds for the number of generators of any 3-subgroup of GLn(C)
and PGLn(C) where n 6 8. Let us start with a description of p-subgroups of GL2(C).

Lemma 1.2.6. If p 6= 2 is a prime number, then any p-subgroup G in GL2(C) is abelian and can
be generated by 2 elements and we have:

G ∼= Cpn × Cpm .

Moreover, any p-subgroup of PGL2(C) is cyclic and its action on a projective line preserves a point.

Proof. Any embedding of a finite group G to GL2(C) induces a faithful 2-dimensional representation
of the group G. The dimension of any irreducible representation of the group G divides the order
of G. Thus, if p 6= 2, a representation of dimension 2 of G is a sum of linear representations which
implies the result.

We establish bounds on the number of generators of any 3-subgroup of GL3(C) and PGL3(C).

Lemma 1.2.7. If G is a 3-subgroup of PGL3(C), then it can be generated by 2 elements. If G is
a 3-subgroup of GL3(C), then it can be generated by 3 elements.

Proof. The first assertion can be proved as in [Bor61, Section 6.4]. To estimate the number of
generators of a 3-subgroup G of GL3(C) we consider the following exact sequence:

1→ C∗ → GL3(C)
π−→ PGL3(C)→ 1.

The kernel of the map π|G is a subgroup of C∗; thus, it is a cyclic group. The image π(G) is
a 3-subgroup of PGL3(C), thus, it can be generated by 2 elements. Lemma 1.2.2 implies the
result.
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Recall that a torus in a compact Lie group is a maximal connected abelian subgroup. The
following assertion describes p-subgroups of a compact Lie group for all prime numbers p.

Theorem 1.2.8 ([BS53, Theorem 1], [Bor61, Section 6.4]). Let G be a compact Lie group and let G
be a p-subgroup in G . Then there exists a torus T ⊂ G such that the group G is a subgroup of a
normalizer N(T ).

In particular, if G is equal to SLp(C) or PGLp(C) where p is a prime number, then the quotient
group G/(G ∩ T ) can be embedded to the group Z/pZ. Moreover, G/(G ∩ T ) can be generated by
the images of permutation matrices in G .

This theorem allows us to describe the structure of a 3-subgroup of the group GL3(C).

Corollary 1.2.9. Assume that a 3-subgroup G of GL3(C) can not be generated by 2 elements.
Then either G contains an abelian group C3

3, or in some basis it contains the following matrices

σ =

 0 λ2 0
0 0 λ3

λ1 0 0

 ; t =

1 0 0
0 ζ 0
0 0 ζ2

 ; (1.2.10)

where ζ is a primitive cube root of unity and λi are roots of unity of degree 3ki .

Proof. Since G can not be generated by 2 elements, by Theorem 1.2.8 the rank of the group G∩ T
is at least 2. If it equals at least 3, then G contains C3

3. Assume, that it equals 2.
By Theorem 1.2.8 in some basis G is a subgroup of a normalizer of the torus T ⊂ GL3(C) of

diagonal matrices. Thus, there is an element σ ∈ G such that the conjugation by σ acts on G ∩ T
as a permutation of coordinates.

Consider t a non trivial element of G ∩ T . If elements t and σtσ−1 are not proportional,
conjugations of t by σ generate an abelian subgroup of rank 3 in G and this contradicts our
assumption. Thus, we can assume that for any non-trivial element t in G∩T elements σtσ−1 and t
are proportional.

However, if the element t is proportional to σtσ−1 then t is either a scalar matrix or the second
matrix in (1.2.10). Since the rank of the group G ∩ T equals 2 there are two non-proportional
elements t1 and t2 of G ∩ T . Thus, without loss of generalities we get that t1 is a scalar matrix
and t2 is the second matrix in (1.2.10). This implies the result.

Now we can estimate the number of generators of a 3-subgroup of GLn(C) for n greater than 3.

Proposition 1.2.11. Assume that 3 < n < 9 and G is a 3-subgroup of GLn(C). Then G can
be generated by n elements. If G is a 3-subgroup of PGLn(C), then G can be generated by n − 1
elements.

Proof. An embedding of the group G to GLn(C) induces the n-dimensional representation of the
group G. Since by assumption n < 9 this representation is isomorphic to a direct sum of irreducible
representations of dimensions 1 and 3. Thus, we have

G ⊂ Πn−3k
i=1 G′i ×Πk

j=0G
′′
j . (1.2.12)

Here G′i are cyclic 3-groups and G′′j are 3-subgroups of GL3(C). Then by Lemmas 1.2.3 and 1.2.7
the group G can be generated by n elements.
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Now consider a 3-subgroup G of PGLn(C). Denote by π : GLn(C) → PGLn(C) the quotient

map by the group of scalar matrices. Let G̃ be a 3-subgroup of GLn(C) such that π(G̃ = G. If G̃

can be generated by n− 1 elements, then G also can. Assume that G̃ can not be generated by less
than n elements.

By what precedes and Corollary 1.2.9, the group G either contains an abelian subgroup of rank n
or

G̃ = H ′ ×H ′′, (1.2.13)

where H ′ ⊂ GLn−3(C), H ′′ ⊂ GL3(C) and H ′′ contains matrices of the form (1.2.10). Moreover,
the rank of the group H ′′ ∩ T is at least 2 where T is a torus in GL3(C).

In the case G̃ contains an abelian subgroup of rank n we get that its image in PGLn(C) can be
generated by n− 1 element. Otherwise, we have a decomposition (1.2.13). Note that the group H ′′

is generated by at most 2 elements unless rk(H ′′ ∩ T ) = 2 and H ′′ is generated by a scalar matrix
and matrices (1.2.10). In both these situations we see that π(H ′′) can be generated by 2 elements.
By induction, we can assume that π(H ′) can be generated by n − 3 elements. Then Lemma 1.3.2
implies the result.

Corollary 1.2.14. If G ⊂ PGLn(C) is a 3-subgroup which can not be generated by less than k
elements and n < 9, then G contains an abelian subgroup A of rank k.

Proof. Denote by π : GLn(C) → PGLn(C) the quotient map by the subgroup of scalar matrices.

Let G̃ be the 3-subgroup of GLn(C) such that π(G̃) = G. Then, by Proposition 1.2.11 one has that

either G̃ is a subgroup of the torus in GLn(C) or admits the decomposition (1.2.13).

If G̃ is a subgroup of the torus in GLn(C), then we immediately get the result. If G̃ admits the
decomposition (1.2.13), then the group π(H ′′) can be generated by two elements and it contains a
subgroup C2

3. This implies the result.

This bounds on the number of generators of 3-subgroups in GLn(C) and PGLn(C) implies
several useful consequences.

Lemma 1.2.15. Any 3-subgroup of the group GL2(Z) or GL3(Z) is cyclic.

It follows from the above assertions, see [Tah71].

Lemma 1.2.16. Consider a 3-group G acting on a lattice Λ ∼= Z2. Then the invariant lattice ΛG

can not be of rank 1.

Proof. By Lemma 1.2.15 the image of group G is cyclic and it is isomorphic to C3n . Denote the
generator of this group by γ.

The group G maps to the group of automorphisms of Λ which is isomorphic to SL2(Z). This
action induces an embedding ι : SL2(C). Assume that eigenvalues of ι(γ) are λ1 and λ2.

If the rank of the invariant sublattice ΛG is non-zero, then one eigenvalue should equal 1.
Without loss of generalities we can assume that λ1 = 1. Since λ1 · λ2 = 1, we get that λ2 also
equals 1. Thus, the rank of the lattice ΛG is either 0 or 2.
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1.2.3. Group action on algebraic varieties

We study actions of groups on algebraic varieties over a field k. All varieties are assumed to be
irreducible and reduced if not stated otherwise.

Definition 1.2.17. Let X and Y be algebraic varieties, let π : X → Y be an algebraic map and
let G be a group.

• The action of the group G on X is a homomorphism of algebraic groups jX : G → Aut(X).
In this situation we say that X is a G-variety.

• The action of G on X is faithful if the map jX is an embedding.

• The map π is a fiber space if it is surjective, proper and its general fiber is irreducible and of
positive dimension.

• If G acts on both varieties X and Y , then we say that π is G-equivariant if for any g ∈ G one
has jY (g) ◦ π = π ◦ jX(g). If there are actions of G on varieties X and Y then we say that
the map π is G-fiber space if it is a G-equivariant fiber space.

In those situations which do not lead to any confusion we will consider elements of G themselves
as automorphisms of X.

We list several very well-known assertions which describes properties of groups acting on vari-
eties.

Lemma 1.2.18. If X and B are G-varieties, π : X → B is a G-fiber space and the fiber of π
over a general point of B is isomorphic to an irreducible algebraic variety F , then G is a following
extension of groups:

1→ GF → G→ GB → 1. (1.2.19)

Here GF ⊂ Aut(F ) is the subgroup consisting of all elements of G inducing the trivial automorphism
on the base and GB ⊂ Aut(B) is a quotient group G/GF .

In the case of a 3-group, this implies the following restriction on the number of its generators.

Lemma 1.2.20. Assume that X → B is a G-fiber space with general fiber F and G is a 3-group.
If any 3-subgroup of Aut(F ) and Aut(B) can be generated by n or m elements respectively, then
the group G can be generated by n+m elements.

In particular, if X → B is a double cover, then G ⊂ Aut(B).

Proof. Since G is finite and preserves the fiber space structure, we have an exact sequence (1.2.19).
By Lemma 1.2.2 since groups GF and GB can be generated by n and m elements respectively G
can be generated by n+m elements.

If X → B is a finite n-cover , then Aut(F ) ∼= Sn. In particular, if n = 2, then GF ⊂ C2. Since
G and GF are both 3-groups, then GF = 1 and G ⊂ Aut(B).

Next assertion is useful for actions of finite groups which fix a point on the variety. Given an
algebraic variety X and a point x on X denote by TX,x the Zariski tangent space to X at x.

29



Proposition 1.2.21 ([Pop14, Lemma 4], [CS21, Theorem 3.7]). Assume that X is an algebraic
variety over the field k and a finite group G acts on X faithfully with a fixed point x. If the
characteristic of k equals 0 or if it is coprime with |G| one has G ⊂ GL(TX,x).

Using the next assertion we can construct for a variety X with a birational action of a finite
group G its birational model with a regular action of G. This assertion is well-known in charac-
teristic 0, in positive characteristic the assertion is known only for surfaces, it was proved by Chen
and Shramov.

Proposition 1.2.22 (e.g., [PS14, Lemma-Definition 3.1]; [CS21, Lemma 3.6]). Let X be an alge-
braic variety over a field k, a group G be a finite subgroup of Bir(X) and one of the following is
true:

• the characteristic of k equals 0;

• k is perfect and dim(X) 6 2.

Then there exists a smooth G-variety X̃ and a G-equivariant birational map X̃ 99K X.

Now we study groups of automorphisms and their finite subgroups of several concrete alge-
braic varieties. In the next assertion we recall the description the group of automorphisms of a
Grassmannian.

Proposition 1.2.23 ([Cho49, Theorem I]). Let V be a complex vector space of dimension n;
consider the Grassmannian Gr(k, V ) of k-planes in V . If n 6= 2k, then Aut(Gr(k, V )) is isomorphic
to PGL(V ). If n = 2k then the group PGL(V ) is a subgroup of Aut(Gr(k, V )) of index 2.

If C is a curve of genus g greater than 1, then the group Aut(C) is finite; moreover, we have a
bound |Aut(C)| 6 84(g − 1). Since p-subgroups are always nilpotent we have a better bound for
them.

Lemma 1.2.24 ([Sch16, Theorem 1.2]). Suppose G is a a complex algebraic curve of genus g > 2.
Then a p-subgroup G of Aut(C) satisfies

|G| 6 16(g − 1). (1.2.25)

Using the formula (1.2.25) we can estimate number of generators of 3-groups acting on the
Jacobian variety of a curve.

Lemma 1.2.26. Assume that Jac(C) is the Jacobian of a curve C of genus 2 and G is a 3-group
with a faithful action on Jac(C) which preserves its polarization. Then G can be generated by 2
elements.

Proof. By Torelli theorem for curves one has that the group of automorphisms of Jac(C) which
preserve its polarization is a subgroup of the group Z/2Z×Aut(C). Thus, the group G is a subgroup
of Aut(C). By the formula (1.2.25) we get

|G| 6 |Aut(C)| 6 16(g(C)− 1) = 16.

Since the order |G| is a power of 3, by Lemma 1.2.1 we conclude that G can be generated by two
elements.
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The formula (1.2.25) implies also a bound on the number of generators of a 3-subgroup acting
on a fiber space over a curve.

Lemma 1.2.27. Assume that S is a projectivization of a vector bundle of rank 2 over a complex
curve C of genus 3 and G is a 3-subgroup of Aut(S). Then G can be generated by 4 elements.

Proof. Any automorphism of a projectivization S of a vector bundle of rank 2 over a curve C of
genus 3 commutes with the projection to C. By (1.2.25) any 3-subgroup of Aut(C) has an order
less than or equal to 32; thus, it can be generated by 3 elements. The fiber of the projection to C
is isomorphic to a projective line; thus, by Lemma 1.2.6 any 3-group with a faithful action on fiber
is cyclic. By Lemma 1.2.20 this implies that G can be generated by 4 elements.

Consider a quadric hypersurface X; in the next assertion we give a bound on the number of
generators of a 3-subgroup of Aut(X).

Lemma 1.2.28. Assume that X is a quadric hypersurface in the complex projective space Pd+1

and d < 7. If G is a 3-subgroup of Aut(X), then G can be generated by d elements.

Proof. If X is a smooth quadric hypersurface in Pd+1, then G is a subgroup of PSOd+2(C). By
Corollary 1.2.14 if G can not be generated by less than m elements, then there is an abelian
subgroup A ⊂ G of rank m.

However, any abelian subgroup of PSOd+2(C) is a subgroup of the torus of this group and the
dimension of torus of PSOd+2(C) equals bd+2

2 c. Thus, we get the result:

m 6

⌊
d+ 2

2

⌋
6 d.

If X is a singular quadratic hypersurface, it is a cone with a vertex Z over a smooth quadric
hypersurface. After a blow up of this vertex we get a G-invariant projective bundle over a smooth
quadric hypersurface with a faithful action of G. Lemma 1.2.20 and Proposition 1.2.11 implies the
result.

If we consider the intersection of several quadric hypersurfaces than a 3-group with a faithful
action on this variety should preserve a point.

Lemma 1.2.29. Consider a non-empty proper intersection Y of 3 quadric surfaces in P3. Assume
that G is a 3-group with an action on Y . Then there exists a subgroup H in G of index at most 3
such that H fixes a point y in Y .

Proof. The dimension of Y can be equal to 0, 1 or 2. If dim(Y ) = 0, then Y is a union of less than
or equal to 8 points. One concludes observing that the length of the orbit of a 3-group is a power
of 3.

If dim(Y ) = 1, then Y is a union of curves and points C1 ∪ · · · ∪ Ck ∪ {p1, . . . , pm} in P3 and

deg(C1) + · · ·+ deg(Ck) 6 4.

If Y contains an isolated point, then its orbit has length at most 8. Thus, the stabilizer of this
point is the necessary group H. If Y is singular, then there are at most 6 singular points on it. The
group G preserves the singular locus of C; thus the stabilizer of a singular point is s subgroup of
index at most 3.
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If Y is a smooth irreducible curve lying on a quadric surface such that deg(Y ) 6 3 then either
Y is isomorphic to P1 or it is a plane cubic curve lying in a hyperplane section H of P3. In the first
case we get the result by Lemma 1.2.6. In the case Y is a smooth cubic curve in H we get that
Y is a complete intersection of 2 surfaces; namely, the hyperplane H and a cubic surface. Denote
by QC the family of quadric surfaces passing through C. By Koszul exact sequence we get that
dim(QC) = 1.

If deg(Y ) = 4 we get that Y is a complete intersection of two of three quadric surfaces Q1, Q2

and Q3. Then by Koszul exact sequence the dimension of the family QC of quadric surfaces passing
through C equals 1.

If the dimension of the family QC of quadric surfaces passing through C equals 1, then G acts on
this family and preserves its singular fibers. Since in a 1-dimensional family QS of quadric surfaces
there are at most 4 singular fibers we get that a the index of a stabilizer H of one of singular fibers
is at most 3. Since the singular quadric surface contains a unique singular point, then H fixes it.

If dim(Y ) = 2, then Y contains a quadric surface Y0 in P3. If Y0 is singular, then it is a cone
and its vertex is either a point or a line. In any case by Lemma 1.2.6 the group G fixes a point
on Y0. If Y is smooth, then Y ∼= P1 × P1. Since Aut(P1 × P1) = C2 n (PGL2(C) × PGL2(C)) by
Lemma 1.2.6 there exists a G-fixed point on Y0.

We need to study 3-groups with a faithful action on varieties of minimal degree. Let us first recall
the necessary definitions. Consider a set of integers a1, . . . , ak such that ai < 0 for all 1 6 i 6 k. The
projective bundle P (

⊕
OP1(ai)) can be embedded to Pn by the linear system |OP(

⊕OP1 (ai))(1)|.
The image of this map Y is called a rational normal scroll. By the Veronese surface we denote the
image of the following embedding of P2 to P5:

ι : P2 → P5; ι(x0 : x1 : x2) = (x2
0 : x2

1 : x2
2 : x0x1 : x0x2 : x1x2).

Recall that for a projective variety Y and an embedding j : Y → Pn such that j(Y ) is not contained
in a hyperplane one has:

codimPn(Y ) + 1 6 deg(Y ) (1.2.30)

In case we have an equality Y is called a variety of minimal degree. Such varieties are classified by
del Pezzo and Bertini, see, [EH87]. Namely, a variety of minimal degree Y is either a projective
space, a quadric hypersurface, a rational normal scroll, a Veronese surface or a cone over a rational
normal scroll or a Veronese surface. In the next lemma we study 3-groups having a faithful action
on a variety of minimal degree.

Lemma 1.2.31. Assume that Y is a variety of minimal degree and G is a 3-subgroup of Aut(Y ).
If dim(Y ) = d and d < 7, then G can be generated by d elements.

Proof. If Y ∼= Pd, then by Proposition 1.2.11 the group G can be generated by d elements.
If Y is a rational normal scroll, then the rank of the Picard group of Y equals 2 since it is

isomorphic to a projective bundle over P1. Thus, by Lemma 1.2.16 the group G acts trivially
on the Picard group Pic(Y ). Then it preserves the structure of the map P (

⊕
OP1(ai)) → P1.

Therefore, by Lemma 1.2.20 and Proposition 1.2.11 the group G can be generated by d elements.
Assume that Y ⊂ Pn is a cone over a variety B which is either a rational normal scroll or a

Veronese surface. Then the vertex of the cone Z ⊂ Y is a projective space of codimension c in Y .
Consider the projection from Pn to B with a center in Z:

πZ : Pn 99K B.
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Denote by Ỹ the blow-up of Y in Z. Since Z is an invariant subvariety under the action of G it
acts regularly on Ỹ . Moreover, the rational map πZ induces on Ỹ the structure of a regular map
to B such that its general fiber is a projective space of the dimension d− dim(B). Then G can be
generated by at most d elements by Lemmas 1.2.11 and 1.2.20.

If Y is a d-dimensional quadratic hypersurface in Pd+1, then by Lemma 1.2.28 the group G can
be generated by d elements.

1.2.4. Examples

We give here an example which shows that there exists a 3-subgroup of Bir(P2) which can not be
generated by less than 3 elements.

Example 1.2.32. Fix a projectivization P3 ∼= P(V ) of the vector space V with coordinates
x1, x2, x3 and x4. Consider the following action on P(V ) of the abelian 3-group (C3)3 with
generators γ1, γ2 and γ3. Each γi acts non-trivially only on xi by multiplication by the primitive
cube root of unity; and γi · xj = xj for all i 6= j. This action is faithful and it preserves the Fermat
cubic surface S in P3:

S = {(x1 : x2 : x3 : x4) ∈ P3| x3
1 + x3

2 + x3
3 + x3

4 = 0}.

Note that S is a smooth cubic surface; thus, it is rational. Thus, the 3-group C3
3 acts faithfully on

a rational surface S, though it can not be generated by less than 3 elements.

The following example describes the action of an abelian 3-group of rank 4 on a rationally
connected threefold.

Example 1.2.33. Consider a product X = P1×S of P1 and a Fermat cubic surface. It is a product
of a rational surface and a rational curve; thus, it is rational itself. Let the group C3

3 acts on S as
in Example 1.2.32 and choose some faithful action of the group C3 on P1. Then the group C3

3×C3

acts faithfully on the the product X = P1 × S of P1 and a Fermat cubic surface. It is a product
of a rational surface and a rational curve; thus, it is rational itself. The group (C3)4 is a subgroup
of Cr3(C) which can not be generated by less than 4 elements.

1.2.5. p-Jordan property

We start with the following definitions:

Definition 1.2.34. Assume that Γ is a group, then

• Γ is Jordan if there exists a constant J = J(Γ) such that any finite subgroup G ⊂ Γ contains
a normal abelian subgroup A and

[G : A] 6 J.
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• Γ is p-Jordan if there exist two constants J = J(Γ) and e = e(Γ) such that any finite sub-
group G ⊂ Γ contains a normal abelian subgroup A and

[G : A] 6 J · |Gp|e,

where Gp is a Sylow p-subgroup of G.

C. Jordan proved that the group GLn(C) is Jordan for all n > 1, see [CR62, Theorem 36.13].
However, some groups do not enjoy the Jordan property.

Example 1.2.35. Consider the group GL2(Fp) and its finite subgroup G = SL2(Fq) where q = pn.
Since the quotient group PSL2(Fq) of the group G is simple we get that the greatest abelian
subgroup A in G is isomorphic to the multiplicative group C×q . Thus, we can compute the index of
the subgroup A in G:

[G : A] =
(p2n − 1)(p2n − pn)

pn − pn−1
∼ p3n

Moreover, one can see that the Sylow p-subgroup Gp of G is of the order |Gp| = pn. Note that the
group GL2(Fp) is not Jordan, but it is p-Jordan.

The notion of being p-Jordan was introduced by F. Hu in [Hu20]. The group GLn(Fp) is p-Jordan
for any integer n; this was proved in [LP11, Theorem 0.4].

Lemma 1.2.36 ([Pop11, Lemma 2.11], [CS21, Lemma 2.8]). Consider a short exact sequence of
groups:

1→ Γ′ → Γ→ Γ′′ → 1.

Assume there exists a number C such that for any finite subgroup G of Γ′′ one has |G| 6 C. If the
group Γ′ is Jordan (resp. p-Jordan), then the group Γ is Jordan (resp. p-Jordan).

1.2.6. Fano threefolds

Let X be a normal complex variety of dimension n and let ι : X0 ↪→ X be the embedding of the
non-singular locus of X to X. Recall that ΩnX is the sheaf of differential n-forms on X which are
regular on X0 and the canonical class KX of X is the Chern class of the sheaf ι∗(ι∗ΩX). The
canonical class is a very important invariant of an algebraic variety. In general case the canonical
class is a class of a Weil divisor; if X is smooth then it is a Cartier class.

In this section we discuss varieties which arise when we apply MMP to a rationally connected
threefold. These varieties can be singular so we have to deal with different types of singularities.
Recall definitions of singularities we will need in following sections, the main reference here is
[Rei87].

Definition 1.2.37. Let X be a normal variety and let KX be the canonical class of X.

• A variety X has terminal singularities if the following conditions are true:

– for some r > 1 the Weil divisor rKX is Cartier;
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– if f : Y → X is a resolution of X and {Ei}i∈I is a family of prime exceptional divisors
of f , then

rKY = f∗(rKX) +
∑
i∈I

aiEi,

with ai > 0.

• A point p in X is a Gorenstein singularity if the ring OX,p is a Noetherian local ring with
finite injective dimension as an OX,p-module.

• A point p in X is a cDV -singularity if dim(X) = 3 and there exists a Zariski open sub-
set U ⊂ X such that p ∈ U and a polynomial F (x, y, z, t) in the ring k[x, y, z, t] such that one
has an algebraic isomorphism with a hypersurface singularity:

(U, p) ∼= ({F = 0}, 0) ⊂ (A4, 0),

where F has the following form:

F (x, y, z, t) = f(x, y, z) + tg(x, y, z, t)

where f is the equation of a Du Val singularity and g is an arbitrary polynomial.

• We say that Cr acts on A3 with weights a, b and c if there exist coordinates x, y, z of A3 such
that for some generator g of Cr one has:

g(x, y, z) = (ζax, ζby, ζcz),

where ζ is a primitive r-th root of unity.

• A point p in X is a quotient threefold singularity of index r and of type 1
r (a, b, c) if locally X

is isomorphic to A3/Cr where Cr acts on A3 with weights a, b and c and the action is free in
codimension 1.

• if the variety X admits only terminal (resp. only Gorenstein) singularities, then we say that X
is a terminal (resp. Gorenstein) variety.

Recall here that by [Rei87, Corollary 3.12] any isolated cDV -singularity is both Gorenstein and
terminal. Also by [Rei87, Theorem 5.2] a quotient singularity is terminal if and only if it is of the
type 1

r (a,−a, 1) where r is coprime to a.
Given a complex normal variety with a regular action of a finite group G, one can apply G-

equivariant MMP. Here is a definition of types of varieties which can be obtained as an end result
of running this program.

Definition 1.2.38. Let G be a group, X be a G-variety, KX be the canonical class on X, then

• X is a G-Fano variety if it is terminal, the class −KX is ample and the rank of Pic(X)G

equals 1.

• X is a GQ-factorial variety, if any G-invariant Weil divisor D in X is a Q-Cartier divisor, i.e.
there exist n such that nD is Cartier.

• X is a GQ-Fano variety, if it is a GQ-factorial G-Fano variety.
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• The map π : X → B is aG-Mori fiber space, if B is aG-variety, π is aG-fiber space, the relative
class −KX/B = −(KX − π∗(KB)) is relatively ample and the rank of the relative G-invariant
Picard group Pic(X/B)G equals 1.

If X is a projective complex normal Fano variety, its Picard group is finitely generated and
torsion-free. We denote by Picard number ρ(X) the rank of the Picard group Pic(X). Its Hodge
number hp,q(X) is the reak dimension of the group Hp,q(X).

The index of a Gorenstein Fano variety X is the maximal number r(X) such that there exists
an element H of the Picard group of X and

−KX ∼ rH.

Any regular automorphism f of X preserves the line bundle O(H) since f∗KX ∼ KX . The Picard
group Pic(X) of a Gorenstein Fano variety X is torsion-free by [IP99, Proposition 2.1.2].

Another invariant of a Gorenstein Fano threefold of index 1 is its genus:

g(X) = dim(H0(X,O(H)))− 2. (1.2.39)

Since X is a Fano variety, the line bundle O(H) is ample and its linear system induces the following
map:

φ|H| : X 99K P(H0(X,O(H)))∨ ∼= Pg+1.

We say that a Gorenstein Fano threefold Xis a del Pezzo threefold of degree d if the index of X
equals 2 and H3 = d where H is a primitive class in Pic(X) such that KX = −2H.

Smooth Fano threefolds of Picard rank 1 were classified in the series of works by Iskovskikh.
There exists 17 deformation classes of smooth Fano threefolds:

Proposition 1.2.40 ([IP99, Table 12.4]). Assume that X is a smooth Fano threefold of index r(X)
and ρ(X) = 1, then X lies in one of the following families:

(1) if r(X) = 1, there are ten families of smooth Fano threefolds and g(X) ∈ {2, 3, 4, . . . , 10, 12};

(2) if r(X) = 2, there are five families of smooth Fano threefolds; namely, del Pezzo threefolds of
degrees 1, . . . , 5;

(3) if r(X) = 3 there is a unique family of smooth Fano threefolds: namely, smooth quadric
hypersurfaces in P4;

(4) if r(X) = 4 there is a unique smooth Fano threefold: P3.

The full classification of smooth Fano threefolds and their invariants (Picard ranks and Hodge
numbers h1,2) can be found in [IP99, Table 12.4].

Assume that X is a smooth Fano threefold and its anticanonical linear system is very ample.
Denote by S(X) the Hilbert scheme of conics on X in its anticanonical embedding. If the index of
X is at most 2, then S(X) is a surface and it encodes many informations on X. Here we recall the
results from [KPS18, Theorem 1.1.1, Lemma 4.2.1, Lemma 4.3.4, Corollary 4.3.5].

Proposition 1.2.41. Assume that X is a smooth Fano threefold such that the linear system |−KX |
induces an embedding and ρ(X) = 1, r(X) = 1, g(X) > 6. Then S(X) is a smooth surface and the
group Aut(X) acts faithfully on S(X). Moreover,
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(1) if g(X) = 7, then S(X) is a symmetric square of a smooth curve C of genus 7 and Aut(X)
acts faithfully on C;

(2) if g(X) = 9, then S(X) is a projectivization of a vector bundle of rank 2 over a curve C of
genus 3;

(3) if g(X) = 10, then S(X) is the Jacobian Jac(C) of a smooth curve C of genus 2 ;

(4) if g(X) = 12, then S(X) ∼= P2.

Recall an important construction of Fano varieties. Let V5 and K be a complex vector spaces of
dimension 5 and 1 respectively. The Plücker embedding maps the Grassmannian Gr(2, V5) of planes
in V5 to the projective space P(Λ2V5). Let W be a vector subspace in Λ2V5 and Q be a quadric
surface in P(W ). We say that (X,H) is a Gushel–Mukai variety if X is the following intersection:

X = CK Gr(2, V5) ∩ P(W ) ∩Q,

where CK Gr(2, V5) is a cone over the Grassmannian Gr(2, 5) with a vertex in K in the projective
space P(Λ2V5⊕K) and H is an inverse image of a hyperplane section in the projective space P(W ).
By [IP99, Table 12.4] if X is the smooth Fano threefold of index 1 and genus 6 then (X,−KX) is
a Gushel-Mukai variety.

Theorem 1.2.42 ([DK18, Theorem 2.3, Proposition 2.12 and 2.15]). Let (X,H) be a normal
complex variety. Then the following assertions are true:

(1) If (X,KX) is a Gushel–Mukai variety and dim(X) = 1, then dim(H0(X,OX(KX))) = 7 and
the canonical model of X is an intersection of 6 quadrics in P((H0(X,OX(KX))).

(2) Assume that dim(X) = n and H is an ample class in X such that KX = −(n − 2)H
and H1(X,OX) = 0. If X ′ ⊂ X is a hypersurface in the linear system of H and (X ′, H|X′)
is a normal Gushel–Mukai variety, then (X,H) is a normal Gushel–Mukai variety.

(3) If X is a Gushel–Mukai variety then the natural map ι : X → Gr(2, V5) is Aut(X)-equivariant.
Moreover, ι is either an embedding or a double cover onto ι(X).

If X is a Gorenstein terminal Fano threefold, then by results of Namikawa it is a deformation
of a smooth Fano threefold. Moreover, the number of singularities on X can be estimated in terms
of some invariants of the smoothing.

Theorem 1.2.43 ([Nam97]). If X is a Gorenstein terminal Fano threefold, then there exist normal
algebraic varieties X and B and a proper flat map

π : X → B 3 0,

such that the fiber X b of π over a point b is a smooth Fano threefold if b 6= 0 and the fiber X 0 over
0 is isomorphic to X. Moreover, if singularities of X are isolated, one has

|Sing(X)| 6 20− ρ(X b) + h1,2(X b), (1.2.44)

where X b is a smooth fiber of X .
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The family π : X → B is called then a Namikawa smoothing. Since the number of families
of smooth Fano threefolds is bounded, one can estimate the number of isolated singularities on a
Gorenstein terminal Fano threefold.

If the terminal Fano threefold X has a terminal singularity x, then by [Rei87, Theorem 10.2(3)]
one can associate a set of integers ri > 2. In fact, there exists a flat deformation of X such that
the singularity x deforms to a set (basket) of quotient singularities of types 1

ri
(ai,−ai, 1).

Theorem 1.2.45 ([Rei87, Corollary 10.3],[Kaw92]). Let X be a terminal Fano threefold with N
isolated singularities Sing(X) = {x1, . . . , xN} and let ri1, . . . , rili be set of integers associated to
each singular point xi as in [Rei87, Theorem 10.2(3)]. Then one has the following inequality:

N∑
i=1

li∑
j=1

(
rij −

1

rij

)
< 24, (1.2.46)

The formula (1.2.46) follows from the Riemann–Roch formula in the case of a rationally con-
nected variety with terminal singularities.

1.3. Automorphisms of quasi-projective surfaces

Our goal is to prove that the group of automorphisms of a quasi-projective surface defined over
a field k of positive characteristic satisfies the p-Jordan property. In the first part of this section,
we study the group of automorphisms of surfaces birational to a product of an elliptic curve and a
projective line. Then we prove Theorem 1.1.3.

1.3.1. Automorphisms of open subsets of E × P1

In this section we assume that S is a quasi-projective surface which is birational to a product P1×E
where E is an elliptic curve. Then the projection from P1 × E to the second component of the
product induces the following map:

π : S → E. (1.3.1)

Note that the map π is regular since it is a dominant map to an abelian variety. Then finite
subgroups of automorphisms of S can be represented as extensions of two groups.

Lemma 1.3.2. Let S be a smooth quasi-projective surface over any field k birational to P1 × E,
where E is a smooth curve of positive genus. If π : S → E is the map (1.3.1) then there exists an
exact sequence of groups:

1→ Bir(S)π → Bir(S)→ Γ, (1.3.3)

where Bir(S)π ⊂ PGL(2, k(C)) and Γ ⊂ Aut(E). Moreover, the group Bir(S)π is p-Jordan.
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Proof. The exact sequence exists by [CS21, Lemma 4.16]. It follows from the fact that if g ∈ Bir(S),
then the image of a rational curve F is a fiber of π under the composition π ◦ g should be a point in
the elliptic curve E. The group Bir(S)π is p-Jordan since it is a subgroup of PGL(2, k(C)) which
is p-Jordan by Theorem 1.1.1.

Assume that the group Aut(S) fixes a finite subset of fibers of π, then one has the following
assertion.

Lemma 1.3.4. Let S be a smooth quasi-projective surface birational to P1 × E where E is an
elliptic curve, π : S → E be the map as in (1.3.1) and let Γ ⊂ Aut(E) be a map and a group as in
Lemma 1.3.2. If there exists a non-empty finite Γ-invariant subset Z ⊂ E, then the group Aut(S)
is p-Jordan.

Proof. Denote by H the stabilizer of a point z ∈ Z under the action of the group Γ. By the assump-
tion H is a subgroup of Γ of index at most |Z|. The group H acts faithfully on the elliptic curve E
and preserves a point in it. Thus, |H| 6 24 by [HKT08, Theorem 11.94]. Therefore, |Γ| 6 24|Z|.

Thus, if we denote by Aut(S)π the subgroup of elements of Aut(S) which induce the trivial
automorphism on E, then one can see that Aut(S)π is a subgroup of finite index in Aut(S). By
Lemma 1.2.18 the group Aut(S)π can be embedded into the group of automorphisms of a general
fiber of π; thus, it is p-Jordan by Theorem 1.1.1. Therefore, Aut(S) is also a p-Jordan group by
Lemma 1.2.36.

Let S be a quasi-projective surface. Consider a projective surface S such that S can be embedded
into S as a Zariski open subset. We call S a projective closure of S. Starting with a smooth quasi-
projective surface S birational to P1 × E we can choose a good projective closure of S as follows:

Lemma 1.3.5. Assume that S is a smooth quasi-projective surface which is birational to P1 × E
over a perfect field k where E is an elliptic curve and π : S → E is the map as in (1.3.1). Then
there exists a smooth projective variety S and an open embedding ι : S ↪→ S such that π induces a
morphism π from S to E:

S
� � ι //

π

��

S

π��
E

Proof. By assumption the surface S is quasi-projective; thus, there is an embedding of S to a

projective space PN . Denote by S
′

the minimal Zariski closed subset in PN which contains S. By

the construction S
′

is of locally finite type over k; thus, S is an excellent scheme and by [Lip78]

and [Lip69] one can construct its minimal resolution S. Since S is a smooth dense subset in S
′

it

does not intersect the indeterminacy locus of S
′
99K S. Thus, S is a projective closure of S.

The induced map π : S → E is regular since π is the Albanese map.

Note that S \S can contain multisections of π; i.e. π(C) is a dense subset of E for some curve C
in S \ S.

Lemma 1.3.6. Let S be a projective surface birational to P1×E over an algebraically closed field,
where E is an elliptic curve and π : S → E is the map as in (1.3.1). If C ⊂ S is an irreducible
curve such that π(C) = E, then C 6⊂ Exc(g) for any g ∈ Bir(S).
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Proof. The curve C maps dominantly to an elliptic curve. Thus, by Riemann-Hurwitz formula we
get that the curve C cannot be rational. Therefore, the curve C is not contractible.

There is many different ways to choose a smooth projective closure of S. We need a projective
closure with the following properties.

Definition 1.3.7. Assume that S is a smooth quasi-projective surface birational to P1 × E over
an algebraically closed field k, where E is an elliptic curve and π : S → E is a projection. Let S be
a smooth projective closure of S. We say that it is relatively minimal if there is no (−1)-curve C
in the complement S \ S lying in fiber of π.

By the following lemma any smooth ruled quasi-projective surface S admits a relatively minimal
projective closure.

Lemma 1.3.8. Assume that S is a smooth quasi-projective surface birational to P1 × E over an
algebraically closed field k, where E is an elliptic curve and π : S → E is the map as in (1.3.1).
Then there exists a relatively minimal projective closure of S. Moreover, if all fibers of S are smooth,
then the same is true for S.

Proof. The same assertion was proved in characteristic 0 in [Fuj82, Section 4]. In fact all arguments
from that paper work in positive characteristic. We recall for the convenience of the reader the
main step of the argument.

By Lemma 1.3.5 there is a smooth projective closure π : S → E of S. If the complement S \ S
contains a (−1)-curve lying in fiber of π, then it can be blown down. Thus, we obtain a new smooth

projective closure π : S
′ → E of S and the number of codimension 1 components of S

′\S is less then
one of S \ S. Repeating this process several times we get a smooth projective closure π0 : S0 → E
of S such that S0 \ S does not contain (−1)-curves lying in fibers of π0.

By the semi-continuity theorem geometric genus of any fiber of π vanishes. Thus, if some fiber F
of π0 is singular, then F is reducible, its components are rational curves and the dual graph is a
tree. In particular it contains two (−1)-curves corresponding to leaf vertexes of the dual graph
of F . If we assume that all fibers of S are smooth irreducible and reduced this implies that S0 \ S
contains a (−1)-curve lying in the fiber of π0. Thus, all fibers of π0 are smooth.

1.3.2. Proof of Theorem 1.1.3

Consider a quasi-projective surface S and let S be a projective closure of S. Then any automorphism
of S induces a birational automorphism of S. By [CS21] we are reduced to the situation where S
is birational to a product of the projective line and an elliptic curve.

Lemma 1.3.9. Assume that S is a quasi-projective surface over a field k of characteristic p > 0.
If S is not birational to a product P1 × E of a projective line and an elliptic curve E, then the
group Aut(S) is p-Jordan.

Proof. Any automorphism of S induces a birational automorphism of S. By Theorem 1.1.2 the
group Bir(S) is p-Jordan; thus, we get the result.

Now we are ready to prove Theorem 1.1.3.
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Proof of Theorem 1.1.3. We can assume that k is algebraically closed. If the quasi-projective sur-
face S is not irreducible, we consider its irreducible component S0. The group Aut(S0) is a subgroup
of finite index in Aut(S). Thus, by Lemma 1.2.36 it suffices to prove that the group Aut(S0) is
p-Jordan. Therefore, from now on we assume that S is irreducible.

Any regular automorphism of S can be lifted to its normalization; thus, we can assume that S
is normal. By [Lip78] and [Lip69] one can construct the minimal resolution of the surface S. The
group of automorphisms of S embeds to the group of automorphism of the resolution. Thus, we
can assume that S is smooth.

By Lemma 1.3.9 we are reduced to the case where S is birational to P1 × E since otherwise
Aut(S) is a p-Jordan group. Thus, we can consider the projection π : S → E. It is a regular map
since it is the Albanese map from a smooth variety.

If π(S) is a proper subset of E or if some fibers of π are non-reduced or reducible, then the
group Aut(S) preserves a finite union of fibers of π. Thus, by Lemma 1.3.4 we get that Aut(S) is
a p-Jordan group. From now on we assume that all fibers of S are smooth and π(S) = E.

By Lemma 1.3.8 there exists a smooth closure S of S such that all fibers of S are smooth and
irreducible. Since S is relatively minimal and π(S) = E, then the complement S\S is a set of curves
which do not lie in fibers of π. If g ∈ Aut(S), then it induces a birational automorphism g ∈ Bir(S).
The exceptional locus of g lies in S \S. Thus, by Lemma 1.3.6 we get that the exceptional locus of
g is empty. Then g induces a regular automorphism of S.

We get that Aut(S) is a subgroup of Aut(S) where S is a relatively minimal projective closure
of the quasi-projective surface S. By Theorem 1.1.1 this implies that Aut(S) is p-Jordan.

1.4. Automorphisms of 3-dimensional Mori fiber spaces

In this section we study 3-groups having a faithful action on 3-dimensional Mori fiber spaces and
construct bounds on number of generators of these groups. All varieties in this section are defined
over the field C.

1.4.1. Singular Fano threefolds

We study complex Fano threefolds with singularities and show that any 3-group having a faithful
action on such threefold can be generated by at most 5 elements. First, we recall a very useful
description of terminal singularities in the case of threefolds.

Theorem 1.4.1 ([Rei80, Corollary 1.9][Rei87, Theorem 3.2]). Let X be a complex threefold, x ∈ X
be an isolated terminal singularity and let r > 0 be the minimal integer such that rKX is a Cartier
divisor in a neighborhood U of x. Then there exists a complex threefold Y with an isolated cDV -sin-
gularity y, an action of the group Cr on Y and an isomorphism Y/Cr

∼= U . If we denote by π the
following map:

π : Y → Y/Cr
∼= U,
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then π−1(x) = y and Cr acts freely on Y \ {y}. Moreover, Y is the spectrum of the following sheaf
of algebras on U :

AU = OU ⊕OU (KU )⊕ · · · ⊕ OU ((r − 1)KU ).

Now we consider a 3-group with an action on a terminal threefold which preserves a point. This
allows us to restrict the number of generators of the group.

Proposition 1.4.2 ([Pro11, Lemma 2.4]). Let X be a complex quasi-projective threefold with ter-
minal singularities, let G be a 3-subgroup of Aut(X) which stabilizes a point x ∈ X. Then G can
be generated by 3 elements.

Proof. Since G is finite then by [SGA03, Proposition V.1.8] there is a G-invariant open affine chart
of the point x in X which does not contain singular points except x. Replace X by the intersection
of this affine chart with the affine chart U described in Theorem 1.4.1.

Note that the algebra AX defined in Theorem 1.4.1 is invariant under the action of G. Thus,
there is an action of a group G̃ on the projectivization Y of AX fitting the following exact sequence:

1→ Cr → G̃→ G→ 1,

where r > 0 is the minimal integer such that rKX is a Cartier divisor. Thus, by Theorem 1.4.1
the variety Y contains a cDV -singularity Y , it is smooth on the complement to y and the group G̃
stabilizes the point y. If any 3-subgroup of G̃ can be generated by 3 elements then so can G. Thus,
it suffices to prove the assertion in the case where x is cDV -singularity.

Assume that x is a cDV -singularity. Thus, X is a subvariety of A4 and the Zariski tangent space
TX,x to X in the point x is a vector space of dimension at most 4. Thus, by Proposition 1.2.21 the
group G is a subgroup of GL4(C) and by Proposition 1.2.11 can be generated by 4 elements.

If the group G can not be generated by less than 4 elements then by Corollary 1.2.9 and
Proposition 1.2.11 one gets that G either contains an abelian subgroup of rank 4 or it is a product
of a cyclic 3-group and a group H which contains matrices described in (1.2.10).

Assume that G contains an abelian subgroup of rank 4. Denote by G′ the subgroup of G
isomorphic to C4

3 and choose coordinates z1, z2, z3 and z4 of TX,x such that the action of G′ is
diagonal.

gi(zj) =

{
ζzi, if i = j;

zj , otherwise.

Here ζ is a cube root of unity. Since the point x is a cDV -singularity, it is given by an equa-
tion F (z1, z2, z3, z4) from the list [Rei87, Theorem 6.1] and F is an irreducible polynomial with a
non-trivial quadratic part. Since the surface X is invariant under the action of G′, the polynomial F
is semi-invariant under the action of elements gi; i.e. there are complex numbers λi such that one
has the following equality:

gi(F (z1, z2, z3, z4)) = λiF (z1, z2, z3, z4).

After permutation of the coordinates we can assume that either z2
1 or z1z2 has non-zero coef-

ficient in F . Then g1 acts on F with a non-trivial eigenvalue. Since g1 acts on zj trivially for all
indices j 6= 1, all monomials of f are divisible by F1. This contradicts the fact that F is irreducible.
Therefore, G cannot contain such an abelian group of rank 4.
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Assume that G contains the product 〈g1〉×H, where the order of the element g1 equals 3 and H
is isomorphic to a subgroup of GL3(C) which contains the matrices σ and t described in (1.2.10).
Choose coordinates z1, z2, z3 and z4 of TX,x such that g1, σ and t acts in the following way:

g1 =


ζ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ; σ =


1 0 0 0
0 0 λ2 0
0 0 0 λ3

0 λ1 0 0

 ; t =


1 0 0 0
0 1 0 0
0 0 ζ 0
0 0 0 ζ2

 ;

where ζ is a cube root of unity and λi is roots of unity of degree 3ki for some integer ki and i = 1, 2
and 3. Denote by F the equation of the threefold X in A4 in these coordinates. As before, F is an
irreducible polynomial with a non-trivial quadratic part and F is semi-invariant under the action
of G.

Consider the quadratic part F2 of F . It is a semi-invariant polynomial under the action of G. A
quadratic polynomial F2 which is semi-invariant under the action of g1 is proportional to the one
of the following form:

F2 = Q(z2, z3, z4); F2 = z1L(z2, z3, z4); F2 = z2
1 .

Here Q and L are respectively quadratic and linear polynomials depending only on z2, z3 and z4.
A quadratic polynomial Q(z2, z3, z4) which is semi-invariant under the action of the matrix t is

of the following form:
Q = az2

i + bzjzk,

where {i, j, k} = {2, 3, 4} and a and b are complex numbers. We deduce that the polynomial Q is
semi-invariant under the action of σ only if a and b vanish.

A linear polynomial L(z2, z3, z4) which is semi-invariant under the action of t is proportional to
a monomial z2, z3 or z4. Thus, it is not semi-invariant under the action of σ.

Therefore, we proved that F2 is proportional to z2
1 . By [Rei87, Theorem 6.1] one can see that in

this case the cubic part F3 of F is also non-trivial. The polynomial F2 +F3 is semi-invariant under
the action of G. Since this sum is semi-invariant under the action of g1 we get that

F3 = z2
1L(z2, z3, z4),

where L is a linear polynomial depending only on z2, z3 and z4. By the above argument L can
be semi-invariant under the action of t and σ only if it vanishes. Thus, we get a contradiction.
Therefore, the group G can be generated by 3 elements.

Remark 1.4.3. Proposition 1.4.2 shows that if x is a cDV -singularity which is invariant under a
faithful action of a 3-group, then this group is generated by at most 3 elements. This result can
not be improved in the case x is a smooth point. Moreover, it can not be improved for certain
singularities.

For instance, consider the subvariety X in the affine space A4 with coordinates z1, z2, z3 and z4

defined as a zero locus of the polynomial F , where F is as follows:

F = z2
1 + z2z3 + z2

1z
3
4 .

The point 0 ∈ A4 lies on X and it is a cA1-singularity. Consider the following action of the abelian
group C3

3 on A4 in coordinates z1, z2, z3 and z4:

C3
3
∼=
〈
diag(ζ, ζ−1, 1, 1),diag(ζ, 1, ζ−1, 1),diag(1, 1, 1, ζ)

〉
⊂ GL4(C)
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Here ζ is a primitive cube root of unity. This action preserves X; thus, it is an abelian 3-group of
rank 3 with a faithful action on a cA1-singularity.

Proposition 1.4.2 implies the following corollary

Lemma 1.4.4. Assume that X is a terminal Fano threefold and G is a 3-subgroup of Aut(X). If
the length of the G-orbit of a point x ∈ X equals N < 27, then G can be generated by 5 elements.
If N < 9, then G can be generated by 4 elements.

Proof. Consider the stabilizer Stab(x) of x. It is a 3-subgroup of G of index N = 3k. If N < 27
then k 6 2 and if N < 9 then k 6 1. By Proposition 1.4.2 the group Stab(x) is generated by 3
elements. Then Lemma 1.2.1 implies the result.

Proposition 1.4.2 and Namikawa’s bound in Theorem 1.2.43 on the number of isolated singular-
ities on a Gorenstein terminal Fano threefolds allows estimate the size of 3-groups acting on these
threefolds.

Corollary 1.4.5. Assume that X is a singular Gorenstein terminal Fano threefold, ρ(X) = 1, the
index and the genus of a general fiber X b in Namikawa smoothing are as follows:

r(X b) = 1; g(X b) > 7.

If G is a 3-subgroup in Aut(X) then G can be generated by at most 5 elements. Moreover, if the
number of singularities of X differs from 9 and 18 then G can be generated by at most 4 elements.

Proof. Consider a singular point x on X. The bound (1.2.44) and [IP99, Tables 12.6–12.7], implies
that the length of the orbit of x is less than 27. Then by Lemma 1.4.4 the group G can be generated
by 5 elements.

If the number of singularities of X differs from 9 and 18 and less than 27, then there exists a
singularity x on X whose orbit has at most 9 points. In this situation by Lemma 1.4.4 the group
G can be generated by 4 elements.

By Proposition 1.4.2 and Reid’s bound on the number of terminal singularities on Fano threefolds
we estimate number of generators of 3-groups acting on terminal threefolds.

Corollary 1.4.6. Assume that X is a terminal non-Gorenstein Fano threefold with isolated singu-
larities and G is a 3-subgroup in Aut(X). Then G can be generated by at most 5 elements.

Moreover, if there is a non-Gorenstein singularity on X then G can be generated by at most 4
elements unless |Sing(X)| = 9 and all singularities of X are quotient-singularities of type 1

2 (1, 1, 1).

Proof. Assume that N is the number of terminal singularities on X. Then the formula (1.2.46)
implies that N < 16. Thus, by Lemma 1.4.4 the group G can be generated by 5 elements.

If the number of singularities on X differs from 9, we can find a non-Gorenstein point x on X
whose orbit has length 1 or 3. Then by Lemma 1.4.4 the group G can be generated by 4 elements.

If N = 9 and G is transitive on the set of singularities, then numbers li = l in formula (1.2.46)
coincide and rij = rj do not depend on i. Thus, we can rewrite the inequality (1.2.46) in a following
way:

l∑
j=1

(
rj −

1

rj

)
<

8

3
.

Then l = 1 and r1 = 2 and all non-Gorenstein singularities of X are cyclic quotient-singularities,
one can get it by arguments in proofs of [Rei87, Theorem 9.1, Theorem 10.2]. Since r1 = 2, they
are of type 1

2 (1, 1, 1).
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1.4.2. Fano threefolds with ρ > 1

In this section we study G-Fano threefolds with Picard lattice of rank greater than 1. Recall that
the Picard group of a Fano threefold is necessarily discrete, finitely generate and torsion-free. The
rank of the group Pic(X)G equals 1 if X is G-Fano variety. The following assertion is useful in this
situation.

Theorem 1.4.7 ([Pro13b, Theorem 1.2, Theorem 6.6]). Assume that X is a Gorenstein Fano
threefold, ρ(X) > 1 and G is a finite group with an action on Pic(X) preserving the intersection
form and the canonical class. If we have rk(Pic(X)G) = 1, then X is one of the following list:

(1) ρ(X) = 2;

(2) X ∼= P1 × P1 × P1;

(3) There is a double cover f : X → P1 × P1 × P1 branched along an element of the linear
system | −KP1×P1×P1 |;

(4) X is the blow up of a divisor W of bidegree (1, 1) in P2×P2 along a curve C of bidegree (2, 2)

and the composition C ↪→W → P2 × P2 pri−−→ P2 is an embedding for both projections pr1 and
pr2;

(5) X is a divisor of multidegree (1, 1, 1, 1) in P1 × P1 × P1 × P1.

This theorem implies the following.

Corollary 1.4.8. Assume that G is 3-group and X is a Gorenstein G-Fano threefold with ρ(X) > 1.
Then G can be generated by at most 4 elements.

Proof. Assume that G is a 3-group with a faithful action on a terminal threefold X. Let X is a
Gorenstein G-Fano threefold with ρ(X) > 1. The action of the group G on X induces the action
of G on Pic(X). Moreover, since X is G-Fano one has rk(Pic(X)G) = 1. Thus, X is one of varieties
listed in Theorem 1.4.7. We argue by a case-by-case analysis.

(1) The case where ρ(X) = 2 is excluded by Lemma 1.2.16.

(2) Assume that X = P1 × P1 × P1. The group G acts on the Picard lattice Pic(X). Denote
by H the kernel of the action of G on Pic(X). By construction H is a normal subgroup of G.
Since H acts trivially on Pic(X) it is a subgroup of a product PGL2(C)× PGL2(C)× PGL2(C).
Therefore, the group H can be generated by 3 elements by Lemma 1.2.6.

The quotient group G/H acts faithfully on the lattice Pic(X) ∼= Z3. Then it is a subgroup
of GL3(Z) and by Lemma 1.2.15 it is cyclic. Therefore, by Lemma 1.2.2 the group G can be
generated by 4 elements.

(3) Assume that X is a double cover of P1 × P1 × P1 branched along an element of the linear
system | −KP1×P1×P1 |.

Denote by f the map from X to P1 × P1 × P1:

f : X
2:1−−→ P1 × P1 × P1.
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By the classification of Fano threefolds one has Pic(X) = f∗(Pic(P1×P1×P1)) ∼= Z3. Let H be the
kernel of action of G on Pic(X). The group G/H acts faithfully on the Picard group Pic(X) ∼= Z3.
Thus, G/H is cyclic by Lemma 1.2.15.

Denote by pri : P1×P1×P1 → P1 the projection onto the i-th component. All line bundles on the
threefold X are invariant under the action of the group H. In particular, this implies that the linear
system |(pri ◦f)∗ (OP1(1)) | is H-invariant for all i = 1, 2, 3. Since f = (pr1 ◦f)× (pr2 ◦f)× (pr3 ◦f)
we get that H induces the action on P1 × P1 × P1 and the map f is H-equivariant.

Thus, by Lemmas 1.2.20 and 1.2.6 the group H can be generated by three elements. Therefore,
by Lemma 1.2.2 the group G can be generated by 4 elements.

(4) Assume that W is a divisor in P2 × P2 of bidegree (1, 1). Denote by pri : P2 × P2 → P2 the
projection to the i-th component. The divisor W is isomorphic to the projective bundle P(TP2).
Here by the projective bundle we mean the bundle of hyperplanes in fibers of the bundle TP2 . By
construction of W the following diagrams commutes:

W

pri
��

∼= // PP2(TP2)

π

��
P2 P2

where π : P(TP2)→ P2 is the natural map to the base of the projective bundle. Assume that C is a
curve in W of bidegree (2, 2) in P2 × P2 such that pri induces an isomorphism of the curve C with
its image pri(C) ⊂ P2. Let δ : X →W be the blow-up of W along C.

By [IP99, Table 12.4] there exist three maps δi : X → W , each δi is a contraction of an excep-
tional divisor Ei in X and i = 1, 2, 3 and δ1 = δ. Thus, divisors E1, E2, E3 generate a G-invariant
sublattice E ⊂ Pic(X) of rank 3.

Denote by H the kernel of the action of G on the lattice E . Then the index [G : H] is at
most 3. Then the action of H on X induces a faithful action of H on W such that the map δ1
is H-equivariant. By the classification of Gorenstein Fano threefold we have Pic(X) = Z2; thus,
the 3-group H acts trivially on Pic(W ). Therefore, H descends to an action on P2 such that the
following map is G-equivariant.

W ∼= PP2(TP2)
π−→ P2.

Since π is a fiber bundle whose general fiber is isomorphic to P1, Lemma 1.2.20 implies that the
group H can be generated by at most 3 elements. Therefore, by Lemma 1.2.2 G can be generated
by at most 4 elements.

(5) Assume that X is a divisor of multidegree (1, 1, 1, 1) in the product P1×P1×P1×P1. Then
by [IP99, Table 12.5] there exist exactly 4 distinct maps

δi : X → P1 × P1 × P1,

where i = 1, 2, 3 and 4 such that each δi is a contraction of an exceptional divisor Ei in X. The
group G permutes divisors E1, E2, E3 and E4. Since 4 elements can not form one orbit under the
action of the 3-group G we get that the rank of the lattice Pic(X)G can not be equal to 1. Thus,
we get a contradiction with the assumption that X is a G-Fano threefold.
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1.4.3. Fano threefolds with ρ = 1

In this section we consider different types of terminal Gorenstein G-Fano threefolds with a faithful
action of a 3-group G and estimate the number of elements which generate G.

We start by considering a Fano threefold whose anticanonical linear system has a non-trivial
base locus.

Lemma 1.4.9. Assume that X is a terminal Gorenstein Fano threefold such that the linear sys-
tem | −KX | has non-empty base locus. Then a 3-subgroup G ⊂ Aut(X) can be generated by at
most 3 elements.

Proof. By [Shi89, Theorem 0.5] the base locus B = Bs(|−KX |) of a Fano threefold is either a point
or isomorphic to a projective line P1.

If B is a point, then it is invariant under the action of G. Thus, by Proposition 1.4.2 the group G
can be generated by 3 elements.

If B is isomorphic to P1, then by Lemma 1.2.6 there is a point x on B which is G-invariant.
Again, by Proposition 1.4.2 the group G can be generated by 3 elements.

We next consider the case where the anticanonical linear system of a G-Fano threefold has no
base points but does not induce an embedding.

Lemma 1.4.10. Assume that X is terminal Gorenstein Fano threefold and the linear system |−KX |
induces a regular map from X to a projective space which is not an embedding. Then a 3-subgroup
G of Aut(X) can be generated by at most 3 elements.

Proof. Denote by φ|−KX | the map induced by the anticanonical linear system:

φ|−KX | : X → P(H0(X,OX(−KX)∨)).

Since the linear system φ|−KX | is base point free then by y [IP99, Proposition 2.1.15] its degree
equals 1 or 2. Since −KX is an ample class on X its linear system does not contract any divisor.
Thus, by our assumption the map φ|−KX | is a double cover. Denote by Y the variety φ|−KX |(X).

If the index of X equals 1, then by (1.2.39) the codimension of Y in P(H0(X,OX(−KX)∨))
equals g−2. Moreover, by [IP99, Corollary 2.1.14] and since φ|−KX | is a double cover and its image
we get that the degree of Y equals g− 1. Thus, Y is a variety of minimal degree. Then by Lemmas
1.2.20 and 1.2.31 the group G can be generated by 3 elements.

We can a priori exclude the projective space and the quadric hypersurfaces since their anticanon-
ical systems induce embeddings. Thus, the index of X equals 2 and by [IP99, Corollary 2.1.14] one
gets that the codimension of Y in P(H0(X,OX(−KX)∨)) equals 2 deg(Y )−2. Thus, the inequality
(1.2.30) is satisfied only if deg(Y ) = 1; thus, X is a double cover of P3. Then by Lemmas 1.2.7 and
1.2.20 the group G can be generated by 3 elements.

If X is a Gorenstein del Pezzo threefold then by the following assertion one can estimate the
number of generators of a 3-group acting on it. Recall that a del Pezzo threefold of degree d is a
Fano threefold of index 2 such that KX = −2H and H3 = d.

Lemma 1.4.11. Assume that X is a terminal Gorenstein del Pezzo threefold and ρ(X) = 1. Then
a 3-subgroup G of Aut(X) can be generated by at most 4 elements.
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Proof. If the anticanonical system |−KX | does not induce an embedding to the anticanonical linear
system, then by Lemmas 1.4.9 and 1.4.10 the group G can be generated by at most 3 elements.
Thus, by [IP99, Table 12.5] if the degree of X equals 1 or 2 then G can be generated by at most 3
elements.

If the degree of X equals 3 and |−KX | induces an embedding, then G is a subgroup of PGL5(C).
Thus by Proposition 1.2.11 the group G can be generated by 4 elements.

If X is a terminal Gorenstein del Pezzo threefold of degree 4, then by [IP99, Theorem 3.2.5] it is
isomorphic to the complete intersection of two quadric hypersurfaces. Thus, there is a 1-dimensional
pencil of quadrics containing X. Since the group G acts on the anticanonical linear system, then
it acts on the pencil. Moreover, by Lemma 1.2.6 the group G preserves one hypersurface in this
pencil. Thus, G acts faithfully on a quadric hypersurface of dimension 4. Then Lemma 1.2.28
implies that G can be generated by 4 elements.

Finally if X is a terminal Gorenstein del Pezzo threefold of degree 5, then by [Pro13a, Theorem
1.7] it is smooth. By [Muk88, Proposition 4.4] we get that the group Aut(X) is isomorphic to
PGL2(C). Thus, Lemma 1.2.6 the group G is cyclic.

In the next assertion we compute a bound on a number of generators of a Fano threefold of
small genus.

Lemma 1.4.12. Assume that X is a terminal Gorenstein Fano threefold having the following
invariants:

ρ(X) = 1; r(X) = 1; g(X) 6 4.

Any 3-subgroup of Aut(X) can be generated by at most 4 elements.

Proof. If the linear system |−KX | does not induce an embedding, then by Lemmas 1.4.9 and 1.4.10
the group G can be generated by 3 elements. From now on we assume, that | − KX | induces an
embedding to a projective space Pg+1. Thus, by [IP99, Table 12.5] one gets that g(X) > 3.

If g = 3 and |−KX | induces an embedding to P4, then G is a subgroup of PGL5(C). Therefore,
Proposition 1.2.11 implies that G can be generated by 4 elements.

If g = 4 then | −KX | induces an embedding of X to P5, then by [IP99, Proposition 4.1.12] the
variety X is a complete intersection of a cubic and a quadric hypersurfaces. By Koszul resolution
of the sheaf of ideals IX we get that there is a unique quadric hypersurface Q containing X. Thus,
the quadric fourfold Q is invariant under the action of G. Then by Lemma 1.2.28 the group G can
be generated by 4 elements.

The next assertion gives a bound on the number of generators of a 3-group with an action of a
Fano threefold of the genus 5.

Lemma 1.4.13. Assume that X is a terminal Gorenstein Fano threefold having the following
invariants:

ρ(X) = 1; r(X) = 1; g(X) = 5.

If G is a 3-subgroup of Aut(X) then it can be generated by at most 4 elements.

Proof. By Lemmas 1.4.9 and 1.4.10 we are reduced to the situation where the linear system |−KX |
induces an embedding. Thus, | −KX | embeds X into P6 and by [IP99, Proposition 4.1.12] one gets
that the image of X in P6 is an intersection of 3 quadric hypersurfaces Q1, Q2 and Q3.
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Consider the action of G on P6 = P(V ), where V = H0(X,OX(−KX)). This action induces an

embedding of G to PGL7(C). Let G′ be the preimage of the group G in GL7(C); denote by G̃ the
Sylow 3-subgroup of G′. Thus, there is a surjective map:

f : G̃→ G.

The embedding of G̃ to GL7(C) induces a 7-dimensional representation V of the 3-group G̃. Thus,

there exists a 4-dimensional subrepresentation W ⊂ V of G̃. Since the map f is surjective then the
subspace P(W ) is G-invariant in P(V ).

Denote by Y the intersection P(W ) ∩ X. Then Y is non-empty intersection of 3 quadratic
surfaces in P3. By Lemma 1.2.29 there exists a point y ∈ Y and a subgroup H of G such that y is
invariant under the action of H and the index of H in G is at most 3. Therefore, Proposition 1.4.2
and Lemma 1.2.1 imply that G can be generated by 4 elements.

The next assertion proves the bound on the number of generators of a 3-group with an action
of a Fano threefold of genus 6.

Lemma 1.4.14. Assume that X is a terminal Gorenstein Fano threefold having the following
invariants:

ρ(X) = 1; r(X) = 1; g(X) = 6.

If G is a 3-subgroup of Aut(X) then it can be generated by at most 4 elements.

Proof. By Lemmas 1.4.9 and 1.4.10 we are reduced to the case where the linear system | − KX |
induces an embedding of X to P7. Denote by Y the intersection of all quadric hypersurfaces in P7

which pass through the image of X. Then Y contains X and it is invariant under the action of G;
thus, G ⊂ Aut(Y ).

If the variety Y does not coincide with X, then by [Isk78, Proposition 2.3] dimension of Y
equals 4 and it is a variety of minimal degree. Thus, by Lemma 1.2.31 the group G can be
generated by at most 4 elements.

If Y coincides with X denote by C a curve in the intersection of X and two general hyperplanes
in P7. By construction the curve C is an intersection of quadric hypersurfaces in P5 and one can
compute that the genus of C equals 6. By the first assertion of Theorem 1.2.42 the pair (C,KC) is
a Gushel–Mukai curve and KC equals the inverse image of the hyperplane section from P5 to C.

Therefore, by the second assertion of Theorem 1.2.42 the variety (X,−KX) is a Gushel–Mukai
variety. Thus, there exists a map:

ι : X → Gr(2, 5).

Then by the third assertion of Theorem 1.2.42 the map ι is either an embedding or a double cover
onto its image and it is Aut(X)-equivariant. Thus, by Propositions 1.2.23, 1.2.11 and Lemma 1.2.20
the group G can be generated by at most 4 elements.

By the next assertion some GQ-Fano threefolds happen to be Q-factorial. We will need this
assertion further.

Lemma 1.4.15 (see [PS18, Lemma 7.6]). Assume that G is a 3-group and X is a terminal Goren-
stein GQ-Fano threefold having the following invariants:

ρ(X) = 1; r(X) = 1; g(X) = 8, 9 or 12.

Then X is a Q-factorial variety.
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Proof. As in proof of [PS18, Lemma 7.6] we can show that if X is not a Q-factorial variety, then it
is birational to a terminal Gorenstein Fano threefold Y such that:

−K3
Y > 2g(X)− 2 + (3− 1)(4g(X)− 6) > 66.

By [IP99, Tables 12.6–12.7] and Theorem 1.2.43 the degree of any terminal Gorenstein Fano three-
fold less than 65. Thus, X is a Q-factorial variety.

Thus, we get the following bound on the number of generators of a 3-group having an action on
Gorenstein Fano threefolds with big genus.

Lemma 1.4.16. Assume that X is a terminal Gorenstein GQ-Fano threefold having the following
invariants:

ρ(X) = 1; r(X) = 1; g(X) = 8, 9 or 12.

Then any 3-subgroup of Aut(X) can be generated by at most 4 elements.

Proof. By Lemma 1.4.15 the variety X is Q-factorial. By [Pro17, Theorem 1] there are at least 1
and at most 5 singular points on X. Thus, Lemma 1.4.4 implies the result.

Lemma 1.4.17. Assume that X is a smooth Fano threefold having the following invariants:

ρ(X) = 1; r(X) = 1; g(X) = 7, 9, 10 or 12.

Then any 3-subgroup of Aut(X) can be generated by at most 4 elements.

Proof. By Lemmas 1.4.9 and 1.4.10 we are reduced to the case where the anticanonical linear
system induces an embedding. Denote by S(X) the Hilbert scheme of conics on the anticanonical
embedding of X. By Proposition 1.2.41 we see that S(X) is a smooth surface and the group G can
be realized as a subgroup of Aut(S(X)).

If g = 7 then by Proposition 1.2.41 the group G is a subgroup of Aut(C) where C is a curve of
genus 7. The bound (1.2.25) implies

|G| 6 16 · (g(C)− 1) = 96 < 35.

Thus, the group G can be generated by at most 4 elements.
If g = 9 then by Lemma 1.2.27 the group G can be generated by at most 4 elements.
If g = 10 then by Lemma 1.2.26 the group G can be generated by at most 2 elements.
If g = 12 then the group Aut(S(X)) is isomorphic to PGL3(C). Thus, Proposition 1.2.11 implies

that G can be generated by at most 2 elements.

The next assertion describes 3-groups having an action on smooth Fano threefolds of genus 8.

Lemma 1.4.18. Assume that X is a smooth Fano threefold having the following invariants

ρ(X) = 1; r(X) = 1; g(X) = 8.

Then a 3-subgroup G in Aut(X) can be generated by at most 4 elements.
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Proof. By Lemmas 1.4.9 and 1.4.10 we are reduced to the case where |−KX | induces an embedding.
As was shown in [KPS18, Section B.6] one can associate a smooth del Pezzo threefold Y of degree
3 to any smooth Fano threefold X of index 1 and genus 8 and the group G can be realized as a
subgroup of Aut(Y ).

The anticanonical system of Y induces an embedding by [IP99, Proposition 3.2.4]. Denote
by Σ(Y ) the Hilbert scheme of lines on Y in this anticanonical embedding.

By [KPS18, Proposition B.6.3] the scheme Σ(Y ) is a smooth surface and there is a canonical
isomorphism of Σ(Y ) and the Hilbert scheme of conics S(X) on X in the anticanonical embedding.
The action of G on Σ(X) is faithful by Proposition 1.2.41. Thus, the action of G on Σ(Y ) is also
faithful. Therefore, the action of G on Y is faithful. By Lemma 1.4.11 we conclude that G can be
generated by at most 4 elements.

1.4.4. Proof of Theorem 1.1.5

We start with an assertion which establishes the relation between ranks of abelian p-subgroups
in the group of birational automorphisms of a variety and numbers of generators of non-abelian
p-subgroups there.

Proposition 1.4.19. Assume that for any complex rationally connected variety Y of dimension n
the rank of any abelian p-subgroup of Bir(Y ) equals at most r. Then any p-subgroup of Bir(X) can
be generated by at most n elements for any complex rationally connected variety X.

Proof. By Proposition 1.2.22 there exists a birational model X̃ of X with a regular action of G.
Consider a Frattini subgroup Φ(G) ⊂ G the intersection of all maximal subgroups of G. The

quotient group A = G/Φ(G) is an abelian group and it acts on a quotient variety Y = X̃/Φ(G).
This quotient variety is rationally connected and of dimension n; thus, the rank of the group A is
less than or equal to r. Therefore, by Burnside theorem [Hal76, Theorem 12.2.1] the group G can
be generated by r elements.

Proposition 1.4.19 and the bounds on the ranks of abelian p-subgroups in Cr2(C) given in [Bea07]
imply a bound on the number of generators of a non-abelian 3-subgroup of Cr2(C). This result can
be deduced from the Dolgachev and Iskovskikh classification of finite subgroups of Cr2(C), but we
give another proof.

Proposition 1.4.20. Any 3-subgroup G of Cr2(C) can be generated by at most 3 elements and this
bound is sharp.

Proof. By [Bea07] the rank of any abelian 3-subgroup of Cr2(C) is at most 3 and the result follows
from Proposition 1.4.19. The bound is sharp in view of Example 1.2.32.

Proposition 1.4.19 implies in particular that a 3-group with a faithful action on a rational
surface can be generated by at most 3 elements. This implies the following bound on the number
of generators of a 3-groups with a regular faithful action on a G-Mori fiber space.

Lemma 1.4.21. Assume that X and B are normal G-varieties and π : X → B is a G-Mori fiber
space. If dim(X) = 3 and dim(B) > 0, then any 3-subgroup G of Aut(X) can be generated by at
most 4 elements.
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Proof. The base B is rationally connected as well as a general fiber of the map to B. By Proposition
1.4.20 a 3-subgroups in the group of birational automorphisms of a rational surface can be generated
by at most 3 elements. Thus, by Lemmas 1.2.6 and 1.2.20 we get the result.

Now we are ready to prove Proposition 1.1.6.

Proof of Proposition 1.1.6. Let π : X0 → B be a G-Mori fiber space with terminal singularities
where G be a 3-group. To prove Proposition 1.1.6 we argue by considering all possible constructions
of equivariant Mori fiber spaces.

If dim(B) > 0, then by Lemma 1.4.21 the group G can be generated by at most 4 elements.
From now on we assume that X0 is a terminal G-Fano threefold.

If there is a non-Gorenstein terminal singularity on X0 and it is not the variety described in
point (a) of Corollary 1.4.6, then by Corollary 1.4.6 the group G can be generated by at most 4
elements. From now on we assume that X0 is a Gorenstein terminal G-Fano threefold.

If X0 is a Gorenstein Fano threefold and ρ(X) > 1, then by Corollary 1.4.8 the group G can be
generated by at most 4 elements.

If X0 is a Gorenstein Fano threefold, ρ(X) = 1 and index of X is at least 3, then X0 is either
a quadric hypersurface or the projective space. By Proposition 1.2.11 and 1.2.31 the group G can
be generated by at most 3 elements.

If X0 is a Gorenstein del Pezzo threefold, then by Lemma 1.4.11 the group G can be generated
by at most 4 elements.

If X0 is a Gorenstein Fano threefold of index 1 and genus of X0 equals at most 6, then by
Lemmas 1.4.12, 1.4.13 and 1.4.14 the group G can be generated by at most 4 elements.

If X0 is a Gorenstein singular Fano threefold of index 1 and genera 8, 9 or 12, then by
Lemma 1.4.16 the group G can be generated by at most 4 elements.

If X0 is a smooth Fano threefold of index 1 and genus greater than 6, then by Lemmas 1.4.17
and 1.4.18 the group G can be generated by at most 4 elements.

If X0 is a singular Gorenstein Fano threefold of index 1 and genera 7 and 10 and the number of
singularities on X0 differs from 9 or 18, then by Corollary 1.4.5 the group G can be generated by
at most 4 elements. This finishes the proof of Proposition 1.1.6.

This leads us to the proof of Theorem 1.1.5.

Proof of Theorem 1.1.5. Let X be a rationally connected complex threefold and let G be a 3-sub-
group of Bir(X). Recall that by Theorem 1.1.4 the rank of an abelian 3-subgroup of Bir(X) is at
most 5. Thus, Proposition 1.4.19 implies the first assertion of Theorem 1.1.5.

To prove the second assertion of Theorem 1.1.5 we assume that G ⊂ Bir(X) can not be generated

by 4 elements. Then by Proposition 1.2.22 there exists a regularization X̃ of the action of G on X;
i.e. X̃ is a smooth variety birational to X and G ⊂ Aut(X̃). Applying G-equivariant MMP to X̃
we get a terminal G-Mori fiber space X0. Since G can not be generated by less than 5 elements,
X0 is a threefold described in points (a) or (b) of Proposition 1.1.6.

Note that the argument in the proof of the second point of Theorem 1.1.5 gives another proof
of the first point of this theorem since by Corollaries 1.4.5 and 1.4.6 any 3-group with a faithful
action on threefolds described in points (a) or (b) can be generated by 5 elements.
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2. Regularization of birational automorphisms

2.1. Introduction

Let X be any normal projective variety defined over an algebraically closed field k of characteristic 0.
Recall that a birational automorphism f : X 99K X is regularizable if there exists a birational
map α : X 99K Y to a variety Y and an automorphism g ∈ Aut(Y ) such that one has:

α ◦ f = g ◦ α.

Understanding whether a given birational self-map is regularizable or not is a delicate problem.
In this chapter we explore the regularization properties for the following class of birational

automorphisms described in [Bla13].

Example 2.1.1. Fix a smooth cubic surface S ⊂ P3. Then to each point p ∈ S one can associate
a birational involution

σp : P3 99K P3,

such that for any line L ⊂ P3 if one has L ∩ S = {p, p1, p2} where p, p1 and p2 are distinct points
then the restriction σp|L is a non-trivial involution which fixes pi for i = 1 and 2. Such involution
of L is unique; thus, σp is a correctly defined birational involution of P3. Choose k points p1, . . . , pk
and consider the following composition:

fp1,...,pk = σp1 ◦ · · · ◦ σpk : P3 → P3.

Then fp1,...,pk is a birational automorphism of P3; moreover, by [Bla13] if k > 2 and if p1, . . . , pk
are sufficiently general, then the order of fp1,...,pk is infinite.

We are interested whether we can construct a regularization of fp1,...,pk . Note that if k = 1
i.e. if fp1 is an involution, then the regularization exists, see, e.g., [PS14, Lemma-Definition 3.1].
If dimension of X is greater than 1 and f : X 99K X is an infinite order birational automorphism
then the question whether one can regularize f can be very hard. In the case of surfaces there are
criteria devised in [DF01] and [BC16], in these works regularization properties of f are related with
properties of the dynamical degree λ1(f).
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If fp1,...,pk is a birational automorphism defined in Example 2.1.1 and if points p1, . . . , pk are
sufficiently general and k > 3 then by [Bla13] one has λ1(fp1,...,pk) = λ2(fp1,...,pk) > 1. We prove
the following theorem:

Theorem 2.1.2. Let S ⊂ P3 be a very general complex smooth cubic surface and let p1, p2, p3 be
general points on S. Then the birational automorphism fp1,p2,p3 : P3 99K P3 described in Exam-
ple 2.1.1 is non-regularizable and does not preserve a fibration over a surface.

Recall that a birational automorphism f : X 99K X of a smooth threefold X is called primitive
if it does not preserve a fibration neither over a surface nor over a curve. Thus, the second assertion
of Theorem 2.1.2 allows us to expect that fp1,p2,p3 maybe primitive.

To prove Theorem 2.1.2 we use the following nice model of the birational automorphism fp1,...,pk .
We denote by X the successive blow-ups of the points p1, . . . , pk followed by the blow-up of the
proper transforms of all irreducible curves in Ind(fp1,...,pk). Then fp1,...,pk induces a birational
automorphism

f̃p1,...,pk : X 99K X,

such that neither f̃p1,...,pk nor f̃−1
p1,...,pk

contracts divisors in X; i.e. f̃p1,...,pk is a pseudo-auto-
morphism. Pseudo-automorphisms have many good properties; in particular, if f : X 99K X is
a pseudo-automorphism such that λ1(f)2 > λ2(f) then by [Tru14] there exists a pseudo-effective
divisor class θ1(f) on X such that

f∗(θ1(f)) = λ1(f)θ1(f).

In the case of surface birational automorphisms the considering of such class in [DF01] was extremely
useful. We use this class to prove the following criterion:

Theorem 2.1.3. Let f : X 99K X be a pseudo-automorphism of a smooth projective threefold X
such that

(1) λ1(f)2 > λ2(f);

(2) there exists a curve C such that θ1(f) · [C] < 0;

(3) there exists infinitely many integers m > 0 such that C 6⊂ Ind(f−m).

Then f is non-regularizable and it does not preserve a fibration over a surface.

Thus, to prove Theorem 2.1.2 we need to show that the pseudo-automorphism f̃p1,p2,p3 satisfies
conditions (1−3). Note that the condition (1) is satisfied by Blanc’s computation in [Bla13]. Thus,
one can consider the class θ1(fp1,p2,p3). We prove that the condition (2) is satisfied i.e. that the
class θ1(fp1,p2,p3) is not nef; it intersects negatively a curve lying in Ind(fp1,2,p3). The hardest part
of the proof is to prove the condition (3) i.e. to show that this curve does not lie in Ind(f−mp1,p2,p3)
for infinitely many integers m > 0. We prove this fact computing the orbit of a general point on
this curve.
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2.2. Preliminaries

2.2.1. Birational maps acting on the divisor class group

Throughout this chapter we consider smooth algebraic varieties over an algebraically closed field
of characteristic 0. Recall that by N i(X) we denote the R-space of codimension i cycles modulo
the numerical equivalence. If X is a smooth variety, then N i(X) is a finite dimensional space for
any 0 6 i 6 dim(X). For simplicity we denote by Ni(X) the group Ndim(X)−i(X). Then by Chow’s
moving lemma on a smooth projective variety X there is a natural multiplication

N i(X)×N j(X)→ N i+j(X); (Z,W ) 7→ Z ·W.

Since N0(X) = Ndim(X)(X) is a 1-dimensional space by Chow’s moving lemma one gets that this
multiplication induces the perfect pairing between vector spaces N i(X) and Ni(X).

Definition 2.2.1. Let X and Y be smooth varieties such that dim(X),dim(Y ) > 2, then

• If D is a reduced codimension i subvariety in X, then we denote by [D] the equaivalence class
of D in N i(X).

• The class Z ∈ N i(X) is effective if Z =
∑n
i=1 ai[Di] where ai > 0 and Di is a codimension i

subvariety in X for all 1 6 i 6 n.

• The class Z ∈ N1(X) is nef (resp. ample) if one has Z · [C] > 0 (resp. Z · [C] > 0) for any
curve C on X.

• If f : X → Y is an algebraic map then the class D ∈ N1(X) is f -nef (resp. f -ample) if one
has D · [C] > 0 (resp. D · [C] > 0) for any curve C ⊂ X such that f(C) is a point.

Let f : X 99K Y be a rational map between two varieties. Consider a smooth variety V and two
regular morphisms δX and δY to X and Y respectively such that the diagram commutes and δX is
birational:

V
δX

~~

δY

  
X

f
// Y

(2.2.2)

Such a diagram always exists (take, e.g., the resolution of indeterminacy of the graph of the map
f in X × Y ). The variety V fitting the diagram of the form (2.2.2) is not unique, in the following
assertion we describe the case when V has additional useful properties.

Lemma 2.2.3 ([Kol07, Corollary 3.18, Theorem 3.21]). Let f : X 99K Y be a rational map between
smooth varieties X and Y . Then there exists a diagram of the form (2.2.2) such that δX is the
following composition:

δX = δ1 ◦ δ2 ◦ · · · ◦ δN ,
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where X0 = X, XN = V and δi : Xi → Xi−1 is the blow-up in a smooth center Zi ⊂ Xi−1 for all
1 6 i 6 N . Moreover, δ1(. . . (δi−1(Zi)) . . . ) lies in Ind(δ−1

X ).

Definition 2.2.4. Let f : X 99K Y be a rational map and let V be some variety fitting the diagram
of the form (2.2.2).

• The total image of a subvariety D in X is the subvariety f(D) = δY (δ−1
X (D)) in Y .

• The proper transform of a subvariety D which does not lie in Ind(f) is the following subvariety:

f̌(D) = f(D \ Ind(f)).

• If f is regular and Z ∈ Ni(X), then f∗(Z) ∈ Ni(Y ) is the class of f(Z); in particular, if Z is
contracted to a subvariety of less dimension then its direct image vanishes.

• If f is regular and W ∈ N i(Y ), then f∗(W ) ∈ N i(X) is the class such that

f∗(W ) · Z = W · f∗(Z),

for all classes Z ∈ Ni(X).

• If f is not regular, Z ∈ Ni(X) and W ∈ N j(Y ), then

f∗(Z) = δY ∗(δ
∗
X(Z)) ∈ Ni(Y ); f∗(W ) = δX∗(δ

∗
Y (W )) ∈ N j(X).

There are many choices for the smooth variety V as in the diagram (2.2.2). However, con-
structions of the total image, proper transform, inverse and direct images do not depend on this
choice.

The following assertion known as Mori negativity lemma, it is very useful in many situations.

Lemma 2.2.5 ([KM98, Lemma 3.39]). Let f : X → Y be a proper birational morphism between
smooth varieties X and Y and let −D be an f -nef divisor class on X. The class D is effective if
and only if so is f∗(D).

The inverse image of a nef class under a regular map is nef. In case of rational maps it is not
true, but we have the following generalization of this fact.

Lemma 2.2.6. Let f : X 99K Y be a birational map between smooth varieties X and Y . If D is a
nef class of a divisor on Y and C is a curve on X such that f∗D · [C] < 0, then C lies in Ind(f).

Proof. Consider a diagram as in (2.2.2). If D is a nef divisor in Y , then its pullback D̃ = δ∗YD is
also nef. Let E be the following difference:

E = δ∗X(δX∗(D̃))− D̃.

By construction the class E is equivalent to a linear combination of effective divisors with support
on Exc(δX). Moreover, since D̃ is nef and δ∗X(δX∗(D̃)) is trivial on classes of curves contracting by
δX . Thus, E is δX -antinef and δX∗(E) = 0. Therefore, by Lemma 2.2.5 the class E is effective.

Let C be a reduced irreducible curve on X which does not lie in δX(Exc(δX)). Denote by C̃ the

proper transform of the curve C in V . Then C̃ is a reduced curve such that δX∗[C̃] = [C]. Then
we have

δX∗(D̃) · [C] = δX∗(D̃) · δX∗[C̃] = δ∗X(δX∗(D̃)) · [C̃] = (D̃ + E) · [C̃] > 0.

The last inequality is true since D̃ is nef, E is effective and C̃ lies outside the support of E. Thus,
we get the result.
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The next assertion shows the difference between the inverse image of a composition of two
birational maps and the composition of inverse images of these maps.

Lemma 2.2.7. Let X,Y and Z be smooth varieties and f : Y 99K X and g : Z 99K Y be rational
maps such that g(Z) does not lie in Ind(f). Then the composition f ◦ g : Z 99K X is well-defined
and for each class D ∈ N1(X) we have the following equality:

g∗(f∗(D))− (f ◦ g)∗(D) = E, (2.2.8)

where E is a class of a divisor on Z supported in g−1(Ind(f)). If D is nef, then E is effective.

Proof. Denote by Γf and Γg resolutions of singularities of graphs of maps f and g respectively.
Denote by pf , qf projections to X and Y from Γf and by pg and qg projection from Γg to Y and Z.
Both maps qf and qg are birational and qf (Exc(q−1

f )) = Ind(f). The composition q−1
f ◦ pg induces

the rational map γ : Γg 99K Γf . Denote by Γ the resolution of the graph of γ and by p and q
projections to Γf and Γg. The morphism q is birational and the following diagram commutes:

Γ
q

��

p

  
Γg

qg

��

pg

��

γ // Γf
qf

~~

pf

  
Z

g // Y
f // X

By definition (f ◦ g)∗D = qg∗(q∗(p∗(p∗fD))) and g∗(f∗D) = qg∗(p∗g(qf∗(p
∗
fD))). Denote by D̃ the

class p∗fD in N1(Γf ) and denote by Ẽ the following difference:

Ẽ = p∗g(qf∗D̃)− q∗(p∗D̃).

Then the class E we are interested in equals qg∗Ẽ. Thus, it suffices to prove that Ẽ is the class of a

divisor supported on p−1
g (Ind(f)). Denote by E′ the class q∗f (qf∗D̃)− D̃, then one has the following

equality:

Ẽ = q∗(q
∗Ẽ) = q∗(q

∗(p∗g(qf∗D̃)))− q∗(p∗D̃) =

= q∗(p
∗(q∗f (qf∗D̃)))− q∗(p∗D̃) = q∗(p

∗(D̃ + E′))− q∗(p∗D̃) = q∗(p
∗E′).

By construction of E′ it is a class of a divisor in Γf with the support in Exc(qf ). This implies

that pg∗(Ẽ) = pg∗(q∗(p∗(E′))) is a class of a divisor supported in Ind(f). This implies that E is a
class of a divisor in Z supported on g−1(Ind(f)).

Now assume that D is a nef divisor. Then so is D̃; thus, the class E′ is qf -antinef by construction
and qf∗E′ = 0 is an effective divisor. By Lemma 2.2.5 we get that the class E′ is effective.

The class p∗E′ is q-nef and p∗(p∗E′) = E′ is the class of an effective divisor by construction.
Thus, by Lemma 2.2.5 we get that p∗E′ is effective. Therefore, the class E = qg∗(q∗(p∗E′)) is also
effective.

The next assertion describes the inverse image of a class of curves under the blow-up.
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Lemma 2.2.9. Let δ : Y → X be a blow-up of a smooth variety X in smooth center Z and C 6⊂ Z
be an irreducible reduced curve in X, Then there exists a curve T such that δ(T ) is a point such
that

δ∗[C] = [C̃] + µ[T ] ∈ N1(X),

where C̃ is the proper transform of C and µ is a non-negative number.

Proof. Let C̃ be a proper transform of the curve C to Y . Denote by ξ the following class in N1(Y :

ξ = δ∗[C]− [C̃].

Then by the projection formula we get that δ∗ξ = 0. Since δ is a blow-up along a smooth center,
the class ξ is proportional to the class of the curve T in the exceptional divisor of δ such that δ(T )
is a point. By the projection formula we have

0 = E · δ∗[C] = E · ([C̃] + ξ) = E · [C̃] + E · ξ

Since C̃ does not lie inside E the product E · [C̃] is non-negative. Thus, E · ξ 6 0, the class ξ = µ[T ]
is effective and µ > 0.

Lemma 2.2.9 implies the following assertion describing the inverse image of a curve under any
birational map.

Lemma 2.2.10. Let f : X 99K Y be a birational map between smooth varieties X and Y and let C
be an irreducible curve on X such that C 6⊂ Ind(f). If C̃ is the proper image of C under f , then
there exist effective curves T1, . . . , TN in f(Ind(f)) and non-negative numbers µ1, . . . µN > 0 such
that

f∗[C] = [C̃] +

M∑
i=1

µi[Ti] ∈ N1(X).

In particular, if C does not lie in Ind(f), then the class f∗[C] is effective.

Proof. By Lemma 2.2.3 one can construct a variety V fitting the diagram of the form (2.2.2) and
such that δX = δN ◦ · · · ◦ δ1 is a composition of several blow-ups δi : Xi → Xi−1 along smooth
centers Zi with X = X0, V = XN and δ1(. . . (δi−1(Zi)) . . . ) lies in Ind(f) for all 1 6 i 6 N . Then,
applying Lemma 2.2.9 several times we get the result.

We need to discuss birational automorphisms and their properties. We start with several defi-
nitions.

Definition 2.2.11. Let X and X ′ be smooth varieties, let f : X 99K X ′ be a birational map and
let f : X 99K X be a birational automorphism, then

• f is a pseudo-isomorphism if codimensions of Exc(f) in X and of Exc(f−1) in X ′ are greater
than 1.

• f is a pseudo-automorphism if it is a pseudo-isomorphism from X to X.

58



• f is regularizable, if there exists a smooth variety Y , a birational map α and a regular auto-
morphism g : Y → Y such that the following diagram commutes:

X

α

��

f // X

α

��
Y

g // Y

In this situation we call the triple (Y, g, α) is a regularization of f .

Note that on surfaces the notion of pseudo-automorphisms coincides with the one of regular
automorphisms, while in higher dimensions the notions differ. Nevertheless, in higher dimension
there are restrictions on the indeterminacy locus of a pseudo-automorphism.

Lemma 2.2.12 ([BK14]). If f : X 99K X is a pseudo-automorphism of a smooth variety X of
dimension 3 or greater, then Ind(f) has no isolated points.

Observe that pseudo-automorphisms induce invertible maps on the group of classes of divisors
on the variety:

Lemma 2.2.13. If f : X 99K X is a pseudo-automorphism of a smooth variety X, then

f∗ : N1(X)→ N1(X)

is an isomorphism of vector spaces and (fn)∗ = (f∗)n.

Proof. This follows from Lemma 2.2.7.

2.2.2. A special construction of a flop

In this section we consider the construction of a concrete pseudo-isomorphism and construct the
resolution of its graph.

Let X be a smooth threefold and let Γ1 and Γ2 be smooth curves on X such that Γ1 ∩ Γ2 is a
finite set of points and the union Γ1 ∪ Γ2 is a nodal curve. In this section we consider the blow-up
of curves Γ1 and Γ2 in one order and in another and compare the resulting varieties.

Denote by δ1 : Y1 → X the blow-up of X along the curve Γ1. Let Γ̃2 ⊂ Y1 be the proper
transform of the curve Γ2 under δ1. Let δ12 : Y12 → Y1 be the blow-up of Y1 along Γ̃2.

Denote by δ2+ : Y2+ → X the blow-up of X along the curve Γ2. Let Γ̃1 ⊂ Y2+ be the proper

transform of the curve Γ1 under δ2+ Let δ12+ : Y21+ → Y2+ be the blow-up of Y2+ in Γ̃1.
Denote by τ the composition of maps τ = δ−1

21+ ◦ δ
−1
2+ ◦ δ1 ◦ δ12 : Y12 → Y21+. Then the following

diagram commutes:

Y12

δ12

��

τ // Y21+

δ21+

��
Y1

δ1   

Y2+

δ2+}}
X
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Denote by U the open subset (δ1 ◦ δ12)−1 (X \ (Γ1 ∩ Γ2)) of Y12. From the construction of this
diagram we can deduce the following lemma:

Lemma 2.2.14. The indeterminacy locus of τ lies in Y12 \ (δ1 ◦ δ12)−1 (X \ (Γ1 ∩ Γ2)). The inde-
terminacy locus of τ−1 lies in Y21+ \ (δ2+ ◦ δ21+)−1 (X \ (Γ1 ∩ Γ2)). In particular, τ is a pseudo-
isomorphism.

Assume that Γ1∩Γ2 = {p1, . . . , pm}. Denote by Ci the irreducible component of (δ1 ◦ δ12)
−1

(pi)
which does not lie in the exceptional divisor of δ12 for all 1 6 i 6 m. Denote by C+

i the irreducible

component of (δ2+ ◦ δ21+)
−1

(pi) which does not lie in the exceptional divisor of δ21+. Then Ci
and C+

i are smooth rational curves.
Moreover, if pi, pj ∈ Γ1 ∩ Γ2 are two distinct points then curves Ci and Cj do not intersect

in Y12 and curves Ci+ and Cj+ do not intersect in Y21+.
In fact, locally in a neighborhood of a curve Ci the map τ is a flop, see [HM10, Example 1.12].

Denote by f1 and f2 ∈ N1(Y12) the classes of the fibers of the morphisms δ1 and δ12 over Γ1 and Γ̃2

respectively. Then the following assertion is true:

Proposition 2.2.15 ([HM10, Example 1.12]). Let Γ1 ∩ Γ2 = {p1, . . . , pm}. Then the sets of
indeterminacy of τ and τ−1 consist of disjoint unions of m curves:

Ind(τ) = C1 t C2 t · · · t Cm; Ind(τ−1) = C+
1 t C

+
2 t · · · t C+

m.

The blow-up ∆: BlC1t···tCm Y12 → Y12 is an elimination of the map τ , i.e. the map τ ◦∆ is regular.
Moreover, the class of each curve Ci and of its direct image under τ satisfy:

[Ci] = f1 − f2 τ∗[Ci] = −[C+
i ].

Sketch of proof. Denote by V be the blow-up BlC1t···tCm
Y12 → Y12 and by ∆: V → Y12 birational

morphism from V to Y12. Since C1 t · · · tCm is a disjoint union of m smooth curves the variety V
is smooth.

Consider the map δ1◦δ12◦∆: V → X. Since the preimage of the curve Γ2 is of pure dimension 2
and since V is smooth then by the universal property of blow-ups (see [Har77, Proposition II.7.14])
we get that the following map is regular:(

δ−1
2+ ◦ δ1 ◦ δ12 ◦∆

)
: V → Y2+.

Repeating this argument we can show that there exists a regular map f : V → V+, where V+ is a
blow-up of the variety Y21+ in the smooth curve C1+ t · · · t Cm+ such that the following diagram
commutes:

V

∆

~~

f //

∆+ ((

V+

""
Y12

τ // Y21+

Since Picard numbers of V and V+ are same, this implies that the map f is an isomorphism.
Considering the Neron-Severi group of Y12 we prove that [Ci] = f1 − f2. Since τ is a pseudo-

isomorphism the groups N1(Y12) and N1(Y21+) are isomorphic. Since Y12 is a threefold then by
projection formula we get that τ induces an isomorphism between groups N1(Y12) and N1(Y21+).
Under this identification we get [C+

i ] = f2 − f1, thus, τ∗[Ci] = −[C+
i ].
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2.2.3. Dynamical degrees

One can associate the following invariant to a birational automorphism of a smooth projective
variety.

Definition 2.2.16. Let f : X → X be a birational automorphism of a smooth projective variety X
of dimension n and let H be an ample class on X. The i-th dynamical degree of f is the following
number:

λi(f) = lim
n→∞

(
(fn)∗(Hi) ·Hdim(X)−i

) 1
n

.

Dynamical degrees of birational automorphisms are correctly defined and do not depend on the
choice of the ample class H by [Tru20].

Theorem 2.2.17 ([Tru20]). Let f : X 99K X be a birational automorphism of a smooth variety X
of dimension n. Then dynamical degrees of f are well-defined and

(1) λi(f) is a real number and λi(f) > 1 for all 0 6 i 6 n. Moreover, λ0(f) = λn(f) = 1;

(2) λi(f) is a birational invariant for all 0 6 i 6 n.

(3) The dynamical degrees are log-concave, that is

λi(f)2 > λi+1(f)λi−1(f),

for all 1 6 i 6 n− 1.

The projection formula implies the relation between dynamical degrees of an automorphism and
of its inverse:

λi(f) = λn−i(f
−1).

Note that the log-concavity implies the inequality λ1(f)2 > λ2(f). If this inequality is strict
and f is a pseudo-automorphism, then the action of f∗ on the group of classes of divisors has the
following property:

Theorem 2.2.18 ([Tru14, Theorem 1, Corollary 3]). Let f : X 99K X be a pseudo-automorphism
of a smooth projective variety X satisfying λ2

1(f) > λ2(f). Then there exists a non-zero pseudo-
effective class θ1(f) in N1(X) such that:

(1) For any ample class H the limit limn→∞
(fn)∗(H)
λ1(f)n exists, is non-zero and proportional to θ1(f);

(2) f∗(θ1(f)) = λ1(f)θ1(f);

(3) The eigenvalue λ1(f) is simple, i.e. there is a decomposition N1(X) = 〈θ1(f)〉 ⊕ V which
is f∗-invariant and absolute values of all eigenvalues of f |V are less that λ1(f).

In case when the birational automorphism f is regular the class θ1(f) is nef. However, even in
the case of a pseudo-automorphisms of threefolds this class can intersect some curves negatively.
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Lemma 2.2.19. Let f : X 99K X be a pseudo-automorphism of a smooth projective threefold X
such that λ1(f)2 > λ2(f). If C is an irreducible curve and θ1(f) · [C] < 0, then there exists an
integer N such that

C ⊂
⋂
n>N

Ind(fn).

Proof. Let C be a curve on X such that θ1(f) · C < 0 and let H be an ample divisor on X. Then
by Theorem 2.2.18 there exists N such that for all n > N we have the following inequality

fn∗(H) · C < 0.

By Lemma 2.2.6 this is possible only if C lies in Ind(fn) for all n > N .

The set of curves C such that θ1(f) · [C] < 0 is finite hence θ1(f) is a movable class in the sense
of [BDPP13].

2.2.4. Example

We recall here the construction from [OT15] and [Les18, Section 7] in order to give an example of
a regularizable (not regular) pseudo-automorphism f+ such that the class θ1(f+) exists and is not
nef.

Consider the lattice of Eisenstein integers Λ = Z[j] in C, here j is a primitive cube root of
unity. Denote by E the elliptic curve C /Λ. The group G = 〈−j〉 acts on E. Then the group G is
isomorphic to C6. Consider the diagonal action of G on abelian variety A = E × E × E:

G×A→ A (g, (x1, x2, x3)) 7→ (g(x1), g(x2), g(x3)),

where g ∈ G and (x1, x2, x3) is a point in A = E × E × E. Denote by q : A → A/G the quotient
map by the action of G on A.

Theorem 2.2.20 ([OT15]). The variety A/G is rational.

The variety A/G contains 27 isolated quotient singular points. Let δ : X → A/G be the blow-up
of all these points. It is a resolution of singularities of A/G. Denote by q̃ the rational map from A
to X:

q̃ = δ ◦ q : A 99K X.

There is a natural action of the group SL(3,Z) on the abelian threefold A = E×E×E. Moreover,
since the actions of groups SL(3,Z) and G on A commute, there is an induced action of the group
SL(3,Z) on A/G and on X. Let M be the following matrix in SL(3,Z):

M =

 0 1 0
0 0 1
−1 3 0


Then M induces a regular automorphism fA of A and it extends to a regular automorphism f of
X such that:

λ1(f)2 > λ2(f).
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Thus, by Theorem 2.2.18 there is a unique up to proportionality pseudo-effective eigenclass θ1(f)
in N1(X) with eigenvalue λ1(f).

Consider a curve CE = E×{0}×{0} in the abelian threefold A. Let C ⊂ X be a proper image
of CE under the rational map q̃. Then C is a smooth rational curve on X and by construction one
can check that θ1(f) · [C] > 0. By [Les18, Section 7] there exists a pseudo-isomorphism

α : X 99K X+,

such that Ind(α) = C and the total image of C under α is a smooth rational curve C+. In fact,
this map is a standard Atiyah flop in the curve C.

Lemma 2.2.21. Let α : X 99K X+ be a flop in a curve C, let C+ be the total image of C in X+

and D be a class in N1(X). If D · [C] > 0 then (α−1)∗(D) · [C+] < 0.

As a consequence of Lemma 2.2.21 we get that (α−1)∗(θ1(f)) · [C+] < 0. Denote by f+ the
following composition:

f+ = α ◦ f ◦ α−1 : X+ 99K X+.

Since f is a composition of flops and a regular automorphism it is a pseudo-automorphism. Thus,
by Theorem 2.2.18 one can define the pseudo-effective class θ1(f+). Moreover, since α is a pseudo-
isomorphism, then Lemma 2.2.7 implies that θ1(f+) is proportional to (α−1)∗(θ1(f)). Therefore,
we conclude that

θ1(f+) · [C+] < 0.

Note that by construction the curve C+ lies in the indeterminacy locus Ind(fn) for all non-zero
integers n. Thus, the pseudo-automorphism f+ satisfies all but last condition in Theorem 2.1.3.

2.3. Proof of Theorem 2.1.3

2.3.1. Regularizations

Let X be a smooth threefold, let f : X 99K X be a pseudo-automorphism of X and let (Y, g, α)
be a regularization of f . Namely, Y is a smooth threefold, g is an automorphism of Y and α is a
birational map from X to Y such that

α ◦ f = g ◦ α.

Since α is a birational map then by Theorem 2.2.18 one has

λ1(f) = λ1(g).

Moreover, if one has an inequality λ1(f)2 > λ2(f) then by Theorem 2.2.18 one can define pseudo-
effective classes θ1(f) ∈ N1(X) and θ1(g) ∈ N1(Y ) which are eigenvectors with eigenvalue λ1(f)
under the action of f∗ and g∗ respectively.
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Lemma 2.3.1. Let f : X 99K X be a pseudo-automorphism of a smooth threefold X and let (Y, g, α)
be a regularization of f . If λ1(f)2 > λ2(f), then the class α∗(θ1(g)) is non-zero.

Proof. Let V, δX , δY be a smooth threefold and algebraic maps δX : V → X and δY : V → Y fitting
the diagram (2.2.2). We can assume moreover, that V, δX , δY are as in Lemma 2.2.3. Suppose by
contradiction that we have

α∗θ1(g) = δX∗(δ
∗
Y (θ1(g)) = 0.

Denote by E ∈ N1(V ) the class δ∗Y (θ1(g). Since the map δX is a composition of blow-ups along
smooth centers this implies that the class E can be represented as a linear combination of divisors
supported on Exc(δX).

The class θ1(g) is nef, then so is E. Thus, by Lemma 2.2.5 we conclude that E is an anti-
effective class. On the other hand, since θ1(g) is a pseudo-effective class, then so is E. Thus, we
get a contradiction.

Lemma 2.3.2. Let f : X 99K X be a pseudo-automorphism of a smooth threefold X and let (Y, g, α)
be a regularization of f . If λ1(f)2 > λ2(f), then α∗θ1(g) is proportional to θ1(f).

Proof. Since f is a pseudo-automorphism it does not contract divisors. Thus, by Lemma 2.2.7 we
get the following:

f∗(α∗θ1(g)) = (α ◦ f)∗θ1(g).

Since g is regular its indeterminacy locus is empty; thus, by Lemma 2.2.7 we get the following:

(g ◦ α)∗θ1(g) = α∗(g∗θ1(g)).

Therefore, we get that f∗(α∗θ1(g)) = λ1(g)α∗θ1(g). Since λ1(f) = λ1(g) by Theorem 2.2.18 we get
the result.

Lemma 2.3.3. Let f : X 99K X be a pseudo-automorphism of a smooth threefold X and let (Y, g, α)
be a regularization of f . If λ1(f)2 > λ2(f) and C is an irreducible curve such that θ1(f) · [C] < 0,
then C lies in Ind(α).

Proof. Let H be an ample divisor on X. By Theorem 2.2.18 the class θ1(f) is proportional to the
limit the sequence of classes (gn)∗(H)/λ1(g)n in N1(Y ). Since g is regular one has that θ1(g) is a
limit of a sequence of ample classes. Thus, θ1(g) is nef.

By Lemmas 2.3.1 and 2.3.2 the class α∗(θ1(g)) is non-zero and proportional to θ1(f). Since
both this classes are pseudo-effective the coefficient of the proportionality is strictly positive; thus,
we get

α∗(θ1(g)) · [C] < 0.

Thus, by Lemma 2.2.6 we get that the curve C lies in Ind(α).

Lemma 2.3.4. Let X be a smooth threefold and let f : X 99K X be a pseudo-automorphism such
that λ1(f)2 > λ2(f). If C is an irreducible curve such that θ1(f) · [C] < 0, then there exists N such
that C lies in Ind(fn) for all n > N .

Proof. By Theorem 2.2.18 if H is an ample class on X then the class θ1(f) is proportional to the
following:

lim
n→∞

(fn)∗(H)

λ1(f)n
.

64



Since the class θ1(f) is pseudo-effective the coefficient of the proportionality is strictly positive.
Since θ1(f) · [C] < 0 there exists N such that for each n > N one has (fn)∗H · [C] < 0. Thus,
Lemma 2.2.6 implies the result.

Lemma 2.3.5. Let X be a smooth threefold and f : X 99K X is a pseudo-automorphism and C is
an irreducible curve on X. Assume that the following conditions are satisfied:

(1) there exists N > 0 such that C ⊂ Ind(fn) for all n > N ;

(2) C does not lie in Ind(f−i) ∪ Ind(f−j) for two distinct integers i 6= j.

Then the proper transforms of C under f−i and under f−j do not coincide.

Proof. Denote by Ci and Cj the proper transforms of C under f−i and f−j respectively. They are
irreducible curves on X. Since f is a pseudo-automorphism the curve Cj does not lie in Ind(f j).

Since f j−i = f−i ◦ f j the indeterminacy locus of f j−i contains in the union of Ind(f j) and
subvarieties in X \ Ind(f j) which proper images under f j lies in Ind(f−i).

Thus, the curve Cj does not lie in the indeterminacy locus of f j−i. Therefore, if we assume
that curves Ci and Cj coincide then Cj does not lie Ind(fm(j−i)) for any m > 0. This implies that
the curve C does not lie in Ind(fm(j−i)+j) for all m > 0 and we get a contradiction with the first
condition of the lemma. Thus, we conclude the result.

Now we are ready to prove the criterion for non-regularizable automorphisms.

Proposition 2.3.6. Let f : X 99K X be a pseudo-automorphism of a smooth threefold X. If f
satisfies conditions (1− 3) in Theorem 2.1.3, then f is non-regularizable.

Proof. Assume by contradiction that there exists a regularization (Y, g, α) of the pseudo-automor-
phism f : X 99K X. By Theorem 2.2.18 we see that λ1(f) = λ1(g) = λ. By the condition (1) in
Theorem 2.1.3 and Theorem 2.2.18 we can consider pseudo-effective classes θ1(f) and θ1(g) which
are unique up to proportionality.

Consider a curve C as in the condition (2) in Theorem 2.1.3. By Lemma 2.3.3 the curve C lies in
the indeterminacy locus Ind(α). Moreover, by Lemma 2.3.4 there exists N such that C ⊂ Ind(fn)
for any n > N .

Denote by I the set I ⊂ Z such that for each i ∈ I the curve C does not lie in Ind(f−i). Denote
by Ci the proper image of C under f−i for any i ∈ I.

Since Ci does not lie in the indeterminacy locus of f i for any i ∈ I and since the proper image
of Ci is the curve C which lies in Ind(α) we get that Ci lies in Ind(α ◦ f i). Moreover, since g is
regular and gi ◦ α = α ◦ f i the following indeterminacy loci coincide:

Ind(α) = Ind(gi ◦ α) = Ind(α ◦ f i).

Thus, Ind(α) contains curves Ci for all i ∈ I. The condition (3) in Theorem 2.1.3 and Lemma 2.3.5
implies that Ind(α) contains infinitely many distinct curves. This leads us to a contraction; thus,
we get the result.
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2.3.2. Fibrations over surfaces

Let X be a smooth threefold and f : X 99K X be a birational automorphism of X. We say that f
preserves a fibration over a surface (S, g, π) if there exist a smooth surface S, its birational auto-
morphism g and a dominant rational map π : X 99K S such that the following diagram commutes:

X
f //

π

��

X

π

��
S

g // S

Lemma 2.3.7. Let f : X 99K X be a pseudo-automorphism of a smooth threefold X. If f preserves
a fibration over a surface (S, g, π) then it also preserves a fibration over a surface (S̃, g̃, π̃) such that
g̃ is algebraically stable and (g̃ ◦ π̃)

∗
= π̃∗ ◦ g̃∗.

Proof. By [DF01, Theorem 0.1] there exists a smooth surface S̃ and a birational morphism δ : S̃ → S
such that the birational automorphism

g̃ = δ−1 ◦ g ◦ δ : S̃ 99K S̃

is algebraically stable. Denote by π̃ the composition δ−1 ◦ π. Then f preserves the fibration over
a surface (S̃, g̃, π̃). It remains to show that (g̃ ◦ π̃)

∗
= π̃∗ ◦ g̃∗. In order to prove it we show that

there is no divisor in X which proper image under π̃ is a point of indeterminacy of g̃.
Assume by contradiction that E is a divisor in X such that its proper transform under π̃ is a

point p ∈ S̃ which lie in the indeterminacy locus of g̃. Since g̃ is algebraically stable the point p
does not lie in Ind(g̃−n) for all n > 0 by [DF01, Theorem 1.14]. Denote by pn the proper image
of the point p under g̃−n for n > 0. Denote by En the proper image of E under fn. Since f is
a pseudo-automorphism En is a divisor for all n ∈ Z. Then the proper image of En under π̃ is a
point pn ∈ S̃ for all n < 0.

Let (V, δX , δS̃) be an elimination of indeterminacy of π̃ as in Lemma 2.2.3. Since V is irreducible

the set of points in S̃ such that the dimension of fiber of δS̃ over this point equals 2 is finite. Thus,
the set of divisors En such that their proper image under π̃ are points finite. Therefore, the divisor E
is f -periodic and the point p is g̃-periodic. This contradicts our assumption that g̃ is algebraically
stable and p lies in Ind(g̃).

Thus, no divisors in X are contracted to indeterminacy locus of g̃ and by Lemma 2.2.7 we get
the result.

Lemma 2.3.8. Let f : X 99K X be a birational automorphism of a smooth variety X and let f
preserve a fibration over a surface (S, g, π). If g is algebraically stable and λ1(g) > 1, then π∗(θ1(g))
is a non-zero class in N1(X).

Proof. Since g is algebraically stable then by [DF01, Theorem 0.3] one can construct a non-zero nef
pseudo-effective eigenclass θ1(g) with eigenvalue λ1(f). Let V , δX : V → X and δS : V → S be as
in Lemma 2.2.3. Then we get the following:

π∗(θ1(g)) = δX∗(δ
∗
S(θ1(g))).
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The class δ∗S(θ1(g)) is non-zero, nef and pseudo-effective. Thus, by Lemma 2.2.5 we get that the
class π∗(θ1(g)) is non-zero.

This lemma allows us to prove Theorem 2.1.3.

Proof of Theorem 2.1.3. By Proposition 2.3.6 we get that f is non-regularizable.
Then assume by contradiction that the pseudo-automorphism f : X 99K X preserves a fibration

over a surface (S, g, π). By Lemma 2.3.7 one can assume that g is algebraically stable and that
(g ◦ π)∗ = π∗ ◦ g∗. Moreover, by [Tru20, Theorem 1.1] since the relative dimension of π equals 1 we
have the following equality:

1 < λ1(f) = λ1(g).

By the condition (1) in Theorem 2.1.3, Theorem 2.2.18 and [DF01, Theorem 0.3] there are pseudo-
effective eigenclasses θ1(f) ∈ N1(X) and θ1(g) ∈ N1(S) with eigenvalue λ1(f). Since f does not
contract divisors by Lemma 2.2.7 we get the following:

f∗(π∗(θ1(g))) = (π ◦ f)∗(θ1(g)).

By construction of (S, g, π) we has also

(g ◦ π)∗(θ1(g)) = λ1(g)π∗(θ1(g)).

Therefore, the class π∗θ1(g) is proportional to θ1(f). Moreover, by Lemma 2.3.8 we get that the
class θ1(f) is proportional to π∗(θ1(g)) with a strictly positive coefficient.

By the condition (2) in Theorem 2.1.3 we get that π∗(θ1(g)) · [C] < 0. Therefore, by Lemma
2.2.6 the curve C lies in Ind(π).

By the condition (3) in Theorem 2.1.3 and by Lemma 2.3.5 we get that there is an infinite set
of distinct curves which lie in Ind(π). Thus, we get a contradiction. Therefore, f do not preserve
any structure of a fibration over a surface.

2.4. Blanc’s pseudo-automorphism

In this section we study the family of positive entropy birational automorphisms introduced by
Blanc in [Bla13]. We recall the construction of these automorphisms and then apply Theorem 2.1.3
to show that they are not regularizable and do not preserve any fibration over a surface.

2.4.1. Construction of a pseudo-automorphism

Let S be a smooth cubic surface in P3 and let p be a point in S. One can associate to p a birational
involution of P3:

σp : P3 99K P3,

such that for any line L ⊂ P3 passing through p and intersecting the surface S in three distinct
points p, p1, p2 the restriction σp|L : L→ L is a unique involution of L ∼= P1 such that σp|L(pi) = pi
for i = 1, 2.
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Proposition 2.4.1 ( [Bla13, Proposition 2.1]). The birational involution σp : P3 99K P3 preserves
pointwise an open subset of S. The indeterminacy locus of σpconsists of an irreducible curve Γ ⊂ S
of degree 6 containing the point p. Moreover, if δ : Blp,Γ(P3)→ P3 is the blow-up of the point p and
the proper preimage of the curve Γ, then σp induces a regular automorphism of Blp,Γ(P3):

δ−1 ◦ σp ◦ δ : Blp,Γ(P3)→ Blp,Γ(P3).

Let p1, . . . , pk be k points on the cubic surface S; let σpi be an involution associated to the
point pi for all 1 6 i 6 k. Denote by Γi the indeterminacy locus of the involution σpi , then Γi is
a curve in P3 of degree 6 lying in the surface S. Let δ : X → P3 be the successive blow-ups of the
points p1, . . . , pk followed by the blow-up of the proper transforms of the curves Γ1,Γ2, . . . ,Γk in
this order. Denote by σ̂pi the birational involution of X induced by σpi :

σ̂pi = δ−1 ◦ σpi ◦ δ : X 99K X.

The composition of several involutions of this type gives a positive entropy birational automorphism.

Theorem 2.4.2 ([Bla13, Theorem 1.2]). Let p1, . . . , pk be k distinct points on a smooth cubic
surface S in P3, and let Γi be the curve of indeterminacy of σpi for all 1 6 i 6 k. Then the
following composition is a pseudo-automorphism:

f = σ̂p1 ◦ · · · ◦ σ̂pk : X 99K X (2.4.3)

Moreover, if k > 3, then we have λ1(f) = λ2(f) > 1.

Let δi : Xi → P3 be the successive blow-ups of the points p1, . . . , pk, followed by the blow-up
of the proper transforms of the curves Γi,Γ1, . . . ,Γi−1,Γi+1, . . . ,Γk in this order. By construction
we get X1 = X and δ1 = δ. Moreover, an involution σpi induces a regular involution on Xi for all
1 6 i 6 k:

σ̃pi : Xi → Xi.

Let τi,j : Xi → Xj be the birational map induced by the identity map on P3. Note that by Propo-
sition 2.2.15 the map τi,j is a pseudo-isomorphism.

Lemma 2.4.4. The pseudo-automorphism f is the composition of the regular involutions σ̃pi : Xi →
Xi and the pseudo-isomorphisms τi−1,i : Xi−1 99K Xi, i.e. the following diagram commutes:

X1

σ̃p1 //

δ1
��

X1

δ1
��

τ1,2 // X2

δ2
��

σ̃p2 // . . .
σ̃pk−1// Xk−1

δk−1

��

τk−1,k // Xk

δk
��

σ̃pk // Xk

δk
��

τk,1 // X1

δ1
��

P3
σp1 // P3

idP3 // P3
σp2 // . . .

σpk−1 // P3
idP3 // P3

σpk // P3
idP3 // P3

(2.4.5)

Let H ∈ N1(X) be the inverse image of the hyperplane section from P3 to X, let Ej be the
exceptional divisor over the points pj and let Fj be the exceptional divisor over Γj for all 1 6 j 6 k.
Let ej , fj ∈ N2(X) be the classes of irreducible curves in Ej and Fj respectively which are contracted
under δ. Let h ∈ N2(X) be the class of the proper transform of a line in P3 to X.

Lemma 2.4.6. Vector spaces N1(X) and N2(X) have the following bases:

N1(X) = 〈H,E1, . . . , Ek, F1, . . . , Fk〉;
N2(X) = 〈h, e1, . . . , ek, f1, . . . , fk〉.
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Moreover, the intersection form on X is as follows:

H · h = 1; Ei · h = 0; Fi · h = 0 for all i;

H · ei = 0; Ei · ei = −1; Fi · ei = 0 for all i;

Ei · ej = 0; Fi · ej = 0 for all i 6= j;

H · fi = 0; Ei · fi = 0; Fi · fi = −1 for all i;

Ei · fj = 0; Fi · fj = 0 for all i 6= j.

Lemma 2.4.7 ([Bla13, Proposition 2.3]). Under the assumptions and notation of Lemma 2.4.6 the
involution σ̂pi acts on N1(X) as follows for any 1 6 i 6 k:

σ̂∗pi(D) = D + νi, if D = H or Ei;

σ̂∗pi(Fi) = Fi + 2νi;

σ̂∗pi(D) = D, if D = Ej or Fj for j 6= i;

σ̂∗pi(νi) = −νi;
σ̂∗pi(νj) = νj + 2νi.

Here νi = 2H − 2Ei − Fi ∈ N1(X) for all 1 6 i 6 k.

Note that by Theorem 2.4.2 one has λ1(f)2 > λ2(f). Thus, by Theorem 2.2.18 one can find a
unique up to multiplication by a positive real number pseudo-effective class θ1(f) ∈ N1(X) such
that f∗θ1(f) = λ1(f)θ1(f).

Lemma 2.4.8 ([Bla13, Proof of Proposition 2.3]). We have:

θ1(f) =

k∑
i=1

αiνi ∈ N1(X), (2.4.9)

where α1 > α2 > · · · > αk are strictly positive numbers and α1 > α2 + 2
(∑k

i=3 αi

)
.

One can show that θ1(f) is not a nef class in N1(X).

Corollary 2.4.10. Let q be any point lying in the intersection of Γ1 and Γ2. Assume that the
intersection of Γ1 and Γ2 is transversal in q and let L̃ be the proper transform of a line in P3

passing through p1 and q to X. Then one has the following inequality:

θ1(f) · [L̃] < 0.

Note that if points p1 and p2 are sufficiently general then curves Γ1 and Γ2 intersect transversally;
thus, the condition of Corollary 2.4.10 is satisfied.

Proof of Corollary 2.4.10. By construction of the birational involution σp1 we get that σ̃p1(L̃) is
the fiber of the exceptional divisor F1 over the point q on Γ1. Thus, by Proposition 2.2.15 we get
that σp1(L̃) is a curve of indeterminacy of τ12. Then by Proposition 2.2.15 and since σ̃p1 is a regular
involution we get:

σ̃∗p1 [L̃] = σ̃p1∗[L] = f1 − f2.
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Then by Lemma 2.4.7 we have the following equalities:

H · [L̃] = σ̃∗p1(H) · σ̃∗p1 [L̃] = (3H − 2E1 − F1) · (f1 − f2) = 1;

E1 · [L̃] = σ̃∗p1(E1) · σ̃∗p1 [L̃] = (2H − E1 − F1) · (f1 − f2) = 1;

F1 · [L̃] = σ̃∗p1(F1) · σ̃∗p1 [L̃] = (4H − 4E1 − F1) · (f1 − f2) = 1;

F2 · [L̃] = σ̃∗p1(F2) · σ̃∗p1 [L̃] = F2 · (f1 − f2) = 1.

By Lemma 2.4.6 this implies that [L̃] = h− e1 − f1 − f2. Then by Lemma 2.4.8 we get

θ1(f) · [L̃] =

(
k∑
i=1

αiνi

)
· (h− e1 − f1 − f2) =

=

k∑
i=1

αi(2H − 2Ej − Fj) · (h− e1 − f1 − f2) = 2

k∑
i=1

αi − 3α1 − α2 < 0.

Thus, L̃ is an effective curve which intersects the class θ1(f) negatively.

2.4.2. Formulas for involutions

Let p1, p2 and p3 be three points on a smooth cubic surface S in P3. Recall that the indeterminacy
locus of σpi is a curve Γi. By the following assertion if points p1, p2 and p3 are sufficiently general
then curves Γi intersect each other transversally for all i = 1, 2, 3.

Proposition 2.4.11. Let p1, p2, p3 be non-collinear points on a smooth cubic surface S in P3 such
that a line passing through p1 and p2 is not tangent to S. Let Γi be the curve of indeterminacy
of the involution σpi : P3 99K P3 associated to the point pi for all i = 1, 2, 3. Then the following
assertions are true.

(1) If q is a point in Γ1 ∩ Γ2, then points q, p1, p2 are non-collinear.

(2) Assume that p3 does not lie in a hyperplane passing through q, p1, p2 and that x0, x1, x2, x3

are homogeneous coordinates of P3 such that

q = (1 : 0 : 0 : 0); p1 = (0 : 1 : 0 : 0); p2 = (0 : 0 : 1 : 0); p3 = (0 : 0 : 0 : 1).

(3) If x0, x1, x2, x3 are homogeneous coordinates of P3 as in point (2) and ϕ(x) =
∑
|I|=3 aIx

I

is the equation of the surface S in these coordinates, then

a3000 = a0300 = a0030 = a0003 = a2100 = a2010 = 0.

Moreover, the intersection of the curves Γ1 and Γ2 in the point q is transversal if one has the
following inequality:

a2001(4a1200a1020 − a2
1110) 6= 0.
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Proof. (1) The assertion is follows from the fact that q is a point on S such that the line passing
through pi and q is tangent to S in q for all i = 1 and 2.

(2) By assumption and the point (1) we get there is no hyperplane in P3 which passes through
points q, p1, p2 and p3. Thus, one can construct the necessary coordinates.

(3) By construction the surface S passes through points (1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 0 : 1)
and (0 : 0 : 0 : 1). Thus, one gets

a3000 = a0300 = a0030 = a0003 = 0.

Moreover, the line passing through q and p1 is tangent to the surface S in q. The equation of this
line is {x2 = x3 = 0}; thus, we get that a2100 = 0. Analogously, since the line passing through q
and p2 is tangent to S in q we get that a2010 = 0.

Consider the affine chart U0 = {x0 6= 0} of P3. This chart is isomorphic to an affine space A3.
Consider coordinates t1, t2, t3 of A3 such that ti = xi

x0
for all i = 1, 2, 3. In these coordinates the

point q corresponds to the origin (0, 0, 0). By [Bla13, Section 2] the curve Γi is the intersection of
the surfaces {ϕ = 0} and { ∂ϕ∂xi

= 0} for i = 1, 2. Denote by ψ(t1, t2, t3) the equation induced by ϕ
on the chart U0. Then the tangent line to Γi in the point q = (0, 0, 0) ∈ U0 defined by the following
equations:

TΓi,q =


3∑
j=1

∂ψ

∂tj
(0, 0, 0)dtj =

3∑
l=1

∂2ψ

∂ti∂tl
(0, 0, 0)dtl = 0

 ⊂ TU0,q = 〈dt1, dt2, dt3〉.

The intersection of the curves Γ1 and Γ2 at the point q is transversal if the tangent lines TL1,q and
TL2,q do not coincide. This happens if the following determinant is non-zero:

det


∂ψ
∂t1

(0, 0, 0) ∂ψ
∂t2

(0, 0, 0) ∂ψ
∂t3

(0, 0, 0)
∂2ψ
∂t1∂t1

(0, 0, 0) ∂2ψ
∂t1∂t2

(0, 0, 0) ∂2ψ
∂t1∂t3

(0, 0, 0)
∂2ψ
∂t2∂t1

(0, 0, 0) ∂2ψ
∂t2∂t2

(0, 0, 0) ∂2ψ
∂t2∂t3

(0, 0, 0)

 = a2001(4a1200a1020 − a2
1110).

This implies the result.

In the coordinate which we described in Proposition 2.4.11 write formulas defining the involu-
tions σp1 , σp2 and σp3 .

Lemma 2.4.12 ([Bla13, Section 2]). Let x0, x1, x2, x3 be homogeneous coordinates in P3 and let
ϕ(x) = 0 be an equation of a smooth cubic surface S containing the points p1 = (0 : 1 : 0 : 0),
p2 = (0 : 0 : 1 : 0) and p3 = (0 : 0 : 0 : 1). Then the involutions associated with points p1, p2 and p3

are given by the following formulas:

σp1(x0, x1, x2, x3) =

(
x0

∂ϕ

∂x1
(x) : x1

∂ϕ

∂x1
(x)− 2ϕ(x) : x2

∂ϕ

∂x1
(x) : x3

∂ϕ

∂x1
(x)

)
;

σp2(x0, x1, x2, x3) =

(
x0

∂ϕ

∂x2
(x) : x1

∂ϕ

∂x2
(x) : x2

∂ϕ

∂x2
(x)− 2ϕ(x) : x3

∂ϕ

∂x2
(x)

)
;

σp3(x0, x1, x2, x3) =

(
x0

∂ϕ

∂x3
(x) : x1

∂ϕ

∂x3
(x) : x2

∂ϕ

∂x3
(x) : x3

∂ϕ

∂x3
(x)− 2ϕ(x)

)
.
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Proof. It suffices to prove that σp1 is the involution associated with the point p1. Let l be a line
in P3 passing through the point p1 = (0 : 1 : 0 : 0). This line intersects the plane {x1 = 0} in a
point (a : 0 : b : c). Then we get that l is as follows:

l = {(as : t : bs : cs)| (s : t) ∈ P1}.

Therefore, one can compute the restriction of ϕ and ∂ϕ
∂x1

to l:

ϕ(as, t, bs, cs) = µ1st
2 + µ2s

2t+ µ3s
3

∂ϕ

∂x1
(as, t, bs, cs) = 2µ1st+ µ2s

2.

Here µ1, µ2 and µ3 are some numbers in C depending only on the line l and the cubic surface S.
Then if we apply the formula of σp1 to the point (as : t : bs : cs), we get the following point on P3:

σp1(as, t, bs, cs) =(
as2(2µ1t+ µ2s) : st(2µ1t+ µ2s)− 2(µ1st

2 + µ2s
2t+ µ3s

3) : bs2(2µ1t+ µ2s) : cs2(2µ1t+ µ2s)
)

=

= (a(2µ1t+ µ2s) : −µ2t− 2µ3s : b(2µ1t+ µ2s) : c(2µ1t+ µ2s)) .

Then the restriction of the map σp1 to the line l is an automorphism of l. In coordinates s, t it
corresponds to the following matrix in PGL(2,C):

σp1 |l =

(
µ2 −2µ3

2µ1 −µ2

)
Thus, σp1 |l is a non-trivial involution of l and it preserves points (s : t) such that ϕ(as, t, bs, cs) = 0
and (s : t) 6= (0 : 1). By the definition of σp1 this implies the result.

2.4.3. Composition of three involutions

Our goal in this section is to prove the following assertion, it is the key to the proof of Theorem
2.1.2.

Proposition 2.4.13. Let p1, p2 and p3 be three general points on a very general cubic surface S
and let σpi be the involution associated to the point pi for all i = 1, 2, 3. If L is the line in P3

passing through the point p1 and a point in Ind(σp1)∩ Ind(σp2) and F is the following composition:

F = σp3 ◦ σp2 ◦ σp1 : P3 99K P3,

then L does not lie in Ind((F )−n) for all n > 0.

To prove Proposition 2.4.13 we fix a general point x on the line L and consider coordinates of the
image F−n(x) as polynomials of coordinates of x. The condition that x does not lie in Ind

(
F−(n−1)

)
is equivalent to the fact that these polynomials do not vanish. Computing modulo some ideal and
using Sage we get the result.
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Set B = {(2001), (1200), (1110), (1101), (0210)}. Denote by R the following ring:

R = Z[aI ]I∈B = Z[a2001, a1200, a1110, a1101, a0210].

Consider a free commutative ring R[X,Y ]. Set w = a2001a0210+a1110a1101 and denote by I the ideal
(4, 2w) in R[X,Y ], i.e., the ideal of polynomials in X and Y whose coefficients lie in (4, 2w) ⊂ R.
If P is an element in R[X,Y ] we consider it as a polynomial of X and Y with coefficients in R.

By degY (P ) we denote the degree of the polynomial P in Y . Let r(X) be the leading term in
Y of P viewed as a polynomial in the variable Y , so that deg

(
P − r(X)Y deg(P )

)
is strictly less

than deg(P ). We need the following useful property of degrees of polynomials:

Lemma 2.4.14. Let P1 and P2 be two polynomials such that:

Pi = ri(X)Y di +Qi(X,Y );

Here the degree in Y of all monomials in Qi is strictly less that di. If d1 > d2 and r1(X) is a non-
zero polynomial which does not lie in I, then P1 +P2 also does not lie in I and degY (P1 +P2) = d1.

Proof. Since X and Y are free variables, then the polynomial
∑
i,j ri,jX

iY j lies in I only if all
coefficients ri,j lie in I. Since deg(P1) > deg(P2), then the leading term in Y of P1 + P2 coincides
with the leading term of P1.

Let P3
R[X,Y ] be a projective space defined over the ring R[X,Y ]. Let x0, x1, x2, x3 be homoge-

neous coordinates of P3
R[X,Y ] and let ϕ(x) be an equation of a cubic surface in P3

R[X,Y ]:

ϕ(x) = a2001x
2
0x3 + a1200x0x

2
1 + a1110x0x1x2 + a1101x0x1x3 + a0210x

2
1x2.

Let σp1 , σp2 and σp3 be birational involutions of P3
R[X,Y ] given by formulas from Lemma 2.4.12.

Denote by FR the composition of these involutions:

FR = σp3 ◦ σp2 ◦ σp1 : P3
R[X,Y ] 99K P3

R[X,Y ] (2.4.15)

Our goal is to compute the orbit of a point under the action of F−1
R . We will consider points of the

following form.

Notation 2.4.16. Let p = (M0 + 2N0 : M1 + 2N1 : g̃2 + 2g2 : g̃3 + 2g3) be a point in P3
R[X,Y ], such

that M0, N0,M1, N1, g2, g̃2, g3 and g̃3 are elements of R[X,Y ] of the following form:

(B1) Polynomials g̃2 and g̃3 are elements of I; also g2 and g3 lie in 2R[X,Y ] and the leading term
in Y of g̃3 do not lie in 4R[X,Y ];

(B2) The leading terms in Y of polynomials Mi(X,Y ) do not lie in 2R[X] for i = 0 and i = 1.

(B3) We have the following conditions on degrees of polynomials:

degY (g̃2) 6 degY (M0) < degY (g̃3) < degY (M1).

In the next lemma we show that the image of a point satisfying conditions (B1−B3) under F−1
R

still satisfies these conditions.
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Lemma 2.4.17. Let p = (M0 + 2N0 : M1 + 2N1 : g̃2 + 2g2 : g̃3 + 2g3) be a point in the projective
space P3

R[X,Y ] such that polynomials M0, N0,M1, N1, g2, g̃2, g3 and g̃3 satisfy conditions (B1− B3).

Then the point p does not lie in Ind(F−1
R ). Moreover, one has

F−1
R (p) = (M ′0 + 2N ′0 : M ′1 + 2N ′1 : g̃′2 + 2g′2 : g̃′3 + 2g′3),

where polynomials M ′0, N
′
0,M

′
1, N

′
1, g
′
2, g̃
′
2, g
′
3 and g̃′3 satisfy conditions (B1− B3).

Proof. In view of condition (B3) one has degY (M0) = d0, degY (M1) = d1, degY (g̃2) = d2

and degY (g̃3) = d3 and we have the following inequality:

d2 6 d0 < d3 < d1. (2.4.18)

In order to compute F−1
R (p) we use the formulas from Proposition 2.4.11 associated with the cubic

surface given by the equation
∑
i∈B aIx

I . Then F−1
R (p) = (q0 : q1 : q2 : q3), where the expressions qi

can be computed in Sage explicitly, see Section 2.4.4.
First thing we note is that all polynomials q0, q1, q2 and q3 lie in 2R[X,Y ]. Our goal is to

construct polynomials M ′0, N
′
0,M

′
1, N

′
1, g
′
2, g̃
′
2, g
′
3 and g̃′3 such that

q0 = 2(M ′0 + 2N ′0);

q1 = 2(M ′1 + 2N ′1);

q2 = 2(g̃′2 + 2g′2);

q3 = 2(g̃′3 + 2g′3).

We are going to do it considering all components q0, q1, q2 and q3 one by one.

Consider the component q0. By formulas in Lemma 2.4.12 we can see that this is a homogeneous
polynomial of M0, N0,M1, N1, g2, g̃2, g3 and g̃3 of degree 27. We define M ′0 to be the sum of all
monomials in 1

2q0 except those divisible by 2, g2, g̃2, g3, g̃3 or 1
2m where m is a degree 2 monomial

of g2, g̃2, g3 and g̃3. Note that by construction 1
2q0−M ′0 lies in 2R[X,Y ] since so do g2, g̃2, g3 and g̃3.

Denote N ′0 = 1
2 ( 1

2q0 −M ′0). The computation in Sage shows:

M ′0 = a8
1101a

2
0210M

11
0 M15

1 (wa1200M0 +
1

2
a1110a1101a0210g̃2 +

1

2
a2

1101a0210g̃3) + hM ′0 , (2.4.19)

where hM ′0 is a homogeneous polynomial of M0, N0,M1, N1, g2, g̃2, g3 and g̃3 of degree 27 and the
degree in M1 of all monomials is strictly less than 15. By Lemma 2.4.14 and (2.4.18) we get that
the leading term in Y of M ′0 does not lie in 2R[X,Y ] and

degY (M ′0) = 11d0 + 15d1 + d3. (2.4.20)

Consider the component q1. This is a homogeneous polynomial of M0, N0,M1, N1, g2, g̃2, g3

and g̃3 of degree 27. We define M ′1 to be the sum of all monomials in 1
2q1 except those divisi-

ble by 2, g2, g̃2, g3, g̃3 or 1
2m where m is a degree 2 monomial of g2, g̃2, g3 and g̃3. Note that by

construction 1
2q1 −M ′1 lies in 2R[X,Y ]. Denote N ′1 = 1

2 ( 1
2q1 −M ′1). The computation in Sage

shows:
M ′1 = a1200a

9
1101a

3
0210M

10
0 M17

1 + hM ′1 , (2.4.21)
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where hM ′1 is a homogeneous polynomial of M0, N0,M1, N1, g2, g̃2, g3 and g̃3 of degree 27 and the
degree in M1 of all monomials is strictly less than 17. By Lemma 2.4.14 and (2.4.18) we get that
the leading term in Y of M ′1 does not lie in 2R[X,Y ] and

degY (M ′1) = 10d0 + 17d1. (2.4.22)

Consider the component q2. This is a homogeneous polynomial of M0, N0,M1, N1, p2 = g̃2 +2g2

and p3 = g̃3 + 2g3 of degree 27. We define q′2 to be the sum of all monomials of q2 except those
divisible by 8, 2p2, 2p3 or a degree 2 monomial of p2 and p3. Note that by construction q2 − q′2 lies
in 2 I. The computation in Sage shows:

q′2 = 4wa2
1200M

12
0 M6

1 (a1110M0 + a0210M1)(a8
2001M

8
0 + a8

1101M
8
1 ) (2.4.23)

Since q′2 is divisible by 4w it lies in 2 I. Therefore, by construction q2 lies in 2 I. Define g̃′2 to be the
sum of all monomials of 1

2q2 except those divisible by 4, 2g2, 2g̃2, 2g3, 2g̃3 or a degree 2 monomial
of g2, g̃2, g3 and g̃3. Note that by construction g2 = 1

2 ( 1
2q2 − g̃′2) lies in 2R[X,Y ]. The computation

in Sage shows:

g̃′2 = a0210a
8
1101M

10
0 M15

1 (2wa2
1200M

2
0 + a2001a1200a

2
0210M0g̃2+

+
1

2
a1110a1101a

2
0210g̃

2
2 + a1200a

2
1101a0210M0g̃3 +

1

2
a2

1101a
2
0210g̃2g̃3)) + hg̃′2 , (2.4.24)

where hg̃′2 is a homogeneous polynomial of M0, N0,M1, N1, g2, g̃2, g3 and g̃3 of degree 27 and the
degree in M1 of all monomials is strictly less than 15. By (2.4.18) and we get that

degY (g̃′2) 6 11d0 + 15d1 + d3. (2.4.25)

Consider the component q3.This is a homogeneous polynomial of M0, N0,M1, N1, p2 = g̃2 + 2g2

and p3 = g̃3 + 2g3 of degree 27. We define q′3 to be the sum of all monomials of q3 except those
divisible by 8, 2p2, 2p3 or a degree 2 monomial of p2 and p3. Note that by construction q3 − q′3 lies
in 2 I. The computation in Sage shows:

q′3 = 4wa2
1200M

11
0 M7

1 (a2001M0 + a1101M1)(a2
1110M

2
0 +

+a2
0210M

2
1 )(a2

2001M
2
0 + a2

1101M
2
1 )(a4

2001M
4
0 + a4

1101M
4
1 ).

(2.4.26)

Since q′3 is divisible by 4w it lies in 2 I. Therefore, by construction q3 lies in 2 I.
Define g̃′3 to be the sum of all monomials of 1

2q3 except those divisible by 4, 2g2, 2g̃2, 2g3, 2g̃3 or
degree 2 monomial of g2, g̃2, g3 and g̃3. Note that by construction g3 = 1

2 ( 1
2q3− g̃′3) lies in 2R[X,Y ].

Moreover, the Sage computation shows:

g̃′3 = a1200a
2
0210a

7
1101M

10
0 M16

1 (2wa1200M0 + a1110a1101a0210g̃2 + a2
1101a0210g̃3) + hg̃′3 . (2.4.27)

Here hg̃′3 is a homogeneous polynomial of M0, N0,M1, N1, g2, g̃2, g3 and g̃3 of degree 27 and the
degree in M1 of all monomials is strictly less than 16. By Lemma 2.4.14 and (2.4.18) we get that
the leading term in Y of g̃′3 does not lie in 4R[X,Y ] and

degY (g̃′3) = 10d0 + 16d1 + d3. (2.4.28)

We have defined polynomials M ′0, N
′
0,M

′
1, N

′
1, g
′
2, g̃
′
2, g
′
3 and g̃′3; thus, it remains to show condi-

tions (B1− B3) for these polynomials.
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Polynomials g̃′2 + 2g′2 and g̃′3 + 2g′3 lie in I by equations (2.4.23) and (2.4.26). Polynomials g′2
and g′3 lie in 2R[X,Y ] by the construction. Also by (2.4.24) and (2.4.27) we get that the leading
terms of g̃2 and g̃3 are not divisible by 4. Thus, the condition (B1) is satisfied.

By (2.4.19) and (2.4.21) we get that the leading monomials of M ′0 and M ′1 do not lie in 2R[X,Y ].
Thus, the condition (B2) is satisfied.

Finally the condition (B3) follows from the formulas (2.4.20), (2.4.22), (2.4.25), (2.4.28) and the
assumption (2.4.18).

Since by our computation polynomials q0, q1, q2 and q3 are non-zero, we get that the point p
does not lie in Ind(F−1

R ).

Corollary 2.4.29. Let p = (X : Y : 0 : 0) be a point in P3
R[X,Y ] and FR be a birational automor-

phism as in (2.4.15). Then p does not lie in Ind(F−nR ) for all n > 0.

Proof. Let q = (q0 : q1 : q2 : q3) be the point F−1
R (p) in P3

R[X,Y ]. Below we define set of polynomi-

als M ′0, N ′0, M ′1, N ′1, g̃′2, g′2, g̃′3 and g′3 such that they satisfy conditions (B1− B3) and

q0 = 2(M ′0 + 2N ′0);

q1 = 2(M ′1 + 2N ′1);

q2 = 2(g̃′2 + 2g′2);

q3 = 2(g̃′3 + 2g′3).

(2.4.30)

Consider the component q0, it is a homogeneous polynomial in X and Y of degree 27. Define M ′0 to
be the sum of all monomials of 1

2q0 whose coefficients are not divisible by 4. Set N ′0 = 1
2 ( 1

2q0−M ′0).
Using the formula (2.4.19) and substituting there M0 = X, M1 = Y , g̃2 = g̃3 = 0 we can see that
the leading term in Y of M ′0 is equal to wa1200a

8
1101a

2
0210X

12Y 15
1 . It does not lie in 2R[X,Y ] and

the degree in Y of M ′0 is
degY (M ′0) = 15.

Consider the component q1, it is a homogeneous polynomial in X and Y of degree 27. Define M ′1 to
be the sum of all monomials of 1

2q1 whose coefficients are not divisible by 4. Set N ′1 = 1
2 ( 1

2q1−M ′1).
Using the formula (2.4.21) and substituting there M0 = X, M1 = Y , g̃2 = g̃3 = 0 we can see that
the leading term in Y of M ′1 is equal to a1200a

9
1101a

3
0210X

10Y 17. It does not lie in 2R[X,Y ] and the
degree in Y of M ′1 is

degY (M ′1) = 17.

Consider the component q2. By the formula (2.4.23) we see that q2 lies in the ideal I. Define g̃′2 to
be the sum of all monomials of 1

2q2 which are not divisible by 4. Set g′2 = 1
2 ( 1

2q
′
2 − g̃′2). Using the

formula (2.4.24) and substituting there M0 = X, M1 = Y , g̃2 = g̃3 = 0 we can see that the leading
term in Y of g̃′2 is equal to 2wa2

1200a0210a
8
1101X

12Y 15. Then the degree in Y of g̃′2 is

degY (g̃′2) = 15.

Consider the component q3. By the formula (2.4.26) we see that q3 lies in the ideal I. Define g̃′3 to
be the sum of all monomials of 1

2q3 which are not divisible by 4. Set g′3 = 1
2 ( 1

2q3 − g̃′3). Using the
formula (2.4.27) and substituting there M0 = X, M1 = Y , g̃2 = g̃3 = 0 we can see that the leading
term in Y of g̃′3 is equal to 2wa2

1200a
2
0210a

7
1101X

11Y 16. It does not lie in 4R[X,Y ] and the degree
in Y of g̃′3 is

degY (g̃′3) = 16.
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Thus, one gets that q has the form (2.4.30) and polynomials M ′0, N ′0, M ′1, N ′1, g̃′2, g′2, g̃′3 and g′3
satisfy conditions (B1−B3). Therefore, the point p does not lie in the indeterminacy locus of F−1

R .
Moreover, by Lemma 2.4.17 the point q = F−1

R (p) does not lie in Ind(F−nR ) for all n > 0. This
finishes the proof.

Proof of Proposition 2.4.13. Consider a 4-dimensional complex vector space V and its associated
projective space P(V ) = P3. A cubic surface in P(V ) is given by an equation in P(S3V ∨). The
coordinates of the space P(S3V ∨) are coefficients aI of the cubic equation

∑
aIx

I . Denote by W
the following subspace of S3V ∨:

W = 〈aI | I 6= (3000), (0300), (0030), (0003), (2100), (2010)〉 ⊂ S3V ∨.

Consider a universal cubic surface S ⊂ P(V )×P(W ). Denote by Π: S → P(W ) the projection
onto the second factor. The fiber of Π over a point ϕ ∈ P(W ) is a cubic surface Sϕ = {ϕ = 0}.
Moreover, by construction the surface Sϕ contains the points q = (1 : 0 : 0 : 0), p1 = (0 : 1 : 0 : 0),
p2 = (0 : 0 : 1 : 0) and p3 = (0 : 0 : 0 : 1) and the lines passing through pi and q are tangent to Sϕ

in q for i = 1 and 2. Note that for any point ϕ ∈ P(W ) the point q lies in Ind(σp1)∩ Ind(σp2) where
σp1 and σp2 are involutions associated with the cubic equation ϕ and points p1 and p2.

Then we can define the involutions σp1 , σp2 and σp3 of P(V )×P(W ) by the formulas in Lemma
2.4.12. Denote by FS the following composition:

FS = σp1 ◦ σp2 ◦ σp3 : P(V )× P(W ) 99K P(V )× P(W ).

Consider the following cubic equation ϕ0 ∈W :

ϕ0 = a2001x
2
0x3 + a1200x0x

2
1 + a1110x0x1x2 + a1101x0x1x3 + a0210x

2
1x2,

here a2001, a1200, a1110, a1101, a0210 are non-zero complex numbers. By Corollary 2.4.29 we get
that if X and Y are very general complex numbers then the point (X : Y : 0 : 0) does not lie in the
indeterminacy locus of F−n for all n > 0.

This implies that the point ((X : Y : 0 : 0), ϕ0) does not lie in Ind(F−nS ) for all n > 0. Denote
by L the line connecting q and p1. Then the point (X : Y : 0 : 0) lies on L in P3. Therefore, the
subvariety L× P(W ) does not lie in Ind(F−nS ) for all n > 0.

Since
⋃
n>0 Ind(F−nS ) is a countable union of closed codimension 2 subvarieties of P(V )×P(W ),

then for a very general point ϕ in P(W ) the line L passing through p1 and q does not lie in Ind(F−n)
for all n > 0.

Finally, by Proposition 2.4.11 if S is a smooth cubic surface and p1, p2 and p3 are three general
points on S, then there exists an isomorphism between S and Sϕ which maps points p1, p2 and p3

to (0 : 1 : 0 : 0), (0 : 0 : 1 : 0) and (0 : 0 : 0 : 1). Thus, we get the result.

2.4.4. Sage computations for Lemma 2.4.17

In order to prove Lemma 2.4.17 we have to compute the preimage of the point in the projec-
tive space P3

R[X,Y ] described in Notation 2.4.16. Here is the Sage code we used to perform these
computations. Below we define birational involutions σpj =Ij for j = 1, 2 and 3 and their com-

position F−1
R =F_inverse. Variables M0, N0, M1, N1, g2, gg2, g3 and gg3 there play the roles of the
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polynomials M0, N0,M1, N1, g̃2, g2, g̃3 and g3 respectively. Variables p2 and p3 represent the ele-
ments g̃2 + 2g2 and g̃3 + 2g3 of the ideal I. Afterwards, we apply the function F_inverse to the
point p =(M0+2*N0,M1+2*N1,g2+ 2*gg2,g3+2*gg3) and get set of four polynomials Y1. Then we apply the
function F_inverse to the point p =(M0+2*N0,M1+2*N1,p2,p3) and get Q2.

K.<a_2001 , a_1200 , a_1110 , a_1101 , a_0210 , M0, M1, N0, N1 , g2 , gg2 , g3, gg3 , x0 ,

x1, x2 , x3 , p2,p3 >=ZZ[]

cubic = a_2001*x0^2*x3 + a_1200*x0*x1^2 + a_1110*x0*x1*x2 + a_1101*x0*x1*x3 +

a_0210*x1^2*x2

dcubicdx1 =cubic.derivative(x1)

dcubicdx2 =cubic.derivative(x2)

dcubicdx3 =cubic.derivative(x3)

def I1(x0 ,x1,x2,x3):

return x0*dcubicdx1(x0=x0 ,x1=x1,x2=x2,x3=x3),

x1*dcubicdx1(x0=x0,x1=x1,x2=x2 ,x3=x3)- 2* cubic(x0=x0 ,x1=x1,x2=x2,x3=x3),

x2*dcubicdx1(x0=x0,x1=x1,x2=x2 ,x3=x3), x3*dcubicdx1(x0=x0 ,x1=x1,x2=x2,x3=x3)

def I2(x0 ,x1,x2,x3):

return x0*dcubicdx2(x0=x0 ,x1=x1,x2=x2,x3=x3),

x1*dcubicdx2(x0=x0,x1=x1,x2=x2 ,x3=x3),

x2*dcubicdx2(x0=x0,x1=x1,x2=x2 ,x3=x3) - 2*cubic(x0=x0,x1=x1 ,x2=x2,x3=x3),

x3*dcubicdx2(x0=x0,x1=x1,x2=x2 ,x3=x3)

def I3(x0 ,x1,x2,x3):

return x0*dcubicdx3(x0=x0 ,x1=x1,x2=x2,x3=x3),

x1*dcubicdx3(x0=x0,x1=x1,x2=x2 ,x3=x3),

x2*dcubicdx3(x0=x0,x1=x1,x2=x2 ,x3=x3),

x3*dcubicdx3(x0=x0,x1=x1,x2=x2 ,x3=x3) - 2*cubic(x0=x0,x1=x1 ,x2=x2,x3=x3)

def F_inverse(x0,x1 ,x2,x3):

return(I1(*I2(*I3(x0,x1,x2 ,x3))))

Q1 = F_inverse(M0+2*N0 ,M1+2*N1,g2+ 2*gg2 ,g3+2* gg3)

Q2 = F_inverse(M0+2*N0 ,M1+2*N1,p2,p3)

The set of polynomials Q1 and Q2 is exactly the set of polynomials (q0, q1, q2, q3) from the proof of
Lemma 2.4.17. To analyze the output we need several additional functions. The following function
mod_2I deletes all monomials in a polynomial which lie in the ideal 2 I.

def mod_2I(P):

Q = 0

for m in P.monomials ():

c= P.monomial_coefficient(m)

d2 = m.degree(p2)

d3 = m.degree(p3)

if d2+d3==2:

# here we factor mod (pi*pj) \subset 2I

Q = Q

if d2+d3 ==1:

# here we factor mod (2pi) \subset 2I

c2 = c % 2

Q = Q + c2*m

if d2+d3 ==0:

# here we factor mod (8) \subset 2I

c8 = c % 8

Q = Q+c8*m

return Q
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The function mod_4 deletes all monomials in a polynomial which lie in the ideal 4R[X,Y ].

def mod_4(P):

Q = 0

for m in P.monomials ():

c= P.monomial_coefficient(m)

d2 = m.degree(g2)

d3 = m.degree(g3)

dd2 = m.degree(gg2)

dd3 = m.degree(gg3)

if d2+d3+dd2+dd3 ==1:

# here we factor mod (2gi) \subset (4)

c2 = c % 2

Q = Q = Q+c2*m

if d2+d3+dd2+dd3 ==0:

# here we factor mod (4) \subset (4)

c4 = c % 4

Q = Q+c4*m

return Q

The function mod_8 deletes all monomials in a polynomial which lie in the ideal 8R[X,Y ].

def mod_8(P):

Q = 0

for m in P.monomials ():

c= P.monomial_coefficient(m)

d2 = m.degree(g2)

d3 = m.degree(g3)

dd2 = m.degree(gg2)

dd3 = m.degree(gg3)

if d2+d3+dd2+dd3 ==2:

# here we factor mod (2*gi*gj) \subset (8)

c2 = c % 2

Q = Q +c2*m

if d2+d3+dd2+dd3 ==1:

# here we factor mod (4*gi) \subset (8)

c4 = c % 4

Q = Q + c4*m

if d2+d3+dd2+dd3 ==0:

# here we factor mod (8) \subset (8)

c8 = c % 8

Q = Q+c8*m

return Q

The function leading_term_M1 returns the leading term in M1 of the polynomial.

def leading_term_M1(P):

Q=0

d = P.degree(M1)

for m in P.monomials ():

if d == m.degree(M1):

c = P.monomial_coefficient(m)

Q = Q + c*m

return Q

The last thing we need is a function factorization which factors polynomials into a product of
irreducible polynomials. Unfortunately the computation above results in so-called symbolic func-
tions, so to factor them we transform the symbolic function into a polynomial and then use the
factorization in polynomials.
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b_2001 , b_1200 , b_1110 , b_1101 , b_0210 , Z0, Z1, W0, W1, f0, f1, f2, f3 , ff2 , ff3 ,

q2,q3 = PolynomialRing(RationalField (), 17, [’a_2001 ’, ’a_1200 ’, ’a_1110 ’,

’a_1101 ’, ’a_0210 ’, ’M0’, ’M1’, ’N0’, ’N1’, ’g0 ’, ’g1’, ’g2 ’, ’g3’, ’gg2 ’,

’gg3 ’, ’p2 ’, ’p3 ’]).gens()

def factorization(P):

Q=0

for m in P.monomials ():

c= P.monomial_coefficient(m)

d2001 = m.degree(a_2001)

d1200 = m.degree(a_1200)

d1110 = m.degree(a_1110)

d1101 = m.degree(a_1101)

d0210 = m.degree(a_0210)

dx0 = m.degree(M0)

dx1 = m.degree(M1)

dy0 = m.degree(N0)

dy1 = m.degree(N1)

d2 = m.degree(g2)

d3 = m.degree(g3)

dd2 = m.degree(gg2)

dd3 = m.degree(gg3)

dp2 = m.degree(p2)

dp3 = m.degree(p3)

Q = Q+ c * b_2001^d2001 * b_1200^d1200 * b_1110^d1110 * b_1101^d1101 *

b_0210^d0210 * f2^d2 * f3^d3 * ff2^dd2 *ff3^dd3 * Z0^dx0 * Z1^dx1 *

W0^dy0 *W1^dy1 * q2^dp2 * q3^dp3

return Q.factor ()

Now we are ready to get results:

M0new = mod_4(Q1[0])

M1new = mod_4(Q1[1])

Q2_new = mod_2I(Q2[2])

Q3_new = mod_2I(Q2[3])

G2new = mod_8(Q1[2])

G3new = mod_8(Q1[3])

print(factorization(leading_term_M1(M0new)))

print(factorization(leading_term_M1(M1new)))

print(factorization(Q2_new))

print(factorization(Q3_new))

print(factorization(leading_term_M1(G2new)))

print(factorization(leading_term_M1(G3new)))

After running a program we get six lines of results:

a_0210 ^2 * a_1101 ^8 * M0^11 * M1^15 *(2* a_1200*a_1110*a_1101*M0 +

2* a_2001*a_1200*a_0210*M0 +a_1110*a_1101*a_0210*g2 + a_1101 ^2* a_0210*g3)

(2) * a_1200 * a_0210 ^3 * a_1101 ^9 * M0^10 * M1^17

(4) * a_1200 ^2 * M1^6 * M0^12 * (a_1110*M0 + a_0210*M1) * (a_1110*a_1101 +

a_2001*a_0210) * (a_2001 ^8*M0^8 + a_1101 ^8*M1^8)

(4) * a_1200 ^2 * M1^7 * M0^11 * (a_2001*M0 + a_1101*M1) * (a_1110*a_1101 +

a_2001*a_0210) * (a_1110 ^2*M0^2 + a_0210 ^2*M1^2) * (a_2001 ^2*M0^2 +

a_1101 ^2*M1^2) * (a_2001 ^4*M0^4 + a_1101 ^4*M1^4)
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a_0210 * a_1101 ^8 * M0^10 * M1^15 * (4* a_1200 ^2* a_1110*a_1101*M0^2 +

4* a_2001*a_1200 ^2* a_0210*M0^2 + 2* a_2001*a_1200*a_0210 ^2*M0*g2 +

a_1110*a_1101*a_0210 ^2*g2^2 + 2* a_1200*a_1101 ^2* a_0210*M0*g3 +

a_1101 ^2* a_0210 ^2*g2*g3)

(2) * a_1200 * a_0210 ^2 * a_1101 ^7 * M0^10 * M1^16 * (2* a_1200*a_1110*a_1101*M0 +

2* a_2001*a_1200*a_0210*M0 + a_1110*a_1101*a_0210*g2 + a_1101 ^2* a_0210*g3)

The first line produces the leading term in M1 for 2M ′0, we use this formula in (2.4.19). The
second line produces the leading term in M1 for 2M ′1, we use this formula in (2.4.21). The third
line produces the expression for q′2, we use it in (2.4.23). The fourth line produces the expression
for q′3, we use it in (2.4.26). The fifth and sixth lines produce the leading terms in M1 of g̃′2 and g̃′3
respectively, we use them in (2.4.24) and (2.4.27).

2.4.5. Proof of Theorem 2.1.2

Let p1, p2 and p3 be three points on a smooth cubic surface S, let σpi : P3 99K P3 be the involution
associated with these points for all i = 1, 2, 3 and let Γi be the curve of indeterminacy of σpi . By
the generality of points p1, p2 and p3 and by Proposition 2.4.11 we can assume that the line passing
through p1 and p2 is not tangent to S, that the curves Γ1 and Γ2 intersect transversally in the point
q and that points q, p1, p2 and p3 do not lie in one hyperplane.

Recall that X is the successive blow-ups of points p1, p2 and p3, then the proper transforms of
curves Γ1,Γ2 and Γ3. Consider the composition f of three involutions:

f = σp3 ◦ σp2 ◦ σp1 : P3 99K P3.

By Theorem 2.4.2 one gets that f is a positive entropy automorphism and

λ1(f) = λ2(f) > 1.

Therefore, by Theorem 2.2.18 one can define a pseudo-effective class θ1(f) in N1(X) such that

f∗(θ1(f)) = λ1(f)θ1(f).

Let L be a line passing through points p1 and q. Denote by L̃ the proper transform of the line L
to X. By Corollary 2.4.10 one has the following inequality:

θ1(f) · [L̃] < 0.

By Proposition 2.4.13 since the cubic surface S is very general and points p1, p2 and p3 are
general the curve L̃ does not lie in the indeterminacy locus of f−n for all n > 0. Thus, the
pseudo-automorphism f satisfy the condition of Theorem 2.1.3. Thus, we get that the pseudo-
automorphism f is not regularizable and it does not preserve the structure of a fibration over a
surface.
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3. Automorphisms of Bogomolov–Guan manifolds

3.1. Introduction

Our goal is to shed some light on the geometry of a partial class of non-Kähler manifolds, described
in the works of Guan [Gua94], [Gua95a], [Gua95b] and Bogomolov [Bog96]. We call theses objects
BG-manifolds and we recall Bogomolov’s construction of a BG-manofold in Section 3.3.2. Our first
result describes an algebraic reduction of a BG-manifold.

Theorem 3.1.1 (Corollary 3.3.17). Let n > 2 be an integer and Q be a BG-manifold of dimen-
sion 2n. Then Q has a structure of a fiber space

Φ: Q→ Pn (3.1.2)

with typical fiber being an abelian variety. This map is an algebraic reduction of Q.

Our second result describes properties of submanifolds in BG-manifolds. Recall here that a
manifold M is Moishezon if it is a proper modification of a projective manifold.

Theorem 3.1.3 (Theorem 3.4.20). Let Q be a BG-manifold of dimension 2n where n > 2 and
let Φ: Q→ Pn be its algebraic reduction as in (3.1.2). Then there exists a divisor D ⊂ Pn such that
for any point x ∈ Pn one has:

(1) If x ∈ Pn \D, then the fiber Φ−1(x) is an abelian variety.

(2) If x ∈ D, then the fiber Φ−1(x) is a uniruled Moishezon manifold.

Moreover, if X ⊂ Q is a submanifold such that dim(Φ(X)) > 2 then X is not Moishezon.

This theorem says nothing about subvarieties X ⊂ Q such that Φ(X) is a curve. In this case X
may or may not be Moishezon depending on the curve Φ(X) ⊂ Pn. See Theorem 3.4.20 for a more
precise statement.

We next turn to the description of the groups of biholomorphic and bimeromorphic automor-
phisms of BG-manifolds Q. We denote these groups Aut(Q) and Bim(Q) respectively. Note that
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a biholomorphic or bimeromorphic automorphism of Q factors through an algebraic reduction.
Thus, if Q is a BG-manifold of dimension 2n then there is a map from the group Aut(Q) (respec-
tively, Bim(Q)) to Aut(Pn) (respectively, Bir(Pn)).

We establish the Jordan property for the group of biholomorphic automorphisms of BG-mani-
fold Q and give some restrictions for the group of bimeromorphic automorphisms of Q.

Theorem 3.1.4 (Proposition 3.5.12 and Theorem 3.5.14). Assume that Q is a BG-manifold of
dimension 2n and Φ: Q → Pn is the algebraic reduction of Q. A typical fiber of Φ is an abelian
variety A.

(1) The group Aut(Q) of is Jordan. More precisely, it fits into the following exact sequence:

1→ G′ → Aut(Q)→ ∆Aut → 1,

where G′ is a subgroup of Aut(A) and ∆Aut is a finite group.

(2) The group Bim(Q) fits into the following exact sequence:

1→ G′′ → Bim(Q)→ ∆→ 1,

where G′′ is a subgroup of Aut(A) and ∆ is the subgroup of Bir(Pn). Moreover, if D ⊂ Pn is
the divisor as in Theorem 3.1.3, then for any g ∈ ∆ one has either D ⊂ Exc(g) or g(D) = D.

Moreover, in Theorem 3.5.18 we prove that the group of bimeromorphic automorphisms of BG-
manifold Q of dimension 4 is Jordan. We find out that the divisor D in this situation is a Halphen
curve: a plane curve with interesting geometric properties studied in [Hal82]. Then using the the
description of the group of birational automorphisms of a plane which preserve a Halphen curve we
get the result.

Our proof of the Jordan property for a BG-fourfold uses a deep results in the geometry of
plane curves. We believe that in higher dimensions groups of bimeromorphic automorphisms of
BG-manifolds should also be Jordan.

3.2. Preliminaries

In this section we recall important definitions and some basic facts on complex manifolds and their
bimeromorphic geometry.

3.2.1. Holomorphic symplectic manifolds

We say that M a compact complex manifold if it admits a complex form I. The space of differential
forms of degree n on a compact complex manifold M admits a decomposition as a direct sum of
spaces of (p, q)-forms where p + q = n. The Dolbeault cohomology Hp,q(M) is defined to be the
quotient of ∂-closed forms modulo ∂-exact forms. This is a finite dimensional C-vector space. We
denote hp,q(M) = dimC(Hp,q(M)).
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Definition 3.2.1. Assume that M is a smooth compact manifold with a Riemannian metric g.
Then

• An almost complex structure on M is a vector bundle isomorphism I : TM → TM on the
tangent bundle of M such that I2 = −IdTM

. A complex structure on M is an almost complex
structure I which is integrable i.e. such that there exists a holomorphic atlas for M such that
in coordinates of each chart I takes the canonical form. We say that M is a compact complex
manifold if it admits a complex form.

• A (1, 1)-form α on a compact complex manifold M with a complex form I is called Kähler if

α(z1, z2) = g(z1, I(z2)).

In this case the the manifold M , the metric g and the complex structure I are called Kähler
manifold, Kähler metric and Kähler complex form with respect to α.

• A (2, 0)-form ω is holomorphic symplectic if it is non-degenerate i.e. ωdim(M)(p) has maximal
rank at every point p in M . A compact complex manifold M is holomorphic symplectic if it
can be equipped with a holomorphic symplectic form ω.

If M is a complex Kähler manifold then by the conjugacy one has hp,q(M) = hq,p(M) and by
Hodge theorem:

bi(M) =
∑
p+q=i

hp,q(M) (3.2.2)

where bi = dim(C)(Hi(M,C)) is the Betti number of M . In case of non-Kähler complex compact
manifolds in general hp,q(M) 6= hq,p(M) and (3.2.2) is not true. The counterexamples for (3.2.2)
can be found in [PSU20]. However, if M is a compact complex surface, then (3.2.2) is satisfied for
all 0 6 i 6 4 by [BHPVdV04, Theorem IV.2.10].

In dimension 2, we have 3 types of holomorphic symplectic surfaces: complex tori, K3 surfaces
and Kodaira surfaces. The latter is of central importance for the present paper. We recall its main
properties in Section 3.3.1. Holomorhic symplectic manifolds are highly connected to the following
notion.

Definition 3.2.3. A hyperkähler manifold M is a compact smooth manifold with a Riemannian
metric g equipped with three Kähler complex structures I, J,K : TM → TM , satisfying the quater-
nionic relation

I2 = J2 = K2 = IJK = − id .

The metric g in this situation is called hyperkähler metric.

Since we do not assume our manifolds to be Kähler, in this paper we have to distinguish between
the terms “hyperkähler” and “holomorphic symplectic”, which are often used as synonyms in the
literature. Any hyperkähler manifold is automatically holomorphic symplectic. This is true because
if αJ and αK are Kähler forms on M with respect to the Riemannian metric g and to the complex
structures J and K respectively, then

ω = αJ +
√
−1αK

is a holomorphic symplectic form on a hyperkähler manifold M with respect to the complex struc-
ture I. Now recall the fundamental result which proves the inverse assertion.
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Theorem 3.2.4 ([Yau78], [Bea83, Proposition 4]). Let M be a compact holomorphic symplec-
tic Kähler manifold. Then M admits a hyperkähler metric, which is uniquely determined by the
cohomology class of its Kähler form.

Therefore, every Kähler holomorphic symplectic manifold is actually hyperkähler.

Remark 3.2.5. A hyperkähler manifold M is called irreducible holomorphic symplectic (IHS)
if π1(M) = 0 and H2,0(M) is generated by one holomorphic symplectic form. IHS hyperkähler man-
ifolds are building blocks of all compact hyperkähler manifolds: according to Beauville-Bogomolov
decomposition theorem, any hyperkähler manifold admits a finite covering which is a product of
a torus and several IHS manifolds. The IHS hyperkähler components of this decomposition are
defined uniquely.

At the moment, there are only few available examples of simple hyperkähler manifolds: two
sporadic examples of O’Grady in dimensions six and ten; the Hilbert schemes Z [n] of 0-dimensional
closed subschemes of length n of a K3 surface Z; and generalized Kummer varieties, i.e. the kernels
of the composition

T [n] → Symn T
Σ→ T,

where T is a complex torus and Σ is the sum morphism. As we will see in Section 3.3.2, the
construction of BG-manifolds actually reminds that of generalized Kummer varieties (but starts
with the Kodaira surface, rather than a complex torus).

3.2.2. Complex spaces and meromorphic maps

Our main references for this paragraph are [GPR94] and [Uen75]. All complex spaces are assumed
to be reduced, irreducible and compact, if not stated otherwise. The term “variety” is reserved for
algebraic ones (which differs from Ueno’s book).

Definition 3.2.6. Let X and Y be complex spaces.

• A fiber space is a proper surjective morphism f : X → Y with irreducible general fiber.

• A morphism f : X → Y is called a (proper) modification, if f is proper, surjective, and there
exist closed analytic subsets ZX ( X and ZY ( Y such that f induces an isomorphism
X \ ZX ∼= Y \ ZY .

• A meromorphic map f : X 99K Y is a map X → 2Y such that its graph Γf is an irreducible
closed analytic subset of X × Y , and the projection pX : Γf → X is a proper modification. A
meromorphic map is called bimeromorphic if the projection pY : Γf → Y is a modification as
well.

• A meromorphic fiber space is a meromorphic map f : X 99K Y such that pY is a fiber space.

The group of all bimeromorphic maps X 99K X will be denoted Bim(X). By GAGA For a
smooth complex projective variety X one has the group of bimeromorphic automorphisms Bim(X)
of X is isomorphic to the group of birational automorphisms Bir(X) of X.
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Given a complex space X, its field of meromorphic functions will be denoted M(X). This is a
finitely generated extension over C which satisfies

0 6 tr degCM(X) 6 dim(X), (3.2.7)

see [Uen75, Theorem 3.1]. The integer number a(X) = tr degCM(X) is called the algebraic dimen-
sion of X. Further, X is said to be a Moishezon space if a(X) = dim(X), see [Moi66].

Remark 3.2.8. Any bimeromorphic map f : X 99K Y induces an isomorphism of the fields of
meromorphic functions

f∗ :M(Y ) ∼−→M(X),

so a(X) is a bimeromorphic invariant. Conversely suppose that X and Y are Moishezon spaces and
we have a field isomorphism M(X) ∼=M(Y ). Then X and Y are bimeromorphic by [GPR94, VII,
Corollary 6.8].

Let us also mention the behavior of the algebraic dimension under some maps.

Lemma 3.2.9 ([Uen75, Theorem 3.8]). Let f : X 99K Y be a surjective meromorphic map of
irreducible compact complex spaces. Set

a(f) = inf
y∈Y

a(f−1(y)), dim f = dimX − dimY.

Then one has
a(Y ) 6 a(X) 6 a(Y ) + a(f) 6 a(Y ) + dim f.

Definition 3.2.10. Assume that X is a compact complex space. Then an algebraic reduction of X
is a meromorphic fiber space f : X 99K X0 to a projective variety X0, such that f induces an
isomorphism M(X0) ∼=M(X).

An algebraic reduction is unique up to bimeromorphic equivalence and we have a(X) = dim(X0).

Example 3.2.11. The algebraic dimension of a Hopf surface can be equal 0 or 1. In case it equals 1
the algebraic reduction is an elliptic fiber space over P1, see [BHPVdV04, V.18.5].

The algebraic dimension and reduction of a Kodaira surface are discussed in Section 3.3.1.

Example 3.2.12. If X is a surface of algebraic dimension 1, then its algebraic reduction is a
holomorphic map, whose typical fiber is an elliptic curve [BHPVdV04, VI.5.1].

We shall need the following result in the future.

Lemma 3.2.13. Let fX : X → X0 and fY : Y → Y0 be algebraic reductions of compact complex
manifolds X and Y . Then

(fX × fY ) : X × Y → X0 × Y0

is an algebraic reduction of X × Y . In particular, we have a(X × Y ) = a(X) + a(Y ).

Proof. It is clear that fX × fY is a fiber space. Consider the map

(fX × idY ) : X × Y → X0 × Y.
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Fix a generic point y ∈ Y and restrict this map to a submanifold X × {y}:

(fX × idY )|X×{y} : X × {y} → X0 × {y}. (3.2.14)

Now take a meromorphic function f on X × Y . The map (3.2.14) is an algebraic reduction, so the
restriction of the function f |X×{y} is constant on fibers of (fX × idY )|X×{y}. Then, the function f
is constant on all fibers of the map fX × idY . Therefore, one can define a map

ϕ :M(X × Y )→M(X0 × Y ), ϕ(f)(x0, y) = f(x, y), where x ∈ f−1
X (x0),

which is easily checked to be an isomorphism. By repeating this argument for the map idX0 ×fY
we get the following chain of isomorphisms:

M(X × Y ) ∼=M(X0 × Y ) ∼=M(X0 × Y0).

Since X0 × Y0 is a projective variety, it is an algebraic reduction of X × Y .

Also we will use the following properties of non-Moishezon manifolds:

Lemma 3.2.15. Let X and Y be two complex manifolds. Then the following assertions hold:

(1) if Y is not Moishezon and f : X → Y is a surjective morphism, then X is not Moishezon;

(2) if X is not Moishezon and f : X → Y is a proper finite morphism, then Y is not Moishezon;

(3) if X contains a non-Moishezon submanifold then X is not Moishezon.

Proof. Let Y be not Moishezon, i.e. dim(Y )− a(Y ) > 1. Then by Lemma 3.2.9 we have

a(X) 6 a(Y ) + dim(X/Y ) 6 dimX − 1,

which implies that X is not Moishezon. This proves the assertion (1).
The assertion (2) follows from the definition of Moishezon manifolds.
The assertion (3) follows from [Uen75, Corollary 3.9].

3.3. Non-Kähler holomorphic symplectic manifolds

In this section we recall the construction of BG-manifolds introduced by Bogomolov in [Bog96].
Then we prove that an algebraic reduction of a BG-manifold is a fiber space over a projective
space.

3.3.1. Kodaira surfaces

The known examples of non-Kähler irreducible holomorphic symplectic manifolds are constructed
from Kodaira surfaces, so we first recall main properties of the latter ones. Most of the statements
in this paragraph can be found in Kodaira’s original paper [Kod64].
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A Kodaira surface is a compact complex surface of Kodaira dimension 0 with b1(S) = 3. As
b1(S) is odd then S cannot be Kähler. There are two kinds of Kodaira surfaces: primary and
secondary ones. Every secondary surface is obtained as a quotient of a primary Kodaira surface S
by a finite cyclic group acting freely on S. Any primary Kodaira surface S can be constructed as
follows. Let E be an elliptic curve and L be a line bundle on E with the first Chern class c1(L) 6= 0.
Denote by L∗ the complement of the zero section in the total space of L. Fix λ ∈ C with |λ| > 1,
and let gλ : L∗ → L∗ be the corresponding homothety. Then the quotient space S = L∗/Z〈gλ〉 is
a Kodaira surface. The projection from the total space of L to E induces the following map:

π : S → E. (3.3.1)

All fibers of π are isomorphic to the smooth curve F = C× /〈λ〉 of genus 1. Thus, π carries
a structure of a principal elliptic fibration though it does not admit a section. This map is an
algebraic reduction of the Kodaira surface S, see [BHPVdV04, Theorem VI.1.1].

Remark 3.3.2. The standard fiberwise action of the circle S1 on L∗ induces on the Kodaira
surface S the structure of a principal S1-fibration over the torus T3 = S1 × S1 × S1.

One can show that S has the following invariants [BHPVdV04, Table 10]:

KS ∼ 0, a(S) = 1, b1(S) = 3, b2(S) = 4, χ(S) = 0, h0,1(S) = 2, h0,2(S) = 1.

Lemma 3.3.3. Assume that f : M 99K S is a bimeromorphic map from a smooth surface M to a
Kodaira surface S. Then M is non-Kähler.

Proof. Indeed by [BHPVdV04, III.4.2] the map f is a σ-process. Since by [BHPVdV04, I.9.1]
the σ-process does not change the Betti number b1, we get b1(M) = b1(S) = 3. Thus, M is
non-Kähler.

3.3.2. Bogomolov–Guan example

Let us recall the first example of simply-connected non-Kähler compact complex manifolds, which
we call BG-manifolds as in [KV19]. This example was introduced by D. Guan in [Gua94] and
further studied in [Bog96]. Here we mainly follow Bogomolov’s work.

Let M be a compact complex manifold, then there is a natural action of the permutation group
Sn on the Mn. Set Symn(M) = Mn/Sn and let M [n] be the Douady space of length n of M .
Then M [n] is a smooth complex manifold and there is a canonical holomorphic map:

δ : M [n] → Symn(M).

This map is called Douady–Barlet morphism. Note that in general situation the manifold Symn(M)
is singular; however, if M is a smooth complex curve, then Symn(M) is also smooth and the
Douady–Barlet morphism is identity.

Consider a Kodaira surface S; as we discussed in Section 3.3.1 there is the structure of a principal
elliptic fibration π : S → E with fiber F on S. Choose a point 0 ∈ E and consider the morphism:

Alb : SymnE → E, x = {x1, . . . , xn} 7→ x1 + . . .+ xn.
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It is the Albanese map of the manifold SymnE, fibers of the map Alb are projective spaces.
Denote by S[n] the Douady space of length n zero-dimensional analytic subspaces of S. Then

we have the induced projection:

π[n] = (Symn(π) ◦ δ) : S[n] → SymnE.

Here δ is the Douady–Barlet morphism δ : S[n] → Symn S, then we can consider the following
composition:

πn =
(

Alb ◦π[n]
)

: S[n] → E.

Denote by W the fiber of πn over 0:

W = π−1
n (0)

π[n]

−−→ Alb−1(0).

The fiber of the Albanese map Alb containing a point D ∈ SymnE (e.g. D = n(0)) is the projective
space isomorphic to the linear system |D| = PH0(OE(D)), i.e. Alb−1(0) ∼= Pn−1 by Riemann-Roch
formula.

Since the fibration π is principle the action of F on S induces a fiberwise diagonal action of F
on S[n], and, therefore, on the fiber W . Thus, we have a projection

Π: W/F → Pn−1.

One can understand the geometry of fibers of the map Π.

Lemma 3.3.4. Let Π be a map as in (3.3.2). A general fiber of Π is isomorphic to Fn/F .

A more precise description of fibers of Π is given in Lemma 3.4.17.

Proof. Let αE : En → Symn(E) be the map of symmetrization. Let x = {x1, . . . , xn} be a point
on the symmetric space Symn(E) such that Alb(x) = 0 and xi 6= xj for all 1 6 i < j 6 n. By
construction the group Sn acts faithfully on the set α−1

E (x). Thus, it acts faithfully on the set of
fibers of πn over α−1

E (x).
Thus, the fiber of Symn(π) over the point x is isomorphic to Fn. Moreover, this fiber does not

intersect the indeterminancy locus of the Douady–Barlet map δ. Thus, we get the result.

Finally, the BG-manifold is constructed as an appropriate finite cover of W/F .

Theorem 3.3.5 ([Bog96, Section 3]). Assume that E is an elliptic curve, L is a line bundle over E
with the Chern class c1(L) 6= 0 and π : S → E is a Kodaira surface associated with L. For any
integer n > 3 dividing c1(L) there exists a simply connected non-Kähler compact complex smooth
holomorphic symplectic manifold Q of dimension 2n− 2 and a finite morphism of degree n2:

p : Q→W/F.

The following diagram summarizes the construction of Q.

Q

Φ
((

p // W/F

Π

""

W
qoo � � //

π0

��

S[n]

π[n]

��

δ // Symn(S)

Symn(π)

��

S × · · · × S

π×···×π
��

αoo

Pn−1

��

� � // E[n]
∼= //

Alb

��

Symn(E) E × · · · × EαEoo

0 �
� // E

(3.3.6)
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Remark 3.3.7. Guan actually proposed two different methods to build non-Kähler compact holo-
morphic symplectic manifold.

(i) Consider a compact holomorphic symplectic manifold M with the Albanese map alb: M → A.
Let V be a subspace of the inverse images of holomorphic 1-forms from A such that the
holomorphic symplectic structure vanishes on them. Let G be a Lie group of holomorphic
vector field dual to V . Fix a point x on A. Then a special smooth cover of alb−1(x)/G is a
compact holomorphic symplectic manifold.

(ii) Given a holomorphic symplectic nilmanifold N corresponding to a Lie group G, one can
try to find a faithful representation of a finite subgroup S of Aut(G). Suppose that this
representation preserves the complex structure as well as the symplectic structure and all
irreducible components of the set

D = { n ∈ N : s(n) = n for some s ∈ S }

are of codimension 2 and π1(N )S = 1. Then a desingularization of N/S might be a simply-
connected non-Kähler holomorphic symplectic manifold.

The first method was used by Guan in [Gua95a] for the Hilbert scheme S[n] of length n of any
Kodaira surface S. The cover of the orbifold alb−1(x)/G was obtained using its isomorphism to a
quotient of a nilmanifold by a some group. This method is close to the Bogomolov’s one described
above.

The second method was applied in [Gua95b]. The author started with a concrete nilmani-
fold Mn,t given by structure equations, where n ∈ N, t ∈ Z. Then he obtained a deformation
family of simply-connected holomorphic symplectic manifolds Qn+1,t which are non-Kähler of di-
mension 2n− 2 parametrized by an integer parameter t.

In particular, if we fix an elliptic curve E, a line bundle L such that c1(L) = t 6= 0 and construct
the BG-manifold Q of dimension 2n as in Theorem 3.3.5 then Q is isomorphic to the manifold Qn,t,
see [Gua95b, Theorem 1].

Example 3.3.8. Consider the manifold constructed as in Theorem 3.3.5, but in the case n = 2.
Then the manifold W/F , where W := (Sym2 π)−1(0), is the fiber of a Kähler torus of dimension 2
(see Lemma 3.4.11) and the induced action of S2 is an involution on this torus. Therefore, W/F
is bimeromorphic to a Kummer K3 and Q is its cover of degree 4. By construction Q is smooth
simply-connected Kähler holomorphic symplectic manifold; thus, it should be also a K3 surface.

Proposition 3.3.9. Assume that Q is the BG-manifold of dimension 2n−2 and Φ is a composition
of the finite cover p and the map Π: W/F → Pn−1. Then a generic fiber of Φ: Q → Pn−1 is an
abelian variety; in particular, it is connected.

Proof. Recall some details of the construction of the finite cover p : Q → W/F . Fix the Kodaira
surface S associated with a line bundle L over an elliptic curve E. There is an action of the group
C∗ on the complement L∗ of the zero section in the total space of L. Consider the Kodaira surface
S as a real manifold of dimension 4 and fix a subgroup S1 ⊂ C∗. The action of S1 action on L∗
induces a free action on the Kodaira surface S. This action gives us a structure of a fiber space:

ψ : S → T,
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where T = S/S1 is a compact real 3-dimensional torus. This map induces a map from the Douady
space of S to the symmetric space of T :

S[n] Symn(ψ)◦δ−−−−−−−→ Symn T.

Here Symn T is the quotient of the scheme T × T × · · · × T by the action of the symmetric group
Sn. Moreover, since T has a structure of an abelian group one can construct the following map:

Symn T
AlbT−−−→ T.

Here AlbT maps a set of n points in T to their sum. By [Bog96, Proposition 2.1] the map AlbT is
well-defined and fibers of the composition AlbT ◦ Symn(ψ) : S[n] → T are smooth and irreducible.
Denote by M the fiber of the map AlbT ◦ Symn(ψ) over 0 ∈ T . Then there is an action of the
group S1 on M induced from the diagonal action of S1 on Symn T and M/S1 is a real manifold of
dimension 4n− 4. Denote by ΠT the induced map from M/S1 to Alb−1

T (0). Also the map T → E
induces the map rT from Alb−1

T (0) to Alb−1(0) = Pn−1.
By [Bog96, Lemma 3.8] there are finite maps of real manifolds τ : Q → M/S1 and r : M/S1 →

W/F such that the following diagram commutes:

Q
τ
//

p

**
M/S1

r
//

Ψ

$$
ΠT

��

W/F

Π

��
Alb−1

T (0)
rT // Pn−1

Moreover, by [Bog96, Lemma 3.8] the degrees of both maps τ and r are equal to n.
Denote by Ψ the composition of maps r and Π. Then by construction, a general fiber of ΠT is

isomorphic to (S1)n/S1; in particular, it is connected. Moreover, the fibers of the map rT are also
connected. Thus, we get that the map Ψ has connected fibers.

Now we fix a general point x ∈ Pn−1 and consider fibers Qx and (M/S1)x of maps Φ = Π ◦ p
and Ψ. By [Bog96, Remark 3.5] we see that the generator of the fundamental group π1(M/S1) is
induced by an element in π1((M/S1)x). Moreover, by [Bog96, Corollary 3.7] we see

π1(Qx) ⊂ π1((M/S1)x)

and the index of the subgroup equals n. Since the degree of the map τ |Qx : Qx → (M/S1)x equals
n we deduce that Qx is a connected finite unramified cover of (M/S1)x. Therefore, fibers of the
map Φ are connected.

Moreover, by [Bog96, Remark 3.9] we see that the connected manifold Qx is a finite unramified
cover of a generic fiber of Π which is isomorphic to an abelian variety Fn/F by Lemma 3.3.4. By the
Serre-Lang theorem [Mum74, Chapter IV], we conclude that Qx is an abelian variety as well.

3.3.3. The algebraic reduction of BG-manifolds

The goal of this section is to prove that an algebraic reduction of a BG-manifold Q is the map Φ
described in Section 3.3.
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We consider a Kodaira surface S as in (3.3.1) and denote by F the fiber of π. Denote by πn the
power of map π and by ε the map which sends a point on En to the sum of its components in E:

πn : Sn → En; πn(s1, . . . , sn) = (π(s1), . . . , π(sn));

ε : En → E; ε(x1, . . . , xn) = x1 + · · ·+ xn.

Denote by A the kernel of the map ε. Consider the preimage (πn)−1(A) of A in Sn; there is a
diagonal action of F on (πn)−1(A). Denote by X the quotient space (πn)−1(A)/F and by η the
map from X to A:

X = (πn)−1(A)/F

η

��

� � // Sn/F

πn
F

��
A = ε−1(0) �

� // En

Denote the general fiber of η by B. By construction the variety A is isomorphic to En−1 and B
is isomorphic to Fn/F . The action of Fn on Sn induces the action of B on X and, therefore, on
M(X).

There is a natural action of the symmetric group Sn on X and the map δ−1 ◦ α : Sn 99K S[n]

induces the following bimeromorphic map:

X/Sn 99KW/F

Thus, our plan of the proof of Theorem 3.1.1 is first to show that an algebraic reduction of X is the
map η to the abelian variety A. As a consequence we will get that an algebraic reduction of the
manifold W/F is the map Π. Then using properties of the map from the BG-manifold Q to W/F
we deduce the result.

Lemma 3.3.10. Let B0 be the maximal subgroup of B such that:

M(X)B0 =M(X).

Then either B0 6= 0 or tr degM(A)(M(X)) = n− 1.

Proof. Assume that B0 = 0 and tr degM(A)(M(X)) < n−1. Consider the module D ofM(A)-linear
derivations on M(X):

D = DerM(A)(M(X)). (3.3.11)

By Noether normalization lemma, dimM(A)(D) = tr degM(A)(M(X)) < n− 1.
One can construct n − 1 derivations on M(X). Namely, any 1-parameter subgroup Γ = {γt}

in B defines a derivation in D . The dimension of the abelian variety B equals n − 1; denote its
generators by γ1, . . . , γn−1. To each generator γi one can associate a 1-parameter subgroup in B:

Γi = 〈t · γi〉.

Denote by D1, . . . , Dn−1 derivations of the M(A)-module M(X) corresponding to 1-parameter
subgroups Γ1, . . . ,Γn−1.

By our assumption derivations D1, . . . , Dn−1 are linearly dependent over the fieldM(A). Thus,
there exist meromorphic functions f1, . . . , fn−1 in M(A) such that

n−1∑
i=1

fiDi = 0. (3.3.12)
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By construction of Di for any function g ∈M(X) and any a ∈ A such that the fiber η−1(a) is not
a pole of g we have:

(Di(g))|η−1(a) = Di(g|η−1(a)).

Denote by U the following open subset in A:

U =

{
a ∈ A

∣∣∣∣∣ a is not a pole of fi ∀i ∈ {1, . . . , n− 1}
fj(a) 6= 0 ∃j ∈ {1, . . . , n− 1}

}

By construction for any a ∈ U and any g ∈M(X) such that η−1(a) is not a pole of g we have

n−1∑
i=1

fi(a)Di(g|η−1(a)) =

(
n−1∑
i=1

(fiDi)(g)

)∣∣∣∣∣
η−1(a)

= 0.

Fix an element a ∈ U and consider the following element of the group B:

γa =

n−1∑
i=1

fi(a)γi.

Denote by Da the derivation which corresponds to the 1-parameter group Γa = 〈t · γa. By con-
struction Da(g|η−1(a)) vanishes. Then we get γa · g|η−1(a) = g|η−1(a).

Denote by B′a a minimal abelian subvariety of B which contains Γ. Since Γ is Zariski dense
subset of B′a we get that for each b ∈ B′a

b · g|η−1(a) = g|η−1(a). (3.3.13)

For each a ∈ U we have constructed an abelian subvariety B′a with the property (3.3.13).
Since a choice of an abelian subvariety is a choice of a sublattice, i.e. of discrete data, all these
subgroups coincide, denote by B′ this subgroup of B. By construction the subgroup B′ is non-zero
and M(X)B

′
=M(X). Thus, we get a contradiction.

Corollary 3.3.14. If B0 is the maximal subgroup of B such that M(X)B0 =M(X) then B0 6= 0.

Proof. Assume that B0 = 0, then by Lemma 3.3.10 we get that X is a Moishezon manifold. This
implies in particular that X carries an algebraic space structure by [Art70]. Therefore, X does
not contain a projective line since any map from P1 to the abelian varieties A and B is constant.
Therefore, [BCHM10, Corollary, 1.4.6] implies that X is projective and, consequently, Kähler.

On the other hand, consider the following embedding of the curve E to the abelian variety A:

ι : E ↪→ A ⊂ En; ι(x) = (−x, x, 0, . . . , 0).

Denote (πn)−1(E)/F by XE . The manifold XE is isomorphic to S ×E S × Fn−3. Then XE maps
surjectively to a Kodaira surface S by the projection to the first component. Since S is non-Kähler
by [Fuj83, Remark 1.1] so is XE .

The map η induces the map between fields of meromorphic functions of A and X. Now we can
show that this map is an isomorphism.

Proposition 3.3.15. The map η : X → A is an algebraic reduction of X.
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Proof. By construction the abelian variety B is the quotient of the variety Fn by the diagonal
action of F ; denote by qF the map from Fn to B:

qF : Fn → Fn/F = B

There is the natural action of the symmetric group Sn on Sn and, therefore, on Fn. The map qF
induces the action of Sn on B. Denote by B0 the maximal subgroup of B such that

M(X)B0 =M(X).

The action of Sn on Sn preserves X. Moreover, by construction actions of B0 and of Sn on X
commute. Thus, B0 is an Sn-invariant abelian subvariety in B. Consider the following subvariety
of Fn:

B̃0 = q−1
F (B0).

Then B̃0 is an Sn-invariant abelian subvariety in Fn. Consider the embedding of the tangent
subspace of B̃0:

TB̃0,0
↪→ TFn,0.

If B̃0 is Sn-invariant, then the same is true for TB̃0,0
.

There are only two irreducible subrepresentations of the representation TFn,0
∼= Cn of the

group Sn. Namely, these are a trivial subrepresentation of C and a standard (n − 1)-dimensional
subrepresentation ∆. The embedding ιdiag : C → Cn is diagonal; i.e. ιdiag(z) = (z, . . . , z). The
image of the embedding ι∆ : ∆ → Cn is the hyperplane {

∑n
i=1 zi = 0} where zi are standard

coordinates of Cn.
If TB̃0,0

= ιdiag(C), then B0 = 0. This is impossible by Corollary 3.3.14.

Thus, TB̃0,0
= ι∆(∆) and then B0 = B. This implies that B acts transitively on fibers of η

and all meromorphic functions on X are constant on fibers of η. Therefore, M(X) is isomorphic
to M(A).

Proposition 3.3.16. The map Π: W/F → Pn−1 is an algebraic reduction.

Proof. The manifold W/F is a resolution of singularities of X/Sn. Then Proposition 3.3.15 implies

M(W/F ) ∼=M(X)Sn ∼=M(A)Sn

Since by Abel theorem ASn = Pn−1, we get the result.

Corollary 3.3.17. The map Φ: Q→ Pn−1 is an algebraic reduction, and M(Q) =M(W/F ).

Proof. Since Q is a finite cover of W/F their algebraic dimensions are equal

a(W/F ) = a(Q).

Denote by f : Q → Q0 an algebraic reduction of Q; by definition of the algebraic reduction there
exists a finite rational map:

p0 : Q0 → Pn−1

By Lemma 3.3.9 for a dense set of points x ∈ Pn−1 we know that the fiber Φ−1(x) = (p0 ◦ f)−1(x)
is a connected manifold. Therefore, p0 is a map of degree 1 and consequently Φ is an algebraic
reduction of Q.
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3.4. Submanifolds in BG-manifolds

In this section we are going to give a partial description of subvarieties of BG-manifolds. We give
a construction of manifolds which arises as submanifolds in the quotient space Sn/F and show in
which situations they are not Moishezon and not Kähler. This lead us to the partial description of
submanifolds of Sn/F and using it we deduce properties of submanifolds of a BG-manifold Q.

3.4.1. Kodaira-type manifolds

We are going to present a construction of a big class of submanifolds in Sn/F . Frequently this
construction leads to a non-Moishezon manifold.

Fix a complex number q ∈ C∗ with |q| > 1, and denote by F the elliptic curve C∗ /qZ.

Definition 3.4.1. Consider a manifold X and a line bundle L on X. The group qZ acts on the
complement L∗ to the zero section in the total space of line bundle L. Then we call

ML = L∗/qZ.

a Kodaira-type manifold with the base X.

Remark 3.4.2. L. Ornea and M. Verbitsky describe a very similar construction of manifolds
in[OV05, Section 1.4]. They called these manifolds quasiregular Vaisman manifolds. However, here
we will stick to the terminology we used in [BKKY21].

By construction there is a canonical projection from ML to X:

πL : ML → X.

Note that if X is an elliptic curve and c1(L) 6= 0, then the Kodaira-type manifold ML is a (primary)
Kodaira surface (see Subsection 3.3.1). More generally, if X is a smooth curve then the Kodaira-type
manifold over X is non-Kähler:

Lemma 3.4.3. Let C be a smooth curve and L be a line bundle on C with c1(L) 6= 0. Then ML
is neither Kähler nor Moishezon.

Proof. The Enriques-Kodaira classification implies then that the surface ML is neither Kähler nor
Moishezon.

Given a complex manifold X, consider two line bundles L1, L2 on X, a fixed complex number q
in C∗ and the fibered product

Y = ML1 ×X ML2 .

There is a standard diagonal action of the elliptic curve F = C∗ /qZ on Y . If we consider the
quotient space under this action, we will get a Kodaira-type manifold.
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Lemma 3.4.4. Assume that X is a manifold, L1 and L2 are line bundles on X. The quotient
of the product ML1 ×X ML2 by the diagonal action of F = C∗ /qZ is a smooth manifold which is
biholomorphic to ML1⊗L∨2 .

Proof. We construct a map from Y/F to ML1⊗L∨2 , starting with an auxiliary map

Θ̃: Y =
(
L∗1/qZ

)
×X

(
L∗2/qZ

)
→ (L1 ⊗ L∨2 )

∗
/qZ;

Θ̃(p, l1, l2) = l1 ⊗ l∨2 .

Here p ∈ X is a point, l1 and l2 are points on the fibers (L∗1)p and (L∗2)p modulo action of the
group qZ and by l∨2 we denote the unique linear functional on (L2)p which maps l2 to 1. The map

Θ̃ is well-defined. If we change l1 and l2 by another representatives qd1 · l1 and qd2 · l2 in fibers (L∗1)p
and (L∗2)p of the quotient-sets (L∗1)p/q

Z and (L∗2)p/q
Z, then

Θ̃
(
p, qd1 · l1, qd2 · l2

)
= qd1−d2 · (l1 ⊗ l∨2 ) = l1 ⊗ l∨2 .

The last equality holds, since we consider l1 ⊗ l∨2 as an element in the quotient-set (L1 ⊗ L∨2 )
∗
p /q

Z.

Moreover, the map Θ̃ invariant by the action of F on Y . Since the action of qZ commutes with
the map Θ̃, it suffices to show that for any representative λ ∈ C of an element of F the action of λ
commutes with Θ̃:

Θ̃ (λ · (p, l1, l2)) = Θ̃ (p, λ · l1, λ · l2) = λ · l1 ⊗ (λ · l2)∨ = λ · l1 ⊗ λ−1 · l∨2 = l1 ⊗ l∨2 .

Therefore, the map Θ̃ factors through the quotient-manifold Y/F and we get the following map:

Θ: Y/F →ML1⊗L∨2 .

Note that any element of (L1 ⊗ L∨2 )p can be written as a decomposable tensor l1 ⊗ l∨2 . Then we
can define the map

Θ′ : ML1⊗L∨2 → Y/F, Θ′(l1 ⊗ l∨2 ) = (p, l1, l2).

As above, we can easily see that this is a well-defined map and that Θ′ ◦Θ and Θ ◦Θ′ are identity
maps of ML1⊗L∨2 and Y/F . Thus, Θ is a biholomorphism.

Remark 3.4.5. Lemma 3.4.4 implies in particular that ML ∼= ML−1 .

We can generalize Lemma 3.4.4 to the fibered product of n Kodaira-type manifolds.

Lemma 3.4.6. If L1, L2, . . . ,Ln are line bundles on X, then we have the following isomorphism:

(ML1
×X ML2

×X · · · ×X MLn
)/F ∼= ML2⊗L∨1 ×X . . .MLn−1⊗L∨1 ×X MLn⊗L∨1 .

Here we consider the diagonal action of F = C∗ /qZ on ML1 ×X ML2 ×X · · · ×X MLn .

Proof. Denote MLi
by Mi and consider the following map:

Υ: (M1 ×X · · · ×X Mn) /F → (M2 ×X M1) /F ×X · · · ×X (Mn ×X M1) /F ;

Υ(x,m1, . . . ,mn) = ((x,m2,m1), . . . , (x,mn,m1)).
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If we fix a point ((x,m2,m12), . . . , (x,mn,m1n)) ∈ (M2 ×X M1) /F×X · · ·×X (Mn ×X M1) /F then
there exists a unique set of elements f3, . . . , fn in F such that fi ·mi1 = m21 for all i = 3, . . . , n.
Thus, we can define the following map:

Ψ((x,m2,m12), . . . , (x,mn,m1n)) = (x,m12,m2, f3 ·m3, . . . , fn ·mn).

One can deduce that Ψ ◦ Υ = Id hence Υ is a biholomorphism. We conclude observing that by
Lemma 3.4.4 one has (Mi ×X M1) /F = MLi⊗L∨1 .

3.4.2. Submanifolds in Sn/F

Recall that a Kodaira surface S is a principal elliptic bundle π : S → E with typical fiber F .
Consider the diagonal action of F on Sn. In this section we give a description of submanifolds in
the quotient space Sn/F .

The power πn of the map π induces the following morphism

πnF : Sn/F → En.

Denote by pi : E
n → E and Pi : S

n → S the projections from the products En and Sn to their i-th
components. The goal of this section is to prove the following assertion.

Proposition 3.4.7. Let X be a submanifold of Sn/F , write Z = πnF (X) ⊂ En. Then we are in
one of the following situations:

(1) If Z is a point and X is a subvariety of the fiber Fn/F ∼= (πnF )−1(Z) which is an abelian
variety.

(2) Suppose Z is a smooth curve.

(a) If there exists i and j such that deg(pi|Z) 6= deg(pj |Z), then X is neither Kähler nor
Moishezon.

(b) If for all i and j we have deg(pi|Z) = deg(pj |Z), then X is Kähler.

(c) Let L be the line bundle on E appearing in the construction of the Kodaira surface. If for
all i and j we have (pi|Z)∗L ∼= (pj |Z)∗L, then X is algebraic. In particular, any variety
in the preimage of Z = {(x, . . . , x)| x ∈ E} ⊂ En is algebraic.

(3) If dim(Z) > 2 then X is a neither Kähler nor Moishezon manifold.

Lemmas 3.4.4 and 3.4.6 provides us with a description of the fibers of Sn/F over any subvariety.

Lemma 3.4.8. Assume that Z is a subvariety in En, then LZ = (π[n])−1(Z) is a fiber product of
Kodaira type surfaces:

LZ = M(p1|Z)∗L ×Z M(p2|Z)∗L ×Z · · · ×Z M(pn|Z)∗L,

where L is a line bundle over E such that S = ML.
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Proof. By definition the manifold LZ is the following pullback:

LZ = (πn)−1(Z) �
� //

πn|LZ

��

Sn

π

��
Z �
� // En

Denote by Si the fibered product of S and Z over En. Then, LZ is isomorphic to the quotient of
the product S1 × · · · × Sn by the action of F . Thus, by Lemma 3.4.6 we get the result.

We shall need the following result in the future.

Theorem 3.4.9 ([Var86, Corollaire 2.9, 2.10]). Let X be a Kähler manifold, Y be a complex
analytic space and π : X → Y be a proper surjective morphism. Assume that one of the following
conditions hold:

• The fibers of π have the same dimension and either Y is normal, or π is flat;

• Y has no non-trivial analytic subsets different from divisors (e.g. Y is a surface).

Then Y is Kähler.

Sketch of proof. Given an analytic space X one can associate to it a space Cm(X) of m-cycles in X.

Points of this space are finite linear combinations
∑k
i=1 ni[Xi] where ni is a positive integer and Xi

is an m-dimensional analytic subspace of X for all 1 6 i 6 k. Then Cm(X) carries a structure
of an analytic space by [Bar75]. Moreover, by [Var86, Théorème 2] if X is a Kähler manifold,
then Cm(X) is also a Kähler manifold.

If all fibers of π have the same dimension m one can construct a morphism c : Y → Cm(X)
which maps a point of y to the m-cycle [π−1(y)] in Cm(X). This map is an embedding; thus, Y is
a Kähler manifold.

Assume that Y has no non-trivial analytic subsets different from divisors. Denote by Z the set
of points such that outside Z the map π is equidimensional. The codimension of Z is at least 2;
thus, Z is a union of several points. By the previous argument one can show that Y \Z is a Kähler
manifold. By [Miy74] one can extend the Kähler metric to a point; thus, Y is Kähler.

Lemma 3.4.10. Assume that X ⊂ Sn/F and Z = πn(X) is a smooth curve in En. If there exists
two indices i and j such that deg(pi|Z) 6= deg(pj |Z), then X is non-Kähler and non-Moishezon.

Proof. Consider the fiber LZ = (π[n])−1(Z), denote by Li the pull-back pi|∗Z(L) for i = 1, . . . , n.
Without loss of generality we can assume that degLi 6= degLj . By Lemmas 3.4.6 and 3.4.8 we
have LZ/F ∼= M(L2⊗L∨1 ) ×Z · · · ×Z M(Ln⊗L∨1 ). Consider the following composition:

X ⊂ LZ/F ∼= M(L2⊗L∨1 ) ×Z · · · ×Z M(Ln⊗L∨1 )
pr1−−→M(L2⊗L∨1 ),

where pr1 is a projection to the first component of the product. By Lemma 3.4.3 we know that Z
is an algebraic reduction of M(L2⊗L∨1 ). Since X maps surjectively to Z the image of X in M(L2⊗L∨1 )

coincides with it. Since M(L2⊗L∨1 ) is not Kähler by Lemma 3.4.3, we get by Theorem 3.4.9 that X
is not Kähler either. By Lemma 3.2.15 we get that X is not Moishezon also.
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Lemma 3.4.10 describes a big class of non-algebraic manifolds inside Sn/F . Now we are going
to show that there are some algebraic varieties in Sn/F which map to curves in En.

Lemma 3.4.11. If Z is a smooth curve in En such that deg(pi|Z) = deg(pj |Z) for all i and j,
then LZ/F is Kähler. Moreover, if all line bundles Li = (pi|Z)∗L are isomorphic, then LZ/F is
an algebraic variety.

Proof. Consider the fiber LZ = (π[n])−1(Z), denote by Li the pull-back pi|∗Z(L) for i = 1, . . . , n.
By the assumption degLi = degLj for 1 6 i 6 j 6 n. By Lemmas 3.4.6 and 3.4.8 we have the
following isomorphism:

LZ/F ∼= M(L2⊗L∨1 ) ×Z · · · ×Z M(Ln⊗L∨1 ).

For any i we have deg(Li ⊗ L∨1 ) = 0. Hence the Kodaira type surface M(Li⊗L∨1 ) is a compact
complex torus by [BHPVdV04, Section V.5]; thus, it is Kähler. Therefore, LZ/F is Kähler.

If all line bundles Li ⊗ L∨1 are trivial, then by construction we get

MLi⊗L∨1 = MOZ
∼= Z × F,

and Lemma 3.4.6 implies that LZ/F ∼= Z × (Fn/F ) is an algebraic manifold.

Remark 3.4.12. Lemma 3.4.11 proves in particular that if we consider a diagonal in En

∆ = {(x, x, . . . , x)| x ∈ E} ∈ En,

then the fiber L∆/F ⊂ Sn/F is an algebraic manifold.

Denote by tx : En → En the translation of the abelian variety En by x = (x1, . . . , xn) ∈ En.
Consider the antidiagonal∇ = {(x,−x)| x ∈ E} in the product E2. Then depending on the Kodaira
surface the fiber over tx(∇) in S2/F may or may not be algebraic.

Lemma 3.4.13. If the line bundle L associated to the Kodaira surface S admits a section vanishing
in exactly one point then there exists x = (x1, x2) ∈ E2 such that Ltx(∇)/F ⊂ S2/F is an algebraic
manifold.

Proof. By construction the fiber LZ is isomorphic to the following fibered product of the Kodaira-
type manifolds:

LZ = Mt∗x1
L ×Z Mt∗x2

((−1)∗L).

By assumption, there exists a point p on E such that L ∼ OE(N · [p]) for some integer N . We have

(t∗x1
L)⊗

(
t∗x2

((−1)∗L)
)∨

= OZ(N · [p− x1]−N · [−x2 − p]) ∼= OZ(N · [2p− x1 + x2]−N · [0]).

If we fix x1 and x2 such that x1 − x2 = 2p, then this bundle will be trivial. By Lemma 3.4.4 the
fiber LZ/F is isomorphic to an algebraic manifold:

LZ/F = MOZ
= Z × F.

This concludes the proof.

Now we study submanifolds in S2/F which map surjectively to the base.
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Lemma 3.4.14. Let S2/F the the quotient space of S2 by the diagonal action of F and consider
the commutative diagram

S2 α // //

π2

����

S2/F

π2
F||||

E2

If X ⊂ S2/F and π2
F (X) = E2, then X coincides with S2/F and X is not Moishezon.

Proof. The dimension of X equals either 2 or 3. Note that by Lemma 3.2.15 the complex space
S2/F is not Moishezon since the Kodaira surface S is not Moishezon. Since π2 is an algebraic
reduction of S2 (see Lemma 3.2.13) we get that π2

F is an algebraic reduction of S2/F , which implies
that any divisor X in S2/F is a preimage of a divisor on E2. But this contradicts to our assumption
π2
F (X) = E2, so dim(X) = 3 and X coincides with S2/F .

Here is the proof of Proposition 3.4.7.

Proof of Proposition 3.4.7. If Z is a smooth curve in En and deg(pi|Z) 6= deg(pj |Z) for some i
and j, then by Lemma 3.4.10 the manifold X is non-Kähler. Otherwise, by Lemma 3.4.11 the
manifold X is Kähler. Moreover, if for all i and j we have (pi|Z)∗L ∼= (pj |Z)∗L then by Lemma
3.4.11 the manifold X is algebraic. We conclude using Remark 3.4.12 and Lemma 3.4.13.

If dim(Z) > 2, then there exists two indices, say 1 and 2, such that (p1 × p2)(Z) = E × E.
Projections to the i-th component of the product Pi : S

n → S induce a morphism

(P1 × P2)F : Sn/F → S2/F,

which maps X to a submanifold Y on S2/F . By the choice of p1 and p2 we get that π2
F (Y ) = E2.

By Lemma 3.4.14 we get that Y = S2/F (in particular, it is not Kähler) and Y is not Moishezon.
Then Lemma 3.2.15 imply that X is not Moishezon. Take a smooth curve Z ′ ⊂ Z such that
deg(p1|Z′) 6= deg(p2|Z′). As we showed above the intersection X ′ = X ∩ (πn)−1(Z ′) is non-Kähler.
Since it is a submanifold of X this implies that X is non-Kähler.

3.4.3. Fibers of Φ and Π

In this section we study the special fibers of algebraic reductions of a BG-manifold Q as well as of
the manifold W/F which appears in Bogomolov’s construction. Recall that these manifolds fit the
following diagram:

Q

Φ **

p // W/F

Π

''

W
qoo δ|W //

π[n]

��

Symn(S)

Symn(π)

��
Pn−1 ∼= Alb−1(0) �

� // Symn(E)
Alb // E

The next lemma follows from the construction of the symmetric power of a manifold.
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Lemma 3.4.15. Let E be an elliptic curve and let y1, . . . , yl be l pairwise distinct points on E.
Consider a point y = {y1, . . . , y1, y2, . . . , y2, . . . , yl, . . . , yl} in Symn(E) such that we have exactly mi

copies of yi for each i = 1, . . . , l. Then the fiber of Symn(π) over y is as follows:

Symn(π)−1(y) ∼= F [m1] × F [m2] × · · · × F [ml].

Moreover, the diagonal action of F in Symn(S) preserves the structure of the map Symn(π) and
induces the action of F on a fiber Symn(π)−1(y) for any point y.

Fix the following subvariety in Alb−1(0) ∼= Pn−1:

D =
{
{y1, . . . , yn} ∈ Alb−1(0)

∣∣ there exist i 6= j such that yi = yj
}
⊂ Symn(E). (3.4.16)

By definition D is a divisor in Pn−1; by the following assertion D is the locus of special fibers of Π:

Lemma 3.4.17. Let Π: W/F → Pn−1 be an algebraic reduction of W/F and D ⊂ Pn−1 be the
divisor defined in (3.4.16) Consider a point y = {y1, . . . , yn} in Alb−1(0) ∼= Pn−1.

(1) If y 6∈ D then Π−1(y) is isomorphic to an abelian variety Fn/F .

(2) Assume that y ∈ D. Then all (n − 1)-dimensional components of Π−1(y) are uniruled man-
ifolds of Albanese dimension at most n− 2. Moreover, if one has y = {y1, . . . , yn} such that

there exist l < n integers k1, . . . , kl such that
∑l
i=1 ki = n and

y1 = · · · = yk1 6= yk1+1 = · · · = yk1+k2 6= . . . 6= yk1+···+kl−1+1 = · · · = yn.

then one component of Π−1(y) is birational to
(
F [k1] × F [k2] × · · · × F [kl]

)/
F .

Proof. Denote by ∆n the diagonal in the symmetric power of S:

∆n = {{x1, . . . , xn}| ∃i, j : xi = xj} ⊂ Symn(S).

By construction of the Douady–Barlet morphism δ : S[n] → Symn(S) we see that the following map
is an isomorphism:

δ|S[n]\δ−1(D) : S[n] \
(
δ−1(∆n)

) ∼=−→ Symn(S) \∆n

Fix a point y = {y1, . . . , yn} in Alb−1(0) ∼= Pn−1 and consider a fiber of Symn(π) over this point.

By construction the diagonal ∆n intersect the fiber (Symn(π))
−1

(y) along a proper submanifold.
Denote byX1∪· · ·∪Xm all (n−1)-dimensional components of π[n])−1(y). Renumerating components
we get that the following morphism is birational:

δ|X1
: X1 → Symn(π)−1(y),

andXi is a rationally connected fibration over subvarieties of ∆n∩(Symn(π))
−1

(y) for all 2 6 i 6 m.
If y does not lie in D, then k1 = . . . ,= kn = 1 and Symn(π)−1(y) ∼= Fn. Moreover, in this

case the fiber Symn(π)−1(y) does not intersect the submanifold ∆n in Symn(S). Therefore, the
map δ|(π[n])−1(y) is an isomorphism and (π[n])−1(y) ∼= Fn. Since Π−1(y) = Symn(π)−1(y)/F and

the action of F induced from the diagonal action on Symn(S) one gets that the fiber Π−1(y) is
actually isomorphic to the abelian variety Fn/F .
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If y lies in D then irreducible components X2, . . . , Xm are uniruled by construction. Moreover,
by Lemma 3.4.15 we get that X1 is bimeromorphic to

(
F [k1] × F [k2] × · · · × F [kl]

)
/F and k1 > 1

and l 6 n− 1. Then the Albanese map for
(
F [k1] × F [k2] × · · · × F [kl]

)
is as follows:

Alby :
(
F [k1] × F [k2] × · · · × F [kl]

)
/F → F l/F.

The fibers of the morphism Alby are rational. Thus, X1 is bimeromorphic to a uniruled variety.
Therefore, the same is true for X1 and we get that all irreducible components of the variety Π−1(y)
are uniruled. Thus, their Albanese dimension are less then their complex dimension.

Lemma 3.3.4 implies the following description of fibers of an algebraic reduction of a BG-
manifold.

Lemma 3.4.18. Let Φ: Q→ Pn−1 be an algebraic reduction of a BG-manifold Q, D be a divisor
defined in (3.4.16) and y be a point in Pn−1. Then

(1) if y 6∈ D, then Φ−1(y) is an abelian variety;

(2) if y is a general point on D, then all (n− 1)-dimensional components of Φ−1(y) are uniruled
and their Albanese dimensions are at most n− 2.

Proof. Recall that by [Bog96, Corollary 3.7, Remark 3.9] the branching locus of p : Q → W/F is
the union of subvarieties Bγ of W/F , where γ is a torsion element in F such that its order is a
divisor of n. If the order of γ equals n

l then the dimension of Bγ equals 2l − 2 and Bγ consiscts of
points y ∈W/F of the following form:

y =
{
y1, (y1 + γ), . . . ,

(
y1 +

(n
l
− 1
)
γ
)
, . . . , yl, (yl + γ), . . . ,

(
yl +

(n
l
− 1
)
γ
)}

.

If y ∈ Pn−1 is not a point on D, then by Proposition 3.3.9 one gets that Φ−1(y) is an abelian
variety.

Let y = {y1, y1, y2, y3, . . . , yn−1} be a point in D such that all yi are distinct points for distinct
indices i. Then Π−1(x) does not intersect the branching locus of p. Thus fiber Φ−1(y) is a an
unramified finite cover of Π−1(y). Since all (n − 1)-dimensional components of Π−1(y) are unir-
uled and their Albanese dimension equal n − 2 by Lemma 3.4.17 then so are (n− 1)-dimensional
components of Φ−1(y).
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3.4.4. Proof of Theorem 3.1.3

In this section we are going to prove Theorem 3.1.3. Recall that BG-manifolds Q fit into the
following commutative diagram:

W
� � //

q

��

S[n]

��

δ // Symn S

��

Sn
αoo

r

��
Q

Φ   

p // W/F

Π

��

� � // S[n]/F

��

δF // (Symn S)/F

��

Sn/F

πn
F

��

αFoo

Pn−1 �
� // E[n]

∼= // Symn(E) En
αEoo

(3.4.19)

The upper vertical arrows are quotients by the action of F and the horizontal maps in the middle
row are induced by the corresponding maps from above. Then the proof of Theorem 3.1.3 follows
from the following assertion.

Theorem 3.4.20. Let Q be a BG-manifold of dimension 2n− 2, let Φ: Q→ Pn−1 be its algebraic
reduction and let D be the divisor defined in (3.4.16). If X is a submanifold of Q, set Z = Φ(X),
then the following properties are satisfied:

(1) If Z is a point, then X is a subvariety of the Moishezon manifold Φ−1(Z); moreover,

(a) if Z ∈ Pn−1 \D, then Φ−1(Z) is an abelian variety;

(b) if Z ∈ D then Φ−1(Z) is a uniruled Moishezon manifold.

(2) Let Z be a curve which does not lie in D and a connected component Z̃ of α−1
F (Z) is smooth

(a) if there exist i and j such that deg(pi|Z̃) 6= deg(pj |Z̃), then X is non-Moishezon;

(b) if for all i and j we have (pi|Z̃)∗L ∼= (pj |Z̃)∗L, then X is Moishezon.

(3) If dim(Z) > 2 and Z does not lie in D then X is not Moishezon.

Proof. Irreducible components of α−1
F (δF (p(X))) are isomorphic to each other. Denote by X̃ one

of them. Note that if Z does not lie in D, then dim(X) = dim(X̃). Set Z̃ = πnF (X̃).
If Z is a point, then X is a submanifold of the fiber Φ−1(Z) which is a finite cover of the

Moishezon manifold Π−1(Z). Lemma 3.4.18 and the fact that the degeneration of uniruled manifolds
is uniruled imply points (a) and (b) of the first assertion.

If dim(Z) > 2, then dim(Z̃) > 2 and X̃ is a non-Moishezon manifold. Therefore, X is also
non-Moishezon by Lemma 3.2.15.

Finally, assume that Z is a curve such that its preimage Z̃ in En is smooth. Then the result
follows from Proposition 3.4.7 (2) and Lemma 3.2.15.
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3.5. Automorphisms of BG-manifolds

Our goal in this section is to establish some properties of the group of biholomorphic and bimeromor-
phic automorphisms of BG-manifolds. We prove that the locus of degeneracy is a divisor, describe
its geometric properties and use them to prove the Jordan property for the group of biholomorphic
automorphisms.

3.5.1. Divisor D as a dual variety

In this section we study properties of the variety D defined in (3.4.16). By construction D is a
subvariety in the symmetric power Symn(E) of an elliptic curve E.

Let x0 be the identity element for the group structure on E. The line bundle OE(nx0) is very
ample for n > 3; denote by V the vector space H0(E,OE(nx0))∨. Then by Riemann–Roch theorem
dim(V ) = n. The linear system |nx0| defines the following embedding:

E ↪→ P(V ) ∼= Pn−1

Denote by E∨ the projectively dual variety to E; i.e. E∨ is a subvariety in P(V ∨) whose points
correspond to hyperplanes in P(V ) tangent to E:

E∨ = {H ⊂ P(V ∨)| H is tangent to E in a point x} ⊂ P(V ∨).

There is a map from the dual projective space P(V ) to the Hilbert scheme of n points of E.

Lemma 3.5.1. If n > 3, then the curve E is not contained in any hyperplane in Pn−1. Each
hyperplane H ⊂ Pn−1 intersects E by n points counted with multiplicities and we have a natural
map from P(V ∨) to the Hilbert scheme of E:

ρ : P (V ∨)→ E[n]

ρ(H) = E ∩H.

The map ρ induces an isomorphism between P(V ∨) and Alb−1(0) and ρ(E∨) equals D.

Proof. By construction the line bundle OP(V )(1)|E equals OE(nx0). Thus, for any hyperplane H
in P(V ) the divisor H|E is effective and of degree n. Therefore, the map ρ is well-defined.

Consider a point y = {y1, . . . , yn} on Alb−1(0) and associate a divisor Hy on E to this set of
points. Since

∑n
i=1 yi = 0 in E we get that Hy is linearly equivalent to nx0. Since P(V ) is the

linear system of OE(nx0) one gets that there exists a hyperplane H in P(V ) such that H|E = Hy.
Thus, we construct the following map:

τ : Alb−1(0)→ P (V ∨) .

By construction the maps ρ and τ are inverse one to another. Thus, ρ maps P(V ) isomorphically
to Alb−1(0).
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Consider a hyperplane H which lies in E∨ ⊂ P(V ∨). Then H is tangent to E in a point y1 and
intersects E in points y2, . . . , yn−1 counted with multiplicities. Thus, we get

H ∩ E = {y1, y1, y2, . . . , yn−1}.

Therefore, ρ(H) lies in D. Since E∨ and D have the same dimension and D is irreducible we get
the result.

Example 3.5.2. If n = 3, then by Lemma 3.5.1 we see that D ⊂ P (V ∨) is a dual curve to a plane
cubic curve E ⊂ P2. Thus, D is a plane curve of degree 6 with 9 cusps. Such curves are called
Halphen curves of index 2, see [Hal82].

In case when n > 4 the variety D is a natural generalisation of the dual variety to a curve E in
the projective space.

We need the following well-known facts.

Lemma 3.5.3. Let U ⊂ P(V ) be a linear subspace of codimension 2 which does not intersect E.
If l is a line in P(V ) which does not intersect U , then the projection from U to l induces a regular
finite map of degree n:

πU : E → l.

Lemma 3.5.4. Let U ⊂ P(V ) be a linear subspace of codimension 2 which does not intersect E.
If l is a line in P(V ) which does not intersect U , then there is an embedding:

ϕU : l ↪→ P(V ∨).

Moreover, ϕU (l) is the line U∨ in P(V ∨).

Definition 3.5.5. Denote by Z the following subvariety of E[n]:

Z =
{
y = {y1, . . . , yn} ∈ Alb−1(0)

∣∣ ∃ i < j 6 k < l such that yi = yj and yk = yl
}
⊂ Alb−1(0).

By definition Z lies in the divisor D ⊂ Alb−1(0).

Lemma 3.5.6. The set Z is a proper subvariety of D.

Proof. Take n− 3 pairwise distinct points y1, . . . , yn−3 ∈ E, choose y such that y 6∈ {y1, . . . , yn−3}
and set

z =

(
−2y −

n−3∑
i=1

yi

)
6∈ {y1, . . . , yn−3, y}

Then {y1, . . . , yn−3, y, y, z} is a point on the divisor D, but it does not lie in Z. Thus, Z does not
coincide with D.

Recall that if D is a divisor in PN of degree d then by definition a point x ∈ D has multiplicity
m, if for a general line l ⊂ PN passing through x we have:

|l ∩D| = d−m+ 1.

Here we count points in l ∩D without their multiplicities.
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Proposition 3.5.7. The degree of the divisor D in Alb−1(0) ∼= P(V ∨) equals 2n. If x is a point
in D such that x = {x1, . . . , xn} and |{x1, . . . , xn}| = r then x is a point on D of multiplicity n− r.

Proof. Choose a general linear subspace U in P(V ) of codimension 2, then L = U∨ is a general
line in P(V ∨). By Lemma 3.5.6 we can assume that L ∩ Z is empty. Moreover, without loss of
generality we can assume that U does not intersect E ⊂ P(V ).

Choose a line l ⊂ P(V ) which does not intersect U and consider the projection πU : E → l as in
Lemma 3.5.3. By Lemma 3.5.4 any point x on L corresponds to the hyperplane H which contains
ϕ−1
U (x) and U .

Then by Lemma 3.5.1 the hyperplane H containing ϕ−1
U (x) and U corresponds to a point on D

only if the point ϕ−1
U (x) is a ramification point of πU .

Since πU is a map of degree n, the ramification divisor is of degree 2n. Moreover, since L does
not intersect in Z the ramification divisor is a union of exactly 2n distinct points. Thus, deg(D)
equals 2n.

Consider a point x ∈ D such that |{x1, . . . , xn}| = r. If r = n − 1, then a general line L
through x does not intersect Z by Lemma 3.5.6 and the multiplicity of x equals 1.

If r < n− 1, then x ∈ Z. Since Z is of codimension 2, a general line L passing through x does
not intersect Z in any point except x. Then we conclude that the multiplicity of x equals n− r.

Denote by Zk the set of singular points on D ⊂ P (V ∨) of multiplicity > k by the previous
proposition. These sets give a stratification of D:

∅ = Zn ( Zn−1 ( · · · ( Z2 ( Z1 = D.

Proposition 3.5.8. The set Zn−1 ⊂ D is a finite set of singular points of maximal multiplicity.
It does not lie on any hyperplane in P (V ∨) ∼= Alb−1(0).

Proof. By Lemma 3.5.1 and Proposition 3.5.7 each point of Zn−1 corresponds to a point Hx,...,x of
P (V ∨), where x is a point in the group of n-torsion E[n] ∼= Cn × Cn. Thus,

| Zn−1 | = n2.

There is a standard action of a group of n-torsion E[n] on the projective space P (V ∨). For
each ξ ∈ E[n] and a point Hx1,...,xn

in P (V ∨) we have:

ξ ·Hx1,...,xn
= Hx1+ξ,...,xn+ξ. (3.5.9)

This action induces the action of E[n] on P(V ) which leaves the curve E ⊂ P(V ) invariant and
acts on it by translation with n-torsion points. By [Hul86, Theorem I.2.5.] this projective action
is induced by the linear action of the standard representation of the finite Heisenberg group Hn on
the n-dimensional vector space V (for the definition see [Hul86, Page 11]).

Denote by Lx a 1-dimensional subspace of V ∨ associated to a point Hx,...,x ∈ P (V ∨) for
some x ∈ E[n]. By (3.5.9) the action of each element of Hn maps Lx to Ly for some y ∈ E[n].
Thus, there is a subrepresentation of V ∨:

L = 〈Lx〉x∈E[n] ⊂ V
∨.

However the standard representation V of Hn and its dual V ∨ are irreducible. Thus, L = V ∨ and
there is no hyperplane in P (V ∨) containing all points Hx,...,x for x ∈ E[n].
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Denote by AutD(Pn−1) the group of biholomorphic automorphisms of Pn−1 which preserves D;
i.e. for any ϕ ∈ AutD(Pn−1) one has ϕ(D) = D.

Corollary 3.5.10. If D ⊂ Pn−1 is the divisor defined in (3.4.16) then AutD(Pn−1) is a subgroup
of the permutation group Sn2 .

Proof. By Proposition 3.5.8 the group of biholomorphic automorphisms AutD(Pn−1) of Pn−1 which
preserves D should also preserve a finite subset of n2 points Zn−1 ⊂ D, which spans Pn−1. There-
fore, the group AutD(Pn−1) is a subgroup of the permutation group Sn2 .

3.5.2. Regular automorphisms of a BG-manifold

In this section properties of the automorphism groups of BG-manifolds are studied. We start with
a description of fibers of the algebraic reduction Φ of a BG-manifold.

Given a surjective morphism φ : X → Y between complex spaces we denote by Bim(X)φ the
subgroup of Bim(X) which consists of automorphisms g : X 99K X such that φ = φ ◦ g. Recall
that the group Bim(X)φ can be embedded in the group of bimeromorphic automorphisms of a very
general fiber of φ.

Lemma 3.5.11 ([PS20, Lemma 4.1]). Let φ : X → Y be a surjective morphism with connected
fibers between compact complex manifolds. Let {Gi} be a countable family of finite subgroups in
the group Bim(X)φ. Then there exists a smooth, irreducible and reduced fiber F of the map φ of
dimension dimX − dimY such that all groups Gi can be embedded into Bim(F ).

Moreover, given a countable family Ξ of proper closed analytic subsets in Y the fiber F can be
chosen so that φ(F ) does not lie in Ξ.

In the next assertion we show that groups of automorphisms of a BG-manifold Q and the
manifold W/F which arises in the construction of Q are very similar.

Proposition 3.5.12. Let Q be a BG-manifold of dimension 2n−2, let Φ: Q→ Pn−1 be its algebraic
reduction and let A be a general fiber of Φ. If D is a divisor (3.4.16) in Pn−1, then Bim(Q) fits
into the following short exact sequence:

1→ Bim(Q)Φ → Bim(Q)→ ∆→ 1, (3.5.13)

where Bim(Q)Φ ⊂ Aut(A) and ∆ ⊂ Bim(Pn−1). Moreover, for any ϕ0 ∈ ∆, either D lies in the
exceptional locus of ϕ0, or the proper image of D under ϕ0 coincides with D.

Proof. Let ϕ be a bimeromorphic automorphism of Q. Then by the definition of an algebraic
reduction, there exists a bimeromorphic automorphism ϕ0 of Pn−1 such that Φ ◦ ϕ = ϕ0 ◦ Φ. It
remains to show that the divisor D is either exceptional or invariant under ϕ.

Since ϕ is bimeromorphic, there exists maximal open subsets U and V in Q, such that ϕ|U is
an isomorphism onto V :

ϕ|U : U ∼−→V .

Denote by U 0 and V 0 the images of U and V in Pn−1; these are open subsets in Pn−1. If x is a
point in Pn−1, set U x = Φ−1(x) ∩U and V x = Φ−1(x) ∩ V . By construction for any x ∈ U 0 the
set U x is dense in Φ−1(x) and for any x in V 0 the set V x is dense in Φ−1(x).

107



Assume that the divisor D does not lie in Exc(ϕ0), then U 0 ∩D is not empty. Let x be a point
in U 0 ∩D. Then by construction one has ϕ(U x) ∼= V ϕ0(x). Thus, by Lemma 3.4.18 we get that
the fiber V ϕ0(x) is not birational to an abelian variety and ϕ0(x) lies in D. Therefore, the proper
image of D coincides with D.

Now we can prove that the group of biholomorphic automorphisms of BG-manifold is Jordan.

Theorem 3.5.14. Let Q be a BG-manifold. Then the group Aut(Q) is Jordan.

Proof. Assume that dim(Q) = 2n− 2. Denote by Aut(Q)Φ the intersection of the groups Bim(Q)Φ

and Aut(Q). By Proposition 3.5.12, there is a short exact sequence of groups

1→ Aut(Q)Φ → Aut(Q)→ ∆Aut → 1.

Here ∆Aut is a subgroup of ∆ ⊂ Bim(Pn−1) consisting of the bimeromorphic automorphisms of Pn−1

induced by biholomorphic automorphisms of Q. By construction, no element ϕ0 of ∆Aut contracts
divisors in Pn−1. This implies that ϕ0 preserves the linear system of OPn−1(1). Thus, the automor-
phism ϕ0 is a biholomorphism and ∆Aut lies in the intersection ∆ ∩Aut(Pn−1).

By Proposition 3.5.12 we get that for any element ϕ0 in ∆Aut one has ϕ0(D) = D. Thus, by
Corollary 3.5.10 the group ∆Aut is a subgroup of a permutation group Sn2 ; in particular it is finite.

By Lemma 3.5.11 the group Aut(Q)Φ is a subgroup of the group Bim(Qx) where Qx = Φ−1(x)
and x is a very general point on Pn−1. By Lemma 3.3.9 this implies that the group Aut(Q)Φ is a
subgroup of the group of bimeromorphic automorphisms of an abelian variety of dimension n− 1.
Since the group of bimeromorphic automorphisms of the abelian variety coincides with the group
of biholomorphic automorphisms of it and by [MZ18] we get that the group Aut(Q)Φ is Jordan.

Finally, the group Aut(Q) is an extension of a finite group ∆Aut by a Jordan group Aut(Q)Φ.
Then by [PS20, Lemma 2.1] the group Aut(Q) is also Jordan.

3.5.3. Bimeromorphic automorphisms of a BG-fourfold

In this section we prove the Jordan property for a BG-manifold of dimension 4. In order to do it
we study in details the divisor D ⊂ P2 defined in (3.4.16) and groups of birational automorphisms
which preserve such pair.

Let D be a reduced divisor in an algebraic variety X. By BirD(X) we denote the group of all bi-
rational automorphisms f : X 99K X such that the proper transform of D under f coincides with D.
Recall that an embedded resolution of a pair (X,D) is a birational morphism δ : X̃ → X such that
the proper transform of D is a smooth subvariety. In the case where X is a surface the embedded
resolution exists by [Har77, Proposition V.3.8]; moreover, there is a canonical construction of an

embedded resolution δ0 : X̃0 → X such that any embedded resolution of D factors through δ0. We
call such morphism δ0 the minimal embedded resolution of (X,D).

Here we recall a theorem which describes the group BirD(P2) where D is a singular curve.

Theorem 3.5.15 ([BPV09, Corollary 2.3.6]). Let n > 0 be an integer, let D ⊂ P2 be a curve of
degree 3n and let δ0 : X0 → P2 be the minimal embedded resolution of D. If Sing(D) = {p1, . . . , pk}
and the multiplicity of D in the point pi equals n for all 1 6 i 6 k, then for any f ∈ BirD(P2) there
exists f0 ∈ Aut(X0) such that:

δ0 ◦ f0 = f ◦ δ0.
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Proof. Let H be the class of hyperplane section on P2. Then the divisor D ⊂ P2 is numerically
equivalent to 6H. Let d be an integer such that f∗H = dH. If d = 1 then f is regular; thus, we
can assume that d > 2. By [Kol07, Corollary 3.18] there exists a smooth variety X and birational
morphisms δ : X → P2 and g : X → P2 such that the following diagram commutes:

X
g

  

δ

~~
P2 f // P2

Moreover, we can assume that δ is an iterated blow-up in points. Let X00 = P2 and Xk,mk
= X,

then δ is the following composition:

X = Xkmk

δkmk−−−→ Xkmk−1

δkmk−1−−−−−→ . . .
δ22−−→ X21

δ21−−→ X1m1

δ1m1−−−→ . . .
δ12−−→ X11

δ11−−→ X00 = P2

Namely, we set m0 = 0 then there exists integers m1, . . . ,mk > 0 and δ is the composition of
birational morphisms:

δij : Xij → Xi′j′ ,

where i′ = i and j′ = j − 1 if j > 2 and i′ = i − 1, j′ = mi−1 if j = 1. The morphism δij is
the blow-up of a point pi′j′ ∈ Xi′j′ . Denote by Dij the proper preimage of D in Xij and denote
by Eij ⊂ X the inverse images of the exceptional divisor of δij to X. Then one has E2

ij = −1 and
Ei1j1 · Ei2j2 = 0 for all pairs (i1, j1) 6= (i2, j2). Moreover, the canonical class of X is as follows:

KX = −3δ∗H +

k∑
i=1

mi∑
j=1

Eij .

Denote by H̃ ∈ N1(X) the divisor class g∗H. Then by construction there exist integers aij > 0
where 1 6 i 6 k and 1 6 j 6 mi such that

[H̃] = dδ∗H +

k∑
i=1

mi∑
j=1

aijEij .

By construction aij = 0 if and only if the point pi′j′ = δij(Eij) does not lie in the indeterminancy
locus of the composition f ◦ δ11 ◦ δ12 ◦ · · · ◦ δi′j′ : Xi′j′ → P2, where i′ = i and j′ = j − 1 if j > 2
and i′ = i− 1, j′ = mi−1 if j = 1. Therefore, by projection formula one gets:

− 3d−
k∑
i=1

mi∑
j=1

aij =

−3δ∗H +

k∑
i=1

mi∑
j=1

Eij

 ·
dδ∗H +

k∑
i=1

mi∑
j=1

aijEij

 =

= KX · [H̃] = KX · g∗H = −3. (3.5.16)

Denote by D̃ ⊂ X the proper preimage of the divisor D under g. One the one hand, since the linear
system of D in P2 is free one has [D̃] = 3ng∗H. On the other hand, since the proper preimage of D
under f coincides with D one has:

[D̃] = δ∗[D] +

k∑
i=1

mi∑
j=1

MijEij ,
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where Mij is the multiplicity of the curve Dij ⊂ Xij in the point pij ∈ X. By assumption of the
theorem one has Mij 6 n for all 1 6 i 6 k and 1 6 j 6 mi. The computation of the product of

classes H̃ and [D̃] leads us to the following equality:

3nd−
k∑
i=1

mi∑
j=1

Mijaij =

=

δ∗[D] +

k∑
i=1

mi∑
j=1

MijEij

 ·
dδ∗H +

k∑
i=1

mi∑
j=1

aijEij

 = [D̃] · H̃ = 3n. (3.5.17)

The formulas (3.5.16) and (3.5.17) implies the following equality:

k∑
i=1

mi∑
j=1

(n−Mij)aij = 0.

Since one has Mij 6 n and aij > 0 for all 1 6 i 6 k and 1 6 j 6 mi we get that for any i and j one
has either aij = 0 or Mij = 2. Note that if Mij 6= 2 then the point pij either does not lie on Dij or
it is a smooth point of Dij and in this case pij does not lie in the Ind(f ◦ δ11 ◦ δ12 ◦ · · · ◦ δij).

Therefore, if δ̃ : X̃ → P2 is an embedded resolution of the pair (P2, D) then the map f ◦ δ̃ is
regular. Let δ0◦X0 → P2 be the minimal embedded resolution of (X,D); then f ◦δ0 is an embedded
resolution of D. Thus, the composition f ◦ δ0 factors through δ0 i.e. there exists f0 ∈ Aut(X0) such
that f ◦ δ0 = δ0 ◦ f0. Thus, we get the result.

Moreover, by the next assertion we get that the group of bimeromorphic automorphisms of a
4-dimensional BG-manifold is also Jordan.

Theorem 3.5.18. If Q is a BG-manifold of dimension 4 then the group Bim(Q) is Jordan.

Proof. Let Φ: Q → P2 be an algebraic reduction of Q defined in Theorem 3.1.1 and let D ⊂ P2

be the divisor defined in (3.4.16). By Proposition 3.5.12 the group Bim(Q) fits into the exact
sequence (3.5.13) and for any element g ∈ ∆ one has D ⊂ Exc(g) or g(D) = D.

By Example 3.5.2 we get that D is a curve of degree 6 and geometric genus 1 with 9 cusps.
Since the geometric genus of D equals 1 it cannot lie in Exc(g). Thus, ∆ is a subgroup of the

group BirD(P2). Denote by δ : X → P2 the minimal embedded resolution of the pair (P2, D). Then
by Theorem 3.5.15 one has the following equality:

∆ ⊂ BirD(P2) = BirDX
(X) = AutDX

(X),

where DX is the proper transform of D to X and AutDX
(X) = BirDX

(X) ∩Aut(X).
There exists at least one cubic curve C ⊂ P2 which passes through 9 points Sing(D). The

curve 2C does not coincide with the curve D since D is reduced. Thus, there is a pencil of sextic
surfaces passing through Sing(D) and it induces the rational map:

π : P2 99K P1,

and curves D and 2C are fibers of π. Then there exists a birational morphism δ̃ : X̃ → X such that
the following composition is a regular map:

π̃ : X̃ → P1,
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is a regular map. Then X̃ is a smooth elliptic surface. Moreover, the curve D ∈ | − 2KX̃ | is a
fiber of the map π̃. Thus, π̃ is the map given by linear system | − 2KX̃ |. By construction K2

X̃
= 0.

Therefore, there is no sextic curves in P2 passing through Sing(D) with multiplicities 2 except linear
combinations of D and 2C, see also [Hal82].

Thus, we get AutDX
(X) = AutD̃(X̃) where D̃ is the proper preimage of D to D̃. Then by

construction AutD̃(X̃) fits into the following exact sequence:

1→ G′ → AutD̃(X̃)→ G′′ → 1,

where G′ is a subgroup of Aut(F ) for a general fiber F of ϕ|−2KX | and G′′ is a subgroup of the

group Aut(P1) induced by elements of AutD̃(X̃).
Fibers of smooth elliptic surface are either smooth elliptic curve or unions of several rational

curves. The action of the group AutD̃(X̃) preserves the smooth fiber D̃ and the set of singular
fibers. By [CF03, Lemma 3.7] there exist at least two singular fibers of ϕ|−2K

X̃
|. Thus, the group G′′

is finite.
Since for any finite subgroup of Aut(F ) for a smooth elliptic curve F its order is at most 6, we

get that there exists a number C such that for any finite subgroup G ⊂ AutD̃(X̃) one has |G| 6 C.
Then the group ∆ also satisfies this property. Thus, by Proposition 3.5.12 and by Lemma 1.2.36
we get that the group Bim(Q) is Jordan.
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Conclusion

We studied 3-subgroups in groups of birational automorphisms of rationally connected threefolds.
Taken together, the results [Pro11], [Pro14], [PS18], [Xu20], [Log21] and Theorem 1.1.5 give a
sharp bound on the minimal cardinality of generating sets of p-subroups in these groups for all
prime numbers p. Thus, this project is finished.

Also we proved that groups of regular automorphisms of quasi-projective surfaces over fields
of characteristic p > 0 are p-Jordan. It is natural to try to generalize this result to dimension 3.
However, Lemma 1.3.6 cannot be generalized to higher dimension since in positive characteristic
there exist non-rational unirational varieties. In particular, there is a long list of non-rational
unirational surfaces, see [Kat81], [KS20], [KS79], [Miy76], [Ohh92], [RS78], [Shi74], etc. Thus, it
would be very interesting to study these surfaces and try to construct an example of quasi-projective
threefold which automorphisms group is not p-Jordan.

The criterion which we construct in Theorem 2.1.3 works in the case of Example 0.0.11. How-
ever, it would be very interesting to see if it is applicable for other examples of positive entropy
automorphisms: for instance it is not clear whether Examples 0.0.9 and 0.0.10 are regularizable.

Another natural question is whether the automorphism fp1,...,pk : P3 99K P3 in Example 0.0.11
is primitive or not. In Theorem 2.1.3 we managed to prove that fp1,...,pk does not preserve the
structure of a fibration over a surface. The idea of our proof was as following. Assume that
there exists a dominant map π : P3 99K B and g ∈ Bir(B) such that 1 < dim(B) < dim(X) and
π ◦ fp1,...,pk = g ◦ π. In the case where B is a surface by [Tru20] one has 1 < λ1(fp1,...,pk) = λ1(g);
i.e. g has non-trivial dynamics which allows us to show that this situation is impossible. If we want
to show that fp1,...,pk is primitive it remains to consider the case where B is a curve; this situation is
more complicated since g has no interesting dynamics. Thus, one should use some other approach.

There are also many natural questions about BG-manifolds. In Theorem 3.1.4 we proved that
the group of biholomorphic automorphisms of such manifold is Jordan; however, we constructed
no concrete examples of an automorphism of a BG-manifold. Thus, it would be very interesting
to find constructions of biholomorphic or bimeromorphic automorphism of a BG-manifold. One
can use constructions of automorphisms of Kodaira surfaces described in [FN05] and understand
whether they induce an automorphism of a BG-manifold. Another direction which looks curious
is to prove that the group of bimeromorphic automorphisms of a BG-manifold of dimension 2n is
Jordan for n > 3. By Theorem 3.1.4 this is equivalent to the study of the decomposition group of
the divisor D is the projective space Pn where D is the dual variety to a twisted cubic curve. Thus,
it is a purely algebraic problem which seems to be very natural and interesting.
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Titre : Automorphismes birationnels des variétés

Mots clés : Automorphismes, Degrés dynamiques, Géométrie birationnelle

Résumé : La thèse couvre divers problèmes portant
sur les groupes d’automorphismes réguliers et bira-
tionnels de variétés algébriques complexes, et ex-
plore les différences et les similitudes entre ces deux
groupes.
Dans un premier temps, nous nous intéressons à la
description des sous-groupes finis du groupe des au-
tomorphismes birationnels Bir(X) d’une variété com-
plexe rationnellement connexe X de dimension 3.
Nous prouvons que tout 3-sous-groupe peut être
généré par au plus 5 éléments et dans tous les
cas sauf deux, il peut être généré par au plus
4 éléments. Nous décrivons également le groupe
des automorphismes réguliers Aut(S) d’une surface
quasi-projective S définie sur un corps k tel que
char(k) = p > 0. Nous montrons que ce groupe
satisfait la propriété p-Jordan. L’un des principaux
ingrédients ici est le programme du modèle minimal
(MMP), qui nous permet de réduire des questions sur
les groupes finis de transformations birationnelles à la
classification de groupes d’automorphismes réguliers
de variétés algébriques très particulières obtenues
après application du MMP.
Ensuite, nous considérons des automorphismes bi-
rationnels d’ordre infini, et essayons de comprendre

quand il est possible de construire un modèle bira-
tionnel où l’automorphisme induit est régulier. Nous
nous intéressons principalement à l’exemple d’auto-
morphismes birationnels d’une variété rationnelle de
dimension 3 introduits par J. Blanc. Cet automor-
phisme birationnel induit un pseudo-automorphisme
sur un modèle birationnel spécial de l’espace pro-
jectif, c’est-à-dire qu’il a un petit lieu extrémal ; par
conséquent, il est proche d’être régulier. Cependant,
le résultat principal de la deuxième partie de la thèse
est que ces applications ne sont pas conjuguées à
des automorphismes réguliers.
La dernière partie de la thèse porte sur la des-
cription du groupe d’automorphismes d’une classe
de variétés non-Kählériennes introduite par D. Guan
et étudiée plus en détails par F. Bogomolov. Nous
prouvons que la réduction algébrique de la variété
Bogomolov-Guan de dimension 2n est l’espace pro-
jectif de dimension n, puis nous étudions le lieu
des fibres singulières d’une réduction algébrique
et concluons que le groupe des automorphismes
réguliers des variétés Bogomolov-Guan est Jordan.
Dans le cas de la dimension 4 il en est de même pour
le groupe des automorphismes biméromorphes.
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Keywords : Automorphisms, Dynamical degrees, Birational geometry

Abstract : The thesis covers various problems on
groups of regular and birational automorphisms of al-
gebraic and complex varieties, and roughly explores
the differences and similarities between these two
groups.
First, we focus on the description of finite subgroups
of the group of birational automorphisms Bir(X) of a
rationally connected complex threefold X. We prove
that any 3-subgroup in Bir(X) can be generated by
at most 5 elements and in all but two concrete cases
it can be generated by at most 4 elements. Also we
describe the group of regular automorphisms Aut(S)
of a quasi-projective surface S defined over a field k
such that char(k) = p > 0. We show that this group
satisfies the p-Jordan property. One of the main in-
gredients here is the MMP, which allows us to reduce
questions about finite subgroups of birational trans-
formations to classifying groups of regular automor-
phisms of very special algebraic varieties that arise
as the end result of MMP.
Then we consider birational automorphisms of infi-
nite order, and try to understand when it is possible

to construct a birational model where the induced au-
tomorphism is regular. We are mainly interested in a
family of examples of birational automorphisms of the
projective space introduced by J. Blanc. These bira-
tional automorphisms induce pseudo-automorphisms
on a special birational model of the projective space
i.e. it has a small extremal locus, and is therefore close
to being regular. However, the main result of the se-
cond part of the thesis is that it is not conjugate to a
regular automorphism.
The last part of the thesis is concerned with the des-
cription of the automorphism group of a class of non-
Kähler manifolds introduced by D. Guan and further
studied by F. Bogomolov. We prove that an algebraic
reduction of Bogomolov-Guan manifold of dimension
2n is the projective space of dimension n. Then we
study the locus of singular fibers of an algebraic re-
duction and conclude that the group of regular auto-
morphisms of Bogomolov-Guan manifolds is Jordan.
In the four-dimensional case the same is true for the
group of bimeromorphic automorphisms.
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