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Professeur, École normale supérieure - PSL (PARKAS) Invité
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Notations

notation meaning
capital letters, e.g. X, M (depending on the context) sets, matrices,

or set-valued functions
A \B (with two sets A and B) set of elements in A

that are not in B: x ∈ A \B ⇔
(
x ∈ A ∧ x 6∈ B

)
A ⊂ B (with two sets A and B)

the set A is a subset of the set B:
x ∈ A =⇒ x ∈ B

A×B (with two sets A and B) the cartesian product
of the sets A and B:

(
a ∈ A ∧ b ∈ B

)
⇔ (a, b) ∈ A×B

P(A) power set of the set A, i.e. set of all subsets of A:
B ⊂ A ⇔ B ∈ P(A)

CH(A) convex hull of the set A, i.e. smallest set such that(
A ⊂ CH(A)

)
∧
(
∀(a1, a2, δ) ∈ CH(A) × CH(A) × [0, 1],

δa1 + (1 − δ)a2 ∈ CH(A)
)

Int(A) interior of the set A, i.e. biggest open set such that
Int(A) ⊂ A

A closure of the set A, i.e. smallest closed set such that
A ⊂ A

N set of all natural numbers
N∗ set of all positive natural numbers, i.e. N∗ = N \ {0}
Z set of all integers
R set of all real numbers
R∗

+ or R>0 the set of positive real numbers
R+ or R≥0 the set of non-negative real numbers
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notation meaning
dve least integer bigger than the real number v:

dve ∈ Z ∧ v ≤ dve ∧
(
∀i ∈ Z, (v ≤ i =⇒ dve ≤ i)

)
[a, b] interval of real numbers bigger than a and smaller

than b:
∀x ∈ R, x ∈ [a, b] ⇔ a ≤ x ≤ b

[a, b[ [a, b] \ {b}
]a, b] [a, b] \ {a}
]a, b[ [a, b] \ {a, b}Ja, bK set of integers bigger than a and smaller than b:

i ∈ Ja, bK ⇔
(
i ∈ N ∧ i ∈ [a, b]

)
|x| absolute value of the real number x
‖M‖ (depending on the context) norm of the matrix (or

vector) M
C
(
A,B

)
set of all the continuous functions from A to B

∀a.e.t ∈ T for almost all t in the set T∫ b
a f(s) ds (Riemann- or Lebesgue-)integration of f over [a, b]

if f(s) is a vector, the integration is componentwise
ḟ derivative of the function f

ẋ derivative with respect to the time of the function
associated to the variable x

x′ value of the signal associated to the variable x after
a jump

f ◦ g composition of a function f with a function g
∀x,

(
f ◦ g

)
(x) = f

(
g(x)

)
width(s) width of a unidimensional convex set s ⊂ R:

width(s) = inf
{
b− a

∣∣ s ⊂ [a, b]
}

interval(s) smallest enclosing vector of intervals of the set s ⊂ Rn:
interval(s) =

(
[a1, b1], . . . , [an, bn]

)>
with ai = inf(si) and bi = sup(si)∫

p dt primitive of the function (or polynomial) p with
respect to the variable t with null additive constant
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Résumé

Cette thèse présente des méthodes pour effectuer l’analyse d’atteignabilité de systèmes
dynamiques. Elle se concentre sur le calcul de sur-approximations de l’ensemble d’états
atteignables en présence d’incertitudes intégrables au sens de Lebesgue ou de comporte-
ments Zénon.

Condition suffisante de sur-approximation dans le cas non-
linéaire

Alors que plusieurs méthodes existent pour effectuer une analyse d’atteignabilité de
systèmes continus définis comme systèmes d’équations différentielles ordinaires explicites,
peu d’entre elles sont conçues pour gérer les incertitudes intégrables au sens de Lebesgue,
ce qui est un des cas les plus généraux de signaux. Nous prouvons dans la section 3.2 que
les méthodes basées sur des contractions d’ensembles par des versions ensemblistes des
opérateurs de Picard associés aux problèmes produisent des sur-approximations valides
même dans le cas d’incertitudes intégrables au sens de Lebesgue.

En particulier, nous considérons le cas d’un problème avec une dérivée définie presque
partout 

∀a.e.t ∈ [t0, t1], ẋ(t) = f
(
t, x(t), p, u(t)

)
∀t ∈ [t0, t1], u(t) ∈ U
x(t0) = x0 ∈ X0 ⊂ Rn

p ∈ P

(1)

avec f une fonction continue, U , X0 et P des ensembles bornés. De plus, nous faisons l’hy-
pothèse que pour chaque état initial x0 ∈ X0, paramètre p ∈ P et incertitude intégrable
au sens de Lebesgue u, le système admet une unique solution. Pour toute incertitude x0,
p et u respectant les contraintes, l’opérateur de Picard est défini par

Px0,p,u
(
y
)

= t 7→ x0 +
∫ t

t0
f
(
s, y(s), p, u(s)

)
ds (2)

Nous en définissons une version sur l’ensemble des fonctions ensemblistes de [t0, t1] dans
l’ensemble des parties de Rn :

Px0,p,u
(
φ
)

=
{
Px0,p,u(y)

∣∣∣ y ∈ C([t0, t1],Rn) ∧ ∀t ∈ [t0, t1], y(t) ∈ φ(t)
}

(3)
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Finalement, nous définissons une version ensembliste qui regroupe toutes les possibilités
d’incertitudes u :

Px0,p
(
φ
)

= t 7→
⋃

u intégrable
∀t ∈ [t0, t1], u(t) ∈ U

Px0,p,u
(
φ
)
(t) (4)

Une telle version de l’opérateur de Picard peut par exemple être obtenue avec l’arithmé-
tique des intervalles (ou celle des modèles de Taylor) en remplaçant les occurrences de
chaque composante de u par un intervalle sur-approximant son image [45, section 3.5].

Une fonction ensembliste φ de l’intervalle de temps [t0, t1] dans l’ensemble P(Rn) des
sous-ensembles de Rn est contractée par Px0,p si

∀t ∈ [t0, t1], Px0,p
(
φ
)
(t) ⊂ φ(t) (5)

Nous prouvons que si une fonction ensembliste φx0,p est contractée par Px0,p, alors elle
définit une sur-approximation de l’ensemble des solutions possibles du problème 1 avec
l’état initial x0 et le paramètre p. Autrement dit, pour toute incertitude u intégrable
au sens de Lebesgue telle que ∀t ∈ [t0, t1], u(t) ∈ U , l’unique solution x du problème 1
appartient à φx0,p :

∀t ∈ [t0, t1], x(t) ∈ φx0,p(t) (6)
Ainsi, une fonction ensembliste φ définie comme l’union de toutes les fonctions en-

semblistes φx0,p possibles, i.e.

∀t ∈ [t0, t1], φ(t) =
⋃

x0 ∈ X0
p ∈ P

φx0,p(t) (7)

est une sur-approximation de l’ensemble des états atteignables sur l’intervalle de temps
[t0, t1].

En particulier, alors que la méthode utilisée dans l’outil Flow* [45, 46] pour calculer
des sur-approximations des ensembles d’états atteignables dans le cas des dynamiques
continues n’a été prouvée correcte que pour des incertitudes continues, notre critère
permet de prouver que cette méthode est également valide en présence d’incertitudes
intégrables au sens de Lebesgue. Toutefois, les sur-approximations calculées par cette
méthode sont souvent imprécises, i.e. les ensembles ainsi construits sont souvent bien
plus larges que les ensembles d’états atteignables [49]. Cependant, notre critère prouve
qu’un vecteur d’intervalles dans Rn contracté par cette version ensembliste de l’opérateur
de Picard est une sur-approximation de l’ensemble des états atteignables, ce qui peut
servir comme sur-approximation a priori dans certains algorithmes.

Cas des systèmes séparables par rapport aux incertitudes
variant dans le temps
Dans le cas particulier de systèmes que nous appelons systèmes séparables par rapport
aux incertitudes variant dans le temps, qui sont une généralisation des systèmes affines
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par rapport aux entrées, nous proposons un nouvel algorithme basé sur une décom-
position comme différence de fonctions positives des termes de droite des équations
différentielles ordinaires pour convertir les problèmes avec incertitudes variant dans le
temps en problèmes avec uniquement des incertitudes constantes. Cette conversion est
définie de sorte à garantir une sur-approximation de l’ensemble des états atteignables,
i.e. toute sur-approximation pour le problème converti avec des incertitudes constantes
est une sur-approximation pour le problème d’origine avec des incertitudes variant dans
le temps. Nous comparons les résultats produits par notre prototype avec ceux obtenus
en utilisant des outils de l’état de l’art sur des exemples et nous remarquons que nos
sur-approximations sont plus précises, quand bien même certains outils ne gèrent que
des incertitudes intégrables au sens de Riemann, ce qui est un sous-ensemble de celles
intégrables au sens de Lebesgue.

Nous appelons système séparable par rapport aux incertitudes variant dans le temps,
ou simplement système séparable, un problème de la forme

∀a.e.t ∈ [t0, t1], ẋ(t) = g
(
u(t)

)
· h
(
t, x(t), p

)
∀t ∈ [t0, t1], u(t) ∈ U
x(t0) = x0 ∈ X0 ⊂ Rn

p ∈ P

(8)

en utilisant les mêmes notations que pour le problème 1 et avec g une fonction continue de
U dans Rn×k et h une fonction continue de [t0, t1]×Rn dans Rk, avec k un entier naturel.
Nous faisons toujours l’hypothèse que pour chaque état initial x0 ∈ X0, paramètre p ∈ P
et incertitude intégrable au sens de Lebesgue u, le système admet une unique solution.
Cette classe de systèmes est un cas particulier du cas général non-linéaire mais elle permet
d’exprimer toutes les dynamiques linéaires et celles avec des perturbations additives, i.e.
de la forme ẋ(t) = f(t, x(t), p) + u(t).

À partir d’un tel système, nous pouvons en définir un nouveau sans incertitude u
variant dans le temps. Nous appelons système auxiliaire ce nouveau système défini par

∀a.e.t ∈ [t0, t1], ẋ(t) = Ah+(t, x(t), p
)

−Bh−(t, x(t), p
)

A ∈ interval
(
g
(
U
))

B ∈ interval
(
g
(
U
))

x(t0) = x0 ∈ X0 ⊂ Rn

p ∈ P

(9)

avec h+ et h− deux fonctions continues positives dont la différence est égale à h (i.e. pour
tout t ∈ [t0, t1] et x ∈ Rn, h(t, x) = h+(t, x) − h−(t, x)) et A et B deux matrices définies
dans interval

(
g
(
U
))

, la plus petite boîte (vecteur d’intervalles) englobant l’image de g
sur le domaine U . Ce système est construit de façon à garantir que toute solution du
système séparable 8 est également solution du système auxiliaire correspondant. Ainsi, il
suffit de calculer une sur-approximation de l’ensemble d’états atteignables du système 9
pour en obtenir une du système 8 correspondant.

Une telle sur-approximation de l’ensemble d’états atteignables peut être obtenue
avec les méthodes classiques puisque le système auxiliaire est un système avec unique-
ment des incertitudes constantes. Toutefois, elle dépend fortement de la décomposition
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h = h+ −h−. Nous discutons d’un caractère d’optimalité d’une telle décomposition dans
la sous-section 3.3.2. Nous nous concentrons sur le cas des modèles de Taylor comme
représentation des ensembles qui généralise le cas des intervalles ou des formes affines
encodant les zonotopes, tout en pouvant représenter les mêmes ensembles que les zono-
topes polynomiaux [6]. Nous proposons une décomposition affine qui est optimale si l’on
se limite au cas des décompositions polynomiales.

Nous avons implémenté cette procédure de décomposition pour calculer une sur-
approximation de l’ensemble d’états atteignables de système séparables. Nous avons com-
paré les sur-approximations obtenues avec celles obtenues par des outils de l’état de l’art
et nous avons démontré expérimentalement que nous obtenions des sur-approximations
plus précises malgré la prise en compte d’incertitudes intégrables au sens de Lebesgue.

Cas des systèmes commutés

Dans le cas de systèmes dynamiques hybrides, i.e. systèmes qui combinent des dyna-
miques continues et discrètes, certaines hypothèses simplificatrices comme l’instantanéité
des réponses de contrôleurs peuvent engendrer des exécutions difficiles à interpréter. En
particulier, les modèles peuvent admettre des solutions qui suivent un nombre infini
d’évolutions discrètes dans un temps fini. De tels comportements sont appelés compor-
tements Zénon et ils impliquent une singularité en temps : l’interprétation classique de
ces systèmes empêche le temps de progresser au-delà d’un certain point. Toutefois, une
interprétation classique des systèmes commutés (un cas particulier de systèmes hybrides)
permet de définir des solutions au-delà de telles singularités en temps. Cette interpréta-
tion au sens de Filippov revient à considérer un système continu avec une incertitudes
intégrable au sens de Lebesgue contrainte par les valeurs possibles des dérivées. Ainsi,
nous proposons dans la section 3.4 un algorithme qui exploite notre résultat sur les
systèmes continus pour gérer le cas des systèmes commutés.

Un système commuté est un système dont les dynamiques sont de la forme suivante :

{
ẋ(t) = fi

(
t, x(t), p, u(t)

)
i ∈ G

(
t, x(t), p, u(t)

) (10)

avec fi des fonctions continues donc l’indice i appartient à un ensemble fini I, G une
fonction ensembliste hémicontinue supérieurement avec valeurs dans l’ensemble des par-
ties de I, et p et u ayant les mêmes contraintes que dans le cas général des problèmes
non-linéaires 1. Comme précédemment, nous faisons l’hypothèse que pour tout i ∈ I,
la dynamique ẋ(t) = fi

(
t, x(t), p, u(t)

)
admet une unique solution pour des incertitudes

données (état initial, paramètre et entrée). Nous faisons également l’hypothèse que l’en-
semble sur lequel l’image de G n’est pas un singleton est de mesure nulle, i.e. l’image de
G est presque partout un singleton.

Pour pouvoir calculer une sur-approximation de l’ensemble d’états atteignables au-
delà de tout comportement Zénon, nous utilisons l’inclusion différentielle introduite par

viii



Filippov [63] : {
ẋ(t) ∈ FJ

(
t, x(t), p, u(t)

)
J = G

(
t, x(t), p, u(t)

) (11)

avec FJ l’enveloppe convexe des valeurs de toutes les fonctions fj telles que j appartient
à l’image de G. Puisqu’une inclusion différentielle peut être interprétée comme une in-
certitude intégrable au sens de Lebesgue, nous pouvons utiliser les résultats précédents.
En particulier, si les fonctions fj ne dépendent pas des incertitudes u, alors l’inclusion
différentielle peut être interprétée comme un système séparable.

Ainsi, nous proposons un algorithme pour calculer une sur-approximation de l’en-
semble d’états atteignables de systèmes commutés en exploitant cette interprétation
au sens de Filippov. Il est similaire aux algorithmes classiques pour les automates hy-
brides [99] à l’exception des changements de modes : si l’image de G n’est pas un single-
ton, nous essayons de raffiner sa sur-approximation, e.g. en utilisant une subdivision de
son domaine, puis nous calculons l’évolution suivant l’enveloppe convexe des dynamiques
correspondantes.

De la simulation au calcul ensembliste pour les systèmes
hybrides

Finalement, en collaboration avec Marc Pouzet, nous nous intéressons dans le chapitre 5
à des cas de modèles hybrides qui ne sont pas formalisés comme des automates hybrides.
En effet, les logiciels permettant de concevoir de tels systèmes et de simuler les modèles
créés autorisent la définition de systèmes comme assemblages de sous-systèmes, par
exemple des composants électroniques ou mécaniques, et les actions discrètes peuvent
être définies par des programmes complexes, par exemple des contrôleurs numériques
avec mémoires. Les modèles ainsi définis par les utilisateurs sont ensuite traduits par les
logiciels en modèles intermédiaires adaptés à la simulation.

Nous nous concentrons sur le cas du langage Zélus1 qui est basé sur la programma-
tion synchrone, notamment le langage Lucid Synchrone2[131] qui est lui-même une
extension du langage Lustre[81], à laquelle sont ajoutées des équations différentielles
ordinaires pour définir des dynamiques continues et des événements de zero-crossing
pour déclencher les dynamiques discrètes. Le principal avantage de ce langage est que
son code nous est accessible permettant sa modification si nécessaire. De plus, il est
suffisamment expressif pour implémenter beaucoup de composants élémentaires comme
ceux proposés dans la bibliothèque standard de l’outil Simulink3 [40] et, contrairement
à ce dernier, Zélus a une sémantique bien définie [31].

Toutefois, contrairement aux automates hybrides, les représentations des états des
systèmes peuvent être des structures complexes. Cela est notamment le cas des automates
hiérarchiques dont les composants ont eux-mêmes des états. Les représentations des

1https://zelus.di.ens.fr/
2https://www.di.ens.fr/~pouzet/lucid-synchrone/
3https://fr.mathworks.com/products/simulink.html
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états sont différentes d’un modèle à l’autre et ne peuvent être manipulées qu’à travers
des fonctions définissant les modèles intermédiaires associés. Ainsi, les algorithmes de
simulation ou d’analyse d’atteignabilité n’ont qu’une connaissance partielle du modèle
manipulé.

En particulier, pour faire l’analogie avec les automates hybrides, les variables enco-
dant le mode dans lequel se trouve un système hybride ne peuvent pas être manipulées
indépendamment du reste des états des modèles. Cela peut rendre l’exploration de dif-
férentes branches en parallèle plus compliquée. Par exemple, une dynamique discrète
pourrait résulter en deux modes différents (e.g. la réponse d’un thermostat numérique),
ce qui impliquerait de retourner deux états lors d’une analyse d’atteignabilité. Contraire-
ment aux automates hybrides, le mode résultant d’une exécution discrète est déterminé
pendant cette exécution et non au moment de son activation.

Pour effectuer une analyse d’atteignabilité (ou plus généralement des simulations en-
semblistes) de tels modèles intermédiaires, i.e. dont seules les interfaces sont connues,
il faut pouvoir en définir des versions ensemblistes. Dans le cas de Zélus, ces modèles
intermédiaires sont implémentés en OCaml comme des collections de fonctions qui mo-
difient un état donné par une structure. Nous montrons que de tels modèles peuvent être
convertis en des versions ensemblistes en les paramétrant par une représentation d’en-
sembles. Nous avons implémenté un prototype qui montre cela en utilisant les foncteurs
d’OCaml.

Toutefois, cette méthode ne permet pas de gérer efficacement les structures condi-
tionnelles car celles-ci peuvent propager des contraintes à l’ensemble des signaux. Pour
propager de telles contraintes entre les signaux alors qu’une évaluation d’une expression
n’en concerne qu’une partie, il faut manipuler l’ensemble de signaux comme un tout,
éventuellement via une structure globale enregistrant les dépendances entre eux. Cette
méthode est mise en uvre par les analyseurs statiques (e.g. Astrée4 ou Fluctuat5)
qui manipulent généralement le code source de programmes. La paramétrisation des mo-
dèles intermédiaires que nous proposons échoue actuellement à gérer de telles structures
conditionnelles dans le cas général. Une adaptation de notre méthode pour gérer de
telles dynamiques discrètes est laissée pour un travail ultérieur visant à réunir les tech-
niques d’analyse d’atteignabilité pour les systèmes hybrides et les techniques d’analyse
de programmes par interprétation abstraite.

4https://www.astree.ens.fr/
5https://www.lix.polytechnique.fr/Labo/Sylvie.Putot/fluctuat.html
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Chapter 1

Introduction

1.1 Context

1.1.1 Modeling of systems

Before complex systems are manufactured, they are most of the time simulated in or-
der to validate their behaviors. For example, instead of constructing a whole car and
replacing every component until it works as expected, it is much more efficient to model
every component and to simulate its behavior. Then, these components may be com-
bined with a model of their environment to obtain a model of a complex system. When
such a model is defined, it is convenient to test different controllers without imperiling
a physical device or users, e.g. pilots in an aircraft or nuclear plants. Such systems that
gather continuous dynamics (e.g. evolution of the temperature) and discrete ones (e.g.
numerical controllers) are called hybrid systems.

In that case, the physical system is considered as part of the environment in which
a program is executed. This approach of modeling the environment in order to simulate
the behavior of a program is at the base of the Model-Based Design method (MBD).
Due to the complexity of the environment, such models are intentionally simplifications
of the reality in order to be simulated. For example, the computation time of numerical
controllers may be neglected with respect to the physical dynamics, i.e. it may be
assumed instantaneous.

Such simplifications may result in complex behaviors. For example, consider a naive
thermostat that turns the heater on if the current temperature is below the expected
one, and that turns it off otherwise. If the modeled dynamics of the temperature has
no inertia, i.e. the temperature increases (resp. decreases) has soon as the heater is
on (resp. off), then the thermostat controller should switch an infinite number of times
as soon as the temperature reaches the expected one. Such a behavior is called a Zeno
behavior.

In the case of switched systems (cf. Subsection 2.1.2), we can define a natural evo-
lution of such models beyond Zeno behaviors using differential inclusions instead of dif-
ferential equations. Differential inclusions introduce an uncertainty on the derivatives,
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which can be interpreted as an unknown Lebesgue-integrable function with values in a
closed bounded convex set [63].

Moreover, the original models, i.e. even without considering any extension beyond
Zeno behaviors, may also contain uncertain values. The environment may include time-
varying perturbations (e.g. the wind blowing on a vehicle), but the system itself may
also be defined with some partially known parameters (e.g. the length of a part defined
with some tolerance).

1.1.2 Proof of properties on the models

Despite the uncertainties, we want to be able to prove some properties of the models.
We are interested in safety properties which express that the models stay in safe states.
For example, a safety property of a network of trains could be that the distance between
two consecutive trains is always bigger than a given threshold.

While an execution of a model may identify a reachable unsafe state, i.e. a state in
which a safety property is violated, it cannot prove that a safety property is satisfied for
all executions. Indeed, due to the uncertainties, an uncountable number of executions
may be possible and it is infeasible to compute each of them.

Thankfully, multiple methods exist to prove safety properties. First, we can try to
write a formal proof for each safety property [129, 130]. If such a proof exists, then the
corresponding property is true. With such a method, we have to construct a proof for
each property, even if multiple properties are gathered using conjunctions. For example,
instead of proving a property P1 then a property P2, we can directly try to prove the
property P1 ∧ P2, but it requires to prove both operands of the conjunction. So, we can
only expect to factorize the two proofs.

We focused on another method called reachability analysis. It consists in identifying
the set of states that can be reached by the model under study and checking that none
of them are unsafe, i.e. none of them violate a safety property. This method allows
to prove multiple properties with only one computation of the set of reachable states.
Alternatively, we can compute the set of states from which the model can reach some
unsafe ones [142, 141]. Then, instead of checking that a reachable state is unsafe, we
have to check whether an initial state belongs to the set of states that can reach an
unsafe one. It is called backward reachability analysis [116]. In this thesis, we focus on
computing the set of reachable states from a set of possible initial states, which is called
forward reachability analysis [116].

1.1.3 Reachability analysis with uncertainties

Computing the exact set of reachable states is often impossible. First, a solution of
an ordinary differential equation may not exist in a closed-form. Moreover, in case of
hybrid automata (cf. Section 2.1.1), the computation of the set of reachable states is
undecidable [15, 84]. So, we compute an over-approximation (or outer-approximation) of
such a set, i.e. a set that contains all the reachable states but that can also contain other
ones [133, 3, 45, 36]. Such an over-approximation allows to prove safety properties: if
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none of the contained states are unsafe, then none of the reachable states are unsafe and
the safety property is proven. On the contrary, if such an over-approximation contains
an unsafe state, it does not prove that the safety property is false, because such an unsafe
state may not be reachable. Figure 1.1 illustrates it: the over-approximation (in orange)
proves that the reachable states are all below a given threshold (the dashed green line),
but it does not prove that they are all below another threshold (the dashed red line),
while the exact set of reachable states (in hatched blue) actually satisfies this property.
A violation of a safety property may be proved computing an under-approximation (or
inner-approximation) of the reachable set, i.e. a set whose all elements are reachable
states [78, 73, 75, 36]. If an unsafe state belongs to such an under-approximation, this
proves that the safety property is false.

time

state

t0 t1

Figure 1.1 – Over-approximation (in orange) of the set of reachable states (in hatched
blue) over the time interval [t0, t1] that proves the satisfaction of a safety property (below
the dashed green line) but not the satisfaction of another one (below the dashed red line)

Multiple methods exist to compute such over-approximations. Their precisions de-
pend on the chosen representations of the sets (cf. Subsection 2.4.1) but also on the
hypotheses about the models. For example, some methods are specially designed for
models with only affine explicit ordinary differential equations [17, 100, 12, 65], while
others may handle nonlinear ones [4, 45, 72]. While all these methods handle uncertain
initial states or parameters, i.e. constant uncertainties, some methods handle continuous
time-varying uncertainties [14, 45], piecewise continuous (or even Riemann-integrable)
uncertainties [12, 4] or Lebesgue-integrable uncertainties [90, 72]. Other kind of contin-
uous dynamics may be handled (e.g. delay differential equations [79]), but we focus on
nonlinear explicit ordinary differential equations as continuous dynamics in this thesis.

Finally, the methods also depend on the type of dynamics in the models. The
previous methods can handle models without discrete dynamics such as state jumps.
On the contrary, a model composed of only discrete dynamics is just a program and
abstract interpretation [52, 51] is a classical way to compute over-approximations of the
set of reachable states [51, 37, 77, 69]. A hybrid model, i.e. a model that mixes discrete
and continuous dynamics, can be handled by dedicated algorithms [83, 99, 50, 66, 45,
91].
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As far as we know, while methods have been developed in order to simulate hybrid
systems beyond Zeno behaviors [88, 148], only few of them have been designed to au-
tomatically compute an over-approximation of the set of reachable states in presence of
possible Zeno behaviors [95, 94].

1.2 Contributions
We identify four points of contribution in this thesis:

1. We provide a criterion to check if a set-valued function is an over-approximation
of the set of reachable states of a nonlinear explicit ordinary differential equation
with bounded Lebesgue-integrable uncertainties and uncertain initial states over a
closed bounded time interval. The proof is inspired by the one by Martin Berz
and Kyoko Makino [34]. It does not provide any methods to construct such a
set-valued function, but it proves in particular that the method presented by Xin
Chen in [45] for bounded continuous uncertainties is correct even in the case of
bounded Lebesgue-integrable ones. We later exploit it to compute quickly a rough
initial over-approximation of the reachable set.

2. For a particular class of systems of nonlinear explicit ordinary differential equations
that we call separable systems with respect to the time-varying uncertainties and
that are a generalization of the input affine systems, we provide an algorithm to re-
duce the problem of computing an over-approximation despite Lebesgue-integrable
uncertainties into a problem of computing an over-approximation despite only con-
stant uncertainties. We compare the produced over-approximations with the ones
returned by state-of-the-art tools on examples and we demonstrate that our over-
approximations are indeed tighter than the others.

3. We propose an algorithm exploiting our previous result in order to compute an
over-approximation of the set of reachable states of switched systems, i.e. hybrid
automata without jumps. We justify its correctness without proving its termina-
tion. We illustrate its application on a motivating example.

4. We present a reflection about the reachability analysis of alternative models than
hybrid automata. We focus on models written in Zélus1, which is an extension
of the synchronous data-flow language Lustre. Those models are compiled into
intermediate models written in OCaml and, contrarily to hybrid automata, entire
synchronous programs (possibly with memories) can be executed during discrete
transitions. So, we have to mix classical reachability analysis of hybrid systems
and abstract interpretation of programs. We present needed adaptations of the
interfaces between the models, the simulation engine and the different external
solvers in order to compute reachability analyses. We also propose a method to
lift such models that use by default floating-point numbers as representation of

1https://zelus.di.ens.fr/
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real numbers into equivalent models parameterized by a representation of sets
that guarantee the over-approximation of the computed signals. This work is still
in progress, but we illustrate an expected behavior using a prototype written in
OCaml.

1.3 Outline
This thesis is organized as follows.

In Chapter 2, we introduce the basic definitions and theorems used in the rest of the
document. We give definitions of hybrid automata, switched systems, Zeno behaviors
and differential inclusions in the sense of Filippov. Then, we introduce the synchronous
language Lustre and its extension Zélus to model hybrid systems. We also present
basic results of the theories of ordinary differential equations. Finally, we define the
reachability analysis and we present different representations of sets, different methods
to handle continuous systems and a classic method to handle hybrid systems.

In Chapter 3, we present our theoretical contributions on the reachability analysis
of continuous systems with Lebesgue-integrable uncertainties and on the reachability
analysis of switched systems presenting possible Zeno behaviors. In both cases, the
application of the algorithms are detailed on examples.

In Chapter 4, we present an implementation of the proposed algorithm to compute
an over-approximation of the set of reachable states of separable systems with Lebesgue-
integrable uncertainties. We also compare the results with the ones of state-of-the-art
tools on examples.

Finally, in Chapter 5, we present our reflections about the application of reachabil-
ity analysis (and more generally, set-valued computations) to hybrid systems defined
as programs written in dedicated languages such as Zélus. We start with high level
considerations about interfaces of involved solvers (solver of continuous dynamics and
detector of events) adapted to the reachability analysis. We also present a method
based on a parametrization of the models by a representation of sets in order to guaran-
tee over-approximations of the computed values and to allow computation of reachability
analyses. We illustrate the feasibility of this method with a prototype written in OCaml,
using functors.
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Chapter 2

Background

In this chapter, we introduce the basic knowledge required for our work and its mo-
tivation, which is the proof of safety properties. We first present the notion of hybrid
systems and hybrid automata and discuss Zeno behaviors and their interpretation. Then,
we present some results about ordinary differential equations and the theory of integra-
tion in the sense of Lebesgue. Finally, we introduce the notion of reachability analysis
and some representations of sets and algorithms designed for continuous or hybrid dy-
namics.

2.1 Hybrid systems

Most of the objects around us are controlled by some software. Such software has a
direct influence on its physical environment. Think about a domestic water heater, a
boiler, needed to warm up a house. It could be set with the desired power to heat the
water forever. Hopefully, the heat exchanges between the radiators, the house and the
exterior will be balanced. However, the temperature of the exterior is much likely non-
constant, so will be the temperature of the room. That is why most houses are equipped
with a thermostat that controls the boiler. The thermostat can be a numerical device
with sensors to acquire the current temperature of the house, with actuators to control
the boiler, and with a software to adapt its behavior depending on the temperature.

The combination of the house, the boiler and the thermostat is a dynamical system,
whose temperature evolves over the time, and it involves software.

Such systems typically have two kinds of dynamics: continuous dynamics for most
of their physical part and discrete dynamics for the change of behaviors. In the case
of the previous example, the evolution of the temperature of the house has continuous
dynamics (it evolves at every instant) while the control of the boiler is a discrete dynamics
(turning the boiler on is done only at specific instants, depending on the temperature
and the frequency of the numerical thermostat). We call hybrid dynamical systems, or
simply hybrid systems, the systems that combine these two kinds of dynamics[71]. These
hybrid systems are a sub-class of the cyber-physical systems, which gather computational,
physical and communication capacities.
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It is often needed to check that the behaviors of such systems satisfy some specifi-
cations. For example, a specification for the thermostat could be an admissible upper
bound of the difference between the temperature of a house and some target, given the
specifications of the environment (the thermal isolation of the house, the maximal power
of the heaters, etc.). Those specifications about the behaviors of the systems can refer
to the efficiency of the device, but they can also refer to some safety properties. For
example, to ensure the safety of the passengers of a train, we could specify a lower bound
of the distance between two trains at all instants.

In order to check the satisfaction of the specifications, we can perform experiments
on the actual system, but it can be expensive, time consuming or even dangerous (e.g. a
stress test of a nuclear power plant). Moreover, problems detected at the conception time,
before doing the actual implementation, are far less costly to correct. So, a convenient
way to validate the specifications is to reason on a model of the system.

2.1.1 Hybrid automaton

Multiple ways to model hybrid systems exist. A classical one consists in modelling the
discrete dynamics with a finite-state automaton, whose states are called modes, while
the continuous dynamics are modeled as finitary relations between multiple states of
the system in each mode of the automaton. We called such models hybrid automata.
While [82, Definition 1.1] uses predicates to encode the possible evolutions, we use func-
tions depending on the current state, parameters and inputs to define the next states.
Our definition is then an intermediate between the one in [82, Definition 1.1] and the
one in [104, Definition 2].

Definition 1 (Hybrid automaton)
A hybrid automaton H consists of the following components.

State Variables. A finite set X = {x1, . . . , xn} of real-numbered variables called
state variables. The number n is called the dimension of H. We write Ẋ for the
set {ẋ1, . . . , ẋn} of dotted variables (that represent the first derivatives during
continuous changes), and we write X ′ for the set {x′

1, . . . x
′
n} of primed variables

(that represent the values at the conclusion of discrete changes).

Parameters. A finite set P = {p1, . . . , pk} of real-numbered variables called param-
eters.

Input variables. A finite set U = {u1, . . . , um} of real-numbered variables called
input variables.

Control graph. A finite directed multigraph (V,E). The vertices in V are called
control modes or simply modes. The edges in E are called control switches,
switches or transitions.

Initial set. A set Init ⊂ V × Rn × Rk of possible initial control modes and values of
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the state variables and the parameters.

Invariant conditions. A vertex labeling function inv that assigns to each control
mode v ∈ V a predicate inv(v) whose free variables are from X ∪ P ∪ U .

Flow equations. A vertex labeling function flow that defines for each control mode
v ∈ V the first order derivative of each state variable depending on the values
of the state variables, of the parameters and of the input variables, i.e. ẋ =
flow(v)(x, p, u).

Guards. An edge labeling function guard that assigns to each control switch e ∈ E
a predicate guard(e) whose free variables are from X ∪ P ∪ U .

Jumps. An edge labeling function jump that assigns to each control switch e ∈ E the
value of x′ depending on the state variables, of the parameters and of the input
variables, i.e. x′ = jump(e)(x, p, u).

The values of the input variables are assumed to be defined by continuous functions,
i.e. the function u from time to input domain is continuous. Parameters can be seen
as constant inputs, i.e. pi ∈ R can be replaced by an input variable um+i : R → R
such that for all times t ∈ R, um+i(t) = pi. So, we often ignore the parameters in the
following to reduce the notations.

For any mode v ∈ V and for any edge e ∈ E, the predicates inv(v) and guard(e)
define subsets of the space Rn × Rk × Rm on which they are satisfied. We use the same
notations to represent the predicates and the corresponding sets.

We may interpret the time t as an implicit state variable in R≥0 with a constant
associated flow equation: ∀v ∈ V , ṫ = 1, i.e. t belongs to X. However, in this work, we
consider t as a special variable that is not part of the state variables, but that can be
a free variable of the predicates inv(v) and guard(e) or a dependency of the functions
flow(v)(t, x, p, u) and jump(e)(t, x, p, u). Moreover, the initial set Init is then a subset
of R≥0 × V × Rn × Rk.

In this work, we focus on hybrid automata with flow conditions defined as explicit
ordinary differential equations of the first order, e.g. ẋ(t) = f

(
t, x(t), p, u(t)

)
with f a

continuous function. The restriction to ordinary differential equations avoids having to
handle partial differential equations, e.g. the heat equation ∂x

∂t = ∆x with the Laplacian
operator ∆. The restriction to explicit differential equations allows us to easily compute
the value of the derivative given the current time and the current state of the system.
However, the focus on first order equations is not a restriction, because we can add extra
variables to a system of order n to obtain a system of explicit first order differential
equations:

x(n)(t) = f
(
t, x(t), ẋ(t), x(2)(t), . . . , x(n−1)(t), p, u(t)

)
9



can be translated into
ẋn−1(t) = f

(
t, x0(t), x1(t), . . . , xn−1(t), p, u(t)

)
ẋn−2(t) = xn−1(t)

...
ẋ0(t) = x1(t)

Moreover, we often do not specify the discrete changes when they are identity func-
tions x′ = jump(v)(t, x, p, u) = x.

Finally, we can graphically represent a hybrid automaton: we use the representation
of the finite directed multigraph, whose vertices contain the differential equations and the
invariants. The guard and jump conditions are denoted on the corresponding directed
edges. The initial conditions are represented as arrows from no vertices to the vertices
of the condition (usually a unique arrow to a vertex).

Example 1 (Thermostat as hybrid automaton)
We present here a simple model of a thermostat as a hybrid automaton that turns the
heaters on if the temperature is lower than a reference and before it becomes lower
than the reference minus a threshold and that turns them off if the temperature is
bigger than the reference and before it becomes bigger than the reference plus the
threshold:

State variables: X = {x} with x the value of the temperature

Parameters: P = {p} with p the threshold of the hysteresis

Input variables: U = {u} with u the time-varying target temperature

Control graph: V = {On,Off } and E =
{
(On,Off ), (Off ,On)

}
Initial set: Init =

{
(On, x, p)

∣∣ x ∈ [10, 15] ∧ p ∈ [0.5, 1]
}

Invariant conditions: inv(On) = (x ≤ u+ p) and inv(Off ) = (x ≥ u− p)

Flow equations: flow(On)(t, x, p, u) = 50 − x and flow(Off )(t, x, p, u) = −x

Guards: guard
(
(On,Off )

)
(t, x, p, u) = (x ≥ u)

and guard
(
(Off ,On)

)
(t, x, p, u) = (x ≤ u)

Jumps: There are no jumps, i.e. ∀e ∈ E, jump(e)(t, x, p, u) = x

Finally, we draw here the graphical representation of this hybrid automaton

10



On
ẋ = 50 − x
x ≤ u+ p

x ∈ [10, 15]
p ∈ [0.5, 1]

Off
ẋ = −x
x ≥ u− p

x ≥ u

x ≤ u

The interpretation of hybrid automata is given by the transition semantics [82, Def-
inition 1.3] and the trace semantics [82, Definition 1.5], but we present here a simpler
version without labeling the transitions and inspired by the definition of trajectories
in [80].

A trajectory, or trace, is in our case a sequence of events of the system (the mode and
the values of the state variables) with a non-negative real number to encode the elapsed
time since the previous event.

In order to simplify the notation, we use the same notation to represent the variables
and their values.

Definition 2 (Trajectory of a hybrid automaton)
Let H be a hybrid automaton with n state variables.

A trajectory of H, or trace, is a sequence of triples
(
(δi, vi, xi)

)
i∈I

, called events,
with

• I = N or I = J0, kK the set of indices (with k ∈ N),

• for all i ∈ I, δi ∈ R≥0 the elapsed time since the last event,

• for all i ∈ I, vi ∈ V the current mode,

• for all i ∈ I, xi ∈ Rn the current values associated to the variables.

The initial elapsed time δ0 is the initial time.

This definition allows to define infinitely many trajectories, because the set of pos-
sible values of the variables Rn is infinite and even uncountable. However, all those
trajectories do not represent valid evolutions of the system. So, we define the set of
admissible trajectories as the set of trajectories that satisfy all the constraints of the
hybrid automaton: all the events satisfy the corresponding invariant conditions, the first
event is in the initial set and a pair of two successive events satisfies a transition (guard
and jump) or a flow equation.

Definition 3 (Admissible trajectory of a hybrid automaton)
Let H be a hybrid automaton and let τ =

(
(δi, vi, xi)

)
i∈I

be a trajectory of it.
Let ∆i =

∑i
k=0 δk be the sum of all the previous elapsed time, i.e. the duration

from the origin of time.
τ is an admissible trajectory of H, or H admits the trajectory τ , if and only if
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there exists a constant value p ∈ Rk of the parameters and a function u : R≥0 → Rm

encoding the values of the inputs depending on the time, such that the following
conditions are satisfied:

1. The first triple is a valid initial state, i.e. (vi, xi, p) ∈ Init and inv(v0) are
satisfied for the values x := x0, p and u(∆0).

2. There exists a valid evolution between two successive states, i.e. for all i ∈ I\{0}:

• if δi = 0, then there exists an edge e ∈ E from vi−1 to vi and the discrete
evolution of the state is valid according to the guard and the jump, i.e.
guard(e) and x′ = jump(e)

(
x, p, u(∆i)

)
are true with x := xi−1, x′ := xi, p

and u(∆i);
• otherwise vi = vi−1 and there exists a differentiable function f over [0, δi]

such that f(0) = xi−1, f(δi) = xi and for all positive reals ξ ∈ [0, δi],
ẋ = flow(vi)

(
x, p, u(∆i−1 + ξ)

)
and inv(vi) are satisfied with the values

x := f(ξ), ẋ := ḟ(ξ), p and u(∆i−1 + ξ).

In the following, we refer to ∆0 or δ0 as t0, which corresponds to the smallest time
of a given trajectory.

Example 2 (Admissible trajectory of the thermostat)
We present an admissible trajectory of the hybrid automaton of the thermostat de-
scribed in Example 1.

We assume that for all time t, u(t) = 20 and p = 1.
We also assume that the initial time is equal to 0, i.e. t0 = ∆0 = δ0 = 0. Moreover,

the initial condition can only be true in mode On with x ∈ [10, 15]. So we arbitrarily set
(δ0, v0, x0) = (0,On, 10). Notice that this initial event satisfies the invariant condition
x ≤ 21 in the mode On.

While the value of x stays below 20, the only admissible evolution is a continuous
one constrained by the flow condition ẋ = 50 −x. So we have to find a duration δ > 0
and a function f such that f(0) = 10 (the value of x in the previous event) and for
all time t ∈ [0, δ], ḟ(t) = 50 − f(t) and f(t) ≤ 21. We notice that δ = ln(40/29) and
f : t 7→ 50 − 40e−t satisfy those conditions. We can set the next event of the sequence
to (δ1, v1, x1) =

(
ln(40/29),On, 21

)
, because f(δ) = 21.

Now, only a discrete evolution through the edge (On,Off ) is possible, because any
continuous one would violate the invariant condition inv(On). So, we can define the
next state of the sequence as (δ2, v2, x2) = (0,Off , 21) such that the jump condition
x ≥ 20 of the edge (On,Off ) and the invariant conditions x ≤ 21 and x ≥ 19,
respectively of the modes On and Off , are satisfied.

Finally, we can repeat this procedure until x reaches 19 via a continuous evolution
in the mode Off , then compute the discrete one through the edge (Off ,On), and
repeat the previous steps from the mode On. We get the definition of an admissible
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trajectory τ =
(
(δi, vi, xi)

)
i∈N such that

∀i ∈ N, (δi, vi, xi) =



(
0,On, 10

)
if i = 0(

ln(40/29),On, 21
)

if i = 1(
0,Off , 21

)
if ∃n ∈ N, i = 4n+ 2(

ln(21/19),Off , 19
)

if ∃n ∈ N, i = 4n+ 3(
0,On, 19

)
if ∃n ∈ N, i = 4n+ 4(

ln(31/29),On, 21
)

if ∃n ∈ N, i = 4n+ 5

(2.1)

However, multiple other trajectories are admissible, for example with another ini-
tial state that satisfies the initial condition x ∈ [10, 15].

We presented here a simple definition of hybrid automata that allows to model hybrid
systems. Some variations of such a definition exist. For example, we can add a set of
variables as outputs of the system. It allows easier composition of hybrid automata as
presented in [104].

2.1.2 Zeno behaviors

A hybrid automaton is a model that sometimes simplifies the actual system. For example,
a bouncing ball may be modeled by a hybrid automaton that simplifies the bounce
replacing a complex nonlinear dynamics by a discrete behavior that changes the sign of
the velocity.

Having simpler models allows easier comprehension by humans, which is important
for team work, and easier verification. The cost of it is a slight difference between the set
of admissible trajectories of a simple model and a more precise one. This difference can
be negligible, for example between a differentiable admissible trajectory and a piecewise
constant one with a very high sampling frequency, but it can also be important for
instance if it introduces Zeno behaviors.

A Zeno behavior is part of an admissible trajectory that contains an infinite number
of jumps on all neighborhoods of a time: given a trajectory τ =

(
(δi, vi, xi)

)
i∈I

, a Zeno
behavior occurs if there exist i ∈ I and M ∈ N such that

∑∞
k=i δk ≤ M . In that case,

time cannot progress after the instant
∑∞

k=i δk, which is in contradiction with physical
reality. We call the time

∑∞
k=i δk a Zeno point.

We can define two kinds of Zeno behaviors [88, 59]. The first one consists in an
infinite number of transitions at the same instant: as soon as the jump is applied, a new
guard allows to apply another jump, and so on. In that case, we have δi = 0 for all
i bigger than some natural number Z ∈ N. This is typically the case with bang-bang
controllers without hysteresis and no inertia in the continuous dynamics, as illustrated
in Example 3. This first kind of Zeno behavior is sometimes called chattering [148]. The
second kind of Zeno behaviors consists in a sequence of jumps that are closer and closer,
resulting is a bounded time horizon. In that case, we have limi→sup I δi = 0, but without
natural number Z such that i ≥ Z implies that δi = 0. This is illustrated by Example 4.
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Example 3 (Robot control with Zeno behavior of the first kind)
Consider a robot that can move at constant speed 1 on a unidimensional track. Its
position is denoted x, initially set to −1, and we want it to follow a sine over time. A
simple method is to move it toward positive (resp. negative) infinity if its position if
below (resp. above) the value of the sine. It results in the following hybrid automaton:

Below
ẋ = 1
x ≤ sin(t)

x = −1
t = 0

Above
ẋ = −1
x ≥ sin(t)

x ≥ sin(t)

x ≤ sin(t)

In this case, as soon as the position x is equal to sin(t), an infinite number of jumps
occur between the two modes. So, the time cannot progress after the smallest instant
t∗ ≥ t0 such that x(t∗) = sin(t∗), but the natural intuition is that x(t) = sin(t) for all
t ≥ t∗.

Example 4 (Bouncing ball with Zeno behavior of the second kind)
In order to illustrate the second kind of Zeno behaviors, we introduce a simple model
of a bouncing ball without tangent velocity. Its state is then fully defined by a height
h and a vertical velocity v.

Fall
ḣ = v
v̇ = −10
h ≥ 0

h = 20 ∧ v = 0
h ≤ 0 ∧ v ≤ 0
v′ = −0.5v

Assuming that the initial time is t0 = 0, the unique admissible infinite trajectory,
i.e. with a set of indices I = N, is τ =

((
δi, vi, (hi, vi)

))
i∈N

such that

∀i ∈ N,
(
δi, vi, (hi, vi)

)
=


(
0,Fall, (20, 0)

)
if i = 0(

2,Fall, (0,−20)
)

if i = 1(
0,Fall, (0, 20 · 2−n)

)
if ∃n ∈ N>0, i = 2n(

4 · 2−n,Fall, (0,−20 · 2−n)
)

if ∃n ∈ N>0, i = 2n+ 1

and we notice that ∞∑
i=0

δi = 6

So, no admissible trajectories of the hybrid automaton can define a value of the state
of the system at any instant t∗ ≥ 6. In reality, the ball stops bouncing at time t = 6
and stays on the ground, which is not handled by the model.

In both cases, the physical system has a state after the Zeno point. So, we want to
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extend the set of admissible trajectories to allow admissible trajectories with infinite time
horizon, i.e.

∑∞
i=0 δi = +∞. In most cases, the intuitive evolution of the state is to stay

on the set of states that satisfies the guards: the position of Example 3 stays equal to the
sine function and the bouncing ball of Example 4 stays on the ground with a null velocity.
On more complex hybrid automata, we can imagine Zeno behaviors that involve more
than two transitions: a first transition e1 is taken, resulting in the activation of a second
transition e2 that, if taken, results in the activation of a third transition e3 whose jump
results in the activation of the first transition e1. A solution is to add an extra mode,
called sliding mode[144], that allows extra admissible trajectories. This is illustrated
in Example 5. Other methods consists in modifying the model to add some hysteresis,
ensuring that the system stays in some modes for a non-null duration of time [88]. Those
last methods are often used for simulations, because every deterministic automaton is
transformed into a new deterministic automaton, but some admissible trajectories of the
original automaton are not admissible trajectories of the resulting automaton.

Example 5 (Robot with sliding mode)
We can explicit a sliding mode of the hybrid automaton described in Example 3 of the
robot control with constant input:

Above
ẋ = 1
x ≤ sin(t)

x = −1
t = 0

Below
ẋ = −1
x ≥ sin(t)

Sliding
ẋ = cos(t)
x = sin(t)

x ≥ sin(t)

x ≤ sin(t)x ≥
sin(t)

x ≤
sin(t) x

≤
sin

(t)x
≥

sin
(t)

Every admissible trajectory of the automaton of Example 3 is an admissible trajec-
tory of the automaton with sliding mode. Moreover, there exist admissible trajectories
of the new automaton that do not have Zeno behaviors. For example, consider the
trajectory τ =

(
δi, vi, xi

)
i∈N defined by

∀i ∈ N,
(
δi, vi, xi

)
=


(
0,Below,−1) if i = 0(
t∗,Below, sin(t∗)

)
if i = 1(

0,Sliding, sin(t∗)
)

if i = 2(
1,Sliding, sin(t∗ + i− 2)

)
if i ≥ 3

with t∗ the unique solution of the equation t∗−1 = sin(t∗). τ is an admissible trajectory
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of the hybrid automaton without Zeno behaviors:

∀t ∈ R≥0, ∃n ∈ N :
n∑

i=0
δi ≥ t

2.1.3 Switched systems

In this work, we focus on hybrid automata with no jumps, i.e. x′ = x for all transitions,
and in which the current mode does not depend on the past of the trajectories but only
on the current states, times and inputs (the arguments of the right-hand side of the
ordinary differential equations). We use the extension proposed by A. F. Filippov [63]
in the case of ordinary differential equations with discontinuous right-hand sides. Such
systems are called switched systems. We only consider in this work a subclass of the
switched systems as defined by D. Liberzon [102]: we focus on state-dependent, time-
dependent and autonomous switched systems. Example 3 is a typical case of switched
system: if the position x is strictly lower (resp. greater) than sin(t), then the system
is in the mode Below (resp. Above) that moves the robot in the right direction. Such
switched systems can be rewritten as a simple system of ordinary differential equations
with discontinuous right-hand side functions encoding the different modes. This is the
property that we use to define switched systems. In that case, the differential equations
have to be interpreted in the sense of Carathéodory (cf. Subsection 2.3.3 or [63, §1]),
i.e. they should be satisfied for almost all time t in a given time interval [t0, t1], denoted
∀a.e.t ∈ [t0, t1].

Definition 4 (Switched system)
Let I be a finite set of indices,

{
fi
}

i∈I
be a collection of locally Lipschitz functions

with respect to their second argument (the state variables) from R × Rn × Rm to Rn,
and G be an upper hemicontinuous function from R×Rn ×Rm to the powerset P(I).
We assume that the set M of points whose image through G is not a singleton has
measure zero.

A switched system is a dynamical system of the form

∀a.e.t ∈ [t0, t1],
{
ẋ(t) = fi

(
t, x(t), u(t)

)
i ∈ G

(
t, x(t), u(t)

) (2.2)

with t the time variable in any time interval [t0, t1], x the vector of state variables of
the system in Rn and u the vector of input variables in Rm.

We call dynamics of the system the functions fi and switching signal the function
G.

When we say that a subset M of a set Rn (M ⊂ Rn) has measure zero, it means
intuitively that if we pick uniformly an element in Rn, the probability that this element
belongs to M is null. Another intuition is that the n-dimensional volume of M is equal
to zero. For example, M could be a countable set of points in R, a curve in R2, or a
surface in R3.
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A set-valued function G from a set A to a powerset P(B) of a set B is upper hemi-
continuous [21, Definition 1] if for any neighborhood V of the image G(a) ⊂ B of a point
a ∈ A, there exists a neighborhood U of a such that for all x ∈ U , G(u) ⊂ V . In the
case of a switched system, because B is the discrete set I of indices, the function G is
constant over any connected subset of the complement of M in R×Rn ×Rm. Moreover,
for any index i, the subset of the domain of G whose image contains i is a closed set.

We did not introduce the parameters in this definition, because they can be inter-
preted as constant input signals, i.e. a parameter p is equivalent to a constant input
signal u. Moreover, a switched system is often combined with an initial condition, sim-
ilar to hybrid automata but without the restriction to a mode, i.e. there exists a set
Init ⊂ R × Rn defining the possible initial time and initial values of the state variables:(
t0, x(t0)

)
∈ Init. Some additional restrictions on the possible parameters and inputs

can also be considered and they are specified when needed in the following.
Notice that we can consider some hybrid automata as switched systems if the in-

variants define a cover of the space (i.e. for all triples (x, p, u), there exists a mode
v ∈ V such that inv(v) is satisfied), the interiors of the invariants are disjoints (i.e. the
measure of the intersection of two different invariants is null), there exists a transition
between all adjacent modes, the jumps are identities on the state (i.e. for all transition
e ∈ E, jump(e)(x, p, u) = x), and the guards are satisfied if and only if the corresponding
invariants are satisfied (i.e. for all transition ei1,i2 ∈ E from a mode vi1 to a mode vi2 ,
inv(vi1) and inv(vi2) are satisfied if and only if guard(ei1,i2) is satisfied). In that case,
for all time t and state x, G(t, x) is equal to the set of indices i such that the invariant
inv(vi) associated to the mode vi is satisfied on (t, x). Moreover, for any index i and the
associated mode vi, the dynamics fi is equal to the flow condition flow(vi).

Conversely, a switched system can easily be considered as a hybrid automaton. Each
index i ∈ I defines a mode vi, whose invariant inv(vi) is satisfied if and only if i ∈ G(t, x)
and whose dynamics flow(vi) is equal to fi. Each ordered pair of indices (i1, i2) ∈
I × I defines a transition ei1,i2 without jumps (jump(ei1,i2)(x, p, u) = x), whose guard
is activated if and only if the invariants of the two modes are satisfied (guard(ei1,i2) =
inv(vi1) ∧ inv(vi2)). So, the definition of admissible trajectories (Definition 3) is still
valid. With this definition, switched systems allow the existence of admissible trajectories
with Zeno behaviors as soon as there exist admissible trajectories that activate different
modes, because all the transitions are bidirectional and an admissible trajectory may
infinitely switch between two adjacent modes.

A possibility to always allow trajectories beyond a Zeno point is to replace the equal-
ity constraint for all time on the derivative of the state by an inclusion constraint for
almost all time. The right-hand side of the differential equation becomes a set-valued
function, whose image is a singleton in the interior of a mode and a convex hull of mul-
tiple values when a guard is activated. Instead of a regularization using sliding modes,
this method does not add extra constraints to the dynamics and it allows all possible
behaviors [63].

Consider a switched system S defined by a collection of dynamics
(
fi
)

i∈I
and a

switching signal G. We define a set-valued function F with the same domain of the
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functions fi (i.e. R × Rn × Rm) to the set of subsets of Rn (i.e. P(Rn)) such that for
any point y = (t, x, u) ∈ R × Rn × Rm, its value is equal to the convex hull of all values
of derivatives fi(y) with i ∈ G(y):

∀(t, x, u) ∈ R × Rn × Rm, F (t, x, u) = CH({fi(t, x, u) | i ∈ G(t, x, u)}) (2.3)

We can now define the switched system in the sense of Filippov S′, corresponding to
the switched system S, as a differential inclusion for almost all time:

∀a.e.t ∈ [t0, t1], ẋ(t) ∈ F
(
t, x(t), u(t)

)
(2.4)

This is also equivalent [63, 125] to consider that there exists a Lebesgue-measurable
function α such that for all time t ∈ [t0, t1], α(t) belongs to F

(
t, x(t), u(t)

)
and

∀a.e.t ∈ [t0, t1], ẋ(t) = α(t) (2.5)

or equivalently (cf. Subsection 2.3.3)

∀t ∈ [t0, t1], x(t) = x(t0) +
∫ t

t0
α(s) ds (2.6)

So, we add an extra input function α to the system in order to allow admissible trajecto-
ries to be defined beyond Zeno points. The definition of such new admissible trajectories
is similar to Definition 3 replacing the modes by a collection of indices and the constraint
on the derivative for all time by a constraint on its integral (equivalent to a constraint
on the derivative for almost all time).

Definition 5 (Admissible trajectory of a switched system)
Let S′ be a switched system in the sense of Filippov and let τ =

(
(δi, Vi, xi)

)
i∈I

be a
trajectory of it.

Let ∆i =
∑i

k=0 δk be the sum of all the previous elapsed times, i.e. the duration
from the origin of time.

Given a set Init of possible initial states, τ is an admissible trajectory of S′, or S′

admits the trajectory τ , if and only if there exist a function u : R≥0 → Rm encoding
the values of the inputs depending on the time and a Lebesgue-integrable function α
such that the following conditions are satisfied:

1. The first triple is a valid initial state, i.e. xi ∈ Init and Vi ⊂ G
(
δ0, xi, u(δ0)

)
.

2. There exists a valid evolution between two successive states, i.e. for all i ∈ I\{0}:

• if δi = 0, then xi = xi−1 and Vi ⊂ G
(
δ0, xi, u(δ0)

)
;

• otherwise Vi = Vi−1 and there exists a function f over [0, δi] such that
f(0) = xi−1, f(δi) = xi and for all positive reals ξ ∈ [0, δi], Vi ⊂ G

(
∆i−1 +

ξ, f(ξ), u(∆i−1 + ξ)
)
,

f(ξ) = f(0) +
∫ ξ

0
α(∆i−1 + s) ds
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and
α(∆i−1 + ξ) ∈ F

(
∆i−1 + ξ, f(ξ), u(∆i−1 + ξ)

)
Example 6 (Robot interpreted in the sense of Filippov)
Consider the model of a control of a robot presented in Example 3. If x(t) = sin(t),
then the mode is uncertain: the system switches infinitely many times between the
mode Below and the mode Above. We want to allow an admissible trajectory that
stays in a virtual sliding mode as described by the following hybrid automaton:

Below
ẋ = 1
x ≤ sin(t)

x = −1
t = 0

Differential inclusion
ẋ ∈ [−1, 1]
x = sin(t)

Above
ẋ = −1
x ≥ sin(t)

x ≥ sin(t) x ≤ sin(t)

x ≤ sin(t)x ≥ sin(t)

We start by rewriting the model as a switched system:

∀t ∈ [t0, t1],


ẋ(t) = 1 if x(t) < sin(t) (mode Below)
ẋ(t) = −1 if x(t) > sin(t) (mode Above)
ẋ(t) ∈ {−1, 1} if x(t) = sin(t) (on the boundary)

(2.7)

with the initial state x(t0) = −1 and initial time t0 = 0. We can also explicitly define
the dynamics fi and the switching signal G:

∀(t, x) ∈ [t0, t1] × R,



f0(t, x) = 1
f1(t, x) = −1
x < sin(t) =⇒ G(t, x) = {0}
x > sin(t) =⇒ G(t, x) = {1}
x = sin(t) =⇒ G(t, x) = {0, 1}

(2.8)

This definition guarantees the existence of Zeno behaviors in the neighborhood of
x(t) = sin(t): the derivative has to switch from 1 to −1 as soon as x(t) > sin(t) and
from −1 to 1 as soon as x(t) < sin(t). So, we define for almost all time t a convex set
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of possible values of the derivative:

∀a.e.t ∈ [t0, t1], ẋ(t) ∈ F
(
t, x(t)

)
with F

(
t, x
)

=


{1} if x < sin(t)
{−1} if x > sin(t)
[−1, 1] if x = sin(t)

(2.9)

Notice that in the interior of the modes (x < sin(t) or x > sin(t)), the differential
equation is equivalent to the original definition in equation 2.7. We can also inter-
pret this differential inclusion as a differential equation depending on a constrained
Lebesgue-measurable input α such that

∀a.e.t ∈ [t0, t1], ẋ(t) = α(t) with ∀t ∈ [t0, t1], α(t) ∈ F
(
t, x(t)

)
(2.10)

In that case, let t∗ be the unique solution of t∗ −1 = sin(t∗) and consider the input
variable α defined by

∀t ∈ R≥0, α(t) =
{

1 if t < t∗

cos(t) if t ≥ t∗
(2.11)

Then, the function x defined by

∀t ∈ R≥0, x(t) =
{
t− 1 if t < t∗

sin(t) if t ≥ t∗
(2.12)

is solution of the switched system in the sense of Filippov (its derivative is defined for
all time t 6= t∗ and it is equal to the value of α) and it is defined beyond a potential
Zeno point at time t∗.

So, an associated admissible trajectory τ =
((
δi, vi, xi

))
i∈N

could be defined as

∀i ∈ N,
(
δi, vi, xi

)
=


(
0, {Below},−1

)
if i = 0(

t∗, {Below}, sin(t∗)
)

if i = 1(
1, {Below,Above}, sin(t∗ + i− 1)

)
if i ≥ 2

(2.13)

The two first events are in the mode Below while the following events belong to the
differential inclusion between the modes Below and Above.

2.2 Models in the Zélus language

While hybrid automata are convenient to study hybrid systems, they are not well adapted
to design them. To design such systems, models have to exploit modularity: sub-systems
such as electronic or mechanical components should be able to be modeled indepen-
dently and combined in order to define more complex systems. Moreover, programs
of controllers may require complex computations that would result in huge automata.
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Software such as Simulink1 or languages such as Modelica2 exploit modularity to
allow users to define subsystems (e.g. blocks in Simulink) and to put them together
(e.g. by connecting input and output signals in Simulink). However, their semantics
are not well defined, which does not allow to compute any reachability analyses. Formal
semantics can be defined for a subset of Simulink [39] to compensate for its absence on
the whole language. Models written in Simulink can also be translated into networks
of hybrid automata [91] to compute reachability analyses.

2.2.1 The Zélus language

In this work, we focus on the Zélus3 [41] language developed by the Parkas team4 at
the École Normale Supérieure, which allows to implement a subclass of the base compo-
nents of Simulink [40]. It is based on the synchronous dataflow programming language
Lustre5 [81], which has a well defined semantics. Programs written in Lustre [86] are
composed of nodes that represents components with inputs and outputs. Their execu-
tion is assumed to be instantaneous and triggered by the inputs. A sequence of values
for the inputs implies the computation of a sequence of values for the outputs. Such
sequences are called flows or signals and allow to define a logical notion of time. The
presence of values in the inputs defines an instant called (logical) tick and it allows to
refer to the previous values at the previous ticks. The main restriction of such programs
is the absence of syntactical causality loops to avoid any computation of fixed points.
This restriction is illustrated in Example 8.

Example 7 (Counter in Lustre)
Consider the following Lustre program that defines a counter incrementing a value
every time it receives a true value as input:

node counter (t : bool) returns (c : int );
let

c = (0 -> pre c) + (if t then 1 else 0);
tel

The node counter takes as input a signal of Boolean values and returns a signal c
of integers. The operator -> defines a signal with an initial value (its left-hand side
operand) following by other values (its right-hand side operand). So, at the initial
tick, 0 -> pre c is evaluated to 0. For all following tick, it is evaluated to the previous
computed value of the signal associated to the variable c.

In the following table, we present an example of execution of such a program with
an arbitrary input signal t:

1https://www.mathworks.com/products/simulink.html
2https://modelica.org/
3https://zelus.di.ens.fr/
4https://parkas.di.ens.fr/
5https://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/reactive-toolbox/
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tick 0 1 2 3 4 5 6 7
t false false true false true true true false
c 0 0 1 1 2 3 4 4

pre c - 0 0 1 1 2 3 4

Nodes can be composed to define more complex programs. For example, we present
below a program that reuses the counter with a rising edge detector to count the
number of rising edges:

node edge(t : bool) returns (e : bool );
let

e = false -> t and not pre t;
tel

node edge_counter (t : bool) returns (ec : int );
var e : bool;

let
ec = counter (e);
e = edge(t);

tel

With the same input signal, it results in the following execution of edge_counter:

tick 0 1 2 3 4 5 6 7
t false false true false true true true false
e false false true false true false false false
ec 0 0 1 1 2 2 2 2

Example 8 (Invalid syntactical loop)
Consider the following node:

node invalid_loop (c : bool) returns (x : int , y : int );
let

x = if c then 1 else y;
y = if c then x else 2;

tel

The signal associated to x may depend instantaneously on the one associated to y and
reciprocally. However, if c is true, then only y depends on x. Reciprocally, if c is
false, then only x depends on y. In both cases, there are no causality loops.

Such absences of causality loops are difficult to detecting statically. A sufficient
condition to avoid possible causality loops is to reject any syntactical loop. Lustre
exploits this sufficient condition. So, this example is not a valid program in Lustre
because of the presence of the syntactical loop between x and y.

The Zélus language is based on the same structure to which it adds continuous
signals in opposition to classical ones that are then called discrete signals. Depending on
the context, the time can be logical (classical synchronous interpretation) or continuous.
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The main mechanism to align the logical time on specific instants of the continuous
one is the detection of zero-crossing events [148], which is classical in tools designed
for simulation such as Simulink6 or Modelica7. A zero-crossing event is the instant
at which a signal becomes non-negative. While its semantics in the case of the Zélus
language is defined as a non-standard one [31] and requires that the signal become
positive (instead of non-negative) [28, Section 3.1], we provide a standard semantics of
the operator up that triggers a rising zero-crossing of its operand signal:

∀(t, n) ∈ R × N, up(x)(t,n) =
(
x(t,n) ≥ 0

)
∧
(
∀ε > 0, ∃δ ∈ [0, ε] : x(t−δ,n) < 0

)
(2.14)

where the indices are super-dense times [108, 110, 101, 103] at which the corresponding
signals are evaluated: (t, n) is a super-dense time with t the real time and n the number
of past discrete steps. With this definition, we consider that the operator up cannot
trigger zero-crossing event in discrete contexts as currently implemented in Zélus and
illustrated by Example 10. This operator returns a special signal called zero-crossing
signal whose values only exist at when a zero-crossing event occurs. A special structure
allows to define a discrete context based on a zero-crossing signal:

present z -> do E done

where z is a zero-crossing signal (e.g. up(x)) and E is a set of expressions that will be
evaluated in a discrete context as soon as z exists.

Continuous signals may be defined as combinatorial expressions of continuous signals.
For example, if x and y are continuous signals, then x + y defines a continuous signal.
Alternatively, continuous signals may be defined via ordinary differential equations:

der x = e1 init e0 reset z -> e2

defines a continuous signal associated to the variable x that is equal to the expression
e0 at the initial time and whose derivative is equal to the expression e1 in continuous
contexts and as soon as the zero-crossing signal z is true, the value of x is reset to the
value of e2. If the signal is never reset in the given context, then the operator reset can
be omitted:

der x = e1 init e0

Values of discrete signals are not defined in continuous contexts, but values of con-
tinuous signals can be manipulated in discrete contexts. The keyword last can be used
to access the last defined value of a signal (continuous or discrete). It allows to use the
value of a continuous signal in a discrete context, as illustrated in Example 9.

6https://www.mathworks.com/help/simulink/ug/zero-crossing-detection.html
7https://doc.modelica.org/Modelica%204.0.0/Resources/helpDymola/Modelica_Blocks_

Logical.html#Modelica.Blocks.Logical.ZeroCrossing
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Example 9 (Bouncing ball in Zélus)
Consider the following program modeling a bouncing ball with a counter of the bounces
written in Zélus:

let g = 9.81

let hybrid bouncing_ball (h0) = (h,v,c) where
rec der v = -. g init 0. reset z -> -. 0.9 *. last v
and der h = v init h0
and z = up(-.h)
and init c = 0
and present z -> do c = last c + 1 done

The gravity on Earth is defined as a global constant g. The bouncing ball and the
counter are defined in a single node bouncing_ball that returns the height of the ball
h, its vertical velocity v and the number c of past bounces. The variable z defines a
zero-crossing signal that is activated at every instant the ball hits the ground, i.e. x
(resp. -.x) becomes non-positive (resp. non-negative).

The (continuous) dynamics of h is given by a unique initial value problem: deriva-
tive equal to v and initial value equal to the initial value of h0. The dynamics of
v is given by an initial value problem with its derivative equal to -.g and its initial
value equal to zero, but its value is multiplied by -.0.9 every time z is activated, i.e.
every time the ball hits the ground. Finally, c defines an integer continuous signal (in
contrary to h and z that are encoded using floating-point numbers) with initial value
equal to zero. No definitions of its value in continuous contexts are provided, so it is
assumed to remain constant. However, when z is activated, its value is incremented
by one as defined in the last line of the definition of the node.

It can be simulated with a constant signal h0 equal to 5. (only its initial value
really matters) and printing the value of its outputs every 10−2 seconds results in the
following graph of each output signal with respect to time (from t0 = 0):
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Example 10 (No zero-crossing during discrete steps)
Consider the following example:

let hybrid test_zeroc (t) = (x,y) where
rec init x = -1.
and init y = -1.
and present up(x) -> do y = 1. done
and present up(t -.1.) -> do x = 1. done

The continuous signal x becomes equal to 1 as soon as the continuous input signal t
becomes greater or equal to 1. The continuous signal y should become equal to 1 as
soon as the continuous signal x becomes non-negative. However, with our definition
of the operator up, the signal y should remain equal to −1. We indeed obtain this
behavior by simulating this model with t equal to the time (i.e. der t = 1. init 0.):
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Contrarily to hybrid automata, Zélus models are deterministic. Then, given input
signals, each Zélus model admit a unique trajectory. The language has also been
extended into ProbZelus8 [25] that introduces probabilistic signals and allows to infer
the value of uncertain parameters based on observations [26].

Properties on models written in Zélus can be verified thanks to its formal semantics.
In particular, the tool zlscheck9 has been developed to perform falsification [61, 60].
Reachability analysis has also been computed for a subset of the language: first with
only differential equations [43] and recently with automata [128]. In the two cases, the
models written in Zélus are first compiled into C++11 and guaranteed integration is
computed using the DynIbex10 [135, 119].

2.3 Theory of integration and ordinary differential equa-
tions

In the previous section, we defined hybrid systems relying on ordinary differential equa-
tions to model the continuous dynamics.

We consider ordinary differential equations of the form ẋ(t) = f
(
t, x(t), p, u(t)

)
with

x(t) the vector of values of the state variables over the time, ẋ(t) the vector of their
derivatives over the time, p the vector of values of the parameters, and u(t) the vector
of values of the input variables over the time. In this section, we assume known p and u.
So, we reduce the problem to ordinary differential equations of the form ẋ(t) = f

(
t, x(t)

)
.

We now present some results about existence and uniqueness of the solutions of ordi-
nary differential equations. This section is composed of three parts: the first one focuses

8https://github.com/IBM/probzelus
9https://github.com/ismailbennani/zlscheck

10https://perso.ensta-paris.fr/~chapoutot/dynibex/
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on continuous ordinary differential equation, the second one presents the theory of inte-
gration in the sense of Lebesgue, and the last one considers non-continuous right-hand
sides of ordinary differential equations. We do not provide any proof of the theorems,
but some can be found in [138].

2.3.1 Continuous ordinary differential equations

Consider the ordinary differential equation

∀t ∈ [t0, t1], ẋ(t) = f
(
t, x(t)

)
(2.15)

First, we want the initial value problem to have at least one solution for each possible
initial state. It guarantees that an execution will not be blocked due to the flow equa-
tions. The Peano Existence Theorem proves that if the right-hand side of the ordinary
differential equation is continuous, then there exists a solution in the neighborhood of
the initial time and initial state.

Theorem 1 (Peano existence theorem [138, Theorem I-2-5])
Let (t0, x0) ∈ R×Rn be the initial conditions, f be a continuous function on a domain

D =
{
(t, x)

∣∣ ‖t− t0‖ ≤ a ∧ ‖x− x0‖∞ ≤ b
}

and M = maxD‖f(t, x)‖∞.
Then, there exists a function φ :]t0 − α, t0 + α[ such that

• φ(t0) = x0

• ∀t ∈]t0 − α, t0 + α[, φ̇(t) = f
(
t, φ(t)

)
with

α =
{
a if M = 0
min

(
a, b

M

)
if M > 0

Notice that Theorem 1 only guarantees the existence of solution in the neighborhood
of the initial time, but not on the entire time interval.

Example 11
Consider the system {

ẋ(t) = x(t)2

x(0) = 1 (2.16)

A solution of this system is

∀t ∈ [0, 1], x(t) = 1
1 − t

(2.17)

and we can prove later that this is the unique solution of the system.
However, no solutions exist at time t = 1.
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We also want the uniqueness of the solution of ordinary differential equations for a
given initial state. The Picard-Lindelöf Theorem proves that if the function of Theorem 1
satisfies a Lipschitz condition, then the solution is unique.

Theorem 2 (Picard-Lindelöf [138, Theorem I-1-4])
Let (t0, x0) ∈ R×Rn be the initial conditions, f be a continuous function on a domain

D =
{
(t, x)

∣∣ ‖t− t0‖ ≤ a ∧ ‖x− x0‖∞ ≤ b
}

and M = maxD‖f(t, x)‖∞.
If there exists a constant L > 0 such that

∀
(
(t, x1), (t, x2)

)
∈ D ×D, ‖f(t, x1) − f(t, x2)‖∞ ≤ L‖x1 − x2‖∞ (2.18)

then, there exists a unique function φ :]t0 − α, t0 + α[ such that

• φ(t0) = x0

• ∀t ∈]t0 − α, t0 + α[, φ̇(t) = f
(
t, φ(t)

)
with

α =
{
a if M = 0
min

(
a, b

M

)
if M > 0

We can show that if the Lipschitz condition 2.18 is not satisfied, multiple solutions
may exist from the same initial state.

Example 12
Consider the system {

ẋ(t) =
√
x(t)

x(0) = 0 (2.19)

The function v 7→
√
v is not Lipschitz continuous in the neighborhood of v = 0. The

two functions x1 and x2 defined by

∀t ∈ R≥0, x1(t) = 0 and ∀t ∈ R≥0, x2(t) = t2

4
(2.20)

are both solutions of the system.

While Theorem 2 does not explicitly provide an expression of the unique solution, a
classical proof of it defines a recursive sequence of functions that converges to the unique
solution. Consider the system {

ẋ(t) = f
(
t, x(t)

)
x(t0) = x0

(2.21)

with f a Lipschitz continuous function as in the Theorem 2, t0 ∈ R an initial time and
x0 ∈ Rn an initial value. We define a sequence of functions

(
φn
)

n∈N from [t0, t0 + α[ to
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Rn as {
∀t ∈ [t0, t1], φ0(t) = x0

∀n ∈ N, ∀t ∈ [t0, t1], φn+1(t) = x0 +
∫ t

t0
f
(
s, φn(s)

)
ds

(2.22)

This sequence uniformly converges to a function φ that is solution of the system 2.21. For
a detailed proof of this result, the reader can refer to [138, Proof of the Theorem I-1-4].

We will often use such an iteration in this document, so we define the Picard operator
associated to such a system as the operator defining φn+1 from φn. This operator is
parameterized by the parameters of the system (in this example, x0 and t0).

Definition 6 (Picard operator)
Let (t0, x0) ∈ R × Rn be an initial state and let f be a Lipschitz continuous function
as defined in Theorem 2.

The Picard operator associated to the system{
ẋ(t) = f

(
t, x(t)

)
x(t0) = x0

is an endomorphism of the set of continuous functions defined by

P(φ) = t 7→ x0 +
∫ t

t0
f
(
s, φ(s)

)
ds

That ends the introduction about ordinary differential equations with continuous
right-hand sides. In the next subsection, we introduce the theory of integration in the
sense of Lebesgue, which is needed to handle ordinary differential equations whose right-
hand sides are discontinuous.

2.3.2 Integral in the sense of Lebesgue

In the previous subsection, we presented some results about ordinary differential equa-
tions whose right-hand sides are continuous with respect to the time and to the state.
However, the right-hand side of an ordinary differential equation depends often on an in-
put function that is only partially known. Especially, a differential inclusion such as 2.4
may be interpreted as such an ordinary differential equation with input function. We
call such a partially known function a time-varying uncertainty. A classical hypothesis
on a time-varying uncertainty u is a given bounded range, e.g. a bounded set U is known
such that for all time t, u(t) belongs to U .

We want to use the weakest hypotheses that guarantee the existence and uniqueness
of a solution from a given initial state. We decide to handle Lebesgue-measurable time-
varying uncertainties, which can be considered as the weakest reasonable hypothesis,
because it is impossible to exhibit a non-Lebesgue measurable set without the axiom of
choice in the Zermelo-Frankel set theory [140]. This impossibility involves concepts well
beyond the focus of this thesis and we do not give any details about it.

So, we present in this subsection the Lebesgue’s theory of integration. Instead of
properly defining every concept, we try to give an intuition with examples compared to
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the Riemann integration. We only consider unidimensional functions, i.e. from a subset
of R to a subset of R, but that can be generalized to multidimensional functions, i.e.
from a subset of Rn to a subset of Rm.

The integral in the sense of Lebesgue

First, we need to introduce the Lebesgue measure µ. It is a generalization of the notion
of length (or surface and volume in higher dimensions). The Lebesgue measure can be
interpreted as a function from a set of sets Σ ⊂ P(R) to the set of non-negative real
numbers extended with infinity R≥0 ∪ {∞}. A set is measurable if it belongs to the
domain Σ of the Lebesgue measure. Because it generalizes the notion of length, for any
interval [a, b], we have µ([a, b]) = b − a. The empty set is measurable and has null
measure (µ(∅) = 0). Finally, for any countable collection of disjoint measurable sets
(Ei)i∈N, the measure of the union is equal to the sum of the measures of the sets:

(
∀(i, j) ∈ N2, i 6= j =⇒ Ei ∩ Ej = ∅

)
=⇒ µ

⋃
i∈N

Ei

 =
∑
i∈N

µ(Ei) (2.23)

We can then define the Lebesgue integral of simple functions, which are functions
defined as a finite linear combination of indicator functions over measurable sets. Con-
sider a simple function fs. By definition, there exists a collection of measurable sets
(Ei)i∈J1,NK and a collection of real numbers (ai)i∈J1,NK such that

∀x ∈ R, fs(x) =
n∑

i=1
ai1Ei(x) (2.24)

Then, its integral over a bounded measurable set D is given by the formula

∫
D
fs dµ =

n∑
i=1

aiµ(Ei ∩D) (2.25)

For a non-negative function f , we define its Lebesgue-integral over a bounded mea-
surable set D as the supremum of the integral over D of simple functions smaller or
equal to f : ∫

D
f dµ = sup

{∫
D
fs dµ

∣∣∣∣ fs simple function and fs ≤ f

}
(2.26)

Finally, for all real functions f with positive part f+ and negative part f− (f+ and
f− are non-negative functions such that f = f+ − f− and |f | = f+ + f−), we define its
Lebesgue-integral over a bounded measurable set D as the difference of the integrals of
f+ and f−: ∫

D
f dµ =

∫
D
f+ dµ−

∫
D
f− dµ (2.27)
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Comparison with the integral in the sense of Riemann

A classical definition of the integral is the one in the sense of Riemann. Consider a real
interval [a, b] ⊂ R. A function f is integrable in the sense of Riemann, with the integral of
value I, if for all real ε > 0, there exists a real δ > 0 such that for all sequences

(
xi
)

i∈J0,nK
and

(
ti
)

i∈J0,n−1K such that for all i ∈ J0, n − 1K, xi ≤ ti ≤ xi+1 and xi+1 − xi ≤ δ, we
have ∣∣∣∣∣

n−1∑
i=0

(xi+1 − xi)f(ti) − I

∣∣∣∣∣ ≤ ε (2.28)

and the integral in the sense of Riemann of f over [a, b] is denoted∫ b

a
f(t) dt (2.29)

where t can be any name of variable.
In particular, consider a sequence (sn)n∈N∗ defined by

∀n ∈ N∗, sn =
n−1∑
i=0

(xi+1 − xi)f(ti) (2.30)

with for all n ∈ N∗, a = x0, b = xn and i ∈ J0, n−1K, xi ≤ ti ≤ xi+1 and xi+1 −xi ≤ b−a
n .

The elements of sn are called sums of Riemann. If the function f is indeed integrable in
the sense of Riemann, also said Riemann-integrable, then the sequence (sn)n∈N∗ converges
to the integrable in the sense of Riemann of f over the interval [a, b]:∫ b

a
f(t) dt = lim

n→∞
sn (2.31)

Any Riemann-integrable function over an interval is also Lebesgue-integrable and
the two definitions of integral return the same values on such functions. However, some
functions are Lebesgue-integrable over an interval but non-integrable in the sense of
Riemann. For example, the indicator function over the set of rational numbers is such
a function and its Lebesgue-integral is null, because the measure of the set of rational
numbers is null. We can exhibit two sequences of sums of Riemann over the interval
[0, 1] that do not converge to the same value:

lim
n→∞

n−1∑
i=0

(
i+ 1
n

− i

n

)
1Q

(2i+ 1
2n

)
= 1 (2.32)

and

lim
n→∞

n−1∑
i=0

(
i+ 1
n

− i

n

)
1Q

(
2i+

√
2

2n

)
= 0 (2.33)

There even exist functions that are not integrable in the sense of Riemann, but that
are integrable in the sense of Lebesgue and whose integral is positive, e.g. the indicator
function of the Smith-Volterra-Cantor set [111, Section 4].
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Some properties and notation

The integral in the sense of Lebesgue has the classical properties of integrals. In partic-
ular, it is linear and monotone. For all Lebesgue-integrable functions f and g over a set
D and for all scalars a ∈ R and b ∈ R, we have∫

D

(
af + bg

)
dµ = a

∫
D
f dµ+ b

∫
D
g dµ (linearity)

And for all Lebesgue-integrable functions f and g over a set D, we have

∀x ∈ D, f(x) ≤ g(x) =⇒
∫

D
f dµ ≤

∫
D
g dµ (monotonicity)

In the rest of the document, when there is no ambiguity, we use the notation of
the Riemann-integrable for the Lebesgue’s one over intervals: for any function f that
is integrable over an interval [a, b] in the sense of Lebesgue, we denoted its Lebesgue-
integral ∫ b

a
f(x) dx (2.34)

where x can be any variable. In particular, we have∫ b

a
f(x) dx =

∫ b

a
f(y) dy =

∫
[a,b]

f dµ (2.35)

2.3.3 Discontinuous ordinary differential equation

As presented in [63, Chapter 1], an ordinary differential equation ẋ(t) = f(t, x(t)) is
equivalent to the integral equation

x(t) = x(t0) +
∫ t

t0
f(s, x(s)) ds (2.36)

We say that a solution of the integral equation is a solution of the ordinary differential
one. Using the integration in the sense of Lebesgue (cf. previous Subsection 2.3.2), we
may use the results of the theory of differential equations in the sense of Carathéodory.
This theory provides results on the existence and uniqueness of the solutions of such
differential equations.

First, some conditions are identified to be sufficient in order to guarantee the existence
of solutions of 2.36.

Definition 7 (Carathéodory conditions)
Let f be a function defined on a domain D ⊂ R × Rn. The function f satisfies the
Carathéodory conditions if

1. the function f(t, x) is defined and continuous in x for almost all t;

2. the function f(t, x) is measurable in t for all x;

3. ‖f(t, x)‖ ≤ m(t) and the function m(t) is Lebesgue-integrable on every finite
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interval.

Theorem 3 (Carathéodory existence theorem [63, Theorem 1])
For (a, b) ∈ R2

≥0, let be the integral equation

x(t) = x0 +
∫ t

t0
f(s, x(s)) ds (2.37)

with f a function that satisfies the Carathéodory conditions on a domain
{
(t, x)

∣∣ t0 ≤
t ≤ t0 + a ∧ ‖x− x0‖ ≤ b

}
. Let d be a number such that

0 < d ≤ a and
∫ t0+d

t0
m(s) ds ≤ b (2.38)

Then there exists a solution of the problem 2.37 on the closed interval [t0, t0 + d].

Moreover, an extra condition of the right-hand sides of the ordinary differential
equations, i.e. the functions f , is sufficient in order to guarantee the uniqueness of the
solution for a given initial state.

Definition 8 (Carathéodory uniqueness conditions)
Let f be a function defined on a domain D ⊂ R × Rn. The function f satisfies the
Carathéodory uniqueness conditions if

1. the function f satisfies the Carathéodory conditions (cf. Definition 7)

2. there exists a Lebesgue-integrable function k such that for any points (t, x) and
(t, y) in D,

‖f(t, x) − f(t, y)‖∞ ≤ k(t)‖x− y‖∞ (2.39)

Theorem 4 (Carathéodory uniqueness theorem)
Let f satisfying the Carathéodory uniqueness conditions of Definition 8, then there
exists a unique solution to the problem 2.37 on the domain of definition.

In contrary to the case of ordinary differential equations with continuous right-hand
side functions, the theorems in the case of non-continuous right-hand side functions do
not provide any procedure to compute the solutions of the differential equations.

2.4 Reachability analysis

In Section 2.1, we defined models of hybrid systems. Those models define admissible
trajectories, i.e. possible evolutions of the systems, from some constraints on the initial
states, possible values of the parameters and possible inputs.

The study of such models allows to prove some properties. For example, given a
model of a railway with some trains, a safety property could be: “the distance between
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two trains on the same track is always bigger than 100 meters.” This kind of property
is often presented as “nothing bad will happen” or “the system is always safe”.

Multiple methods exist to prove or to falsify such safety properties on hybrid models.
First, we can try to find counter-examples, i.e. to exhibit an admissible trajectory of the
model that violates the properties[123]. This could be efficient to identify a dangerous
situation, but it is not able to prove the satisfaction of a property: the fact that we
are not able to exhibit a counter-example is not a proof of the absence of a counter-
example. So, we can try to prove the safety properties using deductive reasoning from a
collection of axioms [129, 130]. The drawback of this method is the need of a proof for
each property.

Finally, we can also try to compute the set of all states that the system can reach,
i.e. the set of states reached by at least one admissible trajectory. These states are
called reachable states and their union is called reachable set. However, computing such
a reachable set is often undecidable [16]. We notice that if a set of states contains the
reachable set and none of these states falsify the safety properties, then they are satisfied
on the reachable set. So, we are interested in computing a set containing the reachable set
and we call it an over-approximation of the reachable set. The drawback of this method
is its incapability to falsify a safety property. If a state in the over-approximation falsifies
a safety property, we cannot deduce that the safety property is falsified by the system:
potentially, this state does not belong to the reachable set. In order to minimize the set
of possibly reachable states, we want to compute over-approximations that are as small
as possible. So, the methods to compute such over-approximations are designed in order
to minimize it.

In what follows, we refer to such methods as reachability analysis.
We present in this section some representations of sets and some methods to compute

over-approximations of the reachable sets of discrete, continuous or hybrid systems.

2.4.1 Representations of sets

Our goal is to construct an over-approximation of the reachable set. So, we need a repre-
sentation of sets. Such a representation of sets should over-approximate the propagation
of the uncertainties through all the operations. For example, for all binary operator ⊕
and two sets S1 and S2, we want a representation of the sets for which an operator ⊕̃ is
defined such that:

{x1 ⊕ x2 | x1 ∈ S1 ∧ x2 ∈ S2} ⊂ S1⊕̃S2 (2.40)

In the rest of the document, when there are no ambiguities, we use the same notation
for the operators on real numbers and the corresponding ones on the representations of
sets.

Multiple representations of sets exist with different trade-offs between expressiveness,
precision and computational efficiency [6, Table 1]. In particular, some representations
are not closed under some operations and will necessarily introduce over-approximations.
This consequence is called wrapping effect [118]. The simplest representation of sets is
the boxes (multidimensional intervals) [118, 87], which is closed under intersection and
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Minkowski sum, but not under union or linear mapping. It allows fast computation of
over-approximations of expressions [13, 135, 119], subdivisions of spaces and fixed-point
computations [44]. Ellipsoids [97, 98, 85, 20] are closed under linear mapping, which
make them efficient for reachability analysis of linear dynamics, but they are not closed
under union, Minkowski sum or intersection. Zonotopes [96, 69], which are bounded con-
vex polyhedra with central symmetry (Minkowski sums of segments) and which can be
encoded using a collection of vectors called generators evaluated via linear mapping with
scalars in [−1, 1], are closed under Minkowski sum and linear mapping, but not under
union and intersection. They are efficient to compute and encode linear dependencies
between variables both for hybrid systems [70, 14] and for static analysis [74]. They
can be slightly adapted as constrained zonotopes to also be closed under intersection
by introduction constraints on the scalars of the linear mapping applied to the genera-
tors [69, 137]. Alternatively, zonotope bundles were designed for similar purposes [11].
Polytopes (bounded convex polyhedra) [22, 38] encoded as the intersection of half-spaces
(H-polytope) or as the convex hull of its vertices (V-polytope) are closed under the same
operations, but the Minkowski sum is more expensive to compute while the intersection
(resp. convex-hull) in the case of H-polytopes (resp. V-polytopes) are faster on large
systems. All those representations of sets are convex and support functions generalize
them [99, 5]. They encode an enclosure of a convex set based on the distance of the
supporting hyperplanes in some directions. However, while they are closed under inter-
section, the exact value of the intersection of two support functions may not be computed
and only an over-approximation of it is considered [66].

A representation of a set that is closed under nonlinear mapping has to be non-convex.
Other representations have been proposed for the nonlinear case. Taylor models [34, 107]
are defined as triples of a polynomial, its domain and an interval remainder. They are
closed under polynomial mappings, but not under intersection and union. Polynomial
zonotopes [4, 93] generalize zonotopes by introducing extra generators interpreted with
a polynomial mapping instead of the linear one in the case of classical zonotopes. They
are then closed under polynomial mappings and Minkowski sums but not under inter-
section and union. As constrained zonotopes, constrained polynomial zonotopes [92] add
extra constraints on the scalars of the polynomial mapping of the generators of polyno-
mial zonotopes and they are closed under all the present operations. Generalized star
sets [58, 23, 143] have a similar definition as zonotopes but restricting the scalar of the
linear mapping with a predicate instead of restricting them to the interval [−1, 1]. They
generalize constrained zonotopes, but many operations does not have closed-form ex-
pressions due to the general definition of the predicates. Finally, sublevel sets [117, 89]
encode sets of points whose images through a given function are non-positive. They are
closed under all the presented operations, but they are difficult to encode due to their
general structure.

In what follows, we focus on intervals for fast computation and Taylor models as
over-approximations of sets of solutions of initial value problems.
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2.4.1.1 Intervals and boxes

The simplest representation of sets is by intervals. Here, we present interval arithmetic
introduced by R. E. Moore [118].

Definition 9
Let a and b be two real numbers such that a ≤ b. An interval, denoted [a, b], is a set
of real numbers defined by

[a, b] = {x ∈ R | a ≤ x ≤ b} (2.41)

An interval is a closed convex set of R and we can define operators on it to guarantee
over-approximations of the results. The best over-approximation should be to take the
minimum and maximum over each possible pair of elements:

I1 ⊕ I2 =
[

min
x∈I1, y∈I2

(x⊕ y), max
x∈I1, y∈I2

(x⊕ y)
]

(2.42)

which is the exact image of the Cartesian product I1 × I2 through the operator ⊕.
However, because we also want an efficient way to compute the results in order to
perform automatic computations, each operator is usually defined using the bounds,
based on the knowledge on their variations. For example, with I1 = [a, b] and I2 = [c, d],
the classical arithmetic operators are defined by

[a, b] + [c, d] = [a+ c, b+ d] (2.43)
[a, b] − [c, d] = [a− d, b− c] (2.44)
[a, b] × [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)] (2.45)

if 0 6∈ [c, d] [a, b]/[c, d] = [a, b] × [1/d, 1/c] (2.46)

For monotonic functions, such as the exponential, we can exploit the monotonicity
to only compute the image of the boundaries of the interval. For example, if we consider
an increasing function f↗ and a decreasing function f↘, then we have for any interval
[a, b] ⊂ R,

f↗([a, b]) = [f↗(a), f↗(b)] (2.47)
f↘([a, b]) = [f↘(b), f↘(a)] (2.48)

More details about interval arithmetic and specially about the handling of rounding
are given in the book [118].

While multiplying an interval by a scalar whose absolute value is smaller than one
reduces its width (e.g. with α ∈ [0, 1], α[a, b] = [αa, αb], whose initial width b − a is
reduced to α(b−a)), the sum of two intervals results in an interval whose width is equal
to the sum of the width of the operands (e.g. [a, b] + [c, d] = [a+ c, b + d] whose width
is (b + d) − (a + c) = (b − a) + (d − c)). One of the main drawbacks of using intervals
to compute over-approximations is the loss of dependencies between the variables. For
example, the evaluation of the expression x− x using interval arithmetic with x ∈ [0, 1]
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results in the over-approximated interval [−1, 1], which is twice larger than the original
one, while the exact range is {0}.

Because we often manipulate vectors of some subsets of Rn, we define a box of Rn as
a Cartesian product of n intervals. When there is no ambiguity about the dimension,
we simply use the term box. We say that a vector x ∈ Rn belongs to a box [x] =[
x1, x1

]
× · · · ×

[
xn, xn

]
if for all i ∈ J1, nK, the component xi of x belongs to the interval[

xi, xi
]
.

2.4.1.2 Taylor models

Taylor models [34, 107, 106, 132, 47, 45] exploit the Taylor expansions of the results
of initial value problems, i.e. polynomial approximations, and over-approximate the
remainder terms (the errors of the approximation) using intervals. In a mathematical
point of view, the Taylor models generalize the zonotopes, because they can be easily
translated into Taylor models, but the associated functions differ preventing replacing
zonotopes by Taylor models in the general case.

Definition 10 (Taylor model)
Let D ∈ Rn be a bounded domain. Let k ∈ N∗ be a positive integer. Let p : D → R
be a polynomial of order at most k and let I ⊂ R be an interval.

Then the pair (p, I) is called a Taylor model of order k on the domain D, p is called
its polynomial part, while I is called its remainder.

Remark 1 A multi-dimensional Taylor model can be defined as a vector of Taylor
models. Let n ∈ N. Consider a vector p of n polynomials on a common domain D of
order at most k and a vector I of n interval. Then, for all i ∈ J0, n − 1K, (pi, Ii) is a
Taylor model of order k on the domain D. So, we say that (p, I) is a n-dimensional
Taylor model of order k on the domain D.

Remark 2 If the domain (resp. the order) is already defined and if there is no
ambiguity, the domain (resp. the order) may be omitted.

A Taylor model (p, I) on a domain D defines a set of values that are equal to an
evaluation of the polynomial part plus a value in the interval remainder:

(p, I) ≡
{
p(x) + v

∣∣ x ∈ D ∧ v ∈ I
}

(2.49)

but it can also be interpreted as a set-valued function over D that maps an element
of the domain to the remainder interval translated by the evaluation of the polynomial
part:

(p, I) ≡ x 7→
{
p(x) + v

∣∣ v ∈ I
}

(2.50)

Similarly to the case of intervals, all operators can be adapted for Taylor models
in order to compute over-approximations of the results, as long as the Taylor models
are defined on the same domain. For example, any linear application can be over-
approximated computing the corresponding linear application on the polynomial parts
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and on the remainders. Let (p1, I1) and (p2, I2) be two Taylor models of a given order
k on a same given domain D, then any application (x, y) 7→ αx + βy for (α, β) ∈ R2 is
over-approximated by the Taylor model (p, I) of order k defined on the domain D by

(p, I) =
(
αp1 + βp2, αI1 + βI2

)
(2.51)

Notice that the over-approximation is only due to interval arithmetic for computing the
remainder. It motivates to have the smallest as possible remainders.

The multiplication between (p1, I1) and (p2, I2) is based on the multiplication of poly-
nomials, the multiplication of the remainders and an over-approximation of the interval
range of the polynomials multiplied by the interval remainder of the other operand:

(p1, I1) × (p2, I2) =
(
p1 × p2 − pe, I1 × I2 + [p1] × I2 + I1 × [p2] + [pe]

)
(2.52)

with pe the polynomial equal to the sum of all the monomials of p1 × p2 whose degrees
are bigger than k, and [p1], [p2] and [pe] interval over-approximations of the ranges of
p1, p2 and pe over the domain D.
Proof of the over-approximation Let x ∈ D, v1 ∈ I1 and v2 ∈ I2. We have

(p1(x)+v1)×(p2(x)+v2) = p1(x)×p2(x)+p1(x)×v2+v1×p2(x)+v1×v2+pe(x)−pe(x)

By definition of pe, p1 ×p2 −pe is a polynomial of degree at most k. Also by definition,
p1(x) belongs to [p1], p2(x) belongs to [p2] and pe(x) belongs to [pe]. So, because
interval arithmetic over-approximates the results, we have

p1(x) × v2 + v1 × p2(x) + v1 × v2 + pe(x) ∈ [p1] × I2 + I1 × [p2] + I1 × I2 + [pe]

Because Taylor models are parameterized and dependent of a given domain D, given
the maximal expected order k, we can define an over-approximation of the primitive
operator with respect to a variable xi whose range in D is [xi, xi]:∫

(p, I) dxi =
(∫ xi

xi

(p− pe) dxi, [0, (xi − xi)] × ([pe] + I)
)

(2.53)

with pe a polynomial equal to the sum of all the monomials of p whose degrees after
primitivation would be bigger than k (e.g. if p(x) =

∑k
i=0 αix

i, then pe(x) = αkx
k),

and [pe] an interval over-approximation of its range over D. It consists in computing a
primitive of the polynomial part and scaling the remainder with respect to the width of
the range of the primitive variable over the domain D. It is an over-approximation of
the antiderivative of the functions that nullifies at the minimum value of xi.
Proof of the over-approximation Consider a Taylor model (p, I) over a domain
D and an integrable function f over the domain D that belongs to the Taylor model,
i.e. there exists an integrable function v : D → I such that for all x ∈ D, f(x) =
p(x) + v(x).

Defining a polynomial pe as above, the primitivation of f with respect to the
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component xi of a vector x becomes∫ xi

xi

f(x) dxi =
∫ xi

xi

(
p(x) − pe(x)

)
dxi +

∫ xi

xi

(
pe(x) + v(x)

)
dxi

We also notice that ∫ xi

xi

(
pe(x) + v(x)

)
dxi ∈ (xi − xi) × ([pe] + I)

and the range of the expression (xi − xi) over the domain [xi, xi] is equal to [0, (xi−xi)],
while the expression ([pe] + I) is independent of xi. So, for all xi ∈ [xi, xi], interval
arithmetic guarantees∫ xi

xi

(
pe(x) + v(x)

)
dxi ∈ [0, (xi − xi)] × ([pe] + I)

We can also define a Taylor model version of all smooth functions using Taylor
expansions of their results, substituting the evaluation point by its corresponding Taylor
model, truncating the polynomial up to a given order and over-approximating the error
using the Lagrange remainder term [47, 45, 107, 8].

2.4.1.3 Bernstein decomposition

In order to apply compositions of operators on Taylor models, we have to compute over-
approximations of the range of the polynomials over the domain. A simple evaluation
using interval arithmetic may result in a huge over-approximation due to the loss of
dependencies between the variables. However, we can use interval arithmetic over a
subdivision of the domain to compute a tighter over-approximation [8, Section 2.3.2].

Another method to compute boundaries of a polynomial consists in computing its
decomposition into Bernstein polynomials. Any interval that contains all the coefficients
of such a decomposition is an over-approximation of the range of the polynomial [147,
68, 139]. For a polynomial p defined on a unit box domain [0, 1]n, with a collection
of degrees with respect to each variable d = (d1, . . . , dn), called a multi-index, i.e. the
degree of p with respect to a variable xi is equal to di, for all multi-index i = (i1, . . . , in)
such that for all k ∈ J1, nK, 0 ≤ ik ≤ n, the Bernstein coefficient bi is defined as

bi =
i1∑

j1=0
. . .

in∑
jn=0

∏n
k=1

(ik
jk

)
∏n

k=1
(dk

jk

)aj (2.54)

with the multi-indices j = (j1, . . . , jn) and for all integers α and β such that α ≥ β ≥ 0,(α
β

)
is the binomial coefficient “α choose β” that can be defined as

(
α

β

)
= α!
β!(α− β)!

(2.55)
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where for all natural number δ, δ! denotes the factorial of δ, i.e. δ! = δ × (δ − 1) × (δ −
2) × · · · × 2 × 1. With these notations, we have for all x ∈ [0, 1]n

min
0≤i≤d

bi ≤ p(x) ≤ max
0≤i≤d

bi (2.56)

with 0 ≤ i ≤ d interpreted component wise, i.e. for all k ∈ J1, nK, 0 ≤ ik ≤ dk.
If the polynomial p is defined over a box [x, x] =

[
x1, x1

]
× · · · ×

[
xn, xn

]
with a

non-null volume, i.e. x ∈ [x, x] is equivalent to for all k ∈ J1, nK, xk ∈
[
xk, xk

]
and

xk 6= xk, then we can rescale the polynomial using an affine transformation

pu(x) = p

(
x+ x

x− x

)
(2.57)

where the operators are applied component wise. The polynomial pu is then defined on
the domain [0, 1]n and it has the same range as p.

The number of coefficients of the Bernstein decomposition increases exponentially
with respect to the number of variables. In this work, we implemented an exhaustive
computation of them, but an algorithm exists that reduces the number of coefficients to
compute in order to get the extremal ones [139].

2.4.2 Reachability analysis of initial value problems with uncertainties

We only consider dynamics defined using explicit ordinary differential equations of the
first order (cf. Subsection 2.1.1 and Section 2.3). The problem we consider is an initial
value problem with uncertainties:

∀a.e.t ∈ [t0, t1], ẋ(t) = f
(
t, x(t), u(t)

)
∀t ∈ [t0, t1], u(t) ∈ U
x(t0) ∈ X0

(2.58)

with U a subset of Rm and X0 a subset of Rn, where m is the number of input variables
and n is the number of state variables.

We want to compute a set-valued function R from [t0, t1] to the set of subsets of Rn

such that for all solutions x of the problem 2.58, i.e. there exists a function u such that
for almost all t ∈ [t0, t1], ẋ(t) = f

(
t, x(t), u(t)

)
and x(t0) belongs to X0, and for all time

t ∈ [t0, t1], we have x(t) ∈ R(t). This set-valued function defines an over-approximation
of the reachable set of the initial value problem with respect to the time.

Such a dynamics defines two kind of uncertainties: 1) an uncertain initial state x(t0)
(constant uncertainties) and 2) an uncertain input signal u of which only the range U
is known (time-varying uncertainties). As presented in Section 2.3, we have to make
hypotheses about the right-hand side of the differential equation in order to guarantee
the existence and the uniqueness of the solutions. In the following, we assume at least
that the function f is continuous. Moreover, we always assume that for each x(t0) and
u, the problem has a unique solution, e.g. with the hypotheses of the Theorem 2 or the
one of the Theorem 4.
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Multiple methods exist in the case of a linear dynamics, i.e. f
(
t, x(t), u(t)

)
=

A(t)x(t)+B(t)u(t): [97] using ellipsoid, [100] using support functions, [12] and [65] over-
approximating Riemann sums of the state transition matrix. We focus on non-linear
ones in the rest of this document.

A first method to handle such non-linear dynamics is to approximate the set of solu-
tions and to enlarge it to over-approximate the error with respect to the exact set. The
approximation can be computed using Runge-Kutta methods and automatic differentia-
tion for the evaluation of the over-approximation of the error [135, 119] or using Taylor
expansion and over-approximating the error via automatic differentiation or contraction
of a set [34, 107, 132, 47, 45, 79]. We present the later method in Subsection 2.4.2.2.
Instead of explicitly define an approximation, simulations of particular solutions can also
be computed with an over-approximation of the error via expansion functions [57]. Both
approaches can be mixed studying first a problem in which only a restricted class of un-
certain inputs are considered and over-approximating the error made considering such
a restriction: [90] only considers constant inputs before computing the error, while [72]
proposes different restriction inputs such as affine or sinusoidal. This last method is
implemented in the tool Ariadne[24, 33].

Other methods consist in abstracting the dynamics by a simpler one. It consists in
over-approximating the differential equation by a linear [14] or polynomial [4] differential
equation with additive time-varying uncertainties. This methods are implemented in the
tool CORA[9]. The abstractions may also be made replacing the differential equation by
a hybrid automaton with simple continuous dynamics, which is called hybridization [18,
91]. Instead of defining simpler dynamics whose reachable sets contain the original ones,
the dynamics may be abstracted using deterministic dynamics whose reachable sets are
bounds of the original one [133]. Methods such as “Face-lifting approaches” [54, 19]
study the dynamics locally: it consists in expanding a polyhedron of reachable states
based on the maximal distance reached in the normal of each face for a given duration.

We present here two methods using the Picard operator (cf. Definition 6), that
do not require the differentiability of the function f , but that require the continuity
of the right-hand side with respect to the time, i.e. with continuous functions u, and
(locally) Lipschitz with respect to the state x. This methods are implemented in the tool
Flow*[48, 46]. We use these methods as bases of our method with Lebesgue-integrable
uncertainties (cf. Chapter 3) and in our prototypes (cf. chapters 4 and 5).

2.4.2.1 Rough over-approximation of continuous dynamics with time-varying
uncertainties

Theorem 5 (Schauder fixed-point theorem [126, Theorem 1.2])
Let K be a convex subset of a normed vector space E. Each compact mapping
T : K → K, i.e. such that there exists a compact C ⊂ K such that T (K) ⊂ C, has a
fixed-point.
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The first method to compute an over-approximation of the reachable set of an au-
tonomous continuous dynamics exploits the Schauder fixed-point theorem (cf. The-
orem 5) and interval arithmetic [122, 135]. It provides a rough over-approximation
independent on time but that can be computed quickly. Given a differential equation
ẋ = f(x) and a set of possible initial states X0, this method requires a box over-
approximation [x0] of the set of possible initial states X0, i.e. X0 ⊂ [x0] and [x0] is
defined as a Cartesian product of intervals, and an interval version of the function f , i.e.
a function [f ] that takes boxes [x] and that returns a box containing the images of the
boxes [x] through f , i.e. for all x ∈ [x], f(x) ∈ [f ]

(
[x]
)
. Such a function [f ] can easily

be computed by replacing all the operators in the definition of f by their corresponding
operators of interval arithmetic. The interval version [P] of the Picard operator P over
the time interval [t0, t1] can be defined as

[P]
(
[x]
)

= [x0] + [0, t1 − t0] × [f ]
(
[x]
)

(2.59)

If a box [x] that contains [x0] is contracted by [P], i.e. [P]
(
[x]
)

⊂ [x], then [x] is an
over-approximation of the reachable set over the time interval [t0, t1] by the Schauder
fixed-point theorem, i.e. for all solution x and time t ∈ [t0, t1], x(t) ∈ [x].

The algorithm of this first method is as follow:

1. Set [x] to [x0]

2. While [P]
(
[x]
)

is not included in [x], enlarge [x]

3. While [P]
(
[x]
)

is strictly included in [x], set [x] to [P]
(
[x]
)

4. Return [x]

This algorithm requires a method to enlarge a box [x]. It can be done using two positive
thresholds εa (for absolute) and εr (for relative): for each component

[
xi, xi

]
of [x], if

wi = xi − xi (i.e. wi is the width of
[
xi, xi

]
) is strictly smaller than εa, then we add to

it the interval [−εa, εa], otherwise, we add to it the interval [−εrwi, εrwi]. In order to
speedup the termination of the algorithm, the condition of strict inclusion at the step 3
can be replaced by a condition of sufficient contraction, e.g. based on the width of the
boxes (cf. Subsection 4.1.4).

This first method is often used to compute an a priori over-approximation that can
be used to compute a tighter one. In particular, it can be used to compute an over-
approximation of the Lagrange remainder of a Taylor expansion of the solutions [135].

Moreover, such a method is still valid in the case of continuous inputs u. In that case,
the differential equation ẋ(t) = f

(
t, x(t), u(t)

)
is replaced by the differential inclusion

ẋ(t) ∈ f
(
t, x(t), [U ]

)
, where [U ] is a box over-approximation of U . The only difference is

the Picard operator that becomes

[P]
(
[x]
)

= [x0] + [0, t1 − t0] × [f ]
(
[t0, t1], [x], [U ]

)
(2.60)

Because interval arithmetic corresponds to Taylor model arithmetic with null polyno-
mials, i.e. Taylor models of null order, a proof of the correctness of this method with
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continuous inputs u in given in [45, Theorem 3.5.1], using Schauder fixed-point theorem
(cf. Theorem 5).

We prove in Section 3.2 that it is still correct in the case of Lebesgue-integrable
inputs u.

2.4.2.2 Tighter over-approximation using Taylor models

Now, we present a second method to compute an over-approximation of the reachable
set with respect to time in the case of continuous function f (and locally Lipschitz in
order to guarantee the existence and uniqueness of the solutions, cf. Theorem 2). This
method [34] exploits the operations defined on Taylor models. However, it is only proven
valid in the case of continuous time-varying uncertainties u. This method is (one of
the methods) implemented in the tool Flow* [47, 45]. Alternatively, Ariadne [50]
uses Lie derivatives to compute the different coefficients of the Taylor models and the
remainder (which is also implemented in Flow* [45]). On the contrary, other tools
such as VNODE-LP [121] rely on Taylor expansion using automatic differentiation
(e.g. using libraries such as FADBAD++11) to evaluate each monomials, which in only
accurate for small initial uncertainties (cf. [121, Section 1.4]). Similarly to VNODE-
LP, MAGIC-CPS12 [105, Section 4, Algorithm 2] uses automatic differentiation, but
it exploit QR-factorization and mean-value of f [122] in order to reduce the size of the
evaluations.

This method iteratively computes a polynomial approximation (a truncated Taylor
expansion in the case of differentiable dynamics) of the solutions using a recursive se-
quence of polynomials up to a desired order. In the case of a differentiable function f ,
over-approximations of the coefficients of the Taylor expansions can be directly com-
puted using automatic differentiation [120, 45, 76] and evaluated using the arithmetic
associated to a representation of sets. Moreover, in that case, the remainder can be com-
pute by evaluating its Lagrange form [76] on a rough over-approximation of the solution
(e.g. computed as in Subsection 2.4.2.1).

First, set X0 has to be over-approximated using Taylor models. In practice, X0
is already defined as a (multi-dimensional) Taylor model or it is defined as a box. In
this last case, we can define a multi-dimensional Taylor model using a variable for each
dimension and the associated domain as the corresponding component of the box X0.
For example, if X0 is a box

[
x1, x1

]
× · · · ×

[
xn, xn

]
, then we define a multi-dimensional

Taylor model (p0, I0) with for each index i ∈ J1, nK, p0,i(x) = xi, I0,i = [0, 0] = {0} and
the domain D0 equal to the box X0.

Second, we compute a polynomial approximation of the solutions using the Picard
operator adapted to Taylor models. The dimension of the domain is increased by one to
handle a time variable t whose values are in [t0, t1]. The new domain is D = [t0, t1] ×D0

11http://www.fadbad.com/
12https://agora.bourges.univ-orleans.fr/ramdani/attachments/article/93/

MAGIC-CPS-Install-EN.pdf
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(we arbitrarily set variable t as the variable of smallest index). Then, the Picard operator
becomes

P
(
(pn, In)

)
= (p0, I0) +

∫
fTM

((
t, [0, 0]

)
,
(
pn, In

)
,
(
0, [U ]

))
dt (2.61)

with
(
t, [0, 0]

)
a Taylor model whose polynomial part is equal to t and the remainder is

null,
(
0, [U ]

)
a Taylor model whose polynomial part is null and the remainder is a box

over-approximating the range of the time-varying uncertainties U , and fTM a function
on Taylor models obtained replacing all the operators of the definition of f by their
corresponding Taylor model version. The Picard operator is iterated on (pn, In) (initially
set to (p0, I0)) until the polynomial part pn reaches a fixed-point, i.e. pn+1 = pn.

Third, the remainder In of the Taylor model (pn, In) is enlarged until it is contracted
by the Picard operator, i.e. In+1 ⊂ In. This enlargement can be performed as in the
previous algorithm using interval arithmetic.

Finally, as in the previous algorithm, we iterate the Picard operator until the re-
mainder reaches a fixed-point or until the relative contraction of the remainder becomes
smaller than a given threshold (cf. Subsection 4.1.4).

We can summarize the algorithm as follow

1. Initialize a Taylor model (p, I) as over-approximation of X0

2. While p′ 6= p with (p′, I ′) = P
(
(p, I)

)
, set (p, I) to P

(
(p, I)

)
3. While I ′ is not included in I with (p′, I ′) = P

(
(p, I)

)
, enlarge I

4. While I ′ is strictly included in I with (p′, I ′) = P
(
(p, I)

)
, set (p, I) to P

(
(p, I)

)
5. Return (p, I)

A proof of the autonomous case, i.e. with constant inputs u, is provided in [34],
which uses the Arzelà-Ascoli theorem (cf. Theorem 6) in addition to the Schauder fixed-
point theorem (cf. Theorem 5). One in the case of continuous time-varying uncertainties
u is provided in [45, Theorem 3.5.1]. In the Section 3.2, we provide a proof similar to
the one in [34] but with Lebesgue-integrable uncertainties.

Theorem 6 (Arzelà-Ascoli theorem)
Let (fn)n∈N be a sequence of continuous functions from a closed interval [a, b] to R. If
the sequence is

1. uniformly bounded, i.e. there exists a real number M such that

∀(x, n) ∈ [a, b] × N, |fn(x)| ≤ M (2.62)

and

2. uniformly equicontinuous, i.e. for all ε > 0, there exists δ > 0 such that

∀(x, y, n) ∈ [a, b] × [a, b] × N, |x− y| ≤ δ =⇒ |fn(x) − fn(y)| ≤ ε (2.63)
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then there exists a subsequence (fnk
)k∈N that converges uniformly.

2.4.3 Abstract interpretation in static program analysis

Static analysers, such as Astrée [53] or Fluctuat [56], often exploit abstract interpre-
tation to compute over-approximations of sets of reachable states of programs [51, 52]. It
consists in replacing the (concrete) semantics of the programs by a sound approximation
of it. In particular, to compute an over-approximation of the set of reachable states, the
semantics of the operators on floating-point numbers can be replaced by a semantics on
a representation of sets that guarantees the over-approximation of the results [77].

A classic constructive semantics of expressions defines a function that maps a con-
text and an expression to a value. It is illustrated by Example 13. A sound abstract
semantics with respect to the over-approximation can often be deduced from the arith-
metic associated to the representation of sets used to define the abstract domain. Those
possible representations of the abstract domain are similar to the ones presented in
Subsection 2.4.1: boxes, zones [112, 113], octagons [113], template polyhedra [136], etc.

Example 13 (Constructive semantics of arithmetic operators)
Given a set X of variables, a set of possible values V and a context ρ that maps
variables in X to values in V , we define a (concrete) semantics JeKc

ρ of an expression
e as a value in V :

JxKc
ρ = ρ(x) (2.64)Jx⊗ yKc
ρ = ρ(x) ⊗ ρ(y) (2.65)

The semantics of a call to a variable is simply the value mapped to the variable in the
context (cf. 2.64). The semantics of an expression with a binary operator ⊗ (e.g. ⊗
can be +, ×, −, etc.) is the application of the operator to the values mapped to the
operands in the given context (cf. 2.65).

A possible abstract semantics using interval arithmetic consists in replacing the
set of values V by a set of intervals and the binary operators by their corresponding
ones in interval arithmetic.

A classic constructive semantics of instructions defines a function that maps a context
and an instruction to a context. It is illustrated by Example 14. Abstract semantics
sound with respect to the over-approximation have to manipulate abstract contexts,
which often requires to compute unions and intersections of sets. For example, Fluc-
tuat uses zonotopes to represent such contexts with an abstract semantics that keeps
linear correlations between values [74].

Example 14 (Constructive concrete semantics of instructions and branches)
Given a set X of variables, a set of possible values V and a context ρ that maps
variables in X to values in V , we define a (concrete) semantics Ji; Kc

ρ of an instruction
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i; as a context:

Jx = e; Kc
ρ =

{
x′ 7→ ρ(x′)

∣∣ x′ ∈ X \ {x}
}

∪
{
x 7→ JeKc

ρ

}
(2.66)Ji1; i2; Kc

ρ = Ji2; Kc
ρ′ with ρ′ = Ji1; Kc

ρ (2.67)

Jif e then i1; else i2; Kc
ρ =

{ Ji1; Kc
ρ if JeKc

ρ = trueJi2; Kc
ρ otherwise (2.68)

The affectation consists in mapping the variable to the value returned by the semantics
of the expression while keeping all other mapping of the context (cf. 2.66). The
semantics of a sequence of instructions is the chaining of their semantics (cf. 2.67).
The semantics of a branch instruction is equal to the one of an instruction or another
depending on the value of the semantics of an expression (cf. 2.68).

An abstract semantics that guarantees the over-approximations of the values has
to possibly compute both branches of the branch instructions [52, Section 3.1]. Given
an abstract context ρ̃ (e.g. mapping to interval values),

Jif e then i1; else i2; Ka
ρ̃ = Ji1; Ka

ρ̃e=true ∪ Ji2; Ka
ρ̃e=false

(2.69)

where ρ̃e=true (resp. ρ̃e=false) is an abstract context whose concretization contains all
concrete context of the concretization of ρ̃ in which the semantics of e is true (resp.
false). In particular, it requires to compute the union of abstract context, i.e. a new
abstract context whose concretization is a superset of the union of the concretization
of the abstract context defined by the semantics of each branch. More details are
provided in [37, Section 5.4].

In the case of hybrid systems, we want to exploit both concrete and discrete methods
to compute over-approximations of sets of reachable states.

2.4.4 Reachability analysis of hybrid dynamics

In order to compute an over-approximation of the reachable set of a hybrid automaton,
we have to compute an over-approximation of the continuous dynamics in each mode,
but also an over-approximation of the set of states that activate some guards and an
over-approximation of the images through the jumps. We focus on reachability analysis
with bounded time horizon, i.e. on a given time interval [0, T ]. We also need a set
of possible inputs denoted U that are defined on the time interval [0, T ], i.e. a set of
functions u ∈ U whose domain is [0, T ].

In the previous subsection, we briefly presented some methods to compute an over-
approximation of the reachable set with respect to the time of continuous dynamics [99,
45, 6]. However, those methods do not handle the invariants: it is possible that some of
the computed states are not reachable due to the invariant conditions. To compute such
a restriction, we have to compute an over-approximation of the intersection between the
over-approximations computed following the continuous dynamics and the set of states
that satisfy the invariant conditions.
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2.4.4.1 Base abstract algorithm for reachability analysis of hybrid automata

Consider a hybrid automaton H as defined in the Definition 1, a time interval [0, T ] and
a set U of possible input functions. We call timed state a pair (t, x) of a time t and a
continuous state x of the hybrid automaton. We assume that we have a function Postcont
that given a mode v ∈ V and a set Y0 of timed states, returns an over-approximation
of the set of timed states that are reachable from a timed state in Y0 following the
flow condition flow(v) with some (Lebesgue-integrable) input u of U . So, Postcont

(
v, Y0

)
is an over-approximation of the set of timed states that are reachable from Y0 in the
current mode, i.e. without taking any transitions, with times in [0, T ]. Such an over-
approximation can be computed using the methods presented in the previous subsection.

Based on the function Postcont, we define a function Postloc that takes the same
arguments as Postcont but that filters the set of timed states returned by Postcont to
only keep the ones that are reachable without violating the invariant conditions. Be-
cause we want over-approximations, it can be computed as an over-approximation of
the intersection of the set computed by Postcont and the set of timed states that satisfy
the invariant conditions in the given mode. It can also be computed using contraction
propagation [44].

In order to compute an over-approximation of the discrete behaviors, we assume that
we have a function Postdisc that given a edge e ∈ E, from mode v1 to mode v2, and a
set Y1 of timed states, returns an over-approximation of the set Y2 of timed states that
satisfy the invariant condition in the mode v2 and that belong to the image of the jump
condition jump(e) associated to the transition e over the set of timed states in Y1 that
may satisfy the guard condition guard(e) with some input u ∈ U . This function can
be computed in two steps: 1) identify the subset Ỹ of Y1 that may satisfy the guard
condition guard(e); 2) compute an over-approximation of all the possible images of Ỹ
through the jump condition jump(e) and 3) filter the set of computed timed states to
only keep those that satisfy the invariant condition inv(v2). Such a function can be
computed using an over-approximation of the intersection as in the case of the function
Postloc (over-approximation of guard(e) and inv(v2)) and using the arithmetic associated
to the representation of sets (over-approximation of jump(e)).

A classic procedure [99, 6] to compute an over-approximation of the reachable set of
an hybrid automaton uses a worklist (or waiting list) W whose elements are pairs (v, Y )
of a mode and a set of timed states. It constructs a set R of pairs (v, y) of a mode and a
timed state that is an over-approximation of the reachable set of the hybrid automaton.
We define a function Visited((v, Y ), R) that returns true if and only if all the pairs (v, y)
with y ∈ Y belong to R. We also define a function InitState(v) that returns a set of
timed states that belong to the initial set Init in the mode v.

1. Set W to
{
(v, InitState(v))

∣∣ v ∈ V
}

and R to an empty set

2. Pop a pair (v, Y ) from W

3. Compute Ỹ = Postloc(v, Y ) and append (v, Ỹ ) to R

4. For each mode v′ ∈ V and for each edge ev,v′ ∈ E from v to v′:
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(a) Compute Y ′ = Postdisc(ev,v′ , Ỹ )
(b) If Y ′ is not empty and Visited((v′, Y ′), R) is false, then append (v′, Y ′) to W

5. If W is empty, then return R. Otherwise, go to step 2

2.4.4.2 Multiple possible implementations

Different possible implementations of the operator Postcont were presented in Subsec-
tion 2.4.2. To obtain the operator Postloc, tools have to detect the violation of the
invariant conditions by the computed over-approximation of the set of continuous solu-
tions. This problem is similar to the detection of the activation of guards that are part
of the operator Postdisc.

If the predicates are defined as regions (e.g. guard(e)(t, x, u) =
(
x ∈ Ge

)
with Ge ⊂

Rn), the violation and the satisfaction of predicates only depends on the computation of
an intersection between the result of Postcont and the regions associated to the predicates.
This is the method with polyhedra intersections used in SpaceEx [64] via support
functions [66] and CORA [2] via zonotopes bundles [11].

Alternatively, predicates can be encoded as constraints on the results of real mul-
tivariate functions (e.g. guard(e)(t, x, u) =

(
ge(t, x, u) ≥ 0

)
). In this case, the real

multivariate functions are evaluated using the arithmetic associated to the chosen rep-
resentation of sets. Notice that once the functions are evaluated, it amounts to the com-
putation of intersections as in the previous case (e.g.

{
y
∣∣ y = ge(t, x, u)

}
∩
{
y
∣∣ y ≥ 0

}
).

It is for example implemented in Flow* [47] using Taylor models for the evaluation of
functions and zonotopes to compute over-approximations of intersections. With Taylor
models, it also defines domain contraction in order to obtain tight subsets of the Taylor
models that activate the guards, using interval constraint propagation [27] or branch-
and-prune algorithms [134]. Computing a tight over-approximation of the set of states
that validate a given predicate can also be computed using contractors [44, 105] that
exploit different evaluations to contract the initial set until it reaches a fixed-point. In
Ariadne, such a computation is implemented using the interval Newton operator [50].

Finally, in the case of the Postdisc operator, once such an (over-approximated) inter-
section is computed, its images through the corresponding jump can be computed using
the arithmetic of the chosen representation of sets.

2.4.4.3 Reachability analysis of Simulink-like models

As mentioned in Section 2.2, models written in Simulink or Zélus have slightly dif-
ferent structures than hybrid automata and transitions are followed as soon as they are
activated. To exploit classical methods on such models, they can first be translated into
hybrid automata using the tools HyLink [109] or GreAT [1], but also into networks of
hybrid automata using SL2SX [115, 114, 91] before computing reachability analyses.

In the case of Zélus, a compiler [43] has been developed to generate code in C++11
in order to use the DynIbex13 to compute over-approximations of the sets of reachable

13https://perso.ensta-paris.fr/~chapoutot/dynibex/
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states of continuous systems. Recently, this method has been improved to handle hybrid
automata written in Zélus [128]. It only handles a subset of the Zélus language. In
particular, it does not handle nested (or hierarchical) automata or resets on transitions.

2.4.4.4 Handling of Zeno behaviors

Zeno behaviors may result in endless computations of the reachable set. To avoid such
behavior, some methods require that the considered hybrid automata do not allow Zeno
behaviors [18, Assumption 1]. Some tools such as Flow* [48] require users to define a
maximum number of transition that a trajectory can take during the computation, which
excludes any Zeno behavior. Ariadne also allows to define such a maximum bound on
the number of transitions14, but it also allows to define instead a domain in which to
compute the reachability analysis14: it allows to perform the reachability analysis on a
finite discretization of the domain [33].

A method [95, 94] exists in order to handle Zeno behaviors and even computing
sound over-approximations with respect to the interpretation in the sense of Filippov (cf.
Subsection 2.1.3) using interval methods, but it terminates only when the trajectories at
Zeno points converge toward finite stable orbits [94], which seems not compatible with
time-varying guards.

14https://www.ariadne-cps.org/tutorial/
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Chapter 3

Reachability analysis with
bounded time-varying
uncertainties

We start this chapter by proving that a set-valued function that is contracted by a set-
valued version of the Picard operator is an over-approximation of the set of solutions
of a continuous dynamics in presence of Lebesgue-integrable uncertainties. This result
demonstrates that some methods designed for continuous time-varying uncertainties are
indeed correct also for Lebesgue-integrable ones. However, these existing approaches
are generally imprecise in that case. Then, we present a method to compute an over-
approximation of the reachable set of systems described as a generalization of input-
affine systems with Lebesgue-integrable bounded uncertain inputs. We call such systems
separable systems with respect to time-varying uncertainties [35]. Our method is based on
a decomposition as a difference of positive functions of the right-hand side, reducing the
stystem with measurable uncertainties to a system with constant uncertainties for which
efficient techniques already exist. We then discuss an interpretation of the optimality of
such decompositions. Finally, we apply this method to switched systems allowing Zeno
behaviors by handling transitions with differential inclusions in the sense of Filippov.

3.1 Motivations

In order to obtain tight over-approximations, reachability tools make assumptions about
the right-hand side of the ordinary differential equations. The stronger hypothesis is
the differentiability of the right-hand side [135]. A more common one is the Lipschitz
continuity of the right-hand side with respect to the state and continuity with respect
to the time [14, 4], which is the case for most of autonomous systems, i.e. of the form
ẋ(t) = f

(
t, x(t), p

)
. However, this is often a non-admissible hypothesis when it comes to

handling noise. A more acceptable one is to assume that the right-hand side is piecewise
continuous with respect to the state variables and time, or even Riemann-integrable [4].
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But some input signals may also just be Lebesgue-integrable, e.g. in the super-twisting
observers [55].

Below ẋ = 1
x2 ≥ y ẏ = 0

x ∈ [−1.5,−1]
y ∈ [−0.5, 0.5]

Above ẋ = 0
x2 ≤ y ẏ = −1

x2 ≤ yx2 ≥ y

(a) Hybrid automaton

−2 −1 0 1 2
−1

0

1

x

y

(b) Behavior with the classic interpretation
(initial states in blue, admissible trajecto-
ries in red)

Figure 3.1 – Hybrid automaton with Zeno behaviors



∀a.e.t ≥ t0, ẋ(t) = α(t)
∀a.e.t ≥ t0, ẏ(t) = α(t) − 1
x(t0) ∈ [−1.5,−1]
y(t0) ∈ [−0.5, 0.5]
∀t ≥ t0, x(t)2 > y(t) =⇒ α(t) = 1
∀t ≥ t0, x(t)2 < y(t) =⇒ α(t) = 0
∀t ≥ t0, x(t)2 = y(t) =⇒ α(t) ∈ [0, 1]

(a) Switched system in the sense of Filippov

−2 −1 0 1 2
−1

0

1

x

y

(b) Behavior in the sense of Filippov (ini-
tial states in blue, admissible trajectories in
red)

Figure 3.2 – Switched system in the sense of Filippov corresponding to the system
presented in Figure 3.1

Now, consider the hybrid automaton represented in Figure 3.1. It is a typical example
of a switched system with some Zeno behaviors (cf. Subsection 2.1.2): as soon as the
system reaches a state such that x2 = y, it cannot evolve anymore using the classic
definition, because its trajectory should have either ẋ(t) = 1 or ẏ(t) = −1 and that should
directly force the system to be in the opposite mode. We presented in the Subsection 2.1.2
a method proposed by A. F. Filippov [63] to allow admissible trajectories defined beyond
any Zeno events using contraints on the derivatives as differential inclusions: from a
Zeno event, the trajectories stay on the switching surface until some dynamics allow the
trajectories to move away. On the example represented in Figure 3.1, if a trajectory starts
by a state with a positive value of the y variable, then the trajectory eventually reaches
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the surface defined by x2 = y and it stays on it until it reaches the state x = 0 ∧ y = 0.
From that point, the trajectory can stay in the mode Below forever. This is represented
in Figure 3.2 with an extra measurable input variable α, i.e. a time-varying uncertainty,
whose range is constrained by the current state.

Due to the simplicity of this example, one may also compute a function g(x, y) =
x2 − y, whose sign only changes on the switching surface x2 = y, and compute the
explicit sliding mode using the Lie derivatives of g along the different dynamics. However,
automatically detecting and computing such a sliding mode is not trivial and it typically
needs a method of automatic differentiation. Moreover, in the general case, such a
function g may not be differentiable and the Lie derivatives may not be computed.

To compute an over-approximation of the reachable set of such a system, we have
to handle continuous dynamics with measurable time-varying uncertainty. As far as
we can tell, it is not known whether considering bounded time-varying uncertainties as
Riemann-integrable or Lebesgue-integrable yields the same reachable set. So, we have
to consider only methods that are able to handle Lebesgue-integrable uncertainties.

The state-of-the-art tools that handle such nonlinear dynamical systems with un-
certainties start by computing an over-approximation of the reachable set of the sys-
tem considering a subclass of uncertainties (constant or continuous depending on some
parameters) and add to it a set to over-approximate the error with respect to the
whole class of possible measurable bounded uncertainties [90, 72]. For example, given
a dynamical system ẋ(t) = f

(
x(t), u(t)

)
where f is a continuous function and u is a

measurable function with values in a bounded convex set U , they start by computing
an over-approximation Rp of the reachable set of a parameterized dynamical system
ẋp(t) = f

(
xp(t), yp(t)

)
where yp is an explicit continuous function depending on an

uncertain parameter p, i.e. ẋp(t) = fp
(
t, xp(t)

)
with fp a continuous function parame-

terized by p. Then, an upper bound M is computed such that minp‖x− xp‖ ≤ M for
all solutions x of ẋ(t) = f

(
x(t), u(t)

)
. This upper bound M is computed based on a

bound of the derivative of f with respect to x [90, 72] or a bound of the range of f [72].
Finally, the over-approximation of the reachable set of ẋ(t) = f

(
x(t), u(t)

)
is defined as

the Minkowsky sum of Rp and the ball of radius M centered on the origin.
Our method differs from the state-of-the-art by ensuring that the reachable set of the

auxiliary continuous system is already an over-approximation of the reachable set of the
original system interpreted in the sense of Filippov. So, we do not have to add an error
a posteriori. However, it requires an a priori over-approximation of the reachable set,
which we call rough over-approximation, in order to compute a valid auxiliary continuous
system. So, we start to prove the correctness of methods based on the contraction of
sets.

3.2 Criterion of over-approximation of non-linear dynam-
ics with Lebesgue-integrable uncertainties

A first way to compute an over-approximation of non-linear dynamics with uncertain
initial states and Lebesgue-integrable time-varying uncertainties consists in remplacing
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the time-varying uncertainties by their range in the differential equation. It results
in a differential inclusion. A set-valued function that is stable through the associated
Picard operator is an over-approximation of the reachable set in the case of continuous
time-varying uncertainties [45, 49].

Our proof of the correctness of this method in the case of Lebesgue-integrable un-
certainties is inspired by the one by Martin Berz and Kyoko Makino [34], which uses
Taylor models. It consists in constructing a parameterized compact and convex sub-
set of the normed space of continuous functions with the supremum norm being stable
through a Picard operator. Finally, the application of Schauder’s fixed-point theorem
provides the existence of the solution in the stable set, which proves that it is an over-
approximation of the set of solutions.

Consider the initial value problem
∀a.e.t ∈ [t0, t1], ẋ(t) = f

(
t, x(t), p, u(t)

)
∀t ∈ [t0, t1], u(t) ∈ U
x(t0) = x0 ∈ X0 ⊂ Rn

p ∈ P

(3.1)

with X0 a bounded set of possible initial states (subset of Rn with n a positive natural
number), p an uncertain parameter (i.e. constant uncertainty) with values in P , u a
bounded Lebesgue-integrable time-varying uncertainty with values in a bounded set U
and f a continuous function. We assume that for any parameter p and all Lebesgue-
integrable uncertainty u, t 7→ f

(
t, x(t), p, u(t)

)
satisfies the Carathéodory uniqueness

conditions (cf. Definition 8). For every triple (x0, p, u) of an initial state x0 ∈ X0, a
parameter p ∈ P and a bounded Lesbegue-integrable uncertainty u with values in U ,
there exists a unique solution to Problem 3.1.

Remark 3 Another interesting problem is obtained by replacing the differential equa-
tion by a differential inclusion:

∀a.e.t ∈ [t0, t1], ẋ(t) ∈ f
(
t, x(t), p, U

)
x(t0) = x0 ∈ X0 ⊂ Rn

p ∈ P
(3.2)

Following [125, Definition 3], a solution x of such a problem is an absolutely con-
tinuous function that satisfies the constraints, i.e. there exists a parameter p ∈ P
such that for almost all t ∈ [t0, t1], ẋ(t) ∈ f

(
t, x(t), p, U

)
. It implies that there exists a

function u with values in U such that for almost all t ∈ [t0, t1], ẋ(t) = f
(
t, x(t), p, u(t)

)
.

So, any solution of 3.2 is a solution of 3.1 and any over-approximation of the reachable
set of 3.2 is an over-approximation of the reachable set of 3.1.

However, [125, Theorem 7] only proves that the two problems admit the same set
of solutions if the set f

(
t, x(t), p, U

)
is convex for all (t, x(t), p) and U a compact set.

Given an initial state x0 ∈ X0 and a parameter p ∈ P , we want to define a set-
valued version of Picard operator Px0,p (parameterized by x0 and p) that handles set-
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valued functions from [t0, t1] to Rn in order to apply Schauder’s fixed-point theorem (cf.
Theorem 5).

First, we define a version Px0,p,u that is also parameterized by a Lebesgue-integrable
function u with values in U . It is the Picard operator associated to Problem 3.1.

Px0,p,u
(
y
)

= t 7→ x0 +
∫ t

t0
f
(
s, y(s), p, u(s)

)
ds (3.3)

Then, we lift it to a set-valued version that takes a set-valued function φ from [t0, t1] to
Rn (i.e. a function from [t0, t1] to the set of all subsets of Rn, P(Rn)):

Px0,p,u
(
φ
)

=
{
Px0,p,u(y)

∣∣∣ y ∈ C([t0, t1],Rn) ∧ ∀t ∈ [t0, t1], y(t) ∈ φ(t)
}

(3.4)

Finally, we define the set-valued version Px0,p that gathers the results for all possible
Lebesgue-integrable functions u whose range is included in U :

Px0,p
(
φ
)

= t 7→
⋃

u Lebesgue-integrable
∀t ∈ [t0, t1], u(t) ∈ U

Px0,p,u
(
φ
)
(t) (3.5)

For all pairs (x0, p) of an initial state x0 ∈ X0 and a parameter p ∈ P , we assume
that we have a set-valued function φx0,p such that for all t ∈ [t0, t1], φx0,p is a closed
bounded convex set and

Px0,p(φx0,p)(t) ⊂ φx0,p(t) (3.6)

Remark 4 While for all t ∈ [t0, t1], initial state x0 ∈ X0 and parameter p ∈ P ,
φx0,p(t) has to be a closed convex set, we do not need any hypothesis about their
union. For example

ψ = t 7→
{(

t
t2

)}
is such a set-valued function: for all t, ψ(t) is a closed and convex set (it is in fact a
singleton), but the union of its images is not convex in R2.

Remark 5 Such a set-valued function φx0,p always exists for small enough time in-
terval [t0, t1], because f is continuous and U is bounded.

For example, let φx0,p be defined by each of its components as

∀i ∈ J1, nK, ∀t ∈ [t0, t1], φx0,p,i(t) = [x0,i − ai, x0,i + ai] (3.7)

Due to the continuity of f and due to the boundedness of U , there exists b ∈ Rn
+ such

that for all Lebesgue-integrable function u with values in U , we have

∀i ∈ J1, nK, ∀t ∈ [t0, t1], f
(
t, φx0,p(t), p, u(t)

)
i

⊂ [−bi, bi] (3.8)
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Then, using interval arithmetic, we deduce

∀i ∈ J1, nK, ∀t ∈ [t0, t1], Px0,p(φx0,p)(t)i ⊂ [x0,i − (t1 − t0)bi, x0,i + (t1 − t0)bi] (3.9)

So, such a set-valued function φx0,p is contracted by Px0,p if

t0 ≤ t1 ≤ t0 + min
i∈J1,nK

(
ai

bi

)
(3.10)

We define φ as the union of all possible φx0,p:

∀t ∈ [t0, t1], φ(t) =
⋃

x0 ∈ X0
p ∈ P

φx0,p(t) (3.11)

Such a set-valued function φ corresponds to the one computed by reachability analysis
tools applied to Problem 3.1. For example, it could be computed using Taylor models
replacing the uncertainties by their interval ranges as in [45].

Now, we show that φ(t) is actually an over-approximation of the set of reachable
states of Problem 3.1 for all time t ∈ [t0, t1]. We first notice that, for all solution x of
Problem 3.1, there exists a tuple

(
x0, p, u

)
with an initial state x0 ∈ X0, a value of the

parameters p and a Lebesgue-integrable function u, whose range is included in U , such
that for all time t ∈ [t0, t1], x(t) = x0 +

∫ t
t0
f
(
s, x(s), p, u(s)

)
ds. Then, for a pair

(
x0, p

)
of an initial state and a value of parameters, we define a convex subset Kx0,p of the
normed vector space of k-Lipschitz functions such that Kx0,p is stable by the application
of the operator Px0,p. Finally, we apply Schauder’s fixed-point theorem (cf. Theorem 5)
to Kx0,p to deduce that the image of the solution of Problem 3.1 with initial state x0
and parameter p belongs to φ. This final result means that for all time t, φ(t) is an
over-approximation of the reachable set of Problem 3.1 at time t ∈ [t0, t1].

Lemma 1
Every solution of Problem 3.1 is a uniformly Lipschitz function.

Proof Consider the unique solution x of Problem 3.1. Let p the associated value of
the parameters and u the input function such that

∀t ∈ [t0, t1], x(t) = x(t0) +
∫ t

t0
f
(
s, x(s), p, u(s)

)
ds (3.12)

We call R the range of x over [t0, t1], i.e.

R =
{
x(t)

∣∣ t ∈ [t0, t1]
}

(3.13)

Because x is a continuous function as integral of an integrable function on a compact
subset of R (closed interval [t0, t1]), the set R is a compact set.
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We define ρ as the function such that

∀(t, x) ∈ [t0, t1] ×R, ρ(t, x) = f
(
t, x, p, u(t)

)
(3.14)

By definition, f is continuous and u is bounded. So, ρ is bounded over [t0, t1] × R.
Let M be an upper bound of the norm of the image of ρ:

∀(t, x) ∈ [t0, t1] ×R, ‖ρ(t, x)‖∞ ≤ M (3.15)

Let t and t′ be two times in [t0, t1]. We have

∥∥x(t) − x(t′)
∥∥

∞ ≤
∥∥∥∥∥
∫ t

t0
ρ
(
s, x(s)

)
ds−

∫ t′

t0
ρ
(
s, x(s)

)
ds

∥∥∥∥∥
∞

≤ M
∣∣t− t′

∣∣ (3.16)

So x is a uniformly M -Lipschitz function.
This lemma shows that only uniformly Lipschitz functions can be considered to

define a candidate set such that the corresponding Picard operator of Problem 3.1 is a
contraction mapping. Given a pair

(
x0, p

)
of initial state and parameter of the problem

and an upper bound M as in the proof of Lemma 1, we define such a candidate set Kx0,p

as the set of M -Lipschitz functions whose images at time t are included in φx0,p and
such that the initial value is equal to x0:

Kx0,p =

y ∈ C
(
[t0, t1],Rn)

∣∣∣∣∣∣∣
∀(t, t′) ∈ [t0, t1]2, ‖y(t) − y(t′)‖∞ ≤ M |t− t′|

∀t ∈ [t0, t1], y(t) ∈ φx0,p(t)
y(t0) = x0

 (3.17)

In order to apply Schauder’s fixed-point theorem to it, this set Kx0,p has to be a
convex subset of a normed vector space and to be a compact set.

Lemma 2
For all pair (x0, p) that satisfies the hypotheses of Problem 3.1, the set Kx0,p is a
convex subset of the normed vector space of continuous functions C

(
[t0, t1],Rn

)
with

the supremum norm ‖·‖∞.

Proof By definition, Kx0,p is a subset of C
(
[t0, t1],Rn

)
. So, we only have to prove

that Kx0,p is a convex set.
Let y1 and y2 be two elements of Kx0,p and α be an element of the interval [0, 1].

Let y be the convex combination of y1 and y2 with coefficents α and 1 − α, i.e.
y = αy1 + (1 − α)y2.
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1. Let t ∈ [t0, t1] and t′ ∈ [t0, t1]:∥∥y(t) − y(t′)
∥∥ =

∥∥α(y1(t) − y1(t′)) + (1 − α)(y2(t) − y2(t′))
∥∥

∞
≤ α

∥∥y1(t) − y1(t′)
∥∥

∞ + (1 − α)
∥∥y2(t) − y2(t′)

∥∥
∞

≤ αM
∣∣t− t′

∣∣+ (1 − α)M
∣∣t− t′

∣∣
≤ M

∣∣t− t′
∣∣

So y is a M -Lipschitz function.

2. Let t ∈ [t0, t1]. Because φx0,p(t) is convex and because, by definition, y1(t) and
y2(t) belong to φx0,p(t), we have y(t) ∈ φx0,p(t).

3. The initial value of y is the image of t0:

y(t0) = αy1(t0) + (1 − α)y2(t0)
= αx0 + (1 − α)x0

= x0

So, the initial value of y is equal to x0.

Lemma 3
For all pair (x0, p) that satisfies the hypotheses of the problem 3.1, the set Kx0,p is a
compact set.

Proof To prove that Kx0,p is a compact set, we have to prove that every sequence in
Kx0,p has a cluster point. Let (yn)n∈N be a sequence of functions in Kx0,p. Because
φx0,p is bounded and the image of every element of (yn)n∈N is in the image of φx0,p, the
sequence (yn)n∈N is uniformly bounded. Moreover, because every element of (yn)n∈N
is M -Lipschitz, the sequence (yn)n∈N is uniformly equicontinuous: for all ε > 0 and
for all (v1, v2, n) ∈ [t0, t1] × [t0, t1] × N, we have

|v1 − v2| ≤ ε

M
=⇒ |yn(v1) − yn(v2)| ≤ M |v1 − v2| ≤ ε (3.18)

Using Arzelà-Ascoli’s theorem (cf. Theorem 6), we deduce that the sequence (yn)n∈N
has a cluster point. Let y∗ be such a cluster point of (yn)n∈N and (yni)i∈N be a
subsequence such that limi→∞ yni = y∗. We will now prove y∗ ∈ Kx0,p:

1. Let (t, t′, i) ∈ [t0, t1]2 × N. We have∥∥yni(t) − yni(t′)
∥∥

∞ ≤ M
∣∣t− t′

∣∣ (3.19)

By continuity of the norm and of the substraction, we deduce∥∥y∗(t) − y∗(t′)
∥∥

∞ = lim
i→∞

∥∥yni(t) − yni(t′)
∥∥

∞ ≤ M
∣∣t− t′

∣∣ (3.20)

58



So y∗ is M -Lipschitz.

2. Because for all t ∈ [t0, t1], φx0,p(t) is closed and for all i ∈ N, yni(t) ∈ φx0,p(t),
y∗(t) ∈ φx0,p(t).

3. Because for every i ∈ N, yni(t0) = x0, y∗(t0) = x0.

So, the cluster point y∗ belongs to Kx0,p, which proves that Kx0,p is a compact set.
Now, we need to prove that the image of the candidate set Kx0,p through the Picard

operator Px0,p is included in Kx0,p, i.e. for all function y ∈ Kx0,p and for all Lebesgue-
integrable function u with values in U , Px0,p,u(y) ∈ Kx0,p.

Lemma 4
For all pair (x0, p) that satisfies the hypotheses of Problem 3.1, the image of the set
Kx0,p through the Picard operator Px0,p is included in Kx0,p.

Proof Consider y ∈ Kx0,p and u a Lebesgue-integrable function with values in U . Let
z be the image of y through Px0,p,u, i.e. z = Px0,p,u(y).

1. Let (t, t′) ∈ [t0, t1]2, using the upper bound M , we have

∥∥z(t) − z(t′)
∥∥

∞ ≤
∥∥∥∥∥
∫ t

t0
ρ(s, y(s)) ds−

∫ t′

t0
ρ(s, y(s)) ds

∥∥∥∥∥
∞

≤ M
∣∣t− t′

∣∣ (3.21)

with ∀(t, x), ρ(t, x) = f
(
t, x, p, u(t)

)
. So z is M -Lipschitz.

2. Because for all t ∈ [t0, t1], φx0,p(t) is closed and y(t) ∈ φx0,p(t), we have z(t) ∈
φx0,p(t).

3. By definition of Px0,p,u, z(t0) = x0.

So z ∈ Kx0,p.

Now, using the four previous lemmas, we can prove that the set-valued function φ
defines an over-approximation of the reachable set.

Theorem 7
Let x be a solution of Problem 3.1 and let φ be the set-valued function defined in 3.11.
We have

∀t ∈ [t0, t1], x(t) ∈ φ(t) (3.22)

and φ is an over-approximation of the reachable set of Problem 3.1.

Proof Let x be a solution of Problem 3.1 with a Lebesgue-integrable uncertainty u,
an initial state x0 and a parameter p. Then, x is the unique fixed-point of Px0,p,u:

x = Px0,p,u(x) (3.23)

Let Kx0,p be a set defined as in 3.17 with M an upper bound as in the proof of
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Lemma 1. Lemma 2 and Lemma 3 prove that the set Kx0,p is a compact convex subset
of a normed vector space. Moreover, Lemma 4 proves that the image of Kx0,p through
Px0,p is included in Kx0,p. By definition of Px0,p, we deduce that for all Lebesgue-
integrable function u with values in U , Kx0,p is also stable by the application of the
operator Px0,p,u. Using Schauder’s fixed-point theorem (cf. Theorem 5), we deduce
that Px0,p,u has a fixed-point in Kx0,p. Due to the definition of Problem 3.1 and due
to Carathéodory’s uniqueness theorem (cf. Theorem 4), we know that the fixed-point
of Px0,p,u is unique. So, x belongs to Kx0,p. Finally, by definition of Kx0,p, for all
t ∈ [t0, t1], x(t) ∈ φx0,p(t). By definition of φ, we deduce that for all t ∈ [t0, t1],
x(t) ∈ φ(t), which proves that φ is an over-approximation of the reachable set of the
problem 3.1.

Remark 6 The uniqueness of the solution is mandatory as presented by the counter-
example below.

Consider the integral system

∀t ∈ [0, 1], x(t) =
∫ t

0

√
x(s) ds (3.24)

This system has two solutions, x(t) = 0 and x(t) = t2/4. Now, consider the set-valued
function φ(t) = {t2/4}. It is stable by the operator P(y) = t 7→

∫ t
0
√
y(s) ds and for

all t ∈ [0, 1], its image is compact and convex, but it does not contain all the possible
solutions of the integral system.

Theorem 7 gives us a criterion to check whether a set-valued function is an over-
approximation of the reachable set of Problem 3.1. We notice that the method proposed
in [45] (cf. Subsection 2.4.2.2) computes such a function φ using Taylor models. So,
its result is an over-approximation of the reachable set even in the case of Lebesgue-
integrable uncertainties.

In the following, in order to compute a rough over-approximation of the reachable
set of the systems, we use this method with intervals (cf. Subsection 2.4.2.1), which is
a particular case of Taylor models with null polynomial parts, i.e. only the remainder
part has to be computed.

3.3 Separable systems with respect to the time-varying un-
certainties

Now, we focus on a particular class of systems that we called separable with respect to
the measurable uncertainties and that can be described as a multiplication of a func-
tion only depending on the measurable uncertainties and a function depending on the
state and the time. This second function can contain constant uncertainties, i.e. it
can be a parameterized function. We leave such parameters implicit to simplify the
notations.
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Definition 11 (Separable system)
Let

• [t0, t1] ⊂ R be a time interval

• X ⊂ Rn be a set of possible states

• x0 be a vector in a bounded set X0 ⊂ Rn

• u be a Lebesgue-integrable function from [t0, t1] to Rm

• g be a continuous function from Rm to Rn×k

• h be a continuous function from [t0, t1] ×X to Rk

A separable system with respect to the measurable uncertainties, or simply separable
system, is a system of the form:

x(t) = x0 +
∫ t

t0
g
(
u(s)

)
· h
(
s, x(s)

)
ds (3.25)

with t the time variable in [t0, t1], x0 the initial state and u the time-varying uncer-
tainties.

We assume that t 7→ g
(
u(t)

)
is bounded on [t0, t1].

To guarantee the uniqueness of the solution (cf. Theorem 4), we also assume that
the function (t, x) 7→ g

(
u(t)

)
· h
(
t, x
)

satisfies Carathéodory’s uniqueness conditions
(cf. Definition 8), i.e. there exists a Lebesgue-integrable function k : [t0, t1] → Rn

+
such that

∀(t, x, y) ∈ [t0, t1] ×X ×X,
∥∥g(u(t)

)
· h(t, x) − g

(
u(t)

)
· h(t, y)

∥∥
∞ ≤ k(t)‖x− y‖∞

(3.26)

We recall that the notation of the integral
∫ t

t0
f(s) ds of a function f from an interval

[t0, t] to Rn, whose components are denoted fi for i ∈ J1, nK, is interpreted as the vector
of the Lebesgue-integrals of each component fi on the interval [t0, t]:

∫ t

t0
f(s) ds =


∫

[t0,t] f1 dµ
...∫

[t0,t] fn dµ


Remark 7 In practice, the continuous function h satisfies the Carathéodory unique-
ness conditions (cf. Definition 8), i.e. there exists a Lebesgue-integrable function l
such that

∀(t, x, y) ∈ [t0, t1] ×X ×X, ‖h(t, x) − h(t, y)‖∞ ≤ l(t)‖x− y‖∞ (3.27)
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Because g(u(t)) is bounded, there exists a non-negative real M such that

∀t ∈ [t0, t1], ‖g(u(t))‖∞ ≤ M (3.28)

Let (t, x, y) ∈ [t0, t1] ×X ×X, we have

‖g(u(t)) · h(t, x) − g(u(t)) · h(t, y)‖∞ = ‖g(u(t)) · (h(t, x) − h(t, y))‖∞
≤ ‖g(u(t))‖∞‖h(t, x) − h(t, y)‖∞
≤ Ml(t)‖x− y‖∞

which satisfies the equation 3.26 with k(t) = Ml(t).

Definition 11 is more restrictive than the general initial value problem x(t) = x0 +∫ t
t0
f
(
s, x(s), u(s)

)
ds. However, it allows all linear dynamics, defining a slightly larger

class than input-affine systems. Moreover, it is sufficient to encode differential inclu-
sions in the sense of Filippov. For example, consider two dynamics ẋ(t) = f1(t, x) and
ẋ(t) = f2(t, x) from either side of a guard. In the neighborhood of the guard, the
derivative should take values in the convex hull of the two right-hand sides, defining
a differential inclusion ẋ(t) ∈ CH({f1(t, x), f2(t, x)}) for almost all time. This dif-
ferential inclusion in the sense of Filippov can be interpreted as the integral system
x(t) = x(0) +

∫ t
0 α(s)f1

(
s, x(s)

)
+
(
1 − α(s)

)
f2
(
s, x(s)

)
ds with α : R → [0, 1] being an

uncertain Lebesgue-integrable function. This last integral system can be written as a
separable system:

x(t) = x(0) +
∫ t

0 g
(
u(s)

)
· h
(
s, x(s)

)
ds

with



u(t) = α(t)

g
(
u(t)

)
=

(
u(t) 0

0 1 − u(t)

)

h
(
t, x(t)

)
=

(
f1
(
t, x(t)

)
f2
(
t, x(t)

))
(3.29)

In the rest of this chapter, we use the notation of the ordinary differential equations
for almost all time instead of the integral form. This allows us to explicit the differential
equation associated to each component of x(t) =

(
x1(t), x2(t), . . . , xn(t)

)>:

ẋ1(t)
...

ẋn(t)

 =

g1,1
(
u(t)

)
· · · g1,k

(
u(t)

)
... . . . ...

gn,1
(
u(t)

)
· · · gn,k

(
u(t)

)
 ·

h1
(
t, x(t)

)
...

hk

(
t, x(t)

)
 (3.30)

We focus here on the time-varying uncertainties u(t), but constant uncertainties, i.e.
uncertain parameters, can be handled in functions h(t, x) and g(u). For example, a
simple dynamical system with a proportional controller with an uncertain constant gain
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p and an uncertain friction coefficient α can be written as
ẋ(t) = y(t)
ẏ(t) = u(t) − px(t) − αy(t)
x(0) = x0
y(0) = y0

(3.31)

for all t ∈ [0, 10] with x0 ∈ [2, 3], y0 ∈ [−1, 1], α ∈ [1, 2] and p ∈ [4, 5]. We can rewrite it
to explicit g(u) and h(t, x):

(
ẋ(t)
ẏ(t)

)
=
(

0 0 1
u(t) −p −α

)
·

 1
x(t)
y(t)

 with
(
x(0)
y(0)

)
=
(
x0
y0

)
(3.32)

This writing is not unique. For example, we can transfer all parameters to the function
h and let g depend only on the time-varying uncertainty:

(
x(t)
y(t)

)
=
(

0 1 0
u(t) 0 1

)
·

 1
y(t)

−px(t) − αy(t)

 with
(
x(0)
y(0)

)
=
(
x0
y0

)
(3.33)

Now, for such systems, we want to compute an over-approximation of the reachable
set over the time. In the next subsection, we show that for each separable system,
there exists a continuous parameterized system, called auxiliary system, whose set of
admissible trajectories contains all admissible trajectories of the separable system. So,
computing an over-approximation of the reachable set of this auxiliary system results in
an over-approximation of the reachable set of the separable one.

3.3.1 Auxiliary parameterized continuous system

In this subsection, given a separable system, we want to compute a parameterized con-
tinuous system, i.e. a continuous system with constant uncertainties, such that every
solution of the original separable system is a solution of the continuous one. This will
imply that the reachable set of the continuous system is an over-approximation of the
one of the separable system.

The first step is to over-approximate the result of the integral to construct the pa-
rameterized continuous system. To do so, we have to over-approximate the integral of
each term of the matrix product gi,j

(
u(t)

)
· hj

(
t, x(t)

)
. We start with a lemma in the

case of a non-negative unidimensional function:

Lemma 5
Let α and β be two Lebesgue-integrable functions from [a, b] to R. We assume that α

63



is bounded and β is non-negative. Then we have∫ b

a
α(s)β(s) ds ∈

{
c

∫ b

a
β(s) ds

∣∣∣∣∣ c ∈
[

inf
s∈[a,b]

α(s), sup
s∈[a,b]

α(s)
]}

(3.34)

Proof Let s ∈ [a, b] be a value in the domain of α and β. By definition of the infimum
and the supremum, we have

inf
v∈[a,b]

α(v) ≤ α(s) ≤ sup
v∈[a,b]

α(v)

Because β(s) is non-negative, we obtain(
inf

v∈[a,b]
α(v)

)
β(s) ≤ α(s)β(s) ≤

(
sup

v∈[a,b]
α(v)

)
β(s)

Using the monotonicity of the integration, we deduce∫ b

a

(
inf

v∈[a,b]
α(v)

)
β(s) ds ≤

∫ b

a
α(s)β(s) ds ≤

∫ b

a

(
sup

v∈[a,b]
α(v)

)
β(s) ds

Using the linearity of the integration, we finally have(
inf

v∈[a,b]
α(v)

)∫ b

a
β(s) ds ≤

∫ b

a
α(s)β(s) ds ≤

(
sup

v∈[a,b]
α(v)

)∫ b

a
β(s) ds

So, because R is connected and complete, there exists c ∈
[
infs∈[a,b] α(s), sups∈[a,b] α(s)

]
such that ∫ b

a
α(s)β(s) ds = c

∫ b

a
β(s) ds

Remark 8 Only knowing the image of α, the inclusion is optimal. Let [α, α] be an
interval such that

∀s ∈ [a, b], α(s) ∈ [α, α] (3.35)

For all c ∈ [α, α], if α is such that

∀s ∈ [a, b], α(s) =


α if s = a
α if s = b
c otherwise

(3.36)

then ∫ b

a
α(s)β(s) ds = c

∫ b

a
β(s) ds (3.37)

It proves that every value of the set defined in Lemma 5 can be reached.
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Corollary 1
If β is not a non-negative function, then given a decomposition of it as a difference of
non-negative functions β = β+ − β−, we have∫ b

a
α(s)β(s) ds ∈

{
c1

∫ b

a
β+(s) ds− c2

∫ b

a
β−(s) ds

∣∣∣∣∣ (c1, c2) ∈ I × I

}
(3.38)

with

I =
[

inf
s∈[a,b]

α(s), sup
s∈[a,b]

α(s)
]

(3.39)

Proof Using the linearity of the integral, we have∫ b

a
α(s)β(s) ds =

∫ b

a
α(s)β+(s) ds−

∫ b

a
α(s)β−(s) ds (3.40)

Using Lemma 5, we deduce that there exist c1 ∈ I and c2 ∈ I such that∫ b

a
α(s)β+(s) ds = c1

∫ b

a
β+(s) ds and

∫ b

a
α(s)β−(s) ds = c2

∫ b

a
β−(s) ds (3.41)

We deduce the result of the corollary by substitution in the equation 3.40:∫ b

a
α(s)β(s) ds = c1

∫ b

a
β+(s) ds− c2

∫ b

a
β−(s) ds (3.42)

Now, we can define a parameterized continuous system, which is simpler to study
than the separable system of Definition 11. The new continuous system is computed
from a decomposition as a difference of non-negative functions of h and by the in-
troduction of extra uncertain parameters corresponding to the elements c1 and c2 of
Corollary 1.

Definition 12 (Auxiliary parameterized continuous system)
Let

• [t0, t1] ⊂ R be a time interval

• X ⊂ Rn be a set of possible states

• x0 be a vector in a bounded set X0 ⊂ Rn

• u be a Lebesgue-integrable function from [t0, t1] to Rm

• g be a continuous function from Rm to Rn×k

• h be a continuous function from [t0, t1] ×X to Rk
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Let Ig be a matrix of intervals such that:

∀(i, j) ∈ J1, nK × J1, kK, ∀s ∈ [t0, t1], g(u(s))i,j ∈ Igi,j (3.43)

Let A and B matrices in Ig.
Let h+ − h− = h be a decomposition of h as difference of non-negative continuous

functions:
∀j ∈ J1, kK, h+

j ≥ 0 and h−
j ≥ 0 (3.44)

An auxiliary parameterized continuous system, or simply auxiliary system, associ-
ated to the separable system 3.25 is a system of the form

x(t) = x0 +
∫ t

t0

(
Ah+(s, x(s)) −Bh−(s, x(s))

)
ds (3.45)

with t the time variable in [t0, t1], x0 the initial state and A and B the parameters.
To guarantee the uniqueness of the solution (cf. Theorem 4), we also assume

that the function (t, x) 7→ Ah+(t, x)−Bh−(t, x) satisfies the Carathéodory uniqueness
conditions (cf. Definition 8), i.e. there exists a Lebesgue-integrable function k :
[t0, t1] → Rn

+ such that

∀(t, x, y) ∈ [t0, t1] ×X ×X,∥∥∥(Ah+(t, x) −Bh−(t, x)
)

−
(
Ah+(t, y) −Bh−(t, y)

)∥∥∥
∞

≤ k(t)‖x− y‖∞ (3.46)

Remark 9 A decomposition h = h+ − h− always exists, but it is often non-unique.
For example, if h is a function from [t0, t1] to some closed interval [a, b], then we can
define

h+ = 1
2
(
h+ max(−a, b)

)
and h− = 1

2
(
max(−a, b) − h

)
(3.47)

Then h+ and h− are two non-negative continuous functions as the composition of
an affine transformation and h, which is continuous by definition. In the case of a
vector-valued function, the decomposition is applied to each component.

Multiple decompositions are compared in Subsection 3.3.2.

Remark 10 In practice, h+ and h− are Lipschitz compositions of h, i.e. there exist
two Lipschitz functions σ+ and σ− such that

h+ = σ+ ◦ h and h− = σ− ◦ h (3.48)

Moreover, as pointed in Remark 7, we can often assume that there exists a Lebesgue-
integrable function l such that

∀(t, x, y) ∈ [t0, t1] ×X ×X, ‖h(t, x) − h(t, y)‖∞ ≤ l(t)‖x− y‖∞ (3.49)
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Because h is continuous, so are h+ and h−. Let k+ (resp. k−) be a Lipschitz coefficient
of σ+ (resp. σ−) on its domain. Let (t, x, y) ∈ [t0, t1] ×X ×X, we have∥∥∥(Ah+(t, x) −Bh−(t, x)

)
−
(
Ah+(t, y) −Bh−(t, y)

)∥∥∥
∞

=
∥∥∥A(h+(t, x) − h+(t, y)

)
−B

(
h−(t, x) − h−(t, y)

)∥∥∥
∞

≤ ‖A‖
∥∥∥h+(t, x) − h+(t, y)

∥∥∥
∞

+ ‖B‖
∥∥h−(t, x) − h−(t, y)

∥∥
∞

≤ ‖A‖k+‖h(t, x) − h(t, y)‖∞ + ‖B‖k−‖h(t, x) − h(t, y)‖∞
≤ ‖A‖k+l(t)‖x− y‖∞ + ‖B‖k−l(t)‖x− y‖∞
≤
(
‖A‖k+ + ‖B‖k−

)
l(t)‖x− y‖∞

so (t, x) 7→ Ah+(t, x) −Bh−(t, x) satisfies the Carathéodory uniqueness conditions.

Theorem 8
Let h+ − h− be a decomposition of h as difference of non-negative functions. Let{
φ{x0,A,B}

}
be a collection of set-valued functions such that for all unique solution x

of the auxiliary system with parameters {x0, A,B}, we have

∀t ∈ [t0, t1], x(t) ∈ φ{x0,A,B}(t) (3.50)

The union φ = t 7→
⋃

{x0,A,B} φ{x0,A,B}(t) over all possible values of the parameters
is an over-approximation of the reachable set over the time of the associated separable
system.

Proof Let x be a solution of the separable system for some initial state x0 and some
input u:

∀t ∈ [t0, t1], x(t) = x0 +
∫ t

t0
g
(
u(s)

)
· h
(
s, x(s)

)
ds (3.51)

Using Corollary 1, there exist matrices A and B in the matrix of intervals Ig,
over-approximating the range of g

(
u(t)

)
over the time interval [t0, t1], such that

∀t ∈ [t0, t1], x(t) = x0 +
∫ t

t0

(
Ah+(s, x(t)

)
−Bh−(s, x(s)

))
ds (3.52)

i.e. x is the unique solution of the auxiliary system with parameters {x0, A,B}.
Because φ{x0,A,B} defines an over-approximation of its reachable set over the time,

we have for all time t ∈ [t0, t1], x(t) ∈ φ{x0,A,B}(t). So, by definition of φ, for all time
t ∈ [t0, t1], x(t) ∈ φ(t), which proves the theorem.

This theorem proves that we just have to compute an over-approximation of the
reachable set of the auxiliary system, with uncertain initial state x0 and uncertain pa-
rameters A and B, to obtain an over-approximation of the reachable set of the associated
separable system.
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In order to compute such an over-approximation of the reachable set of the auxiliary
system, we can use all method that is valid with the uncertain parameterized systems,
i.e. of the form ẋ(t) = f

(
x(t)

)
, because the auxiliary system is continuous with constant

uncertainties, i.e. only uncertain parameters without time-varying uncertainties.

3.3.2 Optimal decomposition as a difference of non-negative functions

In the previous subsection, we showed that we need to decompose a function h : R×Rn →
Rk as a difference of non-negative functions h+ − h− = h. In this subsection, we discuss
the best decomposition to obtain the minimal over-approximation of the reachable set
assuming everything is computing using Taylor models (cf. Subsection 2.4.1). To do so,
we minimize the over-approximation of the Picard operator.

We here focus on the one dimensional case, i.e. n = k = 1, g : U → R and h :
R×R → R. In that case, the images of h+ and h− are simple Taylor models

(
p+, I+) and

(p−, I−) with p+ and p− two multivariate polynomials depending on multiple parameters
including the initial state x0 and the time t. Let (α, [0, 0]) and (β, [0, 0]) be two other
Taylor models encoding the parameters A and B in a domain (α, β) ∈ Ig × Ig, with Ig

be the closed convex hul of the image of g over the set U of values of the uncertainties.
Then, assuming that the initial time t0 = 0, the image Px0,α,β(x) of the Picard operator
lifted with the Taylor model arithmetic, for a time step ∆t > 0 (the domain of the time
variable t is [0,∆t]), will be

Px0,α,β(x) = (x0, [0, 0]) +
∫ (

(α, [0, 0]) ·
(
p+, I+

)
− (β, [0, 0]) ·

(
p−, I−)) dt (3.53)

= (x0, [0, 0]) +
∫ (

αp+ − βp−, Ig · I+ − Ig · I−
)
dt (3.54)

=
(
x0 +

∫
(αp+ − βp− − pe) dt, (Ig · I+ − Ig · I− + [pe]) · [0,∆t]

)
(3.55)

with
∫

(p, I) dt be the primitive operator with respect to the variable t applied to the
Taylor model (p, I) (cf. Subsection 2.4.1).

Our goal is to minimize the width of the interval (Ig · I+ − Ig · I− + [pe]) · [0,∆t]. The
decomposition of h does not influence the value of ∆t, but it influences I+, I− and pe.

We want an easy automatic way to compute the decomposition of h, so we assume
that h+ and h− are only functions of the image of h, not of the state or the time, i.e.
there exist two functions λ+ and λ− such that h+ = λ+ ◦h and h− = λ− ◦h. Those two
functions will be over-approximated using the Taylor model arithmetic. So, in order to
avoid extra remainders, we restrict our study to polynomial decompositions, i.e.

λ+ : x 7→
n+∑
i=0

a+
i x

i and λ− : x 7→
n−∑
i=0

a−
i x

i (3.56)

Because λ+ and λ− should be independent of the parameters α and β, the only way to
limit pe is to restrict λ+ and λ− to affine forms, i.e. n+ = n− = 1. In that case, because

68



h = (λ+ ◦ h) − (λ− ◦ h), the functions become

λ+ : x 7→ ax+ b and λ− : x 7→ (a− 1)x+ b (3.57)

with a ∈ R and b ∈ R. Because pe cannot be affected by the affine decomposition, we
assume that pe is null and the remainder becomes

(
aIg · I − (a− 1)Ig · I

)
· [0,∆t]. Notice

that we cannot factorize by Ig · I due to the interval arithmetic (cf. Subsection 2.4.1).
We also assume that the remainders are centered after every operation. Let m ∈ R+
such that [−m,m] = Ig · I. Depending on the value of a, we have

a ≤ 0 =⇒
(
aIg · I − (a− 1)Ig · I

)
· [0,∆t] = [−m∆t,m∆t] + [2am∆t,−2am∆t]

a ∈ [0, 1] =⇒
(
aIg · I − (a− 1)Ig · I

)
· [0,∆t] = [−m∆t,m∆t]

a ≥ 1 =⇒
(
aIg · I − (a− 1)Ig · I

)
· [0,∆t] = [−m∆t,m∆t] + [−2am∆t, 2am∆t]

(3.58)
So, for all a ∈ R, [−m∆t,m∆t] ⊂

(
aIg · I − (a − 1)Ig · I

)
· [0,∆t] and the remainder is

minimal for a ∈ [0, 1].
In practice, we do not know a priori the remainder of the Taylor model associated

to h, because it depends on the Taylor model associated to the state that we try to
compute. However, we can easily compute an interval over-approximation of h using
interval arithmetic. This produces a rough over-approximation that is fast to compute.
Let [h, h] be such a rough over-approximation. If h ≥ 0, then h is non-negative and an
obvious decomposition is

h+ = h and h− = 0 (3.59)

It corresponds to an affine decomposition with a = 1 and b = 0, which is optimal. In
the same way, if h ≤ 0, then h is non-positive and an obvious decomposition is

h+ = 0 and h− = −h (3.60)

It corresponds to an affine decomposition with a = 0 and b = 0, which is also optimal.
Otherwise, i.e. h < 0 < h, any values a ∈ [0, 1] and b ≥ max

(
−ah, (1 − a)h

)
compute an

optimal decompositions.
Due to (naive) implementations of the evaluation of polynomials in which we evaluate

monomials with interval arithmetic, we also want to minimize the absolute value of
the coefficients: the multiplication of an interval of width w ≥ 0 by a real number
α ∈ R results in an interval of width |α|w and the sum of intervals results in an interval
whose width is the sum of the widths of the operands. So, we would like to minimize
the extra constant (non-negative) coefficient b of the decomposition. Because, when a
increases, −ah increases and (1 − a)h decreases, the lower bound of b is minimal when
−ah = (1 − a)h, i.e.

a = h

h− h
(3.61)

and we can set the value of b to its lower bound

b = −hh
h− h

(3.62)
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So, we defined an affine decomposition of the function h as difference of non-negative
functions that is optimal for a computation using Taylor models, in the sense that it
minimizes the remainder of the resulting Taylor models by the Picard operator.

3.3.3 Algorithm for reachability analysis of separable systems

In this subsection, we present an algorithm able to compute an over-approximation of
the reachable set of a continuous system with measurable bounded uncertainties. To
exploit our previous result, we assume that the continuous system is a separable system
(cf. Definition 11). A detailed example of application of this algorithm is presented in
the following Subsection 3.3.4.

Our algorithm takes as input a separable system (i.e. two functions g and h, a set
of possible initial states X0, a set U of values of the time-varying uncertainties and a
time interval [t0, t1]) and a time step (i.e. dt > 0) and it returns a sequence of Taylor
models (φi)i∈J1,d(t1−t0)/dteK, each one over-approximating the set of reachable states on
the time interval

[
t0 + (i− 1)dt,min(t1, idt)

]
: if x is solution of the system, then for all

i ∈ J1, d(t1 − t0)/dteK and t ∈
[
t0 + (i− 1)dt,min(t1, t0 + idt)

]
, x(t) ∈ φi(t). We split the

algorithm in two parts: a subroutine in charge of a unique step of integration on a time
interval [t′0, t′1] and the main part iterating the subroutine until an over-approximation
is computed on the whole time interval [t0, t1].

First, we describe the subroutine in charge of computing the Taylor model over-
approximating one step of integration, i.e. on a time interval [t0, t1] (with t0 and t1
as local variables, potentially different than the ones used in the global algorithm).
This subroutine takes as inputs a vector of Taylor models encoding the set of initial
states (p0, I0), a matrix of intervals encoding the set of images of interval(g(U)) and the
function h. It returns a vector of Taylor models encoding an over-approximation of the
set of reachable states for every time t ∈ [t0, t1], i.e. depending on the time variable t
whose domain is [t0, t1].

1. Compute a rough over-approximation of the reachable set over the time interval
[t0, t1] using the interval arithmetic, given the set of initial states at time t0. Then,
we compute a rough over-approximation of h(t, x(t)) over the considered time
interval, replacing x be the rough over-approximation of the reachable set and t
by the interval [t0, t1].

2. Compute a decomposition of h as a difference of non-negative functions h+ and
h−, given its rough over-approximation, following the definition of the optimal
decomposition presented in the previous Subsection 3.3.2.

3. Compute the auxiliary parameterized continuous system using fresh variables en-
coding the uncertain parameters: α ∈ interval(g(U)) and β ∈ interval(g(U)).

4. Compute an over-approximation of the auxiliary parameterized continuous system
using classic guaranteed integration methods (cf. Subsection 2.4.2).
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The main algorithm calls this subroutine to compute an over-approximation over a
subdivision of the desired time interval [t0, t1]. It takes as inputs a time interval [t0, t1], a
time step dt > 0, a set of initial states X0, a set of uncertainties U and a separable system
defined by the function h and g (cf. Definition 11). Because we have to iterate over a
subdivision of time intervals, we need local variables: an interval matrix interval(g(U)), a
time interval [t′0, t′1] on which to apply the subroutine (initialized to

[
t0,min(t1, t0 +dt)

]
),

a Taylor model (p0, I0) encoding the set of local initial states (initialized to a Taylor
models encoding X0), a Taylor model (p, I) encoding the over-approximation over the
current time interval (not initialized), and a sequence of time intervals and Taylor models
r =

((
[t′0, t′1], (pi, Ii)

))
i

keeping track of the previous computed over-approximations
(initialized to an empty list). A step of the algorithm consists in calling the subroutine
with [t′0, t′1], (p0, I0), h and interval(g(U)) and saving its output in (p, I). Then, we
append (p, I) to r, we update (p0, I0) to the partial evaluation of (p, I) at time t′1 and we
update [t′0, t′1] to its translation by dt intersected with [t0, t1] (i.e.

[
t′1,min(t1, t′1 + dt)

]
).

Finally, if t′0 is strictly smaller than t1 then we compute another step, otherwise we
return the list of time intervals and Taylor models r.

3.3.4 Application of the algorithm on a simple example

Now, let us apply the algorithm on an example. We study a toy example with only one
state variable and one time-varying uncertainty in order to be able to detail every step
of the algorithm. 

∀t ∈ [0, 0.2], ẋ(t) = (0.1 − t) · u(t)
∀t ∈ [0, 0.2], u(t) ∈ [−1, 1]
x(0) = 0

(3.63)

This example has the particularity that the reachable set at time t = 0.2 is radically
different depending on whether we consider u as a constant or as a time-varying function:
if for all t ∈ [0, 0.2], u(t) = u(0) = p ∈ [−1, 1], then we have for all t ∈ [0, 0.2], x(t) =
(0.1 − 0.5p)pt and for all p ∈ [−1, 1], x(0.2) = 0. However, if for all t ∈ [0, 0.1[, u(t) = 1
and for all t ∈ [0.1, 0.2], u(t) = −1, then we have for all t ∈ [0, 0.1], x(t) = (0.1 − 0.5t)t
and for all t ∈ [0.1, 0.2], x(t) = 0.01 + (0.5t− 0.1)t and x(0.2) = 0.01.

Exact reachable set with respect to the time To compare the precision of our
over-approximations, we compute the exact reachable set with respect to the time.

First, because u(t) ∈ [−1, 1], we notice that for all t ∈ [0, 0.1], we have

t− 0.1 ≤ (0.1 − t) · u(t) ≤ 0.1 − t (3.64)

Because x(0) = 0, we can integrate each expression over [0, t] to obtain an enclosure of
the solution

0.5t2 − 0.1t ≤ x(t) ≤ 0.1t− 0.5t2 (3.65)

Moreover, the lower (resp. upper) bound is reached with the constant input u(t) = −1
(resp. u(t) = 1). So the exact reachable set at time t ∈ [0, 0.1] is

[
0.5t2−0.1t, 0.1t−0.5t2

]
.
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Then, because u(t) ∈ [−1, 1], we notice for all t ∈ [0.1, 0.2], we have

0.1 − t ≤ (0.1 − t) · u(t) ≤ t− 0.1 (3.66)

Using the reachable set at time t = 0.1, we know that −5 · 10−3 ≤ x(0.1) ≤ 5 · 10−3. We
can integrate each expression over [0.1, t] and add the initial value at t = 0.1 to obtain
an enclosure of the solution

0.1t− 0.5t2 − 0.01 ≤ x(t) ≤ 0.5t2 − 0.1t+ 0.01 (3.67)

Moreover, the lower (resp. upper) bound is reached with the constant input u(t) = 1
(resp. u(t) = −1) and initial value x(0.1) = −5 · 10−3 (resp. x(0.1) = 5 · 10−3). So the
exact reachable set at time t ∈ [0.1, 0.2] is

[
0.1t− 0.5t2 − 0.01, 0.5t2 − 0.1t+ 0.01

]
.

We computed the exact reachable set over the time interval [0, 0.2] and we can deduce
that x(0.2) ∈ [−0.01, 0.01]. This reachable set is compared to two over-approximations
in Figure 3.3.

Computation with a single step The time interval [0, 0.2] is small enough to be
handled in only one step, i.e. we set dt = 0.2. We just have to apply the subroutine
described in Subsection 3.3.3 with the inputs [t0, t1] = [0, 0.2], the set of initial states
(0, [0]), the convex hull of the image of g over the set of uncertainties g(U) ⊂ [−1, 1] and
the function h : (t, x) 7→ (0.1 − t):

1. We start computing a rough over-approximation of the solution with interval arith-
metic. In this example, because the right-hand side of the differential equation does
not depend on the state, we directly have a fixed-point:

∀t ∈ [0, 0.2], x(t) ∈ [x] = 0 +
∫ 0.2

0

(
0.1 − [0, 0.2]) · [−1, 1] ds = [−0.02, 0.02] (3.68)

N.B.: this over-approximation is useless for this example, because the function h
does not depend on the state.
Then, we compute an over-approximation of h using interval arithmetic:

∀t ∈ [0, 0.2], h(t, x(t)) ∈ [h, h] = 0.1 − [0, 0.2] = [−0.1, 0.1] (3.69)

2. Based on the rough over-approximation of h, we compute a decomposition as
difference of non-negative functions following the optimal affine transformation
presented in the equations 3.61 and 3.62 (cf. Subsection 3.3.2):

a = 0.1
0.1 − (−0.1)

= 0.5 and b = − (−0.1) · 0.1
0.1 − (−0.1)

= 0.05 (3.70)

so, we have {
h+ = 0.5h+ 0.05 = (t, x) 7→ (0.1 − 0.5t)
h− = −0.5h+ 0.05 = (t, x) 7→ 0.5t (3.71)
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3. We replace h by its decomposition and we introduce two parameters α and β in
[−1, 1] to define the auxiliary parameterized continuous system:

∀t ∈ [0, 0.2], ẋ(t) = α(0.1 − 0.5t) − 0.5βt
x(0) = 0
α ∈ [−1, 1]
β ∈ [−1, 1]

(3.72)

4. Finally, we compute an over-approximation of the parameterized continuous sys-
tem 3.72 using a classic method. We use here an iteration of the Picard operator
from a constant approximation φ0 = (x0, [0]) with x0 = x(0) = 0 using Taylor
models up to order 2 (cf. Subsection 2.4.2):

φ1 = x0 +
∫ (

(α, [0]) · (0.1 − 0.5(t, [0])) − 0.5(β, [0]) · (t, [0])
)
dt

=
(∫ (

0.1α− 0.5(α+ β)t
)
dt, [0] · [0, 0.2]

)
=

(
0.1αt− 0.25(α+ β)t2, [0]

) (3.73)

The sequence reached a fixed-point:

∀nN, n ≥ 1 =⇒ φn = φ1 ∧ φn+1 ⊂ φn (3.74)

So the resulting Taylor model is
(
0.1αt− 0.25(α+ β)t2, [0]

)
with t ∈ [0, 0.2], α ∈

[−1, 1] and β ∈ [−1, 1].

The Taylor model can be rewritten as
(
(0.1t− 0.25t2)α− 0.25t2β, [0]

)
and because

for all t ∈ [0, 0.2], (0.1t− 0.25t2) ≥ 0, we have

∀t ∈ [0, 0.2], x(t) ∈
[
−0.1t, 0.1t

]
(3.75)

This over-approximation implies x(0.2) ∈ [−0.02, 0.02], which is twice larger than the
exact reachable set. This over-approximation is represented in Figure 3.3.

Computation with two steps We can follow the same steps with a smaller time-step
dt = 0.1. Over the time interval [0, 0.1], the function h is non-negative, so its decompo-
sition should be h+ = h and h− = 0. Then we get a Taylor model

(
α0(0.1t− 0.5t2), [0]

)
with the parameter α0 ∈ [−1, 1] multiplying the non-negative function h+ and a time
variable t ∈ [0, 0.1]. During the computation, another parameter β0 ∈ [−1, 1] should be
introduced, but it is multiplied by the null function h−.

To compute an over-approximation over the time interval [0.1, 0.2], we substitute the
time variable of the previous Taylor model by its maximal value, i.e. t = 0.1, resulting
in a new Taylor model (0.005α0, [0]). Now, the function h is non-positive over the time
interval [0.1, 0.2], so its decomposition should be h+ = 0 and h− = −h. Then we
get a Taylor model

(
0.005(α0 + β1) + 0.5β1t

2 − 0.1β1t, [0]
)

with the previous parameter
α0 ∈ [−1, 1], a fresh parameter β1 ∈ [−1, 1] multiplying the non-negative function h− and
a time variable t ∈ [0.1, 0.2]. During the computation, another parameter α1 ∈ [−1, 1]
should be introduced, but it is multiplied by the null function h+.

We notice that this over-approximation is equal to the exact reachable set. It is also
drawn in Figure 3.3.
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Figure 3.3 – Over-approximations computed following our algorithm with Taylor models

3.4 Over-approximation of the reachable set of switched
systems interpreted with differential inclusions

We showed in the previous section how to compute an over-approximation of a separable
system with Lebesgue-measurable time-varying uncertainties. Such systems arise when
a switch is interpreted in the sense of Filippov in order to allow admissible trajectories
beyond Zeno events (cf. Subsection 2.1.2).

In this section, we present an algorithm to compute over-approximations of the reach-
able set of a given switched system in presence of Zeno behaviors. First, we present the
base of the algorithm with the definition of some useful functions. This base is a clas-
sic algorithm for hybrid automata without Zeno events and it is used in the rest of this
chapter. Then, we adapt it to the case of switched systems without having to explicit the
sliding modes interpreted in the sense of Filippov. Finally, we illustrate an application
of the proposed algorithm to the example of Section 3.1.

For sake of simplicity, we consider only switched systems without time-varying uncer-
tainties. However, the bounded time-varying uncertainties can be handled considering
integration methods that are able to handle such uncertainties, e.g. the method pre-
sented in the previous Section 3.3. Similarly, the evaluations of the guards and of the
invariants could be simply adapted to time-varying uncertainties replacing their occur-
rences by the sets representing their ranges (cf. Section 2.4).

All the sets of this section are assumed closed, bounded and convex.

3.4.1 Base of the algorithm

Consider a model of a hybrid automaton for which we want to compute an over-
approximation of the reachable set with respect to the time over the interval [t0, T ]
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with a set X0 of possible initial states at time t0. So, we want to compute a collec-
tion

{([
tk, tk

]
, vk, dtk, φk

)}
k∈J0,NK where

[
tk, tk

]
is a time interval of an uncertain (local)

initial time, vk is the local activated mode, dtk ∈ R≥0 is the duration of the local over-
approximation φk, such that for all admissible trajectory

((
δj , vj , xj

))
j∈J

of the system

and for all index j ∈ J , there exist an index k ∈ J0, NK, a time tk ∈
[
tk, tk

]
and an

elapsed time ξk ∈ [0, dtk] such that vj = vk, ∆j =
∑j

l=0 δl = tk + ξk and xj ∈ φk(ξk).
We assume that we have a function integrate that, given a dynamics fp (a continuous

function parameterized by some parameters p in a given domain), a set of possible initial
states Xk, an interval

[
tk, tk

]
of possible initial times, and a duration dt > 0, returns a

set-valued function φ over [0, dt] such that φ is an over-approximation of the reachable
set over the time from

[
tk, tk

]
and Xk, i.e. for all tk ∈

[
tk, tk

]
, for all solution of the

differential equation ẋ(t) = fp(t, x(t)) with x(tk) ∈ Xk and for all time δ ∈ [0, dt],
x(tk + δ) belongs to φ(δ). Some possibilities for the implementation of such a function
are described in Subsection 2.4.2.

We assume that we have a function cover that, given a pair ([t, t], X) of a time
interval and a set of states, returns a collection of pairs

{([
ti, ti

]
, Xi

)}
such that for all

time t ∈ [t, t] and for all state x ∈ X, there exists an index i such that t ∈
[
ti, ti

]
and

x ∈ Xi. Such a function is useful in order to tighten the over-approximations of the sets
of states activated some guards. Notice that its implementation highly depends on the
representation of the sets.

We also assume that we have a function detect that, given a triple
([
tk, tk

]
, dtk, φk

)
as before and a boolean function gb (typically a guard of a transition that returns true if
it is activated and false otherwise), returns a collection of pairs

([
δd, δd

]
, Xd

)
such that

for all initial time tk ∈
[
tk, tk

]
and for all absolutely continuous function x such that for

all δ ∈ [0, dtk], x(tk + δ) ∈ φk(δ), there exist an index d and an elapsed time δt ∈
[
δd, δd

]
such that x(tk +δt) ∈ Xd, gb evaluated at the state (tk + δt, x(tk + δt)) is true and for all
δf < δt, gb evaluated at the state (tk + δf , x(tk + δf )) is false. If the boolean function gb

is never true on the given domain, the returned collection is empty. Some possibilities
for the implementation of such a function are described in Subsection 2.4.4, typically
using functions similar to the function cover .

Similarly, we assume that we have a function detectGuards that, given a triple([
tk, tk

]
, dtk, φk

)
as defined before and a collection of activated modes Vk, returns a

collection of pairs
([
δi, δi

]
, Xi

)
such that for all edge e from a mode v ∈ Vk and for all

pair
([
δd, δd

]
, Xd

)
returned by the function detect applied on the triple

([
tk, tk

]
, dtk, φk

)
and a boolean function encoding the predicate guard(e), there exists an index i such
that

[
δd, δd

]
⊂
[
δi, δi

]
and Xd ⊂ Xi. This function could be implemented as the union

of the results of detect over all guards from a mode in Vk.
Finally, we assume that we have a function refine that, given a triple

([
tk, tk

]
, dt, φ

)
as defined before and a collection of activated modes Vk, returns a collection of pairs
(dtl, φl) such that their union is an over-approximation of the trajectories that stay in
the current modes, i.e. for all time tk ∈

[
tk, tk

]
and for all absolutely continuous function
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x solution of the differential inclusion associated to the modes in Vk interpreted in the
sense of Filippov such that x(tk) ∈ φ(0), if for all δx ∈ [0, dt] such that for all δ ∈ [0, δx],
there exists a mode v ∈ Vk such that inv(v) is satisfied by

(
tk + δ, x(tk + δ)

)
, then there

exists an index l such that δx ∈ [0, dtl] and for all δ ∈ [0, δx], x(tk +δ) ∈ φl(δ). Typically,
this function could be implemented using the function detect and some dichotomy on
the parameters of φ.

Now, we have all the functions needed to define the base of the algorithm. The
proposed algorithm takes as input an interval of possible initial times

[
t0, t0

]
(usually

reduced to the unique initial time t0), a collection of possible initial modes {vi}i∈I0 ,
a set of possible initial states X0 and a time-step dt > 0 and it returns a collection
R =

{([
tk, tk

]
, vk, dtk, φk

)}
k∈J0,NK:

1. Define a collection C =
{([

t0, t0
]
, vi, X0

) ∣∣ i ∈ I0
}

2. Define an empty collection R to store the over-approximations

3. Until C is empty:

(a) Remove a triple (
[
tk, tk

]
, vk, Xk) from C

(b) Compute an over-approximation of the continuous dynamics, using the func-
tion integrate

(c) Refine the over-approximation using the function refine
(d) Append to R the local over-approximations
(e) Detect all activated guards from the refined over-approximations using the

function detectGuards
(f) Compute the set-valued images for each activated transition
(g) Append to the collection C all the pairs computed in the previous steps that

do not reached the final time

4. Return the final collection R

This algorithm iterates until a collection C of local initial states is empty, i.e. it is
a worklist algorithm. An iteration of the loop consists in a sequence of steps. First, we
pick an element from the collection C. This element defines the possible intermediate
initial times

[
tk, tk

]
, the intermediate mode vk and the possible intermediate initial states

Xk. Then, at step 3b, we apply the function integrate to it in order to compute an over-
approximation of the continuous dynamics. At that point, we have a set-valued function
φ defined on an interval [0, dt] that over-approximates the local reachable set with respect
to the time. However, its domain can be too large: the invariant associated to the
current dynamics can be false at some instants, indicating that the over-approximated
admissible trajectories are no more in the current mode. At step 3c, we refine this
over-approximation using the function refine in order to remove of it most of the states
that cannot be reached without a change of mode. This results in a collection of pairs
(dti, φi) that over-approximates the set of trajectories in the current mode from Xk at
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a local initial elapsed time δ = 0. We can now update the output at step 3d appending
all the tuples

([
tk, tk

]
, vk, dti, φi

)
to the collection R. At step 3e, we apply the function

detectGuards in order to get a collection of pairs
([
δi, δi

]
, Xi

)
of elapsed times and set

of states that activate some guards on the refined over-approximations. At step 3f,
we compute the images of all the sets Xi and time intervals

[
tk, tk

]
+
[
δi, δi

]
, obtained

at the previous step, through the corresponding transitions, i.e. if Xi corresponds to
the states that activate the guard of the transition ei, from the mode vk to the mode
vi, on an elapsed time interval

[
δi, δi

]
, then we compute the set X ′

i that contains all

the images jump(ei)(tk + δi, xi) with tk ∈
[
tk, tk

]
, δi ∈

[
δi, δi

]
and xi ∈ Xi. This

is computed using guaranteed set-valued arithmetics, e.g. Taylor model arithmetic.
Finally, at step 3g, for all pair (dti, φi) computed in step 3c such that dti = dt and
tk + dti ≤ T , we append the triple

([
tk, tk

]
+ dti, vk, φi(dti)

)
to the collection C. This

allows to compute the evolution of trajectories that stay in the current mode. Moreover,
for all pair

([
δi, δi

]
, X ′

i

)
computed in the step 3e such that tk + δi ≤ T , we append the

triple
([
tk, tk

]
+
[
δi, δi

]
, vi, X

′
i

)
to the collection C for the next iterations of the loop.

This allows to compute the evolution of trajectories that take a transition.
Notice that appending a triple to the collection C should be computed in a smart way

in order to avoid an explosion of the number of pairs. Typically, we do not append any
triple ([t, t], v,X) such that for all pair (t, x) with t ∈ [t, t] and x ∈ X, there exists a triple([
ti, ti

]
, vi, Xi

)
in C such that t ∈

[
ti, ti

]
, v = vi and x ∈ Xi. In other words, appending

a triple that is already covered by the ones in C should result in no modifications on the
collection C.

In the following subsection, we adapt this algorithm to the case of switched systems,
in which no jumps can occur, interpreted in the sense of Filippov in order to allow
admissible trajectories beyond Zeno events.

3.4.2 Switched systems without input

In the case of switched systems, all the information of the modes are contained in the
states. So, we do not have to specify the modes associated to the intermediate times and
states

([
tk, tk

]
, Xk

)
in the collection C. Moreover, we notice that the step 3f is caducous,

because the jumps are identity functions (cf. Subsection 2.1.2).
Consider a switched system as in Definition 4, i.e. a collection of dynamics {fi}i∈I

and a switching signal G, for which we want to compute an over-approximation of the
reachable set with respect to the time over the interval [t0, T ] with a set X0 of possible
initial states at time t0.

The main algorithm described in the previous subsection is initialized with the pair
(t0, X0). Then, the iterations of the loop are slightly adapted in order to detect and to
handle sliding modes in a conservative way: given a pair

([
tk, tk

]
, Xk

)
picked from the

collection C,

1. We evaluated the function G over the pair of sets
([
tk, tk

]
, Xk

)
, using for example

the Taylor model arithmetic (cf. Subsection 2.4.1), in order to obtain an over-
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approximation of the union of the images through G of all the pairs (t, x) such
that t ∈

[
tk, tk

]
and x ∈ Xk. Let J ⊂ I be an over-approximation of the image

of G. We deduce a collection of dynamics {fj}j∈J that can be followed by the
trajectories from a state of Xk at a time tk ∈

[
tk, tk

]
.

2. Now, we can compute the step 3b. Two cases can occur depending on the number
of activated modes:

(a) The collection of dynamics {fj}j∈J is a singleton, i.e. J = {j0}. Then, the
set Xk is included in the interior of a mode and its evolution can be computed
using classic methods as presented in the previous subsection. So, we call the
function integrate on

([
tk, tk

]
, dt, fj0

)
in order to obtain a set-valued function

φ defined on [0, dt].
(b) At least two different dynamics belong to {fj}j∈J . Then, the set Xk contains

states in different modes and a Zeno event may occur. Let j0 be an index
in J and let J1 be the set of indices in J different of j0, i.e. J1 = J \ {j0}.
Let {αj}j∈J1 be a collection of Lebesgue-measurable uncertain functions that
take values in [0, 1]. We define the local sliding mode in the sense of Filippov
as the convex combination with coefficients {αj}j∈J1 , i.e. ẋ(t) = f∗(t, x(t))
with

f∗ = (t, x) 7→

1 −
∑
j∈J1

αj(t)

fj0(t, x) +
∑
j∈J1

αj(t)fj(t, x) (3.76)

We then apply the procedure described in the previous section (cf. Subsec-
tion 3.3.3) in order to obtain a set-valued function φ on [0, dt].

In both cases, we obtained a set-valued function φ on the elapsed time interval
[0, dt].

3. The rest of the body of the loop is mostly as defined in the previous subsection:

step 3c: We apply the function refine to the computed over-approximation φ
in order to get a collection of pairs (dti, φi) that defines a tighter over-
approximation of the trajectories that do not take any transitions.

step 3d: For all pair (dti, φi) computed in the previous step, we append the tuple([
tk, tk

]
, J, dti, φi

)
to the collection R.

step 3e: For all pair (dti, φi) computed in the step 3c, we compute a collection of
pairs

([
δl, δl

]
, Xl

)
using the function detectGuards.

step 3g: For all pair
([
δl, δl

]
, Xl

)
computed in the previous step, we append to

the worklist C the pair
([
tk, tk

]
+
[
δl, δl

]
, Xl

)
such that tk + δl ≤ T and

such that the set of activated modes is not included in the set of the ones
composing the sliding mode, i.e. G

([
tk, tk

]
+
[
δl, δl

]
, Xl

)
6⊂ G

([
tk, tk

]
, Xk

)
.
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Moreover and contrary to the base algorithm, for all pair (dti, φi) computed
in the step 3c such that tk + dti ≤ T and dti = dt, we append to the work-
list C all the pairs

([
tj , tj

]
, Xj

)
returned by the function cover applied on([

tk, tk
]

+ dti, φi(dti)
)
.

The main part of the algorithm that differs from the base (cf. Subsection 3.4.1) is
the selection of the dynamics to handle during an iteration of the loop: the considered
dynamics is the convex combination of the ones that are activated by some states of the
current set Xk. If a unique dynamics is activated, then the convex combination is reduced
to the activated dynamics without extra uncertainties (case 2a). Otherwise, a Zeno event
may occur and the convex combination with extra time-varying uncertainties αj allows
to compute an over-approximation of all admissible trajectories, even considering sliding
modes in the sense of Filippov (case 2b). The second difference is the way we update the
worklist C during the step 3g. In order to limit the emergence of infinite loops due to
instantaneous chattering effects, i.e. infinite many transitions taken in zero time, we do
not append to C all the pairs returned by detectGuard, because this would always return
some pairs containing a null elapsed time during a sliding mode, i.e. δi = 0. We only
append the pairs that activate modes that do not belong to the sliding mode. Moreover,
because our algorithm to handle sliding modes introduces extra uncertainties, we call the
function cover during the step 3g in order to reduce the size of the over-approximations
activating each mode after an iteration. Specifically, it allows us to limit the growth
of the over-approximations in a sliding mode. We illustrate this point in the following
Subsection 3.4.3.

Correctness of the result Now, assuming that the algorithm terminates, we prove
by induction that this procedure computes an over-approximation of the reachable set
of a given switched system. Consider an admissible trajectory ((δν , Iν , xν))ν∈V of the
switched system: V denotes here a set of indices ν (V = J0, NK, with N ∈ N, or V = N),
δν denotes the elapsed time since the previous event (triple with index ν − 1 or the
origin of the time if ν = 0), Iν denotes the set of activated modes (multiple indices
in case of sliding modes, cf. Subsection 2.1.2), and xν denotes the value of the state.
We want to prove that for all event

(
δν , Iν , xν

)
of the admissible trajectory, there exists

a tuple
([
tk, tk

]
, Ik, dtk, φk

)
in the collection R such that Iν ⊂ Ik and there exists a

time tk ∈
[
tk, tk

]
, a state yν ∈ φk(0), an elapsed time ξν ∈ [0, dtk] and an absolutely

continuous function ρk such that ∆ν = tk + ξν , ρk(0) = yν , ρk(ξν) = xν , for all elapsed
time δ ∈ [0, ξν ], ρk(δ) ∈ φk(δ), and for almost all elapsed time δ ∈ [0, ξν ], the derivative
ρ̇k(δ) of ρk at the elapsed time δ belongs to the convex hull of the dynamics of modes in
I, i.e. ρ̇k(δ) ∈ CH({fi(tk + δ, ρk(δ)) | i ∈ I}). We say that the event

(
δν , Iν , xν

)
belongs

to the over-approximation R and that the tuple
([
tk, tk

]
, Ik, dtk, φk

)
over-approximates

the event
(
δν , Iν , xν

)
. Notice that ξν may be equal to zero and, in that case, we have

∆ν = tk and xν = yν .
By definition of the admissible trajectory, we have δ0 ∈

[
t0, t0

]
and x0 ∈ X0. The

evaluation of G over the pair
([
t0, t0

]
, X0

)
using a guaranteed arithmetic on the rep-

79



resentation of the sets (e.g. Taylor models arithmetics) returns an over-approximation
of the modes that are activated by the admissible trajectory at time ∆0 = δ0, i.e.
I0 ⊂ G

([
t0, t0

]
, X0

)
. Moreover, by definition of the functions integrate and refine, the

union of the set-valued functions φi evaluated at the initial elapsed time 0 covers the set
X0, i.e. X0 ⊂

⋃
i φi(0). So, there exists a tuple

([
tk, tk

]
, Ik, dtk, φk

)
in R that contains

the initial event of the admissible trajectory, i.e. ∆0 ∈
[
tk, tk

]
, I0 ⊂ Ik and x0 ∈ φk(0).

Let ν ∈ V be a non-maximal index of the admissible trajectory, i.e. ν + 1 belongs
to V . We assume that the event

(
δν , Iν , xν

)
belongs to the over-approximation R. We

want to prove that the event
(
δν+1, Iν+1, xν+1

)
also belongs to R.

First, we assume that δν+1 = 0. Because of the definitions of admissible trajectories
and switched systems, we have xν+1 = xν . If Iν+1 ⊂ Iν , then the event

(
δν+1, Iν+1, xν+1

)
belongs to R. Otherwise, if Iν+1 is not a subset of Iν , then we notice that the function
detectGuards ensures that a pair

([
δi, δi

]
, Xi

)
is computed at the step 3e such that

xν+1 ∈ Xi and there exists an elapsed time ξ ∈
[
δi, δi

]
such that ∆ν+1 = tk + ξ. Because

such a pair is appended to C during the step 3g, we are in a same configuration as the
one with the initial event. So, if δν+1 = 0, then

(
δν+1, Iν+1, xν+1

)
belongs to R.

Now, we assume that δν+1 > 0. Let Fν be the convex hull of the activated dynamics,
i.e. for all pair (t, x) ∈ R≥0 ×Rn, Fν(t, x) = CH({fi(t, x) | i ∈ Iν}). By definition of the
admissible trajectory, Iν+1 = Iν and there exists an absolutely continuous function ρν+1
such that xν = ρν+1(0), xν+1 = ρν+1(δν+1) and for almost all elapsed time δ ∈ [0, δν+1],
ρ̇ν+1(δ) ∈ Fν(∆ν + δ, ρν+1(δ)). The function integrate and the algorithm of the previous
section (cf. Subsection 3.3.3) guarantee that, for all elapsed time δ ∈ [0, δν+1], ρν+1(δ)
belongs to φ(δ).

Consider a tuple
([
tk, tk

]
, Ik, dtk, φk

)
in the collection R that over-approximates the

event
(
δν , Iν , xν

)
. So, there exists a function ρk and an elapsed time ξν such that ξν ∈

[0, δν ], ρk(ξν) = xν and for all δ ∈ [0, ξν ], ρk(δ) ∈ φk(δ). We define the function ρk,ν+1
on the elapsed time interval [0, ξν + δν+1] as{

∀δ ∈ [0, ξν ], ρk,ν+1(δ) = ρk(δ)
∀δ ∈ [ξν , ξν + δν+1], ρk,ν+1(δ) = ρν+1(δ) (3.77)

We have ρk,ν+1(0) ∈ φk(0), ρk,ν+1(ξν + δν+1) = xν+1, ρk,ν+1 is an absolutely continuous
function and for almost all elapsed time δ ∈ [0, ξν + δν+1], there exists an index i ∈ Iν

such that ρ̇k,ν+1(δ) = fi(tk + δ, ρk,ν+1(δ)). If ξν +δν+1 ≤ dt, by definition of the function
integrate, of the algorithm in Subsection 3.3.3 and of the function refine, then there
exist an index k2 and a tuple

([
tk2 , tk2

]
, Ik2 , dtk2 , φk2

)
in R such that Iν+1 ⊂ Ik2 and

for all elapsed time δ ∈ [0, ξν + δν+1], ρk,ν+1(δ) ∈ φk2(δ). Otherwise, if ξν + δν+1 > dt,
then there exists a tuple

([
tk2 , tk2

]
, Ik2 , dtk2 , φk2

)
in R such that Iν+1 ⊂ Ik2 , dtk2 =

dt and for all elapsed time δ ∈ [0, dtk2 ], ρk,ν+1(δ) belongs to φk2(δ). So, the pair([
tk2 , tk2

]
+ dt, φk2(dt)

)
was appended to C during an execution of the step 3g and there

exists a tuple
([
tk3 , tk3

]
, Ik3 , dtk3 , φk3

)
in R such that Iν+1 ⊂ Ik3 and for all elapsed time

δ ∈ [0,min(ξν + δν+1 − dt, dtk3)], ρk,ν+1(δ+dt) belongs to φk3(δ). Because there exists a
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minimal integer n ∈ N such that ξν +δν+1 −ndt ≤ dt, we deduce by induction that there
exists a tuple

([
tkn , tkn

]
, Ikn , dtkn , φkn

)
in R such that Iν+1 ⊂ Ikn and for all elapsed

time δ ∈ [0, ξν + δν+1 − ndt], ρk,ν+1(δ+ndt) ∈ φkn(δ). So, the event
(
δν , Iν , xν

)
belongs

to R.
Because for all admissible trajectory, the event

(
δ0, I0, x0

)
belongs to R and if an

event
(
δν , Iν , xν

)
belongs to R, then the event

(
δν+1, Iν+1, xν+1

)
also belongs to R, we

proved by induction that, if the algorithm terminates, then the collection R is an over-
approximation of the set of admissible trajectories.

Possible improvement We use a constant time-step in the proposed algorithm. How-
ever, such a time-step may be simultaneously too small for the integration in a unique
mode (case 2a) and too big for the integration in a sliding mode in the sense of Filippov
(case 2b). So, we may consider different time-steps depending on the case: a relatively
big time-step for simple dynamics in a unique activated mode and a small one for inte-
gration in a sliding mode. Those two time-steps may be adaptive in order to reach some
tradoff between computation time and tightness of the returned over-approximation.

3.4.3 Application on the motivating example

Consider the switched system presented in Figure 3.1:

Below ẋ = 1
x2 ≥ y ẏ = 0

x ∈ [−1.5,−1]
y ∈ [−0.5, 0.5]

Above ẋ = 0
x2 ≤ y ẏ = −1

x2 ≤ yx2 ≥ y

We illustrate some steps of the algorithm to compute an over-approximation. We
only draw the computed sets in the plan representing y with respect to x, but the
associated times should also be computed while they are not represented here.

−2 −1 0 1 2
−1

0

1

x

y

From the initial set of states X0 =
{
x ∈

[−1.5,−0.5] ∧ y ∈ [−0.5, 0.5]
}

(in blue), we
compute an a priori over-approximation (in
purple) using the function integrate. This
corresponds to the step 3b. At this step, all
switches are ignored.
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The step 3c consists in calling the function
refine that returns a collection of set-valued
functions (in purple) whose domains are re-
duced from the previous one in order to re-
move states that cannot be reached without
switches.
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Then, we call the function detectGuards that
returns over-approximations (in orange) of
the sets that activate some guards. We also
notice that the domain of one of the set-
valued functions is equal to the whole time
interval (the image of the last elapsed time
is drawn in green).

We assume that the time associated to the last set (in green) is already bigger than the
final time T of the analysis. So, it is not appended to the set C. However, we append all
the orange sets with their associated time interval to the set C in order to be handled
in the next iterations of the loop.
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At the next iteration of the loop, we pick
for example the top left orange set of states
drawn in the previous picture. The set gath-
ers states in different modes. So, the dynam-
ics is interpreted as a differential inclusion in
the sense of Filippov.

During the step 3b, we compute its evolution following the algorithm presented in the
Section 3.3, Subsection 3.3.3. The resulting set, i.e. the range of the set-valued func-
tion φ, is drawn in purple. Due to the extra uncertainties introduced by the algorithm,
the call to the function refine during the step 3c returns doubtless the same set-valued
function φ on the same elapsed time interval. Moreover, the only guards that can be
activated are the ones between modes composing the sliding mode. So, all the pairs com-
puted using the function detectGuards during the step 3e are ignored. If they were not
ignored, then a pair

([
tk, tk

]
+
[
0, δi

]
, Xi

)
would be appended to C after each iteration

of the loop. So, there would always be some pair in C whose minimal time would be
strictly smaller than the final time T . In that case, the algorithm would never terminate.
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During the step 3g, the function cover re-
turns a collection of pairs of time intervals
and sets of states that cover φ(dt). All those
pairs are appended to the collection C. They
are drawn in the figure depending on the
number of modes that are activated:

the sets in green activate only one mode each, while the sets in orange activate the two
modes. Notice that without the function cover , only one set would be appended to C
(the set φ(dt)) and it would always stay in the sliding mode while its size would growth
until the associated minimal time becomes bigger than the final time T .

The following iterations of the loop until the collection C is empty are similar to
the two presented here. Due to the uncertainties during the integration in the sliding
mode, some sets can reach the interior of the mode Above, i.e. y > x2, but none of the
admissible trajectories can.
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Finally, when the collection C is empty, the
collection R defines an over-approximation
that is represented in purple in the figure on
the left. We also drawn in hashed blue the
exact reachable set over the considered time
interval [0, T ].
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Notice that reducing the time-step dt re-
duces the growth of the over-approximation
in the sliding mode. This results in a tighter
over-approximation, but the execution of
the algorithm needs more iterations of the
loop in order to terminate.

In this chapter, we presented algorithms to compute over-approximations of the reach-
able sets of dynamical systems, systems that we called separable systems with respect to
time-varying uncertainties, and of switched systems interpreted in the sense of Filippov
in order to allow admissible trajectories beyond any Zeno events.

In the following chapter, we present an implementation of the algorithm presented
in Subsection 3.3.3. We also compare the resulting over-approximations to the ones
obtained using state-of-the-art tools.
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Chapter 4

Experimental comparison of our
method with state-of-the-art tools

In this chapter, we present a prototype implementing the algorithm to compute an
over-approximation of the reachable set of a given separable system with respect to
the time-varying uncertainties defined in the Subsection 3.3.3. We then present some
comparisons on small examples of the results of our prototype with the state-of-the-art
tools Flow*, CORA and Ariadne to them in order to evaluate the suitability of our
prototype with respect to existing methods.

4.1 Implementation details

We start presenting some high-level implementation details of our prototype. It is written
in C++11 and the real numbers are replaced by variables with the double precision
floating-point type double. We do not handle the errors due to floating-point arithmetic
and we assume that they are negligible compared to the errors introduced by the Taylor
model arithmetic and the integration methods. So, our prototype is only a demonstrator
and it should not be used as an industrial tool in order to prove safety properties of real
models.

We do not present the source code, because the prototype is composed of over 2500
lines of codes (over 3000 counting the headers).

4.1.1 Interval arithmetic

In order to compute rough over-approximations, we use interval arithmetic which is
also needed for implementing the Taylor model arithmetic (cf. Subsection 2.4.1). We
implement our own library for the prototype to be able to modify any part of the code
if needed. An interval is simply defined by its lower and upper bounds. So, we represent
intervals as objects with two private fields min and max of type double.

Because we do not handle the errors due to floating-point arithmetic, all the ele-
mentary arithmetic operators (addition, substraction, multiplication and division) are
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overloaded using the classic formula presented in the Subsection 2.4.1. In the case of
the operators sin and cos (respectively sine and cosine), we follow the implementation
proposed by the authors of CORA in [7]. We decide to implement cos following this
method and to implement sin as a function x 7→ cos

(
π
2 − x

)
.

The first step to compute the image of an interval [x, x] through function cos is to
check whether x − x ≥ 2π. In that case, the image is equal to [−1, 1], because of the
periodicity of the cosine function. If x− x < 2π, then we compute the remainder of the
Euclidean division of each bound of the interval by 2π, i.e. y ≥ 0 and y ≥ 0 such that

y ≡ x mod 2π and y ≡ x mod 2π

Then, we determine the domain to which belong y and y among D1 = [0, π[, D2 = [π, 2π[.
Notice that the cosine function is monotonic on each of these domains. Finally, we return
a new interval depending on different conditions:

y ∈ D1:

y ∈ D2: return
[
−1,max

(
cos(y, y)

)]
y ∈ D1:

y ≤ y: return
[
cos(y), cos(y)

]
y > y: return [−1, 1]

y ∈ D2:

y ∈ D1: return
[
min

(
cos(y, y)

)
, 1
]

y ∈ D2:
y ≤ y: return

[
cos(y), cos(y)

]
y > y: return [−1, 1]

Notice that we could define the operator sin is a similar way, but it requires three
different domains instead of two in the case of the operator cos. So, we expect our
implementation of sin calling the one of cos to be slightly faster than computing a more
complex disjunction of cases.

4.1.2 Taylor model arithmetic

Because the intervals do not allow to define dependencies between variables, we prefer
to use Taylor models that are essentially a triple (p, I,D) where D is a tuple of intervals,
i.e. if D is a tuple of n intervals, we have D ⊂ Rn, p is a polynomial depending on
variables in D, i.e. p defines a function from D to R, and I is an interval. More details
are given in Subsection 2.4.1.

In order to reduce the size of the data, we enforce all the domains D to be equal.
With only this constraint, we still have to store the range of each variable, i.e. the
components of D. Because the algorithm presented in Subsection 3.3.3 creates extra
variables at each iteration and because each extra variable induces an extra dimension
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of the domain, this could quickly result in a huge amount of data in order to store all the
dimensions of the domain. So, we decide fix the range of all variables equal to the interval
[0, 1]. A classic choice of such an interval is [−1, 1] (e.g. [8, Section 2.2]) to exploit the
interval arithmetic in order to compute enclosures of the Taylor models, but we use a
Bernstein decomposition for that purpose, which requires to transform the ranges of the
variables into [0, 1]. This can be easily done using an affine transformation: instead of
introducing a new variable x with range [x, x], we introduce a variable x0 with range
[0, 1] and we replace the occurrences of x by the polynomial x+ (x− x)x0.

So, because we already implemented the interval arithmetic as presented in the pre-
vious subsection, we just have to implement a representation of polynomials in order to
define a representation of Taylor models. Because a polynomial is a sum of monomials,
we start implementing monomials. A monomial is defined by a coefficient multiplied by
a finite product of variables. For example, if for all k ∈ J1, nK, xk is a variable of the
considered polynomial, then for all monomial m, there exist a coefficient α ∈ R and a
collection of natural numbers {vk}k∈J1,nK such that

m = α
n∏

k=1
xvk

k

If the maximal degree of the polynomials is much smaller than the number of variables,
e.g. smaller than n

2 with n the number of variables, then for all monomial, most of
the exponents ik are null. Indeed, the degree of a monomial is equal to the sum of
its exponents and the degree of a polynomial is equal to the maximal degree of its
monomials. So, we decide to encode such exponents as a collection of pairs (k, vk) where
k is the index of a variable and vk the non-null values of its exponent. If such a vk is
null, then it does not belong to the collection.

Now, we just need a representation of the variables that allows to create new ones
during the computation. We decide to use natural numbers as indices of the variables
and we use a static counter of the number of existing variables in order to generate a
new index: if n variables are already defined and the first one has the index 0, then the
index of an extra variable should be n and the static counter is incremented by one. We
also consider that the variable with index 0 is the time variable used only during a step
of integration.

To summarize, the different objects needed to implement Taylor models are defined
as follow:

• an Interval is implemented according to the previous subsection

• an Index is a variable of type int

• a Monomial is a list of pairs of an Index and an exponent, which is represented by
a variable of type int, i.e. a list of pairs (Index,int)

• a Polynomial is a list of Monomial

• a TaylorModel is a pair of a Polynomial and an Interval
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Moreover, the order of the Taylor models, i.e. the maximal degree of the polynomials,
is encoded as a static variable order of type int.

The operations on Taylor models are applied in a similar way as presented in Sub-
section 2.4.1, except for taking primitives with respect to the time that requires a slight
modification in order to be valid. Indeed, because we scaled the domain of the time
variable to [0, 1], the primitive has also to be scaled. Consider a Taylor model (p, I) de-
pending on a variable t on a domain [t, t]. Then, the primitive with respect to t (ignoring
the maximal allowed degree) should be∫

(p, I) dt =
(∫

p dt, I · (t− t)
)

(4.1)

However, because we enforce the domain to be equal to [0, 1], there exists a variable t0
on domain [0, 1] such that t = t+ (t− t)t0. The actual Taylor model is then (p0, I) with
p0(t0) = p(t+ (t− t)t0) = p(t). We deduce that dt = (t− t) dt0 and∫

(p, I) dt = (t− t) ·
∫

(p0, I) dt0 (4.2)

So, our primitive method on Taylor models takes as arguments the index of the variable
with respect to which we want to compute the primitive and the associated domain.
Because this method is only called on the time variable, the domain is typically [0, dt]
with dt the fixed time-step of the algorithm (parameter of our implementation).

In the previous paragraph, we ignored the limit on the order of the Taylor models.
In practice, this constraint implies the existence of a polynomial pe, that contains all
the monomials of p whose degree is equal or bigger than the order of the Taylor models,
and an over-approximation of its range has to be computed in order to update the
remainder of the Taylor model during the execution of the method primitive. The
classical method consists in evaluating the polynomial pe using the interval arithmetic
replacing each variable by its domain [0, 1]. To obtain a tighter enclosure, we may
subdivide the domains of the variables [45, 8]. Instead, we decide to exploit the Bernstein
decomposition of multivariate polynomials [68, 147].

The Bernstein coefficients can be computed based on the binomial coefficients: given
a polynomial p, a multi-index d = (d0, . . . , dn) where dk is the degree of the polynomial
p with respect to the variable of index k, and a multi-index i = (i0, . . . , in) such that
0 ≤ ik ≤ dk for all k ∈ J0, nK.

bi =
i0∑

j0=0
. . .

in∑
jn=0

∏n
k=0

(ik
jk

)
∏n

k=0
(dk

jk

)aj (4.3)

with for all integers a and b such that a ≥ b ≥ 0,
(a

b

)
is the binomial coefficients “a

choose b” and aj is the coefficient of the monomial whose degree is equal to j, i.e. the
exponent of the variable of index k is jk.

We compute such Bernstein coefficients naively following the formula 4.3 for each
valid multi-index j. However, in order to speedup the computation, we implemented
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some memoization of the binomial coefficients: the Pascal’s triangle is stored in a static
matrix and we compute it recursively until the desired coefficient is reached. Moreover,
because we notice that the computation of polynomial enclosures is time-consuming and
because we evaluate multiple times the enclosure of the same polynomials during the
fixed-point computations (cf. algorithm in Subsection 3.3.3), we implemented memoiza-
tion as a mapping of a polynomial to its enclosure over the domain equal to the unit
box [0, 1]n+1, where n+ 1 is the number of variables.

Regularly during the execution, we have to reduce the number of variables of a
Taylor model. The first method consists in only keeping the monomials with highest
absolute value of coefficients. This is computed by the method reduce that sorts the
list of monomials with respect to the absolute value of their coefficients, truncates the
resulting list at some index and computes an enclosure of the polynomials defined by the
remaining monomials. The second method consists in evaluating some of the variable
over their entire domain. Consider a Taylor model (p, I) with p a polynomial of (multi-
index) degree l such that

p =
l∑

i=0
aix

i (4.4)

with i a multi-index from 0 to l, ai the coefficient of the monomial of index i, and xi

the variables raised to the power i, i.e. the product of all variables xk raised to the
power ik. Because for all variable, the domain is equal to [0, 1], as soon as the associated
exponent is positive, its evaluation is equal to [0, 1]. So, a partial evaluation of p consists
in replacing each monomial by a pair of a monomial and a remainder such that the
resulting monomial does not contain any occurrences of the variable that has to be
evaluated. Consider a multi-index i as in 4.4 and an index k and let ı̃ be a multi-index
equal to i expect for the k-th component which is null, i.e. for all j 6= k, ı̃j = ij and
ı̃k = 0. So, the partial evalution of the monomial aix

i results in the inclusion

aix
i ∈ ai

2
xı̃ +

[
−ai

2
,
ai

2

]
(4.5)

We can then obtain a reduced Taylor model
(
p̃, Ĩ

)
with p̃ the polynomial defined as the

sum of the monomials ai
2 x

ı̃ and Ĩ the remainder defined as the sum of the remainder
I and an over-approximation of the range of the polynomial p − p̃, i.e. the sum of the
intervals

[
−ai

2 ,
ai
2
]

such that ı̃ 6= i.
Finally, we consider that a Taylor model (p1, I1) is included into a Taylor model

(p2, I2) only if p1 = p2 and I1 ⊂ I2. This does not respect the classic definition of the
inclusion, i.e. for all x1 ∈ [0, 1]n and v1 ∈ I1, there exist x2 ∈ [0, 1]n and v2 ∈ I2 such
that p1(x1)+v1 = p2(x2)+v2, but it is correct during the fixed-point computation, when
we already checked that p1 = p2.

4.1.3 Separable system with respect to the measurable uncertainties

One of the inputs of our algorithm is a separable system with respect to the measurable
uncertainties, or simply separable system. As presented in Definition 11, a separable
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system is fully specified by

• a time interval [t0, t1] ⊂ R

• a set of possible states X ⊂ Rn

• a vector x0 in a bounded set X0 ⊂ Rn

• a Lebesgue-integrable function u from [t0, t1] to Rm

• a continuous function g from Rm to Rn×k

• a continuous function h from [t0, t1] ×X to Rk

We assume without loss of generality that t0 = 0, because the origin of the time can be
translated: for all function f from [t0, t1] to a set V , we can use the translated function
f0 from [0, t1 − t0] to V defined for all time t ∈ [0, t1 − t0] as f0(t) = f(t+ t0). Moreover,
the time interval [0, T ] on which to compute the reachability analysis is another input
of our algorithm, so, we do not specify it for each separable system.

The set of possible states is assumed to be equal to the whole space, i.e. X = Rn,
and the range of the Lebesgue-integrable uncertain function u is assumed to be bounded,
i.e. u : [0, T ] → U with U ⊂ Rm bounded. This last hypothesis ensures that the range
of g ◦ u is bounded.

So, because we want to compute an over-approximation of the reachable set for all
possible initial states and Lebesgue-integrable functions, we just have to specify X0, U ,
g and h. While we would have been able to define X0 and U as arrays (std::vector)
of Taylor models, i.e. one Taylor model encoding the domain of each variable, it is
much more convenient to define them as boxes, i.e. arrays of intervals. Indeed, it
enforces no dependencies between the variables and we can easily use those domains in
our implementation of Taylor model arithmetic. The function g and h are implemented
using the header functional of the C++11 standard library: the function g is a matrix
of functions that take an array of Taylor models (the uncertainties) and return a Taylor
model (a component of the matrix), and the function f is an array of functions that
take a pair of a Taylor model (the time) and an array of Taylor models (the states) and
return a Taylor model (a component of the vector).

Finally, we associate to each separable system a name (std::string) and an array
of names of the variables (std::vector<std::string>) such that the name of the k-th
variable is the k-th name in the array. Morevover, because we expect some modularity
in our prototype, all the separable systems are implemented as classes derived from an
abstract one. So, the solver can use polymorphism in order to handle any separable
system.

4.1.4 Main solver

The solver that implements the algorithm presented in the Subsection 3.3.3 is an object
parameterized by a pointer to a separable system as presented in the previous subsec-
tion, a time-step dt > 0, a final time Tend and a maximal order order of the Taylor
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models. It starts initializing submodules such as integrators implementing the Picard
operator or contractors implementing the fixed-point computation using the integrators.
Both exist in two versions: one for the computation of the rough over-approximation
(classic Picard operator over the whole time interval) and another for the computation
using the decomposition of h as difference of non-negative functions. It allows for ex-
ample to precompute the image of U through the function g used in the first version.
The contractors are also initialised with some threshold to limit the duration of the
computation of fixed-points: we consider that a fixed-point is almost reached and that
the contraction should stop if the polynomial part of a Taylor model and the one of its
image through the Picard operator are equal, the remainder of its image is included in its
remainder and the relative difference of their widths is smaller than the given threshold,
i.e. w1−w2

w1
≤ threshold where w1 is the width of the remainder of the first Taylor model

and w2 the width of its image. If the width of the remainder of the first Taylor model is
null, then the relative difference is defined as equal to zero. The contractors also enlarge
the input, i.e. they enlarge the interval remainders, until it is contracted by the Picard
operator before computing the contraction until reaching an almost fixed-point.

Then, the solver iterates a main loop on a state xi and a time ti until ti becomes
bigger than the final time Tend .

First, it computes a rough over-approximation over the time interval [ti, ti +dt] using
Taylor models setting the maximal order to 0, thus the Taylor models are reduced to
translated intervals, i.e. a constant polynomial part and an interval remainder. It starts
reducing the Taylor models xi with a maximal order equal to 0, i.e. as a box over-
approximation. Then, it simply calls the first contractor and returns its result. It also
restore the value of the maximal order of Taylor models for the next computations.

Second, using the rough over-approximation, it computes a valid decomposition of
the function h into a difference of non-negative functions. We use again the header
functional of the C++11 standard library in order to define an object that, given a time
and a state, computes only once the image of h and returns the images of λ+ ◦ h and
λ− ◦ h as presented in Subsection 3.3.2.

Third, using the decomposition and after updating the second integrator with it, it
computes a polynomial expansion of the solutions of the system over the time interval
[ti, ti + dt]. This is done calling the second integrator (Picard operator of the auxiliary
system with the given decomposition) until the polynomial part of the Taylor models
reaches a fixed-point. This terminates in a finite number of iterations as presented
in [45]. To speedup this process, we limit the number of monomials using a truncation
of polynomials based on a fixed threshold after each application of the Picard operator.

Fourth, it computes a valid remainder, i.e. it enlarges the interval remainders of the
Taylor models until they are contracted. At that point, the polynomial parts are fixed
due to the previous step, and when a contraction is detected, it is contracted until it
reaches an almost fixed-point, defined by the threshold of the second contractor.

Finally, it appends the obtained Taylor models, the time ti and the time-step dt to
a collection (implemented as a std::vector of C++11 structures) that will be returned
at the end of the computation. It also updates the time ti to the value ti + dt and the

91



set of state xi to the value of the Taylor models evaluated at time ti + dt, i.e. partially
evaluating the 0-th variable t to the value 1 (end of its domain). In order to avoid
an explosion of the number of variables and so, of monomials, we reduce the obtained
Taylor models xi partially evaluating all the uncertain parameters, that are introduced
for the Picard operator of the auxiliary system, over their whole domain. It allows us
to reuse the same variables for the uncertainties during the next iterations of the loop.
We also reduce the Taylor models with respect to a threshold on the maximum number
of monomials using a simple truncation of the polynomial as presented in the previous
subsection. Finally, to keep a maximum of the dependencies between the state variables
during the next iterations, we create an extra variable to replace each remainder. For
example, given a reduced Taylor model (p, [a, b]), we replace it by the Taylor model
(p+ a+ (b− a)xν+1, [0, 0]) where xν+1 is a fresh new variable. So, at each iteration of
the loop, the number of defined variables is increased by the dimension of the state of
the system. However, the number of monomials used to define the over-approximation
xi is bounded by (M + 1)n where M is the threshold used during the reduction of the
number of monomials and n is the dimension of the state.

4.1.5 Experimentations using our prototype

As described in the previous subsections, our solver is parameterized by a separable
system, a time-step dt, a final time Tend, a maximal order order of the Taylor models
and some thresholds. In addition to these parameters, we fix to 50 the maximum number
of monomials after the application of the Picard operator of the auxiliary system, and to
3 the one at the end of each iteration of the loop of the main solver (cf. Subsection 4.1.4).
This last threshold is very low and implies a potentially huge loss of dependencies between
the state variables in case of high-dimensional systems. However, this is a reasonable
number for the examples with a small number of state variables that we consider in the
rest of this chapter.

The experiments are defined as functions that construct the object corresponding to
the desired separable system, set the parameters dt, Tend and order, execute the solver,
and print the boundaries of the over-approximation of each state variable on each time
interval in a CSV file naming after the name of the separable system. All the experiments
are hard-coded, i.e. written inside a C++11 source file and compiled with the prototype,
and the main function executes one of them depending on the arguments of the program.
So, the user can define multiple experiments and execute them independently with only
compiling the prototype once.

4.2 Experiments

In this section, we give details about the examples on which we will evaluate the suit-
ability of our method to compute tight over-approximations in presence of Lebesgue-
measurable uncertainties.

Because some tools, to which we compare the results of our prototype, are only
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able to handle respectively continuous and Riemann-integrable uncertainties , we choose
simple examples for which we are able to compute the exact reachable set with respect
to the time or, at least, its exact projection for each state variable. So, we can check
that even if our prototype returns a tigher over-approximation than the other tools, it
is still a valid over-approximation and not an error of the implementation.

4.2.1 Experiment: Simple

The first experiment, which we call “Simple”, corresponds to the example presented in
Subsection 3.3.4: 

∀t ∈ [0, 0.2], ẋ(t) = (0.1 − t) · u(t)
∀t ∈ [0, 0.2], u(t) ∈ [−1, 1]
x(0) = 0

(4.6)

This example illustrates the need to handle time-varying uncertainties as such and not
as constant ones (cf. Subsection 3.3.4).

The experiment is performed using a single step of integration over the time interval
[0, 0.2], i.e. with parameters Tend = dt = 0.2.

The exact reachable set Rx(t) of x with respect to the time is

{
∀t ∈ [0, 0.1], Rx(t) =

[
0.5t2 − 0.1t, 0.1t− 0.5t2

]
∀t ∈ [0.1, 0.2], Rx(t) =

[
0.1t− 0.5t2 − 0.01, 0.5t2 − 0.1t+ 0.01

] (4.7)

4.2.2 Experiment: Exponential

This experiment, which we call “Exponential”, corresponds to a classic linear example
of decreasing exponential dynamics with an uncertain time-varying coefficient:

∀t ∈ [0, 5], ẋ(t) = −u(t)x(t)
∀t ∈ [0, 5], u(t) ∈ [1, 2]
x(0) ∈ [1, 1.1]

(4.8)

The experiment is performed using a constant time-step dt = 0.05.
The minimal (resp. maximal) value of x is reached when its derivative is always

minimal (resp. maximal). So, the exact reachable set Rx(t) of x with respect to the
time is

∀t ∈ [0, 5], Rx(t) =
[
e−2t, 1.1e−t

]
(4.9)

4.2.3 Experiment: NonLinear

This experiment, which we call “NonLinear”, is a slight variation of the decreasing expo-
nential dynamics with an uncertain time-varying coefficient and an artificial nonlinearity
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via an extra state variable:

∀t ∈ [0, 5], ẋ(t) = −x(t) − x(t)y(t)u(t)
∀t ∈ [0, 5], ẏ(t) = −y(t)
∀t ∈ [0, 5], u(t) ∈ [−1, 1]
x(0) = 1
y(0) = 2

(4.10)

The experiment is performed using a constant time-step dt = 0.05.
The dynamics of y is independent of any uncertainty, so, for all t ∈ [0, 5], y(t) = 2e−t.

The dynamics of x becomes ẋ(t) = −x(t) − 2e−tu(t)x(t). The minimal (resp. maximal)
value of x is reached when its derivative is always minimal (resp. maximal). So, the
exact reachable sets Rx(t) and Ry(t) of x and y with respect to the time are{

∀t ∈ [0, 5], Rx(t) =
[
e2(e−t−1)−t, e2(1−e−t)−t

]
∀t ∈ [0, 5], Ry(t) =

{
2e−t

} (4.11)

4.2.4 Experiment: SimpleSwitching

This experiment, which we call “SimpleSwitching”, is a slight variation of the decreasing
exponential dynamics with an uncertain time-varying setpoint:

∀t ∈ [0, 20], ẋ(t) = u(t) − x(t)
∀t ∈ [0, 20], u(t) ∈ [0, 1]
x(0) = 3

(4.12)

This example is linear, but it allows multiple equilibrium points.
The experiment is performed using a constant time-step dt = 0.1.
The minimal (resp. maximal) value of x is reached when its derivative is always

minimal (resp. maximal). So, the exact reachable set Rx(t) of x with respect to the
time is

∀t ∈ [0, 20], Rx(t) =
[
4e−t − 1, 2e−t + 1

]
(4.13)

4.2.5 Experiment: DubinsCar

This experiment, which we call “DubinsCar”, corresponds to a slight variation of the
Dubins’ car model that is a classic kinematic model of a car [127, 146, 62]. The steering
velocity and the velocity of the car are controlled by two independent inputs:

∀t ∈ [0, 1], ẋ(t) = u1(t) cos(θ(t))
∀t ∈ [0, 1], ẏ(t) = u1(t) sin(θ(t))
∀t ∈ [0, 1], θ̇(t) = u2(t)
∀t ∈ [0, 1], u1(t) ∈ [0.9, 1]
∀t ∈ [0, 1], u2(t) ∈ [0, 1]
x(0) = 0
y(0) = 0
θ(0) = 0

(4.14)
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The state variables x and y are the Cartesian coordinates of the car in the plan, while
the state variable θ is the steering of the car. The time-varying uncertainty u1 is the
velocity of the car, while the time-varying uncertainty u2 is its steering velocity.

The experiment is performed using a constant time-step dt = 0.01.
The minimal (resp. maximal) value of θ is reached when its derivative is always

minimal (resp. maximal). So, for all time t ∈ [0, 1], θ(t) ∈ [0, t]. Similarly, using the
monotonicity of sine and cosine, we deduce the reachable sets of the state variables with
respect to the time: 

∀t ∈ [0, 1], Rx(t) = [0.9 cos(t), 1]
∀t ∈ [0, 1], Ry(t) = [0, sin(t)]
∀t ∈ [0, 1], Rθ(t) = [0, t]

(4.15)

4.3 State-of-the-art tools and parameters

In this section, we briefly present the specificities of the different classic state-of-the-
art tools and the parameters that we selected to perform the experimentations. We
compare our results to the classic tools which are able to compute reachable sets of
nonlinear hybrid systems.

We tried to use similar parameters when those are available. All the tools allow to
set a fixed time-step, but, as far as we know, the reachability function in CORA does
not use Taylor models, so it is impossible to fix a constant maximal order of them.

4.3.1 Flow*

Flow*1 [47] is a well-known tool able to compute over-approximations of the reachable
sets of hybrid automata. Here, we are only interested in its ability of computing reachable
sets of initial value problems with uncertainties.

The method of integration [46, 48] used by this tool is similar to ours, i.e. using
contraction of Taylor models, but time-varying uncertainties are handled differently. In
Flow*, the time-varying uncertainties are defined replacing their occurrences in the
differential equations by their range. In that case, they are interpreted as interval coeffi-
cients of the computed polynomials [45]. Because we introduce extra variables to handle
such uncertainties, we expect that our method produces tighter over-approximations
than the ones computed by Flow*.

The parameters are set following the advice given in the manual [46]. For all the
examples, we set the precondition method to the QR method (QR precondition), the
drawn representation of the over-approximations as octagons via the utility Gnuplot2

(gnuplot octagon), a cutoff threshold to 10−10 (i.e. all monomial whose range is included
in [−10−10, 10−10] is appended to the remainder in order to reduce the complexity of
Taylor models) and a precision for the MPFR library to 53.

1https://flowstar.org/
2http://www.gnuplot.info/
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Experiment TM order remainder estimation integration scheme
Simple 5 0.076 poly ode 1
Exponential 5 0.033 poly ode 1
NonLinear 5 0.1444 poly ode 1
SimpleSwitching 5 0.056 poly ode 1
DubinsCar 5 0.007 nonpoly ode

Table 4.1 – Parameters for Flow*

We fix the maximal order of Taylor models for each example to 5, as for the other
tools. Moreover, we use different remainder estimations for each example, i.e. different
interval remainders that have to be contracted after every step of integration. Finally,
we use different ODE specifications depending on the operators used in the differential
equations and the order of Taylor models: for polynomial differential equations, we
use poly ode 1 with an order of Taylor models smaller or equal to 5, and for non-
polynomial differential equations, we use nonpoly ode. This last parameter fixes how
the polynomial expansion of the solution is computed [45, Section 3.3.2]. We summarize
these parameters in Table 4.1. We tried to set the remainder estimation at the lowest
possible level with the considered time-step. The estimation of the lowest admissible
value was computed by dichotomy. We also tried to increase the order of Taylor models
without detecting improvement of the computed over-approximation.

Notice that we had to add an extra state variable t to each example in order to
return the over-approximation of the x variable with respect to the time. The differential
equation satisfied by t is ṫ(t) = 1 and the initial condition is t(0) = 0. So, the systems
used in Flow* have a dimension higher by one than the systems used in the other tools.

4.3.2 CORA

CORA3 [2, 9] is a tool-box for reachability analysis of hybrid systems implemented
in Matlab. In this work, we used the version Release 2020 while the last version
(Release 2021) was released on December 10, 2021. Regarding our use of the tool-
box, the main difference between the two versions is the auto-tuning of the reachability
analysis following the paper [145] or [10, Section 1.1]. However, because we want to
enforce similar parameters for all the tools, in particular the same time-steps, we could
not use such a method.

Because it is a tool-box, a lot of choices are available for computing the reacha-
bility analysis. First, it seems impossible to use Taylor models to represent reachable
sets [9, Section 2.2.3.1], while they are implemented for bounding functions over a given
domain [9, Section 2.2.1]. Following the manual providing with the tool about the reach-
ability analysis function, we choose to use Zonotopes [9, Section 2.2.1.1] to represent sets.
We also tried to use Polynomial Zonotopes [9, Section 2.2.1.5], which are similar to Tay-
lor models [93] and supported by the reachability function, but we did not obtain any

3https://tumcps.github.io/CORA/
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Experiment .alg .tensO .taylT .zonoO .errorO .interO

Simple ’poly’ 3 4 50 20 50
Exponential ’lin’ 2 10 50 10 50
NonLinear ’poly’ 3 4 50 20 50
SimpleSwitching ’poly’ 3 4 50 20 50
DubinsCar ’poly’ 3 5 50 1 50

Table 4.2 – Parameters for CORA

improvement of the computed over-approximation with our parameters.
Except for the parameters corresponding to the definitions of the experiments as pre-

sented in the previous section, the selected parameters are summarized in Table 4.2. We
tried to select the ones that return the tightest over-approximation without exceeding a
few minutes of computation following the recommendations in [9, Section 4.2.5.1]. First,
we decide to use a conservative polynomialization algorithm [4], except for the “Expo-
nential” experiment, for which we use a conservative linearization [14]. This is selected
by setting the option .alg to ’poly’ or ’lin’. The two algorithms compute a differential
inclusion with additive uncertainties based on a Taylor expansion of the right-hand side
of the ordinary differential equations. The number of terms of this expansion is set by the
option .tensorOrder (.tensO in Table 4.2), whose recommended values are 2 or 3. Simi-
larly, the option .taylorTerms (.taylT in Table 4.2) specifies the number of terms of the
Taylor expansion of the matrix exponential of the linearized system [3, Eq. (3.2)]. Note
that increasing this value may result in a wider over-approximation due to set-valued
computations. The options .zonotopeOrder, .errorOrder and .intermediateOrder (re-
spectively .zonoO, .errorO and .interO in Table 4.2), define respectively the upper bound
of the order of the zonotope (i.e. the ratio between their degree and the dimension of
the states), the order to which zonotopes are reduced before linearization or polynomi-
alization and the upper bound of the order during the execution of the algorithms. The
other parameters are left to their default values.

4.3.3 Ariadne

Ariadne is the only of the three tools that is designed to handle uncertainties that are
not integrable in the sense of Riemann. It implements the methods presented in [72].
However, this functionality is still experimental, in development, and the results are not
guaranteed. As suggested by the developpers of the tool, we use the implementation of
Ariadne available on the branch dynamics-di#198 of the Git repository4.

The used method consists in computing an over-approximation of the system consid-
ering only a subset of the time-varying uncertainties depending on parameters and then
enlarging the remainder of the obtained Taylor model by an upper bound of the error
between the two sets of solutions[72, Section 4].

4https://github.com/ariadne-cps/ariadne/tree/dynamics-di%23198 (December 2021)
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Experiment sweep threshold maximal error
Simple 0.02 0.1
Exponential 10−6 10−4

NonLinear 5 · 10−6 10−3

SimpleSwitching 10−20 10−3

DubinsCar 0.01 10−3

Table 4.3 – Parameters for Ariadne

The first parameter is the subset of considered uncertainties. Five of them are im-
plemented in the tool: the singleton of null functions (ZeroApproximation), the set of
constant uncertainties of the form u(t) = a (ConstantApproximation), the one of affine
uncertainties of the form u(t) = at+ b (AffineApproximation), the one of sinusoidal un-
certainties of the form u(t) = a + b sin(γt) with γ = 4.1632 (SinusoidalApproximation)
and, finally, the one of uncertainties that are piecewise constant on half of the time-step
(PiecewiseApproximation). The tool failed to compute an over-approximation on our ex-
amples, throwing an exception during computation if we allow the use of
AffineApproximation and SinusoidalApproximation. So, we only allow the use of the con-
stant null approximations ZeroApproximation, the constant ones ConstantApproximation
and the piecewise constant ones PiecewiseApproximation.

As for Flow* and for our prototype, we set the order of the Taylor models to
5. This is specified in Ariadne setting the arguments minimum_temporal_order and
maximum_temporal_order of the integrator TaylorPicardIntegrator. Notice that this or-
der is the order with respect to the time variable, whereas Flow* and our prototype
use a “global order”, i.e. the maximal degree of the monomials.

In order to limit the number of monomials of the Taylor models, we have to set
the “sweep threshold” [72, Section 4] sweep: if the range of a monomial is included in
[−sweep, sweep], then this monomial is removed from the polynomial part and its range
is added to the remainder. While a smaller value of this parameter implies a higher
precision, it also implies a higher computation time. So, we tried to select values of it
by dichotomy in order the enforce the computation to terminates in only a few minutes.

Because the method in Ariadne implements an algorithm with adaptive temporal
order of Taylor models, we also have to define a threshold on the width of the computed
error at each step. While this should not change the result with the same minimal and
maximal orders, we tried to set it to its lowest admissible value. This minimal values
were deduced by dichotomy.

Finally, the other parameters are left to their default values.
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4.4 Comparison of the results

4.4.1 Method of comparison

In order to compare the tightness of the computed over-approximations and in addition
to the visual representations, we compare the areas of the over-approximations of the
state variable x with respect to time. The computation of these areas is performed
by a script in Python3 using the returned over-approximations: a script Gnuplot for
Flow* and Ariadne or a CSV file for CORA and our prototype. In the case of Flow*
and Ariadne, the scripts already define the polygons as a collection of their vertices,
while the CSV files for CORA and our prototype define the boundaries of each variable
over each time interval and we use a script written in Python3 to convert them into a
collection of vertices that define boxes over-approximating the values of the variable x
with respect to time.

We chose the over-approximation of the state variable x with respect to time as the
criterium of comparison for four reasons: 1) all the considered systems have a state vari-
able x; 2) the area of the exact reachable set of x with respect to the time can easily be
computed by hand for each of the examples; 3) the tightest over-approximation, i.e. the
exact reachable set, is the one that has the smallest area; and 4) the over-approximations
can easily be plotted in order to compare them visually. However, this criterium does
not catch any information about the dependencies between state variables. For exam-
ple, consider the two over-approximations R1 and R2 of the reachable set of a model
composed of two variables x and y such that, for all time t ∈ [0, 1],

R1(t) =
{(

x(t) = a
y(t) = a

) ∣∣∣∣∣ a ∈ [0, t]
}

and R2(t) =
{(

x(t) = a
y(t) = b

) ∣∣∣∣∣ a ∈ [0, t] ∧ b ∈ [0, t]
}

In both cases, x(t) belongs to [0, t] and the criterium of comparison would return the
same value for R1 and R2 over the time interval [0, 1] but the over-approximation R1 is
indeed tighter than R2 as illustrated in Figure 4.1 at time t = 1.

4.4.2 Results and discussion

The areas of the over-approximations of the state variable x with respect to time for
each example and for each tool are gathered in Table 4.4. Some of the approximations
computed using Ariadne are not over-approximations as illustrated in Figure 4.2 where
no ranges are defined for some times, probably due to a bug in the implementation. In
these cases, the computed areas are colored in red in Table 4.4 and they cannot properly
be compared with the others.

We notice that for all the experiments, our prototype returns a tighter over-approximation
than the other tools, even though it considers a broader class of uncertainties than
CORA (Lebesgue-integrable uncertainties instead of continuous or Riemann-integrable
ones). These experiments illustrate that our proposed algorithm is suitable to compute
over-approximations of continuous systems with Lebesgue-measurable time-varying un-
certainties.
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Figure 4.1 – Comparison of R1(1) and R2(1)

exact prototype Flow* CORA Ariadne
Simple 0.004000 0.008000 0.024000 0.024000 0.009754
Exponential 0.592611 0.840463 1.296397 1.056670 0.924948
NonLinear 3.576489 4.865639 7.734936 5.955817 11.150959
SimpleSwitching 19.000000 19.249388 26.794954 23.325168 21.270921
DubinsCar 0.086272 0.098562 0.114053 0.114263 0.060890

Table 4.4 – Areas of the over-approximations of the state variable x with respect to the
time for each tool and experiment
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Figure 4.2 – x with respect to the time using Ariadne
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The over-approximations of x with respect to time are drawn in Figure 4.4. We notice
that the over-approximations computed by our prototype have similar shapes as the ones
computed by the other tools. Moreover, our over-approximations are always included in
the others. In particular, our prototype returns a much tighter over-approximation than
the other tools in the case of the experiment “SimpleSwitching”, which is very close to
the exact reachable set.

The experiments that we performed have a small number of state variables and a rel-
atively wide range of the time-varying uncertainties. However, the state-of-the-art tools
mainly focus on systems with small ranges of time-varying uncertainties or disturbances
(e.g. [72, Section 5.3] or [14, Section VII]). So, it is likely that our method could be
more suitable for reachability analysis of systems with large time-varying uncertainties,
in particular when these uncertainties are not additive as in the case of an emerging
sliding mode presented in the Subsection 3.1.

The computation times of each tool are summarized in Table 4.5. The times as-
sociated to the tool CORA are missing, because they were not recorded during our
experiments. We notice that the tool Flow* is much faster than the others. It sug-
gests that it could be relevant to use this tool with a much smaller time-step for those
experiments in order to obtain a tighter over-approximation. Indeed, we tried to in-
crease the order of Taylor models without detecting improvement of the results. We
also notice that our prototype is faster than the tool Ariadne (which is the only one of
the three tools that handles Lebesgue-integrable uncertainties) while returning a tighter
over-approximation for the same fixed time-step. However, we did not investigate the
comparison of the computation times further, because all the tools use lots of different
parameters that are difficult to tune and our focus was on the tightness of the computed
over-approximations using the same time-steps.

prototype Flow* Ariadne
Simple 0.001 0.001 0.036
Exponential 0.730 0.054 13.176
NonLinear 62.555 0.088 74.034
SimpleSwitching 0.494 0.081 2.411
DubinsCar 22.734 0.229 147.958

Table 4.5 – Computation times in seconds for each tool and each experiment

We focused on minimizing the over-approximation of each variable with respect to
the time, but we did not try to keep a maximum of the dependencies between the
state variables. As illustrated on Figure 4.3, while our prototype computed a tighter
over-approximation of y with respect to x over the time interval [0.99, 1] than Flow*,
the tool CORA kept more dependencies between the sets over-approximating x and
y, i.e. while the over-approximation computed by our prototype is tighter, a non-
negligible part of it is not included in the one computed by CORA. While this loss of
dependencies between the state variables could be a problem for reachability analysis
on a wide time interval due to the wrapping effect (cf. Subsection 2.4.1 or [124, 106]),
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it should not become an issue in the algorithm proposed in Subsection 3.4.2, because
the resulting over-approximation would be subdivided into smaller sets. So, it should
mostly yield an increase in the computation time (more sets to consider during the next
iterations) instead of an explosion of the width of the over-approximation. However, the
implementation of this last algorithm is left for future work.
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Figure 4.3 – Over-approximation of y with respect to x over the last time interval [0.99, 1]

103



0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

Flow_star
CORA
prototype
Exact

(a) Simple

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Flow_star
CORA
prototype
Exact

(b) Exponential

0 1 2 3 4 5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0 Ariadne
Flow_star
CORA
prototype
Exact

(c) NonLinear

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0 Flow_star
CORA
Ariadne
prototype
Exact

(d) SimpleSwitching

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
Flow_star
CORA
prototype
Exact

(e) DubinsCar

Figure 4.4 – x with respect to the time using the different tools
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Chapter 5

From concrete to set-valued
simulations of hybrid models

In this chapter, we discuss the conditions to allow set-valued computation (e.g. reach-
ability analysis) on models of hybrid systems used by tools for Model-Based Design.
We start our reflection from a representation adapted to simulations of hybrid systems
and we slightly modify it in order to allow set-valued computations. We also apply one
possible approach, based on a parametrization by a representation of sets, to a restricted
case of models written in the Zélus language.

This work is a collaboration with Marc Pouzet from the PARKAS1 team at the
Département d’informatique at the École normale supérieure and it is still in progress.
Contrary to [43] and [128] (cf. Subsection 2.4.4.3), we do not want to create a compiler
dedicated to the reachability analysis of models written in Zélus, but rather to slightly
adapt the existing one in order to allow both computations of simulation (as currently)
and reachability analysis.

In Section 5.1, we derive an interface between a simulation engine and external
solvers into an interface allowing reachability analysis of hybrid models. In Section 5.2,
we define an interface for the hybrid models that is an intermediate representation of
models compatible with the ones written in Zélus. Finally, in Section 5.3, we present
our implementation of set-valued intermediate models and its application on an example.

5.1 High level representation and interfaces

In this section, we present a possible interface for an engine that simulates a given model.
We start with the case of concrete simulation, i.e. a classic simulation with at most one
value associated to each variable at every instant. Then, we define a set-valued version
of it with only slight modifications in order to solve difficulties induced by the handling
of sets.

1https://parkas.di.ens.fr/
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5.1.1 Concrete simulation

A tool that simulates the behavior of a model M actually defines a function Simulate
that takes as arguments the model M and some input signal u and returns an output
signal o:

Simulate(M)(u) = o (5.1)

Such a function typically corresponds to an interpretation of a program: given a source
code and an input of the program, it computes its output. In this case, the input signal
u and the output signal o can be interpreted as sequences of values, i.e. u = (un)n∈N
and o = (on)n∈N, as streams in a synchronous data-flow language (e.g. Lustre2 [81]).
The indices n ∈ N can be interpreted as values of a logical time with a total order.

If M is a model of a hybrid system, then the signals u and o cannot be just discrete
sequences of values at specific instants. Indeed, the signals may exist over real time
as solutions of differential equations over some time intervals. Moreover, the discrete
behaviors are assumed to be instantaneous. So, discrete events may be chained at the
same real instant: we call this behavior a cascade [31]. It requires a way to encode the
ordering of events at the same real instant. The paper [31] presents a non-standard
semantics for such streams, but we can also use superdense time ones [108, 42] that
gathers a real time t in R (real duration since the initial time) and a microstep n in
N (the number of past transitions). Thus, a stream can be interpreted as a sequence([
tn, tn

]
, fn

)
n∈N such that for all n ∈ N,

[
tn, tn

]
is the domain of fn and tn ≤ tn+1. When

a stream is not defined for some value n, fn can defined as equal to a special value ⊥ [29,
Definition 1]. We propose the following definition for concrete streams:

Definition 13 (Stream)
Let V be a set of possible values. A stream u with values in V is a sequence([
tn, tn

]
, fn

)
n∈N such that for all n ∈ N,

tn ≤ tn+1 and fn :
[
tn, tn

]
→ V ∪ {⊥}

Definition 14 (Evaluation of a concrete stream)
Given a stream u with values in V and a superdense time (t, n) ∈ R × N, the value of
u at time (t, n) is given by

u
(
(t, n)

)
=
{
fn(t) if t ∈

[
tn, tn

]
⊥ otherwise

In the following, we denote SV the set of streams with values in V .
Independently of the representation of the time, we often have to solve differential

equations in order to obtain the value of the state with respect to the real time. Because
solving differential equations is a complex task, the simulation engine often delegates
it to an external tool. We consider such a tool as a parameter csolve (for continuous
solver) of the Simulate function. Similarly, the discrete behaviors of the hybrid models

2https://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/reactive-toolbox/
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are triggered by conditions depending on some signals. The detection of the change of
value of these conditions, typically zero-crossing events, is delegated to another external
tool that is another parameter zsolve (for zero-crossing solver) of the simulation engine.
Finally, the simulation defines a function

Simulate(csolve, zsolve)(M)(u) = o (5.2)

Now, we present the interface that we can expect for the external tools csolve and
zsolve. The continuous solver should return an interpolation function that takes as input
a time and returns a mapping of values of the continuous variables. The continuous solver
used by Zélus is Sundials CVODE3 [41]. The returned value is typically an array
of the type representing real numbers, e.g. a double-precision floating-point format.
In order to compute such an interpolation function, the continuous integrator needs an
initial value of those variables and the corresponding initial time. It also needs a duration
for the interpolation function: the domain of the returned interpolation function is then
guaranteed to be an interval starting at the initial time and whose width is not bigger
than the given duration. Finally, it needs the flow condition in order to estimate the
interpolation function. The flow condition Flow is a finitary relation over the possible
values of the time, the continuous variables and the derivatives. In the next subsections,
the flow condition Flow is assumed to be the right-hand side of the explicit ordinary
differential equations, i.e. Flow is a function that takes as input the time and the values
of the continuous variables and returns the corresponding derivatives. So, the continuous
solver defines a function

csolve(Flow)(t0, dt, x0) =
(
dt ′,Approx

)
(5.3)

with Flow the flow condition, t0 the initial time, dt the expected duration, x0 the initial
state, dt ′ the actually computed duration, and Approx the interpolation function defined
for all time in the closed interval [0, dt ′]. dt ′ may be strictly smaller than dt if no solutions
exist on the whole interval [0, dt] or if the solver subdivides the domain for precision
concerns.

Similarly, the detector of events needs an indexed collection of predicates Zout, i.e.
a collection of functions of the time and of the values of the continuous variables that
returns boolean values, the approximation computed by the continuous solver and the
boundaries of its time domain:

zsolve(Zout)
(
t0, dt ′)(Approx) = (t1,Zin) (5.4)

with Zout an indexed collection of predicates, t0 the initial time, dt ′ the duration, Approx
a function that associates values of the continuous variables of the system to each time
in the time interval [0, dt ′] (e.g. the interpolation function computed by csolve), t1 the
time at which the first event has been detected in the time interval, and Zin an indexed
collection of boolean values indicating for each index of Zout if the associated value

3https://sundials.readthedocs.io/en/latest/cvode/index.html
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at time t1 changes. The indexed collection Zin may be needed, because an evaluation
of the model at time t1 may not be sufficient to identify events, especially in case of
zero-crossing events as illustrated in Example 15. If no changes of values occur, then t1
should be equal to t0 + dt ′ and Zin only contains false values. Typically, Zout and Zin
are implemented using arrays of the same size.

Example 15 (Need of Zin to trigger zero-crossing events)
Consider the following hybrid node written in Zélus:

let hybrid f() = (zx ,zy) where
rec der x = 1. init -1.
and der y = 0. init 0.
and zx = up(x)
and zy = up(y)

The node is composed of two ordinary differential equations, defining x and y, and two
zero-crossing signals, zx and zy. The detector of events should return the time t1 = 1.
At that time, both x and y are equal to 0, but only zx should be activated (cf. 2.14
in Section 2.2). So, Zin is needed to explicit that zx is activated at t1 = 1, while zy is
not.

Finally, the simulation procedure consists in two phases [30, 41]: the simulation
iterates discrete steps until all events at the current time are handled (e.g. cascades of
events), then it integrates via csolve until zsolve detects an event (cf. [41, Section 3.2]
and Figure 5.1). The simulation starts by computing a discrete step that initializes
the state of the model at the first instant. Then, the simulation engine initializes the
integrator csolve and this integrator is called until an event is detected by the detector
zsolve. As soon as an event is detected, the simulation engine computes the images of
the state through the jumps (i.e. discrete behaviors) associated to the triggered cascade
of events, without increasing the real time. When no more events have to be handled,
the simulation engine reinitializes the integrator (needed for multistep solvers) and the
integrator is called again. This procedure ends if the target final time is reached or if a
step failed, e.g. the integrator cannot compute an accurate enough interpolation function
(based on some thresholds as parameters) or the detector of events detects events too
close to the initial time during multiple iterations, which can be a Zeno behavior (cf.
Example 4 of a bouncing ball).

D Creaction integration

[reinitialization]

event

Figure 5.1 – Base of hybrid simulation ([41, Figure 4])
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5.1.2 Set-valued streams and implications

In order to handle reachability analysis or set-valued simulation, we start by replacing
the representation of real numbers by a representation of sets (cf. Subsection 2.4.1).
Then, we may define set-valued streams the same way as concrete ones with values
in a powerset. However, replacing concrete values by sets does not catch all possible
trajectories, because set-valued computations may introduce uncertainty on time, as
illustrated by Example 16. Because a time interval can be represented as an initial time
and a duration, we decide to lift only the initial time to an uncertain quantity and to
leave the duration exact. So, we define set-valued streams as sequences of triples, each
one containing an uncertain initial time, a duration and a function that maps elapsed
time to sets:

Definition 15 (Set-valued stream)
Let V be a set of possible values for a concrete stream (cf. Definition 13). A set-valued
stream ũ with values in P(V ) (set of all subsets of V ) is a sequence

([
tn, tn

]
, dtn, f̃n

)
n∈N

such that for all n ∈ N,

tn ≤ tn+1 and f̃n : [0, dtn] → P(V ) ∪ {⊥}

We assume that for all n ∈ N, either f̃n is always equal or always different than
{⊥}: (

∀δ ∈ [0, dtn], f̃n(δ) = {⊥}
)

∨
(
∀δ ∈ [0, dtn], f̃n(δ) 6= {⊥}

)
Because our definition of set-valued streams is slightly different to the one of concrete

streams, we also have to modify the definition of their evaluation. The evaluation of a
set-valued stream at a given superdense time has to handle the uncertainty on the initial
time of each domain. We define the evaluation as the union of all possible values over
compatible initial real times. It is illustrated in Example 16.

Definition 16 (Evaluation of a set-valued stream)
Given a set-valued stream ũ with values in P(V ) and a superdense time (t, n) ∈ R×N,
the value of ũ at time (t, n) is given by

u
(
(t, n)

)
=
{ {

v
∣∣ ∃t0 ∈ [tn,min(t, tn)] : v ∈ f̃n(t− t0)

}
if t ∈ [tn, tn + dtn]

{⊥} otherwise

A set-valued stream encodes a set of streams whose values are included in one of the
set-valued streams at the same times.

Definition 17 (Concrete streams in set-valued ones)
Consider a set-valued stream ũ with values in P(V ).

A (concrete) stream u belongs to ũ if any evaluation of u belongs to the one of ũ
at the same superdense time, i.e.

∀(t, n) ∈ R × N, u
(
(t, n)

)
∈ ũ

(
(t, n)

)
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Using this definition, we can interpret a set-valued stream as a collection of concrete
ones. Consider a set-valued stream ũ with values in P(U). ũ defines a set of streams u
with values in U that belong to it, i.e.

ũ =
{
u ∈ SV

∣∣ ∀(t, n) ∈ R × N, u
(
(t, n)

)
∈ ũ

(
(t, n)

)}
(5.5)

Such set-valued streams can be encoded as an indexed collection of parameterized sets,
e.g. a list of Taylor models (cf. Subsection 2.4.1) with the real time as one of the
parameters.

Using set-valued streams may result in the existence of multiple set-valued streams
at the same real time non-trivial intervals, contrarily to concrete streams. They may be
split when some concrete streams that are encoded take different branches. The first
case of splitting set-valued stream occurs at the activation of a guard, as illustrated
by Example 16 (more splits can occur if multiple guards are activated in a common
time interval). The second case of splitting occurs during the evaluation of a discrete
evolution, as illustrated by Example 17.

Example 16 (Uncertain guard)
Consider the following hybrid automaton that models a flashing lamp with a fixed
frequency equal to a half hertz and uncertain initial phase:

Off
ẋ = 1
x ≤ 1

x ∈ [0, 0.1]
On
ẋ = 1
x ≤ 1

x ≥ 1
x′ = 0

x ≥ 1
x′ = 0

For all real time t ∈ [0.9, 1], a concrete stream associated to dt can still be in the
mode Off (at superdense time (t, 0)) or it can be in the mode On (at superdense time
(t, 1)).

A set-valued stream x̃ that over-approximates the set of admissible concrete streams
associated to x could be:([

t0, t0
]
, dt0, f̃0

)
=
(
[0, 0], 1, δ 7→ [δ, δ + 0.1]

)
∀n ∈ N∗,

([
tn, tn

]
, dtn, f̃n

)
=
(
[n− 0.1, n], 1, δ 7→ δ

)
We notice that such a set-valued stream is a strict over-approximation of the set of
admissible concrete streams, because it contains streams that reach values strictly
bigger than 1 at time t = 1. Moreover, the set-valued stream x̃ defines two disjoint
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sets over the real time interval [0.9, 1]:

x̃
(
[0.9, 1], 0

)
= [0.9, 1.1]

x̃
(
[0.9, 1], 1

)
= [0, 0.1]

Example 17 (Discrete evolution with multiple possible branches)
Consider the following node in Zélus:

let node f(x) = y where
y = if x < 0. then x -. 1. else x +. 1.

If a set-valued stream x̃ evaluated at the superdense time (t, n) is equal to [−1, 1],
then a set-valued stream ỹ associated to y may be equal to [−2,−1[∪[1, 2]. However,
the value of ỹ is neither closed nor contiguous, contrary to the classical representations
of sets (cf. Subsection 2.4.1). Using an interval representation, we can either compute
ỹ
(
(t, n)

)
= [−2, 2], which is a huge over-approximation, or we can decide to produce

two set-valued streams ỹ1 and ỹ2 that have the same past, but such that ỹ1
(
(t, n)

)
=

[−2,−1] and ỹ2
(
(t, n)

)
= [1, 2].

5.1.3 Set-valued simulation

In the previous subsections, we presented set-valued streams and their implications on
the different steps of the simulation. In particular, we noticed that a set-valued input
stream may result in multiple set-valued output streams due to the effect of uncertainties
on the transitions and branches (conditional structures like if/then/else).

First, we define a set-valued version of the interface of the continuous solvers. They
need necessarily a set-valued version of the flow condition ˜Flow and a set-valued initial
state x̃0. They also need a time domain over which to compute the continuous evolution
of the state. Because the detection of the activation of the transitions may introduce
uncertainties on the time, the continuous solvers should be able to handle them. So,
the initial time has to be a set t̃0. However, we decide to specify a concrete expected
duration dt of the evolution and we expect that the returned set-valued interpolation
function ˜Approx is packed with an actually computed concrete duration dt ′ (e.g. a value
of type float). So, ˜Approx will be a set-valued function from [0, dt ′] to the powerset of
continuous states and the interface of the continuous solvers is

˜csolve
(

˜Flow
)(
t̃0, dt, x̃0

)
=
(
dt ′, ˜Approx

)
(5.6)

We notice that this set-valued interface is compatible with the concrete one.
Then, we define a set-valued version of the interface of the zero-crossing solvers.

As for the continuous solvers, the inputs have to be set-valued ones: the collection
of predicates ˜Zout should be evaluated on sets, the initial time t̃0 is uncertain, the
interpolation function is the set-valued one ˜Approx that is returned by the continuous
solver, as is the duration dt ′ defining the maximal value of the time domain. Because
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the zero-crossing events may be highly uncertain and because we want to be able to
compute an over-appromation of the reachable set, the zero-crossing solvers should be
able to return a collection of detected events. We also expect the zero-crossing solvers
to return a subset of the set-valued continuous state that activates each detected zero-
crossing event. So, the set-valued interface of the zero-crossing solvers becomes

˜zsolve
(

˜Zout
)(
t̃0, dt ′)( ˜Approx

)
=
{
(t̃i,Zini, x̃i)

}
i∈I (5.7)

where i is an index in a finite discrete set I (typically, I = J0, nK), t̃i is the uncertain time
at which an event is detected, Zini is an indexed collection of boolean values indicating
for each index of ˜Zout if the associated value changes at the detected event, and x̃i is
the subset of ˜Approx([0, dt ′]) that activates the event at a time in t̃i (x̃i is potentially
an over-approximation). We notice that this set-valued interface is compatible with the
concrete one returning a singleton and replacing x̃i by Approx(t1 − t0).

Finally, we define the set-valued version of the interface of the simulation engine. It
should be parameterized by a set-valued continuous solver ˜csolve and a set-valued zero-
crossing solver ˜zsolve. Similarly, the model should be handled in a set-valued version M̃ ,
i.e. in which all expressions can be evaluated over sets. Then, the set-valued simulation
takes a collection of set-valued input streams {ũi}i∈I and returns a collection of set-
valued output streams {õj}j∈J , where I and J are two finite sets of indexes.

˜Simulate
(

˜csolve, ˜zsolve
)(
M̃
)
({ũi}i∈I) = {õj}j∈J (5.8)

Contrary to the concrete simulation engine, the set-valued one has to handle the col-
lection of set-valued inputs and to construct the one of outputs. In practice, such a
set-valued simulation engine computes the union of the results for each set-valued input
stream ũi.

We did not implement such a generic set-valued simulation engine, but we propose in
the next section an implementation of one that is able to handle models without inputs
as a first step for implementing a solver that handles time-varying inputs.

5.2 Intermediate representation of the models
We presented a set-valued interface for a simulation engine using external tools. However,
we did not provide any interface of the models. A model could be interpreted directly
from the source code, e.g. from the abstract syntax tree, as a classic interpretation of a
program. Instead we consider that the model is first translated from the source code into
an intermediate representation similar to the S-functions of Simulink4 or to the FMU
for Model Exchange of Modelica [67, Section 3]. The creation of such an intermediate
representation of the model is the task of a compiler, for example from a source code
written in Zélus into a collection of functions in OCaml [41].

In this section, we focus on models written in Zélus, but it should be relevant for
other tools such as Simulink.

4https://www.mathworks.com/help/simulink/sfg/what-is-an-s-function.html
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We start by presenting the intermediate representation of the models that we consider
in this work. Then, we define the representations of the states. Finally, we present a
set-valued version of the intermediate models.

5.2.1 Functional intermediate model

We provide a purely functional interpretation of hybrid models, i.e. without side effects,
in order to simplify reasoning about them. We focus on models written in Zélus (cf.
Section 2.2), so the flow conditions are explicit first-order ordinary differential equations,
i.e. of the form ẋ(t) = fs

(
x(t), u(t)

)
with fs a continuous function depending on the

current state s, and the transitions are triggered by rising zero-crossing events, i.e. gs a
continuous function depending on the current state s such that

∀ε > 0, ∃δ ∈ [0, ε] : gs
(
x(t− δ), u(t− δ)

)
< 0 and gs

(
x(t), u(t)

)
≥ 0

These functions are required by the external solvers [41]. Finally, we need a function
that given the state and the input returns the value of the output signal. We did not
introduce the time as parameter of these functions, because it is not accessible in Zélus
and it can be considered as an input, i.e. a component of u.

This representation of hybrid models is similar to hybrid automata (cf. Definition 1)
except that the graph is implicit (the modes and transitions are determined by the
states and the zero-crossing events) and the guards and the invariants are defined by
the zero-crossing events (an invariant is true in a mode unless a zero-crossing event is
detected, which activates the corresponding guard). This representation is convenient
in the sense that it allows an easy parallel composition of models: we do not have to
compute the strong product (or normal product) of the graphs, because it emerges from
the concatenation of the different sets (states variables, right-hand sides of ordinary
differential equations and zero-crossing functions). It allows a compiler to translate
modular models into this intermediate representation [32, 41].

Besides the functions related to the implicit hybrid automata, we need functions to
manipulate the states s. The state of a model can be a complex object, but the contin-
uous solvers only manipulate part of it that is determined by the ordinary differential
equations. So, we use the following interface (written in OCaml):

type model = {
init : state;
getx : state -> cont;
deriv : state * cont * input -> der;
zeroc : state * cont * input -> zout;
update : state * cont * input * zin -> state;
output : state * cont * input -> output ;

}

with init the initial state (type state) of the model, getx the function that returns the
continuous variables (type cont) from a state, i.e. the variables whose evolution is defined
by their derivatives, deriv the function that returns the values of the derivatives (type
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der), zeroc returns the values of zero-crossing functions (type zout), update returns the
state after a transition and output returns the values of the output signal (type output).
All these functions depend on the current state of the model, but also on the value of
the continuous variables and the value of the input signal (type input). Moreover, the
function update takes the set of activated transitions (type zin) as an extra argument.
In practice, cont and der are equal, cont, der, zout are arrays of elements of the same
type (e.g. floating-point number, interval, Taylor model, etc.), and zin is an array of
elements of booleans.

Example 18 (Intermediate model of a bouncing ball)
We consider a bouncing ball (cf. Example 4). We adapt the previous automaton in
order to add to it a counter of bounces:

Fall
ḣ = v
v̇ = −10
ċ = 0
h ≥ 0

h = 20 ∧ v = 0
h ≤ 0 ∧ v ≤ 0

v′ = −0.5v ∧ c′ = c+ 1

In order to exhibit the zero-crossing functions, we can decompose the mode into
two:

Down
ḣ = v
v̇ = −10
ċ = 0
h ≥ 0 ∧ v ≤ 0

h = 20
∧ v = 0
∧ c = 0

Up
ḣ = v
v̇ = −10
ċ = 0
h ≥ 0 ∧ v ≥ 0

h ≤ 0
v′ = −0.5v ∧ c′ = c+ 1

v ≤ 0

So, the state s of the model is defined by the value of s.h, s.v, s.c and s.mode,
where s.h and s.v are real values, while s.c is an integer and s.mode is either Up or
Down (sum type).

We present a possible implementation using the OCaml programming language.
The initial state is a record:

let init = {
h = 20.;
v = 0.;
c = 0;
mode = Down;

}

mode has a sum type type mode = Up | Down, while h and v have type float, and c has
type int.

114



While the derivative of s.c is explicitly defined in the hybrid automaton, it is in
fact piecewise constant and it can only take integer values. So, it does not belong to
the set of continuous variables. It is the same for the variable s.mode. Finally, the
function getx returns an array with the values of s.h and s.v as elements:

let getx s = Array. of_list [s.h;s.v]

The function deriv should return an array with two elements corresponding to the
derivatives of the continuous variables:

let deriv (s,x,u) = Array. of_list [x.(1); -10.]

where x.(1) corresponds to the value of v returned by the approximation.
The zero-crossing functions trigger the discrete events, i.e. the activation of the

guards of the transitions. If the current mode is Down, then the unique transition is
triggered by h, while if the current mode is Up, then the unique transition is triggered
by v. So, zeroc could return a single value. However, in order to easily associate an
index to each zero-crossing signal, zeroc returns an array whose elements are the values
of the zero-crossing signal. If a signal is not defined in a mode, its value is set to a
negative one:

let zeroc (s,x,u) =
match s.mode with
| Up -> Array. of_list [ -42.; -. x.(1)]
| Down -> Array. of_list [-. x.(0); -42.]

The function update modifies the state only if the current mode is Down and if
the transition is activated. In this case, only part of the state is modified: the velocity
s.v becomes the opposite of half of its last computed value (stored in x.(1)) and
the counter s.c is incremented by one. In all the other cases, the state is returned
unchanged:

let update (s,x,u,zin) =
if s.mode = Down && zin .(0) = true then

{ s with v = -0.5 *. x.(1); c = s.c + 1 }
else s

Finally, the output is not specified by the hybrid automaton. We may consider
that the outputs are the signals associated to the variables h, v and c. If so, we have

let output (s,x,u) =
(x.(0) ,x.(1) ,s.c)

Because h and v are continuous variables, we return the values in x, while we return
s.c for the value of the counter c.

We notice on this example that the mode s.mode of the automaton is an internal
variable of the state s, i.e. it is not exposed by the interface.
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While such a functional representation of the intermediate models is convenient for
reasoning and prototyping, it is unlikely to be implemented as such in tools such as
Simulink or Zélus. Indeed, with our representation, the functions have to compute
copies of the states that can be huge structures in the case of large models. So, we use
this interface for reasoning, but we implement an iterative version with side-effects when
it is possible: only a pointer to the state is passed to the functions, which modify it
inplace (cf. Subsection 5.3.2).

5.2.2 Set-valued representation of states

Before defining a set-valued version of the functional intermediate model, we have to
define the set-valued version of the states.

The states are tuples most likely implemented as records. The elements can have
different types: continuous types (e.g. a real number implemented as floating-point
number), discrete types (e.g. integer or sum type), or the type of the state of a nested
model. Our idea is to replace the continuous types by the type of a representation of
sets, e.g. intervals of Taylor models (cf. Subsection 2.4.1), and the states of nested
models by their set-valued version. It is illustrated by Example 19.

Example 19 (Lifting of a state to its set-valued version)
Consider the following state (written in OCaml) defined by two continuous variables
x0 and x1 of type float, a discrete variable d0 of type int, another discrete variable
d1 of a user-defined sum type mode, and an instance i0 of a nested model:

type mode = Mode1 | Mode2
type state_nested
type state = {

x0 : float;
x1 : float;
d0 : int;
d1 : mode;
i0 : state_nested ;

}

Following the presented procedure and using Taylor models as the representation of
sets (type taylor_model), the set-valued version of this state is obtained by replacing
the type float by taylor_model and replacing the type of the instance of the nested
model by its set-valued version (defined in a similar way):
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type taylor_model
type mode = Mode1 | Mode2
type setvalued_state_nested
type setvalued_state = {

x0 : taylor_model ;
x1 : taylor_model ;
d0 : int;
d1 : mode;
i0 : setvalued_state_nested ;

}

This set-valued representation of states is convenient for the continuous flowpipes,
i.e. sets of continuous evolutions without jumps. This representation is also suitable for
the case of hybrid systems with only continuous jumps, i.e. discrete behaviors that are
continuous with respect to the values of the continuous variables. However, as presented
in Subsection 5.1.2, due to the uncertain location of the states, the evaluation of non-
continuous jumps may result in multiple possible values of the discrete variables. Such
a set-valued function is presented in Example 20.

Example 20 (Function that may produce multiple set-valued states)
Consider the following update function (written in OCaml):

let update (s,x,u) =
if x.(0) <= 0. then {s with c = 1}
else {s with c = 2}

where s.c is an integer variable.
If x.(0) defines an interval such that 0 belongs to its interior, e.g. a Taylor model

whose range is equal to [−0.1, 0.1], then both branches can be activated and, in the
case of a reachability analysis, the function update should return two states that cannot
be gathered as a unique set-valued state.

We may have a similar behavior with the function output whose result can contain
discrete values.

In order to handle such functions that may return simultaneously multiple set-valued
states, we could have defined collections of set-valued states as the lifting of concrete
states. However, it yields a much more difficult implementation and we prefer to restrict
our study to functions that, given a set-valued input, can only return a unique set-valued
state.

5.2.3 Set-valued functional intermediate model

Based on our definition of a set-valued state of an intermediate model (cf. Subsec-
tion 5.2.2), we define a set-valued functional intermediate model. To avoid handling
functions that may return simultaneously multiple set-valued states (cf. Example 20),
we only consider models whose discrete dynamics are continuous with respect to the
continuous state variables or inputs. A sufficient condition to avoid such difficulties is
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to reject any model that contains non-continuous operators (e.g. rounding function)
or branches (e.g. if/then/else constructions) depending on the values of continuous
variables.

With such a restriction on the models, we can define an interface for set-valued
functional intermediate models as follow:

type model = {
init : set_state ;
getx : set_state -> set_cont ;
deriv : set_state * set_cont * set_input -> set_der ;
zeroc : set_state * set_cont * set_input -> set_zout ;
update : set_state * set_cont * set_input * zin -> set_state ;
output : set_state * set_cont * set_input -> set_output ;

}

where set_type corresponds to the type of objects of type type (equals to state, cont,
input, output, der or zout of the original functional intermediate model) in which every
type representing real numbers is replaced by the type of the chosen representation of
sets (e.g. the type float is replaced by the type taylor_model).

Despite its inability to encode all possible results in case of non-continuous functions,
this set-valued interface of intermediate models is compatible with the concrete one
defined in Section 5.2.1.

5.3 Details of implementation

In this section, we describe a possible implementation of intermediate models that allows
to easily define a set-valued version as presented in Subsection 5.2.3.

5.3.1 Implementation of set-valued functional intermediate models

We defined the intermediate models (cf. Subsection 5.2.1) as collections of functions.
These functions are defined in a programming language, e.g. OCaml in the case of
models written in Zélus. So, we may deduce set-valued intermediate models from the
source codes, e.g. using a dedicated compiler as in [128] or an interpreter as computed
by static analysers (cf. Subsection 2.4.3).

Because concrete and set-valued intermediate models have similar interfaces (cf. Sub-
sections 5.2.1 and 5.2.3), we want to define intermediate models that are independent
of the chosen representation of sets. In particular, we could define a representation of
singletons (i.e. sets with only one element) to obtain the concrete intermediate model
of Subsection 5.2.1.

We parameterize the intermediate models by a representation of sets using functors
in OCaml. We need to define a common interface for all the representations of sets
(modules with a type to store the sets and functions to manipulate them) and we can
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define the intermediate models for any representation that satisfies the interface. The
method is illustrated in Example 21.

Example 21 (Parametric intermediate model of a bouncing ball)
Consider the model of a bouncing ball presented in Example 18. We can define its
intermediate model as follows, parameterized by an abstract representation of sets
here called MySet that implements the interface Representation. So, we start defining
the interface Representation:

module type Representation = sig
type t

val of_float : float -> t
val ( ~-. ) : t -> t
val ( *. ) : t -> t -> t

end

Such an interface could be redefined for each model, but it can also be defined once
with an exhaustive collection of functions independent of any model.

To define the parametric intermediate model, we simply wrap the concrete inter-
mediate model presented in Example 18 into an OCaml functor parameterized by a
module MySet encoding a representation of sets, we replace every operator on float
by its corresponding version in the module MySet and we replace all float constant
values by the sets encoding them:
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module BouncingBall (MySet : Representation ) = struct
type mode = Up | Down

type state = {
h : MySet.t;
v : MySet.t;
c : int;
mode : mode;

}

let init = {
h = MySet. of_float 20.;
v = MySet. of_float 0.;
c = 0;
mode = Down;

}

let getx s = Array. of_list [s.h;s.v]

let deriv (s,x,u) = Array. of_list [x.(1); MySet. of_float ( -1.)]

let zeroc (s,x,u) =
match s.mode with
| Up -> Array. of_list [MySet .(-. x .(1))]
| Down -> Array. of_list [MySet .(-. x .(0))]

let update (s,x,u,zin) =
if s.mode = Down && zin .(0) = true then

{ s with v = MySet .(( of_float ( -0.5)) *. x .(1)); c = s.c + 1 }
else s

let output (s,x,u) =
(x.(0) ,x.(1) ,s.c)

let zeroc (s,x,u) =
match s.mode with
| Up -> Array. of_list [MySet. of_float ( -42.); MySet .(-. x .(1))]
| Down -> Array. of_list [MySet .(-. x .(0)); MySet. of_float ( -42.)]

end

As presented in Example 20, the conditional structures may be difficult to lift into
a set-valued version. We avoid the difficulty by assuming that the conditions do not
depend on the continuous variables (cf. Subsection 5.2.3).

However, we could handle conditional structures by considering them as operators.
For example, we could write in OCaml:
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let if_then_else
(cond : bool)
( f_true : ’a Lazy.t)
( f_false : ’a Lazy.t)

: ’a
=
if cond then Lazy.force f_true
else Lazy.force f_false

In that case, we could lift this operator into one that is compatible with set-valued
computations. Because a condition evaluated on sets may be neither true nor false (cf.
Example 17), we have to introduce a type for encoding the results of conditions that
allows a third possible value:

type trilean = True | False | Unknown

Depending on the value of the condition, the set-valued conditional operator should
return either a unique evaluation of a branch or the union of the results of the two
branches:

let if_then_else
(union : ’a -> ’a -> ’a)
(cond : trilean )
( f_true : ’a Lazy.t)
( f_false : ’a Lazy.t)

: ’a
=
match cond with
| True -> Lazy.force f_true
| False -> Lazy.force f_false
| Unknown -> union (Lazy.force f_true ) (Lazy.force f_false )

The difficulty of such an implementation of the conditional structures is the implemen-
tation of the union that should be able to handle numerous cases: sets, set-valued states,
tuples with different types, etc. Such an implementation is left for a future work.

Remark 11 (Abstract interpretation of branches) Static analysers are able to
handle such conditional structures, but their interpretation affects the whole abstract
contexts and not only individual signals (cf. Example 14), contrarily to our approach
that delegates the evaluation to the model itself.

5.3.2 Implementation of set-valued intermediate models with side ef-
fects

The implementation proposed in the previous subsection implies lots of array creations.
In particular, the continuous solver may call the function deriv many times, which
creates a new array each time.
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To avoid lots of copies, we can define global arrays and structures that are modified
in place by the different functions. Such a method is implemented in the current ver-
sion of Zélus, but we describe our own interface in this subsection. The interface of
intermediate models becomes in OCaml:

type (’state ,’input ,’output ,’set) model = {
csize : int;
zsize : int;
alloc : int -> ’set array -> ’set array

-> int -> ’set array -> bool array
-> ’state;

init : ’state -> unit;
deriv : ’state * ’input -> unit;
zeroc : ’state * ’input -> unit;
update : ’state * ’input -> unit;
output : ’state * ’input -> ’output ;
copy : ’state -> ’state;
get_carray : ’state -> ’set array;
get_darray : ’state -> ’set array;
get_zout : ’state -> ’set array;
get_zin : ’state -> bool array;

}

with ’state an abstract type of the state of the model, ’input and ’output abstract types
of inputs and outputs of the model, and ’set an abstract type that will be instantiated
with the type of a representation of unidimensional sets.

Contrarily to the previous subsection, the init function does not return a state, but
it initializes the values of an already allocated state. The allocation of a new state is
done by the function alloc such that

alloc coffset carray darray zoffset zout zin

returns a new state with carray an array for storing the values of the continuous signals,
darray an array for their derivatives, zout an array for the values of the zero-crossing
functions and zin the activation of each zero-crossing. coffset and zoffset are indices
offsets for the arrays allowing to share the arrays for multiple models. The arrays carray
and darray should contain at least coffset+csize elements and the arrays zout and zin
should contain at least zoffset+zsize elements in order to avoid any buffer overflows.

A function copy must be provided to compute the evolution of a given set-valued
state through different activated transitions (cf. Subsection 5.1.2). The copied state has
to point to copied versions of the arrays carray, darray, zout and zin. To access to those
copies, the models have to provide accessor functions get_carray, get_darray, get_zout
and get_zin.

While the interface is defined using parametric polymorphism, the actual implemen-
tation of the models is done as presented in the previous subsection using functors in
OCaml.
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5.3.3 Handling of zero-crossing events

As presented in Subsection 5.1.2 , a detection of zero-crossing events with set-valued
streams may result in multiple evolutions due to uncertainties. It can be handled with
copies of the state as presented in Subsection 5.3.4.

However, if all the concrete streams encoded by a set-valued one have activated a
zero-crossing before a given time, then the set-valued stream should not exist beyond
that point. It is illustrated in Example 22.

Example 22 (Simple clock in Zélus)
Consider the following model of a clock written in Zélus:

let hybrid clock(x0) = x where
rec der x = 1. init x0 reset z -> 0.
and z = up(x -. 1.)

It is a similar model to the one presented in Example 16 but with a single mode and
zero-crossings as guards of the transitions.

If x0 belongs to [0, 0.1], then a set-valued stream x̃ that over-approximates the set
of admissible concrete streams associated to x could be as in Example 16:([

t0, t0
]
, dt0, f̃0

)
=
(
[0, 0], 1, δ 7→ [δ, δ + 0.1]

)
∀n ∈ N∗,

([
tn, tn

]
, dtn, f̃n

)
=
(
[n− 0.1, n], 1, δ 7→ δ

)
We notice that at the superdense time (t, n) = (1, 0), x̃

(
(1, 0)

)
is equal to [1, 1.1].

Because at the initial time, x̃
(
(0, 0)

)
is equal to [0, 0.1], we deduce that any concrete

stream contained in x̃ triggers a zero-crossing event at some superdense time (t, 0)
with t ∈ [0, 1]. So, the set-valued stream x̃ should not be defined for any superdense
time (t, 0) with t > 1, because no concrete stream can be defined at such a superdense
time.

The difficulty is to detect zero-crossing events that are activated by all the represented
concrete streams. So, we want to distinguish these zero-crossing events from the ones
that are only activated by only some of the concrete streams.

Definition 18 (Set-valued zero-crossing event)
Consider a continuous set-valued function f̃ from [t0, t1] to P(R).

The set-valued function f̃ triggers a set-valued zero-crossing event if there exists a
time different to the lower bound such that zero belongs to the image of f̃ , i.e.

∃t ∈]t0, t1], 0 ∈ f̃(t)

Definition 19 (Total zero-crossing event)
A continuous set-valued function f̃ from [t0, t1] to P(R) triggers a total zero-crossing
event if for all continuous function f such that

∀t ∈]t0, t1], f(t) ∈ f̃(t)
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f triggers a zero-crossing event on ]t0, t1], i.e.

∃t∗ ∈]t0, t1] :
(
f(t∗) = 0

)
∧
(
∀ε > 0, ∃δ ∈ [0, ε] : t∗ − δ ∈ [t0, t1] ∧ f(t∗ − δ) < 0

)
Definition 20 (Partial zero-crossing event)
A continuous set-valued function f̃ from [t0, t1] to P(R) triggers a partial zero-crossing
event if it triggers a set-valued zero-crossing but not a total zero-crossing event.

Remark 12 We considered all the concrete streams that are represented by a set-
valued one for simplicity, but we could also only consider concrete streams that are
admissible by the model. In that case, a set-valued zero-crossing is total as soon as
the set of possible derivatives is positive, which could be checked using automatic
differentiation (e.g. using FADBADmla).

ahttps://fadbadml-dev.github.io/FADBADml/

The identification of total and partial zero-crossing events is crucial in order to reduce
the computation of non-admissible trajectories. So, we want to define a simple criterion
to detect total zero-crossing events. First, we notice a property that directly results from
the Bolzano’s theorem.

Lemma 6
Consider a continuous set-valued function f̃ from [t0, t1] to P(R).

If there exist tmin and tmax in [t0, t1] such that

tmin ≤ tmax ∧ max f̃(tmin) < 0 ∧ min f̃(tmax) ≥ 0

then, f̃ triggers a total zero-crossing event.

Proof Consider f̃ , tmin and tmax as defined in Lemma 6.
Consider a continuous function f from [t0, t1] to R such that

∀t ∈ [t0, t1], f(t) ∈ f̃(t)

By hypothesis, we have

f(tmin) < 0 ∧ f(tmax) ≥ 0

Due to the Bolzano’s theorem, there exists a time tz in [tmin, tmax] such that f(tz) = 0.
So, f̃ triggers a total zero-crossing event.

It allows to detect total zero-crossing events if the domains of the continuous set-
valued functions are entirely known. However, the continuous set-valued functions are
often computed on bounded domains. So, a microstep (from (t, n) to (t, n + 1)) of a
set-valued stream does not necessarily imply a jump of a value: the microstep may
simply be enforced by the continuous solver. In that case, considering the continuous
set-valued functions independently is not sufficient to detect total zero-crossing events.
It is illustrated in Example 23.
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Example 23 (Set-valued stream with fixed time-steps)
Consider a set-valued stream x̃ =

([
tn, tn

]
, dtn, f̃n

)
n∈N such that for all n ∈ J0, 3K,

tn = tn = n, dtn = 1 and for all δ ∈ [0, dtn], f̃n(δ) = [δ − 4, δ − 2].

−4
−3
−2
−1

0
1
2

t

x

0 1 2 3 4

We notice that f̃2 and f̃3 trigger partial zero-crossing events on [0, 1], which corresponds
to the time interval [2, 3] for f̃2 and to the time interval [3, 4] for f̃3. However, if the
model does not introduce any jumps at time t = 3, then all the concrete streams that
belong to x̃ are continuous at time t = 3. So, f̃3 should trigger a total zero-crossing
event, because all concrete signals are continuous, they are negative at some time in
the past and they are all non-negative at time t = 4.

To detect total zero-crossing events even in the case of continuous set-valued functions
whose image of the initial time is not entirely negative, we add to each zero-crossing
function a boolean value that is true only if the associated set-valued stream was entirely
negative since the last jump. Because this information is only used by the simulation
engine and not by the models, the handling of such boolean values is left to the simulation
engine: it creates an indexed collection similar to zin (cf. Subsection 5.3.2), i.e. an array
of boolean values.

We define such an array a of boolean values with the same size as zin and zout. For
all indices i, a.(i) (i-th value in the array a) is set to true if the maximum value of
zout.(i) is negative. We only check it at the first instant of each continuous set-valued
function of the set-valued streams that encode the zero-crossing functions, because it
is impossible to check at every time and the last instant is either the first instant of
the following continuous set-valued function or it is not relevant because of a total zero-
crossing event. At every discrete behavior, the array a is filled with false values, because
a jump may introduce discontinuities in the signals.

Remark 13 The values of a are reset after every discrete transition, because we
assume that we only know the interface of the models. Knowing the structure of the
models (e.g. the tree of nodes) may allow to only reset the values of a that correspond
to zero-crossing signals defined in subtrees of the nodes triggering zero-crossing events.
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Example 24
Consider the Example 23. We assume that x is the unique signal of the model that
can trigger a zero-crossing event. So, the arrays zout, zin and a have the size equal to
one with a unique possible index equal to zero.

At time t = 0, the values in the set-valued stream x̃ are all negative. So, a.(0)
is set to true. At time t = 1, all the values are still negative, but a.(0) is already
equal to true. At time t = 2, the maximum value in x̃ is equal to zero, so a.(0) keeps
its previous value (true in this example). A partial zero-crossing event is detected
over the time interval [2, 3], because there exist no instants at which the values are all
non-negative. At time t = 3, a.(0) keeps its previous value, because the maximum
value of x̃ is positive. Finally, a total zero-crossing event is detected over the time
interval [3, 4], because the minimum value at t = 4 is equal to zero (all the values
are then non-negative) and because a.(0) is true, which denotes that all the concrete
signals were negative at some instants in the past.
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Figure 5.2 – All possible cases of set-valued zero-crossing of a signal z during a single
integration step around a zero-crossing event

All the different cases of set-valued zero-crossing events are represented in Figure 5.2.
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Notice that non-negative sets should be considered as positive to match the cases pre-
sented in the figure.

5.3.4 Algorithm for reachability analysis

We implemented an algorithm inspired by the classic reachability analysis algorithm
presented in Subsection 2.4.4.1. It iterates over a collection of states of the simulation
(the time, the state of the model and an array a of boolean values, cf. Subsection 5.3.3)
until it becomes empty. However, it does not check whether the future of a state has
already been explored or not: if it reaches a state twice, then it computes its evolution
twice. Moreover, our implementation only computes reachability analysis over a bounded
time interval whose expected final time is given as parameter of the simulation engine.

First, we have to instantiate the model with the chosen representation of sets. In
our case, we decided to use Taylor models as representation of sets, which has been
implemented as a module TM with a compatible signature. The instantiated module is
named NodeSet.

Then, we have to instantiate the initial state of the simulation. We start creating
three arrays of sets (each of type TM.t array), two of size NodeSet.csize for the con-
tinuous variables and their derivatives and one of size NodeSet.zsize for the values of
the zero-crossing signals. We also create an array of size NodeSet.zsize with boolean
elements for the zero-crossing events. With these four arrays, we can call to function
alloc:

let alloc_state () =
let carray = Array.make NodeSet .csize TM.zero in
let darray = Array.make NodeSet .csize TM.zero in
let zoarray = Array.make NodeSet .zsize TM.zero in
let ziarray = Array.make NodeSet .zsize false in
NodeSet .alloc 0 carray darray 0 zoarray ziarray

We thereby obtain an object of type NodeSet.state that can be initialized calling the
function NodeSet.init and we can create the initial state of the simulation (ts0 for
timed-state) as a record. We define by convention the initial time of the simulation to
be equal to zero. We also create an array of boolean values, all set to false, in order to
encode the array a.

let s0 = alloc_state () in
let () = NodeSet .init s0 in
let ts0 = {

time = TM.zero;
state = s0;
az = Array.make NodeSet .zsize false ;

} in

Finally, the program iterates over a collection of states of the simulation until it
becomes empty in order to compute and to return a list of set-valued functions that
return over-approximations of the reachable states depending on the time (lists of records
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of type dense in the code that gather an initial set-valued time, a concrete maximal
elapsed time dt of type float and a function from [0,dt] to the set of set-valued states).
Such a collection is called worklist and it is implemented in a module WK. If the worklist
is empty, then the program simply returns the list of set-valued functions. Otherwise, it
removes an element from the worklist. If its time is bigger than the expected final one, the
element is dropped. Otherwise, the program computes its continuous evolution, calling
the continuous solver csolve, and computes all possible discrete evolutions, depending on
the zero-crossing activations returned by the detector of events zsolve. The continuous
evolution is appended to the resulting list of set-valued functions and all the new states
after discrete evolutions are appended to the worklist for the following iterations.

Instead of printing the resulting collection of set-valued functions, we print a box over-
approximation of the continuous evolution at each iteration into the standard output that
we convert to the CSV format and plot the result using a script written in Python3.

5.3.5 Continuous evolutions

The solver of continuous dynamics is implemented using Taylor models (cf. Subsec-
tion 2.4.2). First, it computes a polynomial expansion of the dynamics calling the Pi-
card operator associated to the system of ordinary differential equations until it reaches
a fixed point. At that point, it manipulates an array of Taylor models whose polynomial
parts define a fixed-point of the Picard operator. Then, it enlarges the remainders until
they are contracted by the Picard operator.

This solver requires a function that returns the derivatives from a value of the con-
tinuous variables and the time (cf. Section 5.1). Due to the interface of the intermediate
model, we have to introduce an extra function that updates the state with the values of
the continuous variables, computes the derivatives and returns the array of their values:

let deriv s (c,t) =
let () = NodeSet . set_carray s c in
let () = NodeSet .deriv s in
NodeSet . get_darray s

Reciprocally, the continuous solver returns a function that maps (set-valued) times to
arrays of (set-valued) continuous variables and we introduce another function that con-
verts the result as a copy of the state in which the values of the continuous variables
have been updated with the new values:

let csolve s c h =
CSolver . csolve (deriv s) c TM.zero h

So, instead of calling the continuous solver, the top-level algorithm calls a function
integrate that takes as input the state of the model and a duration and returns a
function that maps a set-valued time to a set-valued state:
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let integrate s h =
let c = NodeSet . get_carray s in
let denseC = csolve s c h in
let sRef = NodeSet .copy s in
fun t ->
let s = NodeSet .copy sRef in
let carray = denseC t in
let () = NodeSet . set_carray s carray in
s

5.3.6 Discrete evolutions

The detector of events is implemented using dichotomy on the time interval in order
to detect the first time and the last one whose image contains zero, for each zero-
crossing signal. It returns a list of pairs, whose first element is a list of the indices of the
activated zero-crossings and the second one a time interval on which those zero-crossings
are activated.

This implementation does not match the interface of ˜zsolve presented in Section 5.1.3.
So, another function computes an over-approximation of the values of the continuous
variables over the time intervals returned by the detector of events, checks whether at
least one of the zero-crossing is complete (cf. Subsection 5.3.3) and, before which the
array zin is set to appropriate values, computes the image of the state after a discrete
step (function update of the model). If only one zero-crossing event is activated, then
the corresponding component of the array zin is set to true. If multiple zero-crossing
events are activated, then a discrete step is computed for each possible subset of the
activated events.

Moreover, this function updates the values of the array a before any call to the
detector of events as presented in Subsection 5.3.3. After every discrete step, the array a
of boolean values is reset to an array of false values, because a discrete step may a priori
introduce discontinuities in a zero-crossing signal. Finally, if no zero-crossing event is
complete, then the set-valued state at the last instant of the approximation is appended
to the following possible states with its current array a of boolean values.

Such a function is called handle_zeroc in the code and it takes as argument the
current array a of boolean values, the initial set-valued time t0, the set-valued approx-
imation of the continuous dynamics dense and the duration h (defining the domain of
dense as [0, h]). It returns a list of approximations with their associated domains (in our
current implementation, it is reduced to a singleton of the function dense on the interval
[0, h] with initial uncertain time t0) and a list of all possible states of the simulation after
the discrete behaviors, possibly containing ones that did not activate any zero-crossing
events (at the last instant of the continuous dynamics).

5.3.7 Application to an example

We only test our implementation of such a set-valued computation on a small model of
a counter in parallel with a bouncing ball, because we have not yet modified the Zélus
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compiler to produce intermediate models parameterized by a representation of sets. The
intermediate model is implemented following the structure of the initial model, i.e. a
main node contains an instance of the counter node and an instance of the bouncing
ball node. We implement every node of Zélus as a functor in OCaml as presented in
Subsection 5.3.2.

The first node of our model is the bouncing ball. While it can be implemented in
Zélus as a hybrid automaton with a unique mode and a unique transition activated
when the height of the ball crosses zero, this results in a chattering effect during the set-
valued computation: if the transition is activated, then it is possibly still activated after
the discrete step, because the height is not modified and stays in the neighborhood of
zero. So, we decide to implement the bouncing ball as an automaton with two modes: a
mode Up in which the velocity is non-negative and a mode Down in which it is non-positive.
The mode is registered in a field mode of the state. In both modes, the derivative of the
height h is equal to the velocity v and the derivative of the velocity is equal to -9.81,
i.e. an approximation of the acceleration due to gravity on the surface of the Earth. In
order to trigger the switching between the two modes, we need two zero-crossing signals:
one equal to -.h to detect bounces from Down to Up and another equal to -.v to detect
switching from Up to Down. To reduce the number of false detections of zero-crossing
events, those signals are set to (arbitrary) strictly negative values in the modes in which
they are not relevant: the first signal is equal to -.h in the mode Down and to -42. in
the mode Up, while the second is equal to -.v in the mode Up and to -42. in the mode
Down. The discrete steps switch the value of mode and, in case of a switching from Down
to Up, the value of v is updated to 0.8 *. v. It could be written in Zélus as follow:

let hybrid ball(h0 ,v0) = (h,v) where
rec zh = up(-.h)
and zv = up(-.v)
and automaton

| Down(h0 ,v0) -> do
der h = v init h0

and der v = -1. init v0
until zh then Up(h, -0.8 *. v)

| Up(h0 ,v0) -> do
der h = v init h0

and der v = -1. init v0
until zv then Down(h, v)

init Down(h0 ,v0)

The second node is a counter incremented every second, i.e. a timer. It is composed
of two continuous variables (t for the time and dt for the elapsed time since the previ-
ous update) and a discrete one (count of type int for counting the number of elapsed
seconds). All the derivatives are equal to one. A unique zero-crossing signal is equal
to dt-.1. and the associated discrete step resets dt to zero and increments the value of
count. I could be written in Zélus as follow:
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let hybrid timer () = (t,dt ,count) where
rec der t = 1. init 0.
and der dt = 1. init 0. reset tic -> 0.
and tic = up(dt -. 1.)
and init count = 0
and present (tic) -> do count = (last count) + 1 done

A third node simply gathers the two others to define the parallel composition. Its
state is only composed of the instantiations of the states of the two other nodes. Its
functions call the corresponding functions of the two other nodes with correct offsets for
the modifications of the global arrays carray, darray, zout and zin. It could be written
in Zélus as follow:

let hybrid simu () = (t,dt ,count ,h,v) where
rec h,v = ball (20. ,0.)
and t,dt ,count = timer ()

Executing our prototype on this example with a final time tEnd = 10. and a time-
step dt = 0.1 for the integration, and after plotting the result using our Python3 script,
we obtain the Figure 5.3. In this model, no uncertainties are introduced in the initial
state, they only occur during the integration of differential equations and the detection
of zero-crossing events. We notice that multiple set-valued states coexist simultaneously,
for example at the time 9 for which count is equal to 8 or 9 during a small duration.
We also notice that our algorithm is able to effectively eliminate non-relevant dynamics
via the array a of boolean values, because dt does not reach the value 2 and h does not
reach the value −2 on the time interval [0, 10]. However, multiple set-valued trajectories
diverge from a time approximatively equal to 10, as illustrated by the value of h that
reaches strictly negative values.

While our prototype could be highly improved, it already illustrates that we can
simply overload the operators on the continuous variables (i.e. of type float) in a Zélus
model that does not contain non-continuous functions in order to compute reachability
analysis on a bounded time interval. It also illustrates that the handling of uncertainties
on the zero-crossing events can be achieve without introducing extra constructions to the
Zélus language but with an external array of boolean values (cf. Subsection 5.3.3).

131



0 2 4 6 8 10
0

10
t

0 2 4 6 8 10
0

1
dt

0 2 4 6 8 10
0

10
count

0 2 4 6 8 10

0
20

h

0 2 4 6 8 10
20
0

v

Figure 5.3 – Over-approximation with respect to the time computed by our prototype
on an intermediate model similar to the ones produced by the Zélus compiler
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Chapter 6

Conclusion

6.1 Summary

In the case of initial value problems in the presence of Lebesgue-integrable uncertainties,
we proved that a set-valued function that is contracted by a set-valued Picard operator is
an over-approximation of the sets of reachable states (cf. Section 3.2). We also proposed
an algorithm based on decomposition into a difference of non-negative functions of the
right-hand sides of ordinary differential equations (cf. Section 3.3) in order to compute
tighter over-approximations of the set of reachable states in the case of separable systems,
a generalization of the input-affine systems. We implemented a prototype and we showed
that our prototype indeed produces tighter over-approximation than some state-of-the-
art tools on some examples (cf. Chapter 4).

In the case of switched systems, we proposed an algorithm to compute an over-
approximation of the set of reachable states in the presence of possible Zeno behaviors (cf.
Section 3.4). We illustrated it on an example, but we did not provide any implementation
of it. So, we cannot currently evaluate its efficiency with respect to state-of-the-art tools.
Its direct application to hybrid automata failed as presented in the following section.

Finally, we presented our current reflection with Marc Pouzet about the integra-
tion of set-valued reachability analysis into tools designed to simulate hybrid models.
We presented the difficulties introduced by the set-valued computations. We proposed
interfaces between the models and the different solvers with only slight modifications of
the concrete interfaces, i.e. the ones designed for classic simulations. We also proposed
a method based on parametrization of intermediate models to easily convert concrete
models into set-valued ones. We implemented a prototype to illustrate this method on
an example using functors in OCaml. We want to apply it to models written in Zélus
that are compiled into intermediate models in OCaml, but it requires to adapt the gen-
erated code to allow parametrization: the intermediate models should be parameterized
by a representation of continuous values (e.g. intervals or Taylor models) in order to
redefine the associated operators. Such an implementation is left for future work.
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6.2 Difficulties about hybrid automata
In Chapter 3, we presented how to compute over-approximations of sets of reachable
states of switched systems in the presence of possible Zeno behaviors (cf. Subsec-
tion 2.1.2).

In the case of hybrid automata, we no large assume that the jumps are identity func-
tions and that the interiors of the sets defined by the invariants are disjoint. Moreover,
even if a set of states activates a unique guard, the successive jumps at the same real
time may result in a Zeno behavior.

So, we have to detect the set of states that is a fixed-point of the compositions of
jumps of the successively activated transitions. The sets of states that do not contain
such a fixed-point produce no Zeno behaviors of the first kind, i.e. an infinite number
of transitions in zero elapsed time (cf. Subsection 2.1.2). On the contrary, if a set of
states activates an infinite sequence of transitions in zero elapsed time, then we want to
interpret its differential equations in the sense of Filippov. It is illustrated in Example 25.

Example 25 (Simple jump with bang-bang controller)
Consider a bang-bang controller similar to the one presented in Example 3 but with
an artificial jump of the position:

Below
ẋ = 1
x ≤ 2

x ∈ [0, 0.1]
Above
ẋ = −1
x ≥ 3

x ≥ 2 ∧ x′ = x+ 1

x ≤ 3 ∧ x′ = x− 1

Considering the initial time t = 0, the guard is activated by the state x = 2 at
some time t ∈ [1.9, 2] in the mode Below. Its image through the activated transition
is x = 3 with the same set of time t ∈ [1.9, 2] in the mode Above. At that point, the
other guard is activated and results in the state x = 2 in the mode Below, which is
the first state activating a guard. So, we detected a fixed-point set at time t ∈ [1.9, 2]
composed of x = 2 in the mode Below and x = 3 in the mode Above. We could at
that point apply on both triples ([1.9, 2],Below, [2]) and ([1.9, 2],Above, [3]) the same
method as in the case of switched systems using a differential inclusion as the convex
hull of the dynamics associated to the modes Below and Above. This would introduce
some chattering, but the resulting set-valued functions would contain the admissible
trajectories in the sense of Filippov, i.e. for all time, x = 2 in Below or x = 3 in
Above.

However, the second kind of Zeno behaviors, i.e. an infinite number of transitions in
a bounded time interval that are not reduced to a single instant (cf. Subsection 2.1.2),
cannot be handled by simply detecting fixed-points, as illustrated in Example 26.
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Example 26 (Reachability analysis of a bouncing ball)
Consider the bouncing ball model presented in Example 4. We introduce some uncer-
tainties on the initial condition:

Fall
ḣ = v
v̇ = −10
h ≥ 0

h ∈ [15, 20] ∧ v = 0 h ≤ 0 ∧ v ≤ 0
v′ = −0.5v

Considering the initial time t = 0, the guard is activated by a state x = 0 ∧ v ∈[
−20,−10

√
3
]

at some time t ∈
[√

3, 2
]
. Its image through the activated transition is

then x = 0 ∧v ∈
[
5
√

3, 10
]
, which does not activate any guards. In that case, the base

algorithm presented in Subsection 3.4.1 is able to compute a valid over-approximation
of the set of admissible trajectories.

However, after some iterations and due to the over-approximation of all the oper-
ators, especially the function integrate, we may obtain some set x = 0 ∧ v ∈

[
vk, vk

]
that activates the guard and with 0 ∈

[
vk, vk

]
. Its image through the activated tran-

sition is then x = 0 ∧ v ∈
[
−0.5vk,−0.5vk

]
, which also activates the guard. So, we

detect a potential Zeno point. We can try to compute the smallest set of velocities[
v∞, v∞

]
such that

[
v∞, v∞

]
⊂
[
vk, vk

]
and that is stable through the transition, i.e.[

−0.5v∞,−0.5v∞
]

⊂
[
v∞, v∞

]
. Such a set is

[
v∞, v∞

]
= {0}. So, we identify a Zeno

point. Unfortunately, the convex hull of the relevant dynamics is equal to the single
dynamics in the mode Fall. So, an interpretation in the sense of Filippov from the
state x = 0 ∧ v = 0 would still result in a set-valued function that becomes strictly
negative. This proves that the method presented in the previous Section 3.4 is not
adapted to such a hybrid automaton.

A method to compute over-approximations of the reachable set of such systems ex-
ists [95, 94], but it cannot terminate if the time is part of the system or if the system
depends on time-varying inputs, because the time cannot reach a fixed-point: its deriva-
tive is always equal to one.

At that point of our work, we do not have any satisfactory solution to handle hybrid
automata without restricting our study to a subclass of models, e.g. assuming that all
jumps are identity functions as in the case of switched systems. The study of over-
approximations of hybrid automata in the presence of possible Zeno behaviors with
time-varying uncertainties in the guard conditions is left for a future work.

6.3 Possible extensions

The work presented in this thesis may be extended in different ways.
First, the reflection about the inclusion of reachability analysis into tools for sim-

ulations of models of hybrid systems can be continued in order to integrate such a
functionality into the Zélus language. It requires a modification of the compiler to gen-
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erate parameterized intermediate models and a definition of uncertainties in the Zélus
language, e.g. introducing new keywords or directives. Moreover, such reachability
analyses may be used to check dynamically some assertions written in the models.

Second, we could improve the proposed algorithm to compute over-approximations
of the sets of reachable states of separable systems in order to keep more dependencies
between the variables. Indeed, our current method handles every component of the
states independently. In case of huge uncertainties, i.e. wide range of the time-varying
uncertainties, it seems to result in over-approximations as boxes (cf. Figure 4.3). In order
to test on larger systems, the prototype has to be improved, possibly using existing tools
for the computation of the dynamics with only constant uncertainties and experimenting
different representations of sets.

Finally, as presented in the Section 6.2, extra work is required in order to adapt our
method for hybrid automata with Lebesgue-integrable uncertainties and guards depend-
ing on the time.
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Titre : Analyse d’atteignabilité avec incertitudes variables dans le temps et intégrables au sens de Lebesgue

Mots clés : systèmes cyberphysiques, analyse d’atteignabilité, modèles de Taylor, Lebesgue, Zélus

Résumé : L’analyse d’atteignabilité, technique calcu-
lant l’ensemble des états atteignables d’un système,
permet de prouver des propriétés de sûreté. Ce calcul
exact étant impossible dans le cas général, nous cal-
culons des sur-approximations, i.e. ensembles garan-
tis de contenir tous les états atteignables. Ces calculs
sont plus complexes à cause d’incertitudes variant dans
le temps qui permettent de modéliser l’environnement
dans lequel évolue le système étudié. Différentes hy-
pothèses sont faites sur la nature de ces incertitudes.
Dans ce travail, nous nous intéressons au cas général
d’incertitudes intégrables au sens de Lebesgue. Cer-
taines méthodes les prennent en compte mais elles
produisent généralement de larges sur-approximations
lorsque les ensembles de valeurs des incertitudes sont
grands.
Nous prouvons que, sous certaines hypothèses, des
fonctions ensemblistes contractées par une version en-
sembliste de l’opérateur de Picard associé à un pro-
blème de Cauchy sont des sur-approximations des en-
sembles d’états atteignables en fonction du temps. Cela

prouve en particulier que les intervalles contractés par
un tel opérateur sont des sur-approximations valides
dans le cas général d’incertitudes intégrables au sens
de Lebesgue.
Nous proposons ensuite un nouvel algorithme basé sur
une décomposition des équations différentielles sous
forme de différences de fonctions positives dans le
cas des systèmes que nous nommons séparables par
rapport aux incertitudes variant dans le temps, une
généralisation des systèmes affines par rapport aux
contrôles. Un prototype illustre la précision de cet algo-
rithme par rapport à ceux implémentés dans les outils
classiques de l’état de l’art.
Enfin, nous présentons les implications de l’adapta-
tion des outils de simulations de systèmes hybrides
pour effectuer des analyses d’atteignabilité. Nous nous
concentrons sur le langage Zélus pour proposer une pa-
ramétrisation des modèles intermédiaires générés par
son compilateur. La faisabilité de cette méthode est
illustrée par un prototype exécuté sur un exemple.

Title : Reachability analysis with Lebesgue-integrable time-varying uncertainties

Keywords : cyberphysical systems, reachability analysis, Taylor models, Lebesgue, Zélus

Abstract : Reachability analysis, technique compu-
ting the set of reachable states of a system, allows
to prove safety properties. The exact computation
being impossible in the general case, we compute over-
approximations, i.e. sets guaranteed to contain all the
reachable states. These computations are more com-
plex due to time-varying uncertainties that allow to
model the environment in which the studied system
evolves. Different hypotheses are made about these un-
certainties. In this work, we focus on the general case
of uncertainties that are integrable in the sense of Le-
besgue. Some methods handle such uncertainties, but
they often produce huge over-approximations when the
sets of values of the uncertainties are large.
We prove, under some assumptions, that set-valued
functions contracted by a set-valued version of the
Picard’s operator associated to an initial value pro-
blem are over-approximations of the set of reachable

states over time. In particular, it proves that in-
tervals contracted by such an operator are valid
over-approximations in the general case of Lebesgue-
integrable uncertainties.
Then, we propose an algorithm based on a decomposi-
tion of the differential equations as differences of non-
negative functions in the case of systems that we called
separable with respect to uncertainties, a generaliza-
tion of control-affine systems. A prototype illustrates
the accuracy of the algorithm compared to the ones
implemented in the classical state-of-the-art tools.
Finally, we present the implications of the adaptations
of tools for the simulation of hybrid systems to allow
the computation of reachability analyses. We focus on
the Zélus language to propose a parametrization of the
intermediate models that are generated by the compi-
ler. The feasibility of this method is illustrated by a
prototype on an example.
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