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ABSTRACT (ENGLISH)

In pursuance of enhancing knowledge on biogas and biomethane’s trace compounds to help guarantee
their sustainable integration in today’s European energy mix, a field sampling set-up enabling direct in
situ preconcentration of non-metallic trace compounds in such gas samples at their pipe working
pressure (up to 200 bar,) was developed. Non-metallic trace compounds targeted in this work included
alkanes (linear, cyclic, polycyclic), aromatics, terpenes, alkenes, halogenated organic species, oxygenated
organic species (alcohols, aldehydes, esters, furans and ethers, ketones), siloxanes, organic and inorganic
Sulphur-compounds.

Firstly, state-of-the-art gas sampling and preconcentration techniques for the determination of trace
compounds in gaseous matrices were reviewed. Based on this review, preconcentration was chosen to
be performed on self-assembled multibed adsorbent tubes (MAT). The preconcentration system was
elaborated and optimized in the laboratory: convenient commercial adsorbents were selected;
procedures for the assembly and conditioning of new MAT were established; four MAT configurations
were tested on their efficiency in adsorbing and releasing targeted trace compounds using certified
synthetic gas mixtures containing targeted species at trace concentrations (1 ppmme) in CHs or N»
matrices. Analytes preconcentrated on MAT were recovered for analysis by thermal desorption (TD) of
the tubes using a new TD prototype followed by gas chromatography (GC) hyphenated with mass
spectrometry (MS) (TD-GC-MS).

Secondly, the analytical method, and in particular the new TD prototype, was validated. The
chromatographic resolution power of the new TD prototype was proved to be higher than that obtained
from other well established preconcentration or GC-injection methods such as solid phase
microextraction or direct headspace gas injection. Besides, GC-MS parameters were optimized to detect
the broad range of trace compounds potentially found in biogas and biomethane.

Thirdly, the use of a novel high-pressure tube sampling (HPTS) prototype was evaluated for the
circulation of pressurized gases (up to 200 bar,) through MAT for the direct high-pressure
preconcentration of trace compounds from such gases. The HPTS was first validated in the laboratory
using pressurized certified synthetic gas mixtures, and then used on field to sample compressed
biomethane at a natural gas grid injection station at 40 bar..

Subsequently, the field sampling chain was set-up and 6 field sampling campaigns were conducted where
6 different streams of landfill gas, biogas and biomethane were collected at a landfill plant and two
anaerobic digestion plants treating diverse feedstocks. Trace compounds were qualitatively determined
in all gas samples via the developed TD-GC-MS method. In a single sampling run and using limited gas
volumes ranging 0.5 - 2 Ly, a wide range of trace compounds in a variety of chemical families (alcohols,
aldehydes, alkenes, aromatics, alkanes (linear, cyclic and polycyclic), esters, furans and ethers,
halogenated species, ketones, Sulphur-compounds, siloxanes and terpenes) were identified. Variations in
trace compounds composition were observed in the different gases sampled and potential correlations
between feedstocks nature, implemented gas treatment processes and trace compounds determined
were discussed. In particular, the substantial generation of the mono-terpene p-cymene and of other
terpenes was evidenced for anaerobic digestion plants treating principally food-wastes.

It is believed the shortened and high-pressure-proof field preconcentration procedure developed in this
work can contribute facilitating field sampling operations for the determination of trace compounds in
complex gas matrices such as biogas and biomethane.



RESUME (FRANCAIS)

Afin d’accrofitre les connaissances sur les composés traces présents dans les biogaz et biométhane et de
garantir l'intégration durable de ces gaz dans le mix énergétique européen, une chaine analytique
compléte a été développée dont un élément central est un dispositif d’échantillonnage de terrain
permettant la préconcentration directe in situ des composés traces en prélevant ces gaz a leur pression
actuelle (< 200 bar,). Les composés traces ciblés dans ce travail incluent : alcanes (linéaires, cycliques,
polycycliques), aromatiques, terpenes, alcenes, especes organiques halogénées, especes organiques
oxygénées (alcools, aldéhydes, esters, éthers, cétones), siloxanes, composés soufrés organiques et
inorganiques.

L’état de I'art des techniques de prélévement de gaz et de préconcentration pour la détermination de
composés traces dans des matrices gazeuses a premiérement été réalisé. Sur base de cette étude, il fut
choisi d’effectuer la préconcentration sur des tubes d’adsorbants multi-lits (TAM) assemblés
manuellement. Le systeme de préconcentration fut élaboré et optimisé au laboratoire en sélectionnant
des adsorbants commerciaux; les procédures d’assemblage et de conditionnement des nouveaux TAM
furent établies; l'efficacité de quatre configurations de TAM a adsorber et libérer des composés traces
ciblés fut testée en utilisant des mélanges de gaz synthétiques certifiés contenant des composés a I'état
de traces (1 ppmmol) dans une matrice N, ou CHs. Les analytes préconcentrés sur les TAM sont récupérés
par désorption thermique (DT) des tubes au moyen d’'un nouveau prototype de DT pour étre analysés
par chromatographie en phase gazeuse (CG) couplée a la spectrométrie de masse (SM).

Deuxiémement, la méthode analytique et le prototype de DT ont été validés. Il fut démontré que le
pouvoir résolutif du prototype de DT était plus élevé que celui obtenu par d’autres techniques de
préconcentration ou d’autres méthodes d’injection en CG, telles que la microextraction en phase solide
ou l'injection directe de gaz. Par ailleurs, les parametres de CG-SM furent optimisés pour détecter le large
spectre de composés traces potentiellement présents dans le biogaz et biométhane.

Troisiemement, un prototype haute-pression innovant fut évalué, permettant le prélevement de gaz
pressurisés (< 200 bar,) a travers les TAM pour la préconcentration directe et sous haute-pression des
composés traces présents dans ces gaz. Ce prototype fut validé au laboratoire au moyen de mélanges de
gaz synthétiques pressurisés avant d’étre utilisé sur le terrain pour prélever du biométhane a 40 bar, au
niveau d’'un poste d’injection dans le réseau de gaz naturel.

Ensuite, la chaine d’échantillonnage fut assemblée pour mener 6 campagnes de prélevement durant
lesquelles 6 flux différents de biogaz et biométhane furent prélevés sur une installation de stockage de
déchets non dangereux et deux sites de méthanisation valorisant divers intrants. Les composés traces de
ces gaz furent qualitativement déterminés via la méthode de DT-CG-SM élaborée. En un unique
prélevement et utilisant des volumes de gaz réduits (0.5 - 2 L), un large spectre de composés traces issus
de diverses familles chimiques (alcools, aldéhydes, alcénes, aromatiques, alcanes, esters, éthers,
halogénés, cétones, soufrés, siloxanes et terpenes) furent identifiés. Des variations de composition en
composés traces furent observées dans les différents gaz et les corrélations potentielles entre intrants,
procédés de traitement des gaz et composés traces identifiés, furent discutées. La génération du mono-
terpéene p-cymene et d’autres terpénes dans les méthaniseurs digérant surtout des résidus alimentaires,
a notamment été mise en évidence.

La procédure de préconcentration haute-pression et in situ développée dans ce travail peut certainement
contribuer a faciliter les opérations de prélévements de gaz sur le terrain pour déterminer les composés
traces dans des matrices gazeuses telles que le biogaz et le biométhane.
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ABBREVIATIONS

AD Anaerobic digestion

AES Atomic emission spectrometry

b.p. Boiling point

BTEX Benzene; Toluene; Ethylbenzene; o-, m-, p-Xylene
BV Breakthrough volume

CAR Carboxen

CH4 Methane

CHP Combined heat and power

CO: Carbon dioxide

COz2-eq Carbon dioxide equivalent

CpX Carbopack™X

CT Cryotrapping

CX Carboxen®1000

D3 Hexamethylcyclotrisiloxane

D4 Octamethylcyclotetrasiloxane

D5 Decamethylcyclopentasiloxane

D6 Dodecamethylcyclohexasiloxane
DMDS Dimethyldisulfide ((CH3)2S2)

DMS Dimethylsulfide ((CHz)2S)

E.U. European Union

ECD Electron capture detector

FID Flame ionization detector

GC Gas chromatography

GHG Greenhouse gas(es)

GWh Giga (10°) watt hours

HPLC High pressure liquid chromatography
HPTS High-pressure tube sampling prototype
HS Headspace sampler

HVOC Halogenated volatile organic compound
ICP Inductively coupled plasma

ID Internal diameter

L Length



L2 Hexamethyldisiloxane

L3 Octamethyltrisiloxane

L4 Decamethyltetrasiloxane

L5 Dodecamethylpentasiloxane

LCV Lower calorific value

LOD Limit of detection

MAT Multibed adsorbent tube

MF Molecular formula

MS Mass spectrometry

MSW Municipal solid waste

MWh Mega (10°) watt hours

N2 Dinitrogen gas

nCx-TD New thermal desorber prototype by nCx Instrumentation
Nm3 Normal cubic meter: measured at 0°C and 1013 mbar (1 atm)
0D Outer diameter

OES Optical emission spectrometry

PBR Photobioreactor

PDMS Polydimethylsiloxane

PRS Pressure regulating system

PTFE Polytetrafluoroethylene

RA Relative abundance

RAF Per-family relative abundance

RAg Global relative abundance

RH Relative humidity

SGM Synthetic gas mixture

Sm3 Standard cubic meter: measured at 15°C and 1013 mbar (1 atm)
SNG Synthetic natural Gas

SPME Solid phase microextraction

SSv Safe sampling volume

TA Tenax®TA

TA15 Self-assembled 15 mg Tenax TA adsorbent tube
TC Trace compound(s)

TD Thermal desorption

TD-GC-MS  Thermodesorption - gas chromatography - mass spectrometry



THT
TIC

T]
TMA
TWh
VMS
voC
VSC
WWTP

Tetrahydrothiophene

Total ion current chromatogram
Tera joule (1012 Joules)
Trimethylarsine

Tera (1012) watt hours

Volatile methyl siloxane

Volatile organic compound(s)
Volatile Sulphur compound

Wastewater treatment plant
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ABBREVIATIONS PART 1

CH4 Methane

CO: Carbon dioxide

COz2-eq Carbon dioxide equivalent

E.U. European Union

GC Gas chromatography

GWh Giga (10°) watt hours

MS Mass spectrometry

MWh Mega (10°) watt hours

Nm3 Normal cubic meter: measured at 0°C and 1013 mbar (1 atm)
Sm3 Standard cubic meter: measured at 15°C and 1013 mbar (1 atm)
TC Trace compound(s)

TD Thermal desorption

T] Tera joule (1012 Joules)

TWh Tera (1012) watt hours

26



L

CONTEXT

I.1.Energy transition and circular economy

Driven by its tremendous eagerness for economic growth and social prosperity, mankind has
been the only living being capable of irremediably spoiling its life environment by over-
consuming natural resources, transforming them into long-lasting, difficultly degradable
materials, as such generating permanent and potentially dangerous waste.

Climate change is a daily ominous happening. Environmental concerns and the concepts of
energy transition and circular economy benefit from a rising worldwide attention the last years
in view of the increasingly threatening depletion of fossil and finite energy sources and of the
consequences of their use on the environment. If our society is doomed to continuously
procreate, progress in medicine and technologies, produce and build, other material and energy
sources than mineral ores, primary resources and fossil fuels must be thought of to sustain the
long term.

In 2020, the world total energy consumption (oil, natural gas, coal, nuclear energy,
hydroelectricity, renewable energies) was 557.10 Exajoules with renewable energies (solar
thermal and photovoltaic, geothermal, wind and biomass energy) accounting for 5.7% of this
global energy consumption (against 5.0 % in 2019) while oil, natural gas and coal respectively
accounted for 31.3%, 24.7% and 27.2% [1]. After oil and coal, natural gas is the third most
exploited energy source. In spite of its greener label owing to the lesser amounts of greenhouse
gases and other air polluting compounds (SO2, NOy) or particles emitted during its combustion
per joule of energy produced compared to the combustion of oil and coal [2-9], natural gas is
also a finite fossil fuel and therefore not a sustainable energy source. The world proved reserves-
to-production ratio of natural gas, indicating known reserves will be exhausted in x years if the
production and consumption rates remain the same as in a given year, keep on decreasing as
they amounted respectively 52.6; 50.9 and 48.8 years at the end of 2017, 2018 and 2020
[1,10,11]. Henceforth, not only reducing global energy consumption but also using alternative
more sustainable energy sources is crucial to sustain the ‘welfare’ of future generations.

The consumption rate of natural gas is nevertheless expected to further strongly increase: the
attractive relatively greener combustion of natural gas brings hope in many large fast growing
cities of emerging economies such as China [4,6,10,12-14], Japan [4,6,7,10], India [4,6,13] and
Brazil [4,8] facing major atmospheric pollution issues [6,7,12,15] due to urbanization, trafficand
old remaining coal or fuel fired power plants [13]. The use of natural gas is especially strongly
being promoted in Asia and India to replace lower grade coal (the so-called “coal-to-gas
switching” [12]) whose combustion not only results in the emission of large volumes of
greenhouse gases and SOz provoking acid rains and ozone layer degradation, but also emits
carbon monoxide and particulate atter (notably PM 2.5: particles having a mean diameter < 2.5
um) causing severe air pollution [6,7,12,16] and associated respiratory diseases. In those fast
growing economies and elsewhere, natural gas is especially going to be more and more used for
electric and thermal power generation, natural gas vehicles, industrial (plastic, pharmaceuticals,
glass manufacturing [6]) and residential (cooking, warming, water heating) purposes [6,12,16].
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To preclude the day fossil natural gas will be depleted, promising, efficient, abundant and
renewable energy alternatives are needed. These alternative fuels are all the more urgently
required that the risk exists that emerging economies get back to coal in the short term in case
natural gas would become unappealing due to price rises, supply failures or deficits [6], with all
the environmental consequences this retrogression would entail. In France, in an attempt to
meet the Paris Agreement target of maximum 1.5°C global temperature rise, the goal is to bring
the share of renewable gases to 7 to 10% of the total gas consumption by 2030 depending on
costs cuts [17,18]. Those renewable gases include [19-21]:

e biomethane from the anaerobic digestion of humid organic wastes,

e synthetic natural gas from the pyrogasification of dry ligneous biomass waste or refuse-
derived fuel,

e synthetic natural gas from the methanation of hydrogen with carbon dioxide or carbon
monoxide where the hydrogen can come from the hydrolysis of water by (green)
electricity surpluses (power-to-gas technology),

e hydrogen gas generated by power-to-gas technology.

The feasibility of the even more optimistic scenario of 100% renewable gas by 2050 in France,
with an estimated gas consumption of 300 TWh by then compared to 460 TWh in 2017, was
evaluated as positive if the production and use of the four mentioned sources of renewable gases
are optimized [19,21].

The optimal substitute for natural gas must have virtually the same composition while being
renewable at a human time scale. Natural gas is composed for ~90 mol% of methane (CH4), ~7
mol% of paraffins and aromatic compounds, ~3 to 15 mol% of inorganic compounds (CO, CO,
H>S, N2, H20, He, Ar and other noble gases) [3,22-24] and trace levels of Hg, As, Zn, Ni, Sn, Cu, V,
Rn [22-25] and organic Sulphur compounds [25]. Biomethane, a pure renewable methane gas
stream resulting from the upgrading of the so-called biogas produced during the microbially
driven anaerobic digestion of humid organic matter in controlled digester reactors, has almost
the same calorific value as fossil methane (natural gas) with CO: levels lower than 3 %y [26-
28]. Yet the trace element composition of biomethane may differ from that of natural gas [22,29]
and varies depending on the organic matter type digested, on the physico-chemical operational
digester parameters (temperature, pH, humidity retention times, process materials...) [30-33]
and on the implemented biogas upgrading process [28,34], this gas has gained interest in the
energy sector as it satisfies the criteria for an ideal natural gas substitute. Provided its stringent
compliance to natural gas quality standards stipulating maximal levels of several chemical
compounds (e.g. total Sulphur <30 mgS-Nm3, H2S and COS <5 mgS-Nm3, COz <2.5 %mo;, CO
<2%mol, 02 <0.001%mo1, Hz <6%mo, NH3 <3 mg-Nm3, Hg <1 pg-Nm3, chlorinated species <1
mg-Nm3, fluorinated species <10 mg-Nm3, siloxanes <5 mg-Nm3) [35], biomethane is intended
for injection in the existing natural gas transport grid [36] to gradually substitute natural gas in
any of its applications and in particular as transport fuel [37-39]. Biogas itself, either produced
in controlled digesters or spontaneously in landfills, is mainly composed of CH4 (250 %vo1) and
CO2 (<50%vo1) [28,30] and has also direct heat and power generation applications by its
combustion in boilers, cookers [16], internal combustion engines [40,41], (solid oxide) fuel cells
[42-44] and combined heat and power generation engines [41,45-47]. Ideally generated out of

28



anthropogenic organic wastes (agricultural residues, manure, food-processing and catering
residues, organic and green municipal and household wastes, sewage sludge), biogas and
biomethane concomitantly fit in the circular economy and energy transition.

Generating biomethane out of organic wastes has economic, social and environmental
advantages [48,49]. Local circular economies are created [20,49] since anaerobic digesters are
fed with organic wastes from various society sectors. Valorizing organic wastes this way
moreover avoids the costs of their otherwise conventional treatment and the side-products of
anaerobic digestion are also valuable (digestates [50], CO2 [51,52]). Next, biomethane is a
flexible energy carrier since it is storable, just as natural gas, allowing to balance the loads in
energy networks between winter and summer [46]. The existing gas transport, distribution and
storage infrastructures can moreover be directly exploited and perpetuated in the long-term
[20,47]. Also, as opposed to wind and solar renewable energies having an intermittent character,
biomethane can be produced continuously due to the uninterrupted supply of organic wastes
and the independency to weather variables [47,53]. Lastly, while most countries depend on
suppliers and imports for oil, natural gas or coal, nationally producing biomethane from organic
wastes, available in all countries in contrast to fossil fuels, strengthens the economic and
energetic self-sufficiency of a country [18,54]. Socially, the growing biogas-biomethane sector is
an opportunity for employment creation, with averagely 3-4 local fixed employs per anaerobic
digestion plant [20,55]. For farmers producing and injecting biomethane in the gas grid and
selling the digestates, such projects signify also additional incomes following returns on
investments [47,56,57]. Biomethane, when produced from organic wastes, is furthermore
ethical in contrary to food- or energy-crop based biofuels [46,58]. Environmentally, biomethane
is greener than natural gas. Natural gas consumption still induces atmospheric pollution (500 t
SO2, 6400 t NOx, 35000 t CO emitted in 2016 in France) and the release of greenhouse gases (73
Mt COz-equivalent in 2016 in France) [18]. On the contrary, when burning a renewable gas like
biomethane, greenhouse gases emissions are approximately compensated by the carbon uptake
required for the synthesis of the gas. If naturally allowed to rot in piles, the huge quantities
fermentable wastes our society produces would emit proportionally large methane volumes to
the atmosphere [16,46,59] while the global warming potential of methane amounts ~25 for a
100 years time span, rendering it 25 times more injurious than CO; regarding global warming
[16,60,61]. Controlling the degradation of such organic wastes in anaerobic digesters avoids
such emissions insofar as the produced methane is collected for energy purposes. Subsequent
combustion of biomethane releases CO; to the atmosphere (0.8 kg CO2/kg biogas [18]) albeit
this contributes to less global warming than the direct emission of methane [16]. Moreover, this
emitted CO: is later again taken up by growing vegetation that eventually will dye, releasing the
metabolized CO2 as methane if used as feedstock in digesters [18]. A Life Cycle Analysis (LCA) of
biomethane reports the production and combustion of biomethane for heat purposes results in
emission savings of 218 kg CO2-eq/MWh compared to natural gas [55,62]. This allowed already
a90 000 tons COz-eq saving in 2017 in France and the biomethane sector should enable a saving
of 1.7 million tons COz-eq in 2023 in France when considering the French objective to inject 8
TWh biomethane in the existing gas grid infrastructures by 2023 [55,62]. Besides, biomethane
used as vehicle fuel emits 80% less greenhouse gases than diesel [55].
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I.2.Biogas and biomethane world trends

Biogas is the third fastest growing renewable electricity source after solar and wind derived
electricity, with an annual growth rate of 12% since 1990 [63]. The global biogas production was
more than quadrupled (from 78 to 364 TWh) between 2000 and 2017 [58]. Throughout the
world, Europe dominates the biogas and biomethane production market followed by China and
the United States of America. While Europe mostly produces biogas in anaerobic digesters from
energy-crops and organic wastes, landfill biogas accounts for 90% of the biogas production in
the USA. In China, household-scale anaerobic digesters have been promoted in rural areas and
account for up to 70% of the current installed biogas capacity [37].

Applications of biogas or biomethane vary across world regions. High-income countries rather
convert biogas into electricity and heat and biomethane into vehicle fuel [16,46,58]. Leading
vehicle fuel consumers are public and private transport companies motivated to curtail their
greenhouse gases emissions while leading biogas-derived heat consumers are local authorities’
public buildings [20]. Low income countries rather use biogas for cooking and lighting, which
advantageously reduces deforestation (wood is the main heat source for cooking and heating)
and improves indoor air quality (wood or coal cooking releases greenhouse gases and fine
particles able to enter lungs, causing respiratory diseases) [16,46].

The most recent and comprehensive review on biogas developments in Europe [46] pinpointed
biogas consumption accounted for averagely 4% of the natural gas consumption in 2015, with
Germany using the most biogas, namely 12% of its yearly natural gas consumption. The
dominant biogas producers in the European Union (EU) were Germany, generating 50% of the
total European biogas production, the United Kingdom, Italy, Czech Republic and France (Table
[.1) [46]. According to the European Biogas Association, 18943 biogas production plants and 725
biomethane production plants were in service across Europe by the end 0of 2019 [64] with ~10%
of the biogas production upgraded to biomethane. By 2030, up to 20% of the biogas production
could be upgraded to biomethane [37,65]. While in 2015 the EU counted over 300 plants
injecting biomethane in the natural gas grids [46], end 2020 635 out of the almost 730
biomethane plants were injecting a total of 25 TWh biomethane in the natural gas grids [19]. The
number of EU countries injecting biomethane in the grids rose from 10 in 2015 (mainly Germany
165 injection plants, the United Kingdom 80 injection plants, Switzerland 35 injection
plants)[46] to 18 in 2020 (numbers of plants connected to the grids: Ireland 1; UK 80; Iceland 2;
Norway 3; Sweden 16; Finland 5; Estonia 2; Denmark 45; The Netherlands 48; Belgium 4;
Luxembourg 3; Germany 230; Hungary 1; Austria 14; Switzerland 36; Italy 17; France 214; Spain
2)[19]. In France, biomethane grid injection is authorized since July 2011 and the sector has
substantially expanded since then with the introduction of feed-in tariffs in 2011 [20].
Biomethane quantities injected in the grid rose by 90% in one year, going from 215 GWh in 2016
to 406 GWh in 2017 [55] and by 80% in 2020, reaching 2207 GWh injected end 2020 [19]. End
2020, a total of 1075 biogas plants were operating in France, of which 20% (214 plants) upgrade
biogas in biomethane for grid injection and the remaining 80% (861 plants) valorize biogas via
combined heat and power generation. After Germany (232 biomethane production plants),
France counted the most biomethane plants in the EU, and French biomethane as such covered
0.5% of the French natural gas consumption in 2020 [19]. Besides, Europe supplied 160 million
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Sm3 biomethane for transport fuel purposes in 2015, distributed by almost 700 biomethane
filling stations especially across Sweden (205 stations), Germany (288 stations), Switzerland
(140 stations), Norway (24 stations), Iceland, Finland and Italy [46]. In France, biomethane as
vehicle fuel accounts for the largest market part [20] and the ambition is to foresee up to 360
biomethane filling stations by 2023 and up to 840 stations by 2028 [17]. The use of biomethane
as vehicle fuel is still in its infancy but is expected to rise depending on subsidies or promotion
programs. Its share in the transport biofuel market will also increase as the share of food-based
biofuels is about to be abated to 3.8% in 2030 [46]. By 2030, biomethane production for grid
injection and vehicle fuel could potentially reach ~50 billion Nm3/year across the E.U. from
anaerobic digestion and from the pyrogasification of dry ligneous biomass [46]. These positive
development trends in the EU biomethane sector were initially enabled by favorable energy
policies, EU directives and grant or incentives programs such as tariff rebates on the gas
distribution grid connection costs or state/European/regional financial support to promote
biogas production [46,48,62]. Brémond et al. [58] nevertheless reviewed future trend
perspectives and challenges for this sector towards 2030 as it nowadays faces development
paradigm shifts with notably a decline in subsidy schemes and a transition to feedstocks from
the wastes sectors only, encouraging the gradual abandonment of high methane potential
energy-crops as feedstocks in anaerobic digesters.

In the USA, more than 2100 biogas plants were recorded in 2017: 250 farm plants fed with
animal manure, 654 landfill gas production plants, 1240 sludge-fed waste water treatments
plants, altogether producing 18.5 billion Sm3 biogas/year [46].

All over Asia the amount of small and large scale anaerobic digesters for biogas generation
increases [46] and in 2020, next to China, Thailand and India contributed the most [37]. In China
15 billion Sm3 biogas were produced in 2014 by ~100 000 modern and ~40 million residential-
scale biogas plants. India had the ambition to build more than 100 000 biogas plants between
2014 and 2019, encouraging the installation of residential- and farm-scale plants [46]. In
Malaysia, 90 biogas plants were operating in 2017, 6 were under construction and 145 were
planned [66]. Some information on the situation in other Asian countries issued from the most
recent and comprehensive review on biogas developments is summed up in Table [.2.

In Africa biogas production is not well developed yet and data is missing. Benin, Burkina Faso
and Ethiopia nonetheless started providing subsidies to cover investments and non-
governmental organisations are also getting involved [37].

In Latin America, Bolivia created at least 1000 household biogas plants and in Columbia,
Honduras and Argentina, large-scale plants were built with effluents from palm oil mills and
farms as feedstock. Brazil has also 127 biogas plants fed with industrial and agricultural waste,
sewage sludge and landfill waste, altogether producing ~584 billion Nm3 biogas/year what
contributed to generate 3835 GWh energy in 2015 [46].
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Table 1.1: Biogas production and biogas share in the natural gas consumption in European countries in 2015. “-“= no available data.
Adapted from [46].

Country Biogas Biogas share (%) in the
Production (T]) natural gas consumption
Belgium 9 492 1.6
Bulgaria 820 0.8
Czech Republic 25681 9.5
Denmark 6347 53
Germany 328 840 12.1
Estonia 550 3.4
Ireland 2287 1.5
Greece 3826 3.4
Spain 10 954 1.1
France 22549 1.5
Croatia 1507 1.7
Italy 78 355 3.4
Cyprus 471 -
Latvia 3674 8.0
Lithuania 981 1.1
Luxembourg 739 2.3
Hungary 3335 1.1
Malta 69 -
The Netherlands 13 693 1.1
Austria 12563 4.4
Poland 9581 1.7
Portugal 3457 2.0
Romania 767 0.2
Slovenia 1242 4.5
Slovakia 6223 3.8
Finland 4321 4.6
Sweden 7009 23.2
United Kingdom 94 303 3.7
Switzerland 4591 3.8
Iceland 69 -
Norway 1866 0.8
Former Yugoslav Republic of Macedonia 206 4.4
Serbia 242 0.3
Moldova 401 1.3
Ukraine 600 0.1
European Union (mean values) 653 636 4.4
European continent (mean values) 661611 4.0
Table 1.2: Amount and type of biogas plants in several Asian countries in 2014. "-" = no available data. Adapted from [45].
Country Residential-scale plants Commercial-scale plants
Bangladesh 36 000 (100 000 more expected by 2020) 500 - 600 (130 more expected in 2017)
Nepal 330000 -
Sri Lanka 6000 -
Pakistan 4000 -
Vietnam - 183 000
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II.

BIRTH AND DEFINITION OF THE RESEARCH PROBLEM

Previous sections highlighted the biogas and biomethane sector are getting momentum
worldwide as nations tend to increase the share of renewable gases in their global energy
consumption to trigger energy transition and circular economies. Biogas is predominantly
converted in heat and electricity for injection on local grids whereas biomethane is meant to
supplant natural gas in any of its applications.

It has nevertheless been acknowledged biogas generated in landfills or in anaerobic digesters
contains, next to its two major constituents CHs (250 %vo) and COz2 (<50%yo01), minor
constituents like N2, H20, H2S, NH3, Hz, CO, O; and traces of volatile compounds (‘trace
compounds’, TC) from various families: alkanes (linear, cyclic, polycyclic), aromatics, terpenes,
alkenes, halogenated organic species, oxygenated organic species (alcohols, aldehydes, esters,
furans and ethers, ketones), Silicon-compounds including siloxanes and silanes, organic and
inorganic Sulphur-compounds [28,30,31,67-75] and (in)organic metal(loid) species [22,70,76-
79]. This biogas composition is strongly dependent on the organic matter being digested and on
the physicochemical parameters driving the anaerobic digestion (hydraulic retention time,
temperature, humidity, pH...) [30-33]. Observed concentrations range 30 - 35000 pug-m-3 [80]
and <10 - 700 mg-m-3 [81] for total volatile organic compounds; <100 pgSi-m-3 for total
siloxanes [81] and <300 pgsi-m-3 for total volatile methyl siloxanes [71]; and 0.1 - 100 ng-Nm-3
for metallic TC [22]. In function of the handled technology to upgrade the CH4 fraction
(biomethane) of biogas by separation from the CO; fraction, a variety of those TC are also found
lurking in biomethane [22,27,28,34,71,72,80]. Natural gas also contains TC originating from
geological processes (metals, volatile organic compounds, Sulphur-compounds, NOx
particles...)[3,23-25,82-84], but the nature and diversity of TC in biogas and biomethane may
differ owing to the anthropogenic or vegetal origin of the feedstocks used in landfills and
anaerobic digesters.

Depending on the intended energy application, removal of minor- and TC in biogas and
biomethane is crucial inasmuch as compounds such as HzS, NH3s, COS, CS;, thiols, halogenated
compounds, siloxanes, aliphatic or aromatic hydrocarbons can have deleterious effects (acid
corrosion, abrasion, fouling, depositions, catalyst deactivation...) on gas transport
infrastructures and in boilers, engines and fuel cells upon combustion of the gas
[32,33,43,68,73,85-87]. 0dorous compounds like terpenes are also known to attack rubber seals
in gas infrastructures, to engender air quality issues and to mask the tetrahydrothiophene
artificial odor of grid-injected biomethane [34]. Determining suitable abatement techniques
requires the preliminary qualitative and quantitative characterization of TC and field- or in situ
gas sampling is the first and most critical step of the analytical chain leading to this
characterization.

Field sampling, identification and quantification of TC in gaseous matrices such as biogas,
biomethane or natural gas is challenging owing to their low concentrations and the intricate
interactions between compounds and gas matrices present. The low concentrations not only
imply high risks for TC masking by contamination and for TC loss by sorption to tubing,
connectors and vessels in the sampling and analytical chains [69,81,88,89], but they often lie
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below the detection limits of analytical instruments, meaning a ‘preconcentration’ step is
essential (the gas flows through a dedicated small-volume support with specific retention
affinity for only given TC. Since the very volatile gas matrix itself (CH4) is not retained, TC are
preconcentrated). In situ, gas can either be bulk-sampled in a whole gas sampling vessel (bag,
canister, cylinder) subsequently transported to a laboratory where the gas is transferred to a
preconcentration unit, or gas can be directly circulated through a preconcentration unit (e.g.
adsorbent tubes, bubbling absorption solutions, cryogenic traps) enriching desired TC only
[81,90-92]. However, because TC lurk in complex mixtures of inorganic, organic, metallic and
metalloid species potentially reacting with each other, not any sampling nor preconcentration
system is able to quantitatively trap all families of TC in one run in view of the complexity and
diversity in physicochemical properties of TC present (volatility, polarity, water solubility,
reactivity...). This results in different affinities and stabilities in the preconcentration and
sampling devices used, complicating the choice of an appropriate sampling methodology as
furthermore the TC composition of a biogas or a biomethane is unknown until the first sampling
and analysis campaigns [69,75,80,81,88,93]. For instance, whole gas sampling with ensuing
transport of the whole gas sampling vessel and delayed transfer to a preconcentration unit
entails risks of TC losses during transport and storage by sorption to or permeation through the
whole gas sampling vessel walls, risks of chemical conversion reactions inside vessels as well as
loss and contamination risks during transfer to the preconcentration unit, endangering sample
stability and TC recovery [67,75,81,83,91,93-96]. Moreover, collected samples must be
representative of the effective gas composition at a given time and under the prevailing gas
pressure and temperature. In particular, monitoring TC in biomethane may imply it has already
been compressed to the grid pressure (French distribution network: 4-6 bar,, transportation
network: 8-80 bara,). So far, biomethane has only been in situ sampled directly on the pipelines
at 40 bar, by Cachia et al. using a high-pressure acid bubbling sampler for the direct
preconcentration of metallic TC [22,23]. Other determinations of TC in high-pressure gases
(typically natural gas) have mostly been carried out by high-pressure cylinder sampling of a
whole gas sample followed by cylinder transport to the lab, depressurization of the gas and
preconcentration at atmospheric pressure [69,82,83,95].

In pursuance of enhancing knowledge on biogas and biomethane’s trace compounds to help
guarantee their sustainable integration in today’s European energy mix, the TEREGA company
(Pau, France), a major actor in gas transport and -storage infrastructures in France and Europe
to make gas an accelerator of the energy transition, took up the above-mentioned issues and
took the lead to finance this doctoral thesis to further investigate and bring answers to the
challenges of gas sampling for trace compounds determination. Hence, this doctoral thesis
entitled ‘Characterization of trace compounds in biogas and biomethane: development of a
sampling-, in situ preconcentration- and analysis method’ aimed first at reviewing existing state-
of-the-art field gas sampling and preconcentration methods to eventually develop and optimize
an improved though simplified field gas sampling method preconcentrating TC directly in situ at
the actual gas pressure with a shortened sampling chain minimizing contaminations and TC
losses and ensuring the stability of sampled compounds (no loss, no degradation, no
contamination) between sampling and analysis. The developed method would seek to connect
preconcentration units as straightly as possible to the gas pipes without gas depressurization
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and to reduce required sampling volumes to limit sampling campaigns duration and to limit
discharges of sampled CH4 volumes to the atmosphere. In that respect, the development of a
direct high-pressure preconcentration device freeing the sampling protocol from
depressurization operations was soon considered. Indeed, when dealing with pressurized gases
and assuming the ideal gas law PV=nRT, a dilution factor equal to the ratio of the high pressure
to the pressure after depressurization leads to a concentration decrease of TC upon
depressurization, implying larger gas volumes have to sampled at atmospheric pressure than at
high pressure to trap a given amount of TC. The preconcentration would finally enable to trap,
in a single sampling run, a wide range of unknown TC in a variety of chemical families and would
enable, in collaboration with an appropriate analytical set-up, to lower the detection limit of that
wide range of TC to obtain a detailed screening of the TC composition of a given gas.

Overall, the developed sampling protocol should contribute making field sampling campaigns
more efficient and easier for routine operators and above all contribute to enrich the database
of TC in biogas and biomethane and to establish correlations between gas production conditions
(feedstocks nature, anaerobic digestion operational parameters, treatment and upgrading
technologies implemented...) and TC present.

In the following section, main and detailed doctoral thesis objectives are delineated.
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I11.

DOCTORAL THESIS OBJECTIVES

The pragmatic objectives of this doctoral thesis are:

Objective 1: reviewing state-of-the art gas sampling and preconcentration techniques for
the determination of trace compounds in methane-like gas samples.

Objective 2: based on learnings from the review, developing and optimizing a field gas
sampling method for the direct in situ preconcentration of non-metallic trace compounds (TC)
in gas samples such as biogas and biomethane, at the gas working pressure, where
preconcentration occurs by adsorption onto self-assembled multibed adsorbent tubes (MAT)
enabling to trap, in a single sampling run, a wide range of unknown TC in a variety of chemical
families as it was evidenced from the review this preconcentration method answered the best
these requirements.

Objective 3: validating and optimizing the ensuing qualitative and quantitative analytical
method where analytes preconcentrated on adsorbent tubes are recovered by thermal
desorption of the tubes followed by gas chromatography - mass spectrometry analysis (TD-GC-
MS).

Objective 4: applying the developed direct in situ preconcentration and analysis method
to sample and determine TC in real biogas and biomethane samples generated at different
production plants and from various feedstocks in France.

Non-metallic TC targeted in this work include alkanes (linear, cyclic, polycyclic), aromatics,
terpenes, alkenes, halogenated organic species, oxygenated organic species (alcohols, aldehydes,
esters, furans and ethers, ketones), siloxanes, organic and inorganic Sulphur-compounds.

To achieve objectives 2 - 4, a stepwise approach has been followed with a first laboratory
development and validation part (Fig.[.1) and a second field validation part (Fig.I.2).
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LABORATORY DEVELOPMENT AND VALIDATION WORK (objectives n°2 — 3)

-A-
Development of the preconcentration unit: adsorbent tubes

Selection of commercial adsorbents based H Design of the adsorbent tube assembly and conditioning

on a preliminary literature review procedure
* Tenax®TA 60-80 mesh * Untreated quartz wool plugs secure adsorbent beds in the tubes
* Carbopack™X 40-60 mesh * Fixed bed volume 0.05 cm3 for each adsorbent in the tube
* Carbopack™B 60-80 mesh e Fabrication of a 20-position tube conditioning support for
* Carboxen®1000 60-80 mesh installation in conditioning oven under N3 flow

Preliminary validation tests of adsorbent tubes using certified synthetic gas mixtures containing targeted
compounds (simulating biogas or biomethane TC) at trace concentrations (1 ppmmo1) in CH4 or N2 matrices

Evaluation of preconcentration on and recovery from Evaluation of preconcentration on and recovery from
single bed adsorbent tubes multibed adsorbent tubes (MAT)

\ 4

Different MAT configurations tested:
* Tenax®TA - Carboxen®1000
* Tenax®TA - Carbopack™X
* Carbopack™B - Carboxen®1000
* Tenax®TA - Carbopack™B - Carboxen®1000

-B-
Study of preconcentration under high pressure

Presentation of a high-pressure adsorbent tube sampling support (HPTS) prototype (0 - 200 bar,)

¥ 1

Physicomechanical validation of the HPTS by Investigation of the effect of pressure on adsorption and
sampling pressurized certified synthetic gas mixtures recovery of trace compounds from certified synthetic gas
on the developed MAT mixtures sampled on developed MAT
-C-
Validation of the analysis method: TD-GC-MS
Thermal desorption of adsorbent tubes Gas chromatography - mass spectrometry (GC-MS):
using a thermodesorber (TD) prototype optimization of apparatus parameters for the detection of a

wide range TC

* Attempt to validate the TD-prototype by
comparison to SPME preconcentration and
direct headspace gas injection

Figure 1.1: Achieving doctoral thesis objectives 2 and 3: stepwise approach for the laboratory development and validation part. TC:
trace compounds.
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FIELD VALIDATION AND APPLICATION (objective n°4)

-A-
Field sampling set-up

Assembly of the field sampling chain on a bench ‘ » ‘

Connection of adsorbent tubes in situ
Choice of appropriate materials for ’ \
: f:lcl)zir?egctors No particular equipment Using the HPTS to hold the
« gas flowmeters when sampling gases tubes when sampling gases

< 2 bara > 2 bara

-B-
In situ biogas and biomethane sampling

Sampling of different biogas and biomethane streams at different gas production plants
handling various feedstocks in France

Validation of the field sampling set-up

for biogases <2 bara with the HPTS for biomethanes =2 bara

-C-
Interpretation of field sampling results

Identification and quantification of TC preconcentrated in situ in different biogas and biomethane streams
using the developed TD-GC-MS analysis method

Enrichment of knowledge on TC in’ )

biogas and biomethane

Discussion of correlations between gas production
conditions (feedstocks nature, anaerobic digestion
operational parameters, treatment and upgrading
technologies implemented...) and TC present

Figure 1.2: Achieving doctoral thesis objective 4: stepwise approach for the field validation part. HPTS: high-pressure tube sampling
support prototype. TC: trace compounds. TD-GC-MS: thermodesorption — gas chromatography — mass spectrometry.
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IV. GENERAL STRUCTURE OF THE MANUSCRIPT

Part 1 of this manuscript presented the global and scientific context having led to the research
problem of this doctoral thesis, and related objectives have been described.

In Part 2, following Chapter 1 which defines biogas, landfill gas and biomethane and revises
their main production processes, the state-of-the-art gas sampling and preconcentration
techniques for the determination of trace compounds in methane-like gas samples are
extensively reviewed and discussed (Chapter 2) to address Objective 1 of this thesis.

Part 3 then presents the experimental work conducted during this doctoral thesis to achieve
Objectives 2 - 4.

Chapter 3 partly deals with Objective 2 by developing and optimizing multibed
adsorbent tubes. The choice of adsorbent materials is motivated, the adsorbent tube assembly-
and conditioning-procedures are presented and the efficiency of different multibed adsorbent
tube configurations for the adsorption and thermal desorption of compounds present at trace
concentrations in synthetic gas mixtures, is assessed to eventually design the most suitable
multibed adsorbent tubes.

Addressing Objective 3, Chapter 4 then presents the new thermal desorber prototype
used throughout the work to thermally desorb all laboratory- and field-sampled multibed
adsorbent tubes and as such recover and analyze preconcentrated analytes via gas
chromatography - mass spectrometry. In particular, the chromatographic performance of this
new thermal desorption prototype is compared to other chromatography injection techniques
such as solid-phase microextraction and direct gas injection. The potential and strength of the
combination of adsorbent tubes with the thermal desorption prototype are then demonstrated
on real natural gas samples.

Chapter 5 further addresses Objective 2 by presenting and validating a novel high-
pressure adsorbent tube sampling prototype enabling to sample pressurized gases (<200 bara,)
such as grid-injected biomethane, through the multibed adsorbent tubes by a direct connection
to the field gas pipes. The effect of the gas pressure on the adsorption and desorption of trace
compounds onto and from the multibed adsorbent tubes is also investigated.

Lastly, Chapter 6 is devoted to the achievement of Objective 4: the developed direct in
situ high-pressure preconcentration method is implemented to sample non-metallic trace
compounds in landfill gas, biogas and biomethane from a landfill and two anaerobic digestion
plants treating diverse feedstocks, and to qualitatively determine them by the established
thermal desorption - gas chromatography - mass spectrometry analytical chain. Variations in
trace compounds compositions observed between the gases are discussed.

Part 4 ultimately closes the manuscript with general conclusions and perspectives on the
conducted doctoral thesis work and achievements reached.
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CHAPTER 1 - BIOGAS AND BIOMETHANE PRODUCTION

ABBREVIATIONS CHAPTER 1

CHP Combined heat and power
GHG Greenhouse gas(es)

LCV Lower calorific value

MSW Municipal solid waste

PBR Photobioreactor

SNG Synthetic natural Gas

VOoC Volatile organic compound(s)

BI0GAS DEFINITION

Biogas is a colorless flammable gas mixture produced by the anaerobic digestion of humid
organic matter by microbial communities and in particular by methanogenic bacteria. This
biochemical mechanism is called methanization [1-4] and spontaneously occurs in the nature in
organic matter rotting piles, anaerobic sediments or flooded soils. The methanization
mechanism has been studied for a long time [5] and is now reproduced at large scale in biogas
production facilities (anaerobic digester tanks) where the organic matter feedstocks ideally
stem from anthropogenic organic wastes: agricultural residues, manure, food-processing and
catering residues, organic and green municipal and household wastes, sewage sludge. Next to
biogas, the anaerobic digestion of organic matter gives birth to another valuable product, the
digestate. This is the solid-liquid fraction remaining after the digestion, consisting of undigested
organic matter and (dead) micro-organisms and representing about 90 %yo of the initial organic
matter volume injected in the digester [6,7]. Digestates are nutrient-rich (nitrogen, phosphorus,
potassium...) and are nowadays used as substitutes to chemical fertilizers in the agricultural
sector [8-11]. Concerns about trace contaminants in digestates (metals, organics, pesticides,
pathogenic bacteria) that could percolate through agricultural fields restrain however the
enthusiasm for this solution [9,12].

Biogas is also spontaneously generated in landfills (landfill gas) wherein the compaction of the
dumped wastes ensures the absence of oxygen, allowing the specific microbiota to anaerobically
digest the degradable waste fraction [13-18].

Next to the two major constituents CHs (at least 50 %vo1) and CO2 (maximal 50%yo1), biogas and
landfill gas contain minor constituents like N2, H20, HzS, NHs, Hz, CO and potential traces of Oz,
hydrocarbons, halogenated hydrocarbons, siloxanes, organic and inorganic Sulphur compounds,
oxygenated organic compounds [2,3,10,19-21] as well as potential traces of volatile metals and
metalloid (As, Bi, Cd, Cu, Hg, Mo, Ni, Pb, Sb, Se, Sn, Te, V, W, Zn) [20,22-25]. The proportion of
CH4 and CO: in biogas as well as it composition regarding the minor constituents, are strongly
dependent on the organic matter being digested and on the physico-chemical parameters
driving the anaerobic digestion (hydraulic retention time, temperature, humidity, pH ...) [2-
5,10,19,20,22].
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Thanks to the relatively high Lower Calorific Value (LCV) of the pure methane fraction (~36
MJ-m-3 CHs4 at standard temperature (0°C) and pressure (1 bara) conditions) it contains, biogas
is an energetic gas with a LCV of ~ 20-25 MJ-m3 biogas for a CHs fraction of 60-65%yol
[2,5,10,17,19]. As a comparison, natural gas has an LCV of ~31-38 M]-m3 [10,26]. Biogas has
been used for centuries as a heat and power (electricity) source as its energy-content suffices to
fuel combustion engines [5,19]. Today’s biogas applications include different types of heat and
power generation [4,8,17,19,27-29]:

heat production from its combustion in gas boilers (water heating, space heating) and
cookers

electricity production from its combustion in internal combustion engines or in other
electricity generators (gas turbines, steam turbines) [19,30]

electricity production from its use as a fuel in direct biogas fuel cells [17,19,31-33]
combined heat and power (CHP) generation from its combustion in CHP engines
(cogeneration units) [19,34]. Yet the total electrical efficiency of such engines generally
does not exceed 40% [19,27,35-37] and the thermal efficiency 50-60% [36,38], CHP
generation is nowadays the most common biogas valorization way in ‘developed’
countries [17,27,35]. The generated heat is often used on the biogas production site to
preheat the organic feedstocks before their injection in the digester, or to heat the
digester [27,39]. For a proper microbial digestion of the organic matter, the microbiota
environment (i.e. the digester tank) needs indeed to be kept at mesophilic (20-40°C) or
thermophilic (>40°C) conditions [1,5,10,40]. Alternatively, the biogas-derived heat can
also be destined to dry the digestates to reduce their volume or can be sent to local heat
distribution networks. Concerning the co-generated electricity: it first powers the biogas
plant operation electricity needs [11] after what the remaining electricity is sold and sent
to the electricity distribution grid to contribute feeding local electricity demands
[27,35,41].

hydrogen or syngas production by steam reforming of its methane fraction [42]
biomethane production by its upgrading [2,4,10,20,43-45]. Biogas upgrading to
biomethane is the process where the CO; and minor compounds (HzS, Nz, H20, NHj3,
siloxanes...) of biogas are separated from the CH4 fraction. This pure CH4 fraction is then
called biomethane and detains similar calorific properties as natural gas once sufficiently
purified from remaining trace compounds [4,8,20,35,46-48]. Biomethane is then
intended to be either injected in the natural gas transport and distribution grid, or to be
compressed and used as vehicle fuel [4,8,13,17,19,35,45,49-52]. Today biogas producing
plants valorizing biogas via CHP generation outnumber plants upgrading biogas to
biomethane [17,53,54]. Indeed, the technologies required to purify biogas to pipeline- or
vehicle-quality gas are much more expensive and complex to operate than CHP
generating units, and biomethane retail prices are currently too low to outcompete
natural gas [17,27,29,45,48].

Note that even for direct biogas applications, a biogas treatment is advised to dry the gas and
protect the engines, boilers or fuel cells from fine particles, corrosive (HzS, NHsz...), acidic or
abrasive compounds or from compounds generating solid deposits upon combustion (siloxanes)

[2,17].
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II. BIOMETHANE DEFINITION

‘Biomethane’ commonly refers to the purified methane fraction of biogas or landfill gas obtained
by its separation from the carbon dioxide fraction and from the minor compounds of those gases
in an upgrading process.

Additionally, research is being conducted to produce other types of ‘bio-methane’, i.e. methane
produced on a renewable way to substitute natural gas, in one of the following ways:

e by pyrogasification and methanation of dry ligneous-cellulosic biomass. The methane
obtained is then often called ‘synthetic natural gas’.

e by methanation of hydrogen

e from the anaerobic digestion of microalgae as organic matter feedstock in anaerobic
digesters. The biogas produced during this methanization is upgraded to CHs at one side
and CO; at the other side. The CO: is sent to a next batch of microalgae to enhance their
photosynthesis and growth while the CH4 is used for energy purposes.

Next sections briefly review these different biomethane or bio-methane production pathways.

III. OVERVIEW OF BIO-METHANE PRODUCTION PROCESSES

Biomethane and bio-methane can be produced via different engineered processes described
below. This doctoral thesis will however solely focus on biogas and biomethane generated from
the methanization of organic feedstocks in controlled anaerobic digester tanks and in landfills.

II1.1. Methanization of humid biomass

Methanization is the biological anaerobic digestion (fermentation) of humid organic matter by
collaborating bacteria communities, leading to the production of gaseous CO2 and CH4 (biogas).
Organic matter to feed the bacteria can be gathered from different waste sectors of modern
societies:

e Agriculture: straw, crop and fruit residues ...

e Livestock farming: manure ...

e Food processing, beverage industry and catering: all kind of foodstuffs residues (vegetal
and animal), raw or processed

e Waste water treatment: sludge

e Paper industry: paper sludge

¢ Municipal and household waste collection: garbage, compost...

e Gardens and parks maintenance: green wastes

The biochemical humid methanization process in digesters, microbial communities involved
[55-57], and biogas-to-biomethane upgrading technologies [2,4,10,16,20,43,58-62] have been
extensively studied and will not be further detailed in this chapter.
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III.2. Landfill gas extraction

Landfill gas is biogas produced by the spontaneous methanization of the organic (fermentable)
fraction of solid wastes buried and compacted in sanitary landfills [14,15,17,63]. In the past, in
non-sanitary landfills, wastes were dumped and compacted directly in bare trenches, covered
once filled with the excavated earth. Rain and run-off water were percolating through the wastes,
getting enriched, via physico-chemical exchanges, with all kinds of contaminants present in the
buried wastes [63]. The resulting leachates, consisting of the infiltrated rain water, the liquid
fraction of the wastes and moisture produced by biological degradation mechanisms, were
further percolating down to the groundwater, leading to serious pollution issues [63]. Today’s
sanitary landfills are engineered dumps (Fig.1.1 - 1.2): upon excavation of the future landfill
area, clayey geotextiles and high-density plastic liners are laid down on the bottom to protect
the underground and groundwater from polluting leachates seeping out of the subsequently
buried wastes. Drainage pipes are installed on these liners to collect the leachates and send them
to a waste water treatment unit [13,63]. Discarded wastes are progressively compacted in cells
of defined volumes; once a cell is filled, it is covered by some of the excavated earth and the next
cell begins being loaded, as such gradually filling the whole landfill (Fig.1.2). Rain water will
always be allowed to percolate through the cells as long as the landfill is not eventually closed
with semi-hermetic materials (Fig.1.1).

When landfill is full,
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Figure 1.1: Sanitary landfills are equipped with underground protective liners and leachate- and gas collection systems.
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systems.

Landfill gas can be produced both under aerobic and anaerobic digestion [17]. The aerobic gas
generation occurs in recently closed cells or in open cells where oxygen is still present, but this
production does not last long and does not generate a high energy content gas. On the contrary,
in older well compacted closed cells where anaerobic conditions rule over, the gas production is
long-lasting (up to 15-25 years [63]) and the energy content and methane fraction of the gas are
higher. Since this anaerobic digestion is microbially driven, anaerobic landfill gas production is
enhanced under humid conditions and when the organic fraction of the buried wastes increases
[63-65]. Sanitary landfills produce therefore more gas than non-sanitary ones since the
leachates and rain water are collected at the bottom and can be re-injected in the cells to keep
the wastes moisturized and further stimulate the gas production [17,66]. Other factors
impacting the gas production are the temperature in the waste cells (the higher the temperature,
the more favorable for the microbiota, the more gas produced), the pH and the type and age of
the wastes [17,21,63-65]. The production rate and composition of landfill gas evolve during the
landfill lifetime [63,64]. Generally, significant gas production starts after 1 to 3 years of waste
burial, peaks after 5-7 years and continues at appreciable levels up to 20 years after waste
dumping. Limited gas volumes may further still be produced during up to more than 50 years.
Depending on the volume of a waste cell and on the packing pattern of the wastes in this cell,
some portions of wastes may be in different degradation stages, leading to discrepancies in gas
production levels inside a given cell [17,64]. The evolution of the landfill gas composition over
time is depicted in Fig.1.3 [55,56,60,64].
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Figure 1.3: Landyfill gas composition evolution over time (time scale being different for each single landfill)

In a first phase, oxygen is still present among the wastes (open or recently closed cells, loosely
compacted wastes ...) and aerobic bacteria degrade (hydrolyze) the long molecular chains of the
wastes (carbohydrates, proteins, lipids...) to smaller molecules (sugars, fatty acids, amino
acids...), Hz and CO2. This process goes on until all oxygen is depleted. Once anaerobic conditions
are reached (phase 2), anaerobic bacteria develop and further degrade the metabolites of phase
1 into even smaller units (typically acetic, lactic and formic acids, methanol and ethanol) with a
side production of CO2 and H» gas (acidogenesis). This acidic environment together with the
moisture enhances the dilution of nutrients like nitrogen and phosphorus, stimulating the
growth of other anaerobic bacteria. Phase 3 starts when those latter metabolize the acids and
alcohols produced in phase 2 into acetate, a precursor for methane (acetogenesis). As the pH
increases due to the consumption of the acidic compounds, ultimate methanogenic bacteria can
develop, consuming H; and acetate to produce methane and CO2 (methanogenesis). The fourth
phase of the gas composition evolution in a landfill is characterized by a steady production level
and rate of CH4 and COz, that can last for 20 years or more depending on the percentage organic
fraction in the wastes, the moisture level, the temperature and the compaction degree of the
wastes. A too strong waste compaction restrains gas production as it decreases the water
infiltration rate through the waste (rain water, water produced by the biodegradation
reactions...), while the microbial waste degradation is precisely enhanced under moist
conditions. Leachate collection and re-injection in the waste cells, or permeable landfill covers
can help gaining sufficient moisture levels in the cells. Concerning the temperature inside the
landfill, it is largely influenced by external weather conditions for shallow and poorly insulated
landfills. Bacterial activity will considerably be reduced under 10°C. In deeper and well insulated
(earth cover and top liners) landfills on the contrary, the temperature is relatively independent
from the external ambient temperatures. This leads, together with the heat released by the
bacterial activity, to higher and more constant gas production levels [55,56,60,64].

56



As solid wastes are progressively digested, the produced biogas accumulates in the landfill and
migrates from high pressure (high production level) to low pressure zones (low production
level) along paths of least resistance throughout the wastes [17]. Pressure build-up of this
inflammable gas can become such that landfill explosions or fires ensue [14,17,63,64] if the gas
is not continuously monitored and evacuated. Sanitary landfills are therefore equipped with
deep gas collecting wells (Fig.1.1 - 1.2) wherethrough the gas is extracted thanks to the natural
pressure gradient or by pulling a light vacuum. This biogas is then often used on site as fuel to
generate electricity mainly in CHP engines [17], ideally after a preliminary treatment.
Alternatively, this gas can be upgraded to biomethane. Since landfill gas is water-saturated, as it
is generated in moist conditions, the deep extraction wells are gridded with downwards sloped
lateral pipes allowing the condensation, forming as the gas cools by contact with the pipes, to
drain down to a sump [17]. Factors impacting landfill gas recovery efficiency include landfill
depth, capping, moisture level and compaction [17]:

e deep landfills sealed with liners lead to better collection efficiencies

¢ high water levels boost gas production but impede efficient gas collection by obstructing
pores in the gas extraction wells

e high waste compaction grade leads to less gas production and to weaker gas diffusion
towards the extraction wells

To conclude, landfill gas recovery in sanitary landfills has several advantages:

e Avoiding landfill explosions [14,63,67]. This avoids material losses; atmospheric
pollution due to the emanation of greenhouse gases (GHG) (CH4 and CO3), toxic gases (CO,
HS), volatile compounds contained in landfill gas (hydrocarbons, chlorinated
compounds like dioxins, oxygenated hydrocarbons like furans, polyaromatic
hydrocarbons...) and fine dust particles; and human health damages [63,67].

e Avoiding olfactory nuisance and poor air quality stemming from the emanation of
Sulphur compounds and diverse volatile compounds generated upon waste degradation
[14,21,67,68].

e Avoiding GHG emissions to the atmosphere [13-15,63,67]. Landfill gas (biogas) is
composed of roughly 40% COz and 60% CH4, two important GHG. In the U.S.A., municipal
solid waste (MSW) receiving landfills are the third-largest source of anthropogenic CHs
emissions, accounting for ~16% of those emissions in 2017 and representing 107.7 Mton
CO2-eq GHG emissions [67,69]. In the European Union, solid waste disposal (landfill) sites
related GHG emissions amounted to ~101 Mton COz-eq in 2017 [70]. Collecting and
flaring landfill gas already reduces the GHG emissions since, in the case of complete
combustion, CHs is oxidized to CO2, having a lower global warming potential than CHa.
When landfill gas is recovered and sent to an energy conversion system (e.g. CHP engine),
GHG emissions are further directly reduced by burning CH4 to COz and H20, and indirectly
reduced by avoiding the use of conventional (non-renewable) energy sources when
landfill gas-based energy is used instead [67,71]. The CO; remaining from the energy-
conversion of landfill gas can even itself be valorized e.g. as carbon supplement for
horticultural plant growth [72]. Despite landfill gas collection, methane will often still
escape from the landfill at some locations. Depending on the gas collection and energy
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conversion systems design and efficiency, only 60 to 90% of the landfill gas are captured
[67].

¢ Generating renewable electricity or energy [14,17,63,67]. For a landfill gathering MSW,
about 8.5 Nm? landfill gas are produced per minute per million ton MSW [67]. Just as for
the biogas generated in anaerobic digesters, electricity generation from this landfill gas
occurs mainly via 3 technologies: combustion in internal combustion engines, gas
turbines or microturbines. CHP engines are widely used. Landfill gas can also be directly
used in boilers and steam turbines [67]. The generated electricity and heat are ideally
used on site or in nearby located factories. Direct heat valorization applications include
[67]:

o leachate evaporation: the heat released upon landfill gas combustion is used to
reduce the volume of landfill leachates, improving the cost-efficiency of leachate
management (epuration, disposal...)

(waste water treatment) sludge drying for the same purpose
running Kilns, furnaces, forges, for the pottery, brick, cement or metal industry,
running process heaters, paint shop ovens...

Landfill gas can also be upgraded to biomethane (pipeline quality gas).

II1.3. Pyrogasification and methanation of dry biomass

Dry, lignocellulosic biomass (wood, straw, olive stones...) can be converted into synthetic natural
gas (SNG) via a complex industrial thermo-chemical process whose main steps can be
summarized as follows. The plant receives dry biomass which is mechanically sorted to remove
too big pieces or eventual inorganic materials like metals or plastic objects [73]. The admitted
biomass is sent to the first conversion step called pyrogasification. In the gasifier reactor,
biomass is turned into a synthetic gas consisting mainly of H, and CO but also containing some
CO2 and impurities like Sulphur and Nitrogen compounds, condensable hydrocarbons (tars),
HCI, VOC, siloxanes, inorganic compounds and particulate matter... [73-78]. As those impurities
cause severe damages on the next process steps, this gas must be cleaned and conditioned to
only keep Hz and CO [73-75,77-82]. In the next step, the purified synthetic gas is sent to the
methanation reactor where it is catalytically converted into methane (SNG), eventually
upgraded to a certain purity level depending on the ultimate targeted SNG application (e.g. grid
injection) [73-81]. Each of these process phases is now explained in more details.

Dry biomass input

Suitable biomass feedstocks for gasification and subsequent methanation are dry solid
lignocellulosic biomaterials (wood, straw, fruit stones...) [73,76,78,81]. At the Gothenburg
Biomass Gasification (GoBiGas) demonstration plant in Sweden, the adequacy and gasification
performance of several woody feedstocks have been tested: wood pellets, wood chips (from poor
quality residual logs), shredded bark (from a paper pulp factory), sawmill residues and
recovered wood (e.g. pallets, wood from the construction sector, though without any paint or
chemical treatment). [t was found that drying those “dry” feedstocks was fundamental to achieve
a satisfactory biomass to SNG conversion efficiency (70%). Unsheltered outdoor drying was not

58



sufficient for an efficient gasification. Feedstocks with the least inherent moisture content (like
wood pellets: 8-9%wt moisture) enabled the most productive and steady plant operation [81].
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