Christel Baier

Véronique Bruyère

Thomas Colcombet

Laurent Doyen

Antonio Casares

Nathanaël Fijalkow

Stéphane Le Roux

Keywords: game theory, controller synthesis, games on graphs, zero-sum games, finite-memory determinacy, ω-regular

be tough to be as productive (in the long term).

Abstract: We study two-player zero-sum turnbased games on graphs, a framework of choice in theoretical computer science. Such games model the possibly infinite interaction between a computer system (often called reactive) and its environment. The system, seen as a player, wants to guarantee a specification (translated to a game objective) based on the interaction ; its environment is seen as an antagonistic opponent. The aim is to automatically synthesize a controller for the system that guarantees the specification no matter what happens in the environment, that is, a winning strategy in the derived game.

A crucial question in this synthesis quest is the complexity of strategies: when winning strategies exist for a game objective, how simple can they be, and how complex must they be? A standard measure of strategy complexity is the amount of memory needed to implement winning strategies for a given game objective. In other words, how much information should be remembered about the past to make optimal decisions about the future? Proving the existence of bounds on memory requirements has historically had a significant impact. Such bounds were, for instance, used to show the decidability of monadic secondorder theories, and they are at the core of state-ofthe-art synthesis algorithms. Particularly relevant are the finite-memory-determined objectives (for which winning strategies can be implemented with finite memory), as they allow for implementable controllers. In this thesis, we seek to further the understanding of finite-memory determinacy. We divide our contributions into two axes.

First, we introduce arena-independent finitememory determinacy, describing the objectives for which a single automatic memory structure suf-fices to implement winning strategies in all games. We characterize this property through languagetheoretic and algebraic properties of objectives in multiple contexts (games played on finite or infinite graphs). We show in particular that understanding the memory requirements in oneplayer game graphs (i.e., the simpler situation of games where the same player controls all the actions) usually leads to bounds on memory requirements in two-player zero-sum games. We also show that if we consider games played on infinite game graphs, the arena-independent-finitememory-determined objectives are exactly the ωregular objectives, providing a converse to the landmark result on finite-memory determinacy of ω-regular objectives. These results generalize previous works about the class of objectives requiring no memory to implement winning strategies.

Second, we identify natural classes of objectives for which precise memory requirements are surprisingly not fully understood. We introduce regular objectives (a subclass of the ω-regular objectives), which are simple objectives derived from regular languages. We effectively characterize their memory requirements for each player, and we study the computational complexity of deciding the existence of a small memory structure. We then move a step up in the complexity of the objectives and consider objectives definable with deterministic Büchi automata. We characterize the ones for which the first player needs no memory to implement winning strategies (a property called halfpositionality). Thanks to this characterization, we show that half-positionality is decidable in polynomial time for this class of objectives. These results complement seminal results about memory requirements of classes of ω-regular objectives. Son environnement est considéré comme un joueur antagoniste. Le but est de synthétiser automatiquement un contrôleur pour le système qui garantit la spécification peu importe le comportement de l'environnement, ce qui correspond à construire une stratégie gagnante dans le jeu dérivé.

Une question cruciale dans cette problématique de synthèse est celle de la complexité des stratégies : si des stratégies gagnantes existent, à quel point peuvent-elles être simples et à quel point doivent-elles être complexes ? Une mesure standard de complexité des stratégies est la quantité de mémoire nécessaire pour implémenter des stratégies gagnantes pour un objectif donné. En d'autres termes, quelle quantité d'information faut-il retenir au sujet du passé pour prendre des décisions optimales concernant le futur ? Des preuves de l'existence de bornes sur les besoins en mémoire ont historiquement eu un impact important. Par exemple, de telles bornes ont mené à des preuves de décidabilité de théories monadiques du second ordre, et sont au coeur de nombreux algorithmes efficaces pour la synthèse. Les objectifs déterminés à mémoire finie (c'est-à-dire ceux qui admettent des stratégies gagnantes se limitant à une mémoire finie) sont particulièrement pertinents, car ils mènent à l'existence de contrôleurs pouvant être implémentés en pratique. Dans cette thèse, nous cherchons à améliorer la compréhension de la détermination à mémoire finie. Nous distinguons deux axes dans nos contributions.

Premièrement, nous introduisons le concept de détermination à mémoire finie indépendante de l'arène, qui décrit les objectifs pour lesquels une unique structure automatique de mémoire suffit pour implémenter des stratégies gagnantes dans tous les jeux. Nous caractérisons cette propriété via des propriétés algébriques et de langages dans différents contextes (jeux joués sur des graphes finis ou infinis). Nous montrons en particulier que la compréhension des besoins en mémoire dans les jeux à un joueur (c'est-à-dire les jeux plus simples dans lesquels le même joueur contrôle toutes les actions) mène généralement à des bornes sur les besoins en mémoire dans les jeux à deux joueurs et à somme nulle. Nous montrons également que si l'on considère les jeux joués sur des graphes infinis, les objectifs déterminés à mémoire finie indépendante de l'arène sont exactement les objectifs ω-réguliers, ce qui fournit une réciproque au célèbre théorème de détermination à mémoire finie de ces objectifs. Ces résultats généralisent des travaux précédents au sujet des objectifs pour lesquels aucune mémoire n'est nécessaire pour les stratégies gagnantes.

Deuxièmement, nous identifions des classes naturelles d'objectifs pour lesquels les besoins en mémoire ne sont pas complètement établis. Nous introduisons les objectifs réguliers (une sous-classe des ω-réguliers), qui sont des objectifs dérivés de langages réguliers. Nous donnons une caractérisation effective des besoins en mémoire de ces objectifs pour chacun des joueurs, et nous étudions la complexité de décider de l'existence d'une petite structure de mémoire. Nous considérons ensuite des objectifs plus complexes définissables avec des automates de Büchi déterministes. Nous caractérisons ceux pour lesquels le premier joueur n'a besoin d'aucune mémoire pour implémenter des stratégies gagnantes (une propriété appelée semipositionnalité). Grâce à cette caractérisation, nous montrons que la semi-positionnalité est décidable en temps polynomial pour ces objectifs. Ces résultats complètent des travaux fondateurs sur les besoins en mémoire des objectifs ω-réguliers. Verifying properties of computer systems is a hard problem, even undecidable in many cases of interest [Tur]. A typical process using formal [Tur]: Turing (

), On Computable Numbers, with an Application to the Entscheidungsproblem methods has a modeling phase: one first designs an abstraction of the computer system, simplifying the system while extracting as many of the relevant features for the property being checked. One of the successes of formal methods is to identify classes of expressive models that are amenable to being verified with respect to classes of expressive properties, as well as design efficient algorithms that do so.

Model checking and synthesis. The traditional approach is then called model checking: given some model of a system and some specification of what the system should achieve, an algorithm is tasked with checking that the model indeed guarantees the specification no matter what happens in the environment (or, if stochasticity is used in the model, with a high enough probability). This approach assumes that the model represents a complete implementation of the system.

Another approach, which adds a layer of complexity, is synthesis. Synthesis starts from an incomplete implementation of a system, leaving some decisions to be made. To be complete, the system requires a controller that prescribes which actions to take in which situations. Given this incomplete description of the system, its environment, and a specification, the aim is to decide the existence of a controller for the system guaranteeing the specification and, if it does exist, automatically synthesize it. Correctness is then guaranteed by design of the controller. This is called the (reactive) synthesis problem. In this thesis, our goal is to contribute to the theoretical foundations of reactive synthesis.

Game theory. A reactive system is an object with some capabilities; there are actions that it can perform influencing its future. Through these actions, it wants to fulfill a specification. Nevertheless, some of the events that may happen in the system's environment are beyond the system's control; they are seen as uncontrollable. Through these observations, we can model the interaction between the system and its environment as a zerosum game. The computer system is a player, and a worst-case assumption is made about the environment, which is modeled as an antagonistic player. The specification is translated as a game objective. The system would like that the specification is guaranteed no matter what uncontrollable events happen in the environment. This corresponds to implementing a winning strategy for the objective in the derived zero-sum game opposing the system and the environment. The reactive synthesis problem can be reformulated as the quest to automatically construct winning strategies in the derived games, where the strategies correspond to controllers of the original system.

For the purpose of modeling possibly non-terminating systems, we assume that the interaction between the system and its environment lasts for an infinite duration. A reasonable way to encode a game objective is then to specify all infinite interactions between the system and the environment that are deemed acceptable with respect to the specification. This is usually done with logical formulas or automata.

The model. We consider games on graphs, which are central tools in theoretical computer science to model systems involving competing agents.

More specifically, we study two-player zero-sum games on graphs played in a turn-based fashion.

In such a game, a graph represents the various states of a system and the transitions between them. A pebble in some vertex of the graph indicates the current state of the system. Two players, called P 1 and P 2 , take turns moving the pebble along the edges of the graph. Exactly one player controls each vertex of the graph. Edges of the graph are labeled with colors from some given alphabet. We assume that the interaction between the players lasts for an infinite duration; as the pebble moves along the edges, it generates an infinite sequence of colors. Player P 1 wants to achieve an objective, which is specified as a set of infinite sequences of colors deemed acceptable; the antagonistic player P 2 , as a worst-case assumption, seeks to prevent this.

We consider a simple and practical example. Assume that a computer system wants to let a user define a new password. To do so, the user must correctly enter the same valid password twice in a row after being prompted by the system. If and only if the user has correctly entered the same password twice, the system must immediately follow by providing a confirmation to the user. The system (P 1) must therefore decide between prompting the user or confirming the inputs, based on the behavior of the user (P 2) who may either pass or fail the password verification. We model this as a game on a graph. We assume that the alphabet of colors is {prompt, confirm, pass, fail}. The graph modeling the interaction between the players is depicted in Figure .

. The system controls the actions from vertex 1 (where a choice can be made between prompt or confirm), and the user influences the action pass or fail from vertex 2 (we leave the implementation of the actual function checking the passwords out of this model).

Introduction

The players use strategies to describe their behaviors, which are mathematical objects that make decisions based on the current vertex and what happened previously. We are here interested in building a winning strategy for the system, i.e., a strategy guaranteeing the specification no matter what the user does. This winning strategy needs to remember some information about the past, consisting in the previous actions of the players. One way to remember part of this information is by using a state machine updating its state depending on the events happening in the game. In this example, it is relevant for the state machine to count the number of times pass appeared in a row without fail, between 0 and 2. We depict such a machine in Figure . . This state machine has three states 0 , 1 , and 2 . It is initialized in state 0 . When an event occurs in the interaction, the machine state is updated by "reading" the event along a transition. For instance, if event pass occurs when the state is 0 , the state is updated to 1 . By knowing that the current state is 1 , the system knows that one pass has been seen with no fail since.

If the system does not remember anything about the past, it cannot make optimal decisions, as it needs to output sometimes prompt and sometimes confirm depending on the previous events in the environment. But using additionally the information provided by this machine, the system may make optimal decisions: when in 0 or 1 , take action prompt; when in Introduction tions. We refer to [GTW ; BCJ] for a more detailed discussion about [GTW]: Grädel et about the existence of algorithms that could synthesize a logical circuit from mathematical specifications. The first answers came from works by Büchi [Büc], Landweber [BL], and Rabin [Rab], who showed the

Introduction

In all these works, both about logical theories and about reactive synthesis, a key element for decidability can be understood as follows: when a player has a winning strategy in a game, this player has a winning strategy that a finite-state machine can implement. This usually provides an upper bound on the number of strategies to consider. The study of how complex strategies need to be in order to implement winning strategies (if they exist) becomes central.

. Strategy complexity

Given a (two-player zero-sum) game on a graph, the first question one can ask is probably "which player can win?". More formally, this should be understood as "which player has a strategy that guarantees a win no matter how the opponent player behaves, i.e., a winning strategy?".

Obviously, in a zero-sum game on a graph, the players cannot both have a winning strategy from the same vertex. A surprising property of most reasonable games is that they are determined, i.e., from any initial vertex, one of the players has a winning strategy (the negation would be that all strategies of both players are countered by a strategy of their opponent). This result stems from the Borel determinacy result by Martin [Mar], [Mar]: Martin (

), Borel determinacy stating that every turn-based Borel game is determined. A game is Borel if the game objective is a Borel set, which goes well beyond -regular languages.

With that out of the way, we know that in most games (including all the ones we will consider in this document), from a given initial vertex, exactly one of the players has a winning strategy. How do we decide which player it is? Answering this question is called solving the game. A reasonable attempt at an algorithm would be to try to exhibit a winning strategy for a player. However, strategies are complex objects. In general, a player's strategy needs to consider what already happened in the game (for instance, by looking at the sequence of edges already taken), and, when it is the player's turn, it needs to return the next edge to follow. There are therefore infinitely many strategies, and a winning strategy may not have a finite representation. To bound the size of the search space, we need stronger properties than just determinacy. This is where finite-memory determinacy proves useful.

Introduction model to implement finite-memory strategies is a finite-state machine (more precisely, a Mealy machine [Mea]), which is roughly a finite automaton [Mea]: Mealy (

), A method for synthesizing sequential circuits that also outputs the action to take depending on the current vertex of the graph and the current machine state.

. Contributions

Our work starts from the observation that while there is a good understanding of memoryless determinacy in the literature (thanks to multiple characterizations and general sufficient conditions), this is not so much the case for finite-memory determinacy. Studying strategy complexity is a common staple in most works about zero-sum games on graphs, but there are few general results for strategies beyond memoryless ones.

We give a high-level overview of our contributions, which are aimed at remedying this observation, and which we divide into two parts. More precise statements and comparisons with the literature will be given in introductory chapters to each part, as well as in the introduction of each contribution chapter.

. . Characterizing finite-memory determinacy

In the first part of the thesis, titled Characterizing finite memory requirements, our goal is to provide practical characterizations of finite-memory determinacy of game objectives. We strive for generality: we want our results to encompass as many objectives as possible. We will see that there are multiple kinds of finite-memory determinacy. In order to be more specific, we define what we mean by a finite-memory strategy: a finite-memory strategy consists of a memory structure: roughly, a deterministic automaton keeping track of some information based on the alphabet symbols already seen (the information it provides is given by its current state), and a next-action function, prescribing the actions to take depending on the graph vertex and the memory structure state.

In its more general meaning, finite-memory determinacy of an objective requires that in all graphs, both players can implement winning strategies for this objective with finite-memory strategies.

Arena-independent finite-memory determinacy. We identified a valuable strengthening of finite-memory determinacy which we called arenaindependent finite-memory determinacy. This property of an objective requires that players can implement winning strategies with finite-memory strategies whose memory structure can be taken as the same in all game graphs using this objective. Such a memory structure can then depend on parameters of the objective, but not parameters of the game graph (called the arena) in which the game is played. The information that the memory structure can use to update its state can then not be elements observed in arenas (such as vertices and edges), but letters of the alphabet on which the objective is defined (this alphabet is called the set of colors). This leads to the convenient notion of chromatic memory structures, which can be instantiated without considering specific arenas. The idea of chromatic memory structures was already developed by Kopczyński in his PhD thesis [Kop]. [Kop]: Kopczyński (),

Half-positional Determinacy of Infinite Games

Naturally, the winning strategies built on top of these chromatic memory structures will then depend on the actual game graphs for their next-action functions. Compared to the more general finite-memory determinacy, arena-independent finite-memory determinacy inverts the order of the quantifiers: there must exist a "uniform" memory structure such that in all graphs, there exist winning strategies using the memory structure.

Memoryless determinacy is a special case of arena-independent finitememory determinacy: the memory structure used by the memoryless strategies is always the trivial structure with a single state. Arenaindependent finite-memory determinacy, despite being less general than finite-memory determinacy, applies to many objectives, including allregular ones. One of the main interests of this kind of determinacy is that we were able to extend (with some work) techniques usually applicable for the more precise memoryless determinacy. In particular, we generalized results about memoryless determinacy of games played on finite graphs by Gimbert and Zielonka [GZ] and of games played on infinite graphs [GZ]: Gimbert et Finite game graphs, one-to-two-player lifts. For games on finite graphs, one of our main contributions is a practical result: to show arenaindependent finite-memory determinacy of an objective, it suffices to show the property in the one-player games of both players. A one-player game is simply a game in which the same player controls all vertices -it is an edge-labeled graph. Finding a winning strategy in a one-player game (when it exists) simply consists of finding a winning path in the graph, with no need to take into account the opponent's behavior. This reasoning is graph-theoretic, which is simpler than corresponding game-theoretic reasonings for the same objective. We call such a result a one-to-two-player lift, as to understand (a kind of) strategy complexity of two-player zerosum games, it suffices to understand the strategy complexity of one-player games, which is conceptually easier.

The first such result was formulated for memoryless determinacy of games played on finite graphs in [GZ] (i.e., to show memoryless determinacy of an objective over finite graphs, it suffices to show the property in the one-player games on finite graphs of both players). Our result is an extension of it to the broader arena-independent finite-memory determinacy, with a relatively small increase in memory when going from one-player to two-player games: the product of the memory structures sufficient in the one-player games of each player suffices for both players in two-player games. Unfortunately, we also show that such a one-to-two-player lift for the more general finite-memory determinacy does not hold: there exists a game objective for which both players have finite-memory strategies (whose memory structure depends on the graph) in their one-player games, but infinite memory is required for a player in some two-player game. Considering arena-independent finite-memory determinacy is therefore a natural restriction to preserve this powerful result. The lift is obtained through a characterization of arena-independent finite-memory determinacy using two language-theoretic properties.

Results similar to this one-to-two-player lift will be a common thread in An overview of all the versions of this one-to-two-player lift is provided in Subsection . . of the conclusion.

our work, with alternate versions of it holding in other contexts, and with strengthenings available for more specific classes of objectives. We further the idea that strategy complexity of two-player zero-sum games often reduces to the simpler strategy complexity of one-player games, also developed by others [GZ ; Kop ; GZ ; Koz b].

Introduction parity automaton based on its memory requirements and on its right congruence.

As a by-product, we once again obtain a one-to-two-player lift: it suffices to check arena-independent finite-memory determinacy of an objective in infinite one-player game graphs (of both players) to guarantee it in infinite two-player game graphs. However, compared to the previous lift for games played on finite graphs, there is a slightly greater memory increase when going from one-player to two-player games.

. . Precise memory requirements

We have up to now discussed characterizations of arena-independent finite-memory determinacy in various contexts. Despite being of wide applicability with respect to objectives, these results do not always provide tight memory requirements for each player; they usually only provide upper bounds on the size of the memory structures needed to implement optimal strategies. Moreover, these upper bounds do not distinguish the two players, even though their memory requirements can vary wildly. This is the case for the famous Rabin conditions [KK], for which the first player [KK]: Klarlund et al. (

),

Rabin Measures and Their Applications to Fairness and Automata Theory

does not need memory to implement winning strategies, but for which the second player, playing for a Streett condition, requires exponential memory [DJW]. In the second part of the thesis, titled Obtaining precise [DJW]: Dziembowski et al.

(), How Much Memory is

Needed to Win Infinite Games?

memory requirements, we consider more precise classes of objectives in order to obtain more precise memory requirements.

Missing pieces for -regular objectives. Our choice for these classes stems from the following observation: the memory requirements of -regular objectives are still not completely settled. They are completely settled for the well-known class of Muller conditions through various characterizations [DJW ; Cas ; CCL]; yet, this only provides an upper bound [Cas]

On the Size of Good-For-Games Rabin Automata and Its Link with the Memory in Muller Games

on the memory requirements of other -regular objectives. Indeed, an arbitrary -regular objective can be represented as a Muller condition only by adjoining it to an automatic structure (yielding a Muller automaton).

The minimal memory structures that also take into account the automatic structures are not well-understood.

information that must be remembered to realize a word from a regular language?").

Only the strategy complexity of regular safety objectives (for an alternate memory model discussed in Chapter) was studied in [CFH ; CFH]. We characterize the memory requirements of these objectives through decidable language-theoretic properties (both for the player trying to achieve the regular reachability objective and its opponent). We also prove that, given a deterministic finite automaton as an input, it is NP-complete to decide the existence of a sufficient memory structure with a given number of states. In other words, it is not possible to find a smallest memory structure in polynomial time unless P = NP. We implemented the search for a smallest memory structure using a SAT solver.

In addition to these regular objectives, we also discuss the extension of our results to topologically open and closed objectives, which are natural generalizations of regular objectives through a topological point of view.

Deterministic Büchi automata. Despite being a novelty with regard to memory requirements, regular objectives are still far from covering all -regular objectives. To get closer to general -regular objectives, we considered automata giving rise to more complex objectives: the deterministic Büchi automata. We do not show precise memory requirements, but we characterize those recognizing objectives for which P 1 has memoryless winning strategies. This property is weaker than memoryless determinacy as it is not required that P 2 also has memoryless winning strategies, and is often called half-positionality [Kop ; BFMM]. Our characterization [Kop]: Kopczyński (),

Half-Positional Determinacy of Infinite Games

[BFMM]: Bianco et al. (

),

Exploring the boundary of halfpositionality consists of three conditions; two of them are inherited from the study of regular objectives, and are still necessary conditions. However, their conjunction is not sufficient anymore in this larger class of objectives. We add a third condition (related to the right congruence and Myhill-Nerode theorem) that was previously useful for the learning of languages [AFS ; AF], but that was not shown to be linked to strategy complexity. Together, [AFS] Regular -languages with an informative right congruence the three conditions are equivalent to half-positionality of objectives recognizable by deterministic Büchi automata. This characterization is shown to be effective and provides a way to decide the half-positionality of objectives recognizable by deterministic Büchi automata in polynomial time.

Unlike memoryless determinacy, results about half-positionality were mostly sufficient conditions and not characterizations [Kop ; BFMM]. In particular, they do not encompass all half-positional objectives recognized by deterministic Büchi automata. This situation changed recently with a characterization of half-positionality over infinite game graphs by Ohlmann [Ohl], but this characterization is still difficult to apply [Ohl]: Ohlmann (objectives) one-to-two-player lifts stronger than the general ones from the first part. First, we show that the memory requirements of a single player in its own one-player games are exactly the same as in its two-player games (with no need to intertwine it with the memory requirements of the opponent). Secondly, we show that there is no difference between the memory requirements in finite and infinite game graphs. Combined, these results tell us that for these subclasses of -regular objectives, the memory requirements in one-player games on finite graphs are the same as in two-player games on graphs of arbitrary cardinality.

. Outline

High-level structure. Each of the two parts of this thesis includes three chapters (respectively Chapters , , and and Chapters , , and). The first chapter of each part consists in a motivation of the problems that the part addresses and the answers that it provides. It also contains a more precise discussion of the related literature focused on the problems at hand in addition to the references discussed above. The other two chapters in each part contain our main contributions. The chapters containing our contributions are all structured in a similar fashion, containing at least one section for each of the following items:

notations and preliminaries about notions mainly used in the current chapter, complementing global preliminaries from Chapter ; an overview of our results and contributions; detailed proofs of the results.

Chapter content. Chapter contains the main preliminaries for the whole thesis: we formally introduce the model of games on graphs, some classical objectives, definitions of classes of strategies, and definitions of kinds of determinacy.

The next three chapters constitute the part Characterizing finite memory requirements.

In Chapter , we introduce our contributions about characterizing objectives with finite memory requirements. We present existing works about memoryless determinacy, justify the relevance of arenaindependent finite-memory determinacy, and sketch our results from the next two chapters.

In Chapter , we characterize arena-independent finite-memory determinacy of games played on finite graphs. We provide both a language-theoretic characterization and a practical one-to-two-player lift, generalizing results from [GZ] [GZ]: .

In Chapter , we characterize arena-independent finite-memory determinacy of games played on arbitrary graphs. We find that objectives with this property are exactly the -regular ones, which provides a converse to the finite-memory determinacy of -regular objectives, and generalizes results from [CN] about a characteri-[CN]: Colcombet et al.

(

), On the positional determinacy of edge-labeled games zation of memoryless determinacy. This allows relating the memory requirements of an objective with its representation as a deterministic parity automaton. Results from this chapter originate from a collaboration with Patricia Bouyer and Mickael Randour [BRV a; BRV]. [BRV a The part Obtaining precise memory requirements is then contained in the next three chapters.

In Chapter , we describe what is still unknown about the memory requirements of -regular objectives, despite the extensive literature on the topic. We argue that to go further, we need to understand memory requirements of the -regular objectives requiring representations with a non-trivial automaton structure. In Chapter , we introduce regular objectives as the subclass of theregular ones definable with a simple deterministic finite automaton. We characterize precisely the memory requirements of regular objectives (for both players) and show that deciding the existence of small memory structures given an input automaton is NP-complete.

Results from this chapter originate from a collaboration with Patricia Bouyer, Nathanaël Fijalkow, and Mickael Randour [BFRV].

[BFRV]: Bouyer et al. (), How to Play Optimally for Regular Objectives?

In Chapter , we consider the broader class of -regular objectives recognizable by deterministic Büchi automata. We characterize exactly those for which P 1 needs no memory to play optimally, and show that this property is decidable in polynomial time. Results from this chapter originate from a collaboration with Patricia Bouyer, Antonio Casares, and Mickael Randour [BCRV].

[BCRV]: In Chapter , we naturally end the thesis with a concluding part, summarizing our contributions and emphasizing some prospects and leads for the future. Reading tips. The contributions chapters are written to be readable as independently as possible; their results can be understood simply by reading the general preliminaries (Chapter) and the introductory chapter from their part. Naturally, links between chapters are still frequently established to make this document a consistent whole, but they should not prevent the reader from grasping the main contributions of each part. Notably, a proof in Chapter uses a general theorem of Chapter , some motivations in Chapter stem from the limits of the general results of the first part, and some technical arguments necessary for Chapter already appear in Chapter . The dependencies between chapters are depicted in Figure . . If you ever feel lost, two features of this thesis may help you. First, Subsection . . summarizes most properties defined in this thesis and their implications related to strategy complexity. Secondly, a table of notations encompassing all frequently used notations is available on page .

This thesis was composed using the L A T E X class kaobook. One of its main This class can be downloaded at https://github.com/fma rotta/kaobook.

features is the ability to add comments in the margin, replacing footnotes.

Comments are aligned horizontally with the content they refer to as much as possible. Short versions of the bibliographic references are also printed in the margin; a complete bibliography is of course available at the end of the document.

Two-player turn-based games on graphs

This chapter introduces turn-based games on graphs, which constitute the main mathematical framework underlying this thesis. We focus on twoplayer zero-sum games of infinite duration, a prevalent model to describe the possibly never-ending interaction between a player seeking to achieve an objective and its antagonistic opponent. Notions and notations defined here are used throughout multiple chapters of this thesis. We start with some classical mathematical concepts and then move on to our models of games, objectives, strategies, and determinacy.

. Mathematical notations

We respectively denote by ℕ, ℤ, ℚ, and ℝ the sets of natural numbers (starting at 0), integers, rational numbers, and real numbers.

Given a set , we define * as the set of finite sequences of elements of , + as the set of non-empty finite sequences of elements of , and as the set of infinite sequences of elements of .

. Game arenas

Let be a non-empty alphabet of colors. We assume throughout this document that there is always a quantified set of colors, which is sometimes instantiated in examples.

We study zero-sum turn-based games on graphs involving two players interacting for an infinite duration. The two players are called P 1 and P 2 . Players play on arenas, which are graphs such that each vertex is controlled by either P 1 or P 2 . Intuitively, a configuration of the game is specified by some current vertex of the arena, and P 1 (resp. P 2) decides on the next vertex following an edge of the arena when the current vertex is controlled by P 1 (resp. P 2). We also label the edges of arenas with colors from , which will be used later to specify game objectives. Observe that we take the convention that edges are colored, and not vertices (both formalisms are common in the literature).

Definition . .

Qualifiers between parentheses in definitions will usually not be recalled but always apply to the object being defined, unless otherwise specified. In this case, all arenas in this thesis are -colored and twoplayer, and all edges arecolored by default.

A (-colored two-player) arena is a tuple A = (, 1 , 2 ,) where is a non-empty set of vertices such that = 1 2 (symbol denotes a disjoint union) and ⊆ × × is a set of (-colored) edges.

Let A = (, 1 , 2 ,) be an arena. If = (, ,) ∈ , we denote by in(), by col(), and by out(); i.e., for all edges ∈ , we have = (in(), col(), out()). Vertices in 1 are controlled by P 1 and vertices in 2 are controlled by P 2 . We assume that arenas are non-blocking ("deadlockfree"), i.e., that for all vertices ∈ , there is at least one edge ∈ such that in() = . In particular, | | ≥ | |. This guarantees that the interaction between players can always be prolonged, as an edge will always be available in every vertex. This assumption is a technical convenience to avoid having to consider both finite and infinite interactions; in practice, a blocking vertex can be made non-blocking by adding a self-loop to it (this change may require tweaking the set of colors or the objective to preserve the expected winner in every situation).

An arena is finite if it has finitely many vertices and edges, is countable if it has countably many vertices and edges, and is finitely branching if for Two-player turn-based games on graphs 2 3 1

Figure . :

A finite arena A. Circles are always used to depict vertices controlled by P 1 (i.e., vertices in 1) and squares for vertices controlled by P 2 (i.e., vertices in 2) (all graphical conventions are summed up on page).

all ∈ , there are finitely many edges ∈ such that in() = . Unless otherwise specified, arenas are allowed to be of any cardinality with no restriction on branching. Some results will only apply to restricted classes of arenas, but this will then be specified explicitly.

We give an example of an arena, which we also use to explain the graphical conventions to represent arenas.

Example . . We consider an arena A = (, 1 , 2 ,) depicted in Figure . . This arena has three vertices (= { 1 , 2 , 3 }), two of which are controlled by P 1 (1 = { 1 , 2 }, depicted by circles) and one by P 2 (2 = { 3 }, depicted by a square). It has five edges

(= {(1 , , 2), (2 , , 3), (3 , , 3), (3 , , 2), (2 , , 1)}). Arena A is finite.
To describe finite and infinite interactions of P 1 and P 2 in an arena, we use respectively histories and plays.

Definition . . A history of arena

A = (, 1 , 2 ,
) is a finite sequence = 1 . . . ∈ * such that for all such that 1 ≤ ≤ -1, we have out() = in(+1).

History = 1 . . . ∈ * is from if in(1) = .
For convenience, we assume that for all vertices ∈ , there is a distinct empty history -this permits specifying an initial vertex even when no edge has been taken yet. The set of all histories of an arena A is denoted by Hists(A). We extend functions in and out to histories in a natural way: if = 1 . . . is a history, we write in() for in(1) and out() for out(). For an empty history , we assume that in() = out() = .

For ⊆ , we write Hists(A,) for the set of histories of A such that in() ∈ . For ℓ ∈ {1, 2} (indicating the index of a player), we write Hists ℓ (A) for the set of histories on A such that out() ∈ ℓ : these are the histories that have reached a vertex of the arena controlled by P ℓ .

Definition . . A play of arena

A = (, 1 , 2 ,) is an infinite sequence = 1 2 . . . ∈ such that for all ≥ 1, out() = in(+1). Play = 1 2 . . . ∈ is from if in(1) = .
For a play = 1 2 . . ., we once again define in() = in(1). The set of all plays of arena A is denoted by Plays(A). If = 1 . . . ∈ * is a history (resp. = 1 2 . . . ∈ is a play), we write col * () (resp. col ())

Two-player turn-based games on graphs for the finite sequence col(1) . . . col() ∈ * (resp. the infinite sequence col(1)col(2) . . . ∈).

Example . . In the arena of Figure . , the finite sequence

= (2 , , 3)(3 , , 3)(3 , , 2)(2 , , 1
) is a history from 2 . Also, is in Hists 1 (A) as it ends in 1 , which is a vertex of 1 , controlled by P 1 . We have col * () = . The infinite sequence = (2 , , 3)(3 , , 3) (used as a shorthand for the infinite sequence (2 , , 3)(3 , , 3)(3 , , 3) . . . with (3 , , 3) repeated ad infinitum) is a play of A from 2 such that col () = .

We will often study a special kind of arenas in which the same player controls all the vertices.

Definition . . An arena

A = (, 1 , 2 ,) is a one-player arena of P 1 (resp. of P 2) if 2 = ∅ (resp. 1 = ∅).
Such arenas are often easier to study than "two-player" arenas, as there is no game-theoretic reasoning involved: in a one-player arena of P ℓ , P ℓ can decide alone what play is produced with no influence from its opponent.

. Strategies

We specify the behavior of each player using strategies. A strategy describes how a player behaves in any situation in which this player has to react.

Let A = (, 1 , 2 ,) be an arena and ℓ ∈ {1, 2} be the index of a player.

Player P ℓ has to play a move every time the current history reaches a vertex controlled by P ℓ , i.e., when this history is in Hists ℓ (A). In such a situation, the only constraint for the move chosen by P ℓ (consisting in the next edge in to follow) is that it starts from the current vertex. We formalize these observations in the following definition.

Definition . .

A strategy is usually denoted by symbol , and the occasional ℓ ∈ {1, 2} subscript is simply used to help the reader remember to which player this strategy belongs.

A strategy of P ℓ on A is a function ℓ :

Hists ℓ (A) → such that for all ∈ Hists ℓ (A), out() = in(ℓ ()).
Once a strategy of P ℓ is fixed, there may yet be multiple possible plays, depending on the strategy used by the opponent of P ℓ . These plays are the ones that are consistent with the strategy.

Definition . . Given a strategy ℓ of P

ℓ on A, a play = 1 2 . . . ∈ Plays(A) is consistent with ℓ if for all finite prefixes = 1 . . . of such that out() ∈ ℓ , ℓ () = +1 .
For ∈ , we denote by Plays(A, , ℓ) the set of plays on A from that are consistent with ℓ . Notice that when A is a one-player arena of P ℓ , the set Plays(A, , ℓ) is a singleton. Indeed, as the opponent of P ℓ has then no choice to make, a strategy of P ℓ always determines a single play from in a deterministic manner. We write Plays(A, , 1 , 2) for the singleton set containing the unique play consistent with a couple of strategies 1 , 2 of the two players (always writing the strategy of P 1 first).

The set of plays consistent with a strategy ℓ coincides exactly with the set of the plays that the opponent can induce against this strategy. Lemma . . Let A = (, 1 , 2 ,) be an arena, ∈ , and 1 be a strategy of P 1 on A. We have

Plays(A, , 1) = strategy 2 of P 2 on A Plays(A, , 1 , 2).
Proof. Any play that is consistent with both 1 and 2 is in particular consistent with 1 , which shows the right-to-left inclusion.

Reciprocally, let = 1 2 . . . ∈ Plays(A, , 1). We define a strategy 2 of P 2 on A such that, when 1 . . .

∈ Hists 2 (A), 2 (1 . . .) = +1 .
Strategy 2 is defined arbitrarily on the other histories. By construction,

Plays(A, , 1 , 2) = { }.
Remark . . We consider here pure strategies, that is, strategies that do not resort to randomization. In some contexts, it makes sense to define strategies as functions Hists ℓ (A) → Dist(), where Dist() denotes the set of distributions over . We can then wonder about the existence of almost surely winning rather than surely winning strategies. There are many interesting questions about this alternate model, but this is not the central focus of this thesis -we will briefly mention some of these questions in Section . .

. Objectives and games

In order to make games interesting, we need to give each player a purpose. We do so by defining game objectives.

An objective is simply a way to describe the outcomes or behaviors that are deemed favorable by P 1 : it is a set of infinite words on alphabet , i.e., a subset of . For such an objective, P 1 wins when the infinite word resulting from the infinite interaction with P 2 is in this set. As games are zero-sum, the objective of P 2 is then to obtain an infinite sequence of colors not in this set. A game endowed with an objective, after the two players have interacted for an infinite duration, is either won by P 1 and lost by P 2 , or won by P 2 and lost by P 1 . Such objectives are called qualitative (or sometimes Boolean or win-lose), as they are either won or lost by a player.

Two-player turn-based games on graphs

Definition . . A (qualitative) objective is a set

⊆ .

An objective is sometimes called a winning condition in the literature, hence the letter .

A more general way to encode a purpose for the players is to define a preorder on , which specifies which infinite words are preferable for P 1 . This more general formalism will only be used in Chapter , so we defer its introduction to this moment.

Given an objective , we write = \ for its complement. When an objective is clear in the context, a word ∈ is called winning (for P 1), while a word ∈ is called losing (for P 1).

The reason to define objectives using colors and not directly using vertices or edges of arenas (as is also often done) is that it allows asking questions about objectives (e.g., what properties does it satisfy?) with no need to instantiate arenas.

A game is then simply the combination of an arena (describing the possible interactions between the players) and an objective (describing the goal of P 1). The goal of the antagonistic opponent P 2 is implicit and is the complement of this objective, as we consider zero-sum games.

Definition . . A (qualitative) game

The generalization of the notion of objective considered in Chapter will bring us to define quantitative games.

is a tuple G = (A,) where A is an arena and is an objective.

We refer to a game as one-player if it is played on a one-player arena.

. . Optimality and determinacy

Let G = (A = (, 1 , 2 ,),) be a game, and ∈ be a vertex of the underlying arena.

Definition . . A strategy

1 of P 1 on A is winning from for P 1 in G if for all ∈ Plays(A, , 1), col () ∈ .
This definition of winning strategy simply means that no matter how P 2 behaves, 1 guarantees the win of P 1 . When the objective is clear from the context, we often say that a strategy is winning from for P 1 in A.

We define a corresponding notion for the opponent P 2 : we say that a strategy 2 of P 2 on A is winning from for P 2 in G if for all ∈ Plays(A, , 2), col () ∈ . This is the same definition, but using the complement objective .

The winning region of a player in G is the set of vertices of A from which this player has a winning strategy.

Given a game and an arena vertex, the players cannot both have a winning strategy from this vertex. Yet, a property that is not immediate is that at least one player has a winning strategy from the vertex; indeed, every strategy of a player could be "countered" by a strategy of its opponent. When an objective admits a winning strategy for either of the players in all arenas from all vertices, we say that it is determined.

Definition . . An objective

is determined if for all arenas A = (, 1 , 2 ,), for all vertices ∈ , either P 1 or P 2 has a winning strategy from in game G = (A,).

Martin [Mar] showed the very general result that all Borel objectives are [Mar] , which are specified by an objective but not played on an arena. Still, the additional constraints from an arena (even an infinite one) and an initial vertex can be encoded into the objective while preserving its Borel property.

considered throughout this thesis are Borel (and are usually quite low on the Borel hierarchy) and are therefore determined.

As a convention, we will not only be looking for strategies that win from a single vertex, but that win from every vertex of the winning region. We call such strategies optimal, which is sometimes called uniformly winning or uniformly optimal.

Definition . . For ℓ ∈ {1, 2}, a strategy of P ℓ is (uniformly) optimal for P ℓ in G = (A,) if it is winning from all the vertices of A from which P ℓ has a winning strategy, i.e., from all the vertices of the winning region of P ℓ .

We often write optimal for P ℓ in A if the objective is clear from the context. Remark . . We stress that this notion of optimality requires a single strategy to be winning from all the winning vertices (even when we do not specify "uniformly" in what follows). In general, as strategies may observe the initial vertex, a player can always build an optimal strategy by taking the "union" of the winning strategies for each vertex of its winning region. However, asking for uniformity may require strategies that are more complex to implement than if we just required winning strategies from individual vertices (classes of complexity of strategies will be defined in Section .). Uniformity is a common requirement (see, e.g., [GZ ; KMS + ; Ohl] [GZ]: . We will come back to this definition and discuss in more depth what is the (mostly small) difference of requiring uniformity in Section . of Chapter , when we are armed with more tools.

. . Common examples of objectives

We give some examples of simple objectives. We will often use these as building blocks to study more complex objectives.

We first define two objectives that simply consist of seeing a specified color once or infinitely many times. is the set of infinite words that see at least once; i.e.,

Reach() = { 1 2 . . . ∈ | ∃ ≥ 1, = }.
The complement of a reachability condition is called a safety condition. The safety condition Safe() is the objective consisting of the infinite words that see no , i.e., Reach().

Definition . . If ∈ , the Büchi condition Büchi() ⊆ is the set of infinite words that see infinitely often; i.e.,

Büchi() = { 1 2 . . . ∈ | ∀ ≥ 1, ∃ ≥ , = }.
Example . . Let = { , }. In the arena of Figure . , the winning region of P 1 is { 1 , 3 } for objective Reach(), { 4 } for objective Safe(), and { 3 } for objective Büchi(). Interestingly, P 1 cannot win for objective = Reach()∩Reach() (even from 1), as P 2 may observe the first edge chosen by P 1 and take the edge with the same color in 2 , guaranteeing that P 1 will not see both and .

A central objective for reactive synthesis (for instance, as any linear-time temporal logic specification [Pnu] can be reduced to it with some work) [Pnu] is the set of infinite words such that the maximal color they see infinitely often is even, i.e., Some authors also use lim inf to define the parity condition, but we opt for the lim sup convention throughout the document.

Parity

() = { 1 2 . . . ∈ | lim sup →∞ is even}.
Note that as is finite for parity conditions, lim sup →∞ is always a well-defined natural number between 0 and .

The parity condition is concerned about the largest color seen infinitely often. It is a special case of a Muller condition, which is concerned about which colors are seen infinitely often.

Two-player turn-based games on graphs

Definition . . Let be a finite set of colors, and F ⊆ 2 .

Notation 2 refers to the power set of .

The Muller condition Muller(F) ⊆

is the set of infinite words whose set of colors seen infinitely often is exactly an element of F, i.e.,

Muller(F) = { ∈ | { ∈ | ∈ Büchi()} ∈ F }.
We also define a mean-payoff objective. Taking colors as numbers, we look at the "average color seen" of an infinite word; formally, we consider the limit of the averages of the finite prefixes. We take the limit superior to avoid definability issues. We assume that P 1 wants to keep the average above some threshold, which we take to be 0.

For objectives considering the value of some quantity, we take the convention that P 1 prefers high values and P 2 prefers low values.

Definition . .

For ⊆ ℚ, the mean-payoff function is the function

MP : → ℝ such that MP(1 2 . . .) = lim sup →∞ 1 =1 .
The mean-payoff objective (with threshold 0) is then defined as

MP ≥0 = { ∈ | MP() ≥ 0}.
We will see other ways to specify complex objectives using automata in Section . .

. Classes of simple strategies

A strategy of P ℓ , which is a function ℓ : Hists ℓ (A) → , may be hard to describe: the set Hists ℓ (A) is usually infinite (even when A is finite), and there is no guarantee that there is a nice and finite description of ℓ . Moreover, in practical applications (e.g., for synthesis), even in cases where a strategy can be described in a finite way, it may still be hard to implement.

Our goal here is to understand the contexts (which players, which objectives, which arenas?) for which simple strategies suffice to play optimally -in other words, for which there is no need to resort to complex, hardto-implement strategies in order to win when winning is possible. We therefore need to define some notion of complexity of strategies. We use here a standard notion of complexity of strategies based on a simple automata-theoretic model. It is roughly similar to Mealy machines [Mea], [Mea]: Mealy (

), A method for synthesizing sequential circuits which are deterministic finite automata storing information, with additional outputs that can be used to describe the action taken by the players in the arenas. Syntactically, we split the Mealy machines into these two parts: the memory structure describes the deterministic finite automata, and the next-action function describes the action of the players. When a strategy can be implemented with a (finite) Mealy machine, we say that it Two-player turn-based games on graphs can be implemented with finite memory. We can then classify strategies in multiple classes that are more or less difficult to implement based on the answers to the following questions:

is it possible to implement it with finite memory? if yes, how many states are needed to implement it as such?

. . Finite-memory strategies colors seen in the game. We extend notation upd to sequences of colors in * in a natural way: we define * upd : × * → by induction on the length of finite words to be such that for all ∈ , * upd (,) = ,

We recall that is the empty word.

inductively, for all ∈ and ∈ * × , * upd (,) = upd (* upd (,),). A memory structure is used to store information: its state is updated depending on the colors that are seen while playing the game, and the current state is used to provide information in order to make decisions. In order to make a memory structure into a finite-memory strategy, we define a next-action function on top of it.

Definition . . For M = (, init , upd) a memory structure, a strategy ℓ of P ℓ on arena A is based on (memory) M if there exists a next-action function

nxt : ℓ × →
such that for all histories ∈ Hists ℓ (A),

ℓ () = nxt (out(), * upd (init , col * ())). (.)
In other words, this definition requires that the decision made by strategy ℓ always corresponds to the decision of nxt for the current arena vertex and the current memory state. For conciseness, when M is clear in the Example . . Let = { , }. We consider objective = Büchi() ∩ Büchi() consisting of the infinite words that see both and infinitely often (is also equal to Muller({{ , }})). In the arena . (left), P 1 has many winning strategies from that may be complex to express (for instance, P 1 wins by inducing word 2 3 . . .). Yet, P 1 also has a winning strategy using the memory structure M with only two states depicted on the right of the figure. This memory structure remembers whether or was just seen throughout a game thanks to its two states: in 1 , either the game just started or was just seen, and in 2 , was just seen. Using next-action function nxt : 1 × { 1 , 2 } → defined by nxt (, 1) = (, ,) and nxt (, 2) = (, ,), P 1 induces the winning word () . For this objective, upcoming results will imply that in any arena (not only in this simple one with a single vertex), this memory structure with two states suffices to implement optimal strategies for P 1 .

A = (= { }, 1 = { }, 2 = ∅, = {(, ,), (, ,)}) of Figure
Strategies based on a memory structure respect the intuition that "adding information is never detrimental". One way to add information is to take the (direct) product of a memory structure with another one.

Definition . . Let

M 1 = (1 , 1 init , 1 upd) and M 2 = (2 , 2 init , 2
upd) be two memory structures. We define their product M 1 ⊗ M 2 as the memory structure M = (, init , upd) obtained as follows:

= 1 × 2 , init = (1 init , 2 init), and, for all 1 ∈ 1 , 2 ∈ 2 , ∈ , upd ((1 , 2),) = (1 upd (1 ,), 2 upd (2 ,)).
That is, the memory structures are updated in parallel when a color is read. The same strategies can always be played with more information.

Lemma . . Let ℓ be a strategy of P ℓ on A. If ℓ is based on a memory structure M, then for all memory structures M , ℓ is also based on M ⊗ M .

Proof. We write A = (, 1 , 2 ,). We assume that ℓ is based on M = (, init , upd), with next-action function nxt : ℓ × → . Let M = (, init , upd). We simply define the next-action function nxt : ℓ × (×) → that ignores the extra information given by M , i.e., such Two-player turn-based games on graphs that nxt (, (,)) = nxt (,). This next-action function induces the same strategy as ℓ and witnesses that ℓ is also based on M ⊗ M .

. . Memoryless strategies

We discuss an interesting subclass of finite-memory strategies that are arguably the simplest possible strategies. We let

M triv = ({ init }, init , (init ,) ↦ → init)
Memory structure M triv can be simply depicted as init .

denote the only "trivial" memory structure with a single state.

Definition . . A strategy is memoryless if it is based on the trivial memory structure M triv .

For conciseness, we sometimes abusively assume that a memoryless strategy of P ℓ is a function ℓ → (exactly as we did above for function nxt , except that we omit to specify set since it is a singleton).

. Flavors of finite-memory determinacy

We aim to understand the objectives for which finite-memory strategies suffice to play optimally and, when that is the case, how complex the strategies must be. In this section, we discuss precisely what it means.

. . Memoryless determinacy

We start with the simple memoryless strategies. In what follows, every variant of determinacy can be instantiated on multiple classes of arenas; common ones are the classes of finite arenas, countable arenas, finitely branching arenas, one-player arenas, or combinations of these qualifiers.

Definition . . An objective is memoryless-determined (over resp. finite, countable, finitely branching, one-player arenas) if for all (resp. finite, countable, finitely branching, one-player) arenas A, P 1 and P 2 have a memoryless optimal strategy in game (A,).

A common term in the literature to express that P 1 (but not necessarily P 2) has memoryless optimal strategies for an objective is half-positionality of the objective [Kop] (positional is often used in the literature for memoryless).

[Kop]: Kopczyński (),

Half-Positional Determinacy of Infinite Games

We will use this terminology in Chapter .

Remarkably, memoryless determinacy, despite being a very strong kind of determinacy, holds for many classical objectives.

Two-player turn-based games on graphs

Theorem . . (Folklore) Reachability, safety, and Büchi conditions are memoryless-determined.

See [BCJ] for proofs of memoryless determinacy for these objectives.

[BCJ]: Bloem et al. (),

Graph Games and Reactive Synthesis

For synthesis, perhaps the most well-known and useful objective is the parity condition, which is partly due to its memoryless determinacy, first proved by Emerson, Jutla, and Mostowski [EJ ; Mos]. Note that for the above examples, memoryless determinacy holds over arenas of arbitrary cardinality.

On the other hand, the mean-payoff objective MP ≥0 is memorylessdetermined over finite arenas [EM], but not over arbitrary arenas [Put]. We will see a proof of the memoryless determinacy of MP ≥0 , as well as an example of an infinite arena in which P 1 can win but not with a memoryless strategy in Section . .

Theorem . . ([EM])

The mean-payoff objective is memoryless-determined over finite arenas. The only difference with the chromatic memory model presented above is in the update function; upd : × → observes not just the colors, but also the full edges. As edges contain the color seen (they are elements in × ×), observing edges is syntactically more powerful. In practice, this means that during a game, the chromatic memory model only observes the sequence of colors seen, whereas the chaotic memory model observes the sequence of edges seen (i.e., the current memory state is determined by the word in * for the former and by the history in * for the latter). The definition of strategy based on M (Definition . .) also works with a chaotic memory structure for an arena by adjoining it to a next-action The only difference is in Equation (.), where col * () should be replaced by .

. . Chromatic versus chaotic memory structures

function.

Two-player turn-based games on graphs

These two different memory models give rise to two distinct notions of finite-memory determinacy. The most general one (which we simply call finite-memory determinacy) uses the more powerful chaotic model.

Definition

. . An objective is finite-memory-determined (over resp. finite, countable, finitely branching, one-player arenas) if for all (resp. finite, countable, finitely branching, one-player) arenas A, there exist chaotic memory structures 1 , 2 for A such that P 1 and P 2 each have an optimal strategy respectively based on 1 and 2 in game (A,).

We then specialize it to chromatic memory structures. Definition . . An objective is chromatic-finite-memory-determined (over resp. finite, countable, finitely branching, one-player arenas) if for all (resp. finite, countable, finitely branching, one-player) arenas A, there exist chromatic memory structures M 1 , M 2 such that P 1 and P 2 each have an optimal strategy respectively based on M 1 and M 2 in game (A,).

When in some game, a player has no optimal strategy based on a memory structure (which is finite by definition), we say that this player needs infinite memory. A natural question is: are these two models really distinct? Over finite arenas, finite-memory determinacy and chromatic finite-memory determinacy coincide: every chaotic finite-memory structure can be made chromatic up to a blow-up in the size of the memory structure (the blow-up depends on the size of the arena). This was first proved as part of a more general result in [LeR], with bounds then tightened in [Koz c].

Proposition . . ([Koz c]

) Let G = (A,) be a game played on the finite arena A = (, 1 , 2 ,). If P 1 has an optimal strategy in G based on a chaotic memory structure for A with states, then P 1 also has an optimal strategy in G based on a chromatic memory structure with (+ 1) | | states.

Still, we may wonder whether the chaotic memory model brings any succinctness, i.e., whether there is a concrete example with an unavoidable blow-up when going from chaotic to chromatic memory structures. This question was first asked by Kopczyński in his thesis in

[Kop], [Kop]: Kopczyński (),

Half-positional Determinacy of Infinite Games

and was recently answered positively by Casares [Cas] (with the gap between both notions then reinforced by Casares, Colcombet, and Lehtinen [CCL]). The example in [Cas , Proposition] is a family () ≥1

[CCL]: Casares et al. (),

On the Size of Good-For-Games Rabin Automata and Its Link with the Memory in Muller Games

of Muller conditions such that in any arena, P 1 always has a chaotic memory structure with two states to play optimally, but needs states of chromatic memory in some arenas. We will see another original example (from another class of objectives) for which chaotic and chromatic memory requirements do not coincide in Chapter . Another example, which we discuss briefly here as it is quite enlightening, originates from the recent preprint [CO].

[CO]:

Casares et al. (),
Characterising memory in infinite games

1 2 3 4 5 1 2 (1 , , 2) \ {(1 , , 2)} 1 2 3
Figure . : Arena in which P 1 has an obvious strategy to play optimally with a chaotic memory structure with two states (depicted at the top right), but playing optimally with two states of chromatic memory is not possible. The chromatic structure with three states at the bottom right suffices to play optimally.

Example . . We give a simple example to highlight the difference between the succinctness of chromatic and chaotic structures. We only attempt to give some intuition about the difference between the two models on some chosen arena; complete proofs applying to all arenas can be found in [CO]

[CO]:

Casares et al. (),
Characterising memory in infinite games . Let = { , }. We consider the objective = * 3 ,

We make some light usage of (-)regular expressions to describe languages of finite and infinite words in examples. This is purely for description purposes, which is why we do not define them formally. We use * for the Kleene star, + for the Kleene plus (so + = *), no symbol for concatenation, + for the union, and for the infinite repetition. The use of a set (such as) in an expression refers to any character in it. For instance, if = { , }, denotes (+), i.e., the set { , }.

consisting of the infinite words seeing three times the color in a row at some point. For this objective, P 1 needs some memory to play optimally. Consider the arena in Figure . (left): the only way to see three 's in a row is to go to 1 , and then move right up to 4 . This requires at least two states of memory, as if the game starts in 2 , 3 , 4 , or 5 , P 1 needs to first go to 1 before going to 4 , which means that the same edge cannot always be taken in 2 and 3 . Implementing such a strategy is easy with a chaotic memory structure with two states: simply, change the memory state once the edge (1 , , 2) is seen. Using a chromatic memory structure, to win from 2 and 3 , we can simply observe when has been first seen. However, it is more difficult to win from 4 and 5 ; we can actually prove (by exhaustion) that any chromatic structure with two states is insufficient to play optimally. The idea is that the choice of P 2 in 5 can always be used to fool a chromatic structure with two states. It is however possible to play optimally with a chromatic structure with three states that counts the number of consecutive 's between 0 and 2. It turns out that for objective , in any arena, P 1 always has an optimal strategy with just two states of chaotic memory, but in some arenas, P 1 requires three states of chromatic memory to play optimally. We will see algorithms that compute automatically minimal chromatic memory structures for this kind of objective in Chapter .

There is therefore a difference in succinctness between chromatic and chaotic structures; chaotic memory structures may sometimes be chosen with fewer states. However, this comes at the cost of needing to specialize the transition function of the memory structure for every arena -it does not permit reasoning about an objective without instantiating an arena. If we additionally look at the number of transitions in the memory Two-player turn-based games on graphs structure, observe that the number of transitions of the chromatic model depends only on the number of memory states and the number of colors. In contrast, the number of transitions of the chaotic model depends on the number of memory states and the number of arena edges. Beyond their number of states, their overall succinctness is therefore debatable.

Remark . .

For games played on infinite arenas, we are not aware of a proof of equivalence between finite-memory determinacy and chromatic finite-memory determinacy, nor of an example distinguishing both notions.

We now go one step further and define a stronger kind of finite-memory determinacy.

. . Arena-independent finite memory

For many objectives (including the -regular ones -see Section .), a memory structure to play optimally can be chosen entirely independently of the arena. To put it another way, for some objectives, there is a "uniform" memory structure that suffices to play optimally in all arenas. We call this property arena-independent finite-memory determinacy. Notice that this requires chromatic memory structures. Indeed, it would not make sense with chaotic memory structures; chaotic memory structures need to access the edges of arenas and are intrinsically arena-dependent. This notion is also why it is fruitful to base objectives on an "independent" set of colors rather than on vertices or edges of specific arenas.

Definition . . An objective

is arena-independent-finite-memorydetermined (over resp. finite, countable, finitely branching, one-player arenas) if there exist chromatic memory structures M 1 , M 2 such that for all (resp. finite, countable, finitely branching, one-player) arenas A, P 1 and P 2 each have an optimal strategy respectively based on M 1 and M 2 in game (A,).

The main difference with the previous definitions of finite-memory determinacy is the order of quantifiers: the two memory structures must be instantiated before quantifying universally over arenas.

To be more precise about the memory structure and the player, we use the following terminology. Let ⊆ be an objective, M be a chromatic memory structure, and ℓ ∈ {1, 2} be the index of a player. We say that M suffices (to play optimally) for P ℓ for (in resp. finite, countable, finitely branching, one-player arenas) if for all (resp. finite, countable, finitely branching, one-player) arenas A, P ℓ has an optimal strategy based on M in game (A,). Using Lemma . . , we have that all these determinacy properties are stable by product with arbitrary memory structures: e.g., if M suffices for a player for , then for all structures M , M ⊗ M also suffices for this player for . In particular, up to taking the product Two-player turn-based games on graphs

(-1, 1) (1, -1) . . . (1, -1) times Figure .
: Arena in which P 1 needs an amount of memory depending on the parameter ≥ 1 to win for a conjunction of two energy objectives. We use a squiggly arrow to indicate a sequence of edges such that taking all the edges in the sequence induces the finite word of the label. Here, this notation therefore conceals edges (all labeled with (1, -1)) and -1 vertices.

M = M 1 ⊗ M 2 of the memory structures of each player, observe that an objective is arena-independent-finite-memory-determined if and only if there exists a memory structure M that suffices both for P 1 and P 2 for .

Observe that memoryless determinacy is a special case of arena-independent finite-memory determinacy, where the memory structure M in the definition of arena-independent finite-memory determinacy can be taken to be M triv .

Remark . .

Unlike finite-memory strategies, the memory model (chromatic or chaotic) has no influence as far as memoryless strategies are concerned: it does not matter whether strategies observe colors or edges, as they cannot distinguish histories from one another anyway. Therefore, results about memoryless determinacy or half-positionality (e.g., in Chapter) are independent of the chromatic/chaotic discussion.

Over finite arenas, arena-independent finite-memory determinacy is a stronger notion than finite-memory (or even chromatic finite-memory) determinacy. We illustrate it with a multi-energy objective, studied in [VCD + ; CRR ; JLS]. Example . . An energy objective has numbers as colors, and is focused on the behavior of the partial sums of colors. This objective is used to model an amount of resources, and the goal is usually to prevent the amount of resources from becoming negative. An often-used reformulation requires that the limit inferior of the partial sums is not -∞, which means that it is possible to start the game with a sufficiently high amount of resources and never run out of resources.

We consider here a conjunction of two energy objectives, for which we define two dimensions in the colors.

Let = ℤ × ℤ. Let = {((1)
1 ,

(2)

1)((1) 2 , (2) 2) . . . ∈ | ∀ ∈ {1, 2}, lim inf →∞ =1 () > -∞}.
In other words, to obtain a winning word, the sequence of the partial sums of colors cannot have a subsequence converging toward -∞, and Two-player turn-based games on graphs this along both dimensions. Note that a single energy objective (along one dimension) is memoryless-determined over finite arenas [CdHS] [CdHS]: Chakrabarti et al. (), Resource Interfaces , but , which is a conjunction of two energy objectives, is not. We consider the arena in Figure . , depending on a parameter ≥ 1. In this arena, P 1 can win from using finite memory: for each time P 1 goes to the left and gets a partial sum of colors of (, -), P 1 can take times the edge with color (-1, 1) to compensate. This way, the sum of colors never gets belowalong both dimensions. This strategy can be implemented with + 1 states of (chaotic or chromatic) memory. Yet, using memory states or fewer is not sufficient to win, as it would induce an ultimately periodic word whose repeating part consists of at most elements among (, -) and (-1, 1). For such a sequence to be winning, (, -) needs to be seen at least once, but then (-1, 1) is seen at most -1 times, which cannot keep the second dimension above a bounded value. This means that for this family of arenas, P 1 can always win using finite memory, but the size of the memory (and more generally, the memory structure) cannot be fixed prior to fixing the arena. For this objective, in any finite (even two-player) arena, P 1 has an optimal strategy using finite memory [CRR] [CRR]: Chatterjee et al. (

), Strategy synthesis for multi-dimensional quantitative objectives

, but as we saw, the size of the required memory depends on the arena. On the other hand, P 2 always has memoryless optimal strategies. This implies that is finitememory-determined over finite arenas, but not arena-independentfinite-memory-determined over finite arenas.

We now turn to games played on infinite arenas. We argue that requiring the existence of chromatic finite memory structures to play optimally for an objective in all infinite arenas implies the existence of an arena-independent finite memory structure. In other words, in the realm of infinite arenas, given the chromatic requirement, arena-independence is for free. This result is not deep and simply relies on the fact that an arbitrary "union" of infinite arenas still constitutes an infinite arena (which is not true when restricted to finite arenas).

Proposition . . Let

⊆ be an objective. The following are equivalent:

. is chromatic-finite-memory-determined: for all arenas A, there exists a chromatic memory structure M A such that both players have an optimal strategy based on M A in A;

. is arena-independent-finite-memory-determined: there exists a chromatic memory structure M such that for all arenas A, both players have an optimal strategy based on M in A.

Proof. It is clear that . =⇒ ., as . means that there is a (fixed) memory structure that suffices in each arena. We now show . =⇒ . We proceed by contraposition. Assume that . does not hold, i.e., that for all memory structures M, there exists an arena at least one player does not have an optimal strategy based on M in

A M = (M , M 1 , M 2 , M) such that
A M . We consider the arena A = (M M , M M 1 , M M 2 , M M
) consisting in the "disjoint union" over all memory structures M of the arenas A M . Clearly, no strategy based on a chromatic memory structure suffices to play optimally in A; this shows that . does not hold.

. . Overview

We sum up the relations between the three kinds of finite-memory determinacy in Figure . . When considering finite arenas, we have discussed that finite-memory determinacy and chromatic finite-memory determinacy correspond (up to a blow-up in the size of the memory -Proposition . .), and we have distinguished them from arena-independent finite-memory determinacy with an example (Example . .). When considering infinite arenas, we have that chromatic finite-memory and arena-independent finite-memory determinacy correspond (Proposition . .), but we do not know whether they can be distinguished from finite-memory determinacy with an example (Remark . .). We leave as an open question the existence of an objective that is finite-memory-determined over infinite arenas, but not chromatic-finite-memory-determined.

. Automata and -regular objectives

Automata. We will often specify objectives using automata, and objectives that can be defined using automata will be central for finite-memory determinacy. We start by defining a common base for all kinds of automata that we consider in this work.

Definition . . A (deterministic) automaton structure

Except for a few clearly labeled occurrences of nondeterministic finite automata in Chapter , all automata in this work are deterministic. We sometimes omit the word deterministic when there is no ambiguity.

is a tuple S = (, Σ, init ,) where is a finite set of states, Σ is a non-empty alphabet (often Σ = is the set of colors), init ∈ is an initial state, and : × Σ → is a (deterministic, complete) update function.

Two-player turn-based games on graphs

We write * : × Σ * → for the natural extension of to sequences of colors (defined exactly like * upd for memory structures). An element of × Σ is called a transition of an automaton structure (as we consider deterministic structures, a state/letter pair determines unequivocally what state comes next). For 1 , 2 ∈ , we write S 1 , 2 for the language The word language simply refers to a set of words.

of words ∈ Σ * such that * (1 ,) = 2 . We drop the superscript S if the automaton structure considered is clear in the context. Given an infinite word = 1 2 . . . ∈ Σ , the infinite run of S on is the sequence = (0 , 1)(1 , 2) . . . ∈ (× Σ) where 0 = init , and for ≥ 0, (, +1) = +1 . If = 1 . . . ∈ Σ * is finite, the finite run of S on is the sequence = (0 , 1) . . . (-1 ,) ∈ (× Σ) * such that 0 = init and for 0 ≤ < -1, (, +1) = +1 .

Automaton structures S = (, Σ, init ,) are syntactically almost the same as memory structures M = (, init , upd) (except that the alphabet for memory structures is always the set of colors and is implicit). We distinguish the two notions as they will be used for different purposes; it is convenient to use different symbols not to confuse both objects as there will be examples relying both on an automaton structure and a memory structure. In Chapter , we will actually (slightly abusively) use memory structures as automaton structures.

We now define three classical kinds of automata, all building on the definition of an automaton structure. As such, they inherit notations related to automaton structures such as transitions, languages S 1 , 2 , runs. . . The three kinds are deterministic finite automata, deterministic Büchi automata, and deterministic parity automata. Definition . . A deterministic finite automaton (abbreviated DFA) is a tuple D = (, Σ, init , ,) where (, Σ, init ,) is an automaton structure and ⊆ is a set of final states.

The language recognized by DFA D = (, Σ, init , ,), denoted L(D), is the set of finite words ∈ Σ * such that * (init ,) ∈ . DFAs (defined with a finite alphabet Σ) recognize exactly the regular languages. The language recognized by DBA B = (, Σ, init , ,), denoted L(B), is the set of infinite words ∈ Σ such that the infinite run of B on visits infinitely many times a Büchi transition in . Definition . . A (transition-based) deterministic parity automaton (abbreviated DPA) is a tuple P = (, Σ, init , ,) where (, Σ, init ,) is an automaton structure and, for some ∈ ℕ, : × Σ → {0, . . . , } is a priority function assigning priorities to transitions of P.

Two-player turn-based games on graphs

The language recognized by DPA P = (, Σ, init , ,), denoted L(P), is the set of infinite words ∈ Σ such that, if (0 , 1)(1 , 2) . . . is the infinite run of P on , then lim sup (, +1) is even. This last property can be stated as "the maximal priority seen infinitely often is even".

DPAs have finitely many priorities, so the maximal priority seen infinitely often always exists.

Remark . . For Büchi and parity automata, we consider transitionbased acceptance conditions, because we define the set and the function on the transitions. Traditionally, acceptance conditions were defined on the states. Transition-based and state-based automata are expressively equivalent: a state-based automaton can be converted into a transitionbased automaton of the same size recognizing the same language, and a transition-based automaton can be converted into a polynomially larger state-based automaton, where the blow-up depends on the acceptance condition. Transition-based automata are therefore more succinct with respect to the number of states in general. Transition-based automata are becoming increasingly frequent in the literature since they present advantages for multiple problems (e.g., to build smaller Büchi automata [GL] [GL]:). In our work, it turns out that in multiple occurrences (discussed in due time), the transition-based automata allowed for more elegant statements, so we opted for this convention.

We have defined automaton structures to be complete, i.e., every color defines a transition from every state. This implies that all deterministic automata in this thesis are complete, which is a technical convenience.

We sometimes build automata (DFAs, DBAs, or DPAs) starting from an automaton structure. In such a case, we say that a DFA, DBA, or DPA is built on top of the structure.

Definition . . A DFA D = (, Σ, init , ,) (or a DBA B = (, Σ, init , ,), a DPA P = (, Σ, init , ,)) is built on top of au- tomaton structure S if S = (, Σ, init ,).
Remark . . Automata are usually defined on a finite alphabet, whereas our alphabet is often the set of colors and can have any non-zero cardinality. However, given a DFA (resp. DBA, DPA) built on top of an automaton structure S = (, Σ, init ,), as there are finitely many states in S and finitely many "levels of acceptance", there are in practice only finitely many "truly different" equivalence classes of letters in the alphabet. For a DFA (S ,) (resp. a DBA (S ,), a DPA (S ,)), two letters 1 , 2 ∈ Σ can be assumed to be equivalent if for all ∈ , (, 1) = (, 2) (resp. (, 1) = (, 2) and (, 1) ∈ if and only if (, 2) ∈ , (, 1) = (, 2) and (, 1) = (, 2)).

1 2 3 , 1 2 • • 1 2 | 1 | 0 | 1 | 1 Figure .
: Three kinds of deterministic automata considered in this thesis. We use diamonds to represent automaton states (as for memory states). The initial state is indicated with an ingoing arrow. Final states (in) of DFAs are represented with a double border. Büchi transitions (in) of Büchi automata are decorated with a bullet •. A transition of a parity automaton from to with label | means that (,) = and (,) = .

We illustrate each of the three kinds of automata with an example.

Example . . We depict an example of each kind of automaton in Figure . . In every case, the alphabet is = { , }.

The DFA D on the left accepts the finite words that reach the accepting state 3 (drawn with a double border) at some point. To reach 3 , a word must see twice the color in a row. A regular expression for the language recognized by D (i.e., L(D)) is * * . The DBA B in the center accepts the infinite words that see infinitely often a transition in , i.e., depicted with a • symbol. Here, it means that it accepts all the infinite words that do not end with or with . In other words, the language recognized by this DBA is L(B) = Büchi() ∩ Büchi(). The DPA P on the right accepts the infinite words whose maximal priority seen infinitely often is even. The priorities are written on transitions, next to the letter used for transitions. Here, the only way for an infinite word to be accepted is to see only the priority 0 from some point on. To do so, the word must see at least one but finitely many times the letter . An -regular expression for L(P) is * * . DBAs and DPAs are related: any language recognized by a DBA can also be recognized by a DBA, but the converse does not hold.

Remark . . A DBA is a special kind of DPA: for a DBA B = (, Σ, init , ,), the DPA P = (, Σ, init , ,) where for (,) ∈ × Σ,

(,) = 2 if (,) ∈ 1 if (,) ∉
recognizes the same set of infinite words (infinitely many transitions with priority 2, that is, transitions in , have to be seen to accept a run). Therefore, DPAs are at least as expressive as DBAs. Moreover, DBAs only recognize a proper subset of the languages recognized by DPAs. In other words, not every DPA can be converted into a DBA recognizing the same language [Wag] [Wag]: Wagner (), On -Regular Sets

. For example, L(P) in Example . . is not recognizable by a DBA (a close proof can be found Two-player turn-based games on graphs in [BK , Theorem .] [BK]: Baier et al. (),

Principles of model checking

).

-regularity. Sets of infinite words recognizable by a DPA are usually called -regular. There are multiple equivalent definitions of -regular sets (they are the ones definable by -regular expressions, non-deterministic Büchi automata, deterministic Muller automata. . .), but a convenient definition for our purposes is the one using DPAs.

Definition . .

A subset of Σ is -regular if it is recognizable by a deterministic parity automaton.

It follows from Remark . . that the languages recognized by DBAs are -regular, but that DBAs are not expressive enough to recognize all -regular languages. The class of -regular languages is closed under Boolean operations (union, intersection, and complement). Depending on the representation used for -regular objectives, proving closeness under some of these operations is more or less complicated. Using the representation as deterministic parity automata, proving that -regular languages are closed under complement is easy: given an objective recognized by a DPA (, , init , ,), the DPA (, , init , ,) where = + 1 recognizes the complement of the language. We refer to surveys [GTW ; Bok] about different automatic ways to represent -regular languages [GTW] and the blow-ups involved when applying Boolean operations to them.

We will naturally consider -regular objectives, which are sets of infinite words in recognizable by a DPA. We have already mentioned in Chapter the finite-memory determinacy of -regular objectives, which appears (with varying degree of explicitness) in [BL ; Rab ; GH ; McN]. [BL] A thorough account using a very close formalism (and considering explicitly games played on infinite graphs) is also available in [Zie]. From [Zie]: Zielonka (), Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees these works, in our vocabulary, we can even deduce the arena-independent finite-memory determinacy of -regular objectives.

Theorem . . ([GH ; McN]) The -regular objectives are arenaindependent-finite-memory-determined.

Sketch of proof. Multiple arguments lead to this result, through the various representations of -regular languages. Initial proofs [GH ; McN] used the representation of -regular objectives as deterministic Muller automata and built the (arena-independent) later appearance record (LAR) memory structure.

For our purposes, we highlight the following (slightly informal) argument, which will be revisited in Chapter . Every -regular objective admits a representation as a deterministic parity automaton. We take the underlying structure of this automaton as a memory structure. With this additional information, we effectively reduce every game into a larger Two-player turn-based games on graphs game with a parity condition (by considering the product of the arena and the memory structure, which is formalized in Chapter). As parity conditions are memoryless-determined (Theorem . .), there is no need for extra information to build optimal strategies; the information from the memory structure suffices.

Finally, we restate a well-known lemma about -regular objectives: if two -regular objectives are not equal, then they are distinguished by an ultimately periodic word (i.e., a word that can be written as 1 (2) for some 1 ∈ * and 2 ∈ +). Ultimately periodic words can easily be finitely represented, and this lemma will be used to force some behaviors to appear in finite game arenas.

Lemma . . Every non-empty -regular language contains an ultimately periodic word. In particular, let 1 , 2 ⊆ be two -regular objectives. If 1 ≠ 2 , then there exist 1 ∈ * and 2 ∈ + such that

1 (2) ∈ 1 \ 2 or 1 (2) ∈ 2 \ 1 .
Sketch of proof. The first claim is standard and follows from McNaughton's theorem [McN]: a non-empty -regular language admits a represen- [McN]:

McNaughton (
), Testing and Generating Infinite Sequences by a Finite Automaton tation through an automaton accepting at least one word. Due to the acceptance condition (e.g., Büchi or parity), this implies there is at least one reachable "accepting cycle", i.e., a cycle of the automaton that, when repeated, induces an accepted word. Therefore, there is an ultimately periodic run leading to that cycle and then looping around it ad infinitum, which induces an ultimately periodic word accepted by the automaton.

For the second claim, if 1 ≠ 2 , then 1 \ 2 ≠ ∅ or 2 \ 1 ≠ ∅.

Without loss of generality, we assume that 1 \ 2 ≠ ∅. Objective 1 \ 2 is -regular (as -regular objectives are closed under complement and intersection) and non-empty. By the first claim, there is an ultimately periodic word in 1 \ 2 .

The contrapositive of the previous lemma yields that two -regular languages are equal if and only if they coincide on the ultimately periodic words. For an objective ⊆ and a finite word ∈ * , the winning continuations of consist in the set denoted -1 and defined as

. Continuations and congruences

{ ∈ | ∈ }.
Observe that for all objectives , it holds that -1 = . We can compare pairs of finite words using their sets of winning continuations.

Definition . . Let ⊆ be an objective. The prefix preorder of is the relation

⊆ * × * defined by 1 2 if -1 1 ⊆ -1

2

-we simply order the sets of winning continuations by inclusion.

The prefix preorder is in general a preorder but not an order, since two distinct finite words may have the same sets of winning continuations. It is also partial in general, as two finite words may have incomparable sets of winning continuations.

Definition . . Let

⊆ be an objective. The right congruence of is the relation

∼ ⊆ * × * defined by 1 ∼ 2 if -1 1 = -1 2 . Notice that ∼ = ∩ .
The right congruence of an objective is an equivalence relation. We denote ≺ = \ ∼ for the strict prefix preorder of . We drop the subscripts when there is no ambiguity on the objective being considered.

Example . . Let = { , }. We consider objective L(B) = Büchi() ∩ Büchi() from Example . . . For this objective, we have that all finite words have the same winning continuations: for all finite words ∈ * , -1 L(B) = L(B). Therefore, all finite words are equivalent for ∼ L(B) ; the right congruence has a single equivalence class. We now consider objective L(P) = * * from Example . . . Here, the right congruence ∼ L(P) has two equivalence classes: finite words that have not seen yet and finite words that have seen . A representative of these classes is given respectively by and . These two words are comparable for L(P) ; any continuation winning after is also winning after , so L(P) . However, we do not have L(P) , as ∈ -1 L(P) \ -1 L(P). Hence, we have ≺ L(P) .

The prefix preorder and the right congruence of an objective are algebraic (pre)congruences: the algebraic operation of reading colors preserves these relations.

Lemma . . Let

⊆ be an objective, be its prefix preorder, and 1 , 2 ∈ * be finite words. If 1 2 , then for all ∈ * , 1 2 .

In particular, if 1 ∼ 2 (resp. 1 ≺ 2), then for all ∈ * , 1 ∼ 2 (resp. 1 2).

Two-player turn-based games on graphs

Proof. We assume that 1 2 , i.e., that -1 1 ⊆ -1

2

. Let ∈ * . We have that

(1) -1 = { ∈ | 1 ∈ } = { ∈ | ∈ -1 1 } ⊆ { ∈ | ∈ -1 2 } as -1 1 ⊆ -1 2 = { ∈ | 2 ∈ } = (2) -1 .
Hence, 1 2 .

The other properties follow from the first one as ∼ = ∩ and ≺ ⊆ .

For many classical objectives, all finite words have the same winning continuations. This is for instance the case of objectives When an -regular objective is specified with a DBA or a DPA, it is convenient to extend the prefix preorder and the right congruence to the automaton states. This is well-defined thanks to the following elementary lemma.

Lemma . . Let P = (, , init , ,) be a deterministic parity automaton

Note that this lemma and the following notations also apply to deterministic Büchi automata, as they are a special kind of deterministic parity automata (Remark . .).

, and ⊆ be the -regular objective it recognizes. For , ∈ * , if * (init ,) = * (init ,), then ∼ .

Proof. Let , ∈ * . If and reach the same state of the automaton, then by construction, their winning continuations are exactly the words in the language recognized by DPA (, , , ,). Hence, and have the same winning continuations; in other words, ∼ .

This means that all words reaching the same automaton state are in the same equivalence class for ∼: formally, for all states ∈ , init , ⊆ [] ∼ for any ∈ init , . We can therefore extend the idea of winning continuations to automaton states; for P = (, , init , ,), ⊆ the objective it recognizes, and ∈ , we write

-1 = -1
Two-player turn-based games on graphs for some word ∈ init , . Equivalently, -1 is the -regular language recognized by DPA (, , , ,) (the same as P but with as an initial state).

In particular, the number of equivalence classes for the right congruence of is upper bounded by the number of elements in .

Lemma . . Let ⊆ be an -regular objective.

We recall that the index of an equivalence relation is its number of equivalence classes.

The right congruence ∼ of has a finite index. More precisely, if is recognized by a DPA P = (, , init , ,), then the right congruence of has index at most | |.

Proof. As it is -regular, objective is recognized by some DPA P = (, , init , ,). The family (init ,) ∈ is a finite partition of * (we recall that our automata are deterministic and complete). As every set init , is a subset of some equivalence class for the right congruence ∼ of , this right congruence has at most | | equivalence classes. Some objectives have a representation using an automaton with exactly one state per equivalence class of the right congruence. However, in some cases, even a minimal automaton (w.r.t. the number of states) recognizing an objective may require more states than the number of equivalence classes. This is for instance the case of objective Büchi() ∩ Büchi() from Example . . : it is prefix-independent and its right congruence has a single equivalence class, but any DBA (or even DPA) recognizing it needs at least two states. In general, (init ,) ∈ is therefore a finer partition of * than * / ∼ .

Remark . . As for the simpler case of regular languages of finite words, the above lemma states that -regularity of an objective (a language of infinite words) implies that its right congruence has a finite index.

For regular languages of finite words, the converse is true; this is the central Myhill-Nerode theorem [Ner] [Ner]: Nerode (), Linear Automaton Transformations

. However, for languages of infinite words, having a finite index is not sufficient to guaranteeregularity. For instance, objective MP ≥0 is prefix-independent and its right congruence has therefore index 1, but MP ≥0 is not -regular.

We extend the prefix preorder and the right congruence to automaton states: we define P ⊆ × and ∼ P ⊆ × for the relations such that

1 P 2 if -1 1 ⊆ -1 2 , and 1 ∼ P 2 if -1 1 = -1 2 .
We also frequently drop the subscript P when there is no ambiguity on the automaton being considered. These relations are still (pre)congruences.

Lemma . . Let P = (, , init , ,) be a deterministic parity automaton, and be the -regular objective it recognizes. Proof. For the first item, let 1 , 2 ∈ be such that 1 P 2 and ∈ * . Let 1 = * (1 ,) and 2 = * (2 ,). We show that 1 P 2 , i.e., that (1) -1 ⊆ (2) -1 . Let ∈ (1) -1 . This implies that ∈ -1

1

. As

1 P 2 , we also have that ∈ -1

2

. This implies that ∈ (2) -1 .

For the second item, we simply use the first item and the fact that ∼ P = P ∩ P .

For the case of regular languages of finite words, the way the equivalence classes of the right congruence are structured directly gives a minimal deterministic finite automaton recognizing the language (this is the Myhill-Nerode theorem [Ner]). The situation is once again more complex for [Ner]: Nerode (

), Linear Automaton Transformations languages of infinite words: when the right congruence has a finite index, there is still an automaton that "classifies" the finite words [Sta ; MS], [Sta]: Staiger (

), Finite- State -Languages [MS]: Maler et al. (),
On Syntactic Congruences for Omega-Languages but it may not be complex enough to actually recognize the language of infinite words with a reasonable acceptance condition (e.g., Büchi or parity). This object, which we call prefix classifier, may still bring insight into a language of infinite words. In Chapter , we will prove that even if insufficient alone, it is a useful block to build automata recognizing -regular languages.

Definition . .

The prefix classifier has been called minimal-state automaton in the literature [MS]. For the purposes of this thesis (often, finding memory structures with minimally many states), we believe that the term prefix classifier brings less ambiguity.

Let ⊆ be an objective whose right congruence ∼ has a finite index. We associate a natural automaton structure S = (, , init ,) with such that is the set of equivalence classes of ∼, init = [] ∼ , and

([] ∼ ,) = [] ∼ . We call structure S the prefix classifier of .

This transition function of the prefix classifier is well-defined since if 1 ∼ 2 , then for all ∈ , 1 ∼ 2 (Lemma . .). Hence, the choice of representatives for the equivalence classes does not have an impact on this definition. As -regular objectives have a right congruence with finite index (Lemma . .), every -regular objective has a well-defined (finite) prefix classifier.

Example . .

We exhibit the prefix classifiers of two objectives from Example . . , depicted in Figure . . The prefix classifier of Büchi() ∩ Büchi() (and actually, of any prefixindependent objective) has a single state, corresponding to the only equivalence class of the right congruence. Observe that it is not possible to build a DPA on top of this prefix classifier to recognize Büchi() ∩ Büchi(); no matter how priorities are assigned to the two transitions, Büchi() ∩ Büchi() cannot be recognized by a DPA with just one state.

Two-player turn-based games on graphs

The prefix classifier of * * has two states (corresponding to the classes of finite words that have not seen , and finite words that have seen). In this case, it actually corresponds to the underlying automaton structure of DPA P from Example . . . This means that * * can be recognized by a DPA built on top of its prefix classifier, unlike Büchi() ∩ Büchi(). Notice that objectives Reach() and Safe() have the same prefix classifier as * * .

C From memoryless to finite-memory determinacy

Our goal in this first part titled Characterizing finite memory requirements is to understand the general mechanisms leading various objectives to admit simple optimal strategies. We seek to further the understanding of memory requirements and provide general tools that simplify their study. In this chapter, we highlight existing general results about the memory requirements of various objectives (mostly about memoryless determinacy in various contexts), show some of their limits, and lay the groundwork for new results about finite-memory determinacy.

This chapter serves as an introduction and a motivation to Chapters and , which contain our main contributions to these questions.

. Finite game graphs

We first discuss the setting of games played on finite graphs. We discuss an elegant characterization of memoryless determinacy in this setting, and then discuss its potential generalization to finite-memory determinacy.

. . Characterization of memoryless determinacy

Following sufficient conditions for memoryless determinacy [GZ], the [GZ]: Gimbert et al. (

),

When Can You Play Positionally?

first characterization of objectives that are memoryless-determined over finite graphs was established in [GZ]. This characterization goes through [GZ]: Gimbert et al. (

),

Games Where You Can Play Optimally Without Any Memory

The results from [GZ] actually use preference relations, a more general framework than qualitative objectives, which we will introduce in Chapter .

the conjunction of two conditions of the objectives, called monotony and selectivity. We give here informal descriptions of these concepts (formal definitions and generalizations will follow in Chapter).

Roughly, monotony is focused on prefixes: it requires that if an ultimately periodic word (1) is winning and another one (2) is losing, then their "winning status" cannot be swapped by replacing prefix , i.e., we cannot have (1) losing and (2) winning for any ∈ * . This property is satisfied by prefix-independent objectives, but is more general. For instance, Reach() and Safe() are monotone but not prefixindependent.

Selectivity roughly requires that combining cycles brings no benefit: if it is possible to create a winning infinite word by aggregating finite words from From memoryless to finite-memory determinacy two distinct sets, then it is also possible to create a winning word by taking finite words from just one of these sets. Similar-looking notions (fairly mixing, concave, submixing [GZ ; Kop ; GK]) had been defined in other [GZ] Such a "one-to-two-player lift" provides a neat and often easy way to prove that an objective admits memoryless optimal strategies without proving monotony and selectivity: proving it in the finite one-player arenas of the two players, which is generally easier as it boils down to graph reasoning, and then lifting the result to the general finite two-player arenas through the lift. We give an illustration of this result on the mean-payoff objective.

Example . . Let = ℚ. We consider the mean-payoff objective MP ≥0 (defined in Definition . .). This objective is memoryless-determined over finite arenas, which was first proved in [EM] . We argue that it is easy to recover this result using Theorem . . . We take the point of view of P 1 (due to the nature of objective MP ≥0 , P 2 can be dealt with symmetrically). Let A be a finite one-player arena of P 1 . We show that P 1 has a memoryless optimal strategy in A. We consider the cycles of A, and we say that a cycle is non-negative if the average of its colors is non-negative. Clearly, P 1 can win for MP ≥0 if a non-negative cycle is reachable from the initial vertex: P 1 can simply reach the cycle and loop around it. To win with a memoryless strategy, we simply observe that a non-negative cycle always contains a non-negative simple cycle (i.e., not going twice through the same vertex). A simple cycle can be reached and looped around with a memoryless strategy. This describes a way to win with a memoryless strategy if there is a non-negative cycle. This reasoning is actually complete: if there is no non-negative cycle, then P 1 simply cannot win for MP ≥0 (its mean payoff will be upper bounded by the simple cycle with the highest average, Note that the "simple cycle with the highest average" may not exist in an infinite arena. but this average is negative). We have shown that given a fixed initial vertex of A, if P 1 can win, then P 1 can win with a memoryless strategy. Formally, we must still argue that we can build a single memoryless strategy winning "uniformly" from all the vertices from which P 1 has a winning strategy, From memoryless to finite-memory determinacy which we do not do here but is reasonably straightforward (in particular, it will follow from results in Section .).

The existence of a "uniformly" optimal strategy is also a direct consequence from the fact that memoryless winning strategies can be "uniformized" under prefixindependence of the objective [CN , Lemma] These arguments show that memoryless strategies suffice for P 1 in its finite one-player arenas, and the same reasoning works for P 2 (using negative cycles instead). By Theorem . . , objective where proving that finite-memory strategies suffice in one-player games was fairly easy, in contrast to the high complexity of the two-player casea lifting corollary could grant the two-player case for free!

We initially hoped that the following conjecture could be established: "if finite-memory strategies suffice for both P 1 and P 2 in their respective finite one-player arenas, they also suffice in all finite two-player arenas". Unfortunately, we found counterexamples to this conjecture in its more general form.

. . Lifting attempts for finite-memory determinacy

The goal of this section is to present a counterexample to the above conjecture; finite-memory determinacy over finite one-player games does not imply finite-memory determinacy over finite two-player games. This justifies the restriction of the notion of finite-memory determinacy to arena-independent finite-memory determinacy, for which we will prove a one-to-two-player lift in Chapter .

This counterexample is a variant of an energy objective. Let us assume that = ℤ, and that the objective of P 1 is to create a play such that () the running sum of colors grows up to infinity (e.g., consider its lim inf to define it properly), or () this running sum of colors takes value zero infinitely often. Formally, we consider the two objectives

1 = { 1 2 . . . ∈ | lim inf →∞ =1 = +∞}, 2 = { 1 2 . . . ∈ | =1 = 0 for infinitely many values of },
and we define = 1 ∪ 2 as the objective of P 1 .

Proposition . . For objective , both players have finite-memory optimal strategies in their respective finite one-player arenas, but P 1 needs infinite

From memoryless to finite-memory determinacy memory to play optimally in some finite two-player arena.

Proof. Throughout the proof, we say that a cycle in an arena is a zero cycle if the sum of its colors is zero, a positive cycle if this sum is positive, and a negative cycle if this sum is negative. We first consider a finite one-player arena of P 1 . In this arena, P 1 can create a play such that col () ∈ 1 if and only if there is a reachable positive cycle. In this case, P 1 can win with a finite-memory strategy (simply reaching the cycle and then looping around it). If that is not possible, in order to win, P 1 has to induce a play such that col () = 1 2 . . . ∈ 2 .

As there are infinitely many indices for which the energy level is 0 but finitely many vertices in the arena, we can find two indices , ≥ 1 such that < , out() = out(), =1 = 0, and =1 = 0. Notice in particular that = +1 = 0. Now, consider the play

= 1 . . . (+1 . . .) ,
with the sequence of edges +1 . . . repeating ad infinitum (is a "lasso"). This is a valid play since in(+1) = out() = out(). Moreover, we have that col () ∈ 2 as after repeating times the sequence +1 . . . , the sum of the colors equals =1 + • = +1 = 0 + • 0 = 0. The play can be implemented with finite memory, as it consists of a finite prefix and a repeated finite sequence.

We now turn our attention to a finite one-player arena of P 2 ; P 2 wins by making a play such that col () = 1 2 . . . ∈ with lim inf →∞ =1

< +∞ ∧

=1

= 0 for at most finitely many values of .

If there is a reachable negative cycle in the arena, P 2 can ensure to win by looping around it forever, and can therefore win with a finite-memory strategy. We now assume that there is no reachable negative cycle. As we did for P 1 , we show that if P 2 can win the game in such an arena, then P 2 can do so using finite memory.

If P 2 can win, let = 1 2 . . . be a winning play for P 2 , i.e., col ()

= 1 2 . . . ∈ 1 ∩ 2 .
Let be a vertex visited infinitely often when is played, and ≥ 0 be the first index such that out() = . We can decompose into a finite prefix 1 . . . followed by an infinite sequence of cycles on . Since there is no negative cycle, we cannot have that infinitely many of these cycles are positive, as this would imply that col () ∈ 1 . Thus, infinitely many zero cycles from are taken. As col () ∈ 2 , clearly, one of these cycles +1 . . . (with in(+1) = out() = and = +1 = 0) satisfies that for all , + 1 ≤ ≤ , it holds that =1 ≠ 0 (infinitely many cycles satisfy this condition, but we just pick one). This also implies that =1 ≠ 0, i.e., the history up to this cycle has a non-zero energy From memoryless to finite-memory determinacy with the sequence of edges +1 . . . repeating ad infinitum (is a "lasso"). This is a valid play as in(+1) = out(). Every time the cycle starts again, the running sum of colors is equal to the same value: =1 ≠ 0. Therefore, as the running sum of colors does not reach zero the first time the cycle is taken, and it also never reaches zero along the cycle, it can never reach zero after index -1. Hence, col () is not in , and is winning for P 2 . This play only needs finite memory to be implemented. Now, consider the simple two-player game depicted in Figure . . First, observe that P 1 (circle) has an infinite-memory strategy to win: P 1 should keep track of the running sum of colors (which is unbounded, hence the need for infinite memory). Whenever the current vertex is 1 , P 1 should loop on 1 up to the point where this sum hits zero, and then go to 2 . This strategy ensures victory because either P 2 always goes back to 1 , in which case 2 is satisfied, or P 2 eventually loops forever on 2 , in which case 1 is satisfied. It remains to argue that P 1 has no finite-memory winning strategy in this game: whatever the finite amount of memory used by P 1 , P 2 may loop on 2 long enough as to exceed the bound up to which P 1 can track the sum accurately; thus preventing P 1 from resetting the sum to zero in 1 infinitely often. This example proves that Gimbert and Zielonka's one-to-two-player lift cannot work in full generality in the finite-memory case. Informally, in the case of memoryless strategies, as in [GZ], P 1 is already doomed in [GZ]

: Gimbert et al. (),

Games Where You Can Play Optimally Without Any Memory

one-player arenas in the absence of monotony: two prefixes to distinguish in order to play optimally can be "hardcoded" as different paths leading "Two prefixes to distinguish to play optimally" can be explained as two prefixes incomparable for the prefix preorder of : they each have winning continuations that are not winning for the other prefix. In our example, the family of words {1 ∈ * | ≥ 0} are all incomparable for .

to the same vertex in a game arena, as if they were chosen by P 2 in a two-player game. In the case of finite-memory strategies, however, the situation is different. In finite one-player arenas, the number of such paths that can be hardcoded in an arena is always bounded; hence finite memory might suffice to react, i.e., to keep track of which prefix is the current one and how to behave accordingly. However, in two-player arenas, P 2 might create an infinite number of prefixes to distinguish (using a cycle), thus requiring P 1 to use infinite memory to be able to do so. This is what happens in the example above: in any finite one-player game, the largest sum that P 1 has to track is bounded, whereas P 2 can make this sum arbitrarily large in some two-player arenas.

From memoryless to finite-memory determinacy

. Infinite game graphs

In Chapter , we will discuss finite-memory determinacy of games played on graphs that may have arbitrary cardinality. Before getting there, we discuss again the special case of memoryless determinacy, which is quite well-understood in the literature.

After showing an elegant characterization for memoryless determinacy of games played on finite arenas (Theorem . .), a legitimate question is: do we need in general more complex strategies to play optimally when arenas are allowed to be infinite? The answer turns out to be positive, which was already observed by Puterman in [Put].

[Put]: Puterman (),

Markov Decision Processes: Discrete Stochastic Dynamic Programming

Example . . We consider again objective MP ≥0 , but we now consider the infinite arena in Figure . (left) [Put , Example . .]. Despite the fact that all colors are negative, P 1 has a winning strategy from 1 : the idea is, for all ≥ 1, to loop on vertex sufficiently many times to bring the mean payoff close to -1 , and then move on to +1 and repeat. At the limit, the mean payoff is 0. Concretely, it suffices to loop times on vertex before moving on to +1 . We show this by computing the mean color seen after steps by aggregating what happens in each vertex, given that we make +1 actions in vertex (times the self-loop with color -1 and 1 time the rightward edge with color -1). After steps, if

= (1 + 1) + (2 + 1) + . . . + (+ 1) + with 0 ≤ ≤ + 1, the current mean payoff is 1 =1 (- 1 • -1) - 1 + 1 • = 1 • (-2 - 1 + 1 •) ≤ 1 • (-2 -1).
As is quadratic in , this expression indeed converges to 0 as grows to infinity. This winning strategy requires infinite memory to be implemented. No memoryless strategy is winning, as a memoryless strategy either stops forever in some vertex and obtains a mean payoff of -1 , or goes only to the right and obtains a mean payoff of -1. Hence, MP ≥0 is not memoryless-determined over infinite arenas, even one-player ones. We can generalize this reasoning to show that any finite-memory strategy with states is losing. Such a strategy either stops forever in some vertex and obtains a mean payoff of -1 , or goes infinitely often to the right. In this second case, it can spend at most steps in each vertex before moving to the right, hence color -1 is seen at least every steps and the mean payoff then gets smaller than -1 . Objective MP ≥0 is not finite-memory-determined over infinite arenas either. It might seem that we actively rely on the access to infinitely many colors in the same arena to build the example, which is obviously not possible From memoryless to finite-memory determinacy in finite arenas. We depict a slightly more involved arena in Figure .

1 2 3 • • • -1 -1 -1 -1 -1 2 -1 3 1 2 3 • • • -1 -1, -1 -1, -1, -1 -1 -1, 0 -1, 0, 0
(right) that exhibits similar properties for the same reasons, but using only colors -1 and 0. In a vertex , we simply replace color -1 by the sequence -1, 0 -1

When denoting words composed of numbers, we separate them with commas to avoid ambiguities (even though we do not do this for arbitrary words 1 2 . . .).

and the rightward -1 colors by the sequence (-1) .

This example shows that there are fewer memoryless-determined objectives if we allow arenas of arbitrary cardinality. One might wonder: what objectives then remain memoryless-determined? We have seen that parity conditions are memoryless-determined over arenas of any cardinality (Theorem . .). We now discuss an elegant characterization by Colcombet and Niwiński [CN] establishing that, under prefix-independence, there In other words, up to renaming colors through a priority function taking values in a finite set of natural numbers, is a parity condition.

Using memoryless determinacy of parity conditions (Theorem . .), this result provides the missing implication of an equivalence between being a parity condition and being memoryless-determined (under prefixindependence assumption). As objective MP ≥0 is prefix-independent but is not a parity condition, it is thus not surprising that it requires memory To prove formally that MP ≥0

is not a parity condition, observe that (-1, -1, 1) is losing while (-1, 1, 1) is winning, so the winning/losing status of words does not simply depend on the colors seen infinitely often.

in some infinite arenas for at least one player, as shown in Example . . .

Although not stated by Colcombet and Niwiński, we can also get a oneto-two-player lift for games played on infinite arenas from their proof technique. Indeed, their result can be obtained just by making an assumption about memory requirements in one-player arenas. This requires carefully observing that all the arenas they use in their proof are one-player arenas, except for [CN , Lemma] which can be made to work with a one-player arena instead. This was already discussed by Kopczyński in his thesis [Kop , Theorem .].

[Kop]: Kopczyński (),

Half-positional Determinacy of Infinite Games

From memoryless to finite-memory determinacy Corollary . . (One-to-two-player memoryless lift, infinite arenas)

Corollary . . will be a special case of our results in Chapter , so we do not provide more proof details for it here.

Let ⊆ be a prefix-independent objective. If both players have memoryless optimal strategies in their respective one-player arenas (of any cardinality), then is a parity condition (up to renaming the colors). In particular, is memoryless-determined (over two-player arenas of any cardinality).

This corollary makes it reasonable that the counterexample to the memoryless determinacy of MP ≥0 in infinite arenas we exhibited in Example . . was a one-player arena; it was guaranteed that there was a one-player arena in which some player did not have a memoryless optimal strategy.

Based on the knowledge of Theorem . . , we identified two questions that still needed answers and that fit our goals.

What if the objective is not prefix-independent? There are many memoryless-determined objectives (even over infinite arenas) that are not parity conditions; for instance, Reach() is one of them. Can we find a characterization encompassing such objectives? What if we relax memoryless determinacy to (chromatic) finitememory determinacy? Can we still obtain a nice characterization for this larger class of objectives?

We will give precise answers to both these questions in Chapter .

Characterization of arena-independent finite-memory determinacy

In Section . , we discussed a characterization of memoryless determinacy by Gimbert and Zielonka in games played on finite graphs [GZ], and [GZ]: Gimbert et al. (

),

Games Where You Can Play Optimally Without Any Memory

what can be expected for a generalization to finite-memory determinacy.

In this chapter, we establish a characterization of objectives that admit optimal strategies using arena-independent finite memory, providing an extension of the work of Gimbert and Zielonka to the finite-memory case. The adjective arena-independent refers to memory structures that can depend on the set of colors and the objective (with its possible parameters), but not on the precise game graph chosen to play the game. We prove an equivalent to their practical one-to-two-player lift: for a given objective, if both players have optimal arena-independent-finite-memory strategies in all finite one-player graphs, then it is also the case in all finite two-player graphs.

The

. Introduction

Preference relations. Up to now, we have discussed objectives encoded as sets of infinite words -such objectives are usually called qualitative, as a player either wins or loses. Inspired by games in economics, we can generalize this to payoff functions mapping infinite words to numerical values, and P 1 can be seen as the "maximizer" player. The two formalisms are strongly linked: the classical decision problem for quantitative games is to fix a payoff threshold and ask if P 1 has a strategy to guarantee it, essentially transforming the problem into a qualitative one (where the winning plays are all those achieving a payoff at least equal to the threshold). This is for instance what we did with the mean-payoff function, to which we have fixed threshold 0 in the examples (Examples . . and . .). These quantitative objectives especially find meaning in the reactive synthesis motivation of considering zero-sum games: they allow describing complex, non-binary specifications where some quantity (e.g., energy consumption, response time) has to be maximized or minimized [BMR + ; BHM + ; BHRR].

Games

In this chapter, we borrow the formalism of Gimbert and Zielonka [GZ] [GZ]: Gimbert et al. (),

Games Where You Can Play Optimally Without Any Memory

encompassing qualitative and quantitative objectives: we consider preference relations over infinite words. This general formalism permits encoding most classical game objectives, both qualitative and quantitative, and lets us reason in a well-founded framework under minimal assumptions.

Contributions. We generalize Gimbert and Zielonka's results -characterization and one-to-two-player lift -to the case of arena-independent finite memory. That is, we encompass situations where the memory needed by the two players is solely dependent on the preference relation (e.g., colors, dimensions of weight vectors), and not on the game arena (i.e., number of vertices/edges). This restriction to arena-independent memory is natural given the counterexamples to a more general approach presented in Section . .

Informally, our characterization can be stated as follows: given a preference relation and a memory structure M, both players have finite-memory optimal strategies based on memory structure M in all finite game graphs if and only if the preference relation and its inverse are M-monotone and M-selective.

These last two concepts correspond intuitively to Gimbert and Zielonka's monotony and selectivity, modulo a memory structure. Recall that monotony and selectivity are related to the stability of the preference relation with regard to replacing prefixes and combining cycles, respectively. Our more general concepts of M-monotony and M-selectivity serve the same purpose, but they only compare sequences of colors deemed equivalent by the memory structure. For the sake of illustration, take selectivity: it implies that one has no interest in mixing different cycles of the game arena. For its Characterization of arena-independent finite-memory determinacy generalization, the memory structure is taken into account: M-selectivity implies that one has no interest in mixing cycles of the game arena that are read as cycles on the same state in the memory structure M.

Applicability. The arena-independent framework naturally includes memoryless-determined preference relations (the case studied in [GZ]), [GZ]: Gimbert et al. (

),

Games Where You Can Play Optimally Without Any Memory

for which the memory structure M triv with a single state suffices for both players in all finite arenas. Beyond memoryless determinacy, a typical class of objectives that we cover is the one of -regular objectives: a deterministic parity automaton recognizing the objective suffices to play optimally for both players in all arenas (Theorem . .). However, a DPA (even a minimal one) is only an upper bound on the amount of memory needed for the derived -regular objective. This justifies the relevance of providing dedicated tools to understand the memory requirements of -regular objectives, which is not equivalent to providing tools to represent -regular objectives as automata.

Classes of -regular objectives whose memory requirements were studied previously contain, e.g., combinations of parity objectives [CHP]

[CHP]: (the memory depends on the bounds and the weights), Muller conditions [DJW ; Cas] (the memory depends on the colors [DJW]: Dziembowski et al. Additional related works. We mention here works sharing the similar philosophy of trying to provide general conditions about objectives and games that guarantee "low" strategy complexity in games played on finite arenas.

Following the same motivation as our work -the need to characterize (combinations of) objectives admitting finite-memory optimal strategies in finite arenas, Le Roux, Pauly, and Randour [LPR] take another path:

[LPR]: Le Roux et al. (),

Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions

whereas our work permits lifting results from one-player games to twoplayer games, they provide a lifting from the single-objective case to the multi-objective one.

Our work focuses on deterministic turn-based two-player games. Some sufficient conditions, orthogonal to our approach, were studied for concurrent games [LeR ; BLT].

[LeR]: Le Roux (),

Concurrent Games and Semi-Random Determinacy [BLT]: Bouyer et al. (),

Finite-Memory Strategies in Two-Player Infinite Games

Many articles consider stochastic turn-based two-player games played on finite graphs (where transitions happen stochastically, and the goal is then usually to maximize the expected value of some payoff function). A

Characterization of arena-independent finite-memory determinacy line of work gives sufficient conditions for the existence of memoryless optimal strategies just for one player (i.e., for half-positionality): the same conditions were first proved sufficient in one-player stochastic games (often called Markov decision processes) [Gim] and two-player deterministic [Gim] more involved results [Mas]. In [MSTW] and in a new version of [GK], [Mas] under the same sufficient conditions, the authors provide a sufficient condition for finite-memory determinacy of the other player. We will compare this result to ours more extensively in Subsection . . , at the end of this thesis.

We have published an extension of the results from this chapter to stochastic games [BORV a], building on previous unpublished work by Gimbert and Zielonka [GZ]. To keep a consistent model throughout the thesis, [GZ]: Gimbert et al. (

),

Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences

we have chosen not to present this work in the thesis and to focus on the simpler deterministic version. We still discuss at a high level a description of the stochastic case at the end of the chapter, in Section . .

Finally, in the same context of deterministic turn-based games, the one-totwo-player lift from this chapter was generalized later on by Kozachinskiy [Koz b] to some constrained condition on the "arena-dependence"

[Koz b]: Kozachinskiy (),
One-To-Two-Player Lifting for Mildly Growing Memory of the memory requirements in one-player games, by making finer observations along the same proof technique. We also come back to this result in Section . . Chapter structure. We extend qualitative objectives to the more general framework of preference relations and introduce some technical notions used in this chapter in Section . . In Section . , we introduce Mmonotony and M-selectivity, generalizing concepts from [GZ] to take [GZ]: Gimbert et al. (),

Games Where You Can Play Optimally Without Any Memory

into account memory structures. These are the core concepts of our characterization, i.e., the properties that preference relations must satisfy to admit optimal strategies based on M. Section . is devoted to our results, and contains our characterization (Theorem . .) and the novel one-to-two-player lift (Theorem . .). We provide an application of our concepts in Subsection . . . The proof of the characterization is split into Section . (for the necessity of M-monotony and M-selectivity) and Section . (for the sufficient direction). The final two sections are orthogonal discussions. Section . is devoted to discussing the uniformity requirement of winning strategies; thanks to the results of this chapter, we can say more about the impact that requiring uniformity has on strategy complexity. We discuss some chosen related works in greater detail in Section . .

. Additional preliminaries

We first extend notions defined about (qualitative) objectives to the more general framework of preference relations. We then introduce some links between non-deterministic automata and arenas, which will be technically helpful in the upcoming proofs.

. . Preference relations

We consider a generalization of qualitative objectives where a player may have a preference about arbitrarily many outcomes.

Definition . . A preference relation is a total preorder ⊆ ×

on .

A quantitative game (extending qualitative games) is then a tuple G = (A,) where A is an arena and is a preference relation. In such a game, the objective of P 1 is to create the best possible play with regard to whereas the objective of P 2 is to obtain the worst possible one. That is, P 2 uses the inverse relation -1 (such that -1

if and only if

). This corresponds to zero-sum games when using a quantitative framework.

Every qualitative game G = (A,) can be written as a quantitative game (A,

), where if and only if ∈ or ∈ .

Example . . Consider the mean-payoff function MP, with = ℚ.

Function MP was defined in Definition . . . We define a preference relation such that the goal of P 1 is to create a word maximizing the value of). Such quantitative games are zero-sum, hence P 2 uses the natural inverse relation -1 MP ; P 2 is a minimizer player in the payoff formulation of these games.

Given , ∈ , we write if we have ¬() (we recall that the preorder is total). We extend the relation to subsets of as follows: for , ⊆ ,

⇐⇒ ∀ ∈ , ∃ ∈ , .
We also write

⇐⇒ ∃ ∈ , ∀ ∈ , .

Note that if and only if ¬().

We sometimes compare words ∈ with sets ⊆ (writing), by simply identifying word to its singleton language { }.

Remark . . For a preference relation induced as explained above by a qualitative objective

⊆ , observe that for 1 , 2 ⊆ , 1 2 ⇐⇒ (1 ∩ = ∅ ∧ 2 ≠ ∅) ∨ 2 ∩ ≠ ∅, and 1 2 ⇐⇒ 1 ∩ = ∅ ∧ 2 ∩ ≠ ∅.
In this new quantitative framework, we must define again what it means for a strategy to be optimal. Let G = (A,) be a quantitative game on arena

A = (, 1 , 2 ,
). Given a strategy 1 of P 1 on A and a vertex ∈ , we define

UCol (A, , 1) = { ∈ | ∃ ∈ col (Plays(A, , 1)), }.
Intuitively, UCol represents the upward closure of sequences of colors consistent with a strategy with respect to the preference relation .

Taking the standpoint of P 1 , we say that a strategy 1 of P 1 on A is at least as good as strategy

1 of P 1 from vertex ∈ if UCol (A, , 1) ⊆ UCol (A, , 1).
Intuitively, 1 is at least as good as 1 if the "worst-case" plays consistent with 1 are at least as good as the ones consistent with 1 . The UCol operator is useful to define this notion properly even when there is no "worst-case" play for a strategy (i.e., if the infimum used in the classical quantitative setting is not reached). Similar notions have been used before, e.g., in [LeR].

[LeR]: Le Roux (), Infinite sequential Nash equilibrium

Symmetrically for P 2 , we define

DCol (A, , 2) = { ∈ | ∃ ∈ col (Plays(A, , 2)), },
and we say that a strategy 2 of P 2 on A is at least as good as strategy 2

from vertex ∈ if DCol (A, , 2) ⊆ DCol (A, , 2).
Now, we say that a strategy ℓ of P ℓ on A is as good as possible from ∈ if it is at least as good as every strategy ℓ of P ℓ from . We extend this notation to subsets of vertices: we say that a strategy ℓ is optimal from ⊆ if it is as good as possible from every ∈ , and we simply say optimal to mean optimal from .

. . Nash equilibria

We use Nash equilibria [Nas ; OR] as tools to establish the existence of [Nas]: Nash (

), Non- cooperative Games [OR]: Osborne et al. (),

A course in game theory

optimal strategies in some of our proofs. Let G = (A,) be a quantitative game on arena A = (, 1 , 2 ,). Formally, a Nash equilibrium (NE) from a Characterization of arena-independent finite-memory determinacy vertex ∈ is a couple of strategies (1 , 2) of P 1 and P 2 such that, for all strategies 1 of P 1 , and all strategies 2 of P 2 ,

col (Plays(A, , 1 , 2)) col (Plays(A, , 1 , 2)) col (Plays(A, , 1 , 2)). (.)
This means that neither P 1 nor P 2 has any interest in deviating from their respective strategy.

We take a moment to discuss the link between optimal strategies and Nash equilibria in our specific context of zero-sum games. Both notions seem related, and indeed, in [GZ], Gimbert and Zielonka did choose [GZ]:

Gimbert et al. (),
Games Where You Can Play Optimally Without Any Memory Equation (.) -i.e., the definition of a Nash equilibrium -as their definition of a pair of optimal strategies. This suggests that both notions coincide. However, they do not in full generality, as we discuss in the following.

As stated before, our goal is to characterize preference relations that admit finite-memory optimal strategies, but Nash equilibria will serve as tools in our endeavor. Let us establish two interesting properties of Nash equilibria in zero-sum games.

First, it is possible to "mix" different Nash equilibria.

Lemma . . Let G = (A,) be a quantitative game on arena A = (, 1 , 2 ,), and let ∈ be a vertex. Let (1 , 2) and (1 , 2) be two Nash equilibria from . Then, (1 , 2) is also a Nash equilibrium from .

Proof. We need to prove that for all pairs of strategies 1 , 2 of P 1 and P 2 ,

col (Plays(A, , 1 , 2)) col (Plays(A, , 1 , 2)) col (Plays(A, , 1 , 2)). (.) Since (1 , 2) is an NE, we know that col (Plays(A, , 1 , 2)) col (Plays(A, , 1 , 2)) col (Plays(A, , 1 , 2)),
instantiating 1 and 2 to 1 and 2 respectively in Equation (.). Similarly, since (1 , 2) is an NE, we know that

col (Plays(A, , 1 , 2)) col (Plays(A, , 1 , 2)) col (Plays(A, , 1 , 2)),
instantiating 1 and 2 to 1 and 2 respectively in Equation (.).

From the last two equations, we obtain that all four sequences of colors are equivalent for as the inequalities form a cycle. Hence, since Equation (.) holds for (1 , 2) and (1 , 2), and since col (Plays(A, , 1 , 2)) is equivalent for to col (Plays(A, , 1 , 2)) and col (Plays(A, , 1 , 2)), Equation (.) is satisfied.

Remark . . Lemma . . relies on the assumption that we consider zero-sum games, that is, P 2 uses the inverse preference relation -1 . In our general proof scheme for this chapter, usage of Lemma . . in Proposition . . is the single argument preventing us from considering non-zero-sum games, where P 1 and P 2 use two different, unrelated, preference relations.

We now establish that Nash equilibria induce optimal strategies in our zero-sum context.

Lemma . . Let G = (A,) be a quantitative game on arena A = (, 1 , 2 ,), and let ∈ be a vertex. Let (1 , 2) be a Nash equilibrium from . Then, both 1 and 2 are as good as possible from .

Proof. We prove the statement for 1 (it works symmetrically for 2). Consider the rightmost inequality of Equation (.). From it and the elementary Lemma . . , we deduce that

UCol (A, , 1) = { ∈ | col (Plays(A, , 1 , 2)) }. (.)
Indeed, 2 is a best response [OR] to 1 .

[OR]: Osborne et al.

(),

A course in game theory

We claim that 1 is at least as good as every strategy from , hence that 1 is as good as possible from . Let 1 be a strategy of P 1 on A. We need to prove that UCol (A, , 1) ⊆ UCol (A, , 1). Let ∈ UCol (A, , 1). From Equation (.) and the leftmost inequality of Equation (.), we have col (Plays(A, , 1 , 2)) . Hence, by definition, ∈ UCol (A, , 1).

Remark . . As noted above, optimal strategies do not always coincide with Nash equilibria. They do coincide for determined preference relations. Up to now, we have only defined determinacy for qualitative objectives (Definition . .). We discuss briefly determinacy of preference relations.

The traditional formulation of determinacy for real payoff functions → ℝ requires the highest outcome that P 1 can get close to (sup inf)

to be equal to the lowest outcome that P 2 can get close to (inf sup) -the game is then said to have a value [OR]. Here, as we have not assumed much on preference relation (which is a total preorder), we cannot assume the existence of infima and suprema (the concepts of UCol and DCol still imitate as much as possible the classical sup inf and inf sup formulations).

Another less common (but equivalent [Ohl , Lemma] [Ohl]: Ohlmann (),

Monotonic graphs for parity and mean-payoff games

) formulation

Characterization of arena-independent finite-memory determinacy for determinacy of payoff functions is to require that all (qualitative) threshold objectives are determined. For a preference relation , the threshold objectives can be defined as the objectives

= { ∈ | }
for each ∈ . For reasonable preference relations, by Borel determinacy [Mar] [Mar]: Martin (), Borel determinacy , all threshold objectives are indeed determined. Under this definition of determinacy, pairs of optimal strategies induce Nash equilibria. Hence, both notions coincide in most cases of interest. This discussion is still needed to understand the link between optimal strategies of the individual players and Nash equilibria (Gimbert and Zielonka only define the latter as pairs of optimal strategies [GZ] [GZ]: Gimbert et al. (

),

Games Where You Can Play Optimally Without Any Memory

). It is also useful to have a notion of optimality of a strategy that does not involve instantiating a strategy of the opponent.

Remark . . In quantitative games played on one-player arenas, the two visions -optimal strategies and Nash equilibria -coincide.

. . Product arenas

Our main proof technique in this chapter is to perform a proof by induction on finite arenas to prove the existence of optimal strategies based on some memory structure. It turns out that a nice way to do this is to start by augmenting arenas with information from the memory structure, and only then start the induction on the class of arenas with enough information. This "augmenting" step can be formulated as a product between an arena and a memory structure. Let A = (, 1 , 2 ,) be an arena and M = (, init , upd) be a memory structure. We define their product A ⋉ M as the arena (, 1 , 2 ,) We use here an asymmetric symbol ⋉ to emphasize that A and M are distinct objects, as opposed to the product of memory structures using symbol ⊗ (Definition . .).

where

= × , 1 = 1 × , 2 = 2 × , and

⊆ × × is such that ((1 , 1), , (2 , 2)) ∈ if and only if (1 , , 2) ∈ and upd (1 ,) = 2 .
That is, the memory is updated according to the colors of the edges in .

A strategy on A based on memory M can be equivalently seen as a memoryless strategy on the product arena A ⋉ M. Albeit quite intuitive and part of folklore, we make this correspondence formal in the following result.

Lemma . . Let G = (A,) be a quantitative game on arena

A = (, 1 , 2 ,). Let M = (, init , upd)
G = (A ⋉ M,) from × { init }.

Characterization of arena-independent finite-memory determinacy

Proof. We first aim to define a bijection H : Hists(A) → Hists(A ⋉ M, × { init }). Let = 1 . . . ∈ Hists(A), with = (-1 , ,). We set 0 = init , and for 1 ≤ ≤ , we set = upd (-1 ,). We define = ((-1 , -1), , (,)), and H() = 1 Notice that col * (H()) = col * (). Furthermore, H is bijective; as the initial state of the memory init is fixed and the memory structure is deterministic, the memory states added to to obtain H() are uniquely determined.

We now show that there is a correspondence between strategies of P ℓ on A and on A ⋉ M through a bijection : intuitively, augmenting the arena with memory structure M allows some strategies to be played using less memory, but does not fundamentally change each player's possibilities. For ℓ a strategy of P ℓ on A and

∈ Hists ℓ (A ⋉ M) with in() ∈ × { init } and out() = (,) ∈ ℓ × , if ℓ (H -1 ()) = (, ,), we define (ℓ)() = ((,), , (, upd (,))).
The histories induced by strategies ℓ and (ℓ) correspond: if = H -1 (), then we have

H(• ℓ ()) = • ((ℓ)()). (.)
We are only interested in the behavior of strategies on A⋉M from histories with in() ∈ × { init } (in what follows, we only consider histories and plays of A ⋉ M starting in such vertices). If we restrict the image of to the set of functions ℓ :

Hists ℓ (A ⋉ M, × { init }) → , then is a bijection.
We now show a second fact related to : we have that for all ∈ , for all pairs 1 , 2 of strategies of P 1 and P 2 on A, col Plays(A, , 1 , 2) = col Plays(A ⋉ M, (, init), (1), (2)) .

This can easily be proved by induction using Equation (.). Indeed, at each step, both strategy 1 (resp. 2) and strategy (1) (resp. (2)) pick an edge with the same color. Using Lemma . . about consistent plays and bijectivity of , we have that col Plays(A, , 1) = col Plays(A ⋉ M, (, init), (1)) .

(.)

We finish the proof taking the point of view of P 1 ; the proof is symmetric for P 2 . Let 1 be a strategy of P 1 on A. The definition of UCol and Equation (.) imply that for all vertices ∈ ,

UCol (A, , 1) = { ∈ | ∃ ∈ col Plays(A, , 1) , } = { ∈ | ∃ ∈ col Plays(A ⋉ M, (, init), (1)) , } = UCol (A ⋉ M, (, init), (1)). (.)
Using Equation (.), we obtain that a strategy 1 is optimal in G = (A,) if and only if

(1) is optimal in G = (A ⋉ M,) from × { init }.

Characterization of arena-independent finite-memory determinacy

We now assume that 1 is based on M and that nxt is its next-action function. Formally, we want to transform nxt into a proper memoryless strategy on A ⋉ M. This can be done through the bijection , yielding the memoryless strategy nxt = (1), which corresponds exactly to nxt interpreted over the product arena, and well-defined for all histories starting in × { init }. In particular, 1 is optimal in G if and only if

(1) = nxt is optimal in G from × { init }.
Remark . . Lemma . . can be restated in terms of Nash equilibria, using a similar reasoning.

. . Arena induced by a non-deterministic finite automaton

We relate the words that can be induced in an arena with the language recognized by an automaton. We will need non-deterministic automata here, in order to emulate the fact that in an arena, there can be multiple outgoing edges with the same color from the same vertex.

A non-deterministic finite automaton (NFA) is a tuple N = (, , Δ, init ,), where is a finite set of states, is the set of colors, Δ ⊆ × × is a finite set of transitions, init ⊆ is a set of initial states, and ⊆ is a set of final states. Given a state ∈ and a finite word ∈ * , we denote by Δ * (,) the set of states that can be reached from after reading . Without loss of generality, we assume all NFAs to be coaccessible, i.e., for all ∈ , there exists ∈ * such that Δ * (,) ∩ ≠ ∅.

Let ⊆ * be a language of finite words. We denote by Prefs() the set of all prefixes of the words in . We define a set of infinite words derived from :

Set [] is very close to the more classical limit language -→ [PP] [PP]: Perrin et al. (

), Infinite words -automata, semigroups, logic and games

. The difference is that we require here that all prefixes of the infinite words are prefixes of words of , while the limit language has the stronger requirement that infinitely many prefixes of the infinite word are words of . For example, if

= * , [] = { }, but - → = ∅. [] = { = 1 2 . . . ∈ | ∀ ≥ 1, 1 . . . ∈ Prefs()},
which contains all infinite words for which every finite prefix is a prefix of a word in . Intuitively, if is regular, [] is the language of infinite words that correspond to infinite paths that can always branch and reach a final state on an NFA for : we will formalize this in Lemma . . . Given a finite word ∈ * and a language ⊆ * , we write for their concatenation, i.e., the language

= { = | ∈ } ⊆ * .
The following observation, already noted in [GZ] [GZ]: Gimbert et al. (),

Games Where You Can Play Optimally Without Any Memory

, will prove useful.

Lemma . . Let 1 , 2 ⊆ * . Then [1 ∪ 2] = [1] ∪ [2]. Proof. Let ∈ [1 ∪ 2].
Every finite prefix of is in Prefs(1 ∪ 2). Assume w.l.o.g. that infinitely many prefixes of are in Prefs(1). This implies that all prefixes of are in Prefs(1) (intuitively, because there is a continuity in the prefix relation). Hence,

∈ [1] ∪ [2]. Now, let ∈ [1] ∪ [2]. If ∈ [1] (resp. [2]), every finite prefix of is in Prefs(1) (resp. Prefs(2)), so in particular it is in Prefs(1 ∪ 2). Hence, ∈ [1 ∪ 2].
Let N = (, , Δ, init ,) be an NFA. We say that a state ∈ is essential if there exists an infinite path in N starting in . Let ess = { ∈ | is essential}. We define the corresponding finite one-player arena

Arena(N) = (= ess , 1 = , 2 = ∅, ⊆ ess × × ess), where = (, ,) ∈ if (, ,) ∈ Δ.
Intuitively, Arena(N) transforms N into a non-blocking arena thanks to the restriction to essential states.

We may now state formally the link between [] and an underlying NFA for . Our proof is similar to [GZ , Lemma]. [GZ] We start with the left-to-right inclusion. Let = 1 2 . . . ∈ []. We first prove that for all ≥ 1, it holds that 1 . . . ∈ col * Hists(Arena(N), init) .

We assume on the contrary that there exists ≥ 1 such that 1 . . . ∉ col * Hists(Arena(N), init) .

As Arena(N) is a restriction of the states of N to ess , this means that no matter how 1 . . . is read on N , it goes through a state in \ ess . As there is no infinite path from these states, this contradicts that ∈ []; there cannot be arbitrarily long prefixes starting with 1 We now use the property that we have just proved along with Kőnig's lemma to show that ∈ col Plays(Arena(N), init) . We build a forest Kőnig's lemma [Kőn]

[Kőn]: Kőnig (), Über eine Schlussweise aus dem Endlichen ins Unendliche (instantiated for trees) states that in any finitely branching tree with infinitely many nodes, there is an infinite path.

F of trees. The nodes of F are paths ∈ Hists(Arena(N), init) such that col * () is a prefix of and in() ∈ init . For every ∈ init , there is one tree in F whose root is the empty path . There is a transition from a node to a node if there exists ∈ such that • = . As there is at least one node for each prefix 1 . . . , (at least) one of the trees of F must be infinite. Moreover, F is finitely branching, since N has finitely many transitions. By Kőnig's lemma, we obtain that there must be an infinite path starting from a root for some ∈ init . By construction, col () = , so ∈ col Plays(Arena(N), init) .

Characterization of arena-independent finite-memory determinacy

We now prove the right-to-left inclusion. Let = 1 2 . . . ∈ Plays(Arena(N), init).

For ≥ 1, the word col * (1 . . .) is the color of a path in N , since every edge of Arena(N) corresponds to a transition of N . As N is coaccessible, there is a path in N from the state corresponding to out() to a final state in . Thus, the word col * (1 . . .) is a prefix of an accepted word of N , i.e., a prefix of a word in ; as this holds for all ≥ 1, we obtain that col () ∈ [].

We are now able to establish our characterization of preference relations admitting arena-independent finite-memory optimal strategies, i.e., optimal strategies based on a fixed memory structure M. We proceed in three steps. First, in Section . , we present the core concepts of this characterization, i.e., the properties that preference relations must satisfy to admit optimal strategies based on M. Secondly, we state our equivalence result in Section . , alongside the advertised one-to-two-player lift. We also provide an illustrative application of our characterization in Subsection . . .

. Concepts . . Generalizing monotony and selectivity

As explained in Section . , Gimbert and Zielonka's characterization relies on notions of monotony and selectivity of the preference relation [GZ].

[GZ]: Gimbert et al. (

),

Games Where You Can Play Optimally Without Any Memory

Intuitively, the main difference between Gimbert and Zielonka's technical approach and ours is the following. In the memoryless setting, all the reasoning can be abstracted away from the underlying arena and done at the level of sequences of colors. In the finite-memory setting, however, one has to pay attention to how sequences of colors are composed and compared, to maintain consistency with regard to the memory and the underlying game arena. This required defining generalizations of monotony and selectivity modulo a memory structure.

Definition . . (M-monotony) Let M = (, init , upd) be a memory structure. A preference relation is M-monotone if for all ∈ , for all regular languages 1 , 2 on alphabet ,

(∃ ∈ init , , [1] [2]) Note that [1] = [1]. =⇒ (∀ ∈ init , , [1] [2]) . (.)
Intuitively, M-monotony extends Gimbert and Zielonka's monotony by asking one to compare prefixes belonging to the same language init , , that

Characterization of arena-independent finite-memory determinacy is, prefixes that are classified equivalently by the memory structure. This property roughly captures that is stable with regard to prefix addition, for memory-equivalent prefixes.

The original monotony notion is exactly equivalent to our M-monotony with M being the trivial memory structure M triv : that is, the memoryless case is naturally a specific subcase of our framework.

Example . . We present a running example to illustrate our notions and the upcoming characterization: the conjunction of two reachability conditions, which is a subcase of generalized reachability games, studied extensively in [FH] [FH]:

Fijalkow et al. (),
The surprizing complexity of reachability games

.

This objective will also be a special case of a class of objectives studied in Chapter .

Let = { , , } be the set of colors. Formally, let the qualitative objective = Reach() ∩ Reach() be the set of infinite words = 1 2 . . . such that

∃ , ∈ ℕ, = ∧ = .
This objective is -regular and is in particular recognized by the deterministic Büchi automaton in Figure . (left). We discussed how this qualitative objective induces a preference relation after Definition . . .

In general, we transfer properties defined on preference relations (such as Mmonotony) to qualitative objectives by considering the preference relation they induce.

We first show that this preference relation is not M triv -monotone (that is, is not monotone for [GZ] [GZ]: Gimbert et al. (

),

Games Where You Can Play Optimally Without Any Memory

). Take 1 = * , 2 = * . For = , = , we have

[1] [2], but [2] [1]
. This means that the preference relation is not stable with regard to prefix addition (at least, without distinguishing different classes of prefixes). We exhibit a small memory structure

M p = (p , p 1 , p upd) such that is M p -monotone: it is pictured in Figure . (center).
Let us prove that is M p -monotone. Let ∈ p and 1 , 2 be regular languages; we want to show that Equation (.) is satisfied. We assume that there exists ∈

], so [1] [2].
Characterization of arena-independent finite-memory determinacy Remark . . The M-monotony notion is in general not symmetric, i.e., it does not always hold for a preference relation if and only if it holds for its inverse. Let = { , } and let ∈ be the non-ultimately-periodic word 2 3 . . . (the argument can be adapted for any non-ultimatelyperiodic word). We consider the qualitative objective

= { }. Objective is not M triv -monotone: if = , = , 1 = * , and 2 = * , we have [1] [2], but [2] [1]. However,
is M triv -monotone. Let 1 , 2 be regular languages, and

∈ init , init be such that [1] [2]
. This implies that [1] contains only words losing for and that [2] contains a word in , i.e., an infinite word that is not . As [2] is non-empty, it necessarily contains an ultimately periodic word: there is an infinite path in an NFA recognizing regular language 2 , so there is an infinite path that loops around a cycle (this is essentially the same argument as in the proof of Lemma . .). Hence, for all ∈ init , init , the set [2] also contains an ultimately periodic word, so a winning word for . We obtain that

[1] [2]
. We will see that symmetry of M-monotony holds for all -regular objectives in Subsection . . . We now turn our focus to selectivity.

Definition . . (M-selectivity) Let M = (, init , upd) be a memory structure. A preference relation is M-selective if for all ∈ * , = * upd (init ,), for all regular languages 1 , 2 , 3 such that 1 , 2 ⊆ , , [(1 ∪ 2) * 3] [* 1] ∪ [* 2] ∪ [3]. (.)
Similarly, M-selectivity extends Gimbert and Zielonka's selectivity by asking one to compare sequences of colors belonging to the same language , , that is, sequences read as cycles on the memory structure. Note also that the memory state should be consistent with the prefix read from the initial memory state init . This property roughly captures that is stable with regard to cycle mixing, for memory-equivalent cycles. Again, the original selectivity notion is equivalent to M triv -selectivity.

Characterization of arena-independent finite-memory determinacy

Example . . We go back to objective = Reach() ∩ Reach(), the monotony of which was discussed in Example . . . First, objective is not M triv -selective: take as the empty word, 1 = * , 2 = * , and 3 = * ; to win, 1 and 2 need to be "mixed". We exhibit a small memory structure and1 , 2 , 3 be regular languages such that 1 , 2 ⊆ , . We show that Equation (.) is satisfied, i.e., that

M c = (c , c 1 , c upd) such that is M c -selective: it is pictured in Figure . (right). We prove that is M c -selective. Let ∈ * , = (c upd) * (c 1 ,),
[(1 ∪ 2) * 3] [* 1] ∪ [* 2] ∪ [3].
If all words of [(1 ∪ 2) * 3] are losing, this equation trivially holds; we thus assume that this set contains a winning word. We therefore have to show that there is a winning word in

[* 1], [* 2], or [3].
We study the two possible values of separately.

If = c
1 , then does not reach nor , and the same holds for all words of 1 and 2 , as 1 , 2 ⊆ , . Therefore, if a word of We can also show that is M triv -selective using similar arguments.

[(1 ∪ 2) * 3] is winning, this must be because a word of [3] is winning. If = c 2 ,
In a nutshell, M-monotony deals with prefixes up to the first cycle (on the memory structure) and M-selectivity deals with the cycles thereafter; we will see that memory structures can be built in a compositional way based on these two complementary tasks.

Our notions respect the natural intuition that access to additional memory should always be helpful: if a memory structure M is sufficient to classify sequences of colors in a way that guarantees M-monotony or M-selectivity, then it should also be the case for "more powerful" structures.

Lemma . . Let M and M be two memory structures. If is M-monotone

(resp. M-selective) then, it is also (M ⊗ M)-monotone (resp. (M ⊗ M)- selective).
Proof. We write M = (, init , upd) and M = (, init , upd).

Let us assume that is M-monotone, that is, for all ∈ , for all regular Characterization of arena-independent finite-memory determinacy

languages 1 , 2 , ∃ ∈ init , , [1] [2] =⇒ ∀ ∈ init , , [1] [2]. (.)
We show that is (M ⊗ M)-monotone, that is, for all (,) ∈ × , for all regular languages 1 , 2 ,

∃ ∈ (init , init),(,) , [1] [2] =⇒ ∀ ∈ (init , init),(,) , [1] [2]. (.)
To do so, we notice that (init , init),(,) ⊆ init , (the product of memory structures simply updates both memories in parallel). Thus, if the premise of Equation (.) holds, we obtain by Equation (.) that the conclusion of Equation (.) also holds.

A similar argument can be laid out to show that M-selectivity implies (M ⊗ M)-selectivity. It is enough to notice that for all (,) ∈ × , we have (,),(,) ⊆

, : the definition of M-selectivity is thus clearly stronger than the definition of (M ⊗ M)-selectivity.

. . Discussion about the M-monotony notion

We discuss the significance of the restriction of 1 and 2 to regular languages in the definition of M-monotony. Observations in this section will hopefully bring insight to the reader, and will be revisited and find additional meaning in the subsequent Chapter . In particular, we show that M-monotony always coincides for a qualitative objective and for its complement in the -regular case, but not in general. This will simplify the multiple studies of -regular examples later on.

Let

⊆ be a qualitative objective. We recall that the prefix preorder of compares finite words w.r.t. inclusion of their winning continua-See Section . for the formal definition of prefix preorder of an objective.

tions. The M-monotony notion also compares in some way finite words with respect to their continuations using infinite extensions of regular languages.

We discuss what happens if we drop this regular requirement by defining M-strong-monotony. A similar notion called strong monotony has already been defined [BFMM] and turns out to be equivalent to our notion of [BFMM]: Bianco et al. (),

Exploring the boundary of halfpositionality

M triv -strong-monotony. We can therefore see once again our definition as a reformulation and a generalization to handle arbitrary memory structures, rather than only the "memoryless memory structure" M triv .

Definition . . (M-strong-monotony) Let M = (, init , upd) be a memory structure. A preference relation is M-strongly-monotone if for all Characterization of arena-independent finite-memory determinacy ∈ , for all sets 1 , 2 ⊆ ,

(∃ ∈ init , , 1 2) =⇒ (∀ ∈ init , , 1
2) .

For

∈ such that 1 ∈ , 2 ∉ 1 ∉ , 2 ∈ . If we take 1 = { 1 } and 2 = { 2 }, then 2 1 and 1 2 , so
is not M-strongly-monotone.

We now prove the implication from right to left directly. We assume that for all ∈ , for all , ∈ init , , and are comparable for . Taking the definition of M-strong-monotony, let ∈ , 1 , 2 ⊆ , and ∈ init , such that 1 2 . This means that there is no winning word in 1 and that there is a winning word in 2 .

Now, let ∈ init , . We want to show that 1 2 , i.e., that 1 contains no winning word or that 2 contains a winning word. We have by hypothesis that is comparable to for . If , then 2 also contains a winning word, which ends the proof. If , then 1 also contains no winning word, which also ends the proof.

We discuss a few differences between M-monotony and M-strongmonotony. First, as opposed to M-monotony (Remark . .), M-strongmonotony holds for an objective if and only if it holds for its complement, which is easily proved using the previous lemma.

Lemma . . Let M be a memory structure. An objective is M-stronglymonotone if and only if its complement is.

Proof. We write M = (, init , upd). Let ⊆ be an M-stronglymonotone objective. We use the reformulation of M-strong-monotony Characterization of arena-independent finite-memory determinacy provided by Lemma . . . Let ∈ and , ∈ init , . Then, and are comparable for . As = , and are also comparable for . Hence, is M-strongly-monotone too.

The M-strong-monotony notion is indeed stronger in general, but both notions coincide for -regular objectives. This is the object of the next two lemmas.

Lemma . . There exists an M triv -monotone objective that is not M trivstrongly-monotone.

Proof. In Remark . . , we have seen an objective that is not M trivmonotone but whose complement is M triv -monotone. As M triv -strongmonotony is stronger than M triv -monotony, is not M triv -stronglymonotone. By the above Lemma . . , M triv -strong-monotony is symmetric, so is not M triv -strongly-monotone either. Therefore, is Mmonotone but not M-strongly-monotone.

Lemma . . Let M be a memory structure.

We also have for similar reasons that for an -regular objective , is M-selective if and only if it is "M-selective without restricting 1 , 2 , and 3 to being regular languages". However, this observation did not seem to bring much insight (unlike for M-monotony, for which we have a useful reformulation in Lemma . .) and will not be needed elsewhere in this thesis.

An -regular objective is Mmonotone if and only if it is M-strongly-monotone. In particular, an -regular objective is M-monotone if and only if its complement is.

Proof. Let

⊆ be an -regular objective. The implication from Mstrong-monotony to M-monotony is obvious: M-monotony quantifies universally over fewer languages.

Assume now that is M-monotone. We write M = (, init , upd). We show that is M-strongly-monotone by using the reformulation of Lemma . . . Let ∈ and , ∈ init , . We show that and are comparable for . We assume that and we show that , i.e., that () -1 ⊆ -1 . As () -1 and -1 are -regular, it suffices to show that all ultimately periodic words in () -1 are in -1 (using Lemma . . about ultimately periodic separation of distinct -regular objectives). Let ∈ * , ∈ + such that () ∈ () -1 ; we show that () ∈ -1 . As , also by Lemma . . , there is ∈ * , ∈ + such that ∈ -1 but ∉ () -1 . We take 1 = * and 2 = () * (which are regular languages). We have Characterization of arena-independent finite-memory determinacy

[1] = { } and [2] = { () }. Therefore, [1] = { } { () } = [2]. By M-monotony of and as , ∈ init , , [1] [2]. As [1] = { } contains a

. . Prefix-covers and cyclic-covers

While the aforementioned concepts of M-monotony and M-selectivity are the primordial ones for stating the characterization, we still need two additional notions to prove it.

To prove that monotone and selective preference relations yield memoryless optimal strategies, Gimbert and Zielonka deploy an inductive argument on the number of choices in finite arenas. Intuitively, we want to use a similar approach for optimal strategies based on a memory structure, but because of the coupling between the memory structure and the finite arena (e.g., Lemma . .), the induction argument breaks, as adding one choice in the arena results in adding many in the product arena (as many as there are memory states), where the reasoning needs to occur.

To solve this issue, we decouple the two aspects (see Section .). For a given memory structure M, we first establish that on arenas that inherently share the same good properties as product arenas with M (that is, they already "classify" prefixes and cycles as M would), we can deploy the induction argument and obtain memoryless optimal strategies. Then, we obtain the result for optimal strategies based on M on arbitrary arenas as a corollary. The crux is identifying such "good" arenas: this is done through the following notions.

Definition . . (Prefix-cover, cyclic-cover) Let M = (, init , upd) be a memory structure and A = (, 1 , 2 ,) be an arena. Let cov ⊆ .

We say that M is a prefix-cover of cov in A if for all ∈ , there exists ∈ such that, for all ∈ Hists(A) such that in() ∈ cov , out() = and such that for all proper prefixes of , out() ≠ , we have *

upd (init , col * ()) = . We say that M is a cyclic-cover of cov in A if for all ∈ Hists(A) such that in() ∈ cov , if = out() and = * upd (init , col * ()), for all ∈ Hists(A) such that in() = out() = , * upd (, col * ()) = .
Intuitively, M is a prefix-cover of a set of vertices cov if the histories starting in cov and visiting a given vertex ∈ for the first time are read up to the same memory state in the memory structure. Similarly, M is a cyclic-cover of A if the cycles of A are read as cycles in the memory Definition . . can be equivalently stated by considering simple cycles only.

structure, once the memory has been initialized properly.

As hinted above, the canonical example of a prefix-covered and cycliccovered arena is a product arena.

Lemma . . Let M = (, init , upd) be a memory structure and A = (, 1 , 2 ,) be an arena. Structure M is both a prefix-cover and a cyclic-cover

of cov = × { init } in the product arena A ⋉ M.
Characterization of arena-independent finite-memory determinacy Proof. The main argument in this proof is that if there is a history of the product arena A ⋉ M with in() = (,) and out() = (,), then reading col * () from in the memory structure M leads to (i.e., * upd (, col * ()) =). This can be proved by induction on the length of , thanks to how the product arena is built.

We first show that M is a prefix-cover of cov = × { init } in the product arena A ⋉ M. What we have to prove, instantiating the definition of prefix-cover in this case, is that for all (,) ∈ × , there exists (,) ∈ such that, for all ∈ Hists(A ⋉ M) such that in() ∈ cov , out() = (,) and such that for all proper prefix of , out() ≠ , we have

* upd (init , col * ()) = (,) . Let (,) ∈ × ; we take (,) = . Then, if ∈ Hists(A ⋉ M) is such that in() ∈ cov (that is, is equal to (, init
) for some ∈), and out() = (,), we have by construction of the product arena that * upd (init , col * ()) = = (,) , as required. To prove that M is a cyclic-cover of cov in A ⋉ M, we have to prove that for all ∈ Hists(A ⋉ M) such that in() ∈ cov , if (,) = out() and = * upd (init , col * ()), for all ∈ Hists(A ⋉ M) such that in() = out() = (,), * upd (, col * ()) = . Let ∈ Hists(A ⋉ M) such that in() ∈ cov (that is, in() = (, init) for some ∈). Then, if (,) = out(), we have by construction of the product arena that). By construction of the product arena, we therefore have that * upd (, col * ()) = , as required.

= * upd (init , col * ()) = . Let ∈ Hists(A ⋉ M) such that in() = out() = (,
Still, not only product arenas are prefix-covered and cyclic-covered.

Example . .

We consider the arena in Figure . (left). Memory structure M (right) is both a prefix-cover and a cyclic-cover of { 1 , 3 } in this arena. This arena cannot be realized as a product of a smaller arena with M; in particular, there would need to be at least two copies of the vertex controlled by P 2 .

Remark . . We discovered after defining these covering notions that something similar had already been defined in an unpublished part of Kopczyński's thesis [Kop , Definition .] [Kop]: Kopczyński (),

Half-positional Determinacy of Infinite Games

. Our notion of an arena being both prefix-covered and cyclic-covered by a memory structure M is equivalent to his notion that an arena adheres to memory M, Characterization of arena-independent finite-memory determinacy which means that it is possible to assign a state of M to every vertex of the arena such that moving along the edges of the arena updates these memory states in a consistent way. Let A = (, 1 , 2 ,) and M = (, init , upd). We say that A adheres to M from cov ⊆ In Kopczyński's thesis, all objectives are prefixindependent, and this entails that distinguishing the initial state of the memory is less crucial [Kop , Proposition .]. We therefore slightly adapted his definition of adherence to fit our more general setting by distinguishing initial states in the morphism.

if there exists : → such that (cov) ⊆ { init } and for all (, ,) ∈ , upd ((),) = (). In other words, an arena adheres to a memory structure if there is a morphism from the arena vertices to the memory states, while preserving some distinguished initial states. Our definitions of prefix-cover and cyclic-cover can be seen as two distinct sides of this idea of adherence which, when put together, are actually equivalent to it. We distinguish in every technical lemma which kind of covering we actually need, but our general scheme would work by just using the more straightforward notion of adherence instead.

. Characterization . . Main results

We now have the necessary ingredients to state our general equivalence result formally. We defer the formal proofs of both directions of the equivalence to Sections . and . , and only explain here how to combine them.

Theorem . . (Characterization of AIFM determinacy over finite arenas)

Let be a preference relation and let M be a memory structure. Then, both players have optimal strategies based on memory structure M in finite arenas if and only if and -1 are M-monotone and M-selective.

This result is meant to mirror the result of Gimbert and Zielonka [GZ , Theorem]: their result can be retrieved from Theorem . . by taking [GZ]

: Gimbert et al. (),

Games Where You Can Play Optimally Without Any Memory

the trivial memory structure M triv . As such, our work brings a strict generalization of Gimbert and Zielonka's results [GZ] to the finitememory case.

Remark . . The statements of our intermediate results are slightly stronger than what is stated in the summarizing characterization above. Although we only need optimal strategies in the left-to-right direction (Propositions . . and . .), we prove the stronger existence of finitememory Nash equilibria in the other direction (Proposition . . and Corollary . .). In particular, the existence of arena-independent finitememory optimal strategies in all finite arenas entails determinacy of the preference relation (see Remark . .) over finite arenas. Similarly, we study the two implications of the equivalence in a compositional way: we split the reasoning for M-monotony and M-selectivity, using different memory structures for each whenever meaningful, as Characterization of arena-independent finite-memory determinacy well as for the players.

To prove Theorem . . , we invoke the results we will prove in Sections . and . . Proof of Theorem . . . The left-to-right implication follows from Proposition . . (for M-monotony) and Proposition . . (for M-selectivity), applied to each player with respect to its preference relation. The converse implication is established in Corollary . . about Nash equilibria, which can be restated in terms of optimal strategies through Lemma . . . As a by-product of our method, we also obtain a similar equivalence by solely considering one of the two players and their corresponding one-player arenas.

Theorem . . (One-player characterization) Let be a preference relation and M be a memory structure. Then, P 1 has optimal strategies based on M in all its finite one-player arenas if and only if is M-monotone and M-selective.

Although this looks like a weak version of Theorem . . at first sight, this is actually a distinct result as both sides of the equivalence are weaker: on the left side, it only handles the memory requirements for the one-player games of P 1 ; on the right side, it does not assume anything about the inverse preference relation -1 . Albeit close, this is also distinct from the half-positional determinacy result from [Kop , Theorem], which gives sufficient conditions about an [Kop]: Kopczyński (),

Half-Positional Determinacy of Infinite Games

objective for a player to admit memoryless optimal strategies on every finite two-player arena -in Theorem . . , we give a necessary and sufficient condition for a player to admit arena-independent finite-memory optimal strategies on its finite one-player arenas only. The sufficient conditions from [Kop] (prefix-independence and concavity) imply M triv -monotony and M triv -selectivity, but not the other way around. Given a preference relation, it is possible for a player to have arena-independent finite-memory optimal strategies on its finite one-player arenas, but not on all finite twoplayer arenas; see, e.g., the example used in [Kop , Proposition]. In such an example, Theorem . . could be applied, but not the result from [Kop].

Proof of Theorem . . . The left-to-right implication follows from Proposition . . (for M-monotony) and Proposition . . (for M-selectivity). The converse implication is established in Corollary . . . One-to-two-player lift. Alongside the aforementioned equivalence result, Gimbert and Zielonka provide a corollary of high practical interest [GZ , Corollary]: they essentially obtain as a by-product of their [GZ]

: Gimbert et al. (),

Games Where You Can Play Optimally Without Any Memory

approach that if memoryless strategies suffice in all finite one-player Characterization of arena-independent finite-memory determinacy games of P 1 and all finite one-player games of P 2 , they also suffice in all finite two-player games.

We are able to lift this corollary to the arena-independent finite-memory case, as follows.

Theorem . . (One-to-two-player lift, finite arenas) Let be a preference relation and M 1 , M 2 be two memory structures. Assume that . for all games played on a finite one-player arena of P 1 , P 1 has an optimal strategy based on M 1 ; . for all games played on a finite one-player arena of P 2 , P 2 has an optimal strategy based on M 2 .

Then, in all games played on finite (two-player) arenas, both P 1 and P 2 have optimal strategies based on memory structure

M = M 1 ⊗ M 2 .
We highlight the two (possibly different) memory structures of the two players to maintain a compositional approach, but if the same memory structure M works in both one-player versions, it also suffices in the two-player version (as

M ⊗ M is isomorphic to M).
Proof of Theorem . . . By Propositions . . and . . , which essentially state that the left-to-right implication of Theorem . . holds already in finite one-player games, the hypothesis yields that is M 1 -monotone and M 1 -selective, while -1 is M 2 -monotone and M 2 -selective. Now it suffices to apply Corollary . . -essentially the right-to-left implication of Theorem . . -to get the claim.

. . Running example

We go back to our running example = Reach() ∩ Reach(), the monotony of which was studied in Example . . and the selectivity of which was studied in Example . . . We use Theorem . . directly in order to illustrate it. In practice, using Theorem . . may be preferable, as it yields a shorter proof: by exhibiting the right memory structure for P 1 and P 2 , we simply have to show that these memory structures are sufficient to play optimally on both players' finite one-player arenas. But here, we already have detailed information on monotony and selectivity of .

We discussed that is M p -monotone and M c -selective (M p and M c are depicted in Figure .), and that is M triv -selective. As isregular, its complement is also M p -monotone (Lemma . .). Let M = M p ⊗ M c ⊗ M triv be the product of all the considered memory structures. Structure M is drawn in Figure . (center). Although M formally has four states, only three of them are reachable from the initial state. By Lemma . . , we have that both and -1 are M-monotone and Characterization of arena-independent finite-memory determinacy M-selective. Using Theorem . . , we obtain that both players have optimal strategies based on memory structure M in all games played on finite arenas. Note that memory structure M is minimal (no memory structure with Structure M is minimal as a memory that suffices for both players, but P 2 can actually play optimally with two states of memory, which results from this chapter do not show; see Chapter for more precise results.

1 2 3 1 2 3 , 1 , 1 2 , 1 3 , 1 1 , 2 2 , 2 3 , 3
fewer states suffices for P 1 to play optimally in all arenas [FH]). [FH]

: Fijalkow et al. (),
The surprizing complexity of reachability games

We provide an example of a one-player arena A = (, 1 , 2 = ∅,) in Figure . , and show that there is an optimal strategy based on memory structure M for the preference relation . To do so, we invoke Lemma . . : we show equivalently that the product A⋉M admits a memoryless optimal strategy from × { init } for . Notice that no memoryless strategy suffices to play optimally in (A,), as when starting in 2 , P 1 should first visit 1 before going to 3 . Also, the memoryless optimal strategy from × { init } in the product arena is only optimal if the initial vertex is in × { init }; it is for instance not as good as possible from vertex (2 , 2).

. From strategies based on M to M-monotony and M-selectivity

In this section, we show the necessity of M-monotony and M-selectivity for the existence of optimal strategies based on M in finite one-player arenas.

Monotony. We start with M-monotony.

Proposition . . (Necessity of M-monotony) Let be a preference relation and M be a memory structure. If P 1 has an optimal strategy based on M in all its finite one-player arenas, then is M-monotone.

Note that this result can be instantiated for P 2 and -1 symmetrically.

Our proof can be sketched as follows. We need to establish that Equation (.) holds. We first instantiate the four languages involved in it: { }, { }, 1 and 2 . We take NFAs recognizing them and build an NFA N that joins them in such a way that, when N is considered as a game arena

Characterization of arena-independent finite-memory determinacy (see Lemma . .), its plays correspond exactly to the languages of infinite words considered in Equation (.). This arena is essentially composed of two chains emulating the two prefixes and and leading to a vertex where P 1 has to pick a side corresponding to the two languages [1] and [2] (Figure .). Now, establishing the M-monotony of boils down to invoking an optimal strategy in the corresponding game, the crux being that this strategy always picks the same edge in (i.e., the same side between subarenas corresponding to [1] and [2]) as both prefixes and are deemed equivalent by the memory structure M.

N \ { fin } N \ { fin } N 1 \ { 1 init } N 2 \ { 2 init }
Proof of Proposition . . . We write M = (, init , upd) and we assume that for all finite one-player arenas of P 1 , P 1 has an optimal strategy based on M. Let us prove that is M-monotone, i.e., that for all ∈ , for all regular languages 1 , 2 ,

∃ ∈ init , , [1] [2] =⇒ ∀ ∈ init , , [1] [2]. (.)
Let ∈ and 1 , 2 be regular languages. We assume that 1 , 2 ≠ ∅, otherwise Equation (.) holds trivially: if 1 is empty, the conclusion of the implication is true regardless of 2 ; and if 2 is empty, the premise is false. Now, assume that there exists ∈ init , such that

[1] [2],
and let be another finite word in init , . We will prove that

[1] [2]. Let N = (, , Δ , init ,), N = (, , Δ , init ,), N 1 = (1 , , Δ 1 , 1 init , 1), and N 2 = (2 , , Δ 2 , 2 init , 2
) respectively denote NFAs recognizing languages { }, { }, 1 , and 2 . They exist since all these languages are regular. We assume w.l.o.g. that NFA N (resp. N , N 1 , N 2) is coaccessible and has only one initial state init (resp. init , 1 init , 2 init) with no ingoing transition. We can do this since 1 and 2 are non-empty. We also assume w.l.o.g. that N (resp. N) has only one final state fin (resp. fin) with no outgoing transition. Actually, N and N can be taken as "chains" recognizing a unique word, and being coaccessible and deterministic.

We build an NFA N = (, , Δ, init ,) by "merging" states 1 init , 2 init , fin , and fin . We call this new merged state . Formally, we build it as follows:

= (∪ ∪ 1 ∪ 2 ∪ { }) \ { 1 init , 2 init , fin , fin };
Characterization of arena-independent finite-memory determinacy init = { init , init } and = 1 ∪ 2 ; and finally, the transition relation simply takes into account the merging on :

Δ = {(, ,) ∈ Δ ∪ Δ ∪ Δ 1 ∪ Δ 2 | , ∉ { 1 init , 2 init , fin , fin }} ∪ {(, ,) | (, ,) ∈ (Δ ∪ Δ) ∧ ∈ { fin , fin }} ∪ {(, ,) | (, ,) ∈ (Δ 1 ∪ Δ 2) ∧ ∈ { 1 init , 2 init }}.
This construction is illustrated in Figure . . The language recognized by

N from init is (1 ∪ 2), whereas from init , it is (1 ∪ 2).
Observe that N is coaccessible since both N 1 and N 2 are coaccessible.

Recall that we assume

[1] [2]. By definition, this implies that [2] ≠ ∅, hence we also have that [2] ≠ ∅.
From this, we get that is essential in N (Lemma . .). Thus, it is also the case for init and init .

We will now interpret this NFA as a finite arena and use the hypothesis. Let A = Arena(N). By Lemma . . , we have that col (Plays

(A, init)) = [(1 ∪ 2)] and col (Plays(A, init)) = [(1 ∪ 2)]
. By hypothesis, P 1 has an optimal strategy based on M in G = (A,). Let nxt : 1 × →

We really need the uniformity of the optimal strategy here, i.e., that the same strategy is as good as possible from multiple initial vertices (here, from init and init). We will come back to the importance of uniformity in Section . . be the next-action function of this strategy (where are the edges of A).

Let ∈ Plays(A, init ,) be the only play consistent with strategy from init . By definition of A, this play necessarily contains a history = 1 . . . such that out() = and for all , 1 ≤ < , out() ≠ . Observe that col * () = . Recall that = * upd (init ,) is the memory state reached after reading since ∈ init , . Let = nxt (,) be the edge chosen by in when is visited (will be visited only once by construction of A).

We will show that belongs to the part generated by N 2 . By contradiction, assume it belongs to

N 1 . Then, = • , with col () ∈ [1], hence col () ∈ [1]. First, observe that [2] col (Plays(A, init)) since [2] ⊆ [1] ∪ [2], [1] ∪ [2] = [(1 ∪ 2)] (using Lemma .
.), and, as noted above,

[(1 ∪ 2)] = col (Plays(A, init)).
Since is optimal from init , we have One can get from the definition of optimal using the UColoperator that, in this oneplayer game, is as good as possible from init if and only if for all strategies of P 1 , col (Plays(A, init ,)) col (Plays(A, init ,)).

[2] col ().

Finally, as we assumed that col () ∈ [1], we can conclude that

[2] [1],
which contradicts the hypothesis that [1] [2]. Hence, we have established that belongs to N 2 .

Characterization of arena-independent finite-memory determinacy

Now let us consider ∈ Plays(A, init ,), the only play consistent with strategy from init . Again, by definition of A, this play necessarily contains a history = 1 . . . such that out() = and for all , 1 ≤ < , out() ≠ . Observe that col * () = . Since ∈ init , , we also have that * upd (init ,) = , i.e., the memory state reached after reading is the same as the one reached after reading . Hence, we have that = nxt (,) is exactly the same edge as before, and therefore belongs to

N 2 . Thus, col () ∈ [2].
Finally, since is also as good as possible from init and applying the same reasoning as above, we have that

[1] [1] ∪ [2] = [(1 ∪ 2)] = col (Plays(A, init)) col () [2],
which proves Equation (.) and concludes our proof.

Selectivity. We now turn to M-selectivity.

Proposition . . (Necessity of M-selectivity) Let be a preference relation and M be a memory structure. If for all its finite one-player arenas, for all vertices of the arena, P 1 has a strategy based on M that is as good as possible from , then is M-selective.

The same holds for P 2 and -1 symmetrically. Observe that uniformity of the strategy is not required here (as opposed to the proof for M-monotone, Proposition . .).

Our proof bears similarities with the monotone case. We need to establish that Equation (.) holds. We first instantiate the four languages involved in it: { }, 1 , 2 and 3 . We take NFAs recognizing them and build an NFA N that joins them in such a way that, when N is considered as a finite arena (see Lemma . .), its plays correspond exactly to the languages of infinite words considered in Equation (.). This arena is essentially composed of a chain emulating the prefix and leading to a vertex where P 1 can visit sides that generate cycles from 1 and 2 -forever or for a finite time -or branch to a side corresponding to Proof of Proposition . . . We write M = (, init , upd) and we assume that for all its finite one-player arenas, for all vertices of the arena, P 1 has a strategy based on M as good as possible from . Let us prove that is M-selective, i.e., that for all ∈ * , = * upd (init ,), for all regular languages 1 , 2 , 3 such that 1 , 2 ⊆ , ,

[(1 ∪ 2) * 3] [* 1] ∪ [* 2] ∪ [3]. (.)
Let ∈ * and = * upd (init ,). Let 1 , 2 , 3 be regular languages with 1 , 2 ⊆ , . In the following, we assume all three languages 1 , 2 and 3 to be non-empty. Indeed, if 3 is empty, so is the left-hand side of Equation (.), hence it trivially holds. If both 1 and 2 are empty, Equation (.) compares [3] to itself, hence it trivially holds again. Finally, if 1 is the only empty language among the three, then Equation (.) can be restated as follows:

[(1 ∪ 2) * 3] = [(2 ∪ 2) * 3] [* 2] ∪ [* 2] ∪ [3] = [* 1] ∪ [* 2] ∪ [3],
where the middle inequality -the one to prove -involves three nonempty sets. A symmetric argument holds if 2 is the only empty language. We also assume that 1 and 2 do not contain the empty word for technical convenience: this is w.l.o.g. thanks to the Kleene stars used in the regular expressions to consider.

As for monotony, we start by considering NFAs for all these languages: let N = (, , Δ , init ,),

N 1 = (1 , , Δ 1 , 1 init , 1), N 2 = (2 , , Δ 2 , 2
init , 2), and N 3 = (3 , , Δ 3 , 3 init , 3) respectively denote NFAs recognizing languages { }, 1 , 2 and 3 . They exist since all these languages are regular. We assume w.l.o.g. that NFA N (resp.

N 1 , N 2 , N 3) is coaccessible and has only one initial state init (resp. 1 init , 2 init , 3 init) with no ingoing transition. We can do this since 1 , 2 , and 3 are non-empty. We also assume w.l.o.g. that N (resp. N 1 , N 2) has only one final state fin (resp. 1 fin , 2 fin) with no outgoing transition. Again N can simply be a "chain" recognizing a unique word, being both coaccessible and deterministic.

Similarly to Proposition . . , we build an NFA N = (, , Δ, init ,) by "merging" states 1 init , 2 init , 3 init , fin , 1 fin , and 2 fin . We call this new merged state . Formally, we build it as follows:

= (∪ 1 ∪ 2 ∪ 3 ∪ { }) \ { 1 init , 2 init , 3 init , fin , 1 fin , 2 fin }; init = { init } and = 3 ;
and finally, the transition relation simply takes into account the merging Characterization of arena-independent finite-memory determinacy

N \ { fin } N 1 \ { 1 init , 1 fin } N 2 \ { 2 init , 2 fin } N 3 \ { 3 init } Figure . : NFA N built to establish M-selectivity.
on :

Δ = {(, ,) ∈ Δ ∪ Δ 1 ∪ Δ 2 ∪ Δ 3 | , ∉ { 1 init , 2 init , 3 init , fin , 1 fin , 2 fin }} ∪ {(, ,) | (, ,) ∈ (Δ ∪ Δ 1 ∪ Δ 2) ∧ ∈ { fin , 1 fin , 2 fin }} ∪ {(, ,) | (, ,) ∈ (Δ 1 ∪ Δ 2 ∪ Δ 3) ∧ ∈ { 1 init , 2 init , 3 init }}.
This construction is illustrated in Figure . . The language recognized by

N is (1 ∪ 2) * 3 .
Observe that N is coaccessible since N 1 , N 2 and N 3 are coaccessible. Also observe that is essential by construction: by merging the initial and final states of 1 (resp. 2), we created cycles on . Thus, init is also essential.

We will now interpret this NFA as a finite arena and use the hypothesis. Let A = Arena(N). By Lemma . . , we have that col (Plays(A, init)) = [(1 ∪ 2) * 3]. By hypothesis, P 1 has an optimal strategy from init , with next-action function nxt : 1 × → (where are the edges of A).

Let ∈ Plays(A, init ,) be the only play consistent with from init . By optimality from init , we have that

[(1 ∪ 2) * 3] col (). (.)
By definition of A, this play necessarily contains a history = 1 . . . such that out() = and for all , 1 ≤ < , out() ≠ . Observe that col * () = . Recall that = * upd (init ,) is the memory state reached after reading since ∈ init , . Let = nxt (,) be the edge chosen by in when is first visited. Note that in contrast to the construction in Proposition . . , could be visited many times here, and even infinitely often (using cycles from 1 and 2). We consider two cases in the following.

First, assume that belongs to the part of the arena generated by N 3 . Since (originally 3 init) has no incoming transition in N 3 , we conclude that never visits again, and that col () ∈ [3]. By Equation (.), we have Equation (.). Now, assume that belongs to the part of the arena generated by N1 (the same reasoning applies symmetrically for N2). We want to show that Characterization of arena-independent finite-memory determinacy col () ∈ [* 1], i.e., that never switches to another part of the arena. Two cases are possible: either () visits only once, or () visits at least twice.

Case (). Since visits only once and is the only vertex where the play could switch to a different NFA, we have that = • for a suffix starting in and entirely contained in N 1 . Hence, we have col ()

= • col () with col () ∈ [1]. Thus, col () ∈ [1] ⊆ [* 1].
Case (). Let = • • , such that ends with the second visit of . Recall that = col * (), = * upd (init ,), and = nxt (,). Now, by definition of 1 , we have that col * () ∈

, . Hence, * upd (, col * ()) = . Intuitively, the memory structure is back to the same memory state after reading the cycle . Therefore, (•) = () = . Iterating this reasoning (as all cycles on in N 1 are read as cycles on in the memory), we conclude that = • () . This implies that col () ∈ [* 1]. Hence, in both cases, we have that col () ∈ [* 1]. Now, by Equation (.), we have Equation (.).

Wrap-up.

We have established that the existence of finite-memory optimal strategies based on a memory structure M in finite one-player games implies both M-monotony and M-selectivity of the preference relation. Next, we consider the converse: we will prove that M-monotony and M-selectivity implies the existence of optimal strategies based on M, not only in one-player games, but even in two-player ones, when satisfied by the preference relation and its inverse.

. From M-monotony and M-selectivity to strategies based on M Induction step. To prove the sought implication (Proposition . .), we first focus on memoryless strategies in finite "covered" arenas, as discussed in Section . . Intuitively, a "covered" arena resembles a product arena (with a memory structure): hence studying memoryless strategies on such arenas is very close to studying finite-memory strategies on general arenas.

We will proceed by induction on the number of choices in finite arenas, as sketched in Section . . This induction will require us to mix different Nash equilibria (one for each player) in a proper way to maintain the desired property. For the sake of readability, we thus start by proving the induction step for one player. number of choices. We also define the notion of subarena: we say that an arena A = (, 1 , 2 ,) is a subarena of an arena (, 1 , 2 ,) if can be obtained from A by removing some edges of A (while keeping it non-blocking, as is required to be an arena). We say that a set of arenas is closed under subarena operation if for all A ∈ , for all subarenas A of A, A ∈ .

Lemma . . Let be a preference relation, M p and M c be two memory structures, and be a set of finite arenas closed under subarena operation. We assume that is M p -monotone and M c -selective, and that for all finite one-player arenas A = (, 1 , 2 ,) ∈ of P 2 , for all subsets of vertices cov ⊆ of which M p is a prefix-cover and M c is a cyclic-cover, P 2 has an optimal strategy from cov .

Let ∈ ℕ. Assume that for all arenas A = (, 1 , 2 ,) ∈ such that A < , for all subsets of vertices cov ⊆ of which M p is a prefix-cover and M c is a cyclic-cover, there exists a memoryless Nash equilibrium

(1 , 2) from cov in G = (A ,).
Then, for all arenas A = (, 1 , 2 ,) ∈ such that A = , for all subsets of vertices cov ⊆ for which M p is a prefix-cover and M c is a cyclic-cover, there exists a Nash equilibrium (1 , 2) from cov in G = (A,) such that 1 is memoryless.

Note that the same holds for P 2 and -1 symmetrically.

Intuitively, Lemma . . states that under the hypotheses of M p -monotony and M c -selectivity, if both players can play optimally with memoryless strategies in "small" and "covered" arenas, the same property holds for at least P 1 in "covered" arenas where an additional choice exists. This lemma is focused on proving the existence of an NE in which the strategy of P 1 is memoryless: proving that this holds for both players will be done in Proposition . . .

As motivated in Section . , we state our result as the existence of memoryless optimal strategies in arenas "covered by M": the existence of strategies based on M in general arenas will follow (Corollary . .).

We use two different memory structures, one for monotony (dealing with prefixes) and one for selectivity (dealing with cycles). Naturally, one can use a single combined memory structure using Lemmas . . and . . , but our approach has the advantage of being compositional and highlighting how each property impacts the reasoning in the proof: we will see that they have different uses.

As mentioned above, our proof is essentially an induction step. Starting from a finite arena A with A = choices, we identify a vertex in which P 1 has at least two outgoing edges (the proof is symmetric for P 2). By splitting the edges in into two sets, we obtain two corresponding subarenas A and A such that A , A < , along with the corresponding subgames.

The induction hypothesis gives us two memoryless Nash equilibria (from cov) in these subgames: (1 , 2) and (1 , 2). The arguments can then be unfolded as follows. First, using M p -monotony and M p being a prefixcover, we identify one subarena (say A) which is clearly at least as good as the other for P 1 . Secondly, we build a strategy profile (# 1 , # 2), that we claim to be an NE in G, in the following way: P 1 uses strategy 1 (the one from the best subarena) and P 2 reacts to the actions of P 1 by playing the corresponding best-response strategy. I.e., if P 1 plays in A , P 2 plays according to 2 , and otherwise P 2 plays according to 2 . Third, it remains to prove the two inequalities of Equation (.). The rightmost one is easy, as well as the leftmost one in the subcase where the unique play ∈ Plays(A, , # 1 , # 2) does not visit vertex : they can both be proved essentially thanks to the induction hypothesis and easy construction arguments. The crux of the proof is thus in the last step: proving that the leftmost inequality holds when the play visits . This can be achieved thanks to M c -selectivity and M c being a cyclic-cover, Lemma . . , inherent properties of the preference relation, A being the best subarena thanks to M p -monotony, and the induction hypothesis.

Proof of Lemma . . . We write the memory structures from the statement as

M p = (p , p init , p upd) and M c = (c , c init , c upd). Let A = (, 1 , 2 ,
) ∈ be a finite arena such that A = , and let cov ⊆ be a subset of vertices for which M p is a prefix-cover and M c is a cyclic-cover. Our goal is to prove that there exists an NE (1 , 2) from cov in (A,) such that 1 is memoryless.

If A is such that P 1 has no choice (i.e., all vertices in 1 have only one outgoing edge), then there is a single strategy of P 1 on A, which happens to be memoryless. Arena A is almost a one-player arena of P 2 , as even though P 1 owns some vertices, there is no choice to make in those vertices. We can easily build a bijection between strategies of P 2 in A and the "true" one-player arena in which ownership of vertices of P 1 is transferred to P 2 . By hypothesis, P 2 has a strategy to play in A that is as good as possible from vertices prefix-covered by M p and cyclic-covered by M c . Thus there is indeed a Nash equilibrium on A from cov with the strategy of P 1 being memoryless.

Let us now assume that P 1 has at least one choice and let ∈ 1 be a vertex with at least two outgoing edges, i.e., |{ ∈ | in() = }| > 1. We partition { ∈ | in() = } in two (non-empty) sets and , and we define two corresponding subarenas, A = (, 1 , 2 , \), and A = (, 1 , 2 , \), which are in as this set is closed under subarena operation. Observe that it remains true that M p is a prefix-cover and M c is a cyclic-cover of cov , both in A and A , by definition of prefix-covers and cyclic-covers (intuitively, we quantify universally over fewer histories than in A). Intuitively, this means that, for P 1 , committing to the subarena A is always at least as good as committing to the subarena A . Note that this does not imply anything with regard to alternating between the two subarenas, which could for now be beneficial: we will deal with that soon thanks to M c -selectivity.

Thus, by induction hypothesis (since

Let us define the strategy # 1 of P 1 on arena A as # 1 = 1 , the strategy used in the NE from cov in the subgame G (we chose this one because of assumption (.): G is the better subgame of the two for P 1). Strategy # 1 is thus memoryless by definition. Note that # 1 is well-defined on A even though the original strategy was on A , since it is memoryless (i.e., whether the prefix did visit A or not does not matter). Now, we define a corresponding strategy # 2 for P 2 in G that uses a small amount of (chaotic) memory, as follows: for all ∈ Hists 2 (A),

2 () =          2 () if never visited ,
2 () if the last visit of was followed by an edge in A , 2 () otherwise.

Again this strategy is well-defined on A. Our goal is to show that the strategy profile (# 1 , # 2) is an NE from all vertices in cov in the larger game G. In particular, Lemma . . implies that this pair of strategies are optimal from cov .

Formally, we will establish that for all ∈ cov , for all strategies 1 of P 1 and strategies 2 of P 2 on A, we have

col (Plays(A, , 1 , # 2)) col (Plays(A, , # 1 , # 2)) col (Plays(A, , # 1 , 2)). (.)
We begin with the rightmost inequality of Equation (.). Let ∈ cov and let 2 be an arbitrary strategy for P 2 on A. We denote by 2 [A] its restriction to (histories of) A : note that this strategy is well-defined as only edges belonging to P 1 have been removed in A .

We have

col (Plays(A, , # 1 , # 2)) = col (Plays(A , , 1 , 2))
as these strategies stay in

A col (Plays(A , , 1 , 2 [A])) as (1 , 2) is an NE from in A = col (Plays(A, , # 1 , 2))
as these strategies stay in A , hence the rightmost inequality holds. Now, consider the leftmost inequality of Equation (.). Let ∈ cov and let 1 be an arbitrary strategy of P 1 on A. Let ∈ Plays(A, , 1 , # 2) be the only play consistent with 1 and # 2 from . We first consider the case where never visits . If this is the case, then is also a play of A . Let 1 be a strategy of P 1 on A that mimics 1 on all histories that belong to A , except the ones ending in , where it plays an arbitrary edge in . We have col ()

= col (Plays(A, , 1 , # 2)) = col (Plays(A , , 1 , 2)) because stays in A and never visits , col (Plays(A , , 1 , 2)) because (1 , 2) is an NE from in A , = col (Plays(A, , # 1 , # 2))
because these strategies stay in A , hence the leftmost inequality holds in the case where never visits .

It remains to consider the case where does visit . Observe that for the moment, we have not used M c -selectivity and the fact that ∈ cov : they will be crucial to solve this (more complex) case.

We define c = col * { ∈ Hists(A , , 2) | out() = } , for ∈ { , }, that is, c contains all (projections to colors of) cycles on consistent with 2 (i.e., the strategy from the subgame NE) in subarena A . Since the unique play ∈ Plays(A, , 1 , # 2) visits at least once, we write = • for , the prefix ending with the first visit of . Let = col * (). Observe that

col () ∈ [(c ∪ c) * (p ∪ p)]
since # 2 alternates between 2 and 2 depending on what P 1 plays in . Intuitively, either cycles infinitely often on using cycles of (c ∪ c), or it does it for a while, then switches to (p ∪ p), which induces that commits to a subarena. Thus, we trivially have col ()

[(c ∪ c) * (p ∪ p)].
Since M c is a cyclic-cover of cov in A, and starts in cov , we know that for c = c upd (c init , col * ()), and for all ∈ Hists(A) such that Characterization of arena-independent finite-memory determinacy in() = out() = , we have c upd (c , col * ()) = c . That is, all cycles on are read as cycles on c in M c . This implies that c , c ⊆ c , c . Knowing that, we can invoke the M c -selectivity (Equation (.)) of the preference relation to obtain

col () [(c) *] ∪ [(c) *] ∪ [(p ∪ p)].
Using Lemma . . , we have

col () [(c) *] ∪ [(c) *] ∪ [p] ∪ [p].
Observe that

[(c) *] ⊆ [p], for ∈ { , }. Hence, we have col () [p] ∪ [p].
Now, recall that using the M p -monotony of , we assumed that ∀ ∈

p p init , p , [p] [p].
Since starts in cov , ends in its first visit to and M p is a prefix-cover of cov , this inequality is in particular true for = col * (). Hence, we have

col () [p]. Now, recall that (1 , 2) is an NE from cov in G .
Recall also that represents the history up to the first visit of consistent with (1 , # 2); it is also consistent with (1 , 2) since # 2 follows 2 up to the first visit of . Hence, we also have

[p] ⊆ col (Plays(A , , 2)) col (Plays(A , , 1 , 2)).
Therefore,

col () col (Plays(A , , 1 , 2)) = col (Plays(A, , # 1 , # 2
)) because these strategies stay in A .

Recalling that is the only play in Plays(A, , 1 , # 2), we are done with proving the leftmost inequality of Equation (.).

Summing up our arguments, we have established that the couple of strategies (# 1 , # 2) is indeed a Nash equilibrium in G from cov . Note that this in particular implies, via Lemma . . , that # 1 is a memoryless optimal strategy in G from cov .

Memoryless Nash equilibria.

We are now armed to establish the implication sketched earlier. As motivated before, we first state the result in the context of memoryless NEs on finite "covered" arenas; the finite-memory case on general finite arenas will follow straightforwardly. We first show the result for finite one-player arenas, and use it to obtain the two-player case.

Characterization of arena-independent finite-memory determinacy

Lemma . . Let be a preference relation and M p , M c be two memory structures. Assume that is M p -monotone and M c -selective. Then, for all finite one-player arenas A = (, 1 , 2 ,) of P 1 , for all subsets of vertices cov ⊆ for which M p is a prefix-cover and M c is a cyclic-cover, there exists a memoryless optimal strategy 1 from cov in G = (A,).

Proof. Let be the set of all finite one-player arenas of P 1 , which is closed under subarena operation.

We proceed by induction on the number of choices in the arena. The base case, A = 0, is trivial. Let ∈ ℕ \ {0} and assume the result holds for A < . Let A = (, 1 , 2 ,) ∈ be a one-player arena of P 1 such that A = , and let cov ⊆ be a subset of vertices for which M p is a prefix-cover and M c is a cyclic-cover. We can invoke Lemma . . (note that as we only consider the one-player arenas of P 1 , the existence of a Nash equilibrium coincides with the existence of an optimal strategy for P 1 -see Remark . .), and obtain an optimal strategy for P 1 from cov .

We are now ready for the two-player case, which requires monotony and selectivity assumptions for both relation and relation -1 . We want to keep our results as general and compositional as possible; hence, we consider different memory structures for the two players. As argued before, one can always take a single structure for the two players, as well as for the two notions, by taking their product and using Lemmas . . and . . . As discussed previously, this theorem in particular implies the existence of memoryless optimal strategies from cov for both players (via Lemma . .).

Proposition . . Let be a preference relation and M

It is fairly straightforward to prove Proposition . . once Lemma . . is established: the main idea is to invoke Lemma . . for both players while doing the induction, and obtain two Nash equilibria, both of which being memoryless for only one player. Then, to conclude, we resort to Lemma . . which gives us the possibility to mix these two NEs into one that is now memoryless for both players.

Remark . . Recall that a crucial hypothesis for Lemma . . to hold is that our games are zero-sum, i.e., that we consider and its inverse Characterization of arena-independent finite-memory determinacy relation -1 . It is quite interesting to observe that our use of Lemma . . is the only circumstance in which this hypothesis matters (and it is indeed essential) in all our reasoning.

To be more precise: we wrote everything in the antagonistic setting, but Equation (.) can be written as two inequalities in the general settingcol (Plays(A, , 1 , 2))

1 col (Plays(A, , 1 , 2)) and col (Plays(A, , 1 , 2)) 2 col (Plays(A, , 1 , 2))
-and all our previous reasoning can be rewritten accordingly.

In other words, most of our arguments would hold for two different preference relations 1 and 2 (for respectively P 1 and P 2), without the hypothesis that 2 equals (1) -1 . The problem would be that we cannot mix the two equilibria in a single equilibrium with both strategies being memoryless -while we do need it in the hypothesis of the induction step in Lemma . . . Whether the same reasoning can be extended to (general) Nash equilibria by adapting Lemma . . to take into account the unavoidable blow-up of memory is a question we leave open for future work. Note that the memory bounds would be huge in any case: as the induction unrolls, the memory needed in the equilibria would build up (essentially one bit of memory is added at each call of the induction step in our easier setting, which is then discarded thanks to Lemma . .).

Proof of Proposition . . . We consider the set of all finite arenas, which is closed under subarena operation. By Lemma . . , we immediately obtain that for all finite one-player arenas A = (, 1 , 2 ,) of P 1 (resp. of P 2), for all subsets of vertices cov ⊆ for which M p 1 and M p 2 are prefix-covers, and M c 1 and M c 2 are cyclic-covers, P 1 (resp. P 2) has an optimal strategy from cov .

We will proceed by induction on the number of choices in the arena, as described before. The base case, A = 0, is trivial. Now let ∈ ℕ \ {0} and assume the result holds for A < . Let A = (, 1 , 2 ,) ∈ be an arena such that A = , and let cov ⊆ be a subset of vertices for which

(♣ 1 , ♣ 2) from cov in G = (A,) such that ♣
2 is memoryless. To conclude, it suffices to use Lemma . . :

(♠ 1 , ♠ 2) can be mixed with (♣ 1 , ♣ 2) into an NE (♠ 1 , ♣ 2
), which is now memoryless for both players. This concludes our induction step and our proof.

Finite-memory Nash equilibria based on M. Finally, we conclude this section by establishing our result as a corollary.

Corollary . . Let be a preference relation and M

M p 1 ⊗ M p 2 ⊗ M c 1 ⊗ M c 2 in G = (A,).
The proof of this corollary follows directly from the previous results. We build the joint memory structure M as defined above. By Lemmas . . and . . , we can invoke Proposition . . on the product arena A ⋉ M and obtain a memoryless NE on it, or equivalently, an NE based on M on the original arena, through Lemma . . . Proof of Corollary . . . Let A = (, 1 , 2 ,) be a finite arena. We define

M = (, init , upd) = M p 1 ⊗ M p 2 ⊗ M c 1 ⊗ M c
2 , the joint memory structure. By Lemma . . , and -1 are both M-monotone and M-selective.

Consider the product arena A = A ⋉ M, as defined in Subsection . . . Recall that = × . By Lemma . . , the set of vertices cov = × { init } ⊆ is both prefix-covered and cyclic-covered by M.

Putting the last two arguments together, we invoke Proposition . . on A and obtain a memoryless Nash equilibrium

(1 , 2) from cov in G = (A ,).
To conclude, it suffices to use Lemma . . (stated using NE, as discussed in Remark . .): the memoryless NE (1 , 2) in the product game G can be seen as an NE (1 , 2) based on M in G = (A,).

We can also formulate a version of this last result focusing on one-player arenas.

Corollary . . Let be a preference relation and M p , M c be two memory structures. Assume that is M p -monotone and M c -selective. Then, for all finite one-player arenas A = (, 1 , 2 ,) of P 1 , there exists an optimal strategy 1 in G = (A,), based on M = M p ⊗ M c . Sketch of proof. The proof is very similar to (and easier than) the proof of Corollary . . , but uses the one-player implication of Lemma . . instead of Proposition . . .

. Digression: the cost of uniformity

In Chapter , we defined an optimal strategy for a qualitative objective as one that wins from every vertex in the winning region, and we have generalized it for preference relations to a strategy that plays as well as possible from every vertex. This requirement is sometimes called uniformity.

We give a few general situations showing the impact of uniformity on the complexity of strategies, the gist of this section being that uniformity is almost for free in two-player games on graphs.

Characterization of arena-independent finite-memory determinacy One-player arenas. We first focus our attention on the cost of uniformity in one-player arenas. In one-player arenas, requiring uniformity may demand more complex strategies in general. We have shown that the conjunction of M-monotony and M-selectivity of a preference relation was equivalent to the existence of optimal strategies based on M for P 1 in its finite one-player arenas (Theorem . . from all vertices of the winning region, P 1 has a memoryless winning strategy. In other words, M triv -selectivity is equivalent to the existence

The proof of [BFMM , Theorem] is also by induction on the number of edges, and it could be generalized to deal with arbitrary memory structures M using an induction on covered arenas.

of (non-necessarily uniform!) memoryless winning strategies in finite one-player arenas for P 1 . This means that M triv -selectivity guarantees the existence of memoryless winning strategies in one-player arenas, and that M triv -monotony is then needed to "uniformize" them while keeping them memoryless.

We give a concrete example: we studied objective = Reach()∩Reach() in Subsection . . , with = { , }. We have seen that its complement = Safe() ∪ Safe() is M triv -selective. With [BFMM , Theorem], this means that P 2 has a memoryless winning strategy from every vertex of its winning region in its finite one-player arenas. However, is not

M triv -monotone: by Theorem . . , this means that P 2 does not have memoryless optimal (i.e., uniformly winning) strategies in its one-player arenas. We can illustrate it on a small arena: we consider the one-player arena from Figure . (left). All strategies are winning for P 2 from 3 , 4 , and 5 . From 1 , P 2 wins by going to 4 and inducing word ; from 2 , P 2 needs to go to 5 to induce word . From each fixed vertex, P 2 wins with a memoryless strategy. Yet, P 2 needs memory to win uniformly from 1 and 2 , as the optimal choice in 3 depends on what was seen previously.

In two-player arenas, P 2 needs memory to win, even from a fixed vertex; P 1 can emulate the non-uniformity from 1 and 2 in a single vertex 1 in Figure . (right).

Two-player arenas. We would now like to investigate the impact from requiring uniformity on memory requirements in two-player arenas, and more specifically on arena-independent finite-memory determinacy. For simplicity, we focus on qualitative objectives ⊆ . In this chapter, there is one proof where we used as an assumption the uniformity of the strategies: the one of Proposition . . . In this proof, we used the existence of optimal strategies in the class of finite one-player arenas of the kind depicted in Figure . (left). Could this proof work by replacing the existence of uniform strategies in one-player arenas with non-uniform strategies? This is not possible if we keep the strong "one-player arenas" requirement (see counterexample Safe() ∪ Safe() above), but is it possible with a two-player arena? Through this other route, we would not get the one-to-two-player lift, but we would get uniformity of strategies for free. This is tempting; can we just give the opponent the choice of the initial word, keeping the same construction elsewhere? This works in almost every situation; an issue only arises when or is the empty word ! In the original proof using one-player arenas, this would mean that is taken as one of the two interesting initial vertices, which works. However, there is no way to replicate that from just one initial vertex with the construction on the right of Figure . . If we can replace the empty word with an "equivalent" non-empty word (in the sense that ∼ ; and have the same winning continuations), then the proof carries out; if not, it may not work, as we will illustrate in the upcoming Example . . . We first state the general result.

N \ { fin } N \ { fin } N 1 \ { 1 init } N 2 \ { 2 init } N 1 \ { 1 init } N 2 \ { 2 init } ? - →

Lemma . . Let

⊆ be an objective such that there exists ∈ + with ∼ . Let M be a memory structure. Both players have a (non-necessarily uniform) winning strategy based on M from every vertex of their winning regions in finite two-player arenas if and only if both players have (uniformly) optimal strategies based on M in finite two-player arenas. of (uniformly) optimal strategies based on M for both players in finite two-player arenas (Theorem . .).

Most classical objectives admit the existence of such a ; in particular, all prefix-independent objectives admit it (as any finite word has the same winning continuations as the empty word). The existence of such a is also weaker than the existence of a neutral color [Ohl], a recent [Ohl]: Ohlmann (

),

Characterizing Positionality in Games of Infinite Duration over Infinite Graphs

fruitful hypothesis to study the existence of memoryless optimal strategies. Lemma . . also led us to find a counterexample when the empty word has no equivalent.

Example . . Let = { , } and = (+) be the set of infinite words that either start with or with . This objective is -regular and is recognized, e.g., by the DBA in Figure . (left). Observe that no non-empty word has the same winning continuations as the empty word. This objective does not admit memoryless optimal strategies: in the arena in Figure . (right), P 1 can win from 1 by going to 3 and from 2 by going to 4 , but there is no uniformly winning strategy from 1 and 2 . Yet, in all two-player arenas, P 1 has a memoryless (non-uniformly) winning strategy from every vertex of its winning region. Let A = (, 1 , 2 ,) be an arena, and ∈ be a vertex in the winning region of P 1 . We show that P 1 has a memoryless winning strategy from . If ∈ 1 and there is an edge (, ,) ∈ , P 1 can simply play this edge. If ∈ 2 and all outgoing edges are -colored, P 1 automatically wins from . If not, P 1 can win by forcing , which can be shown to be doable with a memoryless strategy by distinguishing a few cases. Through this example, we have distinguished the existence of memoryless (uniformly) optimal strategies for P 1 in two-player arenas from the existence of memoryless non-uniformly winning strategies.

. Further discussion of selected related works

In this section, we give a brief overview of two ways the results from this chapter have been generalized in subsequent works. The first one is a generalization of both the characterization of Theorem . sum stochastic games played on finite graphs. In a stochastic game [Sha], [Sha]: Shapley (),

Stochastic Games

when a player chooses an outgoing edge (often called an action in the stochastic case), the following vertex is chosen according to some fixed probability distribution. In deterministic games, when both players fix a strategy, the resulting object is an infinite path in the arena; in stochastic games, it is a probability distribution over the set of infinite paths. Therefore, there is an extension of the definition of objectives from this chapter (preference relations over infinite words) to preference relations over distributions over infinite words. An example of such a general objective with no equivalent in our framework is "reaching a color with probability exactly The one-to-two-player lift we obtained [BORV a, Theorem .] is very close to Theorem . . , and can only be applied to strategies without randomization: if both players have optimal strategies without randomization based on a fixed memory structure M in their respective finite one-player stochastic arenas, then the same holds in finite two-player stochastic arenas. Note that a finite one-player stochastic arena is frequently called a Markov decision process in the literature. Technically, we combine insights from this chapter (induction on the set of product arenas) and from an alternative proof for a one-to-two-player lift for memoryless strategies in stochastic games from an unpublished article by Gimbert and Zielonka [GZ]. This alternative proof is more [GZ]

: Gimbert et al. (),

Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences

direct than the one we use here to obtain the lift, but does not provide an equivalence through notions such as M-monotony and M-selectivity. It also allows for a finer quantification on the classes of arenas and of strategies that can be considered; the proof for deterministic arenas is actually a special case.

We finally discuss here the role of randomization in the strategies. In deterministic games, for reasonable (read Borel) and determined games [Mar], [Mar]: Martin (), Borel determinacy one of the players has a (surely) winning strategy with no randomization; in some way, randomization is not needed to win in deterministic games. This result carries over to some extent in stochastic games [Mar]: if [Mar]: Martin (), The Determinacy of Blackwell Games Characterization of arena-independent finite-memory determinacy the objective consists in maximizing the expected value of a real payoff function → ℝ, then players have -optimal strategies with no randomization (see [CMJ , Lemma] therefore a separate direction of study -to which this thesis gives no answer -in trying to understand memory requirements while allowing for some kind of randomization in the strategies.

. . Generalization to mildly growing memory

In [Koz b], Kozachinskiy looks at the same model of zero-sum determin-

[Koz b]: Kozachinskiy (),
One-To-Two-Player Lifting for Mildly Growing Memory istic games as in this chapter, and he extends the one-to-two-player lift from this chapter (Theorem . .) to a class of strategies beyond arenaindependent ones, venturing into the lands of (non-arena-independent) finite-memory determinacy.

For our one-to-two-player lift, we required that the amount of memory necessary to play optimally in finite one-player arenas is "constant" in the sense that no matter the size of the finite one-player arena that we consider, there is a fixed memory structure -the size of which does not depend on the arena -that suffices to play optimally. Kozachinskiy relaxes this constraint and allows the size of the memory structures to "grow mildly" with respect to the size of the one-player arenas.

Let be a preference relation. Kozachinskiy studies how the size of a sufficient memory structure grows as a function of the size of the oneplayer arenas. Let : ℕ \ {0} → ℕ \ {0} be a function such that for ≥ 1, there is a chromatic memory structure M with () states that suffices to play optimally for each player in their respective one-player arenas with at most vertices. It turns out that when is sublinear (it suffices that lim inf () = 0), then is finite-memory determined over finite arenas. Moreover, an upper bound on the memory in finite two-player arenas of a given size can be computed as a function of . In practice, if = O() with 0 < < 1, then the amount of memory required to play optimally in finite two-player arenas with vertices is a function in O(1-). The proof scheme uses the same technique as [GZ ; BORV a] discussed above, [GZ] but pushes it to its limits by making finer observations on the size of all the objects that are manipulated.

Let us compare this result to ours. In the arena-independent case, can be taken as ultimately constant, so we naturally have that lim inf () = 0, and our result is obtained as a special case. We discussed a counterexample to a general one-to-two-player lift for finite-memory determinacy in Subsection . . . How to analyze this objective in light of this stronger one-to-two-player lift? Clearly, it cannot satisfy the hypothesis of this lift, as it is not finite-memory-determined over finite two-player arenas: the number of states necessary for the memory in one-player arenas cannot be sublinear. On the other hand, Kozachinskiy gave an upper bound: he shows that to play optimally in one-player arenas with ≥ 1 vertices, there is a memory structure with 2 + 2 memory states that suffices. Hence, we cannot hope to have a general one-to-two-player lift for objectives with memory requirements that already grow linearly in finite one-player arenas -we cannot generalize the stronger lift of Kozachinskiy to a class of strategies growing faster than sublinearly.

As far as we know (and as Kozachinskiy knows, as is claimed in his paper), there was no natural example of preference relation from the literature that fits this sublinear hypothesis without also being arena-independent. Kozachinskiy builds one such example to illustrate the applicability of his result [Koz b, Theorem]. We do not define it formally here but [Koz b]:

Kozachinskiy (),
One-To-Two-Player Lifting for Mildly Growing Memory discuss it at a high level. This example (actually, a qualitative objective) is defined on = {0, 1} and includes all infinite words with a finite factor 01 0 for in some fixed set ⊆ ℕ. The trick is to take an infinite set with sufficiently spread out elements (Kozachinskiy takes = {2 4 ⊆ ∈ ℕ}).

This way, if < +1 are two consecutive elements in , for a one-player arenas with vertices such that is significantly greater than but smaller than +1 , if a player can win, this player can win by counting only up to (thus with a memory structure with about states). By carefully choosing , we then have that lim () = lim = 0, thus lim inf () = 0. By Kozachinskiy's lift, this suffices to show that this objective is finite-memory determined over finite two-player arenas, which was not possible with our result.

Yet, this stronger lift is not an exact frontier of finite-memory determinacy. For instance, the memory requirements of multi-energy games are at least linear in the size of the finite one-player arenas, but are still finite in finite two-player arenas [VCD + ; CRR ; JLS]. This cannot be explained through the stronger lift of Kozachinskiy, as the sublinear hypothesis on the memory of one-player arenas is not satisfied. The quest for a complete understanding of (non-arena-independent) finite-memory determinacy over games played on finite graphs is still ongoing.

Characterization of -regularity through finite-memory determinacy

Finite-memory determinacy of -regular objectives [BL ; GH ; McN] is a landmark result stating that, in two-player zero-sum turn-based games, finite-memory strategies suffice for both players when the objective is -regular (even for games played on graphs of arbitrary cardinality). We refer to Section . for the significance of this result. We show a reciprocal of that statement: given an objective, when both players can play optimally with a chromatic finite memory structure (i.e., whose updates can only observe colors) in all infinite game graphs, then this objective must be -regular. This provides a game-theoretic characterization of -regular objectives, and this characterization helps obtain memory bounds and automatic representations of these objectives. This result generalizes the work of Colcombet and Niwiński [CN] discussed in Section . .

. Introduction

Right congruence. We recall a notion defined in Section . that becomes central in this chapter: a well-known tool to study a language of finite (resp. infinite) words is its right congruence relation ∼ : for two finite words 1 and 2 , we write 1 ∼ 2 if for all finite (resp. infinite) words , 1 ∈ if and only if 2 ∈ . There is a natural deterministic (potentially infinite) automaton recognizing the equivalence classes for the right congruence, called the prefix classifier of [Sta ; MS].

On Syntactic Congruences for Omega-Languages

The relation between a regular language of finite words and its right congruence is given by the Myhill-Nerode theorem [Ner], which pro- [Ner]: Nerode (), Linear Automaton Transformations vides a natural bijection between the states of the minimal deterministic automaton recognizing a regular language and the equivalence classes for its right congruence relation. Consequences of this theorem are that () a language is regular if and only if its right congruence has finitely many equivalence classes, and () a regular language can be recognized by a deterministic finite automaton built on top of its prefix classifier.

For the theory of languages of infinite words, the situation is not so simple: -regular languages have a right congruence with finitely many equivalence classes (Lemma . .), but having finitely many equivalence classes does not guarantee -regularity (for example, a language is prefixindependent if and only if its right congruence has exactly one equivalence class, but this does not imply -regularity). Moreover, -regular languages cannot necessarily be recognized by adding a natural acceptance condition (Büchi, parity, Rabin, Muller. . .) to their prefix classifier [AF]. There [AF]: Angluin et al. (

),

Regular -languages with an informative right congruence

has been multiple works about the links between a language of infinite words and its prefix classifier; one relevant question, linked to our results, is to understand when a language can be recognized by this prefix classifier [Sta ; MS ; AFS ; BL ; AF].

Constructing Deterministic -Automata from Examples by an Extension of the RPNI Algorithm

Contributions. We characterize the -regularity of a language of infinite words through the strategy complexity of the zero-sum turn-based games on infinite graphs with objective : the -regular languages are exactly the chromatic-finite-memory-determined objectives (Theorem . .). As discussed earlier (Theorem . .), it is well-known that -regular languages admit chromatic-finite-memory optimal strategies [GH ; Mos ; Zie] -our results yield the other implication. This therefore provides [GH] a characterization of -regular languages through a game-theoretic and strategic lens.

In this chapter, we talk about chromatic finite-memory determinacy, but we recall that for games played on infinite arenas, it is equivalent to arenaindependent finite-memory determinacy (Proposition . .), as used in the previous chapter.

Characterization of -regularity through finite-memory determinacy

Our technical arguments consist in providing a precise connection between the representation of as a parity automaton and a chromatic memory structure sufficient to play optimally. If strategies based on a chromatic finite-memory structure are sufficient to play optimally for both players, then is recognized by a parity automaton built on top of the direct product of the prefix classifier and this chromatic memory structure (Theorem . .). As sketched in Section . , this result generalizes the work of Colcombet and Niwiński [CN] in two ways: by relaxing the prefix-independence [CN]: Colcombet et al.

(

), On the positional determinacy of edge-labeled games assumption about the objective, and by generalizing the class of strategies considered from memoryless to chromatic-finite-memory strategies. We recover their result as a special case.

Moreover, we actually show that chromatic finite-memory determinacy over the one-player games of both players is sufficient to show -regularity of a language. As -regular languages are chromatic-finite-memorydetermined over two-player games, we can reduce the problem of chromatic finite-memory determinacy of an objective in two-player games to the easier chromatic finite-memory determinacy over one-player games (Theorem . .). We therefore recover a result orthogonal to the main result of Chapter (Theorem Chapter structure. We start with extra notations used to manipulate memory structures more precisely (Section .). We define notions at the core of our characterization in Section . . Our main results are then discussed in Section . , and their proofs lie in Sections . and . . We provide an extensive application of our results to discounted-sum objectives, and a brief application to mean-payoff and total-payoff objectives in Section . .

. Preliminaries: manipulating memory structures

Let M = (, init , upd) be a memory structure. We introduce extra notations to manipulate memory structures and their transitions throughout this chapter.

We say that a non-empty sequence = (0 , 1) . . . (-1 ,) ∈ (×) + is a path of M (from 0 to upd (-1 ,)) if for all such that 1 ≤ ≤ -1, = upd (-1 ,). For convenience, we also consider every element (, _) for ∈ and _ ∉ to be an empty path of M (from to). A Empty paths of M are akin to empty arena histories for arenas, and are also introduced for technical convenience.

non-empty path of M from to is a cycle of M (on) if = . When

Characterization of -regularity through finite-memory determinacy

we want to emphasize that we work with cycles and not just paths, we usually use letter instead of . For = (0 , 1) . . . (-1 ,) a path of M, we define st() to be the set { 0 , . . . , -1 }, and col * () to be the sequence 1 . . . ∈ * . For an infinite sequence (0 , 1)(1 , 2) . . . ∈ (×) , we also define col ((0 , 1)(1 , 2) . . .) to be the infinite sequence 1 2 . . . ∈ . If

(,) ∈ × occurs in a path of M, we call (,) a transition of and we write abusively (,) ∈ . For , ∈ , we write Π , for the set of paths of M from to , Φ for the set of cycles of M on , and Φ M for the set of all cycles of M (on any memory state). We extend in a natural way notation col * to sets of paths or cycles of M to consider their projections to colors (e.g.,

col * (Φ M) = {col * () ∈ + | ∈ Φ M }).
In particular, col * (Π 1 , 2) is corresponds to the previously defined 1 , 2 .

For = 1 2 . . . ∈ , we define the run of M on as the infinite sequence

(0 , 1)(1 , 2) . . . ∈ (×)
that induces in the memory structure (0 = init and for all ≥ 1, = upd (-1 ,)).

. Concepts

We define two concepts at the core of our characterization. Just like for M-monotony and M-selectivity in Chapter , one of them deals with prefixes and the other one deals with cycles. Let ⊆ be an objective and M = (, init , upd) be a memory structure.

Generalizing prefix-independence. We start by defining a natural generalization of prefix-independence to "prefix-independence modulo a memory structure". Let ∼ be the right congruence of .

Definition . . (M-prefix

-independence) Objective is M-prefix- independent if for all ∈ , for all 1 , 2 ∈ col * (Π init ,), 1 ∼ 2 .
In other words, is M-prefix-independent if finite words reaching the same state of M from its initial state have the same winning continuations. The classical notion of prefix-independence is equivalent to M triv -prefixindependence (as all finite words have the exact same set of winning continuations, which is). If ∼ has a finite index, is in particular S -prefix-independent: indeed, two finite words reach the same state We recall that S is the prefix classifier of , defined in Definition . . on page .

of S (if and) only if they are equivalent for ∼. Any memory structure M such that is M-prefix-independent must have at least one state for each equivalence class for ∼ (and thus must be at least as large as S), but multiple states may partition the same equivalence class. Remark . . The M-prefix-independence notion is stronger than Mmonotony

The M-monotony property was defined in Definition . . on page .

and M-strong-monotony: we do not just require that finite words reaching the same memory state are comparable in some way w.r.t. their winning continuations (see Subsection . .), but that they have the exact same winning continuations. This stronger notion will be more suited to deal with games played on infinite arenas.

Cycle-consistency.

We move on to our property dealing with cycles: we want to express the property that combining infinitely many "winning cycles" results in a winning word, and similarly for losing cycles and losing words. For ∈ * , we define

Φ win, M = { ∈ Φ | = * upd (init ,) and (col * ()) ∈ -1 }
as the cycles on the memory state reached by in M that induce winning words when repeated infinitely many times after . We define

Φ lose, M = { ∈ Φ | = * upd (init ,) and (col * ()) ∈ -1 }
as their losing counterparts. We emphasize that cycles are not simple and are allowed to go through the same state or transition multiple times.

Definition . . (M-cycle-consistency)

Objective is M-cycleconsistent if for all ∈ * , (col * (Φ win, M)) ⊆ -1 and (col * (Φ lose,

M

)) ⊆ -1 . What this says is that after any finite word, if we concatenate infinitely many winning (resp. losing) cycles on the memory state reached by that word, then it only produces winning (resp. losing) infinite words.

Example

. . Let = { , , }. Objective = Büchi() ∩ Büchi(
) is (M triv -)prefix-independent, but not M triv -cycle-consistent: for any ∈ * , and are both in col * (Φ lose, M triv) (as and are losing), but word () is winning. However, is M-cycle-consistent for the memory structure M with two states 1 and 2 represented in Figure . . For finite words reaching 1 , the losing cycles only see and , and combining infinitely many of them gives an infinite word without , which is a losing continuation of any finite word. The winning cycles are the ones that go to 2 and then go back to 1 , as they must see both and ; combining infinitely many of them guarantees a winning continuation after any finite word. A similar reasoning applies to state requirements, M triv does not suffice to play optimally for P 1 for , but M does.

Remark . . Just as we compared M-prefix-independence to Mmonotony, we may inquire about the links between M-cycle-consistency and M-selectivity.

The M-selectivity property was defined in Definition . . on page .

It is natural that M-selectivity does not imply the seemingly stronger Mcycle-consistency, which may compare cycles in a less structured way. For instance, with = ℚ, the mean-payoff objective MP ≥0 is M triv -selective, which follows from Proposition . . and its memoryless determinacy over finite arenas (Example . .). Yet, it is not M triv -cycle-consistent: for all words in {0, . . . ,

0 times , -1 ∈ + | ≥ 0},
we have that is losing (is in col * (Φ lose, M triv)), but there is a way to combine words in this set to produce a winning word (e.g., the word -1, 0, -1, 0, 0, -1, . . .). On the other hand, M-cycle-consistency also does not imply Mselectivity. One detail of M-selectivity that puts a constraint not needed for M-cycle-consistency is that the 3 in the definition of M-selectivity does not have to be a set of cycles on a memory state. We provide a concrete example. Let = { , } and = . If we consider the memory structure M in Figure . , then is M-cycle-consistent: for all finite words except for and , either all continuations are winning (if ∈ *) or all continuations are losing. If is or , then it reaches state 1 of M, and the only cycles on 1 are in + , are losing, and are losing when infinitely many of them are combined into an infinite word. But is not M-selective. Indeed, if we take = , 1 = { }, 2 = ∅, and 3 = * in the definition of M-selectivity, we have that

[* 1] ∪ [* 2] ∪ [3] = { , } does not contain a winning word, but [(1 ∪ 2) * 3] contains the word .
In proofs, we will often use a weaker implication of M-cycle-consistency, which is that a finite combination of winning cycles is still a winning cycle (i.e., if , ∈ Φ win, M , then ∈ Φ win, M).

Properties of these concepts. Both M-prefix-independence and Mcycle-consistency hold symmetrically for an objective and its complement, and are stable by product with an arbitrary memory structure (as products generate even smaller sets of prefixes and cycles to consider).

Characterization of -regularity through finite-memory determinacy

Lemma . . Let ⊆ be an objective and M be a memory structure. Objective is M-prefix-independent (resp. M-cycle-consistent) if and only if is M-prefix-independent (resp. M-cycle-consistent). If is M-prefixindependent (resp. M-cycle-consistent), then for all memory structures M , is (M ⊗ M)-prefix-independent (resp. (M ⊗ M)-cycle-consistent).

Proof. We write M = (, init , upd). We assume that is M-prefix-independent. Thus, for all ∈ , for all

1 , 2 ∈ col * (Π init ,), 1 ∼ 2 , i.e., -1 1 = -1 2 . This last equality is equivalent to -1 1 = -1 2
, which can be rewritten as -1

1 = -1 2 . This shows that is M-prefix-independent.
To show that is M-cycle-consistent if and only if is M-cycleconsistent, notice that the winning cycles for are exactly the losing cycles for , and vice versa.

Let M = (, init , upd) be a memory structure. We assume that is Mprefix-independent and we show that is (M ⊗ M)-prefix-independent. The sets of prefixes to consider are smaller in M ⊗ M than in M: for all

(,) ∈ × , col * (Π (init , init),(,)) ⊆ col * (Π init ,). Therefore, for all 1 , 2 ∈ col * (Π (init , init),(,)), we also have 1 , 2 ∈ col * (Π init ,), so by M-prefix-independence, 1 ∼ 2 .
We now assume that is M-cycle-consistent and we show that is (M ⊗ M)-cycle-consistent. The sets of winning and losing cycles to consider are smaller in M ⊗ M than in M: for all ∈ * , col * (Φ win, M⊗M) ⊆ col * (Φ win, M) and col * (Φ lose, M⊗M) ⊆ col * (Φ lose,

M

). By M-cycle-consistency, for all ∈ * , we have (col * (Φ win, M)) ⊆ -1 and (col * (Φ lose,

M

)) ⊆ -1 , so we also have (col * (Φ win, M⊗M)) ⊆ -1 and (col * (Φ lose, M⊗M)) ⊆ -1 .

An interesting property of languages defined by a parity automaton is that they satisfy both aforementioned concepts with their underlying automaton structure.

Lemma . . Let P = (S ,) be a parity automaton and = L(P) be the objective recognized by P. Objective is S-prefix-independent and S-cycleconsistent.

Remark . . Note that in a slight abuse of notations, we allow in this chapter to use automaton structures (on alphabet) as memory structures, as in the statement of the above lemma. We recall that automaton structures on alphabet are tuples S = (, , init ,) with finite , init ∈ , and : × → , and that memory structures are tuples M = (, init , upd) with finite , init ∈ , and upd : × → . They are usually used for different purposes, but this chapter will blur the line between both objects and consider both automaton structures Characterization of -regularity through finite-memory determinacy as memory structures and memory structures as automaton structures.

Proof of Lemma . . . By definition of the parity acceptance condition, any two finite words reaching the same state of the underlying structure have the same winning continuations (Lemma . .). Therefore, is S-prefix-independent.

Also, the winning (resp. losing) cycles of S after any finite word are exactly the ones that have an even (resp. odd) maximal priority. Therefore, combining infinitely many winning (resp. losing) cycles can only produce a winning (resp. losing) infinite word.

. Characterization

We state our main technical result, which will be the main tool to derive more elegant theoretical results.

Theorem . . Let ⊆ be an objective, ∼ be its right congruence, and M be a memory structure.

. If M suffices for both players for in their respective countable oneplayer arenas, then ∼ has a finite index (in particular, S is well-defined and is S -prefix-independent) and is M-cycle-consistent. .

To obtain a memory structure M such that is both Mprefix-independent and Mcycle-consistent from the first item, we can take M = S ⊗ M by Lemma . . .

If

is M-prefix-independent and M-cycle-consistent, then isregular and can be recognized by a deterministic parity automaton built on top of M.

We prove the two items of this theorem respectively in Sections . and . . Before detailing the consequences of this result, we show a few examples.

Example . . We consider four objectives, and discuss in each case their prefix classifier and a minimal memory structure (w.r.t. the number of states) sufficient to play optimally for both players. They are represented in Figure . . Let 1 be a parity condition (= {0, . . . , }). It is prefixindependent (S 1 = M triv) and memoryless-determined (M triv is a minimal memory structure). By Theorem . . , 1 is M triv -prefixindependent and M triv -cycle-consistent. Just from these last two facts, we obtain that 1 has to be recognizable by a parity automaton built on top of M triv , and therefore has to be a parity condition. This provides a characterization of parity conditions, and is exactly Colcombet and Niwiński's result (see Theorem . : Four objectives (the first three are -regular), their prefix classifier, a minimal memory structure for each of them, and a way (in red) to realize the first three as parity automata built on top of these structures. We recall that a transition of a parity automaton from to with label | means that (,) = and (,) = .

of this objective has three states that count the occurrences of (0, 1, or ≥ 2), and 2 is memoryless-determined (we do not prove it here, but it was for instance shown in [BFMM , Lemma]

[BFMM]: Bianco et al. (),
Exploring the boundary of halfpositionality and it follows easily from the results of the subsequent Chapter). Hence, as properties are stable by product (Lemma . .), 2 is both S 2 -prefix-independent and S 2 -cycle-consistent. Thus, Theorem . . tells us that 2 can be recognized by a parity automaton built on top of S 2 by carefully labeling its transitions with adequate priorities, which we do in Figure . . Let = { , } and 3 = * () be the language of words ending with () . This objective is prefix-independent (S 3 = M triv) and a memory structure M with two states suffices to play optimally for both players (we simply need to know whether or was just seen). Repeating the arguments above, objective 3 is M-prefixindependent and M-cycle-consistent, so it admits a representation using a parity automaton built on top of M. We depict such a representation in Figure . . Let = ℚ and 4 = MP ≥0 . This objective is prefix-independent (S 4 = M triv). As 4 is not -regular, it has no hope to admit a sufficient finite memory structure, as Theorem . . would then imply that MP ≥0 is recognizable by a parity automaton built on top of that structure. There is therefore no sufficient finite memory structure, which we already knew by exhibiting an infinite arena requiring infinite memory in Example . . . Notice that in all of these examples, for simplicity, at least one structure among the prefix classifier and the minimal memory structure is trivial.

Characterization of -regularity through finite-memory determinacy

In more complicated examples, both structures may be non-trivial. One such example can be generated from the examples above: consider objective 2 ∪ 3 on colors { , , , } after renaming the colors used to define 3 to and . Echoing Remark . . , observe that Theorem . . would not be true if we considered automata with acceptance conditions defined on the automaton states (rather than transitions, as we do here). For instance, 3 in the example above needs three states to be represented as a statebased DPA, so the product of the prefix classifier and a memory structure A state-based DPA with three states recognizing 3 is 1 0 0 .

would not suffice. It is likely that Theorem . . can be rephrased using state-based DPAs, but this would require an additional (and less elegant) blow-up in the state space.

We now discuss multiple consequences of Theorem . . advertised in the introduction, including notably a strategic characterization of -regular languages and a novel one-to-two-player-lift.

Characterizing -regularity. The first one is a characterization ofregularity through a strategic property.

Theorem . . (Strategic characterization of -regularity)

We considered the syntactically stronger arenaindependent finite-memory determinacy in the previous chapter (about games played on finite arenas), but we recall that chromatic and arena-independent finite-memory determinacy coincide for games played on infinite arenas (Proposition . .). In this chapter, we prefer the use of chromatic finite-memory determinacy in our statements.

Let ⊆ be a language of infinite words. Language is -regular if and only if it is chromatic-finite-memory-determined (over arenas of arbitrary cardinality).

Proof. One implication is well-known (and was already stated in Theorem . .): if is -regular, then it can be recognized by a deterministic parity automaton whose underlying structure can be used as a memory that suffices to play optimally for both players, in arenas of any cardinality (see Theorem . . [). For the other direction, if is chromatic-finite-memory-determined, then there exists a memory structure M such that M suffices to play optimally for both players for . In particular, M suffices for both players in their countable one-player arenas, so by Theorem . . (first item), ∼ has a finite index and is M-cycle-consistent. In particular, by Lemma . . , is (S ⊗ M)-prefixindependent and (S ⊗ M)-cycle-consistent, so by Theorem . . (second item), is -regular and can be recognized by a deterministic parity automaton built on top of S ⊗ M.

One-to-two-player lift. The second one is a novel one-to-two-player lift, orthogonal to the one in Chapter .

Theorem . . (One-to-two-player lift, infinite arenas) Let

⊆ be an objective. If a memory structure M suffices to play optimally for both players in their respective one-player arenas, then S ⊗ M suffices to play optimally Characterization of -regularity through finite-memory determinacy for both players (in all arenas). Proof. By Theorem . . : if M suffices in one-player arenas, then ∼ has a finite index and is M-cycle-consistent. Again by Lemma . . and Theorem . . , as can be recognized by a parity automaton built on top of S ⊗ M, is determined and strategies based on S ⊗ M suffice to play optimally in all two-player arenas.

We observe that this one-to-two-player lift is less "tight" than the one for finite arenas (Chapter , Theorem . .). Indeed, there is a small blow-up of size S when going from memory requirements of an objective in oneplayer arenas to memory requirements in two-player arenas. This blow-up is necessary for our proof technique, as we go through the representation of an objective using a DPA, and taking the product with S is necessary for this purpose in general (see for instance objective 2 = * * in Example . .). However, if we ignore the representation of the objective as a DPA and we speak solely about memory requirements, we do not know whether this blow-up is necessary. This suggests the following conjecture.

Conjecture . . (Tight one-to-two-player lift, infinite arenas) Let ⊆ be an -regular objective. If a memory structure M suffices to play optimally for both players in their respective one-player arenas, then M suffices to play optimally for both players (in all arenas).

Throughout the rest of the thesis, we will see two specific classes of -regular objectives in which this conjecture is shown to hold: the case of regular objectives (Chapter) and, for memoryless strategies, the case of objectives recognizable by deterministic Büchi automata (Chapter). Actually, an even stronger version of this lift holds for these two examples, in which we do not have to combine the memory structures of both players.

The proofs are very different from the techniques in this chapter and are by-products of precise characterizations of the memory requirements for these objectives.

One third class of objectives in which the conjecture holds, which is easily derived from results in this chapter, is the one of prefix-independent objectives. If an objective is prefix-independent (i.e., ∼ has index 1 and S = M triv), and memory structure M suffices to play optimally in one-player games, then is recognized by a parity automaton built on top of M triv ⊗ M, which is isomorphic to M. This implies that the exact same memory M can be used by both players to play optimally in two-player arenas, with no increase in memory. Conjecture . . is automatically proved for prefix-independent objectives. If, additionally, M = M triv (i.e., memoryless strategies suffice to play optimally in one-player arenas), we recover exactly the result from Colcombet and Niwiński [CN]: can be recognized by a parity automaton built

Games with Forbidden Positions

from the first item of Theorem . . . Implication . =⇒ . follows from the second item of Theorem . . : we have by definition that is S -prefixindependent, so if it is additionally S -cycle-consistent, then can be recognized by a parity automaton built on top of S .

From countable to arbitrary arenas.

There is one specificity of Theorem . . that we have not exploited yet: a hypothesis about countable (one-player) arenas suffices to obtain the result. This implies the following.

Corollary . . (Countable-to-arbitrary lift) Let

⊆ be an objective.

Objective is chromatic-finite-memory-determined over countable arenas if and only if it is chromatic-finite-memory-determined (in arenas of any cardinality).

Proof. If objective is chromatic-finite-memory-determined over countable arenas, there is a memory structure M that suffices to play optimally in all countable arenas (in particular, M suffices in countable one-player arenas). By using the two items of Theorem . . sequentially, we obtain as in the above proofs that S ⊗ M suffices to play optimally in all arenas Characterization of -regularity through finite-memory determinacy (of arbitrary cardinality). In particular, is chromatic-finite-memorydetermined.

We showed that there was a gap between the memory requirements in finite and in countable arenas (Example . .), but chromatic finitememory determinacy over countable arenas extends to all arenas of any cardinality.

Although the setting is different, this contrasts with stochastic games for which, in some contexts, simple strategies may suffice in countable arenas but not in uncountable arenas [Orn]. [Orn] Classes of arenas. We discuss how much Theorem . . depends upon our model of arenas.

Multiple objectives are chromatic-finite-memory-determined over finite arenas (finitely many vertices and edges), but are not over infinite arenas.

A few examples are discounted-sum games [Sha], mean-payoff [Sha]: Shapley (

),

Stochastic Games

games [EM], total-payoff games [GZ], energy (also called one-counter) games [BBE] which are all memoryless-determined over finite arenas [BBE]: Brázdil et al. (),

One-Counter Stochastic Games

but require infinite memory to play optimally in some infinite arenas (we discuss some of these in Section .). In particular, Theorem . . tells us that the derived objectives are not -regular.

Strangely, the fact that our arenas have colors on edges and not on vertices is crucial for the result. Indeed, there exists an objective (a generalization of a parity condition with infinitely many priorities [GW]) that is [GW]: Grädel et al. (

),

Positional Determinacy of Games with Infinitely Many Priorities

memoryless-determined over vertex-labeled infinite arenas, but not in edge-labeled infinite arenas (as we consider here). This particularity was already discussed [CN], and it was also shown that the same objective In the upcoming Sections . and . , we prove respectively the first item and the second item of Theorem . . .

. Two properties of chromatic finite-memory determinacy

Let ⊆ be an objective, ∼ be the right congruence of , be the prefix preorder of , and M = (, init , upd) be a memory structure, fixed for this section. We aim to show the first item of Theorem . . , which is that for a memory structure M, the sufficiency of M in countable one-player arenas to play optimally for both players implies that ∼ has a finite index and that is M-cycle-consistent.

Finite index of ∼. We will use preorder to deduce that ∼ has a finite We recall that for 1 , 2 ∈ * ,

1 2 if -1 1 ⊆ -1 2
(meaning that any continuation that is winning after 1 is also winning after 2).

index by showing that under hypotheses about the optimality of strategies based on M in countable one-player arenas, () on each subset col * (Π init ,) of * for ∈ , preorder is total (Lemma . .) () on each subset col * (Π init ,) of * for ∈ , preorder has no infinite increasing nor decreasing sequence (Lemma . .).

Lemma . . Assume P 1 has optimal strategies based on M on all its countable one-player arenas. Then, for all ∈ , preorder is total on col * (Π init ,).

Proof. Let ∈ . Let 1 , 2 ∈ col * (Π init ,); we show that 1 2 implies 2 1 .
If 1 2 , then there exists 1 ∈ such that 1 1 ∈ and 2 1 ∉ . We show that 2 1 , i.e., that -1

2 ⊆ -1 1 . Let 2 ∈ -1 2 .
We build a countable one-player arena of P 1 , depicted in The construction in this proof is very similar to the one of Proposition . . , except that we compare finite words w.r.t. arbitrary continuations (which requires an infinite arena in general), and not just regular ones. We also permit ourselves to go a bit faster, as a similar and more complex construction has already been fully detailed.

Figure . , that merges the ends of finite chains for 1 and 2 and the starts of the infinite chains for 1 and for 2 in a vertex .

It is possible to win after seeing 1 or 2 , by choosing respectively 1 or 2 in the merged vertex . Moreover, there must be a strategy based on M that wins from the starts of the chains of both 1 and 2 , which means that in both cases the same choice has to be made in (as memory state is reached in both cases). Continuing to 1 in would be losing after 2 , so 2 must be winning after 1 . Therefore, 2 ∈ -1 1 .

Lemma . . Assume P 1 has optimal strategies based on M in all its countable one-player arenas. For all ∈ , there is no infinite decreasing sequence of finite words for in col * (Π init ,).

Proof. Let ∈ . Assume by contraposition that there is an infinite decreasing sequence of finite words 1 2 3

. . ., with ∈ col * (Π init ,) for ≥ 1. Then for all ≥ 1, there exists ∈ such that ∈ and +1 ∉ . We create a countable one-player arena of P 1 in which we merge the ends of chains for all to the starts of chains for all in a vertex , for all ≥ 1. This arena looks like the one in Figure . , but with infinitely many finite words going in and infinitely many infinite words going out of . In this arena, for all ≥ 1, it is possible to win from the start of the chain for , but there is no strategy based on M winning from all the starts of the chains simultaneously. Therefore, Characterization of -regularity through finite-memory determinacy M is not sufficient to play optimally in all countable one-player arenas of P 1 .

We will also use this last lemma from the point of view of P 2 . If consider preorder (i.e., the prefix preorder for P 2), we obtain 1 2 if and only if 2 1 because for any finite word ∈ * , -1 = -1 .

We can now combine the results of Lemmas . . and . . to find that ∼ has a finite index if M suffices to play optimally in countable one-player arenas.

Proposition . . (Necessity of finite index) If both P 1 and P 2 have optimal strategies based on M in their countable one-player arenas, then the right congruence ∼ has a finite index.

Proof. Using Lemma . . along with the hypothesis about P 1 , we have that for all ∈ , there are no infinite decreasing sequence of words in col * (Π init ,) for . Using the same result replacing P 1 with P 2 , we obtain that there is no infinite decreasing sequence for , or in other words, that there is no infinite increasing sequence for . For ∈ , as is total in col * (Π init ,) (Lemma . .), we conclude that there are only finitely many equivalence classes for ∼ in col * (Π init ,). As is finite, there are only finitely many equivalence classes for ∼ in

∈ col * (Π init ,) = * .
Under the existence of a memory structure sufficient to play optimally for in countable one-player arenas, we can therefore consider the prefix classifier S of .

Remark . . As in Chapter for the close M-monotony notion, we used the existence of uniformly winning strategies in one-player arenas in order to prove the above lemmas. As discussed in Section . , we could modify this hypothesis to the existence of (non-necessarily uniformly) winning strategies in two-player arenas and obtain the same results, if there exists a non-empty word with the same continuations as the empty word. Exactly as in Lemma . . , we could show that uniformity is for free for chromatic finite-memory determinacy over infinite arenas, under the existence of such a word . M-cycle-consistency of . We now prove in a straightforward way that the sufficiency of M in countable one-player arenas implies M-cycleconsistency of .

Proposition . . (Necessity of M-cycle-consistency) If both P 1 and P 2 have optimal strategies based on M in their countable one-player arenas, then objective is M-cycle-consistent.

Characterization of -regularity through finite-memory determinacy

1 2 1 , 2 , . . . Proof. Let ∈ * and = * upd (init ,). We show that (col * (Φ win, M)) ⊆ -1 . If col * (Φ win, M) is empty, this is true. If not, let 1 , 2 , . . . be an infinite sequence of finite words in col * (Φ win, M) -we show that the infinite word 1 2 . . . is in -1 . We consider the countable one-player arena of P 2 depicted in Figure . : it starts with a chain for from a vertex 1 to a vertex 2 , and 2 offers a choice among cycles for each finite word in { 1 , 2 , . . .}. In this arena, P 2 has no winning strategy based on M from 1 , since the same memory state is always reached in 2 (hence the same choice must always be made in 2), and repeating any cycle in col * (Φ win, M) forever after is winning for P 1 by definition of col * (Φ win, M). Therefore, P 2 also has no winning strategy at all, which means in particular that the infinite word 1 2 . . . must be a winning continuation of . Hence, 1 2 . . . is in -1 . We get that (col * (Φ win, M)) ⊆ -1 . Using a similar one-player arena of P 1 , we can show in a symmetric way that (col * (Φ lose,

M

)) ⊆ -1 for all ∈ * . The reciprocal of this result is false, as shown in the following example. Remark . . As discussed in Section . , Theorem . . does not hold if we assume chromatic finite-memory determinacy over arenas in which vertices rather than edges are labeled with colors. Proposition . . is an example of a step in the proof of Theorem . . that would not work with vertex-labeled arenas: the construction in Figure . is not possible (there would have to be a color labeling 2 seen at the start of every cycle, but words cannot all start with the same color in general). There is an objective that is memoryless-determined over vertex-labeled arenas [GW] [GW]: Grädel et al. (

1 2 , [] ∼ [] ∼ [] ∼ [] ∼ , ,
),

Positional Determinacy of Games with Infinitely Many Priorities

for which it is straightforward to show that it is not

M triv -cycle-consistent.
The construction would however be possible for objectives admitting a so-called neutral color, i.e., a color that can be inserted infinitely often in every infinite word without changing its winning or losing character (for instance, 0 is neutral for parity conditions, is neutral for Reach()). In order to prove Proposition . . with vertex-labeled arenas, 2 could be labeled with a neutral color. Similarly, and although conditions weaker than the one for a neutral color would suffice, Lemmas . . and . . could also be shown with vertex-labeled arenas by labeling the "merged vertex" (called in both cases) with this neutral color. This implies that all the results from this chapter hold using the class of vertex-labeled arenas under the existence of a neutral color. The counterexample from [GW] .

Wrap-up of the section. Thanks to the results from this section, we deduce the first item of Theorem . . .

Corollary . . (First item of Theorem . .) If M suffices for both players for

in their respective countable one-player arenas, then ∼ has a finite index (in particular, S is well-defined and is S -prefix-independent) and is M-cycle-consistent.

Proof. Follows from Propositions . . and . . . In particular, we obtain from the previous result that if both players have optimal strategies based on M in their one-player arenas, then is both (S ⊗ M)-prefix-independent and (S ⊗ M)-cycle-consistent (using Lemma . .). For S ⊗ M to be well-defined, we recall that, as described in Remark . . , we use automaton structures and memory structures as interchangeable objects in this chapter.), we see that we can easily classify the prefixes of the former, but that information is not sufficient to play optimally: we need some more information to classify cycles. For the latter, it is possible to find a memory structure classifying cycles that is Characterization of -regularity through finite-memory determinacy insufficient to play optimally, but a good classification of the prefixes suffices to play optimally. In general, to understand , we need to have information about prefixes and cycles, which is why, intuitively, structure S ⊗ M turns out to be useful.

. From properties of an objective to -regularity

In this section, we fix an objective ⊆ and a memory structure M = (, init , upd), and we assume that is M-prefix-independent We write M throughout this section for conciseness, but when combining the results from the previous section and from this section, a typical instantiation for M is the product S ⊗ M where M is a sufficient memory structure.

and M-cycle-consistent. Our goal is to show that can be recognized by a parity automaton built on top of M and is thus -regular. To do that, we show in multiple steps how to assign a priority to each transition of M through a function :

× → {0, . . . , } so that is recognized by the parity automaton (M,).

. . Simplified notations

In this section, as we assume everywhere M-prefix-independence and M-cycle-consistency of , we extend some notations for conciseness.

As

is M-prefix-independent, for ∈ , we write -1 for the set of infinite words that equals -1 for any ∈ col * (Π init ,). Notice in particular that -1 init = -1 = . Moreover, as we consider the property of M-cycle-consistency along with M-prefix-independence, the definition of M-cycle-consistency can be written by only quantifying over states of M and not over all finite words. The reason is that there are then only finitely many classes of finite words that matter, which correspond to the states of M. We define a few more notations that only make sense under the M-prefix-independent hypothesis. Let

Φ win = { ∈ Φ | (col * ()) ∈ -1 }
be the cycles on that induce winning words when repeated infinitely many times from , and Φ lose be their losing counterparts. In this case, is M-cycle-consistent if and only if for all ∈ , (col * (Φ win)) ⊆ -1 and (col * (Φ lose)) ⊆ -1 . We call elements of Φ win (resp. Φ lose) winning (resp. losing) cycles on . The set of winning (resp. losing) cycles of M (on any state) is denoted Φ win M (resp. Φ lose M). We write val() for the value of a cycle: win if ∈ Φ win M , and lose if ∈ Φ lose M .

. . Proof ideas

Our intermediate technical lemmas will focus on cycles of M, how they relate to each other, and what happens when we combine them. Our main tool is to define a preorder on cycles, which will help assign priorities

Characterization of -regularity through finite-memory determinacy

to transitions of M -the aim being to build a DPA on top of M that recognizes . Intuitively, for some state of M, ∈ Φ win , and ∈ Φ lose , we look at which cycle "dominates" the other, that is whether the combined cycle is in Φ win (in which case dominates) or in Φ lose (in which case dominates). We will formalize this and show how to extend this idea to cycles that may not share any common state.

Remark . . One may wonder why we seek to build a DPA on top of M to prove that is -regular, rather than a more general deterministic

Muller automaton

Every DPA can be directly relabeled as a deterministic Muller automaton recognizing the same language, but the converse is not true in general.

which would achieve the same goal. Indeed, using M-cycle-consistency and a recent result by Casares, Colcombet, and Fijalkow [CCF , Section] [CCF]: Casares et al. (

),

Optimal Transformations of Games and Automata Using Muller Conditions

, it is straightforward to show that we could relabel such a Muller automaton as a parity automaton on the same underlying structure recognizing the same objective. One of the obstacles in our context is that we may start with infinitely many colors; in order to prove -regularity of , we need to show at some point that many colors can be assumed to be equal (for) in order to get finitely many classes of "equivalent" colors. The way we manage that, using the aforementioned idea of ordering cycles, actually brings us very close to directly building a relevant parity condition on top of M -it does not appear that our proof technique can be easily simplified by trying to obtain a Muller automaton.

Remark . . Before tackling the proof, we also discuss the similarities between our proof and the one of Colcombet and Niwiński [CN] [CN]: Colcombet et al. (

), On the positional determinacy of edge-labeled games about the less general prefix-independent, memoryless-determined case.

Their proof compares pairs of colors directly: roughly speaking, two colors 1 and 2 are compared by looking at the value of cycle 1 2 .

Our first attempt was to try and use their result directly in our more general context, for instance by first taking the product of all arenas with S ⊗ M, where M is a sufficient memory structure. Objective is then memoryless-determined over this class of product arenas (from initial vertices with memory state init as a second component, see Lemma . .) and we have some kind of "prefix-independence modulo the arenas" This idea of "prefixindependence modulo an arena" was for instance formally defined and used in [KMST] [KMST]: Kiefer et al. (

),

Transience in Countable MDPs

(it is called tail in an arena).

(it does not matter how we reach a vertex in an arena). In our case, we need to assign priorities to transitions of S ⊗ M (not just to colors). However, for a given pair of transitions, there is in general no infinite word on the alphabet of colors that just sees two specific transitions ad infinitum (it only works if the two transitions form a cycle of M). We therefore develop a way to compare arbitrary pairs of transitions, which was not necessary in [CN] and which is intuitively why we do not directly reuse their result or their proof. Some of our intermediate lemmas are still very close to theirs -we then specify it explicitly -which happens when we compare cycles on the same memory state, as they can be compared directly, like colors in their context.

. . Combining cycles on different memory states

We can now strengthen Lemma . . (dubbed "repetition independence") to show that even "non-consecutive subcycles" in a longer cycle can be repeated without altering the value of the long cycle.

Corollary . . (Repetition independence, strong version

) Let 1 , 2 ∈ . Let 1 ∈ Φ 1 , 2 ∈ Φ 2 , 1 ∈ Π 1 , 2 , and 2 ∈ Π 2 , 1 . Then, val(1 1 2 2) = val(1 (1 2) 1 2 2) for all ≥ 0.
The situation is depicted in Figure . (left). Notice first that we can see 1 1 2 2 as a combination of two cycles 1 and 1 2 2 on 1 , we therefore already know that the value of 1 1 2 2 on 1 is the same as the one of (1) (1 2 2) for all , ≥ 1. This second cycle can be seen as two cycles 2 1 and 2 on 2 , we therefore know that the value of 2 2 1 on 2 is the same as the one of (2) (2 1) for all , ≥ 1. However, these two facts do not directly give the result as cycle 1 2 does not appear "consecutively" in 1 1 2 2 .

Proof of Corollary . . . We have that

val(1 1 2 2) = val(1 (1 2 2)(1 2 2)) by Lemma . . on 1 = val(1 1 (2)(2 1) 2 2) = val(1 1 (2 1)(2) 2 2) by Lemma . . on 2 = val(1 (1 2) 1 (2) 2 2) = val(1 (1 2) 1 2 2) by Lemma . . on 2 .
This shows the result for = 1; applying Lemma . . gives the result for all ≥ 1.

Another important property that will help define an interesting preorder on cycles is that the value of a combination of two cycles is independent of the memory state chosen to compare pairs of cycles: if two cycles both go through two states 1 and 2 of M, then combining them around 1 or around 2 yields the same value.

Similarly, we have that the cycle (2 1 2 1)(2 1 2 1) is in Φ lose 2 . Therefore, by shifting the start of the cycle, (1 2 1 2)(1 2 1 2) is in Φ lose 1 . This means that at least one of 1 2 1 2 and 1 2 1 2 (equivalently, 1 2 1 2) is in Φ lose 1 . Our conclusions imply that exactly one of 1 2 1 2 and 1 2 1 2 is winning on 1 , and one is losing on 1 . We consider both cases and draw a contradiction in each case.

Assume that val(1 2 1 2) = lose. Now consider the cycle

= (2 1)(2 1) 2 on 2 . We have val() = val(2 1 2 1)
by Lemma . .

= val(1 2 1 2) by Lemma . .
= win by hypothesis.

However, we also have

val() = val((1 2 1 2)(1 2)) by Lemma . . ,
and since val(1 2 1 2) = val(1 2) = lose, we also have val() = lose by M-cycle-consistency. This is a contradiction.

Assume now that val(1 2 1 2) = lose. Now consider the cycle

= (1 2)(1 2) 2
on 1 . We have val() = val(1 2 1 2) by Lemma . . = win by hypothesis.

However, we also have

val() = val((2 1)(2 1 2 1)) by Lemma . . ,
and since val(1 2) = val(1 2 1 2) = lose, we also have val() = lose by M-cycle-consistency. This is a contradiction.

Remark . . A consequence of the previous lemma is that when two cycles , ∈ Φ M share at least one common state (i.e., st() ∩ st() ≠ ∅), we can write for any cycle that, starting from a common state, sees first and then , without necessarily specifying on which common state the cycle starts; we allow such a shortcut as the value of is not impacted by the choice of the common memory state. This convention is used in the following definition.

. . Competing cycles

We would now like to define a way to compare two cycles that may not share a common state.

Definition . .

Let , ∈ Φ M with val() ≠ val(). We say that and are competing if there exists ∈ Φ M such that st() ∩ st() ≠ ∅, st() ∩ st() ≠ ∅, val() = val(), and val() = val(). In this case, we say that is a witness that and are competing, or that the competition of and is witnessed by .

In what follows, cycles with a line above them denote witnesses.

Our requirement for cycle means that it intersects the states of both and , but is not influential enough to "alter" the values of and when it is combined with them. If val() ≠ val() and st()

∩ st() ≠ ∅, then if val() = val() (resp. val() = val(
)), we have that (resp.) witnesses that and are competing (the argument uses Lemma . .). In short, any two cycles of opposite values that share a common state are competing, and two cycles of opposite values that do not share a common state may or may not be competing.

If two cycles are competing, we want to determine which one dominates the other.

Definition . . Let ,

∈ Φ M with val() ≠ val() be two competing cycles, and be a witness of this competition. For some ∈ st() and ∈ st(), it is thus possible to decompose as two (possibly empty) paths 1 and 2 such that = 1 2 , 1 ∈ Π , , and 2 ∈ Π , . We define that dominates if val(12) = val(), and

dominates if val(1 2) = val().
To be well-defined, this domination notion needs to be independent of the choice of witness.

Lemma . . (Witness independence) Let , ∈ Φ M with val() ≠ val(). Let 1 , 2 ∈ Φ M be two witnesses that and are competing. Then, dominates taking 1 as a witness if and only if dominates taking 2 as a witness.

Proof. We assume w.l.o.g. that val() = win and val() = lose. As 1 witnesses that and are competing, there exists 1 ∈ st(), 1 ∈ st()

such that 1 = 1,1 1,2 with 1,1 ∈ Π 1 , 1 , 1,2 ∈ Π 1 , 1 .
Similarly, as 2 witnesses that and are competing, there exists 2 ∈ st(), 2 ∈ st() such that 2 = 2,1 2,2 with 2,1 ∈ Π 2 , 2 , 2,2 ∈ Π 2 , 2 . We can also write = 1 2 with 1 ∈ Π 1 , 2 and 2 ∈ Π 2 , 1 , and

= 1 2 with 1 ∈ Π 1 , 2 and 2 ∈ Π 2 , 1 .
The situation is depicted in Figure . . Note that it is possible that 1 = 2 (in which case we can assume = 1 , 2 = (1 , _)) or similarly that Characterization of -regularity through finite-memory determinacy We assume by contradiction that dominates taking 1 as a witness, but that dominates taking 2 as a witness. In other words, val(1 2 1,1 1 2 1,2) = win and val(2 1 2,1 2 1 2,2) = lose. We consider the concatenation of both these cycles, shifting the second one to make it a cycle on 1 ,

1 2 1 2 1,1 1,2 1 2 2,1 2,2 1
= (1 2 1,1 1 2 1,2)(1 2,1 2 1 2,2 2).
It is possible to express directly as a combination of two losing cycles:

1,1 1 2 1,2 is losing (by definition of witness), and

val(1 2,1 2 1 2,2 2 1 2) = val(2,1 2 1 2,2 (2 1) 2) by Lemma . . = val(2,1 2 1 2,2 2 1)
by Lemma . .

= lose as dominates with witness 2 .

Cycle is therefore losing by M-cycle-consistency.

Now, notice that can be written as three cycles on 2 after being shifted in the following way:

val() = val((2 1,2 1 2,1)(2 1)(2,2 2 1 2 1,1 1)).
By Lemma . . ("cycle-order independence"), it has the same value as

val() = val((2 1,2 1 2,1)(2,2 2 1 2 1,1 1)(2 1)).
As before, this cycle can be shifted and written as two winning cycles 1 2,1 2,2 2 and 1 2 1,1 (1 2) 2 1,2 , and is therefore winning by Mcycle-consistency.

Cycle is both winning and losing, a contradiction.

Example . . We illustrate competition and domination of cycles on a parity automaton (even though at this point in the proof, we have not yet shown that is -regular). We consider the parity automa- We recall that we use the "lim sup" variant of the parity acceptance condition (what matters is the maximal priority seen infinitely often).

1 2 | 3 | 1 | 2 | 2 , | 0 [(1 ,)] [(1 ,)(2 ,)] [(1 ,)] [(2 ,)]
The winning cycle (1 ,)(2 ,) dominates losing cycle (1 ,) but is dominated by losing cycle (1 ,). Cycle (2 ,) is winning but is not competing with (1 ,). In particular, their competition is not witnessed by (1 ,)(2 ,) since combining it with (1 ,) alters its value ((1 ,) is losing but

(1 ,)(1 ,)(2 ,) is winning) -another potential witness is (1 ,)(1 ,)(2 ,
), but combining it with (2 ,) alters its value. However, cycle (2 ,) is competing with and dominated by (1 ,): their competition is witnessed, e.g., by (1 ,)(2 ,) and by (1 ,)(1 ,)(2 ,).

. . Preorder on cycles

For a winning (resp. losing) cycle ∈ Φ M , we define comp() as the set of losing (resp. winning) cycles that is competing with, and domBy() as the set of losing (resp. winning) cycles from comp() that are dominated by .

We define an ordering of cycles based on these notions. We write if ∈ domBy(). We extend this definition to cycles with the same value: if val(1) = val(2) and there exists a cycle such that val() ≠ val(1) with 2 ∈ domBy() and ∈ domBy(1), we write 2 1 -intuitively, this condition implies that 2 is less powerful than 1 as we can find a cycle dominating 2 that is itself dominated by 1 . We show that relation is a strict preorder (which is not total in general).

Lemma . . Relation is a strict preorder.

Proof. We first prove that is irreflexive, i.e., that for all ∈ Φ M , .

If

, since val() = val(), there exists ∈ Φ M such that val() ≠ val(), ∈ domBy(), and ∈ domBy(). But that is not possible since when and are competing, they cannot both dominate the other (no matter the choice of witness, as shown in Lemma . .).

We now prove that is transitive. We distinguish four cases (we rename cycles in each case to ease the reading by making it so that cycles with a Characterization of -regularity through finite-memory determinacy If 2 and 1 with val(2) ≠ val() and val() ≠ val(1), then val(2) = val(1), and 2 1 by definition.

Let 2 2 and 2 1 with val(2) ≠ val(2) and val(2) = val(1). We assume w.l.o.g. that val(2) = val(1) = win, so there exists 1 ∈ Φ M such that val(1) = lose, 2 1 and 1 1 . We assume that 1 1 is witnessed by , that 2 1 is witnessed by and that 2 2 is witnessed by . We assume that = 1 2 , 1 = 1,1 1,2 , = 1 2 , 2 = 2,1 2,2 , and = 1 2 . We refer to Figure . to illustrate the situation and explain where the common states of these cycles are.

We want to show that 2 1 . To do so, we show that for 1 = 1 1,1 1 2,1 1 and 2 = 2 2,2 2 1,2 2 , = 1 2 is a witness that 1 and 2 are competing, and that 1 1 2 2 is winning:

Cycle 1 is winning. We can split this cycle into 1,2 2 1 1 1,1 and 1 2,1 1 2 2,2 2 . We shift (Lemma . .) the former cycle to 1 1 1,1 1,2 2 , which is winning since 1 1 . The latter cycle has the same value as 1 (2,2 2,1) 2,1 1 2 2,2 2 (Corollary . .), which can be shifted to (2 1 2,2 2,1)(2,1 1 2 2,2). Both these cycles are winning since and are witnesses for competitions involving 2 . Cycle 2 is losing. We can split this cycle into the two cycles 1 2 2 and 2,2 2 1,2 2 1 1,1 1 2,1 . The former is losing because witnesses a competition involving 2 . This latter has the same value as the cycle 2,2 2 (1,2 1,1) 1,2 2 1 1,1 1 2,1 (Corollary . .), which can itself be split into 1,2 2 1 1,1 , which is losing because witnesses a competition involving , and 2 1,2 1,1 1 2,1 2,2 , which is losing because 2 1 . Cycle 1 1 2 2 is winning. Using Corollary . . , we can show that 1 1 2 2 has the same value as 1 1 (2 2,2 2,1 1) 2 2 . We can split this cycle into 1 1 2 = 1 (which is winning, as shown above) and 2 2,2 2,1 1 2 (winning since 2 2).

This shows that 2 1 .

There are still two cases left to consider. The case 2 1 and 1 1 with val(2) = val(1) and val(1) ≠ val(1) can be dealt with in the same way as the previous case (after noticing that there exists 2 ∈ Φ M such that 2 2 , 2 1 and val(2) = val(1)).

Characterization of -regularity through finite-memory determinacy

If 3 2 and 2 1 with val(3) = val(2) = val(1), then there exists in particular

∈ Φ M such that 3 , 2 and val(3) ≠ val(). By a previous case, we conclude from 2 and 2 1 that 1 . As 3 and 1 , we have 3 1 as desired.

We define an equivalence relation on the cycles: we write 1 2 if val(1) = val(2), comp(1) = comp(2), and domBy(1) = domBy(2). We show that cycles that are equivalent for are in relation with the same elements for .

Lemma . . Let 1 , 2 , ∈ Φ M .
If 1 2 and 1 , then 2 .

If 1 2 and 1 , then 2 .

In other words, preorder is compatible with .

Proof. The first item is straightforward, as the elements smaller than 1 for are determined by domBy(1), and domBy(1) = domBy(2). For the second item, we distinguish two cases:

if val(1) ≠ val(), then 1 means that ∈ comp(1) and ∉ domBy(1). If 1 2 , the same properties also hold for 2 , so 2 . if val(1) = val(), then 1 means that there exists with val(1) ≠ val() such that 1 ∈ domBy() and ∈ domBy(). By the previous case, if 1 2 , then 2 , so 2 as well.

Partial preorder therefore also induces a partial preorder on Φ M/ .

Example . .

We represent the relations between all elements of Φ M/ for the parity automaton considered in Example . . in their Hasse diagram, depicted in Figure . (right). Elements that are linked by a line segment are comparable for , and elements that are above are greater for . There are four equivalence classes of cycles, two of them winning and two of them losing. Notice for instance that any cycle going through transition (1 ,) is equivalent (for) to cycle (1 ,): indeed, it is necessarily a losing cycle competing with and dominating all the winning cycles in this memory structure. Other examples are given by

(1 ,)(2 ,) (1 ,)(2 ,)(2 ,) and (2 ,) (2 ,).
We now prove finiteness of the index of , by showing that the height of partial preorder is finite, i.e., there is no infinite increasing nor decreasing sequence for (Lemma . .); the width of partial preorder on Φ M/ is finite, i.e., there is no infinite set of elements in Φ M/ that are all pairwise incomparable for (Lemma . .). We start with two technical lemmas about competition between cycles.

Lemma . . Let 1 , 2 , ∈ Φ M be such that val(1) = val(2) ≠ val(), 2
, and 1 . Let be a witness that 2 and are competing such that st() ∩ st(1) ∩ st(2) ≠ ∅. Then, also witnesses that 1 and are competing.

Proof. We already know that val() = val() and that st() ∩ st() ≠ ∅ (as witnesses a competition involving) and that st(1) ∩ st() ≠ ∅ (by hypothesis). It is left to show that val(1) = val(1). Let ∈ st() ∩ st(1) ∩ st(2); we represent the situation in Figure . (left), with = 1 2 . Consider first cycle 1 2 2 : this cycle is a witness that 1 and are competing, since it has common states with those cycles, val(1 (1 2 2)) = val(1) (both 1 and 1 2 2 have the same value), and val((2 2 1)) = val() (since 2 and is a witness of the competition). Therefore, as 1 , the cycle = 1 1 2 2 has the same value as 1 . By Corollary . . , cycle has the same value as 1 (1 2) 1 2 2 , which can be split into 1 2 2 (which has the same value as since 2 and is a witness of the competition) and 1 1 2 . Therefore, 1 1 2 = 1 cannot have the same value as , otherwise would also have the same value as by M-cycleconsistency.

Lemma . . Let , 1 ∈ Φ M be such that val() ≠ val(1) and 1 . Let 2 be a cycle such that val(2) = val(1) and st(2) ∩ st(1) ≠ ∅. Then, and 2 are competing.

Proof. Let be a witness that and 1 are competing; we represent the situation in Figure . (right). We show that 1 is a witness that and 2 are competing. As st() ∩ st() ≠ ∅, we have st(1) ∩ st() ≠ ∅. Similarly, as st(1) ∩ st(2) ≠ ∅, we have st(1) ∩ st(2) ≠ ∅. As 1 with witness , we have that val((1)) = val(). Moreover, since is a witness for 1 (and), val(1) = val(1). Therefore val(1) = val(2), which implies by M-cycle-consistency that val(2 (1)) = val(2). . . . be an infinite decreasing sequence for . We assume w.l.o.g. that for all ≥ 0, val() = win and val() = lose (if two consecutive cycles are, for example, both winning, we can always insert an intermediate losing cycle between them, by definition).

Lemma . . The height of partial preorder is finite.

For ≥ 0, let (resp.) be a state of M that is part of infinitely many sets st() (resp. st()) -such states necessarily exist as the state space of M is finite. Thanks to transitivity of (Lemma . .), by keeping only This is the first time in the proofs of this chapter that we use that M has a finite state space. Therefore, Theorem . . does not carry over to memory structures allowed to have infinitely many states. We leave open the existence of a characterization such as ours with infinite memory structures.

winning cycles such that ∈ st() alternating with losing cycles such that ∈ st(), we keep an infinite decreasing sequence for . We can therefore assume w.l.o.g., up to renaming cycles, that for all ∈ ℕ, ∈ st() and ∈ st().

We show that the competition of each contiguous pair in sequence 0 , 0 , 1 , 1 , 2 , . . . has a witness that intersects the winning cycle at , and the losing cycle at . For all ≥ 0, let = ,1 ,2 be a witness that and are competing, and = ,1 ,2 be a witness that and +1 are competing. Let ≥ 0; we depict part of the situation in Figure . , with = ,1 ,2 .

Based on the cycles that we already know, we consider the cycle =

,1 ,1 ,1 +1 ,2 ,2 ,2 . We have that , ∈ st() since +1 and are part of . We show that witnesses that and are competing:

val() = win since can be split into ,2 ,2 ,1 ,1 (winning since

) and ,1 +1 ,2 (winning since witnesses a competition involving +1); val() = lose since can be split into ,2 ,1 (losing since witnesses a competition involving) and ,1 ,1 +1 ,2 ,2 (losing since +1). We use Remark . . in order to write " ".

We can perform a symmetric reasoning to show that the competition of any pair , +1 , ≥ 0, is witnessed by a cycle ∈ Φ M such that , ∈ st(). For ≥ 0, we can write = ,1 ,2 with ,1 ∈ Π , and ,2 ∈ Π , . We now consider the infinite sequence = 0 0,2 0 0,1 1 1,2 1 1,1 2

By

. . . Notice that for all ≥ 0, ,2
,1 is a winning cycle on since ; hence col () ∈ -1 by M-cycle-consistency. Also, for all ≥ 0, ,2 ,1 +1 is a losing cycle on since +1 ; hence col () ∈ -1 by M-prefix-independence and M-cycle-consistency. This is a contradiction.

A proof for infinite increasing sequences can be done in a symmetric way.

Lemma . . The width of partial preorder on

Φ M/ is finite.
Proof. We recall that M = (, init , upd). We will show that any two cycles 1 and 2 such that st(1) = st(2) are necessarily comparable for or . This will show that the cardinality of a maximal set of pairwise incomparable (for) elements in Φ M/ is necessarily bounded by 2 | | , which implies that the width of partial preorder is finite as | | is finite. Let 1 and 2 be two cycles such that st(1) = st(2) (we recall that there may be infinitely many transitions in M if is infinite, and that two cycles going through the same states may use different transitions and have a different value).

If val(1) ≠ val(2), then as 1 and 2 share a common state, they are competing -we have either 1 2 or 2 1 (depending on the value of 1 2).

We now assume that val(1) = val(2); we assume w.l.o.g. that 1 and 2 are winning. If 1 and 2 are such that comp(1) = comp(2), then they can necessarily be compared with or ; indeed, if domBy(1) = domBy(2), then 1 2 ; if domBy(1) ≠ domBy(2), then there is ∈ {1, 2} and a losing cycle in domBy() that is competing with 3-but that is not an element of domBy(3-). Therefore, 3- , which means that 3- .

It is left to deal with the case comp(1) ≠ comp(2). W.l.o.g., let be in comp(1) \ comp(2). There are two cases to discuss: whether 1 or 1 .

Assume 1 . By Lemma . . , as val(1) = val(2) and st(1) ∩ st(2) ≠ ∅, is also competing with 2 , which is a contradiction.

Characterization of -regularity through finite-memory determinacy

Assume 1 . Let be a witness that 1 and are competing. We therefore have that 1 is winning and is losing. As 2 is not competing with , cannot be a witness that 2 and are competing. Since st(1) = st(2) has a non-empty intersection with st(), the only possibility for that to happen is that 2 is losing (all other conditions are satisfied). This means that must itself be a losing cycle. But then, observe that is competing both with 1 and 2 (as has a common state with and a different value than 1 and 2) and 2 1 (as 2 is losing and 1 is winning). This implies that 2 1 .

Lemmas . . and . . imply together that has a finite index, and thus that (partially) orders only finitely many classes of cycles in

Φ M/ .
Therefore, for some ∈ ℕ, there exists a function Φ : Φ M/ → {0, . . . , } that is a monotonic function (assuming Φ M/ is preordered with and {0, . . . , } is ordered with the usual order on ℕ); such a function is sometimes called a linear extension of the partial order. We extend it to a function Φ :

Φ M → {0, . . . , } such that Φ () = Φ ([]).
Moreover, we assume w.l.o.g. that val() = win if and only if Φ () is even (this might require increasing).

We fix and any such function Φ for the rest of the proof.

. . Parity automaton on top of M

At this point, it would already be possible to describe words of in terms of the cycles of M that they visit (there may be multiple such decompositions) and their values by Φ , but that does not directly correspond to a classical acceptance condition for automata on infinite words. We can actually obtain something more satisfying: we show that we can assign priorities to transitions of M to recognize , in a way that corresponds to a parity acceptance condition on transitions. We transfer function Φ to transitions of M: for (,) ∈ × , we define

(,) = min{ Φ () | ∈ Φ M , (,) ∈ }. (.)
We now have a well-defined function assigning priorities to every transition of M.

Example . . We illustrate our definitions for Φ and . We again consider the example from Figure . (for which, unlike , we already know that it describes an -regular objective). For the sake of the example, let us ignore the already-defined priority function of this parity automaton. We show that we can recover priorities defining the same language starting from our preorder and our definitions for Φ and . There were four equivalence classes for , ordered as follows:

[(1 ,)] [(1 ,)(2 ,)] [(1 ,)] and [(2 ,)] [(1 ,)] .

Characterization of -regularity through finite-memory determinacy

Function Φ must be any function that respects the order given by the diagram and that assigns even priorities to winning classes of cycles, and odd priorities to losing classes. One such possible choice is

Φ ([(1 ,)]) = 5, Φ ([(1 ,)(2 ,)]) = 2, Φ ([(2 ,)]) = 4, and Φ ([(1 ,)]) = 1. From this choice of function Φ , our definition of function (Equation (.)) entails (1 ,) = 5, (1 ,) = (2 ,) = 2,
(2 ,) = (2 ,) = 4, and (1 ,) = 1. This choice of priorities recognizes the same objective as the original parity automaton.

We prove that DPA (M,) recognizes the objective . In our proof, we will need to relate the cycles dominated by a cycle and the ones dominated by cycles in a "decomposition" of , i.e., cycles that can be obtained from iteratively removing cycles from . We formally define this notion and prove two related results. and 1 , . . . , ∈ Φ M . We say that (1 , . . . ,) is a cycle decomposition of if either = 1 and = 1 , or > 1 and there exist , ∈ {0, . . . , -1}, ≤ , such that cycle 1 = (, +1) . . . (, +1), and (2 , . . . ,) is a cycle decomposition of the smaller cycle (0 , 1) . . .

Definition . . Let = (0 , 1) . . . (-1 ,) ∈ Φ M ,
(-1 ,)(+1 , +2) . . . (-1 ,). Lemma . . Let , 1 , 2 , ∈ Φ M be cycles such that = 1 2 . If 1 , then .
Proof. We assume 1 .

If val(1) ≠ val(), then 1 -indeed, they share at least one state and 1 = (1) 2 2 has the same value as 1 2 = by Lemma . . . We recall that we use Remark . . to write 1 and

(1) 2 2 without worrying about the memory state used to go from one to the other. Therefore, by transitivity of (Lemma . .), .

We now assume val(1) = val() and val() ≠ val(1). Let be a witness that and 1 are competing. We prove that also witnesses that and are competing: to do so, it is left to show that = has the same value as . We have that can be written as 1,1 2 1,2 for some paths 1,1 and 1,2 such that 1 = 1,1 1,2 . Cycle has the same value as

(1,1 1,2) 1,1 2 1,2 by Corollary . . . This last cycle can be split into 1 and , which both have the same value as . Therefore is also a witness that and are competing. We can show with a very similar argument that 1 2 also has the same value as , hence .

If val(1) = val() and val() = val(1), then there exists with val() ≠ val(1) such that ∈ domBy() and ∈ domBy(1), so 1 . By the previous case, ; by transitivity, .

Lemma . . Let be a cycle of M and (1 , . . . ,) be a cycle decomposition of . For all ∈ {1, . . . , }, for all ∈ Φ M , if , then .

Proof. We proceed by induction on . If = 1, then the statement is trivial as = 1 . For > 1, we now assume that the property holds for -1, and we show that it also holds for . Up to a shift of and of the cycle decomposition, we assume that is equal to 1 , where (2 , . . . ,) is a cycle decomposition of .

Let ∈ Φ M be such that for some ∈ {1, . . . , }. This implies that 1 if = 1 or, using the induction hypothesis, that . In any case, by Lemma . . , we immediately have that .

We can now prove that is recognized by the parity automaton (M,). We do this in the next two results. First, we show that winning cycles of M are exactly the ones that have an even maximal priority given by . It is then straightforward to conclude that infinite words in are exactly the ones whose maximal infinitely visited priority is even.

Lemma . . Let = (0 , 1) . . . (-1 ,) ∈ Φ M . Then, is winning if and only if max 0≤ < (, +1) is even.
Proof. For conciseness, let * = max 0≤ < (, +1) and = (, +1). By definition of function , for all ∈ {0, . . . , -1}, () ≤ Φ (). Hence, * ≤ Φ (). We want to show that is winning if and only if * is even. By contradiction, we assume that we do not have this equivalence. We assume w.l.o.g. that is losing and that * is even; we could obtain in a symmetric way a contradiction for winning and * odd.

As is losing, we have that Φ () is odd -as * is even, * < Φ (). We assume (up to a shift of the transitions) that * = (0). Since * < Φ (), there exists, for all ∈ {0, . . . , -1}, a cycle ≠ such that ∈ and () = Φ (). We assume = for a suitable path . The situation is represented in Figure . . The rest of the proof consists in exhibiting two cycles, building on the ones we know, showing that one of them is winning and one of them is losing, and finally showing that they must have the same value, which provides a contradiction.

We will first consider cycle 0 . . . -1 -1 . . . 0 on 0 . We prove by induction that it is winning. First, 0 0 is winning since Φ (0 0) = * is even. Assume now that for 0 < < , 0 . . . -1 -1 . . . 0 is winning. We show that 0 . . . -1 () -1 . . . 0 is winning.

If is a winning cycle, it follows from M-cycle-consistency. If is a losing cycle, we distinguish two cases.

Characterization of -regularity through finite-memory determinacy

0 1 2 -1 0 0 1 1 -1 -1 Figure . : Situation in the proof of Lemma . . , with = 1 • If 1 . . . -1 () -1 .
. . 1 is winning, then so is the cycle 0 . . . -1 () -1 . . . 0 because we just concatenate the winning cycle 0 0 to a winning cycle (M-cycle-consistency).

• If 1 . . . -1 () -1 . . . 1 is losing, then 1 . . . -1 -1 .
. . 1 witnesses that 0 0 and are competing. Since Φ () is odd, and Φ (0 0) is even and is equal to the maximum of ↦ → Φ (), we have that Φ () < Φ (0 0). Since Φ is monotonic and 0 0 and are competing, this implies 0 0 . Thus 0 . . . -1 () -1 . . . 0 is winning.

We now consider the cycle 0 (0 0) . . . -1 (-1 -1) on 0 . We show by induction that it is losing. We start from , which is losing by hypothesis, and we add cycles one by one. We denote () = 0 (0 0) . . . () +1 . . . -1 . Assume that (-1) is losing for 0 ≤ < (we assume (-1) =). We want to show that () is also losing.

If

is a losing cycle, it follows from M-cycle-consistency. If is a winning cycle, then as Φ () ≤ * < Φ () and is competing with (they share common states), we have . Notice that (0 0 , . . . , -1 -1 ,) is a cycle decomposition of (-1) as in Definition . . . Thus by Lemma . . , as , we also have (-1) . We conclude that () is also losing.

We have considered two cycles on 0 : the winning 0 . . . -1 -1 . . . 0 and the losing 0 (0 0) . . . -1 (-1 -1). We show that it is possible to transform the latter into the former using only value-preserving transformations (given by Lemma . . and Corollary . .), which provides the desired contradiction.

We show inductively that for all ∈ {0, . . . , -1}, cycle

0 (0 0) . . . -1 (-1 -1)
can be transformed into

() = (0 0 0 . . .) +1 (+1 +1) . . . -1 (-1 -1)
using value-preserving transformations. Notice that (0) is equal to 0 (0 0) . . . -1 (-1 -1), which deals with the base case of the induction. Now assume that 0 (0 0) . . . -1 (-1 -1) has the same value as (-1) for 1 ≤ < . In the expression of (-1) , notice that -1 . . . 0 0 . . . -1 and are two consecutive cycles on . By Lemma . . , they can thus be swapped while keeping a cycle with the same value. Notice that this gives exactly the cycle () .

We obtain that 0 (0 0) . . . -1 (-1 -1) has the same value as

(-1) = 0 . . . -1 -1 . . . 0 0 . . . -1 ,
which has the same value as 0 . . . -1 -1 . . . 0 by Lemma . . . This is the desired contradiction.

Proposition . . Let = 1 2 . . . ∈ with = (0 , 1)(1 , 2) . . . ∈ (×) being the run of M on . Then, ∈
if and only if lim sup →∞ (, +1) is even.

Proof. Let * = lim sup →∞ (, +1). Let ≥ 0 be an index such that for all ≥ , (, +1) ≤ * . Let * = { ≥ | (, +1) = * } be the infinite set of indices of transitions with priority * occurring after index . We write 1 , 2 , . . . for the elements of * in order. Let * be a state appearing infinitely often in { | ∈ * } (such a state exists necessarily as the state space of M is finite). This implies that can be written as the concatenation of a finite prefix (0 , 1) . . . (1 -1 , 1) and infinitely many cycles = (, +1) . . . (+1 -1 , +1) with = * and (, +1) = * , for ≥ 1.

For all ≥ 1, we have that max ≤ < +1 (, +1) = * (it is ≤ * as ≥ , and it is ≥ * as (, +1) = *). By Lemma . . , we conclude that cycles are all cycles on * that have the same value: they are winning if * is even, and losing if * is odd. By M-prefix-independence and M-cycle-consistency, is in if * is even, and is in if * is odd.

We have therefore reached our goal for this section.

Corollary . .

(Second item of Theorem . .) If is M-prefixindependent and M-cycle-consistent, then is -regular and can be recognized by a deterministic parity automaton built on top of M.

Remark . .

As discussed in Remark . . , our proof shows as a by-product that even if is infinite, many colors can be assumed to be equal (w.r.t.) -there are only finitely many classes of truly different colors. We have that

DS (1 2 . . .) = DS () + | | ∞ =1 -1 =1 | | DS () ≤ DS () -| | -| | ∞ =1 -1 =1 | | DS () 1 -| | | | ≤ DS () -| | -DS () ∞ =1 -1 =1 | | (1 -| |),
where the second line uses Equation (.) for = 1, and Equation (.) for ≥ 2. The series

∞ =1 -1 =1 | | (1 -| |) = ∞ =1 -1 =1 | | - =1 | |
is telescoping (we can expand it as 1-

| 1 | + | 1 | -| 1 |+| 2 | + | 1 |+| 2 | -. . .). As lim →∞ =1 | | = 0, this series converges to 1. We conclude that DS (1 2 . . .) ≤ DS () -| | -DS () = | | < 0, as required.
A proof that (col * (Φ win, M triv)) ⊆ -1 DS ≥0 can be done in a similar way, with no need to extract an as we are then only looking for a non-strict inequality.

As DS ≥0 is M triv -cycle-consistent, it is -regular if and only if it is additionally M-prefix-independent for some memory structure M.

Prefix-independence. If = [-,] ∩ ℚ for some ∈ ℕ \ {0}, objective DS ≥0
is not M-prefix-independent for any M, as ∼ has infinite index. Indeed, for ≥ 1 and = 1 ∈ * , we have 1 2

. . . -we can see how to use this to exhibit an arena in which P 1 can win but needs infinite memory to do so in Figure . . For finite ⊆ ℤ, the picture is more complicated; for = [-,] ∩ ℤ for some ∈ ℕ, we characterize when DS ≥0 is M-prefix-independent for some finite structure M. We give an intuition of the two situations in which that happens: () if is too small, then the first non-zero color seen determines the outcome of the game, as it is not possible to compensate this color to change the sign of the discounted sum; () if = 1 for some Characterization of -regularity through finite-memory determinacy integer ≥ 1, then the gap function actually takes only finitely many values, which is not the case for other values of .

In the proof, we respectively use symbols • and • for the ceiling and floor functions.

Proposition . . Let ∈ (0, 1) ∩ ℚ, ∈ ℕ, and = [-,] ∩ ℤ. Then, the right congruence ∼ of DS ≥0 has a finite index if and only if < 1 -1 or is equal to 1 for some integer ≥ 1.

Proof. We define maxDS = sup 1-= 1-and minDS = -1-, as respectively the maximal and minimal discounted-sum value achievable with colors in .

The key property that we will show is that gaps characterize equivalence classes of prefixes: for 1 , 2 ∈ * ,

1 ∼ 2 ⇐⇒ gap(1) = gap(2). (.)
Once this is proven, it is left to determine the number of different gap values, which will correspond to the index of ∼. The right-to-left implication of (.) is clear from the definition of gap and the related discussion: if the gaps are , all the continuations are winning; if the gaps are ⊥, all the continuations are losing; else, for any continuation, the final discountedsum values will have the same sign. We prove the left-to-right implication for each case of the disjunction from the statement and discuss the number of gap values.

We first assume < 1 -1. The case = 0 is trivial (as all words are winning) -we assume ≥ 1. The inequality < 1 -1 is equivalent to We simply use that 1 -1 =

1-and then divide by 1 -.

1 > 1-. In this case, there are only three possible gaps:

for ∈ 0 * , gap() = 0. for ∈ 0 * with ≥ 1, then DS () | |
= ≥ 1 > 1-= -minDS -so for any word ∈ 0 * * , gap() = . for ∈ 0 * * with ≤ -1, symmetrically, gap() = ⊥. These three possible gaps clearly correspond to different equivalence classes for the right congruence ∼, so there are three such equivalence classes. Hence, the prefix classifier S has three states [] ∼ , [1] ∼ , and [-1] ∼ . The prefix classifier is then

-1 1 . > 0 < 0 0
We now assume that ≥ 1 -1 . left-to-right implication of (.) is clear in the cases in which all, or none, of the continuations are winning. The difficult case is when both 1 and 2 have a rational gap. We show that if their gaps are different rational numbers, then they have different winning continuations. We assume w.l.o.g. that gap(2) < gap(1). We show that there is an infinite continuation that has a discounted sum exactly equal to -gap(1): this infinite continuation is winning after 1 but losing after 2 .

Characterization of -regularity through finite-memory determinacy

0 2 -2 -4 ⊥ 0 1 -1 2 -2 -1 0, 1, 2 -2 1 -2, -1 2 0 2 \ {2} Figure . : Prefix classifier of DS ≥0 for = 1
2 and = {-2, -1, 0, 1, 2}. The value in a state is the gap characterizing the equivalence class for ∼ corresponding to that state. Here, sup 1-= 4 and inf 1-= -4. The asymmetry around 0 comes from the "≥ 0" inequality in the definition of the condition: when state -4 is reached, there is exactly one winning continuation (2), but a state with gap value 4 would only have winning continuations (hence, it is part of state). Notice that we can build a parity automaton on top of this structure that recognizes DS ≥0 : an infinite word is winning as long as it does not reach ⊥.

Showing that there exists ∈ such that DS () = -gap(1) amounts to showing that there is a representation of -gap(1) in the (rational but not necessarily integral) base 1 with digits in , with one digit before the decimal point. We can adapt the well-known greedy expansion [Rén] [Rén]: Rényi (), Representations for real numbers and their ergodic properties to our context to show this (details in Subsection . . , Proposition . . below).

It is left to show that there are finitely many gap values if and only if equals 1 for some integer ≥ 1. One implication is clear: if = 1 for some integer ≥ 1, then there are finitely many possible gaps as gaps are then always integers between minDS and maxDS, , or ⊥. We illustrate this implication by depicting the prefix classifier of DS ≥0 for = 1 2 and = 2 in Figure . . The proof of the other implication is provided in Subsection . . , Proposition . . . Corollary . . Let ∈ (0, 1) ∩ ℚ, ∈ ℕ, and = [-,] ∩ ℤ.

This result does not provide optimal memory bounds: when DS ≥0 is -regular, it is actually always memorylessdetermined. This improved memory bound follows from the fact that under this hypothesis, DS ≥0 is actually a regular safety objective and its complement is a regular reachability objective, for which memory is characterized in Chapter .

If < 1 -1, then DS ≥0 is memoryless-determined. If ≥ 1 -1 , then DS ≥0 is chromatic-finite-memory-determined if and only if is equal to 1 for some integer ≥ 1.
Proof. This follows from Propositions . . and . . , thanks to Theorem . . . The only thing to clarify is that memoryless strategies suffice in case < 1 -1. The proof of Proposition . . tells us that in this case, DS ≥0 is -regular and can be recognized by a parity automaton that can be built on top of S ⊗ M triv , which has three states. To use this structure as a memory structure, we can notice that the game is already over in states [1] ∼ and [-1] ∼ (as every continuation wins or every continuation loses). Thus, it is not necessary to use these states to play, and we can consider that we always stay in state [] ∼ .

. . Missing proofs for the discounted sum application

This subsection contains technical details required for the proof of Proposition . . , but brings little insight into strategy complexity of games. The uninterested reader may skip ahead to Subsection . . . We prove the two properties used in Proposition . . whose proofs were omitted. We use notations from the proof of Proposition . . itself.

Characterization of -regularity through finite-memory determinacy

Proposition . . Let ∈ (0, 1) ∩ ℚ, ∈ ℤ such that ≥ 1 -1 , and = [-,]∩ℤ. For any real number , - 1-≤ ≤ 1-, there exists ∈ such that = DS ().

Proof. This problem can be rephrased as a number representation problem: we are looking for a sequence of "digits" () ≥0 in such that = 0 . 1 2 . . . in base 1 , i.e., such that

= ∞ =0 . Notice that ∞ =0 = DS (0 1 . . .).
It is known that every number ∈ [0, 1) has (at least) one representation 0. 1 2 . . . in base 1 with digits in {0, 1, . . . , 1 -1 }, and one such representation can be found using the greedy expansion [Rén].

[Rén]: Rényi (), Representations for real numbers and their ergodic properties

We adapt this greedy expansion to our setting (for a potentially greater and larger set of digits). Let ∈ ℝ such that - 1-≤ ≤ 1-. We deal with the case ≥ 0 -the negative case is symmetric. We set 0 = min(,); clearly, 0 ≤ . Then inductively, if 0 , . . . , -1 have been defined, we define as the greatest integer in {0, . . . , } such that =0 ≤ .

The series ∞

=0

is converging, as every term is non-negative and it is bounded from above by . We show that it converges to , which ends the proof. Let ≥ 0. Assume by contradiction that ∞ =0 ≤ -. Let be the least index such that ≤ . Clearly, for any ≥ , = -otherwise, a greater digit could have been picked during the inductive greedy selection. Still, not every digit 0 , 1 , . . . can be , as ∞ =0 = 1-> -. Let be the greatest index such that ≠ . We show that a digit ≥ + 1 should have been picked instead of for the digit at index , leading to a contradiction. To do so, it is sufficient to show that

(+ 1) + -1 =0 ≤ .
We have

(+ 1) + -1 =0 = ∞ =0 + - ∞ = +1 = ∞ =0 + - ∞ = +1 as = for ≥ + 1 = ∞ =0 + - +1 1 - Characterization of -regularity through finite-memory determinacy = ∞ =0 + (1 -1 -). Since 1-≥ 1 -1 1- = 1-1-≥ 1, we have that (1 -1-) ≤ 0, which implies that (+ 1) + -1 =0 ≤ ∞ =0 < ,
a contradiction. We conclude that = DS (0 1 . . .).

Proposition . . Let ∈ (0, 1) ∩ ℚ, ∈ ℤ such that ≥ 1 -1 , and = [-,] ∩ ℤ. If ≠ 1
for all integers ≥ 1, the gap function takes infinitely many values.

Proof. We assume that = with , ∈ ℕ co-prime, ≥ 2 and > , and we show that the gap function takes infinitely many values. To do so, we exhibit an infinite word = 1 2 . . . ∈ such that the sequence of rationals (gap(1 . . .)) ≥1 never takes the same value twice.

We will use the following inductive property of gaps: for

∈ * and ∈ , gap() = gap() + | |-1 | | = 1 (gap() +) , (.)
unless some gap in this equation equals or ⊥. Notice that under our hypotheses, 1 -1 = 1 (this equality does not hold when = 1 for some integer ≥ 1).

We set 1 = 1. Then, gap(1) = 1 = . Inductively, if 1 , . . . , -1 are defined, we set = -gap(1 . . . -1) (we remove the largest possible integer from the current gap, while keeping a positive gap value). We set = gap(1 . . .) for conciseness.

We first show that if all 's are rational (i.e., are not or ⊥), then no two 's can be equal. To do so, we show inductively that the reduced denominator of fraction is for all ≥ 1. This is true for = 1. For > 1, assume it is true for -1. Then, -1 = -1 for some co-prime with . Using Equation (.),

= 1 • -1 + = 1 • -1 + = (+ -1) .
This last fraction is irreducible: and are co-prime, and the fact that and are co-prime implies that + -1 and are co-prime.

We now prove by induction that our scheme is well-defined by showing that for all ≥ 1, ∈ and 0 < ≤ 1 . This is true for = 1 (as ≥ 1 for any possible value of). For > 1, if this is true for -1, then -= -1 ≤ 1 , so ∈ . Moreover, = 1 -1 + . Since 's cannot be integers (as their reduced denominator is not 1 by an earlier property), we have that -1 + is not an integer either. Therefore, 0 < -1 + < 1, so 0 < < 1 . As 1 < 1-= maxDS, the values of the considered gaps are never or ⊥.

Remark . . For ∈ (0, 1) ∩ ℚ with ≠ 1 for all ≥ 1, ≥ 1 -1 , and = [-,] ∩ ℤ, Proposition . . along with Theorem . . implies that any memory structure is insufficient to play optimally (for at least one player). However, this does not directly give an explicit arena in which some player requires infinite memory to play optimally. Here, we show how to construct such an arena given the extra results from Subsection . . . The proof of Proposition . . gives us 1 2 . . . ∈ such that

(gap(1 . . .)) ≥1 is a sequence of distinct values in [0, maxDS].
Hence, by compactness of [0, maxDS], there exists a subsequence () ≥1 and ∈ [0, maxDS] such that lim →∞ gap(1 . . .) = . We can moreover extract a subsequence such that either all elements are greater than , or all elements are less than . We assume w.l.o.g. that for all ≥ 1, gap(1 . . .) < (this implies that ≠ 0). The proof is symmetric if all the gaps are greater than (which would imply that ≠ maxDS). By Proposition . . , for all > 0 sufficiently small, there exists ∈ such that DS () = -+ . We can define an infinite arena in which P 2 needs infinite memory to win, depicted in Figure . . In this arena, P 1 may choose to reach a gap arbitrarily close (but not equal) to in 2 , and then P 2 is always able to bring the discounted sum below 0 by choosing a word reaching a discounted sum sufficiently close to -.

. . Other objectives

Mean payoff. Let ⊆ ℚ be non-empty. We consider the mean-payoff objective MP ≥0 , containing the infinite words whose mean payoff is non-Objective MP ≥0 was defined in Definition . . on page .

negative. This condition is M triv -prefix-independent for any set of colors. However, we also know that infinite memory is necessary to play optimally in some infinite arenas (this was discussed in Section .). Here, we show that chromatic-finite-memory strategies do not suffice to play optimally (even when = {-1, 1}) by analyzing cycle-consistency of MP ≥0 . If we Characterization of -regularity through finite-memory determinacy consider, for ∈ ℕ, = 1, . . . , 1 times , -1, . . . , -1 +1 times , we have that () is losing for all ≥ 0, but the infinite word 0 1 2 . . . has a mean payoff of 0 and is thus winning. This shows directly that MP ≥0 is not M triv -cycle-consistent. The argument can be adapted to show that MP ≥0 is not M-cycle-consistent for any structure M.

Lemma . . For all structures

M, MP ≥0 is not M-cycle-consistent. Proof. Let M = (, init , upd) be a structure. For ∈ ℕ, let = 1, . . . , 1 times , -1, . . . , -1 +1 times .

Let

be the set of states ∈ such that there exists ≥ 1 with = * upd (,). Each is non-empty as, being finite, iterating the function ↦ → * upd (,) necessarily goes multiple times through at least one state. Let ∈ be a state in set for infinitely many 's, and be any finite word in col * (Π init ,). Let 1 , 2 , . . . be the indices such that ∈ , and let 1 , 2 , . . . be such that = * upd (,). Every word is a losing cycle after any finite word (in particular after). However, it is possible to find a subsequence of () ≥1 with a non-negative mean payoff by always taking a word that bring the sum of the colors above 0 during the first 1's.

Total payoff. Let ⊆ ℚ be non-empty. We define the total-payoff function

TP : → ℝ ∪ {-∞, ∞} such that for = 1 2 . . . ∈ , TP() = lim sup →∞ =1
.

We define the objective TP ≥0 = { ∈ | TP() ≥ 0} as the set of infinite words whose total payoff is non-negative.

The right congruence ∼ of TP ≥0 does not have finite index, even for = {-1, 1}: we indeed have that -1 (-1, -1) . . . is an infinite decreasing sequence of prefixes. Condition TP ≥0 is therefore not Mprefix-independent for any structure M. We can also show that TP ≥0 is not M-cycle-consistent for any M, using the exact same argument as for MP ≥0 . Chromatic-finite-memory strategies are therefore insufficient to play optimally for TP ≥0 in infinite arenas. Once again, this situation contrasts with the case of finite arenas, in which memoryless strategies suffice to play optimally [GZ]. .

Wrap-up

We proved an equivalence between chromatic finite-memory determinacy of an objective in games on infinite graphs and -regularity of the corresponding language of infinite words, generalizing a result by Colcombet and Niwiński [CN]. A "strategic" consequence of our result is that [CN]: Colcombet et al.

(

), On the positional determinacy of edge-labeled games chromatic finite-memory determinacy restricted to the one-player games of both players implies the seemingly stronger chromatic finite-memory determinacy over two-player zero-sum games. A "language-theoretic" consequence is a relation between the representation of -regular languages by parity automata and the memory structures used to play optimally in zero-sum games, using as a tool the prefix classifier classifying the equivalence classes for the right congruence.

One possible improvement over our result is to deduce tighter chromatic memory requirements in two-player games compared to one-player games: our proof technique gives as an upper bound on the two-player memory requirements a product between the prefix classifier and a sufficient structure for one-player arenas, but smaller structures often suffice (Conjecture . .). This behavior contrasts with the case of finite arenas, in which a memory structure sufficient for both players in finite one-player arenas also suffices in finite two-player arenas (Chapter). More generally, our results do not provide precise (chromatic) memory requirements of -regular objectives, for which there are existing results on Muller conditions [DJW ; Cas], and to which the second part Obtaining precise [DJW]

O Known and unknown memory requirements of -regular objectives

Our focus in the rest of this second part Obtaining precise memory requirements is to obtain, understand, and compute precise memory requirements for interesting classes of objectives. Due to their relevance in logic and synthesis, as well as their deep link with finite-memory determinacy (see Chapter), focusing on -regular objectives is a natural way forward. This is also hopefully a stepping stone to study the strategy complexity of other more involved objectives. We sketch here a picture of what is known and unknown about the memory requirements of -regular objectives, and what answers we bring in the subsequent chapters. We look at this question through the viewpoint of the contributions in Chapters and , highlighting what is still missing to get a complete picture.

This chapter serves as a motivation and an introduction to Chapters and , which contain our main contributions to this topic.

. The missing pieces

As was stated in Theorems . . and . . , one can relate the memory requirements of an -regular objective to its representation as a deterministic parity automaton (DPA). We may wonder how close this result brings us to characterizing precisely the memory requirements ofregular objectives. Albeit quite general, there are still multiple questions about memory requirements that this result fails to answer precisely. We introduce these questions by highlighting two of its limitations.

. The first limitation comes from the asymmetry of its two implications.

In one direction, which is the novel contribution from Theorem . . , we start from a sufficient memory structure M for some objective and show that the objective can then be represented as a DPA built on top of the automatic structure M ⊗ S . In the other direction, we simply use the known memoryless determinacy of parity conditions:

-regular objectives are recognized by a DPA, and keeping track of the information given by this DPA transforms any game into a (larger) game endowed with a (simpler) parity condition. Now, what does this tell us about the memory requirements of an -regular objective? We know two things: a minimal memory structure always has at most as many states as any DPA representing the objective;

Known and unknown memory requirements of -regular objectives a minimal memory structure and a minimal DPA differ at most by an "S factor". Yet, we do not know in general how to get the minimal memory requirements of an -regular objective from its representation as a DPA. We get close to a satisfying answer for prefix-independent -regular objectives , for which S = M triv has just one state: a minimal memory structure (sufficient for both players) is then exactly a minimal DPA recognizing the objective (this follows from Theorem . .). But even then, this does not give the full picture, which we now argue. . The second, perhaps more fundamental limitation of Theorem . . is that it makes an assumption on the memory requirements of both players simultaneously, as it asks for a memory structure sufficient for both players. This assumption therefore conceals a possibly large gap between the individual memory requirements of the two players. This limitation also applied to Theorem . . (which deals with games played on finite arenas), which cannot be used in general to give tight bounds about memory requirements of each individual player in two-player games played on finite arenas.

We illustrate these two limitations in a small example: in this example, the representation of an objective as a DPA is an upper (but not a tight) bound on the memory requirements, and the memory requirements of each player differ.

Example . . Let = { , }. We consider the objective

We recall that a DBA is a special kind of DPA with only priorities 1 and 2 (Remark . .), so we can use a DBA in the results of Chapter .

= Büchi() ∪ (*) of words that see infinitely often or see twice in a row at some point. This objective is recognized by the DBA with three states depicted in Figure . (left), and it is not possible to recognize it using a DBA (or even with a DPA) with fewer states.

The reason we cannot represent it with fewer states is that we need at least one state per equivalence class of the right congruence (Lemma . .), of which has three.

We therefore know that both players can play optimally using three states of memory, using the memory structure underlying this automaton. The prefix classifier S of this objective has three states corresponding to three equivalence classes of finite words. Its structure corresponds to the underlying structure of the DBA in Figure . . According to Theorem . . , this suggests that P 1 and P 2 may need between one and three states of memory to play optimally. It turns out that P 1 can play optimally with just one state of memory in all arenas (i.e., is half-positional), which can be proved using upcoming results from Chapter . See Example . . for a proof and a more thorough discussion of this example.

Meanwhile, P 2 cannot play optimally with just one state of memory, as is witnessed by the arena in Figure . (right). If the play starts in 1 , we observe that P 2 loses by not using the loop on 2 and going immediately to 3 , as well as by staying infinitely often in 2 . Player P 2 can actually win, but needs to loop at least once (and finitely many times) on 2 before going to 3 , which cannot be done without memory. For this objective, P 2 can play optimally with two states of memory: intuitively, P 2 must keep track of whether the current history is in init or , but there is no point in keeping track of state , as the play is already lost in that state for P 2 .

The following questions therefore remain: given an -regular objective, what is a minimal (i.e., with as few states as possible) memory structure sufficient to play optimally for both players? And for a single player? And how to compute it? A less ambitious (but still open) question would be to understand the memoryless case: how to characterize and decide memoryless determinacy or half-positionality? And would these precise results give us even more information on the representation of -regular objectives, perhaps using other acceptance conditions than the parity one? Progress toward these questions can be seen as strengthenings of Theorem . . .

In the next section, we give a brief overview of Muller conditions, for which there already are complete answers to these questions thanks to existing works published between and .

. The case of Muller conditions

Muller conditions (Definition . .) are objectives whose winning words depend solely on the set of colors seen infinitely often. They are usually specified by a set F ⊆ 2 of sets of colors. The derived Muller condition then contains the set of words ∈ such that the set of colors seen infinitely often by is a set of F. They are in particular prefix-independent, i.e., their prefix classifier has just one state. A systematic study of the memory requirements of Muller conditions started in the s, with first general upper bounds through the later appearance record construction [GH ; McN], culminating in a complete characterization of their [GH]: Gurevich et al. Once again, one direction was already known: Rabin conditions have been known to be half-positional for some time [Kla] -but unlike parity [Kla]: Klarlund (), Progress Measures, Immediate Determinacy, and a Subset Construction for Tree Automata conditions, their complement (Streett conditions) may not be. The other, novel direction of Theorem . . was obtained thanks to results about the representation of -regular objectives [CCF].

[CCF]: Casares et al. (

),

Optimal Transformations of Games and Automata Using Muller Conditions

This provides, in the special case of Muller conditions, a characterization of the memory requirements of each player without any blow-up in any direction of the equivalence, and independently of the memory requirements of the other player. It therefore goes beyond the two limitations of Theorem . . sketched in Subsection . . As a bonus, this result allows linking the problem of finding a minimal memory structure to the problem of minimizing a Rabin automaton recognizing a Muller condition, and implies that the related decision problem (given a Muller condition, is there a sufficient memory structure with ≤ states for a fixed ?) is

NP-complete.
The characterization for chaotic memory [DJW] was also recently revis- Good-for-games automata are a class of non-deterministic automata whose non-determinism can be resolved with a strategy that only looks at the past. They were first introduced by Henzinger and Piterman [HP] to simplify [HP]: Henzinger et al.

(

), Solving Games Without Determinization the synthesis process by allowing some constrained non-determinism in the automata instead of requiring deterministic automata. The result of Theorem . . shows a way to express even chaotic memory structures using representations of -regular objectives. This is a promising research direction that we leave as a future prospect.

Why does it not solve the problem?

The work [DJW] is sometimes quoted as fully solving the problem of the memory requirements of -regular objectives. For example, in [BCJ], we can read

Graph Games and Reactive Synthesis

The results of Dziembowski et al. [DJW] give precise memory requirements for strategies in 2-player games with -regular objectives.

Known and unknown memory requirements of -regular objectives

We argue that this is only true for the class of Muller conditions, which is a subclass of the prefix-independent -regular objectives, and that it only gives an upper bound on the memory requirements of -regular objectives in general.

An -regular objective cannot usually be expressed directly as a Muller condition, but as a Muller condition on top of an automaton structure (i.e., a deterministic Muller automaton). Let us look back at objective = Büchi() ∪ (*) from Example . . above. This objective cannot be written as a Muller condition on (as "finite behavior" matters). If we add to our game the information from the DBA on the left of Figure . (i.e., by taking the product of the arena with the DBA), then we can indeed reduce our problem to a Muller condition thanks to the additional automaton structure. In this augmented game, by adding information from the automaton to the colors, objective can be realized as Muller condition Muller({ ∈ 2 | ∈ ∨ ∈ }). We can then apply the results from [DJW] to this Muller condition and find that P 1 needs just [DJW]: Dziembowski et al.

(), How Much Memory is

Needed to Win Infinite Games?

one state of memory to play optimally.

Nevertheless, the sufficiency of this one state of memory comes after taking the product of arenas with the DBA, which essentially consists in playing with three memory states! This therefore provides an upper bound on the memory requirements: it suffices to play with 3 • 1 = 3 memory states. This upper bound is not tight, as discussed in Example . . : P 1 can actually play optimally without any memory, not even the information given by the structure of the DBA.

Goals.

We seek here an extension of the results about Muller conditions to more -regular objectives, focusing on chromatic memory requirements. A generalization keeping the same formulation as Theorems . . and . . is hopeless: for some objectives, the memory is smaller than the smallest deterministic or good-for-games (or even non-deterministic) Rabin automaton recognizing the objective (see, e.g., Example . . or objective 2 in Example . .). In what follows, we discuss two important classes of -regular objectives, orthogonal to Muller conditions due to their heavy reliance on the automatic structure rather than on the "infinite behavior".

In Chapter , we characterize the chromatic memory requirements of regular reachability objectives, which are objectives derived from Notice the distinction between regular and -regular.

regular languages of finite words. For such objectives, P 1 simply wants that a prefix of the infinite play realizes a word from a fixed regular language, while P 2 (who plays for a regular safety objective) wants to avoid this for an infinite duration. Despite the simplicity of these objectives, there remained many gaps in the understanding of their memory requirements.

In Chapter , we focus on a more general class of -regular objectives, which are those recognized by a deterministic Büchi automaton. We do not get a full picture of their memory requirements, but we characterize those that are half-positional, i.e., for which memoryless strategies suffice to implement optimal strategies for P 1 .

In both cases, we also study the computational problem of deciding whether small memory structures suffice to play optimally and, for regular objectives, of synthesizing them.

. Motivation

We have seen in Chapter that the memory requirements of -regular objectives are not entirely understood. Perhaps one of the most pressing open questions in that direction is the case of regular objectives, meaning the -regular objectives concerned with finite duration. In this setting, an objective is induced by a regular language over finite words, and the goal of the first player is that, eventually, the sequence of colors along the play belongs to this language. We call such an objective a regular reachability objective. The opponent's objective is then to ensure that the sequence of colors never belongs to the language, which describes a regular safety objective.

Contributions. We study the chromatic memory requirements of both regular reachability and regular safety objectives. For both cases, we give a combinatorial characterization of the memory structures sufficient to play optimally in all arenas (of any cardinality). As a by-product of the characterization, we obtain complexity-theoretic statements: given as an input a deterministic finite automaton representing the objective, deciding whether a fixed memory structure suffices to play optimally in all arenas can be done in polynomial time; deciding the existence of a sufficient memory structure with a given number of states is NP-complete.

From our characterizations, it also follows that for both regular reachability and regular safety objectives, chromatic and chaotic memory requirements do not coincide.

We also discuss when relevant the extension of our results to the more general classes of topologically open and topologically closed objectives, which include respectively the regular reachability and regular safety objectives.

For consistency, we respectively call these more general objectives general reachability objectives and general safety objectives.

As a corollary, we obtain a finite-to-infinite and an asymmetric one-to-twoplayer lift (Theorem . .): in order to find the memory requirements of regular objectives for a player over arbitrary -possibly two-player and infinite -game graphs, it suffices to find the memory requirements over Their constructions strongly rely on the model of chaotic memory; indeed, as a corollary of our results, we will see that already for regular safety objectives, chromatic and chaotic memory requirements do not coincide.

The case of regular languages

Regular objectives are also mentioned in [LPR], where the existence of [LPR]: Chapter structure. We introduce general/regular reachability/safety objectives as well as a few concepts to manipulate them in Section . . We then describe our three kinds of contributions in the subsequent sections: Section . discusses general and regular safety objectives, Section . discusses general and regular reachability objectives, and Section . discusses the computational complexity of finding small memory structures. To ease the reading, some of the more complex proofs are deferred to Section . . We then briefly describe the code implementation in Section . .

. Preliminaries: reachability and safety objectives

General/regular, reachability/safety objectives. We focus on two types of objectives, both derived from a set ⊆ * .

Definition . . Let ⊆ * . The general reachability objective derived from , which we denote GenReach(), is the objective ∈ of infinite words that have (at least) one finite prefix in . The general safety objective derived from , which we denote GenSafe(), is the objective ∈ of infinite words that have no finite prefix in . We have GenSafe() = GenReach().

General reachability and safety objectives are respectively the topologically open and topologically closed sets, at the first level of the Borel hierarchy. When is a regular language, we call GenReach() a regular reachability objective and GenSafe() a regular safety objective. We then call an objective regular if it is a regular reachability or a regular safety objective. Our characterizations apply to regular reachability and safety objectives, but we sometimes discuss when we may generalize our results to the general reachability and safety objectives (i.e., topologically open and closed sets). For computational complexity questions (Section .), we will restrict our focus to regular reachability and safety objectives so that an objective can be finitely represented as a DFA. The objectives that we consider are therefore very simple both in terms of their algebraic representation (using The case of regular languages automata representing languages of finite words) and in terms of their topology (they are at the first level of the Borel hierarchy).

Prefix-classifier automaton. Starting from a regular reachability or safety objective ⊆ derived from a set ∈ * , we can associate as usual the prefix classifier S with . Here, it makes sense to generalize Prefix classifiers were defined in Definition . . . the definition of a prefix classifier to being a deterministic automaton rather than just an automaton structure, as there is a natural choice for a set of final states.

Definition . . Let

⊆ be a general safety or reachability objective. The prefix-classifier automaton of is the automaton D = (, , init , ,), where , init , and are defined as for prefix classifiers, and = { fin } where fin = [] ∼ for some ∈ (the choice of in does not matter).

Notice that the final state of such an automaton is always unique and absorbing, i.e., for all ∈ , (fin ,) = fin . This matches the intuition that once a word of is seen and the reachability (resp. safety) game is won (resp. lost), it stays that way for the rest of the game.

One uncommon fact about this definition of automaton D with respect to our usual conventions is that it may have an infinite state space. We allow this convenient abuse for objects D throughout this chapter, and we carefully remind when it is allowed to be infinite. Using the well-known Myhill-Nerode theorem [Ner], we obtain that a general reachability or [Ner]: Nerode (

), Linear Automaton Transformations safety objective is regular if and only if ∼ has finitely many equivalence classes if and only if D is finite. Situations in which D is allowed to be infinite then correspond to instances in which we intend to deal with general (and not only regular) reachability and safety objectives.

We have that a general reachability (resp. safety) objective is equal to GenReach(L(D)) (resp. to GenSafe(L(D))) -in examples, we will sometimes start from an automaton to generate an objective. Therefore, all general reachability and safety objectives can be generated from a prefixclassifier automaton. This implies in particular that all automata in this chapter can be assumed to have a single, absorbing final state. We observe that starting from an automaton D, the automaton D GenReach(L(D)) (resp. D GenSafe(L(D))) may not recognize exactly the same regular language of finite words as D, but both automata induce the same general reachability (resp. safety) objective. We limit the illustration of this phenomenon to an example, as it bears no significance to our results.

Example . . We consider the regular language = (+ +) , recognized by the DFA in Figure . (left). It requires six states to be represented as a DFA, including two final states. However, the prefix-classifier automaton (right) of its induced reachability and safety objectives needs just four states, with a single absorbing final state. Intuitively, the two final states and can be merged into a single final absorbing state . We can then notice that and have the same transitions and can be merged into . The regular language it recognizes is * .

We extend two notations from Section . in a natural way to prefixclassifier automata. Let D = (, , init , ,) be a prefix-classifier automaton. First, for ∈ , we write -1 for the set -1 , where is any finite word such that * (init ,) = . Secondly, there is a preorder on the states of D based on the winning continuations of each state.

. Safety objectives and monotony

We start our tour of regular objectives with general safety objectives, as they turn out to be simpler to understand than general reachability objectives as far as memory requirements are concerned. We reuse and revisit the M-strong-monotony notion introduced in Subsection . . . To keep chapters as independent as possible, we briefly recall the interest of this notion here, and we recall one way to formulate its definition that will be relevant to the point of view assumed in this chapter.

Let us fix an objective ⊆ . In order to suffice to play optimally for P 1 for , a memory structure M needs to be able to distinguish between histories that are not comparable for the prefix preorder of . Indeed, if two finite words 1 , 2 ∈ * are not comparable, we can construct an arena in which the opponent chooses between playing 1 and playing 2 , and then the correct choice has to be made between a continuation only winning after 1 , and a continuation only winning after 2 . This motivates the following property, which we showed to be equivalent to M-strong-monotony in Chapter . We will not use the original definition (Definition . .) in this chapter; we will consider this reformulation as the definition of M-strong-monotony.

In short,

is M-strongly-monotone if the memory structure M is able to keep track, not necessarily of the precise equivalence class of prefixes of the current finite word, but of a chain of prefixes in which that word lies. To illustrate this property, we give two particular cases.

An objective with a total prefix preorder is M-strongly-monotone for any structure M: all pairs of finite words are comparable, and there is no need to have multiple states to distinguish them. A regular reachability or safety objective derived from a DFA D is D-strongly-monotone (where we see D as a memory structure, ignoring its final states): if we keep track of the state of the DFA, we always know the precise equivalence class of the current history. Using D as a memory structure may have more states than necessary (as we just need to know a chain and not the precise equivalence class), but it is always sufficient.

We recall that is M-strongly-monotone if and only if is M-stronglymonotone, as being comparable for is equivalent to being comparable for = (Lemma . .).

The discussion above implies that for any objective , M-strong-monotony is necessary for a memory structure M to suffice to play optimally. We prove it formally, and we distinguish the regular from the general case: intuitively, regularity allows distinguishing distinct objectives with ultimately periodic words (Lemma . .), which can be encoded into finite arenas.

Proposition . . (Necessity of M-strong-monotony) Let ⊆ be an objective and M be a memory structure.

.

If is -regular

The first item actually follows from Lemma . . and Proposition . . ; we still prove it along with the second item here for simplicity.

and M suffices to play optimally for P 1 in all finite one-player arenas, then is M-strongly-monotone. . In general, if M suffices to play optimally for P 1 in all finitely branching one-player arenas, then is M-strongly-monotone.

Proof. Let M = (, init , upd). We prove both items simultaneously, simply adding an observation in the regular case. We assume by contrapositive that is not M-strongly-monotone, i.e., there exist 1 , 2 ∈ * such that * upd (init , 1) = * upd (init , 2), but 1 and 2 are not comparable for the prefix preorder of . This means that there exist 1 , 2 ∈ such that

1 ∈ -1 1 \ -1 2 and 2 ∈ -1 2 \ -1 1 , i.
e., such that 1 1 ∈ , 2 1 ∉ , 2 2 ∈ , and 1 2 ∉ . In case is regular, then -1 1 and -1 2 are -regular, so we may assume additionally that there exist

The case of regular languages

• • • • • • 1 2 1 2 1 2 1 2 1 2

Figure . :

Arena A in which P 1 cannot play optimally with a strategy based on M, built in the proof of Proposition . . . The arena on the left is used in the general case, and the one on the right is used in the regular case.

1 , 2 ∈ * and 1 , 2 ∈ + such that 1 = 1 (1) and 2 = 2 (2) are ultimately periodic words (Lemma . .).

We build a one-player arena A in which M does not suffice to play optimally for P 1 : arena A is finitely branching in general, and can even be made finite when is regular. In A, there is a single vertex in which a choice between two edges has to be made. This vertex can be reached after seeing either 1 or 2 , and the choice has to be made between continuing with the word 1 or with the word 2 . We depict this arena in Figure . . An optimal strategy of P 1 wins after seeing 1 by continuing with 1 , and after seeing 2 by continuing with 2 . However, a strategy based on M will make the same choice after seeing both 1 and 2 since * upd (init , 1) = * upd (init , 2), and can therefore not be optimal.

In the case of general reachability or safety objectives, it is valuable to reformulate the notion of M-strongly-monotone objectives using chains. Given a general reachability or safety objective , its (possibly infinite) prefix-classifier automaton D = (, , init , ,), and a memory structure M = (, init , upd), we can associate with each state ∈ the set Γ ⊆ of states of D that can be reached "simultaneously to ". Formally, for ∈ ,

Γ = { * (init ,) ∈ | ∈ * , * upd (init ,) = }.
We drop the superscript if there is no ambiguity. The following property then follows from Lemma . . , providing yet another reformulation of M-strong-monotony.

Lemma . . Let ⊆ be a general reachability or safety objective and M = (, init , upd) be a memory structure. Objective is M-stronglymonotone if and only if for all ∈ , the set Γ is a chain for the prefix preorder of .

The formulation of M-strong-monotony in Lemma . . required that any two finite words reaching the same state of M must be comparable; here, we focus instead on the prefix-classifier automaton of and require that states of the automaton that can be reached along with the same state of M are comparable.

The case of regular languages

Our first characterization states that for general safety objectives, Mstrong-monotony also implies that M suffices to play optimally. We state two variants of the results: in the first one, we assume that the preorder induced by the objective is well-founded (which includes the regular case), and the result holds for all arenas; in the second one, we make no such assumption, but the result holds only for finitely branching arenas. We will discuss why we do not have the result with none of these hypotheses in Remark . . .

Theorem . . (Characterization for safety) Let

⊆ be a general safety objective and M be a memory structure.

. If the prefix preorder of is well-founded (in particular, if is regular), then M suffices to play optimally for P 1 if and only if is M-strongly-monotone.

. In the general case, M suffices to play optimally for P 1 in all finitely branching arenas if and only if is M-strongly-monotone.

We prove this theorem in Subsection . . .

In particular, we find that M triv suffices (i.e., memoryless strategies suffice) for general safety objectives if and only if is a total preorder, which was already a corollary of This characterization has an interest in itself (it covers a large class of relatively simple objectives), but as can be hinted by the one-to-two-player lift from Chapter (Theorem . .), it will also be a useful technical step to understand the memory requirements of their complement, namely, the general reachability objectives (Section .).

Remark . . Memory structures are defined as finite throughout the thesis, but the previous Theorem . . happens to work even with memory structures M with an infinite state space -we discuss this in its complete proof.

A corollary of this characterization, by comparing to the characterization for chaotic memory in [CFH], is that chromatic and chaotic memory requirements differ already for regular safety objectives. We provide an instructive example below. This provides a new simple example answering the question of Kopczyński's [Kop] mentioned in Subsection . . , which [Kop]: Kopczyński (),

Half-positional Determinacy of Infinite Games

Casares [Cas] first solved with a Muller objective. Example . . Let = { , , , }. We consider the regular language of finite words that first have to see both and (in any order), and only then see both and (in any order). A minimal DFA D recognizing this language is depicted in Figure . (left). We write for the induced regular safety objective:

= GenSafe(L(D)).

The case of regular languages init , , ,

Γ 2 Γ 3 1 2 3 , , , , , , , , , , Γ 1
, , , , , , The main claim is that the chaotic memory requirements for are two states, which is easily obtained from the existing characterization [CFH] [CFH]: Colcombet et al. (

), Playing Safe (this is the cardinality of a maximal antichain for), while the chromatic requirements for are three states. We depict a memory structure M with three states which makes M-strongly-monotone in Figure . (right). To check that is indeed M-strongly-monotone, we have to check that there is no pair of words 1 , 2 ∈ * such that 1 and 2 reach the same state of M, but reach non-comparable states in D. The only two pairs of non-comparable states in D are and , and and (besides these, states are ordered for from right to left). We can check that for this choice of M,

Γ 1 = { init , }, Γ 2 = { , , , }, Γ 3 = { , , , }.
As these are all chains for , we have that is M-strongly-monotone.

It is not possible to find a chromatic memory structure M with two states that makes M-strongly-monotone (this can be checked by exhaustion, by trying to assign transitions to two states while distinguishing noncomparable states, and observing that all cases fail).

We finally discuss why, with neither the well-foundedness hypothesis nor the finitely branching hypothesis from Theorem . . , we cannot expect such a characterization.

Remark . . If the prefix preorder of an objective is not wellfounded, then there is an infinite decreasing sequence of finite words 1 2

. . . in * . This means that for all ≥ 1, there is

∈ such that ∈ , but for > , ∉ .
This construction is similar to the proof of Lemma . . .

We can then build the infinitely branching arena depicted in Figure . in which P 2 first chooses a word , and P 1 can win by playing a word with ≥ . This requires infinite memory, even if is M triv -strongly-monotone. We may wonder whether such examples exist for general safety objectives; this is indeed the case. For instance, for = {-1, 1, }, the objective "avoid seeing while the sum of colors from {-1, 1} is negative" is a general safety objective with an infinite decreasing sequence of finite words (such as ((-1)) ∈ℕ).

The case of regular languages

. Reachability objectives and progress . . Capturing progress

To play optimally for general and regular reachability objectives with a memory structure M, M-strong-monotony is still necessary (Proposition . .) but this time not sufficient: the following example shows that the memory structure must keep track of progress.

Example . . Let

= { , }. We consider the regular language * + * of words that have to see at least one , followed by at least one . This language is recognized by the DFA D in Figure . (left). We write for the induced regular reachability objective: = GenReach(L(D)). In the arena in Figure . (center), P 1 may win by starting a play with , but not without memory. The intuition is playing first makes some progress (it reaches an automaton state with more winning continuations), but is not sufficient to win, even if repeated. Therefore, in our memory structures, if a word makes some progress but without guaranteeing the win when repeated, we want the memory state to change upon reading that word. The memory structure in Figure . (right) is sufficient for ; in particular, seeing the first , which makes progress from init to , changes the memory state.

We formalize this intuition in the following definition.

Definition . . (M-progress-consistency) Let

⊆ be an objective and M = (, init , upd) be a memory structure. We say that is Mprogress-consistent if for all ∈ , for all 1 ∈ init , , for all 2 ∈ , , if 1 ≺ 1 2 , then 1 (2) ∈ .

Intuitively, this says that if it is possible to come back to the same memory state while reading a "word that makes progress" (i.e., that improves our situation by putting us in a position with more winning continuations), The case of regular languages then repeating this word infinitely often from that point onward must be winning.

As for all the previous "M-something" properties, we have that Mprogress-consistency is stable by memory product.

Lemma . . Let M be a memory structure and be an M-progressconsistent objective. Then, for all memory structures M , is (M ⊗ M)progress-consistent.

Proof. Let M = (, init , upd) be a memory structure. The state space of M⊗M is × ; let (,) ∈ × . The sets involved in the definition of (M ⊗ M)-progress-consistency are "smaller" than the ones involved in the definition of M-progress-consistency: by definition, (init , init),(,) ⊆ init , and (,),(,) ⊆

, . Hence, as the definition of (M ⊗ M)progress-consistency quantifies universally over these sets, is also

(M ⊗ M)-progress-consistent.
The discussion above (illustrated by Example . .) hints that for any objective , M-progress-consistency is necessary for a memory structure M to be sufficient to play optimally. As for M-strong-monotony, we distinguish the regular case from the general case.

Proposition . . (Necessity of M-progress-consistency) Let ⊆ be an objective and M be a memory structure.

. If is -regular and M suffices to play optimally for P 1 in all finite one-player arenas, then is M-progress-consistent. . In the general case, if M suffices to play optimally for P 1 in all finitely branching one-player arenas, then is M-progress-consistent.

Proof. Let M = (, init , upd). We prove both items simultaneously. We assume by contrapositive that is not M-progress-consistent, i.e., there exist ∈ , 1 ∈ init , , and 2 ∈ , such that 1 ≺ 1 2 but 1 (2) ∉ . As 1 ≺ 1 2 , there is ∈ such that 1 ∉ and 1 2

∈ . In case is -regular, then -1 1 and (1 2) -1 are -regular, so we may assume additionally that they are distinguished by an ultimately periodic word (Lemma . .): there exist ∈ * and ∈ + such that = .

We build a one-player arena A in which M does not suffice to play optimally for P 1 : arena A is finitely branching in general, and can even be made finite when is -regular. In A, there is a single vertex in which a choice between two edges has to be made. This vertex can be reached after seeing 1 , and the choice has to be made between looping on with word 2 , or continuing with word . We depict this arena in Figure . . An optimal strategy of P 1 wins after seeing 1 by continuing with 2 , which produces the winning word 1 2 . However, a strategy based on M must always make the same choice in after seeing 1 since * upd (init , 1) = * upd (init , 1 (2)) = for all ≥ 0. Hence, a strategy based on M can only produce losing words 1 and 1 (2) .

The following example should help the reader form the right intuition about M-progress-consistency.

Example . . Let

= { , }. We consider the regular language of words containing as a subword, recognized by the DFA D in Figure . (left). We consider the memory structure M remembering whether or was last seen, depicted in Figure . (right). The regular reachability objective = GenReach(L(D)) is M-progress-consistent. Indeed, let us first consider = in the definition of M-progressconsistency. A finite word 1 reaching in M necessarily reaches init , , or in (excluding the final state from the reasoning, as no progress is possible from it). After 1 , words 2 that both () make progress (1 ≺ 1 2) and () are a cycle on necessarily see both and . Therefore, 1 (2) is always a winning word. The same reasoning holds for =

. Notice that the memory states from the memory structure do not carry enough information to ascertain when a word of the language has been seen (i.e., when the game is won). The upcoming Theorem . . implies that M suffices to play optimally for P 1 . This need to capture progress was not necessary to understand the memory requirements of safety objectives, which may be explained by the following reasoning. : Summary of the implications that hold and that we conjecture about the memory requirements of general and regular reachability objectives. Everything is equivalent for regular reachability objectives, but only some implications hold for general reachability objectives. Objective is a general reachability objective and M is a memory structure.

Remark

such that 1 ≺ 1 2 . This implies that 1 2 , and therefore 1 , have a non-empty set of winning continuations. Assume by contradiction that 1 (2) ∉ . As is a general safety objective, there is a smallest ≥ 1 such that 1 (2) has no winning continuation. Hence, 1 (2) -1 still has some winning continuations, so 1 (2) ≺ 1 (2) -1 . This is a contradiction, as 1 ≺ 1 2 implies that 1 (2) -1 1 2 (2) -1 = 1 (2) by Lemma . . . This property is, at least intuitively, a reason hinting that the memory requirements of safety objectives are lower and easier to study than those for their complement reachability objective.

. . Understanding memory requirements

We have now discussed two necessary properties for a memory structure M to be sufficient to play optimally for any objective. For general reachability objectives, it appears that the conjunction of these two properties is also sufficient in many situations.

We have to discuss here some slight limit to our results, which leads to characterizations not as complete as the one for general safety conditions (Theorem . .). A summary of the known and unknown implications about the memory requirements of general reachability objectives is provided in Figure . . Our initial intuition -which is not known to be true -is that M-strongmonotony and M-progress-consistency are equivalent to the sufficiency of M for general reachability objectives.

Conjecture . . Let

⊆ be a general reachability objective and M be a memory structure.

. If the prefix preorder of is well-founded

The need to restrict to a wellfounded or to arenas with finite branching was argued in Remark . . .

(in particular, if is regular), then M suffices to play optimally for P 1 if and only if is M-strongly-monotone and M-progress-consistent.

. In the general case, M suffices to play optimally for P 1 in all finitely branching arenas if and only if is M-strongly-monotone and Mprogress-consistent.

The case of regular languages

Instead, we prove two incomparable results getting very close to this conjecture. First, we actually have the desired equivalence for regular reachability objectives.

Theorem . . (Characterization for regular reachability)

Let ⊆ be a regular reachability objective and M be a memory structure. Memory M suffices to play optimally for P 1 if and only if is M-strongly-monotone and M-progress-consistent.

We defer the proof of this result to Subsection . . . We use here an ad hoc proof very similar to -but also more involved than -the proof of Theorem . . for general safety conditions. As far as the computational complexity (Section .) and the implementation (Section .) are concerned, the above result suffices for our needs, as we only consider regular objectives.

It is unclear how to represent classes of general reachability and safety objectives in a finite way, so we focus our implementation on the regular case.

Secondly, the two conditions suffice to play optimally in finite arenas, even for general reachability objectives.

Theorem . . (Sufficiency in finite arenas) Let

⊆ be a general reachability objective and M be a memory structure. If is M-stronglymonotone and M-progress-consistent, then M suffices to play optimally for P 1 in finite arenas.

The proof of this result is a relatively straightforward application of the arena-independent one-to-two-player lift from Chapter (Theorem . .), which we give in the next subsection.

Remark . . We will discuss in Subsection . . , Example . . why our proof techniques do not apply to general reachability objectives played on infinite arenas, i.e., the setting of Conjecture . . (even with well-founded prefix preorder and finite branching of the arenas).

Observe that, due to Remark . . showing that all general safety objectives are M triv -progress-consistent, Conjecture . . actually works if we replace "general reachability condition" by "general safety condition"; with general safety conditions, we simply always have M-progress-consistency for free for all memory structures M.

. . Proof via one-to-two-player lift

To use the one-to-two-player lift (Theorem . .) with general reachability objectives, we need to understand both players' memory requirements in finite one-player arenas. We have already done so for the complement general safety objectives in Theorem . . , which solves the problem for P 2 . We still need to understand the memory requirements of P 1 in its oneplayer arenas, which, as was shown in the "one-player characterization"

The case of regular languages (Chapter , Theorem . .), boils down to the M-monotony and M-We recall that Theorem . . states that for an objective , P 1 has optimal strategies based on M in all its finite one-player arenas if and only if is M-monotone and Mselective.

selectivity properties. We already assume M-strong-monotony in our hypotheses, which implies M-monotony. The crux is to notice that M-progress-consistency implies M-selectivity under M-strong-monotony for general reachability

The M-selectivity notion was defined in Chapter , Definition . . on page . objectives (but not for all objectives, even the -regular ones).

Lemma . . Let

⊆ be a general reachability objective, and M be a memory structure such that is M-strongly-monotone. If is M-progressconsistent, then is M-selective.

Proof. We write M = (, init , upd). Let D be the (possibly infinite) prefix-classifier automaton of . We assume that is M-progressconsistent and show that it is M-selective. Let ∈ , ∈ init , , and 1 , 2 , 3 ⊆ * be regular languages such that 1 , 2 ⊆ , . Let ∈ [(1 ∪ 2) * 3] be a winning word; we show that there is also a winning word in

[* 1] ∪ [* 2] ∪ [3]
. We distinguish a few cases. If a prefix of is in L(D), this is clear. As ∈ init , and 1 , 2 ⊆ , , we have that for all

∈ (1 ∪ 2), * upd (init ,) = * upd (init ,) = . As is M-strongly-monotone, for all ∈ (1 ∪ 2), is comparable to for . If there is ∈ (1 ∪ 2) such that ≺ , then is winning by M- progress-consistency. Moreover, ∈ [* 1] ∪ [* 2], which ends this case. Otherwise, ∀ ∈ (1 ∪ 2), . (.)
We work under this assumption for the remaining cases. We have that

[(1 ∪ 2) * 3] = [(1 ∪ 2) *] ∪ (1 ∪ 2) * [3]
; we will consider the two possibilities separately for . . By induction and Equation (.), we can show that 1 Therefore, word * is also in L(D), and it is the prefix of an infinite word in

[* 1] ∪ [* 2]. • If ∈ (1 ∪ 2) * [3], then = 1 . . . , with ∈ (1 ∪
2) and ∈ [3]. As before, 1 . . . , so ∈ [3] is also winning.

For completeness, we also show that the converse implications (Mselectivity implies M-progress-consistency) holds for -regular objectives (Lemma . .). Along with Lemma . . , this shows that under Mstrong-monotony, M-progress-consistency is equivalent to M-selectivity for regular reachability objectives.

The case of regular languages

Lemma . . Let ⊆ be an -regular objective, and M be a memory structure. If is M-selective, then is M-progress-consistent.

Proof. Let M = (, init , upd). We assume by contrapositive that is not M-progress-consistent, i.e., there exist ∈ , 1 ∈ init , , and 2 ∈

, such that 1 ≺ 1 2 and 1 (2) ∉ . Let 3 ∈ be a word such that 1 3 ∉ and 1 2 3 ∈ , which exists as 1 ≺ 1 2 . Without loss of generality, we can assume that there exist , ∈ * such that 3 = , as two distinct -regular objectives can be distinguished by an ultimately periodic word (Lemma . .). Let

= 1 ∈ init , , 1 = { 2 } ⊆
, , 2 = ∅ ⊆ , , and 3 = * . Sets 1 , 2 , and 3 are regular. We have that [(1 ∪ 2) * 3] contains the winning word 1 2 3 . However, we have

[* 1] = { 1 (2) }, * 2] = ∅, and [3] = { 1 3 }: the set [* 1] ∪ [* 2] ∪ [3]
contains only losing words. Hence, we do not have M-selectivity.

We can now easily prove Theorem . . about the sufficiency of M-strongmonotony and M-progress-consistency to play optimally in finite arenas, using the one-to-two-player lift from Chapter .

Proof of Theorem . . . We assume that is M-strongly-monotone and M-progress-consistent. As is M-strongly-monotone, we also have that is M-strongly-monotone (Lemma . .). As is a general safety objective, we have that M suffices for P 2 by Theorem . . (in particular, it suffices in the finite one-player arenas of P 2).

We show that M also suffices for P 1 in its finite one-player arenas. We already have that is M-strongly-monotone; hence, it is M-monotone. As is a general reachability objective that is M-strongly-monotone and M-progress-consistent, by Lemma . . , is also M-selective. By Theorem . . , we deduce that M suffices to play optimally in the finite one-player arenas of P 1 .

We now know that M suffices in the finite one-player arenas of both players. By Theorem . . , we have in particular that M ⊗ M, which is isomorphic to M, suffices for P 1 in all finite (two-player) arenas.

Remark . . By restricting our focus to finite arenas, we could also use the machinery from Chapter for the regular safety objectives, but it would not yield tight memory requirements. Let ⊆ be a regular safety objective. It is relatively straightforward to show that M-strong-monotony of implies M-selectivity of . This shows that a memory structure M suffices for P 1 in finite one-player arenas if and only if is M-strongly-monotone. If is M-strongly-monotone, we can then use the one-to-two-player lift to deduce an upper bound on the memory requirements in two-player games given by M⊗M , where M is a memory structure for P 2 . Unfortunately, this memory structure

The case of regular languages M needs to be sufficient for a regular reachability objective, and is in general larger than M (as the characterizations suggest: needs to additionally satisfy M -progress-consistency). Therefore, this proof technique would not yield tight bounds on the memory requirements of general safety objectives. However, it works to deduce tight bounds for general reachability objectives in Theorem . . , as a sufficient memory structure M in one-player arenas for such objectives happens to also suffice for the other player, and the product structure M ⊗ M is isomorphic to M .

For objectives beyond reachability and safety, M-strong-monotony and M-progress-consistency may not imply the sufficiency of M to play optimally for a player. For instance, observe that prefix-independence of an objective immediately implies both triv -strong-monotony and M triv -progress-consistency for both players and, clearly, not all prefixindependent objectives are memoryless-determined. Perhaps one of the easiest examples, with = { , }, is the objective This example and closely related ones involving Büchi automata will be discussed in more detail in Chapter .

= Büchi() ∩ Büchi() = { ∈
| and are both seen infinitely often}, which is -regular (it can be recognized by a deterministic Büchi automaton with two states), but is not a general reachability nor safety objective. Objective is M triv -strongly-monotone and M triv -progress-consistent, but M triv does not suffice to play optimally (Example . .).

. . Stronger lift for regular objectives

As a by-product of our results, we observe that for regular objectives, our characterizations (Theorems . . and . .) deal with arbitrary arenas of any cardinality, but the properties used in the characterizations are already necessary in finite one-player arenas. This means that strategy-wise, to achieve a regular objective, all the complexity already appears in finite graphs with no opponent. For the specific class of regular objectives from this chapter, this strengthens the one-to-two-player lift from Chapter by going beyond two of its limitations: the limitation to a result about two-player games played on finite arenas; the need to know a sufficient memory structure in the one-player arenas of each player -here, each player can use the same memory structure in its one-player and in the two-player arenas, with no need for the "M 1 ⊗ M 2 " product from Theorem . . . Theorem . . (Finite-to-infinite, one-to-two-player lift for regular objectives) Let ⊆ be a regular (reachability or safety) objective and M

The case of regular languages be a memory structure. Memory M suffices to play optimally for P 1 (in all arenas) if and only if M suffices to play optimally for P 1 in its finite one-player arenas.

Proof. The implication from left-to-right holds as this is the same property quantified over fewer arenas. We argue the other implication for each case.

For regular safety objectives , we showed that if M suffices in finite oneplayer arenas, then is M-strongly-monotone (by Proposition . . as is regular), which implies that M suffices in all arenas (by Theorem . . as is a safety condition with a well-founded preorder).

For regular reachability objectives , we showed that if M suffices in finite one-player arenas, then is M-strongly-monotone and Mprogress-consistent (by Propositions . . and . . as is regular), which implies that M suffices in all arenas (by Theorem . . as is a regular reachability objective).

. The complexity of finding small memory structures

We discuss the computational complexity of finding small memory structures for regular objectives. We formalize the question as two decision problems: given a regular reachability or safety objective, how much memory is required to play optimally for P 1 ?

M -S

Input:

A DFA D inducing the regular safety objective = GenSafe(L(D)) and an integer ∈ ℕ.

Question: Does there exist a memory structure M with at most states which suffices to play optimally for P 1 ?

M -R

Input:

A DFA D inducing the regular reachability objective = GenReach(L(D)) and an integer ∈ ℕ.

Question: Does there exist a memory structure M with at most states which suffices to play optimally for P 1 ?

It follows from our characterizations (Theorems . . and . .) that the first problem is equivalent to asking whether there is a memory structure M with at most states such that GenSafe(L(D)) is M-strongly-monotone, and the second problem whether there is a memory structure M with at most states such that GenReach(L(D)) is M-strongly-monotone and M-progress-consistent. We defer the proof to Subsection . . . For NP-hardness, we construct a reduction from the Hamiltonian cycle problem which works for both M -S and M -R .

Our main insight is to reformulate the M-strong-monotony notion (NP-membership of M -S follows from this reformulation). Let = GenSafe(L(D)) be a regular objective and M = (, init , upd) be a memory structure. In Example . . , we have seen how to go from a memory structure M such that is M-strongly-monotone to a covering of the states of D by chains of states. We formulate exactly the requirements for such coverings in order to have a point of view equivalent to M-strong-monotony. For Γ ⊆ a set of automaton states and ∈ a color, we define (Γ,) = { (,) | ∈ Γ}. Note that the sets Γ do not have to be disjoint (and even cannot be disjoint to obtain minimal monotone decompositions, as was illustrated in Example . .). We invite the reader to verify the three requirements on the covering drawn in Figure . (left).

If we only consider requirements (a) and (b) of this definition, we recover the definition of an admissible decomposition, which can be used to quotient an automaton [GY]. Here, we add the additional requirement (c) that [GY]: Ginzburg et al. (

),

Products of Automata and the Problem of Covering

each set of states is a chain for . Note that there always exists an admissible decomposition with just one set (by taking Γ 1 =), but finding a small monotone decomposition may not be so easy. This point of view in terms of monotone decompositions turns out to be equivalent to our initial point of view in terms of M-strong-monotony in the following sense.

Lemma . . Let D be a (possibly infinite) automaton and ⊆ be equal to GenSafe(L(D)) or GenReach(L(D)). Automaton D admits a monotone decomposition with ∈ ℕ sets if and only if is M-strongly-monotone for some memory structure M with states.

Proof. We write D = (, , init , ,). Starting from a monotone decomposition Γ 1 , . . . , Γ of D, we show how to build a memory structure

The case of regular languages M = (, init , upd) with states such that is M-strongly-monotone. We take = {Γ 1 , . . . , Γ }, init is any set Γ that contains init (which exists as = =1 Γ), for Γ ∈ , ∈ , we define upd (Γ ,) = Γ for some such that (Γ ,) ⊆ Γ (there may be multiple such 's; any choice works).

We first show the following property about M: for all ∈ * , * (init ,) ∈ * upd (init ,). We proceed by induction on the length of . If = is the empty word, then * (init ,) = init ∈ init = * upd (init ,) by definition of init . We now assume that = , with ∈ and * (init ,) ∈ *

upd (init ,). Let Γ = * upd (init ,) and Γ = * upd (init ,). Then, * (init ,) ∈ (Γ ,). As (Γ ,) ⊆ Γ = * upd (init ,
), we are done.

We now show that is M-strongly-monotone. Let 1 , 2 ∈ * be two finite words such that * upd (init , 1) = * upd (init , 2). We set Γ = * upd (init , 1). We need to show that 1 and 2 are comparable for . Let 1 = * (init , 1) and 2 = * (init , 2). By the above property, we have that 1 and 2 are in Γ . As Γ is a chain, we have that 1 and 2 are comparable for . Hence, 1 and 2 are too, which shows the desired implication.

Reciprocally, let M = (, init , upd) be a memory structure such that is M-strongly-monotone. We show that sets (Γ) ∈ form a monotone decomposition of D.

(a) As M is a complete structure, every (reachable) state of D has to be in a set Γ for some ∈ . Indeed, as there exists ∈ * such that * (init ,) = , we can simply take = * upd (init ,). (b) Let ∈ and ∈ . Let = upd (,). We show that (Γ ,) ⊆ Γ . Let ∈ Γ ; we show that (,) ∈ Γ . As ∈ Γ , there is ∈ * such that * (init ,) = and * upd (init ,) = . Then, * (init ,) = (,) and * upd (init ,) = , so (,) ∈ Γ . (c) For some ∈ , let 1 , 2 ∈ Γ . We show that 1 and 2 are comparable for . There are words 1 , 2 ∈ such that * (init , 1) = 1 , * (init , 2) = 2 , and * upd (init , 1) = * upd (init , 2) = . As is M-strongly-monotone, 1 and 2 are comparable for , so that is also the case for 1 and 2 . This shows that all sets Γ are chains.

Remark . . For an automaton D = (, , init , ,), there is always a monotone decomposition with | | sets, which can be achieved by taking the family of sets ({ }) ∈ (it clearly satisfies the three requirements from Definition . .). In the equivalence from Lemma . . above, this monotone decomposition corresponds to taking D (syntactically, after removing its set of final states from the tuple) as a memory structure.

A slightly improved general upper bound for the size of monotone decompositions is given by | | -1 sets. We assume w.l.o.g.

The fact that D can be assumed to have a single absorbing final state was argued after Definition . . on page .

that D has a single, absorbing final state fin . We can then consider the monotone decomposition ({ , fin }) ∈ \{ fin } . In the equivalence from Lemma . .

The case of regular languages

above, this monotone decomposition corresponds to taking D without state fin as a memory structure -transitions to fin can be redirected to any state. This corresponds to the intuition that there is no point in keeping track of what happens once the game has been won (in the case of general reachability objectives) or lost (in the case of general safety objectives). This construction actually yields the optimal bound for conjunctions of simple reachability objectives [FH] [FH]: : the original phrasing was that the number of memory states necessary and sufficient to play optimally for the safety objective is the cardinality of the largest antichain of its prefix preorder. Using our terminology and Dilworth's theorem [Dil] [Dil]: Dilworth (

), A Decomposition Theorem for Partially Ordered Sets

Dilworth's theorem states that in a finite partially ordered set, the size of the smallest decomposition into chains matches the size of the largest antichain.

, it is equivalent to the smallest number of chains required to cover all states; that is, decompositions satisfying (a) and (c) in Definition . . , but not necessarily (b). Hence, it is smaller in general.

The smallest number of chains of a partial order can be computed in polynomial time [FRS] [FRS]: Felsner et al. (

),

Recognition Algorithms for Orders of Small Width and Graphs of Small Dilworth Number

; hence, adding requirement (b) moves the problem to a higher complexity class.

We have yet to discuss membership in NP of M -R , which is slightly more involved and is explained in Subsection . . , Lemma . . . We can reduce M-progress-consistency to checking a polynomial number of emptiness queries of intersections of regular languages recognized by deterministic finite automata. For a given DFA D = (, , init , ,) and a witness memory structure M, M-progress-consistency of GenReach(L(D)) can be decided in time

O(| | 2 • | | 4 • | |) (notation O(•) denotes the standard big O notation).
• if out() ∈ 1 , has only one child which is (); • if out() ∈ 2 , has a child for all edges = (out(), ,) ∈ .

We denote A , |L(D) for the subtree of A , in which nodes whose projection to colors are a word in L(D) are not prolonged. A tree is called well-founded if it has no infinite branch. Notice that is winning from if and only if A , |L(D) is well-founded. In a well-founded tree, we can associate an ordinal rank with each node (a generalization of the height for finite trees). By induction, for a leaf of the tree, we define rank() = 0, and for an internal node , we define rank() = sup{rank() + 1 | a child of }. The rank of a tree is the rank of its root. More details on this notion of rank for well-founded relations can be found in [Kec , Appendix B].

[Kec]: Kechris (), Classical Descriptive Set Theory

The rank of a well-founded tree with finite branching is necessarily < ; we use greater ordinals only when the trees have infinite branching. The upcoming proof works on arenas with arbitrary branching, but for (even infinite) arenas with finite branching, only finite trees with finite ranks are needed.

We now restate and prove Theorem . . .

Restated from Theorem . . on page .

Theorem . . (Characterization for regular reachability) Let ⊆ be a regular reachability objective and M be a memory structure. Memory M suffices to play optimally for P 1 if and only if is M-strongly-monotone and M-progress-consistent.

Proof. The necessity of the two conditions was proved respectively in Propositions . . and . . . We prove the sufficiency of the two conditions. Let D = (, , init , ,) be the prefix-classifier automaton of (which is finite as is regular), and M = (, init , upd). We write w.l.o.g. = { fin }. We assume that is M-strongly-monotone and M-progress-consistent. Let A = (, 1 , 2 ,) be a (possibly infinite) arena. We construct an optimal strategy based on memory M, using the same idea as in the proof for safety objectives (Theorem . .): we once again consider a strategy based on memory M making choices that are "locally optimal", and deduce thanks to our hypotheses (M-strong-monotony and M-progress-consistency) that this strategy must be optimal.

For ∈ , ∈ , we define , = min { ∈ Γ | P 1 has a winning strategy for objective -1 from }, or we fix , = fin if the set is empty (this is reasonable as fin is the greatest state for , and all strategies are winning for objective -1 fin =

). Notice that we rely on M-strong-monotony and on regularity of in this definition, as we are guaranteed that the min exists because Γ is a chain

The case of regular languages and because is finite. For ∈ 1 , ∈ , we also fix a strategy , of P 1 that is winning for -1 , from .

Let us take a step back. Like in the proof for safety, we want to define (,) as the first edge taken by , from -we play locally reasonable edges played by good strategies and hope that this creates a "globally" optimal strategy. However, this does not work in general, as any choice for the strategies , may not be good: indeed, such strategies may be winning, but may make unnecessary moves delaying the achievement of the objective. For instance, in the arena of Figure . , a strategy inducing is winning for -1 init , but not as fast as possible (it takes three moves to create a word in L(D), while it is possible to do it in two moves). If, by imitating the first move of this strategy, we define (, 1) = (, ,), we then get stuck and plays the losing word .

Therefore, we make one additional requirement on , : we assume that it is a strategy guaranteeing the quickest win from for objective -1 , . In other words, we take , such that the tree A , , |L(D) has the least ordinal rank , among all winning strategies. We define a strategy : 1 × → of P 1 based on memory M: for ∈ 1 , ∈ , we set (,) = , (). We show that is optimal. Let 0 ∈ be a vertex from which P 1 has a winning strategy for objective . We show that wins from 0 . Let = (0 , 1 , 1)(1 , 2 , 2) . . . ∈ be a play consistent with from 0 , and = 1 2 . . . ∈ . For ≥ 0, we fix = * upd (init , 1 . . .) and = * (init , 1 . . .). We show that ∈ , i.e., that there exists ≥ 0 such that = fin . For brevity, we also write = , and = , . As there are finitely many memory states and finitely many automaton states, we can find ∈ , , ∈ , and an infinite increasing sequence This is where we use finiteness of D , which must be circumvented to extend the proof to general -and not only regular -reachability objectives. However, the approach seems more fundamentally lacking for general reachability objectives, which is argued in Example . . below.

of indices () ≥0 such that for all ≥ 0, = , = , and = . We decompose into infinitely many finite words cut at every index : for ≥ 0, let = +1 . . . +1 . If = fin , we are done, as indeed reaches the final state of D. We now assume by contradiction that ≠ fin . As is reached infinitely many times and fin is absorbing, this implies that ≠ fin for all ≥ 0. We prove a few properties about the various sequences that we have defined.

(a) We first show that ∀ ≥ 0, ∀ ≥ , (, +1 . . .).

(.)

To do so, we show that for all ≥ 0, +1 (, +1), and Equation (.) then follows by induction. Let ≥ 0. As P 1 has a winning strategy for () -1 from , and playing (, +1 , +1) is an action consistent with winning strategy , , P 1 also has a winning strategy for (, +1) -1 from +1 . Moreover, as ∈ Γ , we have that

The case of regular languages (, +1) ∈ Γ upd (, +1) = Γ +1 . Hence, +1 (, +1) as +1 is defined as the minimum of a set in which (, +1) lies. (b) We use this to show that the sequence () ≥0 , which only depends on the arena vertices and the memory states visited, underapproximates the sequence () ≥0 , which corresponds to the actual automaton states visited by word . Formally,

∀ ≥ 0, . (.)
We prove it by induction. For = 0, we have 0 = init , and by hypothesis, P 1 has a winning strategy from 0 for objective = -1 init . Moreover, 0 = init and init ∈ Γ init , so by the definition of minimum, 0 0 . We now assume that for some ≥ 0. By Equation (.), we know that +1 (, +1). By Lemma . . , we have (, +1) (, +1) = +1 . We conclude that +1 +1 , which proves the claim. For all ≥ 0, as ≠ fin , we deduce moreover that ≠ fin . (c) We now prove that ∀ ≥ 0, +1 = (, +1) ⇒ +1 < .

(.)

Let ≥ 0 such that +1 = (, +1). We know that the tree A , , , |L(D) has rank . As ≠ fin , ≠ 0. Hence, since playing (, +1 , +1) is consistent with strategy , , it is possible to find a strategy that induces a tree from +1 for objective (, +1) -1 of height strictly smaller than : we simply consider the strategy of the subtree of A , , , |L(D) with root (, +1 , +1). As (, +1) = +1 by hypothesis, we deduce that there is a strategy that wins for objective (+1) -1 from +1 and whose tree has height < . We conclude that +1 < . (d) We show a final property: ∀ ≥ 0 , +1 = (, +1).

(.)

By Equation (.), the only other option, which we assume by contradiction, is that there is ≥ 0 such that +1 ≺ (, +1). Let ≥ 0 such that ≤ < +1 . We split into two parts:

(1) = +1 . . . +1

and

(2) = +2 . . . +1 . First, notice that +1 ≺ * (,)). Indeed, * (, +1 . . .) by Equation (.), and +1 ≺ (, +1) by hypothesis. Secondly, we have that +1 * (+1 , 2)) by Equation (.). We recall that = +1 = . We deduce that +1 ≺ * (,

= * (+1 , (1)) * (* (+1 , (2)),

= * (+1 , (2) (1)).

The case of regular languages

We therefore have that

(2) (1) makes progress from +1 . As =

(1) (2)

is a cycle on memory state , we have that

(2) (1) must be a cycle on memory state = * upd (, 1)). By M-progressconsistency, this means that ((2) (1)) ∈ (+1) -1 , so ((1) (2)) = () ∈ () -1 . By Equation (.), this implies that () ∈ -1 . However, * (,) = ≠ fin , so repeating from cannot be winning. This is a contradiction, which means that Equation (.) holds.

We now use Equation (.) and Equation (.) to draw a contradiction with our initial hypothesis that ≠ fin . For every index ≥ 0 onward, we have that +1 = (, +1) (Equation (.)). By Equation (.), this means that the infinite ordinal sequence () ≥ 0 is decreasing, which is impossible.

We do not know whether a generalization to general reachability objectives played on infinite arenas (i.e., Conjecture . .) holds. Using the one-totwo-player lift from Chapter , as we did in Subsection . . , will not help as it only deals with games played on finite arenas. We provide an example showing that our proof technique above for Theorem . . fails for some general reachability objective with well-founded preorder.

Example . . Let = ℕ. We define a general reachability objective

= { 1 2 . . . ∈ | ∃ < , ≥ }
consisting of all the infinite sequences that are not increasing. We represent its (infinite) prefix-classifier automaton D in Figure . . For preorder , we have that init ≺ ≺ fin for all ≥ 0, and if and only if ≤ . We observe that is M triv -strongly-monotone as preorder is total; is M triv -progress-consistent as repeating any color is immediately winning.

Moreover, is well-founded as every set of states of D has a minimum, so Remark . . does not apply. If Conjecture . . indeed holds, then M triv suffices here. Unfortunately, our proof technique for Theorem . . does not work here. Let A be the finitely branching arena in Figure . . There is a winning strategy from every state. Referencing the vocabulary of the proof of Theorem . . , the strategy guaranteeing the quickest win from a vertex is the strategy starting with (, , +1)(+1 , , +2), which wins in two moves. This means that strategy built in the proof of Theorem . . plays (, , +1) in . But the infinite play generated by from 0 then sees colors 0, 1, 2, 3, . . ., which is not a winning word.

The case of regular languages

init 0 1 • • • • • • fin 0 1 1 0 0, 1 + 1 0, . . . , 0 1 2 • • • • • • 0 0 1 1 2 -1 +

. . Technical details for computational complexity

In Lemma . . , we have rephrased the existence of a memory structure M with states such that a general reachability or safety objective is M-strongly-monotone into the existence of a monotone decomposition with The definition of monotone decomposition is in Definition . . on page .

sets. We therefore consider the following decision problem.

M

Input:

A DFA D and an integer ∈ ℕ.

Question: Is there a monotone decomposition of D with at most sets?

As per Lemma . . , this problem is equivalent to asking whether there is a memory structure M with at most states such that a regular objective derived from D is M-strongly-monotone (Lemma . .), or whether there is a chromatic memory structure with ≤ states that suffices to play optimally for P 1 for GenSafe(L(D)) (Theorem . .). It is also related, though not equivalent, to the chromatic memory requirements of GenReach(L(D)) (Theorem . .). We will show that the M problem is NP-complete.

Membership in NP.

We discuss here that the decision problems related to the properties used in our characterizations of chromatic memory requirements, M-strong-monotony and M-progress-consistency, are in NP. The idea is simply that, given a DFA D and a memory structure M, we can decide in polynomial time whether the objectives derived from D are M-strongly-monotone, and whether they are M-progress-consistent. Proof. We show that the M problem belongs to NP, which is equivalent to our statement thanks to Lemma . . . Let D = (, , init , ,) be a DFA and ∈ ℕ. Notice that if ≥ | |, the answer to the problem The case of regular languages is always Y , as ({ }) ∈ is always a monotone decomposition. It is left to consider the case < | |. A monotone decomposition with sets of states of D therefore has size polynomial in the inputs. We can verify that such sets indeed form a monotone decomposition in polynomial time, by checking each of the three requirements from the definition of monotone decomposition.

For requirement (a) (the decomposition covers the state space), we simply need to iterate on all the states appearing in the monotone decomposition, which has time complexity O(• | |). For requirement (b) (the decomposition is "stable" by reading colors), we simply have to check that for each set and each color, the image of the set by this color is included in another set, which can be done

naively in O(2 • | | • | |).
For requirement (c) (each set is a chain), we discuss how to check in polynomial time that each set is a chain. One way to do it is to precompute, for every pair 1 , 2 ∈ , whether 1 2 , 2 1 , or none of these. This amounts to solving language containment queries, The classical procedure for language containment queries is as follows: observe

that L(D 1) ⊆ L(D 2) if and only if L(D 1) ∩ L(D 2) = ∅.
Deterministic finite automata can be complemented by complementing their final states, and emptiness of the intersection can be checked by building the direct product of the automata. The product construction was first formalized in [RS] For regular reachability objectives, we express the notion of M-progressconsistency in a way that makes decidability in polynomial time clear.

Lemma . . Let D = (, , init , ,) be a DFA, = GenReach(L(D))

be the derived regular reachability objective, and M = (, init , upd) be a memory structure. We assume w.l.o.g. that D has a single final state fin which is absorbing. Objective is M-progress-consistent if and only if for all ∈ , 1 ∈ ,

(init , ∩ init , 1 ≠ ∅) ⇒ (∀ 2 ∈ s.t. 2 ≠ fin and 1 ≺ 2 , , ∩ 1 , 2 ∩ 2 , 2 = ∅).
This result reduces the search for words that witness "non-M-progressconsistency" to a more constrained situation. In general, if a word ∈ , witnesses that is not M-progress-consistent because it makes progress from a state but does not win when repeated from , then we may have to read multiple times on the automaton before noticing that repeating it does not reach fin . However, in such a situation, we can actually find two states 1 ≺ 2 such that is read from 1 to 2 and is a cycle on 2

The case of regular languages -in other words, just by reading twice on the right state, we can notice that contradicts M-progress-consistency.

Proof. The left-to-right implication can be shown by contrapositive. Negating the implication gives a 1 ∈ init , ∩ init , 1 and a 2 ∈ , ∩ 1 , 2 ∩

2 , 2 such that 1 ≺ 1 2 and 1 (2) does not go through fin , so 1 (2) ∉ . This shows that is not M-progress-consistent.

For the right-to-left implication, we assume by contrapositive that is not M-progress-consistent: there exist ∈ , 1 ∈ init , , 2 ∈ , such that 1 ≺ 1 2 and 1 (2) ∉ . For ≥ 0, let = * (init , 1 (2)). We have 0 ≺ 1 since 1 ≺ 1 2 . By induction and by Lemma . . , the sequence () ≥0 is non-decreasing. As there are finitely many states, it therefore reaches a fixpoint, which cannot be fin as 1 (2) ∉ . We denote 2 = its fixpoint and 1 = -1 the last state before reaching the fixpoint (in particular, 1 ≺ 2 , * (1 , 2) = 2 , and * (2 ,) = 2).

We have that 1 (2) -1 ∈ init , ∩ init , 1 , 1 ≺ 2 , 2 ≠ fin , and 2 ∈ , ∩ 1 , 2 ∩ 2 , 2 , which shows that we do not have the implication from the statement. This condition is easy to check algorithmically, as it consists of checking emptiness and non-emptiness of intersections of regular languages for all memory states and all pairs 1 , 2 of comparable states of D. -R (D,) is always Y , as using D as a memory structure always suffices to play optimally. Indeed, D-strong-monotony and D-progress-consistency of an objective induced by D trivially hold (for D-strong-monotony, by using D as a memory structure, we always know precisely the current class of prefixes, which is even stronger than knowing a chain; for D-progress-consistency, any progress necessarily changes the state as two words with distinct winning continuations cannot reach the same state of D). It is left to consider the case < | |. A sufficient memory structure M with states then has size polynomial in the inputs.

To check that it suffices to play optimally, we need to verify that is M-strongly-monotone and M-progress-consistent.

From memory M, we can build the sets Γ for each state of M by computing the product of D and

M in O(| | • | | • | |).
We can then check that family (Γ) ∈ forms a monotone decomposition in time . .). This means that M-strong-monotony can be checked in polynomial time.

O(| | 4 • | |) (Lemma

The case of regular languages

The M-progress-consistency property can also be checked in polynomial time using Lemma . . . We first compute all pairs of states (1 , 2) such that 1 ≺ 2 , which was already discussed in Lemma . . and can be done in O(| | 4 • | |). Then, we can find every triplet (, 1 , 2) ∈ × 2 such that init , ∩ init , 1 ≠ ∅, 2 ≠ fin , and 1 ≺ 2 . For each of these triplets, we need to check the emptiness of language , ∩ 1 , 2 ∩ 2 , 2 , which can be represented by a product involving M and two copies of D

(which has | | • | | 2 • | | transitions). The time complexity of this step is then O((| | • | | 2) • (| | • | | 2 • | |)) = O(| | 2 • | | 4 • | |).
The overall procedure therefore has complexity each vertex of appears exactly once, (, +1) ∈ for all , 1 ≤ < , and (, 1) ∈ .

O(| | 2 • | | 4 • | |).

H C

Input:

A directed graph = (,). Proof. We start by defining an operator Automaton(•) turning a directed graph into a DFA. Let = (,) be a directed graph. We define Automaton() as the DFA (, Σ, , init ,) with = , Σ = {in, out}, and transitions such that

for ∈ , (, in) = (, out) = ; for = (1 , 2) ∈ , (, in) = 1 and (, out) = 2 .
We ignore init and at the moment. This definition is inspired from a reduction in [Boo] (although the rest of the proof is different).

= (C C) () { init , ⊥, }, Σ = {in, out} { | ∈ (C ∪ C) ∪ (∪)}, = { }.
The transitions with in and out are defined as above for states of (C ∪ C) ∪ (∪), and are self-loops on init , ⊥ and . The sole purpose of the new letters is to induce a relevant orderingintuitively, we want ⊥ to be the smallest state, to be the largest, and all automaton states corresponding to vertices (resp. edges) of Automaton(C) to be smaller than all automaton states corresponding to vertices (resp. edges) of Automaton(), while making all other pairs of states non-comparable. Formally, for , ∈ (C ∪ C) ∪ (∪) we define

(,) =                if = , if ∈ and ∈ C , if ∈ and ∈ C , ⊥ otherwise.
We moreover define, for all ∈ (C ∪ C) ∪ (∪), (init ,) = , (⊥,) = ⊥, and (,) = .

We sum up the relations between the elements that follow from this construction:

for all ∈ \ {⊥}, ⊥ ≺ , for all ∈ \ { }, ≺ , for all C ∈ C , for all ∈ , C ≺ , for all C ∈ C , for all ∈ , C ≺ , all other pairs of distinct states are non-comparable for .

The case of regular languages

The largest antichain in D for is attained by ∪ ∪ { init }: all these states are non-comparable, and all other states are comparable to some of them. This antichain has cardinality + + 1. We first prove the left-to-right implication. We assume that has a Hamiltonian cycle (1 , . . . ,). Let = (, +1) for 1 ≤ < , and = (, 1). Let \ { 1 , . . . , } = { +1 , . . . , }. The fact that there is a Hamiltonian cycle in allows for a natural pairing of vertices (resp. edges) of C with vertices (resp. edges) of in sets of a monotone decomposition, which will in particular be closed under reading in and out. We define sets

(Γ) 1≤ ≤ + +1 such that: for 1 ≤ ≤ , Γ = {⊥, C , , }; for 1 ≤ ≤ , Γ + = {⊥, C , , }; for 1 ≤ ≤ -, Γ 2 + = {⊥, + , }; Γ + +1 = {⊥, init , }.
We check that these sets form a monotone decomposition of D . These sets cover the states of D , and they are chains by construction. It is left to check the second requirement (b) of a monotone decomposition. Let ∈ {1, . . . , + + 1}. If ≥ 2 + 1, then Γ has three elements. For ∈ Σ, the set (Γ ,) is a set with at most three elements that includes ⊥ and , so it is clearly a subset of some Γ . If ≤ 2 , Γ is a four-element set. Then, for 1 ≤ ≤ , (Γ , in) = (Γ , out) = Γ (as in and out are self-loops on states of C ∪ ∪ {⊥, }); for 1 ≤ ≤ ,

• (Γ + , in) = {⊥, C , , } = Γ , and • (Γ + , out) = {⊥, C +1 , +1 , } = Γ +1 ; for ∈ (C ∪ C) ∪ (∪), (Γ ,) = (Γ + ,) = {⊥, }, which is a subset of any Γ .
We have shown that sets (Γ) 1≤ ≤ + +1 form a monotone decomposition of D with + + 1 sets.

We now prove the right-to-left implication. Let (Γ) 1≤ ≤ + +1 be a monotone decomposition of D with + + 1 sets. Every set Γ contains at most two states besides ⊥ and (due to the chain requirement and the structure of chains in D). As ∪ ∪ { init } is an antichain with + + 1 elements, every state of this set is in exactly one set Γ . Due to the limited number of sets and the chain structure, states of C (resp. C) need to be The case of regular languages in a Γ along with an element of (resp.). As C and have the same cardinality, this implies that for every ∈ {1, . . . , }, there is a unique ∈ such that C and are in the same Γ .

We show that the sequence (1 , . . . ,) is a Hamiltonian cycle of . We write +1 = 1 for brevity. Let ∈ {1, . . . , }. The edge C of C is in some set Γ along with some edge = (, +1) ∈ . We have that (Γ , in) contains C and . As (Γ , in) is a subset of some Γ , and that C is in a single set along with , we deduce that = . similarly, from observing (Γ , out), we deduce that +1 = +1 . Therefore, = (, +1) = (, +1) ∈ . We have shown that (1 , . . . ,) is a Hamiltonian cycle of , which proves the claim.

We additionally observe that objective GenReach(L(D)) is M triv -progressconsistent. Indeed, notice that if there are 1 , 2 ∈ , ∈ * such that * (1 ,) = 2 and 1 ≺ 2 , then 2 = (any progress is immediately winning).

We now have all the ingredients to prove Theorem . . . Proof. The M -S problem is in NP (Lemma . .), and was shown to be equivalent to the M problem, itself NP-hard (Proposition . .). This shows that M -S is NP-complete.

The M -R problem is in NP (Corollary . .). Moreover, in Proposition . . , the finite automata considered (the D for a directed graph) induce M triv -progress-consistent regular reachability objectives. By Theorem . . , this means that a memory structure M suffices for such an objective if and only if it is M-strongly-monotone. In other words, a memory structure M suffices for GenReach(L(D)) if and only if it suffices for GenSafe(L(D)). As the problem is NP-hard for the family GenSafe(L(D)), it is also NP-hard for the family GenReach(L(D)).

We remark that our proof of NP-hardness of M -R relies solely on the M-strong-monotony notion. We leave as an open problem whether finding a small M such that a regular reachability objective is M-progressconsistent is also NP-hard. This would be especially interesting if it held for the class of M triv -strongly-monotone objectives (i.e., for which the prefix preorder is total), as it would suggest that there is a class of automata for which finding a smallest memory structure for their induced reachability objective is harder than for their induced safety objective.

The case of regular languages

. Synthesizing small memory structures in practice

. . Overview

The understanding provided by our characterizations of the memory requirements of regular reachability and safety objectives leads to a relatively straightforward way of implementing algorithms to synthesize minimal memory structures. We did so, and the result is publicly available at the link https://github.com/pvdhove/regularMemoryRequirements. We use the Python package automata-lib to represent and manipulate the automata, and the Python package Our algorithms work as follows: given an input DFA D representing either a regular reachability or a regular safety objective, we perform a binary search on the number of states of the minimal memory structure (exploiting the monotonicity of the problem: if a memory structure with states suffices, then so does a memory structure with + 1 states); for a fixed , we encode problems M -S or M -R into a polynomial-size propositional formula (detailed in Subsection . . below), and check its satisfiability with a SAT solver.

For illustration purposes, we have in particular implemented the regular examples from this chapter (Examples . . , . . , and . .) -with results that of course match the theoretical analysis -and generalizations thereof (usually yielding larger automata). A user may also obtain memory requirements of a regular language by providing a regular expression, which is an easy way to try out the code.

Example . . We illustrate one usage of the implementation on a generalization of Example . . , by requiring two extra letters and to be seen after seeing , and , . We display this DFA and our results in Figure . (the DFA is at the top and the memory structure at the bottom; initial states are green). We learn that a smallest memory structure for the safety objective induced by this automaton has five states (which was not obvious), and it can be displayed along with a corresponding monotone decomposition. For instance, memory state 3 induces the set Γ 3 = {1, 3, 4, 6, 7, 9} in the monotone decomposition in the sense that it could be reached in parallel with automaton states 1, 3, 4, 6, 7, 9. Observe that there may be superfluous states in monotone decompositions: for instance, memory state 1 can be reached in parallel with automaton states 0 and 2, but not actually in parallel with 7 and 9 (even though Γ 1 = {0, 2, 7, 9}). This is a subtlety already hidden in the proof of equivalence between memory structures and monotone decompositions (Lemma . .): starting from a monotone decomposition, building a memory structure from it and going back to a monotone decomposition

. Introduction

Memoryless determinacy and half-positionality. At multiple occasions in this thesis, we have given ways to understand the memory requirements of objectives for both players simultaneously. If we look at arguably the simplest kind of strategies -memoryless ones -we have on the one hand memoryless determinacy (the property of objectives admitting memoryless optimal strategies for both players) and on the other hand half-positionality (the same for just one player). We have discussed in Chapter characterizations allowing us to understand memoryless determinacy of objectives on both finite [GZ] [GZ]: Gimbert et

Exploring the boundary of halfpositionality

the recent work of Ohlmann [Ohl] (discussed below). These sufficient [Ohl]: Ohlmann (),

Characterizing Positionality in Games of Infinite Duration over Infinite Graphs

conditions are not general enough to prove half-positionality of some very simple objectives, even -regular ones [BFMM , Lemma] -this is what we intend to tackle here. Furthermore, multiple questions concerning half-positionality remain open. For instance, in [Kop], Kopczyński conjectured that prefix-independent half-positional objectives are closed under finite union (this conjecture was recently refuted for games on finite graphs [Koz a], but is still unsolved for games on infinite graphs).

[Koz a]: Kozachinskiy (), Energy Games over Totally Ordered Groups Also, Kopczyński showed that given a deterministic parity automaton recognizing a prefix-independent objective , we can decide if is halfpositional over finite arenas [Kop]. However, the time complexity of his algorithm is O(O(2)), where is the number of states of the automaton. This complexity comes from a reduction of half-positionality over all finite arenas to half-positionality over a finite (but large) number of finite arenas, which can be enumerated. It is unknown whether half-positionality can be decided in polynomial time, and no algorithm is known for the non-prefix-independent case.

Deterministic Büchi automata.

In this chapter, we focus on the proper subclass of -regular objectives recognized by deterministic Büchi automata (DBAs), that we call DBA-recognizable. DBA-recognizable objectives correspond to the -regular objectives that can be written as a countable intersection of open objectives (that is, which are the sets of the Borel hierarchy) or, equivalently, that are the limit language of a regular language of finite words [PP]. Deciding the winner of a game with a [PP]

Graph Games and Reactive Synthesis

We will make use of two central technical tools: the first is the notion of right congruence, already discussed at length and used heavily in Chapter ; See Definition . . for a definition of the right congruence.

the second is the notion of universal graph, a novel tool to solve games on graphs.

Universal graphs. A recent advance in the study of half-positionality is the introduction of well-monotonic universal graphs, combinatorial structures that can be used to provide a witness of winning strategies in games with a half-positional objective. Recently, Ohlmann [Ohl] has shown that [Ohl]: Ohlmann (

),

Characterizing Positionality in Games of Infinite Duration over Infinite Graphs

the existence of a well-monotonic universal graph for an objective exactly characterizes half-positionality (under minor technical assumptions on

). Moreover, under these assumptions, a wide class of algorithms, called value iteration algorithms, can be applied to solve any game with a half-positional objective [Ohl ; CFGO]. Although it brings insight into the structure of half-positional objectives, showing half-positionality through the use of universal graphs is not always straightforward and has not yet been applied in a systematic way to -regular objectives.

Contributions.

Our main contribution is a characterization of the DBArecognizable objectives that are half-positional, through a conjunction of three easy-to-check conditions (Theorem . .). The first two conditions are specializations of the M-strong-monotony and M-progress-consistency already introduced in Chapter ; these more general properties could deal with arbitrary memory structures, whereas here we only need the "memoryless memory structure" M triv . The three conditions can be stated as follows:

(a) (M triv -strong-monotony) The equivalence classes for the right congruence are totally ordered w.r.t. inclusion of their winning continuations. (b) (M triv -progress-consistency) Whenever the set of winning continuations of a finite word 1 is a proper subset of the set of winning continuations of a concatenation 1 2 , the word 1 (2) produced by repeating infinitely often 2 is winning. (c) The objective has to be recognizable by a DBA using the structure of its prefix classifier.

A few examples of simple DBA-recognizable objectives that were not encompassed by previous half-positionality criteria [Kop ; BFMM]

[Kop]: Kopczyński (),

Half-Positional Determinacy of Infinite Games

[BFMM]: Bianco et al. (),

Exploring the boundary of halfpositionality

are, e.g., weak parity objectives [Tho] [Tho]: Thomas (),

Church's Problem and a Tour through Automata Theory

, and "reaching a color twice in a row or infinitely often" (Example . .), which is half-positional but not memoryless-determined, and whose half-positionality is straightforward using our characterization.

Half-positional objectives recognized by deterministic Büchi automata

Various corollaries with practical and theoretical interest follow from our characterization.

We obtain a painless path to show (by checking each of the three conditions) that given a deterministic Büchi automaton, the halfpositionality of the objective it recognizes is decidable in time O(2 • 4), where is the number of colors and is the number of states of the DBA (Subsection . .). Prefix-independent DBA-recognizable half-positional objectives are exactly the very simple Büchi conditions Büchi() for some ⊆ , which consist of all the infinite words seeing infinitely many times colors in (Proposition . .). In particular, Kopczyński's conjecture about finite unions of half-positional objectives trivializes for DBArecognizable objectives (the finite union of Büchi conditions is a Büchi condition). We obtain a finite-to-infinite and a strong one-to-two-player lift (Theorem . .): in order to check that a DBA-recognizable objective is half-positional over arbitrary -possibly two-player and infinite -game graphs, it suffices to check the existence of memoryless optimal strategies over finite one-player graphs where all the vertices are controlled by P 1 . ; we also gave a strategic characterization of it for deterministic parity automata in Corollary . . . As an example, all deterministic weak automata (a restriction on DBAs) satisfy Condition (c) [Sta ; AF]. We prove that Condition (c) is necessary for half-positionality of DBA-recognizable objectives, but not for all (even -regular) objectives in general (see Example . .). The proof of its necessity is more involved than for the first two conditions, and will build on automata-theoretic ideas introduced for good-for-games coBüchi automata [AK ; AK ; AK] .

Technical overview. The necessity of Conditions

Together, the three conditions are sufficient for half-positionality of DBArecognizable objectives: the proof of sufficiency uses the theory of universal graphs, and consists in building a family of well-monotonic universal graphs [Ohl] [Ohl]: Ohlmann (),

Characterizing Positionality in Games of Infinite Duration over Infinite Graphs

for objectives satisfying the three properties.

Chapter structure. We first introduce technical notions from [AK] to manipulate DBAs in Section . . Our main contributions are presented in Section . : we introduce and discuss the three conditions used in our results, then we state our main characterization (Theorem . .) and some corollaries, and we end with an explanation on how to use the characterization to decide half-positionality of DBA-recognizable objectives in polynomial time. Sections . and . contain the proof of Theorem . . : the former shows the necessity of Condition (c) for half-positionality of DBA-recognizable objectives, and the latter shows their sufficiency through the use of universal graphs.

Notions. We do not devote a section to additional preliminaries in this chapter, but we will especially make use of the following terminology defined in Chapter : automaton structures (Definition . .), deterministic

Büchi automata (DBAs -Definition . .), prefix preorder (Definition . .), right congruence (Definition . .), and prefix classifier (Definition . .).

We also extend the notation of the objective Büchi() (containing words that see color ∈ infinitely often) to Büchi() for ⊆ (containing words that, infinitely often, see a color that belongs to). Objectives that can be recognized by a DBA are called DBA-recognizable.

We recall that an objective is half-positional (over resp. finite, countable, finitely branching, one-player arenas) if for all (resp. finite, countable, finitely branching, one-player) arenas A, P 1 has a memoryless optimal strategy (i.e., an optimal strategy based on M triv) in game (A,).

For a DBA B = (, , init , ,), a state ∈ , and an infinite word = 1 2 . . . ∈ , we write B(,) ∈ (×) for the infinite run of B on from , i.e., the sequence (0 , 1)(1 , 2) . . . with 0 = and = (-1 ,) for ≥ 1. If ∈ * , we define the finite run of B on from in a similar way.

. Saturating Büchi automata

We describe a "normal form" of deterministic Büchi automata that has good properties and that will be used throughout multiple sections of this chapter.

Let B = (, , init , ,) be a DBA. We say that a finite run of B is -free if it does not contain any transition from . For ∈ , we define -Free B () = { ∈ * | B(,) is -free}, -FreeCycles B () = { ∈ * | ∈ -Free B () and * (,) = }.

We call the words in the first set the -free words from , and the words in the second set the -free cycles from . We state an important property of -free words; having the same -free words is a kind of congruence on the states of the automata (if we restrict words read to -free words).

Lemma . . Let 1 , 2 ∈ be such that -Free B (1) = -Free B (2). Then for all ∈ -Free B (1), -Free B (* (1 ,)) = -Free B (* (2 ,)). As will be shown formally, being recognized by a DBA built on top of the prefix classifier is necessary for half-positionality of DBA-recognizable objectives over finite one-player arenas.

Remark . . All regular objectives (Chapter) satisfy the property of being recognizable by their prefix classifier, which is due to Myhill-Nerode theorem [Ner] [Ner]: Nerode (), Linear Automaton Transformations

. This may give some insight as to why this condition was not needed in Chapter .

Unlike the two other conditions, this third condition is in general not necessary for half-positionality of general objectives, including objectives recognized by other standard classes of automata on infinite words.

Example . . We consider the complement of the objective = Büchi() ∩ Büchi() of Example . . , which consists of the words ending with or . Objective is not DBA-recognizable (a close proof can be found in [BK , Theorem .] [BK]: Baier et al. (

),

Principles of model checking

). Still, it is recognizable by a deterministic coBüchi automaton similar to the automaton in Figure . , but which accepts infinite words that visit transitions labeled with • only finitely often. This objective is half-positional, which can be shown using [DJW , Theorem] . However, its prefix classifier has just one state, and there is no way to recognize by building a coBüchi (or even parity) automaton on top of it.

We stress that Condition , in its statement, relies on our use of transitionbased DBAs (i.e., with the acceptance condition defined on the transitions, as opposed to state-based DBAs -see Remark . .). For instance, for ⊆ , the objective Büchi() satisfies Condition . Its prefix classifier has a single state (as it is prefix-independent) and it can indeed be represented by a DBA with a single state: simply, ({ init }, , init , ,) such This DBA can be simply depicted as init \ .

• that (init ,) ∈ if and only ∈ . Had we used state-based DBAs, apart from the trivial cases = ∅ or = , recognizing Büchi() would require two states. This third condition, stated as is, would therefore not apply to this simple half-positional example if we only considered state-based DBAs. For our purposes, considering transition-based DBAs brings more succinct and elegant statements.

. . Characterization and corollaries

We have now defined the three conditions required for our characterization.

Half-positional objectives recognized by deterministic Büchi automata Theorem . . (Characterization of half-positional DBA-recognizable objectives) Let ⊆ be a DBA-recognizable objective. Objective is half-positional (over all arenas) if and only if its prefix preorder is total, it is M triv -progress-consistent, and it can be recognized by a Büchi automaton built on top of its prefix classifier S .

Proof. The necessity of the first two conditions (for more general memory structures) was shown in Propositions . . and . . . The necessity of the For the use of Proposition . . , we recall that having a total prefix preorder is equivalent to being M trivstrongly-monotone. third condition can be found in Section . , Proposition . . . The proof of the sufficiency of the conjunction of the three conditions can be found in Section . , Proposition . . . This characterization is valuable to prove (and disprove) half-positionality of DBA-recognizable objectives. Examples . . , . . , and . . are not halfpositional, and each of them falsifies exactly one of the three conditions from the statement. On the other hand, Example . . (= Büchi() ∪ *

) is half-positional. We have already discussed its M triv -progressconsistency, but it is also straightforward to verify that its prefix preorder is total and that it is recognizable by its prefix classifier: the right congruence has three totally ordered equivalence classes corresponding to the states of the DBA in Figure . . We state two notable consequences of Theorem . . and its proof technique. The first one is the specialization of Theorem . . to prefixindependent objectives. It states that all prefix-independent and DBArecognizable objectives that are half-positional are of the kind Büchi() for some ⊆ . Prefix-independence of objectives is a frequent assumption in the literature [Kop ; CN ; GK ; CFGO] -we show that under this assumption, half-positionality of DBA-recognizable objectives is very easy to understand and characterize.

Proposition . . Let ⊆ be a prefix-independent, DBA-recognizable objective. Objective is half-positional if and only if there exists ⊆ such that = Büchi().

Proof. The right-to-left implication follows from the established halfpositionality of objectives of the kind Büchi() (Theorem . .). For the left-to-right implication, we assume that is a prefix-independent, DBArecognizable, half-positional objective. By Theorem . . , it is recognized by a DBA B built on top of S . As is prefix-independent, its prefix classifier has just one state, and there is a single transition from and to this single state for each color. Hence, = Büchi(), where is the set of colors whose only transition is a Büchi transition in B.

Half-positional objectives recognized by deterministic Büchi automata

Remark . . A corollary of this result is that when is prefixindependent, DBA-recognizable, and half-positional, we also have that is half-positional. Indeed, the complement of objective = Büchi() is a so-called coBüchi objective, which is also known to be half-positional (it is a special case of a parity objective; see Theorem . .). This statement does not hold in general when is not prefix-independent, as was shown in Example . . . Moreover, the reciprocal of the statement also does not hold (there are prefix-independent half-positional objectives recognized by a deterministic coBüchi automaton whose complement is not half-positional), as was shown in Example . . .

Remark . .

A second corollary is that prefix-independent DBArecognizable half-positional objectives are closed under finite union (since a finite union of Büchi conditions is a Büchi condition). This settles Kopczyński's conjecture (mentioned in Section .) for DBA-recognizable objectives.

A second consequence of Theorem . . and its proof technique shows that half-positionality of DBA-recognizable objectives can be reduced to half-positionality over the restricted class of finite one-player arenas. This provides yet a new one-to-two-player lift, with stronger properties than the general ones in Chapters and , but for a more restricted class of objectives.

Theorem . . (Finite-to-infinite, one-to-two-player lift for half-positional DBAs) Let ⊆ be a DBA-recognizable objective. If objective is half-positional over finite one-player arenas, then it is half-positional over all arenas (of any cardinality).

Proof. We have already shown that for -regular objectives, the first two conditions are necessary for half-positionality over finite one-player arenas (Propositions . . and . .). When showing the necessity of the third condition for half-positionality of DBA-recognizable objectives in Section . (Proposition . .), we also show its necessity for half-positionality over finite one-player arenas. Hence, assuming half-positionality over finite one-player arenas, we have the three conditions from the characterization of Theorem . . , so we have half-positionality over all arenas.

. . Deciding half-positionality in polynomial time

In this section, we assume that is finite. We show that the problem of deciding, given a DBA B = (, , init , ,) as an input, whether L(B) is half-positional can be solved in polynomial time, and more as the transitions used by from 1 max in B correspond to the transitions used by from 1 max in B (this property is not necessarily true for all words, but is true for these words that read only one transition in Δ → 2 max as their last transition). We also have by construction that

∀ ≥ 1, * (1 max ,) = 2 max . (.)
We distinguish whether is accepted or rejected by B .

Assume is accepted by B . Then, we know that for infinitely many ∈ ℕ, ∉ -Free B (1 max). This implies that for these indices , ∉ -Free B (1 max) by Equation (.). As 1 max is a -free-maximum, for all ∈ , ∉ -Free B () (this is simply the contrapositive of the definition of -free-maximum). Hence, for infinitely many ∈ ℕ, when is read in B (no matter from where), a Büchi transition is seen, so is accepted by B.

Assume is rejected by B . Then there exists ≥ 0 such that for all ≥ , ∈ -Free B (1 max). As B is prefix-independent, up to removing the start of , we assume w.l.o.g. that = 1. We show by induction that ∀ ≥ 1, -Free B (1 max) = -Free B (* (1 max , 1 . . .)).

This is true for = 1, as * (1 max , 1) = 2 max by Equation (.) and the fact that 1 max and 2 max are both -free-maxima. Assume -Free B (1 max) = -Free B (* (1 max , 1 . . . -1)) for some ≥ 2. Then, by Lemma . . , as ∈ -Free B (1 max), we have -Free B (* (1 max ,)) = -Free B (* (1 max , 1 . . . -1)).

Equation (.) gives -Free B (* (1 max ,)) = -Free B (2 max), which is itself equal to -Free B (1 max). We now know that for all ≥ 1, ∈ -Free B (1 max) by Equation (.). Therefore, we conclude that for all ≥ 1, ∈ -Free B (* (1 max , 1 . . . -1)). In particular, sees no Büchi transition when read from 1 max in B and is also rejected by B. We have shown that B is a DBA with fewer states than B recognizing . If B still has two or more -free-maxima, we repeat our construction until there is at most one left.

Thanks to Lemma . . , we now assume w.l.o.g. that B has at most one -free-maximum. We intend to show that there exists a -free-cycle- maximum. To do so, we exhibit an (infinite) arena in which P 1 has no winning strategy, which we prove by using half-positionality of over finite one-player arenas. We then prove that the non-existence of a -freecycle-maximum would imply that P 1 has a winning strategy in this arena (Lemma . .).

Let A B be the infinite one-player arena of P 1 depicted in Figure . . This arena consists of one vertex with a choice to make among all non-empty words that are -free cycles from some state of B. Vertex is the only vertex with multiple outgoing edges. The goal of the next three short lemmas is to show that in this arena, P 1 has no winning strategy.

Lemma . . If P 1 has a winning strategy in A B , then P 1 has a memoryless winning strategy.

Proof. Suppose that there is a winning strategy of P 1 in A B . Let = 1 2 . . . be an infinite winning word such that for ≥ 1, ∈ ∈ -FreeCycles B () \ { }.

Let 0 = init , and for ≥ 1, let = * (init , 1 . . .) be the current automaton state after reading the first finite words composing . As there are only finitely many automaton states and is winning, there are , ≥ 1 with < such that = and +1 . . . ∉ -Free B (). Word 1 . . . (+1 . . .) is also a winning word and uses only finitely many different words in ∈ -FreeCycles B () \ { }.

Hence, there is a finite restriction ("subarena") A B of the arena A B with at most choices in in which P 1 has a winning strategy. Arena A B being finite and one-player, half-positionality of over finite one-player arenas implies that P 1 has a memoryless winning strategy in A B . This memoryless winning strategy can also be played in A B (as every choice available in A B is also available in A B).

Lemma . . No memoryless strategy of P 1 is winning in

A B .
Proof. Any memoryless strategy of P 1 generates a word , where ∈ -FreeCycles B () \ { } for some ∈ . In particular, word is rejected when it is read from state . As all the states in are equivalent for ∼ (as we assume that is prefix-independent), we have ∼ init , so is also rejected when read from the initial state init of the automaton.

Half-positional objectives recognized by deterministic Büchi automata

Combining Lemmas . . and . . , we deduce the desired result.

Lemma . . No strategy of P 1 is winning in

A B .
We use the statement of Lemma . . to show the existence of a -freecycle-maximum.

Lemma . . There exists a -free-maximum max in B that is a moreover a -free-cycle-maximum: for all ∈ , -FreeCycles B () ⊆ -FreeCycles B (max).

Proof. Let us assume by contradiction that there is no -free-maximum, or if there is one, that it is not a -free-cycle-maximum. We show how to build a winning strategy of P 1 in A B , contradicting Lemma . . . To do so, we build an infinite word accepted by B by combining finite words that are -free cycles from some state. We claim that for ∈ which is not a -free-maximum, there exists ∈ ∈ -FreeCycles B () \ { } such that ∉ -Free B ().

Let ∈ be such that -Free B () -Free B (), which exists as is not a -free-maximum. Let 1 ∈ -Free B () \ -Free B (). By Lemma . . , there exists 2 ∈ * such that 1 2 ∈ -FreeCycles B () (this holds as we have assumed w.l.o.g. that B is saturated). As 1 ∉ -Free B (), we also have 1 2 ∉ -Free B (). Taking = 1 2 proves the claim. For ∈ not a -free-maximum, we fix ∈ + such that ∈ ∈ -FreeCycles B () \ { } and ∉ -Free B ().

Let max ∈ be a -free-maximum (that we suppose to be unique by Lemma . .), if it exists. We suppose by contradiction that max is not a -free-cycle-maximum: there is ∈ such that -FreeCycles B () -FreeCycles B (max). Let max ∈ -FreeCycles B () \ -FreeCycles B (max). Notice that as max ∈ -Free B () and max is a -free-maximum, max ∈ -Free B (max). Therefore, max cannot be a cycle on max , i.e., * (max , max) ≠ max .

We build iteratively an infinite winning word that can be played by P 1 in A B . As P 1 plays, we keep track in parallel of the current automaton state. The game starts in , with current automaton state 0 = init . Let ≥ 0. We distinguish two cases.

If is not a -free-maximum, then P 1 plays word . As ∉ -Free B (), a Büchi transition is seen along the way. The current automaton state becomes +1 = * (,).

Half-positional objectives recognized by deterministic Büchi automata

If

= max is the -free-maximum, then P 1 plays max . The current automaton state becomes +1 = (max , max), which is not equal to max .

For infinitely many ≥ 0, the automaton state is not a -free-maximum (as there is at most one -free-maximum in B, and it cannot appear twice in a row). Therefore, we have described a winning strategy for P 1 , since the corresponding run over B visits infinitely often a Büchi transition.

We now know that there exists a unique -free-maximum max ∈ , and moreover, that max is a -free-cycle-maximum. We show how to use the outgoing transitions of max in order to realize as an objective of the kind Büchi() for some ⊆ , which is the goal of the current subsection.

Lemma . .

We thank Igor Walukiewicz for suggesting a simplification of the proof of Lemma . . .

There exists

⊆ such that = Büchi().

Proof. Let = { ∈ | (max ,) ∈ } -equivalently, if we consider colors as words with one letter, is the set of colors such that ∉ -Free B (max).

We first show that Büchi() ⊆ . Let ∈ . Then, ∉ -Free B (max). As max is a -free-maximum, for all ∈ , ∉ -Free B (). Therefore, any word seeing infinitely many colors in sees infinitely many Büchi transitions and is accepted by B.

We now show that ⊆ Büchi(). By contrapositive, let = 1 2 . . . ∉ Büchi() be an infinite word with only finitely many colors in . We show that ∉ . As is prefix-independent, we may assume w.l.o.g. that has no color in , i.e., that for all ≥ 1, ∈ \ . We claim that when read from max , word sees no Büchi transition and is thus rejected. This implies that ∉ as max ∼ init .

Assume by contradiction that there is some Büchi transition when reading from max , i.e., there exists ≥ 0 such that for ≤ = 1 . . . , ≤ ∈ -Free B (max), but ≤ +1 ∉ -Free B (max). We will deduce that (max , +1) is a Büchi transition, contradicting that +1 ∈ \ .

We depict the situation in Figure . . Let 1 = * (max , ≤) (whether 1 equals max or not does not matter). By Lemma . . , there exists ∈ * such that ≤ ∈ -FreeCycles B (max). By construction, we have ≤ ∈ -FreeCycles B (1). As max is a -free-cycle-maximum, we have -FreeCycles B (1) ⊆ -FreeCycles B (max), so we also have Half-positional objectives recognized by deterministic Büchi automata -FreeCycles B (max). Let 2 = * (max ,). Notice that max = * (2 , ≤) and ≤ ∈ -Free B (2). As max is a -free-maximum and ≤ +1 ∉ -Free B (max), we also have that ≤ +1 ∉ -Free B (2). Therefore, transition (max , +1) must be a Büchi transition, which contradicts that +1 ∈ \ .

. . General case

We now relax the prefix-independence assumption on . We still assume that is half-positional over finite one-player arenas, and show that can be recognized by a Büchi automaton built on top of S . If B has exactly one state per equivalence class for ∼, it means that it is built on top of S , and we are done. If not, let ∼ ∈ be a state such that

|[∼] ∼ | ≥ 2.
We briefly sketch the proof technique for this section. Sketch of proof. Our proof will show how to modify B by "merging" all states in equivalence class [∼] ∼ into a single state, while still recognizing the same objective . The main technical argument is to build a variant , that turns out to also be half-positional over finite one-player arenas and DBA-recognizable, but which is prefix-independent. We can therefore use Lemma . . from Subsection . . and find

[∼] ⊆ [∼] such that [∼] = Büchi([∼]
). Then, we exhibit a state max ∈ [∼] ∼ whose -free words are tightly linked to the elements of [∼] (Lemma . . and Corollary . .). Finally, akin to the way we removed a -free-maximum in Lemma . . , we show that it is still possible to recognize while keeping only state max in

[∼] ∼ (Lemma . .).

Once we know how to merge the equivalence class [∼] ∼ into a single state, we can simply repeat the operation for each equivalence class with multiple states, until we obtain a DBA built on top of S .

We define a new set of colors [∼] using finite words in + such that

[∼] = { ∈ + | * (∼ ,) ∼ ∼ }.
This set contains all the finite words that, read from ∼ , come back to a state in [∼] ∼ . By Lemma . . , for all ∈ [∼] ∼ , for all ∈ [∼] , we also have that * (,) ∼ * (∼ ,) ∼ ∼ . The set [∼] therefore corresponds to the set of words with the seemingly stronger property that, when read from any state in [∼] ∼ , come back to a state in [∼] ∼ . We define an objective [∼] of infinite words on this new set of colors such that

[∼] = { 1 2 . . . ∈ [∼] | 1 2 . . . ∈ -1 ∼ }.

Half-positional objectives recognized by deterministic Büchi automata

We show that [∼] has the three conditions allowing us to apply Lemma . . to it.

Objective Objective [∼] is prefix-independent, as adding or removing a finite number of cycles on ∼ does not affect the accepted status of a word in -1 ∼ .

Half-positionality of [∼] over finite one-player arenas is implied by half-positionality of over finite one-player arenas. Indeed, every (finite one-player) arena A [∼] using colors in [∼] can be transformed into a (finite one-player) arena A with similar properties using colors in . Two transformations are applied: () we replace every [∼] -colored edge in A [∼] by a corresponding finite chain of -colored edges, and () for every vertex of A [∼] , we prefix it with a chain of -colored edges starting from a vertex reading a word ∼ such that * (init , ∼) = ∼ . We then have that P 1 has a winning strategy from a vertex in A [∼] if and only if P 1 has a winning strategy from in A, and a memoryless winning strategy from in A can be transformed into a memoryless winning strategy from in A Proof. For the first item, we assume by contrapositive that there exists a state ∈ [∼] ∼ such that ∈ -Free B (). By Lemma . . , there is ∈ * such that ∈ -FreeCycles B (). In particular, () ∉ -1 = -1 ∼ . We can assume w.l.o.g. that ∈ + (if = , then we can simply replace it with =). Therefore, () is also an infinite word on [∼] , and we have (

)

∉ [∼] since () ∉ -1 ∼ . As [∼] = Büchi([∼]
), clearly ∉ [∼] , which ends the proof of the first item.

For the second item, assume by contradiction that for all ∈ [∼] ∼ , there exists ∈ [∼] \ [∼] such that ∉ -Free B (). As there are only finitely many states in [∼] ∼ , it is then possible to build a word = 1 . . .

Titre:

 Complexité des stratégies des jeux sur graphes à somme nulle . Mots clés : théorie des jeux, synthèse de contrôleurs, jeux sur graphes, jeux à somme nulle, détermination à mémoire finie, langages ω-réguliers Résumé : Les jeux sur graphes à deux joueurs et à somme nulle constituent un modèle central en informatique théorique. De tels jeux modélisent une interaction potentiellement infinie entre un système dit réactif et son environnement. Le système est considéré comme un joueur et souhaite garantir une spécification (traduite en un objectif de jeu).

 This thesis' author was funded by an F.R.S.-FNRS Research Fellow (ASP -Aspirant) fellowship. This thesis was carried out at Laboratoire Méthodes Formelles (UMR 9021 -Université Paris-Saclay, CNRS, ENS Paris-Saclay) and at Département de Mathématique, Faculté des Sciences (Université de Mons).

 Figure . : A state machine counting the number of consecutive occurrences of pass in order to output confirm at the adequate time.

 . Strategies . Objectives and games . Optimality and determinacy . Common examples of objectives . Classes of simple strategies . Finite-memory strategies . Memoryless strategies . Flavors of finite-memory determinacy . Memoryless determinacy . Chromatic versus chaotic memory structures Arena-independent finite memory . Overview .

 do not define the Borel hierarchy here. All the objectives Formally, Martin considers the slightly different formalism of Gale-Stewart games [GS] [GS]: Gale et al. (), Infinite Games with Perfect Information

 Figure . : Small arena illustrating the objectives Reach(), Safe(), Büchi(), and Reach() ∩ Reach() in Example . . .

 is the parity condition. Definition . . If = {0, . . . , } for some ∈ ℕ, the parity condition Parity() ⊆

 ([EJ ; Mos]) Parity conditions are memoryless-determined.

 (Prop. . .) Open over infinite arenas (Rmk. . .)Over infinite arenas (Prop. . .) Not true over finite arenas(Ex. . .)

Figure . :

 . Figure . : Relations between types of finite-memory determinacy. Thin implications hold by definition. Thick implications only hold in particular contexts.

 Definition . . A (transition-based) deterministic Büchi automaton (abbreviated DBA) is a tuple B = (, Σ, init , ,) where (, Σ, init ,) is an automaton structure and ⊆ × Σ is a set of Büchi transitions.

[

 CN]: Colcombet et al. (), On the positional determinacy of edge-labeled games .

Figure . :

 . Figure . : P 1 (circle) needs infinite memory to win in this arena for objective(by always resetting the sum of colors to zero by looping long enough on 1 before going back to 2).

Figure . :

 . Figure . : Infinite one-player arenas requiring infinite memory for objective MP ≥0 . The arena on the right uses only finitely many colors.

 relations . Nash equilibria . Product arenas . Arena induced by a non-deterministic finite automaton Concepts . Generalizing monotony and selectivity . Discussion about the M-monotony notion . Prefix-covers and cyclic-covers . results . Running example . From strategies based on M to M-monotony and M-selectivity From M-monotony and M-selectivity to strategies based on M . to stochastic games . Generalization to mildly growing memory

[

 and on the sets in F). On the contrary, combinations of lower-bounded energy objectives (with no upper bound) require arena-dependent memory [VCD + ; CRR ; JLS], as shown in Example . . : the memory[VCD +]: Velner et al. (),The complexity of multi-meanpayoff and multi-energy games[CRR]: Chatterjee et al. size of the arena in addition to the weights used in it. Such a setting falls outside the scope of our results.

 Figure . : DBA recognizing = Reach() ∩ Reach() (left), memory structures M p (center) and M c (right).

 Figure .: Memory structure M (right) is a prefix-cover and cyclic-cover of { 1 , 3 } in the arena on the left, but the arena cannot be realized as is as the product of an arena with M.

Figure . :

 . Figure . :Arena A (left), memory structure M (center; with init = 1), and product arena A ⋉ M (right; only vertices reachable from × { init } are depicted). The memoryless optimal strategy from × { init } is highlighted with bold arrows.

Figure . :

 . Figure . : NFA N built to establish M-monotony.

 For a finite arena A = (, 1 , 2 ,), we write A = | | -| | for its We recall that as arenas are non-blocking, | | ≥ | |, so A ≥ 0.

 A , A < A =), we have memoryless NEs from cov in the subgames G = (A ,) and G = (A ,). Let us denote them by (1 , 2) for game G , ∈ { , }.

 structures. Assume that is M p 1 -monotone and M c 1 -selective, and that -1 is M p 2 -monotone and M c 2 -selective. Then, for all finite arenas A = (, 1 , 2 ,), for all subsets of vertices cov ⊆ for which M p 1 and M p 2 are prefix-covers, and M c 1 and M c 2 are cyclic-covers, there exists a memoryless Nash equilibrium (1 , 2) from cov in G = (A,).

 -covers, and M c 1 and M c 2 are cyclic-covers. Focusing on P 1 and , we invoke Lemma . . (using M p the induction hypothesis) and obtain an NE (♠ 1 , ♠ 2) from cov in G = (A,) such that ♠ 1 is memoryless. Symmetrically, focusing on P 2 and -1 , we invoke Lemma . . (using M p 1 ⊗ M p 2 and M c 1 ⊗ M c 2 , and the induction hypothesis) and obtain an NE

 c 1 and M c 2 be four memory structures. Assume that is M p 1 -monotone and M c 1 -selective and that -1 is M p 2 -monotone and M c 2 -selective. Then, for all finite arenas A, there exists a Nash equilibrium (1 , 2) based on memory structure M = Characterization of arena-independent finite-memory determinacy

Figure . :

 . Figure . :One-player arena (left) in which P 2 has a memoryless winning strategy from each vertex of the winning region, but no memoryless optimal strategy (= Reach()∩ Reach()). Two-player arena (right) in which P 2 does not have a memoryless winning strategy from 1 .

Figure . :

 . Figure . : Alternative proof attempt for Proposition . . : replace uniform strategies in one-player arenas by non-uniform strategies in two-player arenas?

Proof.Figure . :

 . Figure . : Example . . : DBA recognizing = (+) (left), and arena with no memoryless optimal strategy (right).

 . and the one-to-two-player lift (Theorem . .) to stochastic games and involved this thesis' author [BORV a]. The second one is a generalization by [BORV a]: Bouyer et al. (), Arena-Independent Finite-Memory Determinacy in Stochastic Games Characterization of arena-independent finite-memory determinacy Kozachinskiy of the one-to-two-player lift to a class of strategies more general than strictly arena-independent ones [Koz b]. a], we generalized the one-to-two-player lift to two-player zero-[BORV a]: Bouyer et al.

 1 2 " [CFK +]. In such general stochastic games, the use of [CFK +]: Chen et al. (),Playing Stochastic Games Precisely randomization in strategies may be useful. In general, reasonable extensions of qualitative objectives in the context of stochastic games (for example, maximizing the probability of obtaining an infinite word in the qualitative objective) require more memory than their deterministic counterparts (see, e.g., the discounted sum with threshold in [BORV b, Section .]), hence the need for dedicated tools for stochastic [BORV b]: Bouyer et al.

 [VCD +]: Velner et al. (

[

 CN]: Colcombet et al. (), On the positional determinacy of edge-labeled gamesMoreover, a by-product of our characterization is a new one-to-two-player lift, dealing with another class of game graphs than the one in Chapter : to show that chromatic finite-memory structures suffice to play optimally in two-player games on infinite graphs, it suffices to show it in the simpler case of one-player games on infinite graphs. We illustrate our results with the family of discounted-sum objectives, for which -regularity depends on the value of some parameters. The contributions from this chapter are based on joint work with Patricia Bouyer (Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF) and Mickael Randour (F.R.S.-FNRS & Université de Mons) published in two papers: a conference version in the proceedings of STACS' [BRV a], [BRV a]: Bouyer et al. notations . Proof ideas . Combining cycles on the same memory state Combining cycles on different memory states Competing cycles . Preorder on cycles . Parity automaton on top of M . sum . Missing proofs for the discounted sum application Other objectives . Wrap-up .

Figure . :

 . Figure . : Memory structure M s.t. Büchi()∩Büchi() is M-cycle-consistent (Example . .).

 Figure . : Memory structure M used in Remark . . .

 .) [CN] [CN]: Colcombet et al. (), On the positional determinacy of edge-labeled games . Let = { , } and 2 = * * be the language of infinite words with at least two occurrences of . The prefix classifier S 2 Characterization of -regularity through finite-memory determinacy

Figure .

 Figure . :Four objectives (the first three are -regular), their prefix classifier, a minimal memory structure for each of them, and a way (in red) to realize the first three as parity automata built on top of these structures. We recall that a transition of a parity automaton from to with label | means that (,) = and (,) = .

Figure . :

 . Figure . : Arena built in the proof of Lemma . . . Squiggly arrows indicate a sequence of edges.

Figure . :

 . Figure . : Infinite one-player arena of P 2 used in the proof of Proposition . . . The thick squiggly arrow indicates a choice between sequences of edges for any word in { 1 , 2 , . . .}.

Example . .

 . We discuss again the objective from Remark . . : let = { , } and = . We consider the same memory structure M in Figure . (left); we already argued that is M-cycle-consistent. Yet, this structure does not suffice to play optimally in arena A in Figure . (center), as seeing does not change the memory state. Notice that the prefix classifier S , in Figure . (right), has four states (corresponding to equivalence classes [] ∼ , [] ∼ , [] ∼ , and [] ∼) and suffices to play optimally.

Figure . :

 . Figure . : Memory structure M (left), arena A (center), and prefix classifier S (right) used in Example . . .

Remark . .

 . If we compare Example . . (= Büchi() ∩ Büchi()) with Example . . (=

Figure . :

 . Figure . : Depiction of the statement of Corollary . . (left) and Lemma . . (right).

2 Figure . :

 2. Figure . : Situation in the proof of Lemma . . .

Figure . :

 . Figure . : A parity automaton P (left) with = { , , } and underlying structure M used in Example . . . A diagram (right) showing the relations between the elements of Φ M/ ordered by partial preorder , discussed in Example . . .

Figure . :

 . Figure . : Situation to show transitivity of in Lemma . . .

Figure . :

 . Figure . : Situation in the proof of Lemma . . (left) and in the proof of Lemma . . (right).

Figure

 Figure . : Situation in the proof of Lemma . . . Competition of and is witnessed by , and competition of and +1 is witnessed by . State appears somewhere along and is not represented.

Figure . :

 . Figure . : Arena with infinitely many edges in which P 1 needs infinite memory to win for condition DS ≥0 from 1 for any ∈ (0, 1) ∩ ℚ, with = [-,] ∩ ℚ for sufficiently large.

Figure . :

 . Figure . : Infinite arena in which P 2 needs infinite memory to win from 1 for objective DS ≥0 for ∈ (0, 1) ∩ ℚ with ≠ 1 for all integers ≥ 1, = 1 -1 , and = [-,] ∩ ℤ.

[

 GZ]: Gimbert et al. (), When Can You Play Positionally?

 Figure . : A DBA representing the objective = Büchi() ∪ (*) from Example . . (left), and an arena in which P 2 cannot play optimally with a memoryless strategy (right).

 How Much Memory is Needed to Win Infinite Games? Chromatic versus chaotic memory. About chromatic memory requirements of Muller conditions, we mention a recent work by Casares [Cas] [Cas]: Casares (), On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions that characterizes the chromatic memory requirements of Muller conditions for each individual player, once again through their representations using a specific type of automaton. It uses the Rabin acceptance condition, which subsumes parity acceptance conditions.

 finite one-player graphs, where this player controls all the vertices. Additional related works. The work most related to the present chapter is by Colcombet, Fijalkow, and Horn [CFH ; CFH], and gives a charac-[CFH]: Colcombet et al. (), Playing Safe [CFH]: Colcombet et al. (), Playing Safe, Ten Years Later terization of chaotic memory requirements for general safety objectives.

 Figure . : DFA D recognizing = (+ +) (left), and the smaller prefix-classifier automaton D of objective = GenReach() (right) (objective GenSafe() has the same prefix-classifier automaton). We recall that final states are represented with a double border.

 [CFH] (chaotic and chromatic memoryless [CFH]: Colcombet et al.

 and the Chromatic Memory Requirements of Muller Conditions

Figure . :

 . Figure . : Example . . : DFA D (left) and a minimal memory structure M (right) such that GenReach(L(D)) and GenSafe(L(D)) are M-strongly-monotone.

Figure . :

 . Figure . : Infinitely branching arena in which P 1 needs memory beyond the Mstrong-monotony property in Remark . . .

,Figure . :

 . Figure . : Example . . : DFA D an arena requiring memory for GenReach(L(D)) (center), and a minimal sufficient memory structure (right).

Figure . :

 . Figure .: Arena in which P 1 cannot play optimally with a strategy based on M obtained from the proof of Proposition . . . The arena on the left is used in the general case, and the one on the right is used in the regular case.

Figure .

 Figure . : Summary of the implications that hold and that we conjecture about the memory requirements of general and regular reachability objectives. Everything is equivalent for regular reachability objectives, but only some implications hold for general reachability objectives. Objective is a general reachability objective and M is a memory structure.

 Definition . . (Monotone decomposition) Let D = (, , init , ,) be a (possibly infinite) automaton. We say that the sets Γ 1 , . . . , Γ ⊆ form a monotone decomposition of D if (a) = =1 Γ , (b) for all ∈ , for all ∈ {1, . . . , }, there is ∈ {1, . . . , } such that (Γ ,) ⊆ Γ , and (c) for all ∈ {1, . . . , }, Γ is a chain for .

 in NP. Given an input DFA D = (, , init , ,) and a witness decomposition with ≤ | | sets, we can check whether it forms a monotone decomposition in O(| | 4 • | |).

[

 done in polynomial time for regular languages recognized by deterministic finite automata given as an input. Computing all these relations can be done inO(| | 2 • (| | 2 • | |)) = O(| | 4 • | |) asthere are | | 2 pairs of states to consider, and each containment query can be performed in O(| | 2 • | |). Once all these relations have been precomputed, checking whether each set of the decomposition is a chain can be done in linear time, as a chain is simply a set in which all pairs of elements are comparable. As ≤ | |, the overall time complexity is O(| | 4 • | |).

 in NP. Given an input DFA D = (, , init , ,) and a witness memory structure M = (, init , upd) with | | ≤ | |, we can check whether M suffices to play optimally for GenReach(L(D)) in O(| | 2 • | | 4 • | |). Proof. Let D = (, , init , ,) be a DFA and ∈ ℕ. If ≥ | |, then the answer to M

Question:

 Is there a Hamiltonian cycle in ? Proposition . . M is NP-hard. More precisely, for every graph = (,), there is a polynomial-size DFA D such that has a Hamiltonian cycle if and only if D has a monotone decomposition with | | + | | + 1 sets. Objective GenReach(L(D)) is moreover M triv -progress-consistent.

 a graph = (,) as an input to the H C problem. We show how to transform it in a polynomial-size DFA for which the answer to the M problem (along with a well-chosen ∈ ℕ) corresponds. We illustrate this construction in Figure . . Let = | | and = | |.We assume that ≥ (otherwise, cannot have a Hamiltonian cycle). We also consider the cycle graph with vertices C = (C , C), withC = { C 1 , . . . , C } and C = { C 1 , . . . , C } such that C = (C , C +1) for 1 ≤ < and = (C , C1). We now consider a DFA D = (, Σ, , init ,)

Figure . :

 . Figure . : Illustration of DFA D starting from a graph with four vertices. Only a few transitions of each kind are shown. Kinds of transitions that are not completely represented include: transitions from init to all states ∈ (C ∪ C) ∪ (∪) with letter , self-loops on all states in C ∪ with letters in and out, transitions from all states ∈ (C ∪ C) ∪ (∪) to with letter , transitions from all states in to with letters C with C ∈ C , transitions from all states in to with letters C with C ∈ C , and transitions from all states in (C ∪ C) ∪ (∪) to ⊥ for letters that do not go to . based on the disjoint union Automaton(C) Automaton() along with one new letter for each state and three extra states:

 PySAT [IMM] as an interface to [IMM]: Ignatiev et al. (), PySAT: A Python Toolkit for Prototyping with SAT Oracles SAT solvers.

 : Perrin et al. (), Infinite words -automata, semigroups, logic and games DBA-recognizable objective is doable in polynomial time in the size of the Half-positional objectives recognized by deterministic Büchi automata arena and the DBA (by solving a Büchi game on the product of the arena and the DBA [BCJ]). [BCJ]: Bloem et al. (),

 (a) and (b) for halfpositionality over one-player arenas (for -regular objectives, even over finite one-player arenas) was already shown in Propositions . . and . . . Condition (c) has been studied multiple times in the language-theoretic literature, both for itself and for minimization and learning algorithms[Sta ; LeS ; MS ; AFS ; BL ; AF]

Figure . :

 . Figure . : DBA recognizing the objective Büchi() ∩ Büchi() (left), and an arena in which memoryless strategies do not suffice for P 1 for this objective (right).

 precisely in time O(| | 4 • | | 2).

 Figure . : Infinite oneplayer arena A B of P 1 , with choices from among every non-empty word in ∈ -FreeCycles B ().

Figure . :

 . Figure . : Situation in the proof of Lemma . . , with ≤ ∈ -Free B (max) but ≤ +1 ∉ -Free B (max).

 [∼] of objective on a new set of colors [∼]

 [∼] is DBA-recognizable: we consider the DBA B[∼] = ([∼] ∼ , [∼] , ∼ , ,), whose update function is the restriction of * to [∼] ∼ × [∼] , and = {(,) ∈ [∼] ∼ × [∼] | ∉ -Free B ()}.

 [∼] .By Lemma . . , there exists a set[∼] ⊆ [∼] such that [∼] = Büchi([∼]).We now show links between -free words from states of [∼] ∼ and the words in [∼] . The arguments once again rely on the saturation of B.Lemma . . Let ∈ [∼] . If ∈ [∼] , then for all ∈ [∼] ∼ , ∉ -Free B (). There exists ∈ [∼] ∼ such that, for all ∈ [∼] \ [∼], ∈-Free B ().

AutomataS

 = (, Σ, init ,) automaton structure D = (, Σ, init , ,) deterministic finite automaton (DFA) (can be infinite in a few clearly labeled occurrences in Chapter) B = (, Σ, init , ,) deterministic Büchi automaton (DBA) P = (, Σ, init , ,) language (of finite or infinite words) recognized by an automaton finite or infinite run of an automaton S = (, , init ,) UCol (A, , 1) upward closure for of plays consistent with strategy 1 of P 1 DCol (A, , 2) downward closure for of plays consistent with strategy 2 of P 2 A ⋉ M arena resulting from the product of arena A and memory structure M N = (, , Δ, init ,) non-deterministic finite automaton Δ ⊆ × × transitions of a non-deterministic automaton init ⊆ set of initial states of a non-deterministic automaton ⊆ * set of finite words [] set of infinite words whose prefixes are all prefixes of words in cov set of vertices of an arena prefix-covered and/or cycliccovered by a memory structure set of arenas Notations specific to Chapter ∈ (×) + non-empty path of memory structure M = (, init , upd) (, _) empty path from ∈ of memory structure M col * () ∈ * projection of path to its sequence of colors

 Contents Introduction . Context . Origin of games on graphs . Strategy complexity . Contributions . Characterizing finite-memory determinacy . Precise memory requirements . Reachability objectives and progress . Capturing progress . Understanding memory requirements . Proof via one-to-two-player lift . Stronger lift for regular objectives . The complexity of finding small memory structures Additional proofs and missing technical details . Technical details for general safety objectives . Technical details for regular reachability objectives Technical details for computational complexity Synthesizing small memory structures in practice . Overview . SAT encoding . algorithms that give solid mathematical guarantees on the behavior of systems.

 The cardinality of set is denoted by | |. We denote the empty word by .Two-player turn-based games on graphsand 2 are comparable (resp. are not comparable) for . A preorder is well-founded if every chain for contains a minimal element for . An equivalence relation on is a preorder ∼ ⊆ × that is additionally symmetric (1 ∼ 2 implies 2 ∼ 1 for all 1 , 2 ∈). For ∼ an equivalence relation and ∈ , we write [] ∼ = { ∈ | ∼ } for the equivalence class of for ∼. We write / ∼ for the quotient of by ∼, i.e., the set of equivalence classes for ∼. The index of an equivalence relation is the cardinality of its set of equivalence classes.

	Let be a set. A preorder on (also called a quasiorder) is a binary relation ⊆ × that is reflexive (for all ∈) and transitive (1

 Figure . : Arena (left) and memory structure (right) used in Example . . . In figures, we always use diamonds (i.e., rhombuses) for memory states. The state with the incoming arrow denotes the initial state.

	1	2

context, we sometimes abusively assume that a strategy of P ℓ based on M is this next-action function nxt : ℓ × → .

 Büchi(), Parity(), Muller(F), MP ≥0 , and Büchi() ∩ Büchi(); what matters for these objectives is the behavior "at infinity", and whether a word is winning or not is not impacted by finite prefixes of the word. Such objectives are called prefix-independent. On the other hand, objectives Reach() and * * are not prefix-independent (in both cases, finite words and do not have the same winning continuations).

	Definition . . An objective congruence has a single equivalence class. Equivalently, is prefix-independent ⊆ is prefix-independent if its right if for all ∈ * and ∈ , ∈ if and only if ∈ .	Some authors also use tail or shift-invariant for this prefix-independence notion.

. Finite game graphs .

 . . Characterization of memoryless determinacy Lifting attempts for finite-memory determinacy

. Infinite game graphs .

 be a memory structure. For ℓ

a strategy of P ℓ on A based on M and nxt : ℓ × → its next-action function, we have that ℓ is optimal in G if and only if nxt (seen as a memoryless strategy) is optimal in

 , such that [1] [2]: this means that all words of [1] are losing, and that there exists a winning word in [2]. Note that if [1] is empty, this always holds; we now assume that [1] is non-empty. We study the two possible values of separately.

	Let	∈
		If = as there is a winning word in [2], then there must be a winning p 1 , then and do not see . If does not see either, word in [2]. This word is still winning after prepending to it, so there is a winning word in [2], and [1] [2]. If sees , then [1] cannot have a word seeing . As does not see either, all words of [1] are losing, so [1] [2]. If = p 2 , then and see . Clearly, cannot see (as [1] would contain a winning word). This implies that [2] must contain a word reaching ; as reaches , the concatenation of with the word of [2] reaching means that there is a winning word in [2

p 1 p 1 , ; we show that we necessarily have that [1] [2].

] trivially contains only winning words. If reaches but not , then there must be a word reaching in [(1 ∪ 2) * 3]. Hence, at least one set among [*

	1], [* 2], and * 2], or [3] contains a winning word. A symmetric argument works if [3] must contain a word reaching , so [* 1], [reaches but not .

we distinguish three cases. If reaches both and , then [* 1]∪ [* 2]∪[3

 qualitative objectives, we can reformulate this definition to be about comparing prefixes: the original definition compares continuations with each other by looking at what prefixes make them winning; the following reformulation compares instead prefixes with each other by looking at what continuations make them winning, through the prefix preorder .

	Lemma . . Let memory structure. Objective ⊆ be an objective and M = (, init , upd) be a is M-strongly-monotone if and only if for all ∈ , for all , init , , and are comparable for the prefix ∈ preorder of .
	Proof. We first prove the implication from left to right by contraposition. Let ∈ and , ∈ init , . If and are incomparable for , it means that there are 1 , 2

 Since M p is a prefix-cover of cov in A, there exists p ∈ p such that, for all ∈ Hists(A) such that in() ∈ cov , out() = , and such that for all proper prefix of , out() ≠ , we have * upd (= col Hists(A , , 2) , for ∈ { , }, that is, , the additional superscript being used to highlight that we are considering memory structure M p here. From now on, we assume w.l.o.g. that Equation (.) holds, i.e., that ∀ ∈

								p	contains all
	(projections to colors of) histories consistent with 2 and starting in in subarena A . By M p -monotony, we can deduce that we have
			∀ ∈ or ∀ ∈	p p	p init , p init ,	p , [p] [p]	(.)
	where from	p p init to p init ,	p stands for the usual language of sequences of colors read
								p	p init ,

p init , col * ()) = p . Now, let p p , [p] [p], p p , [p] [p].

). As it turns out, one can go further down: in [BFMM , Theorem], it is shown that an objective [BFMM]: Bianco et al. (), Exploring the boundary of halfpositionality is M triv -selective if and only if for all finite one-player arenas of P 1 ,

	We recall that a strategy based on M triv is exactly a memory-less strategy.

 and [CDGH , Theorem]). Still, we are [CMJ]: Chatterjee et al.

	(Stochastic Games), On Nash Equilibria in [CDGH]: Chatterjee et al. (), Randomness for Free tions [CdH ; Hor]. Trade-offs between memory and randomization [CdH]: Chatterjee et al. not considering here memory requirements: even if no randomization is needed to play optimally, can randomization help decrease memory usage? The answer is yes, and a well-understood case is the one of Muller condi-(), Trading Memory for have also been investigated in other contexts [CRR ; MPR]. There is
	Randomness	
	[Hor]: Horn (), Random
	Fruits on the Zielonka Tree
	[CRR]: Chatterjee et al. (), Strategy synthesis for
	multi-dimensional quantitative
	objectives	
	[MPR]: Monmege et al. (), Reaching Your Goal Op-
	timally by Playing at Random
	with No Memory	

 Characterization of -regularity through finite-memory determinacy function : → {0, . . . , } such that an infinite word = 1 2 . . . ∈ is in if and only if lim sup →∞ () is even.

		[Sta]: Staiger (), Finite-
		State -Languages
	[MS]: Maler et al. (On Syntactic Congruences for), Omega-Languages , which is a helpful This property is often called Recognizability by the prefix classifier. An interesting property of some -regular languages is that they can be recognized by building an acceptance condition on top of their prefix classifier [Sta ; MS] having an informative right con-gruence in the literature. property for the learning of languages [MP ; AFS ; BL ; AF]. Here, [MP]: Maler et al. (), On the Learnability of Infinitary Regular Sets [AFS]: Angluin et al. (), Polynomial Identification of -Automata [BL]: Bohn et al. (), Constructing Deterministic -Automata from Examples by an Extension of the RPNI Algo-for the parity acceptance condition, we have a strategic characterization of this property: Theorem . . entails that can be recognized by building a (transition-based) DPA on top of the prefix classifier S if and only if S suffices to play optimally for both players for (and, more precisely, if and only if is S -cycle-consistent). Existing works trying to find the boundaries of languages recognizable by their prefix classifier consider multiple acceptance conditions [Sta ; MS ; AFS ; AF], but not the "transition-based parity" one, so our result is not directly comparable to theirs.
		rithm
	Corollary . . Let classifier. The following are equivalent: ⊆ be an -regular objective and S be its prefix	[AF]: Angluin et al. (Regular -languages with an in-),
		formative right congruence
	. . S suffices to play optimally for both players; is recognized by a DPA built on top of S ; . is S -cycle-consistent.	
		Tree Automata, Mu-Calculus
		and Determinacy (Extended Ab-
		stract)
		[Mos]: Mostowski (),

[CN]: Colcombet et al. (), On the positional determinacy of edge-labeled games on top of M triv , so we can directly assign a priority to each color with a Proof. Implication . =⇒ . follows from the memoryless determinacy of parity games (Theorem . . [EJ ; Mos]). Implication . =⇒ . follows [EJ]: Emerson et al. (),

 indeed admits no neutral color, and edge-labeled arenas of the kind of Figure . are the typical examples in which a player needs infinite memory for this objective. The existence of a neutral color was also recently used in other works about memory requirements [CO ;

	Ohl]	[CO]: Casares et al. (),
		Characterising memory in infi-
		nite games	
		[Ohl]: Ohlmann (),
		Characterizing Positionality in
		Games of Infinite Duration over
		Infinite Graphs	

 Le Roux et al. (

),
	finite-memory optimal strategies is shown for Boolean combinations of objectives involving regular objectives.	Extending Finite-Memory De-terminacy by Boolean Combina-tion of Winning Conditions
	Implementation. For experimentation purposes, we have implemented algorithms that automatically build a memory structure with a minimal number of states, for both regular reachability and regular safety objectives. The code of the implemen-tation is available at https: //github.com/pvdhove/reg ularMemoryRequirements. Our implementation uses SAT solvers provided by the Python package PySAT [IMM].
		[IMM]: Ignatiev et al. (),
		PySAT: A Python Toolkit for Pro-
		totyping with SAT Oracles

 . . Unlike general reachability objectives, all general safety objectives are M triv -progress-consistent. Here is a proof of this statement. Let ⊆ be a general safety objective. Let 1 , 2 ∈ M triv init , init = * be Example . . : DFA D (left) and memory structure M (right).

	init M suffices to play optimally for P 1 in finite arenas Figure . : The case of regular languages fin , M suffices to play optimally for P 1 (in all arenas) is M-strongly-monotone and M-progress-consistent Theorem . . Holds for regular : Theorem . . Holds for regular : Props. . . and . . Conjecture for general with well-founded: Conjecture . . Props. . . and . .

 , where∈ (1 ∪ 2) and * ∈ Prefs(1 ∪ 2)

	• We assume that GenReach(L(D)), there is a prefix ∈ [(1 ∪ 2) *]. As ∈ * of that is in L(D). ∈ and = We have by definition that ∈ Prefs((1 ∪ 2)

*), i.e., = 1 . . . *

 1

	Figure classifier automaton D . : Top: prefix-where is the general reachability objective from Example . . . In particular, transitions from init and 0 to with color are not represented. Bottom: finitely branching infinite arena in which our proof technique from Theorem . . does not build an optimal strategy.

 Hamiltonian cycle of is a sequence (1 , . . . ,) in which

	NP-hardness. We show that the M reduction from the (directed) H complete [Kar]. In the following, a (directed) graph is a tuple = (,) [Kar]: Karp (problem is NP-hard, using a C problem, which is NP-ducibility Among Combinatorial), Re-Problems with ⊆ × . A Edges in the set denoted are, for this one occasion, not colored.

 Therefore, a monotone decomposition of D has size at least + + 1. We claim that it can have a size of exactly + + 1 if and only if has a Hamiltonian cycle. This suffices to end the proof, since the size of D is polynomial in

	the size of , and H M (D , + + 1) returns Y . C () then returns Y if and only if
	Claim Graph has a Hamiltonian cycle if and only if D has a monotone decomposition with + + 1 sets.

 Various attempts have been made to understand common underlying properties of half-positional objectives and to provide sufficient conditions [Kop ; Kop ; Kop ; BFMM], but little more was known until

			al. (),
			Games Where You Can Play Op-
			timally Without Any Memory	
			[CN]: Colcombet et al. (), On the positional deter-
			minacy of edge-labeled games	
			[KK]: Klarlund et al. (),
			Rabin Measures and Their
			Applications to Fairness and
	and infinite [CN]	graphs.	Automata Theory [Kla]: Klarlund (),
	Progress Measures, Immediate Determinacy, and a Subset Construction for Tree Automata , mean-payoff parity [CHJ], energy par-[CHJ]: Chatterjee et al. Yet, there exist many objectives and combinations thereof for which one player, but not both, has memoryless optimal strategies (e.g., Ra-bin conditions [KK ; Kla] (), Mean-Payoff Parity Games ity [CD], some window objectives [CDRR ; BHR], energy mean-(), Energy parity games [CD]: Chatterjee et al. payoff [BHRR]), and to which these results do not apply.
			[CDRR]: Chatterjee et al. (), Looking at mean-payoff
			and total-payoff through win-
			dows	
			[BHR]: Bruyère et al. (),
			Window parity games: an alter-
			native approach toward parity
			games with time bounds	
			[BHRR]: Bruyère et al. (), Energy Mean-Payoff
			Games	
			[Kop]: Kopczyński (),
			Half-Positional Determinacy of
			Infinite Games	
			[Kop]: Kopczyński (),
			Omega-Regular Half-Positional
			Winning Conditions	
			[Kop]: Kopczyński (),
			Half-positional Determinacy of
			Infinite Games	
			[BFMM]: Bianco et al. (),

Table of notations Graphical conventions

 . . . ∈ + non-empty history of an arena A = (, 1 , 2 ,) empty history from ∈ col * () = col(1) . . . col() ∈ * projection of a history to colorsHists(A)set of histories of arena A Hists ℓ (A) set of histories of A ending in a vertex controlled byP ℓ = 1 2 . . . ∈ play of an arena A = (, 1 , 2 ,) col () = col(1)col(2) . . . ∈projection of a play to colors Hists ℓ (A) → strategy of P ℓ on A = (, 1 , 2 ,) Safe() safety condition with color ∈ to avoid Büchi() Büchi condition with color ∈ to see infinitely often Parity() parity condition on colors = {0, . . . , } Muller(F) Muller condition on F ⊆ 2

	arena vertex controlled by P 1 ; in Chapters and , also the vertex of a graph arena vertex controlled by P 2 automaton or memory state edge (, ,) of an arena A = (, 1 , 2 ,) game arena set of vertices 1 , 2 set of vertices controlled resp. by P 1 , by P 2 sequence of edges or transi-tions labeled with word initial memory or automaton state final state of a DFA Büchi transition of a DBA , ∈ vertices ⊆ × × set of colored edges colored edge = (in(), col(), out()) ∈ = 1 Plays(A) set of plays of arena A • transition of automaton or memory structure with color | transition of a DPA with color and priority Objectives and games
	Common mathematical symbols ℕ set {0, 1, . . .} of natural numbers ℤ objective ⊆ complement \ of objective G = (A,) game Reach() reachability condition with target color ∈ set of integers ℚ set of rational numbers ℝ set of real numbers ∅ empty set * set of finite sequences of elements of + set of non-empty finite sequences of elements of set of infinite sequences of elements of | | cardinality of empty word , , finite or infinite words MP ≥0 set of infinite words of rational numbers with non-negative mean payoff -1 winning continuations of ∈ * for prefix preorder of (subscript often omitted) ≺ strict prefix preorder of (subscript often omitted) ∼ right congruence of (subscript often omitted) disjoint union preorder Γ Memory structures chain for a preorder ∼ equivalence relation [] ∼ equivalence class of for equivalence relation ∼ / ∼ quotient of by equivalence relation ∼ • ceiling function • floor function O(•) big O notation Arenas non-empty set of colors , , ∈ P 1 , P 2 ℓ index of a player (in {1, 2}) Player , Player colors M = (, init , upd) memory structure on set of memory states ∈ memory state init ∈ initial memory state upd : × → memory update function * upd : extended memory update function × * → M triv trivial memory structure (with = { init }) M 1 ⊗ M 2 direct product of M 1 and M 2 1 , 2 finite words read from 1 to 2 in M

ℓ :

nxt : ℓ × → next-action function of P ℓ

Notations specific to Chapter

 cycles on the memory state reached by in M that induce winning words when repeated after , and . . .Φwin , Φ lose winning, losing cycles on M (under hypotheses on M) val() value of a cycle (win or lose) (under hypotheses on M) cycle witnessing the competition of two cycles comp(), domBy() cycles competing with , cycles dominated by , preorder on cycles, equivalence relation on cycles

	st() ⊆ "(,) ∈ , ∈ (×) + Π 1 , 2 Φ Φ M Φ win, M	set of memory states visited by transition (,) ∈ × is part of path cycles of memory structure M set of paths from 1 to 2 , with 1 , 2 ∈ cycles on ∈ all cycles of M
	Φ lose, M	. . . their losing counterparts
	Notations specific to Chapter	
	GenReach() GenSafe() Γ D D rank() A , A , |L(D) = (,) ⊆ × C = (C , C)	general reachability objective derived from ⊆ * general safety objective derived from ⊆ * set of states of D reachable using a finite word also reaching memory state prefix-classifier automaton of a general reachability or safety objective ordinal rank of node in a well-founded tree tree induced by strategy on A from same, but with branches cut below nodes in L(D) graph non-colored edges cycle graph with vertices
	Büchi() B(,) -Free B () -FreeCycles B () , , U -→	Büchi condition with colors in often finite or infinite run of DBA B on from ⊆ to see infinitely -free words of B from -free cycles of B on ordinals cardinal universal graph edge (, ,) of a graph graph morphism

(Figure .). Now, establishing the M-selectivity of boils down to invoking an optimal strategy in the corresponding game, the crux being that this strategy always picks the same edge in (i.e., the same side between subarenas corresponding to [* 1], [* 2] and [3]) as all cycles on are deemed equivalent by the memory structure M. The main difference with the previous construction appears in the last sentence: it is now possible to come back to , possibly infinitely often, and our proof takes that into account.

= 1 ,

= 2 , and⊆ . That is, arena A is a subarena of A if it

. Notice that is also M-prefix-independent. With regard to memory

Acknowledgments

I am, first and foremost, deeply thankful to my supervisors, Patricia Bouyer and Mickael Randour. Working with just one of you would already have been fantastic, so I cannot overstate how lucky I am to work with the combination of you two. Thank you for your time, your guidance, and your advice.

is an F.R.S.-FNRS Research Fellow in the FrontieRS project, supervised by Patricia Bouyer (LMF) and Mickael Randour (F.R.S.-FNRS & Université de Mons). M. Randour is an F.R.S.-FNRS Research Associate and a member of the TRAIL institute. Contributions in parts of this document were partially funded by other sources: Chapter was supported by F.R.S.-FNRS under Grant n • F. . (ManySynth), F.R.S.-FNRS mobility funding for scientific missions (Y. Oualhadj in UMONS,), and ENS Paris-Saclay visiting professorship (M. Randour,

). Chapters , , and were supported by the ANR Project MAVeriQ (ANR--CE -).

2

. . Combining cycles on the same memory state

We first prove that "shifting" the start of a cycle does not alter its value.

Lemma . . (Shift independence) Let 1 , 2 ∈ be two states of M. Let 1 ∈ Π 1 , 2 and 2 ∈ Π 2 , 1 ; 1 2 is a cycle on 1 and 2 1 is a cycle on 2 . Then, val(1 2) = val(2 1).

Proof. For all 1 ∈ col * (Π 1 , 2) and 2 ∈ , notice that

The third equivalence is due to the fact that 1 is in col * (Π init , 2) for the left-to-right implication, and to M-prefix-independence for the right-toleft implication; if there exists ∈ col * (Π init , 2) such that 2 ∈ () -1 , then the same is true for any word in col * (Π init , 2).

Going back to the statement of the lemma, we have that

1 as (col * (1 2)) = col * (1)(col * (2 1))

⇐⇒ (col * (2 1)) ∈ -1 2 by the above property as col * (1) ∈ col * (Π 1 , 2)

⇐⇒ 2 1 ∈ Φ win 2 .

Hence, the values of 1 2 and 2 1 always coincide.

In particular, this result implies that swapping two cycles on the same memory state does not alter the value: if , ∈ Φ , then val() =

val(

).

The next two lemmas are used to show that although cycles of M that are taken infinitely often might have an impact on the result of a play, their relative number of repetitions is not relevant (i.e., val() = val(()) for any , ≥ 1). These two proofs and statements are very close to [CN , Lemmas , , and] and are a direct generalization to a larger class of [CN]: Colcombet et al.

(

), On the positional determinacy of edge-labeled games objectives.

Lemma . . Let ∈ . Let Λ, Λ ⊆ Φ be non-empty sets of cycles on .

We have

Characterization of -regularity through finite-memory determinacy

This lemma says that if all cycles from Λ can be made winning by adjoining them a cycle from Λ, then we can actually find a single cycle from Λ that makes all cycles from Λ winning.

Proof. We assume the premise of the implication, and by contradiction, we assume that the conclusion is false. We therefore assume that ∀ ∈ Λ , ∃ ∈ Λ, ∈ Φ win and ∀ ∈ Λ, ∃ ∈ Λ , ∈ Φ lose .

Let 1 be any word in Λ. We build inductively an infinite sequence starting with 1 by alternating the use of the two assumptions. For ≥ 1, we take ∈ Λ such that ∈ Φ lose (using the second assumption), and we then take +1 ∈ Λ such that +1 ∈ Φ win (using the first assumption).

We consider the infinite sequence 1 1 2 2 3 . . . ∈ (×) such that for all ≥ 1, ∈ Φ lose and +1 ∈ Φ win (we use that the order of cycles on does not matter, shown in Lemma . .). We show that the infinite word col (1 1 2 2 . . .) is both in -1 and in -1 by pairing cycles in two different ways: the infinite sequence (1 1)(2 2) . . . is a sequence of losing cycles on and its projection to colors is therefore in -1 by using M-cycle-consistency. the infinite word col (1 (1 2)(2 3) . . .) is in -1 if and only if col ((1 2)(2 3) . . .) is in -1 by using that 1 ∈ Φ and M-prefix-independence of . The sequence (1 2)(2 3) . . . is a sequence of winning cycles on and its projection to colors is in -1

by using M-cycle-consistency.

As -1 ∩ -1 = ∅, we have our contradiction.

Lemma . . (Repetition independence) Let ∈ . Let , ∈ Φ such that ∈ Φ win . We have () + ⊆ Φ win .

Proof. We have that or is in Φ win -otherwise, would be in Φ lose by M-cycle-consistency. If is in Φ win , we notice that any element of () + can be written as ()() for some ≥ 0, which is a combination of winning cycles on . Using M-cycle-consistency, we thus get that () + ⊆ Φ win .

It is left to deal with the case ∈ Φ win and ∈ Φ lose . We first show by induction that for ≥ 1, () ∈ Φ win . This is true by hypothesis for = 1. We now assume it is true for some ≥ 1, and we show it is true for + 1. By Lemma . . , we have that +1 () +1 ∈ Φ win if and only if () +1 = (())() ∈ Φ win , by swapping the order of and () +1 . By induction hypothesis, () ∈ Φ win ; by hypothesis and by Lemma . . , ∈ Φ win . Therefore, by M-cycle-consistency, (())(

) is also in Φ win .

Characterization of -regularity through finite-memory determinacy

We now define Λ = + and Λ = () + . We have that for all elements () of Λ (with ≥ 1), we have that (an element of Λ) is such that () ∈ Φ win . Therefore the hypothesis of Lemma . . is satisfied for Λ and Λ , which implies that there exists ≥ 1 such that () + ⊆ Φ win . We assume w.l.o.g. that = min{ ∈ ℕ | () + ⊆ Φ win }. For all ∈ ℕ such that ≥ , we also have that () + = -(() +) ⊆ Φ win by M-cycle-consistency. We intend to show that = 1, which would end the proof of the lemma as this would show that 1 () + = () + ⊆ Φ win .

We assume by contradiction that > 1. Then there must exist ∈ ℕ such that -1 () ∈ Φ lose . We also have that () -1 is in Φ lose by Lemma . . , which implies that -1 () () -1 is also in Φ lose by Mcycle-consistency. But then by Lemma . . , this cycle has the same value as 2 -2 () 2 , which must therefore be in Φ lose . This is a contradiction since > 1 implies that 2 -2 ≥ .

We conclude that () + ⊆ Φ win .

Thanks to this result, we can now show that any two consecutive cycles on the same memory state can always be swapped without altering the value of a longer cycle.

Corollary . . (Cycle-order independence) Let

Proof. We assume by contradiction that cycles 1 2 3 and 1 3 2 have a different value; w.l.o.g., that 1 2 3 ∈ Φ win and that 1 3 2 ∈ Φ lose . By M-cycle-consistency, at least one cycle among 1 , 2 and 3 is winning and one is losing. We assume w.l.o.g. that 1 ∈ Φ win and 2 ∈ Φ lose . We also assume that 3 ∈ Φ win ; the other case can be dealt with by symmetry. Notice that we necessarily have that 3 2 is in Φ lose ; otherwise, 1 3 2 = 1 (3 2) would be in Φ win by M-cycle-consistency. For the same reason, 2 1 is in Φ lose . We have win = val(1 2 3) by hypothesis However, this last cycle can be written as a combination of two losing cycles

(2 3) and (1 2), and should therefore be losing by M-cycle-consistency. This is a contradiction.

Lemma . . (Crossing-point independence) Let 1 , 2 ∈ be two states of M. Let 1 , 1 ∈ Π 1 , 2 and 2 , 2 ∈ Π 2 , 1 . We have that val(1 2 1 2) = val(2 1 2 1).

The intuition of this lemma is that if we take two cycles (in the statement, 1 2 and 1 2) that have two common states (1 and 2), the chosen starting state to combine the two cycles (the combination is (1 2)(1 2) if 1 is chosen, and (2 1)(2 1) if 2 is chosen) has no impact on the value of the combination. This situation is depicted in Figure . (right).

Proof of Lemma . . . If 1 2 and 1 2 are both in Φ win 1 or both in Φ lose 1 , then 2 1 and 2 1 are also respectively both in Φ win 2 or both in Φ lose 2 by Lemma . . . Therefore, we have our result using M-cycle-consistency.

For the remaining cases, we assume w.l.o.g. that 1 2 ∈ Φ win 1 and 1 2 ∈ Φ lose 2 . We will assume (again w.l.o.g.) that combining them is winning, i.e., that 1 2 1 2 ∈ Φ win 1 . Our goal is to show that 2 1 2 1 is also in Φ win 2 . We assume by contradiction that it is not, i.e., that 2 1 2 1 ∈ Φ lose 2 . Observe that as 1 2 1 2 ∈ Φ win 1 , we also have (2 1)(2 1) ∈ Φ win 2 by Lemma . . . Hence, at least one of 2 1 and 2 1 must be a winning cycle on 2 , otherwise their combination would be losing on 2 by Mcycle-consistency. Equivalently, by Lemma . . , at least one of 1 2 and 1 2 must be a winning cycle on 1 .

Similarly, as 2 1 2 1 is in Φ lose 2 , we have that (1 2)(1 2) is in Φ lose 1 . Hence, at least one of 1 2 and 1 2 is a losing cycle on 1 by M-cycleconsistency.

Our conclusions imply that exactly one of 1 2 and 1 2 is winning on 1 , and exactly one is losing on 1 . Without loss of generality, we assume that 1 2 ∈ Φ win 1 and 1 2 ∈ Φ lose 1 . We now have a value for all four two-word cycles on 1 (and therefore for all four two-word cycles on 2 by Lemma . .): 1 2 and 1 2 are in Φ win 1 , and 1 2 and 1 2 are in Φ lose 1 . If we look at four-word cycles, we have already assumed w.l.o.g. that 1 2 1 2 ∈ Φ win 1 and that 1 2 1 2 ∈ Φ lose 1 . We still do not know whether 1 2 1 2 and 1 2 1 2 are winning or losing -no matter how we express them as two two-word cycles, one two-word cycle is winning and the other one is losing. We study the value of these two four-word cycles.

Consider the cycle (2 1 2 1)(2 1 2 1) on 2 . It is winning, since 2 1 2 1 and 2 1 2 1 are both in Φ win 2 : this can be shown using Lemma . . and the fact that 1 2 1 2 is in Φ win 1 . Therefore, by shifting the start of the cycle, (1 2 1 2)(1 2 1 2) is in Φ win 1 . By M-cycleconsistency, this means that at least one of 1 2 1 2 (equivalently, 1 2 1 2) and 1 2 1 2 is winning on 1 .

. Applications

We provide a thorough application of our concepts to a discounted-sum objective. We then discuss more briefly mean-payoff and total-payoff objectives.

. . Discounted sum

We apply our results to a discounted-sum objective in order to illustrate our notions. A specificity of this example is that its -regularity depends on some chosen parameters -we use our results to characterize the parameters for which it is -regular or, equivalently (Theorem . .), chromatic-finite-memory-determined. The -regularity of discountedsum objectives has also been studied in [CDH ; BCV] In this first part, we strive to illustrate as well as possible the notions and theorems from this chapter. We therefore defer more numerical and elementary proofs to Subsection . . . Let ⊆ ℚ be non-empty and bounded. For ∈ (0, 1) ∩ ℚ, we define the discounted-sum function DS :

This function is always well-defined for a bounded , and takes values We remind the reader that for ∈ (0, 1),

We define the objective DS ≥0 = { ∈ | DS () ≥ 0} as the set of infinite words having a non-negative discounted sum, and let ∼ be its right congruence. We will analyze cycle-consistency and prefix-independence of DS ≥0 to conclude under which conditions (on and) it is chromaticfinite-memory-determined. First, we discuss a few properties of the discounted-sum function.

Basic properties. We extend function DS to finite words in a natural way: for ∈ * , we define DS () = DS (0). For ∈ * , we define | | as the length of (so ∈ | |). First, we notice that for ∈ * and ∈ , we have

Therefore,

≥ -DS ().

Characterization of -regularity through finite-memory determinacy

This provides a characterization of the winning continuations of a finite word ∈ * by comparing the discounted sum of the continuations to the value

DS ()

| | . This leads us to define the gap of a finite word ∈ * , following ideas in [BHO], as

The Target Discounted-Sum Problem

Intuitively, the gap of a finite word ∈ * represents how far its discounted sum is from going back to 0: if ∈ is such that DS () = -gap(), then DS () = 0. We can see that for all words ∈ * , if gap() = , then all continuations are winning (i.e., -1 =) as it is not possible to find an infinite word with a discounted sum less than inf 1-. Similarly, if gap() = ⊥, then all continuations are losing (i.e., -1 = ∅).

Cycle-consistency. We can show that objective DS ≥0 is always M trivcycle-consistent.

Proposition . . For all bounded

Proof. Let ∈ * . We show that (col * (Φ lose, M triv)) ⊆ -1 DS ≥0 -we discuss how to adapt the proof to show that (col * (Φ win, M triv)) ⊆ -1 DS ≥0 at the end. Let 1 , 2 , . . . ∈ col * (Φ lose, M triv). We want to show that 1 2 . . . ∈ DS ≥0 , i.e., that DS (1 2 . . .) < 0.

For ≥ 1, as ∈ Φ lose, M triv , we have DS () < 0. Since, moreover,

In particular, for = 1, there exists > 0 such that

The case of regular languages

We focus in this chapter on some of the simplest possible objectives: those that can be expressed with regular languages of finite words -thus, with deterministic finite automata. For such an objective, the goal of P 1 is that, eventually, a sequence of colors along the play belongs to a fixed regular language. Although these games are easy to solve, determining minimal memory structures to play optimally is not trivial. We obtain characterizations of the chromatic memory requirements for such objectives for both players, from which we derive complexity-theoretic statements: deciding whether there exist small memory structures sufficient to play optimally is NP-complete for both players. We also discuss a slight generalization of We assume that the reader is familiar with the complexity classes P and NP. We refer to book [Pap , Part III] [Pap]: Papadimitriou (

), Computational complexity for an introduction to these concepts. these objectives to topologically open and topologically closed objectives, which can be seen as objectives expressible using deterministic infinite automata.

This chapter is also an opportunity to apply the one-to-two-player lift from Chapter to a concrete class of objectives and to shed new light on the M-monotony notion.

. Additional proofs and missing technical details

We dedicate this section to the complete proofs of results from Chapter whose proofs were omitted.

. . Technical details for general safety objectives

We prove here the characterization of the memory requirements of general safety objectives through M-strong-monotony discussed in Section . . We restate and prove Theorem . . . Theorem . . (Characterization for safety) Let ⊆ be a general safety objective and M be a memory structure.

. If the prefix preorder of is well-founded (in particular, if is regular), then M suffices to play optimally for P 1 if and only if is M-strongly-monotone.

. In the general case, M suffices to play optimally for P 1 in all finitely branching arenas if and only if is M-strongly-monotone.

The case of regular languages

Proof. Let D = (, , init , ,) be the (possibly infinite) prefix-classifier automaton of , and let M = (, init , upd) be a (possibly infinite) This is the only place where, for generality, we allow memory structures with an infinite state space, as it works with no additional arguments.

memory structure.

The necessity of M-strong-monotony (in both cases) was proved in Proposition . . . We now prove the sufficiency of M-strong-monotony.

We assume that is M-strongly-monotone. We write w.l.o.g. = { fin }. Let A = (, 1 , 2 ,) be an arena. As per the hypotheses, we require that is well-founded or that A is finitely branching.

We want to build a strategy based on M and optimal for P 1 in A. The key to the proof is to understand the following sets of states of D in order to know what to play in each pair (,) ∈ 1 × . For ∈ , ∈ , we define , = { ∈ Γ | P 1 has a winning strategy for -1 from }.

States in

, are states of D that could be reached while the memory state is , by definition of Γ . Notice that fin ∉

, for all and , as P 1 cannot win for objective -1 fin = ∅. The M-strong-monotony hypothesis We recall that notation Γ was defined in Section . on page .

tells us that each Γ is a chain for (Lemma . .), so each , is too.

We define a strategy : 1 × → of P 1 based on memory M. Let ∈ 1 , ∈ . We distinguish three cases.

If

, is empty, then it means that the game has reached a situation where it cannot be won anymore, so (,) is chosen arbitrarily.

Otherwise, if

, has a minimum , for , then this minimum represents the worst (for) state of Γ for which P 1 still has a winning strategy. To play "safely", we play as if we wanted to win for this worst state. By definition of , , there is a strategy , winning for P 1 for -1 , from . We define (,) = , (). We recall that is the empty history starting in .

Note that when

, is non-empty, it always has a minimum if is well-founded.

If

, is not empty and has no minimum, is not well-founded; we fall in this case under the hypothesis that A is finitely branching. For ∈ , , let

be the set of outgoing edges of that are taken immediately by at least one strategy winning for -1 from . We make three observations on sets , .

• For ∈ , , set , is non-empty as P 1 has a winning strategy for -1 from .

• For ∈

, , set , is finite as has finitely many outgoing edges.

• For , ∈ , , if , then , ⊆ , as every strategy winning for -1 is winning for () -1 .

The case of regular languages

As sets , are non-empty, finite, and non-decreasing (w.r.t.), this means that the intersection ∈ , , is non-empty. Let ∈ ∈ , , ; we define (,) = . We have now defined ; we show that it is optimal. Let 0 ∈ be such that P 1 has a winning strategy for objective from 0 . Let = 1 2 . . . ∈ be a play consistent with from 0 , and = col (). We write = 1 2 . . . and we show that ∈ . As is a general safety objective, this amounts to showing that for every finite prefix = 1 . . . of , * (init ,) ≠ fin . For ≥ 0, let = * (init ,), = (-1 , ,), and = * upd (init ,). We show by induction on that for all ≥ 0, ∈ , . This suffices to prove the claim, as fin ∉ , for all ≥ 0. For = 0, we have = , so 0 = * upd (init ,) = init and 0 = * (init ,) = init . By definition, we have init ∈ Γ init . As P 1 has a winning strategy for = -1 init from 0 by hypothesis, we have that 0 ∈ 0 , 0 . We now assume that ∈ , for some ≥ 0. As ∈ Γ , we have that

, it is left to show that there is a winning strategy for -1 +1 from +1 . We know that , is not empty, and we distinguish three cases.

If ∈ 2 , then since P 1 has a strategy winning for -1 from , P 1 must be able to win no matter the choice of P 2 in . Hence, P 1 has a winning strategy from

, , then +1 is consistent with a strategy , winning for -1 , from . This strategy also wins for -1 , as , . Thus, there must also be a strategy winning for (, +1) -1 = -1 +1 from +1 . If ∈ 1 and , has no minimum, then as ∈ , , there is in particular a winning strategy for -1 from that takes edge (,) = (, +1 , +1). Thus, P 1 has a strategy winning for (, +1) -1 = -1 +1 from +1 .

. . Technical details for regular reachability objectives

In this section, we prove Theorem . . discussed in Section . , which characterizes the memory requirements of regular reachability objectives.

In order to prove this characterization, we start with extra preliminaries on the notion of tree induced by a strategy, and a classical way to define a notion of height for these trees.

Let D be a (possibly infinite) automaton and = GenReach(L(D)) be the induced reachability objective. Let A = (, 1 , 2 ,) be a (possibly infinite) arena. For ∈ and a strategy of P 1 on A, we define A , to be the tree induced by from , whose nodes are all the histories from consistent with . It can be built by induction: it contains as a root the empty history from ; if is a history in A , , then , '3', '4', '6', '8', '9 , '3', '5', '6', '7', '9'] may not yield the exact same monotone decomposition.

. . SAT encoding

Let D = (, , init , ,) be a DFA and ≥ 1. We assume w.l.o.g. that = { fin }. To encode M -S as a propositional formula, we use the reformulation into monotone decompositions provided by Lemma . . . We consider the family of variables (,) ∈ ,1≤ ≤ ; the meaning of , is intended to be "state is in set Γ of the decomposition". The three requirements of monotone decompositions (Definition . .) can then be encoded respectively as the following propositional formulas:

1≤ ≤ , ∈ 2 incomparable for (¬ , ∨ ¬ ,).

The case of regular languages

From a satisfying valuation of variables (,) , , we can then recover a sufficient memory structure M by exploiting the proof of Lemma . . .

To encode M -R , we store explicitly the structure of a memory structure with states with propositional variables. This construction is inspired from a similar encoding to minimize deterministic Büchi automata [BD]. We fix = { 1 , . . . , } as the states of a possible [BD]: Baarir et al. (

),

Mechanizing the Minimization of Deterministic Generalized Büchi Automata

memory structure M = (, init , upd), and we fix arbitrarily init = 1 . We define a family of variables (, ,) 1≤ , ≤ , ∈ meaning that there is a transition upd (,) = in M. We require that M is complete:

We do not have to enforce determinism: if a non-deterministic valuation is found, any deterministic and complete "substructure" will be a good memory structure.

We then use the NP-reformulation of M-progress-consistency from Lemma . . ; we want to know which paths are possible in the triple product involving M and two copies of D. To do so, we create a family of variables

These constraints can be encoded with the four following formulas (explained in more detail below):

(, , , , , ∧ , , =⇒ , , (,), (,), (,), (,));

1≤ ≤ , ∈ (, , , , , ∧ , , , , , =⇒ , , , , ,);

The first formula simply defines the initial state in the product. The second one computes the reachable states of the product between M and D, i.e., couples (,) such that init , ∩ init , ≠ ∅ (this would be doable with variables with only two indices and). The third one extends it to all triplets (, ,) such that init , ∩ init , ≠ ∅ and init , ∩ init , ≠ ∅.

The fourth one augments the paths in the triple product: if there is already a word from to , from 1 to 2 , and from 3 to 4 , then for all colors , if upd (,) = , word goes from to , from 1 to (2 ,), and from 3 to upd (4 ,).

With these variables, we can then encode the constraint of Lemma . . , which is equivalent to M-progress-consistency:

The case of regular languages

This only deals with M-progress-consistency; to enforce M-strongmonotony at the same time, notice that , , , , , has the same meaning as , above. We can simply add the three constraints already discussed for regular safety objectives to our formula. As variables , , encode the transitions of a memory structure, it is straightforward to recover a memory structure from a satisfying valuation. These formulas are not all in conjunctive normal form, which is usually required by SAT solvers; they can be converted into such formulas using the Tseitin transform [Tse], which increases the number of variables [Tse]: Tseitin (), On the complexity of derivation in propositional calculus and clauses polynomially -details about this transformation are straightforward and are documented in the source code. These formulas in conjunctive normal form contain in the end, if is the number of states of the input DFA: for M -S ,

Most clauses have size 2 or 3, and a small amount of clauses have size in both cases.

. Wrap-up

We have characterized the minimal memory structures sufficient to play optimally for regular reachability and safety objectives, a simple class of -regular objectives. Some of our results apply more generally to general reachability and safety objectives (usually called topologically open and topologically closed objectives), which are the objectives at the first level of the Borel hierarchy. Throughout our characterizations, we were able to prove that decision problems related to finding minimal memory structures for regular objectives are NP-complete. Our characterizations were encoded into a SAT solver that automatically generates minimal memory structures for both players given a DFA as an input.

This chapter can be seen as one step toward understanding more generally the memory requirements of all -regular objectives, as well as synthesizing minimal memory structures for them. The chaotic memory requirements of regular reachability objectives are still unknown (as opposed to the ones of regular safety objectives [CFH ; CFH]), as well In the next chapter, we move on to a more general class of -regular objectives, at the expense of only giving a complete understanding of half-positionality, and not of full memory requirements.

Half-positional objectives recognized by deterministic Büchi automata

In this chapter, we focus on half-positionality, i.e., the property of an objective for which the first player does not need memory to implement winning strategies. Even though there are characterizations of objectives that admit memoryless optimal strategies for both players (see Chapter), focusing on just one player appears to be a more difficult question. Chapter gave us, as a special case, a complete understanding of half-positionality for regular objectives, a simple class of -regular objectives. In order to get closer to the whole class of -regular objectives, we consider a class of objectives one step further.

We characterize objectives recognizable by deterministic Büchi automata (a class of -regular objectives strictly encompassing the regular objectives from the previous chapter) that are half-positional, both over finite and infinite graphs. Our characterization consists of three natural conditions linked to the language-theoretic right congruence. Furthermore, this characterization yields a polynomial-time algorithm to decide half-positionality of an objective recognized by a given deterministic Büchi automaton.

Compared to Chapter , we therefore deal with a larger class of objectives, but give a complete understanding of a more restricted class of strategies. To understand half-positionality, we will revisit in particular the necessary M triv -strong-monotony and the M triv -progress-consistency properties introduced in the previous chapter, but we will also need additional properties. We say that B = (, , init , ,) is saturated if for every , the automaton obtained by replacing with does not recognize L(B).

A -free component of B is a strongly connected component of the graph obtained by removing the Büchi transitions from B. Formally, let Δ noB = {(, , (,)) ∈ × × | (,) ∉ }; a -free component is a strongly connected component of the graph (, Δ noB).

Example . . In Figure . (left), we show a DBA with a single -free component consisting of state init and transition (init ,). It turns out that we can make any transition not in a -free component into a Büchi transition without changing the language recognized by the automaton (as illustrated with the saturated automaton in Figure . , right). Let us consider transition (,): the intuition is that it is not possible to see this transition infinitely often without seeing the Büchi transition (init ,) infinitely often. Hence, we might as well make (,) a Büchi transition, and it does not change which runs are accepted.

We generalize the reasoning used in this example.

Lemma . . Let B = (, , init , ,) be a DBA. There is a unique set sat ⊆ × such that the DBA B sat = (, , init , , sat) satisfies that:

. L(B sat) = L(B);

. B sat is saturated.

Moreover, sat is the set of transitions not appearing in any -free component of B, and it can be computed in time

Half-positional objectives recognized by deterministic Büchi automata Proof. We first prove the existence of such a sat . Let Δ freeComp ⊆ × × be the set of transitions appearing in a -free component of B (it is a For convenience, the word transition sometimes refers to an element of × and sometimes to an element of × × . This is justified as we deal with complete deterministic automata, for which an element of × uniquely determines a third component in .

subset of Δ noB). We consider the automaton B sat whose Büchi transitions are those that do not appear in any -free component, that is, we let

For the other inclusion, let ∉ L(B). There are 0 ∈ * , ∈ such that = 0 and the infinite run B(0 ,) produced by reading from 0 = * (init , 0) does not visit any Büchi transition. In particular, the infinite run B(0 ,) is an infinite path in the finite graph (, Δ safe). This implies that eventually, run B(0 ,) reaches and stays in the same strongly connected component of graph (, Δ safe). Formally, there are 1 ∈ * and 2 ∈ such that = 1 2 and the infinite run B(1 , 2) produced by reading 2 from 1 = * (0 , 1) lies entirely in some -free component. Thus, all transitions in B(1 , 2) are in Δ freeComp and do not induce transitions in sat . Therefore, B sat (init ,) is also a rejecting run, and ∉ L(B sat).

We prove that B sat is saturated and the uniqueness of sat at the same time. Let be another set of transitions such that sat and let B be the automaton obtained by replacing sat with in B sat . Let (,) ∈ \ sat . Since (,) ∉ sat , transition (,) is in a -free component. We can therefore consider a word ∈ -FreeCycles B sat () that is a -free cycle from and that uses the transition (,). Let 0 ∈ * such that * (init , 0) = . Then, 0 ∉ L(B sat), whereas 0 ∈ L(B), so B does not recognize the same objective as B sat .

When is finite, the set of transitions B sat can be computed in time

, as it consists of decomposing a graph with vertices and at most | | • | | edges into strongly connected components [Tar].

[Tar]: Tarjan (), Depth-

First Search and Linear Graph Algorithms

The following simple lemma follows, which holds in saturated DBAs: every word that is a -free word from a state can be completed into a -free cycle from the same state. This is a key technical lemma used many times in the upcoming proofs.

Lemma . . Let B = (, , init , ,) be a saturated DBA. Let ∈ and ∈ -Free B (). There exists ∈ * such that ∈ -FreeCycles B ().

Proof. Let = * (,). Thanks to the saturation property and by Lemma . . , contains all transitions that do not belong to a -free component. This implies that any two states connected by a -free run are in the same -free component. In particular, as is reachable from through a -free run, must belong to the same -free component as .

Half-positional objectives recognized by deterministic Büchi automata

Therefore, there exists a -free run from to . Taking the word ∈ * labeling this run, we obtain the desired result.

. Half-positionality of DBA-recognizable objectives

In this section, we present our main contribution in Theorem . . , by giving three conditions that exactly characterize half-positional DBArecognizable objectives. These conditions are presented in Subsection . . . Theorem . . and several consequences of it are stated in Subsection . . (the proof of Theorem . . is postponed to Sections . and .). In Subsection . . , we use this characterization to show that we can decide the half-positionality of a DBA in polynomial time.

. . Three conditions for half-positionality

We define the three conditions of objectives at the core of our characterization.

Condition (Total prefix preorder)

We say that an objective ⊆ has a total prefix preorder if for all 1 , 2 ∈ * , 1 2 or 2 1 .

For an objective , having a total prefix preorder is equivalent to being M trivstrongly-monotone (Section .): all finite words must be comparable for the prefix preorder of , which, for M triv = ({ init }, init , upd), is equivalent to requiring that all words in init , init = * are comparable for . This implies (Lemma . .) that having a total prefix preorder is "symmetric": an objective has a total prefix preorder if and only if its complement has a total prefix preorder too.

Example . . (Non-total prefix preorder) We have already seen multiple objectives that do not have a total prefix preorder (for instance, objective = Reach() ∩ Reach() studied in Subsection . .). We give another example of a DBA-recognizable objective that will satisfy the other two properties of the characterization. Let = { , }. We consider the objective recognized by the DBA B depicted in Figure . (left). It consists of the infinite words starting with or . This objective does not have a total prefix preorder: words and are incomparable for . Indeed, is winning after but not after , and is winning after but not after . In terms of automaton states, we have that and are incomparable for B . This objective is not half-positional, as witnessed by the arena on the right of Figure . . In this arena, P 1 is able to win when the game starts in 1 by playing in 3 , and when the game starts in 2 by playing . However, no memoryless strategy wins from both 1 and 2 . (left), and an arena in which memoryless strategies do not suffice for P 1 for this objective (right).

Half-positional objectives recognized by deterministic Büchi automata

A straightforward result for an objective recognized by a DBA B is that it has a total prefix preorder if and only if the (reachable) states of B are totally ordered for B .

The second condition is the specialization of M-progress-consistency (Section .) to the case M = M triv . We rewrite it explicitly here for clarity.

Condition

(M triv -progress-consistency) An objective is M trivprogress-consistent if and only if for all 1 ∈ * and 2 ∈ + such that 1 ≺ 1 2 , we have 1 (2) ∈ .

Intuitively, this means that whenever a word 2 can be used to make progress after seeing a word 1 (in the sense of getting to a position in which more continuations are winning), then repeating this word has to be winning.

Example . . (Non-M

We consider the objective = * recognized by the DBA with three states in Figure . (left). This objective contains the words seeing, at some point, twice the color in a row. Notice that the prefix preorder of this objective is total (init ≺ ≺). This objective is not M trivprogress-consistent: we have ≺ , but () ∉ . This objective is not half-positional: if P 1 plays in an arena with a choice among two cycles and depicted in Figure . (right), it is possible to win by playing and then , but a memoryless strategy can only achieve words () or () , which are both losing. and-1 = . This objective is M triv -progress-consistent: any word reaching is straightforwardly accepted when repeated infinitely often, and any word such that * (init ,) = necessarily contains at least one , and thus is accepted when repeated infinitely often. Objective is half-positional, which will be readily shown with our upcoming characterization (Theorem . .). Here, notice that the complement of is not M triv -progressconsistent. Indeed, ≺ (), but () ∉ . Unlike having a total prefix preorder, M triv -progress-consistency can hold for an objective but not its complement. Note that half-positionality of cannot be shown using existing halfpositionality criteria [Kop ; BFMM]

[Kop]: Kopczyński (),

Half-Positional Determinacy of Infinite Games

Exploring the boundary of halfpositionality

(it is neither prefix-independent nor concave) or memoryless-determinacy criteria, as it is simply not memoryless-determined.

The third condition is the novelty of this chapter.

Condition (Recognizability by the prefix classifier) Being recognized by a Büchi automaton built on top of the prefix classifier is our third condition. In other words, for a DBA-recognizable objective ⊆ and its prefix classifier S = (, , init ,), this condition requires that there exists ∼ ⊆ × such that is recognized by DBA (, , init , , ∼).

We show an example of a DBA-recognizable objective satisfying the first two conditions (total prefix preorder and M triv -progress-consistency), but not this third condition, and which is not half-positional.

Example . . (Not recognizable by the prefix classifier) Let = { , }.

We consider the objective = Büchi() ∩ Büchi() recognized by the DBA in Figure . . This objective is prefix-independent: as such, there is only one equivalence class for ∼. This implies that the prefix preorder is total, and that is M triv -progress-consistent (the premise of the M triv -progress-consistency property can never be true). This objective is not half-positional, as witnessed by the arena in Figure . (right): P 1 has a winning strategy from , but it needs to take infinitely often both and . Any DBA recognizing this objective has at least two states, but all their (reachable) states are equivalent for ∼: no matter the state we choose as an initial state, the recognized objective is the same. As it is prefix-independent, its prefix classifier S has only one state.

We investigate how to verify each property used in the characterization of Theorem . . . Let B = (, , init , ,) be a DBA (we assume w.l.o.g. that all states in are reachable from init) and = L(B) be the objective it recognizes. Our algorithm first verifies that the prefix preorder is total and recognizability by S , and then, under these first two assumptions, M triv -progress-consistency. For each condition, we sketch an algorithm to decide it, and we discuss the time complexity of this algorithm.

Total prefix preorder.

To check that has a total prefix preorder, it suffices to check that the states of B are totally preordered by B . We start by computing, for each pair of states , ∈ , whether

B , or none of these. This can be rephrased as a containment query for two DBArecognizable objectives: if B = (, , , ,) and B = (, , , ,), we have that

A Unified Approch for Showing Language Inclusion and Equivalence Between Various Types of omega

In particular, the prefix preorder is total if and only if for all , ∈ , we have

Recognizability by the prefix classifier. After all the relations B and ∼ B between pairs of states are computed in the previous step, we can compute the states and transitions of the prefix classifier S = (, , init ,) by merging all the equivalence classes for ∼ B . We assume for simplicity that = ∼ B , and we drop the subscript B of ∼ B in what follows.

We now wonder whether it is possible to recognize by carefully selecting a set ∼ of Büchi transitions in S . We simplify the search for such a set with the following result, which shows that when B is saturated, it suffices to try with one specific set ∼ . We can then simply check whether = L((, , init , , ∼)), an equivalence query which, as discussed above, can be performed in time

Lemma . . We assume that B is saturated and that is recognized by a DBA built on top of the prefix classifier S = (, , init ,). We define

Then, is recognized by (, , init , , ∼).

Proof. We assume that is recognized by a DBA built on top of S . We start by saturating this DBA, which yields a set of Büchi transitions such that is also recognized by the saturated DBA B = (, , init , ,) (Lemma . .). To prove the claim, we show that = ∼ .

Half-positional objectives recognized by deterministic Büchi automata

We first show that

M triv -progress-consistency. We assume that we have already checked that is recognizable by a Büchi automaton built on top of S , and that we know the (total) ordering of the states. We show that checking M triv -progress-consistency, under these two hypotheses, can be done in polynomial time. We prove a lemma reducing the search for words witnessing that is not M triv -progress-consistent to a problem computationally easier to investigate. The core idea is the same as in the proof for regular objectives (Lemma . .): we just slightly adapt the property to the Büchi acceptance condition.

Lemma . . We assume that B is built on top of the prefix classifier S and that the prefix preorder of is total. Then, is M triv -progress-consistent if and only if for all , ∈ with ≺ B ,

Proof. For the left-to-right implication, we assume by contrapositive that there exist , ∈ with ≺ B and ∈ + such that * (,) = and ∈ -FreeCycles B (). Let ∈ * be a word such that * (init ,) = . We have that ≺ , but is not accepted by B as is a cycle on that does not see any Büchi transition. Hence, is not M triv -progressconsistent.

For the right-to-left implication, we assume by contrapositive that is not M triv -progress-consistent. Thus, there exist ∈ * and ∈ + such that ≺ and ∉ . Let 1 = * (init ,) and 2 = * (1 ,)we have 1 ≺ 2 . As 1 ≺ 2 , by Lemma . . , we have * (1 ,) = 2 * (2 ,). We distinguish two cases, using the fact that there is exactly one state per equivalence class for ∼ B . We represent what happens in Figure . . Half-positional objectives recognized by deterministic Büchi automata If not, we have that 2 ≺ * (2 ,). Let 3 = * (2 ,). We can repeat the argument on 2 and 3 : either ∈ -FreeCycles B (3) and we are done, or 3 ≺ * (3 ,). As there are finitely many states, this process necessarily ends with two states = and = +1 such that * (,) = and ∈ -FreeCycles B ().

Notice that for each pair of states , ∈ , the sets { ∈ + | (,) = } and -FreeCycles B () are both regular languages recognized by deterministic finite automata with at most | | states. The emptiness of their intersection can be decided in time O(| | 2 • | |) (by solving a reachability problem in the product of the two automata). Thanks to Lemma . . , we can therefore decide whether B is M triv -progress-consistent in time

≺ , we test the emptiness of the intersection of these two deterministic finite automata.

Complexity wrap-up. By checking the three conditions as explained and in this order, the time complexities are respectively

for the whole algorithm.

. Necessity of the third condition

We have already shown that having a total preorder (i.e., M triv -strongmonotony) and M triv -progress-consistency are necessary conditions for half-positionality over finite one-player arenas, through more general proofs for -regular objectives in Chapter (Propositions . . and . .).

We prove the necessity of the third condition: for a DBA-recognizable objective, being recognized by a Büchi automaton built on top of its prefix classifier S is necessary for half-positionality. This section is devoted to the proof of this result, which is more involved than the proofs for the two other conditions.

Proposition . . (Necessity of the recognizability by the prefix classifier)

Let ⊆ be a DBA-recognizable objective that is half-positional over finite one-player arenas. Then, is recognized by a Büchi automaton built on top of S .

We fix an objective ⊆ recognized by a DBA B = (, , init , ,). We make the assumption that is half-positional over finite one-player arenas. Our goal is to show that can be defined by a Büchi automaton

Half-positional objectives recognized by deterministic Büchi automata built on top of S . We assume w.l.o.g. that B is saturated. Many upcoming arguments heavily rely on this assumption through the use of Lemma . . (any -free word can be completed into a -free cycle).

Our proof first assumes in Subsection . . that B recognizes a prefixindependent objective. We will then build on this first case to conclude for the general case in Subsection . . . We provide a proof sketch at the start of each subsection.

. . Prefix-independent case

We assume that the objective recognized by B is prefix-independent, so all the states of B are equivalent for ∼. We want to show that can be recognized by a Büchi automaton built on top of S , and in this case, the automaton structure S has just one state. Therefore, we want to find ⊆ such that = Büchi(). We start with a high level description of the proof technique.

Sketch of proof.

The goal is to find a suitable definition for . To do so, we exhibit a state max of B that is "the most rejecting state of the automaton": it satisfies that the set of -free words from max contains the -free words from all the other states (max is then called a -free-maximum) and that the set of -free cycles on max contains the -free cycles on all the other states (it is also a -free-cycle-maximum). We define as the set of colors ∈ such that (max ,) ∈ .

We first show that if a -free-maximum exists, we can assume w.l.o.g. that it is unique (Lemma . .). In Lemmas . . , . . , and . . , we show the existence of a -free-cycle-maximum. This part of the proof relies on the half-positionality over finite one-player arenas of . Finally, defining using max as described above, we prove that = Büchi() (Lemma . .).

We call a state max ∈ of B a -free-maximum (resp. a -free-cyclemaximum) if for all ∈ , we have -Free B () ⊆ -Free B (max) (resp.

-FreeCycles B () ⊆ -FreeCycles B (max)). We remark that if B is saturated, a -free-cycle-maximum is also a -free-maximum (this can be shown using Lemma . .).

We first show that we can remove states from B, while still recognizing the same objective, until it has at most one -free-maximum.

Lemma . . There exists a DBA B recognizing with at most one -freemaximum.

Half-positional objectives recognized by deterministic Büchi automata Proof. Assume that 1 max , 2 max ∈ are distinct -free-maxima. In particular, -Free B (1 max) = -Free B (2 max). We show that in such a situation, the objective recognized by B can be recognized by an automaton with one less state, in which we discard one of the two -free-maxima. To simplify the upcoming arguments, we assume that init = 1 max (which is without loss of generality as is prefix-independent and all states of B are equivalent for ∼).

We define a new automaton in which we remove 2 max and redirect all its incoming transitions to 1 max . Formally, let B = (, , init , ,) be such that

and ∈ , (,) ∈ if and only if (,) ∈ .

We also assume that states that are not reachable from init in B are removed from .

We show that this automaton with (at least) one less state recognizes the same objective as B. Let = 1 2 . . . ∈ be an infinite word. We show that is accepted by B if and only if it is accepted by B .

max } be the transitions of B that were directed to 2 max in B, but that are now redirected to 1 max in B . Let be the run of B on , and = (0 , 1)(1 , 2) . . . be the run of B on . The two runs start by taking corresponding transitions, but differ once a transition in Δ → 2 max is taken. We first assume that uses transitions in Δ → 2 max only finitely many times. Then, there exists ≥ 0 such that = 1 max and for all ≥ , (, +1) ∉ Δ → 2 max . Let > = +1 +2 . . . be the infinite word consisting of the colors taken after the last occurrence of a transition in Δ → 2 max . We have that B accepts ⇐⇒ B accepts > as B recognizes a prefix-independent objective ⇐⇒ B accepts > as > visits exactly the same transitions as in B ⇐⇒ B accepts as 1 . . . is a cycle on the initial state 1 max of B .

We now assume that uses transitions in Δ → 2 max infinitely many times. We decompose into infinitely many finite runs 1 , 2 , . . . such that = 1 2 . . . and every run sees exactly one transition in Δ → 2 max as its last transition. This implies that all these finite runs start in state 1 max . We represent run in Figure . . We define words 1 , 2 , . . . as the respective projection of runs 1 , 2 , . . . to their colors (we have = 1 2 . . .). Notice such that for all 1 ≤ < , * (,) = +1 , * (,) = 1 , and for all 1 ≤ ≤ ,

and ∉ -Free B (). Word is accepted from 1 as it sees infinitely many Büchi transitions, so it is in

. However, if we consider as an infinite word on

) as every letter of the word is in

. This yields a contradiction.

We use the previous result in a straightforward way to exhibit a state max whose non--free words in [∼] are exactly the words in

. The reader may notice that, echoing the proof of the prefix-independent case (Subsection . .), the state max given by Corollary . . is actually a -free-maximum among states in [∼] ∼ .

Corollary . . There exists max ∈ [∼] ∼ such that for all

Proof. By the second item of Lemma . . , we take max ∈ [∼] ∼ such that, for all

. The property we already have on max gives us by contrapositive that ∉ -Free B (max) implies that ∈ [∼] . Reciprocally, the first item of Lemma . . gives us that if ∈ [∼] , then ∉ -Free B (max).

From now on, we assume that max ∈ [∼] ∼ is a state having the property of Corollary . . . We show that can be recognized by a smaller DBA consisting of DBA B in which all the states in [∼] ∼ have been merged into the single state max , by redirecting all incoming transitions of [∼] ∼ to max . We assume w.l.o.g. that if init ∈ [∼] ∼ , then init = max (this does not change the objective recognized by B, and will be convenient in the upcoming construction). We consider DBA B = (, , init , ,) with

and ∈ , (,) ∈ if and only if (,) ∈ .

We also assume that states that are not reachable from init in B are removed from .

Lemma . . The objective recognized by B is also .

Proof. Let = 1 2 . . . ∈ , = (0 , 1)(1 , 2) . . . be the run of B on , and = (0 , 1)(1 , 2) . . . be the run of B on . We have that 0 = 0 , but states in both runs may not coincide after a state in [∼] ∼ has been reached. Yet, we show inductively that

(.)

Half-positional objectives recognized by deterministic Büchi automata

It is true for = 0 (we even have equality in this case), and if ∼ B , then by construction of the transitions of B and Lemma . . , we still have +1 ∼ B +1 .

We want to show that is accepted by B if and only if it is accepted by B . This is clear if never goes through a state in [∼] ∼ (as the same transitions are then taken in B and B).

We first assume that run visits [∼] ∼ finitely many times, and that the last visit to [∼] ∼ happens in for some ≥ 0. Notice that run also visits We now assume that run visits [∼] ∼ infinitely many times. We decompose inductively into a prefix ∼ reaching [∼] ∼ followed by cycles 1 , 2 , . . . on [∼] ∼ . Formally, let ∼ be any finite prefix of such that * (init , ∼) ∈ [∼] ∼ . By induction hypothesis, assume ∼ 1 . . . is a prefix of such that * (init , ∼ 1 . . .) ∈ [∼] ∼ . We define +1 ∈ + as the shortest non-empty word such that ∼ 1 . . .

+1 is a prefix of and * (init , ∼ 1 . . . +1) ∈ [∼] ∼ . We have = ∼ 1 2 . . . by construction. By Equation (.), we also have that for all ≥ 0, () * (init , 1 . . .) ∼ B ∼ , so () * (init , 1 . . .) = max as this is the only state left in that class in B .

If is accepted by B, then for infinitely many ≥ 1, word is in [∼] . By Corollary . . , all these infinitely many words are not in -Free B (max) and therefore see a Büchi transition when read from max , so is also accepted by B .

If

is rejected by B, then there exists ≥ 1 such that for all ≥ ,

. By Corollary . . , for all ≥ , is in -Free B (max) and therefore does not see a Büchi transition when read from max , so is also rejected by B .

We have all the arguments to show our goal for the section (Proposition . .), that is, to show that can be recognized by a Büchi automaton built on top of S .

Proof of Proposition . . . We have shown in Lemma . . how to merge an equivalence class for ∼ into a single state, while still recognizing the same objective. Repeating this construction for each equivalence class with two or more states, we end up with a DBA with exactly one state per equivalence class for ∼ still recognizing . By definition of S , this DBA is necessarily built on top of (some automaton structure isomorphic to) S .

Half-positional objectives recognized by deterministic Büchi automata

. Sufficiency of the conditions

We show that a DBA B with the three conditions from Subsection . . (recognizing an M triv -progress-consistent objective having a total prefix preorder and being recognizable by a Büchi automaton built on top of S) recognizes a half-positional objective. As these three conditions have been shown to be necessary for the half-positionality of objectives recognized by a DBA, this will imply a characterization of half-positionality.

Our main technical tool is to construct, thanks to these three conditions, a family of completely well-monotonic universal graphs. The existence of such objects implies, thanks to recent results by Ohlmann [Ohl], that P 1 has [Ohl]: Ohlmann (),

Characterizing Positionality in Games of Infinite Duration over Infinite Graphs

memoryless optimal strategies, even in two-player arenas of arbitrary cardinality.

. . Completely well-monotonic universal graphs

We fix extra terminology about graphs only used in Section . , and recall the relevant results from [Ohl].

An (edge-colored) graph = (,) is given by a non-empty set of vertices We used the same notations for graphs without colors on edges in an NP-hardness proof of Proposition . . . We slightly abusively reuse this notation to now denote edgecolored graphs.

(of any cardinality) and a set of edges ⊆ × × . For convenience, we write -→ if (, ,) ∈ . We assume graphs to be non-blocking: for all ∈ , there exists (, ,) ∈ such that = . We allow graphs with infinite branching. An edge-colored graph is roughly the same as an arena, except that we do specify which player controls each vertex. For ∈ , an infinite path of from is an infinite sequence of edges = (0 , 1 , 1)(1 , 2 , 2) . . . ∈ such that 0 = and for all ≥ 1, = . A finite path of from is a finite prefix in * of an infinite path of from .

We would like to define a reasonable notion of morphism for graphs that also deals with information given by an objective . Let be a graph and ⊆ be an objective. We say that a vertex of satisfies if for all infinite paths 0 1 -→ 1 2 -→ . . . from , we have 1 2 . . . ∈ . A graph can therefore be thought of as a one-player arena of P 2 : a vertex satisfies if and only if P 2 cannot win from , even when controlling all the vertices.

Given two graphs = (,) and = (,), a (graph) morphism from to is a function :

is -preserving if for all ∈ , satisfies implies that () satisfies . Notice that if () satisfies , then satisfies , as any path

-there are "more paths" in . For a cardinal, a graph U is (,)-universal if for all graphs of cardinality < , there is a -preserving morphism from to U.

Half-positional objectives recognized by deterministic Büchi automata

We consider a graph = (,) along with a total order ≤ on its vertex set . We say that is monotonic if for all , , ∈ , for all ∈ , (-→ and ≥) =⇒ -→ , and (≥ and -→) =⇒ -→ .

This means that () whenever there is an edge -→ , there is also an edge with color from to all vertices smaller than for ≤, and () whenever ≥ , then has at least the same outgoing edges as . Graph is well-monotonic if it is monotonic and the total order ≤ is well-founded (i.e., any set of vertices has a minimum). Graph is completely well-monotonic if it is well-monotonic and there exists a vertex ∈ maximum for ≤ such that for all ∈ , ∈ , -→ .

Example . . We provide an example illustrating these notions with = { , } and = Büchi(). This is a special case of our upcoming construction, and it is already discussed in more depth in [Ohl , Chapter] [Ohl]: Ohlmann (),

Monotonic graphs for parity and mean-payoff games

. For an ordinal, we define a graph U with vertices = ∪ { }, and such that for all ordinals , < , -→ , and

Moreover, for all ∈ , we define edges -→ and -→ . We order vertices using the natural order on the ordinals, and with < for all < . Vertex does not satisfy , as there is an infinite path -→ -→ . . ., and ∉ . All other vertices satisfy by construction: they cannot reach , and as reading decreases the current ordinal, a path cannot have an infinite suffix using only color (there is no infinite decreasing sequence of ordinals). This graph is (,)-universal for = | |. Intuitively, for any graph with less than vertices, a -preserving morphism from to U can be defined by mapping vertices not satisfying to , and vertices satisfying to an ordinal that depends on how long it may take to guarantee seeing an from them. Graph U is monotonic, which can be quickly checked with the definition. As ≤ is well-founded and there is a vertex with the right properties, U is even completely well-monotonic. The properties of U imply half-positionality of Büchi(), thanks to the following theorem.

We state an important result linking half-positionality and completely well-monotonic universal graphs from [Ohl].

[Ohl]: Ohlmann (),

Characterizing Positionality in Games of Infinite Duration over Infinite Graphs

Theorem . . ([Ohl]) Let ⊆ be an objective. If for all cardinals , there exists a completely well-monotonic (,)-universal graph, then is half-positional (over all arenas).

Half-positional objectives recognized by deterministic Büchi automata

A more precise result in [Ohl , Theorem .] can actually be instantiated [Ohl]: Ohlmann (),

Monotonic graphs for parity and mean-payoff games

on more subtle classes of arenas. However, we intend to prove here halfpositionality of a family of objectives over all arenas, so the above result turns out to be sufficient.

Remark . . One of the strengths of [Ohl] [Ohl]: Ohlmann (),

Characterizing Positionality in Games of Infinite Duration over Infinite Graphs

is that the converse of Theorem . . holds under the existence of a neutral color, Neutral colors were also discussed in Remark . . . i.e., a color that can be inserted infinitely often in every infinite word without changing its winning or losing character. A neutral color can always be artificially added to an objective. The question of whether adding a neutral color can make a half-positional objective non-half-positional is open. In some works (for instance the seminal [DJW ; Zie] [DJW]:), it is assumed that edges without colors are allowed in arenas, with the restriction that no cycle of the arenas is completely without color. This is roughly similar to adding a neutral color to the set of colors. In general, allowing for arenas with such edges has an effect on strategy complexity [Cas] [Cas]: Casares (

), On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions . The existence of a family of completely well-monotonic (,)-universal graphs implies that a neutral color can be added without losing halfpositionality of [Ohl]. Hence, given our proof technique for halfpositional DBA-recognizable objectives, a neutral color (or edges without colors) can always be added for free.

. . Universal graphs for Büchi automata

We show that for a DBA-recognizable objective, the three conditions that were shown to be necessary for half-positionality in Section . are actually sufficient.

Proposition . . (Sufficiency of the three conditions) Let

⊆ be an objective that has a total prefix preorder, is M triv -progress-consistent, and is recognizable by a Büchi automaton built on top of S . Then, is half-positional.

The rest of the section is devoted to the proof of this result, using Theorem . . . Let ⊆ be an objective with a total prefix preorder, that is M triv -progress-consistent, and that is recognized by a DBA B = (, , init , ,) built on top of S for the rest of this section. We assume as in previous sections that B is saturated (in particular, by Lemma . . , any -free path can be extended to a -free cycle). An implication of the fact that B is built on top of S that we will use numerous times in the upcoming arguments is that for , ∈ , ∼ if and only if = .

For an ordinal, we build a graph U B, in the following way.

We set the vertices as B, = {(,) | ∈ , < } ∪ { }.

For every transition (,) = of B,

Half-positional objectives recognized by deterministic Büchi automata

• if (,) ∈ , then for all ordinals , , we define an edge (,) -→ (,);

• if (,) ∉ , then for all ordinals , s.t. < , we define an edge (,) -→ (,).

• for ≺ , then for all ordinals , , we define an edge

For all ∈ B, and ∈ , we define an edge -→ .

We order the vertices lexicographically: (,) ≤ (,) if ≺ or (= and ≤), and we define as the maximum for ≤ (i.e., (,) < for all ∈ , <).

Graph U B, is built such that on the one hand, it is sufficiently large and has sufficiently many edges so that there is a morphism from any graph (of cardinality smaller than some function of | |) to U B, . On the other hand, for the morphism to be -preserving, at least some vertices of U B, need to satisfy , which imposes a restriction on the infinite paths from vertices. Graph U B, is actually built so that for any automaton state ∈ and ordinal < , the vertex (,) satisfies -1 (see Lemma . .). The intuitive idea is that for a non-Büchi transition (,) ∉ of the automaton such that (,) = , a -colored edge from a vertex (,) in the graph either () reaches a vertex with first component , in which case the ordinal must decrease on the second component, or () reaches a vertex with first component ≺ , with no restriction on the second component, but therefore with fewer winning continuations. Using M triv -progress-consistency and the fact that there is no infinitely decreasing sequence of ordinals, we can show that this implies that no infinite path in U B, corresponds to an infinite run in the automaton visiting only non-Büchi transitions.

We state two properties that directly follow from the definition of U B, : if (,) -→ (,), then (,);

(.) if (,) -→ (,) and ≤ , then (,) -→ (,).

(.)

Example . . We consider again the DBA B from Example . . , recognizing the words seeing infinitely many times, or twice in a row at some point. We represent the graph U B, , with = in Figure . .

In order to use Theorem . . , we show that the graph U B, is completely well-monotonic (Lemma . .) and, for all cardinals , is (,)-universal for sufficiently large (Proposition . .).

Lemma . . Graph U B, is completely well-monotonic.

Proof. The order ≤ on the vertices is well-founded, and there exists a vertex ∈ B, maximum for ≤ such that for all ∈ B, , ∈ , -→ .

Half-positional objectives recognized by deterministic Büchi automata). The dashed edge with color indicates that (init ,) -→ (init ,) if and only if < (it corresponds to the only non-Büchi transition in B). Elsewhere, an edge between two rectangles labeled , with color means that for all ordinals , , (,) -→ (,). Thick edges correspond to the original transitions of B. There are edges from to all vertices of the graph with colors and . Vertices are totally ordered from left to right.

To show that U B, is completely well-monotonic, it now suffices to show that U B, is monotonic.

The first item of the monotonicity definition follows from the construction of the graph. We assume that (,) -→ (,) and (,) ≥ (,), and we show that (,) -→ (,). By Equation (.), we have (,). The inequality (,) ≥ (,) means by definition that ≺ or (= and ≤). If ≺ , we obtain that ≺ (,), so we also have (,) -→ (,). If = and ≤ , then we also have (,) -→ (,) by Equation (.), which is what we want as = .

The second item of the monotonicity definition is slightly more involved and follows from M triv -progress-consistency, the fact that the prefix preorder is total, and the saturation of B. We assume that (,) ≥ (,) and

(,) -→ (,), and we show that (,) -→ (,). The assumption (,) ≥ (,) implies that , so (,) (,) by Lemma . . . Moreover, (,) -→ (,) implies that (,) by Equation (.).

Hence, (,) . If (,) , then (,) -→ (,) by definition of the graph. The same holds if (,) = and (,) ∈ .

It is left to discuss the case (,) = and (,) ∉ . By the above inequalities, this implies that we also have (,) = .

If = , then ≥ . Moreover, as (,) = (,) ∉ , the existence of edge (,) -→ (,) implies that > . So > and we also have (,) -→ (,). We show that ≺ is not possible -we assume it holds and draw a contradiction. As (,) ∉ , we have ∈ -Free B (). By Lemma . . , there is ∈ * such that ∈ -FreeCycles B (). As (,) = (,) and * (,) = , we have * (,) = . As ≺ , by M triv -progress-consistency, the word () must be accepted by B when read from . It must therefore also be accepted when read from (as ≺), which contradicts that ∈ -FreeCycles B ().

Half-positional objectives recognized by deterministic Büchi automata

We now intend to show (,)-universality of some U B, for each cardinal . The next two Lemmas . . and . . give insight into properties of the paths of U B, , to then establish which vertices of U B, satisfy (Lemma . .). Understanding which vertices satisfy is helpful to later define a -preserving morphism into U B, . We first show that paths in this graph "underapproximate" corresponding runs in the automaton: a finite path = (0 , 0) 1 -→ . . . -→ (,) in U B, visits vertices labeled with automaton states at most as large (for) as the corresponding states visited by the finite run from 0 on 1

Lemma . . Let

and = 1 Then, * (0 ,).

Proof. We proceed by induction on the length of . If = 0, then = , so = 0 = * (0 ,), and the result holds. If ≥ 1, we assume by induction hypothesis that -1 * (0 , 1 . . . -1). By Lemma . . , we have (-1 ,) (* (0 , 1 . . . -1),) = * (0 ,). By Equation (.), if (-1 , -1) -→ (,), then (-1 ,). By transitivity, * (0 ,).

We now show that in U B, , a finite path that goes back to its initial value w.r.t. the first component without decreasing the ordinal necessarily induces an accepted word when repeated. Proof. Let B(0 ,) = (0 , 1) . . . (-1 ,) be the finite run of B obtained by reading from 0 . States 0 , . . . , correspond to the first component of the vertices visited by in U B, , whereas 0 , . . . , -1 , = (-1 ,) are the states visited by the finite word in B. We have that 0 = 0 , but the subsequent states may or may not correspond. By Lemma . . , we still know that for all , 0 ≤ ≤ , . In particular, 0 = * (0 ,) = . We distinguish three cases, depending on whether 0 ≺ * (0 ,) or 0 ∼ * (0 ,) (which implies 0 = * (0 ,) as B is built on top of its prefix classifier), and depending on whether = for all 0 ≤ ≤ or not.

If 0 ≺ * (0 ,), by M triv -progress-consistency, ∈ -1 0 . If 0 = * (0 ,) and for all , 0 ≤ ≤ , = (i.e., only uses edges that directly correspond to transitions of the automaton B), then for the ordinal to be greater than or equal to its starting value, some Büchi transition has to be taken since non-Büchi transitions strictly decrease the ordinal on the second component. Hence, is not a -free cycle from 0 , so ∈ -1 0 .

Half-positional objectives recognized by deterministic Büchi automata If 0 = * (0 ,) and for some index , 1 ≤ < , we have ≺ (i.e., takes at least one edge that does not correspond to a transition of the automaton). We represent the situation in Figure . . We know that * (, +1 . . .) = ∼ 0 . By Lemma . . , as ≺ , this implies that * (, +1 . . .) 0 . Also, in the graph, there is a path from to 0 with colors +1 Therefore, by Lemma . . , 0 * (, +1 . . .). Thus, 0 ∼ * (, +1 . . .), and as B is built on top of S , 0 = * (, +1 . . .). Therefore, ≺ * (, +1 . . . 1 . . .) = . By M triv -progress-consistency, (+1 . . .

We show that every vertex (0 , 0) such that 0 init satisfies .

Lemma . . Let 0 ∈ . For all ordinals 0 < , the vertex (0 , 0) of U B, satisfies -1 0 . In particular, if 0 init , (0 , 0) satisfies .

Proof. Let = (0 , 0)

2 -→ . . . be an infinite path of U B, from (0 , 0) and = 1 2 . . . be the sequence of colors along its edges. We show that ∈ -1 0 . Let = * (0 , 1 . . .) be the state of B reached after reading the first colors of . We claim that there are two states , ∈ occurring infinitely often in the sequences () ≥0 , () ≥0 , respectively, and an increasing sequence of indices () ≥1 satisfying that for all ≥ 1, = , = , and ≤ +1 . Indeed, we can first choose a state appearing infinitely often in () ≥0 and pick a sequence () ≥1 such that = and () ≥1 is not decreasing (this is possible since there is no infinite decreasing sequence of ordinals). Then, we can just pick appearing infinitely often in () ≥1 and extract the subsequence corresponding to its occurrences.

Let , ∈ , () ≥1 satisfying the above properties. Let 0 = 1 . . . 1 and for ≥ 1, let = +1 . . . +1 ∈ + be the colors over the edges in from (,) to (+1 , +1). By Lemma . . , it holds that = * (0 , 0). Moreover, since ≤ +1 , by Lemma . . we have that ∈ -1 ⊆ () -1 for all ≥ 1. We conclude that for all ≥ 1, the word labels a cycle over in B visiting some Büchi transition, and therefore = 0 1 2 . . . ∈ -1 0 .

Half-positional objectives recognized by deterministic Büchi automata

We now have all the tools to show, for all cardinals , (,)-universality of U B, for sufficiently large .

Proposition . . Let be a cardinal, and be an ordinal such that ≤ | |.

It may seem surprising that we use | |• vertices for each automaton state and not just vertices. We will illustrate in Remark . . that this is necessary for our proof technique.

∈ ∪ { } be the smallest automaton state (for) such that satisfies -1 , or if it satisfies none of them. We remark that if and only if satisfies -1 . To show that there is a -preserving morphism from to U B, , we follow the six steps outlined in [Ohl , Lemma .].

[Ohl]: Ohlmann (),

Characterizing Positionality in Games of Infinite Duration over Infinite Graphs

(i) In this first step, we classify and order vertices of in an inductive way, which will later be used to map them to vertices of U B, . For ∈ and an ordinal, we define by transfinite induction

We illustrate this induction on a concrete case in Example . . , which can be followed along the proof.

= { ∈ | , and

Intuitively, for to be in , it has to satisfy -1 and to guarantee that a Büchi transition is seen "soon" when colors of paths from are read from in B (how soon depends on the value of). We remark that for each state ∈ , the sequence () is non-decreasing: for ≤ , ⊆ . The subsequent steps mostly follow from this definition. (ii) Let = . We show that if satisfies -1 , then it is in . Assume that ∉

. If ≺ , then we immediately have that does not satisfy -1 . If , then has an outgoing edge -→ such that (,) ∉ and ∉ (,)

. By induction, we build an infinite path from whose projection in B only sees non-Büchi transitions, so does not satisfy -1 . (iii) In this step and the next one, we show that there is no use in considering ordinals beyond in our construction. We first show that if for all ∈ , = +1 , then for all ∈ and all ≥ , =

. . Hence, ∈ +1 = . (iv) We prove that there exists < such that for all ∈ , = +1 . If not, using the axiom of choice, we can build a map : → × such that for < , () = (,) for some ∈ and ∈ +1 \ . This map is injective, as any pair (,) can be chosen at most once (as Half-positional objectives recognized by deterministic Büchi automata

Using additionally Item (iii), we deduce that there exists < such that for all ≥ , = . (v) Let : → B, be such that

By Item (ii), for all ∈ , there exists such that ∈ , so { | ∈ } is non-empty. By Item (iv), we have that if () = (,), then < , so the image of is indeed in B, . We show that is -preserving: if satisfies , then init , so by Lemma . . , () also satisfies . (vi) We show that is a graph morphism. Let -→ be an edge of -we need to show that () -→ () is an edge of U B, . If () = , this is clear as there are all possible outgoing edges from . If not, we denote () = (,) and () = (,). We have that satisfies -1 . Thus, must satisfy (,) -1 . This implies that (,). We distinguish two cases.

If (,) ∈ , then by construction of U B, , there are -colored edges from (,) to ((,),) for all ordinals . By monotonicity, as (,), there is also a -colored edge from (,) to (,). We assume that (,) ∉ . If = (,), this means that there exists < such that ∈ . Therefore, ≤ < . So the edge (,) -→ (,) exists by construction of U B, . If ≺ (,), then by construction of U B, , there are -colored edges from (,) to (,) for all ordinals .

We have shown in Item (v) and Item (vi) that is a -preserving morphism from to U B, .

Example . .

We consider the objective = Büchi() ∪ * recognized by the DBA B from Example . . , for which graph U B, was shown in Example . . . We redraw this DBA in Figure . (left) and we discuss how our construction maps the vertices of graph in Figure . (right). Notice that 1 , 2 , and 3 satisfy , but not 4 and 5 ; more precisely, using notations from the proof of Proposition . . , we have 1 = 2 = 3 = init , 4 = , and 5 = . We build explicitly the sets from Item (i) of the proof of Proposition . . . All five vertices are in for every ordinal , as all vertices satisfy -1 = , and any transition from is a Büchi transition. For the same reasons, 1 , 2 , 3 , and 4 are in for all (5 is not because it does not satisfy objective -1). We determine the sets init using the inductive definition. First, 3 is in init for all , since (init ,) ∈ . Therefore, 2 ∈ init for ≥ 1 (the -colored edge from 2 leads to 3 , and (init ,) = init). Finally, 1 ∈ init for ≥ 2 for the same reason. The morphism from Item (v) assigns (1) = (init , 2), (2) = (init , 1),

Half-positional objectives recognized by deterministic Büchi automata

(3) = (init , 0), (4) = (, 0), (5) = (, 0).

Remark . . We illustrate why, in the statement of Proposition . . , we use | | • vertices for each automaton state and not just . Let = { , , }, be the objective recognized by the DBA in Figure . (left), and be the graph with two vertices in Figure . (right). This objective has a total prefix preorder, is M triv -progress-consistent, is recognized by a DBA built on top of its prefix classifier, and the DBA in Figure . is saturated. Both vertices of satisfy = -1 1 but do not satisfy -1 0 , so 1 = 2 = 1 . We have 1 ∈ 3 0 (the base case of the induction), and this inductively implies

We represent these steps in the figure, below the graph. Thus, (1) = (1 , 4) and (2) = (1 , 5). We see here that two copies of each automaton state in our universal graph construction would not have sufficed; we actually used six different indices to fully understand the situation, which is due to the interlacing between the graph and the structure of the automaton. We conclude this section by proving Proposition . . , showing that is half-positional under the three conditions from Theorem . . . Proof of Proposition . . . Using Lemma . . and Proposition . . , we have for all cardinals that there exists a completely well-monotonic (,)-universal graph. By Theorem . . , this implies that is halfpositional.

Half-positional objectives recognized by deterministic Büchi automata

. Wrap-up

We have characterized half-positionality for DBA-recognizable objectives. While half-positionality of -regular objectives is still not completely understood, this is a novel step in this direction.

Another interesting extension would be to characterize the memory requirements of DBA-recognizable objectives. An intermediate and already seemingly difficult step would be to characterize the memory requirements of objectives recognized by deterministic weak automata [Wag ; Sta ; Löd], already generalizing the characterization for regular objectives [Wag]

C Summary and future prospects

We give an overview of the contributions of this thesis. After a brief high-level sketch of our contributions (Section .), we offer two points of view to revisit and appreciate our results: a summary through the various properties defined in this thesis (Subsection . .), and a summary through the ubiquitous one-to-two-player lifts (Subsection . .). We then describe some promising research directions related to the topic at hand, which we leave for future work (Section .).

. Summary

We studied strategies in two-player zero-sum turn-based games on graphs, focusing on the following question: how complex must the implementation of a strategy be, and how simple can it be in order to make optimal decisions in a game? Our study started from objectives (descriptions of the desirable outcomes of a game for the players) and provided tools to quantify the complexity of strategies optimal for these objectives in a set of antagonistic scenarios (the arenas). We assumed that strategies are implemented by finite-state machines (automaton structures with outputs). Our model was presented in Chapter .

In the first part, Characterizing finite memory requirements, we characterized several situations in which finite memory is sufficient to implement optimal strategies, which can be used to obtain upper bounds on the structures needed to implement them. In Chapter , we generalized a work about memoryless optimal strategies in finite arenas [GZ] to a kind of finite- [GZ]

Games Where You Can Play Optimally Without Any Memory memory strategies. We focused on arena-independent finite memory, which offers a good trade-off between applicability (it encompasses all -regular objectives and more) and technical convenience (it allows investigating memory structures with only the given of an objective, without instantiating arenas). We recover a characterization through language-theoretic properties and a one-to-two-player lift, respectively discussed more extensively in Subsections . . and . . . In Chapter , we provided a link between the representation of an -regular language as a deterministic parity automaton and a memory structure sufficient to implement optimal Summary and future prospects strategies. In doing so, we showed that for a strong kind of finite-memory determinacy (chromatic finite-memory determinacy over infinite arenas), the -regular objectives are the only finite-memory-determined objectives. This result builds on previous work about memoryless strategies and prefix-independent objectives [CN] and provides a converse to the [CN]: Colcombet et al.

(

), On the positional determinacy of edge-labeled games established finite-memory determinacy of -regular objectives [GH].

[GH]: Gurevich et al. (),

Trees, Automata, and Games

In the second part, Obtaining precise memory requirements, we focused on various classes of -regular objectives (also venturing into simple topological classes). We gave precise chromatic memory requirements for each player, as well as ways to compute minimal memory structures.

In Chapter , we studied objectives definable by classical deterministic finite automata and characterized the memory structures sufficient to play optimally through two decidable language-theoretic properties. We proved the NP-completeness of minimizing these memory structures. In Chapter , we studied objectives definable by deterministic Büchi automata and characterized the ones that admit memoryless optimal strategies, once again through decidable properties. This led to a polynomial-time algorithm for deciding the half-positionality of such objectives.

. . Links between properties of objectives

We have defined a certain number of properties of objectives throughout this thesis. In this section, our goal is to give a general overview of the links between these notions, a brief reminder of what they entail about strategy complexity, a summary of the (meta-)properties that these properties satisfy, and references to proofs and examples of these claims. We include the following properties in our comparison:

M-monotony (Definition . . , generalized from monotony [GZ]);

Constructing Deterministic -Automata from Examples by an Extension of the RPNI Algorithm

).

Stability by product. All properties that rely on a memory structure conform to the idea that adding more information is not detrimental: if an objective is "M-something", then for all memory structures M , it is also "(M ⊗ M)-something". This idea was first mentioned Summary and future prospects in Lemma . . . Here are references to proofs of these facts for each property: Lemma . . for M-monotony and M-selectivity, Lemma . . for M-prefix-independence and M-cycle-consistency, and Lemma . . for M-progress-consistency. We did not provide an explicit proof for M-strong-monotony, but the proof would be identical to the one for M-monotony (Lemma . .).

Remark . . A slightly more general (and perhaps more elegant) argument for the observation "stability by product" would have been to consider morphisms of memory structures. A morphism from M = (, init , upd) to M = (, init , upd) is a function : → such that (init) = init and for all ∈ , ∈ , upd ((),) = (upd (,)). The existence of a morphism from M to M matches the intuition that M contains more information than M and, for the above properties, we can prove that if an objective is "M -something", then it is also "M-something". In particular, there is always a morphism from

Symmetry. The following properties are symmetric in the sense that they hold for an objective if and only if they hold for its complement :

M-prefix-independence and M-cycle-consistency (Lemma . .), and Mstrong-monotony (Lemma . .). All the other properties do not satisfy this, which was illustrated through examples: Remark . . for M-monotony, Example . . for M-selectivity, Example . . and Remark . . for Mprogress-consistency, Example . . for DBA-recognizability by the prefix classifier. Note that M-monotony is symmetric for -regular objectives (Lemma . .).

Links. We illustrate in Figure . all the links between the various properties defined in this thesis and what they were shown to imply about strategy complexity. We encompass all chapters containing original contributions. We aim for the most essential high-level results; for some of the implications, slightly stronger results were proved (e.g., () applies to the more general framework of preference relations; for (), considering countable arenas suffices). For readability, some implications that follow by symmetry of P 1 and P 2 are not recalled. Implications without references follow directly from the definitions. To ease the reading, we give here the full references to proofs of the non-trivial implications from

DBA on top of

S

True for GS

True for RR M-prefix-independence always implies M-strong-monotony by definition (Remark . .), and M-selectivity is incomparable to M-cycle-consistency (Remark . .).

. . One-to-two-player lifts

One of the first results that we presented in this thesis was the one-to-twoplayer lift for memoryless strategies in finite arenas (Theorem . .) by Gimbert and Zielonka [GZ]: to show that memoryless strategies suffice to play [GZ]: Gimbert et al. (

),

Games Where You Can Play Optimally Without Any Memory

optimally in finite two-player arenas, it suffices to show it in the finite one-player arenas of both players. Generalizing and extending this result was a recurring theme throughout this thesis -we give an overview of our results through the prism of this lift property.

This result can be extended in (at least) two ways. First, by showing that the general scheme holds in other (orthogonal or more general) contexts, depending for instance on a class of arenas or a class of strategies. The meta-statement is: if strategies suffice for both players in their one-player arenas , then strategies also suffice in two-player arenas . This is what we did in Theorem . . (generalization to arena-independent finite-memory determinacy over finite arenas) and Theorem . . (orthogonal result: lift for chromatic finite-memory determinacy over infinite arenas). We sum up occurrences in which similar general results have been shown to hold in Figure . ; it turns out that this is quite a robust property. We discussed [GZ] : Occurrences of one-to-two-player lifts, when memory requirements in two-player arenas reduce to the easier question in one-player arenas. The class of strategies must suffice for both players. Acronym PI refers to the fact that this result was shown under prefix-independence hypothesis. In stochastic arenas, results deal with pure strategies (i.e., not resorting to randomization).

its memory requirements in two-player games. We obtained two such results. First, for regular objectives (both reachability and safety ones), if some memory structure suffices to play optimally in the one-player arenas of a player, it also suffices for this player in two-player arenas. Secondly, for objectives recognizable by deterministic Büchi automata, if memoryless strategies suffice for P 1 in one-player arenas, then they also suffice in two-player arenas.

In both cases, we also get almost for free a finite-to-infinite lift: the memory requirements do not increase when going from finite to infinite arenas. This is intuitively natural for -regular objectives: thanks to Lemma . . about the fact that -regular objectives are determined by their ultimately periodic words, we often reduced reasonings about infinite words and infinite arenas to reasoning about ultimately periodic words and finite arenas (Lemmas . . and . . and Propositions . . and . .). However, we could not find a general proof of this fact, and the proofs for regular objectives and objectives recognized by DBAs required in each case to fully characterize the memory requirements through properties that are easier to manipulate.

These two observations (asymmetric and finite-to-infinite lifts for regular and DBA-recognizable objectives) spark the following conjecture about -regular objectives.

Conjecture . . Let ⊆ be an -regular objective and M be a memory structure.

. Asymmetric lift: if M suffices to play optimally for P 1 in finite one-player arenas, then M suffices to play optimally for P 1 in finite two-player arenas. . Finite-to-infinite lift: if M suffices to play optimally for P 1 in finite arenas, then M suffices to play optimally for P 1 in infinite arenas.

Both items are false in general if is not -regular.

. For a non--regular counterexample to the first item, we briefly reproduce an example from [Kop , Proposition] (used as a coun-[Kop]: Kopczyński (),

Half-Positional Determinacy of Infinite Games

terexample to another conjecture). Let = {0, 1}, and let MP ℚ denote the set of words ∈ whose mean payoff is rational (MP() ∈ ℚ).

In any finite one-player arena of P 1 , any memoryless strategy of P 1

Summary and future prospects wins from every vertex, as it induces an ultimately periodic word, which always has a rational mean payoff. Hence, memoryless strategies suffice for P 1 for MP ℚ in finite one-player arenas. Yet, P 1 needs finite memory to win in the finite two-player arena of Figure . (left):

P 1 can guarantee a mean payoff of value 1 2 ∈ ℚ by replying with 1 if P 2 played 0 and with 0 if P 2 played 1. However, any memoryless strategy of P 1 loses because P 2 can induce a non-rational mean payoff without paying attention to the constant choice of P 1 . Note that objective MP ℚ is not finite-memory-determined: already in a finite one-player arena (e.g., the one on the right of Figure .), P 2 needs infinite memory to induce a non-rational mean payoff. . For a non--regular counterexample to the second item, we simply take the mean-payoff objective . Future prospects

. . Arena-dependent memory requirements

All the results in this thesis can be used to help determine arena-independent memory requirements of various classes of games. We gave multiple arguments to justify that this is a reasonable restriction: the well-known -regular objectives enjoy arena-independent finite-memory determinacy (Theorem . .), there is no general one-to-two-player lift in this case (Proposition . .), and over infinite arenas, we do not know of a distinction between arena-independent finite-memory determinacy and finite-memory determinacy (Remark . .).

Yet, at least when looking at finite arenas, (arena-dependent) finite-memory determinacy of an objective may already lead to algorithms for solving the games (e.g., in energy-parity games [CD] [CD]:). It would therefore make sense to go further in the understanding of this general finite-memory determinacy over games played on finite arenas. We discussed one general result about this topic in Subsection . . ,

Exploring the boundary of halfpositionality

Markov decision processes [Gim], and stochastic games [GK] through [Gim] two conditions (which are roughly similar in all these works). The two conditions, as often, deal respectively with prefixes and with cycles: the first condition is prefix-independence (slightly weakened to M trivstrong-monotony in [BFMM]); the second condition is called concavity (or submixingness), and states that two infinite losing words cannot be combined into a winning word. Half-positionality is inherently arenaindependent (for one player). However, in [MSTW] and a version of [GK] [MSTW]: Mayr et al. (),

Simple Stochastic Games with

Almost-Sure Energy-Parity Objectives are in NP and coNP updated in , a corollary about finite-memory determinacy was stated: under prefix-independence and concavity, if additionally, P 2 has finitememory optimal strategies in its finite one-player arenas, then P 2 has finite-memory optimal strategies in finite two-player arenas. We sum up the situation: under strong conditions for P 1 (sufficient but not necessary for half-positionality in finite arenas), we have a one-to-two-player lift for (arena-dependent!) finite-memory determinacy of P 2 . This is strong enough to show finite-memory determinacy of multi-energy games (which satisfy concavity for one of the players and prefix-independence).

This suggests that there is yet another road for a reasonable one-to-twoplayer lift leading to finite-memory determinacy: what if we make a strong assumption on one player (e.g., memoryless optimal strategies in oneplayer arenas) but assume only the existence of finite-memory optimal strategies for the other player in one-player arenas? This leads to the following conjecture, stronger than [MSTW ; GK] when considering deterministic games.

Conjecture . . Let

⊆ be an objective. If P 1 has memoryless optimal strategies in its finite one-player arenas and P 2 has finite-memory optimal strategies in its finite one-player arenas, then is finite-memory-determined over finite (two-player) arenas.

This question is one of the first ones we looked at while preparing this thesis, but to no avail.

. . Chaotic memory

In Subsection . . , we defined chaotic memory structures (sometimes called general in the literature) as memory structures that can observe precise edges taken while playing games, and not solely their color. For this reason, chaotic memory is intrinsically arena-dependent, which relates it to the previous section.

Summary and future prospects

Yet, studying chaotic memory may be of interest even for objectives that are known to be arena-independent-finite-memory-determined, such as -regular objectives. A recent breakthrough by Casares, Colcombet, and These results have also been discussed with precise statements in Section . .

Lehtinen [Cas ; CCL] shows that for the class of Muller conditions, [Cas] chaotic memory structures actually correspond to good-for-games Rabin automata recognizing the condition. Moreover, these chaotic memory structures may be exponentially smaller than the smallest chromatic memory structure.

Good-for-games Rabin automata are a kind of non-deterministic automata.

As for chromatic memory structures, they read colors, but have some well-behaved non-determinism: the idea is that while playing with such a non-deterministic memory structure, the player should be able to resolve the non-determinism on the fly to its advantage. This provides an arenaindependent version of a possibly more succinct memory model: what if instead of finding the smallest possible chaotic memory structure (which depends on an arena), we had to find the smallest non-deterministic chromatic memory structure (which depends only on the objective), with some constraint on the non-determinism? This alternative point of view is more amenable to the kind of arguments we used throughout this thesis; for example, we could define a non-deterministic chromatic memory structure M and look at language-theoretic properties of and M (is "M-something"?).

Chaotic memory is therefore fully understood for Muller conditions, and also for general safety objectives [CFH]. Given these results and the new

. . Alternative models

We studied the classical model of two-player zero-sum turn-based games on graphs; for more fine-grained synthesis endeavors, it is worthwhile to consider other models. We mention (non-exhaustively) some alternative models that have recently been scrutinized in the literature.

Stochastic games. We discussed stochastic games in Subsection . . , in which probabilities are used to model some features of the interaction between the two players. Chapter was also extended to a well-behaved kind of concurrent games on graphs [BBL].

[BBL]: Bordais et al. (),

From Local to Global Determinacy in Concurrent Graph Games

Article [BLT] establishes the existence of finite-memory optimal strate-

Finite-Memory Strategies in Two-Player Infinite Games

gies from topological properties of objectives for concurrent games. Although general reachability and safety objectives fit into their framework, there are major differences with our work beyond concurrency: their games are not played on graphs. Arenas can be considered, but they have to be encoded into the objective, and strategies are therefore not assumed to be able to observe the current arena vertex (to use this information, strategies have to add it to their memory structure).

More expressive strategy models. Throughout this thesis, our finitememory strategies are represented by deterministic finite-state machines. This classical model makes perfect sense for -regular objectives, thanks to their finite-memory determinacy. However, it can be seen as quite restrictive for many other behaviors; for instance, basing the decisions of a strategy on a counter taking values in the natural numbers does not fall into this scope of finite-memory strategies. Just as we gave tools to understand finite-memory determinacy using finite-state machines as strategies, it would be interesting to understand which objectives admit optimal strategies based on more expressive kinds of machines.

We have already mentioned above good-for-games automata (which are roughly restricted non-deterministic finite-state machines), randomness in strategies, and some restricted kinds of infinite-memory strategies Summary and future prospects (e.g., Markov strategies for stochastic games). We mention additionally (and non-exhaustively) works on representing strategies as pushdown automata [Wal], Turing machines [Gel], decision trees [BCKT], [Wal]