
HAL Id: tel-04095220
https://theses.hal.science/tel-04095220

Submitted on 11 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strategy complexity of zero-sum games on graphs
Pierre Vandenhove

To cite this version:
Pierre Vandenhove. Strategy complexity of zero-sum games on graphs. Computer Science and Game
Theory [cs.GT]. Université Paris-Saclay; Université de Mons, 2023. English. �NNT : 2023UPASG029�.
�tel-04095220�

https://theses.hal.science/tel-04095220
https://hal.archives-ouvertes.fr

THÈ
SE

DE
DO

CTO
RAT

NN
T:2

023
UPA

SG0
29

Strategy complexity
of zero-sum games on graphs

Complexité des stratégies
des jeux sur graphes à somme nulle

Thèse de doctorat de l’Université Paris-Saclay
et de l’Université de Mons

École doctorale n◦580 : sciences et technologies
de l’information et de la communication (STIC)

Spécialité de doctorat : Informatique
Graduate School : Informatique et sciences du numérique

Référent : Université de Versailles-Saint-Quentin-en-Yvelines

Thèse préparée dans l’unité de recherche Laboratoire Méthodes Formelles
(Université Paris-Saclay, CNRS, ENS Paris-Saclay), sous la direction de

Patricia BOUYER-DECITRE, Directrice de recherche (CNRS), et la co-direction
de Mickael RANDOUR, Chercheur qualifié (F.R.S.-FNRS)

Thèse soutenue à Mons (Belgique), le 26 avril 2023, par

Pierre VANDENHOVE

Composition du jury
Membres du jury avec voix délibérative

Véronique BRUYÈRE Présidente
Professeure, UMONS – Université de Mons
Christel BAIER Rapporteur
Professeure, Technische Universität Dresden
Thomas COLCOMBET Rapporteur & Examinateur
Directeur de recherche, CNRS,
Institut de Recherche en Informatique Fondamentale
Laurent DOYEN Examinateur
Chargé de recherche, CNRS,
Laboratoire Méthodes Formelles
Benjamin MONMEGE Examinateur
Maître de conférences, Aix-Marseille Université,
Laboratoire d’Informatique & Systèmes

Title: Strategy complexity of zero-sum games on graphs .
Keywords: game theory, controller synthesis, games on graphs, zero-sum games, finite-memory deter-
minacy, ω-regular languages

Abstract: We study two-player zero-sum turn-
based games on graphs, a framework of choice in
theoretical computer science. Such games model
the possibly infinite interaction between a com-
puter system (often called reactive) and its envi-
ronment. The system, seen as a player, wants to
guarantee a specification (translated to a game ob-
jective) based on the interaction ; its environment
is seen as an antagonistic opponent. The aim is to
automatically synthesize a controller for the sys-
tem that guarantees the specification no matter
what happens in the environment, that is, a win-
ning strategy in the derived game.

A crucial question in this synthesis quest is the
complexity of strategies: when winning strategies
exist for a game objective, how simple can they
be, and how complex must they be? A standard
measure of strategy complexity is the amount of
memory needed to implement winning strategies
for a given game objective. In other words, how
much information should be remembered about
the past to make optimal decisions about the fu-
ture? Proving the existence of bounds on me-
mory requirements has historically had a signifi-
cant impact. Such bounds were, for instance,
used to show the decidability of monadic second-
order theories, and they are at the core of state-of-
the-art synthesis algorithms. Particularly relevant
are the finite-memory-determined objectives (for
which winning strategies can be implemented with
finite memory), as they allow for implementable
controllers. In this thesis, we seek to further the
understanding of finite-memory determinacy. We
divide our contributions into two axes.

First, we introduce arena-independent finite-
memory determinacy, describing the objectives for
which a single automatic memory structure suf-

fices to implement winning strategies in all games.
We characterize this property through language-
theoretic and algebraic properties of objectives
in multiple contexts (games played on finite or
infinite graphs). We show in particular that
understanding the memory requirements in one-
player game graphs (i.e., the simpler situation of
games where the same player controls all the ac-
tions) usually leads to bounds on memory requi-
rements in two-player zero-sum games. We also
show that if we consider games played on infi-
nite game graphs, the arena-independent-finite-
memory-determined objectives are exactly the ω-
regular objectives, providing a converse to the
landmark result on finite-memory determinacy of
ω-regular objectives. These results generalize pre-
vious works about the class of objectives requiring
no memory to implement winning strategies.

Second, we identify natural classes of objec-
tives for which precise memory requirements are
surprisingly not fully understood. We introduce
regular objectives (a subclass of the ω-regular ob-
jectives), which are simple objectives derived from
regular languages. We effectively characterize their
memory requirements for each player, and we study
the computational complexity of deciding the exis-
tence of a small memory structure. We then
move a step up in the complexity of the objectives
and consider objectives definable with determinis-
tic Büchi automata. We characterize the ones for
which the first player needs no memory to imple-
ment winning strategies (a property called half-
positionality). Thanks to this characterization, we
show that half-positionality is decidable in polyno-
mial time for this class of objectives. These results
complement seminal results about memory requi-
rements of classes of ω-regular objectives.

Titre : Complexité des stratégies des jeux sur graphes à somme nulle .
Mots clés : théorie des jeux, synthèse de contrôleurs, jeux sur graphes, jeux à somme nulle, détermi-
nation à mémoire finie, langages ω-réguliers

Résumé : Les jeux sur graphes à deux joueurs et à
somme nulle constituent un modèle central en in-
formatique théorique. De tels jeux modélisent une
interaction potentiellement infinie entre un sys-
tème dit réactif et son environnement. Le système
est considéré comme un joueur et souhaite garantir
une spécification (traduite en un objectif de jeu).
Son environnement est considéré comme un joueur
antagoniste. Le but est de synthétiser automati-
quement un contrôleur pour le système qui garan-
tit la spécification peu importe le comportement
de l’environnement, ce qui correspond à construire
une stratégie gagnante dans le jeu dérivé.

Une question cruciale dans cette probléma-
tique de synthèse est celle de la complexité des
stratégies : si des stratégies gagnantes existent, à
quel point peuvent-elles être simples et à quel point
doivent-elles être complexes ? Une mesure stan-
dard de complexité des stratégies est la quantité de
mémoire nécessaire pour implémenter des straté-
gies gagnantes pour un objectif donné. En d’autres
termes, quelle quantité d’information faut-il rete-
nir au sujet du passé pour prendre des décisions
optimales concernant le futur ? Des preuves de
l’existence de bornes sur les besoins en mémoire
ont historiquement eu un impact important. Par
exemple, de telles bornes ont mené à des preuves
de décidabilité de théories monadiques du second
ordre, et sont au cœur de nombreux algorithmes ef-
ficaces pour la synthèse. Les objectifs déterminés
à mémoire finie (c’est-à-dire ceux qui admettent
des stratégies gagnantes se limitant à une mé-
moire finie) sont particulièrement pertinents, car
ils mènent à l’existence de contrôleurs pouvant
être implémentés en pratique. Dans cette thèse,
nous cherchons à améliorer la compréhension de la
détermination à mémoire finie. Nous distinguons
deux axes dans nos contributions.

Premièrement, nous introduisons le concept de
détermination à mémoire finie indépendante de
l’arène, qui décrit les objectifs pour lesquels une

unique structure automatique de mémoire suffit
pour implémenter des stratégies gagnantes dans
tous les jeux. Nous caractérisons cette propriété
via des propriétés algébriques et de langages dans
différents contextes (jeux joués sur des graphes fi-
nis ou infinis). Nous montrons en particulier que
la compréhension des besoins en mémoire dans les
jeux à un joueur (c’est-à-dire les jeux plus simples
dans lesquels le même joueur contrôle toutes les
actions) mène généralement à des bornes sur les
besoins en mémoire dans les jeux à deux joueurs
et à somme nulle. Nous montrons également que
si l’on considère les jeux joués sur des graphes in-
finis, les objectifs déterminés à mémoire finie indé-
pendante de l’arène sont exactement les objectifs
ω-réguliers, ce qui fournit une réciproque au cé-
lèbre théorème de détermination à mémoire finie de
ces objectifs. Ces résultats généralisent des travaux
précédents au sujet des objectifs pour lesquels au-
cune mémoire n’est nécessaire pour les stratégies
gagnantes.

Deuxièmement, nous identifions des classes na-
turelles d’objectifs pour lesquels les besoins en mé-
moire ne sont pas complètement établis. Nous in-
troduisons les objectifs réguliers (une sous-classe
des ω-réguliers), qui sont des objectifs dérivés de
langages réguliers. Nous donnons une caractérisa-
tion effective des besoins en mémoire de ces objec-
tifs pour chacun des joueurs, et nous étudions la
complexité de décider de l’existence d’une petite
structure de mémoire. Nous considérons ensuite
des objectifs plus complexes définissables avec des
automates de Büchi déterministes. Nous caracté-
risons ceux pour lesquels le premier joueur n’a
besoin d’aucune mémoire pour implémenter des
stratégies gagnantes (une propriété appelée semi-
positionnalité). Grâce à cette caractérisation, nous
montrons que la semi-positionnalité est décidable
en temps polynomial pour ces objectifs. Ces ré-
sultats complètent des travaux fondateurs sur les
besoins en mémoire des objectifs ω-réguliers.

This thesis’ author was funded by an F.R.S.-FNRS Research Fellow (ASP – Aspirant) fellowship.

This thesis was carried out at Laboratoire Méthodes Formelles (UMR 9021 – Université Paris-Saclay,
CNRS, ENS Paris-Saclay) and at Département de Mathématique, Faculté des Sciences (Université de

Mons).

Acknowledgments

I am, first and foremost, deeply thankful to my supervisors, Patricia Bouyer and Mickael Randour.
Working with just one of you would already have been fantastic, so I cannot overstate how lucky I
am to work with the combination of you two. Thank you for your time, your guidance, and your
advice.

I would like to sincerely thank all the jury members: Christel Baier, Véronique Bruyère, Thomas
Colcombet, Laurent Doyen, and Benjamin Monmege. After spending a lot of time admiring your
work, I am honored that you accepted to evaluate mine.

Even though only my name appears on the cover page, this work results in many ways from
collaborations. Additionally to my supervisors, I am thankful to my stellar collaborators Antonio
Casares, Nathanaël Fĳalkow, Stéphane Le Roux, and Youssouf Oualhadj.

I am very fortunate for my great long-standing office coworkers Jérémy, Aline, Horacio, Clément,
Gaëtan, James, Damien, and Benjamin as well as the newcomers Chloé, Nicolas, and Florent, without
whom it would be tough to be as productive (in the long term). I also owe much to Thomas and
Christian for their great advice all along my studies.

Finally, I thank my friends, with a special mention to Florent. I am grateful to my parents and
my sister for always being there. This list would not be complete without thanking Alice for her
infallible support.

Contents

1 Introduction 1

1.1 Context . 1
1.2 Origin of games on graphs . 4
1.3 Strategy complexity . 6
1.4 Contributions . 9

1.4.1 Characterizing finite-memory determinacy 9
1.4.2 Precise memory requirements . 12

1.5 Outline . 14

2 Two-player turn-based games on graphs 17

2.1 Mathematical notations . 17
2.2 Game arenas . 18
2.3 Strategies . 20
2.4 Objectives and games . 21

2.4.1 Optimality and determinacy . 22
2.4.2 Common examples of objectives . 23

2.5 Classes of simple strategies . 25
2.5.1 Finite-memory strategies . 26
2.5.2 Memoryless strategies . 28

2.6 Flavors of finite-memory determinacy . 28
2.6.1 Memoryless determinacy . 28
2.6.2 Chromatic versus chaotic memory structures 29
2.6.3 Arena-independent finite memory . 32
2.6.4 Overview . 35

2.7 Automata and $-regular objectives . 35
2.8 Continuations and congruences . 40

Characterizing finite memory requirements 46

3 From memoryless to finite-memory determinacy 47

3.1 Finite game graphs . 47
3.1.1 Characterization of memoryless determinacy 47
3.1.2 Lifting attempts for finite-memory determinacy 49

3.2 Infinite game graphs . 52

4 Characterization of arena-independent finite-memory determinacy 55

4.1 Introduction . 56
4.2 Additional preliminaries . 59

4.2.1 Preference relations . 59
4.2.2 Nash equilibria . 60
4.2.3 Product arenas . 63
4.2.4 Arena induced by a non-deterministic finite automaton 65

4.3 Concepts . 67
4.3.1 Generalizing monotony and selectivity . 67
4.3.2 Discussion about theM-monotony notion 71
4.3.3 Prefix-covers and cyclic-covers . 74

4.4 Characterization . 76
4.4.1 Main results . 76
4.4.2 Running example . 78

4.5 From strategies based onM toM-monotony andM-selectivity 79
4.6 FromM-monotony andM-selectivity to strategies based onM 85
4.7 Digression: the cost of uniformity . 93
4.8 Further discussion of selected related works . 96

4.8.1 Generalization to stochastic games . 97
4.8.2 Generalization to mildly growing memory . 98

5 Characterization of $-regularity through finite-memory determinacy 100

5.1 Introduction . 101
5.2 Preliminaries: manipulating memory structures . 102
5.3 Concepts . 103
5.4 Characterization . 107
5.5 Two properties of chromatic finite-memory determinacy 112
5.6 From properties of an objective to $-regularity . 117

5.6.1 Simplified notations . 117
5.6.2 Proof ideas . 117
5.6.3 Combining cycles on the same memory state 119
5.6.4 Combining cycles on different memory states 122
5.6.5 Competing cycles . 125
5.6.6 Preorder on cycles . 127
5.6.7 Parity automaton on top ofM . 133

5.7 Applications . 138
5.7.1 Discounted sum . 138
5.7.2 Missing proofs for the discounted sum application 142
5.7.3 Other objectives . 145

5.8 Wrap-up . 147

Obtaining precise memory requirements 148

6 Known and unknown memory requirements of $-regular objectives 149

6.1 The missing pieces . 149
6.2 The case of Muller conditions . 151

7 The case of regular languages 155

7.1 Motivation . 156
7.2 Preliminaries: reachability and safety objectives . 157
7.3 Safety objectives and monotony . 159

7.4 Reachability objectives and progress . 164
7.4.1 Capturing progress . 164
7.4.2 Understanding memory requirements . 167
7.4.3 Proof via one-to-two-player lift . 168
7.4.4 Stronger lift for regular objectives . 171

7.5 The complexity of finding small memory structures 172
7.6 Additional proofs and missing technical details . 175

7.6.1 Technical details for general safety objectives 175
7.6.2 Technical details for regular reachability objectives 177
7.6.3 Technical details for computational complexity 182

7.7 Synthesizing small memory structures in practice 189
7.7.1 Overview . 189
7.7.2 SAT encoding . 190

7.8 Wrap-up . 192

8 Half-positional objectives recognized by deterministic Büchi automata 193

8.1 Introduction . 194
8.2 Saturating Büchi automata . 197
8.3 Half-positionality of DBA-recognizable objectives 200

8.3.1 Three conditions for half-positionality . 200
8.3.2 Characterization and corollaries . 203
8.3.3 Deciding half-positionality in polynomial time 205

8.4 Necessity of the third condition . 208
8.4.1 Prefix-independent case . 209
8.4.2 General case . 215

8.5 Sufficiency of the conditions . 219
8.5.1 Completely well-monotonic universal graphs 219
8.5.2 Universal graphs for Büchi automata . 221

8.6 Wrap-up . 229

Concluding remarks 230

9 Summary and future prospects 231

9.1 Summary . 231
9.1.1 Links between properties of objectives . 232
9.1.2 One-to-two-player lifts . 235

9.2 Future prospects . 237
9.2.1 Arena-dependent memory requirements . 237
9.2.2 Chaotic memory . 238
9.2.3 Alternative models . 239

Bibliography 242

Table of notations 257

Introduction 1

In this chapter, we introduce and motivate the model of games on graphs,
its history, and its significance. We then present the question of strategy
complexity in these games and relevant research questions, both solved
and unsolved. We finally sketch the original contributions presented in
this thesis and describe an outline of the thesis structure.

1.1 Context . 1

1.2 Origin of games on graphs . 4

1.3 Strategy complexity . 6

1.4 Contributions . 9

1.4.1 Characterizing finite-memory determinacy 9
1.4.2 Precise memory requirements . 12
1.5 Outline . 14

1.1 Context

Computer systems are often complex machines intertwining pieces of
hardware and software. They are usually designed with specific purposes,
and we rely on them to accomplish an increasingly large breadth of
complex tasks. For some critical systems, failing to achieve what they
were designed for may have drastic consequences, be they financial or
lethal [BK08, Chapter 1]. Therefore, a crucial endeavor of computer science [BK08]: Baier et al. (2008),

Principles of model checkingis to guarantee the correct behavior of computer systems, where correctness
is with respect to some specified purpose.

Computer systems are often not isolated entities: they interact with their
environment (whether through a network or through interactions with
humans or other devices). They need to adapt and react to external
events generated in this environment. Systems maintaining a continuous
interaction with their surroundings are called reactive [HP84]. Reactivity [HP84]: Harel et al. (1984),On

the Development of Reactive Sys-

tems

is a common source of bugs and errors, as taking into account all possible
events in the environment is notoriously difficult.

Formal methods. There are multiple approaches seeking to increase
confidence in computer systems. One of themost common is testing, which
verifies that various scenarios lead to the expected behavior. However,
there tend to be infinitely many different scenarios for reactive systems
due to the number of combinations of events that the environment may
produce. This means that testing reactive systems, while it can detect
design mistakes, cannot guarantee the lack of them in general. The field of
formal methods provides a more ambitious approach; its goal is to design

1 Introduction 2

algorithms that give solid mathematical guarantees on the behavior of
systems.

Verifying properties of computer systems is a hard problem, even unde-
cidable in many cases of interest [Tur37]. A typical process using formal [Tur37]: Turing (1937), On

Computable Numbers, with an

Application to the Entschei-

dungsproblem

methods has a modeling phase: one first designs an abstraction of the
computer system, simplifying the system while extracting as many of the
relevant features for the property being checked. One of the successes
of formal methods is to identify classes of expressive models that are
amenable to being verified with respect to classes of expressive properties,
as well as design efficient algorithms that do so.

Model checking and synthesis. The traditional approach is then called
model checking: given some model of a system and some specification of
what the system should achieve, an algorithm is tasked with checking that
the model indeed guarantees the specification no matter what happens
in the environment (or, if stochasticity is used in the model, with a high
enough probability). This approach assumes that the model represents a
complete implementation of the system.

Another approach, which adds a layer of complexity, is synthesis. Synthesis
starts from an incomplete implementation of a system, leaving some
decisions to be made. To be complete, the system requires a controller that
prescribes which actions to take in which situations. Given this incomplete
description of the system, its environment, and a specification, the aim
is to decide the existence of a controller for the system guaranteeing the
specification and, if it does exist, automatically synthesize it. Correctness
is then guaranteed by design of the controller. This is called the (reactive)
synthesis problem. In this thesis, our goal is to contribute to the theoretical
foundations of reactive synthesis.

Game theory. A reactive system is an object with some capabilities;
there are actions that it can perform influencing its future. Through these
actions, it wants to fulfill a specification. Nevertheless, some of the events
that may happen in the system’s environment are beyond the system’s
control; they are seen as uncontrollable. Through these observations, we can
model the interaction between the system and its environment as a zero-
sum game. The computer system is a player, and a worst-case assumption
is made about the environment, which is modeled as an antagonistic
player. The specification is translated as a game objective. The systemwould
like that the specification is guaranteed no matter what uncontrollable
events happen in the environment. This corresponds to implementing a
winning strategy for the objective in the derived zero-sum game opposing
the system and the environment. The reactive synthesis problem can be
reformulated as the quest to automatically construct winning strategies in
the derived games, where the strategies correspond to controllers of the
original system.

1 Introduction 3

For the purpose ofmodeling possibly non-terminating systems,we assume
that the interaction between the system and its environment lasts for an
infinite duration. A reasonable way to encode a game objective is then to
specify all infinite interactions between the system and the environment
that are deemed acceptable with respect to the specification. This is usually
done with logical formulas or automata.

The model. We consider games on graphs, which are central tools in
theoretical computer science tomodel systems involving competing agents.
More specifically, we study two-player zero-sum games on graphs played in a
turn-based fashion.

In such a game, a graph represents the various states of a system and
the transitions between them. A pebble in some vertex of the graph
indicates the current state of the system. Two players, called P1 and P2,
take turns moving the pebble along the edges of the graph. Exactly one
player controls each vertex of the graph. Edges of the graph are labeled
with colors from some given alphabet. We assume that the interaction
between the players lasts for an infinite duration; as the pebble moves
along the edges, it generates an infinite sequence of colors. PlayerP1 wants
to achieve an objective, which is specified as a set of infinite sequences
of colors deemed acceptable; the antagonistic player P2, as a worst-case
assumption, seeks to prevent this.

We consider a simple and practical example. Assume that a computer
system wants to let a user define a new password. To do so, the user
must correctly enter the same valid password twice in a row after being
prompted by the system. If and only if the user has correctly entered the
same password twice, the system must immediately follow by providing
a confirmation to the user. The system (P1) must therefore decide between
prompting the user or confirming the inputs, based on the behavior of
the user (P2) who may either pass or fail the password verification. We
model this as a game on a graph. We assume that the alphabet of colors is
{prompt, confirm, pass, fail}. The graph modeling the interaction between
the players is depicted in Figure 1.1. The system controls the actions from
vertex E1 (where a choice can be made between prompt or confirm), and
the user influences the action pass or fail from vertex E2 (we leave the
implementation of the actual function checking the passwords out of this
model).

E1 E2

prompt

confirm

fail

pass

Figure 1.1:A two-player zero-
sum game on a graph de-
scribing a system that must
react accordingly when the
same valid password is en-
tered twice in a row.

1 Introduction 4

The players use strategies to describe their behaviors, which are math-
ematical objects that make decisions based on the current vertex and
what happened previously. We are here interested in building a winning
strategy for the system, i.e., a strategy guaranteeing the specification no
matter what the user does. This winning strategy needs to remember
some information about the past, consisting in the previous actions of
the players. One way to remember part of this information is by using a
state machine updating its state depending on the events happening in
the game. In this example, it is relevant for the state machine to count the
number of times pass appeared in a row without fail, between 0 and 2. We
depict such a machine in Figure 1.2.

<0 <1 <2
pass pass

pass

fail

fail

fail

prompt, confirm prompt, confirm prompt, confirm

Figure 1.2: A state machine
counting the number of con-
secutive occurrences of pass
in order to output confirm at
the adequate time.

This state machine has three states <0, <1, and <2. It is initialized in
state <0. When an event occurs in the interaction, the machine state is
updated by “reading” the event along a transition. For instance, if event
pass occurs when the state is <0, the state is updated to <1. By knowing
that the current state is <1, the system knows that one pass has been seen
with no fail since.

If the system does not remember anything about the past, it cannot make
optimal decisions, as it needs to output sometimes prompt and sometimes
confirm depending on the previous events in the environment. But using
additionally the information provided by this machine, the system may
make optimal decisions: when in <0 or <1, take action prompt; when in
<2, take action confirm.

A synthesis algorithm, given the graph and a formal encoding of the
specification, should automatically output such a state machine and the
decisions to make in each situation (i.e., for each pair composed of a graph
vertex and a machine state). An interesting observation in this example is
that it is possible to realize the specification with a machine with finitely
many states. In other words, there is no need to remember all previous
events in the interaction, and it suffices to remember the current state of a
finite-state machine. This is a useful property to actually implement the
strategy in a computer system.

1.2 Origin of games on graphs

We give an overview of the most fundamental works about the synthesis
problem using games on graphs and its significance in practical applica-

1 Introduction 5

tions. We refer to [GTW02; BCJ18] for a more detailed discussion about [GTW02]: Grädel et al. (2002),
Automata, Logics, and Infinite

Games: A Guide to Current Re-

search [outcome of a Dagstuhl

seminar, February 2001]

[BCJ18]: Bloem et al. (2018),
Graph Games and Reactive Syn-

thesis

the significance of games on graphs.

Logical andautomata-theoretic roots. The idea of the synthesis problem
was born in the late 1950s, after Church [Chu57] wondered ambitiously

[Chu57]: Church (1957),Appli-
cation of Recursive Arithmetic to

the Problem of Circuit Synthesis

about the existence of algorithms that could synthesize a logical circuit
from mathematical specifications. The first answers came from works by
Büchi [Büc62], Landweber [BL69], and Rabin [Rab69], who showed the

[Büc62]: Büchi (1962), On a

Decision Method in Restricted

Second Order Arithmetic

[BL69]: Büchi et al. (1969), De-

finability in theMonadic Second-

Order Theory of Successor

[Rab69]: Rabin (1969), Decid-

ability of Second-Order Theories

and Automata on Infinite Trees

decidability of multiple monadic second-order theories. The foundation
at the core of these approaches is automata theory: specifications in these
theories can be translated into automata [Büc60; Elg61; McN66]. These

[Büc60]: Büchi (1960), Weak

Second-Order Arithmetic and

Finite Automata

[Elg61]: Elgot (1961), Decision

Problems of Finite Automata

Design and Related Arithmetics

[McN66]: McNaughton
(1966), Testing and Generating
Infinite Sequences by a Finite

Automaton

automata are often more complex than classical (non-)deterministic finite
automata: they read infinite words that they have to accept or reject.

A reformulation of these questions through deciding the winner of zero-
sum turn-based games of infinite duration arose as natural and intuitive, and
offered simplifications of the above decidability proofs. A game-theoretic
approach by Gurevich and Harrington [GH82] used games on infinite

[GH82]: Gurevich et al. (1982),
Trees, Automata, and Games

trees, which was also rephrased by McNaughton [McN93] using finite

[McN93]: McNaughton
(1993), Infinite Games Played

on Finite Graphs

graphs. This thesis adopts the latter viewpoint due to its convenience and
relative dominance in the modern literature.

Specifications from automata on infinite words are usually called $-
regular, as they extend the classical regular languages to words of infinite
length. Multiple models of automata on infinite words (sometimes called
$-automata) have been defined to express $-regular languages (Büchi,
Rabin, Streett, Muller, parity. . .).

Reactive synthesis. These logical, automatic, and game-theoretic tools
found practical applications to the fields of model checking and synthesis

of reactive systems sketched above. Model checking [BK08] and synthe- [BK08]: Baier et al. (2008),
Principles of model checkingsis [BCJ18] are extremely valuable approaches toward guaranteeing the

correctness of systems. They offer automated proofs that (a model of an)
implementation is correct; by analysis of the model for model checking,
or by design for synthesis.

Deciding specifications using monadic second-order logic formulas unfor-
tunately has non-elementary complexity [Mey75], making it impractical in [Mey75]: Meyer (1975),Weak

monadic second order theory

of succesor is not elementary-

recursive

such generality. The success of model checking and synthesis was helped
by logical restrictions that were found to retain a good expressivity while
being easier to decide. One successful example is the linear-time temporal

logic (LTL) first defined by Pnueli [Pnu77], which is less expressive but [Pnu77]: Pnueli (1977), The

Temporal Logic of Programsfor which the synthesis problem is “only” 2EXPTIME-complete [PR89].
[PR89]: Pnueli et al. (1989),On

the Synthesis of a Reactive Mod-

ule

Despite still a high theoretical complexity, recent endeavors (illustrated,
e.g., by efficient algorithms for expressive fragments [BJP+12] and by

[BJP+12]: Bloem et al. (2012),
Synthesis of Reactive(1) designs

the Reactive Synthesis Competition SYNTCOMP) show that the synthesis
problem is feasible in practice for many reasonable LTL specifications.

1 Introduction 6

In all these works, both about logical theories and about reactive synthesis,
a key element for decidability can be understood as follows: when a player
has a winning strategy in a game, this player has a winning strategy that a

finite-state machine can implement. This usually provides an upper bound on
the number of strategies to consider. The study of how complex strategies
need to be in order to implement winning strategies (if they exist) becomes
central.

1.3 Strategy complexity

Given a (two-player zero-sum) game on a graph, the first question one
can ask is probably “which player can win?”. More formally, this should
be understood as “which player has a strategy that guarantees a win
no matter how the opponent player behaves, i.e., a winning strategy?”.
Obviously, in a zero-sum game on a graph, the players cannot both have
a winning strategy from the same vertex. A surprising property of most
reasonable games is that they are determined, i.e., from any initial vertex,
one of the players has a winning strategy (the negation would be that all
strategies of both players are countered by a strategy of their opponent).
This result stems from the Borel determinacy result by Martin [Mar75], [Mar75]: Martin (1975), Borel

determinacystating that every turn-based Borel game is determined. A game is Borel
if the game objective is a Borel set, which goes well beyond $-regular
languages.

With that out of the way, we know that in most games (including all
the ones we will consider in this document), from a given initial vertex,
exactly one of the players has a winning strategy. How do we decide
which player it is? Answering this question is called solving the game. A
reasonable attempt at an algorithm would be to try to exhibit a winning
strategy for a player. However, strategies are complex objects. In general,
a player’s strategy needs to consider what already happened in the game
(for instance, by looking at the sequence of edges already taken), and,
when it is the player’s turn, it needs to return the next edge to follow. There
are therefore infinitely many strategies, and a winning strategy may not
have a finite representation. To bound the size of the search space, we need
stronger properties than just determinacy. This is where finite-memory

determinacy proves useful.

Finite-memory determinacy. Finite-memory determinacy is the prop-
erty of a game objective stating that, whenever a player can win in a graph
for this objective, this player may also win using a “simple” strategy that
uses only a finite amount of memory. In other words, it is not necessary to
remember everything that happened in the past to win; a player can con-
dense this unbounded information into a bounded amount of information
and still retain sufficient information to make optimal decisions. In this
case, we say that finite memory suffices to win. A common computational

1 Introduction 7

model to implement finite-memory strategies is a finite-state machine (more
precisely, aMealy machine [Mea55]), which is roughly a finite automaton [Mea55]: Mealy (1955), A

method for synthesizing sequen-

tial circuits

that also outputs the action to take depending on the current vertex of the
graph and the current machine state.

A landmark result at the core of the decidability of the aforementioned
logical theories is the finite-memory determinacy of $-regular game objectives.
The first authors to state a result in this form were Gurevich and Har-
rington [GH82], simplifying Rabin’s proof [Rab69]. They showed that for [GH82]: Gurevich et al. (1982),

Trees, Automata, and Games

[Rab69]: Rabin (1969), Decid-

ability of Second-Order Theories

and Automata on Infinite Trees

games with objectives specified asMuller conditions, one of the players has
a winning strategy implemented with a number of states at most factorial
in the number of alphabet symbols on which the Muller condition is
defined. Dziembowski, Jurdziński, and Walukiewicz have since refined
this result [DJW97] to an algorithm that computes the precise number of [DJW97]: Dziembowski et al.

(1997), How Much Memory is

Needed to Win Infinite Games?

memory states needed to implement winning strategies in Muller games
(which is still factorial in the worst case).

Memoryless determinacy. Remarkably, for several canonical classes of
games, even less memory is required: no information at all about the past
is necessary to implement winning strategies (only the current vertex of
the graph matters). Strategies that use no memory are called memoryless

(or positional); when they suffice to win for an objective in all game graphs
for both players, we say that the objective is memoryless-determined. A
memoryless strategy is a special kind of a finite-memory strategy that
uses only one memory state (and thus, cannot distinguish anything about
the past). Arguably the most important games for which memoryless
strategies suffice to win (for both players) are games with parity conditions.
Parity conditions can be used to express all $-regular languages when
adjoined to an automaton (albeit with a larger automaton than when
using Muller conditions), and games with parity conditions are effectively
equivalent to the �-calculus model checking [EJ91]. Their memoryless [EJ91]: Emerson et al. (1991),

Tree Automata, Mu-Calculus

and Determinacy (Extended Ab-

stract)

determinacy was shown independently by Emerson and Jutla [EJ91] and
Mostowski [Mos91].

[Mos91]: Mostowski (1991),
Games with Forbidden Positions

Memoryless determinacy of an objective is an attractive property in
practice, as algorithms solving games with this objective do not need to
consider complex strategies. A winning memoryless strategy is an object
of size polynomial in the size of the graph: it suffices to store one action per
vertex of the graph controlled by this player.As solvingparity gameswhere
one player has fixed a strategy can be done in polynomial time, this leads
to a direct proof that parity games are in NP ∩ coNP, just by analyzing
the strategy complexity. Memoryless determinacy of parity games is
partly why formulating specifications as deterministic parity automata
is a common step of many efficient LTL synthesis algorithms [BCJ18]. [BCJ18]: Bloem et al. (2018),

Graph Games and Reactive Syn-

thesis

Parity games have recently been shown to be solvable in quasi-polynomial
time in a breakthrough result [CJK+17] — whether they are solvable in

[CJK+17]: Calude et al. (2017),
Deciding parity games in quasi-

polynomial time

polynomial time remains an open problem.

1 Introduction 8

Many other common classes of games are memoryless-determined when
played over finite graphs; e.g., discounted-sum games [Sha53]

[Sha53]: Shapley (1953),
Stochastic Games, mean-payoff

games [EM79], energy games [CdHS03], total-payoff games [GZ04]. These [EM79]: Ehrenfeucht et al.
(1979), Positional Strategies for
Mean Payoff Games

[CdHS03]: Chakrabarti et al.
(2003), Resource Interfaces
[GZ04]: Gimbert et al. (2004),
When Can You Play Position-

ally?

games are used to model quantitative properties.

Given the simplicity of memoryless strategies, it is remarkable that they
suffice for objectives as rich as the ones above. Following this observa-
tion, a lot of effort has been put in understanding which games admit
memoryless optimal strategies, and in identifying the exact frontiers of
memoryless determinacy. We mention, non-exhaustively, works by Gim-
bert and Zielonka [GZ05] (characterization of memoryless determinacy [GZ05]: Gimbert et al. (2005),

Games Where You Can Play Op-

timally Without Any Memory

for games played on finite graphs), Colcombet and Niwiński [CN06]

[CN06]: Colcombet et al.
(2006), On the positional deter-

minacy of edge-labeled games

(characterization for games played on infinite graphs), Aminof and Ru-
bin [AR17] (through the prism of first-cycle games), Kopczyński [Kop06],

[AR17]: Aminof et al. (2017),
First-cycle games

[Kop06]: Kopczyński (2006),
Half-Positional Determinacy of

Infinite Games

Bianco, Faella, Mogavero, and Murano [BFMM11], and Ohlmann [Ohl23]

[BFMM11]: Bianco et al. (2011),
Exploring the boundary of half-

positionality

[Ohl23]: Ohlmann (2023),
Characterizing Positionality in

Games of Infinite Duration over

Infinite Graphs

(half-positionality). All these advances were built by identifying the com-
mon underlyingmechanisms in ad hoc proofs for specific classes of games,
and generalizing them towide classes (e.g., the first-cycle games of Aminof
and Rubin are inspired by the paper of Ehrenfeucht and Mycielski on
mean-payoff games [EM79]).

Complex specifications. Over the last decade, the increasing need to
model complex specifications has shifted research toward games where
multiple (quantitative and qualitative) objectives — often beyond $-
regular ones — interact, requiring the analysis of trade-offs between
several objectives. In order to improve the understanding of these trade-
offs, a lot of effort is put in studying games where objectives are rich
Boolean combinations of objectives. We mention for example [CHP07]

[CHP07]: Chatterjee et al.
(2007), Generalized Parity

Games

for combinations of parity, [CD12; CRR14; JLS15] for combinations of [CD12]: Chatterjee et al.
(2012), Energy parity games

[CRR14]: Chatterjee et al.
(2014), Strategy synthesis for

multi-dimensional quantitative

objectives

[JLS15]: Jurdziński et al.
(2015), Fixed-Dimensional En-

ergy Games are in Pseudo-

Polynomial Time

energy and parity, [VCD+15] for combinations of mean-payoff, [CDRR15]

[VCD+15]: Velner et al. (2015),
The complexity of multi-mean-

payoff and multi-energy games

[CDRR15]: Chatterjee et al.
(2015), Looking at mean-payoff

and total-payoff through win-

dows

for combinations of total-payoff, or [BMR+18; BHM+17] for combinations

[BMR+18]: Bouyer et al.
(2018), Average-energy games

[BHM+17]: Bouyer et al.
(2017), Bounding Average-

Energy Games

of energy and average-energy objectives.

When considering such rich objectives, memoryless strategies usually do
not suffice, and one has to use an amount of memory that can hinder
the implementation (e.g., exponential memory) or that can prevent it
(infinite memory). Establishing precise memory bounds for such general
combinations of objectives is tricky and sometimes counterintuitive. For
example, while mean-payoff games and energy games are memoryless-
determined and inter-reducible in the single-objective setting, exponential-
memory strategies are both sufficient and necessary for conjunctions of
energy objectives [CRR14; JLS15] while infinite-memory strategies are
required for conjunctions of mean-payoff ones [VCD+15].

1 Introduction 9

1.4 Contributions

Our work starts from the observation that while there is a good under-
standing of memoryless determinacy in the literature (thanks to multiple
characterizations and general sufficient conditions), this is not so much
the case for finite-memory determinacy. Studying strategy complexity
is a common staple in most works about zero-sum games on graphs,
but there are few general results for strategies beyond memoryless ones.
We give a high-level overview of our contributions, which are aimed at
remedying this observation, and which we divide into two parts. More
precise statements and comparisons with the literature will be given in
introductory chapters to each part, as well as in the introduction of each
contribution chapter.

1.4.1 Characterizing finite-memory determinacy

In the first part of the thesis, titled Characterizing finite memory requirements,
our goal is to provide practical characterizations of finite-memory deter-
minacy of game objectives. We strive for generality: we want our results
to encompass as many objectives as possible. We will see that there are
multiple kinds of finite-memory determinacy. In order to bemore specific, we
define what we mean by a finite-memory strategy: a finite-memory strategy
consists of

I amemory structure: roughly, a deterministic automaton keeping track
of some information based on the alphabet symbols already seen
(the information it provides is given by its current state), and

I a next-action function, prescribing the actions to take depending on
the graph vertex and the memory structure state.

In its more general meaning, finite-memory determinacy of an objective
requires that in all graphs, both players can implement winning strategies
for this objective with finite-memory strategies.

Arena-independent finite-memory determinacy. We identified a valu-
able strengthening of finite-memory determinacy which we called arena-

independent finite-memory determinacy. This property of an objective re-
quires that players can implement winning strategies with finite-memory
strategies whose memory structure can be taken as the same in all game

graphs using this objective. Such a memory structure can then depend on
parameters of the objective, but not parameters of the game graph (called
the arena) in which the game is played. The information that the memory
structure can use to update its state can then not be elements observed in
arenas (such as vertices and edges), but letters of the alphabet onwhich the
objective is defined (this alphabet is called the set of colors). This leads to
the convenient notion of chromatic memory structures, which can be instan-
tiated without considering specific arenas. The idea of chromatic memory

1 Introduction 10

structureswas already developed by Kopczyński in his PhD thesis [Kop08]. [Kop08]: Kopczyński (2008),
Half-positional Determinacy of

Infinite Games

Naturally, the winning strategies built on top of these chromatic memory
structureswill then depend on the actual game graphs for their next-action
functions. Compared to the more general finite-memory determinacy,
arena-independent finite-memory determinacy inverts the order of the
quantifiers: there must exist a “uniform” memory structure such that in
all graphs, there exist winning strategies using the memory structure.

Memoryless determinacy is a special case of arena-independent finite-
memory determinacy: the memory structure used by the memoryless
strategies is always the trivial structure with a single state. Arena-
independent finite-memory determinacy, despite being less general than
finite-memory determinacy, applies to many objectives, including all $-
regular ones. One of the main interests of this kind of determinacy is that
we were able to extend (with some work) techniques usually applicable
for the more precise memoryless determinacy. In particular, we generalized
results about memoryless determinacy of games played on finite graphs
by Gimbert and Zielonka [GZ05] and of games played on infinite graphs [GZ05]: Gimbert et al. (2005),

Games Where You Can Play Op-

timally Without Any Memory

by Colcombet and Niwiński [CN06].

[CN06]: Colcombet et al.
(2006), On the positional deter-

minacy of edge-labeled games

Finite game graphs, one-to-two-player lifts. For games on finite graphs,
one of our main contributions is a practical result: to show arena-
independent finite-memory determinacy of an objective, it suffices to
show the property in the one-player games of both players. A one-player
game is simply a game in which the same player controls all vertices — it
is an edge-labeled graph. Finding a winning strategy in a one-player game
(when it exists) simply consists of finding a winning path in the graph,
with no need to take into account the opponent’s behavior. This reasoning
is graph-theoretic, which is simpler than corresponding game-theoretic
reasonings for the same objective. We call such a result a one-to-two-player

lift, as to understand (a kind of) strategy complexity of two-player zero-
sum games, it suffices to understand the strategy complexity of one-player
games, which is conceptually easier.

The first such result was formulated formemoryless determinacy of games
played on finite graphs in [GZ05] (i.e., to show memoryless determinacy
of an objective over finite graphs, it suffices to show the property in the
one-player games on finite graphs of both players). Our result is an extension
of it to the broader arena-independent finite-memory determinacy, with
a relatively small increase in memory when going from one-player to
two-player games: the product of the memory structures sufficient in the
one-player games of each player suffices for both players in two-player
games. Unfortunately, we also show that such a one-to-two-player lift for
the more general finite-memory determinacy does not hold: there exists
a game objective for which both players have finite-memory strategies
(whose memory structure depends on the graph) in their one-player
games, but infinite memory is required for a player in some two-player

1 Introduction 11

game. Considering arena-independent finite-memory determinacy is there-
fore a natural restriction to preserve this powerful result. The lift is
obtained through a characterization of arena-independent finite-memory
determinacy using two language-theoretic properties.

Results similar to this one-to-two-player lift will be a common thread in An overview of all the ver-
sions of this one-to-two-player
lift is provided in Subsec-
tion 9.1.2 of the conclusion.

our work, with alternate versions of it holding in other contexts, and
with strengthenings available for more specific classes of objectives. We
further the idea that strategy complexity of two-player zero-sum games
often reduces to the simpler strategy complexity of one-player games, also
developed by others [GZ05; Kop08; GZ09; Koz22b]. [GZ05]: Gimbert et al. (2005),

Games Where You Can Play

Optimally Without Any

Memory

[Kop08]: Kopczyński (2008),
Half-positional Determinacy of

Infinite Games

[GZ09]: Gimbert et al. (2009),
Pure and Stationary Optimal

Strategies in Perfect-Information

Stochastic Games with Global

Preferences

[Koz22b]: Kozachinskiy
(2022), One-To-Two-Player

Lifting for Mildly Growing

Memory

Infinite game graphs. A known fact about strategy complexity is that
increasing the size of the game graphs may require using more complex
strategies. In particular, some objectives arememoryless-determinedwhen
considered over finite graphs, but suddenly require infinite memory to
implement winning strategy in some infinite game graph: this is the case
for the mean-payoff objective [Put94].

[Put94]: Puterman (1994),
Markov Decision Processes: Dis-

crete Stochastic Dynamic Pro-

gramming

There are therefore fewer objectives that admit “simple”winning strategies
when taken over arbitrary graphs. On the other hand, the ever-present
parity condition is an objective whose memoryless determinacy is pre-
served in infinite graphs (of any cardinality) [EJ91; Mos91; Zie98]. This

[EJ91]: Emerson et al. (1991),
Tree Automata, Mu-Calculus

and Determinacy (Extended Ab-

stract)

[Mos91]: Mostowski (1991),
Games with Forbidden Positions

[Zie98]: Zielonka (1998), Infi-
nite Games on Finitely Coloured

Graphs with Applications to Au-

tomata on Infinite Trees

is remarkable in its own way, but a converse of this result also holds,
cementing the place of the parity condition as a special and unique objec-
tive. This converse, by Colcombet and Niwiński [CN06], states that any

[CN06]: Colcombet et al.
(2006), On the positional deter-

minacy of edge-labeled games

objective that is both memoryless-determined (over infinite graphs) and
prefix-independent is a parity condition. Prefix-independence is a common
technical assumption on objectives requiring that whether an infinite word
is in the objective is not influenced by its finite prefixes; parity conditions
and Muller conditions are prefix-independent.

Given our motivation to push results about strategy complexity from
memoryless to finite-memory determinacy, a natural question becomes:
what objectives remain finite-memory determined over infinite game graphs?

We again focus on arena-independent finite-memory determinacy, both
for technical convenience and as we do not know of an example distin-
guishing it from the more general finite-memory determinacy in games
played on infinite graphs. We show that the objectives that are arena-
independent-finite-memory-determined over infinite graphs are exactly
the $-regular objectives. One implication was known since [BL69; GH82] [BL69]: Büchi et al. (1969), De-

finability in theMonadic Second-

Order Theory of Successor

[GH82]: Gurevich et al. (1982),
Trees, Automata, and Games

and was discussed above; the other implication is our main contribution
in this characterization. It generalizes the results of Colcombet and Ni-
wiński [CN06] in two ways: by generalizing the class of strategies and
getting rid of the prefix-independence hypothesis. For the latter, we revisit
the algebraic notion of right congruence at the core of the Myhill-Nerode
theorem for languages of finite words [Ner58]. We obtain a precise link [Ner58]: Nerode (1958), Linear

Automaton Transformationsbetween the representation of an $-regular objective as a deterministic

1 Introduction 12

parity automaton based on its memory requirements and on its right
congruence.

As a by-product, we once again obtain a one-to-two-player lift: it suffices
to check arena-independent finite-memory determinacy of an objective
in infinite one-player game graphs (of both players) to guarantee it in
infinite two-player game graphs. However, compared to the previous lift
for games played on finite graphs, there is a slightly greater memory
increase when going from one-player to two-player games.

1.4.2 Precise memory requirements

We have up to now discussed characterizations of arena-independent
finite-memory determinacy in various contexts. Despite being of wide
applicability with respect to objectives, these results do not always provide
tight memory requirements for each player; they usually only provide
upper bounds on the size of the memory structures needed to implement
optimal strategies. Moreover, these upper bounds do not distinguish the
two players, even though their memory requirements can varywildly. This
is the case for the famous Rabin conditions [KK91], for which the first player [KK91]: Klarlund et al. (1991),

Rabin Measures and Their Ap-

plications to Fairness and Au-

tomata Theory

does not need memory to implement winning strategies, but for which
the second player, playing for a Streett condition, requires exponential
memory [DJW97]. In the second part of the thesis, titled Obtaining precise

[DJW97]: Dziembowski et al.
(1997), How Much Memory is

Needed to Win Infinite Games?

memory requirements, we consider more precise classes of objectives in
order to obtain more precise memory requirements.

Missing pieces for $-regular objectives. Our choice for these classes
stems from the following observation: the memory requirements of $-regular

objectives are still not completely settled. They are completely settled for
the well-known class of Muller conditions through various characteri-
zations [DJW97; Cas22; CCL22]; yet, this only provides an upper bound [Cas22]: Casares (2022), On

the Minimisation of Transition-

Based Rabin Automata and

the Chromatic Memory Require-

ments of Muller Conditions

[CCL22]: Casares et al. (2022),
On the Size of Good-For-Games

Rabin Automata and Its Link

with the Memory in Muller

Games

on the memory requirements of other $-regular objectives. Indeed, an
arbitrary $-regular objective can be represented as aMuller condition only
by adjoining it to an automatic structure (yielding a Muller automaton).
The minimal memory structures that also take into account the automatic
structures are not well-understood.

Regular objectives. To alleviate this, we first focus on what we called
regular reachability objectives, which are the sets of infinite words having a
finite prefix in a given regular language. In such games, the antagonistic
opponent wants to prevent any finite prefix from being in the regular lan-
guage for an infinite duration, which we call a regular safety objective. These
objectives are very simple and can be represented by classical deterministic
finite automata. Perhaps surprisingly, the minimal memory structures
for these objectives were not yet understood, despite the simplicity of
the problem (which can be rephrased as “what is the minimal amount of

1 Introduction 13

information that must be remembered to realize a word from a regular language?”).
Only the strategy complexity of regular safety objectives (for an alternate
memory model discussed in Chapter 2) was studied in [CFH14; CFH22]. [CFH14]: Colcombet et al.

(2014), Playing Safe
[CFH22]: Colcombet et al.
(2022), Playing Safe, Ten Years

Later

We characterize the memory requirements of these objectives through
decidable language-theoretic properties (both for the player trying to
achieve the regular reachability objective and its opponent). We also prove
that, given a deterministic finite automaton as an input, it is NP-complete
to decide the existence of a sufficient memory structure with a given
number of states. In other words, it is not possible to find a smallest
memory structure in polynomial time unless P = NP. We implemented
the search for a smallest memory structure using a SAT solver.

In addition to these regular objectives, we also discuss the extension
of our results to topologically open and closed objectives, which are natural
generalizations of regular objectives through a topological point of view.

Deterministic Büchi automata. Despite being a novelty with regard to
memory requirements, regular objectives are still far from covering all
$-regular objectives. To get closer to general $-regular objectives, we con-
sidered automata giving rise to more complex objectives: the deterministic

Büchi automata. We do not show precise memory requirements, but we
characterize those recognizing objectives for which P1 has memoryless

winning strategies. This property is weaker than memoryless determinacy
as it is not required that P2 also has memoryless winning strategies, and
is often called half-positionality [Kop06; BFMM11]. Our characterization [Kop06]: Kopczyński (2006),

Half-Positional Determinacy of

Infinite Games

[BFMM11]: Bianco et al. (2011),
Exploring the boundary of half-

positionality

consists of three conditions; two of them are inherited from the study
of regular objectives, and are still necessary conditions. However, their
conjunction is not sufficient anymore in this larger class of objectives. We
add a third condition (related to the right congruence and Myhill-Nerode
theorem) that was previously useful for the learning of languages [AFS20;
AF21], but that was not shown to be linked to strategy complexity. Together, [AFS20]: Angluin et al. (2020),

Polynomial Identification of $-
Automata

[AF21]: Angluin et al. (2021),
Regular $-languages with an

informative right congruence

the three conditions are equivalent to half-positionality of objectives recog-
nizable by deterministic Büchi automata. This characterization is shown to
be effective and provides a way to decide the half-positionality of objectives
recognizable by deterministic Büchi automata in polynomial time.

Unlike memoryless determinacy, results about half-positionality were
mostly sufficient conditions and not characterizations [Kop06; BFMM11].
In particular, they do not encompass all half-positional objectives recog-
nized by deterministic Büchi automata. This situation changed recently
with a characterization of half-positionality over infinite game graphs
by Ohlmann [Ohl23], but this characterization is still difficult to apply [Ohl23]: Ohlmann (2023),

Characterizing Positionality in

Games of Infinite Duration over

Infinite Graphs

systematically to all $-regular objectives. We use this new characterization
for one implication of our equivalence.

Precise lifts. As part of our characterizations for regular objectives and
deterministic Büchi automata, we obtain (for these specific classes of

1 Introduction 14

objectives) one-to-two-player lifts stronger than the general ones from the
first part. First, we show that the memory requirements of a single player
in its own one-player games are exactly the same as in its two-player
games (with no need to intertwine it with the memory requirements of
the opponent). Secondly, we show that there is no difference between
the memory requirements in finite and infinite game graphs. Combined,
these results tell us that for these subclasses of $-regular objectives, the
memory requirements in one-player games on finite graphs are the same
as in two-player games on graphs of arbitrary cardinality.

1.5 Outline

High-level structure. Each of the two parts of this thesis includes three
chapters (respectively Chapters 3, 4, and 5 and Chapters 6, 7, and 8). The
first chapter of each part consists in a motivation of the problems that the
part addresses and the answers that it provides. It also contains a more
precise discussion of the related literature focused on the problems at
hand in addition to the references discussed above. The other two chapters
in each part contain our main contributions. The chapters containing our
contributions are all structured in a similar fashion, containing at least
one section for each of the following items:

I notations and preliminaries about notionsmainly used in the current
chapter, complementing global preliminaries from Chapter 2;

I an overview of our results and contributions;
I detailed proofs of the results.

Chapter content. Chapter 2 contains the main preliminaries for the
whole thesis: we formally introduce the model of games on graphs, some
classical objectives, definitions of classes of strategies, and definitions of
kinds of determinacy.

The next three chapters constitute the part Characterizing finite memory

requirements.

I In Chapter 3, we introduce our contributions about characterizing
objectives with finite memory requirements. We present existing
works about memoryless determinacy, justify the relevance of arena-
independent finite-memory determinacy, and sketch our results from
the next two chapters.

I In Chapter 4, we characterize arena-independent finite-memory
determinacy of games played on finite graphs. We provide both a
language-theoretic characterization and a practical one-to-two-player
lift, generalizing results from [GZ05]

[GZ05]: Gimbert et al. (2005),
Games Where You Can Play Op-

timally Without Any Memory

. Results from this chapter orig-
inate from a collaboration with Patricia Bouyer, Stéphane Le Roux,
Youssouf Oualhadj, and Mickael Randour [BLO+20; BLO+22]

[BLO+20]: Bouyer et al.
(2020), Games Where You Can

Play Optimally with Arena-

Independent Finite Memory

[BLO+22]: Bouyer et al.
(2022), Games Where You Can

Play Optimally with Arena-

Independent Finite Memory

.

1 Introduction 15

I In Chapter 5, we characterize arena-independent finite-memory
determinacy of games played on arbitrary graphs. We find that
objectives with this property are exactly the $-regular ones, which
provides a converse to the finite-memory determinacy of $-regular
objectives, and generalizes results from [CN06] about a characteri- [CN06]: Colcombet et al.

(2006), On the positional deter-

minacy of edge-labeled games

zation of memoryless determinacy. This allows relating the memory
requirements of an objective with its representation as a determin-
istic parity automaton. Results from this chapter originate from a
collaboration with Patricia Bouyer and Mickael Randour [BRV22a;
BRV23]. [BRV22a]: Bouyer et al.

(2022), Characterizing

Omega-Regularity Through

Finite-Memory Determinacy of

Games on Infinite Graphs

[BRV23]: Bouyer et al.
(2023), Characterizing

Omega-Regularity Through

Finite-Memory Determinacy of

Games on Infinite Graphs

The part Obtaining precise memory requirements is then contained in the
next three chapters.

I In Chapter 6, we describe what is still unknown about the memory
requirements of $-regular objectives, despite the extensive literature
on the topic. We argue that to go further, we need to understand
memory requirements of the $-regular objectives requiring repre-
sentations with a non-trivial automaton structure.

I In Chapter 7, we introduce regular objectives as the subclass of the $-
regular ones definable with a simple deterministic finite automaton.
We characterize precisely the memory requirements of regular
objectives (for both players) and show that deciding the existence of
small memory structures given an input automaton is NP-complete.
Results from this chapter originate from a collaborationwith Patricia
Bouyer, Nathanaël Fĳalkow, and Mickael Randour [BFRV22]. [BFRV22]: Bouyer et al.

(2022), How to Play Optimally

for Regular Objectives?

I In Chapter 8, we consider the broader class of $-regular objectives
recognizable by deterministic Büchi automata. We characterize exactly
those for which P1 needs no memory to play optimally, and show
that this property is decidable in polynomial time. Results from this
chapter originate from a collaboration with Patricia Bouyer, Antonio
Casares, and Mickael Randour [BCRV22]. [BCRV22]: Bouyer et al.

(2022), Half-Positional Objec-

tives Recognized by Determinis-

tic Büchi Automata

In Chapter 9, we naturally end the thesis with a concluding part, summa-
rizing our contributions and emphasizing some prospects and leads for
the future.

Publication history. Contributions in this thesis originate from the
five published articles [BLO+20; BLO+22; BRV22a; BRV23; BCRV22]

[BLO+20]: Bouyer et al.
(2020), Games Where You Can

Play Optimally with Arena-

Independent Finite Memory

[BLO+22]: Bouyer et al.
(2022), Games Where You Can

Play Optimally with Arena-

Independent Finite Memory

(journal articles [BLO+22; BRV23] respectively subsume the conference
versions [BLO+20; BRV22a]), and the technical report [BFRV22] available
online. An overview including five of the six articles [BLO+20; BLO+22;
BRV22a; BRV23; BCRV22] detailed in this thesis was published as an
18-page invited paper in the proceedings of FSTTCS’22 [BRV22b]. It can [BRV22b]: Bouyer et al.

(2022), The True Colors of

Memory: A Tour of Chromatic-

Memory Strategies in Zero-Sum

Games on Graphs (Invited Talk)

be seen as a short survey of the results of this thesis, excluding the results
from [BFRV22] (Chapter 7) which are posterior to it. An additional work
about stochastic games [BORV21a] is briefly discussed in Subsection 4.8.1

[BORV21a]: Bouyer et al.
(2021), Arena-Independent

Finite-Memory Determinacy in

Stochastic Games

but not fully detailed.

1 Introduction 16

Chap. 2

Chap. 3

Chap. 4 Chap. 5

Chap. 6

Chap. 7 Chap. 8Contribution
chapters

Introductions
to parts

Preliminaries

Part I Part II

Figure 1.3: Structure and
main dependencies between
chapters of this thesis.
Dashed dependencies are
recommended to fully
appreciate the technical
arguments, but not necessary
to grasp the results.

Reading tips. The contributions chapters are written to be readable
as independently as possible; their results can be understood simply by
reading the general preliminaries (Chapter 2) and the introductory chapter
from their part. Naturally, links between chapters are still frequently
established to make this document a consistent whole, but they should
not prevent the reader from grasping the main contributions of each part.
Notably, a proof in Chapter 7 uses a general theorem of Chapter 4, some
motivations in Chapter 6 stem from the limits of the general results of the
first part, and some technical arguments necessary for Chapter 8 already
appear in Chapter 7. The dependencies between chapters are depicted in
Figure 1.3.

If you ever feel lost, two features of this thesis may help you. First,
Subsection 9.1.1 summarizes most properties defined in this thesis and
their implications related to strategy complexity. Secondly, a table of
notations encompassing all frequently used notations is available on
page 257.

This thesis was composed using the LATEX class kaobook. One of its main This class can be downloaded
at https://github.com/fma
rotta/kaobook.

features is the ability to add comments in the margin, replacing footnotes.
Comments are aligned horizontally with the content they refer to as much
as possible. Short versions of the bibliographic references are also printed
in the margin; a complete bibliography is of course available at the end of
the document.

Funding. This thesis’ author is an F.R.S.-FNRS Research Fellow in the
FrontieRS project, supervised by Patricia Bouyer (Université Paris-Saclay,
CNRS, ENS Paris-Saclay, LMF) and Mickael Randour (F.R.S.-FNRS &
Université deMons).M.Randour is an F.R.S.-FNRSResearchAssociate and
a member of the TRAIL institute. Contributions in parts of this document
were partially funded by other sources: Chapter 4 was supported by
F.R.S.-FNRS under Grant n◦ F.4520.18 (ManySynth), F.R.S.-FNRS mobility
funding for scientific missions (Y. Oualhadj in UMONS, 2018), and ENS
Paris-Saclay visiting professorship (M. Randour, 2019). Chapters 5, 7, and 8
were supported by the ANR Project MAVeriQ (ANR-20-CE25-0012).

https://github.com/fmarotta/kaobook
https://github.com/fmarotta/kaobook

Two-player turn-based games on

graphs 2

This chapter introduces turn-based games on graphs, which constitute the
main mathematical framework underlying this thesis. We focus on two-

player zero-sum games of infinite duration, a prevalent model to describe the
possibly never-ending interaction between a player seeking to achieve an
objective and its antagonistic opponent. Notions and notations defined
here are used throughout multiple chapters of this thesis. We start with
some classical mathematical concepts and then move on to our models of
games, objectives, strategies, and determinacy.

2.1 Mathematical notations . 17

2.2 Game arenas . 18

2.3 Strategies . 20

2.4 Objectives and games . 21

2.4.1 Optimality and determinacy . 22
2.4.2 Common examples of objectives . 23
2.5 Classes of simple strategies . 25

2.5.1 Finite-memory strategies . 26
2.5.2 Memoryless strategies . 28
2.6 Flavors of finite-memory determinacy 28

2.6.1 Memoryless determinacy . 28
2.6.2 Chromatic versus chaotic memory structures 29
2.6.3 Arena-independent finite memory . 32
2.6.4 Overview . 35
2.7 Automata and $-regular objectives . 35

2.8 Continuations and congruences . 40

2.1 Mathematical notations

We respectively denote by ℕ, ℤ, ℚ, and ℝ the sets of natural numbers
(starting at 0), integers, rational numbers, and real numbers.

Given a set �, we define �∗ as the set of finite sequences of elements of �,
�+ as the set of non-empty finite sequences of elements of �, and �$ as
the set of infinite sequences of elements of �. The cardinality of set � is
denoted by |�|. We denote the empty word by �.

Let � be a set. A preorder on � (also called a quasiorder) is a binary relation
� ⊆ � × � that is reflexive (0 � 0 for all 0 ∈ �) and transitive (01 � 02
and 02 � 03 implies 01 � 03 for all 01 , 02 , 03 ∈ �). Let � be a preorder on
�. We say that two elements 01 , 02 ∈ � are comparable for � if 01 � 02 or
02 � 01. Preorder � is total if for all 01 , 02 ∈ �, 01 and 02 are comparable.
A set Γ ⊆ � is a chain for � (resp. antichain for �) if for all 01 , 02 ∈ Γ, 01

2 Two-player turn-based games on graphs 18

and 02 are comparable (resp. are not comparable) for �. A preorder � is
well-founded if every chain for � contains a minimal element for �.
An equivalence relation on � is a preorder ∼ ⊆ � × � that is additionally
symmetric (01 ∼ 02 implies 02 ∼ 01 for all 01 , 02 ∈ �). For ∼ an equivalence
relation and 0 ∈ �, we write [0]∼ = {0′ ∈ � | 0 ∼ 0′} for the equivalence
class of 0 for ∼. We write �/∼ for the quotient of � by ∼, i.e., the set of
equivalence classes for ∼. The index of an equivalence relation is the
cardinality of its set of equivalence classes.

2.2 Game arenas

Let � be a non-empty alphabet of colors. We assume throughout this
document that there is always a quantified set � of colors, which is
sometimes instantiated in examples.

We study zero-sum turn-based games on graphs involving two players
interacting for an infinite duration. The two players are called P1 and P2.
Players play on arenas, which are graphs such that each vertex is controlled
by either P1 or P2. Intuitively, a configuration of the game is specified by
some current vertex of the arena, and P1 (resp. P2) decides on the next
vertex following an edge of the arena when the current vertex is controlled
by P1 (resp. P2). We also label the edges of arenas with colors from �,
which will be used later to specify game objectives. Observe that we take
the convention that edges are colored, and not vertices (both formalisms
are common in the literature).

Definition 2.2.1 Qualifiers between parenthe-
ses in definitions will usually
not be recalled but always ap-
ply to the object beingdefined,
unless otherwise specified. In
this case, all arenas in this
thesis are �-colored and two-
player, and all edges are �-
colored by default.

A (�-colored two-player) arena is a tuple A =
(+,+1 , +2 , �) where + is a non-empty set of vertices such that + = +1]+2
(symbol] denotes a disjoint union) and � ⊆ + ×�×+ is a set of (�-colored)
edges.

Let A = (+,+1 , +2 , �) be an arena. If 4 = (E, 2, E′) ∈ �, we denote E
by in(4), 2 by col(4), and E′ by out(4); i.e., for all edges 4 ∈ �, we have
4 = (in(4), col(4), out(4)). Vertices in+1 are controlled by P1 and vertices in
+2 are controlled byP2. We assume that arenas are non-blocking (“deadlock-
free”), i.e., that for all vertices E ∈ + , there is at least one edge 4 ∈ � such
that in(4) = E. In particular, |� | ≥ |+ |. This guarantees that the interaction
between players can always be prolonged, as an edge will always be
available in every vertex. This assumption is a technical convenience to
avoid having to consider both finite and infinite interactions; in practice, a
blocking vertex can be made non-blocking by adding a self-loop to it (this
change may require tweaking the set of colors or the objective to preserve
the expected winner in every situation).

An arena is finite if it has finitely many vertices and edges, is countable if
it has countably many vertices and edges, and is finitely branching if for

2 Two-player turn-based games on graphs 19

E2 E3E1

1

0

0

0

1

Figure 2.1: A finite arenaA. Circles are always used to depict vertices controlled by P1 (i.e., vertices in +1) and squares for
vertices controlled by P2 (i.e., vertices in +2) (all graphical conventions are summed up on page 257).

all E ∈ + , there are finitely many edges 4 ∈ � such that in(4) = E. Unless
otherwise specified, arenas are allowed to be of any cardinality with no
restriction on branching. Some results will only apply to restricted classes
of arenas, but this will then be specified explicitly.

We give an example of an arena, whichwe also use to explain the graphical
conventions to represent arenas.

Example 2.2.2 We consider an arena A = (+,+1 , +2 , �) depicted
in Figure 2.1. This arena has three vertices (+ = {E1 , E2 , E3}), two
of which are controlled by P1 (+1 = {E1 , E2}, depicted by circles)
and one by P2 (+2 = {E3}, depicted by a square). It has five edges
(� = {(E1 , 1, E2), (E2 , 1, E3), (E3 , 0, E3), (E3 , 0, E2), (E2 , 0, E1)}). Arena A
is finite.

To describe finite and infinite interactions of P1 and P2 in an arena, we
use respectively histories and plays.

Definition 2.2.3 A history of arenaA = (+,+1 , +2 , �) is a finite sequence
� = 41 . . . 4= ∈ �∗ such that for all 8 such that 1 ≤ 8 ≤ = − 1, we have
out(48) = in(48+1).
History � = 41 . . . 4= ∈ �∗ is from E if in(41) = E.

For convenience, we assume that for all vertices E ∈ + , there is a distinct
empty history �E — this permits specifying an initial vertex even when no
edge has been taken yet. The set of all histories of an arena A is denoted
by Hists(A). We extend functions in and out to histories in a natural way:
if � = 41 . . . 4= is a history, we write in(�) for in(41) and out(�) for out(4=).
For an empty history �E , we assume that in(�E) = out(�E) = E.
For +′ ⊆ + , we write Hists(A, +′) for the set of histories � of A such
that in(�) ∈ +′. For ℓ ∈ {1, 2} (indicating the index of a player), we write
Histsℓ (A) for the set of histories � on A such that out(�) ∈ +ℓ : these are
the histories that have reached a vertex of the arena controlled by Pℓ .

Definition 2.2.4 A play of arenaA = (+,+1 , +2 , �) is an infinite sequence

� = 4142 . . . ∈ �$ such that for all 8 ≥ 1, out(48) = in(48+1).
Play � = 4142 . . . ∈ �$ is from E if in(41) = E.

For a play � = 4142 . . ., we once again define in(�) = in(41). The set of
all plays of arena A is denoted by Plays(A). If � = 41 . . . 4= ∈ �∗ is a
history (resp. � = 4142 . . . ∈ �$ is a play), we write col∗(�) (resp. col$(�))

2 Two-player turn-based games on graphs 20

for the finite sequence col(41) . . . col(4=) ∈ �∗ (resp. the infinite sequence
col(41)col(42) . . . ∈ �$).

Example 2.2.5 In the arena of Figure 2.1, the finite sequence � =
(E2 , 1, E3)(E3 , 0, E3)(E3 , 0, E2)(E2 , 0, E1) is a history from E2. Also, � is in
Hists1(A) as it ends in E1, which is a vertex of +1, controlled by P1. We
have col∗(�) = 1000.
The infinite sequence � = (E2 , 1, E3)(E3 , 0, E3)$ (used as a shorthand
for the infinite sequence (E2 , 1, E3)(E3 , 0, E3)(E3 , 0, E3) . . .with (E3 , 0, E3)
repeated ad infinitum) is a play of A from E2 such that col$(�) = 10$.

We will often study a special kind of arenas in which the same player
controls all the vertices.

Definition 2.2.6 An arena A = (+,+1 , +2 , �) is a one-player arena of P1
(resp. of P2) if +2 = ∅ (resp. +1 = ∅).

Such arenas are often easier to study than “two-player” arenas, as there
is no game-theoretic reasoning involved: in a one-player arena of Pℓ ,
Pℓ can decide alone what play is produced with no influence from its
opponent.

2.3 Strategies

We specify the behavior of each player using strategies. A strategy describes
how a player behaves in any situation in which this player has to react.

Let A = (+,+1 , +2 , �) be an arena and ℓ ∈ {1, 2} be the index of a player.
Player Pℓ has to play a move every time the current history reaches a
vertex controlled by Pℓ , i.e., when this history is in Histsℓ (A). In such a
situation, the only constraint for the move chosen by Pℓ (consisting in
the next edge in � to follow) is that it starts from the current vertex. We
formalize these observations in the following definition.

Definition 2.3.1 A strategy is usually denoted
by symbol �, and the occa-
sional ℓ ∈ {1, 2} subscript is
simplyused tohelp the reader
remember to which player
this strategy belongs.

A strategy of Pℓ on A is a function �ℓ : Histsℓ (A) → �
such that for all � ∈ Histsℓ (A), out(�) = in(�ℓ (�)).

Once a strategy of Pℓ is fixed, there may yet be multiple possible plays,
depending on the strategy used by the opponent of Pℓ . These plays are
the ones that are consistentwith the strategy.

Definition 2.3.2 Given a strategy �ℓ of Pℓ on A, a play � = 4142 . . . ∈
Plays(A) is consistent with �ℓ if for all finite prefixes � = 41 . . . 48 of � such

that out(�) ∈ +ℓ , �ℓ (�) = 48+1.

For E ∈ + , we denote by Plays(A, E, �ℓ) the set of plays on A from E that
are consistent with �ℓ . Notice that whenA is a one-player arena of Pℓ , the

2 Two-player turn-based games on graphs 21

set Plays(A, E, �ℓ) is a singleton. Indeed, as the opponent of Pℓ has then
no choice to make, a strategy of Pℓ always determines a single play from
E in a deterministic manner. We write Plays(A, E, �1 , �2) for the singleton
set containing the unique play consistent with a couple of strategies �1 , �2
of the two players (always writing the strategy of P1 first).

The set of plays consistent with a strategy �ℓ coincides exactly with the
set of the plays that the opponent can induce against this strategy.

Lemma 2.3.3 LetA = (+,+1 , +2 , �) be an arena, E ∈ + , and �1 be a strategy

of P1 on A. We have

Plays(A, E, �1) =
⋃

strategy �2 of P2 onA
Plays(A, E, �1 , �2).

Proof. Any play that is consistent with both �1 and �2 is in particular
consistent with �1, which shows the right-to-left inclusion.

Reciprocally, let � = 4142 . . . ∈ Plays(A, E, �1). We define a strategy �2
of P2 on A such that, when 41 . . . 48 ∈ Hists2(A), �2(41 . . . 48) = 48+1.
Strategy �2 is defined arbitrarily on the other histories. By construction,
Plays(A, E, �1 , �2) = {�}.

Remark 2.3.4 We consider here pure strategies, that is, strategies that do
not resort to randomization. In some contexts, it makes sense to define
strategies as functions Histsℓ (A) → Dist(�), where Dist(�) denotes the
set of distributions over �. We can then wonder about the existence of
almost surely winning rather than surely winning strategies. There are
many interesting questions about this alternate model, but this is not
the central focus of this thesis — we will briefly mention some of these
questions in Section 4.8.

2.4 Objectives and games

In order to make games interesting, we need to give each player a purpose.
We do so by defining game objectives.

An objective is simply a way to describe the outcomes or behaviors that
are deemed favorable by P1: it is a set of infinite words on alphabet �,
i.e., a subset of �$. For such an objective, P1 wins when the infinite word
resulting from the infinite interaction with P2 is in this set. As games
are zero-sum, the objective of P2 is then to obtain an infinite sequence
of colors not in this set. A game endowed with an objective, after the
two players have interacted for an infinite duration, is either won by P1
and lost by P2, or won by P2 and lost by P1. Such objectives are called
qualitative (or sometimes Boolean or win-lose), as they are either won or lost
by a player.

2 Two-player turn-based games on graphs 22

Definition 2.4.1 A (qualitative) objective is a set, ⊆ �$
. An objective is sometimes

called a winning condition in
the literature, hence the let-
ter, .

A more general way to encode a purpose for the players is to define a
preorder on �$, which specifies which infinite words are preferable for
P1. This more general formalism will only be used in Chapter 4, so we
defer its introduction to this moment.

Given an objective, , we write, = �$ \, for its complement. When an
objective, is clear in the context, a word F ∈ , is called winning (for
P1), while a word F ∈, is called losing (for P1).

The reason to define objectives using colors and not directly using vertices
or edges of arenas (as is also often done) is that it allows asking questions
about objectives (e.g., what properties does it satisfy?) with no need to
instantiate arenas.

A game is then simply the combination of an arena (describing the possible
interactions between the players) and an objective (describing the goal
of P1). The goal of the antagonistic opponent P2 is implicit and is the
complement of this objective, as we consider zero-sum games.

Definition 2.4.2 A (qualitative) game The generalization of the no-
tion of objective considered
in Chapter 4 will bring us to
define quantitative games.

is a tuple G = (A,,) where A is

an arena and, is an objective.

We refer to a game as one-player if it is played on a one-player arena.

2.4.1 Optimality and determinacy

Let G = (A = (+,+1 , +2 , �),,) be a game, and E ∈ + be a vertex of the
underlying arena.

Definition 2.4.3 A strategy �1 of P1 on A iswinning from E for P1 in G
if for all � ∈ Plays(A, E, �1), col$(�) ∈, .

This definition of winning strategy simply means that no matter how P2
behaves, �1 guarantees the win of P1. When the objective, is clear from
the context, we often say that a strategy is winning from E for P1 in A.

We define a corresponding notion for the opponent P2: we say that
a strategy �2 of P2 on A is winning from E for P2 in G if for all � ∈
Plays(A, E, �2), col$(�) ∈ , . This is the same definition, but using the
complement objective, .

The winning region of a player in G is the set of vertices of A from which
this player has a winning strategy.

Given a game and an arena vertex, the players cannot both have a winning
strategy from this vertex. Yet, a property that is not immediate is that at
least one player has a winning strategy from the vertex; indeed, every

2 Two-player turn-based games on graphs 23

strategy of a player could be “countered” by a strategy of its opponent.
When an objective admits a winning strategy for either of the players in
all arenas from all vertices, we say that it is determined.

Definition 2.4.4 An objective , is determined if for all arenas A =
(+,+1 , +2 , �), for all vertices E ∈ + , either P1 or P2 has a winning strategy

from E in game G = (A,,).

Martin [Mar75] showed the very general result that all Borel objectives are [Mar75]: Martin (1975), Borel
determinacydetermined. We do not define the Borel hierarchy here. All the objectives
Formally, Martin consid-
ers the slightly different
formalism of Gale-Stewart

games [GS53]

[GS53]: Gale et al. (1953), In-
finite Games with Perfect Infor-

mation

, which are
specified by an objective but
not played on an arena. Still,
the additional constraints
from an arena (even an
infinite one) and an initial
vertex can be encoded
into the objective while
preserving its Borel property.

considered throughout this thesis are Borel (and are usually quite low on
the Borel hierarchy) and are therefore determined.

As a convention, we will not only be looking for strategies that win from a
single vertex, but that win from every vertex of the winning region. We
call such strategies optimal, which is sometimes called uniformly winning

or uniformly optimal.

Definition 2.4.5 For ℓ ∈ {1, 2}, a strategy of Pℓ is (uniformly) optimal for
Pℓ in G = (A,,) if it is winning from all the vertices of A from which Pℓ
has a winning strategy, i.e., from all the vertices of the winning region of Pℓ .

We oftenwrite optimal forPℓ inA if the objective is clear from the context.

Remark 2.4.6 We stress that this notion of optimality requires a single
strategy to be winning from all the winning vertices (even when we do
not specify “uniformly” in what follows). In general, as strategies may
observe the initial vertex, a player can always build an optimal strategy
by taking the “union” of the winning strategies for each vertex of its
winning region.
However, asking for uniformity may require strategies that are more

complex to implement than if we just required winning strategies from
individual vertices (classes of complexity of strategies will be defined
in Section 2.5). Uniformity is a common requirement (see, e.g., [GZ05;
KMS+20; Ohl23]

[GZ05]: Gimbert et al. (2005),
Games Where You Can Play Op-

timally Without Any Memory

[KMS+20]: Kiefer et al. (2020),
How to Play in Infinite MDPs

(Invited Talk)

[Ohl23]: Ohlmann (2023),
Characterizing Positionality in

Games of Infinite Duration over

Infinite Graphs

), that comes at no extra cost in many well-studied
situations [McN93; DJW97; CN06]

[McN93]: McNaughton
(1993), Infinite Games Played

on Finite Graphs

[DJW97]: Dziembowski et al.
(1997), How Much Memory is

Needed to Win Infinite Games?

[CN06]: Colcombet et al.
(2006), On the positional

determinacy of edge-labeled

games

. We will come back to this definition
and discuss in more depth what is the (mostly small) difference of
requiring uniformity in Section 4.7 of Chapter 4, when we are armed
with more tools.

2.4.2 Common examples of objectives

We give some examples of simple objectives. We will often use these as
building blocks to study more complex objectives.

We first define two objectives that simply consist of seeing a specified
color once or infinitely many times.

2 Two-player turn-based games on graphs 24

E1 E2

E3

E4

0

1

0

1

0

1

Figure 2.2: Small arena
illustrating the objectives
Reach(0), Safe(0), Büchi(0),
and Reach(0) ∩ Reach(1) in
Example 2.4.9.

Definition 2.4.7 If 0 ∈ �, the reachability condition Reach(0) ⊆ �$
is

the set of infinite words that see 0 at least once; i.e.,

Reach(0) = {2122 . . . ∈ �$ | ∃8 ≥ 1, 28 = 0}.

The complement of a reachability condition is called a safety condition. The
safety condition Safe(0) is the objective consisting of the infinite words that

see no 0, i.e., Reach(0).

Definition 2.4.8 If 0 ∈ �, the Büchi condition Büchi(0) ⊆ �$
is the set of

infinite words that see 0 infinitely often; i.e.,

Büchi(0) = {2122 . . . ∈ �$ | ∀9 ≥ 1, ∃8 ≥ 9 , 28 = 0}.

Example 2.4.9 Let � = {0, 1}. In the arena of Figure 2.2, the winning
region of P1 is {E1 , E3} for objective Reach(0), {E4} for objective Safe(0),
and {E3} for objective Büchi(0). Interestingly,P1 cannot win for objective
, = Reach(0)∩Reach(1) (even from E1), asP2 mayobserve thefirst edge
chosen by P1 and take the edge with the same color in E2, guaranteeing
that P1 will not see both 0 and 1.

A central objective for reactive synthesis (for instance, as any linear-time
temporal logic specification [Pnu77] can be reduced to it with some work) [Pnu77]: Pnueli (1977), The

Temporal Logic of Programsis the parity condition.

Definition 2.4.10 If � = {0, . . . , =} for some = ∈ ℕ, the parity condition
Parity(=) ⊆ �$

is the set of infinite words such that the maximal color they

see infinitely often is even, i.e., Some authors also use lim inf
to define the parity condition,
butwe opt for the lim sup con-
vention throughout the docu-
ment.

Parity(=) = {2122 . . . ∈ �$ | lim sup
8→∞

28 is even}.

Note that as � is finite for parity conditions, lim sup8→∞ 28 is always a
well-defined natural number between 0 and =.

The parity condition is concerned about the largest color seen infinitely
often. It is a special case of aMuller condition, which is concerned about
which colors are seen infinitely often.

2 Two-player turn-based games on graphs 25

Definition 2.4.11 Let � be a finite set of colors, and F ⊆ 2� . Notation 2� refers to the
power set of �.

The Muller
condition Muller(F) ⊆ �$

is the set of infinite words whose set of colors seen

infinitely often is exactly an element of F , i.e.,

Muller(F) = {F ∈ �$ | {2 ∈ � | F ∈ Büchi(2)} ∈ F}.

We also define a mean-payoff objective. Taking colors as numbers, we look
at the “average color seen” of an infinite word; formally, we consider the
limit of the averages of the finite prefixes. We take the limit superior to
avoid definability issues. We assume that P1 wants to keep the average
above some threshold, which we take to be 0. For objectives considering the

value of some quantity, we
take the convention that P1
prefers high values and P2
prefers low values.

Definition 2.4.12 For � ⊆ ℚ, the mean-payoff function is the function

MP : �$ → ℝ such that

MP(2122 . . .) = lim sup
=→∞

1
=

=∑
8=1

28 .

Themean-payoff objective (with threshold 0) is then defined as

MP≥0 = {F ∈ �$ | MP(F) ≥ 0}.

We will see other ways to specify complex objectives using automata in
Section 2.7.

2.5 Classes of simple strategies

A strategy of Pℓ , which is a function �ℓ : Histsℓ (A) → �, may be hard
to describe: the set Histsℓ (A) is usually infinite (even when A is finite),
and there is no guarantee that there is a nice and finite description of �ℓ .
Moreover, in practical applications (e.g., for synthesis), even in cases
where a strategy can be described in a finite way, it may still be hard to
implement.

Our goal here is to understand the contexts (which players, which objec-
tives, which arenas?) for which simple strategies suffice to play optimally
— in other words, for which there is no need to resort to complex, hard-
to-implement strategies in order to win when winning is possible. We
therefore need to define some notion of complexity of strategies. We use
here a standard notion of complexity of strategies based on a simple
automata-theoretic model. It is roughly similar toMealy machines [Mea55], [Mea55]: Mealy (1955), A

method for synthesizing sequen-

tial circuits

which are deterministic finite automata storing information, with addi-
tional outputs that can be used to describe the action taken by the players
in the arenas. Syntactically, we split the Mealy machines into these two
parts: the memory structure describes the deterministic finite automata,
and the next-action function describes the action of the players. When a
strategy can be implemented with a (finite) Mealy machine, we say that it

2 Two-player turn-based games on graphs 26

can be implemented with finite memory. We can then classify strategies in
multiple classes that are more or less difficult to implement based on the
answers to the following questions:

I is it possible to implement it with finite memory?
I if yes, how many states are needed to implement it as such?

2.5.1 Finite-memory strategies

We split the definition of a strategywithmemory into two components: the
underlying automatic structure on the alphabet of colors (called memory

structure) and the output function describing actions in arenas (called
next-action function).

Definition 2.5.1 A (chromatic) memory structure is a tuple M =
(", <init , upd) where " is a finite set of states, <init ∈ " is an initial
state, and upd : "×� → " is a (deterministic, complete) update function.

A chromatic memory structure is syntactically almost the same as a
complete and deterministic finite automaton, except that we do not specify
final states. The memory structure tracks what happens in games for
an infinite duration, updating its state every time an edge is taken by
observing the color of the edge. It is called chromatic as it observes the Wewill discuss a relaxation of

the chromatic requirement in
Section 2.6, but this chromatic
memory model is our main
memory model.

colors seen in the game. We extend notation upd to sequences of colors in
�∗ in a natural way: we define ∗upd : " × �∗ → " by induction on the
length of finite words to be such that

I for all < ∈ ", ∗upd(<, �) = <, We recall that � is the empty
word.I inductively, for all < ∈ " and F2 ∈ �∗ × �, ∗upd(<, F2) =

upd(∗upd(<, F), 2).
A memory structure is used to store information: its state is updated
depending on the colors that are seen while playing the game, and the
current state is used to provide information in order to make decisions.
In order to make a memory structure into a finite-memory strategy, we
define a next-action function on top of it.

Definition 2.5.2 ForM = (", <init , upd) a memory structure, a strategy

�ℓ of Pℓ on arena A is based on (memory)M if there exists a next-action
function

nxt : +ℓ ×" → �

such that for all histories � ∈ Histsℓ (A),

�ℓ (�) = nxt(out(�), ∗upd(<init , col∗(�))). (2.1)

In other words, this definition requires that the decision made by strategy
�ℓ always corresponds to the decision of nxt for the current arena vertex
and the current memory state. For conciseness, when M is clear in the

2 Two-player turn-based games on graphs 27

E0 1 <1 <2

1

0

0 1

Figure 2.3: Arena (left) and memory structure (right) used in Example 2.5.3. In figures, we always use diamonds (i.e.,
rhombuses) for memory states. The state with the incoming arrow denotes the initial state.

context, we sometimes abusively assume that a strategy of Pℓ based on
M is this next-action function nxt : +ℓ ×" → �.

Example 2.5.3 Let � = {0, 1}. We consider objective, = Büchi(0) ∩
Büchi(1) consisting of the infinite words that see both 0 and 1 infinitely
often (, is also equal to Muller({{0, 1}})). In the arena A = (+ =
{E}, +1 = {E}, +2 = ∅, � = {(E, 0, E), (E, 1, E)}) of Figure 2.3 (left), P1
has many winning strategies from E that may be complex to express
(for instance, P1 wins by inducing word 01012013 . . .).
Yet, P1 also has a winning strategy using the memory structureMwith
only two states depicted on the right of the figure. Thismemory structure
remembers whether 0 or 1 was just seen throughout a game thanks to its
two states: in <1, either the game just started or 0 was just seen, and in
<2, 1 was just seen. Using next-action function nxt : +1× {<1 , <2} → �
defined by nxt(E, <1) = (E, 1, E) and nxt(E, <2) = (E, 0, E), P1 induces
the winning word (10)$.
For this objective, upcoming results will imply that in any arena (not
only in this simple one with a single vertex), this memory structure
with two states suffices to implement optimal strategies for P1.

Strategies based on a memory structure respect the intuition that “adding
information is never detrimental”. One way to add information is to take
the (direct) product of a memory structure with another one.

Definition 2.5.4 Let M1 = ("1 , <1
init ,

1
upd) and M2 = ("2 , <2

init ,
2
upd)

be two memory structures. We define their productM1 ⊗M2 as the memory

structureM = (", <init , upd) obtained as follows: " = "1 ×"2, <init =
(<1

init , <
2
init), and, for all <1 ∈ "1, <2 ∈ "2, 2 ∈ �, upd((<1 , <2), 2) =

(1
upd(<1 , 2), 2

upd(<2 , 2)).

That is, the memory structures are updated in parallel when a color is
read. The same strategies can always be played with more information.

Lemma 2.5.5 Let �ℓ be a strategy of Pℓ on A. If �ℓ is based on a memory

structureM, then for all memory structuresM′
, �ℓ is also based onM⊗M′

.

Proof. We write A = (+,+1 , +2 , �). We assume that �ℓ is based on M =
(", <init , upd), with next-action function nxt : +ℓ × " → �. Let M′ =
("′, <′init , ′upd). We simply define the next-action function ′nxt : +ℓ ×("×
"′) → � that ignores the extra information given by M′, i.e., such

2 Two-player turn-based games on graphs 28

that ′nxt(E, (<, <′)) = nxt(E, <). This next-action function induces the
same strategy as �ℓ and witnesses that �ℓ is also based onM ⊗M′.

2.5.2 Memoryless strategies

We discuss an interesting subclass of finite-memory strategies that are
arguably the simplest possible strategies. We let

Mtriv = ({<init}, <init , (<init , 2) ↦→ <init) Memory structure Mtriv can
be simply depicted as

<init � .
denote the only “trivial” memory structure with a single state.

Definition 2.5.6 A strategy ismemoryless if it is based on the trivial memory

structureMtriv.

For conciseness, we sometimes abusively assume that a memoryless
strategy of Pℓ is a function +ℓ → � (exactly as we did above for function
nxt, except that we omit to specify set" since it is a singleton).

2.6 Flavors of finite-memory determinacy

We aim to understand the objectives for which finite-memory strategies
suffice to play optimally and, when that is the case, how complex the
strategies must be. In this section, we discuss precisely what it means.

2.6.1 Memoryless determinacy

We start with the simple memoryless strategies. In what follows, every
variant of determinacy can be instantiated on multiple classes of arenas;
common ones are the classes of finite arenas, countable arenas, finitely
branching arenas, one-player arenas, or combinations of these qualifiers.

Definition 2.6.1 An objective, ismemoryless-determined (over resp.
finite, countable, finitely branching, one-player arenas) if for all (resp.
finite, countable, finitely branching, one-player) arenas A, P1 and P2 have a

memoryless optimal strategy in game (A,,).

A common term in the literature to express that P1 (but not necessarily P2)
hasmemoryless optimal strategies for an objective is half-positionality of the
objective [Kop06] (positional is often used in the literature for memoryless). [Kop06]: Kopczyński (2006),

Half-Positional Determinacy of

Infinite Games

We will use this terminology in Chapter 8.

Remarkably, memoryless determinacy, despite being a very strong kind
of determinacy, holds for many classical objectives.

2 Two-player turn-based games on graphs 29

Theorem 2.6.2 (Folklore) Reachability, safety, and Büchi conditions are

memoryless-determined.

See [BCJ18] for proofs of memoryless determinacy for these objectives. [BCJ18]: Bloem et al. (2018),
Graph Games and Reactive Syn-

thesisFor synthesis, perhaps the most well-known and useful objective is the
parity condition, which is partly due to its memoryless determinacy, first
proved by Emerson, Jutla, and Mostowski [EJ91; Mos91]. [EJ91]: Emerson et al. (1991),

Tree Automata, Mu-Calculus

and Determinacy (Extended Ab-

stract)

[Mos91]: Mostowski (1991),
Games with Forbidden Positions

Theorem 2.6.3 ([EJ91; Mos91]) Parity conditions are memoryless-determined.

Note that for the above examples, memoryless determinacy holds over
arenas of arbitrary cardinality.

On the other hand, the mean-payoff objective MP≥0 is memoryless-
determined over finite arenas [EM79], but not over arbitrary arenas [Put94]. [EM79]: Ehrenfeucht et al.

(1979), Positional Strategies for
Mean Payoff Games

[Put94]: Puterman (1994),
Markov Decision Processes: Dis-

crete Stochastic Dynamic Pro-

gramming

We will see a proof of the memoryless determinacy of MP≥0, as well as
an example of an infinite arena in which P1 can win but not with a
memoryless strategy in Section 3.1.

Theorem2.6.4 ([EM79]) Themean-payoff objective is memoryless-determined

over finite arenas.

2.6.2 Chromatic versus chaotic memory structures

Our current chromaticmemory model is actually slightly more restrictive
than what is often used in the literature, because it can only observe colors.
The following model, called chaotic [Kop08] (or sometimes general [Cas22]) [Kop08]: Kopczyński (2008),

Half-positional Determinacy of

Infinite Games

[Cas22]: Casares (2022), On

the Minimisation of Transition-

Based Rabin Automata and

the Chromatic Memory Require-

ments of Muller Conditions

can also observe the edges taken in the arenas.

Definition 2.6.5 Let A = (+,+1 , +2 , �) be an arena. A chaotic memory
structure for A is a tuple M = (", <init , upd) where " is a finite set of

states,<init ∈ " is an initial state, and upd : "×�→ " is a (deterministic,

complete) update function.

The only difference with the chromatic memory model presented above
is in the update function; upd : " × �→ " observes not just the colors,
but also the full edges. As edges contain the color seen (they are elements
in+ × � ×+), observing edges is syntactically more powerful. In practice,
this means that during a game, the chromaticmemorymodel only observes
the sequence of colors seen, whereas the chaoticmemory model observes
the sequence of edges seen (i.e., the current memory state is determined
by the word in �∗ for the former and by the history in �∗ for the latter).
The definition of strategy based onM (Definition 2.5.2) also works with a
chaotic memory structureM for an arena by adjoining it to a next-action The only difference is in

Equation (2.1), where col∗(�)
should be replaced by �.

function.

2 Two-player turn-based games on graphs 30

These two different memory models give rise to two distinct notions of
finite-memory determinacy. The most general one (which we simply call
finite-memory determinacy) uses the more powerful chaotic model.

Definition 2.6.6 An objective, is finite-memory-determined (over resp.
finite, countable, finitely branching, one-player arenas) if for all (resp.
finite, countable, finitely branching, one-player) arenas A, there exist chaotic

memory structuresM1,M2 for A such that P1 and P2 each have an optimal

strategy respectively based onM1 andM2 in game (A,,).

We then specialize it to chromatic memory structures.

Definition 2.6.7 An objective, is chromatic-finite-memory-determined
(over resp. finite, countable, finitely branching, one-player arenas) if
for all (resp. finite, countable, finitely branching, one-player) arenas A, there

exist chromatic memory structuresM1,M2 such that P1 and P2 each have

an optimal strategy respectively based onM1 andM2 in game (A,,).

When in some game, a player has no optimal strategy based on a memory
structure (which is finite by definition), we say that this player needs infinite
memory.

A natural question is: are these two models really distinct? Over finite are-
nas, finite-memory determinacy and chromatic finite-memory determinacy
coincide: every chaotic finite-memory structure can be made chromatic
up to a blow-up in the size of the memory structure (the blow-up depends
on the size of the arena). This was first proved as part of a more general
result in [LeR20], with bounds then tightened in [Koz22c]. [LeR20]: LeRoux (2020),Time-

Aware Uniformization of Win-

ning Strategies

[Koz22c]: Kozachinskiy
(2022), State Complexity

of Chromatic Memory in

Infinite-Duration Games

Proposition 2.6.8 ([Koz22c]) Let G = (A,,) be a game played on the finite

arenaA = (+,+1 , +2 , �). IfP1 has an optimal strategy in G based on a chaotic

memory structure for A with = states, then P1 also has an optimal strategy in

G based on a chromatic memory structure with (= + 1)|+ | states.

Still, we may wonder whether the chaotic memory model brings any
succinctness, i.e., whether there is a concrete example with an unavoidable
blow-up when going from chaotic to chromatic memory structures. This
question was first asked by Kopczyński in his thesis in 2008 [Kop08], [Kop08]: Kopczyński (2008),

Half-positional Determinacy of

Infinite Games

and was recently answered positively by Casares [Cas22] (with the gap

[Cas22]: Casares (2022), On

the Minimisation of Transition-

Based Rabin Automata and

the Chromatic Memory Require-

ments of Muller Conditions

between both notions then reinforced by Casares, Colcombet, and Lehti-
nen [CCL22]). The example in [Cas22, Proposition 30] is a family (,=)=≥1

[CCL22]: Casares et al. (2022),
On the Size of Good-For-Games

Rabin Automata and Its Link

with the Memory in Muller

Games

of Muller conditions such that in any arena, P1 always has a chaotic
memory structure with two states to play optimally, but needs = states of
chromatic memory in some arenas. We will see another original example
(from another class of objectives) for which chaotic and chromatic memory
requirements do not coincide in Chapter 7. Another example, which we
discuss briefly here as it is quite enlightening, originates from the recent
preprint [CO22].

[CO22]: Casares et al. (2022),
Characterising memory in infi-

nite games

2 Two-player turn-based games on graphs 31

E1 E2 E3 E4

E5

0 0
0

1 1

1

0 1

<1 <2
(E1 , 0, E2)

� \ {(E1 , 0, E2)} �

<1 <2 <3

0
0

1

1

1 0

Figure 2.4: Arena in which P1 has an obvious strategy to play optimally with a chaotic memory structure with two states
(depicted at the top right), but playing optimally with two states of chromatic memory is not possible. The chromatic
structure with three states at the bottom right suffices to play optimally.

Example 2.6.9 We give a simple example to highlight the difference
between the succinctness of chromatic and chaotic structures. We only
attempt to give some intuition about the difference between the two
models on some chosen arena; complete proofs applying to all arenas
can be found in [CO22]

[CO22]: Casares et al. (2022),
Characterising memory in infi-

nite games.
Let � = {0, 1}. We consider the objective, = �∗03�$, We make some light usage of

($-)regular expressions to de-
scribe languages of finite and
infinite words in examples.
This is purely for description
purposes,which iswhywedo
not define them formally. We
use ∗ for the Kleene star, + for
the Kleene plus (so 0+ = 00∗),
no symbol for concatenation,
+ for the union, and $ for the
infinite repetition. The use of
a set (such as �) in an expres-
sion refers to any character in
it. For instance, if � = {0, 1},
0� denotes 0(0 + 1), i.e., the
set {00, 01}.

consisting of
the infinite words seeing three times the color 0 in a row at some point.
For this objective, P1 needs some memory to play optimally. Consider
the arena in Figure 2.4 (left): the only way to see three 0’s in a row is
to go to E1, and then move right up to E4. This requires at least two
states of memory, as if the game starts in E2, E3, E4, or E5, P1 needs
to first go to E1 before going to E4, which means that the same edge
cannot always be taken in E2 and E3. Implementing such a strategy is
easy with a chaotic memory structure with two states: simply, change
the memory state once the edge (E1 , 0, E2) is seen. Using a chromatic
memory structure, to win from E2 and E3, we can simply observe when
0 has been first seen. However, it is more difficult to win from E4 and E5;
we can actually prove (by exhaustion) that any chromatic structure with
two states is insufficient to play optimally. The idea is that the choice of
P2 in E5 can always be used to fool a chromatic structure with two states.
It is however possible to play optimally with a chromatic structure with
three states that counts the number of consecutive 0’s between 0 and 2.
It turns out that for objective, , in any arena, P1 always has an optimal
strategy with just two states of chaotic memory, but in some arenas, P1
requires three states of chromatic memory to play optimally. We will
see algorithms that compute automatically minimal chromatic memory
structures for this kind of objective in Chapter 7.

There is therefore a difference in succinctness between chromatic and
chaotic structures; chaotic memory structures may sometimes be chosen
with fewer states. However, this comes at the cost of needing to specialize
the transition function of the memory structure for every arena — it
does not permit reasoning about an objective without instantiating an
arena. If we additionally look at the number of transitions in the memory

2 Two-player turn-based games on graphs 32

structure, observe that the number of transitions of the chromatic model
depends only on the number of memory states and the number of colors.
In contrast, the number of transitions of the chaotic model depends on the
number of memory states and the number of arena edges. Beyond their
number of states, their overall succinctness is therefore debatable.

Remark 2.6.10 For games played on infinite arenas, we are not aware
of a proof of equivalence between finite-memory determinacy and
chromatic finite-memory determinacy, nor of an example distinguishing
both notions.

We now go one step further and define a stronger kind of finite-memory
determinacy.

2.6.3 Arena-independent finite memory

For many objectives (including the $-regular ones — see Section 2.7), a
memory structure to play optimally can be chosen entirely independently

of the arena. To put it another way, for some objectives, there is a “uniform”
memory structure that suffices to play optimally in all arenas. We call
this property arena-independent finite-memory determinacy. Notice that this
requires chromaticmemory structures. Indeed, it would not make sense
with chaotic memory structures; chaotic memory structures need to access
the edges of arenas and are intrinsically arena-dependent. This notion is
also why it is fruitful to base objectives on an “independent” set of colors
rather than on vertices or edges of specific arenas.

Definition 2.6.11 An objective, is arena-independent-finite-memory-
determined (over resp. finite, countable, finitely branching, one-player
arenas) if there exist chromatic memory structuresM1,M2 such that for all

(resp. finite, countable, finitely branching, one-player) arenasA,P1 andP2 each

have an optimal strategy respectively based onM1 andM2 in game (A,,).

The main difference with the previous definitions of finite-memory deter-
minacy is the order of quantifiers: the two memory structures must be
instantiated before quantifying universally over arenas.

To be more precise about the memory structure and the player, we
use the following terminology. Let , ⊆ �$ be an objective, M be a
chromatic memory structure, and ℓ ∈ {1, 2} be the index of a player. We
say thatM suffices (to play optimally) for Pℓ for, (in resp. finite, countable,

finitely branching, one-player arenas) if for all (resp. finite, countable, finitely
branching, one-player) arenas A, Pℓ has an optimal strategy based onM
in game (A,,). Using Lemma 2.5.5, we have that all these determinacy
properties are stable by product with arbitrary memory structures: e.g.,
if M suffices for a player for , , then for all structures M′, M ⊗M′

also suffices for this player for, . In particular, up to taking the product

2 Two-player turn-based games on graphs 33

E (−1, 1)(1,−1) . . . (1,−1)︸ ︷︷ ︸
= times

Figure 2.5: Arena in which P1 needs an amount of memory depending on the parameter = ≥ 1 to win for a conjunction
of two energy objectives. We use a squiggly arrow to indicate a sequence of edges such that taking all the edges in the
sequence induces the finite word of the label. Here, this notation therefore conceals = edges (all labeled with (1,−1)) and
= − 1 vertices.

M = M1 ⊗M2 of the memory structures of each player, observe that
an objective, is arena-independent-finite-memory-determined if and
only if there exists a memory structureM that suffices both for P1 and P2
for, .

Observe thatmemoryless determinacy is a special case of arena-independent
finite-memory determinacy, where the memory structureM in the defi-
nition of arena-independent finite-memory determinacy can be taken to
beMtriv.

Remark 2.6.12 Unlike finite-memory strategies, the memory model
(chromatic or chaotic) has no influence as far as memoryless strategies
are concerned: it does not matter whether strategies observe colors or
edges, as they cannot distinguish histories from one another anyway.
Therefore, results about memoryless determinacy or half-positionality
(e.g., in Chapter 8) are independent of the chromatic/chaotic discussion.

Over finite arenas, arena-independent finite-memory determinacy is a
stronger notion than finite-memory (or even chromatic finite-memory) de-
terminacy. We illustrate it with amulti-energy objective, studied in [VCD+15;
CRR14; JLS15]. [VCD+15]: Velner et al. (2015),

The complexity of multi-mean-

payoff and multi-energy games

[CRR14]: Chatterjee et al.
(2014), Strategy synthesis for

multi-dimensional quantitative

objectives

[JLS15]: Jurdziński et al.
(2015), Fixed-Dimensional En-

ergy Games are in Pseudo-

Polynomial Time

Example 2.6.13 An energy objective has numbers as colors, and is focused
on the behavior of the partial sums of colors. This objective is used
to model an amount of resources, and the goal is usually to prevent
the amount of resources from becoming negative. An often-used refor-
mulation requires that the limit inferior of the partial sums is not −∞,
which means that it is possible to start the game with a sufficiently high
amount of resources and never run out of resources.
We consider here a conjunction of two energy objectives, for which we
define two dimensions in the colors. Let � = ℤ ×ℤ. Let

, = {(2(1)1 , 2(2)1)(2(1)2 , 2(2)2) . . . ∈ �$ |

∀3 ∈ {1, 2}, lim inf
=→∞

=∑
8=1

2(3)8 > −∞}.

In other words, to obtain a winning word, the sequence of the partial
sums of colors cannot have a subsequence converging toward −∞, and

2 Two-player turn-based games on graphs 34

this along both dimensions. Note that a single energy objective (along
one dimension) is memoryless-determined over finite arenas [CdHS03] [CdHS03]: Chakrabarti et al.

(2003), Resource Interfaces
,

but, , which is a conjunction of two energy objectives, is not.
We consider the arena in Figure 2.5, depending on a parameter = ≥ 1.
In this arena, P1 can win from E using finite memory: for each time P1
goes to the left and gets a partial sum of colors of (=,−=), P1 can take =
times the edge with color (−1, 1) to compensate. This way, the sum of
colors never gets below −= along both dimensions. This strategy can be
implemented with = + 1 states of (chaotic or chromatic) memory.
Yet, using = memory states or fewer is not sufficient to win, as it would
induce an ultimately periodic word whose repeating part consists of
at most = elements among (=,−=) and (−1, 1). For such a sequence to
be winning, (=,−=) needs to be seen at least once, but then (−1, 1) is
seen at most = − 1 times, which cannot keep the second dimension
above a bounded value. This means that for this family of arenas, P1
can always win using finite memory, but the size of the memory (and
more generally, the memory structure) cannot be fixed prior to fixing
the arena.
For this objective, in any finite (even two-player) arena, P1 has an
optimal strategy using finite memory [CRR14] [CRR14]: Chatterjee et al.

(2014), Strategy synthesis for

multi-dimensional quantitative

objectives

, but as we saw, the size
of the required memory depends on the arena. On the other hand, P2
always has memoryless optimal strategies. This implies that, is finite-
memory-determined over finite arenas, but not arena-independent-
finite-memory-determined over finite arenas.

We now turn to games played on infinite arenas. We argue that requiring
the existence of chromatic finite memory structures to play optimally for an
objective in all infinite arenas implies the existence of an arena-independent

finite memory structure. In other words, in the realm of infinite arenas,
given the chromatic requirement, arena-independence is for free. This
result is not deep and simply relies on the fact that an arbitrary “union”
of infinite arenas still constitutes an infinite arena (which is not true when
restricted to finite arenas).

Proposition 2.6.14 Let, ⊆ �$
be an objective. The following are equivalent:

1. , is chromatic-finite-memory-determined: for all arenasA, there exists a

chromatic memory structureMA
such that both players have an optimal

strategy based onMA
in A;

2. , is arena-independent-finite-memory-determined: there exists a chro-

matic memory structureM such that for all arenasA, both players have

an optimal strategy based onM in A.

Proof. It is clear that 2. =⇒ 1., as 2. means that there is a (fixed) memory
structure that suffices in each arena. We now show 1. =⇒ 2. We proceed
by contraposition. Assume that 2. does not hold, i.e., that for all memory
structuresM, there exists an arenaAM = (+M , +M

1 , +M
2 , �M) such that

2 Two-player turn-based games on graphs 35

Finite-memory
determinacy

Chromatic finite-
memory determinacy

Arena-independent
(chromatic)

finite-memory determinacy

Over finite arenas (Prop. 2.6.8)
Open over infinite arenas (Rmk. 2.6.10) Over infinite arenas (Prop. 2.6.14)

Not true over finite arenas (Ex. 2.6.13)

Figure 2.6: Relations between types of finite-memory determinacy. Thin implications hold by definition. Thick implications
only hold in particular contexts.

at least one player does not have an optimal strategy based on M in
AM. We consider the arenaA = (⊎M+M ,

⊎
M+M

1 ,
⊎

M+M
2 ,

⊎
M �M)

consisting in the “disjoint union” over all memory structures M of the
arenas AM. Clearly, no strategy based on a chromatic memory structure
suffices to play optimally in A; this shows that 1. does not hold.

2.6.4 Overview

We sum up the relations between the three kinds of finite-memory deter-
minacy in Figure 2.6.

When considering finite arenas, we have discussed that finite-memory
determinacy and chromatic finite-memory determinacy correspond (up
to a blow-up in the size of the memory — Proposition 2.6.8), and we have
distinguished them from arena-independent finite-memory determinacy
with an example (Example 2.6.13). When considering infinite arenas, we
have that chromatic finite-memory and arena-independent finite-memory
determinacy correspond (Proposition 2.6.14), but we do not knowwhether
they can be distinguished from finite-memory determinacy with an
example (Remark 2.6.10). We leave as an open question the existence of an
objective that is finite-memory-determined over infinite arenas, but not
chromatic-finite-memory-determined.

2.7 Automata and $-regular objectives

Automata. Wewill often specify objectives using automata, and objectives
that can be defined using automata will be central for finite-memory
determinacy.We start by defining a common base for all kinds of automata
that we consider in this work.

Definition 2.7.1 A (deterministic) automaton structure Except for a few clearly la-
beled occurrences of non-
deterministic finite automata
in Chapter 4, all automata in
this work are deterministic.
We sometimes omit the word
deterministic when there is no
ambiguity.

is a tuple S =
(&,Σ, @init , �)where& is a finite set of states,Σ is a non-empty alphabet (often
Σ = � is the set of colors), @init ∈ & is an initial state, and � : & ×Σ→ & is

a (deterministic, complete) update function.

2 Two-player turn-based games on graphs 36

We write �∗ : & × Σ∗ → & for the natural extension of � to sequences
of colors (defined exactly like ∗upd for memory structures). An element
of & × Σ is called a transition of an automaton structure (as we consider
deterministic structures, a state/letter pair determines unequivocally
what state comes next). For @1 , @2 ∈ &, we write !S@1 ,@2 for the language The word language simply

refers to a set of words.of words F ∈ Σ∗ such that �∗(@1 , F) = @2. We drop the superscript
S if the automaton structure considered is clear in the context. Given
an infinite word F = 2122 . . . ∈ Σ$, the infinite run of S on F is the
sequence * = (@0 , 21)(@1 , 22) . . . ∈ (& ×Σ)$ where @0 = @init, and for 8 ≥ 0,
�(@8 , 28+1) = @8+1. If F = 21 . . . 2= ∈ Σ∗ is finite, the finite run of S on F is
the sequence * = (@0 , 21) . . . (@=−1 , 2=) ∈ (& × Σ)∗ such that @0 = @init and
for 0 ≤ 8 < = − 1, �(@8 , 28+1) = @8+1.

Automaton structures S = (&,Σ, @init , �) are syntactically almost the same
as memory structures M = (", <init , upd) (except that the alphabet for
memory structures is always the set of colors � and is implicit). We
distinguish the two notions as they will be used for different purposes; it
is convenient to use different symbols not to confuse both objects as there
will be examples relying both on an automaton structure and a memory
structure. In Chapter 5, we will actually (slightly abusively) use memory
structures as automaton structures.

We now define three classical kinds of automata, all building on the
definition of an automaton structure. As such, they inherit notations
related to automaton structures such as transitions, languages !S@1 ,@2 ,
runs. . . The three kinds are deterministic finite automata, deterministic Büchi

automata, and deterministic parity automata.

Definition 2.7.2 A deterministic finite automaton (abbreviated DFA) is a

tuple D = (&,Σ, @init , �, �) where (&,Σ, @init , �) is an automaton structure

and � ⊆ & is a set of final states.

The language recognized by DFA D = (&,Σ, @init , �, �), denoted L(D), is the
set of finite words F ∈ Σ∗ such that �∗(@init , F) ∈ �. DFAs (defined with a
finite alphabet Σ) recognize exactly the regular languages.

Definition 2.7.3 A (transition-based) deterministic Büchi automaton
(abbreviated DBA) is a tuple B = (&,Σ, @init , �, �) where (&,Σ, @init , �) is an
automaton structure and � ⊆ & × Σ is a set of Büchi transitions.

The language recognized by DBA B = (&,Σ, @init , �, �), denoted L(B), is the
set of infinite words F ∈ Σ$ such that the infinite run of B on F visits
infinitely many times a Büchi transition in �.

Definition 2.7.4 A (transition-based) deterministic parity automaton
(abbreviated DPA) is a tuple P = (&,Σ, @init , �, ?) where (&,Σ, @init , �) is
an automaton structure and, for some = ∈ ℕ, ? : & × Σ→ {0, . . . , =} is a
priority function assigning priorities to transitions of P .

2 Two-player turn-based games on graphs 37

The language recognized by DPA P = (&,Σ, @init , �, ?), denoted L(P), is the
set of infinite words F ∈ Σ$ such that, if (@0 , 21)(@1 , 22) . . . is the infinite
run of P on F, then lim sup8 ?(@8 , 28+1) is even. This last property can be
stated as “the maximal priority seen infinitely often is even”. DPAs have finitely many pri-

orities, so the maximal pri-
ority seen infinitely often al-
ways exists.Remark 2.7.5 For Büchi and parity automata, we consider transition-

based acceptance conditions, becausewe define the set � and the function
? on the transitions. Traditionally, acceptance conditions were defined on
the states. Transition-based and state-based automata are expressively
equivalent: a state-based automaton can be converted into a transition-
based automaton of the same size recognizing the same language, and a
transition-based automaton can be converted into a polynomially larger
state-based automaton, where the blow-up depends on the acceptance
condition. Transition-based automata are therefore more succinct with
respect to the number of states in general.
Transition-based automata are becoming increasingly frequent in the
literature since they present advantages for multiple problems (e.g.,
to build smaller Büchi automata [GL02] [GL02]: Giannakopoulou et

al. (2002), From States to Tran-

sitions: Improving Translation

of LTL Formulae to Büchi Au-

tomata

, to build memory structures
for Muller conditions [Cas22]

[Cas22]: Casares (2022), On

the Minimisation of Transition-

Based Rabin Automata and

the Chromatic Memory Require-

ments of Muller Conditions

, to minimize and define canonical au-
tomata [AK22]

[AK22]: Abu Radi et al.
(2022),Minimization and Can-

onization of GFG Transition-

Based Automata

). This is also how automata are encoded in recent
software tools (see, e.g., Spot [DLF+16]

[DLF+16]: Duret-Lutz et al.
(2016), Spot 2.0 — A Frame-

work for LTL and $-Automata

Manipulation

and Owl [KMS18]

[KMS18]: Křetínský et al.
(2018), Owl: A Library for $-
Words, Automata, and LTL

). In our work,
it turns out that in multiple occurrences (discussed in due time), the
transition-based automata allowed for more elegant statements, so we
opted for this convention.

We have defined automaton structures to be complete, i.e., every color
defines a transition from every state. This implies that all deterministic
automata in this thesis are complete, which is a technical convenience.

We sometimes build automata (DFAs, DBAs, or DPAs) starting from an
automaton structure. In such a case, we say that a DFA, DBA, or DPA is
built on top of the structure.

Definition 2.7.6 A DFA D = (&,Σ, @init , �, �) (or a DBA B =
(&,Σ, @init , �, �), a DPA P = (&,Σ, @init , �, ?)) is built on top of au-
tomaton structure S if S = (&,Σ, @init , �).

Remark 2.7.7 Automata are usually defined on a finite alphabet,
whereas our alphabet is often the set of colors � and can have any
non-zero cardinality. However, given a DFA (resp. DBA, DPA) built on
top of an automaton structure S = (&,Σ, @init , �), as there are finitely
many states in S and finitely many “levels of acceptance”, there are
in practice only finitely many “truly different” equivalence classes of
letters in the alphabet. For a DFA (S , �) (resp. a DBA (S , �), a DPA
(S , ?)), two letters 21 , 22 ∈ Σ can be assumed to be equivalent if for all
@ ∈ &, �(@, 21) = �(@, 22) (resp. �(@, 21) = �(@, 22) and (@, 21) ∈ � if and
only if (@, 22) ∈ �, �(@, 21) = �(@, 22) and ?(@, 21) = ?(@, 22)).

2 Two-player turn-based games on graphs 38

@1 @2 @3

0

1

0
1 0, 1 @1 @2

1•
0
•0 1 @1 @2

0 | 1

1 | 0

0 | 11 | 1

Figure 2.7: Three kinds of deterministic automata considered in this thesis. We use diamonds to represent automaton states
(as for memory states). The initial state is indicated with an ingoing arrow. Final states (in �) of DFAs are represented
with a double border. Büchi transitions (in �) of Büchi automata are decorated with a bullet •. A transition of a parity
automaton from @ to @′ with label 2 | : means that �(@, 2) = @′ and ?(@, 2) = :.

We illustrate each of the three kinds of automata with an example.

Example 2.7.8 We depict an example of each kind of automaton in
Figure 2.7. In every case, the alphabet is � = {0, 1}.
I The DFA D on the left accepts the finite words that reach the

accepting state @3 (drawn with a double border) at some point. To
reach @3, a word must see twice the color 0 in a row. A regular
expression for the language recognized byD (i.e.,L(D)) is �∗00�∗.

I The DBA B in the center accepts the infinite words that see
infinitely often a transition in �, i.e., depicted with a • symbol.
Here, it means that it accepts all the infinite words that do not end
with 0$ or with 1$. In other words, the language recognized by
this DBA is L(B) = Büchi(0) ∩ Büchi(1).

I The DPA P on the right accepts the infinite words whose maximal
priority seen infinitely often is even. The priorities are written on
transitions, next to the letter used for transitions. Here, the only
way for an infinite word to be accepted is to see only the priority 0
from some point on. To do so, the word must see at least one but
finitely many times the letter 0. An $-regular expression for L(P)
is 1∗0�∗1$.

DBAs and DPAs are related: any language recognized by a DBA can also
be recognized by a DBA, but the converse does not hold.

Remark 2.7.9 A DBA is a special kind of DPA: for a DBA B =
(&,Σ, @init , �, �), the DPA P = (&,Σ, @init , �, ?)where for (@, 2) ∈ & ×Σ,

?(@, 2) =
{

2 if (@, 2) ∈ �
1 if (@, 2) ∉ �

recognizes the same set of infinite words (infinitely many transitions
with priority 2, that is, transitions in �, have to be seen to accept a run).
Therefore, DPAs are at least as expressive as DBAs.
Moreover, DBAs only recognize a proper subset of the languages recog-
nized by DPAs. In other words, not every DPA can be converted into
a DBA recognizing the same language [Wag79] [Wag79]: Wagner (1979), On

$-Regular Sets

. For example, L(P) in
Example 2.7.8 is not recognizable by a DBA (a close proof can be found

2 Two-player turn-based games on graphs 39

in [BK08, Theorem 4.50] [BK08]: Baier et al. (2008),
Principles of model checking

).

$-regularity. Sets of infinite words recognizable by a DPA are usually
called$-regular. There aremultiple equivalent definitions of$-regular sets
(they are the ones definable by $-regular expressions, non-deterministic Büchi

automata, deterministic Muller automata. . .), but a convenient definition for
our purposes is the one using DPAs.

Definition 2.7.10 A subset of Σ$
is $-regular if it is recognizable by a

deterministic parity automaton.

It follows from Remark 2.7.9 that the languages recognized by DBAs
are $-regular, but that DBAs are not expressive enough to recognize all
$-regular languages. The class of $-regular languages is closed under
Boolean operations (union, intersection, and complement). Depending on
the representation used for $-regular objectives, proving closeness under
some of these operations is more or less complicated. Using the represen-
tation as deterministic parity automata, proving that $-regular languages
are closed under complement is easy: given an objective recognized by
a DPA (&, �, @init , �, ?), the DPA (&, �, @init , �, ?′) where ?′ = ? + 1 rec-
ognizes the complement of the language. We refer to surveys [GTW02;
Bok18] about different automatic ways to represent $-regular languages [GTW02]: Grädel et al. (2002),

Automata, Logics, and Infinite

Games: A Guide to Current Re-

search [outcome of a Dagstuhl

seminar, February 2001]

[Bok18]: Boker (2018), Why

These Automata Types?

and the blow-ups involved when applying Boolean operations to them.

We will naturally consider $-regular objectives, which are sets of infinite
words in �$ recognizable by a DPA. We have already mentioned in Chap-
ter 1 the finite-memorydeterminacy of$-regular objectives,which appears
(with varying degree of explicitness) in [BL69; Rab69; GH82; McN93]. [BL69]: Büchi et al. (1969),

Definability in the Monadic

Second-Order Theory of

Successor

[Rab69]: Rabin (1969), Decid-

ability of Second-Order Theories

and Automata on Infinite Trees

[GH82]: Gurevich et al.
(1982), Trees, Automata, and

Games

[McN93]: McNaughton
(1993), Infinite Games Played

on Finite Graphs

A thorough account using a very close formalism (and considering ex-
plicitly games played on infinite graphs) is also available in [Zie98]. From

[Zie98]: Zielonka (1998), Infi-
nite Games on Finitely Coloured

Graphs with Applications to Au-

tomata on Infinite Trees

these works, in our vocabulary, we can even deduce the arena-independent
finite-memory determinacy of $-regular objectives.

Theorem 2.7.11 ([GH82; McN93]) The $-regular objectives are arena-

independent-finite-memory-determined.

Sketch of proof. Multiple arguments lead to this result, through the various
representations of $-regular languages. Initial proofs [GH82; McN93]
used the representation of $-regular objectives as deterministic Muller
automata and built the (arena-independent) later appearance record (LAR)

memory structure.

For our purposes, we highlight the following (slightly informal) argu-
ment, which will be revisited in Chapter 5. Every $-regular objective
admits a representation as a deterministic parity automaton. We take the
underlying structure of this automaton as a memory structure. With this
additional information, we effectively reduce every game into a larger

2 Two-player turn-based games on graphs 40

gamewith a parity condition (by considering the product of the arena and the
memory structure, which is formalized in Chapter 4). As parity conditions
are memoryless-determined (Theorem 2.6.3), there is no need for extra
information to build optimal strategies; the information from the memory
structure suffices.

Finally, we restate a well-known lemma about $-regular objectives: if
two $-regular objectives are not equal, then they are distinguished by
an ultimately periodic word (i.e., a word that can be written as F1(F2)$
for some F1 ∈ �∗ and F2 ∈ �+). Ultimately periodic words can easily be
finitely represented, and this lemma will be used to force some behaviors
to appear in finite game arenas.

Lemma 2.7.12 Every non-empty $-regular language contains an ultimately

periodic word. In particular, let,1 ,,2 ⊆ �$
be two $-regular objectives.

If,1 ≠ ,2, then there exist F1 ∈ �∗ and F2 ∈ �+ such that F1(F2)$ ∈
,1 \,2 or F1(F2)$ ∈,2 \,1.

Sketch of proof. The first claim is standard and follows fromMcNaughton’s
theorem [McN66]: a non-empty $-regular language admits a represen- [McN66]: McNaughton

(1966), Testing and Generating
Infinite Sequences by a Finite

Automaton

tation through an automaton accepting at least one word. Due to the
acceptance condition (e.g., Büchi or parity), this implies there is at least
one reachable “accepting cycle”, i.e., a cycle of the automaton that, when
repeated, induces an accepted word. Therefore, there is an ultimately
periodic run leading to that cycle and then looping around it ad infinitum,
which induces an ultimately periodic word accepted by the automaton.

For the second claim, if ,1 ≠ ,2, then ,1 \,2 ≠ ∅ or ,2 \,1 ≠ ∅.
Without loss of generality, we assume that,1 \,2 ≠ ∅. Objective,1 \,2
is $-regular (as $-regular objectives are closed under complement and
intersection) and non-empty. By the first claim, there is an ultimately
periodic word in,1 \,2.

The contrapositive of the previous lemma yields that two $-regular
languages are equal if and only if they coincide on the ultimately periodic
words.

2.8 Continuations and congruences

It is often useful to compare different situations that players may find
themselves in; besides the current vertex of the arena, a situation is
determined by what already happened, and what already happened
determines what must be seen to win in the future.

2 Two-player turn-based games on graphs 41

Definition 2.8.1 A set of winning continua-
tions is sometimes called a
left quotient of , or residual

language of, in the literature.

For an objective, ⊆ �$
and a finite word F ∈ �∗, the

winning continuations of F consist in the set denoted F−1, and defined as

{F′ ∈ �$ | FF′ ∈,}.

Observe that for all objectives, , it holds that �−1, =, . We can compare
pairs of finite words using their sets of winning continuations.

Definition 2.8.2 Let, ⊆ �$
be an objective. The prefix preorder of, is

the relation �, ⊆ �∗ × �∗ defined by F1 �, F2 if F−1
1 , ⊆ F−1

2 , —we

simply order the sets of winning continuations by inclusion.

The prefix preorder is in general a preorder but not an order, since two
distinct finite words may have the same sets of winning continuations. It
is also partial in general, as two finite words may have incomparable sets
of winning continuations.

Definition 2.8.3 Let, ⊆ �$
be an objective. The right congruence of,

is the relation ∼, ⊆ �∗ × �∗ defined by F1 ∼, F2 if F−1
1 , = F−1

2 , .

Notice that ∼, = �, ∩ �, .

The right congruence of an objective is an equivalence relation. We denote
≺, = �, \ ∼, for the strict prefix preorder of, . We drop the subscripts
, when there is no ambiguity on the objective being considered.

Example 2.8.4 Let � = {0, 1}. We consider objective L(B) = Büchi(0) ∩
Büchi(1) from Example 2.7.8. For this objective, we have that all finite
words have the same winning continuations: for all finite words F ∈ �∗,
F−1L(B) = L(B). Therefore, all finite words are equivalent for ∼L(B);
the right congruence has a single equivalence class.
We now consider objective L(P) = 1∗0�∗1$ from Example 2.7.8. Here,
the right congruence∼L(P) has two equivalence classes: finite words that
have not seen 0 yet and finite words that have seen 0. A representative
of these classes is given respectively by � and 0. These two words
are comparable for �L(P); any continuation winning after � is also
winning after 0, so � �L(P) 0. However, we do not have 0 �L(P) �, as
1$ ∈ 0−1L(P) \ �−1L(P). Hence, we have � ≺L(P) 0.

The prefix preorder and the right congruence of an objective are algebraic
(pre)congruences: the algebraic operation of reading colors preserves these
relations.

Lemma 2.8.5 Let , ⊆ �$
be an objective, � be its prefix preorder, and

F1 , F2 ∈ �∗ be finite words. If F1 � F2, then for all F ∈ �∗, F1F � F2F.
In particular, if F1 ∼ F2 (resp. F1 ≺ F2), then for all F ∈ �∗, F1F ∼ F2F
(resp. F1F � F2F).

2 Two-player turn-based games on graphs 42

Proof. We assume that F1 � F2, i.e., that F−1
1 , ⊆ F−1

2 , . Let F ∈ �∗. We
have that

(F1F)−1, = {F′ ∈ �$ | F1FF′ ∈,}
= {F′ ∈ �$ | FF′ ∈ F−1

1 ,}
⊆ {F′ ∈ �$ | FF′ ∈ F−1

2 ,} as F−1
1 , ⊆ F−1

2 ,

= {F′ ∈ �$ | F2FF′ ∈,}
= (F2F)−1,.

Hence, F1F � F2F.

The other properties follow from the first one as∼ = �∩� and ≺ ⊆ �.

For many classical objectives, all finite words have the same winning
continuations. This is for instance the case of objectives Büchi(0), Parity(=),
Muller(F),MP≥0, and Büchi(0)∩Büchi(1); what matters for these objectives
is the behavior “at infinity”, and whether a word is winning or not is
not impacted by finite prefixes of the word. Such objectives are called
prefix-independent. On the other hand, objectives Reach(0) and 1∗0�∗1$
are not prefix-independent (in both cases, finite words � and 0 do not
have the same winning continuations).

Definition 2.8.6 An objective, ⊆ �$
is prefix-independent Some authors also use tail or

shift-invariant for this prefix-

independence notion.

if its right

congruence has a single equivalence class. Equivalently,, is prefix-independent

if for all F ∈ �∗ and F′ ∈ �$
, F′ ∈, if and only if FF′ ∈, .

When an $-regular objective is specified with a DBA or a DPA, it is
convenient to extend the prefix preorder and the right congruence to the
automaton states. This is well-defined thanks to the following elementary
lemma.

Lemma 2.8.7 Let P = (&, �, @init , �, ?) be a deterministic parity automaton Note that this lemma and the
following notations also ap-
ply to deterministic Büchi au-
tomata, as they are a special
kind of deterministic parity
automata (Remark 2.7.9).

,

and , ⊆ �$
be the $-regular objective it recognizes. For F, F′ ∈ �∗, if

�∗(@init , F) = �∗(@init , F′), then F ∼, F′.

Proof. Let F, F′ ∈ �∗. If F and F′ reach the same state @ of the automaton,
then by construction, their winning continuations are exactly the words
in the language recognized by DPA (&, �, @, �, ?). Hence, F and F′ have
the same winning continuations; in other words, F ∼, F′.

This means that all words reaching the same automaton state are in the
same equivalence class for∼: formally, for all states @ ∈ &, !@init ,@ ⊆ [F]∼ for
any F ∈ !@init ,@ . We can therefore extend the idea of winning continuations
to automaton states; for P = (&, �, @init , �, ?), , ⊆ �$ the objective it
recognizes, and @ ∈ &, we write

@−1, = F−1,

2 Two-player turn-based games on graphs 43

for some word F ∈ !@init ,@ . Equivalently, @−1, is the $-regular language
recognized by DPA (&, �, @, �, ?) (the same as P but with @ as an initial
state).

In particular, the number of equivalence classes for the right congruence
of, is upper bounded by the number of elements in &.

Lemma 2.8.8 Let, ⊆ �$
be an $-regular objective. We recall that the index of

an equivalence relation is
its number of equivalence
classes.

The right congruence

∼ of , has a finite index. More precisely, if , is recognized by a DPA

P = (&, �, @init , �, ?), then the right congruence of, has index at most |& |.

Proof. As it is $-regular, objective , is recognized by some DPA P =
(&, �, @init , �, ?). The family (!@init ,@)@∈& is a finite partition of �∗ (we recall
that our automata are deterministic and complete). As every set !@init ,@ is
a subset of some equivalence class for the right congruence ∼ of, , this
right congruence has at most |& | equivalence classes.

Some objectives have a representation using an automaton with exactly
one state per equivalence class of the right congruence. However, in some
cases, even a minimal automaton (w.r.t. the number of states) recognizing
an objective may require more states than the number of equivalence
classes. This is for instance the case of objective Büchi(0) ∩ Büchi(1) from
Example 2.7.8: it is prefix-independent and its right congruence has a
single equivalence class, but any DBA (or even DPA) recognizing it needs
at least two states. In general, (!@init ,@)@∈& is therefore a finer partition of �∗

than �∗/∼ .

Remark 2.8.9 As for the simpler case of regular languages of finitewords,
the above lemma states that $-regularity of an objective (a language
of infinite words) implies that its right congruence has a finite index.
For regular languages of finite words, the converse is true; this is the
central Myhill-Nerode theorem [Ner58] [Ner58]: Nerode (1958), Linear

Automaton Transformations

. However, for languages of
infinite words, having a finite index is not sufficient to guarantee $-
regularity. For instance, objective MP≥0 is prefix-independent and its
right congruence has therefore index 1, but MP≥0 is not $-regular.

We extend the prefix preorder and the right congruence to automaton
states: we define �P ⊆ & × & and ∼P ⊆ & × & for the relations such
that @1 �P @2 if @−1

1 , ⊆ @−1
2 , , and @1 ∼P @2 if @−1

1 , = @−1
2 , . We

also frequently drop the subscript P when there is no ambiguity on the
automaton being considered. These relations are still (pre)congruences.

Lemma 2.8.10 LetP = (&, �, @init , �, ?) be a deterministic parity automaton,

and, be the $-regular objective it recognizes. Then,

I for @1 , @2 ∈ &, if @1 �P @2, then for allF ∈ �∗, �∗(@1 , F) �P �∗(@2 , F);
I for @1 , @2 ∈ &, if @1 ∼P @2, then for allF ∈ �∗, �∗(@1 , F) ∼P �∗(@2 , F).

2 Two-player turn-based games on graphs 44

[�]∼ � [�]∼ [0]∼
0

0, 11

Figure 2.8: Prefix classifier of
any prefix-independent ob-
jective (left) and of 1∗0�∗1$,
Reach(0), and Safe(0) (right).

Proof. For the first item, let @1 , @2 ∈ & be such that @1 �P @2 and F ∈ �∗.
Let @′1 = �∗(@1 , F) and @′2 = �∗(@2 , F). We show that @′1 �P @′2, i.e., that
(@′1)−1, ⊆ (@′2)−1, . Let F′ ∈ (@′1)−1, . This implies that FF′ ∈ @−1

1 , . As
@1 �P @2, we also have that FF′ ∈ @−1

2 , . This implies that F′ ∈ (@′2)−1, .

For the second item, we simply use the first item and the fact that ∼P =
�P ∩ �P .

For the case of regular languages of finite words, the way the equivalence
classes of the right congruence are structured directly gives a minimal
deterministic finite automaton recognizing the language (this is the Myhill-
Nerode theorem [Ner58]). The situation is once again more complex for [Ner58]: Nerode (1958), Linear

Automaton Transformationslanguages of infinite words: when the right congruence has a finite index,
there is still an automaton that “classifies” the finite words [Sta83; MS97], [Sta83]: Staiger (1983), Finite-

State $-Languages

[MS97]: Maler et al. (1997),
On Syntactic Congruences for

Omega-Languages

but it may not be complex enough to actually recognize the language
of infinite words with a reasonable acceptance condition (e.g., Büchi or
parity). This object, which we call prefix classifier, may still bring insight
into a language of infinite words. In Chapter 5, we will prove that even
if insufficient alone, it is a useful block to build automata recognizing
$-regular languages.

Definition 2.8.11 The prefix classifier has been
called minimal-state automaton

in the literature [MS97]. For
the purposes of this thesis
(often, finding memory struc-
tures with minimally many
states), we believe that the
term prefix classifier brings less
ambiguity.

Let , ⊆ �$
be an objective whose right congru-

ence ∼ has a finite index. We associate a natural automaton structure

S, = (&, , �, @,init , �,) with , such that &, is the set of equivalence

classes of ∼, @,init = [�]∼, and �, ([F]∼ , 2) = [F2]∼. We call structure S,
the prefix classifier of, .

This transition function of the prefix classifier is well-defined since if
F1 ∼ F2, then for all 2 ∈ �, F12 ∼ F22 (Lemma 2.8.5). Hence, the choice
of representatives for the equivalence classes does not have an impact on
this definition. As $-regular objectives have a right congruence with finite
index (Lemma 2.8.8), every $-regular objective has a well-defined (finite)
prefix classifier.

Example 2.8.12 We exhibit the prefix classifiers of two objectives from
Example 2.7.8, depicted in Figure 2.8.
The prefix classifier of Büchi(0) ∩ Büchi(1) (and actually, of any prefix-
independent objective) has a single state, corresponding to the only
equivalence class of the right congruence. Observe that it is not possible
to build a DPA on top of this prefix classifier to recognize Büchi(0) ∩
Büchi(1); no matter how priorities are assigned to the two transitions,
Büchi(0) ∩ Büchi(1) cannot be recognized by a DPA with just one state.

2 Two-player turn-based games on graphs 45

The prefix classifier of 1∗0�∗1$ has two states (corresponding to the
classes of finite words that have not seen 0, and finite words that have
seen 0). In this case, it actually corresponds to the underlying automaton
structure of DPA P from Example 2.7.8. This means that 1∗0�∗1$ can
be recognized by a DPA built on top of its prefix classifier, unlike
Büchi(0) ∩ Büchi(1). Notice that objectives Reach(0) and Safe(0) have
the same prefix classifier as 1∗0�∗1$.

Characterizing

finite memory requirements

From memoryless

to finite-memory determinacy 3

Our goal in this first part titled Characterizing finite memory requirements

is to understand the general mechanisms leading various objectives to
admit simple optimal strategies. We seek to further the understanding of
memory requirements and provide general tools that simplify their study.
In this chapter, we highlight existing general results about the memory
requirements of various objectives (mostly aboutmemoryless determinacy
in various contexts), show some of their limits, and lay the groundwork
for new results about finite-memory determinacy.

This chapter serves as an introduction and a motivation to Chapters 4
and 5, which contain our main contributions to these questions.

3.1 Finite game graphs . 47

3.1.1 Characterization of memoryless determinacy 47
3.1.2 Lifting attempts for finite-memory determinacy 49
3.2 Infinite game graphs . 52

3.1 Finite game graphs

We first discuss the setting of games played on finite graphs. We discuss an
elegant characterization of memoryless determinacy in this setting, and
then discuss its potential generalization to finite-memory determinacy.

3.1.1 Characterization of memoryless determinacy

Following sufficient conditions for memoryless determinacy [GZ04], the [GZ04]: Gimbert et al. (2004),
When Can You Play Position-

ally?

first characterization of objectives that are memoryless-determined over
finite graphswas established in [GZ05]. This characterization goes through

[GZ05]: Gimbert et al. (2005),
Games Where You Can Play Op-

timally Without Any Memory

The results from [GZ05] actu-
ally use preference relations, a
more general framework than
qualitative objectives, which
we will introduce in Chap-
ter 4.

the conjunction of two conditions of the objectives, called monotony and
selectivity. We give here informal descriptions of these concepts (formal
definitions and generalizations will follow in Chapter 4).

Roughly, monotony is focused on prefixes: it requires that if an ultimately
periodic word G(H1)$ is winning and another one G(H2)$ is losing, then
their “winning status” cannot be swapped by replacing prefix G, i.e.,
we cannot have G′(H1)$ losing and G′(H2)$ winning for any G′ ∈ �∗.
This property is satisfied by prefix-independent objectives, but is more
general. For instance, Reach(0) and Safe(0) are monotone but not prefix-
independent.

Selectivity roughly requires that combining cycles brings no benefit: if it is
possible to create awinning infinite word by aggregating finite words from

3 From memoryless to finite-memory determinacy 48

two distinct sets, then it is also possible to create a winning word by taking
finite words from just one of these sets. Similar-looking notions (fairly
mixing, concave, submixing [GZ04; Kop06; GK14]) had been defined in other [GZ04]: Gimbert et al. (2004),

When Can You Play Position-

ally?

[Kop06]: Kopczyński (2006),
Half-Positional Determinacy of

Infinite Games

[GK14]: Gimbert et al. (2014),
Submixing and Shift-Invariant

Stochastic Games

attempts in the literature, but they slightly differ and are incomparable to
selectivity.

Perhaps more elegant and handy is the following characterization of
memoryless determinacy over finite arenas, which is a by-product of their
characterization throughmonotony and selectivity. It reduces the problem
of memoryless determinacy over finite arenas to memoryless determinacy
over finite one-player arenas.

Theorem 3.1.1 (One-to-two-player memoryless lift, finite arenas [GZ05,
Corollary 7])

[GZ05]: Gimbert et al. (2005),
Games Where You Can Play Op-

timally Without Any Memory

Let, ⊆ �$
be an objective. If memoryless strategies suffice

for both P1 and P2 in their respective finite one-player arenas, then , is

memoryless-determined over finite arenas.

Such a “one-to-two-player lift” provides a neat and often easy way to
prove that an objective admits memoryless optimal strategies without
provingmonotony and selectivity: proving it in the finite one-player arenas
of the two players, which is generally easier as it boils down to graph
reasoning, and then lifting the result to the general finite two-player arenas
through the lift. We give an illustration of this result on the mean-payoff
objective.

Example 3.1.2 Let � = ℚ. We consider the mean-payoff objective MP≥0

(defined in Definition 2.4.12). This objective is memoryless-determined
over finite arenas, which was first proved in [EM79] [EM79]: Ehrenfeucht et al.

(1979), Positional Strategies for
Mean Payoff Games

. We argue that it is
easy to recover this result using Theorem 3.1.1.
We take the point of view of P1 (due to the nature of objective MP≥0, P2
can be dealt with symmetrically). LetA be a finite one-player arena of P1.
We show that P1 has a memoryless optimal strategy in A. We consider
the cycles of A, and we say that a cycle is non-negative if the average of
its colors is non-negative. Clearly, P1 can win for MP≥0 if a non-negative
cycle is reachable from the initial vertex: P1 can simply reach the cycle
and loop around it. To win with a memoryless strategy, we simply
observe that a non-negative cycle always contains a non-negative simple

cycle (i.e., not going twice through the same vertex). A simple cycle can
be reached and looped aroundwith amemoryless strategy. This describes
a way to win with a memoryless strategy if there is a non-negative cycle.
This reasoning is actually complete: if there is no non-negative cycle,
then P1 simply cannot win for MP≥0 (its mean payoff will be upper
bounded by the simple cycle with the highest average, Note that the “simple cycle

with thehighest average”may
not exist in an infinite arena.

but this average
is negative). We have shown that given a fixed initial vertex of A, if P1
can win, then P1 can win with a memoryless strategy. Formally, we
must still argue that we can build a single memoryless strategy winning
“uniformly” from all the vertices from which P1 has a winning strategy,

3 From memoryless to finite-memory determinacy 49

which we do not do here but is reasonably straightforward (in particular,
it will follow from results in Section 4.7). The existence of a “uni-

formly” optimal strategy is
also a direct consequence
from the fact that memory-
less winning strategies can be
“uniformized” under prefix-
independence of the objec-
tive [CN06, Lemma 5]
[CN06]: Colcombet et al.
(2006), On the positional deter-

minacy of edge-labeled games

.

These arguments show that memoryless strategies suffice for P1 in its
finite one-player arenas, and the same reasoning works for P2 (using
negative cycles instead). By Theorem 3.1.1, objectiveMP≥0 is memoryless-
determined over finite arenas.

A natural question arises: which preference relations admit finite-memory

optimal strategies? Surprisingly, whether an equivalent to Gimbert and
Zielonka’s characterization could be obtained in the finite-memory case or
not has remained an open question up until recently. It is worth noticing
that such an equivalent could be of great help in practice, especially if a one-
to-two-player lift also holds: see for example [BMR+18; BHM+17; BHRR19], [BMR+18]: Bouyer et al.

(2018), Average-energy games

[BHM+17]: Bouyer et al.
(2017), Bounding Average-

Energy Games

[BHRR19]: Bruyère et al.
(2019), Energy Mean-Payoff

Games

where proving that finite-memory strategies suffice in one-player games
was fairly easy, in contrast to the high complexity of the two-player case —
a lifting corollary could grant the two-player case for free!

We initially hoped that the following conjecture could be established:
“if finite-memory strategies suffice for both P1 and P2 in their respective
finite one-player arenas, they also suffice in all finite two-player arenas”.
Unfortunately, we found counterexamples to this conjecture in its more
general form.

3.1.2 Lifting attempts for finite-memory determinacy

The goal of this section is to present a counterexample to the above
conjecture; finite-memory determinacy over finite one-player games does
not imply finite-memory determinacy over finite two-player games. This
justifies the restriction of the notion of finite-memory determinacy to
arena-independent finite-memory determinacy, for which we will prove a
one-to-two-player lift in Chapter 4.

This counterexample is a variant of an energy objective. Let us assume
that � = ℤ, and that the objective of P1 is to create a play such that (8)
the running sum of colors grows up to infinity (e.g., consider its lim inf
to define it properly), or (88) this running sum of colors takes value zero
infinitely often. Formally, we consider the two objectives

,1 = {2122 . . . ∈ �$ | lim inf
=→∞

=∑
8=1

28 = +∞},

,2 = {2122 . . . ∈ �$ |
=∑
8=1

28 = 0 for infinitely many values of =},

and we define, =,1 ∪,2 as the objective of P1.

Proposition 3.1.3 For objective, , both players have finite-memory optimal

strategies in their respective finite one-player arenas, but P1 needs infinite

3 From memoryless to finite-memory determinacy 50

memory to play optimally in some finite two-player arena.

Proof. Throughout the proof, we say that a cycle in an arena is a zero cycle
if the sum of its colors is zero, a positive cycle if this sum is positive, and a
negative cycle if this sum is negative.

We first consider a finite one-player arena ofP1. In this arena,P1 can create
a play � such that col$(�) ∈,1 if and only if there is a reachable positive
cycle. In this case, P1 can win with a finite-memory strategy (simply
reaching the cycle and then looping around it). If that is not possible, in
order to win, P1 has to induce a play � such that col$(�) = 2122 . . . ∈,2.
As there are infinitely many indices for which the energy level is 0 but
finitely many vertices in the arena, we can find two indices :, ; ≥ 1
such that : < ;, out(4:) = out(4;), ∑:

8=1 28 = 0, and
∑;
8=1 28 = 0. Notice in

particular that
∑;
8=:+1 28 = 0. Now, consider the play

�′ = 41 . . . 4:(4:+1 . . . 4;)$,

with the sequence of edges 4:+1 . . . 4; repeating ad infinitum (�′ is a
“lasso”). This is a valid play since in(4:+1) = out(4:) = out(4;). Moreover, we
have that col$(�′) ∈,2 as after repeating < times the sequence 4:+1 . . . 4; ,
the sum of the colors equals

∑:
8=1 28 + < ·

∑;
8=:+1 28 = 0 + < · 0 = 0. The

play �′ can be implemented with finite memory, as it consists of a finite
prefix and a repeated finite sequence.

We now turn our attention to a finite one-player arena of P2; P2 wins by
making a play � such that col$(�) = 2122 . . . ∈ �$ with

lim inf
=→∞

=∑
8=1

28 < +∞ ∧
=∑
8=1

28 = 0 for at most finitely many values of =.

If there is a reachable negative cycle in the arena, P2 can ensure to win
by looping around it forever, and can therefore win with a finite-memory
strategy. We now assume that there is no reachable negative cycle. As we
did for P1, we show that if P2 can win the game in such an arena, then P2
can do so using finite memory.

If P2 can win, let � = 4142 . . . be a winning play for P2, i.e., col$(�) =
2122 . . . ∈,1∩,2. Let E be a vertex visited infinitely oftenwhen� is played,
and < ≥ 0 be the first index such that out(4<) = E. We can decompose �
into a finite prefix 41 . . . 4< followed by an infinite sequence of cycles on
E. Since there is no negative cycle, we cannot have that infinitely many
of these cycles are positive, as this would imply that col$(�) ∈,1. Thus,
infinitely many zero cycles from E are taken. As col$(�) ∈,2, clearly, one
of these cycles 4:+1 . . . 4; (with in(4:+1) = out(4;) = E and

∑;
8=:+1 28 = 0)

satisfies that for all =, : + 1 ≤ = ≤ ;, it holds that ∑=
8=1 28 ≠ 0 (infinitely

many cycles satisfy this condition, but we just pick one). This also implies
that

∑:
8=1 28 ≠ 0, i.e., the history up to this cycle has a non-zero energy

3 From memoryless to finite-memory determinacy 51

E2 E1

0

0

1 −1

Figure 3.1: P1 (circle) needs infinite memory to win in this arena for objective, (by always resetting the sum of colors to
zero by looping long enough on E1 before going back to E2).

level. Now, let us consider the play

�′ = 41 . . . 4:(4:+1 . . . 4;)$,

with the sequence of edges 4:+1 . . . 4; repeating ad infinitum (�′ is a
“lasso”). This is a valid play as in(4:+1) = out(4;). Every time the cycle starts
again, the running sum of colors is equal to the same value:

∑:
8=1 28 ≠ 0.

Therefore, as the running sum of colors does not reach zero the first time
the cycle is taken, and it also never reaches zero along the cycle, it can
never reach zero after index : − 1. Hence, col$(�′) is not in, , and �′ is
winning for P2. This play �′ only needs finite memory to be implemented.

Now, consider the simple two-player game depicted in Figure 3.1. First,
observe that P1 (circle) has an infinite-memory strategy to win: P1 should
keep track of the running sum of colors (which is unbounded, hence the
need for infinite memory). Whenever the current vertex is E1, P1 should
loop on E1 up to the point where this sum hits zero, and then go to E2.
This strategy ensures victory because either P2 always goes back to E1,
in which case ,2 is satisfied, or P2 eventually loops forever on E2, in
which case,1 is satisfied. It remains to argue that P1 has no finite-memory

winning strategy in this game: whatever the finite amount of memory
used by P1, P2 may loop on E2 long enough as to exceed the bound up to
which P1 can track the sum accurately; thus preventing P1 from resetting
the sum to zero in E1 infinitely often.

This example proves that Gimbert and Zielonka’s one-to-two-player lift

cannot work in full generality in the finite-memory case. Informally, in
the case of memoryless strategies, as in [GZ05], P1 is already doomed in [GZ05]: Gimbert et al. (2005),

Games Where You Can Play Op-

timally Without Any Memory

one-player arenas in the absence of monotony: two prefixes to distinguish
in order to play optimally can be “hardcoded” as different paths leading

“Two prefixes to distinguish
to play optimally” can be ex-
plained as two prefixes in-
comparable for the prefix pre-
order � of, : they each have
winning continuations that
are not winning for the other
prefix. In our example, the
family of words {1= ∈ �∗ |
= ≥ 0} are all incomparable
for �.

to the same vertex in a game arena, as if they were chosen by P2 in a
two-player game. In the case of finite-memory strategies, however, the
situation is different. In finite one-player arenas, the number of such paths
that can be hardcoded in an arena is always bounded; hence finite memory
might suffice to react, i.e., to keep track of which prefix is the current
one and how to behave accordingly. However, in two-player arenas, P2
might create an infinite number of prefixes to distinguish (using a cycle),
thus requiring P1 to use infinite memory to be able to do so. This is what
happens in the example above: in any finite one-player game, the largest
sum that P1 has to track is bounded, whereas P2 can make this sum
arbitrarily large in some two-player arenas.

3 From memoryless to finite-memory determinacy 52

3.2 Infinite game graphs

In Chapter 5, we will discuss finite-memory determinacy of games played
on graphs that may have arbitrary cardinality. Before getting there, we
discuss again the special case of memoryless determinacy, which is quite
well-understood in the literature.

After showing an elegant characterization for memoryless determinacy of
games played on finite arenas (Theorem 3.1.1), a legitimate question is: do
we need in general more complex strategies to play optimally when arenas
are allowed to be infinite? The answer turns out to be positive, which was
already observed by Puterman in 1994 [Put94]. [Put94]: Puterman (1994),

Markov Decision Processes: Dis-

crete Stochastic Dynamic Pro-

gramming
Example 3.2.1 We consider again objective MP≥0, but we now consider
the infinite arena in Figure 3.2 (left) [Put94, Example 8.10.2]. Despite the
fact that all colors are negative, P1 has a winning strategy from E1: the
idea is, for all 8 ≥ 1, to loop on vertex E8 sufficiently many times to bring
the mean payoff close to − 1

8 , and then move on to E8+1 and repeat. At
the limit, the mean payoff is 0.
Concretely, it suffices to loop 8 times on vertex E8 before moving on to
E8+1. We show this by computing the mean color seen after = steps by
aggregatingwhat happens in eachvertex, given thatwemake 8+1 actions
in vertex E8 (8 times the self-loop with color − 1

8 and 1 time the rightward
edge with color−1). After = steps, if = = (1+1)+(2+1)+ . . .+(:+1)+ ;
with 0 ≤ ; ≤ : + 1, the current mean payoff is

1
=

(
:∑
8=1
(−1
8
· 8 − 1) − 1

: + 1
· ;

)
=

1
=
· (−2: − 1

: + 1
· ;)

≤ 1
=
· (−2: − 1).

As = is quadratic in :, this expression indeed converges to 0 as = grows
to infinity.
This winning strategy requires infinitememory to be implemented. No
memoryless strategy is winning, as a memoryless strategy either stops
forever in some vertex E8 and obtains a mean payoff of − 1

8 , or goes
only to the right and obtains a mean payoff of −1. Hence, MP≥0 is not
memoryless-determined over infinite arenas, even one-player ones.
We can generalize this reasoning to show that anyfinite-memory strategy
with : states is losing. Such a strategy either stops forever in some vertex
E8 and obtains a mean payoff of − 1

8 , or goes infinitely often to the
right. In this second case, it can spend at most : steps in each vertex
before moving to the right, hence color −1 is seen at least every : steps
and the mean payoff then gets smaller than − 1

: . Objective MP≥0 is not
finite-memory-determined over infinite arenas either.
It might seem that we actively rely on the access to infinitely many colors

in the same arena to build the example, which is obviously not possible

3 From memoryless to finite-memory determinacy 53

E1 E2 E3 · · ·−1 −1 −1

−1 − 1
2 − 1

3

E1 E2 E3 · · ·−1 −1,−1 −1,−1,−1

−1 −1, 0 −1, 0, 0

Figure 3.2: Infinite one-player arenas requiring infinite memory for objectiveMP≥0. The arena on the right uses only finitely
many colors.

in finite arenas. We depict a slightly more involved arena in Figure 3.2
(right) that exhibits similar properties for the same reasons, but using
only colors −1 and 0. In a vertex E8 , we simply replace color − 1

8 by the
sequence −1, 08−1 When denoting words com-

posed of numbers, we sep-
arate them with commas
to avoid ambiguities (even
though we do not do this for
arbitrary words 2122 . . .).

and the rightward −1 colors by the sequence (−1)8 .

This example shows that there are fewer memoryless-determined objec-
tives if we allow arenas of arbitrary cardinality. One might wonder: what
objectives then remain memoryless-determined? We have seen that parity
conditions are memoryless-determined over arenas of any cardinality
(Theorem 2.6.3).We nowdiscuss an elegant characterization by Colcombet
and Niwiński [CN06] establishing that, under prefix-independence, there [CN06]: Colcombet et al.

(2006), On the positional deter-

minacy of edge-labeled games

is actually nothing more than parity conditions.

Theorem3.2.2 ([CN06, Theorem 4]) Let, ⊆ �$
be a prefix-independent

objective. If, is memoryless-determined (in games played on infinite arenas),

then there is = ∈ ℕ and a function ? : � → {0, . . . , =} such that

F = 2122 . . . ∈, ⇐⇒ lim sup
8→∞

?(28) is even.

In other words, up to renaming colors through a priority function ? taking

values in a finite set of natural numbers,, is a parity condition.

Using memoryless determinacy of parity conditions (Theorem 2.6.3),
this result provides the missing implication of an equivalence between
being a parity condition and being memoryless-determined (under prefix-
independence assumption). As objective MP≥0 is prefix-independent but
is not a parity condition, it is thus not surprising that it requires memory To prove formally that MP≥0

is not a parity condition, ob-
serve that (−1,−1, 1)$ is los-
ing while (−1, 1, 1)$ is win-
ning, so the winning/losing
status of words does not sim-
ply depend on the colors seen
infinitely often.

in some infinite arenas for at least one player, as shown in Example 3.2.1.

Although not stated by Colcombet and Niwiński, we can also get a one-

to-two-player lift for games played on infinite arenas from their proof
technique. Indeed, their result can be obtained just by making an as-
sumption about memory requirements in one-player arenas. This requires
carefully observing that all the arenas they use in their proof are one-player
arenas, except for [CN06, Lemma 9] which can be made to work with a
one-player arena instead. This was already discussed by Kopczyński in
his thesis [Kop08, Theorem 3.8]. [Kop08]: Kopczyński (2008),

Half-positional Determinacy of

Infinite Games

3 From memoryless to finite-memory determinacy 54

Corollary 3.2.3 (One-to-two-player memoryless lift, infinite arenas) Corollary 3.2.3 will be a spe-
cial case of our results in
Chapter 5, so we do not pro-
vide more proof details for it
here.

Let

, ⊆ �$
be a prefix-independent objective. If both players have memoryless

optimal strategies in their respective one-player arenas (of any cardinality),

then, is a parity condition (up to renaming the colors). In particular,, is

memoryless-determined (over two-player arenas of any cardinality).

This corollarymakes it reasonable that the counterexample to thememory-
less determinacy of MP≥0 in infinite arenas we exhibited in Example 3.2.1
was a one-player arena; it was guaranteed that there was a one-player arena
in which some player did not have a memoryless optimal strategy.

Based on the knowledge of Theorem 3.2.2, we identified two questions
that still needed answers and that fit our goals.

I What if the objective is not prefix-independent? There are many
memoryless-determined objectives (even over infinite arenas) that
are not parity conditions; for instance, Reach(0) is one of them. Can
we find a characterization encompassing such objectives?

I What if we relax memoryless determinacy to (chromatic) finite-
memory determinacy? Can we still obtain a nice characterization
for this larger class of objectives?

We will give precise answers to both these questions in Chapter 5.

Characterization of

arena-independent finite-memory

determinacy 4

In Section 3.1, we discussed a characterization of memoryless determinacy
by Gimbert and Zielonka in games played on finite graphs [GZ05], and [GZ05]: Gimbert et al. (2005),

Games Where You Can Play Op-

timally Without Any Memory

what can be expected for a generalization to finite-memory determinacy.
In this chapter, we establish a characterization of objectives that admit
optimal strategies using arena-independent finite memory, providing an
extension of the work of Gimbert and Zielonka to the finite-memory
case. The adjective arena-independent refers to memory structures that can
depend on the set of colors and the objective (with its possible parameters),
but not on the precise game graph chosen to play the game. We prove an
equivalent to their practical one-to-two-player lift: for a given objective, if
both players have optimal arena-independent-finite-memory strategies in
all finite one-player graphs, then it is also the case in all finite two-player
graphs.

The contributions from this chapter are based on joint work with Patricia
Bouyer and Stéphane Le Roux (both from Université Paris-Saclay, CNRS,
ENS Paris-Saclay, LMF), Youssouf Oualhadj (Univ Paris Est Creteil, LACL),
and Mickael Randour (F.R.S.-FNRS & Université de Mons) published
in two papers: a conference version [BLO+20] in the proceedings of [BLO+20]: Bouyer et al.

(2020), Games Where You Can

Play Optimally with Arena-

Independent Finite Memory

CONCUR’20 and a more extensive journal version [BLO+22] in Logical

[BLO+22]: Bouyer et al.
(2022), Games Where You Can

Play Optimally with Arena-

Independent Finite Memory

Methods in Computer Science.

4.1 Introduction . 56

4.2 Additional preliminaries . 59

4.2.1 Preference relations . 59
4.2.2 Nash equilibria . 60
4.2.3 Product arenas . 63
4.2.4 Arena induced by a non-deterministic finite automaton 65
4.3 Concepts . 67

4.3.1 Generalizing monotony and selectivity . 67
4.3.2 Discussion about theM-monotony notion 71
4.3.3 Prefix-covers and cyclic-covers . 74
4.4 Characterization . 76

4.4.1 Main results . 76
4.4.2 Running example . 78
4.5 From strategies based onM toM-monotony andM-selectivity . . . 79

4.6 FromM-monotony andM-selectivity to strategies based onM . . . 85

4.7 Digression: the cost of uniformity . 93

4.8 Further discussion of selected related works 96

4.8.1 Generalization to stochastic games . 97
4.8.2 Generalization to mildly growing memory 98

4 Characterization of arena-independent finite-memory determinacy 56

4.1 Introduction

Preference relations. Up to now, we have discussed objectives encoded
as sets of infinite words — such objectives are usually called qualitative,
as a player either wins or loses. Inspired by games in economics, we can
generalize this to payoff functions mapping infinite words to numerical
values, and P1 can be seen as the “maximizer” player. The two formalisms
are strongly linked: the classical decision problem for quantitative games
is to fix a payoff threshold and ask ifP1 has a strategy to guarantee it, essen-
tially transforming the problem into a qualitative one (where the winning
plays are all those achieving a payoff at least equal to the threshold). This
is for instance what we did with the mean-payoff function, to which we
have fixed threshold 0 in the examples (Examples 3.1.2 and 3.2.1). These
quantitative objectives especially find meaning in the reactive synthesis

motivation of considering zero-sumgames: they allowdescribing complex,
non-binary specifications where some quantity (e.g., energy consumption,
response time) has to be maximized or minimized [BMR+18; BHM+17;
BHRR19]. [BMR+18]: Bouyer et al.

(2018), Average-energy games

[BHM+17]: Bouyer et al.
(2017), Bounding Average-

Energy Games

[BHRR19]: Bruyère et al.
(2019), Energy Mean-Payoff

Games

In this chapter, we borrow the formalism of Gimbert and Zielonka [GZ05]

[GZ05]: Gimbert et al. (2005),
Games Where You Can Play Op-

timally Without Any Memory

encompassing qualitative and quantitative objectives: we consider prefer-
ence relations over infinite words. This general formalism permits encoding
most classical game objectives, both qualitative and quantitative, and lets
us reason in a well-founded framework under minimal assumptions.

Contributions. We generalize Gimbert and Zielonka’s results — char-
acterization and one-to-two-player lift — to the case of arena-independent
finite memory. That is, we encompass situations where the memory
needed by the two players is solely dependent on the preference relation

(e.g., colors, dimensions of weight vectors), and not on the game arena
(i.e., number of vertices/edges). This restriction to arena-independent
memory is natural given the counterexamples to a more general approach
presented in Section 3.1.

Informally, our characterization can be stated as follows: given a preference
relation and a memory structure M, both players have finite-memory
optimal strategies based on memory structureM in all finite game graphs
if and only if the preference relation and its inverse areM-monotone and
M-selective.

These last two concepts correspond intuitively to Gimbert and Zielonka’s
monotony and selectivity, modulo a memory structure. Recall that monotony
and selectivity are related to the stability of the preference relation with
regard to replacing prefixes and combining cycles, respectively. Our more
general concepts ofM-monotony andM-selectivity serve the same purpose,
but they only compare sequences of colors deemed equivalent by the
memory structure. For the sake of illustration, take selectivity: it implies
that one has no interest in mixing different cycles of the game arena. For its

4 Characterization of arena-independent finite-memory determinacy 57

generalization, the memory structure is taken into account:M-selectivity
implies that one has no interest in mixing cycles of the game arena that are
read as cycles on the same state in the memory structureM.

Applicability. The arena-independent framework naturally includes
memoryless-determined preference relations (the case studied in [GZ05]), [GZ05]: Gimbert et al. (2005),

Games Where You Can Play Op-

timally Without Any Memory

for which the memory structureMtriv with a single state suffices for both
players in all finite arenas. Beyond memoryless determinacy, a typical
class of objectives that we cover is the one of $-regular objectives: a
deterministic parity automaton recognizing the objective suffices to play
optimally for both players in all arenas (Theorem 2.7.11). However, a DPA
(even a minimal one) is only an upper bound on the amount of memory
needed for the derived $-regular objective. This justifies the relevance
of providing dedicated tools to understand the memory requirements
of $-regular objectives, which is not equivalent to providing tools to
represent $-regular objectives as automata.

Classes of $-regular objectives whose memory requirements were stud-
ied previously contain, e.g., combinations of parity objectives [CHP07]

[CHP07]: Chatterjee et al.
(2007), Generalized Parity

Games

(the memory depends on the number of objectives and the number of
priorities), lower-bounded and upper-bounded energy objectives [BFL+08;
BMR+18; BHM+17]

[BFL+08]: Bouyer et al. (2008),
Infinite Runs in Weighted

Timed Automata with Energy

Constraints

[BMR+18]: Bouyer et al.
(2018), Average-energy games

[BHM+17]: Bouyer et al.
(2017), Bounding Average-

Energy Games(the memory depends on the bounds and the weights),
Muller conditions [DJW97; Cas22] (the memory depends on the colors [DJW97]: Dziembowski et al.

(1997), How Much Memory is

Needed to Win Infinite Games?

[Cas22]: Casares (2022), On

the Minimisation of Transition-

Based Rabin Automata and

the Chromatic Memory Require-

ments of Muller Conditions

and on the sets in F). On the contrary, combinations of lower-bounded
energy objectives (with no upper bound) require arena-dependent mem-
ory [VCD+15; CRR14; JLS15], as shown in Example 2.6.13: the memory

[VCD+15]: Velner et al. (2015),
The complexity of multi-mean-

payoff and multi-energy games

[CRR14]: Chatterjee et al.
(2014), Strategy synthesis for

multi-dimensional quantitative

objectives

[JLS15]: Jurdziński et al.
(2015), Fixed-Dimensional En-

ergy Games are in Pseudo-

Polynomial Time

depends on the size of the arena in addition to the weights used in it. Such
a setting falls outside the scope of our results.

Additional related works. We mention here works sharing the similar
philosophy of trying to provide general conditions about objectives and
games that guarantee “low” strategy complexity in games played on finite
arenas.

Following the same motivation as our work — the need to characterize
(combinations of) objectives admitting finite-memory optimal strategies
in finite arenas, Le Roux, Pauly, and Randour [LPR18] take another path:

[LPR18]: Le Roux et al. (2018),
Extending Finite-Memory De-

terminacy by Boolean Combina-

tion of Winning Conditions

whereas our work permits lifting results from one-player games to two-
player games, they provide a lifting from the single-objective case to the
multi-objective one.

Our work focuses on deterministic turn-based two-player games. Some suffi-
cient conditions, orthogonal to our approach, were studied for concurrent
games [LeR18; BLT22]. [LeR18]: Le Roux (2018),

Concurrent Games and Semi-

Random Determinacy

[BLT22]: Bouyer et al. (2022),
Finite-Memory Strategies in

Two-Player Infinite Games

Many articles consider stochastic turn-based two-player games played on
finite graphs (where transitions happen stochastically, and the goal is
then usually to maximize the expected value of some payoff function). A

4 Characterization of arena-independent finite-memory determinacy 58

line of work gives sufficient conditions for the existence of memoryless
optimal strategies just for one player (i.e., for half-positionality): the same
conditionswere first proved sufficient in one-player stochastic games (often
called Markov decision processes) [Gim07] and two-player deterministic [Gim07]: Gimbert (2007),Pure

Stationary Optimal Strategies in

Markov Decision Processes

games [Kop06], and then in two-player stochastic games [GK14] through

[Kop06]: Kopczyński (2006),
Half-Positional Determinacy of

Infinite Games

[GK14]: Gimbert et al. (2014),
Submixing and Shift-Invariant

Stochastic Games

more involved results [Mas15]. In [MSTW21] and in anewversionof [GK14],

[Mas15]: Mashiah-Yaakovi
(2015), Correlated Equilibria

in Stochastic Games with Borel

Measurable Payoffs

[MSTW21]: Mayr et al. (2021),
Simple Stochastic Games with

Almost-Sure Energy-Parity Ob-

jectives are in NP and coNP

under the same sufficient conditions, the authors provide a sufficient
condition for finite-memory determinacy of the other player. We will
compare this result to ours more extensively in Subsection 9.2.1, at the
end of this thesis.

Wehavepublishedan extensionof the results from this chapter to stochastic
games [BORV21a], building on previous unpublished work by Gimbert

[BORV21a]: Bouyer et al.
(2021), Arena-Independent

Finite-Memory Determinacy in

Stochastic Games

and Zielonka [GZ09]. To keep a consistent model throughout the thesis,

[GZ09]: Gimbert et al. (2009),
Pure and Stationary Optimal

Strategies in Perfect-Information

Stochastic Games with Global

Preferences

we have chosen not to present this work in the thesis and to focus on the
simpler deterministic version. We still discuss at a high level a description
of the stochastic case at the end of the chapter, in Section 4.8.

Finally, in the same context of deterministic turn-based games, the one-to-
two-player lift from this chapter was generalized later on by Kozachin-
skiy [Koz22b] to some constrained condition on the “arena-dependence”

[Koz22b]: Kozachinskiy
(2022), One-To-Two-Player

Lifting for Mildly Growing

Memory

of the memory requirements in one-player games, by making finer obser-
vations along the same proof technique. We also come back to this result
in Section 4.8.

Chapter structure. We extend qualitative objectives to the more general
framework of preference relations and introduce some technical notions
used in this chapter in Section 4.2. In Section 4.3, we introduce M-
monotony andM-selectivity, generalizing concepts from [GZ05] to take

[GZ05]: Gimbert et al. (2005),
Games Where You Can Play Op-

timally Without Any Memory

into account memory structures. These are the core concepts of our
characterization, i.e., the properties that preference relations must satisfy
to admit optimal strategies based on M. Section 4.4 is devoted to our
results, and contains our characterization (Theorem 4.4.1) and the novel
one-to-two-player lift (Theorem 4.4.4). We provide an application of our
concepts in Subsection 4.4.2. The proof of the characterization is split
into Section 4.5 (for the necessity of M-monotony and M-selectivity)
and Section 4.6 (for the sufficient direction). The final two sections are
orthogonal discussions. Section 4.7 is devoted to discussing the uniformity

requirement of winning strategies; thanks to the results of this chapter, we
can say more about the impact that requiring uniformity has on strategy
complexity. We discuss some chosen related works in greater detail in
Section 4.8.

4 Characterization of arena-independent finite-memory determinacy 59

4.2 Additional preliminaries

We first extend notions defined about (qualitative) objectives to the more
general framework of preference relations. We then introduce some links
between non-deterministic automata and arenas, which will be technically
helpful in the upcoming proofs.

4.2.1 Preference relations

We consider a generalization of qualitative objectives where a player may
have a preference about arbitrarily many outcomes.

Definition 4.2.1 A preference relation is a total preorder v ⊆ �$ × �$

on �$
.

A quantitative game (extending qualitative games) is then a tuple G = (A, v)
where A is an arena and v is a preference relation. In such a game, the
objective of P1 is to create the best possible play with regard to v whereas
the objective of P2 is to obtain the worst possible one. That is, P2 uses
the inverse relation v−1 (such that F v−1 F′ if and only if F′ v F). This
corresponds to zero-sum games when using a quantitative framework.

Every qualitative game G = (A,,) can be written as a quantitative game
(A, v,), where F v, F′ if and only if F ∈, or F′ ∈, .

Example 4.2.2 Consider the mean-payoff function MP, with � = ℚ. Function MP was defined in
Definition 2.4.12.

We
define a preference relation such that the goal of P1 is to create a word
F maximizing the value of MP. Payoff function MP induces a natural
preference relation vMP between sequences of colors as follows: for all
F, F′ ∈ �$,F vMP F′ if and only ifMP(F) ≤ MP(F′). Such quantitative
games are zero-sum, hence P2 uses the natural inverse relation v−1

MP; P2
is a minimizer player in the payoff formulation of these games.

Given F, F′ ∈ �$, we write F @ F′ if we have ¬(F′ v F) (we recall that
the preorder is total). We extend the relation v to subsets of �$ as follows:
for,,, ′ ⊆ �$,

, v, ′ ⇐⇒ ∀F ∈,, ∃F′ ∈, ′, F v F′.

We also write

, @ , ′ ⇐⇒ ∃F′ ∈, ′,∀F ∈,,F @ F′.

Note that, @ , ′ if and only if ¬(, ′ v,).
We sometimes compare words F ∈ �$ with sets , ⊆ �$ (writing
F v,), by simply identifying word F to its singleton language {F}.

4 Characterization of arena-independent finite-memory determinacy 60

Remark 4.2.3 For a preference relation v, induced as explained above
by a qualitative objective, ⊆ �$, observe that for,1 ,,2 ⊆ �$,

,1 v, ,2 ⇐⇒ (,1 ∩, = ∅ ∧,2 ≠ ∅) ∨,2 ∩, ≠ ∅, and
,1 @, ,2 ⇐⇒,1 ∩, = ∅ ∧,2 ∩, ≠ ∅.

In this new quantitative framework, we must define again what it means
for a strategy to be optimal. Let G = (A, v) be a quantitative game on arena
A = (+,+1 , +2 , �). Given a strategy �1 of P1 on A and a vertex E ∈ + , we
define

UColv(A, E, �1) = {F ∈ �$ | ∃F′ ∈ col$(Plays(A, E, �1)), F′ v F}.

Intuitively, UColv represents the upward closure of sequences of colors
consistent with a strategy with respect to the preference relation v.
Taking the standpoint of P1, we say that a strategy �1 of P1 onA is at least
as good as strategy �′1 of P1 from vertex E ∈ + if

UColv(A, E, �1) ⊆ UColv(A, E, �′1).

Intuitively, �1 is at least as good as �′1 if the “worst-case” plays consistent
with �1 are at least as good as the ones consistent with �′1. The UCol
operator is useful to define this notion properly even when there is no
“worst-case” play for a strategy (i.e., if the infimum used in the classical
quantitative setting is not reached). Similar notions have been used before,
e.g., in [LeR13]. [LeR13]: Le Roux (2013), Infi-

nite sequential Nash equilibrium

Symmetrically for P2, we define

DColv(A, E, �2) = {F ∈ �$ | ∃F′ ∈ col$(Plays(A, E, �2)), F v F′},

and we say that a strategy �2 of P2 on A is at least as good as strategy �′2
from vertex E ∈ + if

DColv(A, E, �2) ⊆ DColv(A, E, �′2).

Now, we say that a strategy �ℓ of Pℓ on A is as good as possible from E ∈ +
if it is at least as good as every strategy �′ℓ of Pℓ from E. We extend this
notation to subsets of vertices: we say that a strategy �ℓ is optimal from

+′ ⊆ + if it is as good as possible from every E ∈ +′, and we simply say
optimal to mean optimal from + .

4.2.2 Nash equilibria

We use Nash equilibria [Nas51; OR94] as tools to establish the existence of [Nas51]: Nash (1951), Non-

cooperative Games

[OR94]: Osborne et al. (1994),
A course in game theory

optimal strategies in some of our proofs. Let G = (A, v) be a quantitative
game on arenaA = (+,+1 , +2 , �). Formally, a Nash equilibrium (NE) from a

4 Characterization of arena-independent finite-memory determinacy 61

vertex E ∈ + is a couple of strategies (�1 , �2) of P1 and P2 such that, for all
strategies �′1 of P1, and all strategies �′2 of P2,

col$(Plays(A, E, �′1 , �2)) v col$(Plays(A, E, �1 , �2))
v col$(Plays(A, E, �1 , �′2)). (4.1)

This means that neither P1 nor P2 has any interest in deviating from their
respective strategy.

We take a moment to discuss the link between optimal strategies and
Nash equilibria in our specific context of zero-sum games. Both notions
seem related, and indeed, in [GZ05], Gimbert and Zielonka did choose [GZ05]: Gimbert et al. (2005),

Games Where You Can Play Op-

timally Without Any Memory

Equation (4.1) — i.e., the definition of a Nash equilibrium — as their
definition of a pair of optimal strategies. This suggests that both notions
coincide. However, they do not in full generality, as we discuss in the
following.

As stated before, our goal is to characterize preference relations that admit
finite-memory optimal strategies, but Nash equilibria will serve as tools in our
endeavor. Let us establish two interesting properties of Nash equilibria in
zero-sum games.

First, it is possible to “mix” different Nash equilibria.

Lemma 4.2.4 Let G = (A, v) be a quantitative game on arena A =
(+,+1 , +2 , �), and let E ∈ + be a vertex. Let (�01 , �02) and (�11 , �12) be
two Nash equilibria from E. Then, (�01 , �12) is also a Nash equilibrium from E.

Proof. We need to prove that for all pairs of strategies �′1 , �
′
2 of P1 and P2,

col$(Plays(A, E, �′1 , �12)) v col$(Plays(A, E, �01 , �12))
v col$(Plays(A, E, �01 , �′2)). (4.2)

Since (�01 , �02) is an NE, we know that

col$(Plays(A, E, �11 , �02)) v col$(Plays(A, E, �01 , �02))
v col$(Plays(A, E, �01 , �12)),

instantiating �′1 and �
′
2 to �

1
1 and �

1
2 respectively in Equation (4.1). Similarly,

since (�11 , �12) is an NE, we know that

col$(Plays(A, E, �01 , �12)) v col$(Plays(A, E, �11 , �12))
v col$(Plays(A, E, �11 , �02)),

instantiating �′1 and �′2 to �
0
1 and �02 respectively in Equation (4.1).

From the last two equations, we obtain that all four sequences of colors are
equivalent forv as the inequalities form a cycle. Hence, since Equation (4.1)

4 Characterization of arena-independent finite-memory determinacy 62

holds for (�01 , �02) and (�11 , �12), and since col$(Plays(A, E, �01 , �12)) is equiv-
alent for v to col$(Plays(A, E, �01 , �02)) and col$(Plays(A, E, �11 , �12)), Equa-
tion (4.2) is satisfied.

Remark 4.2.5 Lemma 4.2.4 relies on the assumption that we consider
zero-sum games, that is, P2 uses the inverse preference relation v−1. In
our general proof scheme for this chapter, usage of Lemma 4.2.4 in
Proposition 4.6.3 is the single argument preventing us from considering
non-zero-sum games, where P1 and P2 use two different, unrelated,
preference relations.

We now establish that Nash equilibria induce optimal strategies in our
zero-sum context.

Lemma 4.2.6 Let G = (A,,) be a quantitative game on arena A =
(+,+1 , +2 , �), and let E ∈ + be a vertex. Let (�1 , �2) be a Nash equilib-

rium from E. Then, both �1 and �2 are as good as possible from E.

Proof. We prove the statement for �1 (it works symmetrically for �2).
Consider the rightmost inequality of Equation (4.1). From it and the
elementary Lemma 2.3.3, we deduce that

UColv(A, E, �1) = {F ∈ �$ | col$(Plays(A, E, �1 , �2)) v F}. (4.3)

Indeed, �2 is a best response [OR94] to �1. [OR94]: Osborne et al. (1994),
A course in game theory

We claim that �1 is at least as good as every strategy from E, hence that �1
is as good as possible from E. Let �′1 be a strategy of P1 on A. We need
to prove that UColv(A, E, �1) ⊆ UColv(A, E, �′1). Let F ∈ UColv(A, E, �1).
From Equation (4.3) and the leftmost inequality of Equation (4.1), we have
col$(Plays(A, E, �′1 , �2)) v F. Hence, by definition, F ∈ UColv(A, E, �′1).

Remark 4.2.7 As noted above, optimal strategies do not always coin-
cide with Nash equilibria. They do coincide for determined preference
relations. Up to now, we have only defined determinacy for qualitative ob-
jectives (Definition 2.4.4). We discuss briefly determinacy of preference
relations.
The traditional formulation of determinacy for real payoff functions
�$ → ℝ requires the highest outcome that P1 can get close to (sup inf)
to be equal to the lowest outcome that P2 can get close to (inf sup) — the
game is then said to have a value [OR94]. Here, as we have not assumed
much on preference relation v (which is a total preorder), we cannot
assume the existence of infima and suprema (the concepts of UColv and
DColv still imitate as much as possible the classical sup inf and inf sup
formulations).
Another less common (but equivalent [Ohl21, Lemma 3] [Ohl21]: Ohlmann (2021),

Monotonic graphs for parity and

mean-payoff games

) formulation

4 Characterization of arena-independent finite-memory determinacy 63

for determinacy of payoff functions is to require that all (qualitative)
threshold objectives are determined. For a preference relation v, the
threshold objectives can be defined as the objectives

,F = {F′ ∈ �$ | F v F′}

for each F ∈ �$. For reasonable preference relations, by Borel determi-
nacy [Mar75] [Mar75]: Martin (1975), Borel

determinacy

, all threshold objectives are indeed determined.
Under this definition of determinacy, pairs of optimal strategies induce
Nash equilibria. Hence, both notions coincide in most cases of interest.
This discussion is still needed to understand the link between optimal
strategies of the individual players and Nash equilibria (Gimbert and
Zielonka only define the latter as pairs of optimal strategies [GZ05] [GZ05]: Gimbert et al. (2005),

Games Where You Can Play Op-

timally Without Any Memory

). It
is also useful to have a notion of optimality of a strategy that does not
involve instantiating a strategy of the opponent.

Remark 4.2.8 In quantitative games played on one-player arenas, the
two visions — optimal strategies and Nash equilibria — coincide.

4.2.3 Product arenas

Ourmain proof technique in this chapter is to perform a proof by induction
on finite arenas to prove the existence of optimal strategies based on some
memory structure. It turns out that a nice way to do this is to start by
augmenting arenas with information from thememory structure, and only
then start the induction on the class of arenas with enough information.
This “augmenting” step can be formulated as a product between an arena

and a memory structure.

Let A = (+,+1 , +2 , �) be an arena andM = (", <init , upd) be a memory
structure. We define their product A ⋉ M as the arena (+′, +′1 , +′2 , �′) We use here an asymmetric

symbol ⋉ to emphasize that
A andM are distinct objects,
as opposed to the product
of memory structures using
symbol ⊗ (Definition 2.5.4).

where +′ = + × ", +′1 = +1 × ", +′2 = +2 × ", and �′ ⊆ +′ × � × +′
is such that ((E1 , <1), 2, (E2 , <2)) ∈ �′ if and only if (E1 , 2, E2) ∈ � and
upd(<1 , 2) = <2. That is, the memory is updated according to the colors
of the edges in �.

A strategy on A based on memory M can be equivalently seen as a
memoryless strategy on the product arena A ⋉M. Albeit quite intuitive
and part of folklore, we make this correspondence formal in the following
result.

Lemma 4.2.9 Let G = (A, v) be a quantitative game on arena A =
(+,+1 , +2 , �). Let M = (", <init , upd) be a memory structure. For �ℓ
a strategy of Pℓ on A based on M and nxt : +ℓ × " → � its next-action

function, we have that �ℓ is optimal inG if and only if nxt (seen as a memoryless

strategy) is optimal in G′ = (A ⋉M, v) from + × {<init}.

4 Characterization of arena-independent finite-memory determinacy 64

Proof. We first aim to define a bĳectionH : Hists(A) → Hists(A ⋉M, + ×
{<init}). Let � = 41 . . . 4= ∈ Hists(A), with 48 = (E8−1 , 28 , E8). We set <0 =
<init, and for 1 ≤ 8 ≤ =, we set <8 = upd(<8−1 , 28). We define 4′8 =
((E8−1 , <8−1), 28 , (E8 , <8)), and H(�) = 4′1 . . . 4

′
= . Notice that col∗(H(�)) =

col∗(�). Furthermore,H is bĳective; as the initial state of the memory <init
is fixed and the memory structure is deterministic, the memory states
added to � to obtainH(�) are uniquely determined.

We now show that there is a correspondence between strategies of Pℓ on
A and on A ⋉M through a bĳection 5 : intuitively, augmenting the arena
with memory structureM allows some strategies to be played using less
memory, but does not fundamentally change each player’s possibilities. For
�ℓ a strategy of Pℓ on A and �′ ∈ Histsℓ (A ⋉M) with in(�′) ∈ + × {<init}
and out(�′) = (E, <) ∈ +ℓ × ", if �ℓ (H−1(�′)) = (E, 2, E′), we define
5 (�ℓ)(�′) = ((E, <), 2, (E′, upd(<, 2))). The histories induced by strategies
�ℓ and 5 (�ℓ) correspond: if � = H−1(�′), then we have

H(� · �ℓ (�)) = �′ · (5 (�ℓ)(�′)). (4.4)

We are only interested in the behavior of strategies onA⋉M fromhistories
�′ with in(�′) ∈ + × {<init} (in what follows, we only consider histories
and plays of A ⋉M starting in such vertices). If we restrict the image of
5 to the set of functions �′ℓ : Histsℓ (A ⋉M, + × {<init}) → �′, then 5 is a
bĳection.

We now show a second fact related to 5 : we have that for all E ∈ + , for all
pairs �1 , �2 of strategies of P1 and P2 on A,

col$
(
Plays(A, E, �1 , �2)

)
= col$

(
Plays(A ⋉M, (E, <init), 5 (�1), 5 (�2))

)
.

This can easily be proved by induction using Equation (4.4). Indeed, at
each step, both strategy �1 (resp. �2) and strategy 5 (�1) (resp. 5 (�2)) pick
an edge with the same color. Using Lemma 2.3.3 about consistent plays
and bĳectivity of 5 , we have that

col$
(
Plays(A, E, �1)

)
= col$

(
Plays(A ⋉M, (E, <init), 5 (�1))

)
. (4.5)

We finish the proof taking the point of view of P1; the proof is symmetric
for P2. Let �1 be a strategy of P1 on A. The definition of UColv and
Equation (4.5) imply that for all vertices E ∈ + ,

UColv(A, E, �1)
= {F ∈ �$ | ∃F′ ∈ col$

(
Plays(A, E, �1)

)
, F′ v F}

= {F ∈ �$ | ∃F′ ∈ col$
(
Plays(A ⋉M, (E, <init), 5 (�1))

)
, F′ v F}

= UColv(A ⋉M, (E, <init), 5 (�1)). (4.6)

Using Equation (4.6), we obtain that a strategy �1 is optimal in G = (A, v)
if and only if 5 (�1) is optimal in G′ = (A ⋉M, v) from + × {<init}.

4 Characterization of arena-independent finite-memory determinacy 65

We now assume that �1 is based on M and that nxt is its next-action
function. Formally, we want to transform nxt into a proper memoryless
strategy on A ⋉ M. This can be done through the bĳection 5 , yielding
the memoryless strategy ′nxt = 5 (�1), which corresponds exactly to nxt
interpreted over the product arena, and well-defined for all histories
starting in + × {<init}. In particular, �1 is optimal in G if and only if
5 (�1) = ′nxt is optimal in G′ from + × {<init}.

Remark 4.2.10 Lemma 4.2.9 can be restated in terms of Nash equilibria,
using a similar reasoning.

4.2.4 Arena induced by a non-deterministic finite automaton

We relate the words that can be induced in an arena with the language
recognized by an automaton. We will need non-deterministic automata
here, in order to emulate the fact that in an arena, there can be multiple
outgoing edges with the same color from the same vertex.

A non-deterministic finite automaton (NFA) is a tupleN = (&, �,Δ, &init , �),
where & is a finite set of states, � is the set of colors, Δ ⊆ & × � × & is
a finite set of transitions, &init ⊆ & is a set of initial states, and � ⊆ & is a
set of final states. Given a state @ ∈ & and a finite word F ∈ �∗, we denote
by Δ∗(@, F) the set of states that can be reached from @ after reading F.
Without loss of generality, we assume all NFAs to be coaccessible, i.e., for
all @ ∈ &, there exists F ∈ �∗ such that Δ∗(@, F) ∩ � ≠ ∅.
Let ⊆ �∗ be a language of finite words. We denote by Prefs() the set
of all prefixes of the words in . We define a set of infinite words derived
from :

Set [] is very close to the
more classical limit language−→
 [PP04]

[PP04]: Perrin et al. (2004), In-
finite words – automata, semi-

groups, logic and games

. The difference is
that we require here that all
prefixes of the infinite words
are prefixes of words of , while
the limit language has the
stronger requirement that in-
finitely many prefixes of the
infinite word are words of .
For example, if = 0∗1,
[] = {0$}, but −→ = ∅.

[] = {F = 2122 . . . ∈ �$ | ∀= ≥ 1, 21 . . . 2= ∈ Prefs()},

which contains all infinite words for which every finite prefix is a prefix
of a word in . Intuitively, if is regular, [] is the language of infinite
words that correspond to infinite paths that can always branch and reach
a final state on an NFA for : we will formalize this in Lemma 4.2.12.
Given a finite word F ∈ �∗ and a language ⊆ �∗, we write F for their
concatenation, i.e., the language F = {F′ = FF′′ | F′′ ∈ } ⊆ �∗.
The following observation, already noted in [GZ05]

[GZ05]: Gimbert et al. (2005),
Games Where You Can Play Op-

timally Without Any Memory

, will prove useful.

Lemma 4.2.11 Let 1 , 2 ⊆ �∗. Then [1 ∪ 2] = [1] ∪ [2].

Proof. Let F ∈ [1 ∪ 2]. Every finite prefix of F is in Prefs(1 ∪ 2).
Assume w.l.o.g. that infinitely many prefixes of F are in Prefs(1). This
implies that all prefixes of F are in Prefs(1) (intuitively, because there is
a continuity in the prefix relation). Hence, F ∈ [1] ∪ [2].

4 Characterization of arena-independent finite-memory determinacy 66

Now, let F ∈ [1] ∪ [2]. If F ∈ [1] (resp. [2]), every finite prefix of
F is in Prefs(1) (resp. Prefs(2)), so in particular it is in Prefs(1 ∪ 2).
Hence, F ∈ [1 ∪ 2].

Let N = (&, �,Δ, &init , �) be an NFA. We say that a state @ ∈ & is
essential if there exists an infinite path inN starting in @. Let &ess = {@ ∈
& | @ is essential}. We define the corresponding finite one-player arena

Arena(N) = (+ = &ess , +1 = +,+2 = ∅, � ⊆ &ess × � × &ess), where
4 = (@, 2, @′) ∈ � if (@, 2, @′) ∈ Δ. Intuitively, Arena(N) transformsN into
a non-blocking arena thanks to the restriction to essential states.

We may now state formally the link between [] and an underlying NFA
for . Our proof is similar to [GZ05, Lemma 4]. [GZ05]: Gimbert et al. (2005),

Games Where You Can Play Op-

timally Without Any Memory

Lemma 4.2.12 LetN = (&, �,Δ, &init , �) be a (coaccessible) NFA recogniz-

ing the regular language ⊆ �∗. Let &′init = &init ∩ &ess. The following

equality holds:

[] = col$
(
Plays(Arena(N), &′init)

)
.

In particular, [] is non-empty if and only if there exists an essential initial

state inN .

Proof. If&′init is empty, the equality holds: col$
(
Plays(Arena(N), &′init)

)
and

[] are both empty. Hence, from now on, we assume &′init ≠ ∅.
We start with the left-to-right inclusion. Let F = 2122 . . . ∈ []. We first
prove that for all = ≥ 1, it holds that

21 . . . 2= ∈ col∗
(
Hists(Arena(N), &′init)

)
.

We assume on the contrary that there exists = ≥ 1 such that

21 . . . 2= ∉ col∗
(
Hists(Arena(N), &′init)

)
.

As Arena(N) is a restriction of the states ofN to &ess, this means that no
matter how 21 . . . 2= is read onN , it goes through a state in & \&ess. As
there is no infinite path from these states, this contradicts that F ∈ [];
there cannot be arbitrarily long prefixes starting with 21 . . . 2= .

We now use the property that we have just proved along with Kőnig’s
lemma to show that F ∈ col$

(
Plays(Arena(N), &′init)

)
. We build a forest Kőnig’s lemma [Kőn27]

[Kőn27]: Kőnig (1927), Über

eine Schlussweise aus dem

Endlichen ins Unendliche

(in-
stantiated for trees) states that
in any finitely branching tree
with infinitely many nodes,
there is an infinite path.

F of trees. The nodes of F are paths � ∈ Hists(Arena(N), &′init) such that
col∗(�) is a prefix of F and in(�) ∈ &′init. For every @ ∈ &′init, there is one
tree in F whose root is the empty path �@ . There is a transition from a
node � to a node �′ if there exists 4 ∈ � such that � · 4 = �′. As there is
at least one node for each prefix 21 . . . 2= , (at least) one of the trees of F
must be infinite. Moreover, F is finitely branching, since N has finitely
many transitions. By Kőnig’s lemma, we obtain that there must be an
infinite path � starting from a root �@ for some @ ∈ &′init. By construction,
col$(�) = F, so F ∈ col$

(
Plays(Arena(N), &′init)

)
.

4 Characterization of arena-independent finite-memory determinacy 67

We now prove the right-to-left inclusion. Let

� = 4142 . . . ∈ Plays(Arena(N), &′init).

For = ≥ 1, the word col∗(41 . . . 4=) is the color of a path inN , since every
edge of Arena(N) corresponds to a transition ofN . AsN is coaccessible,
there is a path in N from the state corresponding to out(4=) to a final
state in �. Thus, the word col∗(41 . . . 4=) is a prefix of an accepted word
of N , i.e., a prefix of a word in ; as this holds for all = ≥ 1, we obtain
that col$(�) ∈ [].

We are now able to establish our characterization of preference relations
admitting arena-independent finite-memory optimal strategies, i.e., op-
timal strategies based on a fixed memory structure M. We proceed in
three steps. First, in Section 4.3, we present the core concepts of this
characterization, i.e., the properties that preference relations must satisfy
to admit optimal strategies based on M. Secondly, we state our equiv-
alence result in Section 4.4, alongside the advertised one-to-two-player
lift. We also provide an illustrative application of our characterization in
Subsection 4.4.2.

4.3 Concepts

4.3.1 Generalizing monotony and selectivity

As explained in Section 3.1, Gimbert and Zielonka’s characterization relies
on notions of monotony and selectivity of the preference relation [GZ05]. [GZ05]: Gimbert et al. (2005),

Games Where You Can Play Op-

timally Without Any MemoryIntuitively, the main difference between Gimbert and Zielonka’s technical
approach and ours is the following. In the memoryless setting, all the
reasoning can be abstracted away from the underlying arena and done at the
level of sequences of colors. In the finite-memory setting, however, one has
to pay attention to how sequences of colors are composed and compared,
to maintain consistency with regard to the memory and the underlying
game arena. This required defining generalizations of monotony and
selectivity modulo a memory structure.

Definition 4.3.1 (M-monotony) Let M = (", <init , upd) be a memory

structure. A preference relation v is M-monotone if for all < ∈ ", for all

regular languages 1 , 2 on alphabet �,

(∃F ∈ !<init ,< , [F 1] @ [F 2]) Note that [F 1] = F[1].
=⇒ (∀F′ ∈ !<init ,< , [F′ 1] v [F′ 2]) . (4.7)

Intuitively, M-monotony extends Gimbert and Zielonka’s monotony by
asking one to compare prefixes belonging to the same language !<init ,< , that

4 Characterization of arena-independent finite-memory determinacy 68

is, prefixes that are classified equivalently by the memory structure. This
property roughly captures that v is stable with regard to prefix addition, for
memory-equivalent prefixes.

The original monotony notion is exactly equivalent to ourM-monotony
withM being the trivial memory structureMtriv: that is, the memoryless
case is naturally a specific subcase of our framework.

Example 4.3.2 We present a running example to illustrate our notions
and the upcoming characterization: the conjunction of two reachability
conditions, which is a subcase of generalized reachability games, studied
extensively in [FH10] [FH10]: Fĳalkow et al. (2010),

The surprizing complexity of

reachability games

.

This objective will also be a
special case of a class of objec-
tives studied in Chapter 7.

Let � = {0, 1, 2} be the set of colors. Formally, let
the qualitative objective, = Reach(0) ∩ Reach(1) be the set of infinite
words F = 2122 . . . such that

∃8 , 9 ∈ ℕ, 28 = 0 ∧ 2 9 = 1.

This objective is $-regular and is in particular recognized by the de-
terministic Büchi automaton in Figure 4.1 (left). We discussed how
this qualitative objective, induces a preference relation after Defini-
tion 4.2.1. In general, we transfer prop-

erties defined on prefer-
ence relations (such as M-
monotony) to qualitative ob-
jectives, by considering the
preference relation v, they
induce.

We first show that this preference relation is notMtriv-monotone (that
is, is not monotone for [GZ05]

[GZ05]: Gimbert et al. (2005),
Games Where You Can Play Op-

timally Without Any Memory

). Take 1 = 0∗, 2 = 1∗. For F = 0, F′ = 1,
we have [F 1] @ [F 2], but [F′ 2] @ [F′ 1]. This means that the
preference relation is not stable with regard to prefix addition (at least,
without distinguishing different classes of prefixes).
We exhibit a small memory structureMp = ("p , <p

1 ,
p
upd) such that v

isMp-monotone: it is pictured in Figure 4.1 (center).
Let us prove that v isMp-monotone. Let < ∈ "p and 1 , 2 be regular
languages; we want to show that Equation (4.7) is satisfied. We assume
that there exists F ∈ !<p

1 ,<
such that [F 1] @ [F 2]: this means that all

words of [F 1] are losing, and that there exists a winningword in [F 2].
Let F′ ∈ !<p

1 ,<
; we show that we necessarily have that [F′ 1] v [F′ 2].

Note that if [1] is empty, this always holds; we now assume that [1]
is non-empty. We study the two possible values of < separately.

I If < = <p
1 , then F and F′ do not see 0. If F does not see 1 either,

as there is a winning word in [F 2], then there must be a winning
word in [2]. This word is still winning after prepending F′ to it,
so there is a winning word in [F′ 2], and [F′ 1] v [F′ 2]. If F
sees 1, then [1] cannot have a word seeing 0. As F′ does not see
0 either, all words of [F′ 1] are losing, so [F′ 1] v [F′ 2].

I If < = <p
2 , then F and F′ see 0. Clearly, F cannot see 1 (as [F 1]

would contain a winning word). This implies that [2] must
contain a word reaching 1; as F′ reaches 0, the concatenation of
F′ with the word of [2] reaching 1 means that there is a winning
word in [F′ 2], so [F′ 1] v [F′ 2].

4 Characterization of arena-independent finite-memory determinacy 69

<p
1

Mp

<p
2

0

1, 2

�@init

@0

@1

@01

0

1

1

0

�•

0

1

<c
1

Mc

<c
2

0, 1

2

�

Figure 4.1: DBA recognizing, = Reach(0) ∩ Reach(1) (left), memory structuresMp (center) andMc (right).

Remark 4.3.3 TheM-monotony notion is in general not symmetric, i.e.,
it does not always hold for a preference relation if and only if it holds for
its inverse. Let � = {0, 1} and let G ∈ �$ be the non-ultimately-periodic
word 01012013 . . . (the argument can be adapted for any non-ultimately-
periodic word). We consider the qualitative objective, = {G}.
Objective , is not Mtriv-monotone: if F = �, F′ = 0, 1 = 1�∗, and
 2 = 0�∗, we have [F 1] @, [F 2], but [F′ 2] @, [F′ 1].
However,, is Mtriv-monotone. Let 1 , 2 be regular languages, and
F ∈ !<init ,<init be such that [F 1] @, [F 2]. This implies that [F 1]
contains only words losing for, and that [F 2] contains a word in, ,
i.e., an infinite word that is not G. As [F 2] is non-empty, it necessarily
contains an ultimately periodic word: there is an infinite path in an NFA
recognizing regular language F 2, so there is an infinite path that loops
around a cycle (this is essentially the same argument as in the proof of
Lemma 2.7.12). Hence, for all F′ ∈ !<init ,<init , the set [F′ 2] also contains
an ultimately periodic word, so a winning word for, . We obtain that
[F′ 1] v, [F′ 2].
We will see that symmetry of M-monotony holds for all $-regular
objectives in Subsection 4.3.2.

We now turn our focus to selectivity.

Definition 4.3.4 (M-selectivity) Let M = (", <init , upd) be a memory

structure. A preference relation v is M-selective if for all F ∈ �∗, < =
∗upd(<init , F), for all regular languages 1 , 2 , 3 such that 1 , 2 ⊆ !<,< ,

[F(1 ∪ 2)∗ 3] v [F ∗1] ∪ [F ∗2] ∪ [F 3]. (4.8)

Similarly, M-selectivity extends Gimbert and Zielonka’s selectivity by
asking one to compare sequences of colors belonging to the same language

!<,< , that is, sequences read as cycles on the memory structure. Note also
that the memory state < should be consistent with the prefix F read from
the initial memory state <init. This property roughly captures that v is
stable with regard to cycle mixing, for memory-equivalent cycles. Again, the
original selectivity notion is equivalent toMtriv-selectivity.

4 Characterization of arena-independent finite-memory determinacy 70

Example 4.3.5 We go back to objective, = Reach(0) ∩ Reach(1), the
monotony of which was discussed in Example 4.3.2.
First, objective , is not Mtriv-selective: take F as the empty word,
 1 = 0∗, 2 = 1∗, and 3 = 2∗; to win, 1 and 2 need to be “mixed”.
We exhibit a small memory structureMc = ("c , <c

1 ,
c
upd) such that v

is Mc-selective: it is pictured in Figure 4.1 (right). We prove that v is
Mc-selective. Let F ∈ �∗,< = (c

upd)∗(<c
1 , F), and 1 , 2 , 3 be regular

languages such that 1 , 2 ⊆ !<,< . We show that Equation (4.8) is
satisfied, i.e., that

[F(1 ∪ 2)∗ 3] v [F ∗1] ∪ [F ∗2] ∪ [F 3].

If all words of [F(1 ∪ 2)∗ 3] are losing, this equation trivially holds;
we thus assume that this set contains a winning word. We therefore
have to show that there is a winning word in [F ∗1], [F ∗2], or [F 3].
We study the two possible values of < separately.

I If < = <c
1, then F does not reach 0 nor 1, and the same holds for

all words of 1 and 2, as 1 , 2 ⊆ !<,< . Therefore, if a word of
[F(1∪ 2)∗ 3] is winning, this must be because a word of [F 3]
is winning.

I If < = <c
2, we distinguish three cases. If F reaches both 0 and 1,

then [F ∗1]∪[F ∗2]∪[F 3] trivially contains only winningwords.
If F reaches 0 but not 1, then there must be a word reaching 1
in [(1 ∪ 2)∗ 3]. Hence, at least one set among [∗1], [∗2], and
[3]must contain a word reaching 1, so [F ∗1], [F ∗2], or [F 3]
contains a winning word. A symmetric argument works if F
reaches 1 but not 0.

We can also show that, isMtriv-selective using similar arguments.

In a nutshell, M-monotony deals with prefixes up to the first cycle (on
the memory structure) andM-selectivity deals with the cycles thereafter;
we will see that memory structures can be built in a compositional way
based on these two complementary tasks.

Our notions respect the natural intuition that access to additional memory
should always be helpful: if a memory structureM is sufficient to classify
sequences of colors in away that guaranteesM-monotonyorM-selectivity,
then it should also be the case for “more powerful” structures.

Lemma 4.3.6 LetM andM′
be two memory structures. If v isM-monotone

(resp. M-selective) then, it is also (M ⊗M′)-monotone (resp. (M ⊗M′)-
selective).

Proof. We writeM = (", <init , upd) andM′ = ("′, <′init , ′upd).
Let us assume that v isM-monotone, that is, for all < ∈ ", for all regular

4 Characterization of arena-independent finite-memory determinacy 71

languages 1 , 2,

∃F ∈ !<init ,< , [F 1] @ [F 2]
=⇒ ∀F′ ∈ !<init ,< , [F′ 1] v [F′ 2]. (4.9)

We show that v is (M ⊗M′)-monotone, that is, for all (<, <′) ∈ " ×"′,
for all regular languages 1 , 2,

∃F ∈ !(<init ,<′init),(<,<′) , [F 1] @ [F 2]
=⇒ ∀F′ ∈ !(<init ,<′init),(<,<′) , [F′ 1] v [F′ 2]. (4.10)

To do so, we notice that !(<init ,<′init),(<,<′) ⊆ !<init ,< (the product of memory
structures simply updates both memories in parallel). Thus, if the premise
of Equation (4.10) holds, we obtain by Equation (4.9) that the conclusion
of Equation (4.10) also holds.

A similar argument can be laid out to show that M-selectivity implies
(M ⊗M′)-selectivity. It is enough to notice that for all (<, <′) ∈ " ×"′,
we have !(<,<′),(<,<′) ⊆ !<,< : the definition ofM-selectivity is thus clearly
stronger than the definition of (M ⊗M′)-selectivity.

4.3.2 Discussion about theM-monotony notion

We discuss the significance of the restriction of 1 and 2 to regular

languages in the definition ofM-monotony. Observations in this section
will hopefully bring insight to the reader, and will be revisited and find
additional meaning in the subsequent Chapter 7. In particular, we show
thatM-monotony always coincides for a qualitative objective and for its
complement in the $-regular case, but not in general. This will simplify
the multiple studies of $-regular examples later on.

Let, ⊆ �$ be a qualitative objective. We recall that the prefix preorder
� of, compares finite words w.r.t. inclusion of their winning continua- See Section 2.8 for the formal

definition of prefix preorder
of an objective.

tions. TheM-monotony notion also compares in some way finite words
with respect to their continuations using infinite extensions of regular
languages.

We discuss what happens if we drop this regular requirement by defining
M-strong-monotony. A similar notion called strong monotony has already
been defined [BFMM11] and turns out to be equivalent to our notion of [BFMM11]: Bianco et al. (2011),

Exploring the boundary of half-

positionality

Mtriv-strong-monotony.We can therefore see once again our definition as a
reformulation and a generalization to handle arbitrary memory structures,
rather than only the “memoryless memory structure”Mtriv.

Definition 4.3.7 (M-strong-monotony) Let M = (", <init , upd) be a
memory structure. A preference relation v isM-strongly-monotone if for all

4 Characterization of arena-independent finite-memory determinacy 72

< ∈ ", for all sets 1 , 2 ⊆ �$
,

(∃F ∈ !<init ,< , F 1 @ F 2) =⇒ (∀F′ ∈ !<init ,< , F
′ 1 v F′ 2) .

For qualitative objectives, we can reformulate this definition to be about
comparing prefixes: the original definition compares continuations with
each other by looking at what prefixes make them winning; the following
reformulation compares instead prefixes with each other by looking at
what continuations make them winning, through the prefix preorder �.

Lemma 4.3.8 Let, ⊆ �$
be an objective and M = (", <init , upd) be a

memory structure. Objective, is M-strongly-monotone if and only if for

all < ∈ ", for all F, F′ ∈ !<init ,< , F and F′ are comparable for the prefix

preorder � of, .

Proof. We first prove the implication from left to right by contraposition.
Let < ∈ " and F, F′ ∈ !<init ,< . If F and F′ are incomparable for �, it
means that there are G1 , G2 ∈ �$ such that

FG1 ∈,, FG2 ∉,

F′G1 ∉,, F′G2 ∈,.

If we take 1 = {G1} and 2 = {G2}, then F 2 @ F 1 and F′ 1 @ F′ 2,
so, is notM-strongly-monotone.

We now prove the implication from right to left directly. We assume that
for all < ∈ ", for all F, F′ ∈ !<init ,< , F and F′ are comparable for �.
Taking the definition of M-strong-monotony, let < ∈ ", 1 , 2 ⊆ �$,
andF ∈ !<init ,< such thatF 1 @ F 2. Thismeans that there is nowinning
word in F 1 and that there is a winning word in F 2.

Now, let F′ ∈ !<init ,< . We want to show that F′ 1 v F′ 2, i.e., that F′ 1
contains no winning word or that F′ 2 contains a winning word. We have
by hypothesis that F is comparable to F′ for �. If F � F′, then F′ 2 also
contains a winning word, which ends the proof. If F′ � F, then F′ 1 also
contains no winning word, which also ends the proof.

We discuss a few differences between M-monotony and M-strong-
monotony. First, as opposed toM-monotony (Remark 4.3.3),M-strong-
monotony holds for an objective if and only if it holds for its complement,
which is easily proved using the previous lemma.

Lemma 4.3.9 Let M be a memory structure. An objective is M-strongly-

monotone if and only if its complement is.

Proof. We write M = (", <init , upd). Let , ⊆ �$ be an M-strongly-
monotone objective. We use the reformulation of M-strong-monotony

4 Characterization of arena-independent finite-memory determinacy 73

provided by Lemma 4.3.8. Let < ∈ " and F, F′ ∈ !<init ,< . Then, F and
F′ are comparable for �, . As �, = �, , F and F′ are also comparable
for �, . Hence,, isM-strongly-monotone too.

TheM-strong-monotony notion is indeed stronger in general, but both
notions coincide for $-regular objectives. This is the object of the next two
lemmas.

Lemma 4.3.10 There exists an Mtriv-monotone objective that is not Mtriv-

strongly-monotone.

Proof. In Remark 4.3.3, we have seen an objective , that is not Mtriv-
monotone but whose complement, isMtriv-monotone. AsMtriv-strong-
monotony is stronger than Mtriv-monotony, , is not Mtriv-strongly-
monotone. By the above Lemma 4.3.9, Mtriv-strong-monotony is sym-
metric, so, is not Mtriv-strongly-monotone either. Therefore,, is M-
monotone but notM-strongly-monotone.

Lemma 4.3.11 LetM be a memory structure. We also have for similar rea-
sons that for an $-regular ob-
jective, ,, isM-selective if
and only if it is “M-selective
without restricting 1, 2,
and 3 to being regular lan-
guages”. However, this ob-
servation did not seem to
bringmuch insight (unlike for
M-monotony, for which we
have a useful reformulation
in Lemma 4.3.8) and will not
be needed elsewhere in this
thesis.

An $-regular objective isM-

monotone if and only if it isM-strongly-monotone. In particular, an $-regular

objective isM-monotone if and only if its complement is.

Proof. Let, ⊆ �$ be an $-regular objective. The implication from M-
strong-monotony to M-monotony is obvious: M-monotony quantifies
universally over fewer languages.

Assume now that, isM-monotone. We writeM = (", <init , upd). We
show that , is M-strongly-monotone by using the reformulation of
Lemma 4.3.8. Let < ∈ " and F, F′ ∈ !<init ,< . We show that F and F′ are
comparable for �. We assume that F 6� F′ and we show that F′ � F, i.e.,
that (F′)−1, ⊆ F−1, . As (F′)−1, and F−1, are $-regular, it suffices
to show that all ultimately periodic words in (F′)−1, are in F−1, (using
Lemma 2.7.12 about ultimately periodic separation of distinct $-regular
objectives). Let G′ ∈ �∗, H′ ∈ �+ such that G′(H′)$ ∈ (F′)−1, ; we show
that G′(H′)$ ∈ F−1, . As F 6� F′, also by Lemma 2.7.12, there is G ∈ �∗,
H ∈ �+ such that GH$ ∈ F−1, but GH$ ∉ (F′)−1, . We take 1 = GH∗ and
 2 = G′(H′)∗ (which are regular languages). We have [1] = {GH$} and
[2] = {G′(H′)$}. Therefore, [F′ 1] = {F′GH$} @ {F′G′(H′)$} = F′[2].
ByM-monotony of, and asF, F′ ∈ !<init ,< , [F 1] v [F 2]. As [F 1] =
{FGH$} contains a winning word, so does [F 2] = {FG′(H′)$}. Hence,
FG′(H′)$ ∈ , , or in other words, G′(H′)$ ∈ F−1, , which is what we
wanted to show.

For the second claim of the lemma, we have that, is M-monotone if
and only if, is M-strongly-monotone (first claim) if and only if, is
M-strongly-monotone (Lemma 4.3.9) if and only if, isM-monotone.

4 Characterization of arena-independent finite-memory determinacy 74

4.3.3 Prefix-covers and cyclic-covers

While the aforementioned concepts ofM-monotony andM-selectivity
are the primordial ones for stating the characterization, we still need two
additional notions to prove it.

To prove that monotone and selective preference relations yield memory-
less optimal strategies, Gimbert and Zielonka deploy an inductive argument

on the number of choices in finite arenas. Intuitively, we want to use a
similar approach for optimal strategies based on a memory structure, but
because of the coupling between the memory structure and the finite
arena (e.g., Lemma 4.2.9), the induction argument breaks, as adding one
choice in the arena results in adding many in the product arena (as many
as there are memory states), where the reasoning needs to occur.

To solve this issue, we decouple the two aspects (see Section 4.6). For a given
memory structure M, we first establish that on arenas that inherently
share the same good properties as product arenas withM (that is, they
already “classify” prefixes and cycles as M would), we can deploy the
induction argument and obtain memoryless optimal strategies. Then, we
obtain the result for optimal strategies based on M on arbitrary arenas
as a corollary. The crux is identifying such “good” arenas: this is done
through the following notions.

Definition 4.3.12 (Prefix-cover, cyclic-cover) LetM = (", <init , upd) be
a memory structure and A = (+,+1 , +2 , �) be an arena. Let +cov ⊆ + .

We say that M is a prefix-cover of +cov in A if for all E ∈ + , there

exists <E ∈ " such that, for all � ∈ Hists(A) such that in(�) ∈ +cov,

out(�) = E and such that for all proper prefixes �′ of �, out(�′) ≠ E, we have
∗upd(<init , col∗(�)) = <E .

We say thatM is a cyclic-cover of+cov inA if for all � ∈ Hists(A) such that
in(�) ∈ +cov, if E = out(�) and< = ∗upd(<init , col∗(�)), for all �′ ∈ Hists(A)
such that in(�′) = out(�′) = E, ∗upd(<, col∗(�′)) = <.

Intuitively, M is a prefix-cover of a set of vertices +cov if the histories
starting in+cov and visiting a given vertex E ∈ + for the first time are read
up to the same memory state in the memory structure. Similarly, M is
a cyclic-cover of A if the cycles of A are read as cycles in the memory Definition 4.3.12 can be equiv-

alently stated by considering
simple cycles only.

structure, once the memory has been initialized properly.

As hinted above, the canonical example of a prefix-covered and cyclic-
covered arena is a product arena.

Lemma 4.3.13 Let M = (", <init , upd) be a memory structure and A =
(+,+1 , +2 , �) be an arena. StructureM is both a prefix-cover and a cyclic-cover

of +cov = + × {<init} in the product arena A ⋉M.

4 Characterization of arena-independent finite-memory determinacy 75

<1

M

<2

1

0

0 1

E1

E2 E3

1

0

1
0

1

0
Figure 4.2:Memory structure
M (right) is a prefix-cover
and cyclic-cover of {E1 , E3} in
the arena on the left, but the
arena cannot be realized as
is as the product of an arena
withM.

Proof. The main argument in this proof is that if there is a history �
of the product arena A ⋉ M with in(�) = (E, <) and out(�) = (E′, <′),
then reading col∗(�) from < in the memory structureM leads to <′ (i.e.,
∗upd(<, col∗(�)) = <′). This can be proved by induction on the length of
�, thanks to how the product arena is built.

We first show thatM is a prefix-cover of+cov = + × {<init} in the product
arena A ⋉ M. What we have to prove, instantiating the definition of
prefix-cover in this case, is that for all (E, <) ∈ + × ", there exists
<(E,<) ∈ " such that, for all � ∈ Hists(A ⋉ M) such that in(�) ∈ +cov,
out(�) = (E, <) and such that for all �′ proper prefix of �, out(�′) ≠ E, we
have ∗upd(<init , col∗(�)) = <(E,<). Let (E, <) ∈ + ×"; we take <(E,<) = <.
Then, if � ∈ Hists(A ⋉ M) is such that in(�) ∈ +cov (that is, is equal to
(E′, <init) for some E′ ∈ +), and out(�) = (E, <), we have by construction
of the product arena that ∗upd(<init , col∗(�)) = < = <(E,<), as required.

To prove thatM is a cyclic-cover of +cov in A ⋉M, we have to prove that
for all � ∈ Hists(A⋉M) such that in(�) ∈ +cov, if (E, <) = out(�) and<′ =
∗upd(<init , col∗(�)), for all �′ ∈ Hists(A ⋉ M) such that in(�′) = out(�′) =
(E, <), ∗upd(<′, col∗(�′)) = <′. Let � ∈ Hists(A⋉M) such that in(�) ∈ +cov
(that is, in(�) = (E′, <init) for some E′ ∈ +). Then, if (E, <) = out(�), wehave
by construction of the product arena that <′ = ∗upd(<init , col∗(�)) = <.
Let �′ ∈ Hists(A⋉M) such that in(�′) = out(�′) = (E, <). By construction
of the product arena, we therefore have that ∗upd(<, col∗(�′)) = <, as
required.

Still, not only product arenas are prefix-covered and cyclic-covered.

Example 4.3.14 We consider the arena in Figure 4.2 (left). Memory
structureM (right) is both a prefix-cover and a cyclic-cover of {E1 , E3}
in this arena. This arena cannot be realized as a product of a smaller
arena withM; in particular, there would need to be at least two copies
of the vertex controlled by P2.

Remark 4.3.15 We discovered after defining these covering notions that
something similar had already been defined in an unpublished part of
Kopczyński’s thesis [Kop08, Definition 8.12] [Kop08]: Kopczyński (2008),

Half-positional Determinacy of

Infinite Games

. Our notion of an arena
being both prefix-covered and cyclic-covered by a memory structure
M is equivalent to his notion that an arena adheres to memory M,

4 Characterization of arena-independent finite-memory determinacy 76

which means that it is possible to assign a state of M to every vertex
of the arena such that moving along the edges of the arena updates
these memory states in a consistent way. Let A = (+,+1 , +2 , �) and
M = (", <init , upd). We say that A adheres toM from +cov ⊆ + In Kopczyński’s thesis,

all objectives are prefix-
independent, and this entails
that distinguishing the
initial state of the memory
is less crucial [Kop08,
Proposition 8.2]. We there-
fore slightly adapted his
definition of adherence to fit
our more general setting by
distinguishing initial states
in the morphism.

if there
exists) : + → " such that)(+cov) ⊆ {<init} and for all (E, 2, E′) ∈ �,
upd()(E), 2) =)(E′). In other words, an arena adheres to a memory
structure if there is a morphism from the arena vertices to the memory
states, while preserving some distinguished initial states.
Our definitions of prefix-cover and cyclic-cover can be seen as two distinct
sides of this idea of adherence which, when put together, are actually
equivalent to it. We distinguish in every technical lemma which kind of
covering we actually need, but our general scheme would work by just
using the more straightforward notion of adherence instead.

4.4 Characterization

4.4.1 Main results

We now have the necessary ingredients to state our general equivalence
result formally. We defer the formal proofs of both directions of the
equivalence to Sections 4.5 and 4.6, and only explain here how to combine
them.

Theorem4.4.1 (Characterization ofAIFMdeterminacy over finite arenas)
Let v be a preference relation and let M be a memory structure. Then, both

players have optimal strategies based on memory structureM in finite arenas

if and only if v and v−1
areM-monotone andM-selective.

This result is meant to mirror the result of Gimbert and Zielonka [GZ05,
Theorem 2]: their result can be retrieved from Theorem 4.4.1 by taking [GZ05]: Gimbert et al. (2005),

Games Where You Can Play Op-

timally Without Any Memory

the trivial memory structure Mtriv. As such, our work brings a strict
generalization of Gimbert and Zielonka’s results [GZ05] to the finite-
memory case.

Remark 4.4.2 The statements of our intermediate results are slightly
stronger than what is stated in the summarizing characterization above.
Although we only need optimal strategies in the left-to-right direction
(Propositions 4.5.1 and 4.5.2), we prove the stronger existence of finite-
memory Nash equilibria in the other direction (Proposition 4.6.3 and
Corollary 4.6.5). In particular, the existence of arena-independent finite-
memory optimal strategies in all finite arenas entails determinacy of the
preference relation (see Remark 4.2.7) over finite arenas.
Similarly, we study the two implications of the equivalence in a composi-

tionalway: we split the reasoning forM-monotony andM-selectivity,
using different memory structures for each whenever meaningful, as

4 Characterization of arena-independent finite-memory determinacy 77

well as for the players.

To prove Theorem 4.4.1, we invoke the results we will prove in Sections 4.5
and 4.6.

Proof of Theorem 4.4.1. The left-to-right implication follows from Propo-
sition 4.5.1 (forM-monotony) and Proposition 4.5.2 (forM-selectivity),
applied to each player with respect to its preference relation. The converse
implication is established in Corollary 4.6.5 about Nash equilibria, which
can be restated in terms of optimal strategies through Lemma 4.2.6.

As a by-product of our method, we also obtain a similar equivalence
by solely considering one of the two players and their corresponding
one-player arenas.

Theorem 4.4.3 (One-player characterization) Let v be a preference relation

andM be a memory structure. Then, P1 has optimal strategies based onM in

all its finite one-player arenas if and only if v isM-monotone andM-selective.

Although this looks like a weak version of Theorem 4.4.1 at first sight, this
is actually a distinct result as both sides of the equivalence are weaker: on
the left side, it only handles the memory requirements for the one-player
games of P1; on the right side, it does not assume anything about the
inverse preference relation v−1.

Albeit close, this is also distinct from the half-positional determinacy result
from [Kop06, Theorem 4], which gives sufficient conditions about an [Kop06]: Kopczyński (2006),

Half-Positional Determinacy of

Infinite Games

objective for a player to admit memoryless optimal strategies on every
finite two-player arena— in Theorem 4.4.3, we give a necessary and sufficient

condition for a player to admit arena-independent finite-memory optimal
strategies on its finite one-player arenas only. The sufficient conditions
from [Kop06] (prefix-independence and concavity) imply Mtriv-monotony
and Mtriv-selectivity, but not the other way around. Given a preference
relation, it is possible for a player to have arena-independent finite-memory
optimal strategies on its finite one-player arenas, but not on all finite two-
player arenas; see, e.g., the example used in [Kop06, Proposition 2]. In
such an example, Theorem 4.4.3 could be applied, but not the result
from [Kop06].

Proof of Theorem 4.4.3. The left-to-right implication follows from Propo-
sition 4.5.1 (forM-monotony) and Proposition 4.5.2 (forM-selectivity).
The converse implication is established in Corollary 4.6.6.

One-to-two-player lift. Alongside the aforementioned equivalence re-
sult, Gimbert and Zielonka provide a corollary of high practical inter-
est [GZ05, Corollary 7]: they essentially obtain as a by-product of their [GZ05]: Gimbert et al. (2005),

Games Where You Can Play Op-

timally Without Any Memory

approach that if memoryless strategies suffice in all finite one-player

4 Characterization of arena-independent finite-memory determinacy 78

games of P1 and all finite one-player games of P2, they also suffice in all
finite two-player games.

We are able to lift this corollary to the arena-independent finite-memory
case, as follows.

Theorem 4.4.4 (One-to-two-player lift, finite arenas) Let v be a preference

relation andM1 ,M2 be two memory structures. Assume that

1. for all games played on a finite one-player arena of P1, P1 has an optimal

strategy based onM1;

2. for all games played on a finite one-player arena of P2, P2 has an optimal

strategy based onM2.

Then, in all games played on finite (two-player) arenas, both P1 and P2 have

optimal strategies based on memory structureM =M1 ⊗M2.

We highlight the two (possibly different) memory structures of the two
players to maintain a compositional approach, but if the same memory
structure M works in both one-player versions, it also suffices in the
two-player version (asM ⊗M is isomorphic toM).

Proof of Theorem 4.4.4. By Propositions 4.5.1 and 4.5.2, which essentially
state that the left-to-right implication of Theorem 4.4.1 holds already in
finite one-player games, the hypothesis yields that v is M1-monotone
andM1-selective, while v−1 isM2-monotone andM2-selective. Now it
suffices to apply Corollary 4.6.5 — essentially the right-to-left implication
of Theorem 4.4.1 — to get the claim.

4.4.2 Running example

We go back to our running example , = Reach(0) ∩ Reach(1), the
monotony of which was studied in Example 4.3.2 and the selectivity of
which was studied in Example 4.3.5. We use Theorem 4.4.1 directly in
order to illustrate it. In practice, using Theorem 4.4.4 may be preferable,
as it yields a shorter proof: by exhibiting the right memory structure for
P1 and P2, we simply have to show that these memory structures are
sufficient to play optimally on both players’ finite one-player arenas. But
here, we already have detailed information on monotony and selectivity
of, .

We discussed that, is Mp-monotone and Mc-selective (Mp and Mc

are depicted in Figure 4.1), and that , is Mtriv-selective. As , is $-
regular, its complement , is also Mp-monotone (Lemma 4.3.11). Let
M = Mp ⊗Mc ⊗Mtriv be the product of all the considered memory
structures. Structure M is drawn in Figure 4.3 (center). Although M
formally has four states, only three of them are reachable from the initial
state. By Lemma 4.3.6, we have that both v and v−1 areM-monotone and

4 Characterization of arena-independent finite-memory determinacy 79

E1

E2

E3

0

2 1

2

<1

<2<3

10

0

2

� 1, 2

E1 , <1

E2 , <1

E3 , <1

E1 , <2

E2 , <2

E3 , <3

2 1

02

2 1

0

2

Figure 4.3: ArenaA (left), memory structureM (center; with <init = <1), and product arenaA ⋉M (right; only vertices
reachable from+ × {<init} are depicted). The memoryless optimal strategy from+ × {<init} is highlighted with bold arrows.

M-selective. Using Theorem 4.4.1, we obtain that both players have optimal

strategies based on memory structure M in all games played on finite arenas.
Note that memory structure M is minimal (no memory structure with Structure M is minimal as

a memory that suffices for
both players, but P2 can actu-
ally play optimally with two
states of memory, which re-
sults from this chapter do not
show; see Chapter 7 for more
precise results.

fewer states suffices for P1 to play optimally in all arenas [FH10]).

[FH10]: Fĳalkow et al. (2010),
The surprizing complexity of

reachability games

We provide an example of a one-player arena A = (+,+1 , +2 = ∅, �) in
Figure 4.3, and show that there is an optimal strategy based on memory
structureM for the preference relationv. To do so,we invoke Lemma 4.2.9:
we showequivalently that theproductA⋉M admits amemoryless optimal
strategy from+×{<init} for v. Notice that nomemoryless strategy suffices
to play optimally in (A,,), as when starting in E2, P1 should first visit E1
before going to E3. Also, the memoryless optimal strategy from+ × {<init}
in the product arena is only optimal if the initial vertex is in + × {<init}; it
is for instance not as good as possible from vertex (E2 , <2).

4.5 From strategies based onM toM-monotony and

M-selectivity

In this section, we show the necessity ofM-monotony andM-selectivity
for the existence of optimal strategies based on M in finite one-player
arenas.

Monotony. We start withM-monotony.

Proposition 4.5.1 (Necessity ofM-monotony) Letv be a preference relation
andM be a memory structure. If P1 has an optimal strategy based onM in

all its finite one-player arenas, then v isM-monotone.

Note that this result can be instantiated for P2 and v−1 symmetrically.

Our proof can be sketched as follows. We need to establish that Equa-
tion (4.7) holds. We first instantiate the four languages involved in it: {F},
{F′}, 1 and 2. We take NFAs recognizing them and build an NFA N
that joins them in such a way that, whenN is considered as a game arena

4 Characterization of arena-independent finite-memory determinacy 80

NF \ {@Ffin} NF′ \ {@F′
fin }

N 1 \ {@ 1
init} N 2 \ {@ 2

init}

C

Figure 4.4: NFA N built to
establishM-monotony.

(see Lemma 4.2.12), its plays correspond exactly to the languages of infinite
words considered in Equation (4.7). This arena is essentially composed of
two chains emulating the two prefixes F and F′ and leading to a vertex C
where P1 has to pick a side corresponding to the two languages [1] and
[2] (Figure 4.4). Now, establishing the M-monotony of v boils down
to invoking an optimal strategy � in the corresponding game, the crux
being that this strategy always picks the same edge in C (i.e., the same side
between subarenas corresponding to [1] and [2]) as both prefixes F
and F′ are deemed equivalent by the memory structureM.

Proof of Proposition 4.5.1. We write M = (", <init , upd) and we assume
that for all finite one-player arenas of P1, P1 has an optimal strategy based
onM. Let us prove that v isM-monotone, i.e., that for all < ∈ ", for all
regular languages 1 , 2,

∃F ∈ !<init ,< , [F 1] @ [F 2]
=⇒ ∀F′ ∈ !<init ,< , [F′ 1] v [F′ 2]. (4.11)

Let < ∈ " and 1 , 2 be regular languages. We assume that 1 , 2 ≠ ∅,
otherwise Equation (4.11) holds trivially: if 1 is empty, the conclusion of
the implication is true regardless of 2; and if 2 is empty, the premise is
false. Now, assume that there exists F ∈ !<init ,< such that [F 1] @ [F 2],
and let F′ be another finite word in !<init ,< . We will prove that [F′ 1] v
[F′ 2].
Let NF = (&F , �,ΔF , @Finit , �

F), NF′ = (&F′ , �,ΔF
′
, @F

′
init , �

F′), N 1 =
(& 1 , �,Δ 1 , @ 1

init , �
 1), and N 2 = (& 2 , �,Δ 2 , @ 2

init , �
 2) respectively

denote NFAs recognizing languages {F}, {F′}, 1, and 2. They exist
since all these languages are regular. We assume w.l.o.g. that NFA NF

(resp. NF′ , N 1 , N 2) is coaccessible and has only one initial state @Finit
(resp. @F′init, @

 1
init, @

 2
init) with no ingoing transition. We can do this since 1

and 2 are non-empty. We also assume w.l.o.g. thatNF (resp.NF′) has
only one final state @Ffin (resp. @

F′
fin) with no outgoing transition. Actually,

NF and NF′ can be taken as “chains” recognizing a unique word, and
being coaccessible and deterministic.

We build an NFAN = (&, �,Δ, &init , �) by “merging” states @ 1
init, @

 2
init, @

F
fin,

and @F′fin . We call this new merged state C. Formally, we build it as follows:

I & = (&F ∪&F′ ∪& 1 ∪& 2 ∪ {C}) \ {@ 1
init , @

 2
init , @

F
fin , @

F′
fin };

4 Characterization of arena-independent finite-memory determinacy 81

I &init = {@Finit , @F
′

init} and � = � 1 ∪ � 2 ;

and finally, the transition relation simply takes into account the merging
on C:

Δ = {(@, 2, @′) ∈ ΔF ∪ ΔF′ ∪ Δ 1 ∪ Δ 2 | @, @′ ∉ {@ 1
init , @

 2
init , @

F
fin , @

F′
fin }}

∪ {(@, 2, C) | (@, 2, @′) ∈ (ΔF ∪ ΔF′) ∧ @′ ∈ {@Ffin , @F
′

fin }}
∪ {(C , 2, @′) | (@, 2, @′) ∈ (Δ 1 ∪ Δ 2) ∧ @ ∈ {@ 1

init , @
 2
init}}.

This construction is illustrated in Figure 4.4. The language recognized by
N from @Finit is F(1 ∪ 2), whereas from @F

′
init, it is F

′(1 ∪ 2). Observe
thatN is coaccessible since bothN 1 andN 2 are coaccessible.

Recall that we assume [F 1] @ [F 2]. By definition, this implies that
[F 2] ≠ ∅, hence we also have that [2] ≠ ∅. From this, we get that C is
essential inN (Lemma 4.2.12). Thus, it is also the case for @Finit and @

F′
init.

We will now interpret this NFA as a finite arena and use the hypothesis.
Let A = Arena(N). By Lemma 4.2.12, we have that col$(Plays(A, @Finit)) =
[F(1 ∪ 2)] and col$(Plays(A, @F′init)) = [F′(1 ∪ 2)]. By hypothesis, P1
has an optimal strategy � based onM in G = (A, v). Let nxt : +1×" → � We really need the uniformity

of the optimal strategy here,
i.e., that the same strategy
is as good as possible from
multiple initial vertices (here,
from @Finit and @F

′
init). We will

come back to the importance
of uniformity in Section 4.7.

be the next-action function of this strategy (where � are the edges of A).

Let � ∈ Plays(A, @Finit , �) be the only play consistent with strategy �
from @Finit. By definition of A, this play � necessarily contains a history
� = 41 . . . 4= such that out(4=) = C and for all 8, 1 ≤ 8 < =, out(48) ≠ C.
Observe that col∗(�) = F. Recall that < = ∗upd(<init , F) is the memory
state reached after reading F since F ∈ !<init ,< . Let 4 = nxt(C , <) be the
edge chosen by � in C when C is visited (C will be visited only once by
construction of A).

Wewill show that 4 belongs to the part generated byN 2 . By contradiction,
assume it belongs to N 1 . Then, � = � · �′, with col$(�′) ∈ [1], hence
col$(�) ∈ [F 1]. First, observe that

[F 2] v col$(Plays(A, @Finit))

since [F 2] ⊆ [F 1] ∪ [F 2], [F 1] ∪ [F 2] = [F(1 ∪ 2)] (using
Lemma 4.2.11), and, as noted above, [F(1 ∪ 2)] = col$(Plays(A, @Finit)).
Since � is optimal from @Finit, we have One can get from the defini-

tion of optimal using the UCol-
operator that, in this one-
player game, � is as good
as possible from @Finit if and
only if for all strategies �′ of
P1, col$(Plays(A, @Finit , �′)) v
col$(Plays(A, @Finit , �)).

[F 2] v col$(�).

Finally, as we assumed that col$(�) ∈ [F 1], we can conclude that

[F 2] v [F 1],

which contradicts the hypothesis that [F 1] @ [F 2]. Hence, we have
established that 4 belongs toN 2 .

4 Characterization of arena-independent finite-memory determinacy 82

Now let us consider �′′ ∈ Plays(A, @F′init , �), the only play consistent with
strategy � from @F

′
init. Again, by definition of A, this play �′′ necessarily

contains a history �′′ = 41 . . . 4= such that out(4=) = C and for all 8,
1 ≤ 8 < =, out(48) ≠ C. Observe that col∗(�′′) = F′. Since F′ ∈ !<init ,< , we
also have that ∗upd(<init , F′) = <, i.e., the memory state reached after
reading F′ is the same as the one reached after reading F. Hence, we
have that 4 = nxt(C , <) is exactly the same edge as before, and therefore
belongs toN 2 . Thus, col$(�′′) ∈ [F′ 2].
Finally, since � is also as good as possible from @F

′
init and applying the same

reasoning as above, we have that

[F′ 1] v [F′ 1] ∪ [F′ 2] = [F′(1 ∪ 2)]
= col$(Plays(A, @F′init))
v col$(�′′)
v [F′ 2],

which proves Equation (4.11) and concludes our proof.

Selectivity. We now turn toM-selectivity.

Proposition 4.5.2 (Necessity ofM-selectivity) Letv be a preference relation
and M be a memory structure. If for all its finite one-player arenas, for all

vertices E of the arena, P1 has a strategy based onM that is as good as possible

from E, then v isM-selective.

The same holds for P2 and v−1 symmetrically. Observe that uniformity of
the strategy is not required here (as opposed to the proof forM-monotone,
Proposition 4.5.1).

Our proof bears similarities with the monotone case. We need to establish
that Equation (4.8) holds. We first instantiate the four languages involved
in it: {F}, 1, 2 and 3. We take NFAs recognizing them and build
an NFA N that joins them in such a way that, when N is considered
as a finite arena (see Lemma 4.2.12), its plays correspond exactly to the
languages of infinite words considered in Equation (4.8). This arena is
essentially composed of a chain emulating the prefix F and leading to
a vertex C where P1 can visit sides that generate cycles from 1 and 2
— forever or for a finite time — or branch to a side corresponding to
 3 (Figure 4.5). Now, establishing the M-selectivity of v boils down to
invoking an optimal strategy � in the corresponding game, the crux being
that this strategy always picks the same edge in C (i.e., the same side
between subarenas corresponding to [∗1], [∗2] and [3]) as all cycles on C
are deemed equivalent by the memory structureM. The main difference
with the previous construction appears in the last sentence: it is now
possible to come back to C, possibly infinitely often, and our proof takes
that into account.

4 Characterization of arena-independent finite-memory determinacy 83

Proof of Proposition 4.5.2. We write M = (", <init , upd) and we assume
that for all its finite one-player arenas, for all vertices E of the arena, P1
has a strategy based onM as good as possible from E. Let us prove that v
is M-selective, i.e., that for all F ∈ �∗, < = ∗upd(<init , F), for all regular
languages 1 , 2 , 3 such that 1 , 2 ⊆ !<,< ,

[F(1 ∪ 2)∗ 3] v [F ∗1] ∪ [F ∗2] ∪ [F 3]. (4.12)

Let F ∈ �∗ and < = ∗upd(<init , F). Let 1 , 2 , 3 be regular languages
with 1 , 2 ⊆ !<,< . In the following, we assume all three languages 1,
 2 and 3 to be non-empty. Indeed, if 3 is empty, so is the left-hand
side of Equation (4.12), hence it trivially holds. If both 1 and 2 are
empty, Equation (4.12) compares [F 3] to itself, hence it trivially holds
again. Finally, if 1 is the only empty language among the three, then
Equation (4.12) can be restated as follows:

[F(1 ∪ 2)∗ 3] = [F(2 ∪ 2)∗ 3] v
[F ∗2] ∪ [F ∗2] ∪ [F 3] = [F ∗1] ∪ [F ∗2] ∪ [F 3],

where the middle inequality — the one to prove — involves three non-
empty sets. A symmetric argument holds if 2 is the only empty language.
We also assume that 1 and 2 do not contain the emptyword for technical
convenience: this is w.l.o.g. thanks to the Kleene stars used in the regular
expressions to consider.

As for monotony, we start by considering NFAs for all these languages:
let NF = (&F , �,ΔF , @Finit , �

F), N 1 = (& 1 , �,Δ 1 , @ 1
init , �

 1), N 2 =
(& 2 , �,Δ 2 , @ 2

init , �
 2), and N 3 = (& 3 , �,Δ 3 , @ 3

init , �
 3) respectively

denote NFAs recognizing languages {F}, 1, 2 and 3. They exist since
all these languages are regular. We assume w.l.o.g. that NFA NF (resp.
N 1 , N 2 , N 3) is coaccessible and has only one initial state @Finit (resp.
@ 1
init, @

 2
init, @

 3
init) with no ingoing transition. We can do this since 1, 2,

and 3 are non-empty. We also assume w.l.o.g. thatNF (resp.N 1 ,N 2)
has only one final state @Ffin (resp. @

 1
fin , @

 2
fin) with no outgoing transition.

AgainNF can simply be a “chain” recognizing a unique word, being both
coaccessible and deterministic.

Similarly to Proposition 4.5.1, we build an NFAN = (&, �,Δ, &init , �) by
“merging” states @ 1

init, @
 2
init, @

 3
init, @

F
fin, @

 1
fin , and @

 2
fin . We call this new merged

state C. Formally, we build it as follows:

I & = (&F ∪& 1 ∪& 2 ∪& 3 ∪ {C}) \ {@ 1
init , @

 2
init , @

 3
init , @

F
fin , @

 1
fin , @

 2
fin };

I &init = {@Finit} and � = � 3 ;

and finally, the transition relation simply takes into account the merging

4 Characterization of arena-independent finite-memory determinacy 84

NF \ {@Ffin}

C

N 1 \ {@ 1
init , @

 1
fin } N 2 \ {@ 2

init , @
 2
fin }

N 3 \ {@ 3
init} Figure 4.5: NFA N built to

establishM-selectivity.

on C:

Δ = {(@, 2, @′) ∈ ΔF ∪ Δ 1 ∪ Δ 2 ∪ Δ 3 |
@, @′ ∉ {@ 1

init , @
 2
init , @

 3
init , @

F
fin , @

 1
fin , @

 2
fin }}

∪ {(@, 2, C) | (@, 2, @′) ∈ (ΔF ∪ Δ 1 ∪ Δ 2) ∧ @′ ∈ {@Ffin , @ 1
fin , @

 2
fin }}

∪ {(C , 2, @′) | (@, 2, @′) ∈ (Δ 1 ∪ Δ 2 ∪ Δ 3) ∧ @ ∈ {@ 1
init , @

 2
init , @

 3
init}}.

This construction is illustrated in Figure 4.5. The language recognized by
N is F(1 ∪ 2)∗ 3. Observe thatN is coaccessible sinceN 1 ,N 2 and
N 3 are coaccessible. Also observe that C is essential by construction: by
merging the initial and final states of 1 (resp. 2), we created cycles on C.
Thus, @Finit is also essential.

We will now interpret this NFA as a finite arena and use the hypothesis.
Let A = Arena(N). By Lemma 4.2.12, we have that col$(Plays(A, @Finit)) =
[F(1 ∪ 2)∗ 3]. By hypothesis, P1 has an optimal strategy � from @Finit,
with next-action function nxt : +1 ×" → � (where � are the edges ofA).

Let � ∈ Plays(A, @Finit , �) be the only play consistent with � from @Finit. By
optimality from @Finit, we have that

[F(1 ∪ 2)∗ 3] v col$(�). (4.13)

By definition of A, this play � necessarily contains a history � = 41 . . . 4=
such that out(4=) = C and for all 8, 1 ≤ 8 < =, out(48) ≠ C. Observe that
col∗(�) = F. Recall that < = ∗upd(<init , F) is the memory state reached
after reading F since F ∈ !<init ,< . Let 4 = nxt(C , <) be the edge chosen by
� in C when C is first visited. Note that in contrast to the construction in
Proposition 4.5.1, C could be visited many times here, and even infinitely
often (using cycles from 1 and 2).We consider two cases in the following.

First, assume that 4 belongs to the part of the arena generated by N 3 .
Since C (originally @ 3

init) has no incoming transition in N 3 , we conclude
that � never visits C again, and that col$(�) ∈ [F 3]. By Equation (4.13),
we have Equation (4.12).

Now, assume that 4 belongs to the part of the arena generated byN 1 (the
same reasoning applies symmetrically for N 2). We want to show that

4 Characterization of arena-independent finite-memory determinacy 85

col$(�) ∈ [F ∗1], i.e., that � never switches to another part of the arena.
Two cases are possible: either (0) � visits C only once, or (1) � visits C at
least twice.

Case (0). Since � visits C only once and C is the only vertex where the play
could switch to adifferentNFA,wehave that� = �·�′ for a suffix�′ starting
in C and entirely contained inN 1 . Hence, we have col$(�) = F · col$(�′)
with col$(�′) ∈ [1]. Thus, col$(�) ∈ [F 1] ⊆ [F ∗1].
Case (1). Let � = � · �′ · �′, such that �′ ends with the second visit of C.
Recall that F = col∗(�), < = ∗upd(<init , F), and 4 = nxt(C , <). Now, by
definition of 1,wehave that col∗(�′) ∈ !<,< .Hence, ∗upd(<, col∗(�′)) = <.
Intuitively, the memory structure is back to the same memory state after
reading the cycle �′. Therefore, �(� · �′) = �(�) = 4. Iterating this
reasoning (as all cycles on C inN 1 are read as cycles on< in the memory),
we conclude that � = � · (�′)$. This implies that col$(�) ∈ [F ∗1].
Hence, in both cases, we have that col$(�) ∈ [F ∗1]. Now, by Equa-
tion (4.13), we have Equation (4.12).

Wrap-up. We have established that the existence of finite-memory opti-
mal strategies based on a memory structureM in finite one-player games
implies bothM-monotony andM-selectivity of the preference relation.
Next, we consider the converse: we will prove that M-monotony and
M-selectivity implies the existence of optimal strategies based onM, not
only in one-player games, but even in two-player ones, when satisfied by
the preference relation and its inverse.

4.6 FromM-monotony andM-selectivity to

strategies based onM

Induction step. To prove the sought implication (Proposition 4.6.3), we
first focus on memoryless strategies in finite “covered” arenas, as discussed
in Section 4.3. Intuitively, a “covered” arena resembles a product arena
(with a memory structure): hence studying memoryless strategies on
such arenas is very close to studying finite-memory strategies on general
arenas.

We will proceed by induction on the number of choices in finite arenas,
as sketched in Section 4.3. This induction will require us to mix different
Nash equilibria (one for each player) in a proper way to maintain the
desired property. For the sake of readability, we thus start by proving the
induction step for one player.

For a finite arena A = (+,+1 , +2 , �), we write =A = |� | − |+ | for its We recall that as arenas are
non-blocking, |� | ≥ |+ |, so
=A ≥ 0.

number of choices. We also define the notion of subarena: we say that
an arena A′ = (+′, +′1 , +′2 , �′) is a subarena of an arena (+,+1 , +2 , �) if
+1 = +′1 , +2 = +′2 , and �

′ ⊆ �. That is, arena A′ is a subarena of A if it

4 Characterization of arena-independent finite-memory determinacy 86

can be obtained from A by removing some edges of A (while keeping it
non-blocking, as is required to be an arena). We say that a set of arenas A
is closed under subarena operation if for all A ∈ A, for all subarenas A′ of A,
A′ ∈ A.

Lemma 4.6.1 Let v be a preference relation, Mp
and Mc

be two memory

structures, and A be a set of finite arenas closed under subarena operation.

We assume that v is Mp
-monotone and Mc

-selective, and that for all finite

one-player arenas A = (+,+1 , +2 , �) ∈ A of P2, for all subsets of vertices

+cov ⊆ + of whichMp
is a prefix-cover andMc

is a cyclic-cover, P2 has an

optimal strategy from +cov.

Let = ∈ ℕ. Assume that for all arenas A′ = (+′, +′1 , +′2 , �′) ∈ A such that

=A′ < =, for all subsets of vertices +′cov ⊆ +′ of which Mp
is a prefix-cover

andMc
is a cyclic-cover, there exists a memoryless Nash equilibrium (�′1 , �′2)

from +′cov in G′ = (A′, v).
Then, for all arenas A = (+,+1 , +2 , �) ∈ A such that =A = =, for all subsets
of vertices +cov ⊆ + for whichMp

is a prefix-cover andMc
is a cyclic-cover,

there exists a Nash equilibrium (�1 , �2) from +cov in G = (A,,) such that

�1 is memoryless.

Note that the same holds for P2 and v−1 symmetrically.

Intuitively, Lemma 4.6.1 states that under the hypotheses ofMp-monotony
andMc-selectivity, if both players can play optimally with memoryless
strategies in “small” and “covered” arenas, the same property holds for
at least P1 in “covered” arenas where an additional choice exists. This
lemma is focused on proving the existence of an NE in which the strategy
of P1 is memoryless: proving that this holds for both players will be done
in Proposition 4.6.3.

As motivated in Section 4.4, we state our result as the existence of mem-
oryless optimal strategies in arenas “covered by M”: the existence of
strategies based onM in general arenas will follow (Corollary 4.6.5).

We use two different memory structures, one for monotony (dealing
with prefixes) and one for selectivity (dealing with cycles). Naturally,
one can use a single combined memory structure using Lemmas 4.3.6
and 4.3.13, but our approach has the advantage of being compositional
and highlighting how each property impacts the reasoning in the proof:
we will see that they have different uses.

As mentioned above, our proof is essentially an induction step. Starting
fromafinite arenaAwith =A = = choices,we identify a vertex C inwhichP1
has at least two outgoing edges (the proof is symmetric forP2). By splitting
the edges in C into two sets, we obtain two corresponding subarenas A0

and A1 such that =A0 , =A1 < =, along with the corresponding subgames.
The induction hypothesis gives us two memoryless Nash equilibria (from
+cov) in these subgames: (�01 , �02) and (�11 , �12). The arguments can then be

4 Characterization of arena-independent finite-memory determinacy 87

unfolded as follows. First, using Mp-monotony and Mp being a prefix-
cover, we identify one subarena (say A0) which is clearly at least as
good as the other for P1. Secondly, we build a strategy profile (�#

1 , �
#
2),

that we claim to be an NE in G, in the following way: P1 uses strategy
�01 (the one from the best subarena) and P2 reacts to the actions of P1
by playing the corresponding best-response strategy. I.e., if P1 plays in
A0 , P2 plays according to �02 , and otherwise P2 plays according to �12 .
Third, it remains to prove the two inequalities of Equation (4.1). The
rightmost one is easy, as well as the leftmost one in the subcase where
the unique play � ∈ Plays(A, E, �#

1 , �
#
2) does not visit vertex C: they can

both be proved essentially thanks to the induction hypothesis and easy
construction arguments. The crux of the proof is thus in the last step:
proving that the leftmost inequality holds when the play visits C. This
can be achieved thanks to Mc-selectivity and Mc being a cyclic-cover,
Lemma 4.2.11, inherent properties of the preference relation, A0 being the
best subarena thanks toMp-monotony, and the induction hypothesis.

Proof of Lemma 4.6.1. We write the memory structures from the statement
asMp = ("p , <p

init ,
p
upd) andMc = ("c , <c

init ,
c
upd).

Let A = (+,+1 , +2 , �) ∈ A be a finite arena such that =A = =, and let
+cov ⊆ + be a subset of vertices for whichMp is a prefix-cover andMc is
a cyclic-cover. Our goal is to prove that there exists an NE (�1 , �2) from
+cov in (A,,) such that �1 is memoryless.

If A is such that P1 has no choice (i.e., all vertices in +1 have only one
outgoing edge), then there is a single strategy of P1 on A, which happens
to be memoryless. Arena A is almost a one-player arena of P2, as even
though P1 owns some vertices, there is no choice to make in those vertices.
We can easily build a bĳection between strategies of P2 inA and the “true”
one-player arena in which ownership of vertices of P1 is transferred to P2.
By hypothesis, P2 has a strategy to play in A that is as good as possible
from vertices prefix-covered byMp and cyclic-covered byMc. Thus there
is indeed a Nash equilibrium onA from+cov with the strategy of P1 being
memoryless.

Let us now assume that P1 has at least one choice and let C ∈ +1 be a
vertex with at least two outgoing edges, i.e., |{4 ∈ � | in(4) = C}| > 1.
We partition {4 ∈ � | in(4) = C} in two (non-empty) sets �0 and �1 , and
we define two corresponding subarenas, A0 = (+,+1 , +2 , � \ �1), and
A1 = (+,+1 , +2 , �\�0), which are inA as this set is closed under subarena
operation. Observe that it remains true thatMp is a prefix-cover andMc

is a cyclic-cover of +cov, both in A0 and A1 , by definition of prefix-covers
and cyclic-covers (intuitively, we quantify universally over fewer histories
than in A).

Thus, by induction hypothesis (since =A0 , =A1 < =A = =), we have
memorylessNEs from+cov in the subgamesG0 = (A0 , v) andG1 = (A1 , v).
Let us denote them by (� 91 , �

9
2) for game G9 , 9 ∈ {0, 1}.

4 Characterization of arena-independent finite-memory determinacy 88

Since Mp is a prefix-cover of +cov in A, there exists <p
C ∈ "p such that,

for all � ∈ Hists(A) such that in(�) ∈ +cov, out(�) = C, and such that for
all �′ proper prefix of �, out(�′) ≠ C, we have ∗upd(<p

init , col
∗(�)) = <p

C .
Now, let p

9 = col$
(
Hists(A9 , C , �

9
2)
)
, for 9 ∈ {0, 1}, that is, p

9 contains all

(projections to colors of) histories consistent with �
9
2 and starting in C in

subarena A9 .

ByMp-monotony, we can deduce that we have

∀F ∈ !p
<p

init ,<
p
C
, [F p

0] v [F p
1],

or ∀F ∈ !p
<p

init ,<
p
C
, [F p

1] v [F p
0] (4.14)

where !p
<p

init ,<
p
C
stands for the usual language of sequences of colors read

from <p
init to <

p
C , the additional superscript being used to highlight that

we are considering memory structureMp here. From now on, we assume
w.l.o.g. that Equation (4.14) holds, i.e., that ∀F ∈ !p

<p
init ,<

p
C
, [F p

1] v [F p
0].

Intuitively, this means that, for P1, committing to the subarena A0 is
always at least as good as committing to the subarena A1 . Note that
this does not imply anything with regard to alternating between the two
subarenas, which could for now be beneficial: we will deal with that soon
thanks toMc-selectivity.

Let us define the strategy �#
1 of P1 on arena A as �#

1 = �01 , the strategy
used in the NE from+cov in the subgame G0 (we chose this one because of
assumption (4.14): G0 is the better subgame of the two for P1). Strategy
�#

1 is thus memoryless by definition. Note that �#
1 is well-defined on A

even though the original strategy was on A0 , since it is memoryless (i.e.,
whether the prefix did visit A1 or not does not matter). Now, we define a
corresponding strategy �#

2 for P2 in G that uses a small amount of (chaotic)
memory, as follows: for all � ∈ Hists2(A),

�#
2(�) =

�02 (�) if � never visited C ,
�02 (�) if the last visit of C was followed by an edge in A0 ,

�12(�) otherwise.

Again this strategy is well-defined on A. Our goal is to show that the
strategy profile (�#

1 , �
#
2) is an NE from all vertices in +cov in the larger

game G. In particular, Lemma 4.2.6 implies that this pair of strategies are
optimal from +cov.

Formally, we will establish that for all E ∈ +cov, for all strategies �1 of P1
and strategies �2 of P2 on A, we have

col$(Plays(A, E, �1 , �#
2)) v col$(Plays(A, E, �#

1 , �
#
2))

v col$(Plays(A, E, �#
1 , �2)). (4.15)

4 Characterization of arena-independent finite-memory determinacy 89

We begin with the rightmost inequality of Equation (4.15). Let E ∈ +cov
and let �2 be an arbitrary strategy for P2 on A. We denote by �2[A0] its
restriction to (histories of) A0 : note that this strategy is well-defined as
only edges belonging to P1 have been removed in A0 .

We have

col$(Plays(A, E, �#
1 , �

#
2))

= col$(Plays(A0 , E, �01 , �
0
2)) as these strategies stay in A0

v col$(Plays(A0 , E, �01 , �2[A0])) as (�01 , �02) is an NE from E in A0

= col$(Plays(A, E, �#
1 , �2)) as these strategies stay in A0 ,

hence the rightmost inequality holds.

Now, consider the leftmost inequality of Equation (4.15). Let E ∈ +cov and
let �1 be an arbitrary strategy of P1 on A. Let � ∈ Plays(A, E, �1 , �#

2) be
the only play consistent with �1 and �#

2 from E. We first consider the case
where � never visits C. If this is the case, then � is also a play of A0 . Let
�′1 be a strategy of P1 on A0 that mimics �1 on all histories that belong to
A0 , except the ones ending in C, where it plays an arbitrary edge in �0 . We
have

col$(�)
= col$(Plays(A, E, �1 , �#

2))
= col$(Plays(A0 , E, �′1 , �

0
2)) because � stays in A0 and never visits C ,

v col$(Plays(A0 , E, �01 , �
0
2)) because (�01 , �02) is an NE from E in A0 ,

= col$(Plays(A, E, �#
1 , �

#
2)) because these strategies stay in A0 ,

hence the leftmost inequality holds in the case where � never visits C.

It remains to consider the case where � does visit C. Observe that for the
moment, we have not usedMc-selectivity and the fact that E ∈ +cov: they
will be crucial to solve this (more complex) case.

We define c
9 = col∗

({� ∈ Hists(A9 , C , �
9
2) | out(�) = C}

)
, for 9 ∈ {0, 1}, that

is, c
9 contains all (projections to colors of) cycles on C consistent with �

9
2

(i.e., the strategy from the subgame NE) in subarena A9 . Since the unique
play � ∈ Plays(A, E, �1 , �#

2) visits C at least once, we write � = � · �′ for �,
the prefix ending with the first visit of C. Let F = col∗(�). Observe that

col$(�) ∈ [F(c
0 ∪ c

1)∗(p
0 ∪ p

1)]

since �#
2 alternates between �02 and �12 depending on what P1 plays in C.

Intuitively, either � cycles infinitely often on C using cycles of (c
0∪ c

1), or it
does it for awhile, then switches to (p

0∪ p
1), which induces that� commits

to a subarena. Thus, we trivially have col$(�) v [F(c
0 ∪ c

1)∗(p
0 ∪ p

1)].
Since Mc is a cyclic-cover of +cov in A, and � starts in +cov, we know
that for <c = ̂c

upd(<c
init , col

∗(�)), and for all �′ ∈ Hists(A) such that

4 Characterization of arena-independent finite-memory determinacy 90

in(�′) = out(�′) = C, we have ̂c
upd(<c , col∗(�′)) = <c. That is, all cycles

on C are read as cycles on <c in Mc. This implies that c
0 ,

c
1 ⊆ !<c ,<c .

Knowing that, we can invoke the Mc-selectivity (Equation (4.8)) of the
preference relation to obtain

col$(�) v [F(c
0)∗] ∪ [F(c

1)∗] ∪ [F(p
0 ∪ p

1)].

Using Lemma 4.2.11, we have

col$(�) v [F(c
0)∗] ∪ [F(c

1)∗] ∪ [F p
0] ∪ [F p

1].

Observe that [F(c
9)∗] ⊆ [F p

9], for 9 ∈ {0, 1}. Hence, we have

col$(�) v [F p
0] ∪ [F p

1].

Now, recall that using the Mp-monotony of v, we assumed that ∀F ∈
!p
<p

init ,<
p
C
, [F p

1] v [F p
0]. Since � starts in +cov, ends in its first visit to C

and Mp is a prefix-cover of +cov, this inequality is in particular true for
F = col∗(�). Hence, we have

col$(�) v [F p
0].

Now, recall that (�01 , �02) is an NE from +cov in G0 . Recall also that F
represents the history up to the first visit of C consistent with (�1 , �#

2); it is
also consistent with (�1 , �02) since �#

2 follows �02 up to the first visit of C.
Hence, we also have

[F p
0] ⊆ col$(Plays(A0 , E, �02)) v col$(Plays(A0 , E, �01 , �

0
2)).

Therefore,

col$(�) v col$(Plays(A0 , E, �01 , �
0
2))

= col$(Plays(A, E, �#
1 , �

#
2)) because these strategies stay in A0 .

Recalling that � is the only play in Plays(A, E, �1 , �#
2), we are done with

proving the leftmost inequality of Equation (4.15).

Summing up our arguments, we have established that the couple of
strategies (�#

1 , �
#
2) is indeed a Nash equilibrium in G from +cov. Note that

this in particular implies, via Lemma 4.2.6, that �#
1 is amemoryless optimal

strategy in G from +cov.

Memoryless Nash equilibria. We are now armed to establish the impli-
cation sketched earlier. As motivated before, we first state the result in the
context of memoryless NEs on finite “covered” arenas; the finite-memory
case on general finite arenas will follow straightforwardly. We first show
the result for finite one-player arenas, and use it to obtain the two-player
case.

4 Characterization of arena-independent finite-memory determinacy 91

Lemma 4.6.2 Let v be a preference relation and Mp
, Mc

be two memory

structures. Assume that v isMp
-monotone andMc

-selective. Then, for all

finite one-player arenas A = (+,+1 , +2 , �) of P1, for all subsets of vertices

+cov ⊆ + for whichMp
is a prefix-cover andMc

is a cyclic-cover, there exists

a memoryless optimal strategy �1 from +cov in G = (A, v).

Proof. Let A be the set of all finite one-player arenas of P1, which is closed
under subarena operation.

We proceed by induction on the number of choices in the arena. The
base case, =A = 0, is trivial. Let = ∈ ℕ \ {0} and assume the result holds
for =A < =. Let A = (+,+1 , +2 , �) ∈ A be a one-player arena of P1 such
that =A = =, and let +cov ⊆ + be a subset of vertices for which Mp is a
prefix-cover andMc is a cyclic-cover. We can invoke Lemma 4.6.1 (note
that as we only consider the one-player arenas of P1, the existence of a
Nash equilibrium coincideswith the existence of an optimal strategy forP1
— see Remark 4.2.8), and obtain an optimal strategy for P1 from +cov.

We are now ready for the two-player case, which requires monotony and
selectivity assumptions for both relation v and relation v−1.

Proposition 4.6.3 Let v be a preference relation andMp
1,M

p
2,Mc

1 andMc
2

be four memory structures. Assume that v isMp
1-monotone andMc

1-selective,

and that v−1
is Mp

2-monotone and Mc
2-selective. Then, for all finite arenas

A = (+,+1 , +2 , �), for all subsets of vertices+cov ⊆ + for whichMp
1 andM

p
2

are prefix-covers, andMc
1 andMc

2 are cyclic-covers, there exists a memoryless

Nash equilibrium (�1 , �2) from +cov in G = (A, v).

We want to keep our results as general and compositional as possible;
hence, we consider different memory structures for the two players. As
argued before, one can always take a single structure for the two players, as
well as for the two notions, by taking their product and using Lemmas 4.3.6
and 4.3.13.

As discussed previously, this theorem in particular implies the exis-
tence of memoryless optimal strategies from +cov for both players (via
Lemma 4.2.6).

It is fairly straightforward to prove Proposition 4.6.3 once Lemma 4.6.1
is established: the main idea is to invoke Lemma 4.6.1 for both players
while doing the induction, and obtain two Nash equilibria, both of which
being memoryless for only one player. Then, to conclude, we resort to
Lemma 4.2.4 which gives us the possibility to mix these two NEs into one
that is now memoryless for both players.

Remark 4.6.4 Recall that a crucial hypothesis for Lemma 4.2.4 to hold
is that our games are zero-sum, i.e., that we consider v and its inverse

4 Characterization of arena-independent finite-memory determinacy 92

relationv−1. It is quite interesting to observe that our use of Lemma 4.2.4
is the only circumstance in which this hypothesis matters (and it is
indeed essential) in all our reasoning. To be more precise: we wrote

everything in the antagonistic
setting, but Equation (4.1) can
be written as two inequalities
in the general setting —
col$(Plays(A, E, �′1 , �2)) v1
col$(Plays(A, E, �1 , �2)) and
col$(Plays(A, E, �1 , �′2)) v2
col$(Plays(A, E, �1 , �2))
— and all our previous
reasoning can be rewritten
accordingly.

In other words, most of our
arguments would hold for two different preference relations v1 and
v2 (for respectively P1 and P2), without the hypothesis that v2 equals
(v1)−1. The problem would be that we cannot mix the two equilibria in
a single equilibrium with both strategies being memoryless — while we
do need it in the hypothesis of the induction step in Lemma 4.6.1.
Whether the same reasoning can be extended to (general)Nash equilibria
by adapting Lemma 4.6.1 to take into account the unavoidable blow-up
of memory is a question we leave open for future work. Note that the
memory bounds would be huge in any case: as the induction unrolls,
the memory needed in the equilibria would build up (essentially one
bit of memory is added at each call of the induction step in our easier
setting, which is then discarded thanks to Lemma 4.6.1).

Proof of Proposition 4.6.3. We consider the set A of all finite arenas, which
is closed under subarena operation. By Lemma 4.6.2, we immediately
obtain that for all finite one-player arenas A = (+,+1 , +2 , �) of P1 (resp.
of P2), for all subsets of vertices +cov ⊆ + for which Mp

1 and Mp
2 are

prefix-covers, and Mc
1 and Mc

2 are cyclic-covers, P1 (resp. P2) has an
optimal strategy from +cov.

We will proceed by induction on the number of choices in the arena, as
described before. The base case, =A = 0, is trivial. Now let = ∈ ℕ \ {0}
and assume the result holds for =A < =. Let A = (+,+1 , +2 , �) ∈ A be an
arena such that =A = =, and let +cov ⊆ + be a subset of vertices for which
Mp

1 andMp
2 are prefix-covers, andMc

1 andMc
2 are cyclic-covers.

Focusing on P1 and v, we invoke Lemma 4.6.1 (using Mp
1 ⊗Mp

2 and
Mc

1 ⊗Mc
2, and the induction hypothesis) and obtain an NE (�♠1 , �♠2) from

+cov in G = (A, v) such that �♠1 is memoryless. Symmetrically, focusing
on P2 and v−1, we invoke Lemma 4.6.1 (usingMp

1 ⊗Mp
2 andMc

1 ⊗Mc
2,

and the induction hypothesis) and obtain an NE (�♣1 , �♣2) from +cov in
G = (A, v) such that �♣2 is memoryless.

To conclude, it suffices to use Lemma 4.2.4: (�♠1 , �♠2) can be mixed with
(�♣1 , �♣2) into an NE (�♠1 , �♣2), which is now memoryless for both players.
This concludes our induction step and our proof.

Finite-memory Nash equilibria based onM. Finally, we conclude this
section by establishing our result as a corollary.

Corollary 4.6.5 Let v be a preference relation andMp
1,M

p
2,Mc

1 andMc
2 be

four memory structures. Assume that v isMp
1-monotone andMc

1-selective

and that v−1
is Mp

2-monotone and Mc
2-selective. Then, for all finite arenas

A, there exists a Nash equilibrium (�1 , �2) based on memory structureM =

4 Characterization of arena-independent finite-memory determinacy 93

Mp
1 ⊗Mp

2 ⊗Mc
1 ⊗Mc

2 in G = (A, v).

The proof of this corollary follows directly from the previous results. We
build the joint memory structureM as defined above. By Lemmas 4.3.6
and 4.3.13, we can invoke Proposition 4.6.3 on the product arena A ⋉M
and obtain a memoryless NE on it, or equivalently, an NE based onM on
the original arena, through Lemma 4.2.9.

Proof of Corollary 4.6.5. Let A = (+,+1 , +2 , �) be a finite arena. We define
M = (", <init , upd) =Mp

1 ⊗Mp
2 ⊗Mc

1 ⊗Mc
2, the joint memory structure.

By Lemma 4.3.6, v and v−1 are bothM-monotone andM-selective.

Consider the product arena A′ = A ⋉M, as defined in Subsection 4.2.3.
Recall that +′ = + × ". By Lemma 4.3.13, the set of vertices +′cov =
+ × {<init} ⊆ +′ is both prefix-covered and cyclic-covered byM.

Putting the last two arguments together, we invoke Proposition 4.6.3
on A′ and obtain a memoryless Nash equilibrium (�′1 , �′2) from +′cov
in G′ = (A′, v).
To conclude, it suffices to use Lemma 4.2.9 (stated using NE, as discussed
in Remark 4.2.10): the memoryless NE (�′1 , �′2) in the product game G′ can
be seen as an NE (�1 , �2) based onM in G = (A, v).

We can also formulate a version of this last result focusing on one-player
arenas.

Corollary 4.6.6 Let v be a preference relation andMp
,Mc

be two memory

structures. Assume that v isMp
-monotone andMc

-selective. Then, for all

finite one-player arenas A = (+,+1 , +2 , �) of P1, there exists an optimal

strategy �1 in G = (A, v), based onM =Mp ⊗Mc
.

Sketch of proof. The proof is very similar to (and easier than) the proof
of Corollary 4.6.5, but uses the one-player implication of Lemma 4.6.2
instead of Proposition 4.6.3.

4.7 Digression: the cost of uniformity

In Chapter 2, we defined an optimal strategy for a qualitative objective
as one that wins from every vertex in the winning region, and we have
generalized it for preference relations to a strategy that plays as well as

possible from every vertex. This requirement is sometimes called uniformity.

We give a few general situations showing the impact of uniformity on the
complexity of strategies, the gist of this section being that uniformity is
almost for free in two-player games on graphs.

4 Characterization of arena-independent finite-memory determinacy 94

E3

E1

E2

E4

E5

0

1

0

1

0

1

D1 D2

D3

D4

0

1

0

1

0

1

Figure 4.6: One-player arena
(left) inwhichP2 has amemo-
ryless winning strategy from
each vertex of the winning re-
gion, but no memoryless opti-
mal strategy (, = Reach(0)∩
Reach(1)). Two-player arena
(right) in which P2 does not
have a memoryless winning
strategy from D1.

One-player arenas. We first focus our attention on the cost of uniformity
in one-player arenas. In one-player arenas, requiring uniformity may
demand more complex strategies in general. We have shown that the
conjunction ofM-monotony andM-selectivity of a preference relation v
was equivalent to the existence of optimal strategies based onM for P1
in its finite one-player arenas (Theorem 4.4.3). As it turns out, one can
go further down: in [BFMM11, Theorem 4], it is shown that an objective [BFMM11]: Bianco et al. (2011),

Exploring the boundary of half-

positionality

, is Mtriv-selective if and only if for all finite one-player arenas of P1,

We recall that a strategy based
onMtriv is exactly a memory-
less strategy.

from all vertices of the winning region, P1 has a memoryless winning
strategy. In other words, Mtriv-selectivity is equivalent to the existence

The proof of [BFMM11, Theo-
rem 4] is also by induction on
the number of edges, and it
could be generalized to deal
with arbitrary memory struc-
tures M using an induction
on covered arenas.

of (non-necessarily uniform!) memoryless winning strategies in finite
one-player arenas for P1. This means thatMtriv-selectivity guarantees the
existence of memoryless winning strategies in one-player arenas, and that
Mtriv-monotony is then needed to “uniformize” them while keeping them
memoryless.

We give a concrete example:we studied objective, = Reach(0)∩Reach(1)
in Subsection 4.4.2, with � = {0, 1}. We have seen that its complement
, = Safe(0) ∪ Safe(1) isMtriv-selective. With [BFMM11, Theorem 4], this
means that P2 has a memoryless winning strategy from every vertex
of its winning region in its finite one-player arenas. However,, is not
Mtriv-monotone: by Theorem 4.4.3, this means that P2 does not have
memoryless optimal (i.e., uniformly winning) strategies in its one-player
arenas. We can illustrate it on a small arena: we consider the one-player
arena from Figure 4.6 (left). All strategies are winning for P2 from E3, E4,
and E5. From E1, P2 wins by going to E4 and inducing word 0$; from
E2, P2 needs to go to E5 to induce word 1$. From each fixed vertex, P2
wins with a memoryless strategy. Yet, P2 needs memory to win uniformly
from E1 and E2, as the optimal choice in E3 depends on what was seen
previously.

In two-player arenas, P2 needs memory to win, even from a fixed vertex;
P1 can emulate the non-uniformity from E1 and E2 in a single vertex D1 in
Figure 4.6 (right).

Two-player arenas. We would now like to investigate the impact from
requiring uniformity on memory requirements in two-player arenas, and
more specifically on arena-independent finite-memory determinacy. For
simplicity, we focus on qualitative objectives, ⊆ �$.

4 Characterization of arena-independent finite-memory determinacy 95

NF \ {@Ffin} NF′ \ {@F′fin }

N 1 \ {@ 1
init} N 2 \ {@ 2

init}

C

N 1 \ {@ 1
init} N 2 \ {@ 2

init}

C

F F′?−→
Figure 4.7: Alternative proof attempt for Proposition 4.5.1: replace uniform strategies in one-player arenas by non-uniform
strategies in two-player arenas?

In this chapter, there is one proof where we used as an assumption the
uniformity of the strategies: the one of Proposition 4.5.1. In this proof, we
used the existence of optimal strategies in the class of finite one-player
arenas of the kind depicted in Figure 4.7 (left). Could this proof work by
replacing the existence of uniform strategies in one-player arenas with
non-uniform strategies? This is not possible if we keep the strong “one-player
arenas” requirement (see counterexample Safe(0) ∪ Safe(1) above), but is
it possible with a two-player arena? Through this other route, we would
not get the one-to-two-player lift, but wewould get uniformity of strategies
for free.

This is tempting; can we just give the opponent the choice of the initial word,
keeping the same construction elsewhere? This works in almost every
situation; an issue only arises when F or F′ is the empty word �! In the
original proof using one-player arenas, this would mean that C is taken as
one of the two interesting initial vertices, which works. However, there is
no way to replicate that from just one initial vertex with the construction
on the right of Figure 4.7. If we can replace the empty word with an
“equivalent” non-empty word F� (in the sense that � ∼ F�; � and F� have
the same winning continuations), then the proof carries out; if not, it may
not work, as we will illustrate in the upcoming Example 4.7.2. We first
state the general result.

Lemma 4.7.1 Let, ⊆ �$
be an objective such that there existsF� ∈ �+ with

� ∼ F�. LetM be a memory structure. Both players have a (non-necessarily

uniform) winning strategy based on M from every vertex of their winning

regions in finite two-player arenas if and only if both players have (uniformly)

optimal strategies based onM in finite two-player arenas.

Proof. The implication from right to left is trivial. For the implication
from left to right, we go through M-monotony and M-selectivity. If
both players have a (non-uniform) winning strategy based on M from
every vertex of their winning regions in finite two-player arenas, then
, and, are M-monotone (same proof as Proposition 4.5.1, replacing
the construction with the one on the right of Figure 4.7 and replacing F
or F′ by F� if needed) and M-selective (Proposition 4.5.2). Then, from
M-monotony and M-selectivity of , and , , we obtain the existence

4 Characterization of arena-independent finite-memory determinacy 96

@init

@1 @win@lose

0
1

0 1
0, 1•0, 1

E1 E2

E3

E4

1
1

0

0

0

Figure 4.8: Example 4.7.2: DBA recognizing, = (0 + 11)�$ (left), and arena with no memoryless optimal strategy (right).

of (uniformly) optimal strategies based on M for both players in finite
two-player arenas (Theorem 4.4.1).

Most classical objectives admit the existence of such a F�; in particular,
all prefix-independent objectives admit it (as any finite word has the
same winning continuations as the empty word). The existence of such
a F� is also weaker than the existence of a neutral color [Ohl23], a recent [Ohl23]: Ohlmann (2023),

Characterizing Positionality in

Games of Infinite Duration over

Infinite Graphs

fruitful hypothesis to study the existence of memoryless optimal strategies.
Lemma 4.7.1 also led us to find a counterexample when the empty word
has no equivalent.

Example 4.7.2 Let � = {0, 1} and, = (0 + 11)�$ be the set of infinite
words that either start with 0 or with 11. This objective is $-regular
and is recognized, e.g., by the DBA in Figure 4.8 (left). Observe that
no non-empty word has the same winning continuations as the empty
word. This objective does not admit memoryless optimal strategies: in
the arena in Figure 4.8 (right), P1 can win from E1 by going to E3 and
from E2 by going to E4, but there is no uniformly winning strategy from
E1 and E2.
Yet, in all two-player arenas, P1 has a memoryless (non-uniformly)
winning strategy from every vertex of its winning region. Let A =
(+,+1 , +2 , �) be an arena, and E ∈ + be a vertex in the winning region
of P1. We show that P1 has a memoryless winning strategy from E. If
E ∈ +1 and there is an edge (E, 0, E′) ∈ �, P1 can simply play this edge.
If E ∈ +2 and all outgoing edges are 0-colored, P1 automatically wins
from E. If not, P1 can win by forcing 11, which can be shown to be
doable with a memoryless strategy by distinguishing a few cases.
Through this example, we have distinguished the existence of memory-
less (uniformly) optimal strategies for P1 in two-player arenas from the
existence of memoryless non-uniformly winning strategies.

4.8 Further discussion of selected related works

In this section, we give a brief overview of two ways the results from
this chapter have been generalized in subsequent works. The first one
is a generalization of both the characterization of Theorem 4.4.1 and the
one-to-two-player lift (Theorem 4.4.4) to stochastic games and involved
this thesis’ author [BORV21a]. The second one is a generalization by [BORV21a]: Bouyer et al.

(2021), Arena-Independent

Finite-Memory Determinacy in

Stochastic Games

4 Characterization of arena-independent finite-memory determinacy 97

Kozachinskiy of the one-to-two-player lift to a class of strategies more
general than strictly arena-independent ones [Koz22b]. [Koz22b]: Kozachinskiy

(2022), One-To-Two-Player

Lifting for Mildly Growing

Memory4.8.1 Generalization to stochastic games

In [BORV21a], we generalized the one-to-two-player lift to two-player zero- [BORV21a]: Bouyer et al.
(2021), Arena-Independent

Finite-Memory Determinacy in

Stochastic Games

sum stochastic games played on finite graphs. In a stochastic game [Sha53],

[Sha53]: Shapley (1953),
Stochastic Games

when a player chooses an outgoing edge (often called an action in the
stochastic case), the following vertex is chosen according to some fixed
probability distribution. In deterministic games, when both players fix a
strategy, the resulting object is an infinite path in the arena; in stochastic
games, it is a probability distribution over the set of infinite paths. Therefore,
there is an extension of the definition of objectives from this chapter
(preference relations over infinite words) to preference relations over dis-

tributions over infinite words. An example of such a general objective
with no equivalent in our framework is “reaching a color with proba-
bility exactly

1
2” [CFK+12]. In such general stochastic games, the use of [CFK+12]: Chen et al. (2012),

Playing Stochastic Games Pre-

cisely

randomization in strategies may be useful.

In general, reasonable extensions of qualitative objectives in the context of
stochastic games (for example, maximizing the probability of obtaining
an infinite word in the qualitative objective) require more memory than
their deterministic counterparts (see, e.g., the discounted sum with threshold

in [BORV21b, Section 6.2]), hence the need for dedicated tools for stochastic [BORV21b]: Bouyer et al.
(2021), Arena-Independent

Finite-Memory Determinacy in

Stochastic Games

games.

The one-to-two-player lift we obtained [BORV21a, Theorem 4.1] is very
close to Theorem 4.4.4, and can only be applied to strategies without ran-
domization: if both players have optimal strategies without randomization

based on a fixed memory structureM in their respective finite one-player
stochastic arenas, then the same holds in finite two-player stochastic arenas.
Note that a finite one-player stochastic arena is frequently called a Markov

decision process in the literature.

Technically, we combine insights from this chapter (induction on the set
of product arenas) and from an alternative proof for a one-to-two-player
lift for memoryless strategies in stochastic games from an unpublished
article by Gimbert and Zielonka [GZ09]. This alternative proof is more [GZ09]: Gimbert et al. (2009),

Pure and Stationary Optimal

Strategies in Perfect-Information

Stochastic Games with Global

Preferences

direct than the one we use here to obtain the lift, but does not provide
an equivalence through notions such asM-monotony andM-selectivity.
It also allows for a finer quantification on the classes of arenas and of
strategies that can be considered; the proof for deterministic arenas is
actually a special case.

We finally discuss here the role of randomization in the strategies. In deter-
ministic games, for reasonable (read Borel) and determined games [Mar75], [Mar75]: Martin (1975), Borel

determinacyone of the players has a (surely) winning strategy with no randomization;
in some way, randomization is not needed to win in deterministic games.
This result carries over to some extent in stochastic games [Mar98]: if [Mar98]: Martin (1998), The

Determinacy of Blackwell Games

4 Characterization of arena-independent finite-memory determinacy 98

the objective consists in maximizing the expected value of a real payoff
function �$ → ℝ, then players have &-optimal strategies with no random-
ization (see [CMJ04, Lemma 10] and [CDGH10, Theorem 4]). Still, we are [CMJ04]: Chatterjee et al.

(2004), On Nash Equilibria in

Stochastic Games

[CDGH10]: Chatterjee et al.
(2010), Randomness for Free

not considering here memory requirements: even if no randomization is
needed to play optimally, can randomization help decrease memory usage?
The answer is yes, and a well-understood case is the one ofMuller condi-

tions [CdH04; Hor09]. Trade-offs between memory and randomization [CdH04]: Chatterjee et al.
(2004), Trading Memory for

Randomness

[Hor09]:Horn (2009),Random
Fruits on the Zielonka Tree

have also been investigated in other contexts [CRR14; MPR20]. There is

[CRR14]: Chatterjee et al.
(2014), Strategy synthesis for

multi-dimensional quantitative

objectives

[MPR20]: Monmege et al.
(2020), Reaching Your Goal Op-

timally by Playing at Random

with No Memory

therefore a separate direction of study — to which this thesis gives no
answer — in trying to understand memory requirements while allowing
for some kind of randomization in the strategies.

4.8.2 Generalization to mildly growing memory

In [Koz22b], Kozachinskiy looks at the same model of zero-sum determin-

[Koz22b]: Kozachinskiy
(2022), One-To-Two-Player

Lifting for Mildly Growing

Memory

istic games as in this chapter, and he extends the one-to-two-player lift
from this chapter (Theorem 4.4.4) to a class of strategies beyond arena-
independent ones, venturing into the lands of (non-arena-independent)
finite-memory determinacy.

For our one-to-two-player lift, we required that the amount of memory
necessary to play optimally in finite one-player arenas is “constant” in
the sense that no matter the size of the finite one-player arena that we
consider, there is a fixed memory structure — the size of which does
not depend on the arena — that suffices to play optimally. Kozachinskiy
relaxes this constraint and allows the size of the memory structures to
“grow mildly” with respect to the size of the one-player arenas.

Let v be a preference relation. Kozachinskiy studies how the size of a
sufficient memory structure grows as a function of the size of the one-
player arenas. Let 5 : ℕ \ {0} → ℕ \ {0} be a function such that for = ≥ 1,
there is a chromatic memory structureM with 5 (=) states that suffices to
play optimally for each player in their respective one-player arenas with
at most = vertices. It turns out that when 5 is sublinear (it suffices that
lim inf=

5 (=)
= = 0), then v is finite-memory determined over finite arenas.

Moreover, an upper bound on the memory in finite two-player arenas of a
given size can be computed as a function of 5 . In practice, if 5 = O(=)
with 0 < < 1, then the amount of memory required to play optimally in
finite two-player arenas with = vertices is a function inO(=

1−). The proof
scheme uses the same technique as [GZ09; BORV21a] discussed above, [GZ09]: Gimbert et al. (2009),

Pure and Stationary Optimal

Strategies in Perfect-Information

Stochastic Games with Global

Preferences

[BORV21a]: Bouyer et al.
(2021), Arena-Independent

Finite-Memory Determinacy in

Stochastic Games

but pushes it to its limits by making finer observations on the size of all
the objects that are manipulated.

Let us compare this result to ours. In the arena-independent case, 5 can
be taken as ultimately constant, so we naturally have that lim inf=

5 (=)
= = 0,

and our result is obtained as a special case.We discussed a counterexample
to a general one-to-two-player lift for finite-memory determinacy in
Subsection 3.1.2. How to analyze this objective in light of this stronger

4 Characterization of arena-independent finite-memory determinacy 99

one-to-two-player lift? Clearly, it cannot satisfy the hypothesis of this lift,
as it is not finite-memory-determined over finite two-player arenas: the
number of states necessary for the memory in one-player arenas cannot
be sublinear. On the other hand, Kozachinskiy gave an upper bound: he
shows that to play optimally in one-player arenaswith = ≥ 1 vertices, there
is a memory structure with 2= + 2 memory states that suffices. Hence,
we cannot hope to have a general one-to-two-player lift for objectives
with memory requirements that already grow linearly in finite one-player
arenas — we cannot generalize the stronger lift of Kozachinskiy to a class
of strategies growing faster than sublinearly.

As far as we know (and as Kozachinskiy knows, as is claimed in his paper),
there was no natural example of preference relation from the literature
that fits this sublinear hypothesis without also being arena-independent.
Kozachinskiy builds one such example to illustrate the applicability of
his result [Koz22b, Theorem 5]. We do not define it formally here but [Koz22b]: Kozachinskiy

(2022), One-To-Two-Player

Lifting for Mildly Growing

Memory

discuss it at a high level. This example (actually, a qualitative objective) is
defined on � = {0, 1} and includes all infinite words with a finite factor
01C0 for C in some fixed set) ⊆ ℕ. The trick is to take an infinite set) with
sufficiently spread out elements (Kozachinskiy takes) = {24: ⊆ : ∈ ℕ}).
This way, if C: < C:+1 are two consecutive elements in), for a one-player
arenas with =: vertices such that =: is significantly greater than C: but
smaller than C:+1, if a player can win, this player can win by counting
only up to C: (thus with a memory structure with about C: states). By
carefully choosing =: , we then have that lim:

5 (=:)
=:

= lim:
C:
=:
= 0, thus

lim inf=
5 (=)
= = 0. By Kozachinskiy’s lift, this suffices to show that this

objective is finite-memory determined over finite two-player arenas, which
was not possible with our result.

Yet, this stronger lift is not an exact frontier of finite-memory determinacy.
For instance, the memory requirements of multi-energy games are at least
linear in the size of the finite one-player arenas, but are still finite in
finite two-player arenas [VCD+15; CRR14; JLS15]. This cannot be explained [VCD+15]: Velner et al. (2015),

The complexity of multi-mean-

payoff and multi-energy games

[CRR14]: Chatterjee et al.
(2014), Strategy synthesis for

multi-dimensional quantitative

objectives

[JLS15]: Jurdziński et al.
(2015), Fixed-Dimensional En-

ergy Games are in Pseudo-

Polynomial Time

through the stronger lift of Kozachinskiy, as the sublinear hypothesis on
the memory of one-player arenas is not satisfied. The quest for a complete
understanding of (non-arena-independent) finite-memory determinacy
over games played on finite graphs is still ongoing.

Characterization of $-regularity

through finite-memory determinacy 5

Finite-memory determinacy of $-regular objectives [BL69; GH82; McN93] [BL69]: Büchi et al. (1969),
Definability in the Monadic

Second-Order Theory of

Successor

[GH82]: Gurevich et al.
(1982), Trees, Automata, and

Games

[McN93]: McNaughton
(1993), Infinite Games Played

on Finite Graphs

is a landmark result stating that, in two-player zero-sum turn-based games,
finite-memory strategies suffice for both players when the objective is
$-regular (even for games played on graphs of arbitrary cardinality). We
refer to Section 1.3 for the significance of this result. We show a reciprocal
of that statement: given an objective, when both players can play optimally
with a chromatic finite memory structure (i.e., whose updates can only
observe colors) in all infinite game graphs, then this objective must be
$-regular. This provides a game-theoretic characterization of $-regular
objectives, and this characterization helps obtain memory bounds and
automatic representations of these objectives. This result generalizes the
work of Colcombet and Niwiński [CN06] discussed in Section 3.2. [CN06]: Colcombet et al.

(2006), On the positional deter-

minacy of edge-labeled gamesMoreover, a by-product of our characterization is a new one-to-two-player

lift, dealing with another class of game graphs than the one in Chapter 4:
to show that chromatic finite-memory structures suffice to play optimally
in two-player games on infinite graphs, it suffices to show it in the simpler
case of one-player games on infinite graphs. We illustrate our results with
the family of discounted-sum objectives, for which $-regularity depends
on the value of some parameters.

The contributions from this chapter are based on joint work with Patri-
cia Bouyer (Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF) and
Mickael Randour (F.R.S.-FNRS & Université de Mons) published in two
papers: a conference version in the proceedings of STACS’22 [BRV22a], [BRV22a]: Bouyer et al.

(2022), Characterizing Omega-

Regularity Through Finite-

Memory Determinacy of Games

on Infinite Graphs

and a more extensive journal version in TheoretiCS [BRV23].

[BRV23]: Bouyer et al.
(2023), Characterizing

Omega-Regularity Through

Finite-Memory Determinacy of

Games on Infinite Graphs

5.1 Introduction . 101

5.2 Preliminaries: manipulating memory structures 102

5.3 Concepts . 103

5.4 Characterization . 107

5.5 Two properties of chromatic finite-memory determinacy 112

5.6 From properties of an objective to $-regularity 117

5.6.1 Simplified notations . 117
5.6.2 Proof ideas . 117
5.6.3 Combining cycles on the same memory state 119
5.6.4 Combining cycles on different memory states 122
5.6.5 Competing cycles . 125
5.6.6 Preorder on cycles . 127
5.6.7 Parity automaton on top ofM . 133
5.7 Applications . 138

5.7.1 Discounted sum . 138
5.7.2 Missing proofs for the discounted sum application 142
5.7.3 Other objectives . 145
5.8 Wrap-up . 147

5 Characterization of $-regularity through finite-memory determinacy 101

5.1 Introduction

Right congruence. We recall a notion defined in Section 2.8 that becomes
central in this chapter: a well-known tool to study a language ! of finite
(resp. infinite) words is its right congruence relation ∼!: for two finite words
F1 and F2, we write F1 ∼! F2 if for all finite (resp. infinite) words
F, F1F ∈ ! if and only if F2F ∈ !. There is a natural deterministic
(potentially infinite) automaton recognizing the equivalence classes for
the right congruence, called the prefix classifier of ! [Sta83; MS97]. [Sta83]: Staiger (1983), Finite-

State $-Languages

[MS97]: Maler et al. (1997),
On Syntactic Congruences for

Omega-Languages

The relation between a regular language of finite words and its right
congruence is given by the Myhill-Nerode theorem [Ner58], which pro-

[Ner58]: Nerode (1958), Linear
Automaton Transformations

vides a natural bĳection between the states of the minimal deterministic
automaton recognizing a regular language and the equivalence classes for
its right congruence relation. Consequences of this theorem are that (8) a
language is regular if and only if its right congruence has finitely many
equivalence classes, and (88) a regular language can be recognized by a
deterministic finite automaton built on top of its prefix classifier.

For the theory of languages of infinite words, the situation is not so
simple: $-regular languages have a right congruence with finitely many
equivalence classes (Lemma 2.8.8), but having finitely many equivalence
classes does not guarantee $-regularity (for example, a language is prefix-
independent if and only if its right congruence has exactly one equivalence
class, but this does not imply$-regularity).Moreover,$-regular languages
cannot necessarily be recognized by adding a natural acceptance condition
(Büchi, parity, Rabin, Muller. . .) to their prefix classifier [AF21]. There [AF21]: Angluin et al. (2021),

Regular $-languages with an

informative right congruence

has been multiple works about the links between a language of infinite
words and its prefix classifier; one relevant question, linked to our results,
is to understand when a language can be recognized by this prefix
classifier [Sta83; MS97; AFS20; BL21; AF21]. [AFS20]: Angluin et al. (2020),

Polynomial Identification of $-
Automata

[BL21]: Bohn et al. (2021),
Constructing Deterministic $-
Automata from Examples by an

Extension of the RPNI Algo-

rithm

Contributions. We characterize the$-regularity of a language of infinite
words, through the strategy complexity of the zero-sum turn-based
games on infinite graphs with objective, : the $-regular languages are ex-
actly the chromatic-finite-memory-determined objectives (Theorem 5.4.3).
As discussed earlier (Theorem 2.7.11), it is well-known that $-regular lan-
guages admit chromatic-finite-memory optimal strategies [GH82; Mos84;
Zie98] — our results yield the other implication. This therefore provides [GH82]: Gurevich et al. (1982),

Trees, Automata, and Games

[Mos84]: Mostowski (1984),
Regular expressions for infinite

trees and a standard form of au-

tomata

[Zie98]: Zielonka (1998), Infi-
nite Games on Finitely Coloured

Graphs with Applications to Au-

tomata on Infinite Trees

a characterization of $-regular languages through a game-theoretic and
strategic lens.

In this chapter, we talk about chromatic finite-memory determinacy, but we
recall that for games played on infinite arenas, it is equivalent to arena-
independent finite-memory determinacy (Proposition 2.6.14), as used in
the previous chapter.

5 Characterization of $-regularity through finite-memory determinacy 102

Our technical arguments consist in providing a precise connection between
the representation of, as a parity automaton and a chromatic memory
structure sufficient to play optimally. If strategies based on a chromatic
finite-memory structure are sufficient to play optimally for both players,
then, is recognized by a parity automaton built on top of the direct prod-
uct of the prefix classifier and this chromatic memory structure (Theorem 5.4.1).
As sketched in Section 3.2, this result generalizes the work of Colcombet
and Niwiński [CN06] in two ways: by relaxing the prefix-independence [CN06]: Colcombet et al.

(2006), On the positional deter-

minacy of edge-labeled games

assumption about the objective, and by generalizing the class of strategies
considered from memoryless to chromatic-finite-memory strategies. We
recover their result as a special case.

Moreover, we actually show that chromatic finite-memory determinacy
over the one-player games of both players is sufficient to show $-regularity
of a language. As $-regular languages are chromatic-finite-memory-
determined over two-player games, we can reduce the problem of chro-
matic finite-memory determinacy of an objective in two-player games to
the easier chromatic finite-memory determinacy over one-player games
(Theorem 5.4.4). We therefore recover a result orthogonal to the main
result of Chapter 4 (Theorem 4.4.4) — this time for games played on
graphs of arbitrary cardinality — through a different proof technique.
By comparison, the proofs of one-to-two-player lifts in finite arenas rely
on an edge-induction technique (also used in other works about strategy
complexity in finite arenas [Kop06; GK14; CD16]) that appears unfit to [Kop06]: Kopczyński (2006),

Half-Positional Determinacy of

Infinite Games

[GK14]: Gimbert et al. (2014),
Submixing and Shift-Invariant

Stochastic Games

[CD16]: Chatterjee et al.
(2016), Perfect-Information

Stochastic Games with

Generalized Mean-Payoff

Objectives

deal with infinite arenas.

Chapter structure. We start with extra notations used to manipulate
memory structures more precisely (Section 5.2). We define notions at
the core of our characterization in Section 5.3. Our main results are then
discussed in Section 5.4, and their proofs lie in Sections 5.5 and 5.6. We
provide an extensive application of our results to discounted-sum objec-
tives, and a brief application to mean-payoff and total-payoff objectives in
Section 5.7.

5.2 Preliminaries: manipulating memory structures

LetM = (", <init , upd) be a memory structure. We introduce extra nota-
tions to manipulate memory structures and their transitions throughout
this chapter.

We say that a non-empty sequence � = (<0 , 21) . . . (<:−1 , 2:) ∈ (" × �)+
is a path ofM (from <0 to upd(<:−1 , 2:)) if for all 8 such that 1 ≤ 8 ≤ : − 1,
<8 = upd(<8−1 , 28). For convenience, we also consider every element
(<, _) for < ∈ " and _ ∉ � to be an empty path of M (from < to <). A Empty paths of M are akin

to empty arena histories �E
for arenas, and are also in-
troduced for technical conve-
nience.

non-empty path ofM from< to<′ is a cycle ofM (on<) if< = <′. When

5 Characterization of $-regularity through finite-memory determinacy 103

we want to emphasize that we work with cycles and not just paths, we
usually use letter ! instead of �.

For � = (<0 , 21) . . . (<:−1 , 2:) a path of M, we define st(�) to be the
set {<0 , . . . , <:−1}, and col∗(�) to be the sequence 21 . . . 2: ∈ �∗. For
an infinite sequence (<0 , 21)(<1 , 22) . . . ∈ (" × �)$, we also define
col$((<0 , 21)(<1 , 22) . . .) to be the infinite sequence 2122 . . . ∈ �$. If
(<, 2) ∈ " × � occurs in a path � of M, we call (<, 2) a transition

of � and we write abusively (<, 2) ∈ �.
For <, <′ ∈ ", we write Π<,<′ for the set of paths of M from < to <′,
Φ< for the set of cycles of M on <, and ΦM for the set of all cycles of
M (on any memory state). We extend in a natural way notation col∗ to
sets of paths or cycles of M to consider their projections to colors (e.g.,
col∗(ΦM) = {col∗(!) ∈ �+ | ! ∈ ΦM}). In particular, col∗(Π<1 ,<2) is

corresponds to the previously
defined !<1 ,<2 .For F = 2122 . . . ∈ �$, we define the run of M on F as the infinite

sequence
(<0 , 21)(<1 , 22) . . . ∈ (" × �)$

that F induces in the memory structure (<0 = <init and for all 8 ≥ 1,
<8 = upd(<8−1 , 28)).

5.3 Concepts

We define two concepts at the core of our characterization. Just like for
M-monotony and M-selectivity in Chapter 4, one of them deals with
prefixes and the other one deals with cycles. Let, ⊆ �$ be an objective
andM = (", <init , upd) be a memory structure.

Generalizing prefix-independence. We start by defining a natural gen-
eralization of prefix-independence to “prefix-independence modulo a
memory structure”. Let ∼ be the right congruence of, .

Definition 5.3.1 (M-prefix-independence) Objective , is M-prefix-
independent if for all < ∈ ", for all F1 , F2 ∈ col∗(Π<init ,<), F1 ∼ F2.

In other words,, isM-prefix-independent if finite words reaching the
same state ofM from its initial state have the same winning continuations.
The classical notion of prefix-independence is equivalent to Mtriv-prefix-
independence (as all finite words have the exact same set of winning
continuations, which is ,). If ∼ has a finite index, , is in particular
S, -prefix-independent: indeed, two finite words reach the same state We recall that S, is the pre-

fix classifier of , , defined in
Definition 2.8.11 on page 44.

of S, (if and) only if they are equivalent for ∼. Any memory structure
M such that, isM-prefix-independent must have at least one state for
each equivalence class for ∼ (and thus must be at least as large as S,), but
multiple states may partition the same equivalence class.

5 Characterization of $-regularity through finite-memory determinacy 104

<1 <2

1

0, 2

0

1, 2

Figure 5.1: Memory struc-
tureM s.t.Büchi(0)∩Büchi(1)
isM-cycle-consistent (Exam-
ple 5.3.4).

Remark 5.3.2 TheM-prefix-independence notion is stronger thanM-
monotony The M-monotony property

was defined inDefinition 4.3.1
on page 67.

andM-strong-monotony: we do not just require that finite
words reaching the same memory state are comparable in some way
w.r.t. their winning continuations (see Subsection 4.3.2), but that they
have the exact same winning continuations. This stronger notion will
be more suited to deal with games played on infinite arenas.

Cycle-consistency. We move on to our property dealing with cycles: we
want to express the property that combining infinitely many “winning
cycles” results in a winning word, and similarly for losing cycles and
losing words. For F ∈ �∗, we define

Φwin,F
M = {! ∈ Φ< | < = ∗upd(<init , F) and (col∗(!))$ ∈ F−1,}

as the cycles on the memory state reached by F inM that induce winning
words when repeated infinitely many times after F. We define

Φlose,F
M = {! ∈ Φ< | < = ∗upd(<init , F) and (col∗(!))$ ∈ F−1,}

as their losing counterparts. We emphasize that cycles are not simple and
are allowed to go through the same state or transition multiple times.

Definition 5.3.3 (M-cycle-consistency) Objective , is M-cycle-
consistent if for allF ∈ �∗, (col∗(Φwin,F

M))$ ⊆ F−1, and (col∗(Φlose,F
M))$ ⊆

F−1, .

What this says is that after any finite word, if we concatenate infinitely
many winning (resp. losing) cycles on the memory state reached by that
word, then it only produces winning (resp. losing) infinite words.

Example 5.3.4 Let � = {0, 1, 2}. Objective , = Büchi(0) ∩ Büchi(1)
is (Mtriv-)prefix-independent, but not Mtriv-cycle-consistent: for any
F ∈ �∗, 0 and 1 are both in col∗(Φlose,F

Mtriv
) (as F0$ and F1$ are losing),

but word F(01)$ is winning. However, , is M-cycle-consistent for
the memory structure M with two states <1 and <2 represented in
Figure 5.1. For finite words reaching <1, the losing cycles only see 0 and
2, and combining infinitely many of them gives an infinite word without
1, which is a losing continuation of any finite word. The winning cycles
are the ones that go to <2 and then go back to <1, as they must see
both 0 and 1; combining infinitely many of them guarantees a winning
continuation after any finite word. A similar reasoning applies to state
<2. Notice that, is alsoM-prefix-independent.With regard tomemory

5 Characterization of $-regularity through finite-memory determinacy 105

<1 <2
1

0 0, 1
Figure 5.2:Memory structure
M used in Remark 5.3.5.

requirements,Mtriv does not suffice to play optimally for P1 for, , but
M does.

Remark 5.3.5 Just as we compared M-prefix-independence to M-
monotony, wemay inquire about the links betweenM-cycle-consistency
andM-selectivity. The M-selectivity property

was defined in Defini-
tion 4.3.4 on page 69.

It is natural thatM-selectivity does not imply the seemingly strongerM-
cycle-consistency,whichmay compare cycles in a less structuredway. For
instance, with � = ℚ, the mean-payoff objective MP≥0 isMtriv-selective,
which follows from Proposition 4.5.2 and its memoryless determinacy
over finite arenas (Example 3.1.2). Yet, it is notMtriv-cycle-consistent: for
all words F in

{0, . . . , 0︸ ︷︷ ︸
= times

,−1 ∈ �+ | = ≥ 0},

we have that F$ is losing (F is in col∗(Φlose,�
Mtriv
)), but there is a way to

combine words in this set to produce a winning word (e.g., the word
−1, 0,−1, 0, 0,−1, . . .).
On the other hand, M-cycle-consistency also does not imply M-
selectivity. One detail ofM-selectivity that puts a constraint not needed
forM-cycle-consistency is that the 3 in the definition ofM-selectivity
does not have to be a set of cycles on a memory state. We provide a
concrete example.
Let � = {0, 1} and, = 01�$. If we consider the memory structure
M in Figure 5.2, then, is M-cycle-consistent: for all finite words F
except for � and 0, either all continuations are winning (if F ∈ 01�∗)
or all continuations are losing. If F is � or 0, then it reaches state
<1 of M, and the only cycles on <1 are in 0+, are losing, and are
losing when infinitely many of them are combined into an infinite
word. But, is not M-selective. Indeed, if we take F = �, 1 = {0},
 2 = ∅, and 3 = 1∗ in the definition of M-selectivity, we have that
[F ∗1] ∪ [F ∗2] ∪ [F 3] = {0$, 1$} does not contain a winning word,
but [F(1 ∪ 2)∗ 3] contains the word 01$.

In proofs, we will often use a weaker implication ofM-cycle-consistency,
which is that a finite combination of winning cycles is still a winning cycle
(i.e., if !, !′ ∈ Φwin,F

M , then !!′ ∈ Φwin,F
M).

Properties of these concepts. Both M-prefix-independence and M-
cycle-consistency hold symmetrically for an objective and its complement,
and are stable by product with an arbitrarymemory structure (as products
generate even smaller sets of prefixes and cycles to consider).

5 Characterization of $-regularity through finite-memory determinacy 106

Lemma 5.3.6 Let, ⊆ �$
be an objective and M be a memory structure.

Objective, isM-prefix-independent (resp.M-cycle-consistent) if and only

if, isM-prefix-independent (resp.M-cycle-consistent). If, isM-prefix-

independent (resp.M-cycle-consistent), then for all memory structuresM′
,

, is (M ⊗M′)-prefix-independent (resp. (M ⊗M′)-cycle-consistent).

Proof. We writeM = (", <init , upd).
We assume that, isM-prefix-independent. Thus, for all < ∈ ", for all
F1 , F2 ∈ col∗(Π<init ,<), F1 ∼ F2, i.e., F−1

1 , = F−1
2 , . This last equality is

equivalent to F−1
1 , = F−1

2 , , which can be rewritten as F−1
1 , = F−1

2 , .
This shows that, isM-prefix-independent.

To show that , is M-cycle-consistent if and only if , is M-cycle-
consistent, notice that the winning cycles for , are exactly the losing
cycles for, , and vice versa.

LetM′ = ("′, <′init , ′upd) be amemory structure.We assume that, isM-
prefix-independent and we show that, is (M⊗M′)-prefix-independent.
The sets of prefixes to consider are smaller inM ⊗M′ than inM: for all
(<, <′) ∈ " ×"′, col∗(Π(<init ,<′init),(<,<′)) ⊆ col∗(Π<init ,<). Therefore, for all
F1 , F2 ∈ col∗(Π(<init ,<′init),(<,<′)), we also have F1 , F2 ∈ col∗(Π<init ,<), so by
M-prefix-independence, F1 ∼ F2.

We now assume that, isM-cycle-consistent andwe show that, is (M⊗
M′)-cycle-consistent. The sets of winning and losing cycles to consider are
smaller inM⊗M′ than inM: for all F ∈ �∗, col∗(Φwin,F

M⊗M′) ⊆ col∗(Φwin,F
M)

and col∗(Φlose,F
M⊗M′) ⊆ col∗(Φlose,F

M). ByM-cycle-consistency, for all F ∈ �∗,
we have (col∗(Φwin,F

M))$ ⊆ F−1, and (col∗(Φlose,F
M))$ ⊆ F−1, , so we also

have (col∗(Φwin,F
M⊗M′))$ ⊆ F−1, and (col∗(Φlose,F

M⊗M′))$ ⊆ F−1, .

An interesting property of languages defined by a parity automaton is
that they satisfy both aforementioned concepts with their underlying
automaton structure.

Lemma 5.3.7 Let P = (S , ?) be a parity automaton and, = L(P) be the
objective recognized by P . Objective, is S-prefix-independent and S-cycle-
consistent.

Remark 5.3.8 Note that in a slight abuse of notations, we allow in
this chapter to use automaton structures (on alphabet �) as memory
structures, as in the statement of the above lemma. We recall that
automaton structures on alphabet � are tuples S = (&, �, @init , �)with
finite &, @init ∈ &, and � : & × � → &, and that memory structures are
tuplesM = (", <init , upd)with finite",<init ∈ ", and upd : "×� →
". They areusually used for different purposes, but this chapterwill blur
the line between both objects and consider both automaton structures

5 Characterization of $-regularity through finite-memory determinacy 107

as memory structures and memory structures as automaton structures.

Proof of Lemma 5.3.7. By definition of the parity acceptance condition, any
two finite words reaching the same state of the underlying structure
have the same winning continuations (Lemma 2.8.7). Therefore, , is
S-prefix-independent.

Also, the winning (resp. losing) cycles of S after any finite word are
exactly the ones that have an even (resp. odd) maximal priority. Therefore,
combining infinitely many winning (resp. losing) cycles can only produce
a winning (resp. losing) infinite word.

5.4 Characterization

We state our main technical result, which will be the main tool to derive
more elegant theoretical results.

Theorem 5.4.1 Let, ⊆ �$
be an objective, ∼ be its right congruence, and

M be a memory structure.

1. If M suffices for both players for, in their respective countable one-

player arenas, then ∼ has a finite index (in particular, S, is well-defined

and, is S, -prefix-independent) and, isM-cycle-consistent.

2. To obtain a memory structure
M′ such that, is both M′-
prefix-independent and M′-
cycle-consistent from the first
item,we can takeM′ = S, ⊗
M by Lemma 5.3.6.

If, is M-prefix-independent and M-cycle-consistent, then, is $-
regular and can be recognized by a deterministic parity automaton built

on top ofM.

We prove the two items of this theorem respectively in Sections 5.5
and 5.6. Before detailing the consequences of this result, we show a few
examples.

Example 5.4.2 Weconsider four objectives, anddiscuss in each case their
prefix classifier and a minimal memory structure (w.r.t. the number of
states) sufficient to play optimally for both players. They are represented
in Figure 5.3.

I Let ,1 be a parity condition (� = {0, . . . , =}). It is prefix-
independent (S,1 =Mtriv) and memoryless-determined (Mtriv is
aminimalmemory structure). By Theorem 5.4.1,,1 isMtriv-prefix-
independent andMtriv-cycle-consistent. Just from these last two
facts, we obtain that,1 has to be recognizable by a parity automa-
ton built on top ofMtriv, and therefore has to be a parity condition.
This provides a characterization of parity conditions, and is exactly
Colcombet and Niwiński’s result (see Theorem 3.2.2) [CN06] [CN06]: Colcombet et al.

(2006), On the positional deter-

minacy of edge-labeled games

.
I Let � = {0, 1} and ,2 = 1∗01∗0�$ be the language of infinite

words with at least two occurrences of 0. The prefix classifier S,2

5 Characterization of $-regularity through finite-memory determinacy 108

Objective Prefix classifier S, MemoryM

� = {0, . . . , =},
Parity condition � � ↦→ {0, . . . , =}

� = {0, 1},
,2 = 1∗01∗0�$

1 | 1 1 | 1

� | 20 | 1 0 | 1
�

� = {0, 1},
,3 = �∗(01)$

� 1 | 1 0 | 1
0 | 0

1 | 0
� = ℚ,

,4 = MP≥0 � No finite structure

Figure 5.3: Four objectives (the first three are $-regular), their prefix classifier, a minimal memory structure for each of
them, and a way (in red) to realize the first three as parity automata built on top of these structures. We recall that a
transition of a parity automaton from @ to @′ with label 2 | : means that �(@, 2) = @′ and ?(@, 2) = :.

of this objective has three states that count the occurrences of 0 (0,
1, or ≥ 2), and,2 is memoryless-determined (we do not prove it
here, but it was for instance shown in [BFMM11, Lemma 13] [BFMM11]: Bianco et al. (2011),

Exploring the boundary of half-

positionality

and
it follows easily from the results of the subsequent Chapter 7).
Hence, as properties are stable by product (Lemma 5.3.6), ,2
is both S,2-prefix-independent and S,2-cycle-consistent. Thus,
Theorem 5.4.1 tells us that ,2 can be recognized by a parity
automaton built on top of S,2 by carefully labeling its transitions
with adequate priorities, which we do in Figure 5.3.

I Let� = {0, 1} and,3 = �∗(01)$ be the language ofwords ending
with (01)$. This objective is prefix-independent (S,3 =Mtriv) and
a memory structureM with two states suffices to play optimally
for both players (we simply need to know whether 0 or 1 was just
seen). Repeating the arguments above, objective,3 isM-prefix-
independent andM-cycle-consistent, so it admits a representation
using a parity automaton built on top of M. We depict such a
representation in Figure 5.3.

I Let � = ℚ and,4 = MP≥0. This objective is prefix-independent
(S,4 = Mtriv). As,4 is not $-regular, it has no hope to admit a
sufficient finite memory structure, as Theorem 5.4.1 would then
imply that MP≥0 is recognizable by a parity automaton built on
top of that structure. There is therefore no sufficient finite memory
structure, which we already knew by exhibiting an infinite arena
requiring infinite memory in Example 3.2.1.

Notice that in all of these examples, for simplicity, at least one structure
among the prefix classifier and the minimal memory structure is trivial.

5 Characterization of $-regularity through finite-memory determinacy 109

In more complicated examples, both structures may be non-trivial. One
such example can be generated from the examples above: consider
objective,2 ∪,3 on colors {0, 1, 2, 3} after renaming the colors used
to define,3 to 2 and 3.

Echoing Remark 2.7.5, observe that Theorem 5.4.1 would not be true
if we considered automata with acceptance conditions defined on the
automaton states (rather than transitions, as we do here). For instance,
,3 in the example above needs three states to be represented as a state-
based DPA, so the product of the prefix classifier and a memory structure A state-based DPA with three

states recognizing,3 is

1

0 0 .

1 0
1 0
0

1

would not suffice. It is likely that Theorem 5.4.1 can be rephrased using
state-based DPAs, but this would require an additional (and less elegant)
blow-up in the state space.

We now discuss multiple consequences of Theorem 5.4.1 advertised in the
introduction, including notably a strategic characterization of $-regular
languages and a novel one-to-two-player-lift.

Characterizing $-regularity. The first one is a characterization of $-
regularity through a strategic property.

Theorem 5.4.3 (Strategic characterization of $-regularity) We considered the syn-
tactically stronger arena-

independent finite-memory
determinacy in the previous
chapter (about games
played on finite arenas), but
we recall that chromatic
and arena-independent
finite-memory determinacy
coincide for games played
on infinite arenas (Proposi-
tion 2.6.14). In this chapter,
we prefer the use of chromatic

finite-memory determinacy
in our statements.

Let, ⊆ �$

be a language of infinite words. Language, is $-regular if and only if it is

chromatic-finite-memory-determined (over arenas of arbitrary cardinality).

Proof. One implication is well-known (and was already stated in Theo-
rem 2.7.11): if, is $-regular, then it can be recognized by a deterministic
parity automaton whose underlying structure can be used as a memory
that suffices to play optimally for both players, in arenas of any cardinality
(see Theorem 2.7.11 [Mos84; EJ91; Mos91; Zie98]

[Mos84]: Mostowski (1984),
Regular expressions for infinite

trees and a standard form of au-

tomata

[EJ91]: Emerson et al. (1991),
Tree Automata, Mu-Calculus

and Determinacy (Extended Ab-

stract)

[Mos91]: Mostowski (1991),
Games with Forbidden Positions

[Zie98]: Zielonka (1998), Infi-
nite Games on Finitely Coloured

Graphs with Applications to Au-

tomata on Infinite Trees

). For the other direction,
if, is chromatic-finite-memory-determined, then there exists a memory
structure M such that M suffices to play optimally for both players for
, . In particular,M suffices for both players in their countable one-player
arenas, so by Theorem 5.4.1 (first item), ∼ has a finite index and , is
M-cycle-consistent. In particular, by Lemma 5.3.6,, is (S, ⊗M)-prefix-
independent and (S, ⊗M)-cycle-consistent, so by Theorem 5.4.1 (second
item), , is $-regular and can be recognized by a deterministic parity
automaton built on top of S, ⊗M.

One-to-two-player lift. The second one is a novel one-to-two-player lift,
orthogonal to the one in Chapter 4.

Theorem 5.4.4 (One-to-two-player lift, infinite arenas) Let, ⊆ �$
be an

objective. If a memory structureM suffices to play optimally for both players

in their respective one-player arenas, then S, ⊗M suffices to play optimally

5 Characterization of $-regularity through finite-memory determinacy 110

for both players (in all arenas).

Proof. By Theorem 5.4.1: if M suffices in one-player arenas, then ∼ has
a finite index and, is M-cycle-consistent. Again by Lemma 5.3.6 and
Theorem 5.4.1, as, can be recognized by a parity automaton built on top
of S, ⊗M,, is determined and strategies based on S, ⊗M suffice to
play optimally in all two-player arenas.

We observe that this one-to-two-player lift is less “tight” than the one for
finite arenas (Chapter 4, Theorem 4.4.4). Indeed, there is a small blow-up of
size S, when going from memory requirements of an objective, in one-
player arenas to memory requirements in two-player arenas. This blow-up
is necessary for our proof technique, as we go through the representation
of an objective using a DPA, and taking the product with S, is necessary
for this purpose in general (see for instance objective,2 = 1∗01∗0�$ in
Example 5.4.2). However, if we ignore the representation of the objective
as a DPA and we speak solely about memory requirements, we do not
know whether this blow-up is necessary. This suggests the following
conjecture.

Conjecture 5.4.5 (Tight one-to-two-player lift, infinite arenas) Let, ⊆
�$

be an $-regular objective. If a memory structure M suffices to play

optimally for both players in their respective one-player arenas, thenM suffices

to play optimally for both players (in all arenas).

Throughout the rest of the thesis, we will see two specific classes of
$-regular objectives in which this conjecture is shown to hold: the case
of regular objectives (Chapter 7) and, for memoryless strategies, the case
of objectives recognizable by deterministic Büchi automata (Chapter 8). Actually, an even stronger ver-

sion of this lift holds for these
two examples, inwhichwedo
not have to combine the mem-
ory structures of both players.

The proofs are very different from the techniques in this chapter and are
by-products of precise characterizations of the memory requirements for
these objectives.

One third class of objectives in which the conjecture holds, which is easily
derived from results in this chapter, is the one of prefix-independent
objectives. If an objective , is prefix-independent (i.e., ∼ has index 1
and S, = Mtriv), and memory structure M suffices to play optimally
in one-player games, then, is recognized by a parity automaton built
on top of Mtriv ⊗M, which is isomorphic to M. This implies that the
exact same memory M can be used by both players to play optimally
in two-player arenas, with no increase in memory. Conjecture 5.4.5 is
automatically proved for prefix-independent objectives.

If, additionally,M =Mtriv (i.e., memoryless strategies suffice to play opti-
mally in one-player arenas), we recover exactly the result from Colcombet
and Niwiński [CN06]:, can be recognized by a parity automaton built [CN06]: Colcombet et al.

(2006), On the positional deter-

minacy of edge-labeled games

on top of Mtriv, so we can directly assign a priority to each color with a

5 Characterization of $-regularity through finite-memory determinacy 111

function ? : � → {0, . . . , =} such that an infinite word F = 2122 . . . ∈ �$

is in, if and only if lim sup8→∞ ?(28) is even.

Recognizabilityby theprefix classifier. An interestingproperty of some
$-regular languages is that they can be recognized by building an acceptance

condition on top of their prefix classifier [Sta83; MS97]

[Sta83]: Staiger (1983), Finite-
State $-Languages

[MS97]: Maler et al. (1997),
On Syntactic Congruences for

Omega-Languages

, which is a helpful This property is often called
having an informative right con-

gruence in the literature.
property for the learning of languages [MP95; AFS20; BL21; AF21]. Here,

[MP95]: Maler et al. (1995),
On the Learnability of Infinitary

Regular Sets

[AFS20]: Angluin et al. (2020),
Polynomial Identification of $-
Automata

[BL21]: Bohn et al. (2021),
Constructing Deterministic $-
Automata from Examples by an

Extension of the RPNI Algo-

rithm

[AF21]: Angluin et al. (2021),
Regular $-languages with an in-

formative right congruence

for the parity acceptance condition, we have a strategic characterization of
this property: Theorem 5.4.1 entails that, can be recognized by building
a (transition-based) DPA on top of the prefix classifier S, if and only if
S, suffices to play optimally for both players for, (and, more precisely,
if and only if, is S, -cycle-consistent). Existing works trying to find the
boundaries of languages recognizable by their prefix classifier consider
multiple acceptance conditions [Sta83; MS97; AFS20; AF21], but not the
“transition-based parity” one, so our result is not directly comparable to
theirs.

Corollary 5.4.6 Let, ⊆ �$
be an $-regular objective and S, be its prefix

classifier. The following are equivalent:

1. , is recognized by a DPA built on top of S, ;

2. S, suffices to play optimally for both players;

3. , is S, -cycle-consistent.

Proof. Implication 1. =⇒ 2. follows from the memoryless determinacy of
parity games (Theorem 2.6.3 [EJ91; Mos91]). Implication 2. =⇒ 3. follows [EJ91]: Emerson et al. (1991),

Tree Automata, Mu-Calculus

and Determinacy (Extended Ab-

stract)

[Mos91]: Mostowski (1991),
Games with Forbidden Positions

from the first item of Theorem 5.4.1. Implication 3. =⇒ 1. follows from the
second item of Theorem 5.4.1: we have by definition that, is S, -prefix-
independent, so if it is additionally S, -cycle-consistent, then, can be
recognized by a parity automaton built on top of S, .

From countable to arbitrary arenas. There is one specificity of Theo-
rem 5.4.1 that we have not exploited yet: a hypothesis about countable
(one-player) arenas suffices to obtain the result. This implies the follow-
ing.

Corollary 5.4.7 (Countable-to-arbitrary lift) Let, ⊆ �$
be an objective.

Objective , is chromatic-finite-memory-determined over countable arenas

if and only if it is chromatic-finite-memory-determined (in arenas of any

cardinality).

Proof. If objective, is chromatic-finite-memory-determined over count-
able arenas, there is a memory structureM that suffices to play optimally
in all countable arenas (in particular,M suffices in countable one-player
arenas). By using the two items of Theorem 5.4.1 sequentially, we obtain
as in the above proofs that S, ⊗M suffices to play optimally in all arenas

5 Characterization of $-regularity through finite-memory determinacy 112

(of arbitrary cardinality). In particular, , is chromatic-finite-memory-
determined.

We showed that there was a gap between the memory requirements
in finite and in countable arenas (Example 3.2.1), but chromatic finite-
memory determinacy over countable arenas extends to all arenas of any
cardinality.

Although the setting is different, this contrasts with stochastic games for
which, in some contexts, simple strategies may suffice in countable arenas
but not in uncountable arenas [Orn69]. [Orn69]: Ornstein (1969), On

the Existence of Stationary Opti-

mal Strategies

Classes of arenas. We discuss how much Theorem 5.4.1 depends upon
our model of arenas.

Multiple objectives are chromatic-finite-memory-determined over finite
arenas (finitely many vertices and edges), but are not over infinite are-
nas. A few examples are discounted-sum games [Sha53], mean-payoff [Sha53]: Shapley (1953),

Stochastic Gamesgames [EM79], total-payoff games [GZ04], energy (also called one-counter)
[EM79]: Ehrenfeucht et al.
(1979), Positional Strategies for
Mean Payoff Games

[GZ04]: Gimbert et al. (2004),
When Can You Play Position-

ally?

games [BBE10] which are all memoryless-determined over finite arenas

[BBE10]: Brázdil et al. (2010),
One-Counter Stochastic Games

but require infinite memory to play optimally in some infinite arenas (we
discuss some of these in Section 5.7). In particular, Theorem 5.4.3 tells us
that the derived objectives are not $-regular.

Strangely, the fact that our arenas have colors on edges and not on vertices

is crucial for the result. Indeed, there exists an objective (a generalization
of a parity condition with infinitely many priorities [GW06]) that is [GW06]: Grädel et al. (2006),

Positional Determinacy of

Games with Infinitely Many

Priorities

memoryless-determined over vertex-labeled infinite arenas, but not in
edge-labeled infinite arenas (as we consider here). This particularity was
already discussed [CN06], and it was also shown that the same objective

[CN06]: Colcombet et al.
(2006), On the positional deter-

minacy of edge-labeled games

is memoryless-determined over edge-labeled arenas with finite branching.
Therefore, the fact that we allow infinite branching in our arenas is also
necessary for Theorem 5.4.3. Another example of an objective with finite
memory requirements in finitely branching arenas for one player but
infinite memory requirements in infinitely branching arenas is presented
in [CFH14, Section 4]. [CFH14]: Colcombet et al.

(2014), Playing Safe
In the upcoming Sections 5.5 and 5.6, we prove respectively the first item
and the second item of Theorem 5.4.1.

5.5 Two properties of chromatic finite-memory

determinacy

Let, ⊆ �$ be an objective, ∼ be the right congruence of, , � be the
prefix preorder of, , and M = (", <init , upd) be a memory structure,
fixed for this section. We aim to show the first item of Theorem 5.4.1,
which is that for a memory structureM, the sufficiency ofM in countable

5 Characterization of $-regularity through finite-memory determinacy 113

E

. . .

. . .

F1

F2

F′
1

F′
2

Figure 5.4: Arena built in
the proof of Lemma 5.5.1.
Squiggly arrows indicate a se-
quence of edges.

one-player arenas to play optimally for both players implies that ∼ has a
finite index and that, isM-cycle-consistent.

Finite index of ∼. We will use preorder � to deduce that ∼ has a finite Werecall that forF1 , F2 ∈ �∗,
F1 � F2 if F−1

1 , ⊆ F−1
2 ,

(meaning that any continua-
tion that is winning after F1
is also winning after F2).

index by showing that under hypotheses about the optimality of strategies
based onM in countable one-player arenas, (8) on each subset col∗(Π<init ,<)
of �∗ for < ∈ ", preorder � is total (Lemma 5.5.1) (88) on each subset
col∗(Π<init ,<) of �∗ for < ∈ ", preorder � has no infinite increasing nor
decreasing sequence (Lemma 5.5.2).

Lemma5.5.1 AssumeP1 has optimal strategies based onM on all its countable

one-player arenas. Then, for all < ∈ ", preorder � is total on col∗(Π<init ,<).

Proof. Let < ∈ ". Let F1 , F2 ∈ col∗(Π<init ,<); we show that F1 6� F2
implies F2 � F1. If F1 6� F2, then there exists F′1 ∈ �$ such that F1F′1 ∈
, and F2F′1 ∉, . We show that F2 � F1, i.e., that F−1

2 , ⊆ F−1
1 , . Let

F′2 ∈ F−1
2 , . We build a countable one-player arena of P1, depicted in The construction in this proof

is very similar to the one
of Proposition 4.5.1, except
that we compare finite words
w.r.t. arbitrary continuations
(which requires an infinite
arena in general), and not just
regular ones. We also permit
ourselves to go a bit faster, as
a similar and more complex
construction has already been
fully detailed.

Figure 5.4, that merges the ends of finite chains for F1 and F2 and the
starts of the infinite chains for F′1 and for F′2 in a vertex E.

It is possible to win after seeing F1 or F2, by choosing respectively F′1
or F′2 in the merged vertex E. Moreover, there must be a strategy based
on M that wins from the starts of the chains of both F1 and F2, which
means that in both cases the same choice has to be made in E (as memory
state < is reached in both cases). Continuing to F′1 in E would be losing
after F2, so F′2 must be winning after F1. Therefore, F′2 ∈ F−1

1 , .

Lemma5.5.2 AssumeP1 has optimal strategies based onM in all its countable

one-player arenas. For all < ∈ ", there is no infinite decreasing sequence of

finite words for � in col∗(Π<init ,<).

Proof. Let < ∈ ". Assume by contraposition that there is an infinite
decreasing sequence of finite words F1 � F2 � F3 � . . ., with F8 ∈
col∗(Π<init ,<) for 8 ≥ 1. Then for all 8 ≥ 1, there exists F′8 ∈ �$ such that
F8F′8 ∈ , and F8+1F′8 ∉ , . We create a countable one-player arena of
P1 in which we merge the ends of chains for all F8 to the starts of chains
for all F′8 in a vertex E, for all 8 ≥ 1. This arena looks like the one in
Figure 5.4, but with infinitely many finite words going in E and infinitely
many infinite words going out of E. In this arena, for all 8 ≥ 1, it is possible
to win from the start of the chain for F8 , but there is no strategy based
onM winning from all the starts of the chains simultaneously. Therefore,

5 Characterization of $-regularity through finite-memory determinacy 114

M is not sufficient to play optimally in all countable one-player arenas
of P1.

We will also use this last lemma from the point of view of P2. If consider
preorder �, (i.e., the prefix preorder for P2), we obtain F1 �, F2 if and
only if F2 �, F1 because for any finite word F ∈ �∗, F−1, = F−1, .

We can now combine the results of Lemmas 5.5.1 and 5.5.2 to find that ∼
has a finite index ifM suffices to play optimally in countable one-player
arenas.

Proposition 5.5.3 (Necessity of finite index) If bothP1 andP2 have optimal

strategies based on M in their countable one-player arenas, then the right

congruence ∼ has a finite index.

Proof. Using Lemma 5.5.2 along with the hypothesis about P1, we have
that for all < ∈ ", there are no infinite decreasing sequence of words in
col∗(Π<init ,<) for �. Using the same result replacing P1 with P2, we obtain
that there is no infinite decreasing sequence for �, , or in other words, that
there is no infinite increasing sequence for �. For < ∈ ", as � is total in
col∗(Π<init ,<) (Lemma 5.5.1), we conclude that there are only finitely many
equivalence classes for ∼ in col∗(Π<init ,<). As " is finite, there are only
finitely many equivalence classes for ∼ in

⋃
<∈" col∗(Π<init ,<) = �∗.

Under the existence of a memory structure sufficient to play optimally for
, in countable one-player arenas, we can therefore consider the prefix
classifier S, of, .

Remark 5.5.4 As in Chapter 4 for the close M-monotony notion, we
used the existence of uniformlywinning strategies in one-player arenas in
order to prove the above lemmas. As discussed in Section 4.7, we could
modify this hypothesis to the existence of (non-necessarily uniformly)
winning strategies in two-player arenas and obtain the same results, if
there exists a non-empty word F� with the same continuations as the
empty word.
Exactly as in Lemma 4.7.1, we could show that uniformity is for free for
chromatic finite-memory determinacy over infinite arenas, under the
existence of such a word F�.

M-cycle-consistency of , . We now prove in a straightforward way
that the sufficiency ofM in countable one-player arenas impliesM-cycle-
consistency of, .

Proposition 5.5.5 (Necessity ofM-cycle-consistency) If both P1 and P2
have optimal strategies based onM in their countable one-player arenas, then

objective, isM-cycle-consistent.

5 Characterization of $-regularity through finite-memory determinacy 115

E1 E2
F

F1 , F2 , . . .

Figure 5.5: Infinite one-player
arena of P2 used in the
proof of Proposition 5.5.5.
The thick squiggly arrow in-
dicates a choice between se-
quences of edges for anyword
in {F1 , F2 , . . .}.

Proof. Let F ∈ �∗ and < = ∗upd(<init , F). We show that (col∗(Φwin,F
M))$ ⊆

F−1, . If col∗(Φwin,F
M) is empty, this is true. If not, let F1 , F2 , . . . be an

infinite sequence of finite words in col∗(Φwin,F
M)—we show that the infinite

word F1F2 . . . is in F−1, . We consider the countable one-player arena
of P2 depicted in Figure 5.5: it starts with a chain for F from a vertex E1
to a vertex E2, and E2 offers a choice among cycles for each finite word in
{F1 , F2 , . . .}. In this arena, P2 has no winning strategy based onM from
E1, since the samememory state< is always reached in E2 (hence the same
choice must always be made in E2), and repeating any cycle in col∗(Φwin,F

M)
forever after F is winning for P1 by definition of col∗(Φwin,F

M). Therefore,
P2 also has no winning strategy at all, which means in particular that
the infinite word F1F2 . . .must be a winning continuation of F. Hence,
F1F2 . . . is in F−1, . We get that (col∗(Φwin,F

M))$ ⊆ F−1, .

Using a similar one-player arena of P1, we can show in a symmetric way
that (col∗(Φlose,F

M))$ ⊆ F−1, for all F ∈ �∗.

The reciprocal of this result is false, as shown in the following example.

Example 5.5.6 We discuss again the objective from Remark 5.3.5: let
� = {0, 1} and, = 01�$. We consider the same memory structureM
in Figure 5.6 (left); we already argued that, isM-cycle-consistent. Yet,
this structure does not suffice to play optimally in arena A in Figure 5.6
(center), as seeing 0 does not change the memory state.
Notice that the prefix classifier S, , in Figure 5.6 (right), has four states
(corresponding to equivalence classes [�]∼, [0]∼, [01]∼, and [1]∼) and
suffices to play optimally.

Remark 5.5.7 As discussed in Section 5.4, Theorem 5.4.1 does not hold if
we assume chromatic finite-memory determinacy over arenas in which
vertices rather than edges are labeled with colors. Proposition 5.5.5 is
an example of a step in the proof of Theorem 5.4.1 that would not work

<1 <2
1

0 0, 1 0 1 [�]∼

[0]∼ [01]∼

[1]∼

0

1

1

0, 1

0, 1

Figure 5.6:Memory structureM (left), arenaA (center), and prefix classifier S, (right) used in Example 5.5.6.

5 Characterization of $-regularity through finite-memory determinacy 116

with vertex-labeled arenas: the construction in Figure 5.5 is not possible
(there would have to be a color labeling E2 seen at the start of every
cycle, but words F8 cannot all start with the same color in general).
There is an objective that is memoryless-determined over vertex-labeled
arenas [GW06] [GW06]: Grädel et al. (2006),

Positional Determinacy of

Games with Infinitely Many

Priorities

for which it is straightforward to show that it is not
Mtriv-cycle-consistent.
The construction would however be possible for objectives admitting a
so-called neutral color, i.e., a color that can be inserted infinitely often in
every infinite wordwithout changing its winning or losing character (for
instance, 0 is neutral for parity conditions, 1 is neutral for Reach(0)). In
order to prove Proposition 5.5.5 with vertex-labeled arenas, E2 could be
labeled with a neutral color. Similarly, and although conditions weaker
than the one for a neutral color would suffice, Lemmas 5.5.1 and 5.5.2
could also be shown with vertex-labeled arenas by labeling the “merged
vertex” (called E in both cases) with this neutral color. This implies that
all the results from this chapter hold using the class of vertex-labeled
arenas under the existence of a neutral color. The counterexample
from [GW06] indeed admits no neutral color, and edge-labeled arenas of
the kind of Figure 5.5 are the typical examples in which a player needs
infinite memory for this objective. The existence of a neutral color was
also recently used in other works about memory requirements [CO22;
Ohl23] [CO22]: Casares et al. (2022),

Characterising memory in infi-

nite games

[Ohl23]: Ohlmann (2023),
Characterizing Positionality in

Games of Infinite Duration over

Infinite Graphs

.

Wrap-up of the section. Thanks to the results from this section, we
deduce the first item of Theorem 5.4.1.

Corollary 5.5.8 (First item of Theorem 5.4.1) IfM suffices for both players

for, in their respective countable one-player arenas, then ∼ has a finite index

(in particular, S, is well-defined and, is S, -prefix-independent) and, is

M-cycle-consistent.

Proof. Follows from Propositions 5.5.3 and 5.5.5.

In particular, we obtain from the previous result that if both players
have optimal strategies based onM in their one-player arenas, then, is
both (S, ⊗M)-prefix-independent and (S, ⊗M)-cycle-consistent (using
Lemma 5.3.6). For S, ⊗M to be well-defined, we recall that, as described
in Remark 5.3.8, we use automaton structures and memory structures as
interchangeable objects in this chapter.

Remark 5.5.9 If we compare Example 5.3.4 (, = Büchi(0) ∩ Büchi(1))
with Example 5.5.6 (, = 01�$), we see that we can easily classify
the prefixes of the former, but that information is not sufficient to play
optimally: we need some more information to classify cycles. For the
latter, it is possible to find a memory structure classifying cycles that is

5 Characterization of $-regularity through finite-memory determinacy 117

insufficient to play optimally, but a good classification of the prefixes
suffices to play optimally. In general, to understand , , we need to
have information about prefixes and cycles, which is why, intuitively,
structure S, ⊗M turns out to be useful.

5.6 From properties of an objective to $-regularity

In this section, we fix an objective , ⊆ �$ and a memory structure
M = (", <init , upd), and we assume that, is M-prefix-independent We writeM throughout this

section for conciseness, but
when combining the results
from the previous section and
from this section, a typical in-
stantiation forM is the prod-
uct S, ⊗M′ where M′ is a
sufficient memory structure.

and M-cycle-consistent. Our goal is to show that, can be recognized
by a parity automaton built on top ofM and is thus $-regular. To do that,
we show in multiple steps how to assign a priority to each transition of
M through a function ? : " × � → {0, . . . , =} so that, is recognized
by the parity automaton (M, ?).

5.6.1 Simplified notations

In this section, as we assume everywhere M-prefix-independence and
M-cycle-consistency of, , we extend some notations for conciseness.

As , is M-prefix-independent, for < ∈ ", we write <−1, for the
set of infinite words that equals F−1, for any F ∈ col∗(Π<init ,<). Notice
in particular that <−1

init, = �−1, = , . Moreover, as we consider the
property ofM-cycle-consistency along withM-prefix-independence, the
definition ofM-cycle-consistency can be written by only quantifying over
states ofM and not over all finite words. The reason is that there are then
only finitely many classes of finite words that matter, which correspond
to the states ofM. We define a few more notations that only make sense
under theM-prefix-independent hypothesis. Let

Φwin
< = {! ∈ Φ< | (col∗(!))$ ∈ <−1,}

be the cycles on < that induce winning words when repeated infinitely
many times from <, and Φlose

< be their losing counterparts. In this case,,
isM-cycle-consistent if and only if for all < ∈ ", (col∗(Φwin

<))$ ⊆ <−1,
and (col∗(Φlose

<))$ ⊆ <−1, . We call elements of Φwin
< (resp. Φlose

<) winning
(resp. losing) cycles on <. The set of winning (resp. losing) cycles ofM (on
any state) is denoted Φwin

M (resp. Φlose
M). We write val(!) for the value of a

cycle: win if ! ∈ Φwin
M , and lose if ! ∈ Φlose

M .

5.6.2 Proof ideas

Our intermediate technical lemmas will focus on cycles ofM, how they
relate to each other, and what happens when we combine them. Our
main tool is to define a preorder on cycles, which will help assign priorities

5 Characterization of $-regularity through finite-memory determinacy 118

to transitions of M — the aim being to build a DPA on top of M that
recognizes, . Intuitively, for some state < ofM, ! ∈ Φwin

< , and !′ ∈ Φlose
< ,

we look atwhich cycle “dominates” the other, that iswhether the combined
cycle !!′ is in Φwin

< (in which case ! dominates !′) or in Φlose
< (in which

case !′ dominates !). We will formalize this and show how to extend this
idea to cycles that may not share any common state.

Remark 5.6.1 One may wonder why we seek to build a DPA on top of
M to prove that, is $-regular, rather than a more general deterministic

Muller automaton Every DPA can be directly
relabeled as a deterministic
Muller automaton recogniz-
ing the same language, but
the converse is not true in gen-
eral.

which would achieve the same goal. Indeed, using
M-cycle-consistency and a recent result by Casares, Colcombet, and
Fĳalkow [CCF21, Section 5]

[CCF21]: Casares et al. (2021),
Optimal Transformations of

Games and Automata Using

Muller Conditions

, it is straightforward to show that we could
relabel such a Muller automaton as a parity automaton on the same
underlying structure recognizing the same objective.
One of the obstacles in our context is that we may start with infinitely
many colors; in order to prove $-regularity of, , we need to show at
some point that many colors can be assumed to be equal (for ,) in
order to get finitely many classes of “equivalent” colors. The way we
manage that, using the aforementioned idea of ordering cycles, actually
brings us very close to directly building a relevant parity condition on
top ofM— it does not appear that our proof technique can be easily
simplified by trying to obtain a Muller automaton.

Remark 5.6.2 Before tackling the proof, we also discuss the similarities
between our proof and the one of Colcombet and Niwiński [CN06] [CN06]: Colcombet et al.

(2006), On the positional deter-

minacy of edge-labeled games

about the less general prefix-independent, memoryless-determined case.
Their proof compares pairs of colors directly: roughly speaking, two
colors 21 and 22 are compared by looking at the value of cycle 2122.
Our first attempt was to try and use their result directly in our more
general context, for instance by first taking the product of all arenas
with S, ⊗M, where M is a sufficient memory structure. Objective
, is then memoryless-determined over this class of product arenas
(from initial vertices with memory state<init as a second component, see
Lemma 4.2.9) and we have some kind of “prefix-independence modulo
the arenas” This idea of “prefix-

independence modulo an
arena” was for instance
formally defined and used
in [KMST21]

[KMST21]: Kiefer et al. (2021),
Transience in Countable MDPs

(it is called tail

in an arena).

(it does not matter how we reach a vertex in an arena).
In our case, we need to assign priorities to transitions of S, ⊗M (not
just to colors). However, for a given pair of transitions, there is in general
no infinite word on the alphabet of colors that just sees two specific
transitions ad infinitum (it only works if the two transitions form a
cycle ofM). We therefore develop a way to compare arbitrary pairs of
transitions, which was not necessary in [CN06] and which is intuitively
why we do not directly reuse their result or their proof.
Some of our intermediate lemmas are still very close to theirs — we
then specify it explicitly — which happens when we compare cycles on
the same memory state, as they can be compared directly, like colors in
their context.

5 Characterization of $-regularity through finite-memory determinacy 119

5.6.3 Combining cycles on the same memory state

We first prove that “shifting” the start of a cycle does not alter its value.

Lemma 5.6.3 (Shift independence) Let <1 , <2 ∈ " be two states of M.

Let �1 ∈ Π<1 ,<2 and �2 ∈ Π<2 ,<1 ; �1�2 is a cycle on <1 and �2�1 is a cycle

on <2. Then, val(�1�2) = val(�2�1).

Proof. For all F1 ∈ col∗(Π<1 ,<2) and F2 ∈ �$, notice that

F1F2 ∈ <−1
1 , ⇐⇒ ∃F ∈ col∗(Π<init ,<1), F1F2 ∈ F−1,

⇐⇒ ∃F ∈ col∗(Π<init ,<1), F2 ∈ (FF1)−1,

⇐⇒ ∃F′ ∈ col∗(Π<init ,<2), F2 ∈ (F′)−1,

⇐⇒ F2 ∈ <−1
2 ,.

The third equivalence is due to the fact that FF1 is in col∗(Π<init ,<2) for the
left-to-right implication, and toM-prefix-independence for the right-to-
left implication; if there exists F′ ∈ col∗(Π<init ,<2) such that F2 ∈ (F′)−1, ,
then the same is true for any word in col∗(Π<init ,<2).
Going back to the statement of the lemma, we have that

�1�2 ∈ Φwin
<1 ⇐⇒ (col∗(�1�2))$ ∈ <−1

1 ,

⇐⇒ col∗(�1)(col∗(�2�1))$ ∈ <−1
1 ,

as (col∗(�1�2))$ = col∗(�1)(col∗(�2�1))$
⇐⇒ (col∗(�2�1))$ ∈ <−1

2 ,

by the above property as col∗(�1) ∈ col∗(Π<1 ,<2)
⇐⇒ �2�1 ∈ Φwin

<2 .

Hence, the values of �1�2 and �2�1 always coincide.

In particular, this result implies that swapping two cycles on the same
memory state does not alter the value: if !, !′ ∈ Φ< , then val(!!′) =
val(!′!).
The next two lemmas are used to show that although cycles ofM that are
taken infinitely often might have an impact on the result of a play, their
relative number of repetitions is not relevant (i.e., val(!!′) = val(!:(!′);) for
any :, ; ≥ 1). These two proofs and statements are very close to [CN06,
Lemmas 9, 10, and 11] and are a direct generalization to a larger class of [CN06]: Colcombet et al.

(2006), On the positional deter-

minacy of edge-labeled games

objectives.

Lemma 5.6.4 Let < ∈ ". Let Λ,Λ′ ⊆ Φ< be non-empty sets of cycles on <.

We have

∀!′ ∈ Λ′, ∃! ∈ Λ, !!′ ∈ Φwin
< =⇒ ∃! ∈ Λ,∀!′ ∈ Λ′, !!′ ∈ Φwin

< .

5 Characterization of $-regularity through finite-memory determinacy 120

This lemma says that if all cycles fromΛ′ can bemadewinning by adjoining
them a cycle from Λ, then we can actually find a single cycle from Λ that
makes all cycles from Λ′ winning.

Proof. We assume the premise of the implication, and by contradiction,
we assume that the conclusion is false. We therefore assume that

∀!′ ∈ Λ′, ∃! ∈ Λ, !!′ ∈ Φwin
< and ∀! ∈ Λ, ∃!′ ∈ Λ′, !!′ ∈ Φlose

< .

Let !1 be anyword inΛ. We build inductively an infinite sequence starting
with !1 by alternating the use of the two assumptions. For 8 ≥ 1, we take
!′8 ∈ Λ′ such that !8!′8 ∈ Φlose

< (using the second assumption), and we
then take !8+1 ∈ Λ such that !8+1!′8 ∈ Φwin

< (using the first assumption).

We consider the infinite sequence !1!′1!2!′2!3 . . . ∈ (" × �)$ such that
for all 8 ≥ 1, !8!′8 ∈ Φlose

< and !′8!8+1 ∈ Φwin
< (we use that the order

of cycles on < does not matter, shown in Lemma 5.6.3). We show that
the infinite word col$(!1!′1!2!′2 . . .) is both in <−1, and in <−1, by
pairing cycles in two different ways:

I the infinite sequence (!1!′1)(!2!′2) . . . is a sequence of losing cycles
on < and its projection to colors is therefore in <−1, by using
M-cycle-consistency.

I the infinite word col$(!1(!′1!2)(!′2!3) . . .) is in <−1, if and only
if col$((!′1!2)(!′2!3) . . .) is in <−1, by using that !1 ∈ Φ< and
M-prefix-independence of, . The sequence (!′1!2)(!′2!3) . . . is a
sequence of winning cycles on < and its projection to colors is in
<−1, by usingM-cycle-consistency.

As <−1, ∩ <−1, = ∅, we have our contradiction.

Lemma 5.6.5 (Repetition independence) Let < ∈ ". Let !, !′ ∈ Φ<
such that !!′ ∈ Φwin

< . We have !(!′)+ ⊆ Φwin
< .

Proof. Wehave that! or!′ is inΦwin
< —otherwise,!!′would be inΦlose

< by
M-cycle-consistency. If !′ is in Φwin

< , we notice that any element of !(!′)+
can be written as (!!′)(!′)= for some = ≥ 0, which is a combination
of winning cycles on <. Using M-cycle-consistency, we thus get that
!(!′)+ ⊆ Φwin

< .

It is left to deal with the case ! ∈ Φwin
< and !′ ∈ Φlose

< . We first show
by induction that for = ≥ 1, !=(!′)= ∈ Φwin

< . This is true by hypothesis
for = = 1. We now assume it is true for some = ≥ 1, and we show it is
true for = + 1. By Lemma 5.6.3, we have that !=+1(!′)=+1 ∈ Φwin

< if and
only if !=(!′)=+1! = (!=(!′)=)(!′!) ∈ Φwin

< , by swapping the order of !
and !=(!′)=+1. By induction hypothesis, !=(!′)= ∈ Φwin

< ; by hypothesis
and by Lemma 5.6.3, !′! ∈ Φwin

< . Therefore, by M-cycle-consistency,
(!=(!′)=)(!′!) is also in Φwin

< .

5 Characterization of $-regularity through finite-memory determinacy 121

We now define Λ = !+ and Λ′ = (!′)+. We have that for all elements
(!′)= of Λ′ (with = ≥ 1), we have that != (an element of Λ) is such that
!=(!′)= ∈ Φwin

< . Therefore the hypothesis of Lemma 5.6.4 is satisfied for
Λ and Λ′, which implies that there exists = ≥ 1 such that !=(!′)+ ⊆ Φwin

< .

We assume w.l.o.g. that = = min{= ∈ ℕ | !=(!′)+ ⊆ Φwin
< }. For all : ∈ ℕ

such that : ≥ =, we also have that !:(!′)+ = !:−=(!=(!′)+) ⊆ Φwin
< by

M-cycle-consistency. We intend to show that = = 1, which would end the
proof of the lemma as this would show that !1(!′)+ = !(!′)+ ⊆ Φwin

< .

We assume by contradiction that = > 1. Then there must exist : ∈ ℕ

such that !=−1(!′): ∈ Φlose
< . We also have that (!′):!=−1 is in Φlose

< by
Lemma 5.6.3, which implies that !=−1(!′):(!′):!=−1 is also inΦlose

< byM-
cycle-consistency. But then by Lemma 5.6.3, this cycle has the same value
as !2=−2(!′)2: , which must therefore be in Φlose

< . This is a contradiction
since = > 1 implies that 2= − 2 ≥ =.
We conclude that !(!′)+ ⊆ Φwin

< .

Thanks to this result, we can now show that any two consecutive cycles
on the same memory state can always be swapped without altering the
value of a longer cycle.

Corollary 5.6.6 (Cycle-order independence) Let< ∈ ". Let !1 , !2 , !3 ∈
Φ< . Then, val(!1!2!3) = val(!1!3!2).

Proof. We assume by contradiction that cycles !1!2!3 and !1!3!2 have
a different value; w.l.o.g., that !1!2!3 ∈ Φwin

< and that !1!3!2 ∈ Φlose
< . By

M-cycle-consistency, at least one cycle among !1, !2 and !3 is winning
and one is losing. We assume w.l.o.g. that !1 ∈ Φwin

< and !2 ∈ Φlose
< .

We also assume that !3 ∈ Φwin
< ; the other case can be dealt with by

symmetry. Notice that we necessarily have that !3!2 is inΦlose
< ; otherwise,

!1!3!2 = !1(!3!2) would be in Φwin
< by M-cycle-consistency. For the

same reason, !2!1 is in Φlose
< . We have

win = val(!1!2!3) by hypothesis
= val((!3!1)!2) by Lemma 5.6.3
= val((!3!1)(!2)2) by Lemma 5.6.5
= val(!2!3!1!2) by Lemma 5.6.3.

However, this last cycle can bewritten as a combination of two losing cycles
(!2!3) and (!1!2), and should therefore be losing byM-cycle-consistency.
This is a contradiction.

5 Characterization of $-regularity through finite-memory determinacy 122

<1 <2!1

!1

!2

!2 <1 <2

�1

�2

�′
1

�′
2

Figure 5.7: Depiction of the statement of Corollary 5.6.7 (left) and Lemma 5.6.8 (right).

5.6.4 Combining cycles on different memory states

We can now strengthen Lemma 5.6.5 (dubbed “repetition independence”)
to show that even “non-consecutive subcycles” in a longer cycle can be
repeated without altering the value of the long cycle.

Corollary 5.6.7 (Repetition independence, strong version) Let <1 , <2 ∈
". Let !1 ∈ Φ<1 , !2 ∈ Φ<2 , !1 ∈ Π<1 ,<2 , and !2 ∈ Π<2 ,<1 . Then,

val(!1!1!2!2) = val(!1(!1!2)=!1!2!2) for all = ≥ 0.

The situation is depicted in Figure 5.7 (left). Notice first that we can see
!1!1!2!2 as a combination of two cycles !1 and !1!2!2 on <1, we
therefore already know that the value of !1!1!2!2 on <1 is the same
as the one of (!1):(!1!2!2); for all :, ; ≥ 1. This second cycle can be
seen as two cycles !2!1 and !2 on <2, we therefore know that the value
of !2!2!1 on <2 is the same as the one of (!2):(!2!1); for all :, ; ≥ 1.
However, these two facts do not directly give the result as cycle !1!2 does
not appear “consecutively” in !1!1!2!2.

Proof of Corollary 5.6.7. We have that

val(!1!1!2!2) = val(!1(!1!2!2)(!1!2!2)) by Lemma 5.6.5 on <1

= val(!1!1(!2)(!2!1)!2!2)
= val(!1!1(!2!1)(!2)!2!2) by Lemma 5.6.6 on <2

= val(!1(!1!2)!1(!2)2!2)
= val(!1(!1!2)!1!2!2) by Lemma 5.6.5 on <2.

This shows the result for = = 1; applying Lemma 5.6.5 gives the result for
all = ≥ 1.

Another important property that will help define an interesting preorder
on cycles is that the value of a combination of two cycles is independent
of the memory state chosen to compare pairs of cycles: if two cycles both
go through two states <1 and <2 ofM, then combining them around <1
or around <2 yields the same value.

5 Characterization of $-regularity through finite-memory determinacy 123

Lemma 5.6.8 (Crossing-point independence) Let <1 , <2 ∈ " be two

states of M. Let �1 ,�′1 ∈ Π<1 ,<2 and �2 ,�′2 ∈ Π<2 ,<1 . We have that

val(�1�2�′1�
′
2) = val(�2�1�′2�

′
1).

The intuition of this lemma is that if we take two cycles (in the statement,
�1�2 and �′1�

′
2) that have two common states (<1 and <2), the chosen

starting state to combine the two cycles (the combination is (�1�2)(�′1�′2)
if <1 is chosen, and (�2�1)(�′2�′1) if <2 is chosen) has no impact on the
value of the combination. This situation is depicted in Figure 5.7 (right).

Proof of Lemma 5.6.8. If �1�2 and �′1�
′
2 are both in Φwin

<1 or both in Φlose
<1 ,

then �2�1 and �′2�
′
1 are also respectively both in Φwin

<2 or both in Φlose
<2 by

Lemma 5.6.3. Therefore, we have our result usingM-cycle-consistency.

For the remaining cases, we assume w.l.o.g. that �1�2 ∈ Φwin
<1 and �′1�

′
2 ∈

Φlose
<2 . We will assume (again w.l.o.g.) that combining them is winning, i.e.,

that �1�2�′1�
′
2 ∈ Φwin

<1 . Our goal is to show that �2�1�′2�
′
1 is also in Φwin

<2 .
We assume by contradiction that it is not, i.e., that �2�1�′2�

′
1 ∈ Φlose

<2 .

Observe that as �1�2�′1�
′
2 ∈ Φwin

<1 , we also have (�2�′1)(�′2�1) ∈ Φwin
<2 by

Lemma 5.6.3. Hence, at least one of �2�′1 and �′2�1 must be a winning
cycle on <2, otherwise their combination would be losing on <2 by M-
cycle-consistency. Equivalently, by Lemma 5.6.3, at least one of �′1�2 and
�1�′2 must be a winning cycle on <1.

Similarly, as �2�1�′2�
′
1 is in Φlose

<2 , we have that (�1�′2)(�′1�2) is in Φlose
<1 .

Hence, at least one of �1�′2 and �′1�2 is a losing cycle on <1 byM-cycle-
consistency.

Our conclusions imply that exactly one of �1�′2 and �′1�2 is winning on
<1, and exactly one is losing on <1. Without loss of generality, we assume
that �1�′2 ∈ Φwin

<1 and �′1�2 ∈ Φlose
<1 .

We now have a value for all four two-word cycles on <1 (and therefore for
all four two-word cycles on<2 by Lemma 5.6.3):�1�2 and�1�′2 are inΦ

win
<1 ,

and �′1�2 and �′1�
′
2 are in Φ

lose
<1 . If we look at four-word cycles, we have

already assumedw.l.o.g. that �1�2�′1�
′
2 ∈ Φwin

<1 and that �1�′2�
′
1�2 ∈ Φlose

<1 .
We still do not know whether �1�2�′1�2 and �1�′2�

′
1�
′
2 are winning or

losing — no matter how we express them as two two-word cycles, one
two-word cycle is winning and the other one is losing. We study the value
of these two four-word cycles.

Consider the cycle (�2�′1�
′
2�1)(�′2�1�2�′1) on <2. It is winning, since

�2�′1�
′
2�1 and �′2�1�2�′1 are both in Φwin

<2 : this can be shown using
Lemma 5.6.3 and the fact that �1�2�′1�

′
2 is in Φwin

<1 . Therefore, by shift-
ing the start of the cycle, (�′1�′2�1�′2)(�1�2�′1�2) is in Φwin

<1 . By M-cycle-
consistency, this means that at least one of �′1�

′
2�1�′2 (equivalently,

�1�′2�
′
1�
′
2) and �1�2�′1�2 is winning on <1.

5 Characterization of $-regularity through finite-memory determinacy 124

Similarly, we have that the cycle (�2�1�′2�
′
1)(�′2�′1�2�1) is in Φlose

<2 . There-
fore, by shifting the start of the cycle, (�1�′2�

′
1�
′
2)(�′1�2�1�2) is in Φlose

<1 .
This means that at least one of �1�′2�

′
1�
′
2 and �′1�2�1�2 (equivalently,

�1�2�′1�2) is in Φlose
<1 .

Our conclusions imply that exactly one of �1�2�′1�2 and �1�′2�
′
1�
′
2 is

winning on <1, and one is losing on <1. We consider both cases and draw
a contradiction in each case.

Assume that val(�1�2�′1�2) = lose. Now consider the cycle

= (�′2�1)(�2�
′
1)2

on <2. We have

val(#) = val(�′2�1�2�
′
1) by Lemma 5.6.5

= val(�1�2�
′
1�
′
2) by Lemma 5.6.3

= win by hypothesis.

However, we also have

val(#) = val((�1�2�
′
1�2)(�′1�′2)) by Lemma 5.6.3,

and since val(�1�2�′1�2) = val(�′1�′2) = lose, we also have val(#) = lose
byM-cycle-consistency. This is a contradiction.

Assume now that val(�1�′2�
′
1�
′
2) = lose. Now consider the cycle

= (�1�2)(�′1�′2)2

on <1. We have

val(#) = val(�1�2�
′
1�
′
2) by Lemma 5.6.5

= win by hypothesis.

However, we also have

val(#) = val((�2�
′
1)(�′2�′1�′2�1)) by Lemma 5.6.3,

and since val(�′1�2) = val(�1�′2�
′
1�
′
2) = lose, we also have val(#) = lose

byM-cycle-consistency. This is a contradiction.

Remark 5.6.9 A consequence of the previous lemma is that when two
cycles !, !′ ∈ ΦM share at least one common state (i.e., st(!) ∩ st(!′) ≠
∅), we canwrite!!′ for any cycle that, starting froma common state, sees
first ! and then !′, without necessarily specifying on which common
state the cycle starts; we allow such a shortcut as the value of !!′ is not
impacted by the choice of the common memory state. This convention
is used in the following definition.

5 Characterization of $-regularity through finite-memory determinacy 125

5.6.5 Competing cycles

We would now like to define a way to compare two cycles that may not
share a common state.

Definition 5.6.10 Let !, !′ ∈ ΦM with val(!) ≠ val(!′). We say that !
and !′ are competing if there exists ! ∈ ΦM such that st(!) ∩ st(!) ≠ ∅,
st(!′) ∩ st(!) ≠ ∅, val(!!) = val(!), and val(!′!) = val(!′). In this case,

we say that ! is a witness that ! and !′ are competing, or that the
competition of ! and !′ is witnessed by !. In what follows, cycles with

a line above them denote wit-
nesses.Our requirement for cycle ! means that it intersects the states of both !

and !′, but is not influential enough to “alter” the values of ! and !′when
it is combined with them. If val(!) ≠ val(!′) and st(!) ∩ st(!′) ≠ ∅, then
if val(!!′) = val(!) (resp. val(!!′) = val(!′)), we have that !′ (resp. !)
witnesses that ! and !′ are competing (the argument uses Lemma 5.6.5).
In short, any two cycles of opposite values that share a common state are
competing, and two cycles of opposite values that do not share a common
state may or may not be competing.

If two cycles are competing, we want to determine which one dominates

the other.

Definition 5.6.11 Let !, !′ ∈ ΦM with val(!) ≠ val(!′) be two competing

cycles, and ! be a witness of this competition. For some < ∈ st(!) and
<′ ∈ st(!′), it is thus possible to decompose ! as two (possibly empty) paths

!1 and !2 such that ! = !1!2, !1 ∈ Π<,<′ , and !2 ∈ Π<′,< . We define

that ! dominates !′ if val(!!1!
′!2) = val(!), and !′ dominates ! if

val(!!1!
′!2) = val(!′).

To be well-defined, this domination notion needs to be independent of the
choice of witness.

Lemma 5.6.12 (Witness independence) Let !, !′ ∈ ΦM with val(!) ≠
val(!′). Let !1 , !2 ∈ ΦM be two witnesses that ! and !′ are competing.

Then, ! dominates !′ taking !1 as a witness if and only if ! dominates !′

taking !2 as a witness.

Proof. We assume w.l.o.g. that val(!) = win and val(!′) = lose. As !1
witnesses that ! and !′ are competing, there exists<1 ∈ st(!),<′1 ∈ st(!′)
such that !1 = !1,1!1,2 with !1,1 ∈ Π<1 ,<′1 , !1,2 ∈ Π<′1 ,<1 . Similarly, as !2
witnesses that ! and !′ are competing, there exists<2 ∈ st(!),<′2 ∈ st(!′)
such that !2 = !2,1!2,2 with !2,1 ∈ Π<2 ,<′2 , !2,2 ∈ Π<′2 ,<2 . We can also
write ! = !1!2 with !1 ∈ Π<1 ,<2 and !2 ∈ Π<2 ,<1 , and !′ = !′1!

′
2 with

!1 ∈ Π<′1 ,<
′
2
and !′2 ∈ Π<′2 ,<

′
1
.

The situation is depicted in Figure 5.8. Note that it is possible that<1 = <2
(in which case we can assume ! = !1, !2 = (<1 , _)) or similarly that

5 Characterization of $-regularity through finite-memory determinacy 126

<1

<2

<′
1

<′
2

!1,1

!1,2
!1 !2

!2,1

!2,2

!′
1 !′

2

Figure 5.8: Situation in the
proof of Lemma 5.6.12.

<1 = <′1, <
′
1 = <

′
2, and/or <2 = <′2.

We assume by contradiction that ! dominates !′ taking !1 as a wit-
ness, but that !′ dominates ! taking !2 as a witness. In other words,
val(!1!2!1,1!

′
1!
′
2!1,2) = win and val(!2!1!2,1!

′
2!
′
1!2,2) = lose. We con-

sider the concatenation of both these cycles, shifting the second one to
make it a cycle on <1,

= (!1!2!1,1!
′
1!
′
2!1,2)(!1!2,1!

′
2!
′
1!2,2!2).

It is possible to express # directly as a combination of two losing cycles:
!1,1!

′
1!
′
2!1,2 is losing (by definition of witness), and

val(!1!2,1!
′
2!
′
1!2,2!2!1!2)

= val(!2,1!
′
2!
′
1!2,2(!2!1)2) by Lemma 5.6.3

= val(!2,1!
′
2!
′
1!2,2!2!1) by Lemma 5.6.5

= lose as !′ dominates ! with witness !2.

Cycle # is therefore losing byM-cycle-consistency.

Now, notice that # can be written as three cycles on <′2 after being shifted
in the following way:

val(#) = val((!′2!1,2!1!2,1)(!′2!′1)(!2,2!2!1!2!1,1!
′
1)).

By Lemma 5.6.6 (“cycle-order independence”), it has the same value as

val(#) = val((!′2!1,2!1!2,1)(!2,2!2!1!2!1,1!
′
1)(!′2!′1)).

As before, this cycle can be shifted and written as two winning cycles
!1!2,1!2,2!2 and !1!2!1,1(!′1!′2)2!1,2, and is therefore winning byM-
cycle-consistency.

Cycle # is both winning and losing, a contradiction.

Example 5.6.13 We illustrate competition and domination of cycles on
a parity automaton (even though at this point in the proof, we have
not yet shown that , is $-regular). We consider the parity automa-

5 Characterization of $-regularity through finite-memory determinacy 127

<1 <2

2 | 3

1 | 1

0 | 2

0 | 2

1, 2 | 0

[(<1 , 2)]'

[(<1 , 0)(<2 , 0)]'

[(<1 , 1)]'

[(<2 , 1)]'
C

C

C

Figure 5.9: A parity automaton P (left) with � = {0, 1, 2} and underlying structureM used in Example 5.6.13. A diagram
(right) showing the relations between the elements of ΦM/' ordered by partial preorder C, discussed in Example 5.6.16.

ton P from Figure 5.9, denoting by M its underlying structure, with
objective, = L(P) (left). Objective, is M-prefix-independent and
M-cycle-consistent (Lemma 5.3.7). We give a few examples of competi-
tion and domination between cycles. We recall that we use the

“lim sup” variant of the parity
acceptance condition (what
matters is themaximalpriority
seen infinitely often).

The winning cycle (<1 , 0)(<2 , 0)
dominates losing cycle (<1 , 1) but is dominated by losing cycle (<1 , 2).
Cycle (<2 , 1) is winning but is not competing with (<1 , 1). In particular,
their competition is not witnessed by (<1 , 0)(<2 , 0) since combining it
with (<1 , 1) alters its value ((<1 , 1) is losing but (<1 , 1)(<1 , 0)(<2 , 0)
is winning) — another potential witness is (<1 , 2)(<1 , 0)(<2 , 0), but
combining it with (<2 , 1) alters its value. However, cycle (<2 , 1) is com-
peting with and dominated by (<1 , 2): their competition is witnessed,
e.g., by (<1 , 0)(<2 , 0) and by (<1 , 1)(<1 , 0)(<2 , 0).

5.6.6 Preorder on cycles

For a winning (resp. losing) cycle ! ∈ ΦM, we define comp(!) as the set of
losing (resp. winning) cycles that ! is competing with, and domBy(!) as
the set of losing (resp. winning) cycles from comp(!) that are dominated
by !.

We define an ordering C of cycles based on these notions. We write !′ C !
if !′ ∈ domBy(!). We extend this definition to cycles with the same value:
if val(!1) = val(!2) and there exists a cycle !′ such that val(!′) ≠ val(!1)
with!2 ∈ domBy(!′) and!′ ∈ domBy(!1), wewrite!2 C !1 —intuitively,
this condition implies that !2 is less powerful than !1 as we can find a
cycle dominating !2 that is itself dominated by !1. We show that relation
C is a strict preorder (which is not total in general).

Lemma 5.6.14 Relation C is a strict preorder.

Proof. We first prove that C is irreflexive, i.e., that for all ! ∈ ΦM, ! 6C !.
If ! C !, since val(!) = val(!), there exists !′ ∈ ΦM such that val(!′) ≠
val(!), ! ∈ domBy(!′), and !′ ∈ domBy(!). But that is not possible since
when ! and !′ are competing, they cannot both dominate the other (no
matter the choice of witness, as shown in Lemma 5.6.12).

We now prove that C is transitive. We distinguish four cases (we rename
cycles in each case to ease the reading by making it so that cycles with a

5 Characterization of $-regularity through finite-memory determinacy 128

!1

!1

!2

!′
1,1

!′
1,2

!′
1

!′
2

!2,1

!2,2

!′′
1

!′′
2

!′
2

Figure 5.10: Situation to show transitivity of C in Lemma 5.6.14.

prime symbol have a different value from cycles without a prime symbol).

If !2 C !′ and !′ C !1 with val(!2) ≠ val(!′) and val(!′) ≠ val(!1), then
val(!2) = val(!1), and !2 C !1 by definition.

Let !′2 C !2 and !2 C !1 with val(!′2) ≠ val(!2) and val(!2) = val(!1).
We assume w.l.o.g. that val(!2) = val(!1) = win, so there exists !′1 ∈ ΦM
such that val(!′1) = lose, !2 C !′1 and !′1 C !1. We assume that !′1 C !1
is witnessed by !, that !2 C !′1 is witnessed by !′ and that !′2 C !2 is
witnessed by !′′. We assume that ! = !1!2, !

′
1 = !′1,1!

′
1,2, !

′ = !′1!
′
2,

!2 = !2,1!2,2, and !′′ = !′′1!
′′
2 . We refer to Figure 5.10 to illustrate the

situation and explain where the common states of these cycles are.

We want to show that !′2 C !1. To do so, we show that for #1 =
!1!

′
1,1!

′
1!2,1!

′′
1 and #2 = !′′2!2,2!

′
2!
′
1,2!2, # = #1#2 is a witness that

!1 and !′2 are competing, and that !1#1!′2#2 is winning:

I Cycle !1# is winning. We can split this cycle into !′1,2!2!1!1!
′
1,1

and !′1!2,1!
′′
1!
′′
2!2,2!

′
2. We shift (Lemma 5.6.3) the former cycle to

!1!1!
′
1,1!

′
1,2!2, which is winning since !′1 C !1. The latter cycle

has the same value as !′1(!2,2!2,1)!2,1!
′′
1!
′′
2!2,2!

′
2 (Corollary 5.6.7),

which can be shifted to (!′2!′1!2,2!2,1)(!2,1!
′′
1!
′′
2!2,2). Both these

cycles are winning since !′ and !′′ are witnesses for competitions
involving !2.

I Cycle !′2# is losing. We can split this cycle into the two cycles
!′′1!

′
2!
′′
2 and !2,2!

′
2!
′
1,2!2!1!

′
1,1!

′
1!2,1. The former is losing be-

cause !′′ witnesses a competition involving !′2. This latter has
the same value as the cycle !2,2!

′
2(!′1,2!′1,1)!′1,2!2!1!

′
1,1!

′
1!2,1

(Corollary 5.6.7), which can itself be split into !′1,2!2!1!
′
1,1, which

is losing because ! witnesses a competition involving !′, and
!′2!

′
1,2!

′
1,1!

′
1!2,1!2,2, which is losing because !2 C !′1.

I Cycle !1#1!′2#2 is winning. Using Corollary 5.6.7, we can show
that !1#1!′2#2 has the same value as !1#1(!′′2!2,2!2,1!

′′
1)!′2#2.

We can split this cycle into !1#1#2 = !1# (which is winning, as
shown above) and !′′2!2,2!2,1!

′′
1!
′
2 (winning since !′2 C !2).

This shows that !′2 C !1.

There are still two cases left to consider. The case !′2 C !′1 and !′1 C !1
with val(!′2) = val(!′1) and val(!′1) ≠ val(!1) can be dealt with in the same
way as the previous case (after noticing that there exists !2 ∈ ΦM such
that !′2 C !2, !2 C !′1 and val(!2) = val(!1)).

5 Characterization of $-regularity through finite-memory determinacy 129

If !3 C !2 and !2 C !1 with val(!3) = val(!2) = val(!1), then there exists
in particular !′ ∈ ΦM such that !3 C !′, !′ C !2 and val(!3) ≠ val(!′).
By a previous case, we conclude from !′ C !2 and !2 C !1 that !′ C !1.
As !3 C !′ and !′ C !1, we have !3 C !1 as desired.

We define an equivalence relation on the cycles: we write !1 ' !2 if
val(!1) = val(!2), comp(!1) = comp(!2), and domBy(!1) = domBy(!2).
We show that cycles that are equivalent for ' are in relation with the same
elements for C.

Lemma 5.6.15 Let !1 , !2 , !′ ∈ ΦM.

I If !1 ' !2 and !′ C !1, then !′ C !2.

I If !1 ' !2 and !1 C !′, then !2 C !′.

In other words, preorder C is compatible with '.

Proof. The first item is straightforward, as the elements smaller than !1
for C are determined by domBy(!1), and domBy(!1) = domBy(!2). For
the second item, we distinguish two cases:

I if val(!1) ≠ val(!′), then !1 C !′ means that !′ ∈ comp(!1) and
!′ ∉ domBy(!1). If !1 ' !2, the same properties also hold for !2,
so !2 C !′.

I if val(!1) = val(!′), then !1 C !′ means that there exists !′′ with
val(!1) ≠ val(!′′) such that !1 ∈ domBy(!′′) and !′′ ∈ domBy(!′).
By the previous case, if !1 ' !2, then !2 C !′′, so !2 C !′ as
well.

Partial preorder C therefore also induces a partial preorder on ΦM/' .

Example 5.6.16 We represent the relations between all elements of
ΦM/' for the parity automaton considered in Example 5.6.13 in their
Hasse diagram, depicted in Figure 5.9 (right). Elements that are linked
by a line segment are comparable for C, and elements that are above
are greater for C. There are four equivalence classes of cycles, two of
them winning and two of them losing. Notice for instance that any cycle
going through transition (<1 , 2) is equivalent (for ') to cycle (<1 , 2):
indeed, it is necessarily a losing cycle competing with and dominating
all the winning cycles in this memory structure. Other examples are
given by (<1 , 0)(<2 , 0) ' (<1 , 0)(<2 , 1)(<2 , 0) and (<2 , 1) ' (<2 , 2).

We now prove finiteness of the index of ', by showing that

I the height of partial preorder C is finite, i.e., there is no infinite
increasing nor decreasing sequence for C (Lemma 5.6.19);

I the width of partial preorder C on ΦM/' is finite, i.e., there is no
infinite set of elements in ΦM/' that are all pairwise incomparable
for C (Lemma 5.6.20).

5 Characterization of $-regularity through finite-memory determinacy 130

<

!1

!2

!1

!2

!′ ! !′
1! !′

2

Figure 5.11: Situation in the proof of Lemma 5.6.17 (left) and in the proof of Lemma 5.6.18 (right).

We start with two technical lemmas about competition between cycles.

Lemma 5.6.17 Let !1 , !2 , !′ ∈ ΦM be such that val(!1) = val(!2) ≠
val(!′), !2 C !′, and !′ C !1. Let ! be a witness that !2 and !′ are
competing such that st(!) ∩ st(!1) ∩ st(!2) ≠ ∅. Then, ! also witnesses that

!1 and !′ are competing.

Proof. We already know that val(!′!) = val(!′) and that st(!′)∩st(!) ≠ ∅
(as ! witnesses a competition involving !′) and that st(!1) ∩ st(!) ≠
∅ (by hypothesis). It is left to show that val(!1!) = val(!1). Let < ∈
st(!) ∩ st(!1) ∩ st(!2); we represent the situation in Figure 5.11 (left),
with ! = !1!2. Consider first cycle !1!2!2: this cycle is a witness that
!1 and !′ are competing, since it has common states with those cycles,
val(!1(!1!2!2)) = val(!1) (both !1 and !1!2!2 have the same value),
and val(!′(!2!2!1)) = val(!′) (since !2 C !′ and ! is a witness of the
competition). Therefore, as !′ C !1, the cycle # = !1!1!

′!2!2 has
the same value as !1. By Corollary 5.6.7, cycle # has the same value as
!1(!1!2)!1!

′!2!2, which can be split into !1!
′!2!2 (which has the

same value as !′ since !2 C !′ and ! is a witness of the competition)
and !1!1!2. Therefore, !1!1!2 = !1! cannot have the same value
as !′, otherwise # would also have the same value as !′ by M-cycle-
consistency.

Lemma 5.6.18 Let !, !′1 ∈ ΦM be such that val(!) ≠ val(!′1) and !′1 C !.
Let !′2 be a cycle such that val(!′2) = val(!′1) and st(!′2) ∩ st(!′1) ≠ ∅. Then,
! and !′2 are competing.

Proof. Let ! be a witness that ! and !′1 are competing; we represent the
situation in Figure 5.11 (right). We show that !!′1 is a witness that !
and !′2 are competing. As st(!) ∩ st(!) ≠ ∅, we have st(!!′1) ∩ st(!) ≠ ∅.
Similarly, as st(!′1) ∩ st(!′2) ≠ ∅, we have st(!!′1) ∩ st(!′2) ≠ ∅. As !′1 C !
with witness !, we have that val(!(!!′1)) = val(!). Moreover, since ! is a
witness for !′1 (and !′), val(!!′1) = val(!′1). Therefore val(!!′1) = val(!′2),
which implies byM-cycle-consistency that val(!′2(!!′1)) = val(!′2).

Lemma 5.6.19 The height of partial preorder C is finite.

5 Characterization of $-regularity through finite-memory determinacy 131

<1

<2

<

<′
1

<′
2

!8 ,1

!8 ,2
!′
8 ,1!′

8 ,2

!′
8 ,1

!′
8 ,2

!8

!8+1

!8

!′
8

!′
8

Figure 5.12: Situation in the
proof of Lemma 5.6.19. Com-
petition of !8 and !′8 is wit-
nessed by !8 , and competi-
tion of !′8 and !8+1 is wit-
nessed by !′8 . State <′ ap-
pears somewhere along !′8
and is not represented.

Proof. By contradiction, let !0 B !′0 B !1 B !′1 B !2 B . . . be an
infinite decreasing sequence for C. We assume w.l.o.g. that for all 8 ≥ 0,
val(!8) = win and val(!′8) = lose (if two consecutive cycles are, for example,
both winning, we can always insert an intermediate losing cycle between
them, by definition).

For 8 ≥ 0, let < (resp. <′) be a state of M that is part of infinitely many
sets st(!8) (resp. st(!′8)) — such states necessarily exist as the state space
ofM is finite. Thanks to transitivity of C (Lemma 5.6.14), by keeping only This is the first time in the

proofs of this chapter that
we use that M has a finite
state space. Therefore, The-
orem 5.4.1 does not carry
over to memory structures al-
lowed to have infinitely many
states. We leave open the ex-
istence of a characterization
such as ours with infinite
memory structures.

winning cycles !8 such that < ∈ st(!8) alternating with losing cycles !′8
such that <′ ∈ st(!′8), we keep an infinite decreasing sequence for C. We
can therefore assume w.l.o.g., up to renaming cycles, that for all 8 ∈ ℕ,
< ∈ st(!8) and <′ ∈ st(!′8).
We show that the competition of each contiguous pair in sequence
!0 , !′0 , !1 , !′1 , !2 , . . . has a witness that intersects the winning cycle
at <, and the losing cycle at <′. For all 8 ≥ 0, let !8 = !8 ,1!8 ,2 be a witness
that !8 and !′8 are competing, and !′8 = !′8 ,1!

′
8 ,2 be a witness that !′8 and

!8+1 are competing. Let 8 ≥ 0; we depict part of the situation in Figure 5.12,
with !′8 = !′8 ,1!

′
8 ,2.

Based on the cycles that we already know, we consider the cycle #8 =
!8 ,1!

′
8 ,1!

′
8 ,1!8+1!

′
8 ,2!

′
8 ,2!8 ,2. We have that <, <′ ∈ st(#8) since !8+1 and

!′8 are part of #. We show that #8 witnesses that !8 and !′8 are competing:

I val(!8#8) = win since !8#8 can be split into !′8 ,2!8 ,2!8!8 ,1!
′
8 ,1 (win-

ning since !8 B !′8) and !′8 ,1!8+1!
′
8 ,2 (winning since !′8 witnesses a

competition involving !8+1);
I val(!′8#8) = lose since !′8#8 can be split into !′8!8 ,2!8 ,1 (losing since

!8 witnesses a competition involving !′8) and !′8 ,1!
′
8 ,1!8+1!

′
8 ,2!

′
8 ,2

(losing since !′8 B !8+1). We use Remark 5.6.9 in order to write
“!′8#8”.

We can perform a symmetric reasoning to show that the competition
of any pair !′8 , !8+1, 8 ≥ 0, is witnessed by a cycle #

′
8 ∈ ΦM such that

<′, < ∈ st(#′8).
By Lemma 5.6.17, #

′
8 is not only a witness that !′8 and !8+1 are competing,

but also that !8 and !′8 are competing (indeed, val(!8) = val(!8+1) ≠

5 Characterization of $-regularity through finite-memory determinacy 132

val(!′8), !8+1 C !′8 , !
′
8 C !8 , #

′
8 witnesses that !8+1 and !′8 are competing,

and < ∈ st(#′8) ∩ st(!8) ∩ st(!8+1)).
For 8 ≥ 0, we can write #

′
8 = #

′
8 ,1#
′
8 ,2 with #

′
8 ,1 ∈ Π<′,< and #

′
8 ,2 ∈ Π<,<′ .

We now consider the infinite sequence

� = !0#
′
0,2!

′
0#
′
0,1!1#

′
1,2!

′
1#
′
1,1!2 . . .

Notice that for all 8 ≥ 0, !8#
′
8 ,2!

′
8#
′
8 ,1 is a winning cycle on < since

!8 B !′8 ; hence col$(�) ∈ <−1, by M-cycle-consistency. Also, for all
8 ≥ 0, #

′
8 ,2!

′
8#
′
8 ,1!8+1 is a losing cycle on < since !′8 B !8+1; hence

col$(�) ∈ <−1, by M-prefix-independence and M-cycle-consistency.
This is a contradiction.

A proof for infinite increasing sequences can be done in a symmetric
way.

Lemma 5.6.20 The width of partial preorder C on ΦM/' is finite.

Proof. We recall that M = (", <init , upd). We will show that any two
cycles !1 and !2 such that st(!1) = st(!2) are necessarily comparable for
' or C. This will show that the cardinality of a maximal set of pairwise
incomparable (for C) elements in ΦM/' is necessarily bounded by 2|" | ,
which implies that the width of partial preorder C is finite as |" | is finite.
Let !1 and !2 be two cycles such that st(!1) = st(!2) (we recall that there
may be infinitely many transitions inM if � is infinite, and that two cycles
going through the same states may use different transitions and have a
different value).

If val(!1) ≠ val(!2), then as !1 and !2 share a common state, they are
competing —we have either !1 C !2 or !2 C !1 (depending on the value
of !1!2).

We now assume that val(!1) = val(!2); we assume w.l.o.g. that !1 and !2
are winning. If !1 and !2 are such that comp(!1) = comp(!2), then they
can necessarily be compared with ' or C; indeed,

I if domBy(!1) = domBy(!2), then !1 ' !2;
I if domBy(!1) ≠ domBy(!2), then there is 8 ∈ {1, 2} and a losing

cycle !′ in domBy(!8) that is competing with !3−8 but that is not an
element of domBy(!3−8). Therefore, !3−8 C !′ C !8 , which means
that !3−8 C !8 .

It is left to deal with the case comp(!1) ≠ comp(!2). W.l.o.g., let !′ be in
comp(!1) \ comp(!2). There are two cases to discuss: whether !1 C !′ or
!′ C !1.

I Assume !1 C !′. By Lemma 5.6.18, as val(!1) = val(!2) and st(!1)∩
st(!2) ≠ ∅, !′ is also competing with !2, which is a contradiction.

5 Characterization of $-regularity through finite-memory determinacy 133

I Assume !′ C !1. Let ! be a witness that !1 and !′ are competing.
We therefore have that !1! is winning and !′! is losing. As !2 is
not competing with !′, ! cannot be a witness that !2 and !′ are
competing. Since st(!1) = st(!2) has a non-empty intersection with
st(!), the only possibility for that to happen is that !2! is losing
(all other conditions are satisfied). This means that ! must itself be
a losing cycle. But then, observe that ! is competing both with !1
and !2 (as ! has a common state with and a different value than
!1 and !2) and !2 C ! C !1 (as !2! is losing and !1! is winning).
This implies that !2 C !1.

Lemmas 5.6.19 and 5.6.20 imply together that ' has a finite index, and
thus that C (partially) orders only finitely many classes of cycles in
ΦM/' . Therefore, for some = ∈ ℕ, there exists a function ?Φ : ΦM/' →
{0, . . . , =} that is a monotonic function (assuming ΦM/' is preordered
with C and {0, . . . , =} is ordered with the usual order on ℕ); such a
function is sometimes called a linear extension of the partial order. We
extend it to a function ?Φ : ΦM → {0, . . . , =} such that ?Φ(!) = ?Φ([!]').
Moreover, we assume w.l.o.g. that val(!) = win if and only if ?Φ(!) is even
(this might require increasing =).

We fix = and any such function ?Φ for the rest of the proof.

5.6.7 Parity automaton on top ofM

At this point, it would already be possible to describe words of, in terms
of the cycles ofM that they visit (there may be multiple such decompo-
sitions) and their values by ?Φ, but that does not directly correspond to
a classical acceptance condition for automata on infinite words. We can
actually obtain something more satisfying: we show that we can assign
priorities to transitions ofM to recognize, , in a way that corresponds to
a parity acceptance condition on transitions. We transfer function ?Φ to
transitions ofM: for (<, 2) ∈ " × �, we define

?(<, 2) = min{?Φ(!) | ! ∈ ΦM , (<, 2) ∈ !}. (5.1)

Wenowhave awell-defined function assigningpriorities to every transition
ofM.

Example 5.6.21 We illustrate our definitions for ?Φ and ?. We again
consider the example from Figure 5.9 (for which, unlike, , we already
know that it describes an $-regular objective). For the sake of the
example, let us ignore the already-defined priority function ? of this
parity automaton. We show that we can recover priorities defining the
same language starting from our preorder C and our definitions for ?Φ
and ?. There were four equivalence classes for ', ordered as follows:
[(<1 , 1)]' C [(<1 , 0)(<2 , 0)]' C [(<1 , 2)]' and [(<2 , 1)]' C [(<1 , 2)]'.

5 Characterization of $-regularity through finite-memory determinacy 134

Function ?Φ must be any function that respects the order given by
the diagram and that assigns even priorities to winning classes of
cycles, and odd priorities to losing classes. One such possible choice
is ?Φ([(<1 , 2)]') = 5, ?Φ([(<1 , 0)(<2 , 0)]') = 2, ?Φ([(<2 , 1)]') = 4, and
?Φ([(<1 , 1)]') = 1. From this choice of function ?Φ, our definition of
function ? (Equation (5.1)) entails ?(<1 , 2) = 5, ?(<1 , 0) = ?(<2 , 0) = 2,
?(<2 , 1) = ?(<2 , 2) = 4, and ?(<1 , 1) = 1. This choice of priorities
recognizes the same objective as the original parity automaton.

We prove that DPA (M, ?) recognizes the objective , . In our proof,
we will need to relate the cycles dominated by a cycle ! and the ones
dominated by cycles in a “decomposition” of !, i.e., cycles that can be
obtained from iteratively removing cycles from !. We formally define this
notion and prove two related results.

Definition 5.6.22 Let ! = (<0 , 21) . . . (<:−1 , 2:) ∈ ΦM, and

!1 , . . . , !; ∈ ΦM. We say that (!1 , . . . , !;) is a cycle decomposition
of ! if

I either ; = 1 and ! = !1,

I or ; > 1 and there exist 8 , 8′ ∈ {0, . . . , :−1}, 8 ≤ 8′, such that cycle!1 =
(<8 , 28+1) . . . (<8′ , 28′+1), and (!2 , . . . , !;) is a cycle decomposition of

the smaller cycle (<0 , 21) . . . (<8−1 , 28)(<8′+1 , 28′+2) . . . (<:−1 , 2:).

Lemma 5.6.23 Let !, !1 , !2 , !′ ∈ ΦM be cycles such that ! = !1!2. If

!′ C !1, then !′ C !.

Proof. We assume !′ C !1.

If val(!1) ≠ val(!), then !1 C ! — indeed, they share at least one state
and !1! = (!1)2!2 has the same value as !1!2 = ! by Lemma 5.6.5. We recall that we use Re-

mark 5.6.9 to write !1! and
(!1)2!2 without worrying
about the memory state used
to go from one to the other.

Therefore, by transitivity of C (Lemma 5.6.14), !′ C !.

We now assume val(!1) = val(!) and val(!′) ≠ val(!1). Let ! be a witness
that !′ and !1 are competing. We prove that ! also witnesses that !′

and ! are competing: to do so, it is left to show that # = !! has the
same value as !. We have that # can be written as !!1,1!2!1,2 for some
paths !1,1 and !1,2 such that !1 = !1,1!1,2. Cycle # has the same value as
!(!1,1!1,2)!1,1!2!1,2 by Corollary 5.6.7. This last cycle can be split into
!!1 and !, which both have the same value as !. Therefore ! is also a
witness that !′ and ! are competing. We can show with a very similar
argument that !′!1!!2 also has the same value as !, hence !′ C !.

If val(!1) = val(!) and val(!′) = val(!1), then there exists !′′ with
val(!′′) ≠ val(!1) such that !′ ∈ domBy(!′′) and !′′ ∈ domBy(!1), so
!′ C !′′ C !1. By the previous case, !′′ C !; by transitivity, !′ C !.

5 Characterization of $-regularity through finite-memory determinacy 135

Lemma5.6.24 Let! be a cycle ofM and (!1 , . . . , !;) be a cycle decomposition

of !. For all 8 ∈ {1, . . . , ;}, for all !′ ∈ ΦM, if !′ C !8 , then !′ C !.

Proof. We proceed by induction on ;. If ; = 1, then the statement is trivial
as ! = !1. For ; > 1, we now assume that the property holds for ; − 1,
and we show that it also holds for ;. Up to a shift of ! and of the cycle
decomposition, we assume that ! is equal to !1#, where (!2 , . . . , !;) is a
cycle decomposition of #.

Let !′ ∈ ΦM be such that !′ C !8 for some 8 ∈ {1, . . . , ;}. This implies
that !′ C !1 if 8 = 1 or, using the induction hypothesis, that !′ C #. In
any case, by Lemma 5.6.23, we immediately have that !′ C !.

We can now prove that, is recognized by the parity automaton (M, ?).
We do this in the next two results. First, we show that winning cycles of
M are exactly the ones that have an even maximal priority given by ?. It
is then straightforward to conclude that infinite words in, are exactly
the ones whose maximal infinitely visited priority is even.

Lemma 5.6.25 Let ! = (<0 , 21) . . . (<:−1 , 2:) ∈ ΦM. Then, ! is winning

if and only if max0≤8<: ?(<8 , 28+1) is even.

Proof. For conciseness, let ?∗ = max0≤8<: ?(<8 , 28+1) and C8 = (<8 , 28+1).
By definition of function ?, for all 8 ∈ {0, . . . , : − 1}, ?(C8) ≤ ?Φ(!). Hence,
?∗ ≤ ?Φ(!). We want to show that ! is winning if and only if ?∗ is even.
By contradiction, we assume that we do not have this equivalence. We
assume w.l.o.g. that ! is losing and that ?∗ is even; we could obtain in a
symmetric way a contradiction for ! winning and ?∗ odd.

As ! is losing, we have that ?Φ(!) is odd — as ?∗ is even, ?∗ < ?Φ(!). We
assume (up to a shift of the transitions) that ?∗ = ?(C0). Since ?∗ < ?Φ(!),
there exists, for all 8 ∈ {0, . . . , : − 1}, a cycle !8 ≠ ! such that C8 ∈ !8 and
?(C8) = ?Φ(!8). We assume !8 = C8�8 for a suitable path �8 . The situation
is represented in Figure 5.13.

The rest of the proof consists in exhibiting two cycles, building on the ones
we know, showing that one of them is winning and one of them is losing,
and finally showing that they must have the same value, which provides
a contradiction.

We will first consider cycle C0 . . . C:−1�:−1 . . .�0 on <0. We prove by
induction that it is winning. First, C0�0 is winning since ?Φ(C0�0) = ?∗ is
even. Assume now that for 0 < ; < :, C0 . . . C;−1�;−1 . . .�0 is winning. We
show that C0 . . . C;−1(C;�;)�;−1 . . .�0 is winning.

I If C;�; is a winning cycle, it follows fromM-cycle-consistency.
I If C;�; is a losing cycle, we distinguish two cases.

5 Characterization of $-regularity through finite-memory determinacy 136

<0 <1

<2<:−1

C0

�0

C1
�1C:−1

�:−1

Figure 5.13: Situation in the
proof of Lemma 5.6.25, with
! = C1 . . . C: .

• If C1 . . . C;−1(C;�;)�;−1 . . .�1 is winning, then so is the cycle
C0 . . . C;−1(C;�;)�;−1 . . .�0 because we just concatenate the win-
ning cycle �0C0 to a winning cycle (M-cycle-consistency).

• If C1 . . . C;−1(C;�;)�;−1 . . .�1 is losing, then C1 . . . C;−1�;−1 . . .�1
witnesses that C0�0 and C;�; are competing. Since ?Φ(C;�;)
is odd, and ?Φ(C0�0) is even and is equal to the maximum
of 8 ↦→ ?Φ(C8�8), we have that ?Φ(C;�;) < ?Φ(C0�0). Since ?Φ
is monotonic and C0�0 and C;�; are competing, this implies
C;�; C C0�0. Thus C0 . . . C;−1(C;�;)�;−1 . . .�0 is winning.

We now consider the cycle C0(�0C0) . . . C:−1(�:−1C:−1) on <0. We show
by induction that it is losing. We start from !, which is losing by
hypothesis, and we add cycles �8C8 one by one. We denote !(;) =
C0(�0C0) . . . C;(�;C;)C;+1 . . . C:−1. Assume that !(;−1) is losing for 0 ≤ ; < :
(we assume !(−1) = !). We want to show that !(;) is also losing.

I If �;C; is a losing cycle, it follows fromM-cycle-consistency.
I If �;C; is a winning cycle, then as ?Φ(�;C;) ≤ ?∗ < ?Φ(!) and �;C; is

competing with ! (they share common states), we have �;C; C !.
Notice that (�0C0 , . . . ,�;−1C;−1 , !) is a cycle decomposition of !(;−1)

as in Definition 5.6.22. Thus by Lemma 5.6.24, as �;C; C !, we also
have �;C; C !(;−1). We conclude that !(;) is also losing.

We have considered two cycles on <0: the winning C0 . . . C:−1�:−1 . . .�0
and the losing C0(�0C0) . . . C:−1(�:−1C:−1). We show that it is possible to
transform the latter into the former using only value-preserving transfor-
mations (given by Lemma 5.6.5 and Corollary 5.6.6), which provides the
desired contradiction.

We show inductively that for all ; ∈ {0, . . . , : − 1}, cycle

C0(�0C0) . . . C:−1(�:−1C:−1)

can be transformed into

#(;) = (C0 . . . C;�; . . .�0C0 . . . C;)C;+1(�;+1C;+1) . . . C:−1(�:−1C:−1)

using value-preserving transformations. Notice that #(0) is equal to
C0(�0C0) . . . C:−1(�:−1C:−1), which deals with the base case of the induction.
Now assume that C0(�0C0) . . . C:−1(�:−1C:−1) has the same value as #(;−1)

5 Characterization of $-regularity through finite-memory determinacy 137

for 1 ≤ ; < :. In the expression of #(;−1), notice that �;−1 . . .�0C0 . . . C;−1
and C;�; are two consecutive cycles on <; . By Lemma 5.6.6, they can thus
be swapped while keeping a cycle with the same value. Notice that this
gives exactly the cycle #(;).

We obtain that C0(�0C0) . . . C:−1(�:−1C:−1) has the same value as

#(:−1) = C0 . . . C:−1�:−1 . . .�0C0 . . . C:−1 ,

which has the same value as C0 . . . C:−1�:−1 . . .�0 by Lemma 5.6.5. This is
the desired contradiction.

Proposition 5.6.26 Let F = 2122 . . . ∈ �$
with * = (<0 , 21)(<1 , 22) . . . ∈

(" × �)$ being the run ofM on F. Then,

F ∈, if and only if lim sup
8→∞

?(<8 , 28+1) is even.

Proof. Let ?∗ = lim sup8→∞ ?(<8 , 28+1). Let 9 ≥ 0 be an index such that
for all 8 ≥ 9, ?(<8 , 28+1) ≤ ?∗. Let �∗ = {8 ≥ 9 | ?(<8 , 28+1) = ?∗} be
the infinite set of indices of transitions with priority ?∗ occurring after
index 9. We write 81 , 82 , . . . for the elements of �∗ in order. Let <∗ be
a state appearing infinitely often in {<8 | 8 ∈ �∗} (such a state exists
necessarily as the state space of M is finite). This implies that * can be
written as the concatenation of a finite prefix (<0 , 21) . . . (<81−1 , 281) and
infinitely many cycles !: = (<8: , 28:+1) . . . (<8:+1−1 , 28:+1) with <8: = <∗

and ?(<8: , 28:+1) = ?∗, for : ≥ 1.

For all : ≥ 1, we have that max8:≤8<8:+1 ?(<8 , 28+1) = ?∗ (it is ≤ ?∗ as 8: ≥ 9,
and it is ≥ ?∗ as ?(<8: , 28:+1) = ?∗). By Lemma 5.6.25, we conclude that
cycles !: are all cycles on <∗ that have the same value: they are winning
if ?∗ is even, and losing if ?∗ is odd. By M-prefix-independence and
M-cycle-consistency, F is in, if ?∗ is even, and F is in, if ?∗ is odd.

We have therefore reached our goal for this section.

Corollary 5.6.27 (Second item of Theorem 5.4.1) If , is M-prefix-

independent andM-cycle-consistent, then, is $-regular and can be recog-

nized by a deterministic parity automaton built on top ofM.

Remark 5.6.28 As discussed in Remark 2.7.7, our proof shows as a
by-product that even if � is infinite, many colors can be assumed to be
equal (w.r.t.,) — there are only finitely many classes of truly different
colors.

5 Characterization of $-regularity through finite-memory determinacy 138

5.7 Applications

We provide a thorough application of our concepts to a discounted-sum
objective. We then discuss more briefly mean-payoff and total-payoff
objectives.

5.7.1 Discounted sum

We apply our results to a discounted-sum objective in order to illustrate
our notions. A specificity of this example is that its $-regularity depends
on some chosen parameters — we use our results to characterize the
parameters for which it is $-regular or, equivalently (Theorem 5.4.3),
chromatic-finite-memory-determined. The $-regularity of discounted-
sum objectives has also been studied in [CDH09; BCV18] with different [CDH09]: Chatterjee et al.

(2009), Expressiveness and Clo-

sure Properties for Quantitative

Languages

[BCV18]: Bansal et al. (2018),
Comparator automata in quanti-

tative verification

techniques and goals.

In this first part, we strive to illustrate as well as possible the notions
and theorems from this chapter. We therefore defer more numerical and
elementary proofs to Subsection 5.7.2.

Let � ⊆ ℚ be non-empty and bounded. For � ∈ (0, 1) ∩ℚ, we define the
discounted-sum function DS� : �$ → ℝ such that for F = 2122 . . . ∈ �$,

DS�(F) =
∞∑
8=1

�8−1 · 28 .

This function is always well-defined for a bounded �, and takes values We remind the reader that for
� ∈ (0, 1),

∞∑
8=1

�8−1 =
1

1 − � .
in [inf�

1−� ,
sup�
1−�].

We define the objective DS≥0
� = {F ∈ �$ | DS�(F) ≥ 0} as the set of

infinite words having a non-negative discounted sum, and let∼ be its right
congruence. We will analyze cycle-consistency and prefix-independence
of DS≥0

� to conclude under which conditions (on � and �) it is chromatic-
finite-memory-determined. First, we discuss a few properties of the
discounted-sum function.

Basic properties. We extend function DS� to finite words in a natural
way: for F ∈ �∗, we define DS�(F) = DS�(F0$). For F ∈ �∗, we define
|F | as the length of F (so F ∈ � |F |). First, we notice that for F ∈ �∗ and
F′ ∈ �$, we have

DS�(FF′) = DS�(F) + �|F |DS�(F′).

Therefore,

FF′ ∈ DS≥0
� ⇐⇒

DS�(F)
�|F |

≥ −DS�(F′).

5 Characterization of $-regularity through finite-memory determinacy 139

This provides a characterization of the winning continuations of a finite
word F ∈ �∗ by comparing the discounted sum of the continuations to
the value DS�(F)

�|F | .

This leads us to define the gap of a finite word F ∈ �∗, following ideas
in [BHO15], as [BHO15]: Boker et al. (2015),

The Target Discounted-Sum

Problem

gap(F) =

> if DS�(F)
�|F | ≥ − inf�

1−� ,

⊥ if DS�(F)
�|F | < − sup�

1−� ,
DS�(F)
�|F | otherwise.

Intuitively, the gapof afinitewordF ∈ �∗ represents how far its discounted
sum is from going back to 0: if F′ ∈ �$ is such that DS�(F′) = −gap(F),
then DS�(FF′) = 0. We can see that for all words F ∈ �∗, if gap(F) = >,
then all continuations are winning (i.e., F−1, = �$) as it is not possible
to find an infinite word with a discounted sum less than inf�

1−� . Similarly, if
gap(F) = ⊥, then all continuations are losing (i.e., F−1, = ∅).

Cycle-consistency. We can show that objective DS≥0
� is always Mtriv-

cycle-consistent.

Proposition 5.7.1 For all bounded � ⊆ ℚ, � ∈ (0, 1) ∩ℚ, objective DS≥0
� is

Mtriv-cycle-consistent.

Proof. LetF ∈ �∗. We show that (col∗(Φlose,F
Mtriv
))$ ⊆ F−1DS≥0

� —we discuss
how to adapt the proof to show that (col∗(Φwin,F

Mtriv
))$ ⊆ F−1DS≥0

� at the end.

Let F1 , F2 , . . . ∈ col∗(Φlose,F
Mtriv
). We want to show that FF1F2 . . . ∈ DS≥0

� ,
i.e., that DS�(FF1F2 . . .) < 0.

For : ≥ 1, as F: ∈ Φlose,F
Mtriv

, we have DS�(FF$
:) < 0. Since, moreover,

DS�(FF$
:) = DS�(F) + �|F |DS�(F$

:)

= DS�(F) + �|F |
∞∑
8=0

�8 |F: |DS�(F:)

= DS�(F) + �|F |DS�(F:) 1
1 − �|F: | ,

we obtain

DS�(F:) < −DS�(F)1 − �
|F: |

�|F |
. (5.2)

In particular, for : = 1, there exists & > 0 such that

DS�(F1) = −& − DS�(F)1 − �
|F1 |

�|F |
. (5.3)

5 Characterization of $-regularity through finite-memory determinacy 140

E1 E2 E3

1
1
2

...

−1
�

−1
2�

...
0

Figure 5.14: Arena with in-
finitely many edges in which
P1 needs infinite memory to
win for condition DS≥0

� from
E1 for any � ∈ (0, 1)∩ℚ, with
� = [−:, :] ∩ ℚ for : suffi-
ciently large.

We have that

DS�(FF1F2 . . .) = DS�(F) + �|F |
∞∑
:=1

�
∑:−1
8=1 |F8 |DS�(F:)

≤ DS�(F) − �|F |& − �|F |
∞∑
:=1

�
∑:−1
8=1 |F8 |DS�(F)1 − �

|F: |

�|F |

≤ DS�(F) − �|F |& − DS�(F)
∞∑
:=1

�
∑:−1
8=1 |F8 |(1 − �|F: |),

where the second line uses Equation (5.3) for : = 1, and Equation (5.2) for
: ≥ 2. The series

∞∑
:=1

�
∑:−1
8=1 |F8 |(1 − �|F: |) =

∞∑
:=1

�
∑:−1
8=1 |F8 | − �∑:

8=1 |F8 |

is telescoping (we can expand it as 1−�|F1 |+�|F1 |−�|F1 |+|F2 |+�|F1 |+|F2 |−. . .).
As lim:→∞ �

∑:
8=1 |F8 | = 0, this series converges to 1. We conclude that

DS�(FF1F2 . . .) ≤ DS�(F) − �|F |& − DS�(F) = �|F |& < 0,

as required.

A proof that (col∗(Φwin,F
Mtriv
))$ ⊆ F−1DS≥0

� can be done in a similar way,
with no need to extract an & as we are then only looking for a non-strict
inequality.

As DS≥0
� is Mtriv-cycle-consistent, it is $-regular if and only if it is addi-

tionallyM-prefix-independent for some memory structureM.

Prefix-independence. If � = [−:, :] ∩ℚ for some : ∈ ℕ \ {0}, objective
DS≥0

� is not M-prefix-independent for any M, as ∼ has infinite index.
Indeed, for 8 ≥ 1 and F8 = 1

8 ∈ �∗, we have F1 � F2 � . . .—we can see
how to use this to exhibit an arena in which P1 can win but needs infinite
memory to do so in Figure 5.14.

For finite � ⊆ ℤ, the picture is more complicated; for � = [−:, :] ∩ ℤ

for some : ∈ ℕ, we characterize when DS≥0
� isM-prefix-independent for

some finite structure M. We give an intuition of the two situations in
which that happens: (8) if � is too small, then the first non-zero color seen
determines the outcome of the game, as it is not possible to compensate
this color to change the sign of the discounted sum; (88) if � = 1

= for some

5 Characterization of $-regularity through finite-memory determinacy 141

integer = ≥ 1, then the gap function actually takes only finitely many
values, which is not the case for other values of �.

In the proof, we respectively use symbols d·e and b·c for the ceiling and
floor functions.

Proposition 5.7.2 Let � ∈ (0, 1) ∩ℚ, : ∈ ℕ, and � = [−:, :] ∩ ℤ. Then,

the right congruence ∼ of DS≥0
� has a finite index if and only if : < 1

� − 1 or �
is equal to

1
= for some integer = ≥ 1.

Proof. We definemaxDS = sup�
1−� = :

1−� andminDS = − :
1−� , as respectively

the maximal and minimal discounted-sum value achievable with colors
in �.

The key property that we will show is that gaps characterize equivalence
classes of prefixes: for F1 , F2 ∈ �∗,

F1 ∼ F2 ⇐⇒ gap(F1) = gap(F2). (5.4)

Once this is proven, it is left todetermine thenumber of different gapvalues,
which will correspond to the index of ∼. The right-to-left implication
of (5.4) is clear from the definition of gap and the related discussion: if
the gaps are >, all the continuations are winning; if the gaps are ⊥, all the
continuations are losing; else, for any continuation, the final discounted-
sum values will have the same sign. We prove the left-to-right implication
for each case of the disjunction from the statement and discuss the number
of gap values.

We first assume : < 1
� − 1. The case : = 0 is trivial (as all words are

winning) — we assume : ≥ 1. The inequality : < 1
� − 1 is equivalent to We simply use that 1

� − 1 =
1−�
� and then divide by 1− �.1

� > :
1−� . In this case, there are only three possible gaps:

I for F ∈ 0∗, gap(F) = 0.
I for F ∈ 0∗2 with 2 ≥ 1, then DS�(F)

�|F | = 2
� ≥ 1

� > :
1−� = −minDS — so

for any word F ∈ 0∗2�∗, gap(F) = >.
I for F ∈ 0∗2�∗ with 2 ≤ −1, symmetrically, gap(F) = ⊥.

These three possible gaps clearly correspond to different equivalence
classes for the right congruence ∼, so there are three such equivalence
classes. Hence, the prefix classifierS, has three states [�]∼, [1]∼, and [−1]∼. The prefix classifier is then

�−1 1 .2 > 02 < 0

0 ��
We now assume that : ≥ d 1

� − 1e. The left-to-right implication of (5.4) is
clear in the cases in which all, or none, of the continuations are winning.
The difficult case is when both F1 and F2 have a rational gap. We show
that if their gaps are different rational numbers, then they have different
winning continuations. We assume w.l.o.g. that gap(F2) < gap(F1). We
show that there is an infinite continuation that has a discounted sum
exactly equal to −gap(F1): this infinite continuation is winning after F1
but losing after F2.

5 Characterization of $-regularity through finite-memory determinacy 142

0 2 >−2−4⊥

0

1−1

2−2

−1

0, 1, 2

−2

1

−2,−1

2

0

2

� \ {2}
��

Figure 5.15: Prefix classifier of DS≥0
� for � = 1

2 and � = {−2,−1, 0, 1, 2}. The value in a state is the gap characterizing the

equivalence class for ∼ corresponding to that state. Here, sup�
1−� = 4 and inf�

1−� = −4. The asymmetry around 0 comes from
the “≥ 0” inequality in the definition of the condition: when state −4 is reached, there is exactly one winning continuation
(2$), but a state with gap value 4 would only have winning continuations (hence, it is part of state >). Notice that we can
build a parity automaton on top of this structure that recognizes DS≥0

� : an infinite word is winning as long as it does not
reach ⊥.

Showing that there exists F ∈ �$ such that DS�(F) = −gap(F1) amounts
to showing that there is a representation of −gap(F1) in the (rational but
not necessarily integral) base 1

� with digits in �, with one digit before
the decimal point. We can adapt the well-known greedy expansion [Rén57] [Rén57]: Rényi (1957), Repre-

sentations for real numbers and

their ergodic properties

to our context to show this (details in Subsection 5.7.2, Proposition 5.7.4
below).

It is left to show that there are finitely many gap values if and only if �
equals 1

= for some integer = ≥ 1. One implication is clear: if � = 1
= for

some integer = ≥ 1, then there are finitely many possible gaps as gaps are
then always integers between minDS and maxDS, >, or ⊥. We illustrate
this implication by depicting the prefix classifier of DS≥0

� for � = 1
2 and

: = 2 in Figure 5.15. The proof of the other implication is provided in
Subsection 5.7.2, Proposition 5.7.5.

Corollary 5.7.3 Let � ∈ (0, 1) ∩ℚ, : ∈ ℕ, and � = [−:, :] ∩ℤ. This result does not provide
optimal memory bounds:
when DS≥0

� is $-regular, it is
actually always memoryless-
determined. This improved
memory bound follows from
the fact that under this hy-
pothesis, DS≥0

� is actually a
regular safety objective and its
complement is a regular reacha-
bility objective, forwhichmem-
ory is characterized in Chap-
ter 7.

I If : < 1
� − 1, then DS≥0

� is memoryless-determined.

I If : ≥ d 1
� − 1e, then DS≥0

� is chromatic-finite-memory-determined if

and only if � is equal to
1
= for some integer = ≥ 1.

Proof. This follows from Propositions 5.7.1 and 5.7.2, thanks to Theo-
rem 5.4.1. The only thing to clarify is that memoryless strategies suffice
in case : < 1

� − 1. The proof of Proposition 5.7.2 tells us that in this case,
DS≥0

� is $-regular and can be recognized by a parity automaton that can
be built on top of S, ⊗Mtriv, which has three states. To use this structure
as a memory structure, we can notice that the game is already over in
states [1]∼ and [−1]∼ (as every continuation wins or every continuation
loses). Thus, it is not necessary to use these states to play, and we can
consider that we always stay in state [�]∼.

5.7.2 Missing proofs for the discounted sum application This subsection contains tech-
nical details required for the
proof of Proposition 5.7.2, but
brings little insight into strat-
egy complexity of games. The
uninterested reader may skip
ahead to Subsection 5.7.3.

We prove the two properties used in Proposition 5.7.2 whose proofs were
omitted. We use notations from the proof of Proposition 5.7.2 itself.

5 Characterization of $-regularity through finite-memory determinacy 143

Proposition 5.7.4 Let � ∈ (0, 1) ∩ ℚ, : ∈ ℤ such that : ≥ d 1
� − 1e, and

� = [−:, :]∩ℤ. For any real number G, −:1−� ≤ G ≤ :
1−� , there existsF ∈ �$

such that G = DS�(F).

Proof. This problem can be rephrased as a number representation problem:
we are looking for a sequence of “digits” (G8)8≥0 in � such that G =
G0.G1G2 . . . in base 1

� , i.e., such that

G =
∞∑
8=0

G8�8 .

Notice that
∑∞
8=0 G8�

8 = DS�(G0G1 . . .). It is known that every number
G ∈ [0, 1) has (at least) one representation 0.G1G2 . . . in base 1

� with digits
in {0, 1, . . . , d 1

� − 1e}, and one such representation can be found using the
greedy expansion [Rén57]. [Rén57]: Rényi (1957), Repre-

sentations for real numbers and

their ergodic propertiesWe adapt this greedy expansion to our setting (for a potentially greater G
and larger set� of digits). Let G ∈ ℝ such that −:1−� ≤ G ≤ :

1−� .Wedealwith
the case G ≥ 0 — the negative case is symmetric. We set G0 = min(:, bGc);
clearly, G0 ≤ G. Then inductively, if G0 , . . . , G;−1 have been defined, we
define G; as the greatest integer in {0, . . . , :} such that

;∑
8=0

G8�8 ≤ G.

The series
∑∞
8=0 G8�

8 is converging, as every term is non-negative and it is
bounded from above by G. We show that it converges to G, which ends the
proof. Let & ≥ 0. Assume by contradiction that

∑∞
8=0 G8�

8 ≤ G − &. Let 9 be
the least index such that� 9 ≤ &. Clearly, for any 9′ ≥ 9, G 9′ = :—otherwise,
a greater digit could have been picked during the inductive greedy
selection. Still, not every digit G0 , G1 , . . . can be :, as

∑∞
8=0 :�

8 = :
1−� > G−&.

Let ; be the greatest index such that G; ≠ :. We show that a digit ≥ G; + 1
should have been picked instead of G; for the digit at index ;, leading to a
contradiction. To do so, it is sufficient to show that

(G; + 1)�; +
;−1∑
8=0

G8�8 ≤ G.

We have

(G; + 1)�; +
;−1∑
8=0

G8�8 =
∞∑
8=0

G8�8 + �; −
∞∑

8=;+1
G8�8

=
∞∑
8=0

G8�8 + �; −
∞∑

8=;+1
:�8 as G8 = : for 8 ≥ ; + 1

=
∞∑
8=0

G8�8 + �; − :�
;+1

1 − �

5 Characterization of $-regularity through finite-memory determinacy 144

=
∞∑
8=0

G8�8 + �;(1 − :�
1 − �).

Since :�
1−� ≥

d 1
�−1e�
1−� = d 1−�� e �

1−� ≥ 1, we have that �;(1 − :�
1−�) ≤ 0, which

implies that

(G; + 1)�; +
;−1∑
8=0

G8�8 ≤
∞∑
8=0

G8�8 < G,

a contradiction. We conclude that G = DS�(G0G1 . . .).

Proposition 5.7.5 Let � ∈ (0, 1) ∩ ℚ, : ∈ ℤ such that : ≥ d 1
� − 1e, and

� = [−:, :] ∩ ℤ. If � ≠ 1
= for all integers = ≥ 1, the gap function takes

infinitely many values.

Proof. We assume that � = ?
@ with ?, @ ∈ ℕ co-prime, ? ≥ 2 and @ > ?,

and we show that the gap function takes infinitely many values. To do so,
we exhibit an infinite word F = 2122 . . . ∈ �$ such that the sequence of
rationals (gap(21 . . . 28))8≥1 never takes the same value twice.

We will use the following inductive property of gaps: for F ∈ �∗ and
2 ∈ �,

gap(F2) = gap(F)
�
+ �|F |−12

�|F |
=

1
�
(gap(F) + 2) , (5.5)

unless some gap in this equation equals > or ⊥. Notice that under our
hypotheses, d 1

� − 1e = b 1
�c (this equality does not hold when � = 1

= for
some integer = ≥ 1).

We set 21 = 1. Then, gap(21) = 1
� = @

? . Inductively, if 21 , . . . , 28−1 are
defined, we set 28 = −bgap(21 . . . 28−1)c (we remove the largest possible
integer from the current gap, while keeping a positive gap value). We set
68 = gap(21 . . . 28) for conciseness.
We first show that if all 68’s are rational (i.e., are not > or ⊥), then no
two 68’s can be equal. To do so, we show inductively that the reduced
denominator of fraction 68 is ? 8 for all 8 ≥ 1. This is true for 8 = 1. For
8 > 1, assume it is true for 8 − 1. Then, 68−1 = <

? 8−1 for some < co-prime
with ?. Using Equation (5.5),

68 =
1
�
· (68−1 + 28

)
=

1
�
·
(
<
? 8−1 + 28

)
=
@(< + 28? 8−1)

? 8
.

This last fraction is irreducible: @ and ? are co-prime, and the fact that <
and ? are co-prime implies that < + 28? 8−1 and ? are co-prime.

We now prove by induction that our scheme is well-defined by showing
that for all 8 ≥ 1, 28 ∈ � and 0 < 68 ≤ 1

� . This is true for 8 = 1 (as
: ≥ 1 for any possible value of �). For 8 > 1, if this is true for 8 − 1,

5 Characterization of $-regularity through finite-memory determinacy 145

E1 E2 . . .

...21 . . . 281

21 . . . 282

...

F1

F 1
2

...

Figure 5.16: Infinite arena in
which P2 needs infinite mem-
ory to win from E1 for objec-
tive DS≥0

� for � ∈ (0, 1) ∩ ℚ

with � ≠ 1
= for all integers

= ≥ 1, : = d 1
� − 1e, and

� = [−:, :] ∩ℤ.

then −28 = b68−1c ≤ b 1
�c, so 28 ∈ �. Moreover, 68 = 1

�

(
68−1 + 28

)
. Since

68’s cannot be integers (as their reduced denominator is not 1 by an
earlier property), we have that 68−1 + 28 is not an integer either. Therefore,
0 < 68−1 + 28 < 1, so 0 < 68 < 1

� . As 1
� < :

1−� = maxDS, the values of the
considered gaps are never > or ⊥.

Remark 5.7.6 For � ∈ (0, 1) ∩ℚ with � ≠ 1
= for all = ≥ 1, : ≥ d 1

� − 1e,
and � = [−:, :]∩ℤ, Proposition 5.7.2 along with Theorem 5.4.1 implies
that any memory structure is insufficient to play optimally (for at least
one player). However, this does not directly give an explicit arena in
which some player requires infinite memory to play optimally. Here,
we show how to construct such an arena given the extra results from
Subsection 5.7.2.
The proof of Proposition 5.7.5 gives us 2122 . . . ∈ �$ such that
(gap(21 . . . 28))8≥1 is a sequence of distinct values in [0,maxDS]. Hence,
by compactness of [0,maxDS], there exists a subsequence (8 9)9≥1 and
G ∈ [0,maxDS] such that lim9→∞ gap(21 . . . 28 9) = G. We can moreover
extract a subsequence such that either all elements are greater than G,
or all elements are less than G. We assume w.l.o.g. that for all 9 ≥ 1,
gap(21 . . . 28 9) < G (this implies that G ≠ 0). The proof is symmetric if all
the gaps are greater than G (which would imply that G ≠ maxDS).
By Proposition 5.7.4, for all & > 0 sufficiently small, there existsF& ∈ �$

such that DS�(F&) = −G + &. We can define an infinite arena in which
P2 needs infinite memory to win, depicted in Figure 5.16. In this arena,
P1 may choose to reach a gap arbitrarily close (but not equal) to G in
E2, and then P2 is always able to bring the discounted sum below 0 by
choosing a word reaching a discounted sum sufficiently close to −G.

5.7.3 Other objectives

Mean payoff. Let � ⊆ ℚ be non-empty. We consider the mean-payoff
objective MP≥0, containing the infinite words whose mean payoff is non- Objective MP≥0 was de-

fined in Definition 2.4.12 on
page 25.

negative. This condition isMtriv-prefix-independent for any set of colors.
However, we also know that infinitememory is necessary to play optimally
in some infinite arenas (this was discussed in Section 3.2). Here, we show
that chromatic-finite-memory strategies do not suffice to play optimally
(even when � = {−1, 1}) by analyzing cycle-consistency of MP≥0. If we

5 Characterization of $-regularity through finite-memory determinacy 146

consider, for = ∈ ℕ,

F= = 1, . . . , 1︸ ︷︷ ︸
= times

,−1, . . . ,−1︸ ︷︷ ︸
=+1 times

,

we have that (F=)$ is losing for all = ≥ 0, but the infinite wordF0F1F2 . . .
has a mean payoff of 0 and is thus winning. This shows directly that MP≥0

is notMtriv-cycle-consistent. The argument can be adapted to show that
MP≥0 is notM-cycle-consistent for any structureM.

Lemma 5.7.7 For all structuresM, MP≥0
is notM-cycle-consistent.

Proof. LetM = (", <init , upd) be a structure. For = ∈ ℕ, let

F= = 1, . . . , 1︸ ︷︷ ︸
= times

,−1, . . . ,−1︸ ︷︷ ︸
=+1 times

.

Let "= be the set of states < ∈ " such that there exists : ≥ 1 with
< = ∗upd(<, F:

=). Each"= is non-empty as," being finite, iterating the
function < ↦→ ∗upd(<, F=) necessarily goes multiple times through at
least one state. Let < ∈ " be a state in set"= for infinitely many =’s, and
F be any finite word in col∗(Π<init ,<). Let =1 , =2 , . . . be the indices such that
< ∈ "=8 , and let :1 , :2 , . . . be such that < = ∗upd(<, F:8

=8). Every word
F:8
=8 is a losing cycle after any finite word (in particular after F). However,

it is possible to find a subsequence of (F:8
=8)8≥1 with a non-negative mean

payoff by always taking a word F=8 that bring the sum of the colors above
0 during the first =8 1’s.

Total payoff. Let � ⊆ ℚ be non-empty. We define the total-payoff function
TP : �$ → ℝ ∪ {−∞,∞} such that for F = 2122 . . . ∈ �$,

TP(F) = lim sup
=→∞

=∑
8=1

28 .

We define the objective TP≥0 = {F ∈ �$ | TP(F) ≥ 0} as the set of infinite
words whose total payoff is non-negative.

The right congruence ∼ of TP≥0 does not have finite index, even for
� = {−1, 1}: we indeed have that −1 � (−1,−1) � . . . is an infinite
decreasing sequence of prefixes. Condition TP≥0 is therefore not M-
prefix-independent for any structureM. We can also show that TP≥0 is
not M-cycle-consistent for any M, using the exact same argument as
for MP≥0. Chromatic-finite-memory strategies are therefore insufficient
to play optimally for TP≥0 in infinite arenas. Once again, this situation
contrasts with the case of finite arenas, in which memoryless strategies
suffice to play optimally [GZ04]. [GZ04]: Gimbert et al. (2004),

When Can You Play Position-

ally?

5 Characterization of $-regularity through finite-memory determinacy 147

5.8 Wrap-up

We proved an equivalence between chromatic finite-memory determinacy
of an objective in games on infinite graphs and $-regularity of the corre-
sponding language of infinite words, generalizing a result by Colcombet
and Niwiński [CN06]. A “strategic” consequence of our result is that [CN06]: Colcombet et al.

(2006), On the positional deter-

minacy of edge-labeled games

chromatic finite-memory determinacy restricted to the one-player games
of both players implies the seemingly stronger chromatic finite-memory
determinacy over two-player zero-sumgames. A “language-theoretic” con-
sequence is a relation between the representation of $-regular languages
by parity automata and the memory structures used to play optimally
in zero-sum games, using as a tool the prefix classifier classifying the
equivalence classes for the right congruence.

One possible improvement over our result is to deduce tighter chromatic
memory requirements in two-player games compared to one-player games:
our proof technique gives as an upper bound on the two-player memory
requirements a product between the prefix classifier and a sufficient
structure for one-player arenas, but smaller structures often suffice (Con-
jecture 5.4.5). This behavior contrasts with the case of finite arenas, in
which a memory structure sufficient for both players in finite one-player
arenas also suffices in finite two-player arenas (Chapter 4). More generally,
our results do not provide precise (chromatic) memory requirements
of $-regular objectives, for which there are existing results on Muller
conditions [DJW97; Cas22], and to which the second part Obtaining precise [DJW97]: Dziembowski et al.

(1997), How Much Memory is

Needed to Win Infinite Games?

[Cas22]: Casares (2022), On

the Minimisation of Transition-

Based Rabin Automata and

the Chromatic Memory Require-

ments of Muller Conditions

memory requirements of this thesis is devoted.

Obtaining precise memory requirements

Known and unknown memory

requirements of $-regular objectives 6

Our focus in the rest of this second part Obtaining precise memory require-

ments is to obtain, understand, and compute precisememory requirements
for interesting classes of objectives. Due to their relevance in logic and
synthesis, as well as their deep link with finite-memory determinacy (see
Chapter 5), focusing on $-regular objectives is a natural way forward. This
is also hopefully a stepping stone to study the strategy complexity of
other more involved objectives. We sketch here a picture of what is known
and unknown about the memory requirements of $-regular objectives,
and what answers we bring in the subsequent chapters. We look at this
question through the viewpoint of the contributions in Chapters 4 and 5,
highlighting what is still missing to get a complete picture.

This chapter serves as a motivation and an introduction to Chapters 7
and 8, which contain our main contributions to this topic.

6.1 The missing pieces . 149

6.2 The case of Muller conditions . 151

6.1 The missing pieces

As was stated in Theorems 5.4.1 and 5.4.3, one can relate the memory
requirements of an $-regular objective to its representation as a deter-
ministic parity automaton (DPA). We may wonder how close this result
brings us to characterizing precisely the memory requirements of $-
regular objectives. Albeit quite general, there are still multiple questions
about memory requirements that this result fails to answer precisely. We
introduce these questions by highlighting two of its limitations.

1. The first limitation comes from the asymmetry of its two implications.
In one direction, which is the novel contribution from Theorem 5.4.3,
we start from a sufficient memory structureM for some objective,
and show that the objective can then be represented as a DPA built
on top of the automatic structureM ⊗ S, . In the other direction, we
simply use the known memoryless determinacy of parity conditions:
$-regular objectives are recognized by a DPA, and keeping track of
the information given by this DPA transforms any game into a (larger)
game endowed with a (simpler) parity condition. Now, what does
this tell us about the memory requirements of an $-regular objective?
We know two things:

I a minimal memory structure always has at most as many states
as any DPA representing the objective;

6 Known and unknown memory requirements of $-regular objectives 150

I a minimal memory structure and a minimal DPA differ at most
by an “S, factor”.

Yet, we do not know in general how to get the minimal memory
requirements of an $-regular objective from its representation as
a DPA. We get close to a satisfying answer for prefix-independent
$-regular objectives , , for which S, = Mtriv has just one state:
a minimal memory structure (sufficient for both players) is then
exactly a minimal DPA recognizing the objective (this follows from
Theorem 5.4.1). But even then, this does not give the full picture,
which we now argue.

2. The second, perhaps more fundamental limitation of Theorem 5.4.3
is that it makes an assumption on the memory requirements of both
players simultaneously, as it asks for a memory structure sufficient
for both players. This assumption therefore conceals a possibly large
gap between the individual memory requirements of the two players.
This limitation also applied to Theorem 4.4.4 (which deals with games
played on finite arenas), which cannot be used in general to give tight
bounds about memory requirements of each individual player in
two-player games played on finite arenas.

We illustrate these two limitations in a small example: in this example,
the representation of an objective as a DPA is an upper (but not a tight)
bound on the memory requirements, and the memory requirements of
each player differ.

Example 6.1.1 Let � = {0, 1}. We consider the objective We recall that a DBA is a spe-
cial kind ofDPAwith only pri-
orities 1 and 2 (Remark 2.7.9),
so we can use a DBA in the
results of Chapter 5.

, = Büchi(0)∪
(�∗00�$) of words that see 0 infinitely often or see 0 twice in a row at
some point. This objective is recognized by the DBA with three states
depicted in Figure 6.1 (left), and it is not possible to recognize it using a
DBA (or even with a DPA) with fewer states. The reason we cannot repre-

sent it with fewer states is that
we need at least one state per
equivalence class of the right
congruence (Lemma 2.8.8), of
which, has three.

We therefore know that
both players can play optimally using three states of memory, using the
memory structure underlying this automaton. The prefix classifier S, of
this objective has three states corresponding to three equivalence classes
of finite words. Its structure corresponds to the underlying structure of
the DBA in Figure 6.1. According to Theorem 5.4.3, this suggests that
P1 and P2 may need between one and three states of memory to play
optimally.
It turns out that P1 can play optimally with just one state of memory
in all arenas (i.e., , is half-positional), which can be proved using
upcoming results from Chapter 8. See Example 8.3.3 for a proof

and a more thorough discus-
sion of this example.

Meanwhile, P2 cannot play optimally
with just one state of memory, as is witnessed by the arena in Figure 6.1
(right). If the play starts in E1, we observe that P2 loses by not using the
loop on E2 and going immediately to E3, as well as by staying infinitely
often in E2. Player P2 can actually win, but needs to loop at least once
(and finitely many times) on E2 before going to E3, which cannot be
done without memory. For this objective, P2 can play optimally with

6 Known and unknown memory requirements of $-regular objectives 151

@init @0 @00

0•
1
•

0•1 0, 1• E1 E2 E3
0

101

0
1

Figure 6.1: A DBA representing the objective, = Büchi(0) ∪ (�∗00�$) from Example 6.1.1 (left), and an arena in which
P2 cannot play optimally with a memoryless strategy (right).

two states of memory: intuitively, P2 must keep track of whether the
current history is in @init or @0 , but there is no point in keeping track of
state @00 , as the play is already lost in that state for P2.

The following questions therefore remain: given an $-regular objective,
what is a minimal (i.e., with as few states as possible) memory structure
sufficient to play optimally for both players? And for a single player? And
how to compute it? A less ambitious (but still open) question would
be to understand the memoryless case: how to characterize and decide
memoryless determinacy or half-positionality? And would these precise
results give us even more information on the representation of $-regular
objectives, perhaps using other acceptance conditions than the parity
one? Progress toward these questions can be seen as strengthenings of
Theorem 5.4.3.

In the next section, we give a brief overview ofMuller conditions, for which
there already are complete answers to these questions thanks to existing
works published between 1982 and 2022.

6.2 The case of Muller conditions

Muller conditions (Definition 2.4.11) are objectives whose winning words
depend solely on the set of colors seen infinitely often. They are usually
specified by a set F ⊆ 2� of sets of colors. The derived Muller condition
then contains the set of words F ∈ �$ such that the set of colors seen
infinitely often byF is a set ofF . They are in particular prefix-independent,
i.e., their prefix classifier has just one state. A systematic study of the
memory requirements of Muller conditions started in the 1980s, with
first general upper bounds through the later appearance record construc-

tion [GH82; McN93], culminating in a complete characterization of their [GH82]: Gurevich et al.
(1982), Trees, Automata, and

Games

[McN93]: McNaughton
(1993), Infinite Games Played

on Finite Graphs

(chaotic) memory requirements for each individual player [DJW97].

[DJW97]: Dziembowski et al.
(1997), How Much Memory is

Needed to Win Infinite Games?

Chromatic versus chaotic memory. About chromatic memory require-
ments of Muller conditions, we mention a recent work by Casares [Cas22]

[Cas22]: Casares (2022), On

the Minimisation of Transition-

Based Rabin Automata and

the Chromatic Memory Require-

ments of Muller Conditions

that characterizes the chromatic memory requirements of Muller condi-
tions for each individual player, once again through their representations
using a specific type of automaton. It uses the Rabin acceptance condition,
which subsumes parity acceptance conditions.

6 Known and unknown memory requirements of $-regular objectives 152

Theorem 6.2.1 ([Cas22, Theorem 27]) [Cas22]: Casares (2022), On

the Minimisation of Transition-

Based Rabin Automata and

the Chromatic Memory Require-

ments of Muller Conditions

Let, ⊆ �$
be a Muller condition

andM be a memory structure. StructureM suffices for P1 for objective, if

and only if, is recognized by a deterministic Rabin automaton built on top

ofM.

Once again, one direction was already known: Rabin conditions have been
known to be half-positional for some time [Kla94] — but unlike parity [Kla94]: Klarlund (1994),

Progress Measures, Immediate

Determinacy, and a Subset

Construction for Tree Automata

conditions, their complement (Streett conditions) may not be. The other,
novel direction of Theorem 6.2.1 was obtained thanks to results about the
representation of $-regular objectives [CCF21].

[CCF21]: Casares et al. (2021),
Optimal Transformations of

Games and Automata Using

Muller Conditions

This provides, in the special case of Muller conditions, a characterization
of the memory requirements of each player without any blow-up in any
direction of the equivalence, and independently of the memory require-
ments of the other player. It therefore goes beyond the two limitations of
Theorem 5.4.3 sketched in Subsection 6.1. As a bonus, this result allows
linking the problem of finding aminimalmemory structure to the problem
of minimizing a Rabin automaton recognizing a Muller condition, and
implies that the related decision problem (given a Muller condition, is
there a sufficient memory structure with ≤ : states for a fixed :?) is
NP-complete.

The characterization for chaotic memory [DJW97] was also recently revis- [DJW97]: Dziembowski et al.
(1997), How Much Memory is

Needed to Win Infinite Games?

ited by Casares, Colcombet, and Lehtinen [CCL22], giving once again a

[CCL22]: Casares et al. (2022),
On the Size of Good-For-Games

Rabin Automata and Its Link

with the Memory in Muller

Games

link between memory requirements and representation of the objectives
through automata.

Theorem 6.2.2 ([CCL22, Theorem 5]) Let, ⊆ �$
be a Muller condition.

PlayerP1 can play optimally in all arenas with a chaotic memory structure with

: states if and only if, is recognized by a good-for-games Rabin automaton

with : states.

Good-for-games automata are a class of non-deterministic automata whose
non-determinism can be resolvedwith a strategy that only looks at the past.
They were first introduced by Henzinger and Piterman [HP06] to simplify [HP06]: Henzinger et al.

(2006), Solving Games Without

Determinization

the synthesis process by allowing some constrained non-determinism
in the automata instead of requiring deterministic automata. The result
of Theorem 6.2.2 shows a way to express even chaotic memory structures

using representations of $-regular objectives. This is a promising research
direction that we leave as a future prospect.

Why does it not solve the problem? The work [DJW97] is sometimes
quoted as fully solving the problem of the memory requirements of
$-regular objectives. For example, in [BCJ18], we can read [BCJ18]: Bloem et al. (2018),

Graph Games and Reactive Syn-

thesisThe results of Dziembowski et al. [DJW97] give precise memory re-

quirements for strategies in 2-player games with $-regular objectives.

6 Known and unknown memory requirements of $-regular objectives 153

We argue that this is only true for the class of Muller conditions, which is
a subclass of the prefix-independent $-regular objectives, and that it only
gives an upper bound on the memory requirements of $-regular objectives
in general.

An $-regular objective cannot usually be expressed directly as a Muller
condition, but as a Muller condition on top of an automaton structure

(i.e., a deterministic Muller automaton). Let us look back at objective
, = Büchi(0) ∪ (�∗00�$) from Example 6.1.1 above. This objective cannot
be written as a Muller condition on � (as “finite behavior” matters). If we
add to our game the information from the DBA on the left of Figure 6.1
(i.e., by taking the product of the arena with the DBA), then we can
indeed reduce our problem to a Muller condition thanks to the additional
automaton structure. In this augmented game, by adding information
from the automaton to the colors, objective, can be realized as Muller
condition Muller({� ∈ 2& | @0 ∈ � ∨ @00 ∈ �}). We can then apply the
results from [DJW97] to this Muller condition and find that P1 needs just [DJW97]: Dziembowski et al.

(1997), How Much Memory is

Needed to Win Infinite Games?

one state of memory to play optimally.

Nevertheless, the sufficiency of this one state of memory comes after
taking the product of arenas with the DBA, which essentially consists in
playingwith threememory states! This therefore provides an upper bound
on the memory requirements: it suffices to play with 3 · 1 = 3 memory
states. This upper bound is not tight, as discussed in Example 6.1.1: P1 can
actually play optimally without any memory, not even the information
given by the structure of the DBA.

Goals. We seek here an extension of the results about Muller conditions
to more $-regular objectives, focusing on chromatic memory require-
ments. A generalization keeping the same formulation as Theorems 6.2.1
and 6.2.2 is hopeless: for some objectives, the memory is smaller than
the smallest deterministic or good-for-games (or even non-deterministic)
Rabin automaton recognizing the objective (see, e.g., Example 6.1.1 or
objective,2 in Example 5.4.2). In what follows, we discuss two important
classes of $-regular objectives, orthogonal to Muller conditions due to
their heavy reliance on the automatic structure rather than on the “infinite
behavior”.

I In Chapter 7, we characterize the chromatic memory requirements
of regular reachability objectives, which are objectives derived from Notice the distinction be-

tween regular and $-regular.regular languages of finitewords. For such objectives,P1 simplywants
that a prefix of the infinite play realizes a word from a fixed regular
language, while P2 (who plays for a regular safety objective) wants to
avoid this for an infinite duration. Despite the simplicity of these
objectives, there remained many gaps in the understanding of their
memory requirements.

I In Chapter 8, we focus on a more general class of $-regular objectives,
which are those recognized by a deterministic Büchi automaton. We

6 Known and unknown memory requirements of $-regular objectives 154

do not get a full picture of their memory requirements, but we
characterize those that are half-positional, i.e., for which memoryless
strategies suffice to implement optimal strategies for P1.

In both cases, we also study the computational problem of deciding
whether small memory structures suffice to play optimally and, for regular
objectives, of synthesizing them.

The case of regular languages 7

We focus in this chapter on some of the simplest possible objectives: those
that can be expressed with regular languages of finite words — thus, with
deterministic finite automata. For such an objective, the goal of P1 is that,
eventually, a sequence of colors along the play belongs to a fixed regular
language. Although these games are easy to solve, determining minimal
memory structures to play optimally is not trivial. We obtain characteriza-
tions of the chromatic memory requirements for such objectives for both
players, from which we derive complexity-theoretic statements: deciding
whether there exist small memory structures sufficient to play optimally
is NP-complete for both players. We also discuss a slight generalization of We assume that the reader is

familiar with the complexity
classes P and NP. We refer to
book [Pap94, Part III]

[Pap94]: Papadimitriou
(1994), Computational complex-

ity

for an in-
troduction to these concepts.

these objectives to topologically open and topologically closed objectives,
which can be seen as objectives expressible using deterministic infinite
automata.

This chapter is also an opportunity to apply the one-to-two-player lift
from Chapter 4 to a concrete class of objectives and to shed new light on
theM-monotony notion.

The contributions from this chapter are based on joint work with Patricia
Bouyer (Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF), Nathanaël
Fĳalkow (CNRS, LaBRI, Université de Bordeaux & University of Warsaw),
and Mickael Randour (F.R.S.-FNRS & Université de Mons) currently avail-
able on arXiv [BFRV22]. We thank Antonio Casares and Igor Walukiewicz [BFRV22]: Bouyer et al.

(2022), How to Play Optimally

for Regular Objectives?

for discussions that were essential in starting this work.

7.1 Motivation . 156

7.2 Preliminaries: reachability and safety objectives 157

7.3 Safety objectives and monotony . 159

7.4 Reachability objectives and progress 164

7.4.1 Capturing progress . 164
7.4.2 Understanding memory requirements 167
7.4.3 Proof via one-to-two-player lift . 168
7.4.4 Stronger lift for regular objectives . 171
7.5 The complexity of finding small memory structures 172

7.6 Additional proofs and missing technical details 175

7.6.1 Technical details for general safety objectives 175
7.6.2 Technical details for regular reachability objectives 177
7.6.3 Technical details for computational complexity 182
7.7 Synthesizing small memory structures in practice 189

7.7.1 Overview . 189
7.7.2 SAT encoding . 190
7.8 Wrap-up . 192

7 The case of regular languages 156

7.1 Motivation

We have seen in Chapter 6 that the memory requirements of $-regular
objectives are not entirely understood. Perhaps one of the most pressing
open questions in that direction is the case of regular objectives, meaning
the $-regular objectives concerned with finite duration. In this setting, an
objective is induced by a regular language over finite words, and the goal
of the first player is that, eventually, the sequence of colors along the play
belongs to this language. We call such an objective a regular reachability

objective. The opponent’s objective is then to ensure that the sequence
of colors never belongs to the language, which describes a regular safety

objective.

Contributions. We study the chromatic memory requirements of both
regular reachability and regular safety objectives. For both cases, we give
a combinatorial characterization of the memory structures sufficient to
play optimally in all arenas (of any cardinality). As a by-product of the
characterization, we obtain complexity-theoretic statements: given as an
input a deterministic finite automaton representing the objective,

I decidingwhether a fixedmemory structure suffices to play optimally
in all arenas can be done in polynomial time;

I deciding the existence of a sufficient memory structure with a given
number of states is NP-complete.

Fromour characterizations, it also follows that for both regular reachability
and regular safety objectives, chromatic and chaoticmemory requirements
do not coincide.

We also discuss when relevant the extension of our results to the more
general classes of topologically open and topologically closed objectives, which
include respectively the regular reachability and regular safety objectives.
For consistency, we respectively call these more general objectives general
reachability objectives and general safety objectives.

As a corollary, we obtain a finite-to-infinite and an asymmetric one-to-two-

player lift (Theorem 7.4.14): in order to find the memory requirements of
regular objectives for a player over arbitrary — possibly two-player and
infinite — game graphs, it suffices to find the memory requirements over
finite one-player graphs, where this player controls all the vertices.

Additional related works. The work most related to the present chapter
is by Colcombet, Fĳalkow, and Horn [CFH14; CFH22], and gives a charac- [CFH14]: Colcombet et al.

(2014), Playing Safe
[CFH22]: Colcombet et al.
(2022), Playing Safe, Ten Years

Later

terization of chaotic memory requirements for general safety objectives.
Their constructions strongly rely on the model of chaotic memory; indeed,
as a corollary of our results, we will see that already for regular safety
objectives, chromatic and chaotic memory requirements do not coincide.

7 The case of regular languages 157

Regular objectives are also mentioned in [LPR18], where the existence of [LPR18]: Le Roux et al. (2018),
Extending Finite-Memory De-

terminacy by Boolean Combina-

tion of Winning Conditions

finite-memory optimal strategies is shown for Boolean combinations of
objectives involving regular objectives.

Implementation. For experimentation purposes, we have implemented
algorithms that automatically build a memory structure with a minimal
number of states, for both regular reachability and regular safety objectives. The code of the implemen-

tation is available at https:
//github.com/pvdhove/reg

ularMemoryRequirements.

Our implementation uses SAT solvers provided by the Python package
PySAT [IMM18].

[IMM18]: Ignatiev et al. (2018),
PySAT:APythonToolkit for Pro-

totyping with SAT Oracles

Chapter structure. We introduce general/regular reachability/safety
objectives as well as a few concepts to manipulate them in Section 7.2. We
then describe our three kinds of contributions in the subsequent sections:
Section 7.3 discusses general and regular safety objectives, Section 7.4 dis-
cusses general and regular reachability objectives, and Section 7.5 discusses
the computational complexity of finding small memory structures. To ease
the reading, some of the more complex proofs are deferred to Section 7.6.
We then briefly describe the code implementation in Section 7.7.

7.2 Preliminaries: reachability and safety objectives

General/regular, reachability/safety objectives. We focus on two types
of objectives, both derived from a set � ⊆ �∗.

Definition 7.2.1 Let � ⊆ �∗.
The general reachability objective derived from �, which we denote

GenReach(�), is the objective⋃F∈� F�$
of infinite words that have (at least)

one finite prefix in �.
The general safety objective derived from �, which we denote GenSafe(�),
is the objective

⋃
F∈� F�$

of infinite words that have no finite prefix in �. We

have GenSafe(�) = GenReach(�).

General reachability and safety objectives are respectively the topologically
open and topologically closed sets, at the first level of the Borel hierarchy.
When � is a regular language, we call GenReach(�) a regular reachability
objective and GenSafe(�) a regular safety objective. We then call an objective
regular if it is a regular reachability or a regular safety objective. Our
characterizations apply to regular reachability and safety objectives, but
we sometimes discuss when we may generalize our results to the general
reachability and safety objectives (i.e., topologically open and closed sets).
For computational complexity questions (Section 7.5), we will restrict
our focus to regular reachability and safety objectives so that an objective
can be finitely represented as a DFA. The objectives that we consider are
therefore very simple both in terms of their algebraic representation (using

https://github.com/pvdhove/regularMemoryRequirements
https://github.com/pvdhove/regularMemoryRequirements
https://github.com/pvdhove/regularMemoryRequirements

7 The case of regular languages 158

automata representing languages of finite words) and in terms of their
topology (they are at the first level of the Borel hierarchy).

Prefix-classifier automaton. Starting from a regular reachability or
safety objective, ⊆ �$ derived from a set � ∈ �∗, we can associate as
usual the prefix classifier S, with, . Here, it makes sense to generalize Prefix classifiers were defined

in Definition 2.8.11.the definition of a prefix classifier to being a deterministic automaton rather
than just an automaton structure, as there is a natural choice for a set of
final states.

Definition 7.2.2 Let, ⊆ �$
be a general safety or reachability objective. The

prefix-classifier automaton of, is the automaton D, = (&, �, @init , �, �),
where &, @init, and � are defined as for prefix classifiers, and � = {@fin} where
@fin = [F]∼ for some F ∈ � (the choice of F in � does not matter).

Notice that the final state of such an automaton is always unique and
absorbing, i.e., for all 2 ∈ �, �(@fin , 2) = @fin. This matches the intuition
that once a word of � is seen and the reachability (resp. safety) game is
won (resp. lost), it stays that way for the rest of the game.

One uncommon fact about this definition of automaton D, with respect
to our usual conventions is that it may have an infinite state space.We allow
this convenient abuse for objects D, throughout this chapter, and we
carefully remind when it is allowed to be infinite. Using the well-known
Myhill-Nerode theorem [Ner58], we obtain that a general reachability or [Ner58]: Nerode (1958), Linear

Automaton Transformationssafety objective, is regular if and only if ∼ has finitely many equivalence
classes if and only if D, is finite. Situations in which D, is allowed to
be infinite then correspond to instances in which we intend to deal with
general (and not only regular) reachability and safety objectives.

We have that a general reachability (resp. safety) objective , is equal
to GenReach(L(D,)) (resp. to GenSafe(L(D,))) — in examples, we will
sometimes start from an automaton to generate an objective. Therefore, all
general reachability and safety objectives can be generated from a prefix-
classifier automaton. This implies in particular that all automata in this
chapter can be assumed to have a single, absorbing final state. We observe
that starting from an automaton D, the automaton DGenReach(L(D)) (resp.
DGenSafe(L(D))) may not recognize exactly the same regular language of
finite words asD, but both automata induce the same general reachability
(resp. safety) objective. We limit the illustration of this phenomenon to an
example, as it bears no significance to our results.

Example 7.2.3 We consider the regular language ! = (0+ + 1)0, recog-
nizedby theDFA inFigure 7.1 (left). It requires six states to be represented
as a DFA, including two final states. However, the prefix-classifier au-
tomaton (right) of its induced reachability and safety objectives needs
just four states, with a single absorbing final state. Intuitively, the two

7 The case of regular languages 159

@init

@0

@1

@00

@10

@01

0

1

1
1

0

0

0

0, 1

1

0, 1 @′init @′0

@′00

@′01

0, 1
0

1

0, 1

0, 1

Figure 7.1: DFA D recognizing ! = (0+ + 1)0 (left), and the smaller prefix-classifier automaton D, of objective , =
GenReach(!) (right) (objective GenSafe(!) has the same prefix-classifier automaton). We recall that final states are
represented with a double border.

final states @00 and @10 can be merged into a single final absorbing state
@′00 . We can then notice that @0 and @1 have the same transitions and
can be merged into @′0 . The regular language it recognizes is �0�∗.

We extend two notations from Section 2.8 in a natural way to prefix-
classifier automata. Let D, = (&, �, @init , �, �) be a prefix-classifier au-
tomaton. First, for @ ∈ &, we write @−1, for the set F−1, , where F is
any finite word such that �∗(@init , F) = @. Secondly, there is a preorder �
on the states of D, based on the winning continuations of each state.

7.3 Safety objectives and monotony

We start our tour of regular objectives with general safety objectives,
as they turn out to be simpler to understand than general reachability
objectives as far as memory requirements are concerned. We reuse and
revisit theM-strong-monotony notion introduced in Subsection 4.3.2. To
keep chapters as independent as possible, we briefly recall the interest of
this notion here, and we recall one way to formulate its definition that
will be relevant to the point of view assumed in this chapter.

Let us fix an objective, ⊆ �$. In order to suffice to play optimally for
P1 for, , a memory structureM needs to be able to distinguish between
histories that are not comparable for the prefix preorder � of, . Indeed,
if two finite words F1 , F2 ∈ �∗ are not comparable, we can construct an
arena in which the opponent chooses between playing F1 and playing
F2, and then the correct choice has to be made between a continuation
only winning after F1, and a continuation only winning after F2. This
motivates the following property, which we showed to be equivalent to
M-strong-monotony in Chapter 4. We will not use the original definition
(Definition 4.3.7) in this chapter; we will consider this reformulation as
the definition ofM-strong-monotony.

7 The case of regular languages 160

Lemma 4.3.8 Let, ⊆ �$
be an objective and M = (", <init , upd) be a

memory structure. Objective, is M-strongly-monotone if and only if for

all < ∈ ", for all F, F′ ∈ !<init ,< , F and F′ are comparable for the prefix

preorder � of, .

Restated fromLemma 4.3.8 in
Subsection 4.3.2.

In short,, isM-strongly-monotone if the memory structureM is able
to keep track, not necessarily of the precise equivalence class of prefixes
of the current finite word, but of a chain of prefixes in which that word
lies. To illustrate this property, we give two particular cases.

I An objective with a total prefix preorder isM-strongly-monotone
for any structureM: all pairs of finite words are comparable, and
there is no need to have multiple states to distinguish them.

I A regular reachability or safety objective derived from a DFA D
is D-strongly-monotone (where we see D as a memory structure,
ignoring its final states): if we keep track of the state of the DFA, we
always know the precise equivalence class of the current history.
UsingD as amemory structure may havemore states than necessary
(as we just need to know a chain and not the precise equivalence
class), but it is always sufficient.

We recall that, isM-strongly-monotone if and only if, isM-strongly-
monotone, as being comparable for �, is equivalent to being comparable
for �, = �, (Lemma 4.3.9).

Thediscussion above implies that for anyobjective, ,M-strong-monotony
is necessary for a memory structure M to suffice to play optimally. We
prove it formally, and we distinguish the regular from the general case:
intuitively, regularity allows distinguishing distinct objectives with ulti-
mately periodic words (Lemma 2.7.12), which can be encoded into finite
arenas.

Proposition 7.3.1 (Necessity ofM-strong-monotony) Let, ⊆ �$
be an

objective andM be a memory structure.

1. If, is $-regular The first item actually fol-
lows from Lemma 4.3.11 and
Proposition 4.5.1; we still
prove it along with the sec-
ond item here for simplicity.

andM suffices to play optimally for P1 in all finite

one-player arenas, then, isM-strongly-monotone.

2. In general, ifM suffices to play optimally for P1 in all finitely branching

one-player arenas, then, isM-strongly-monotone.

Proof. LetM = (", <init , upd). We prove both items simultaneously, sim-
ply adding an observation in the regular case.We assume by contrapositive
that, is notM-strongly-monotone, i.e., there exist F1 , F2 ∈ �∗ such that
∗upd(<init , F1) = ∗upd(<init , F2), but F1 and F2 are not comparable for the
prefix preorder � of, . This means that there exist F′1 , F

′
2 ∈ �$ such that

F′1 ∈ F−1
1 , \ F−1

2 , and F′2 ∈ F−1
2 , \ F−1

1 , , i.e., such that F1F′1 ∈ , ,
F2F′1 ∉, , F2F′2 ∈ , , and F1F′2 ∉, . In case, is regular, then F−1

1 ,
and F−1

2 , are $-regular, so we may assume additionally that there exist

7 The case of regular languages 161

E

· · ·

· · ·

F1

F2

F′1

F′2

E

F1

F2

G1

G2

H1

H2

Figure 7.2: ArenaA in which
P1 cannot play optimally
with a strategy based on M,
built in the proof of Propo-
sition 7.3.1. The arena on the
left is used in the general case,
and the one on the right is
used in the regular case.

G1 , G2 ∈ �∗ and H1 , H2 ∈ �+ such that F′1 = G1(H1)$ and F′2 = G2(H2)$ are
ultimately periodic words (Lemma 2.7.12).

We build a one-player arena A in which M does not suffice to play
optimally for P1: arena A is finitely branching in general, and can even be
made finite when, is regular. In A, there is a single vertex E in which a
choice between two edges has to be made. This vertex E can be reached
after seeing either F1 or F2, and the choice has to be made between
continuing with the word F′1 or with the word F′2. We depict this arena in
Figure 7.2.

An optimal strategy of P1 wins after seeing F1 by continuing with F′1,
and after seeing F2 by continuing with F′2. However, a strategy based
on M will make the same choice after seeing both F1 and F2 since
∗upd(<init , F1) = ∗upd(<init , F2), and can therefore not be optimal.

In the case of general reachability or safety objectives, it is valuable to
reformulate the notion ofM-strongly-monotone objectives using chains.
Given a general reachability or safety objective, , its (possibly infinite)
prefix-classifier automaton D, = (&, �, @init , �, �), and a memory struc-
ture M = (", <init , upd), we can associate with each state < ∈ " the
set Γ,< ⊆ & of states of D, that can be reached “simultaneously to <”.
Formally, for < ∈ ",

Γ,< = {�∗(@init , F) ∈ & | F ∈ �∗ , ∗upd(<init , F) = <}.

Wedrop the superscript, if there is no ambiguity. The following property
then follows from Lemma 4.3.8, providing yet another reformulation of
M-strong-monotony.

Lemma 7.3.2 Let, ⊆ �$
be a general reachability or safety objective and

M = (", <init , upd) be a memory structure. Objective, is M-strongly-

monotone if and only if for all < ∈ ", the set Γ< is a chain for the prefix

preorder � of, .

The formulation of M-strong-monotony in Lemma 4.3.8 required that
any two finite words reaching the same state ofMmust be comparable;
here, we focus instead on the prefix-classifier automaton of, and require
that states of the automaton that can be reached along with the same state
ofM are comparable.

7 The case of regular languages 162

Our first characterization states that for general safety objectives, M-
strong-monotony also implies thatM suffices to play optimally. We state
two variants of the results: in the first one, we assume that the preorder �
induced by the objective is well-founded (which includes the regular case),
and the result holds for all arenas; in the second one, we make no such
assumption, but the result holds only for finitely branching arenas. We
will discuss why we do not have the result with none of these hypotheses
in Remark 7.3.6.

Theorem 7.3.3 (Characterization for safety) Let , ⊆ �$
be a general

safety objective andM be a memory structure.

1. If the prefix preorder � of , is well-founded (in particular, if , is

regular), then M suffices to play optimally for P1 if and only if, is

M-strongly-monotone.

2. In the general case, M suffices to play optimally for P1 in all finitely

branching arenas if and only if, isM-strongly-monotone.

We prove this theorem in Subsection 7.6.1.

In particular, we find thatMtriv suffices (i.e., memoryless strategies suffice)
for general safety objectives if and only if � is a total preorder, which
was already a corollary of [CFH14] (chaotic and chromatic memoryless [CFH14]: Colcombet et al.

(2014), Playing Safestrategies coincide).

This characterization has an interest in itself (it covers a large class of
relatively simple objectives), but as can be hinted by the one-to-two-player
lift from Chapter 4 (Theorem 4.4.4), it will also be a useful technical step
to understand the memory requirements of their complement, namely,
the general reachability objectives (Section 7.4).

Remark 7.3.4 Memory structures are defined as finite throughout the
thesis, but the previous Theorem 7.3.3 happens to work even with
memory structuresM with an infinite state space — we discuss this in
its complete proof.

A corollary of this characterization, by comparing to the characterization
for chaotic memory in [CFH14], is that chromatic and chaotic memory
requirements differ already for regular safety objectives. We provide an
instructive example below. This provides a new simple example answering
the question ofKopczyński’s [Kop08]mentioned in Subsection 2.6.2,which [Kop08]: Kopczyński (2008),

Half-positional Determinacy of

Infinite Games

Casares [Cas22] first solved with a Muller objective.

[Cas22]: Casares (2022), On

the Minimisation of Transition-

Based Rabin Automata and

the Chromatic Memory Require-

ments of Muller Conditions

Example 7.3.5 Let � = {0, 1, 2, 3}. We consider the regular language of
finite words that first have to see both 0 and 1 (in any order), and only
then see both 2 and 3 (in any order). A minimal DFAD recognizing this
language is depicted in Figure 7.3 (left). We write, for the induced
regular safety objective:, = GenSafe(L(D)).

7 The case of regular languages 163

@init

@0

@1

@01

0

1

1

0

2, 3

0, 2, 3

1, 2, 3

@2

@3

@23

2

3

3

2

0, 1

0, 1, 2

0, 1, 3

0, 1, 2, 3Γ<1

Γ<2

Γ<3

<1 <2 <3
1

0, 2, 3 0, 1, 3

2

0, 1, 2

3

Figure 7.3: Example 7.3.5: DFA D (left) and a minimal memory structure M (right) such that GenReach(L(D)) and
GenSafe(L(D)) areM-strongly-monotone.

The main claim is that the chaotic memory requirements for , are
two states, which is easily obtained from the existing characteriza-
tion [CFH14] [CFH14]: Colcombet et al.

(2014), Playing Safe
(this is the cardinality of a maximal antichain for �), while

the chromatic requirements for, are three states. We depict a memory
structureMwith three states which makes, M-strongly-monotone
in Figure 7.3 (right). To check that, is indeedM-strongly-monotone,
we have to check that there is no pair of words F1 , F2 ∈ �∗ such that F1
andF2 reach the same state ofM, but reach non-comparable states inD.
The only two pairs of non-comparable states in D are @0 and @1 , and @2
and @3 (besides these, states are ordered for � from right to left). We can
check that for this choice ofM, Γ<1 = {@init , @0}, Γ<2 = {@1 , @01 , @3 , @23},
Γ<3 = {@1 , @01 , @2 , @23}. As these are all chains for �, we have that, is
M-strongly-monotone.
It is not possible to find a chromatic memory structureMwith two states
thatmakes,M-strongly-monotone (this can be checked by exhaustion,
by trying to assign transitions to two states while distinguishing non-
comparable states, and observing that all cases fail).

We finally discuss why, with neither the well-foundedness hypothesis nor
the finitely branching hypothesis from Theorem 7.3.3, we cannot expect
such a characterization.

Remark 7.3.6 If the prefix preorder of an objective , is not well-
founded, then there is an infinite decreasing sequence of finite words
F1 � F2 � . . . in �∗. This means that for all 8 ≥ 1, there is F′8 ∈ �$ such
that F8F′8 ∈, , but for 9 > 8, F 9F′8 ∉, . This construction is similar to

the proof of Lemma 5.5.2.
We can then build the infinitely

branching arena depicted in Figure 7.4 in which P2 first chooses a word
F 9 , and P1 can win by playing a word F′8 with 8 ≥ 9. This requires
infinite memory, even if, isMtriv-strongly-monotone.
We may wonder whether such examples exist for general safety ob-
jectives; this is indeed the case. For instance, for � = {−1, 1, 0}, the
objective “avoid seeing 0 while the sum of colors from {−1, 1} is nega-
tive” is a general safety objective with an infinite decreasing sequence
of finite words (such as ((−1)=)=∈ℕ).

7 The case of regular languages 164

. . .

...
. . .

...

F1

...

F=
...

F′
1

F′
=

Figure 7.4: Infinitely branch-
ing arena in which P1 needs
memory beyond the M-
strong-monotony property in
Remark 7.3.6.

7.4 Reachability objectives and progress

7.4.1 Capturing progress

To play optimally for general and regular reachability objectives with a
memory structure M, M-strong-monotony is still necessary (Proposi-
tion 7.3.1) but this time not sufficient: the following example shows that
the memory structure must keep track of progress.

Example 7.4.1 Let � = {0, 1}. We consider the regular language
1∗0+1�∗ ofwords that have to see at least one 0, followed by at least one 1.
This language is recognized by the DFA D in Figure 7.5 (left). We write
, for the induced regular reachability objective:, = GenReach(L(D)).
In the arena in Figure 7.5 (center), P1 may win by starting a play
with 01, but not without memory. The intuition is that playing 0 first
makes some progress (it reaches an automaton state with more winning
continuations), but is not sufficient to win, even if repeated. Therefore,
in our memory structures, if a word makes some progress but without
guaranteeing the win when repeated, we want the memory state to
change upon reading that word. The memory structure in Figure 7.5
(right) is sufficient for, ; in particular, seeing the first 0, which makes
progress from @init to @0 , changes the memory state.

We formalize this intuition in the following definition.

Definition 7.4.2 (M-progress-consistency) Let, ⊆ �$
be an objective

and M = (", <init , upd) be a memory structure. We say that , is M-
progress-consistent if for all < ∈ ", for all F1 ∈ !<init ,< , for all F2 ∈ !<,< ,
if F1 ≺ F1F2, then F1(F2)$ ∈, .

Intuitively, this says that if it is possible to come back to the same memory
state while reading a “word that makes progress” (i.e., that improves our
situation by putting us in a position with more winning continuations),

0 1@01@0@init
0 1

1 0 0, 1

<1 <2
0

1 0, 1

Figure 7.5: Example 7.4.1: DFA D (left), an arena requiring memory for GenReach(L(D)) (center), and a minimal sufficient
memory structure (right).

7 The case of regular languages 165

then repeating this word infinitely often from that point onward must be
winning.

As for all the previous “M-something” properties, we have that M-
progress-consistency is stable by memory product.

Lemma 7.4.3 Let M be a memory structure and , be an M-progress-

consistent objective. Then, for all memory structures M′
,, is (M ⊗M′)-

progress-consistent.

Proof. LetM′ = ("′, <′init , ′upd) be a memory structure. The state space of
M⊗M′ is"×"′; let (<, <′) ∈ "×"′. The sets involved in the definition
of (M⊗M′)-progress-consistency are “smaller” than the ones involved in
the definition ofM-progress-consistency: by definition, !(<init ,<′init),(<,<′) ⊆
!<init ,< and !(<,<′),(<,<′) ⊆ !<,< . Hence, as the definition of (M ⊗M′)-
progress-consistency quantifies universally over these sets, , is also
(M ⊗M′)-progress-consistent.

The discussion above (illustrated by Example 7.4.1) hints that for any
objective, ,M-progress-consistency is necessary for a memory structure
M to be sufficient to play optimally. As for M-strong-monotony, we
distinguish the regular case from the general case.

Proposition 7.4.4 (Necessity of M-progress-consistency) Let, ⊆ �$

be an objective andM be a memory structure.

1. If, is $-regular andM suffices to play optimally for P1 in all finite

one-player arenas, then, isM-progress-consistent.

2. In the general case, ifM suffices to play optimally for P1 in all finitely

branching one-player arenas, then, isM-progress-consistent.

Proof. LetM = (", <init , upd). We prove both items simultaneously. We
assume by contrapositive that, is notM-progress-consistent, i.e., there
exist < ∈ ", F1 ∈ !<init ,< , and F2 ∈ !<,< such that F1 ≺ F1F2 but
F1(F2)$ ∉, . As F1 ≺ F1F2, there is F′ ∈ �$ such that F1F′ ∉, and
F1F2F′ ∈ , . In case , is $-regular, then F−1

1 , and (F1F2)−1, are
$-regular, so we may assume additionally that they are distinguished
by an ultimately periodic word (Lemma 2.7.12): there exist G ∈ �∗ and
H ∈ �+ such that F′ = GH$.

We build a one-player arena A in which M does not suffice to play
optimally for P1: arena A is finitely branching in general, and can even be
made finite when, is $-regular. In A, there is a single vertex E in which
a choice between two edges has to be made. This vertex can be reached
after seeing F1, and the choice has to be made between looping on E with
word F2, or continuing with word F′. We depict this arena in Figure 7.6.

7 The case of regular languages 166

E . . .
F1

F2

F′
E

F1

F2

G
H

Figure 7.6:Arena inwhichP1 cannot play optimallywith a strategy based onM obtained from the proof of Proposition 7.4.4.
The arena on the left is used in the general case, and the one on the right is used in the regular case.

An optimal strategy of P1 wins after seeing F1 by continuing with F2F′,
which produces the winning word F1F2F′. However, a strategy based
on M must always make the same choice in E after seeing F1 since
∗upd(<init , F1) = ∗upd(<init , F1(F2)=) = < for all = ≥ 0. Hence, a strategy
based onM can only produce losing words F1F′ and F1(F2)$.

The following example should help the reader form the right intuition
aboutM-progress-consistency.

Example 7.4.5 Let � = {0, 1}. We consider the regular language of
words containing 01010 as a subword, recognized by the DFA D in
Figure 7.7 (left). We consider the memory structure M remembering
whether 0 or 1 was last seen, depicted in Figure 7.7 (right). The regular
reachability objective, = GenReach(L(D)) isM-progress-consistent.
Indeed, let us first consider < = <1 in the definition of M-progress-
consistency. A finite word F1 reaching <1 in M necessarily reaches
@init, @01 , or @0101 in & (excluding the final state from the reasoning,
as no progress is possible from it). After F1, words F2 that both (8)
make progress (F1 ≺ F1F2) and (88) are a cycle on <1 necessarily see
both 0 and 1. Therefore, F1(F2)$ is always a winning word. The same
reasoning holds for < = <0 . Notice that the memory states from the
memory structure do not carry enough information to ascertain when a
word of the language has been seen (i.e., when the game is won).
The upcoming Theorem 7.4.8 implies thatM suffices to play optimally
for P1.

This need to capture progresswas not necessary to understand the memory
requirements of safety objectives, whichmay be explained by the following
reasoning.

Remark 7.4.6 Unlike general reachability objectives, all general safety
objectives areMtriv-progress-consistent. Here is a proof of this statement.
Let, ⊆ �$ be a general safety objective. Let F1 , F2 ∈ !Mtriv

<init ,<init = �
∗ be

@init @0 @01 @010 @0101 @fin
0 1 0 1 0

1 0 1 0 1 0, 1

<1 <0

0

1

1 0

Figure 7.7: Example 7.4.5: DFA D (left) and memory structureM (right).

7 The case of regular languages 167

, isM-strongly-monotone
andM-progress-consistent

M suffices to play optimally
for P1 (in all arenas)

M suffices to play optimally
for P1 in finite arenas

Theorem 7.4.9

Holds for regular, :
Props. 7.3.1 and 7.4.4

Holds for regular, :
Theorem 7.4.8

Conjecture for general,
with � well-founded:

Conjecture 7.4.7
Props. 7.3.1 and 7.4.4

Figure 7.8: Summary of the implications that hold and that we conjecture about the memory requirements of general and
regular reachability objectives. Everything is equivalent for regular reachability objectives, but only some implications hold
for general reachability objectives. Objective, is a general reachability objective andM is a memory structure.

such that F1 ≺ F1F2. This implies that F1F2, and therefore F1, have
a non-empty set of winning continuations. Assume by contradiction
that F1(F2)$ ∉, . As, is a general safety objective, there is a smallest
= ≥ 1 such thatF1(F2)= has nowinning continuation. Hence,F1(F2)=−1

still has some winning continuations, so F1(F2)= ≺ F1(F2)=−1. This is a
contradiction, as F1 ≺ F1F2 implies that F1(F2)=−1 � F1F2(F2)=−1 =
F1(F2)= by Lemma 2.8.5. This property is, at least intuitively, a reason
hinting that the memory requirements of safety objectives are lower and
easier to study than those for their complement reachability objective.

7.4.2 Understanding memory requirements

We have now discussed two necessary properties for a memory structure
M to be sufficient to play optimally for any objective. For general reacha-
bility objectives, it appears that the conjunction of these two properties is
also sufficient in many situations.

We have to discuss here some slight limit to our results, which leads to
characterizations not as complete as the one for general safety conditions
(Theorem 7.3.3). A summary of the known and unknown implications
about the memory requirements of general reachability objectives is
provided in Figure 7.8.

Our initial intuition — which is not known to be true — is thatM-strong-
monotony andM-progress-consistency are equivalent to the sufficiency
ofM for general reachability objectives.

Conjecture 7.4.7 Let, ⊆ �$
be a general reachability objective andM be

a memory structure.

1. If the prefix preorder � of , is well-founded The need to restrict to a well-
founded � or to arenas with
finite branching was argued
in Remark 7.3.6.

(in particular, if , is

regular), then M suffices to play optimally for P1 if and only if, is

M-strongly-monotone andM-progress-consistent.

2. In the general case, M suffices to play optimally for P1 in all finitely

branching arenas if and only if, is M-strongly-monotone and M-

progress-consistent.

7 The case of regular languages 168

Instead, we prove two incomparable results getting very close to this
conjecture. First, we actually have the desired equivalence for regular
reachability objectives.

Theorem 7.4.8 (Characterization for regular reachability) Let, ⊆ �$

be a regular reachability objective andM be a memory structure. MemoryM
suffices to play optimally for P1 if and only if, isM-strongly-monotone and

M-progress-consistent.

We defer the proof of this result to Subsection 7.6.2. We use here an ad
hoc proof very similar to — but also more involved than — the proof of
Theorem 7.3.3 for general safety conditions. As far as the computational
complexity (Section 7.5) and the implementation (Section 7.7) are con-
cerned, the above result suffices for our needs, as we only consider regular
objectives. It is unclear how to represent

classes of general reachabil-
ity and safety objectives in a
finite way, so we focus our im-
plementation on the regular
case.

Secondly, the two conditions suffice to play optimally in finite arenas, even
for general reachability objectives.

Theorem 7.4.9 (Sufficiency in finite arenas) Let , ⊆ �$
be a general

reachability objective and M be a memory structure. If , is M-strongly-

monotone andM-progress-consistent, thenM suffices to play optimally for

P1 in finite arenas.

The proof of this result is a relatively straightforward application of the
arena-independent one-to-two-player lift from Chapter 4 (Theorem 4.4.4),
which we give in the next subsection.

Remark 7.4.10 We will discuss in Subsection 7.6.2, Example 7.6.1 why
our proof techniques do not apply to general reachability objectives
played on infinite arenas, i.e., the setting of Conjecture 7.4.7 (even with
well-founded prefix preorder � and finite branching of the arenas).

Observe that, due to Remark 7.4.6 showing that all general safety objectives
areMtriv-progress-consistent, Conjecture 7.4.7 actually works if we replace
“general reachability condition” by “general safety condition”;with general
safety conditions, we simply always haveM-progress-consistency for free
for all memory structuresM.

7.4.3 Proof via one-to-two-player lift

To use the one-to-two-player lift (Theorem 4.4.4) with general reachability
objectives, we need to understand both players’ memory requirements
in finite one-player arenas. We have already done so for the complement
general safety objectives in Theorem 7.3.3, which solves the problem for
P2. We still need to understand the memory requirements of P1 in its one-
player arenas, which, as was shown in the “one-player characterization”

7 The case of regular languages 169

(Chapter 4, Theorem 4.4.3), boils down to the M-monotony and M- We recall that Theorem 4.4.3
states that for an objective
, , P1 has optimal strategies
based on M in all its finite
one-player arenas if and only
if, isM-monotone andM-
selective.

selectivity properties.

We already assume M-strong-monotony in our hypotheses, which im-
plies M-monotony. The crux is to notice that M-progress-consistency
implies M-selectivity under M-strong-monotony for general reachability

TheM-selectivity notion was
defined in Chapter 4, Defini-
tion 4.3.4 on page 69.

objectives (but not for all objectives, even the $-regular ones).

Lemma 7.4.11 Let, ⊆ �$
be a general reachability objective, and M be a

memory structure such that, isM-strongly-monotone. If, isM-progress-

consistent, then, isM-selective.

Proof. We write M = (", <init , upd). Let D, be the (possibly infinite)
prefix-classifier automaton of , . We assume that , is M-progress-
consistent and show that it is M-selective. Let < ∈ ", G ∈ !<init ,< ,
and 1 , 2 , 3 ⊆ �∗ be regular languages such that 1 , 2 ⊆ !<,< . Let
F ∈ G[(1 ∪ 2)∗ 3] be a winning word; we show that there is also a
winning word in G[∗1] ∪ G[∗2] ∪ G[3]. We distinguish a few cases.

I If a prefix of G is in L(D), this is clear.
I As G ∈ !<init ,< and 1 , 2 ⊆ !<,< , we have that for all H ∈ (1 ∪ 2),

∗upd(<init , G) = ∗upd(<init , GH) = <. As, isM-strongly-monotone,
for all H ∈ (1 ∪ 2), G is comparable to GH for �. If there is
H ∈ (1 ∪ 2) such that G ≺ GH, then GH$ is winning by M-
progress-consistency. Moreover, GH$ ∈ G[∗1] ∪ G[∗2], which ends
this case. Otherwise,

∀H ∈ (1 ∪ 2), GH � G. (7.1)

We work under this assumption for the remaining cases. We have
that G[(1 ∪ 2)∗ 3] = G[(1 ∪ 2)∗] ∪ G(1 ∪ 2)∗[3]; we will
consider the two possibilities separately for F.

• We assume that F ∈ G[(1 ∪ 2)∗]. As F ∈ , and , =
GenReach(L(D)), there is a prefix GH ∈ �∗ of F that is in L(D).
We have by definition that H ∈ Prefs((1 ∪ 2)∗), i.e., H =
H1 . . . H=H∗, where H8 ∈ (1 ∪ 2) and H∗ ∈ Prefs(1 ∪ 2). By
induction and Equation (7.1), we can show that GH1 . . . H= � G.
Therefore, word GH∗ is also in L(D), and it is the prefix of an
infinite word in G[∗1] ∪ G[∗2].

• If F ∈ G(1 ∪ 2)∗[3], then F = GH1 . . . H=I, with H8 ∈ (1 ∪
 2) and I ∈ [3]. As before, GH1 . . . H= � G, so GI ∈ G[3] is
also winning.

For completeness, we also show that the converse implications (M-
selectivity impliesM-progress-consistency) holds for $-regular objectives
(Lemma 7.4.12). Along with Lemma 7.4.11, this shows that under M-
strong-monotony,M-progress-consistency is equivalent to M-selectivity
for regular reachability objectives.

7 The case of regular languages 170

Lemma 7.4.12 Let, ⊆ �$
be an $-regular objective, andM be a memory

structure. If, isM-selective, then, isM-progress-consistent.

Proof. Let M = (", <init , upd). We assume by contrapositive that, is
not M-progress-consistent, i.e., there exist < ∈ ", F1 ∈ !<init ,< , and
F2 ∈ !<,< such that F1 ≺ F1F2 and F1(F2)$ ∉ , . Let F3 ∈ �$ be a
word such that F1F3 ∉, and F1F2F3 ∈, , which exists as F1 ≺ F1F2.
Without loss of generality, we can assume that there exist G, H ∈ �∗ such
that F3 = GH$, as two distinct $-regular objectives can be distinguished
by an ultimately periodic word (Lemma 2.7.12). Let F = F1 ∈ !<init ,< ,
 1 = {F2} ⊆ !<,< , 2 = ∅ ⊆ !<,< , and 3 = GH∗. Sets 1, 2, and 3 are
regular. We have that [F(1∪ 2)∗ 3] contains the winning wordF1F2F3.
However, we have [F ∗1] = {F1(F2)$}, [F ∗2] = ∅, and [F 3] = {F1F3}:
the set [F ∗1] ∪ [F ∗2] ∪ [F 3] contains only losing words. Hence, we do
not haveM-selectivity.

We can now easily prove Theorem 7.4.9 about the sufficiency ofM-strong-
monotony andM-progress-consistency to play optimally in finite arenas,
using the one-to-two-player lift from Chapter 4.

Proof of Theorem 7.4.9. We assume that, is M-strongly-monotone and
M-progress-consistent. As , is M-strongly-monotone, we also have
that, isM-strongly-monotone (Lemma 4.3.9). As, is a general safety
objective, we have thatM suffices for P2 by Theorem 7.3.3 (in particular,
it suffices in the finite one-player arenas of P2).

We show that M also suffices for P1 in its finite one-player arenas. We
already have that, isM-strongly-monotone; hence, it isM-monotone.
As , is a general reachability objective that is M-strongly-monotone
andM-progress-consistent, by Lemma 7.4.11,, is alsoM-selective. By
Theorem 4.4.3, we deduce thatM suffices to play optimally in the finite
one-player arenas of P1.

We now know that M suffices in the finite one-player arenas of both
players. By Theorem 4.4.4, we have in particular that M ⊗M, which is
isomorphic toM, suffices for P1 in all finite (two-player) arenas.

Remark 7.4.13 By restricting our focus to finite arenas, we could also
use the machinery from Chapter 4 for the regular safety objectives,
but it would not yield tight memory requirements. Let, ⊆ �$ be a
regular safety objective. It is relatively straightforward to show that
M-strong-monotony of, impliesM-selectivity of, . This shows that
a memory structureM suffices for P1 in finite one-player arenas if and
only if, isM-strongly-monotone. If, isM-strongly-monotone, we
can then use the one-to-two-player lift to deduce an upper bound on the
memory requirements in two-player games given byM⊗M′, whereM′

is a memory structure for P2. Unfortunately, this memory structure

7 The case of regular languages 171

M′ needs to be sufficient for a regular reachability objective, and is
in general larger than M (as the characterizations suggest:, needs
to additionally satisfyM′-progress-consistency). Therefore, this proof
technique would not yield tight bounds on the memory requirements
of general safety objectives.
However, it works to deduce tight bounds for general reachability
objectives in Theorem 7.4.9, as a sufficient memory structure M′ in
one-player arenas for such objectives happens to also suffice for the
other player, and the product structureM′ ⊗M′ is isomorphic toM′.

For objectives beyond reachability and safety,M-strong-monotony and
M-progress-consistency may not imply the sufficiency of M to play
optimally for a player. For instance, observe that prefix-independence
of an objective immediately implies both Mtriv-strong-monotony and
Mtriv-progress-consistency for both players and, clearly, not all prefix-
independent objectives are memoryless-determined. Perhaps one of the
easiest examples, with � = {0, 1}, is the objective This example and closely re-

lated ones involving Büchi au-
tomata will be discussed in
more detail in Chapter 8.

, = Büchi(0) ∩ Büchi(1)
= {F ∈ �$ | 0 and 1 are both seen infinitely often},

which is $-regular (it can be recognized by a deterministic Büchi automaton

with two states), but is not a general reachability nor safety objective.
Objective , is Mtriv-strongly-monotone and Mtriv-progress-consistent,
butMtriv does not suffice to play optimally (Example 2.5.3).

7.4.4 Stronger lift for regular objectives

As a by-product of our results, we observe that for regular objectives, our
characterizations (Theorems 7.3.3 and 7.4.8) deal with arbitrary arenas
of any cardinality, but the properties used in the characterizations are
already necessary in finite one-player arenas. This means that strategy-wise,
to achieve a regular objective, all the complexity already appears in finite
graphs with no opponent. For the specific class of regular objectives from
this chapter, this strengthens the one-to-two-player lift from Chapter 4 by
going beyond two of its limitations:

I the limitation to a result about two-player games played on finite

arenas;
I the need to know a sufficient memory structure in the one-player

arenas of each player — here, each player can use the same memory
structure in its one-player and in the two-player arenas, with no
need for the “M1 ⊗M2” product from Theorem 4.4.4.

Theorem 7.4.14 (Finite-to-infinite, one-to-two-player lift for regular
objectives) Let, ⊆ �$

be a regular (reachability or safety) objective andM

7 The case of regular languages 172

be a memory structure. Memory M suffices to play optimally for P1 (in all

arenas) if and only ifM suffices to play optimally for P1 in its finite one-player

arenas.

Proof. The implication from left-to-right holds as this is the same property
quantified over fewer arenas. We argue the other implication for each case.

For regular safety objectives, , we showed that ifM suffices in finite one-
player arenas, then, isM-strongly-monotone (by Proposition 7.3.1 as,
is regular), which implies thatM suffices in all arenas (by Theorem 7.3.3
as, is a safety condition with a well-founded preorder).

For regular reachability objectives , , we showed that if M suffices
in finite one-player arenas, then , is M-strongly-monotone and M-
progress-consistent (by Propositions 7.3.1 and 7.4.4 as, is regular), which
implies thatM suffices in all arenas (by Theorem 7.4.8 as, is a regular
reachability objective).

7.5 The complexity of finding small memory

structures

We discuss the computational complexity of finding small memory struc-
tures for regular objectives. We formalize the question as two decision
problems: given a regular reachability or safety objective, how much
memory is required to play optimally for P1?

Memory-Safe
Input: A DFA D inducing the regular safety objective , =

GenSafe(L(D)) and an integer : ∈ ℕ.
Question: Does there exist a memory structure M with at most :

states which suffices to play optimally for P1?

Memory-Reach
Input: A DFA D inducing the regular reachability objective, =

GenReach(L(D)) and an integer : ∈ ℕ.
Question: Does there exist a memory structure M with at most :

states which suffices to play optimally for P1?

It follows from our characterizations (Theorems 7.3.3 and 7.4.8) that the
first problem is equivalent to asking whether there is a memory structure
Mwith atmost : states such thatGenSafe(L(D)) isM-strongly-monotone,
and the second problem whether there is a memory structure M with
at most : states such that GenReach(L(D)) isM-strongly-monotone and
M-progress-consistent.

7 The case of regular languages 173

Theorem 7.5.1 (Complexity of Memory-Safe and Memory-Reach) Both
Memory-Safe and Memory-Reach are NP-complete.

We defer the proof to Subsection 7.6.3. For NP-hardness, we construct
a reduction from the Hamiltonian cycle problem which works for both
Memory-Safe and Memory-Reach.

Our main insight is to reformulate the M-strong-monotony notion
(NP-membership of Memory-Safe follows from this reformulation). Let
, = GenSafe(L(D)) be a regular objective and M = (", <init , upd) be
a memory structure. In Example 7.3.5, we have seen how to go from a
memory structureM such that, isM-strongly-monotone to a covering
of the states of D by chains of states. We formulate exactly the require-
ments for such coverings in order to have a point of view equivalent to
M-strong-monotony. For Γ ⊆ & a set of automaton states and 2 ∈ � a
color, we define �(Γ, 2) = {�(@, 2) | @ ∈ Γ}.

Definition 7.5.2 (Monotone decomposition) Let D = (&, �, @init , �, �)
be a (possibly infinite) automaton. We say that the sets Γ1 , . . . , Γ: ⊆ & form a

monotone decomposition of D if

(a) & =
⋃:
8=1 Γ8 ,

(b) for all 2 ∈ �, for all 8 ∈ {1, . . . , :}, there is 9 ∈ {1, . . . , :} such that

�(Γ8 , 2) ⊆ Γ9 , and
(c) for all 8 ∈ {1, . . . , :}, Γ8 is a chain for �.

Note that the sets Γ8 do not have to be disjoint (and even cannot be
disjoint to obtain minimal monotone decompositions, as was illustrated
in Example 7.3.5). We invite the reader to verify the three requirements
on the covering drawn in Figure 7.3 (left).

If we only consider requirements (a) and (b) of this definition, we recover
the definition of an admissible decomposition, which can be used to quotient
an automaton [GY65]. Here, we add the additional requirement (c) that [GY65]: Ginzburg et al. (1965),

Products of Automata and the

Problem of Covering

each set of states is a chain for�. Note that there always exists an admissible
decomposition with just one set (by taking Γ1 = &), but finding a small
monotone decomposition may not be so easy. This point of view in terms of
monotone decompositions turns out to be equivalent to our initial point
of view in terms ofM-strong-monotony in the following sense.

Lemma 7.5.3 Let D be a (possibly infinite) automaton and, ⊆ �$
be equal

to GenSafe(L(D)) or GenReach(L(D)). Automaton D admits a monotone

decomposition with : ∈ ℕ sets if and only if, isM-strongly-monotone for

some memory structureM with : states.

Proof. We write D = (&, �, @init , �, �). Starting from a monotone decom-
position Γ1 , . . . , Γ: of D, we show how to build a memory structure

7 The case of regular languages 174

M = (", <init , upd)with : states such that, isM-strongly-monotone.
We take

I " = {Γ1 , . . . , Γ:},
I <init is any set Γ8 that contains @init (which exists as & =

⋃:
8=1 Γ8),

I for Γ8 ∈ ", 2 ∈ �, we define upd(Γ8 , 2) = Γ9 for some 9 such that
�(Γ8 , 2) ⊆ Γ9 (there may be multiple such 9’s; any choice works).

We first show the following property aboutM: for allF ∈ �∗, �∗(@init , F) ∈
∗upd(<init , F). We proceed by induction on the length of F. If F = � is the
empty word, then �∗(@init , F) = @init ∈ <init = ∗upd(<init , F) by definition
of <init. We now assume that F = F′2, with 2 ∈ � and �∗(@init , F′) ∈
∗upd(<init , F′). Let Γ8 = ∗upd(<init , F′) and Γ9 = ∗upd(<init , F′2). Then,
�∗(@init , F′2) ∈ �(Γ8 , 2). As �(Γ8 , 2) ⊆ Γ9 = ∗upd(<init , F′2), we are done.

We now show that , is M-strongly-monotone. Let F1 , F2 ∈ �∗ be
two finite words such that ∗upd(<init , F1) = ∗upd(<init , F2). We set Γ8 =
∗upd(<init , F1). We need to show that F1 and F2 are comparable for �. Let
@1 = �∗(@init , F1) and @2 = �∗(@init , F2). By the above property, we have that
@1 and @2 are in Γ8 . As Γ8 is a chain, we have that @1 and @2 are comparable
for �. Hence, F1 and F2 are too, which shows the desired implication.

Reciprocally, letM = (", <init , upd) be a memory structure such that,
isM-strongly-monotone. We show that sets (Γ<)<∈" form a monotone
decomposition of D.

(a) AsM is a complete structure, every (reachable) state @ of D has to
be in a set Γ< for some < ∈ ". Indeed, as there exists F ∈ �∗ such
that �∗(@init , F) = @, we can simply take < = ∗upd(<init , F).

(b) Let 2 ∈ � and< ∈ ". Let<′ = upd(<, 2). We show that �(Γ< , 2) ⊆
Γ<′ . Let @ ∈ Γ< ; we show that �(@, 2) ∈ Γ<′ . As @ ∈ Γ< , there
is F ∈ �∗ such that �∗(@init , F) = @ and ∗upd(<init , F) = <. Then,
�∗(@init , F2) = �(@, 2) and ∗upd(<init , F2) = <′, so �(@, 2) ∈ Γ<′ .

(c) For some< ∈ ", let @1 , @2 ∈ Γ< . We show that @1 and @2 are compa-
rable for �. There are words F1 , F2 ∈ � such that �∗(@init , F1) = @1,
�∗(@init , F2) = @2, and ∗upd(<init , F1) = ∗upd(<init , F2) = <. As, is
M-strongly-monotone, F1 and F2 are comparable for �, so that is
also the case for @1 and @2. This shows that all sets Γ< are chains.

Remark 7.5.4 For an automaton D = (&, �, @init , �, �), there is always a
monotone decompositionwith |& | sets, which can be achieved by taking
the family of sets ({@})@∈& (it clearly satisfies the three requirements
from Definition 7.5.2). In the equivalence from Lemma 7.5.3 above, this
monotone decomposition corresponds to taking D (syntactically, after
removing its set of final states from the tuple) as a memory structure.
A slightly improved general upper bound for the size of monotone
decompositions is given by |& | − 1 sets. We assume w.l.o.g. The fact that D can be as-

sumed to have a single ab-
sorbing final state was ar-
gued after Definition 7.2.1 on
page 157.

that D has
a single, absorbing final state @fin. We can then consider the monotone
decomposition ({@, @fin})@∈&\{@fin}. In the equivalence from Lemma 7.5.3

7 The case of regular languages 175

above, this monotone decomposition corresponds to taking D without
state @fin as a memory structure — transitions to @fin can be redirected
to any state. This corresponds to the intuition that there is no point in
keeping track of what happens once the game has been won (in the
case of general reachability objectives) or lost (in the case of general
safety objectives). This construction actually yields the optimal bound
for conjunctions of simple reachability objectives [FH10]

[FH10]: Fĳalkow et al. (2010),
The surprizing complexity of

reachability games

.

It is instructive to reformulate the characterization of chaotic memory
requirements from [CFH14]

[CFH14]: Colcombet et al.
(2014), Playing Safe

: the original phrasing was that the number
of memory states necessary and sufficient to play optimally for the
safety objective, is the cardinality of the largest antichain of its prefix
preorder. Using our terminology and Dilworth’s theorem [Dil50]

[Dil50]: Dilworth (1950),ADe-

composition Theorem for Par-

tially Ordered Sets

Dilworth’s theorem states
that in a finite partially or-
dered set, the size of the small-
est decomposition into chains
matches the size of the largest
antichain., it is

equivalent to the smallest number of chains required to cover all states;
that is, decompositions satisfying (a) and (c) in Definition 7.5.2, but not
necessarily (b). Hence, it is smaller in general.

The smallest number of
chains of a partial order can
be computed in polynomial
time [FRS03]

[FRS03]: Felsner et al. (2003),
Recognition Algorithms for Or-

ders of Small Width and Graphs

of Small Dilworth Number

; hence, adding
requirement (b) moves the
problem to a higher complex-
ity class.

We have yet to discuss membership in NP of Memory-Reach, which is
slightly more involved and is explained in Subsection 7.6.3, Lemma 7.6.3.
We can reduceM-progress-consistency to checking a polynomial number
of emptiness queries of intersections of regular languages recognized byde-
terministic finite automata. For a givenDFAD = (&, �, @init , �, �) andawit-
ness memory structureM,M-progress-consistency of GenReach(L(D))
can be decided in time O(|" |2 · |& |4 · |� |) (notation O(·) denotes the
standard big O notation).

7.6 Additional proofs and missing technical details

We dedicate this section to the complete proofs of results from Chapter 7
whose proofs were omitted.

7.6.1 Technical details for general safety objectives

We prove here the characterization of the memory requirements of general
safety objectives through M-strong-monotony discussed in Section 7.3.
We restate and prove Theorem 7.3.3.

Restated from Theorem 7.3.3
on page 162.Theorem 7.3.3 (Characterization for safety) Let , ⊆ �$

be a general

safety objective andM be a memory structure.

1. If the prefix preorder � of , is well-founded (in particular, if , is

regular), then M suffices to play optimally for P1 if and only if, is

M-strongly-monotone.

2. In the general case, M suffices to play optimally for P1 in all finitely

branching arenas if and only if, isM-strongly-monotone.

7 The case of regular languages 176

Proof. LetD, = (&, �, @init , �, �) be the (possibly infinite) prefix-classifier
automaton of , , and let M = (", <init , upd) be a (possibly infinite) This is the only place where,

for generality, we allow mem-
ory structureswith an infinite
state space, as it works with
no additional arguments.

memory structure.

The necessity of M-strong-monotony (in both cases) was proved in
Proposition 7.3.1. We now prove the sufficiency ofM-strong-monotony.
We assume that, isM-strongly-monotone. We write w.l.o.g. � = {@fin}.
LetA = (+,+1 , +2 , �) be an arena. As per the hypotheses, we require that
� is well-founded or that A is finitely branching.

We want to build a strategy � based onM and optimal for P1 in A. The
key to the proof is to understand the following sets of states of D in order
to know what to play in each pair (E, <) ∈ +1 ×". For E ∈ + , < ∈ ", we
define

&E,< = {@ ∈ Γ< | P1 has a winning strategy for @−1, from E}.

States in &E,< are states of D that could be reached while the memory
state is <, by definition of Γ< . Notice that @fin ∉ &E,< for all E and <, as P1
cannot win for objective @−1

fin, = ∅. TheM-strong-monotony hypothesis We recall that notation Γ<
was defined in Section 7.3 on
page 159.

tells us that each Γ< is a chain for � (Lemma 7.3.2), so each &E,< is too.

We define a strategy � : +1 × " → � of P1 based on memory M. Let
E ∈ +1, < ∈ ". We distinguish three cases.

I If&E,< is empty, then it means that the game has reached a situation
where it cannot be won anymore, so �(E, <) is chosen arbitrarily.

I Otherwise, if &E,< has a minimum @E,< for �, then this minimum
represents the worst (for �) state of Γ< for which P1 still has a
winning strategy. To play “safely”, we play as if we wanted to win
for this worst state. By definition of &E,< , there is a strategy �E,<
winning for P1 for @−1

E,<, from E. We define �(E, <) = �E,<(�E). We recall that �E is the empty
history starting in E.Note that when &E,< is non-empty, it always has a minimum if � is

well-founded.
I If &E,< is not empty and has no minimum, � is not well-founded;

we fall in this case under the hypothesis that A is finitely branching.
For @ ∈ &E,< , let

�E,@ = {�′(�E) ∈ � | �′ is winning for @−1, from E}

be the set of outgoing edges of E that are taken immediately by
at least one strategy winning for @−1, from E. We make three
observations on sets �E,@ .

• For @ ∈ &E,< , set�E,@ is non-empty asP1 has awinning strategy
for @−1, from E.

• For @ ∈ &E,< , set �E,@ is finite as E has finitely many outgoing
edges.

• For @, @′ ∈ &E,< , if @ � @′, then �E,@ ⊆ �E,@′ as every strategy
winning for @−1, is winning for (@′)−1, .

7 The case of regular languages 177

As sets �E,@ are non-empty, finite, and non-decreasing (w.r.t. @),
this means that the intersection

⋂
@∈&E,< �E,@ is non-empty. Let

4 ∈ ⋂
@∈&E,< �E,@ ; we define �(E, <) = 4.

We have now defined �; we show that it is optimal. Let E0 ∈ + be such that
P1 has a winning strategy for objective, from E0. Let � = 4142 . . . ∈ �$ be
a play consistent with � from E0, and F = col$(�). We write F = 2122 . . .
and we show that F ∈, . As, is a general safety objective, this amounts
to showing that for every finite prefix F8 = 21 . . . 28 of F, �∗(@init , F8) ≠ @fin.
For 8 ≥ 0, let @8 = �∗(@init , F8), 48 = (E8−1 , 28 , E8), and <8 = ∗upd(<init , F8).
We show by induction on 8 that for all 8 ≥ 0, @8 ∈ &E8 ,<8 . This suffices to
prove the claim, as @fin ∉ &E8 ,<8 for all 8 ≥ 0.

For 8 = 0, we have F8 = �, so <0 = ∗upd(<init , F8) = <init and @0 =
�∗(@init , F8) = @init. By definition, we have @init ∈ Γ<init . As P1 has a winning
strategy for, = @−1

init, from E0 by hypothesis, we have that @0 ∈ &E0 ,<0 .

We now assume that @8 ∈ &E8 ,<8 for some 8 ≥ 0. As @8 ∈ Γ<8 , we have that
@8+1 = �(@8 , 28+1) ∈ Γupd(<8 ,28+1) = Γ<8+1 . To show that @8+1 ∈ &E8+1 ,<8+1 , it
is left to show that there is a winning strategy for @−1

8+1, from E8+1. We
know that &E8 ,<8 is not empty, and we distinguish three cases.

I If E8 ∈ +2, then since P1 has a strategy winning for @−1
8 , from E8 ,

P1 must be able to win no matter the choice of P2 in E8 . Hence, P1
has a winning strategy from �(@8 , 28+1)−1, = @−1

8+1, from E8+1.
I If E8 ∈ +1 and &E8 ,<8 has a minimum @E8 ,<8 , then 48+1 is consistent

with a strategy �E8 ,<8 winning for @−1
E8 ,<8

, from E. This strategy also
wins for @−1

8 , , as @E8 ,<8 � @8 . Thus, there must also be a strategy
winning for �(@8 , 28+1)−1, = @−1

8+1, from E8+1.
I If E8 ∈ +1 and &E8 ,<8 has no minimum, then as @8 ∈ &E8 ,<8 , there

is in particular a winning strategy for @−1
8 , from E8 that takes

edge �(E8 , <8) = (E8 , 28+1 , E8+1). Thus, P1 has a strategy winning for
�(@8 , 28+1)−1, = @−1

8+1, from E8+1.

7.6.2 Technical details for regular reachability objectives

In this section, we prove Theorem 7.4.8 discussed in Section 7.4, which
characterizes the memory requirements of regular reachability objectives.
In order to prove this characterization, we start with extra preliminaries
on the notion of tree induced by a strategy, and a classical way to define a
notion of height for these trees.

Let D be a (possibly infinite) automaton and, = GenReach(L(D)) be
the induced reachability objective. Let A = (+,+1 , +2 , �) be a (possibly
infinite) arena. For E ∈ + and � a strategy of P1 on A, we define A�,E to
be the tree induced by � from E, whose nodes are all the histories from E
consistent with �. It can be built by induction:

I it contains as a root the empty history �E from E;
I if � is a history in A�,E , then

7 The case of regular languages 178

• if out(�) ∈ +1, � has only one child which is ��(�);
• if out(�) ∈ +2, � has a child �4 for all edges 4 = (out(�), 2, E′) ∈ �.

WedenoteA�,E
|L(D) for the subtree ofA

�,E inwhich nodes �whose projection
to colors are a word inL(D) are not prolonged. A tree is calledwell-founded

if it has no infinite branch. Notice that � is winning from E if and only
if A�,E

|L(D) is well-founded. In a well-founded tree, we can associate an
ordinal rank with each node (a generalization of the height for finite trees).
By induction, for a leaf � of the tree, we define rank(�) = 0, and for an
internal node �, we define rank(�) = sup{rank(�′) + 1 | �′ a child of �}.
The rank of a tree is the rank of its root. More details on this notion of
rank for well-founded relations can be found in [Kec95, Appendix B]. [Kec95]: Kechris (1995), Clas-

sical Descriptive Set Theory

The rank of a well-founded tree with finite branching is necessarily < $;
we use greater ordinals only when the trees have infinite branching. The
upcoming proof works on arenas with arbitrary branching, but for (even
infinite) arenas with finite branching, only finite trees with finite ranks are
needed.

We now restate and prove Theorem 7.4.8.

Restated from Theorem 7.4.8
on page 168.Theorem 7.4.8 (Characterization for regular reachability) Let, ⊆ �$

be a regular reachability objective andM be a memory structure. MemoryM
suffices to play optimally for P1 if and only if, isM-strongly-monotone and

M-progress-consistent.

Proof. The necessity of the two conditions was proved respectively in
Propositions 7.3.1 and 7.4.4.

We prove the sufficiency of the two conditions. LetD, = (&, �, @init , �, �)
be the prefix-classifier automaton of, (which is finite as, is regular),
andM = (", <init , upd).Wewritew.l.o.g. � = {@fin}.We assume that, is
M-strongly-monotone andM-progress-consistent. LetA = (+,+1 , +2 , �)
be a (possibly infinite) arena. We construct an optimal strategy based
on memoryM, using the same idea as in the proof for safety objectives
(Theorem 7.3.3): we once again consider a strategy based on memory
Mmaking choices that are “locally optimal”, and deduce thanks to our
hypotheses (M-strong-monotony andM-progress-consistency) that this
strategy must be optimal.

For E ∈ + , < ∈ ", we define

@E,< = min� {@ ∈ Γ< |
P1 has a winning strategy for objective @−1, from E},

or we fix @E,< = @fin if the set is empty (this is reasonable as @fin is the
greatest state for�, and all strategies arewinning for objective @−1

fin, = �$).
Notice that we rely onM-strong-monotony and on regularity of, in this
definition, as we are guaranteed that the min exists because Γ< is a chain

7 The case of regular languages 179

and because & is finite. For E ∈ +1, < ∈ ", we also fix a strategy �E,< of
P1 that is winning for @−1

E,<, from E.

Let us take a step back. Like in the proof for safety, we want to define
�(E, <) as the first edge taken by @E,< from E—we play locally reasonable
edges played by good strategies and hope that this creates a “globally”
optimal strategy. However, this does not work in general, as any choice
for the strategies �E,< may not be good: indeed, such strategies may be
winning, but may make unnecessary moves delaying the achievement of
the objective. For instance, in the arena of Figure 7.5, a strategy inducing
101$ is winning for @−1

init, , but not as fast as possible (it takes three moves
to create a word in L(D), while it is possible to do it in two moves). If, by
imitating the first move of this strategy, we define �(E, <1) = (E, 1, E), we
then get stuck and � plays the losing word 1$.

Therefore, we make one additional requirement on �E,< : we assume that
it is a strategy guaranteeing the quickest win from E for objective @−1

E,<, . In
other words, we take �E,< such that the tree A�E,< ,E

|L(D,) has the least ordinal
rank �E,< among all winning strategies.

We define a strategy � : +1 × " → � of P1 based on memory M: for
E ∈ +1, < ∈ ", we set �(E, <) = �E,<(�E). We show that � is optimal.

Let E0 ∈ + be a vertex from which P1 has a winning strategy for objective
, . We show that � wins from E0. Let � = (E0 , 21 , E1)(E1 , 22 , E2) . . . ∈ �$
be a play consistent with � from E0, and F = 2122 . . . ∈ �$. For 8 ≥ 0,
we fix <8 = ∗upd(<init , 21 . . . 28) and @8 = �∗(@init , 21 . . . 28). We show that
F ∈, , i.e., that there exists 8 ≥ 0 such that @8 = @fin. For brevity, we also
write @′8 = @E8 ,<8 and �8 = �E8 ,<8 .

As there are finitely many memory states and finitely many automaton
states, we can find < ∈ ", @, @′ ∈ &, and an infinite increasing sequence This is where we use finite-

ness of D, , which must be
circumvented to extend the
proof to general — and not
only regular — reachability
objectives. However, the ap-
proach seems more funda-
mentally lacking for general
reachability objectives, which
is argued in Example 7.6.1 be-
low.

of indices (8 9)9≥0 such that for all 9 ≥ 0, <8 9 = <, @8 9 = @, and @′8 9 = @′.
We decompose F into infinitely many finite words cut at every index
8 9 : for 9 ≥ 0, let F 9 = 28 9+1 . . . 28 9+1 . If @ = @fin, we are done, as F indeed
reaches the final state of D. We now assume by contradiction that @ ≠ @fin.
As @ is reached infinitely many times and @fin is absorbing, this implies
that @8 ≠ @fin for all 8 ≥ 0. We prove a few properties about the various
sequences that we have defined.

(a) We first show that

∀8 ≥ 0,∀9 ≥ 8 , @′9 � �(@′8 , 28+1 . . . 2 9). (7.2)

To do so, we show that for all 8 ≥ 0, @′8+1 � �(@′8 , 28+1), and Equa-
tion (7.2) then follows by induction. Let 8 ≥ 0. As P1 has a winning
strategy for (@′8)−1, from E8 , and playing (E8 , 28+1 , E8+1) is an action
consistent with winning strategy �E8 ,<8 , P1 also has a winning strat-
egy for �(@′8 , 28+1)−1, from E8+1. Moreover, as @′8 ∈ Γ<8 , we have that

7 The case of regular languages 180

�(@′8 , 28+1) ∈ Γupd(<8 ,28+1) = Γ<8+1 . Hence, @′8+1 � �(@′8 , 28+1) as @′8+1 is
defined as the minimum of a set in which �(@′8 , 28+1) lies.

(b) We use this to show that the sequence (@′8)8≥0, which only depends on
the arena vertices and the memory states visited, underapproximates
the sequence (@8)8≥0, which corresponds to the actual automaton
states visited by word F. Formally,

∀8 ≥ 0, @′8 � @8 . (7.3)

We prove it by induction. For 8 = 0, we have @0 = @init, and by
hypothesis, P1 has a winning strategy from E0 for objective , =
@−1
init, . Moreover, <0 = <init and @init ∈ Γ<init , so by the definition of

minimum, @′0 � @0. We now assume that @′8 � @8 for some 8 ≥ 0. By
Equation (7.2), we know that @′8+1 � �(@′8 , 28+1). By Lemma 2.8.10, we
have �(@′8 , 28+1) � �(@8 , 28+1) = @8+1. We conclude that @′8+1 � @8+1,
which proves the claim. For all 8 ≥ 0, as @8 ≠ @fin, we deducemoreover
that @′8 ≠ @fin.

(c) We now prove that

∀8 ≥ 0, @′8+1 = �(@′8 , 28+1) ⇒ �8+1 < �8 . (7.4)

Let 8 ≥ 0 such that @′8+1 = �(@′8 , 28+1). We know that the treeA�E8 ,<8 ,E8 ,E
|L(D,)

has rank �8 . As @′8 ≠ @fin, �8 ≠ 0. Hence, since playing (E8 , 28+1 , E8+1)
is consistent with strategy �E8 ,<8 , it is possible to find a strategy that
induces a tree from E8+1 for objective �(@′8 , 28+1)−1, of height strictly
smaller than �8 : we simply consider the strategy of the subtree of
A�E8 ,<8 ,E8 ,E
|L(D,) with root (E8 , 28+1 , E8+1). As �(@′8 , 28+1) = @′8+1 byhypothesis,

we deduce that there is a strategy that wins for objective (@′8+1)−1,
from E8+1 andwhose tree has height < �8 . We conclude that �8+1 < �8 .

(d) We show a final property:

∀8 ≥ 80 , @′8+1 = �(@′8 , 28+1). (7.5)

By Equation (7.2), the only other option, which we assume by contra-
diction, is that there is : ≥ 80 such that @′:+1 ≺ �(@′: , 2:+1). Let 9 ≥ 0
such that 8 9 ≤ : < 8 9+1. We splitF 9 into two parts:F(1)9 = 28 9+1 . . . 2:+1

and F(2)9 = 2:+2 . . . 28 9+1 . First, notice that @′:+1 ≺ �∗(@′8 9 , F
(1)
9). Indeed,

@′: � �∗(@′8 9 , 28 9+1 . . . 2:) by Equation (7.2), and @′:+1 ≺ �(@′: , 2:+1) by
hypothesis. Secondly, we have that @′8 9+1

� �∗(@′:+1 , F
(2)
9) by Equa-

tion (7.2). We recall that @′8 9 = @
′
8 9+1

= @′. We deduce that

@′:+1 ≺ �∗(@′8 9 , F
(1)
9)

= �∗(@′8 9+1
, F(1)9)

� �∗(�∗(@′:+1 , F
(2)
9), F(1)9)

= �∗(@′:+1 , F
(2)
9 F

(1)
9).

7 The case of regular languages 181

We therefore have that F(2)9 F
(1)
9 makes progress from @′:+1. As F 9 =

F(1)9 F
(2)
9 is a cycle on memory state <, we have that F(2)9 F

(1)
9 must

be a cycle on memory state <: = ∗upd(<, F(1)9). By M-progress-

consistency, thismeans that (F(2)9 F(1)9)$ ∈ (@′:+1)−1, , so (F(1)9 F(2)9)$ =
(F 9)$ ∈ (@′8 9)−1, . By Equation (7.3), this implies that (F 9)$ ∈ @−1

8 9
, .

However,
�∗(@8 9 , F 9) = @8 9 ≠ @fin ,

so repeating F 9 from @8 9 cannot be winning. This is a contradiction,
which means that Equation (7.5) holds.

We now use Equation (7.4) and Equation (7.5) to draw a contradiction
with our initial hypothesis that @ ≠ @fin. For every index 8 ≥ 80 onward,
we have that @′8+1 = �(@′8 , 28+1) (Equation (7.5)). By Equation (7.4), this
means that the infinite ordinal sequence (�8)8≥80 is decreasing, which is
impossible.

We do not knowwhether a generalization to general reachability objectives
played on infinite arenas (i.e., Conjecture 7.4.7) holds. Using the one-to-
two-player lift from Chapter 4, as we did in Subsection 7.4.3, will not
help as it only deals with games played on finite arenas. We provide an
example showing that our proof technique above for Theorem 7.4.8 fails
for some general reachability objective with well-founded preorder.

Example 7.6.1 Let � = ℕ. We define a general reachability objective

, = {2122 . . . ∈ �$ | ∃8 < 9 , 28 ≥ 2 9}

consisting of all the infinite sequences that are not increasing. We
represent its (infinite) prefix-classifier automaton D, in Figure 7.9. For
preorder �, we have that @init ≺ @8 ≺ @fin for all 8 ≥ 0, and @8 � @ 9 if and
only if 8 ≤ 9. We observe that

I , isMtriv-strongly-monotone as preorder � is total;
I , isMtriv-progress-consistent as repeating any color is immedi-

ately winning.

Moreover, � is well-founded as every set of states ofD, has aminimum,
so Remark 7.3.6 does not apply. If Conjecture 7.4.7 indeed holds, then
Mtriv suffices here. Unfortunately, our proof technique for Theorem 7.4.8
does not work here. Let A be the finitely branching arena in Figure 7.9.
There is a winning strategy from every state. Referencing the vocabulary
of the proof of Theorem 7.4.8, the strategy guaranteeing the quickest
win from a vertex E8 is the strategy startingwith (E8 , 8 , E8+1)(E8+1 , 8 , E8+2),
which wins in two moves. This means that strategy � built in the proof
of Theorem 7.4.8 plays (E8 , 8 , E8+1) in E8 . But the infinite play generated
by � from E0 then sees colors 0, 1, 2, 3, . . ., which is not a winning word.

7 The case of regular languages 182

@init @0 @1 · · · @= · · ·

@fin

0

1

1

0

=

0, 1

= + 1

0, . . . , =

�

E0 E1 E2 · · · E= · · ·
0

0

1

1

2

= − 1

=

=

= + 1

Figure 7.9: Top: prefix-
classifier automaton D,
where , is the general

reachability objective from
Example 7.6.1. In particular,
transitions from @init and @0
to @= with color = are not
represented. Bottom: finitely
branching infinite arena in
which our proof technique
from Theorem 7.4.8 does not
build an optimal strategy.

7.6.3 Technical details for computational complexity

In Lemma 7.5.3, we have rephrased the existence of a memory structure
M with : states such that a general reachability or safety objective is
M-strongly-monotone into the existence of a monotone decomposition with The definition of monotone

decomposition is in Defini-
tion 7.5.2 on page 173.

: sets. We therefore consider the following decision problem.

Monotony
Input: A DFA D and an integer : ∈ ℕ.
Question: Is there a monotone decomposition of D with at most :

sets?

As per Lemma 7.5.3, this problem is equivalent to asking whether there is
a memory structureM with at most : states such that a regular objective
, derived from D isM-strongly-monotone (Lemma 7.5.3), or whether
there is a chromatic memory structure with ≤ : states that suffices
to play optimally for P1 for GenSafe(L(D)) (Theorem 7.3.3). It is also
related, though not equivalent, to the chromatic memory requirements
of GenReach(L(D)) (Theorem 7.4.8). We will show that the Monotony
problem is NP-complete.

Membership in NP. We discuss here that the decision problems related
to the properties used in our characterizations of chromatic memory
requirements,M-strong-monotony andM-progress-consistency, are in
NP. The idea is simply that, given a DFAD and amemory structureM, we
can decide in polynomial time whether the objectives derived from D are
M-strongly-monotone, and whether they areM-progress-consistent.

Lemma 7.6.2 Memory-Safe is in NP. Given an input DFA D =
(&, �, @init , �, �) and a witness decomposition with : ≤ |& | sets, we can
check whether it forms amonotone decomposition in O(|& |4 · |� |).

Proof. We show that theMonotony problem belongs toNP, which is equiv-
alent to our statement thanks to Lemma 7.5.3. Let D = (&, �, @init , �, �)
be a DFA and : ∈ ℕ. Notice that if : ≥ |& |, the answer to the problem

7 The case of regular languages 183

is always Yes, as ({@})@∈& is always a monotone decomposition. It is left
to consider the case : < |& |. A monotone decomposition with : sets of
states of D therefore has size polynomial in the inputs. We can verify that
such sets indeed form a monotone decomposition in polynomial time, by
checking each of the three requirements from the definition of monotone
decomposition.

I For requirement (a) (the decomposition covers the state space), we
simply need to iterate on all the states appearing in the monotone
decomposition, which has time complexity O(: · |& |).

I For requirement (b) (the decomposition is “stable” by reading colors),
we simply have to check that for each set and each color, the image
of the set by this color is included in another set, which can be done
naively in O(:2 · |� | · |& |).

I For requirement (c) (each set is a chain), we discuss how to check
in polynomial time that each set is a chain. One way to do it is to
precompute, for every pair @1 , @2 ∈ &, whether @1 � @2, @2 � @1, or
none of these. This amounts to solving language containment queries, The classical procedure

for language containment
queries is as follows: observe
that L(D1) ⊆ L(D2) if and
only if L(D1) ∩ L(D2) = ∅.
Deterministic finite automata
can be complemented by
complementing their final
states, and emptiness of the
intersection can be checked
by building the direct
product of the automata. The
product construction was
first formalized in [RS59]
[RS59]: Rabin et al. (1959), Fi-
nite Automata and Their Deci-

sion Problems

.

which can be done in polynomial time for regular languages recog-
nized by deterministic finite automata given as an input. Computing
all these relations can be done inO(|& |2 · (|& |2 · |� |)) = O(|& |4 · |� |)
as there are |& |2 pairs of states to consider, and each containment
query can be performed inO(|& |2 · |� |). Once all these relations have
been precomputed, checking whether each set of the decomposition
is a chain can be done in linear time, as a chain is simply a set in
which all pairs of elements are comparable.

As : ≤ |& |, the overall time complexity is O(|& |4 · |� |).

For regular reachability objectives, we express the notion ofM-progress-
consistency in a way that makes decidability in polynomial time clear.

Lemma 7.6.3 Let D = (&, �, @init , �, �) be a DFA,, = GenReach(L(D))
be the derived regular reachability objective, and M = (", <init , upd) be a
memory structure. We assume w.l.o.g. that D has a single final state @fin which
is absorbing.

Objective, isM-progress-consistent if and only if for all < ∈ ", @1 ∈ &,

(!<init ,< ∩ !@init ,@1 ≠ ∅) ⇒
(∀@2 ∈ & s.t. @2 ≠ @fin and @1 ≺ @2 , !<,< ∩ !@1 ,@2 ∩ !@2 ,@2 = ∅).

This result reduces the search for words that witness “non-M-progress-
consistency” to amore constrained situation. In general, if awordF ∈ !<,<
witnesses that, is not M-progress-consistent because it makes progress
from a state @ but does not win when repeated from @, then we may have
to read F multiple times on the automaton before noticing that repeating
it does not reach @fin. However, in such a situation, we can actually find
two states @1 ≺ @2 such that F is read from @1 to @2 and F is a cycle on @2

7 The case of regular languages 184

— in other words, just by reading F twice on the right state, we can notice
that F contradictsM-progress-consistency.

Proof. The left-to-right implication can be shown by contrapositive. Negat-
ing the implication gives aF1 ∈ !<init ,< ∩!@init ,@1 and aF2 ∈ !<,< ∩!@1 ,@2 ∩
!@2 ,@2 such that F1 ≺ F1F2 and F1(F2)$ does not go through @fin, so
F1(F2)$ ∉, . This shows that, is notM-progress-consistent.

For the right-to-left implication, we assume by contrapositive that, is not
M-progress-consistent: there exist < ∈ ", F1 ∈ !<init ,< , F2 ∈ !<,< such
that F1 ≺ F1F2 and F1(F2)$ ∉ , . For 8 ≥ 0, let @′8 = �∗(@init , F1(F2)8).
We have @′0 ≺ @′1 since F1 ≺ F1F2. By induction and by Lemma 2.8.10,
the sequence (@′8)8≥0 is non-decreasing. As there are finitely many states,
it therefore reaches a fixpoint, which cannot be @fin as F1(F2)$ ∉, . We
denote @2 = @′9 its fixpoint and @1 = @′9−1 the last state before reaching the
fixpoint (in particular, @1 ≺ @2, �∗(@1 , F2) = @2, and �∗(@2 , F) = @2).

We have that F1(F2)9−1 ∈ !<init ,< ∩ !@init ,@1 , @1 ≺ @2, @2 ≠ @fin, and F2 ∈
!<,< ∩ !@1 ,@2 ∩ !@2 ,@2 , which shows that we do not have the implication
from the statement.

This condition is easy to check algorithmically, as it consists of checking
emptiness and non-emptiness of intersections of regular languages for all
memory states < and all pairs @1 , @2 of comparable states of D.

Corollary 7.6.4 Memory-Reach is in NP. Given an input DFA D =
(&, �, @init , �, �) and a witness memory structure M = (", <init , upd)
with |" | ≤ |& |, we can check whether M suffices to play optimally for

GenReach(L(D)) in O(|" |2 · |& |4 · |� |).

Proof. Let D = (&, �, @init , �, �) be a DFA and : ∈ ℕ. If : ≥ |& |, then the
answer to Memory-Reach(D, :) is always Yes, as using D as a memory
structure always suffices to play optimally. Indeed, D-strong-monotony
and D-progress-consistency of an objective induced by D trivially hold
(for D-strong-monotony, by using D as a memory structure, we always
know precisely the current class of prefixes, which is even stronger than
knowing a chain; for D-progress-consistency, any progress necessarily
changes the state as twowords with distinct winning continuations cannot
reach the same state ofD). It is left to consider the case : < |& |. A sufficient
memory structureMwith : states then has size polynomial in the inputs.
To check that it suffices to play optimally, we need to verify that , is
M-strongly-monotone andM-progress-consistent.

From memory M, we can build the sets Γ< for each state < of M by
computing the product of D and M in O(|" | · |& | · |� |). We can then
check that family (Γ<)<∈" forms a monotone decomposition in time
O(|& |4 · |� |) (Lemma 7.6.2). This means thatM-strong-monotony can be
checked in polynomial time.

7 The case of regular languages 185

TheM-progress-consistency property can also be checked in polynomial
time using Lemma 7.6.3. We first compute all pairs of states (@1 , @2) such
that @1 ≺ @2, which was already discussed in Lemma 7.6.2 and can be
done inO(|& |4 · |� |). Then, we can find every triplet (<, @1 , @2) ∈ " ×&2

such that !<init ,< ∩ !@init ,@1 ≠ ∅, @2 ≠ @fin, and @1 ≺ @2. For each of these
triplets, we need to check the emptiness of language !<,< ∩ !@1 ,@2 ∩ !@2 ,@2 ,
which can be represented by a product involvingM and two copies of D
(which has |" | · |& |2 · |� | transitions). The time complexity of this step is
then O((|" | · |& |2) · (|" | · |& |2 · |� |)) = O(|" |2 · |& |4 · |� |).
The overall procedure therefore has complexity O(|" |2 · |& |4 · |� |).

NP-hardness. We show that the Monotony problem is NP-hard, using a
reduction from the (directed) HamiltonianCycle problem, which is NP-
complete [Kar72]. In the following, a (directed) graph is a tuple � = (+, �) [Kar72]: Karp (1972), Re-

ducibilityAmongCombinatorial

Problems

with� ⊆ +×+ . AHamiltonian cycle of� is a sequence (D1 , . . . , D=) inwhich

Edges in the set denoted �
are, for this one occasion, not
colored.

each vertex of + appears exactly once, (D8 , D8+1) ∈ � for all 8, 1 ≤ 8 < =,
and (D= , D1) ∈ �.

HamiltonianCycle
Input: A directed graph � = (+, �).
Question: Is there a Hamiltonian cycle in �?

Proposition 7.6.5 Monotony is NP-hard. More precisely, for every graph

� = (+, �), there is a polynomial-size DFAD� such that � has a Hamiltonian

cycle if and only if D� has a monotone decomposition with |+ | + |� | + 1 sets.

Objective GenReach(L(D�)) is moreoverMtriv-progress-consistent.

Proof. We start by defining an operator Automaton(·) turning a directed
graph into a DFA. Let � = (+, �) be a directed graph. We define
Automaton(�) as the DFA (&,Σ, �, @init , �) with & = +] �, Σ = {in, out},
and transitions such that

I for E ∈ + , �(E, in) = �(E, out) = E;
I for 4 = (E1 , E2) ∈ �, �(4 , in) = E1 and �(4 , out) = E2.

We ignore @init and � at the moment. This definition is inspired from a
reduction in [Boo78] (although the rest of the proof is different). [Boo78]: Booth (1978), Isomor-

phism Testing for Graphs, Semi-

groups, and Finite AutomataAre

Polynomially Equivalent Prob-

lems

Let us consider a graph � = (+, �) as an input to the HamiltonianCycle
problem.We show how to transform it in a polynomial-size DFA for which
the answer to the Monotony problem (along with a well-chosen : ∈ ℕ)
corresponds. We illustrate this construction in Figure 7.10. Let = = |+ | and
< = |� |. We assume that < ≥ = (otherwise, � cannot have a Hamiltonian
cycle). We also consider the cycle graph with = vertices C= = (+C , �C), with
+C = {EC1 , . . . , EC=} and �C = {4C1 , . . . , 4C= } such that 4C8 = (EC8 , EC8+1) for
1 ≤ 8 < = and 4= = (EC= , EC1).Wenowconsider aDFAD� = (&,Σ, �, @init , �)

7 The case of regular languages 186

E1

E2

E4

E3
�

EC1

EC2

EC4

EC3

D�

Automaton(C=)

in

out

in out

in

out

inout

in, out

E1

E2

E4

E3

Automaton(�)

in

out

in out

in

out

inout

in

out

in, out@init

0EC3 0E2

⊥ > ΣΣ

0E3 , 0EC1 , . . .

0E4 , 0EC1 , . . .
0EC2 , 0EC3 , . . .

0EC1 , 0EC3 , . . .

Figure 7.10: Illustration of DFAD� starting from a graph�with four vertices. Only a few transitions of each kind are shown.
Kinds of transitions that are not completely represented include: transitions from @init to all states I ∈ (+C ∪ �C) ∪ (+ ∪ �)
with letter 0I , self-loops on all states in +C ∪+ with letters in and out, transitions from all states I ∈ (+C ∪ �C) ∪ (+ ∪ �) to
>with letter 0I , transitions from all states in+ to >with letters 0EC with EC ∈ +C , transitions from all states in � to >with
letters 04C with 4C ∈ �C , and transitions from all states in (+C ∪ �C) ∪ (+ ∪ �) to ⊥ for letters 0I that do not go to >.

based on the disjoint union Automaton(C=)]Automaton(�) along with one
new letter for each state and three extra states:

I & = (+C] �C)] (+] �)] {@init ,⊥,>},
I Σ = {in, out}] {0I | I ∈ (+C ∪ �C) ∪ (+ ∪ �)},
I � = {>}.

The transitions with in and out are defined as above for states of (+C ∪
�C) ∪ (+ ∪ �), and are self-loops on @init, ⊥ and >.
The sole purpose of the new letters 0I is to induce a relevant ordering �—
intuitively, wewant⊥ to be the smallest state,> to be the largest, and all au-
tomaton states corresponding to vertices (resp. edges) of Automaton(C=) to
be smaller than all automaton states corresponding to vertices (resp. edges)
of Automaton(�), while making all other pairs of states non-comparable.
Formally, for I, I′ ∈ (+C ∪ �C) ∪ (+ ∪ �)we define

�(I, 0I′) =

> if I = I′,
> if I ∈ + and I′ ∈ +C ,

> if I ∈ � and I′ ∈ �C ,
⊥ otherwise.

We moreover define, for all I ∈ (+C ∪ �C) ∪ (+ ∪ �), �(@init , 0I) = I,
�(⊥, 0I) = ⊥, and �(>, 0I) = >.
We sum up the relations between the elements that follow from this
construction:

I for all @ ∈ & \ {⊥}, ⊥ ≺ @,
I for all @ ∈ & \ {>}, @ ≺ >,
I for all EC ∈ +C , for all E ∈ + , EC ≺ E,
I for all 4C ∈ �C , for all 4 ∈ �, 4C ≺ 4,
I all other pairs of distinct states are non-comparable for �.

7 The case of regular languages 187

The largest antichain in D� for � is attained by + ∪ � ∪ {@init}: all these
states are non-comparable, and all other states are comparable to some
of them. This antichain has cardinality = + < + 1. Therefore, a monotone
decomposition of D� has size at least = + < + 1. We claim that it can
have a size of exactly = + < + 1 if and only if � has a Hamiltonian
cycle. This suffices to end the proof, since the size of D� is polynomial in
the size of �, and HamiltonianCycle(�) then returns Yes if and only if
Monotone(D� , = + < + 1) returns Yes.

Claim Graph � has a Hamiltonian cycle if and only if D� has a monotone

decomposition with = + < + 1 sets.

We first prove the left-to-right implication. We assume that � has a
Hamiltonian cycle (D1 , . . . , D=). Let 48 = (D8 , D8+1) for 1 ≤ 8 < =, and
4= = (D= , D1). Let � \ {41 , . . . , 4=} = {4=+1 , . . . , 4<}. The fact that there is a
Hamiltonian cycle in � allows for a natural pairing of vertices (resp. edges)
of C= with vertices (resp. edges) of � in sets of a monotone decomposition,
which will in particular be closed under reading in and out. We define sets
(Γ8)1≤8≤=+<+1 such that:

I for 1 ≤ 8 ≤ =, Γ8 = {⊥, EC8 , D8 ,>};
I for 1 ≤ 8 ≤ =, Γ=+8 = {⊥, 4C8 , 48 ,>};
I for 1 ≤ 8 ≤ < − =, Γ2=+8 = {⊥, 4=+8 ,>};
I Γ=+<+1 = {⊥, @init ,>}.

We check that these sets form a monotone decomposition of D�. These
sets cover the states of D�, and they are chains by construction. It is left
to check the second requirement (b) of a monotone decomposition. Let
8 ∈ {1, . . . , = +< + 1}. If 8 ≥ 2= + 1, then Γ8 has three elements. For 0 ∈ Σ,
the set �(Γ8 , 0) is a set with at most three elements that includes ⊥ and >,
so it is clearly a subset of some Γ9 . If 8 ≤ 2=, Γ8 is a four-element set. Then,

I for 1 ≤ 8 ≤ =, �(Γ8 , in) = �(Γ8 , out) = Γ8 (as in and out are self-loops
on states of +C ∪+ ∪ {⊥,>});

I for 1 ≤ 8 ≤ =,
• �(Γ=+8 , in) = {⊥, EC8 , D8 ,>} = Γ8 , and
• �(Γ=+8 , out) = {⊥, EC8+1 , D8+1 ,>} = Γ8+1;

I for I ∈ (+C ∪ �C) ∪ (+ ∪ �), �(Γ8 , 0I) = �(Γ=+8 , 0I) = {⊥,>}, which
is a subset of any Γ9 .

We have shown that sets (Γ8)1≤8≤=+<+1 form a monotone decomposition
of D� with = + < + 1 sets.

We now prove the right-to-left implication. Let (Γ8)1≤8≤=+<+1 be a mono-
tone decomposition of D� with = + < + 1 sets. Every set Γ8 contains at
most two states besides ⊥ and > (due to the chain requirement and the
structure of chains inD�). As+ ∪�∪ {@init} is an antichain with = +< + 1
elements, every state of this set is in exactly one set Γ8 . Due to the limited
number of sets and the chain structure, states of +C (resp. �C) need to be

7 The case of regular languages 188

in a Γ8 along with an element of + (resp. �). As +C and + have the same
cardinality, this implies that for every 8 ∈ {1, . . . , =}, there is a unique
D8 ∈ + such that EC8 and D8 are in the same Γ9 .

We show that the sequence (D1 , . . . , D=) is a Hamiltonian cycle of �. We
write D=+1 = D1 for brevity. Let 8 ∈ {1, . . . , =}. The edge 4C8 of C= is in
some set Γ9 along with some edge 48 = (E8 , E8+1) ∈ �. We have that

I �(Γ9 , in) contains EC8 and E8 . As �(Γ9 , in) is a subset of some Γ; , and
that EC8 is in a single set along with D8 , we deduce that E8 = D8 .

I similarly, from observing �(Γ9 , out), we deduce that E8+1 = D8+1.

Therefore, 48 = (E8 , E8+1) = (D8 , D8+1) ∈ �. We have shown that (D1 , . . . , D=)
is a Hamiltonian cycle of �, which proves the claim.

We additionally observe that objectiveGenReach(L(D�)) isMtriv-progress-
consistent. Indeed, notice that if there are @1 , @2 ∈ &, F ∈ �∗ such that
�∗(@1 , F) = @2 and @1 ≺ @2, then @2 = > (any progress is immediately
winning).

We now have all the ingredients to prove Theorem 7.5.1.

Restated from Theorem 7.5.1
on page 173.Theorem 7.5.1 (Complexity of Memory-Safe and Memory-Reach) Both

Memory-Safe and Memory-Reach are NP-complete.

Proof. TheMemory-Safeproblem is inNP (Lemma7.6.2), andwas shown to
be equivalent to the Monotone problem, itself NP-hard (Proposition 7.6.5).
This shows that Memory-Safe is NP-complete.

The Memory-Reach problem is in NP (Corollary 7.6.4). Moreover, in
Proposition 7.6.5, the finite automata considered (the D� for � a directed
graph) induce Mtriv-progress-consistent regular reachability objectives.
By Theorem 7.4.8, this means that a memory structure M suffices for
such an objective if and only if it isM-strongly-monotone. In other words,
a memory structure M suffices for GenReach(L(D�)) if and only if it
suffices for GenSafe(L(D�)). As the problem is NP-hard for the family
GenSafe(L(D�)), it is also NP-hard for the family GenReach(L(D�)).

We remark that our proof of NP-hardness of Memory-Reach relies solely
on theM-strong-monotony notion. We leave as an open problem whether
finding a smallM such that a regular reachability objective isM-progress-
consistent is alsoNP-hard. This would be especially interesting if it held for
the class ofMtriv-strongly-monotone objectives (i.e., for which the prefix
preorder is total), as it would suggest that there is a class of automata for
which finding a smallest memory structure for their induced reachability
objective is harder than for their induced safety objective.

7 The case of regular languages 189

7.7 Synthesizing small memory structures in practice

7.7.1 Overview

The understanding provided by our characterizations of the memory
requirements of regular reachability and safety objectives leads to a
relatively straightforward way of implementing algorithms to synthesize
minimal memory structures. We did so, and the result is publicly available
at the linkhttps://github.com/pvdhove/regularMemoryRequirements.
We use the Python package automata-lib to represent and manipulate
the automata, and the Python package PySAT [IMM18] as an interface to [IMM18]: Ignatiev et al. (2018),

PySAT:APythonToolkit for Pro-

totyping with SAT Oracles

SAT solvers.

Our algorithms work as follows: given an input DFAD representing either
a regular reachability or a regular safety objective,

I we perform a binary search on the number : of states of the minimal
memory structure (exploiting the monotonicity of the problem: if
a memory structure with : states suffices, then so does a memory
structure with : + 1 states);

I for a fixed :, we encode problems Memory-Safe or Memory-Reach
into a polynomial-size propositional formula (detailed in Subsec-
tion 7.7.2 below), and check its satisfiability with a SAT solver.

For illustration purposes, we have in particular implemented the regular
examples from this chapter (Examples 7.3.5, 7.4.1, and 7.4.5) — with
results that of course match the theoretical analysis — and generalizations
thereof (usually yielding larger automata). A usermay also obtainmemory
requirements of a regular language by providing a regular expression,
which is an easy way to try out the code.

Example 7.7.1 We illustrate one usage of the implementation on a
generalization of Example 7.3.5, by requiring two extra letters 4 and 5 to
be seen after seeing 0, 1 and 2, 3. We display this DFA and our results in
Figure 7.11 (the DFA is at the top and thememory structure at the bottom;
initial states are green). We learn that a smallest memory structure for
the safety objective induced by this automaton has five states (which
was not obvious), and it can be displayed along with a corresponding
monotone decomposition. For instance, memory state 3 induces the set
Γ3 = {1, 3, 4, 6, 7, 9} in the monotone decomposition in the sense that it
could be reached in parallel with automaton states 1, 3, 4, 6, 7, 9.
Observe that there may be superfluous states in monotone decompo-
sitions: for instance, memory state 1 can be reached in parallel with
automaton states 0 and 2, but not actually in parallel with 7 and 9 (even
though Γ1 = {0, 2, 7, 9}). This is a subtlety already hidden in the proof of
equivalence between memory structures and monotone decompositions
(Lemma 7.5.3): starting from a monotone decomposition, building a
memory structure from it and going back to a monotone decomposition

https://github.com/pvdhove/regularMemoryRequirements

7 The case of regular languages 190

D = utils.diamond_generalized(3)

M = memReq.smallest_memory_safety(D)

\Gamma_0 = [’1’, ’3’, ’4’, ’6’, ’8’, ’9’]
\Gamma_1 = [’0’, ’2’, ’7’, ’9’]
\Gamma_2 = [’1’, ’3’, ’5’, ’6’, ’8’, ’9’]
\Gamma_3 = [’1’, ’3’, ’4’, ’6’, ’7’, ’9’]
\Gamma_4 = [’1’, ’3’, ’5’, ’6’, ’7’, ’9’]

Figure 7.11: Generalization from Example 7.3.5, for which chromatic memory requirements can be computed automatically
with our implementation. We give an example of Python instructions to generate the automata and the monotone
decomposition.

may not yield the exact same monotone decomposition.

7.7.2 SAT encoding

Let D = (&, �, @init , �, �) be a DFA and : ≥ 1. We assume w.l.o.g. that
� = {@fin}. To encode Memory-Safe as a propositional formula, we use
the reformulation into monotone decompositions provided by Lemma 7.5.3.
We consider the family of variables (G@,8)@∈&,1≤8≤: ; the meaning of G@,8
is intended to be “state @ is in set Γ8 of the decomposition”. The three
requirements of monotone decompositions (Definition 7.5.2) can then be
encoded respectively as the following propositional formulas:

(a)
∧
@∈&

∨
1≤8≤:

G@,8 ,

(b)
∧

1≤8≤:

∧
2∈�

∨
1≤ 9≤:

∧
@∈&
(G@,8 =⇒ G�(@,2), 9),

(c)
∧

1≤8≤:

∧
@,@′∈&2 incomparable for �

(¬G@,8 ∨ ¬G@′,8).

7 The case of regular languages 191

From a satisfying valuation of variables (G@,8)@,8 , we can then recover a
sufficient memory structureM by exploiting the proof of Lemma 7.5.3.

To encode Memory-Reach, we store explicitly the structure of a memory
structure with : states with propositional variables. This construction
is inspired from a similar encoding to minimize deterministic Büchi
automata [BD14]. We fix " = {<1 , . . . , <:} as the states of a possible [BD14]: Baarir et al. (2014),

Mechanizing the Minimization

of Deterministic Generalized

Büchi Automata

memory structureM = (", <init , upd), and we fix arbitrarily <init = <1.
We define a family of variables (C8 ,2, 9)1≤8 , 9≤:,2∈� meaning that there is a
transition upd(<8 , 2) = < 9 inM. We require thatM is complete:∧

1≤8≤:

∧
2∈�

∨
1≤ 9≤:

C8 ,2, 9 .

We do not have to enforce determinism: if a non-deterministic valuation
is found, any deterministic and complete “substructure” will be a good
memory structure.

We then use the NP-reformulation of M-progress-consistency from
Lemma 7.6.3; we want to know which paths are possible in the triple
product involvingM and two copies of D. To do so, we create a family of
variables (?8 , 9 ,@1 ,@2 ,@3 ,@4)1≤8 , 9≤:,@1 ,@2 ,@3 ,@4∈& . Variable ?8 , 9 ,@1 ,@2 ,@3 ,@4 indicates
that !<init ,<8∩!@init ,@1 ≠ ∅, !<init ,<8∩!@init ,@3 ≠ ∅, and !<8 ,<9∩!@1 ,@2∩!@3 ,@4 ≠ ∅.
These constraints can be encoded with the four following formulas (ex-
plained in more detail below):

?1,1,@init ,@init ,@init ,@init ;∧
1≤8≤:

∧
@∈&

∧
2∈�

∧
1≤ 9≤:
(?8 ,8 ,@,@,@,@ ∧ C8 ,2, 9 =⇒ ? 9 , 9 ,�(@,2),�(@,2),�(@,2),�(@,2));

∧
1≤8≤:

∧
@,@′∈&

(?8 ,8 ,@,@,@,@ ∧ ?8 ,8 ,@′,@′,@′,@′ =⇒ ?8 ,8 ,@,@,@′,@′);
∧

1≤8 , 9 ,;≤:

∧
@1 ,@2 ,@3 ,@4∈&

∧
2∈�
(?8 , 9 ,@1 ,@2 ,@3 ,@4 ∧ C 9 ,2,;

=⇒ ?8 ,; ,@1 ,�(@2 ,2),@3 ,�(@4 ,2)).
The first formula simply defines the initial state in the product. The second
one computes the reachable states of the product betweenM and D, i.e.,
couples (8 , @) such that !<init ,<8 ∩ !@init ,@ ≠ ∅ (this would be doable with
variables with only two indices 8 and @). The third one extends it to all
triplets (8 , @, @′) such that !<init ,<8 ∩ !@init ,@ ≠ ∅ and !<init ,<8 ∩ !@init ,@′ ≠ ∅.
The fourth one augments the paths in the triple product: if there is already
a wordF from<8 to< 9 , from @1 to @2, and from @3 to @4, then for all colors
2, if upd(< 9 , 2) = <; , word F2 goes from <8 to <; , from @1 to �(@2 , 2),
and from @3 to upd(@4 , 2).
With these variables, we can then encode the constraint of Lemma 7.6.3,
which is equivalent toM-progress-consistency:∧

1≤8≤:

∧
@1 ,@2∈&

@2≠@fin , @1≺@2

(?1,8 ,@init ,@1 ,@init ,@1 =⇒ ¬?8 ,8 ,@1 ,@2 ,@2 ,@2).

7 The case of regular languages 192

This only deals with M-progress-consistency; to enforce M-strong-
monotony at the same time, notice that ?8 ,8 ,@,@,@,@ has the same meaning
as G@,8 above. We can simply add the three constraints already discussed
for regular safety objectives to our formula. As variables C8 ,2, 9 encode
the transitions of a memory structure, it is straightforward to recover a
memory structure from a satisfying valuation.

These formulas are not all in conjunctive normal form, which is usually
required by SAT solvers; they can be converted into such formulas using
the Tseitin transform [Tse70], which increases the number of variables [Tse70]: Tseitin (1970), On

the complexity of derivation in

propositional calculus

and clauses polynomially — details about this transformation are straight-
forward and are documented in the source code. These formulas in
conjunctive normal form contain in the end, if = is the number of states of
the input DFA:

I for Memory-Safe, :=+ :2 · (=+1) · |� | variables andO(:=2+ :2= |� |)
clauses;

I for Memory-Reach, :2=4 + :2 · (= + 2) · |� | variables andO(:3=4 |� |)
clauses.

Most clauses have size 2 or 3, and a small amount of clauses have size : in
both cases.

7.8 Wrap-up

We have characterized the minimal memory structures sufficient to play
optimally for regular reachability and safety objectives, a simple class
of $-regular objectives. Some of our results apply more generally to
general reachability and safety objectives (usually called topologically open

and topologically closed objectives), which are the objectives at the first
level of the Borel hierarchy. Throughout our characterizations, we were
able to prove that decision problems related to finding minimal memory
structures for regular objectives are NP-complete. Our characterizations
were encoded into a SAT solver that automatically generates minimal
memory structures for both players given a DFA as an input.

This chapter can be seen as one step toward understanding more gen-
erally the memory requirements of all $-regular objectives, as well as
synthesizing minimal memory structures for them. The chaotic memory
requirements of regular reachability objectives are still unknown (as op-
posed to the ones of regular safety objectives [CFH14; CFH22]), as well [CFH14]: Colcombet et al.

(2014), Playing Safe
[CFH22]: Colcombet et al.
(2022), Playing Safe, Ten Years

Later

as the chromatic memory requirements of larger classes of $-regular
objectives.

In the next chapter, we move on to a more general class of $-regular
objectives, at the expense of only giving a complete understanding of
half-positionality, and not of full memory requirements.

Half-positional objectives

recognized by

deterministic Büchi automata 8

In this chapter,we focus on half-positionality, i.e., theproperty of anobjective
for which the first player does not need memory to implement winning
strategies. Even though there are characterizations of objectives that admit
memoryless optimal strategies for both players (see Chapter 3), focusing
on just one player appears to be a more difficult question. Chapter 7 gave
us, as a special case, a complete understanding of half-positionality for
regular objectives, a simple class of $-regular objectives. In order to get
closer to the whole class of $-regular objectives, we consider a class of
objectives one step further.

We characterize objectives recognizable by deterministic Büchi automata (a
class of $-regular objectives strictly encompassing the regular objectives
from the previous chapter) that are half-positional, both over finite and
infinite graphs. Our characterization consists of three natural conditions
linked to the language-theoretic right congruence. Furthermore, this charac-
terization yields a polynomial-time algorithm to decide half-positionality
of an objective recognized by a given deterministic Büchi automaton.

Compared to Chapter 7, we therefore deal with a larger class of objectives,
but give a complete understanding of a more restricted class of strategies.
To understand half-positionality, we will revisit in particular the necessary
Mtriv-strong-monotony and the Mtriv-progress-consistency properties
introduced in the previous chapter, but we will also need additional
properties.

The contributions from this chapter are based on joint work with Patricia
Bouyer (Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF), Antonio
Casares (CNRS, LaBRI, Université de Bordeaux), and Mickael Randour
(F.R.S.-FNRS & Université de Mons) published in the proceedings of
CONCUR’22 [BCRV22]. We would also like to thank Pierre Ohlmann for [BCRV22]: Bouyer et al.

(2022), Half-Positional Objec-

tives Recognized by Determinis-

tic Büchi Automata

interesting discussions on the subject of this chapter.

8.1 Introduction . 194

8.2 Saturating Büchi automata . 197

8.3 Half-positionality of DBA-recognizable objectives 200

8.3.1 Three conditions for half-positionality 200
8.3.2 Characterization and corollaries . 203
8.3.3 Deciding half-positionality in polynomial time 205
8.4 Necessity of the third condition . 208

8.4.1 Prefix-independent case . 209
8.4.2 General case . 215
8.5 Sufficiency of the conditions . 219

8.5.1 Completely well-monotonic universal graphs 219
8.5.2 Universal graphs for Büchi automata . 221
8.6 Wrap-up . 229

8 Half-positional objectives recognized by deterministic Büchi automata 194

8.1 Introduction

Memorylessdeterminacyandhalf-positionality. Atmultiple occasions
in this thesis, we have givenways to understand thememory requirements
of objectives for both players simultaneously. If we look at arguably the
simplest kind of strategies—memoryless ones—we have on the one hand
memoryless determinacy (the property of objectives admitting memoryless
optimal strategies for both players) and on the other hand half-positionality

(the same for just one player). We have discussed in Chapter 3 characteri-
zations allowing us to understand memoryless determinacy of objectives
on both finite [GZ05]

[GZ05]: Gimbert et al. (2005),
Games Where You Can Play Op-

timally Without Any Memory

and infinite [CN06]

[CN06]: Colcombet et al.
(2006), On the positional deter-

minacy of edge-labeled games

graphs.

Yet, there exist many objectives and combinations thereof for which
one player, but not both, has memoryless optimal strategies (e.g., Ra-
bin conditions [KK91; Kla94]

[KK91]: Klarlund et al. (1991),
Rabin Measures and Their

Applications to Fairness and

Automata Theory

[Kla94]: Klarlund (1994),
Progress Measures, Immediate

Determinacy, and a Subset

Construction for Tree Automata

, mean-payoff parity [CHJ05], energy par- [CHJ05]: Chatterjee et al.
(2005), Mean-Payoff Parity

Games

ity [CD12], some window objectives [CDRR15; BHR16], energy mean-

[CD12]: Chatterjee et al.
(2012), Energy parity games

[CDRR15]: Chatterjee et al.
(2015), Looking at mean-payoff

and total-payoff through win-

dows

[BHR16]: Bruyère et al. (2016),
Window parity games: an alter-

native approach toward parity

games with time bounds

payoff [BHRR19]), and to which these results do not apply.

[BHRR19]: Bruyère et al.
(2019), Energy Mean-Payoff

Games

Various attempts have been made to understand common underlying
properties of half-positional objectives and to provide sufficient condi-
tions [Kop06; Kop07; Kop08; BFMM11], but little more was known until

[Kop06]: Kopczyński (2006),
Half-Positional Determinacy of

Infinite Games

[Kop07]: Kopczyński (2007),
Omega-Regular Half-Positional

Winning Conditions

[Kop08]: Kopczyński (2008),
Half-positional Determinacy of

Infinite Games

[BFMM11]: Bianco et al. (2011),
Exploring the boundary of half-

positionality

the recent work of Ohlmann [Ohl23] (discussed below). These sufficient

[Ohl23]: Ohlmann (2023),
Characterizing Positionality in

Games of Infinite Duration over

Infinite Graphs

conditions are not general enough to prove half-positionality of some very
simple objectives, even $-regular ones [BFMM11, Lemma 13] — this is
what we intend to tackle here. Furthermore, multiple questions concern-
ing half-positionality remain open. For instance, in [Kop08], Kopczyński
conjectured that prefix-independent half-positional objectives are closed
under finite union (this conjecture was recently refuted for games on
finite graphs [Koz22a], but is still unsolved for games on infinite graphs).

[Koz22a]: Kozachinskiy
(2022), Energy Games over

Totally Ordered Groups

Also, Kopczyński showed that given a deterministic parity automaton
recognizing a prefix-independent objective, , we can decide if, is half-
positional over finite arenas [Kop07]. However, the time complexity of his
algorithm is O(=O(=2)), where = is the number of states of the automaton.
This complexity comes from a reduction of half-positionality over all finite
arenas to half-positionality over a finite (but large) number of finite are-
nas, which can be enumerated. It is unknown whether half-positionality
can be decided in polynomial time, and no algorithm is known for the
non-prefix-independent case.

Deterministic Büchi automata. In this chapter, we focus on the proper
subclass of $-regular objectives recognized by deterministic Büchi automata

(DBAs), that we call DBA-recognizable. DBA-recognizable objectives cor-
respond to the $-regular objectives that can be written as a countable
intersection of open objectives (that is, which are the �� sets of the Borel
hierarchy) or, equivalently, that are the limit language of a regular lan-
guage of finite words [PP04]. Deciding the winner of a game with a [PP04]: Perrin et al. (2004), In-

finite words – automata, semi-

groups, logic and games

DBA-recognizable objective is doable in polynomial time in the size of the

8 Half-positional objectives recognized by deterministic Büchi automata 195

arena and the DBA (by solving a Büchi game on the product of the arena
and the DBA [BCJ18]). [BCJ18]: Bloem et al. (2018),

Graph Games and Reactive Syn-

thesisWe will make use of two central technical tools: the first is the notion of
right congruence, already discussed at length and used heavily in Chapter 5; See Definition 2.8.3 for a def-

inition of the right congru-
ence.

the second is the notion of universal graph, a novel tool to solve games on
graphs.

Universal graphs. A recent advance in the study of half-positionality is
the introduction ofwell-monotonic universal graphs, combinatorial structures
that can be used to provide a witness of winning strategies in games with
a half-positional objective. Recently, Ohlmann [Ohl23] has shown that [Ohl23]: Ohlmann (2023),

Characterizing Positionality in

Games of Infinite Duration over

Infinite Graphs

the existence of a well-monotonic universal graph for an objective, exactly
characterizes half-positionality (under minor technical assumptions on
,). Moreover, under these assumptions, a wide class of algorithms,
called value iteration algorithms, can be applied to solve any game with a
half-positional objective [Ohl21; CFGO22]. [Ohl21]: Ohlmann (2021),

Monotonic graphs for parity and

mean-payoff games

[CFGO22]: Colcombet et al.
(2022), The Theory of Univer-

sal Graphs for Infinite Duration

Games

Although it brings insight into the structure of half-positional objectives,
showing half-positionality through the use of universal graphs is not
always straightforward and has not yet been applied in a systematic way
to $-regular objectives.

Contributions. Our main contribution is a characterization of the DBA-
recognizable objectives that are half-positional, through a conjunction of
three easy-to-check conditions (Theorem8.3.7). The first two conditions are
specializations of theM-strong-monotony andM-progress-consistency
already introduced in Chapter 7; these more general properties could
deal with arbitrary memory structures, whereas here we only need the
“memoryless memory structure”Mtriv. The three conditions can be stated
as follows:

(a) (Mtriv-strong-monotony) The equivalence classes for the right congru-
ence are totally ordered w.r.t. inclusion of their winning continuations.

(b) (Mtriv-progress-consistency) Whenever the set of winning continua-
tions of a finite word F1 is a proper subset of the set of winning
continuations of a concatenation F1F2, the word F1(F2)$ produced
by repeating infinitely often F2 is winning.

(c) The objective has to be recognizable by a DBA using the structure of
its prefix classifier.

A few examples of simple DBA-recognizable objectives that were not
encompassed by previous half-positionality criteria [Kop06; BFMM11]

[Kop06]: Kopczyński (2006),
Half-Positional Determinacy of

Infinite Games

[BFMM11]: Bianco et al. (2011),
Exploring the boundary of half-

positionality

are, e.g., weak parity objectives [Tho08]

[Tho08]: Thomas (2008),
Church’s Problem and a Tour

through Automata Theory

, and “reaching a color twice in a
row or infinitely often” (Example 8.3.3), which is half-positional but not
memoryless-determined, and whose half-positionality is straightforward
using our characterization.

8 Half-positional objectives recognized by deterministic Büchi automata 196

Various corollaries with practical and theoretical interest follow from our
characterization.

I We obtain a painless path to show (by checking each of the three
conditions) that given a deterministic Büchi automaton, the half-
positionality of the objective it recognizes is decidable in time O(:2 ·
=4), where : is the number of colors and = is the number of states of
the DBA (Subsection 8.3.3).

I Prefix-independent DBA-recognizable half-positional objectives are
exactly the very simple Büchi conditions Büchi(�′) for some �′ ⊆ �,
which consist of all the infinite words seeing infinitely many times
colors in �′ (Proposition 8.3.8). In particular, Kopczyński’s conjecture
about finite unions of half-positional objectives trivializes for DBA-
recognizable objectives (the finite union of Büchi conditions is a
Büchi condition).

I We obtain a finite-to-infinite and a strong one-to-two-player lift (The-
orem 8.3.11): in order to check that a DBA-recognizable objective
is half-positional over arbitrary — possibly two-player and infinite
— game graphs, it suffices to check the existence of memoryless
optimal strategies over finite one-player graphs where all the vertices
are controlled by P1.

Technical overview. The necessity of Conditions (a) and (b) for half-
positionality over one-player arenas (for $-regular objectives, even over
finite one-player arenas) was already shown in Propositions 7.3.1 and 7.4.4.
Condition (c) has been studied multiple times in the language-theoretic lit-
erature, both for itself and forminimization and learning algorithms [Sta83;
LeS90; MS97; AFS20; BL21; AF21]

[Sta83]: Staiger (1983), Finite-
State $-Languages

[LeS90]: Le Saëc (1990), Satu-
rating right congruences

[MS97]: Maler et al. (1997),
On Syntactic Congruences for

Omega-Languages

[AFS20]: Angluin et al. (2020),
Polynomial Identification of $-
Automata

[BL21]: Bohn et al. (2021),
Constructing Deterministic $-
Automata from Examples by an

Extension of the RPNI Algo-

rithm

[AF21]: Angluin et al. (2021),
Regular $-languages with an in-

formative right congruence

; we also gave a strategic characteri-
zation of it for deterministic parity automata in Corollary 5.4.6. As an
example, all deterministic weak automata (a restriction on DBAs) satisfy
Condition (c) [Sta83; AF21]. We prove that Condition (c) is necessary for
half-positionality of DBA-recognizable objectives, but not for all (even
$-regular) objectives in general (see Example 8.3.6). The proof of its
necessity is more involved than for the first two conditions, and will
build on automata-theoretic ideas introduced for good-for-games coBüchi

automata [AK19; AK20; AK22]

[AK19]: Abu Radi et al. (2019),
Minimizing GFG Transition-

Based Automata

[AK20]: Abu Radi et al.
(2020), Canonicity in GFG and

Transition-Based Automata

[AK22]: Abu Radi et al.
(2022),Minimization and Can-

onization of GFG Transition-

Based Automata

.

Together, the three conditions are sufficient for half-positionality of DBA-
recognizable objectives: the proof of sufficiencyuses the theory of universal
graphs, and consists in building a family of well-monotonic universal
graphs [Ohl23]

[Ohl23]: Ohlmann (2023),
Characterizing Positionality in

Games of Infinite Duration over

Infinite Graphs

for objectives satisfying the three properties.

Chapter structure. We first introduce technical notions from [AK22] to
manipulate DBAs in Section 8.2. Our main contributions are presented
in Section 8.3: we introduce and discuss the three conditions used in
our results, then we state our main characterization (Theorem 8.3.7)
and some corollaries, and we end with an explanation on how to use

8 Half-positional objectives recognized by deterministic Büchi automata 197

the characterization to decide half-positionality of DBA-recognizable
objectives in polynomial time. Sections 8.4 and 8.5 contain the proof
of Theorem 8.3.7: the former shows the necessity of Condition (c) for
half-positionality of DBA-recognizable objectives, and the latter shows
their sufficiency through the use of universal graphs.

Notions. We do not devote a section to additional preliminaries in this
chapter, but we will especially make use of the following terminology
defined in Chapter 2: automaton structures (Definition 2.7.1), deterministic

Büchi automata (DBAs — Definition 2.7.3), prefix preorder (Definition 2.8.2),
right congruence (Definition 2.8.3), and prefix classifier (Definition 2.8.11).
We also extend the notation of the objective Büchi(0) (containing words
that see color 0 ∈ � infinitely often) to Büchi(�′) for �′ ⊆ � (containing
words that, infinitely often, see a color that belongs to �′). Objectives that
can be recognized by a DBA are called DBA-recognizable.

We recall that an objective, is half-positional (over resp. finite, countable,
finitely branching, one-player arenas) if for all (resp. finite, countable, finitely
branching, one-player) arenas A, P1 has a memoryless optimal strategy
(i.e., an optimal strategy based onMtriv) in game (A,,).
For a DBA B = (&, �, @init , �, �), a state @ ∈ &, and an infinite word
F = 2122 . . . ∈ �$, we write B(@, F) ∈ (& × �)$ for the infinite run

of B on F from @, i.e., the sequence (@0 , 21)(@1 , 22) . . . with @0 = @ and
@8 = �(@8−1 , 28) for 8 ≥ 1. If F ∈ �∗, we define the finite run of B on F from @
in a similar way.

8.2 Saturating Büchi automata

We describe a “normal form” of deterministic Büchi automata that has
good properties and that will be used throughout multiple sections of
this chapter.

Let B = (&, �, @init , �, �) be a DBA. We say that a finite run of B is �-free if
it does not contain any transition from �. For @ ∈ &, we define

�-FreeB(@) = {F ∈ �∗ | B(@, F) is �-free},
�-FreeCyclesB(@) = {F ∈ �∗ | F ∈ �-FreeB(@) and �∗(@, F) = @}.

We call the words in the first set the �-free words from @, and the words in
the second set the �-free cycles from @. We state an important property of
�-free words; having the same �-free words is a kind of congruence on the
states of the automata (if we restrict words read to �-free words).

Lemma 8.2.1 Let @1 , @2 ∈ & be such that �-FreeB(@1) = �-FreeB(@2). Then
for all F ∈ �-FreeB(@1), �-FreeB(�∗(@1 , F)) = �-FreeB(�∗(@2 , F)).

8 Half-positional objectives recognized by deterministic Büchi automata 198

@init @0 @00

0•
1

0
1 0, 1• @init @0 @00

0•
1
•

0•1 0, 1•

Figure 8.1: DBA (left) and its unique saturation (right). We recall that transitions labeled with a • symbol are the Büchi
transitions.

Proof. Let F ∈ �-FreeB(@1). Let @′1 = �∗(@1 , F), @′2 = �∗(@2 , F), and F′ ∈
�-FreeB(@′1). Since both runs B(@1 , F) and B(@′1 , F′) are �-free, we have
FF′ ∈ �-FreeB(@1) = �-FreeB(@2). Therefore, the run B(@2 , FF′) is �-free,
so the run B(@′2 , F′) is �-free as well and F′ ∈ �-FreeB(@′2).

In what follows, the “normal form” of Büchi automata that we will define
satisfies that any �-free path can be extended to a �-free cycle. Such a
normal form can be produced by saturating a given DBA B with Büchi
transitions [KS15; AK19; AK20]. To do so, we add to � all transitions [KS15]: Kuperberg et al.

(2015), On Determinisation of

Good-for-Games Automata

[AK19]: Abu Radi et al. (2019),
Minimizing GFG Transition-

Based Automata

[AK20]: Abu Radi et al.
(2020), Canonicity in GFG and

Transition-Based Automata

that do not appear in a �-free cycle of B. Cycles that are �-free can be
easily identified by decomposing in strongly connected components the
structure obtained by removing the Büchi transitions from B.

We say that B = (&, �, @init , �, �) is saturated if for every �′ ! �, the
automaton obtained by replacing � with �′ does not recognize L(B).
A �-free component of B is a strongly connected component of the graph
obtained by removing the Büchi transitions from B. Formally, let ΔnoB =
{(@, 2, �(@, 2)) ∈ & × � ×& | (@, 2) ∉ �}; a �-free component is a strongly
connected component of the graph (&,ΔnoB).

Example 8.2.2 In Figure 8.1 (left), we show a DBA with a single �-free
component consisting of state @init and transition (@init , 1). It turns out
that we can make any transition not in a �-free component into a Büchi
transition without changing the language recognized by the automaton
(as illustrated with the saturated automaton in Figure 8.1, right). Let
us consider transition (@0 , 1): the intuition is that it is not possible to
see this transition infinitely often without seeing the Büchi transition
(@init , 0) infinitely often. Hence, we might as well make (@0 , 1) a Büchi
transition, and it does not change which runs are accepted.

We generalize the reasoning used in this example.

Lemma 8.2.3 Let B = (&, �, @init , �, �) be a DBA. There is a unique set

�sat ⊆ & × � such that the DBA Bsat = (&, �, @init , �, �sat) satisfies that:
1. L(Bsat) = L(B);
2. Bsat is saturated.

Moreover, �sat is the set of transitions not appearing in any �-free component

of B, and it can be computed in time O(|� | · |& |) when � is finite.

8 Half-positional objectives recognized by deterministic Büchi automata 199

Proof. We first prove the existence of such a �sat. LetΔfreeComp ⊆ &×�×&
be the set of transitions appearing in a �-free component of B (it is a For convenience, the word

transition sometimes refers to
an element of & × � and
sometimes to an element of
& ×� ×&. This is justified as
we deal with complete deter-
ministic automata, for which
an element of& ×� uniquely
determines a third compo-
nent in &.

subset of ΔnoB). We consider the automaton Bsat whose Büchi transitions
are those that do not appear in any �-free component, that is, we let

�sat = (& × �) \ {(@, 2) | (@, 2, �(@, 2)) ∈ ΔfreeComp} and
Bsat = (&, �, @init , �, �sat).

We show that L(Bsat) = L(B). Since � ⊆ �sat, it holds that L(B) ⊆ L(Bsat).
For the other inclusion, let F ∉ L(B). There are F0 ∈ �∗ , F′ ∈ �$ such
that F = F0F′ and the infinite run B(@0 , F′) produced by reading F′

from @0 = �∗(@init , F0) does not visit any Büchi transition. In particular,
the infinite run B(@0 , F′) is an infinite path in the finite graph (&,Δsafe).
This implies that eventually, run B(@0 , F′) reaches and stays in the same
strongly connected component of graph (&,Δsafe). Formally, there are
F1 ∈ �∗ and F2 ∈ �$ such that F′ = F1F2 and the infinite run B(@1 , F2)
produced by reading F2 from @1 = �∗(@0 , F1) lies entirely in some �-free
component. Thus, all transitions in B(@1 , F2) are in ΔfreeComp and do not
induce transitions in �sat. Therefore, Bsat(@init , F) is also a rejecting run,
and F ∉ L(Bsat).
We prove that Bsat is saturated and the uniqueness of �sat at the same
time. Let �′ be another set of transitions such that �′ * �sat and let
B′ be the automaton obtained by replacing �sat with �′ in Bsat. Let
(@, 2) ∈ �′\�sat. Since (@, 2) ∉ �sat, transition (@, 2) is in a�-free component.
We can therefore consider a word F ∈ �-FreeCyclesBsat(@) that is a �-free
cycle from @ and that uses the transition (@, 2). Let F0 ∈ �∗ such that
�∗(@init , F0) = @. Then, F0F$ ∉ L(Bsat), whereas F0F$ ∈ L(B′), so B′
does not recognize the same objective as Bsat.

When � is finite, the set of transitions Bsat can be computed in time
O(|� | · |& |), as it consists of decomposing a graph with & vertices and at
most |� | · |& | edges into strongly connected components [Tar72]. [Tar72]: Tarjan (1972), Depth-

First Search and Linear Graph

AlgorithmsThe following simple lemma follows, which holds in saturated DBAs:
every word that is a �-freeword from a state can be completed into a �-free
cycle from the same state. This is a key technical lemma used many times
in the upcoming proofs.

Lemma 8.2.4 Let B = (&, �, @init , �, �) be a saturatedDBA. Let @ ∈ & and

F ∈ �-FreeB(@). There exists F′ ∈ �∗ such that FF′ ∈ �-FreeCyclesB(@).

Proof. Let @′ = �∗(@, F). Thanks to the saturation property and by
Lemma 8.2.3, � contains all transitions that do not belong to a �-free
component. This implies that any two states connected by a �-free run
are in the same �-free component. In particular, as @′ is reachable from @
through a �-free run, @′ must belong to the same �-free component as @.

8 Half-positional objectives recognized by deterministic Büchi automata 200

Therefore, there exists a �-free run from @′ to @. Taking the word F′ ∈ �∗
labeling this run, we obtain the desired result.

8.3 Half-positionality of DBA-recognizable

objectives

In this section, we present our main contribution in Theorem 8.3.7, by
giving three conditions that exactly characterize half-positional DBA-
recognizable objectives. These conditions are presented in Subsection 8.3.1.
Theorem 8.3.7 and several consequences of it are stated in Subsection 8.3.2
(the proof of Theorem 8.3.7 is postponed to Sections 8.4 and 8.5). In
Subsection 8.3.3, we use this characterization to show that we can decide
the half-positionality of a DBA in polynomial time.

8.3.1 Three conditions for half-positionality

We define the three conditions of objectives at the core of our characteri-
zation.

Condition 1 (Total prefix preorder) We say that an objective, ⊆ �$
has

a total prefix preorder if for all F1 , F2 ∈ �∗, F1 � F2 or F2 � F1.

For an objective, , having a total prefix preorder is equivalent to beingMtriv-
strongly-monotone (Section 7.3): all finite words must be comparable
for the prefix preorder � of, , which, for Mtriv = ({<init}, <init , upd), is
equivalent to requiring that all words in !<init ,<init = �∗ are comparable
for �. This implies (Lemma 4.3.9) that having a total prefix preorder is
“symmetric”: an objective has a total prefix preorder if and only if its
complement has a total prefix preorder too.

Example 8.3.1 (Non-total prefix preorder) We have already seen mul-
tiple objectives that do not have a total prefix preorder (for instance,
objective , = Reach(0) ∩ Reach(1) studied in Subsection 4.4.2). We
give another example of a DBA-recognizable objective that will satisfy
the other two properties of the characterization.
Let � = {0, 1}. We consider the objective, recognized by the DBA B
depicted in Figure 8.2 (left). It consists of the infinite words starting with
00 or 11. This objective does not have a total prefix preorder: words 0
and 1 are incomparable for �. Indeed, 0$ is winning after 0 but not after
1, and 1$ is winning after 1 but not after 0. In terms of automaton states,
we have that @0 and @1 are incomparable for �B. This objective is not
half-positional, as witnessed by the arena on the right of Figure 8.2. In
this arena,P1 is able to win when the game starts in E1 by playing 0 in E3,
and when the game starts in E2 by playing 1. However, no memoryless
strategy wins from both E1 and E2.

8 Half-positional objectives recognized by deterministic Büchi automata 201

@init

@0

@1

@win

@lose

0

1

0

1

0

1

0, 1•

0, 1

E1

E2

E3

0

1

0

1

Figure 8.2: DBA B recogniz-
ing objective , = (00 +
11)�$ (left), and an arena in
which memoryless strategies
do not suffice for P1 for this
objective (right).

A straightforward result for an objective, recognized by a DBA B is that
it has a total prefix preorder if and only if the (reachable) states of B are
totally ordered for �B.
The second condition is the specialization of M-progress-consistency
(Section 7.4) to the case M = Mtriv. We rewrite it explicitly here for
clarity.

Condition 2 (Mtriv-progress-consistency) An objective , is Mtriv-
progress-consistent if and only if for all F1 ∈ �∗ and F2 ∈ �+ such

that F1 ≺ F1F2, we have F1(F2)$ ∈, .

Intuitively, this means that whenever a word F2 can be used to make
progress after seeing a word F1 (in the sense of getting to a position in
which more continuations are winning), then repeating this word has to
be winning.

Example 8.3.2 (Non-Mtriv-progress-consistent objective) Let � = {0, 1}.
We consider the objective, = �∗00�$ recognized by the DBA with
three states in Figure 8.3 (left). This objective contains the words seeing,
at some point, twice the color 0 in a row. Notice that the prefix preorder
of this objective is total (@init ≺ @0 ≺ @00). This objective is not Mtriv-
progress-consistent: we have � ≺ 10, but (10)$ ∉ , . This objective is
not half-positional: if P1 plays in an arena with a choice among two
cycles 10 and 01 depicted in Figure 8.3 (right), it is possible to win by
playing 10 and then 01, but a memoryless strategy can only achieve
words (10)$ or (01)$, which are both losing.

Example 8.3.3 (Mtriv-progress-consistent objective) We consider a slight
modification to the previous example by adding two Büchi transitions:
see the DBA in Figure 8.4. The objective recognized by this DBA is
, = Büchi(0) ∪�∗00�$:, contains the words seeing 0 infinitely often,
or that see 0 twice in a row at some point. Properties of this objective
were already sketched in Example 6.1.1.

@init @0 @00

0

1

0•1 0, 1• E01 10

Figure 8.3: A DBA recogniz-
ing the set of words seeing 00
at some point (left), an arena
in which memoryless strate-
gies do not suffice for P1 for
this objective (right).

8 Half-positional objectives recognized by deterministic Büchi automata 202

@init @0 @00

0•
1
•

0•1 0, 1•
Figure 8.4: DBA recognizing
the set of words seeing 0 in-
finitely many times, or 00 at
some point.

The equivalence classes for ∼, are @−1
init, = , , @−1

0 , = 0�$ ∪,
and @−1

00, = �$. This objective isMtriv-progress-consistent: any word
reaching @00 is straightforwardly accepted when repeated infinitely
often, and any word F such that �∗(@init , F) = @0 necessarily contains
at least one 0, and thus is accepted when repeated infinitely often.
Objective, is half-positional, which will be readily shown with our
upcoming characterization (Theorem 8.3.7).
Here, notice that the complement , of , is not Mtriv-progress-
consistent. Indeed, 0 ≺, 0(101), but 0(101)$ ∉, . Unlike having a total
prefix preorder,Mtriv-progress-consistency can hold for an objective but
not its complement.
Note that half-positionality of, cannot be shown using existing half-
positionality criteria [Kop06; BFMM11] [Kop06]: Kopczyński (2006),

Half-Positional Determinacy of

Infinite Games

[BFMM11]: Bianco et al. (2011),
Exploring the boundary of half-

positionality

(it is neither prefix-independent
nor concave) or memoryless-determinacy criteria, as it is simply not
memoryless-determined.

The third condition is the novelty of this chapter.

Condition 3 (Recognizability by the prefix classifier) Being recognized
by a Büchi automaton built on top of the prefix classifier is our third
condition. In other words, for a DBA-recognizable objective, ⊆ �$

and its

prefix classifier S, = (&, , �, @,init , �,), this condition requires that there

exists�∼ ⊆ &,×� such that, is recognized byDBA (&, , �, @,init , �, , �∼).

We show an example of a DBA-recognizable objective satisfying the first
two conditions (total prefix preorder and Mtriv-progress-consistency), but
not this third condition, and which is not half-positional.

Example 8.3.4 (Not recognizable by the prefix classifier) Let � = {0, 1}.
We consider the objective, = Büchi(0) ∩ Büchi(1) recognized by the
DBA in Figure 8.5. This objective is prefix-independent: as such, there is
only one equivalence class for ∼. This implies that the prefix preorder
is total, and that , is Mtriv-progress-consistent (the premise of the
Mtriv-progress-consistency property can never be true). This objective is
not half-positional, as witnessed by the arena in Figure 8.5 (right): P1
has a winning strategy from E, but it needs to take infinitely often both
0 and 1.
Any DBA recognizing this objective has at least two states, but all
their (reachable) states are equivalent for ∼: no matter the state we
choose as an initial state, the recognized objective is the same. As it is
prefix-independent, its prefix classifier S, has only one state.

8 Half-positional objectives recognized by deterministic Büchi automata 203

@1 @2

1•
0
•0 1 E0 1

Figure 8.5: DBA recogniz-
ing the objective Büchi(0) ∩
Büchi(1) (left), and an arena
in which memoryless strate-
gies do not suffice for P1 for
this objective (right).

As will be shown formally, being recognized by a DBA built on top of
the prefix classifier is necessary for half-positionality of DBA-recognizable

objectives over finite one-player arenas.

Remark 8.3.5 All regular objectives (Chapter 7) satisfy the property of
being recognizable by their prefix classifier, which is due to Myhill-
Nerode theorem [Ner58] [Ner58]: Nerode (1958), Linear

Automaton Transformations

. This may give some insight as to why this
condition was not needed in Chapter 7.

Unlike the two other conditions, this third condition is in general not
necessary for half-positionality of general objectives, including objectives
recognized by other standard classes of automata on infinite words.

Example 8.3.6 We consider the complement, of the objective, =
Büchi(0)∩Büchi(1) of Example 8.3.4, which consists of the words ending
with 0$ or 1$. Objective , is not DBA-recognizable (a close proof
can be found in [BK08, Theorem 4.50] [BK08]: Baier et al. (2008),

Principles of model checking

). Still, it is recognizable by a
deterministic coBüchi automaton similar to the automaton in Figure 8.5,
but which accepts infinite words that visit transitions labeled with •
only finitely often. This objective is half-positional, which can be shown
using [DJW97, Theorem 6] [DJW97]: Dziembowski et al.

(1997), How Much Memory is

Needed to Win Infinite Games?

. However, its prefix classifier has just one
state, and there is no way to recognize, by building a coBüchi (or even
parity) automaton on top of it.

We stress that Condition 3, in its statement, relies on our use of transition-
based DBAs (i.e., with the acceptance condition defined on the transitions,
as opposed to state-based DBAs — see Remark 2.7.5). For instance, for
�′ ⊆ �, the objective Büchi(�′) satisfies Condition 3. Its prefix classifier
has a single state (as it is prefix-independent) and it can indeed be
represented by a DBAwith a single state: simply, ({@init}, �, @init , �, �) such This DBA can be simply de-

picted as

@init� \ �′ �′ .•
that (@init , 2) ∈ � if and only if 2 ∈ �′. Had we used state-based DBAs,
apart from the trivial cases �′ = ∅ or �′ = �, recognizing Büchi(�′)would
require two states. This third condition, stated as is, would therefore
not apply to this simple half-positional example if we only considered
state-based DBAs. For our purposes, considering transition-based DBAs
brings more succinct and elegant statements.

8.3.2 Characterization and corollaries

We have now defined the three conditions required for our characteriza-
tion.

8 Half-positional objectives recognized by deterministic Büchi automata 204

Theorem 8.3.7 (Characterization of half-positional DBA-recognizable
objectives) Let, ⊆ �$

be a DBA-recognizable objective. Objective, is

half-positional (over all arenas) if and only if

I its prefix preorder � is total,

I it isMtriv-progress-consistent, and

I it can be recognized by a Büchi automaton built on top of its prefix

classifier S, .

Proof. The necessity of the first two conditions (for more general memory
structures) was shown in Propositions 7.3.1 and 7.4.4. The necessity of the For the use of Proposi-

tion 7.3.1, we recall that hav-
ing a total prefix preorder
is equivalent to being Mtriv-
strongly-monotone.

third condition can be found in Section 8.4, Proposition 8.4.1. The proof of
the sufficiency of the conjunction of the three conditions can be found in
Section 8.5, Proposition 8.5.4.

This characterization is valuable to prove (and disprove) half-positionality
of DBA-recognizable objectives. Examples 8.3.1, 8.3.2, and 8.3.4 are not half-
positional, and each of them falsifies exactly one of the three conditions
from the statement. On the other hand, Example 8.3.3 (, = Büchi(0) ∪
�∗00�$) is half-positional. We have already discussed itsMtriv-progress-
consistency, but it is also straightforward to verify that its prefix preorder is
total and that it is recognizable by its prefix classifier: the right congruence
has three totally ordered equivalence classes corresponding to the states
of the DBA in Figure 8.4.

We state two notable consequences of Theorem 8.3.7 and its proof tech-
nique. The first one is the specialization of Theorem 8.3.7 to prefix-
independent objectives. It states that all prefix-independent and DBA-
recognizable objectives that are half-positional are of the kindBüchi(�′) for
some �′ ⊆ �. Prefix-independence of objectives is a frequent assumption
in the literature [Kop06; CN06; GK14; CFGO22] — we show that under [Kop06]: Kopczyński (2006),

Half-Positional Determinacy of

Infinite Games

[CN06]: Colcombet et al.
(2006), On the positional deter-

minacy of edge-labeled games

[GK14]: Gimbert et al. (2014),
Submixing and Shift-Invariant

Stochastic Games

[CFGO22]: Colcombet et al.
(2022), The Theory of Univer-

sal Graphs for Infinite Duration

Games

this assumption, half-positionality of DBA-recognizable objectives is very
easy to understand and characterize.

Proposition 8.3.8 Let, ⊆ �$
be a prefix-independent, DBA-recognizable

objective. Objective, is half-positional if and only if there exists �′ ⊆ � such

that, = Büchi(�′).

Proof. The right-to-left implication follows from the established half-
positionality of objectives of the kind Büchi(�′) (Theorem 2.6.2). For the
left-to-right implication, we assume that, is a prefix-independent, DBA-
recognizable, half-positional objective. By Theorem 8.3.7, it is recognized
by a DBA B built on top of S, . As, is prefix-independent, its prefix
classifier has just one state, and there is a single transition from and to
this single state for each color. Hence,, = Büchi(�′), where �′ is the set
of colors whose only transition is a Büchi transition in B.

8 Half-positional objectives recognized by deterministic Büchi automata 205

Remark 8.3.9 A corollary of this result is that when , is prefix-
independent, DBA-recognizable, and half-positional, we also have that
, is half-positional. Indeed, the complement of objective, = Büchi(�′)
is a so-called coBüchi objective, which is also known to be half-positional
(it is a special case of a parity objective; see Theorem 2.6.3). This state-
ment does not hold in general when, is not prefix-independent, as was
shown in Example 8.3.3. Moreover, the reciprocal of the statement also
does not hold (there are prefix-independent half-positional objectives
recognized by a deterministic coBüchi automaton whose complement is
not half-positional), as was shown in Example 8.3.6.

Remark 8.3.10 A second corollary is that prefix-independent DBA-
recognizable half-positional objectives are closed under finite union
(since a finite union of Büchi conditions is a Büchi condition). This settles
Kopczyński’s conjecture (mentioned in Section 8.1) forDBA-recognizable
objectives.

A second consequence of Theorem 8.3.7 and its proof technique shows
that half-positionality of DBA-recognizable objectives can be reduced to
half-positionality over the restricted class of finite one-player arenas. This
provides yet a new one-to-two-player lift, with stronger properties than
the general ones in Chapters 4 and 5, but for a more restricted class of
objectives.

Theorem 8.3.11 (Finite-to-infinite, one-to-two-player lift for half-posi-
tional DBAs) Let, ⊆ �$

be a DBA-recognizable objective. If objective, is

half-positional over finite one-player arenas, then it is half-positional over all

arenas (of any cardinality).

Proof. We have already shown that for $-regular objectives, the first two
conditions are necessary for half-positionality over finite one-player arenas
(Propositions 7.3.1 and 7.4.4). When showing the necessity of the third
condition for half-positionality of DBA-recognizable objectives in Sec-
tion 8.4 (Proposition 8.4.1), we also show its necessity for half-positionality
over finite one-player arenas. Hence, assuming half-positionality over finite
one-player arenas, we have the three conditions from the characterization
of Theorem 8.3.7, so we have half-positionality over all arenas.

8.3.3 Deciding half-positionality in polynomial time

In this section, we assume that � is finite. We show that the problem of
deciding, given a DBA B = (&, �, @init , �, �) as an input, whether L(B) is
half-positional can be solved in polynomial time, and more precisely in
time O(|& |4 · |� |2).

8 Half-positional objectives recognized by deterministic Büchi automata 206

We investigate how to verify each property used in the characterization
of Theorem 8.3.7. Let B = (&, �, @init , �, �) be a DBA (we assume w.l.o.g.
that all states in & are reachable from @init) and, = L(B) be the objective
it recognizes. Our algorithm first verifies that the prefix preorder is total
and recognizability by S, , and then, under these first two assumptions,
Mtriv-progress-consistency. For each condition, we sketch an algorithm to
decide it, and we discuss the time complexity of this algorithm.

Total prefix preorder. To check that , has a total prefix preorder, it
suffices to check that the states of B are totally preordered by �B. We start
by computing, for each pair of states @, @′ ∈ &, whether @ �B @′, @′ �B @,
or none of these. This can be rephrased as a containment query for two DBA-
recognizable objectives: if B@ = (&, �, @, �, �) and B@′ = (&, �, @′, �, �),
we have that @ �B @′ if and only if L(B@) ⊆ L(B@′). Such a problem can be
solved in time O(|& |2 · |� |2) [CDK93]. We can therefore know for all |& |2 [CDK93]: Clarke et al. (1993),

A Unified Approch for Showing

Language Inclusion and Equiva-

lence Between Various Types of

omega-Automata

pairs @, @′ ∈ & whether @ �B @′, @′ �B @, @′ ∼B @ (as ∼B = �B ∩ �B), or
none of these in time O(|& |2 · (|& |2 · |� |2)) = O(|& |4 · |� |2). In particular,
the prefix preorder is total if and only if for all @, @′ ∈ &, we have @ �B @′
or @′ �B @.

Recognizability by the prefix classifier. After all the relations �B and
∼B between pairs of states are computed in the previous step, we
can compute the states and transitions of the prefix classifier S, =
(&, , �, @,init , �,) by merging all the equivalence classes for ∼B. We as-
sume for simplicity that &, = &

/
∼B , and we drop the subscript B of ∼B

in what follows.

We nowwonderwhether it is possible to recognize, by carefully selecting
a set �∼ of Büchi transitions in S, . We simplify the search for such a
set with the following result, which shows that when B is saturated, it
suffices to try with one specific set �∼. We can then simply check whether
, = L((&, , �, @,init , �, , �∼)), an equivalence query which, as discussed
above, can beperformed in timeO(|& |2 · |� |2)by checking two containment
queries.

Lemma 8.3.12 We assume that B is saturated and that, is recognized by a

DBA built on top of the prefix classifier S, = (&, , �, @,init , �,). We define

�∼ = {([@]∼ , 2) ∈ &, × � | ∀@′ ∈ [@]∼ , (@′, 2) ∈ �}.

Then,, is recognized by (&, , �, @,init , �, , �∼).

Proof. We assume that, is recognized by a DBA built on top of S, . We
start by saturating this DBA, which yields a set of Büchi transitions �′ such
that, is also recognized by the saturated DBA B′ = (&, , �, @,init , �, , �

′)
(Lemma 8.2.3). To prove the claim, we show that �′ = �∼.

8 Half-positional objectives recognized by deterministic Büchi automata 207

We first show that �′ ⊆ �∼. Let ([@]∼ , 2) ∉ �∼—we show that ([@]∼ , 2) ∉
�′. As ([@]∼ , 2) ∉ �∼, by definition of �∼, there is @′ ∈ & such that
(@′, 2) ∉ �. As B is saturated, by Lemma 8.2.4, there exists F′ ∈ �∗
such that 2F′ ∈ �-FreeCyclesB(@′). By construction of the prefix classifier,
�∗∼([@]∼ , 2F′) = [@]∼. Also, as, = L(B′), word (2F′)$ must be rejected
from [@]∼ in B′. Therefore, ([@]∼ , 2) cannot be a Büchi transition of B′ and
is not in �′.

We now show that �∼ ⊆ �′. Let ([@]∼ , 2) ∉ �′—we show that ([@]∼ , 2) ∉
�∼. As B′ is saturated, by Lemma 8.2.4, there exists F′ ∈ �∗ such that
2F′ ∈ �-FreeCyclesB′([@]∼). As, = L(B′), word (2F′)$ is rejected from
any state in [@]∼ in B. If for all @′ ∈ [@]∼, (@′, 2) was in �, (2F′)$ would
be accepted from all states in [@]∼ in B. Hence, there exists @′ ∈ [@]∼ such
that (@′, 2) ∉ �. We conclude that ([@]∼ , 2) ∉ �∼.

Mtriv-progress-consistency. We assume that we have already checked
that , is recognizable by a Büchi automaton built on top of S, , and
that we know the (total) ordering of the states. We show that checking
Mtriv-progress-consistency, under these two hypotheses, can be done in
polynomial time.We prove a lemma reducing the search forwordswitness-
ing that, is notMtriv-progress-consistent to a problem computationally
easier to investigate. The core idea is the same as in the proof for regular
objectives (Lemma 7.6.3): we just slightly adapt the property to the Büchi
acceptance condition.

Lemma 8.3.13We assume that B is built on top of the prefix classifier S,
and that the prefix preorder of, is total. Then,, isMtriv-progress-consistent

if and only if for all @, @′ ∈ & with @ ≺B @′,

{F ∈ �+ | �∗(@, F) = @′} ∩ �-FreeCyclesB(@′) = ∅.

Proof. For the left-to-right implication, we assume by contrapositive that
there exist @, @′ ∈ & with @ ≺B @′ and F ∈ �+ such that �∗(@, F) = @′ and
F ∈ �-FreeCyclesB(@′). Let F@ ∈ �∗ be a word such that �∗(@init , F@) = @.
We have that F@ ≺ F@F, but F@F$ is not accepted by B as F is a cycle on
@′ that does not see any Büchi transition. Hence,, is notMtriv-progress-
consistent.

For the right-to-left implication, we assume by contrapositive that, is
notMtriv-progress-consistent. Thus, there exist F′ ∈ �∗ and F ∈ �+ such
that F′ ≺ F′F and F′F$ ∉, . Let @1 = �∗(@init , F′) and @2 = �∗(@1 , F)—
we have @1 ≺ @2. As @1 ≺ @2, by Lemma 2.8.10, we have �∗(@1 , F) = @2 �
�∗(@2 , F). We distinguish two cases, using the fact that there is exactly
one state per equivalence class for ∼B. We represent what happens in
Figure 8.6.

I If @2 = �∗(@2 , F), we then have that F ∈ �-FreeCyclesB(@2), and we
have what we want with @ = @1 and @′ = @2.

8 Half-positional objectives recognized by deterministic Büchi automata 208

@1 @2 @3 · · · @= @=+1≺ ≺ ≺ ≺ ≺
F F F F F

F Figure 8.6: Situation in the
proof of Lemma 8.3.13.

I If not, we have that @2 ≺ �∗(@2 , F). Let @3 = �∗(@2 , F). We can repeat
the argument on @2 and @3: either F ∈ �-FreeCyclesB(@3) and we
are done, or @3 ≺ �∗(@3 , F). As there are finitely many states, this
process necessarily ends with two states @ = @= and @′ = @=+1 such
that �∗(@, F) = @′ and F ∈ �-FreeCyclesB(@′).

Notice that for each pair of states @, @′ ∈ &, the sets {F ∈ �+ | �(@, F) =
@′} and �-FreeCyclesB(@′) are both regular languages recognized by de-
terministic finite automata with at most |& | states. The emptiness of their
intersection can be decided in timeO(|& |2 · |� |) (by solving a reachability
problem in the product of the two automata). Thanks to Lemma 8.3.13,
we can therefore decide whether B is Mtriv-progress-consistent in time
O(|& |2 · (|& |2 · |� |)) = O(|& |4 · |� |): for all |& |2 pairs of states @, @′ ∈ &, if
@ ≺ @′, we test the emptiness of the intersection of these two deterministic
finite automata.

Complexity wrap-up. By checking the three conditions as explained
and in this order, the time complexities are respectively O(|& |4 · |� |2),
O(|& |2 · |� |2), andO(|& |4 · |� |). This yields a time complexity ofO(|& |4 ·
|� |2) for the whole algorithm.

8.4 Necessity of the third condition

We have already shown that having a total preorder (i.e., Mtriv-strong-
monotony) andMtriv-progress-consistency are necessary conditions for
half-positionality over finite one-player arenas, through more general
proofs for$-regular objectives in Chapter 7 (Propositions 7.3.1 and 7.4.4).

We prove the necessity of the third condition: for a DBA-recognizable
objective, being recognized by a Büchi automaton built on top of its prefix
classifier S, is necessary for half-positionality. This section is devoted to
the proof of this result, which is more involved than the proofs for the two
other conditions.

Proposition 8.4.1 (Necessity of the recognizability by theprefix classifier)
Let, ⊆ �$

be a DBA-recognizable objective that is half-positional over finite

one-player arenas. Then,, is recognized by a Büchi automaton built on top

of S, .

We fix an objective, ⊆ �$ recognized by a DBA B = (&, �, @init , �, �).
We make the assumption that, is half-positional over finite one-player

arenas. Our goal is to show that, can be defined by a Büchi automaton

8 Half-positional objectives recognized by deterministic Büchi automata 209

built on top ofS, . We assumew.l.o.g. thatB is saturated. Many upcoming
arguments heavily rely on this assumption through the use of Lemma 8.2.4
(any �-free word can be completed into a �-free cycle).

Our proof first assumes in Subsection 8.4.1 that B recognizes a prefix-
independent objective. We will then build on this first case to conclude
for the general case in Subsection 8.4.2. We provide a proof sketch at the
start of each subsection.

8.4.1 Prefix-independent case

We assume that the objective, recognized by B is prefix-independent,
so all the states of B are equivalent for ∼. We want to show that, can
be recognized by a Büchi automaton built on top of S, , and in this case,
the automaton structure S, has just one state. Therefore, we want to find
�′ ⊆ � such that, = Büchi(�′). We start with a high level description of
the proof technique.

Sketch of proof. The goal is to find a suitable definition for �′. To do so, we
exhibit a state @max of B that is “the most rejecting state of the automaton”:
it satisfies that the set of �-free words from @max contains the �-free words
from all the other states (@max is then called a �-free-maximum) and that
the set of �-free cycles on @max contains the �-free cycles on all the other
states (it is also a �-free-cycle-maximum). We define �′ as the set of colors
2 ∈ � such that (@max , 2) ∈ �.
We first show that if a �-free-maximum exists, we can assume w.l.o.g.
that it is unique (Lemma 8.4.2). In Lemmas 8.4.4, 8.4.5, and 8.4.6, we
show the existence of a �-free-cycle-maximum. This part of the proof
relies on the half-positionality over finite one-player arenas of, . Finally,
defining �′ using @max as described above, we prove that, = Büchi(�′)
(Lemma 8.4.7).

We call a state @max ∈ & of B a �-free-maximum (resp. a �-free-cycle-
maximum) if for all @ ∈ &, we have �-FreeB(@) ⊆ �-FreeB(@max) (resp.
�-FreeCyclesB(@) ⊆ �-FreeCyclesB(@max)).We remark that ifB is saturated,
a �-free-cycle-maximum is also a �-free-maximum (this can be shown
using Lemma 8.2.4).

We first show that we can remove states from B, while still recognizing
the same objective, until it has at most one �-free-maximum.

Lemma 8.4.2 There exists a DBA B′ recognizing, with at most one �-free-
maximum.

8 Half-positional objectives recognized by deterministic Büchi automata 210

Proof. Assume that @1
max , @

2
max ∈ & are distinct �-free-maxima. In partic-

ular, �-FreeB(@1
max) = �-FreeB(@2

max). We show that in such a situation,
the objective recognized by B can be recognized by an automaton with
one less state, in which we discard one of the two �-free-maxima. To
simplify the upcoming arguments, we assume that @init = @1

max (which is
without loss of generality as, is prefix-independent and all states of B
are equivalent for ∼).
We define a new automaton in which we remove @2

max and redirect all its
incoming transitions to @1

max. Formally, let B′ = (&′, �, @′init , �′, �′) be such
that

I &′ = & \ {@2
max}, @′init = @1

max,
I for @ ∈ &′ and 2 ∈ �, if �(@, 2) = @2

max, then �′(@, 2) = @1
max;

otherwise, �′(@, 2) = �(@, 2),
I for @ ∈ &′ and 2 ∈ �, (@, 2) ∈ �′ if and only if (@, 2) ∈ �.

We also assume that states that are not reachable from @′init in B′ are
removed from &′.

We show that this automaton with (at least) one less state recognizes the
same objective as B. Let F = 2122 . . . ∈ �$ be an infinite word. We show
that F is accepted by B if and only if it is accepted by B′.

Let Δ6→@2
max

= {(@, 2) ∈ &′ × � | �(@, 2) = @2
max} be the transitions of B′

that were directed to @2
max in B, but that are now redirected to @1

max in B′.
Let * be the run of B on F, and *′ = (@′0 , 21)(@′1 , 22) . . . be the run of B′ on
F. The two runs start by taking corresponding transitions, but differ once
a transition in Δ 6→@2

max
is taken.

We first assume that *′ uses transitions in Δ6→@2
max

only finitely many
times. Then, there exists : ≥ 0 such that @′: = @1

max and for all ; ≥ :,
(@′; , 2;+1) ∉ Δ6→@2

max
. Let F>: = 2:+12:+2 . . . be the infinite word consisting

of the colors taken after the last occurrence of a transition in Δ 6→@2
max

. We
have that

B accepts F
⇐⇒ B accepts F>: as B recognizes a prefix-independent objective
⇐⇒ B′ accepts F>: as F>: visits exactly the same transitions as in B
⇐⇒ B′ accepts F as 21 . . . 2: is a cycle on the initial state @1

max of B′.

We now assume that *′ uses transitions in Δ 6→@2
max

infinitely many times.
We decompose *′ into infinitely many finite runs *′1 , *

′
2 , . . . such that

*′ = *′1*
′
2 . . . and every run *′8 sees exactly one transition in Δ 6→@2

max
as its

last transition. This implies that all these finite runs start in state @1
max. We

represent run *′ in Figure 8.7.We definewordsF1 , F2 , . . . as the respective
projection of runs *′1 , *

′
2 , . . . to their colors (we have F = F1F2 . . .). Notice

8 Half-positional objectives recognized by deterministic Büchi automata 211

*′ : · · ·
@1

max @1
max @1

max @1
max

Δ6→@2 Δ6→@2 Δ6→@2

F1 F2 F3

Figure 8.7: Lemma 8.4.2: fea-
tures of run *′ when it takes
infinitely many transitions in
Δ 6→@2

max
.

that

∀8 ≥ 1, F8 ∈ �-FreeB(@1
max) ⇐⇒ F8 ∈ �-FreeB′(@1

max), (8.1)

as the transitions used by F8 from @1
max in B′ correspond to the transitions

used by F8 from @1
max in B (this property is not necessarily true for all

words, but is true for these words that read only one transition in Δ6→@2
max

as their last transition). We also have by construction that

∀8 ≥ 1, �∗(@1
max , F8) = @2

max. (8.2)

We distinguish whether F is accepted or rejected by B′.

Assume F is accepted by B′. Then, we know that for infinitely many
8 ∈ ℕ, F8 ∉ �-FreeB′(@1

max). This implies that for these indices 8, F8 ∉
�-FreeB(@1

max) by Equation (8.1). As @1
max is a �-free-maximum, for all

@ ∈ &, F8 ∉ �-FreeB(@) (this is simply the contrapositive of the definition
of �-free-maximum). Hence, for infinitely many 8 ∈ ℕ, when F8 is read
in B (no matter from where), a Büchi transition is seen, so F is accepted
by B.

Assume F is rejected by B′. Then there exists : ≥ 0 such that for all ; ≥ :,
F; ∈ �-FreeB′(@1

max). As B is prefix-independent, up to removing the start
of F, we assume w.l.o.g. that : = 1. We show by induction that

∀8 ≥ 1, �-FreeB(@1
max) = �-FreeB(�∗(@1

max , F1 . . . F8)).

This is true for 8 = 1, as �∗(@1
max , F1) = @2

max by Equation (8.2) and the
fact that @1

max and @2
max are both �-free-maxima. Assume �-FreeB(@1

max) =
�-FreeB(�∗(@1

max , F1 . . . F8−1)) for some 8 ≥ 2. Then, by Lemma 8.2.1, as
F8 ∈ �-FreeB(@1

max), we have

�-FreeB(�∗(@1
max , F8)) = �-FreeB(�∗(@1

max , F1 . . . F8−1F8)).

Equation (8.2) gives �-FreeB(�∗(@1
max , F8)) = �-FreeB(@2

max), which is it-
self equal to �-FreeB(@1

max). We now know that for all 8 ≥ 1, F8 ∈
�-FreeB(@1

max) by Equation (8.1). Therefore, we conclude that for all 8 ≥ 1,
F8 ∈ �-FreeB(�∗(@1

max , F1 . . . F8−1)). In particular, F sees no Büchi transi-
tion when read from @1

max in B and is also rejected by B.

We have shown that B′ is a DBA with fewer states than B recognizing, .
If B′ still has two or more �-free-maxima, we repeat our construction until
there is at most one left.

Thanks to Lemma 8.4.2, we now assume w.l.o.g. that B has at most one
�-free-maximum. We intend to show that there exists a �-free-cycle-

8 Half-positional objectives recognized by deterministic Büchi automata 212

EF1

F2

F=
· · ·

· · ·
{F1 , F2 , . . . } = ⋃

@∈& �-FreeCyclesB(@) \ {�}

Figure 8.8: Infinite one-
player arena AB of P1,
with choices from E among
every non-empty word in⋃
@∈& �-FreeCyclesB(@).

maximum. To do so, we exhibit an (infinite) arena in which P1 has no
winning strategy, which we prove by using half-positionality of, over
finite one-player arenas. We then prove that the non-existence of a �-free-
cycle-maximum would imply that P1 has a winning strategy in this arena
(Lemma 8.4.6).

Let AB be the infinite one-player arena of P1 depicted in Figure 8.8. This
arena consists of one vertex E with a choice to make among all non-empty
words that are �-free cycles from some state of B. Vertex E is the only
vertex with multiple outgoing edges. The goal of the next three short
lemmas is to show that in this arena, P1 has no winning strategy.

Lemma 8.4.3 If P1 has a winning strategy in AB, then P1 has a memoryless

winning strategy.

Proof. Suppose that there is a winning strategy of P1 in AB. Let F =
F1F2 . . . be an infinite winning word such that for 8 ≥ 1,

F8 ∈
⋃
@∈&

�-FreeCyclesB(@) \ {�}.

Let @0 = @init, and for 8 ≥ 1, let @8 = �∗(@init , F1 . . . F8) be the current
automaton state after reading the first 8 finite words composing F. As
there are only finitely many automaton states and F is winning, there
are :, ; ≥ 1 with : < ; such that @: = @; and F:+1 . . . F; ∉ �-FreeB(@:).
WordF1 . . . F:(F:+1 . . . F;)$ is also a winning word and uses only finitely
many different words in

⋃
@∈& �-FreeCyclesB(@) \ {�}.

Hence, there is a finite restriction (“subarena”) A′B of the arena AB with
at most ; choices in E in which P1 has a winning strategy. Arena A′B
being finite and one-player, half-positionality of, over finite one-player
arenas implies that P1 has a memoryless winning strategy in A′B. This
memoryless winning strategy can also be played in AB (as every choice
available in A′B is also available in AB).

Lemma 8.4.4 No memoryless strategy of P1 is winning in AB.

Proof. Any memoryless strategy of P1 generates a word F$, where F ∈
�-FreeCyclesB(@) \ {�} for some @ ∈ &. In particular, word F$ is rejected
when it is read from state @. As all the states in & are equivalent for ∼ (as
we assume that, is prefix-independent), we have @ ∼ @init, so F$ is also
rejected when read from the initial state @init of the automaton.

8 Half-positional objectives recognized by deterministic Büchi automata 213

Combining Lemmas 8.4.3 and 8.4.4, we deduce the desired result.

Lemma 8.4.5 No strategy of P1 is winning in AB.

We use the statement of Lemma 8.4.5 to show the existence of a �-free-
cycle-maximum.

Lemma 8.4.6 There exists a �-free-maximum @max in B that is a more-

over a �-free-cycle-maximum: for all @ ∈ &, �-FreeCyclesB(@) ⊆
�-FreeCyclesB(@max).

Proof. Let us assume by contradiction that there is no �-free-maximum,
or if there is one, that it is not a �-free-cycle-maximum. We show how to
build a winning strategy of P1 in AB, contradicting Lemma 8.4.5. To do
so, we build an infinite word accepted by B by combining finite words
that are �-free cycles from some state.

We claim that for @ ∈ & which is not a �-free-maximum, there exists

F@ ∈
⋃
@′∈&

�-FreeCyclesB(@′) \ {�} such that F@ ∉ �-FreeB(@).

Let @′ ∈ & be such that �-FreeB(@′) * �-FreeB(@), which exists as @ is not
a �-free-maximum. Let F1 ∈ �-FreeB(@′) \ �-FreeB(@). By Lemma 8.2.4,
there exists F2 ∈ �∗ such that F1F2 ∈ �-FreeCyclesB(@′) (this holds
as we have assumed w.l.o.g. that B is saturated). As F1 ∉ �-FreeB(@),
we also have F1F2 ∉ �-FreeB(@). Taking F@ = F1F2 proves the claim.
For @ ∈ & not a �-free-maximum, we fix F@ ∈ �+ such that F@ ∈⋃
@′∈& �-FreeCyclesB(@′) \ {�} and F@ ∉ �-FreeB(@).

Let @max ∈ & be a �-free-maximum (that we suppose to be unique by
Lemma 8.4.2), if it exists. We suppose by contradiction that @max is not
a �-free-cycle-maximum: there is @ ∈ & such that �-FreeCyclesB(@) *
�-FreeCyclesB(@max). Let Fmax ∈ �-FreeCyclesB(@) \ �-FreeCyclesB(@max).
Notice that as Fmax ∈ �-FreeB(@) and @max is a �-free-maximum, Fmax ∈
�-FreeB(@max). Therefore, Fmax cannot be a cycle on @max, i.e.,

�∗(@max , Fmax) ≠ @max.

We build iteratively an infinite winning word that can be played by P1 in
AB. As P1 plays, we keep track in parallel of the current automaton state.
The game starts in E, with current automaton state @0 = @init. Let = ≥ 0.
We distinguish two cases.

I If @= is not a �-free-maximum, then P1 plays word F@= . As F@= ∉
�-FreeB(@=), a Büchi transition is seen along the way. The current
automaton state becomes @=+1 = �∗(@= , F@=).

8 Half-positional objectives recognized by deterministic Büchi automata 214

I If @= = @max is the �-free-maximum, thenP1 playsFmax. The current
automaton state becomes @=+1 = �(@max , Fmax), which is not equal
to @max.

For infinitely many 8 ≥ 0, the automaton state @8 is not a �-free-maximum
(as there is at most one �-free-maximum in B, and it cannot appear twice
in a row). Therefore, we have described a winning strategy for P1, since
the corresponding run over B visits infinitely often a Büchi transition.

We now know that there exists a unique �-free-maximum @max ∈ &, and
moreover, that @max is a �-free-cycle-maximum. We show how to use the
outgoing transitions of @max in order to realize, as an objective of the kind
Büchi(�′) for some �′ ⊆ �, which is the goal of the current subsection.

Lemma 8.4.7 We thank Igor Walukiewicz
for suggesting a simpli-
fication of the proof of
Lemma 8.4.7.

There exists �′ ⊆ � such that, = Büchi(�′).

Proof. Let �′ = {2 ∈ � | (@max , 2) ∈ �} — equivalently, if we consider
colors as words with one letter, �′ is the set of colors 2 such that 2 ∉
�-FreeB(@max).
We first show that Büchi(�′) ⊆ , . Let 2 ∈ �′. Then, 2 ∉ �-FreeB(@max).
As @max is a �-free-maximum, for all @ ∈ &, 2 ∉ �-FreeB(@). Therefore,
any word seeing infinitely many colors in �′ sees infinitely many Büchi
transitions and is accepted by B.

We now show that, ⊆ Büchi(�′). By contrapositive, let F = 2122 . . . ∉
Büchi(�′) be an infinite word with only finitely many colors in �′. We
show that F ∉ , . As, is prefix-independent, we may assume w.l.o.g.
that F has no color in �′, i.e., that for all 8 ≥ 1, 28 ∈ � \ �′. We claim that
when read from @max, word F sees no Büchi transition and is thus rejected.
This implies that F ∉, as @max ∼ @init.
Assume by contradiction that there is some Büchi transition when read-
ing F from @max, i.e., there exists : ≥ 0 such that for F≤: = 21 . . . 2: ,
F≤: ∈ �-FreeB(@max), but F≤:2:+1 ∉ �-FreeB(@max). We will deduce that
(@max , 2:+1) is a Büchi transition, contradicting that 2:+1 ∈ � \ �′.
We depict the situation in Figure 8.9. Let @1 = �∗(@max , F≤:) (whether
@1 equals @max or not does not matter). By Lemma 8.2.4, there exists
F′ ∈ �∗ such that F≤:F′ ∈ �-FreeCyclesB(@max). By construction, we
have F′F≤: ∈ �-FreeCyclesB(@1). As @max is a �-free-cycle-maximum, we
have �-FreeCyclesB(@1) ⊆ �-FreeCyclesB(@max), so we also have F′F≤: ∈

@max @1@2

F≤:

F′

2:+1•
F′

F≤:

2:+1•
Figure 8.9: Situation in the
proof of Lemma 8.4.7, with
F≤: ∈ �-FreeB(@max) but
F≤: 2:+1 ∉ �-FreeB(@max).

8 Half-positional objectives recognized by deterministic Büchi automata 215

�-FreeCyclesB(@max). Let @2 = �∗(@max , F′). Notice that @max = �∗(@2 , F≤:)
and F≤: ∈ �-FreeB(@2). As @max is a �-free-maximum and F≤:2:+1 ∉
�-FreeB(@max), we also have that F≤:2:+1 ∉ �-FreeB(@2). Therefore, tran-
sition (@max , 2:+1) must be a Büchi transition, which contradicts that
2:+1 ∈ � \ �′.

8.4.2 General case

We now relax the prefix-independence assumption on , . We still as-
sume that, is half-positional over finite one-player arenas, and show
that, can be recognized by a Büchi automaton built on top of S, . If B
has exactly one state per equivalence class for ∼, it means that it is built
on top of S, , and we are done. If not, let @∼ ∈ & be a state such that

|[@∼]∼ | ≥ 2.

We briefly sketch the proof technique for this section.

Sketch of proof. Our proof will show how to modify B by “merging” all
states in equivalence class [@∼]∼ into a single state, while still recognizing
the same objective, . The main technical argument is to build a variant
,[@∼] of objective, on a new set of colors �[@∼], that turns out to also
be half-positional over finite one-player arenas and DBA-recognizable,
but which is prefix-independent. We can therefore use Lemma 8.4.7 from
Subsection 8.4.1 and find �′[@∼] ⊆ �[@∼] such that ,[@∼] = Büchi(�′[@∼]).
Then, we exhibit a state @max ∈ [@∼]∼ whose �-free words are tightly
linked to the elements of �′[@∼] (Lemma 8.4.8 and Corollary 8.4.9). Finally,
akin to the way we removed a �-free-maximum in Lemma 8.4.2, we show
that it is still possible to recognize , while keeping only state @max in
[@∼]∼ (Lemma 8.4.10).

Once we know how to merge the equivalence class [@∼]∼ into a single
state, we can simply repeat the operation for each equivalence class with
multiple states, until we obtain a DBA built on top of S, .

We define a new set of colors �[@∼] using finite words in �+ such that

�[@∼] = {F ∈ �+ | �∗(@∼ , F) ∼ @∼}.

This set contains all the finite words that, read from @∼, come back to a
state in [@∼]∼. By Lemma 2.8.10, for all @ ∈ [@∼]∼, for all F ∈ �[@∼], we also
have that �∗(@, F) ∼ �∗(@∼ , F) ∼ @∼. The set �[@∼] therefore corresponds
to the set of words with the seemingly stronger property that, when
read from any state in [@∼]∼, come back to a state in [@∼]∼. We define an
objective,[@∼] of infinite words on this new set of colors such that

,[@∼] = {F1F2 . . . ∈ �$
[@∼] | F1F2 . . . ∈ @−1∼ ,}.

8 Half-positional objectives recognized by deterministic Büchi automata 216

We show that ,[@∼] has the three conditions allowing us to apply
Lemma 8.4.7 to it.

I Objective,[@∼] is DBA-recognizable: we consider the DBA B[@∼] =
([@∼]∼ , �[@∼] , @∼ , �′, �′), whose update function �′ is the restriction
of �∗ to [@∼]∼ × �[@∼], and �′ = {(@, F) ∈ [@∼]∼ × �[@∼] | F ∉
�-FreeB(@)}.

I Objective,[@∼] is prefix-independent, as adding or removing a finite
number of cycles on @∼ does not affect the accepted status of a word
in @−1∼ , .

I Half-positionality of,[@∼] over finite one-player arenas is implied
by half-positionality of , over finite one-player arenas. Indeed,
every (finite one-player) arena A[@∼] using colors in �[@∼] can be
transformed into a (finite one-player) arenaAwith similar properties
using colors in �. Two transformations are applied: (8)we replace
every �[@∼]-colored edge in A[@∼] by a corresponding finite chain
of �-colored edges, and (88) for every vertex E of A[@∼], we prefix it
with a chain of �-colored edges starting from a vertex E′ reading
a word F@∼ such that �∗(@init , F@∼) = @∼. We then have that P1 has
a winning strategy from a vertex E in A[@∼] if and only if P1 has a
winning strategy from E′ in A, and a memoryless winning strategy
from E′ inA can be transformed into a memoryless winning strategy
from E in A[@∼].

By Lemma 8.4.7, there exists a set �′[@∼] ⊆ �[@∼] such that

,[@∼] = Büchi(�′[@∼]).

We now show links between �-free words from states of [@∼]∼ and the
words in �′[@∼]. The arguments once again rely on the saturation of B.

Lemma 8.4.8

I Let F ∈ �[@∼]. If F ∈ �′[@∼], then for all @ ∈ [@∼]∼, F ∉ �-FreeB(@).
I There exists @ ∈ [@∼]∼ such that, for all F ∈ �[@∼] \ �′[@∼], F ∈
�-FreeB(@).

Proof. For the first item, we assume by contrapositive that there exists a
state @ ∈ [@∼]∼ such thatF ∈ �-FreeB(@). By Lemma 8.2.4, there isF′ ∈ �∗
such that FF′ ∈ �-FreeCyclesB(@). In particular, (FF′)$ ∉ @−1, = @−1∼ , .
We can assume w.l.o.g. thatF′ ∈ �+ (ifF′ = �, then we can simply replace
it with F′ = F). Therefore, (FF′)$ is also an infinite word on �[@∼], and
we have (FF′)$ ∉ ,[@∼] since (FF′)$ ∉ @−1∼ , . As,[@∼] = Büchi(�′[@∼]),
clearly F ∉ �′[@∼], which ends the proof of the first item.

For the second item, assume by contradiction that for all @ ∈ [@∼]∼, there
existsF@ ∈ �[@∼]\�′[@∼] such thatF@ ∉ �-FreeB(@). As there are onlyfinitely
many states in [@∼]∼, it is then possible to build a word F = F@1 . . . F@=

8 Half-positional objectives recognized by deterministic Büchi automata 217

such that for all 1 ≤ 8 < =, �∗(@8 , F@8) = @8+1, �∗(@= , F@=) = @1, and for
all 1 ≤ 8 ≤ =, F@8 ∈ �[@∼] \ �′[@∼] and F@8 ∉ �-FreeB(@8). Word F$ is
accepted from @1 as it sees infinitely many Büchi transitions, so it is in
(@1)−1, = @−1∼ , . However, if we consider F$ as an infinite word on
�[@∼], then it is not in,[@∼] = Büchi(�′[@∼]) as every letter of the word is in
�[@∼] \ �′[@∼]. This yields a contradiction.

We use the previous result in a straightforward way to exhibit a state
@max whose non-�-free words in �[@∼] are exactly the words in �′[@∼]. The
reader may notice that, echoing the proof of the prefix-independent case
(Subsection 8.4.1), the state @max given by Corollary 8.4.9 is actually a
�-free-maximum among states in [@∼]∼.

Corollary 8.4.9 There exists @max ∈ [@∼]∼ such that for all F ∈ �[@∼],
F ∈ �′[@∼] if and only if F ∉ �-FreeB(@max).

Proof. By the second item of Lemma 8.4.8, we take @max ∈ [@∼]∼ such that,
for all F ∈ �[@∼] \ �′[@∼], F ∈ �-FreeB(@max). Let F ∈ �[@∼]. The property
we already have on @max gives us by contrapositive that F ∉ �-FreeB(@max)
implies that F ∈ �′[@∼]. Reciprocally, the first item of Lemma 8.4.8 gives us
that if F ∈ �′[@∼], then F ∉ �-FreeB(@max).

From now on, we assume that @max ∈ [@∼]∼ is a state having the property

of Corollary 8.4.9. We show that, can be recognized by a smaller DBA
consisting of DBA B in which all the states in [@∼]∼ have been merged
into the single state @max, by redirecting all incoming transitions of [@∼]∼
to @max. We assume w.l.o.g. that if @init ∈ [@∼]∼, then @init = @max (this does
not change the objective recognized by B, and will be convenient in the
upcoming construction).We consider DBAB′ = (&′, �, @′init , �′, �′)with

I &′ = (& \ [@∼]∼) ∪ {@max}, @′init = @init,
I for @ ∈ &′ and 2 ∈ �, if �(@, 2) ∈ [@∼]∼, then �′(@, 2) = @max;

otherwise, �′(@, 2) = �(@, 2),
I for @ ∈ &′ and 2 ∈ �, (@, 2) ∈ �′ if and only if (@, 2) ∈ �.

We also assume that states that are not reachable from @′init in B′ are
removed from &′.

Lemma 8.4.10 The objective recognized by B′ is also, .

Proof. Let F = 2122 . . . ∈ �$, * = (@0 , 21)(@1 , 22) . . . be the run of B on F,
and *′ = (@′0 , 21)(@′1 , 22) . . . be the run of B′ on F. We have that @0 = @′0,
but states in both runs may not coincide after a state in [@∼]∼ has been
reached. Yet, we show inductively that

∀8 ≥ 0, @8 ∼B @′8 . (8.3)

8 Half-positional objectives recognized by deterministic Büchi automata 218

It is true for 8 = 0 (we even have equality in this case), and if @= ∼B @′= ,
then by construction of the transitions of B′ and Lemma 2.8.10, we still
have @=+1 ∼B @′=+1.

We want to show that F is accepted by B if and only if it is accepted by
B′. This is clear if F never goes through a state in [@∼]∼ (as the same
transitions are then taken in B and B′).

We first assume that run * visits [@∼]∼ finitelymany times, and that the last
visit to [@∼]∼ happens in @= for some = ≥ 0. Notice that run *′ also visits
[@∼]∼ for the last time in @′= by Equation (8.3). Therefore, word 2=+12=+2 . . .
is accepted from @′= in B′ if and only if it is accepted from @′= in B: all
the subsequent transitions coincide. As @= ∼B @′= , we have moreover that
2=+12=+2 . . . is accepted from @′= in B′ if and only if it is accepted from @=
in B. This implies that F is accepted by B if and only if it is accepted by B′.

We now assume that run * visits [@∼]∼ infinitely many times. We decom-
pose F inductively into a prefix F@∼ reaching [@∼]∼ followed by cycles
F1 , F2 , . . . on [@∼]∼. Formally, let F@∼ be any finite prefix of F such that
�∗(@init , F@∼) ∈ [@∼]∼. By induction hypothesis, assume F@∼F1 . . . F= is a
prefix of F such that �∗(@init , F@∼F1 . . . F=) ∈ [@∼]∼. We define F=+1 ∈ �+
as the shortest non-empty word such that F@∼F1 . . . F=F=+1 is a prefix
of F and �∗(@init , F@∼F1 . . . F=F=+1) ∈ [@∼]∼. We have F = F@∼F1F2 . . .
by construction. By Equation (8.3), we also have that for all = ≥ 0,
(�′)∗(@′init , F@F1 . . . F=) ∼B @∼, so (�′)∗(@′init , F@F1 . . . F=) = @max as this is
the only state left in that class in B′.

If F is accepted by B, then for infinitely many 8 ≥ 1, word F8 is in �′[@∼]. By
Corollary 8.4.9, all these infinitely many words are not in �-FreeB(@max)
and therefore see a Büchi transition when read from @max, so F is also
accepted by B′.

If F is rejected by B, then there exists = ≥ 1 such that for all =′ ≥ =,
F=′ ∈ �[@∼]\�′[@∼]. By Corollary 8.4.9, for all =′ ≥ =,F=′ is in �-FreeB(@max)
and therefore does not see a Büchi transition when read from @max, so F
is also rejected by B′.

We have all the arguments to show our goal for the section (Proposi-
tion 8.4.1), that is, to show that, can be recognized by a Büchi automaton
built on top of S, .

Proof of Proposition 8.4.1. We have shown in Lemma 8.4.10 how to merge
an equivalence class for ∼ into a single state, while still recognizing the
same objective. Repeating this construction for each equivalence class
with two or more states, we end up with a DBA with exactly one state
per equivalence class for ∼ still recognizing, . By definition of S, , this
DBA is necessarily built on top of (some automaton structure isomorphic
to) S, .

8 Half-positional objectives recognized by deterministic Büchi automata 219

8.5 Sufficiency of the conditions

We show that a DBA B with the three conditions from Subsection 8.3.1
(recognizing anMtriv-progress-consistent objective having a total prefix
preorder and being recognizable by a Büchi automaton built on top of S,)
recognizes a half-positional objective. As these three conditions have been
shown to be necessary for the half-positionality of objectives recognized
by a DBA, this will imply a characterization of half-positionality.

Our main technical tool is to construct, thanks to these three conditions, a
family of completely well-monotonic universal graphs. The existence of such
objects implies, thanks to recent results by Ohlmann [Ohl23], that P1 has [Ohl23]: Ohlmann (2023),

Characterizing Positionality in

Games of Infinite Duration over

Infinite Graphs

memoryless optimal strategies, even in two-player arenas of arbitrary
cardinality.

8.5.1 Completely well-monotonic universal graphs

We fix extra terminology about graphs only used in Section 8.5, and recall
the relevant results from [Ohl23].

An (edge-colored) graph � = (+, �) is given by a non-empty set of vertices We used the same notations
for graphs without colors
on edges in an NP-hardness
proof of Proposition 7.6.5. We
slightly abusively reuse this
notation to now denote edge-
colored graphs.

+ (of any cardinality) and a set of edges � ⊆ + × � ×+ . For convenience,
we write E

2−→ E′ if (E, 2, E′) ∈ �. We assume graphs to be non-blocking: for
all E ∈ + , there exists (E′, 2, E′′) ∈ � such that E = E′. We allow graphs
with infinite branching. An edge-colored graph is roughly the same as
an arena, except that we do specify which player controls each vertex.
For E ∈ + , an infinite path of � from E is an infinite sequence of edges
� = (E0 , 21 , E′1)(E1 , 22 , E′2) . . . ∈ �$ such that E0 = E and for all 8 ≥ 1,
E′8 = E8 . A finite path of � from E is a finite prefix in �∗ of an infinite path of
� from E.

We would like to define a reasonable notion of morphism for graphs that
also deals with information given by an objective, . Let � be a graph and
, ⊆ �$ be an objective. We say that a vertex E of � satisfies, if for all
infinite paths E0

21−→ E1
22−→ . . . from E, we have 2122 . . . ∈, . A graph can

therefore be thought of as a one-player arena of P2: a vertex satisfies, if
and only if P2 cannot win from E, even when controlling all the vertices.

Given two graphs � = (+, �) and �′ = (+′, �′), a (graph) morphism

from � to �′ is a function) : + → +′ such that (E1 , 2, E2) ∈ � implies
()(E1), 2,)(E2)) ∈ �′. A morphism) from � to �′ is,-preserving if for
all E ∈ + , E satisfies, implies that)(E) satisfies, . Notice that if)(E)
satisfies, , then E satisfies, , as any path E

21−→ E1
22−→ . . . of � implies the

existence of a path)(E) 21−→)(E1) 22−→ . . . of �′— there are “more paths”
in �′. For � a cardinal, a graph U is (�,,)-universal if for all graphs � of
cardinality < �, there is a,-preserving morphism from � to U .

8 Half-positional objectives recognized by deterministic Büchi automata 220

We consider a graph � = (+, �) along with a total order ≤ on its vertex
set + . We say that � is monotonic if for all E, E′, E′′ ∈ + , for all 2 ∈ �,
I (E 2−→ E′ and E′ ≥ E′′) =⇒ E

2−→ E′′, and
I (E ≥ E′ and E′ 2−→ E′′) =⇒ E

2−→ E′′.

This means that (8)whenever there is an edge E
2−→ E′, there is also an edge

with color 2 from E to all vertices smaller than E′ for ≤, and (88) whenever
E ≥ E′, then E has at least the same outgoing edges as E′. Graph � is
well-monotonic if it is monotonic and the total order ≤ is well-founded (i.e.,
any set of vertices has a minimum). Graph � is completely well-monotonic if
it is well-monotonic and there exists a vertex > ∈ + maximum for ≤ such
that for all E ∈ + , 2 ∈ �, > 2−→ E.

Example 8.5.1 We provide an example illustrating these notions with
� = {0, 1} and, = Büchi(0). This is a special case of our upcoming
construction, and it is already discussed in more depth in [Ohl21,
Chapter 2] [Ohl21]: Ohlmann (2021),

Monotonic graphs for parity and

mean-payoff games

. For � an ordinal, we define a graph U� with vertices
*� = � ∪ {>}, and such that for all ordinals �,�′ < �,

I �
0−→ �′, and

I �
1−→ �′ if and only if �′ < �.

Moreover, for all E ∈ *�, we define edges > 0−→ E and > 1−→ E. We order
vertices using the natural order on the ordinals, and with � < > for all
� < �.
Vertex > does not satisfy, , as there is an infinite path > 1−→ > 1−→ . . .,
and 1$ ∉, . All other vertices satisfy, by construction: they cannot
reach >, and as reading 1 decreases the current ordinal, a path cannot
have an infinite suffix using only color 1 (there is no infinite decreasing
sequence of ordinals).
This graph is (�,,)-universal for � = |� |. Intuitively, for any graph
� with less than � vertices, a,-preserving morphism from � to U�

can be defined by mapping vertices not satisfying, to >, and vertices
satisfying, to an ordinal � that depends on how long it may take to
guarantee seeing an 0 from them.
GraphU� ismonotonic,which can be quickly checkedwith the definition.
As ≤ is well-founded and there is a vertex >with the right properties,
U� is even completely well-monotonic. The properties of U� imply
half-positionality of Büchi(0), thanks to the following theorem.

We state an important result linking half-positionality and completely
well-monotonic universal graphs from [Ohl23]. [Ohl23]: Ohlmann (2023),

Characterizing Positionality in

Games of Infinite Duration over

Infinite Graphs

Theorem 8.5.2 ([Ohl23]) Let, ⊆ �$
be an objective. If for all cardinals �,

there exists a completely well-monotonic (�,,)-universal graph, then, is

half-positional (over all arenas).

8 Half-positional objectives recognized by deterministic Büchi automata 221

A more precise result in [Ohl21, Theorem 1.1] can actually be instantiated [Ohl21]: Ohlmann (2021),
Monotonic graphs for parity and

mean-payoff games

on more subtle classes of arenas. However, we intend to prove here half-
positionality of a family of objectives over all arenas, so the above result
turns out to be sufficient.

Remark 8.5.3 One of the strengths of [Ohl23] [Ohl23]: Ohlmann (2023),
Characterizing Positionality in

Games of Infinite Duration over

Infinite Graphs

is that the converse of
Theorem 8.5.2 holds under the existence of a neutral color,

Neutral colors were also dis-
cussed in Remark 5.5.7.

i.e., a color that
can be inserted infinitely often in every infinite word without changing
its winning or losing character. A neutral color can always be artificially
added to an objective. The question of whether adding a neutral color
can make a half-positional objective non-half-positional is open.
In some works (for instance the seminal [DJW97; Zie98] [DJW97]: Dziembowski et al.

(1997), How Much Memory is

Needed to Win Infinite Games?

[Zie98]: Zielonka (1998), Infi-
nite Games on Finitely Coloured

Graphs with Applications to Au-

tomata on Infinite Trees

), it is assumed
that edges without colors are allowed in arenas, with the restriction
that no cycle of the arenas is completely without color. This is roughly
similar to adding a neutral color to the set of colors. In general, allowing
for arenas with such edges has an effect on strategy complexity [Cas22]

[Cas22]: Casares (2022), On

the Minimisation of Transition-

Based Rabin Automata and

the Chromatic Memory Require-

ments of Muller Conditions

.
The existence of a family of completely well-monotonic (�,,)-universal
graphs implies that a neutral color can be added without losing half-
positionality of, [Ohl23]. Hence, given our proof technique for half-
positionalDBA-recognizable objectives, a neutral color (or edgeswithout
colors) can always be added for free.

8.5.2 Universal graphs for Büchi automata

We show that for a DBA-recognizable objective, the three conditions that
were shown to be necessary for half-positionality in Section 8.4 are actually
sufficient.

Proposition 8.5.4 (Sufficiency of the three conditions) Let , ⊆ �$

be an objective that has a total prefix preorder, is Mtriv-progress-consistent,

and is recognizable by a Büchi automaton built on top of S, . Then, , is

half-positional.

The rest of the section is devoted to the proof of this result, using
Theorem 8.5.2. Let , ⊆ �$ be an objective with a total prefix pre-

order, that isMtriv-progress-consistent, and that is recognized by a DBA

B = (&, �, @init , �, �) built on top of S, for the rest of this section. We
assume as in previous sections that B is saturated (in particular, by
Lemma 8.2.4, any �-free path can be extended to a �-free cycle). An impli-
cation of the fact that B is built on top of S, that we will use numerous
times in the upcoming arguments is that for @, @′ ∈ &, @ ∼ @′ if and only
if @ = @′.

For � an ordinal, we build a graph UB,� in the following way.

I We set the vertices as*B,� = {(@,�) | @ ∈ &,� < �} ∪ {>}.
I For every transition �(@, 2) = @′ of B,

8 Half-positional objectives recognized by deterministic Büchi automata 222

• if (@, 2) ∈ �, then for all ordinals �, �′, we define an edge
(@,�) 2−→ (@′,�′);

• if (@, 2) ∉ �, then for all ordinals �, �′ s.t. �′ < �, we define an
edge (@,�) 2−→ (@′,�′).

• for @′′ ≺ @′, then for all ordinals �, �′′, we define an edge
(@,�) 2−→ (@′′,�′′).

I For all E ∈ *B,� and 2 ∈ �, we define an edge > 2−→ E.

We order the vertices lexicographically: (@,�) ≤ (@′,�′) if @ ≺ @′ or (@ = @′
and � ≤ �′), and we define > as the maximum for ≤ (i.e., (@,�) < > for
all @ ∈ &, � < �).

Graph UB,� is built such that on the one hand, it is sufficiently large
and has sufficiently many edges so that there is a morphism from any
graph � (of cardinality smaller than some function of |� |) to UB,�. On
the other hand, for the morphism to be ,-preserving, at least some
vertices of UB,� need to satisfy , , which imposes a restriction on the
infinite paths from vertices. Graph UB,� is actually built so that for any
automaton state @ ∈ & and ordinal � < �, the vertex (@,�) satisfies @−1,
(see Lemma 8.5.9). The intuitive idea is that for a non-Büchi transition
(@, 2) ∉ � of the automaton such that �(@, 2) = @′, a 2-colored edge from a
vertex (@,�) in the graph either (8) reaches a vertex with first component
@′, in which case the ordinal must decrease on the second component, or
(88) reaches a vertex with first component @′′ ≺ @′, with no restriction on
the second component, but therefore with fewer winning continuations.
Using Mtriv-progress-consistency and the fact that there is no infinitely
decreasing sequence of ordinals, we can show that this implies that no
infinite path in UB,� corresponds to an infinite run in the automaton
visiting only non-Büchi transitions.

We state two properties that directly follow from the definition of UB,�:

if (@,�) 2−→ (@′,�′), then @′ � �(@, 2); (8.4)

if (@,�) 2−→ (@′,�′) and �′′ ≤ �′, then (@,�) 2−→ (@′,�′′). (8.5)

Example 8.5.5 We consider again the DBA B from Example 8.3.3,
recognizing the words seeing 0 infinitely many times, or 0 twice in a row
at some point. We represent the graph UB,�, with � = $ in Figure 8.10.

In order to use Theorem 8.5.2, we show that the graph UB,� is completely
well-monotonic (Lemma 8.5.6) and, for all cardinals �, is (�,,)-universal
for sufficiently large � (Proposition 8.5.10).

Lemma 8.5.6 Graph UB,� is completely well-monotonic.

Proof. The order ≤ on the vertices is well-founded, and there exists a
vertex > ∈ *B,� maximum for ≤ such that for all E ∈ *B,�, 2 ∈ �, > 2−→ E.

8 Half-positional objectives recognized by deterministic Büchi automata 223

0 1 · · ·@init 0 1 · · ·@0 0 1 · · ·@00 >

00 0 0 0, 1 0, 1

1

0

1

0, 1

0, 1

0, 1

0, 1

Figure 8.10: The graph UB,$, where B is the automaton from Example 8.3.3 (L(B) = Büchi(0) ∪ �∗00�$). The dashed edge

with color 1 indicates that (@init ,�) 1−→ (@init ,�′) if and only if �′ < � (it corresponds to the only non-Büchi transition in B).
Elsewhere, an edge between two rectangles labeled @, @′ with color 2 means that for all ordinals �,�′, (@,�) 2−→ (@′,�′).
Thick edges correspond to the original transitions of B. There are edges from > to all vertices of the graph with colors 0
and 1. Vertices are totally ordered from left to right.

To show that UB,� is completely well-monotonic, it now suffices to show
that UB,� is monotonic.

The first item of the monotonicity definition follows from the construction
of the graph. We assume that (@,�) 2−→ (@′,�′) and (@′,�′) ≥ (@′′,�′′), and
we show that (@,�) 2−→ (@′′,�′′). By Equation (8.4), we have @′ � �(@, 2).
The inequality (@′,�′) ≥ (@′′,�′′) means by definition that @′′ ≺ @′ or
(@′′ = @′ and �′′ ≤ �′). If @′′ ≺ @′, we obtain that @′′ ≺ �(@, 2), so we
also have (@,�) 2−→ (@′′,�′′). If @′′ = @′ and �′′ ≤ �′, then we also have
(@,�) 2−→ (@′,�′′) by Equation (8.5), which is what we want as @′ = @′′.

The second item of the monotonicity definition is slightly more involved
and follows fromMtriv-progress-consistency, the fact that the prefix pre-
order is total, and the saturation of B. We assume that (@,�) ≥ (@′,�′) and
(@′,�′) 2−→ (@′′,�′′), and we show that (@,�) 2−→ (@′′,�′′). The assumption
(@,�) ≥ (@′,�′) implies that @ � @′, so �(@, 2) � �(@′, 2) by Lemma 2.8.10.
Moreover, (@′,�′) 2−→ (@′′,�′′) implies that �(@′, 2) � @′′ by Equation (8.4).
Hence, �(@, 2) � @′′. If �(@, 2) � @′′, then (@,�) 2−→ (@′′,�′′) by definition
of the graph. The same holds if �(@, 2) = @′′ and (@, 2) ∈ �.
It is left to discuss the case �(@, 2) = @′′ and (@, 2) ∉ �. By the above
inequalities, this implies that we also have �(@′, 2) = @′′.
I If @ = @′, then � ≥ �′. Moreover, as (@′, 2) = (@, 2) ∉ �, the existence

of edge (@′,�′) 2−→ (@′′,�′′) implies that �′ > �′′. So � > �′′ and we
also have (@,�) 2−→ (@′′,�′′).

I We show that @′ ≺ @ is not possible — we assume it holds and
draw a contradiction. As (@, 2) ∉ �, we have 2 ∈ �-FreeB(@). By
Lemma 8.2.4, there is F ∈ �∗ such that 2F ∈ �-FreeCyclesB(@).
As �(@, 2) = �(@′, 2) and �∗(@, 2F) = @, we have �∗(@′, 2F) = @.
As @′ ≺ @, by Mtriv-progress-consistency, the word (2F)$ must
be accepted by B when read from @′. It must therefore also be
accepted when read from @ (as @′ ≺ @), which contradicts that
2F ∈ �-FreeCyclesB(@).

8 Half-positional objectives recognized by deterministic Büchi automata 224

We now intend to show (�,,)-universality of some UB,� for each cardi-
nal �. The next two Lemmas 8.5.7 and 8.5.8 give insight into properties
of the paths of UB,�, to then establish which vertices of UB,� satisfy,
(Lemma 8.5.9). Understanding which vertices satisfy, is helpful to later
define a,-preserving morphism into UB,�. We first show that paths in
this graph “underapproximate” corresponding runs in the automaton: a
finite path � = (@0 ,�0) 21−→ . . .

2=−→ (@= ,�=) in UB,� visits vertices labeled
with automaton states at most as large (for �) as the corresponding states
visited by the finite run from @0 on 21 . . . 2= .

Lemma 8.5.7 Let � = (@0 ,�0) 21−→ . . .
2=−→ (@= ,�=) be a finite path of UB,�

and F = 21 . . . 2= . Then, @= � �∗(@0 , F).

Proof. We proceed by induction on the length = of �. If = = 0, then F = �,
so @= = @0 = �∗(@0 , F), and the result holds. If = ≥ 1, we assume by
induction hypothesis that @=−1 � �∗(@0 , 21 . . . 2=−1). By Lemma 2.8.10, we
have �(@=−1 , 2=) � �(�∗(@0 , 21 . . . 2=−1), 2=) = �∗(@0 , F). By Equation (8.4),
if (@=−1 ,�=−1) 2=−→ (@= ,�=), then @= � �(@=−1 , 2=). By transitivity, @= �
�∗(@0 , F).

We now show that in UB,�, a finite path that goes back to its initial
value w.r.t. the first component without decreasing the ordinal necessarily
induces an accepted word when repeated.

Lemma 8.5.8 Let � = (@0 ,�0) 21−→ . . .
2=−→ (@= ,�=) be a finite path of UB,�

with = ≥ 1, @0 = @= , and �0 ≤ �= . Let F = 21 . . . 2= . Then, F$ ∈ @−1
0 , .

Proof. Let B(@0 , F) = (@′0 , 21) . . . (@′=−1 , 2=) be the finite run of B obtained
by reading F from @0. States @0 , . . . , @= correspond to the first component
of the vertices visited by � in UB,�, whereas @′0 , . . . , @

′
=−1 , @

′
= = �(@′=−1 , 2=)

are the states visited by the finite word F in B. We have that @0 = @′0, but
the subsequent states may or may not correspond. By Lemma 8.5.7, we still
know that for all 8, 0 ≤ 8 ≤ =, @8 � @′8 . In particular, @0 = @= � �∗(@0 , F) =
@′= . We distinguish three cases, depending on whether @0 ≺ �∗(@0 , F) or
@0 ∼ �∗(@0 , F) (which implies @0 = �∗(@0 , F) as B is built on top of its
prefix classifier), and depending on whether @8 = @′8 for all 0 ≤ 8 ≤ = or
not.

I If @0 ≺ �∗(@0 , F), byMtriv-progress-consistency, F$ ∈ @−1
0 , .

I If @0 = �∗(@0 , F) and for all 8, 0 ≤ 8 ≤ =, @8 = @′8 (i.e., � only uses
edges that directly correspond to transitions of the automaton B),
then for the ordinal to be greater than or equal to its starting value,
some Büchi transition has to be taken since non-Büchi transitions
strictly decrease the ordinal on the second component. Hence, F is
not a �-free cycle from @0, so F$ ∈ @−1

0 , .

8 Half-positional objectives recognized by deterministic Büchi automata 225

@0 @8 @′8≺

21 . . . 28

28+1 . . . 2=

28+1 . . . 2=

Figure 8.11: Situation in the
proof of Lemma 8.5.8.

I If @0 = �∗(@0 , F) and for some index 8, 1 ≤ 8 < =, we have @8 ≺ @′8
(i.e., � takes at least one edge that does not correspond to a transition
of the automaton). We represent the situation in Figure 8.11. We
know that �∗(@′8 , 28+1 . . . 2=) = @′= ∼ @0. By Lemma 2.8.10, as @8 ≺
@′8 , this implies that �∗(@8 , 28+1 . . . 2=) � @0. Also, in the graph,
there is a path from @8 to @0 with colors 28+1 . . . 2= . Therefore, by
Lemma 8.5.7, @0 � �∗(@8 , 28+1 . . . 2=). Thus, @0 ∼ �∗(@8 , 28+1 . . . 2=),
and as B is built on top of S, , @0 = �∗(@8 , 28+1 . . . 2=). Therefore,
@8 ≺ �∗(@8 , 28+1 . . . 2=21 . . . 28) = @′8 . By Mtriv-progress-consistency,
(28+1 . . . 2=21 . . . 28)$ ∈ @−1

8 , . As �∗(@8 , 28+1 . . . 2=) = @0, this implies
that (21 . . . 2=)$ = F$ ∈ @−1

0 , .

We show that every vertex (@0 ,�0) such that @0 � @init satisfies, .

Lemma 8.5.9 Let @0 ∈ &. For all ordinals �0 < �, the vertex (@0 ,�0) of UB,�
satisfies @−1

0 , . In particular, if @0 � @init, (@0 ,�0) satisfies, .

Proof. Let � = (@0 ,�0) 21−→ (@1 ,�1) 22−→ . . . be an infinite path of UB,� from
(@0 ,�0) and F = 2122 . . . be the sequence of colors along its edges. We
show that F ∈ @−1

0 , .

Let @′8 = �∗(@0 , 21 . . . 28) be the state of B reached after reading the first 8
colors ofF. We claim that there are two states @, @′ ∈ & occurring infinitely
often in the sequences (@8)8≥0, (@′8)8≥0, respectively, and an increasing
sequence of indices (8:):≥1 satisfying that for all : ≥ 1,

I @8: = @, @′8: = @
′, and

I �8: ≤ �8:+1 .

Indeed, we can first choose a state @ appearing infinitely often in (@8)8≥0
and pick a sequence (8 9)9≥1 such that @8 9 = @ and (�8 9)9≥1 is not decreasing
(this is possible since there is no infinite decreasing sequence of ordinals).
Then, we can just pick @′ appearing infinitely often in (@′8 9)9≥1 and extract
the subsequence corresponding to its occurrences.

Let @, @′ ∈ &, (8:):≥1 satisfying the above properties. Let F0 = 21 . . . 281
and for : ≥ 1, let F: = 28:+1 . . . 28:+1 ∈ �+ be the colors over the edges in
� from (@8: ,�8:) to (@8:+1 ,�8:+1).
By Lemma 8.5.7, it holds that @ � @′ = �∗(@0 , F0). Moreover, since
�8: ≤ �8:+1 , by Lemma 8.5.8 we have that F$

: ∈ @−1, ⊆ (@′)−1, for all
: ≥ 1.We conclude that for all : ≥ 1, thewordF: labels a cycle over @′ inB
visiting someBüchi transition, and thereforeF = F0F1F2 . . . ∈ @−1

0 , .

8 Half-positional objectives recognized by deterministic Büchi automata 226

We now have all the tools to show, for all cardinals �, (�,,)-universality
of UB,� for sufficiently large �.

Proposition 8.5.10 Let� be a cardinal, and�′ be an ordinal such that� ≤ |�′ |.
It may seem surprising that
weuse |& |·�′ vertices for each
automaton state and not just
�′ vertices. We will illustrate
in Remark 8.5.12 that this is
necessary for our proof tech-
nique.

Let � = |& | · �′. Graph UB,� is (�,,)-universal.

Proof. Let � = (+, �) be a graph such that |+ | < � (in particular, |+ | <
|�′ |). For E ∈ + , let @E ∈ & ∪ {>} be the smallest automaton state (for �)
such that E satisfies @−1

E , , or> if it satisfies none of them. We remark that
@E � @ if and only if E satisfies @−1, . To show that there is a, -preserving
morphism from � to UB,�, we follow the six steps outlined in [Ohl23,
Lemma 4.3]. [Ohl23]: Ohlmann (2023),

Characterizing Positionality in

Games of Infinite Duration over

Infinite Graphs

(i) In this first step, we classify and order vertices of � in an inductive
way, which will later be used to map them to vertices of UB,�. For
@ ∈ & and � an ordinal, we define by transfinite induction We illustrate this induction

on a concrete case in Exam-
ple 8.5.11, which can be fol-
lowed along the proof.+ @

� = {E ∈ + | @E � @, and
∀2 ∈ �,

(
E

2−→ E′ =⇒ ((@, 2) ∈ � or ∃� < �, E′ ∈ +�(@,2)
�)

)
}.

Intuitively, for E to be in + @
� , it has to satisfy @−1, and to guarantee

that a Büchi transition is seen “soon”when colors of paths from E are
read from @ in B (how soon depends on the value of �). We remark
that for each state @ ∈ &, the sequence (+ @

�)� is non-decreasing: for
� ≤ �′, + @

� ⊆ +
@
�′ . The subsequent steps mostly follow from this

definition.
(ii) Let + @ =

⋃
�+

@
� . We show that if E satisfies @−1, , then it is in + @ .

Assume that E ∉ + @ . If @ ≺ @E , then we immediately have that E
does not satisfy @−1, . If @E � @, then E has an outgoing edge E

2−→ E′

such that (@, 2) ∉ � and E′ ∉
⋃

�+
�(@,2)
� . By induction, we build

an infinite path from E whose projection in B only sees non-Büchi
transitions, so E does not satisfy @−1, .

(iii) In this step and the next one, we show that there is no use in
considering ordinals beyond � in our construction. We first show
that if for all @ ∈ &, + @

� = +
@
�+1, then for all @ ∈ & and all �′ ≥ �,

+ @
� = + @

�′ . For � ≤ �′, we always have + @
� ⊆ + @

�′ . For the other
inclusion, we assume by transfinite induction that + @′

� = + @′
� for all

@′ ∈ & and for all � such that � ≤ � < �′. Let E ∈ + @
�′ . Every edge

E
2−→ E′ either satisfies (@, 2) ∈ �, or there exists � < �′ such that

E′ ∈ +�(@,2)
� . Since+�(@,2)

� ⊆ +�(@,2)
� by induction hypothesis, we have

E′ ∈ +�(@,2)
� . Hence, E ∈ + @

�+1 = +
@
� .

(iv) We prove that there exists � < � such that for all @ ∈ &, + @
� = +

@
�+1.

If not, using the axiom of choice, we can build a map # : �→ & ×+
such that for � < �, #(�) = (@, E) for some @ ∈ & and E ∈ + @

�+1 \+
@
� .

This map is injective, as any pair (@, E) can be chosen at most once (as

8 Half-positional objectives recognized by deterministic Büchi automata 227

(+ @
�)� is non-decreasing). This implies that |� | = |& | · |�′ | ≤ |& | · |+ |,

a contradiction since |+ | < |�′ |.
Using additionally Item (iii), we deduce that there exists � < � such
that for all �′ ≥ �, + @

� = +
@
�′ .

(v) Let) : + → *B,� be such that

)(E) =
{
(@E ,min{� | E ∈ + @E

� }) if @E ≺ >,
> if @E = >.

By Item (ii), for all E ∈ + , there exists � such that E ∈ + @E
� , so {� |

E ∈ + @E
� } is non-empty. By Item (iv), we have that if)(E) = (@,�),

then � < �, so the image of) is indeed in*B,�. We show that) is
,-preserving: if E satisfies, , then @E � @init, so by Lemma 8.5.9,
)(E) also satisfies, .

(vi) We show that) is a graph morphism. Let E
2−→ E′ be an edge of

� — we need to show that)(E) 2−→)(E′) is an edge of UB,�. If
)(E) = >, this is clear as there are all possible outgoing edges from
>. If not, we denote)(E) = (@,�) and)(E′) = (@′,�′). We have that
E satisfies @−1, . Thus, E′ must satisfy �(@, 2)−1, . This implies that
@′ � �(@, 2). We distinguish two cases.

I If (@, 2) ∈ �, then by construction of UB,�, there are 2-colored
edges from (@,�) to (�(@, 2),�′′) for all ordinals �′′. By mono-
tonicity, as @′ � �(@, 2), there is also a 2-colored edge from
(@,�) to (@′,�′).

I We assume that (@, 2) ∉ �. If @′ = �(@, 2), this means that
there exists � < � such that E′ ∈ + @′

� . Therefore, �′ ≤ � < �.
So the edge (@,�) 2−→ (@′,�′) exists by construction of UB,�. If
@′ ≺ �(@, 2), then by construction of UB,�, there are 2-colored
edges from (@,�) to (@′,�′′) for all ordinals �′′.

Wehave shown in Item (v) and Item (vi) that) is a, -preservingmorphism
from � to UB,�.

Example 8.5.11 We consider the objective , = Büchi(0) ∪ �∗00�$

recognized by the DBA B from Example 8.3.3, for which graph UB,$
was shown in Example 8.5.5. We redraw this DBA in Figure 8.12 (left)
and we discuss how our construction maps the vertices of graph � in
Figure 8.12 (right). Notice that E1, E2, and E3 satisfy, , but not E4 and
E5; more precisely, using notations from the proof of Proposition 8.5.10,
we have @E1 = @E2 = @E3 = @init, @E4 = @0 , and @E5 = @00 .
We build explicitly the sets + @

� from Item (i) of the proof of Proposi-
tion 8.5.10. All five vertices are in+ @00

� for every ordinal �, as all vertices
satisfy @−1

00, = �$, and any transition from @00 is a Büchi transition. For
the same reasons, E1, E2, E3, and E4 are in+

@0
� for all � (E5 is not because

it does not satisfy objective @−1
0 ,). We determine the sets + @init

� using
the inductive definition. First, E3 is in +

@init
� for all �, since (@init , 0) ∈ �.

8 Half-positional objectives recognized by deterministic Büchi automata 228

@init @0 @00

0•
1
•

0•1 0, 1• E1 E2 E3 E4 E5

1

0

1
0

1

0
1

Figure 8.12: DBA recognizing , = Büchi(0) ∪ �∗00�$ (left, redrawn from Example 8.3.3); graph � (right) used in
Example 8.5.11, illustrating the proof of Proposition 8.5.10.

Therefore, E2 ∈ + @init
� for � ≥ 1 (the 1-colored edge from E2 leads to E3,

and �(@init , 1) = @init). Finally, E1 ∈ + @init
� for � ≥ 2 for the same reason.

Themorphism) from Item (v) assigns)(E1) = (@init , 2),)(E2) = (@init , 1),
)(E3) = (@init , 0),)(E4) = (@0 , 0),)(E5) = (@00 , 0).

Remark 8.5.12 We illustrate why, in the statement of Proposition 8.5.10,
we use |& | · �′ vertices for each automaton state and not just �′.
Let� = {0, 1, 2},, be the objective recognizedby theDBA inFigure 8.13
(left), and � be the graph with two vertices in Figure 8.13 (right). This
objective has a total prefix preorder, is Mtriv-progress-consistent, is
recognized by a DBA built on top of its prefix classifier, and the DBA
in Figure 8.13 is saturated. Both vertices of � satisfy, = @−1

1 , but do
not satisfy @−1

0 , , so @E1 = @E2 = @1. We have E1 ∈ + @3
0 (the base case

of the induction), and this inductively implies that E2 ∈ + @3
1 , E1 ∈ + @2

2 ,
E2 ∈ + @2

3 , E1 ∈ + @1
4 , E2 ∈ + @1

5 . We represent these steps in the figure,
below the graph. Thus,)(E1) = (@1 , 4) and)(E2) = (@1 , 5). We see
here that two copies of each automaton state in our universal graph
construction would not have sufficed; we actually used six different
indices to fully understand the situation, which is due to the interlacing
between the graph and the structure of the automaton.

@1@0 @2 @3
1

0

1

0

1

0•
22 20, 1, 2

E1 E2

0

2

∈ ∈

+ @3
0

+ @3
1

+ @2
2

+ @2
3

+ @1
4

+ @1
5

2

2

2

0

0

Figure 8.13: DBA (left) and
graph � (right) used in Re-
mark 8.5.12 to illustrate the
need for |& | · �′ vertices
for each automaton state in
the universal graph used in
Proposition 8.5.10.

We conclude this section by proving Proposition 8.5.4, showing that, is
half-positional under the three conditions from Theorem 8.3.7.

Proof of Proposition 8.5.4. Using Lemma 8.5.6 and Proposition 8.5.10, we
have for all cardinals � that there exists a completely well-monotonic
(�,,)-universal graph. By Theorem 8.5.2, this implies that , is half-
positional.

8 Half-positional objectives recognized by deterministic Büchi automata 229

8.6 Wrap-up

We have characterized half-positionality for DBA-recognizable objectives.
While half-positionality of $-regular objectives is still not completely
understood, this is a novel step in this direction.

Another interesting extension would be to characterize the memory
requirements ofDBA-recognizable objectives.An intermediate and already
seemingly difficult stepwould be to characterize thememory requirements
of objectives recognized by deterministic weak automata [Wag79; Sta83;
Löd01], already generalizing the characterization for regular objectives [Wag79]: Wagner (1979), On

$-Regular Sets

[Sta83]: Staiger (1983), Finite-
State $-Languages

[Löd01]: Löding (2001), Effi-

cient minimization of determin-

istic weak omega-automata

(Chapter 7).

Concluding remarks

Summary and future prospects 9

We give an overview of the contributions of this thesis. After a brief
high-level sketch of our contributions (Section 9.1), we offer two points
of view to revisit and appreciate our results: a summary through the
various properties defined in this thesis (Subsection 9.1.1), and a summary
through the ubiquitous one-to-two-player lifts (Subsection 9.1.2). We then
describe some promising research directions related to the topic at hand,
which we leave for future work (Section 9.2).

9.1 Summary . 231

9.1.1 Links between properties of objectives 232
9.1.2 One-to-two-player lifts . 235
9.2 Future prospects . 237

9.2.1 Arena-dependent memory requirements 237
9.2.2 Chaotic memory . 238
9.2.3 Alternative models . 239

9.1 Summary

We studied strategies in two-player zero-sum turn-based games on graphs,
focusing on the following question: how complexmust the implementation
of a strategy be, andhowsimple can it be in order tomake optimal decisions
in a game? Our study started from objectives (descriptions of the desirable
outcomes of a game for the players) and provided tools to quantify the
complexity of strategies optimal for these objectives in a set of antagonistic
scenarios (the arenas). We assumed that strategies are implemented by
finite-state machines (automaton structures with outputs). Our model
was presented in Chapter 2.

In the first part, Characterizing finite memory requirements, we characterized
several situations in which finite memory is sufficient to implement optimal
strategies, which can be used to obtain upper bounds on the structures
needed to implement them. In Chapter 4, we generalized a work about
memoryless optimal strategies in finite arenas [GZ05] to a kind of finite- [GZ05]: Gimbert et al. (2005),

Games Where You Can Play Op-

timally Without Any Memory

memory strategies. We focused on arena-independent finite memory, which
offers a good trade-off between applicability (it encompasses all $-regular
objectives and more) and technical convenience (it allows investigating
memory structures with only the given of an objective, without instanti-
ating arenas). We recover a characterization through language-theoretic
properties and a one-to-two-player lift, respectively discussed more exten-
sively in Subsections 9.1.1 and 9.1.2. In Chapter 5, we provided a link
between the representation of an $-regular language as a deterministic
parity automaton and a memory structure sufficient to implement optimal

9 Summary and future prospects 232

strategies. In doing so, we showed that for a strong kind of finite-memory
determinacy (chromatic finite-memory determinacy over infinite arenas), the
$-regular objectives are the only finite-memory-determined objectives.
This result builds on previous work about memoryless strategies and
prefix-independent objectives [CN06] and provides a converse to the [CN06]: Colcombet et al.

(2006), On the positional deter-

minacy of edge-labeled games

established finite-memory determinacy of $-regular objectives [GH82].

[GH82]: Gurevich et al. (1982),
Trees, Automata, and Games

In the second part, Obtaining precise memory requirements, we focused
on various classes of $-regular objectives (also venturing into simple
topological classes). We gave precise chromaticmemory requirements for
each player, as well as ways to compute minimal memory structures.
In Chapter 7, we studied objectives definable by classical deterministic
finite automata and characterized the memory structures sufficient to
play optimally through two decidable language-theoretic properties. We
proved the NP-completeness of minimizing these memory structures. In
Chapter 8,we studied objectives definable bydeterministic Büchi automata
and characterized the ones that admit memoryless optimal strategies,
once again through decidable properties. This led to a polynomial-time
algorithm for deciding the half-positionality of such objectives.

9.1.1 Links between properties of objectives

We have defined a certain number of properties of objectives throughout
this thesis. In this section, our goal is to give a general overview of the links
between these notions, a brief reminder of what they entail about strategy
complexity, a summary of the (meta-)properties that these properties
satisfy, and references to proofs and examples of these claims. We include
the following properties in our comparison:

I M-monotony (Definition 4.3.1, generalized from monotony [GZ05]); [GZ05]: Gimbert et al. (2005),
Games Where You Can Play Op-

timally Without Any Memory

I M-selectivity (Definition 4.3.4, generalized from selectivity [GZ05]);
I M-prefix-independence (Definition 5.3.1, generalized from the com-

mon prefix-independence notion);
I M-cycle-consistency (Definition 5.3.3, generalized from an un-

named property in [CN06]);
I M-strong-monotony (Definition 4.3.7, generalized from the strong

monotony notion [BFMM11] — see also the natural reformulation in [BFMM11]: Bianco et al. (2011),
Exploring the boundary of half-

positionality

Lemma 4.3.8; it has been specialized forM =Mtriv in Condition 1);
I M-progress-consistency (Definition 7.4.2, which is novel as far as

we know; it has been specialized forM =Mtriv in Condition 2);
I recognizability by a DBA built on top of the prefix classifier (Condi-

tion 3, already studied for other purposes in [AFS20; AF21; BL21]
[AFS20]: Angluin et al. (2020),
Polynomial Identification of $-
Automata

[AF21]: Angluin et al. (2021),
Regular $-languages with an in-

formative right congruence

[BL21]: Bohn et al. (2021),
Constructing Deterministic $-
Automata from Examples by an

Extension of the RPNI Algo-

rithm

).

Stability by product. All properties that rely on a memory structure
conform to the idea that adding more information is not detrimental:
if an objective , is “M-something”, then for all memory structures
M′, it is also “(M ⊗M′)-something”. This idea was first mentioned

9 Summary and future prospects 233

in Lemma 2.5.5. Here are references to proofs of these facts for each
property: Lemma 4.3.6 forM-monotony andM-selectivity, Lemma 5.3.6
forM-prefix-independence andM-cycle-consistency, and Lemma 7.4.3
for M-progress-consistency. We did not provide an explicit proof for
M-strong-monotony, but the proof would be identical to the one for
M-monotony (Lemma 4.3.6).

Remark 9.1.1 A slightly more general (and perhaps more elegant)
argument for the observation “stability by product” would have been
to consider morphisms of memory structures. A morphism from M =
(", <init , upd) to M′ = ("′, <′init , ′upd) is a function) : " → "′

such that)(<init) = <′init and for all < ∈ ", 2 ∈ �, ′upd()(<), 2) =
)(upd(<, 2)). The existence of a morphism fromM toM′ matches the
intuition thatM contains more information thanM′ and, for the above
properties, we can prove that if an objective is “M′-something”, then it
is also “M-something”. In particular, there is always a morphism from
M ⊗M′ toM.

Symmetry. The following properties are symmetric in the sense that they
hold for an objective, if and only if they hold for its complement, :
M-prefix-independence andM-cycle-consistency (Lemma 5.3.6), andM-
strong-monotony (Lemma4.3.9). All the other properties donot satisfy this,
which was illustrated through examples: Remark 4.3.3 forM-monotony,
Example 4.3.5 forM-selectivity, Example 7.4.1 and Remark 7.4.6 forM-
progress-consistency, Example 8.3.6 for DBA-recognizability by the prefix
classifier. Note thatM-monotony is symmetric for $-regular objectives
(Lemma 4.3.11).

Links. We illustrate in Figure 9.1 all the links between the various
properties defined in this thesis and what they were shown to imply
about strategy complexity. We encompass all chapters containing original
contributions. We aim for the most essential high-level results; for some
of the implications, slightly stronger results were proved (e.g., (1) applies
to the more general framework of preference relations; for (5), considering
countable arenas suffices). For readability, some implications that follow by
symmetry of P1 and P2 are not recalled. Implications without references
follow directly from the definitions. To ease the reading, we give here the
full references to proofs of the non-trivial implications from Figure 9.1:

(1) Theorem 4.4.4;
(2) Theorem 4.4.3;
(3) Theorem 5.4.4 (Conjecture 5.4.5 if we keep the sameM);
(4) Proposition 5.5.3;
(5) Proposition 5.5.5;
(6) Theorem 5.4.1 (bottom-to-top implication) and Lemma 5.3.7 (top-to-

bottom implication);
(7) Folklore result explained in the proof of Theorem 2.7.11;

9 Summary and future prospects 234

M
su

ffi
ce
sf
or

P 1
in

fin
ite

1-
p.

ar
en

as
M

su
ffi
ce
sf
or

P 2
in

fin
ite

1-
p.

ar
en

as

M
su

ffi
ce
sf
or

P 1
in

fin
ite

ar
en

as
M

su
ffi
ce
sf
or

P 2
in

fin
ite

ar
en

as

(1
)

,
RR

or
RS

;
,

D
BA

an
d
M

=
M

tri
v

(9
)

M
su

ffi
ce
sf
or

P 1
in

in
fin

ite
1-
p.

ar
en

as
M

su
ffi
ce
sf
or

P 2
in

in
fin

ite
1-
p.

ar
en

as

M
su

ffi
ce
sf
or

P 1
in

in
fin

ite
ar
en

as
M

su
ffi
ce
sf
or

P 2
in

in
fin

ite
ar
en

as

,
RR

or
RS

;
,

D
BA

an
d
M

=
M

tri
v

(9
)

M
B

S ,
⊗
M

(3
)

,
is

M
-m

on
ot
on

e
,

is
M

-s
el
ec
tiv

e
,

is
M

-m
on

ot
on

e
,

is
M

-s
el
ec
tiv

e

(2
)

(2
)

,
is

M
-p
re
fix

-in
de

pe
nd

en
t

,
is

M
-c
yc
le
-c
on

si
st
en

t
∼ ,

ha
s

fin
ite

in
de

x

,
re
co
gn

iz
ed

by
D
PA

on
to
p
of

M

(4
)

(5
)

M
B

S ,

(6
)

(7
)

,
is

M
-s
tr
on

gl
y-
m
on

ot
on

e
,

is
M

-p
ro
gr
es
s-
co
ns

is
te
nt

,
re
co
gn

iz
ab

le
by

D
BA

on
to
p
of

S ,

Tr
ue

fo
r

,
G
S

Tr
ue

fo
r

,
RR

or
RS

(1
3)

(1
4)

(1
0)

(1
0)

(1
2)

,
G
R

(1
1)

,
RR

or
RS

;
,

D
BA

an
d
M

=
M

tri
v

(8
)

F
i
g
u
r
e
9
.
1
:
O
ve

rv
ie
w

of
th
e
lin

ks
be

tw
ee
n
m
an

y
pr
op

er
tie

sd
efi

ne
d
in

th
is
th
es
is
.L

et
,
⊆
�
$
be

an
ob

je
ct
iv
e
an

d
M

be
a
m
em

or
y
st
ru

ct
ur
e.

Re
d
im

pl
ic
at
io
ns

on
ly

ho
ld

fo
r$

-r
eg

ul
ar

ob
je
ct
iv
es
.B

lu
e
im

pl
ic
at
io
ns

ho
ld

in
sp

ec
ifi
c
ca
se
s,
w
hi
ch

ar
e
th
en

sp
ec
ifi
ed

ne
xt

to
th
e
im

pl
ic
at
io
n.

N
ot
at
io
n
1-
p.

(r
es
p.

G
R,

RR
,G

S,
RS

,D
BA

)i
su

se
d
as

an
ab

br
ev

ia
tio

n
fo
ro

n
e
-
p
l
a
y
e
r
(r
es
p.

g
e
n
e
r
a
l
r
e
a
c
h
a
b
i
l
i
t
y
,r
e
g
u
l
a
r
r
e
a
c
h
a
b
i
l
i
t
y
,g
e
n
e
r
a
l
s
a
f
e
t
y
,r
e
g
u
l
a
r
s
a
f
e
t
y
,

D
B
A
-
r
e
c
o
g
n
i
z
a
b
l
e
).

9 Summary and future prospects 235

(8) Theorem 7.4.8 (see also the close Theorem 7.4.9), Theorem 7.3.3, and
Theorem 8.3.7;

(9) Theorem 7.4.14;
(10) Lemma 4.3.11 (false when, is not $-regular in Lemma 4.3.10);
(11) Lemma 7.4.11;
(12) Lemma 7.4.12;
(13) Remark 7.4.6;
(14) Myhill-Nerode theorem [Ner58]. [Ner58]: Nerode (1958), Linear

Automaton Transformations

Someobservationswere left out from the figure due to its already large size:
M-prefix-independence always impliesM-strong-monotonybydefinition
(Remark 5.3.2), andM-selectivity is incomparable toM-cycle-consistency
(Remark 5.3.5).

9.1.2 One-to-two-player lifts

One of the first results that we presented in this thesis was the one-to-two-
player lift for memoryless strategies in finite arenas (Theorem 3.1.1) by Gimbert
and Zielonka [GZ05]: to show that memoryless strategies suffice to play [GZ05]: Gimbert et al. (2005),

Games Where You Can Play Op-

timally Without Any Memory

optimally in finite two-player arenas, it suffices to show it in the finite
one-player arenas of both players. Generalizing and extending this result
was a recurring theme throughout this thesis — we give an overview of
our results through the prism of this lift property.

This result can be extended in (at least) two ways. First, by showing that
the general scheme holds in other (orthogonal or more general) contexts,
depending for instance on a class of arenas or a class of strategies. The
meta-statement is: if strategies - suffice for both players in their one-player

arenas ., then strategies - also suffice in two-player arenas .. This is what we
did in Theorem 4.4.4 (generalization to arena-independent finite-memory
determinacy over finite arenas) and Theorem 5.4.4 (orthogonal result:
lift for chromatic finite-memory determinacy over infinite arenas). We
sum up occurrences in which similar general results have been shown
to hold in Figure 9.2; it turns out that this is quite a robust property. We
discussed [GZ05] and [CN06; Kop08] in Chapter 3, the generalization [CN06]: Colcombet et al.

(2006), On the positional deter-

minacy of edge-labeled games

[Kop08]: Kopczyński (2008),
Half-positional Determinacy of

Infinite Games

to stochastic games in Subsection 4.8.1, and the generalization to mildly

growing memory in Subsection 4.8.2.

Secondly, the lifts can also be strengthened in more restricted classes
of objectives by showing stronger asymmetric versions: just studying the
memory requirements of one player in its one-player games directly gives

9 Summary and future prospects 236

Arenas \Memory req. Memoryless Arena-independent FM Mildly growing

Finite deterministic [GZ05] Theorem 4.4.4 [BLO+22] [Koz22b]
Infinite deterministic [CN06; Kop08] (PI) Theorem 5.4.4 [BRV23]
Finite stochastic [GZ09] [BORV21a]

Figure 9.2: Occurrences of one-to-two-player lifts, when memory requirements in two-player arenas reduce to the easier
question in one-player arenas. The class of strategies must suffice for both players. Acronym PI refers to the fact that this
result was shown under prefix-independence hypothesis. In stochastic arenas, results deal with pure strategies (i.e., not
resorting to randomization).

its memory requirements in two-player games. We obtained two such
results. First, for regular objectives (both reachability and safety ones), if
some memory structure suffices to play optimally in the one-player arenas
of a player, it also suffices for this player in two-player arenas. Secondly,
for objectives recognizable by deterministic Büchi automata, if memoryless
strategies suffice for P1 in one-player arenas, then they also suffice in
two-player arenas.

In both cases, we also get almost for free a finite-to-infinite lift: the memory
requirements do not increase when going from finite to infinite arenas.
This is intuitively natural for $-regular objectives: thanks to Lemma 2.7.12
about the fact that $-regular objectives are determined by their ultimately
periodic words, we often reduced reasonings about infinite words and
infinite arenas to reasoning about ultimately periodicwords and finite arenas
(Lemmas 4.3.11 and 7.4.12 and Propositions 7.3.1 and 7.4.4). However,
we could not find a general proof of this fact, and the proofs for regular
objectives and objectives recognized by DBAs required in each case to
fully characterize the memory requirements through properties that are
easier to manipulate.

These two observations (asymmetric and finite-to-infinite lifts for regular
and DBA-recognizable objectives) spark the following conjecture about
$-regular objectives.

Conjecture 9.1.2 Let , ⊆ �$
be an $-regular objective and M be a

memory structure.

1. Asymmetric lift: if M suffices to play optimally for P1 in finite

one-player arenas, then M suffices to play optimally for P1 in finite

two-player arenas.

2. Finite-to-infinite lift: if M suffices to play optimally for P1 in finite

arenas, thenM suffices to play optimally for P1 in infinite arenas.

Both items are false in general if, is not $-regular.

1. For a non-$-regular counterexample to the first item, we briefly
reproduce an example from [Kop06, Proposition 2] (used as a coun- [Kop06]: Kopczyński (2006),

Half-Positional Determinacy of

Infinite Games

terexample to another conjecture). Let � = {0, 1}, and letMPℚ denote
the set of words F ∈ �$ whose mean payoff is rational (MP(F) ∈ ℚ).
In any finite one-player arena of P1, any memoryless strategy of P1

9 Summary and future prospects 237

E1 E2
0

0

1

1

E10 1

Figure 9.3: Finite two-player
arena inwhichP1 needs finite
memory to win for objective
MPℚ, and finite one-player
arena in which P2 needs infi-
nite memory.

wins from every vertex, as it induces an ultimately periodic word,
which always has a rational mean payoff. Hence, memoryless strate-
gies suffice for P1 for MPℚ in finite one-player arenas. Yet, P1 needs
finite memory to win in the finite two-player arena of Figure 9.3 (left):
P1 can guarantee a mean payoff of value 1

2 ∈ ℚ by replying with 1
if P2 played 0 and with 0 if P2 played 1. However, any memoryless
strategy of P1 loses because P2 can induce a non-rational mean
payoff without paying attention to the constant choice of P1. Note
that objective MPℚ is not finite-memory-determined: already in a
finite one-player arena (e.g., the one on the right of Figure 9.3), P2
needs infinite memory to induce a non-rational mean payoff.

2. For a non-$-regular counterexample to the second item, we simply
take the mean-payoff objective MP≥0. It is memoryless-determined
over finite arenas (Theorem 2.6.4, Example 3.1.2), but requires infinite
memory in some infinite arena (even a countable, finitely branching,
one-player arena with finitely many colors; see Example 3.2.1).

Note that even the memoryless case (M = Mtriv) of Conjecture 9.1.2,
which is conceptually simpler, is open. If both its items are taken together,
this conjecture is stronger than Conjecture 5.4.5 discussed in Chapter 5.

9.2 Future prospects

9.2.1 Arena-dependent memory requirements

All the results in this thesis can be used to help determine arena-independent
memory requirements of various classes of games. We gave multiple ar-
guments to justify that this is a reasonable restriction: the well-known
$-regular objectives enjoy arena-independent finite-memory determi-
nacy (Theorem 2.7.11), there is no general one-to-two-player lift in this
case (Proposition 3.1.3), and over infinite arenas, we do not know of a
distinction between arena-independent finite-memory determinacy and
finite-memory determinacy (Remark 2.6.10).

Yet, at least when looking at finite arenas, (arena-dependent) finite-memory
determinacy of an objective may already lead to algorithms for solving the
games (e.g., in energy-parity games [CD12]

[CD12]: Chatterjee et al.
(2012), Energy parity games

, multi-energy games [CRR14;
JLS15]

[CRR14]: Chatterjee et al.
(2014), Strategy synthesis for

multi-dimensional quantitative

objectives

[JLS15]: Jurdziński et al.
(2015), Fixed-Dimensional En-

ergy Games are in Pseudo-

Polynomial Time

, window objectives [CDRR15]

[CDRR15]: Chatterjee et al.
(2015), Looking at mean-payoff

and total-payoff through win-

dows

, average-energy games [BMR+18;
BHM+17]

[BMR+18]: Bouyer et al.
(2018), Average-energy games

[BHM+17]: Bouyer et al.
(2017), Bounding Average-

Energy Games

). It would therefore make sense to go further in the understand-
ing of this general finite-memory determinacy over games played on finite
arenas.We discussed one general result about this topic in Subsection 4.8.2,

9 Summary and future prospects 238

extending our one-to-two-player lift from arena-independent to mildly

growingmemory requirements [Koz22b]. [Koz22b]: Kozachinskiy
(2022), One-To-Two-Player

Lifting for Mildly Growing

Memory

Another line of work started by giving sufficient conditions for half-
positionality over finite arenas in deterministic games [Kop06; BFMM11],

[Kop06]: Kopczyński (2006),
Half-Positional Determinacy of

Infinite Games

[BFMM11]: Bianco et al. (2011),
Exploring the boundary of half-

positionality

Markov decision processes [Gim07], and stochastic games [GK14] through

[Gim07]: Gimbert (2007),Pure
Stationary Optimal Strategies in

Markov Decision Processes

[GK14]: Gimbert et al. (2014),
Submixing and Shift-Invariant

Stochastic Games

two conditions (which are roughly similar in all these works). The two
conditions, as often, deal respectively with prefixes and with cycles:
the first condition is prefix-independence (slightly weakened to Mtriv-
strong-monotony in [BFMM11]); the second condition is called concavity

(or submixingness), and states that two infinite losing words cannot be
combined into a winning word. Half-positionality is inherently arena-

independent (for one player).However, in [MSTW21] and a version of [GK14]

[MSTW21]: Mayr et al. (2021),
Simple Stochastic Games with

Almost-Sure Energy-Parity Ob-

jectives are in NP and coNP

updated in 2021, a corollary about finite-memory determinacy was stated:
under prefix-independence and concavity, if additionally, P2 has finite-
memory optimal strategies in its finite one-player arenas, then P2 has
finite-memory optimal strategies in finite two-player arenas. We sum up
the situation: under strong conditions for P1 (sufficient but not necessary
for half-positionality in finite arenas), we have a one-to-two-player lift
for (arena-dependent!) finite-memory determinacy of P2. This is strong
enough to showfinite-memory determinacy ofmulti-energy games (which
satisfy concavity for one of the players and prefix-independence).

This suggests that there is yet another road for a reasonable one-to-two-
player lift leading to finite-memory determinacy: what if wemake a strong
assumption on one player (e.g., memoryless optimal strategies in one-
player arenas) but assume only the existence of finite-memory optimal
strategies for the other player in one-player arenas? This leads to the
following conjecture, stronger than [MSTW21; GK14] when considering
deterministic games.

Conjecture 9.2.1 Let, ⊆ �$
be an objective. If P1 has memoryless optimal

strategies in its finite one-player arenas and P2 has finite-memory optimal

strategies in its finite one-player arenas, then, is finite-memory-determined

over finite (two-player) arenas.

This question is one of the first ones we looked at while preparing this
thesis, but to no avail.

9.2.2 Chaotic memory

In Subsection 2.6.2, we defined chaotic memory structures (sometimes called
general in the literature) as memory structures that can observe precise
edges taken while playing games, and not solely their color. For this reason,
chaotic memory is intrinsically arena-dependent, which relates it to the
previous section.

9 Summary and future prospects 239

Yet, studying chaotic memory may be of interest even for objectives that
are known to be arena-independent-finite-memory-determined, such as
$-regular objectives. A recent breakthrough by Casares, Colcombet, and These results have also been

discussed with precise state-
ments in Section 6.2.

Lehtinen [Cas22; CCL22] shows that for the class of Muller conditions,

[Cas22]: Casares (2022), On

the Minimisation of Transition-

Based Rabin Automata and

the Chromatic Memory Require-

ments of Muller Conditions

[CCL22]: Casares et al. (2022),
On the Size of Good-For-Games

Rabin Automata and Its Link

with the Memory in Muller

Games

chaotic memory structures actually correspond to good-for-games Rabin

automata recognizing the condition. Moreover, these chaotic memory
structures may be exponentially smaller than the smallest chromatic
memory structure.

Good-for-games Rabin automata are a kind of non-deterministic automata.
As for chromatic memory structures, they read colors, but have some
well-behaved non-determinism: the idea is that while playing with such a
non-deterministic memory structure, the player should be able to resolve
the non-determinism on the fly to its advantage. This provides an arena-
independent version of a possibly more succinct memory model: what
if instead of finding the smallest possible chaotic memory structure
(which depends on an arena), we had to find the smallest non-deterministic

chromatic memory structure (which depends only on the objective), with
some constraint on the non-determinism? This alternative point of view is
more amenable to the kind of arguments we used throughout this thesis;
for example, we could define a non-deterministic chromatic memory
structureM and look at language-theoretic properties of, andM (is,
“M-something”?).

Chaotic memory is therefore fully understood for Muller conditions, and
also for general safety objectives [CFH14]. Given these results and the new [CFH14]: Colcombet et al.

(2014), Playing Saferesults from this thesis, the most pressing open question is about regular
and general reachability objectives (Chapter 7): how to characterize the
amount of chaoticmemory necessary and sufficient to play optimally for
these objectives, how hard is it to compute, and can it be significantly
smaller than the smallest (deterministic) chromatic memory structure?

9.2.3 Alternative models

We studied the classical model of two-player zero-sum turn-based games
on graphs; for more fine-grained synthesis endeavors, it is worthwhile to
consider other models. We mention (non-exhaustively) some alternative
models that have recently been scrutinized in the literature.

Stochastic games. We discussed stochastic games in Subsection 4.8.1, in
which probabilities are used to model some features of the interaction
between the two players. An additional kind of strategy complexity
to consider is randomization; resorting to randomness in strategies may
decrease the memory requirements [CdH04; Hor09; CRR14; MPR20;
MR22]

[CdH04]: Chatterjee et al.
(2004), Trading Memory for

Randomness

[Hor09]:Horn (2009),Random
Fruits on the Zielonka Tree

[CRR14]: Chatterjee et al.
(2014), Strategy synthesis for

multi-dimensional quantitative

objectives

[MPR20]: Monmege et al.
(2020), Reaching Your Goal Op-

timally by Playing at Random

with No Memory

[MR22]: Main et al. (2022),
Different Strokes in Randomised

Strategies: Revisiting Kuhn’s

Theorem Under Finite-Memory

Assumptions

. We refer to Subsection 4.8.1 for a more complete discussion.

Another frequent stochastic model is aMarkov decision process (i.e., a one-
player stochastic game). Memory requirements of finite Markov decision

9 Summary and future prospects 240

processes have been extensively studied (e.g., in [Gim07; DKQR20]). Re- [Gim07]: Gimbert (2007),Pure
Stationary Optimal Strategies in

Markov Decision Processes

[DKQR20]: Delgrange et al.
(2020), Simple Strategies in

Multi-Objective MDPs

cently, a new line ofwork looked at strategy complexity in countableMarkov
decision processes for many classical objectives (see survey [KMS+20] and

[KMS+20]: Kiefer et al. (2020),
How to Play in Infinite MDPs

(Invited Talk)

some subsequent papers [KMST21; MM21]). It goes beyond simply dis-

[KMST21]: Kiefer et al. (2021),
Transience in Countable MDPs

[MM21]: Mayr et al. (2021),
Strategy Complexity of Mean

Payoff, Total Payoff and Point

Payoff Objectives in Countable

MDPs

tinguishing memoryless, finite-memory, and infinite-memory strategies;
when infinite memory is needed, it considers the kinds of infinite memory
structures that suffice to play optimally. For instance, Markov strategies can
base their decision on the current arena vertex and on the number of steps
since the start of the game. Such strategies cannot be implemented with
finite memory, but they use an arguably simple and well-behaved infinite
structure.

Concurrent games. We studied turn-based games, in which players take
turns making decisions; in concurrent games, players make decisions
simultaneously and the color seen and transition taken depend on the
decisions made by both players. Concurrent games were present at the
genesis of game theory, where simultaneous games were the model of
choice for the seminal papers of von Neumann [von28] (about zero-sum [von28]: von Neumann

(1928), Zur Theorie der

Gesellschaftsspiele

games) andNash [Nas51] (about non-zero-sum games). Concurrent games

[Nas51]: Nash (1951), Non-

cooperative Games

require randomization of strategies even for simple objectives [Mar98;
dHK07]. There have been studies of the strategy complexity of concurrent

[Mar98]: Martin (1998), The
Determinacy of Blackwell Games

[dHK07]: de Alfaro et al.
(2007), Concurrent reachability
games

games on graphs for classical objectives [BBL22b; BBL22a]. Our work in

[BBL22b]: Bordais et al.
(2022), Playing (Almost-

)Optimally in Concurrent Büchi

and Co-Büchi Games

[BBL22a]: Bordais et al.
(2022), Optimal Strategies in

Concurrent Reachability Games

Chapter 4 was also extended to a well-behaved kind of concurrent games
on graphs [BBL21].

[BBL21]: Bordais et al. (2021),
From Local to Global Deter-

minacy in Concurrent Graph

Games

Article [BLT22] establishes the existence of finite-memory optimal strate-

[BLT22]: Bouyer et al. (2022),
Finite-Memory Strategies in

Two-Player Infinite Games

gies from topological properties of objectives for concurrent games. Al-
though general reachability and safety objectives fit into their framework,
there are major differences with our work beyond concurrency: their
games are not played on graphs. Arenas can be considered, but they have
to be encoded into the objective, and strategies are therefore not assumed
to be able to observe the current arena vertex (to use this information,
strategies have to add it to their memory structure).

More expressive strategy models. Throughout this thesis, our finite-
memory strategies are represented by deterministic finite-state machines.
This classical model makes perfect sense for $-regular objectives, thanks
to their finite-memory determinacy. However, it can be seen as quite
restrictive for many other behaviors; for instance, basing the decisions
of a strategy on a counter taking values in the natural numbers does
not fall into this scope of finite-memory strategies. Just as we gave tools
to understand finite-memory determinacy using finite-state machines
as strategies, it would be interesting to understand which objectives
admit optimal strategies based on more expressive kinds of machines.
We have already mentioned above good-for-games automata (which are
roughly restricted non-deterministic finite-state machines), randomness
in strategies, and some restricted kinds of infinite-memory strategies

9 Summary and future prospects 241

(e.g., Markov strategies for stochastic games). We mention additionally
(and non-exhaustively) works on representing strategies as pushdown
automata [Wal01], Turing machines [Gel14], decision trees [BCKT18], [Wal01]: Walukiewicz (2001),

PushdownProcesses: Games and

Model-Checking

[Gel14]: Gelderie (2014), Strat-
egy machines: representation

and complexity of strategies in

infinite games

[BCKT18]: Brázdil et al. (2018),
Strategy Representation by Deci-

sion Trees in Reactive Synthesis

MSO-transducers [BT22], and register automata [EFLR22].

[BT22]: Brütsch et al. (2022),
Solving Infinite Games in the

Baire Space

[EFLR22]: Exibard et al.
(2022), Computability of Data-

Word Transductions over Differ-

ent Data Domains

Bibliography

[AF21] Dana Angluin and Dana Fisman. ‘Regular $-languages with an informative right
congruence’. In: Information and Computation 278 (2021), p. 104598. doi: 10.1016/j.ic.
2020.104598 (cited on pages 13, 101, 111, 196, 232).

[AFS20] Dana Angluin, Dana Fisman, and Yaara Shoval. ‘Polynomial Identification of $-
Automata’. In: Proceedings (Part II) of the 26th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, TACAS 2020, Held as Part of

ETAPS 2020, Dublin, Ireland, April 25–30, 2020. Ed. by Armin Biere and David Parker.
Vol. 12079. Lecture Notes in Computer Science. Springer, 2020, pp. 325–343. doi:
10.1007/978-3-030-45237-7_20 (cited on pages 13, 101, 111, 196, 232).

[AK19] Bader Abu Radi and Orna Kupferman. ‘Minimizing GFG Transition-Based Automata’.
In: Proceedings of the 46th International Colloquium on Automata, Languages, and Pro-

gramming, ICALP 2019, Patras, Greece, July 9–12, 2019. Ed. by Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi. Vol. 132. LIPIcs. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019, 100:1–100:16. doi: 10.4230/LIPIcs.
ICALP.2019.100 (cited on pages 196, 198).

[AK20] Bader Abu Radi and Orna Kupferman. ‘Canonicity in GFG and Transition-Based
Automata’. In: Proceedings of the 11th International Symposium on Games, Automata, Logics,

and Formal Verification, GandALF 2020, Brussels, Belgium, September 21–22, 2020. Ed. by
Jean-François Raskin and Davide Bresolin. Vol. 326. EPTCS. 2020, pp. 199–215. doi:
10.4204/EPTCS.326.13 (cited on pages 196, 198).

[AK22] Bader Abu Radi and Orna Kupferman. ‘Minimization and Canonization of GFG
Transition-Based Automata’. In: Logical Methods in Computer Science 18.3 (2022). doi:
10.46298/lmcs-18(3:16)2022 (cited on pages 37, 196).

[AR17] Benjamin Aminof and Sasha Rubin. ‘First-cycle games’. In: Information and Computation

254 (2017), pp. 195–216. doi: 10.1016/j.ic.2016.10.008 (cited on page 8).

[BBE10] Tomáš Brázdil, Václav Brožek, and Kousha Etessami. ‘One-Counter Stochastic Games’.
In: Proceedings of the 30th IARCS Annual Conference on Foundations of Software Technology

and Theoretical Computer Science, FSTTCS 2010, Chennai, India, December 15–18, 2010.
Ed. by Kamal Lodaya and Meena Mahajan. Vol. 8. LIPIcs. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2010, pp. 108–119. doi: 10.4230/LIPIcs.FSTTCS.2010.108
(cited on page 112).

[BBL21] Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. ‘From Local to Global
Determinacy in Concurrent Graph Games’. In: Proceedings of the 41st IARCS Annual

Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS

2021, Virtual Conference, December 15–17, 2021. Ed. by Mikołaj Bojańczyk and Chandra
Chekuri. Vol. 213. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021,
41:1–41:14. doi: 10.4230/LIPIcs.FSTTCS.2021.41 (cited on page 240).

[BBL22a] Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. ‘Optimal Strategies in
Concurrent Reachability Games’. In: Proceedings of the 30th EACSL Annual Conference

on Computer Science Logic, CSL 2022, Göttingen, Germany, February 14–19, 2022. Ed. by

https://doi.org/10.1016/j.ic.2020.104598
https://doi.org/10.1016/j.ic.2020.104598
https://doi.org/10.1007/978-3-030-45237-7_20
https://doi.org/10.4230/LIPIcs.ICALP.2019.100
https://doi.org/10.4230/LIPIcs.ICALP.2019.100
https://doi.org/10.4204/EPTCS.326.13
https://doi.org/10.46298/lmcs-18(3:16)2022
https://doi.org/10.1016/j.ic.2016.10.008
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.108
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.41

Florin Manea and Alex Simpson. Vol. 216. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022, 7:1–7:17. doi: 10.4230/LIPIcs.CSL.2022.7 (cited on page 240).

[BBL22b] Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. ‘Playing (Almost-)Optimally
in Concurrent Büchi and Co-Büchi Games’. In: Proceedings of the 42nd IARCS Annual

Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS

2022, IIT Madras, Chennai, India, December 18–20, 2022. Ed. by Anuj Dawar and
Venkatesan Guruswami. Vol. 250. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022, 33:1–33:18. doi: 10.4230/LIPIcs.FSTTCS.2022.33 (cited on
page 240).

[BCJ18] Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. ‘Graph Games
and Reactive Synthesis’. In: Handbook of Model Checking. Ed. by Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and Roderick Bloem. Springer, 2018, pp. 921–962.
doi: 10.1007/978-3-319-10575-8_27 (cited on pages 5, 7, 29, 152, 195).

[BCKT18] Tomáš Brázdil, Krishnendu Chatterjee, Jan Křetínský, and Viktor Toman. ‘Strategy
Representation by Decision Trees in Reactive Synthesis’. In: Proceedings (Part I) of the
24th International Conference on Tools and Algorithms for the Construction and Analysis

of Systems, TACAS 2018, Held as Part of ETAPS 2018, Thessaloniki, Greece, April 14–20,

2018. Ed. by Dirk Beyer and Marieke Huisman. Vol. 10805. Lecture Notes in Computer
Science. Springer, 2018, pp. 385–407. doi: 10.1007/978-3-319-89960-2_21 (cited on
page 241).

[BCRV22] Patricia Bouyer, Antonio Casares, Mickael Randour, and Pierre Vandenhove. ‘Half-
Positional Objectives Recognized by Deterministic Büchi Automata’. In: Proceedings
of the 33rd International Conference on Concurrency Theory, CONCUR 2022, Warsaw,

Poland, September 12–16, 2022. Ed. by Bartek Klin, Sławomir Lasota, and AncaMuscholl.
Vol. 243. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 20:1–20:18.
doi: 10.4230/LIPIcs.CONCUR.2022.20 (cited on pages 15, 193).

[BCV18] Suguman Bansal, Swarat Chaudhuri, and Moshe Y. Vardi. ‘Comparator automata in
quantitative verification’. In: CoRR abs/1812.06569 (2018). doi: 10.48550/arXiv.1812.
06569 (cited on page 138).

[BD14] Souheib Baarir and Alexandre Duret-Lutz. ‘Mechanizing the Minimization of De-
terministic Generalized Büchi Automata’. In: Proceedings of the 34th IFIP WG 6.1

International Conference on Formal Techniques for Distributed Objects, Components, and

Systems, FORTE 2014, Held as Part of DisCoTec 2014, Berlin, Germany, June 3–5, 2014.
Ed. by Erika Ábrahám and Catuscia Palamidessi. Vol. 8461. Lecture Notes in Computer
Science. Springer, 2014, pp. 266–283. doi: 10.1007/978-3-662-43613-4_17 (cited on
page 191).

[BFL+08] Patricia Bouyer, Ulrich Fahrenberg, Kim G. Larsen, Nicolas Markey, and Jirí Srba.
‘Infinite Runs in Weighted Timed Automata with Energy Constraints’. In: Proceedings
of the 6th International Conference on Formal Modeling and Analysis of Timed Systems,

FORMATS 2008, Saint Malo, France, September 15–17, 2008. Ed. by Franck Cassez and
Claude Jard. Vol. 5215. Lecture Notes in Computer Science. Springer, 2008, pp. 33–47.
doi: 10.1007/978-3-540-85778-5_4 (cited on page 57).

https://doi.org/10.4230/LIPIcs.CSL.2022.7
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.33
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-89960-2_21
https://doi.org/10.4230/LIPIcs.CONCUR.2022.20
https://doi.org/10.48550/arXiv.1812.06569
https://doi.org/10.48550/arXiv.1812.06569
https://doi.org/10.1007/978-3-662-43613-4_17
https://doi.org/10.1007/978-3-540-85778-5_4

[BFMM11] Alessandro Bianco, Marco Faella, Fabio Mogavero, and Aniello Murano. ‘Exploring
the boundary of half-positionality’. In: Annals of Mathematics and Artificial Intelligence

62.1-2 (2011), pp. 55–77. doi: 10.1007/s10472-011-9250-1 (cited on pages 8, 13, 71,
94, 108, 194, 195, 202, 232, 238).

[BFRV22] Patricia Bouyer, Nathanaël Fĳalkow, Mickael Randour, and Pierre Vandenhove. ‘How
to Play Optimally for Regular Objectives?’ In: CoRR abs/2210.09703 (2022). doi:
10.48550/arXiv.2210.09703 (cited on pages 15, 155).

[BHM+17] Patricia Bouyer, Piotr Hofman, Nicolas Markey, Mickael Randour, and Martin Zim-
mermann. ‘Bounding Average-Energy Games’. In: Proceedings of the 20th International
Conference on Foundations of Software Science and Computation Structures, FoSSaCS 2017,

Held as Part of ETAPS 2017, Uppsala, Sweden, April 22–29, 2017. Ed. by Javier Esparza and
Andrzej S. Murawski. Vol. 10203. Lecture Notes in Computer Science. 2017, pp. 179–195.
doi: 10.1007/978-3-662-54458-7_11 (cited on pages 8, 49, 56, 57, 237).

[BHO15] Udi Boker, ThomasA.Henzinger, and JanOtop. ‘The Target Discounted-SumProblem’.
In: Proceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science,

LICS 2015, Kyoto, Japan, July 6–10, 2015. IEEE Computer Society, 2015, pp. 750–761. doi:
10.1109/LICS.2015.74 (cited on page 139).

[BHR16] Véronique Bruyère, Quentin Hautem, and Mickael Randour. ‘Window parity games:
an alternative approach toward parity games with time bounds’. In: Proceedings of
the 7th International Symposium on Games, Automata, Logics, and Formal Verification,

GandALF 2016, Catania, Italy, September 14–16, 2016. Ed. by Domenico Cantone and
Giorgio Delzanno. Vol. 226. EPTCS. 2016, pp. 135–148. doi: 10.4204/EPTCS.226.10
(cited on page 194).

[BHRR19] Véronique Bruyère, Quentin Hautem, Mickael Randour, and Jean-François Raskin.
‘Energy Mean-Payoff Games’. In: Proceedings of the 30th International Conference on

Concurrency Theory, CONCUR 2019, Amsterdam, the Netherlands, August 27–30, 2019. Ed.
by Wan J. Fokkink and Rob van Glabbeek. Vol. 140. LIPIcs. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2019, 21:1–21:17. doi: 10.4230/LIPIcs.CONCUR.2019.21
(cited on pages 49, 56, 194).

[BJP+12] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.
‘Synthesis of Reactive(1) designs’. In: Journal of Computer and System Sciences 78.3 (2012),
pp. 911–938. doi: 10.1016/j.jcss.2011.08.007 (cited on page 5).

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008
(cited on pages 1, 5, 39, 203).

[BL21] León Bohn and Christof Löding. ‘Constructing Deterministic $-Automata from
Examples by anExtensionof theRPNIAlgorithm’. In:Proceedings of the 46th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2021, Tallinn, Estonia,

August 23–27, 2021. Ed. by Filippo Bonchi and Simon J. Puglisi. Vol. 202. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 20:1–20:18. doi: 10.4230/LIPIcs.
MFCS.2021.20 (cited on pages 101, 111, 196, 232).

[BL69] J. Richard Büchi and Lawrence H. Landweber. ‘Definability in the Monadic Second-
Order Theory of Successor’. In: Journal of Symbolic Logic 34.2 (1969), pp. 166–170. doi:
10.2307/2271090 (cited on pages 5, 11, 39, 100).

https://doi.org/10.1007/s10472-011-9250-1
https://doi.org/10.48550/arXiv.2210.09703
https://doi.org/10.1007/978-3-662-54458-7_11
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.4204/EPTCS.226.10
https://doi.org/10.4230/LIPIcs.CONCUR.2019.21
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.4230/LIPIcs.MFCS.2021.20
https://doi.org/10.4230/LIPIcs.MFCS.2021.20
https://doi.org/10.2307/2271090

[BLO+20] Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre
Vandenhove. ‘Games Where You Can Play Optimally with Arena-Independent Finite
Memory’. In: Proceedings of the 31st International Conference on Concurrency Theory,

CONCUR 2020, Vienna, Austria, September 1–4, 2020. Ed. by Igor Konnov and Laura
Kovács. Vol. 171. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020,
24:1–24:22. doi: 10.4230/LIPIcs.CONCUR.2020.24 (cited on pages 14, 15, 55).

[BLO+22] Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre
Vandenhove. ‘Games Where You Can Play Optimally with Arena-Independent Finite
Memory’. In: Logical Methods in Computer Science 18.1 (2022). doi: 10.46298/lmcs-
18(1:11)2022 (cited on pages 14, 15, 55, 236).

[BLT22] Patricia Bouyer, Stéphane Le Roux, and Nathan Thomasset. ‘Finite-Memory Strategies
in Two-Player Infinite Games’. In: Proceedings of the 30th EACSL Annual Conference on

Computer Science Logic, CSL 2022, Göttingen, Germany, February 14–19, 2022. Ed. by
Florin Manea and Alex Simpson. Vol. 216. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022, 8:1–8:16. doi: 10.4230/LIPIcs.CSL.2022.8 (cited on pages 57,
240).

[BMR+18] Patricia Bouyer, Nicolas Markey, Mickael Randour, Kim G. Larsen, and Simon
Laursen. ‘Average-energy games’. In: Acta Informatica 55.2 (2018), pp. 91–127. doi:
10.1007/s00236-016-0274-1 (cited on pages 8, 49, 56, 57, 237).

[Bok18] Udi Boker. ‘Why These Automata Types?’ In: Proceedings of the 22nd International

Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR 2022,

Awassa, Ethiopia, November 16–21, 2018. Ed. by Gilles Barthe, Geoff Sutcliffe, and
Margus Veanes. Vol. 57. EPiC Series in Computing. EasyChair, 2018, pp. 143–163. doi:
10.29007/c3bj (cited on page 39).

[Boo78] Kellogg S. Booth. ‘Isomorphism Testing for Graphs, Semigroups, and Finite Automata
Are Polynomially Equivalent Problems’. In: SIAM Journal on Computing 7.3 (1978),
pp. 273–279. doi: 10.1137/0207023 (cited on page 185).

[BORV21a] Patricia Bouyer, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove. ‘Arena-
Independent Finite-Memory Determinacy in Stochastic Games’. In: Proceedings of the
32nd International Conference on Concurrency Theory, CONCUR 2021, Virtual Conference,

August 24–27, 2021. Ed. by Serge Haddad and Daniele Varacca. Vol. 203. LIPIcs. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 26:1–26:18. doi: 10.4230/LIPIcs.
CONCUR.2021.26 (cited on pages 15, 58, 96–98, 236).

[BORV21b] Patricia Bouyer, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove.
‘Arena-Independent Finite-Memory Determinacy in Stochastic Games’. In: CoRR
abs/2102.10104 (2021). doi: 10.48550/arXiv.2102.10104 (cited on page 97).

[BRV22a] Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. ‘Characterizing Omega-
Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs’. In:
Proceedings of the 39th International Symposium on Theoretical Aspects of Computer Science,

STACS 2022, Marseille, France, March 15–18, 2022. Ed. by Petra Berenbrink and Benjamin
Monmege. Vol. 219. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022,
16:1–16:16. doi: 10.4230/LIPIcs.STACS.2022.16 (cited on pages 15, 100).

https://doi.org/10.4230/LIPIcs.CONCUR.2020.24
https://doi.org/10.46298/lmcs-18(1:11)2022
https://doi.org/10.46298/lmcs-18(1:11)2022
https://doi.org/10.4230/LIPIcs.CSL.2022.8
https://doi.org/10.1007/s00236-016-0274-1
https://doi.org/10.29007/c3bj
https://doi.org/10.1137/0207023
https://doi.org/10.4230/LIPIcs.CONCUR.2021.26
https://doi.org/10.4230/LIPIcs.CONCUR.2021.26
https://doi.org/10.48550/arXiv.2102.10104
https://doi.org/10.4230/LIPIcs.STACS.2022.16

[BRV22b] Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. ‘The True Colors of
Memory: A Tour of Chromatic-Memory Strategies in Zero-Sum Games on Graphs
(Invited Talk)’. In: Proceedings of the 42nd IARCS Annual Conference on Foundations

of Software Technology and Theoretical Computer Science, FSTTCS 2022, IIT Madras,

Chennai, India, December 18–20, 2022. Ed. by Anuj Dawar and Venkatesan Guruswami.
Vol. 250. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 3:1–3:18.
doi: 10.4230/LIPIcs.FSTTCS.2022.3 (cited on page 15).

[BRV23] Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. ‘Characterizing Omega-
Regularity Through Finite-Memory Determinacy of Games on Infinite Graphs’. In:
TheoretiCS 2 (2023), pp. 1–48. doi: 10.46298/theoretics.23.1 (cited on pages 15, 100,
236).

[BT22] Benedikt Brütsch and Wolfgang Thomas. ‘Solving Infinite Games in the Baire Space’.
In: Fundamenta Informaticae 186.1-4 (2022), pp. 63–88. doi: 10.3233/FI-222119 (cited
on page 241).

[Büc60] J. Richard Büchi. ‘Weak Second-Order Arithmetic and Finite Automata’. In:Mathemati-

cal Logic Quarterly 6.1–6 (1960), pp. 66–92. doi: 10.1002/malq.19600060105 (cited on
page 5).

[Büc62] J. Richard Büchi. ‘On a Decision Method in Restricted Second Order Arithmetic’. In:
Proceedings of the International Congress on Logic, Methodology and Philosophy of Science

(1962), pp. 1–11. doi: 10.1007/978-1-4613-8928-6_23 (cited on page 5).

[Cas22] Antonio Casares. ‘On the Minimisation of Transition-Based Rabin Automata and the
Chromatic Memory Requirements of Muller Conditions’. In: Proceedings of the 30th
EACSL Annual Conference on Computer Science Logic, CSL 2022, Göttingen, Germany,

February 14–19, 2022. Ed. by Florin Manea and Alex Simpson. Vol. 216. LIPIcs. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 12:1–12:17. doi: 10.4230/LIPIcs.
CSL.2022.12 (cited on pages 12, 29, 30, 37, 57, 147, 151, 152, 162, 221, 239).

[CCF21] Antonio Casares, Thomas Colcombet, and Nathanaël Fĳalkow. ‘Optimal Transforma-
tions of Games and Automata Using Muller Conditions’. In: Proceedings of the 48th
International Colloquium on Automata, Languages, and Programming, ICALP 2021, Glasgow,

Scotland, July 12–16, 2021. Ed. by Nikhil Bansal, Emanuela Merelli, and James Worrell.
Vol. 198. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 123:1–123:14.
doi: 10.4230/LIPIcs.ICALP.2021.123 (cited on pages 118, 152).

[CCL22] Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen. ‘On the Size of Good-
For-Games Rabin Automata and Its Link with the Memory in Muller Games’. In:
Proceedings of the 49th International Colloquium on Automata, Languages, and Programming,

ICALP 2022, Paris, France, July 4–8, 2022. Ed. by Mikołaj Bojańczyk, Emanuela Merelli,
and David P. Woodruff. Vol. 229. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022, 117:1–117:20. doi: 10.4230/LIPIcs.ICALP.2022.117 (cited on
pages 12, 30, 152, 239).

[CD12] Krishnendu Chatterjee and Laurent Doyen. ‘Energy parity games’. In: Theoretical
Computer Science 458 (2012), pp. 49–60. doi: 10.1016/j.tcs.2012.07.038 (cited on
pages 8, 194, 237).

https://doi.org/10.4230/LIPIcs.FSTTCS.2022.3
https://doi.org/10.46298/theoretics.23.1
https://doi.org/10.3233/FI-222119
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/10.4230/LIPIcs.CSL.2022.12
https://doi.org/10.4230/LIPIcs.CSL.2022.12
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.4230/LIPIcs.ICALP.2022.117
https://doi.org/10.1016/j.tcs.2012.07.038

[CD16] Krishnendu Chatterjee and Laurent Doyen. ‘Perfect-Information Stochastic Games
with Generalized Mean-Payoff Objectives’. In: Proceedings of the 31st Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS 2016, New York, NY, USA, July 5–8, 2016.
Ed. by Martin Grohe, Eric Koskinen, and Natarajan Shankar. ACM, 2016, pp. 247–256.
doi: 10.1145/2933575.2934513 (cited on page 102).

[CDGH10] Krishnendu Chatterjee, Laurent Doyen, Hugo Gimbert, and Thomas A. Henzinger.
‘Randomness for Free’. In:Proceedings of the 35th International Symposium onMathematical

Foundations of Computer Science, MFCS 2010, Brno, Czech Republic, August 23–27, 2010.
Ed. by Petr Hlinený and Antonín Kucera. Vol. 6281. Lecture Notes in Computer Science.
Springer, 2010, pp. 246–257. doi: 10.1007/978-3-642-15155-2_23 (cited on page 98).

[CdH04] Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. ‘Trading Memory
for Randomness’. In: Proceedings of the 1st International Conference on Quantitative

Evaluation of Systems, QEST 2004, Enschede, The Netherlands, 27–30 September, 2004. IEEE
Computer Society, 2004, pp. 206–217. doi: 10.1109/QEST.2004.1348035 (cited on
pages 98, 239).

[CDH09] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. ‘Expressiveness
and Closure Properties for Quantitative Languages’. In: Proceedings of the 24th Annual

IEEE Symposium on Logic in Computer Science, LICS 2009, Los Angeles, CA, USA, 11–14

August 2009. IEEE Computer Society, 2009, pp. 199–208. doi: 10.1109/LICS.2009.16
(cited on page 138).

[CdHS03] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga.
‘Resource Interfaces’. In: Proceedings of the 3rd International Conference on Embedded

Software, EMSOFT 2003, Philadelphia, PA, USA, October 13–15, 2003. Ed. by Rajeev
Alur and Insup Lee. Vol. 2855. Lecture Notes in Computer Science. Springer, 2003,
pp. 117–133. doi: 10.1007/978-3-540-45212-6_9 (cited on pages 8, 34).

[CDK93] Edmund M. Clarke, I. A. Draghicescu, and Robert P. Kurshan. ‘A Unified Approch
for Showing Language Inclusion and Equivalence Between Various Types of omega-
Automata’. In: InformationProcessing Letters 46.6 (1993), pp. 301–308.doi:10.1016/0020-
0190(93)90069-L (cited on page 206).

[CDRR15] Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin.
‘Looking at mean-payoff and total-payoff through windows’. In: Information and

Computation 242 (2015), pp. 25–52. doi: 10.1016/j.ic.2015.03.010 (cited on pages 8,
194, 237).

[CFGO22] Thomas Colcombet, Nathanaël Fĳalkow, Pawel Gawrychowski, and Pierre Ohlmann.
‘The Theory of Universal Graphs for Infinite Duration Games’. In: Logical Methods in

Computer Science 18.3 (2022). doi: 10.46298/lmcs-18(3:29)2022 (cited on pages 195,
204).

[CFH14] Thomas Colcombet, Nathanaël Fĳalkow, and Florian Horn. ‘Playing Safe’. In: Pro-
ceedings of the 34th IARCS Annual Conference on Foundations of Software Technology and

Theoretical Computer Science, FSTTCS 2014, NewDelhi, India, December 15–17, 2014. Ed. by
Venkatesh Raman and S. P. Suresh. Vol. 29. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2014, pp. 379–390. doi: 10.4230/LIPIcs.FSTTCS.2014.379 (cited on
pages 13, 112, 156, 162, 163, 175, 192, 239).

https://doi.org/10.1145/2933575.2934513
https://doi.org/10.1007/978-3-642-15155-2_23
https://doi.org/10.1109/QEST.2004.1348035
https://doi.org/10.1109/LICS.2009.16
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1016/0020-0190(93)90069-L
https://doi.org/10.1016/0020-0190(93)90069-L
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.46298/lmcs-18(3:29)2022
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.379

[CFH22] Thomas Colcombet, Nathanaël Fĳalkow, and Florian Horn. ‘Playing Safe, Ten Years
Later’. In: CoRR abs/2212.12024 (2022). doi: 10.48550/arXiv.2212.12024 (cited on
pages 13, 156, 192).

[CFK+12] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, Aistis Simaitis, Ashutosh Trivedi,
and Michael Ummels. ‘Playing Stochastic Games Precisely’. In: Proceedings of the 23rd
International Conference on Concurrency Theory, CONCUR 2012, Newcastle, UK, September

4–7, 2012. Ed. by Maciej Koutny and Irek Ulidowski. Vol. 7454. Lecture Notes in
Computer Science. Springer, 2012, pp. 348–363. doi: 10.1007/978-3-642-32940-
1_25 (cited on page 97).

[CHJ05] Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdziński. ‘Mean-Payoff
Parity Games’. In: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer

Science, LICS 2005, Chicago, IL, USA, June 26–29, 2005. IEEE Computer Society, 2005,
pp. 178–187. doi: 10.1109/LICS.2005.26 (cited on page 194).

[CHP07] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. ‘Generalized Parity
Games’. In: Proceedings of the 10th International Conference on Foundations of Software

Science and Computational Structures, FoSSaCS 2007, Held as Part of ETAPS 2007, Braga,

Portugal, March 24 – April 1, 2007. Ed. by Helmut Seidl. Vol. 4423. Lecture Notes in
Computer Science. Springer, 2007, pp. 153–167. doi: 10.1007/978-3-540-71389-0_12
(cited on pages 8, 57).

[Chu57] Alonzo Church. ‘Application of Recursive Arithmetic to the Problem of Circuit
Synthesis’. In: Summaries of the Summer Institute of Symbolic Logic I (1957), pp. 3–50. doi:
10.2307/2271310 (cited on page 5).

[CJK+17] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan.
‘Deciding parity games in quasipolynomial time’. In: Proceedings of the 49th Annual

ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,

June 19–23, 2017. Ed. by Hamed Hatami, Pierre McKenzie, and Valerie King. ACM,
2017, pp. 252–263. doi: 10.1145/3055399.3055409 (cited on page 7).

[CMJ04] Krishnendu Chatterjee, RupakMajumdar, andMarcin Jurdziński. ‘On Nash Equilibria
in Stochastic Games’. In: Proceedings of the 18th International Workshop on Computer

Science Logic, CSL 2004, 13th Annual Conference of the EACSL, Karpacz, Poland, September

20–24, 2004. Ed. by Jerzy Marcinkowski and Andrzej Tarlecki. Vol. 3210. Lecture Notes
in Computer Science. Springer, 2004, pp. 26–40. doi: 10.1007/978-3-540-30124-0_6
(cited on page 98).

[CN06] Thomas Colcombet and Damian Niwiński. ‘On the positional determinacy of edge-
labeled games’. In: Theoretical Computer Science 352.1-3 (2006), pp. 190–196. doi: 10.
1016/j.tcs.2005.10.046 (cited on pages 8, 10, 11, 15, 23, 49, 53, 100, 102, 107, 110, 112,
118, 119, 147, 194, 204, 232, 235, 236).

[CO22] Antonio Casares and Pierre Ohlmann. ‘Characterising memory in infinite games’. In:
CoRR abs/2209.12044 (2022). doi: 10.48550/arXiv.2209.12044 (cited on pages 30,
31, 116).

[CRR14] Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. ‘Strategy syn-
thesis for multi-dimensional quantitative objectives’. In: Acta Informatica 51.3-4 (2014),
pp. 129–163. doi: 10.1007/s00236-013-0182-6 (cited on pages 8, 33, 34, 57, 98, 99,
237, 239).

https://doi.org/10.48550/arXiv.2212.12024
https://doi.org/10.1007/978-3-642-32940-1_25
https://doi.org/10.1007/978-3-642-32940-1_25
https://doi.org/10.1109/LICS.2005.26
https://doi.org/10.1007/978-3-540-71389-0_12
https://doi.org/10.2307/2271310
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1007/978-3-540-30124-0_6
https://doi.org/10.1016/j.tcs.2005.10.046
https://doi.org/10.1016/j.tcs.2005.10.046
https://doi.org/10.48550/arXiv.2209.12044
https://doi.org/10.1007/s00236-013-0182-6

[dHK07] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. ‘Concurrent reachability
games’. In: Theoretical Computer Science 386.3 (2007), pp. 188–217. doi: 10.1016/j.tcs.
2007.07.008 (cited on page 240).

[Dil50] R. P. Dilworth. ‘A Decomposition Theorem for Partially Ordered Sets’. In: Annals of
Mathematics 51.1 (1950), pp. 161–166. doi: 10.2307/1969503 (cited on page 175).

[DJW97] Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. ‘How Much Memory
is Needed to Win Infinite Games?’ In: Proceedings of the 12th Annual IEEE Symposium

on Logic in Computer Science, LICS 1997, Warsaw, Poland, June 29 – July 2, 1997. IEEE
Computer Society, 1997, pp. 99–110. doi: 10.1109/LICS.1997.614939 (cited on
pages 7, 12, 23, 57, 147, 151–153, 203, 221).

[DKQR20] Florent Delgrange, Joost-Pieter Katoen, TimQuatmann, andMickael Randour. ‘Simple
Strategies in Multi-Objective MDPs’. In: Proceedings (Part I) of the 26th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS

2020, Held as Part of ETAPS 2020, Dublin, Ireland, April 25–30, 2020. Ed. by Armin Biere
and David Parker. Vol. 12078. Lecture Notes in Computer Science. Springer, 2020,
pp. 346–364. doi: 10.1007/978-3-030-45190-5_19 (cited on page 240).

[DLF+16] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud,
Etienne Renault, and Laurent Xu. ‘Spot 2.0 — A Framework for LTL and $-Automata
Manipulation’. In: Proceedings of the 14th International Symposium on Automated Technol-

ogy for Verification and Analysis, ATVA 2016, Chiba, Japan, October 17–20, 2016. Ed. by
Cyrille Artho, Axel Legay, and Doron Peled. Vol. 9938. Lecture Notes in Computer
Science. 2016, pp. 122–129. doi: 10.1007/978-3-319-46520-3_8 (cited on page 37).

[EFLR22] Léo Exibard, Emmanuel Filiot, Nathan Lhote, and Pierre-Alain Reynier. ‘Computability
of Data-Word Transductions over Different Data Domains’. In: Logical Methods in

Computer Science 18.3 (2022). doi: 10.46298/lmcs-18(3:9)2022 (cited on page 241).

[EJ91] E.AllenEmerson andCharanjit S. Jutla. ‘TreeAutomata,Mu-Calculus andDeterminacy
(Extended Abstract)’. In: Proceedings of the 32nd Annual Symposium on Foundations

of Computer Science, FOCS 1991, San Juan, Puerto Rico, October, 1991. IEEE Computer
Society, 1991, pp. 368–377. doi: 10.1109/SFCS.1991.185392 (cited on pages 7, 11, 29,
109, 111).

[Elg61] Calvin C. Elgot. ‘Decision Problems of Finite Automata Design and Related Arith-
metics’. In: Transactions of the American Mathematical Society 98.1 (1961), pp. 21–51. doi:
10.2307/1993511 (cited on page 5).

[EM79] Andrzej Ehrenfeucht and Jan Mycielski. ‘Positional Strategies for Mean Payoff Games’.
In: International Journal of Game Theory 8.2 (1979), pp. 109–113. doi: 10.1007/BF01768705
(cited on pages 8, 29, 48, 112).

[FH10] Nathanaël Fĳalkow and Florian Horn. ‘The surprizing complexity of reachability
games’. In: CoRR abs/1010.2420 (2010). doi: 10.48550/arXiv.1010.2420 (cited on
pages 68, 79, 175).

[FRS03] Stefan Felsner, Vĳay Raghavan, and Jeremy P. Spinrad. ‘Recognition Algorithms for
Orders of Small Width and Graphs of Small Dilworth Number’. In: Order 20.4 (2003),
pp. 351–364. doi: 10.1023/B:ORDE.0000034609.99940.fb (cited on page 175).

[Gel14] Marcus Gelderie. ‘Strategy machines: representation and complexity of strategies in
infinite games’. PhD thesis. RWTH Aachen University, 2014 (cited on page 241).

https://doi.org/10.1016/j.tcs.2007.07.008
https://doi.org/10.1016/j.tcs.2007.07.008
https://doi.org/10.2307/1969503
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1007/978-3-030-45190-5_19
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.46298/lmcs-18(3:9)2022
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.2307/1993511
https://doi.org/10.1007/BF01768705
https://doi.org/10.48550/arXiv.1010.2420
https://doi.org/10.1023/B:ORDE.0000034609.99940.fb

[GH82] Yuri Gurevich and Leo Harrington. ‘Trees, Automata, and Games’. In: Proceedings of
the 14th Annual ACM Symposium on Theory of Computing, STOC 1982, San Francisco, CA,

USA, May 5–7, 1982. Ed. by Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard,
and Lawrence H. Landweber. ACM, 1982, pp. 60–65. doi: 10.1145/800070.802177
(cited on pages 5, 7, 11, 39, 100, 101, 151, 232).

[Gim07] Hugo Gimbert. ‘Pure Stationary Optimal Strategies in Markov Decision Processes’.
In: Proceedings of the 24th Annual Symposium on Theoretical Aspects of Computer Science,

STACS 2007, Aachen, Germany, February 22–24, 2007. Ed. by Wolfgang Thomas and
Pascal Weil. Vol. 4393. Lecture Notes in Computer Science. Springer, 2007, pp. 200–211.
doi: 10.1007/978-3-540-70918-3_18 (cited on pages 58, 238, 240).

[GK14] Hugo Gimbert and Edon Kelmendi. ‘Submixing and Shift-Invariant Stochastic Games’.
In: CoRR abs/1401.6575 (2014). doi: 10.48550/arXiv.1401.6575 (cited on pages 48,
58, 102, 204, 238).

[GL02] Dimitra Giannakopoulou and Flavio Lerda. ‘From States to Transitions: Improving
Translation of LTL Formulae to Büchi Automata’. In: Proceedings of the 22nd IFIP WG

6.1 International Conference on Formal Techniques for Networked and Distributed Systems,

FORTE 2002, Houston, TX, USA, November 11–14, 2002. Ed. by Doron A. Peled and
Moshe Y. Vardi. Vol. 2529. Lecture Notes in Computer Science. Springer, 2002, pp. 308–
326. doi: 10.1007/3-540-36135-9_20 (cited on page 37).

[GS53] David Gale and F. M. Stewart. ‘Infinite Games with Perfect Information’. In: Contribu-
tions to the Theory of Games (Annals of Mathematics Studies 28). Ed. by Harold W. Kuhn
and Albert W. Tucker. Vol. II. Princeton University Press, 1953, pp. 245–266 (cited on
page 23).

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, eds. Automata, Logics, and Infinite

Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001].
Vol. 2500. Lecture Notes in Computer Science. Springer, 2002. doi: 10.1007/3-540-
36387-4 (cited on pages 5, 39).

[GW06] Erich Grädel and Igor Walukiewicz. ‘Positional Determinacy of Games with Infinitely
Many Priorities’. In: Logical Methods in Computer Science 2.4 (2006). doi: 10.2168/LMCS-
2(4:6)2006 (cited on pages 112, 116).

[GY65] Abraham Ginzburg and Michael Yoeli. ‘Products of Automata and the Problem of
Covering’. In: Transactions of the American Mathematical Society 116 (1965), pp. 253–266
(cited on page 173).

[GZ04] HugoGimbert andWiesławZielonka. ‘WhenCanYouPlayPositionally?’ In:Proceedings
of the 29th International Symposium on Mathematical Foundations of Computer Science,

MFCS 2004, Prague, Czech Republic, August 22–27, 2004. Ed. by Jiří Fiala, Václav Koubek,
and Jan Kratochvíl. Vol. 3153. Lecture Notes in Computer Science. Springer, 2004,
pp. 686–697. doi: 10.1007/978-3-540-28629-5_53 (cited on pages 8, 47, 48, 112, 146).

[GZ05] HugoGimbert andWiesławZielonka. ‘GamesWhere You Can Play OptimallyWithout
Any Memory’. In: Proceedings of the 16th International Conference on Concurrency Theory,

CONCUR 2005, San Francisco, CA, USA, August 23–26, 2005. Ed. by Martín Abadi
and Luca de Alfaro. Vol. 3653. Lecture Notes in Computer Science. Springer, 2005,
pp. 428–442. doi: 10.1007/11539452_33 (cited on pages 8, 10, 11, 14, 23, 47, 48, 51,
55–58, 61, 63, 65–68, 76, 77, 194, 231, 232, 235, 236).

https://doi.org/10.1145/800070.802177
https://doi.org/10.1007/978-3-540-70918-3_18
https://doi.org/10.48550/arXiv.1401.6575
https://doi.org/10.1007/3-540-36135-9_20
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.2168/LMCS-2(4:6)2006
https://doi.org/10.2168/LMCS-2(4:6)2006
https://doi.org/10.1007/978-3-540-28629-5_53
https://doi.org/10.1007/11539452_33

[GZ09] Hugo Gimbert and Wiesław Zielonka. ‘Pure and Stationary Optimal Strategies in
Perfect-Information Stochastic Games with Global Preferences’. Unpublished. 2009
(cited on pages 11, 58, 97, 98, 236).

[Hor09] Florian Horn. ‘Random Fruits on the Zielonka Tree’. In: Proceedings of the 26th

International Symposium on Theoretical Aspects of Computer Science, STACS 2009, Freiburg,

Germany, February 26–28, 2009. Ed. by Susanne Albers and Jean-Yves Marion. Vol. 3.
LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany, 2009, pp. 541–
552. doi: 10.4230/LIPIcs.STACS.2009.1848 (cited on pages 98, 239).

[HP06] Thomas A. Henzinger and Nir Piterman. ‘Solving Games Without Determinization’.
In: Proceedings of the 20th International Workshop on Computer Science Logic, CSL 2006,

15th Annual Conference of the EACSL, Szeged, Hungary, September 25–29, 2006. Ed. by
Zoltán Ésik. Vol. 4207. Lecture Notes in Computer Science. Springer, 2006, pp. 395–410.
doi: 10.1007/11874683_26 (cited on page 152).

[HP84] David Harel and Amir Pnueli. ‘On the Development of Reactive Systems’. In: Proceed-
ings of the Conference on Logics and Models of Concurrent Systems, Colle-sur-Loup, France,

October 8–19, 1984. Ed. by Krzysztof R. Apt. Vol. 13. NATO ASI Series. Springer, 1984,
pp. 477–498. doi: 10.1007/978-3-642-82453-1_17 (cited on page 1).

[IMM18] Alexey Ignatiev, AntónioMorgado, and JoãoMarques-Silva. ‘PySAT: A Python Toolkit
for Prototyping with SAT Oracles’. In: Proceedings of the 21st International Conference on
the Theory and Applications of Satisfiability Testing, SAT 2018, Held as Part of FloC 2018,

Oxford, UK, July 9–12, 2018. Ed. by Olaf Beyersdorff and Christoph M. Wintersteiger.
Vol. 10929. Lecture Notes in Computer Science. Springer, 2018, pp. 428–437. doi:
10.1007/978-3-319-94144-8_26 (cited on pages 157, 189).

[JLS15] Marcin Jurdziński, Ranko Lazić, and Sylvain Schmitz. ‘Fixed-Dimensional Energy
Games are in Pseudo-Polynomial Time’. In: Proceedings (Part II) of the 42nd International
Colloquium on Automata, Languages, and Programming, ICALP 2015, Kyoto, Japan, July

6–10, 2015. Ed. by Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann. Vol. 9135. Lecture Notes in Computer Science. Springer, 2015,
pp. 260–272. doi: 10.1007/978-3-662-47666-6_21 (cited on pages 8, 33, 57, 99, 237).

[Kar72] Richard M. Karp. ‘Reducibility Among Combinatorial Problems’. In: Proceedings
of a symposium on the Complexity of Computer Computations, Yorktown Heights, NY,

USA, March 20–22, 1972. Ed. by Raymond E. Miller and James W. Thatcher. The
IBM Research Symposia Series. Plenum Press, New York, 1972, pp. 85–103. doi:
10.1007/978-1-4684-2001-2_9 (cited on page 185).

[Kec95] Alexander S. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics.
Springer New York, NY, 1995 (cited on page 178).

[KK20] Igor Konnov and Laura Kovács, eds. Proceedings of the 31st International Conference
on Concurrency Theory, CONCUR 2020, Vienna, Austria, September 1–4, 2020. Vol. 171.
LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

[KK91] Nils Klarlund and Dexter Kozen. ‘Rabin Measures and Their Applications to Fairness
and Automata Theory’. In: Proceedings of the 6th Annual IEEE Symposium on Logic

in Computer Science, LICS 1991, Amsterdam, The Netherlands, July 15–18, 1991. IEEE
Computer Society, 1991, pp. 256–265. doi: 10.1109/LICS.1991.151650 (cited on
pages 12, 194).

https://doi.org/10.4230/LIPIcs.STACS.2009.1848
https://doi.org/10.1007/11874683_26
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-662-47666-6_21
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1109/LICS.1991.151650

[Kla94] Nils Klarlund. ‘ProgressMeasures, ImmediateDeterminacy, and a Subset Construction
for Tree Automata’. In: Annals of Pure and Applied Logic 69.2-3 (1994), pp. 243–268. doi:
10.1016/0168-0072(94)90086-8 (cited on pages 152, 194).

[KMS+20] Stefan Kiefer, Richard Mayr, Mahsa Shirmohammadi, Patrick Totzke, and Dominik
Wojtczak. ‘How to Play in Infinite MDPs (Invited Talk)’. In: Proceedings of the 47th Inter-

national Colloquium on Automata, Languages, and Programming, ICALP 2020, Saarbrücken,

Germany, July 8–11, 2020. Ed. by Artur Czumaj, Anuj Dawar, and Emanuela Merelli.
Vol. 168. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020, 3:1–3:18.
doi: 10.4230/LIPIcs.ICALP.2020.3 (cited on pages 23, 240).

[KMS18] JanKřetínský, TobiasMeggendorfer, andSalomonSickert. ‘Owl:ALibrary for$-Words,
Automata, and LTL’. In: Proceedings of the 16th International Symposium on Automated

Technology for Verification and Analysis, ATVA 2018, Los Angeles, CA, USA, October 7–10,

2018. Ed. by ShuvenduK. Lahiri andChaoWang. Vol. 11138. LectureNotes in Computer
Science. Springer, 2018, pp. 543–550. doi: 10.1007/978-3-030-01090-4_34 (cited on
page 37).

[KMST21] Stefan Kiefer, Richard Mayr, Mahsa Shirmohammadi, and Patrick Totzke. ‘Transience
in Countable MDPs’. In: Proceedings of the 32nd International Conference on Concurrency

Theory, CONCUR 2021, Virtual Conference, August 24–27, 2021. Ed. by SergeHaddad and
Daniele Varacca. Vol. 203. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021, 11:1–11:15. doi: 10.4230/LIPIcs.CONCUR.2021.11 (cited on pages 118, 240).

[Kőn27] Dénes Kőnig. ‘Über eine Schlussweise aus dem Endlichen ins Unendliche’. In: Acta
Scientiarum Mathematicarum 3 (1927), pp. 121–130 (cited on page 66).

[Kop06] Eryk Kopczyński. ‘Half-Positional Determinacy of Infinite Games’. In: Proceedings (Part
II) of the 33rd International Colloquium on Automata, Languages and Programming, ICALP

2006, Venice, Italy, July 10–14, 2006. Ed. by Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener. Vol. 4052. Lecture Notes in Computer Science. Springer,
2006, pp. 336–347. doi: 10.1007/11787006_29 (cited on pages 8, 13, 28, 48, 58, 77, 102,
194, 195, 202, 204, 236, 238).

[Kop07] Eryk Kopczyński. ‘Omega-Regular Half-Positional Winning Conditions’. In: Proceed-
ings of the 21st International Workshop on Computer Science Logic, CSL 2007, 16th Annual

Conference of the EACSL, Lausanne, Switzerland, September 11–15, 2007. Ed. by Jacques
Duparc and Thomas A. Henzinger. Vol. 4646. Lecture Notes in Computer Science.
Springer, 2007, pp. 41–53. doi: 10.1007/978-3-540-74915-8_7 (cited on page 194).

[Kop08] ErykKopczyński. ‘Half-positional Determinacy of Infinite Games’. PhD thesis.Warsaw
University, 2008 (cited on pages 10, 11, 29, 30, 53, 75, 76, 162, 194, 235, 236).

[Koz22a] Alexander Kozachinskiy. ‘Energy Games over Totally Ordered Groups’. In: CoRR
abs/2205.04508 (2022). doi: 10.48550/arXiv.2205.04508 (cited on page 194).

[Koz22b] Alexander Kozachinskiy. ‘One-To-Two-Player Lifting for Mildly Growing Memory’.
In: Proceedings of the 39th International Symposium on Theoretical Aspects of Computer

Science, STACS 2022, Marseille, France, March 15–18, 2022. Ed. by Petra Berenbrink
and Benjamin Monmege. Vol. 219. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022, 43:1–43:21. doi: 10.4230/LIPIcs.STACS.2022.43 (cited on pages 11,
58, 97–99, 236, 238).

https://doi.org/10.1016/0168-0072(94)90086-8
https://doi.org/10.4230/LIPIcs.ICALP.2020.3
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.4230/LIPIcs.CONCUR.2021.11
https://doi.org/10.1007/11787006_29
https://doi.org/10.1007/978-3-540-74915-8_7
https://doi.org/10.48550/arXiv.2205.04508
https://doi.org/10.4230/LIPIcs.STACS.2022.43

[Koz22c] Alexander Kozachinskiy. ‘State Complexity of ChromaticMemory in Infinite-Duration
Games’. In: CoRR abs/2201.09297 (2022). doi: 10.48550/arXiv.2201.09297 (cited on
page 30).

[KS15] Denis Kuperberg and Michal Skrzypczak. ‘On Determinisation of Good-for-Games
Automata’. In: Proceedings (Part II) of the 42nd International Colloquium on Automata,

Languages, and Programming, ICALP 2015, Kyoto, Japan, July 6–10, 2015. Ed. byMagnúsM.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann. Vol. 9135.
Lecture Notes in Computer Science. Springer, 2015, pp. 299–310. doi: 10.1007/978-3-
662-47666-6_24 (cited on page 198).

[LeR13] Stéphane Le Roux. ‘Infinite sequential Nash equilibrium’. In: Logical Methods in

Computer Science 9.2 (2013). doi: 10.2168/LMCS-9(2:3)2013 (cited on page 60).

[LeR18] StéphaneLeRoux. ‘ConcurrentGames andSemi-RandomDeterminacy’. In:Proceedings
of the 43rd International Symposium on Mathematical Foundations of Computer Science,

MFCS 2018, Liverpool, UK, August 27–31, 2018. Ed. by Igor Potapov, Paul G. Spirakis,
and JamesWorrell. Vol. 117. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018, 40:1–40:15. doi: 10.4230/LIPIcs.MFCS.2018.40 (cited on page 57).

[LeR20] Stéphane Le Roux. ‘Time-Aware Uniformization of Winning Strategies’. In: Proceedings
of the 16th Conference on Computability in Europe – Beyond the Horizon of Computability,

CiE 2020, Fisciano, Italy, June 29 – July 3, 2020. Ed. by Marcella Anselmo, Gianluca Della
Vedova, Florin Manea, and Arno Pauly. Vol. 12098. Lecture Notes in Computer Science.
Springer, 2020, pp. 193–204. doi: 10.1007/978-3-030-51466-2_17 (cited on page 30).

[LeS90] Bertrand Le Saëc. ‘Saturating right congruences’. In: RAIRO – Theoretical Informatics

and Applications 24 (1990), pp. 545–559. doi: 10.1051/ita/1990240605451 (cited on
page 196).

[Löd01] Christof Löding. ‘Efficient minimization of deterministic weak omega-automata’.
In: Information Processing Letters 79.3 (2001), pp. 105–109. doi: 10 . 1016 / S0020 -
0190(00)00183-6 (cited on page 229).

[LPR18] Stéphane Le Roux, Arno Pauly, and Mickael Randour. ‘Extending Finite-Memory
Determinacy by Boolean Combination of Winning Conditions’. In: Proceedings of the
38th IARCS Annual Conference on Foundations of Software Technology and Theoretical

Computer Science, FSTTCS 2018, Ahmedabad, India, December 11–13, 2018. Ed. by Sumit
Ganguly and Paritosh K. Pandya. Vol. 122. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018, 38:1–38:20. doi: 10.4230/LIPIcs.FSTTCS.2018.38 (cited on
pages 57, 157).

[Mar75] DonaldA.Martin. ‘Borel determinacy’. In:Annals ofMathematics 102 (1975), pp. 363–371.
doi: 10.2307/1971035 (cited on pages 6, 23, 63, 97).

[Mar98] Donald A. Martin. ‘The Determinacy of Blackwell Games’. In: Journal of Symbolic Logic

63.4 (1998), pp. 1565–1581. doi: 10.2307/2586667 (cited on pages 97, 240).

[Mas15] Ayala Mashiah-Yaakovi. ‘Correlated Equilibria in Stochastic Games with Borel Mea-
surable Payoffs’. In: Dynamic Games and Applications 5.1 (2015), pp. 120–135. doi:
10.1007/s13235-014-0122-2 (cited on page 58).

[McN66] Robert McNaughton. ‘Testing and Generating Infinite Sequences by a Finite Au-
tomaton’. In: Information and Control 9.5 (1966), pp. 521–530. doi: 10.1016/S0019-
9958(66)80013-X (cited on pages 5, 40).

https://doi.org/10.48550/arXiv.2201.09297
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.1007/978-3-662-47666-6_24
https://doi.org/10.2168/LMCS-9(2:3)2013
https://doi.org/10.4230/LIPIcs.MFCS.2018.40
https://doi.org/10.1007/978-3-030-51466-2_17
https://doi.org/10.1051/ita/1990240605451
https://doi.org/10.1016/S0020-0190(00)00183-6
https://doi.org/10.1016/S0020-0190(00)00183-6
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38
https://doi.org/10.2307/1971035
https://doi.org/10.2307/2586667
https://doi.org/10.1007/s13235-014-0122-2
https://doi.org/10.1016/S0019-9958(66)80013-X
https://doi.org/10.1016/S0019-9958(66)80013-X

[McN93] Robert McNaughton. ‘Infinite Games Played on Finite Graphs’. In: Annals of Pure and
Applied Logic 65.2 (1993), pp. 149–184. doi: 10.1016/0168-0072(93)90036-D (cited on
pages 5, 23, 39, 100, 151).

[Mea55] George H. Mealy. ‘A method for synthesizing sequential circuits’. In: The Bell System
Technical Journal 34.5 (1955), pp. 1045–1079. doi: 10.1002/j.1538-7305.1955.tb03788.
x (cited on pages 7, 25).

[Mey75] Albert R. Meyer. ‘Weak monadic second order theory of succesor is not elementary-
recursive’. In: Lecture Notes in Mathematics 453 (1975), pp. 132–154. doi: 10.1007/
BFb0064872 (cited on page 5).

[MM21] Richard Mayr and Eric Munday. ‘Strategy Complexity of Mean Payoff, Total Payoff
and Point Payoff Objectives in Countable MDPs’. In: Proceedings of the 32nd International
Conference on Concurrency Theory, CONCUR 2021, Virtual Conference, August 24–27, 2021.
Ed. by Serge Haddad andDaniele Varacca. Vol. 203. LIPIcs. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021, 12:1–12:15. doi: 10.4230/LIPIcs.CONCUR.2021.12
(cited on page 240).

[Mos84] Andrzej W. Mostowski. ‘Regular expressions for infinite trees and a standard form
of automata’. In: Proceedings of the 5th Symposium on Computation Theory, SCT 1984,

Zaborów, Poland, December 3–8, 1984. Ed. by Andrzej Skowron. Vol. 208. Lecture Notes
in Computer Science. Springer, 1984, pp. 157–168. doi: 10.1007/3-540-16066-3_15
(cited on pages 101, 109).

[Mos91] Andrzej W. Mostowski. ‘Games with Forbidden Positions’. In: Uniwersytet Gdański.
Instytut Matematyki 78 (1991) (cited on pages 7, 11, 29, 109, 111).

[MP95] Oded Maler and Amir Pnueli. ‘On the Learnability of Infinitary Regular Sets’. In:
Information and Computation 118.2 (1995), pp. 316–326. doi: 10.1006/inco.1995.1070
(cited on page 111).

[MPR20] BenjaminMonmege, Julie Parreaux, and Pierre-Alain Reynier. ‘Reaching Your Goal Op-
timally by Playing at Random with No Memory’. In: Proceedings of the 31st International
Conference on Concurrency Theory, CONCUR 2020, Vienna, Austria, September 1–4, 2020.
Ed. by Igor Konnov and Laura Kovács. Vol. 171. LIPIcs. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2020, 26:1–26:21. doi: 10.4230/LIPIcs.CONCUR.2020.26
(cited on pages 98, 239).

[MR22] James C. A. Main and Mickael Randour. ‘Different Strokes in Randomised Strategies:
Revisiting Kuhn’s Theorem Under Finite-Memory Assumptions’. In: Proceedings of the
33rd International Conference on Concurrency Theory, CONCUR 2022, Warsaw, Poland,

September 12–16, 2022. Ed. by Bartek Klin, Sławomir Lasota, and Anca Muscholl.
Vol. 243. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 22:1–22:18.
doi: 10.4230/LIPIcs.CONCUR.2022.22 (cited on page 239).

[MS97] Oded Maler and Ludwig Staiger. ‘On Syntactic Congruences for Omega-Languages’.
In: Theoretical Computer Science 183.1 (1997), pp. 93–112. doi: 10.1016/S0304-3975(96)
00312-X (cited on pages 44, 101, 111, 196).

[MSTW21] Richard Mayr, Sven Schewe, Patrick Totzke, and Dominik Wojtczak. ‘Simple Stochastic
Gameswith Almost-Sure Energy-Parity Objectives are in NP and coNP’. In: Proceedings
of the 24th International Conference on Foundations of Software Science and Computation

Structures, FoSSaCS 2021, Held as Part of ETAPS 2021, Luxembourg City, Luxembourg,

https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1007/BFb0064872
https://doi.org/10.1007/BFb0064872
https://doi.org/10.4230/LIPIcs.CONCUR.2021.12
https://doi.org/10.1007/3-540-16066-3_15
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.4230/LIPIcs.CONCUR.2020.26
https://doi.org/10.4230/LIPIcs.CONCUR.2022.22
https://doi.org/10.1016/S0304-3975(96)00312-X
https://doi.org/10.1016/S0304-3975(96)00312-X

March 27 – April 1, 2021. Ed. by Stefan Kiefer and Christine Tasson. Vol. 12650. Lecture
Notes in Computer Science. Springer, 2021, pp. 427–447. doi: 10.1007/978-3-030-
71995-1_22 (cited on pages 58, 238).

[Nas51] John F. Nash. ‘Non-cooperative Games’. In: Annals of Mathematics 54.2 (1951), pp. 286–
295 (cited on pages 60, 240).

[Ner58] A. Nerode. ‘Linear Automaton Transformations’. In: Proceedings of the American

Mathematical Society 9.4 (1958), pp. 541–544. doi: 10.2307/2033204 (cited on pages 11,
43, 44, 101, 158, 203, 235).

[Ohl21] Pierre Ohlmann. ‘Monotonic graphs for parity and mean-payoff games’. PhD thesis.
IRIF – Research Institute on the Foundations of Computer Science, 2021 (cited on
pages 62, 195, 220, 221).

[Ohl23] Pierre Ohlmann. ‘Characterizing Positionality in Games of Infinite Duration over
Infinite Graphs’. In: TheoretiCS 2 (2023), pp. 1–51. doi: 10.46298/theoretics.23.3
(cited on pages 8, 13, 23, 96, 116, 194–196, 219–221, 226).

[OR94] Martin J. Osborne and Ariel Rubinstein. A course in game theory. The MIT Press, 1994
(cited on pages 60, 62).

[Orn69] Donald Ornstein. ‘On the Existence of Stationary Optimal Strategies’. In: Proceedings
of the American Mathematical Society 20.2 (1969), pp. 563–569 (cited on page 112).

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994 (cited on
page 155).

[Pnu77] Amir Pnueli. ‘The Temporal Logic of Programs’. In: Proceedings of the 18th Annual

Symposium on Foundations of Computer Science, FOCS 1977, Providence, RI, USA,October 31

–November 1, 1977. IEEEComputer Society, 1977, pp. 46–57.doi:10.1109/SFCS.1977.32
(cited on pages 5, 24).

[PP04] Dominique Perrin and Jean-Eric Pin. Infinite words – automata, semigroups, logic and

games. Vol. 141. Pure and applied mathematics series. Elsevier Morgan Kaufmann,
2004 (cited on pages 65, 194).

[PR89] Amir Pnueli and Roni Rosner. ‘On the Synthesis of a Reactive Module’. In: Proceedings
of the 16th Annual ACM Symposium on Principles of Programming Languages, POPL 1989,

Austin, TX, USA, January 11–13, 1989. ACM Press, 1989, pp. 179–190. doi: 10.1145/
75277.75293 (cited on page 5).

[Put94] Martin L. Puterman.Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994 (cited on pages 11, 29, 52).

[Rab69] Michael O. Rabin. ‘Decidability of Second-Order Theories and Automata on Infinite
Trees’. In: Transactions of the American Mathematical Society 141 (1969), pp. 1–35. doi:
10.2307/1995086 (cited on pages 5, 7, 39).

[Rén57] Alfréd Rényi. ‘Representations for real numbers and their ergodic properties’. In: Acta
Mathematica Academiae Scientiarum Hungarica 8 (1957), pp. 477–493. doi: 10.1007/
BF02020331 (cited on pages 142, 143).

[RS59] Michael O. Rabin and Dana S. Scott. ‘Finite Automata and Their Decision Problems’.
In: IBM Journal of Research and Development 3.2 (1959), pp. 114–125. doi: 10.1147/rd.
32.0114 (cited on page 183).

https://doi.org/10.1007/978-3-030-71995-1_22
https://doi.org/10.1007/978-3-030-71995-1_22
https://doi.org/10.2307/2033204
https://doi.org/10.46298/theoretics.23.3
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/75277.75293
https://doi.org/10.2307/1995086
https://doi.org/10.1007/BF02020331
https://doi.org/10.1007/BF02020331
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114

[Sha53] Lloyd S. Shapley. ‘Stochastic Games’. In: Proceedings of the National Academy of Sciences

39.10 (1953), pp. 1095–1100. doi: 10.1073/pnas.39.10.1095 (cited on pages 8, 97, 112).

[Sta83] Ludwig Staiger. ‘Finite-State $-Languages’. In: Journal of Computer and System Sciences

27.3 (1983), pp. 434–448. doi: 10.1016/0022-0000(83)90051-X (cited on pages 44,
101, 111, 196, 229).

[Tar72] Robert E. Tarjan. ‘Depth-First Search and Linear Graph Algorithms’. In: SIAM Journal

on Computing 1.2 (1972), pp. 146–160. doi: 10.1137/0201010 (cited on page 199).

[Tho08] Wolfgang Thomas. ‘Church’s Problem and a Tour throughAutomata Theory’. In:Pillars
of Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His

85th Birthday. Ed. by Arnon Avron, Nachum Dershowitz, and Alexander Rabinovich.
Vol. 4800. Lecture Notes in Computer Science. Springer, 2008, pp. 635–655. doi:
10.1007/978-3-540-78127-1_35 (cited on page 195).

[Tse70] Grigori Tseitin. ‘On the complexity of derivation in propositional calculus’. In: Studies
in Constructive Mathematics and Mathematical Logic: Part II. Seminars in mathematics
(1970), pp. 115–125. doi: 10.1007/978-3-642-81955-1_28 (cited on page 192).

[Tur37] Alan M. Turing. ‘On Computable Numbers, with an Application to the Entschei-
dungsproblem’. In: Proceedings of the London Mathematical Society 2.42 (1 1937), pp. 230–
265. doi: 10.1112/plms/s2-42.1.230 (cited on page 2).

[VCD+15] YaronVelner, KrishnenduChatterjee, LaurentDoyen, ThomasA.Henzinger,Alexander
Moshe Rabinovich, and Jean-François Raskin. ‘The complexity of multi-mean-payoff
and multi-energy games’. In: Information and Computation 241 (2015), pp. 177–196. doi:
10.1016/j.ic.2015.03.001 (cited on pages 8, 33, 57, 99).

[von28] John von Neumann. ‘Zur Theorie der Gesellschaftsspiele’. In:Mathematische Annalen

100 (1928), pp. 295–320 (cited on page 240).

[Wag79] Klaus W. Wagner. ‘On $-Regular Sets’. In: Information and Control 43.2 (1979), pp. 123–
177. doi: 10.1016/S0019-9958(79)90653-3 (cited on pages 38, 229).

[Wal01] Igor Walukiewicz. ‘Pushdown Processes: Games and Model-Checking’. In: Information

and Computation 164.2 (2001), pp. 234–263. doi: 10.1006/inco.2000.2894 (cited on
page 241).

[Zie98] Wiesław Zielonka. ‘Infinite Games on Finitely Coloured Graphs with Applications to
Automata on Infinite Trees’. In: Theoretical Computer Science 200.1-2 (1998), pp. 135–183.
doi: 10.1016/S0304-3975(98)00009-7 (cited on pages 11, 39, 101, 109, 221).

https://doi.org/10.1073/pnas.39.10.1095
https://doi.org/10.1016/0022-0000(83)90051-X
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-540-78127-1_35
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1016/j.ic.2015.03.001
https://doi.org/10.1016/S0019-9958(79)90653-3
https://doi.org/10.1006/inco.2000.2894
https://doi.org/10.1016/S0304-3975(98)00009-7

Table of notations

Graphical conventions

arena vertex controlled by P1;
in Chapters 7 and 8, also the
vertex of a graph

F sequence of edges or transi-
tions labeled with word F

arena vertex controlled by P2
initial memory or automaton
state

automaton or memory state final state of a DFA

E E′
2

edge (E, 2, E′) of an arena
2• Büchi transition of a DBA

2 transition of automaton or
memory structure with color 2

2 | : transition of aDPAwith color 2
and priority :

Common mathematical symbols

ℕ set {0, 1, . . .} of natural numbers
ℤ set of integers
ℚ set of rational numbers
ℝ set of real numbers
∅ empty set
�∗ set of finite sequences of elements of �
�+ set of non-empty finite sequences of elements of �
�$ set of infinite sequences of elements of �
|�| cardinality of �
� empty word
F, G, H finite or infinite words
] disjoint union
� preorder
Γ chain for a preorder
∼ equivalence relation
[0]∼ equivalence class of 0 for equivalence relation ∼
�/∼ quotient of � by equivalence relation ∼
d·e ceiling function
b·c floor function
O(·) big O notation

Arenas

� non-empty set of colors
0, 1, 2 ∈ � colors
P1, P2 Player 1, Player 2
ℓ index of a player (in {1, 2})

A = (+,+1 , +2 , �) game arena
+ set of vertices
+1, +2 set of vertices controlled resp. by P1, by P2
D, E ∈ + vertices
� ⊆ + × � ×+ set of colored edges
4 = (in(4), col(4), out(4)) ∈ � colored edge
� = 41 . . . 4= ∈ �+ non-empty history of an arena A = (+,+1 , +2 , �)
�E empty history from E ∈ +
col∗(�) = col(41) . . . col(4=) ∈ �∗ projection of a history to colors
Hists(A) set of histories of arena A
Histsℓ (A) set of histories ofA ending in a vertex controlled by Pℓ
� = 4142 . . . ∈ �$ play of an arena A = (+,+1 , +2 , �)
col$(�) = col(41)col(42) . . . ∈ �$ projection of a play to colors
Plays(A) set of plays of arena A
�ℓ : Histsℓ (A) → � strategy of Pℓ on A = (+,+1 , +2 , �)

Objectives and games

, ⊆ �$ objective
, complement �$ \, of objective,
G = (A,,) game
Reach(0) reachability condition with target color 0 ∈ �
Safe(0) safety condition with color 0 ∈ � to avoid
Büchi(0) Büchi condition with color 0 ∈ � to see infinitely often
Parity(=) parity condition on colors � = {0, . . . , =}
Muller(F) Muller condition on F ⊆ 2�

MP≥0 set of infinite words of rational numbers with non-
negative mean payoff

F−1, winning continuations of F ∈ �∗ for,
�, prefix preorder of, (subscript, often omitted)
≺, strict prefix preorder of, (subscript, often omitted)
∼, right congruence of, (subscript, often omitted)

Memory structures

M = (", <init , upd) memory structure on �
" set of memory states
< ∈ " memory state
<init ∈ " initial memory state
upd : " × � → " memory update function
∗upd : " × �∗ → " extended memory update function
Mtriv trivial memory structure (with" = {<init})
M1 ⊗M2 direct product ofM1 andM2
!<1 ,<2 finite words read from <1 to <2 inM
nxt : +ℓ ×" → � next-action function of Pℓ

Automata

S = (&,Σ, @init , �) automaton structure
D = (&,Σ, @init , �, �) deterministic finite automaton (DFA) (can be infinite

in a few clearly labeled occurrences in Chapter 7)
B = (&,Σ, @init , �, �) deterministic Büchi automaton (DBA)
P = (&,Σ, @init , �, ?) deterministic parity automaton (DPA)
& set of automaton states
@ ∈ & automaton state
Σ alphabet (often, Σ = �)
@init ∈ & initial automaton state
� : & × � → & complete, deterministic update function
� ⊆ & set of final states
� ⊆ & × � set of Büchi transitions
? : " × � → {0, . . . , =} transition-based priority function
L(·) language (of finite or infinite words) recognized by an

automaton
* finite or infinite run of an automaton
S, = (&, , �, @,init , �,) prefix classifier of,

Notations specific to Chapter 4

v ⊆ �$ × �$ preference relation
G = (A, v) quantitative game
v−1 inverse of a preference relation
@ strict preference relation
UColv(A, E, �1) upward closure for v of plays consistent with strategy

�1 of P1
DColv(A, E, �2) downward closure for v of plays consistent with strat-

egy �2 of P2
A ⋉M arena resulting from the product of arenaA and mem-

ory structureM
N = (&, �,Δ, &init , �) non-deterministic finite automaton
Δ ⊆ & × � ×& transitions of a non-deterministic automaton
&init ⊆ & set of initial states of a non-deterministic automaton
 ⊆ �∗ set of finite words
[] set of infinite words whose prefixes are all prefixes of

words in
+cov set of vertices of an arena prefix-covered and/or cyclic-

covered by a memory structure
A set of arenas

Notations specific to Chapter 5

� ∈ (" × �)+ non-empty path of memory structure M =
(", <init , upd)

(<, _) empty path from < ∈ " of memory structureM
col∗(�) ∈ �∗ projection of path � to its sequence of colors

st(�) ⊆ " set of memory states visited by �
“(<, 2) ∈ �′′ transition (<, 2) ∈ " × � is part of path �
!,# ∈ (" × �)+ cycles of memory structureM
Π<1 ,<2 set of paths from <1 to <2, with <1 , <2 ∈ "
Φ< cycles on < ∈ "
ΦM all cycles ofM
Φwin,F

M cycles on the memory state reached by F in M that
induce winning words when repeated after F, and . . .

Φlose,F
M . . . their losing counterparts

Φwin
< ,Φlose

< winning, losing cycles onM (under hypotheses onM)
val(!) value of a cycle (win or lose) (under hypotheses onM)
! cycle witnessing the competition of two cycles
comp(!), domBy(!) cycles competing with !, cycles dominated by !
C,' preorder on cycles, equivalence relation on cycles

Notations specific to Chapter 7

GenReach(�) general reachability objective derived from � ⊆ �∗
GenSafe(�) general safety objective derived from � ⊆ �∗
ΓD< set of states of D reachable using a finite word also

reaching memory state <
D, prefix-classifier automaton of a general reachability or

safety objective,
� ordinal
rank(�) rank of node � in a well-founded tree
A�,E tree induced by strategy � on A from E
A�,E
|L(D) same, but with branches cut below nodes in L(D)

� = (+, �) graph
� ⊆ + ×+ non-colored edges
C= = (+C , �C) cycle graph with = vertices

Notations specific to Chapter 8

Büchi(�′) Büchi condition with colors in �′ ⊆ � to see infinitely
often

B(@, F) finite or infinite run of DBA B on F from @
�-FreeB(@) �-free words of B from @
�-FreeCyclesB(@) �-free cycles of B on @
�,�, � ordinals
� cardinal
U universal graph
E

2−→ E′ edge (E, 2, E′) of a graph
) graph morphism

	Contents
	Introduction
	Context
	Origin of games on graphs
	Strategy complexity
	Contributions
	Outline

	Two-player turn-based games on graphs
	Mathematical notations
	Game arenas
	Strategies
	Objectives and games
	Classes of simple strategies
	Flavors of finite-memory determinacy
	Automata and omega-regular objectives
	Continuations and congruences

	Characterizing finite memory requirements
	From memoryless to finite-memory determinacy
	Finite game graphs
	Infinite game graphs

	Characterization of arena-independent finite-memory determinacy
	Introduction
	Additional preliminaries
	Concepts
	Characterization
	From strategies based on M to M-monotony and M-selectivity
	From M-monotony and M-selectivity to strategies based on M
	Digression: the cost of uniformity
	Further discussion of selected related works

	Characterization of omega-regularity through finite-memory determinacy
	Introduction
	Preliminaries: manipulating memory structures
	Concepts
	Characterization
	Two properties of chromatic finite-memory determinacy
	From properties of an objective to omega-regularity
	Applications
	Wrap-up

	Obtaining precise memory requirements
	Known and unknown memory requirements of omega-regular objectives
	The missing pieces
	The case of Muller conditions

	The case of regular languages
	Motivation
	Preliminaries: reachability and safety objectives
	Safety objectives and monotony
	Reachability objectives and progress
	The complexity of finding small memory structures
	Additional proofs and missing technical details
	Synthesizing small memory structures in practice
	Wrap-up

	Half-positional objectives recognized by deterministic Büchi automata
	Introduction
	Saturating Büchi automata
	Half-positionality of DBA-recognizable objectives
	Necessity of the third condition
	Sufficiency of the conditions
	Wrap-up

	Concluding remarks
	Summary and future prospects
	Summary
	Future prospects

	Bibliography
	Table of notations

