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Abstract

This thesis represents an acoustic-phonetic investigation of phonetic details in Russian frica-
tives. The main aim was to detect acoustic correlates that carry linguistic and idiosyncratic
information. The questions addressed were whether the place of articulation, speakersŠ gender
and ID can be predicted by a set of acoustic cues and which acoustic measures represent the
most reliable indicators. Furthermore, the distribution of speaker-speciĄc characteristics and
inter- and intra-speaker variation across acoustic cues were studied in more detail.

The project started with the generation of a large audio database of Russian fricatives.
Then, two follow-up analyses were conducted. Acoustic recordings were collected from 59
native Russian speakers. The resulting dataset consists of 22,561 tokens including the fricatives
[f], [s], [S], [x], [v], [z], [Z], [sj], [C], [vj], [zj].

The Ąrst study employed a data sample of 6320 tokens (from 40 speakers). Temporal
and spectral measurements were extracted using three acoustic cue extraction techniques (full
sound, the noise part, and the middle 30ms windows). Furthermore, 13 Mel Frequency Cepstral
Coefficients were computed from the middle 30ms window. ClassiĄers based on single decision
trees, random forests, support vector machines, and neural networks were trained and tested
to distinguish between the three non-palatalized fricatives [f], [s] and [S]. The results demon-
strate that machine learning techniques are very successful at classifying the Russian voiceless
non-palatalized fricatives [f], [s] and [S] by using the centre of gravity and the spectral spread
irrespective of contextual and speaker variation. The three acoustic cue extraction techniques
performed similarly in terms of classiĄcation accuracy (93% and 99%), but the spectral mea-
surements extracted from the noise parts resulted in slightly better accuracy. Furthermore, Mel
Frequency Cepstral Coefficients show marginally higher predictive power over spectral cues (<
2%). This suggests that both spectral measures and Mel Frequency Cepstral provide sufficient
information for the classiĄcation of these fricatives and their choice depends on the particular
research question or application.

The second studyŠs dataset consists of 15812 tokens (59 speakers) that contain [f], [s], [s[j]],
[C], [x], [v], [z], [Z], [s[s]]. As in the Ąrst study, two types of acoustic cues were extracted including
11 acoustic speech features (spectral cues, duration and HNR measures) and 13 Mel Frequency
Cepstral Coefficients. ClassiĄers based on single decision trees and random forests were trained
and tested to predict speakersŠ gender and ID. Additional statistical methods were applied
to understand the distribution of gender and speaker information across different fricatives
and acoustic cues. The output shows gender and speaker characteristics in the acoustics of
voiceless, voiced and palatal fricatives. Gender can be predicted with a good performance by
both acoustic speech features (72%) and Mel Frequency Cepstral Coefficients (88%), whereby
Mel Frequency Cepstral Coefficients clearly outperform acoustic speech features. SpeakersŠ ID
can only be predicted by Mel Frequency Cepstral Coefficients with a moderate performance of
64%. Acoustic speech features encoded speakersŠ idiosyncrasy in fricative sounds in a highly
individual manner, and no set of cues can predict those idiosyncrasies. The Ąndings suggest
that Mel Frequency Cepstral Coefficients capture better speakerŠs idiosyncrasies than common
acoustic speech features.

In conclusion, Russian fricatives contain linguistic and idiosyncratic information which can
be extracted by Mel Frequency Cepstral Coefficients and acoustic speech features. A detailed
exploration of several spectral, temporal, amplitude and harmonics-to-noise ratio measures
suggests that the spectral cues are sufficient to distinguish between the place of articulation in
voiceless fricatives. Acoustic differences between female and male speakers are also observed in
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the spectrum, duration and harmonics-to-noise ratio measures in most of the investigated frica-
tives. In regard to the inter-and intra- speaker variation, no clear patterns could be identiĄed
across the eight fricatives and acoustic cues.
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Résumé (French)

Cette thèse présente une investigation acoustico-phonétique des détails phonétiques des
fricatives russes. LŠobjectif principal était de détecter des corrélats acoustiques porteurs dŠinfor-
mations linguistiques et idiosyncrasiques. Les questions abordées étaient de savoir si le lieu
dŠarticulation, le sexe du locuteur ou son identité peuvent être prédits par des indices acous-
tiques et quelles mesures acoustiques représentent les indicateurs les plus Ąables. En outre, la
distribution des caractéristiques spéciĄques au locuteur et à la variation inter et intra locuteur
à travers les indices acoustiques a été étudiée plus en détail. Le projet a commencé par la créa-
tion dŠune grande base de données audio des fricatives russes. Des enregistrements acoustiques
ont été obtenus auprès de 59 locuteurs russes natifs.

Le jeu de données résultant est composé de 22 561 occurrences comprenant les fricatives [f],
[s], [S], [x], [v], [z], [Z], [sj], [C], [vj], [zj]. Deux analyses ont été menées à partir de cette base de
données. Dans la première étude, un échantillon de données de 6320 occurrences (40 locuteurs)
a été utilisé. Trois techniques dŠextraction acoustisque (à partir du son complet, de la durée du
bruit et des fenêtres centrales de 30 ms) ont été sollicitées pour extraire des mesures temporelles
et spectrales. En outre, 13 coefficients cepstraux (Mel-Frequency Cepstral Coefficients, MFCC)
ont été calculés à partir de la fenêtre centrale de 30 ms. Des classiĄcateurs fondés sur des
arbres de décision simples, des forêts aléatoires, des machines à vecteurs de support (Support-
vector machine, SVM) et des réseaux neuronaux ont été entraînés et testés pour distinguer trois
fricatives non palatalisées [f], [s] et [S]. Les résultats montrent que les techniques dŠapprentissage
automatique réussissent très bien à classer les fricatives non voisées non-palatalisées russes [f], [s]
et [S] en utilisant le centre de gravité et la propagation spectrale, indépendamment des variations
contextuelles et de celles du locuteur. Les trois techniques dŠextraction dŠindices acoustiques ont
donné des résultats similaires en termes de précision (accuracy) dans la classiĄcation (93% et
99%), mais les mesures spectrales extraites de la durée totale du bruit de la frication ont donné
une précision (accuracy) nettement supérieure. En outre, les coefficients cepstraux (MFCC)
présentent un pouvoir prédictif légèrement supérieur à celui des indices spectraux (< 2%). Cela
suggère que les deux mesures spectrales et les coefficients cepstraux fournissent des informations
suffisantes pour la classiĄcation de ces fricatives et que leur choix dépend de la question de
recherche ou de lŠapConcerningrticulière.

Dans la deuxième étude, 15812 occurrences (59 locuteurs) de huit fricatives russes ([f], [s],
[S], [x], [v], [z], [Z], [sj], [C]) ont été analysés. Comme dans la première étude, deux types
dŠindices acoustiques ont été sélectionnés. Tout dŠabord, 11 caractéristiques acoustiques de
la parole comprenant des indices spectraux, des mesures de durée et de HNR ont été extraits,
suivis de 13 coefficients cepstraux (MFCC). Des classiĄcateurs fondés sur des arbres de décision
simples et des forêts aléatoires ont été entraînés et testés pour prédire le sexe et lŠidentité des
locuteurs. Des méthodes statistiques supplémentaires ont été appliquées pour comprendre la
distribution des informations sur le genre et le locuteur à travers différentes fricatives et indices
acoustiques. LŠétude montre que les fricatives non voisées, voisées et palatales contiennent
des informations spéciĄques au genre et aux locuteurs. Les résultats montrent que le sexe du
locuteur peut être prédit avec une bonne précision à la fois par les caractéristiques acoustiques de
la parole (72%) et par les coefficients cepstraux (88%), les coefficients cepstraux étant nettement
plus performants que les caractéristiques acoustiques de la parole. LŠidentité des locuteurs ne
peut être prédite que par les coefficients cepstraux (64%). Les caractéristiques acoustiques de
la parole ont encodé les singularités des locuteurs dans les sons fricatifs dŠune manière très
individuelle, et aucun ensemble dŠindices ne peut prédire ces singularités. LŠétude montre donc
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que les coefficients cepstraux fournissent de meilleures informations sur le locuteur que les
caractéristiques acoustiques courantes de la parole.

En conclusion, les fricatives russes contiennent des informations linguistiques et idiosyncra-
tiques qui peuvent être extraites par les coefficients cepstraux et les caractéristiques acoustiques
de la parole. Une exploration détaillée dŠun certain nombre de mesures spectrales, temporelles,
dŠamplitude et de rapport harmoniques/bruit, suggère que, premièrement, les indices spectraux
sont suffisants pour distinguer le lieu dŠarticulation des fricatives sans voix. Deuxièmement, des
différences acoustiques entre les locuteurs femmes et hommes sont observées dans les mesures
du spectre, de la durée et du rapport harmoniques/bruit pour la plupart des fricatives étudiées.
Troisièmement, aucun modèle clair de variation inter et intra locuteur nŠa pu être identiĄé
parmi les huit fricatives et les indices acoustiques.
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Chapter 1
Introduction

The perception of human speech involves the processing of linguistic content as well as the id-
iosyncratic characteristics of speakers. In linguistic and ASR (Automatic Speech Recognition)
research, it is agreed that this dual coding is conveyed by acoustic-phonetic details in speech
signals and that it can be measured by technological applications and evaluated by listeners
(e.g. Blumstein and Stevens, 1981; Dellwo et al., 2007; He and Dellwo, 2014). On the one hand,
these acoustic-phonetic details are assumed to encompass certain features that remain stable
in different contexts and speaking conditions (Blumstein and Stevens, 1981) which allow the
understanding of speech regardless of whether it is spoken aloud, softly, or whispered. On the
other hand, research on idiosyncratic aspects of speech sounds has demonstrated that speakers
can be recognised and distinguished according to speciĄc acoustic characteristics (Dellwo et al.,
2007; He and Dellwo, 2014). Thereby, various observations indicate that the acoustic cues
extracted from speech sounds are not equally informative for all speakers (Kavanagh, 2012).
And while some speakers could be recognised at a high rate, other speakers showed a poor
performance (Gendrot et al., 2019). However, it has been reported that the speaker discrimina-
tion potential depends on a series of factors including speakersŠ properties, the communication
situation and the ASR system used (Bonastre et al., 2015).

In acoustic-phonetic research, the understanding of how these different types of information
are encoded in speech sounds and how they can be extracted is strongly inĆuenced by the
distribution of periodic and aperiodic energy across different sound categories. As a result,
linguistic and speaker-speciĄc aspects are better understood in sound categories consisting
predominantly of periodic energy, such as vowels, than in sound categories such as fricatives
containing aperiodic components.

Fricative sounds can consist either of only aperiodic energy, as in the case of voiceless
fricatives, or of the interaction of periodic and aperiodic components, as in voiced fricatives.
Existing linguistic research on fricatives is mostly focused on the place of articulation in voiceless
fricatives. In the acoustic analysis of fricatives several temporal, amplitude, spectral and other
measures were obtained and compared. The peak frequency and spectral moments have been
reported as the most crucial acoustic cues to distinguish the place of articulation (e.g. Forrest
et al., 1988; Hughes and Halle, 1956). Other investigations suggest that while the spectral
moments carry important insights about fricatives, they cannot reliably distinguish the places
of articulation of these fricatives (Shadle and Mair, 1996). Several surveys even argue that
there is no set of properties that characterizes all fricatives, and that only a distinction between
the sibilants and non-sibilants can be made (Ladefoged and Maddieson, 1996). Nevertheless,
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a number of researchers have tried to deĄne invariant acoustic cues in fricatives and conĄrmed
the importance of the spectral domain for the identiĄcation of the place of articulation. Besides
certain inconsistencies in deĄning the most crucial acoustic features, these analyses also show a
main effect of the vowel context (Mann and Repp, 1980; Nirgianaki, 2014; Soli, 1981; Stevens,
1998), speaker and gender (e.g. Ghaffarvand Mokari and Mahdinezhad Sardhaei, 2020; Gordon
et al., 2002; Hughes and Halle, 1956; Jongman et al., 2000; Kochetov, 2017; Nirgianaki, 2014)
in the spectral domain. These and several other Ąndings indicate that the spectral domain also
carries speaker-specif characteristics (e.g. Newman et al., 2001; Schindler and Draxler, 2013;
Smorenburg and Heeren, 2020). Generally, it is still debated to what extent fricative sounds
exhibit speaker-speciĄc acoustics. Several articles in forensic speaker comparison or speaker
recognition, however, have concluded that fricatives carry enough idiosyncrasies to categorize
and recognise speakers (Antal, 2008), suggesting their further exploration (Kavanagh, 2012;
Schindler and Draxler, 2013). According to other investigations, fricatives are one of the sound
categories that encode fewer speaker characteristics (Gendrot et al., 2020). In addition to
these controversies, the acoustic analysis of fricatives has several limitations. The majority of
phonetic studies focus on English voiceless fricatives, and only a few have been conducted in
other languages. Most of those investigations considered a small set of fricatives with a focus
on the voiceless sibilant fricatives. Also, the number of speakers rarely exceeds 10 speakers of
the same gender.

These studies, however, show conĆicting results as to whether the spectral domain provides
enough linguistic details for distinguishing the place of articulation. Furthermore, it is unclear
how stable these measures are across different sounds, speakers, and contexts.

The present dissertation aims to address some of these inconsistencies and limitations. The
main goal is to provide a phonetic-acoustic description of Russian fricatives and to understand
how linguistic and speaker information is encoded in Russian fricatives. In the Ąrst step of the
current project, a large database of Russian fricatives was generated. Two follow-up experiments
were then conducted. The Ąrst study investigated which acoustic features can distinguish the
place of articulation of three voiceless fricatives. In the second study, the intra- and inter-speaker
variation in eight fricatives was assessed. For these studies, two sets of measures were extracted.
The Ąrst set represents common acoustic speech features (ASFs), including measures such as
peak frequency, spectral moments, duration, amplitude and HNR (Harmonic to Noise Ratio)
measures. The second set of measurements consists of 13 MFCCs (Mel-frequency cepstrum
coefficients).

1.1 Research questions and Contributions

To approach the goals outlined in the introduction, the following research questions are asked.

• 1. How can machine learning techniques contribute to automatizing and standardising
the segmentation of noise duration in voiceless fricatives?

• 2. What is the effect of window length (the entire sound, a Ąxed-duration window in the
middle of the sound, or only the noise part) in extracting acoustic cues from voiceless
fricatives?

• 3. Can the Russian fricatives [f], [s] and [S] be correctly classiĄed by a set of acoustic
cues? And how does the performance of the models differ between using ASFs or/and
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MFCCs?

• 4. Can speakersŠ gender be predicted by acoustic cues? And how does the performance
of the models differ between using ASFs or/and MFCCs?

• 5. Can speakersŠ ID be predicted by acoustic cues? And how does the performance of
the models differ between using ASFs or/and MFCCs?

• 6. How do speakers differ in their acoustic characteristics on the individual level?

The main contributions are:

• 1. Showing that machine learning can advance the automatic fricative noise segmentation
in voiceless fricatives by the separation of the voiced and unvoiced parts.

• 2. Demonstrating that the acoustic extraction techniques applied to obtain acoustic
measures have only a marginal inĆuence on the prediction of the place of articulation,
but that the entire noise duration gives the best results.

• 3. Providing evidence that the place of articulation can be predicted by machine learning
using both sets of acoustic cues (ASFs and MFCCs). The results suggest that the mean
distribution of energy cog and the spectral spread sdev of the Russian fricatives [f], [s],
and [S] can be reliably distinguished.

• 4. ConĄrming that speakersŠ gender can be predicted by ASFs and MFCCs and giving a
description of gender variation in common ASFs as the peak frequency, spectral moments,
duration and HNR measures.

• 5. Showing that in Russian fricatives speakersŠ ID can only be predicted by MFCCs but
not by ASFs in the current database. Providing insights into the complexity of inter- and
intra-speaker variation across the ASFs may explain the disability to identify speakers by
these cues.

• 6. Exploration of the distribution of speaker information encoded across the ASFs in two
sounds of three different speakers.

1.2 Outline of the Thesis

The dissertation is structured as follows:
Chapter 2 reviews the investigations conducted on fricative sounds in different Ąelds. The

section starts with a typological overview of the distribution of fricative inventories across a large
set of languages. The basic mechanisms involved in fricative production are then described,
followed by a survey of acoustic studies and their results on linguistic and speaker characteristics
in fricatives. Then some challenges in understanding the acoustics of fricatives are outlined.
Finally, the methods applied in the analysis of fricative sounds are addressed. The section
Ąnishes with an overview of the Russian consonant inventory, some phonotactic rules, and a
survey of studies dealing with Russian fricatives.

Chapter 3 provides a description of the database, the data retrieval process, the experimental
design, the resulting data Ąles and possible reuse options The section is based on the data paper:
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Ulrich N. (2022), Database description: Russian fricatives. The description is submitted to the
Journal of the Acoustical Society of America as a letter to Editors on the 14th of October 2022.

In chapter 4 the segmentation and the analysis of three voiceless fricatives are themed and
the Ąrst three research questions of the thesis are addressed. This section is represented by
publications: Ulrich, N., Allassonnière-Tang, M., Pellegrino, F., Dediu, D. (2021). Identifying
the Russian voiceless non-palatalized fricatives [f], [s], and [S] from acoustic cues using machine
learning. The Journal of the Acoustical Society of America, 150(3), 1806-1820.

Chapter 5 deals with the speaker information coded in fricative sounds. In this section, the
last three research questions of the thesis are investigated. The chapter is based on the article:
Ulrich, N., Allassonnière-Tang, M., Pellegrino, F., Inter- and intra- speaker variation in eight
Russian fricatives. (Revisions due to the 6th of December 2022)

The last chapter 6 summarises the results and the contribution of the thesis. The output of
the current project is compared with the research questions. The chapter ends with an outline
of the limitations of the investigation and an outlook on further research.
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Chapter 2
Background

Research in acoustic-phonetic, speech perception, forensic speaker comparison and application
of ASR techniques shows that the detection of phonetic-acoustic features providing linguistic
and speaker information represents a different challenge for each speech sound category. In this
regard, one of the most fundamental aspects of understanding the acoustic nature of sounds is
the distribution of periodic and aperiodic energy. Speech sounds with a high degree of periodic
energy, such as vowels, are better understood than speech sounds with a high degree of aperiodic
energy, such as fricatives.

Phonetic investigations on vowels and different consonant categories have identiĄed, for
instance, the importance of voice onset time and formants in stop consonants and vowels as
stable acoustic and perceptual cues. Moreover, studies focusing on idiosyncratic information in
speech sounds found speaker-speciĄc characteristics in vowel formants (McDougall and Nolan,
2007; Rose, 2007), and nasals (Enzinger and Balazs, 2011; Kavanagh, 2012).

Despite the wide presence of fricatives in languages of the world and the extensive studies on
fricatives, existing research does not fully explain how fricatives can be identiĄed and classiĄed
efficiently using acoustic cues. In addition, it is still debated to which extent fricatives contain
idiosyncratic information and by which cues this information can be measured and extracted.

2.1 Typology of fricatives

From a typological view, fricatives represent the second largest group of obstruents (after
stop consonants) across the worldŠs languages (Maddieson and Disner, 1984). They exist at
various places and voice settings and can undergo several secondary articulation processes
such as palatalisation or aspiration (Ladefoged and Maddieson, 1996; Maddieson et al., 2013).
Fricative inventories can vary widely across the languages of the world, as reported in the
LAPSYD database (Maddieson et al., 2013). There are languages as the Australian languages
that arguably lack fricatives, (Butcher, 2003; Maddieson and Disner, 1984), and languages like
Abkhaz, with 19 fricatives (Maddieson et al., 2013). Table 2.1 shows the number and percentage
of languages by the size of fricative inventories.

In the phoneme inventories of 10% of the languages, phonological fricatives are absent.
Interestingly, there are only a few languages with one fricative. A large number of languages
employ between two and four fricatives. The modal number is three and accounts for 20 % of all
languages. Languages have rarely more than four fricatives and even rarer is the occurrence of
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Table 2.1: Number and percentage of languages by the size of fricative inventories across 683
languages from various areas of the world taken from the LAPSYD database (Maddieson et al.,
2013).

Fricatives 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19

Languages 68 34 116 138 88 53 51 44 29 26 6 10 5 4 5 2 3 1
Procentage 10 5 17 20 13 8 7 6 4 4 1 1 1 1 1 1 1 1

more than nine fricatives. The distribution of fricative inventory sizes by areas is visualised in
Figure 2.1. The languages (683) are grouped into six areas (with different amounts of languages
per group) and one group summarises languages with non-deĄned areas (NN).

Figure 2.1: The areal distribution of fricatives in a sample of 683 languages from the LAPSYD
database (Maddieson et al., 2013). The x-axis refers to the areas and the label NN refers to
languages with non-deĄned areas. The y-axis shows the number of fricatives

The typological distribution of fricatives across the areas shows that Australian languages
are not the only group lacking fricatives. Fricatives are also absent in some languages across the
areas of South and North America, Oceania, East and Southeast Asia and Africa. The largest
number of languages missing fricative phonemes is in Oceania. In general, it is striking that
the Oceanic and South American languages have very small fricative inventories of a maximum
of 6 and 8 fricatives. Some speciĄc languages from the remaining areas show larger fricative
inventories. As an example, Abkhaz (Area Europe_W&S_Asia) has 19 fricatives. Languages
such as Tashlhiyt, Hobyot, and Ghomara Berber (from the area of Africa) also have 16 fricatives.
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2.2 Production of fricatives

The basic production mechanisms of fricative sounds are well understood and described by mul-
tiple studies (Catford, 1997; Shadle, 1990; Stevens, 1998). In the production of both voiceless
and voiced fricatives, two overlapping and interacting sources are involved. The most signiĄ-
cant parameters deĄning the acoustics of noise sounds are the length of the front cavities, the
Ćow rate and the presence of an obstacle.

The production of voiceless fricatives involves the interaction of two noise sources: the
generation of a turbulent airĆow in the pharynx and the oral cavities (Catford, 1997; Shadle,
1990; Stevens, 1998). The Ąrst source of frication noise production is a turbulent airstream
resulting from the airĆow passing through a narrow constriction of the vocal tract and producing
random Ćuctuations (Catford, 1997; Shadle, 1990; Stevens, 1998). The second noise source is
represented by different conĄgurations of the front cavities (Shadle, 1990). In the production
of sibilant fricatives, the upper and lower teeth are involved in noise generation by acting as an
obstacle. In fricatives such as the voiceless velar, noise is generated by a wall source parallel
to the airĆow. No obstacle and wall source are required in the production of bilabial fricatives
where frication noise is generated by turbulent airĆow. Additionally, secondary articulations
such as palatalization or aspiration can complexify the articulatory and acoustic structure
observed in fricatives. Though typologically rare, phonologically aspirated voiceless fricatives
involve for instance the production of both frication and aspiration noise leading to further
challenges in their characterization (Rabha et al., 2019).

The production of voiced fricatives differs from the production of voiceless fricatives. Voiced
fricatives involve glottal vibration over at least a period of time (Stevens et al., 1992). As in
voiceless fricatives, the production of voiced fricatives implies the combination of two simul-
taneous aeroacoustic sources. In contrast to voiceless fricatives, these two sources are of a
different nature. The Ąrst source is represented by the vibration of vocal folds generating a
periodic signal as in vowel production. The second source is identical to the noise source in
voiceless fricatives and frication noise is generated in the cavities (Jesus and Jackson, 2008;
Pincas and Jackson, 2006). Thus, it is assumed that these two sources are not just simply
overlapping in voiced fricatives. They undergo a complex interaction, which also represents an
aerodynamic challenge, as the production of turbulence is complicated by the lower airstream
velocity produced by vocal vibration. As a consequence, some voiced fricatives lack frication
during articulation, and the realizations of these sounds are more approximant-like (Jesus and
Jackson, 2008). The combination of voice and frication sources co-occurs not only in voiced
fricatives but also in the vowel-fricative transition regions of voiceless fricatives. The interac-
tion between these two sources is determined by their relative timings, the on and offset, the
fundamental frequency (f0) and the levels of voicing and frication (Jesus and Jackson, 2008).

2.3 Linguistic and speaker information in fricatives

Speech production is inĆuenced by both anatomical predispositions and movements of the vocal
tract, which are controlled by neuromuscular programming (Dellwo et al., 2007). Any change
in place and length of the constriction causes a change in the size and shape of the cavities
behind and in front of the constriction. This, in turn, can result in a change of the acoustic
characteristics in the produced speech signals. Therefore, all speech signals carry both linguistic
information, such as place of articulation or voicing, and certain speaker-speciĄc characteristics.
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Human listeners are capable of perceiving and understanding speech even in difficult lis-
tening conditions. Regardless of, for instance, the volume of the speaker, background noise, or
in whispered speech, a part of the linguistic information seems to be preserved in the speech
signal. One explanation is provided by the invariant theory, which predicts unique and distinc-
tive temporal, spectral and/or amplitude characteristics in the acoustic signals. These acoustic
properties can be extracted from speech signals and serve as crucial perceptual cues (Blumstein
and Stevens, 1981).

While such an approach was successful in Ąnding, for example, voice onset time and formants
as stable acoustic and perceptual characteristics for stop consonants and vowels, when it comes
to fricatives, such acoustic invariant properties are highly debated. Several studies even argued
that there is no set of properties that characterizes all fricatives and that only a distinction
between the sibilants and non-sibilants can be made (Ladefoged and Maddieson, 1996).

Nevertheless, there is abundant literature that tried to identify measurements allowing the
description and classiĄcation of fricatives. Most work has concerned the English voiceless
fricatives, and the contrasts in places of articulation (Behrens and Blumstein, 1988; Jassem,
1965, 1995; Jongman et al., 2000; Maniwa et al., 2009; McMurray and Jongman, 2011; Shadle,
1986, 1990; Shadle and Mair, 1996; Strevens, 1960). Fricative inventories of other languages are
less studied. Single analysis exist on for instance Spanish (de Manrique and Massone, 1981),
Polish (Jassem, 1995; ŕygis and Padgett, 2010), Japanese (Funatsu and Kiritani, 1998), Dutch
(Kissine et al., 2003) Greek (Lilley et al., 2021; Nirgianaki, 2014), Romanian (Spinu et al.,
2012), Lebanese Arabic (Al-Tamimi and Khattab, 2015) and Azerbaijani (Ghaffarvand Mokari
and Mahdinezhad Sardhaei, 2020).

In addition to their linguistic meanings, speech sounds also convey information about the
speaker. Research on idiosyncrasy assumes that motor control in speech is highly individual
like other modes of human movements such as human gait (Matovski et al., 2010). Individual
characteristics are expected to be reĆected in the physical properties of speech sounds (He and
Dellwo, 2014). Therefore, idiosyncrasies in speech such as gender, accent, language, emotions,
or health status can be exploited not just by listeners, but also by technological application
through the extraction of acoustic cues (Dellwo et al., 2007). One of the best-described speaker
characteristics is gender and the acoustic contrast between female and male speakers is argued to
be well understood and explained by physiological and sociophonetic differences (e.g. Jongman
et al., 2000; Munson et al., 2006). Perception experiments (Schwartz, 1968) and acoustic cue-
based recognition tasks (Ghaffarvand Mokari and Mahdinezhad Sardhaei, 2020; Spinu et al.,
2018; Spinu and Lilley, 2016) provide evidence that gender information can be obtained from
fricative sounds.

To which extent fricatives contain speaker-speciĄc information, besides gender, is still de-
bated. Some research demonstrated, for example, that models built to identify and distinguish
speakers in vowels exhibit a decrease in performance for fricatives and nasals. The authors
concluded that less speaker information is contained in these sound categories (Gendrot et al.,
2020). SigniĄcant differences between voiced and voiceless sounds in general, and between frica-
tives, in particular, were reported for phoneme base speaker identiĄcation in Arabic consonants
(Alsulaiman et al., 2017). Voiced Arabic fricatives [Q, h], and [z] showed high classiĄcation rates
and voiceless fricatives a very poor performance (Alsulaiman et al., 2017). Moderate perfor-
mance in fricatives was also identiĄed in forensic voice comparison of six sound categorise (Ajili
et al., 2017). Opposite Ąndings were reported for English fricatives where a high recognition
rate was achieved with vowels and also fricatives (Antal, 2008). Additionally, numerous studies
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on idiosyncratic information in fricatives found substantial speaker variation and signiĄcant
potential for speaker discrimination (Gordon et al., 2002; Hughes and Halle, 1956; Kavanagh,
2011; Narayanan et al., 1995; Newman et al., 2001; Silbert and de Jong, 2008; Smorenburg and
Heeren, 2020), suggesting their further exploration (Kavanagh, 2012; Schindler and Draxler,
2013).

2.4 Acoustic features measured in fricatives and auto-

matic classification

Different vocal tract conĄgurations during the production of fricatives affect various acoustic
measures. It is generally agreed that the size and shape of the vocal tract determine the
spectrum of a fricative (Stevens, 1998), which is argued to be well described by the acoustic
features of the Spectral Peak Location and the Ąrst four Spectral Moments (spectral mean,
spread, skewness and kurtosis) (Hoelterhoff and Reetz, 2007; Jesus and Shadle, 2002; Jesus and
Jackson, 2008; McMurray and Jongman, 2011; Shadle and Mair, 1996).

The spectral peak location and the four spectral moments are the most common acoustic
features measured to investigate linguistically stable properties as well as speaker-speciĄc char-
acteristics in fricative sounds. The spectral peak location (peak) measures the frequency of the
highest amplitude, which is connected to tongue movements during the production of fricatives
at different places of articulation (Hughes and Halle, 1956). The Ąrst spectral moment describes
the mean distribution of spectral energy or the centre of gravity (cog) of the fricative (Forrest
et al., 1988). The second spectral moment sdev refers to the spectral spread or variance of the
energy around the mean. Skewness (skew) gives insights into the spectral tilt and measures
the overall asymmetry of the energy distribution. A skewness of 0 means a symmetrical distri-
bution around the mean. A positive skewness suggests a negative tilt with a concentration of
energy in the lower frequencies. A negative skewness infers a positive tilt and a predominance
of energy in the higher frequencies (Newell and Hancock, 1984; Peeters, 2003). Finally, kurtosis
(kurt) speciĄes the ŞpeakednessŤ or Ćatness of the distribution: a spectral kurtosis equal to 3
indicates a normal distribution, while a smaller value than 3 suggests a Ćat distribution, and a
higher value stands for a narrow distribution (Newell and Hancock, 1984; Peeters, 2003).

Acoustic-phonetic research focusing on the linguistic properties of fricatives is characterised
by controversial results. As an example, it is still debated whether the spectral peak and
spectral moments are sufficient to identify and categorise all fricatives. Controversially, other
investigations argued that while the spectral moments carry important information about frica-
tives, they cannot reliably distinguish places of articulation of these fricatives (Shadle and Mair,
1996)

Nevertheless, the spectral domain is excessively studied in fricative research. Several re-
searchers suggested that the frequency of the spectral peak is connected to the tongue move-
ments during the production of fricatives at different places of articulation, and this value
decreases from high to low frequencies as the tongue moves from front to back (Hughes and
Halle, 1956; Jongman et al., 2000). However, this could not be conĄrmed for Greek frica-
tives (Nirgianaki, 2014). The spectral peak was found to distinguish between sibilants and
non-sibilants, and, within the former, between the alveolars and post-alveolars (Behrens and
Blumstein, 1988; Heinz and Stevens, 1961; Jassem, 1965; Shadle, 1990; Strevens, 1960). On
the other hand, these and other analyses of spectral cues have identiĄed a main effect of the
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speaker, gender (Hughes and Halle, 1956; Jongman et al., 2000; Nirgianaki, 2014), and of the
vowel context, which inĆuences the tongue body during the production of the fricative (Mann
and Repp, 1980; Nirgianaki, 2014; Soli, 1981; Stevens, 1998). As an example, the impact of the
following vowel was stronger for [f] than for [s], and even less for [S] (Stevens, 1998).

The Ąrst spectral moment is often considered in the analysis of frication noise. Several
studies agree that the centre of gravity can distinguish between non-sibilants and sibilants,
and within sibilants (Jongman et al., 2000; Kochetov, 2017; Nittrouer et al., 1989). Across the
sibilant fricatives cog is higher in [s] than in [S]/ (Funatsu and Kiritani, 1998; Jongman et al.,
2000; Nittrouer et al., 1989; Padgett and Zygis, 2007; Zsiga, 2000). In Russian, the centre of
gravity was reported to be gender and speaker dependent, with higher values in word-initial
than in word-medial positions (Kochetov, 2017).

The second spectral moment or spectral variance is less reported in the literature. The
spectral variance was found to be lower for sibilants and higher for non-sibilants (Jongman
et al., 2000), with the post-alveolar fricative [S] having the lowest variance (Shadle and Mair,
1996).

More Ąndings can be reviewed for the third and the fourth spectral moments, skewness and
kurtosis. Several studies indicate that skewness and kurtosis may distinguish between [s] and
[S] (McFarland et al., 1996; Nittrouer et al., 1989). A negative skewness was reported for [s]
and a positive one for [S] (Jongman et al., 2000; McFarland et al., 1996; Nittrouer et al., 1989).
For kurtosis, large positive values were measured for [s] and smaller positive or a negative ones
for [S] (Jongman et al., 2000; McFarland et al., 1996; Nittrouer et al., 1989).

The temporal properties of fricatives were far less investigated, with most studies agreeing
that duration is not a distinct cue in fricatives at all (Jongman et al., 2000; Kochetov, 2017),
or that duration can only contrast non-sibilants and sibilants (Behrens and Blumstein, 1988).

Spectral acoustic properties also vary within and across speakers. Several studies argued
that speaker variation is place of articulation dependent and a greater variation was reported
in anterior fricatives (Gordon et al., 2002; Kochetov, 2017). With regard to gender variation,
a cross-linguistic study showed, for instance, that in some languages female speakers articulate
front fricatives differently than males, resulting in acoustic gender variation (Gordon et al.,
2002). Furthermore, gender variation in the spectral acoustic properties of fricative sounds was
found in several studies. A very early perception experiment on English fricatives determined
that human listeners can identify speakersŠ gender in isolated voiceless sibilant fricatives, by
relying on higher spectral energy in female productions. This effect was not present for the
nonsibilants (Schwartz, 1968). Several follow-up papers also revealed gender differences in the
spectral domain. They often reported higher values for female speakers in the centre of gravity,
and peak frequency (Flipsen et al., 1999; Gordon et al., 2002; Jongman et al., 2000; Kochetov,
2017; Ludger et al., 2021; Newman et al., 2001). Furthermore, gender variation was identiĄed
in the spectral skewness (Flipsen et al., 1999; Ludger et al., 2021; Munson et al., 2006; Stuart-
Smith, 2007).

Research on idiosyncratic characteristics in fricatives revealed that besides gender infor-
mation further speaker properties are encoded in the spectral shape of fricative sounds. In
an early study, it was shown that the spectral peak frequency in voiceless fricatives is highly
variable between speakers and one speakerŠs alveolar peak can appear as the post-alveolar peak
frequencies of another speaker (Hughes and Halle, 1956). The spectral moments are considered
to serve as reliable acoustic cues for speaker discrimination in [f] and [s] sounds (Schindler and
Draxler, 2013), while the strongest inter-speaker variability was reported in the spectral shape
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of the alveolar [s] (Gordon et al., 2002; Kavanagh, 2011, 2012). Additionally, speaker variation
was found in the temporal domain. A laryngographic analysis of voiced obstruents showed
that vocal fold vibration varies between speakers, resulting in different frication and voicing
duration as well as in different patterns of devoicing (Barry, 1995).

Several studies argue that gender and speaker-speciĄc properties are not solely reĆected in
the spectral and temporal domains but also in further acoustic characteristics. For instance,
it was claimed that females produce stronger acoustic distinctions and articulate contrasting
vowels and consonants more clearly. The productions of vowels (Diehl et al., 1996; Weirich and
Simpson, 2014) and fricatives (Weirich and Simpson, 2015) of female speakers tend to occupy a
larger phonetic space than male speakers. Furthermore, duration and spectral analysis are not
equally informative for all speakers when it comes to discriminating between them. While some
speakers can be identiĄed by these measures, others cannot. Acoustic measures can provide
information on speakers, but more for individuals at the extremes rather than in the middle
of the distribution (Kavanagh, 2012). Consequently, not all speakers can be identiĄed with
the same performance rate by acoustic cues. In a study comparing spectrograms and phonetic
features extracted from vowels, differences between speakers were also reported. The authors
concluded that there are some good speakers showing the best results in the identiĄcation
task and poor speakers showing poor results (Gendrot et al., 2019). On the other hand, some
articulation and acoustic studies claim, that intra-speaker variability in obstruents is contrast-
and/or cue-speciĄc rather than a general talker characteristic (Harper, 2021; Romeo et al.,
2013).

In distinction to acoustic speech features (ASFs) such as the spectral peak and the spectral
moments, a spectrum of speech sound can also be described through the more mainstream
approach based on Mel-frequency coefficients (MFCCs). The advantage of ASFs is that they can
be related to certain articulation mechanisms and they can contribute to a better understanding
of perceptual crucial properties in speech sounds. MFCCs, on the other hand, are often used in
speaker recognition tasks and ASR technologies as they encode most of the information found
in speech signals. However, MFCCs represent an abstract set of cues which are difficult to
interpret and relate to articulation and perception mechanisms.

In terms of the predictive power reported in the literature, temporal and spectral measures
achieved quite a low accuracy of about 77% (Jongman et al., 2000) and between about 79%
and 85% (McMurray and Jongman, 2011) for predicting the place of articulation of English
fricatives. The accuracy was about 61 % for Greek fricatives (Nirgianaki, 2014). In terms of
MFCCs, several recent studies have focused on the extraction of cepstral coefficients (CCs) on
the Mel (Kong et al., 2014) or the Bark scales, to describe and distinguish fricative place, voicing
and palatalization contrasts (Ghaffarvand Mokari and Mahdinezhad Sardhaei, 2020; Jesus and
Jackson, 2008; Lilley et al., 2021; Spinu et al., 2018; Spinu and Lilley, 2016), achieving a much
better predictive power of around 90%.

Some of these studies also compared the classiĄcation of spectral measures and cepstral coef-
Ącients in predicting gender. The results on Azerbaijani (Ghaffarvand Mokari and Mahdinezhad Sard-
haei, 2020), Romanian (Spinu and Lilley, 2016) and a subset of Russian fricatives (Spinu et al.,
2018) showed that cepstral coefficients clearly outperform common spectral, temporal and am-
plitude measures. The difference in accuracy was very similar with classiĄcation rates, with
around 60% for ASFs and around 80% and higher for CCs.
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2.5 Challenges in fricative research

The noisy and aperiodic nature of fricative sounds causes a number of factors that complicate
the understanding of the acoustics of fricatives. The following outline should provide some
insight into the current methodological challenges of fricative research.

One of the most common problems in linguistic and speaker research on fricative sounds is
the low pass Ąltering of frication noise. Fricative sounds consist either of only aperiodic energy as
in the case of voiceless fricatives or of the interaction of periodic and aperiodic components as in
voiced fricatives. By comparing the frequency ranges of fricative sounds with other consonants,
it was discovered that aperiodic spectral energy is presented in much higher frequency ranges
than in other sounds (Strevens, 1960). Nevertheless, studies investigating the spectral shape
of fricatives mostly considered only the information coded in bandwidths up to around 10kHz
(Flipsen et al., 1999) and, more generally, the relevance of high-frequency has been overlooked,
as underlined by Monson and colleagues (2014). In the past, this Ąlter was motivated by
the technological limitation that only a particular bandwidth could be analysed (Strevens,
1960). Even though speech processing technologies developed in the last decades (e.g. through
bandwidth extension (Jax and Vary, 2003)), studies on linguistic and speaker information in
fricatives continued investigating a frequency threshold up to 8 to 12 kHz (Forrest et al., 1988;
Gordon et al., 2002; Jongman et al., 2000; Kavanagh, 2011; Kochetov, 2017). Studies of speech
production and perception in patients with cochlear implants and studies of hearing loss in
the elderly have both argued that frequencies above the Ąltered ranges also matter in speech
perception. In the systems of cochlear implants, for instance, not all the acoustic information
about the spectral shape in the high-frequency range is sufficiently provided to the user (Moore,
2003). This in turn can cause developmental difficulties in children perceiving and articulating
fricative sounds correctly (Grandon and Vilain, 2020). As a result of the low pass Ąltering
of fricative sounds, the understanding of how much linguistic and speaker information and
variation is coded in the higher frequency ranges remains unclear.

Further aspects contributing to the complexity of identifying stable and invariant cues
in fricative sounds are articulatory and acoustic language-speciĄc characteristics. Language-
speciĄc and cross-linguistic studies on linguistic features as well as speaker variation show
strong differences in the articulation and acoustics of fricatives among languages, suggesting
the existence of different acoustic features of the same sound (Catford, 1988, 1997; Gordon
et al., 2002; Hayward, 2000; Jongman et al., 2000; Ladefoged and Wu, 1984; McMurray and
Jongman, 2011; Nirgianaki, 2014; Reidy, 2016). Speakers of different languages can apply var-
ious strategies to produce the same phoneme, resulting in varying acoustic characteristics, as
reported by acoustic (Gordon et al., 2002; Hayward, 2000; Ladefoged and Maddieson, 1996)
and articulatory studies (Narayanan et al., 1995). For instance, speaker and gender variation
in the duration and the spectral shape is prominent only for some languages, but not for others
(Gordon et al., 2002).

Apart from language-dependent factors, variation of fricatives is also identiĄed between
speakers and within speaker (Catford, 1988; Gordon et al., 2002; Hayward, 2000; Ladefoged
and Wu, 1984; Newman et al., 2001; Reidy, 2016). Speakers of the same language can ap-
ply different articulation strategies and show diverse acoustic characteristics. Speaker-speciĄc
acoustic properties complicate the understanding of stable linguistic cues, but on the other
hand, it shows that there is speaker variation.

Moreover, fricatives as continuous and complex aperiodic sounds with diffused energy, could
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so far not be convincingly described by unique and distinct acoustic properties, because most
measured features, such as the spectral peak location or the four spectral moments are found to
be vowel context dependent (Jongman et al., 2000; McMurray and Jongman, 2011; Nirgianaki,
2014; Reidy, 2016). Other studies also report coarticulation effects in fricative sounds and
that the articulatory movements have salient acoustic consequences on the spectral energy
distribution. As a consequence, the spectro-temporal trajectory has also been successfully
exploited to study Ąne-grained differences among voiceless fricatives (Reidy, 2016).

Studies on the acoustics of fricatives comparing different speaking styles report consider-
able acoustic variation in regard to linguistic and speaker-speciĄc features. For instance, a
study comparing the acoustic properties of fricatives from productions of clear speech where
speakers emphasised the contrast of minimal pairs, with fricatives which were produced in a
non-contrastive context, found considerable variation. The study demonstrates that there are
systematic acoustic-phonetic modiĄcations in the production of clear fricatives (Maniwa et al.,
2009). Another study dealing with the comparison of speaker-speciĄc features in nasals and
fricatives between read and spontaneous speech showed slightly better performance in a speaker
identiĄcation task for spontaneous speech. The authors hypothesised that the speakerŠs indi-
vidual characteristics are more represented in spontaneous than in read speech (Schindler and
Draxler, 2013).

Another constraint in the investigation of fricative sounds represents the limited datasets
employed in these studies. The analyses often considered voiceless fricatives with a focus on
the English language and the alveolar [s]. Few studies took into account voiced and palatal
fricatives. Furthermore, previous analyses often included only a limited number of speakers.
They were rarely productions of more than ten speakers of the same gender (e.g. Jongman
et al., 2000; Kochetov, 2017; Spinu et al., 2018).

2.6 Methods in fricative research

Various methods have been employed for describing and characterising linguistic informa-
tion or speaker-speciĄc properties in fricatives. For the statistical analysis of variance, the
most common methods are ANOVA and logistic regression models (Ghaffarvand Mokari and
Mahdinezhad Sardhaei, 2020; McMurray and Jongman, 2011; Spinu and Lilley, 2016).

Additionally, machine learning techniques received much attention in acoustic and speech
processing research and found a wide range of applications (Bianco et al., 2019; Michalopoulou
et al., 2021). Further Ąelds which are advanced by machine learning techniques include music
perception, bioacoustics, hearing and hearing aids, and emotion recognition (Michalopoulou
et al., 2021). Diverse machine learning techniques were developed and applied in phoneme
recognition tasks (Chorowski et al., 2015) and in phoneme-based speaker recognition for dif-
ferent contexts and languages (Alsulaiman et al., 2017; Antal, 2008). Machine learning is also
frequently combined with deep learning for visual phoneme recognition (Algabri et al., 2020)
and for speaker recognition (Gendrot et al., 2019, 2020) by using broadband spectrograms of
speech sounds.

The advantage of machine learning and deep learning methods in phonetic-acoustic research
is that they can enhance the extraction of statistical-based information from acoustic data.
They can help to clarify and describe complicated acoustic phenomena by showing how features
interact and can be used for recognizing patterns in different sounds. However, even though
machine learning is capable of advancing phonetic and phonological research, for instance by
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automatically identifying speech sounds by their acoustic properties, they are rarely utilized
for research purposes. As an example, in fricative research, only a few studies approached
the identiĄcation of fricatives using automatized methods, and they mostly used deep learning
methods (Anjos et al., 2020; Nagamine et al., 2015).

2.7 Russian phoneme inventory and research on frica-

tives

The articulatory and acoustic features of the Russian sound system are well described by a
number of studies (Bolla, 1981; Fant, 1960; Halle, 2011; Jones and Ward, 1969; Shupljakov et al.,
1968; Timberlake, 2004; Zsiga, 2000). However, it is to be noted that these grammars show some
controversy in the description of the production and classiĄcation of vowels and consonants.
Considering consonants, there are different counts of places of articulation reported in these
grammars. In addition, several consonants are assigned to different places of articulation. To
name one example, the [s] and [z] fricatives are in one grammar deĄned as a dental place
of articulation (Timberlake, 2004), while in another study the same phoneme refers to an
alveolar place of articulation (Jones and Ward, 1969). Such discrepancies can be found in many
language descriptions, which reĆect on the one hand certain speaker-speciĄc characteristics of
the participants in the production of speech sounds and on the other hand the complexity of
grasping the phoneme inventory of a language. An overview of the generally agreed upon the
consonant inventory of Russian is shown in Table 2.2.

Table 2.2: Phoneme inventory of Russian consonants (This table is adapted from (Jones and
Ward, 1969)).

abial labiodental dental alveolar post-alveolar/palatal velar
OBSTRUENTS

voiceless stop p pj t tj k kj

voiced stop b bj d dj g gj

affricate ts tC

voiceless fricative f fj s sj S C x xj

voiced fricative v vj z zj Z Zj

SONORANTS
glide j
nasal stop m mj n nj

lateral l lj

trill r rj

Despite variations between different grammars, the major characteristic of the Russian
phonological system is stress in vowels and palatalization in consonants. Russian vowels can
be stressed or unstressed. Therefore, stress operates on different levels. Phonetically, stressed
vowels are longer than unstressed vowels and it is claimed that they show acoustically more
distinct features (Timberlake, 2004). Furthermore, the stress in Russian vowels is relevant to
the lexicon and morphology. Unlike other Slavonic languages, the stress in Russian does not
follow any rules and can occur on any syllable of a word. However, words can only contain one
stressed syllable, and stress can differentiate the meaning between words. In terms of prosody,
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stress is an important factor to deĄne the intonation contours which are on or around the
stressed syllable (Timberlake, 2004).

Consonants are generally divided into two groups: Obstruents and Sonorants. Most con-
sonants in Russian exist as non-palatalised and palatalised phonemes. Additionally, most ob-
struents can be voiced and voiceless. Thus, palatalization and voicing are signiĄcant factors
to distinguish between words. While voicing contrast exists in many languages of the world,
palatalization contrast is very rare. For instance, only 10 out of 806 languages in the LAP-
SyD database distinguish between non-palatal [s] and palatal [sj], as the Russian language does
(Maddieson et al., 2013).

The palatalization contrast in Russian differs between sounds articulated at different places.
There are also some sounds without a palatalized or non-palatalized counterpart. Those in-
clude for example the palatal affricate [tC] and the non-palatal affricate [ts] and the glide [j]
(Timberlake, 2004). The non-palatal post-alveolar fricatives [S] and [Z] and the palatal [C] and
[Zj]are regarded not to be paired in this sense, because [S] and [Z] do not follow the same rules
as other consonants do (become palatalized at the end of a noun in the locative singular or in
the conjugation of verbs ) (Timberlake, 2004). Nevertheless, in phonetic acoustic studies these
sounds are often treated as palatal and non-palatal pairs (Kochetov, 2017; Spinu et al., 2018).

In Russian, both palatalized and non-palatalized variants occur before vowels, after vowels
in word-Ąnal position, and in consonant clusters. In CV syllables, the presence/absence of
palatalisation affects the production of the following vowel. In the word-Ąnal position, the
palatalisation contrast is intrinsic to the consonant (Bolla, 1981). The phonotactic rules in
consonant clusters deĄne that if the second consonant is palatal, the Ąrst consonant will also be
palatalized. If the second consonant is non-palatalized, the Ąrst one can be both palatal or non-
palatal (Bolla, 1981). Other distribution and phonotactic rules apply to voiced and voiceless
consonants. Voiceless obstruents occur in both CV and VC syllables. At the word-Ąnal position,
the voiced consonants become devoiced. In consonant clusters, the second consonant determines
the voicing of the preceding sound: if a voiced consonant is followed by a voiceless consonant,
it will also be devoiced. If the second consonant is voiced the Ąrst one will also be produced as
a voiced (Bolla, 1981).

To summarise, the Russian consonant inventory offers an interesting research Ąeld, since
it exhibits a rich and rare variety. The fricative inventory in particular represents a large set
including voiceless, voiced, palatal and non-palatal fricatives. Such a variation offers a wide
range of possibilities for the investigation of the articulation and acoustics of fricative sounds.

There is a number of studies investigating the articulatory properties of Russian fricative
sounds (e.g. Bolla, 1981; Fant, 1960; Kedrova et al., 2008; Litvin, 2014), but only a handful dealt
with acoustic analyses. Furthermore, existing surveys on the acoustics of Russian fricatives are
limited and do not take into account all fricative consonants, or only consider a small set of
tokens, vowel contexts, word positions, and/or speakers (Derkach et al., 1970; Kochetov, 2017;
Padgett and Zygis, 2007; Spinu et al., 2018, 2012). In linguistic research, this leads to a lack of
systematic documentation of topologically contrasting fricatives (Kochetov, 2017). Research on
gender or speaker variation in Russian fricatives is also rare. These studies are usually based on
the productions of a few speakers and do not report much on speaker-speciĄc characteristics.
Speaker and gender variation are reported so far for sibilant palatal vs. non-palatal fricatives
(Kochetov, 2017; Spinu et al., 2018) and for the variation of vocal fold vibration in voiced
fricatives from eight speakers (Barry, 1995). One of the main aims of this thesis is to Ąll this
gap of data by providing an open-access acoustic database of fricatives in Russian.
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Chapter 3
The database

This section is represented by the paper: Ulrich N. (2022), Database description: Russian
fricatives. The description is submitted to the Journal of the Acoustical Society of America as
a letter to Editors on the 14th of October 2022.

The database description provides detailed reports on the data retrieval process, the ex-
perimental design, the participants, and the recording procedure. The paper also gives an
overview of the pre-processing steps of the data, the resulting data Ąles, and possible reuse
options. The database is published and available for scientiĄc research. The usage instructions
and accessibility of the database are also described.
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Data base description: Russian fricatives

Natalja Ulrich 1a

1Lab Dynamics of Language UMR 5596, CNRS and University Lyon 2, France

This paper presents a speech database primarily designed to investigate linguistic and speaker
information in fricative sounds in Russian. Acoustic recordings were obtained from 59 native
Russian speakers. The resulting dataset consists of 198 sentences for each speaker. In these
sentences, real words containing one of the fricatives [f], [s], [S], [x], [v], [z], [Z], [sj], [C], [vj], [zj]
were embedded. The total amount of fricative tokens is 22,561. The number of observations
per sound differs across categories, because of their natural distribution. The dataset is made
available as a collection of audio files in wav format along with companion Praat TextGrid
files for each sentence. Target fricatives are furthermore available as individual wav files.
The database can be accessed with the DOI https://doi.org/10.48656/4q9c-gz16.
Additionally, the experimental design allows the investigation of other sound categories.
The number of speakers recorded gives further possibilities for phonetic-oriented speaker
identification studies.

[https://doi.org(DOI number)]

[XYZ] Pages: 1–4

I. BACKGROUND

The construction of the database was primarily mo-
tivated by the intention to investigate linguistic and
speaker-specific information of complex sounds such as
fricatives.

The Russian fricative inventory offers an interesting
research field for examining complex acoustic phenomena
since it exhibits a rich and rare variety. For instance,
only 10 out of 806 languages in the LAPSyD database
distinguish between non-palatal [s] and palatal [sj], as
the Russian language does (Maddieson et al., 2014).

Furthermore, the Russian phonetic inventory con-
tains at least 12 fricatives, at four (other descriptions of
Russian fricative inventory state that there are five places
of articulation (Bolla, 1981)) places of articulation [f, s,
S, x], with voicing [v, z, Z] and palatalization [fj, vj, sj, C:,
zj] contrasts (Timberlake, 2004).

Even though fricative sounds were extensively stud-
ied in the past, accessible databases designed for investi-
gations of fricative sounds in a format suitable for reuse
are rare or inaccessible. In terms of data size, most stud-
ies on fricatives were based on data from a few speakers.
In general, the data and research available are very lim-
ited, especially for understudied languages such as Rus-
sian.

It is to note that there exists a large open-source Rus-
sian language data set – OpenSTT, available online at
https://github.com/snakers4/open_stt. However,
this Russian corpus is oriented towards deep learning and
not phonetics studies.

To fill this gap, the experimental design and the num-
ber of speakers included in the current database give the
possibility for further investigation of fricative sounds

aulrichnatalja@gmail.com

and other sound categories, along with intra- and inter-
speaker variation or speaker identification tasks.

II. EXPERIMENTAL DESIGN AND DATA RETRIEVAL

A. The participants

The participants were 59 students (30 female) be-
tween 18 and 30 years old, studying at different depart-
ments of St. Petersburg University in Russia. All par-
ticipants were born or lived in St. Petersburg since early
childhood. No participants reported any speech or hear-
ing impairment.

B. The stimuli

To obtain recordings of the target fricatives, a list of
94 real words containing minimal pairs (words that vary
by only a single sound contrasted by place of articulation,
voicing, and palatalisation) of the target fricatives was
collected. Each word contains one of the target fricatives
in a) word-initial position as a CV syllable (e.g. fara), b)
word-medial position in inter-vocal context (e.g. maSa),
and in c) word-final position in a VC syllable (e.g. ves).

The stimuli consist of a list of 198 Russian sentences
including 293 target fricatives. All sentences are listed
in Supplementary Materials 1 (SuppPub1 sentence list).
Each word appears three times in the stimuli list and
was embedded in two different sentence structures: i)
carrier sentence with the structure of “She said ”X” and
not “Y””. Minimal pairs of real words containing one of
the 11 tested fricatives were placed in both “X” and “Y”
positions, ii) natural language sentence including each
of the lexemes. Target fricatives in carrier sentences al-
ways occur in inter-vocal positions, with the exception
of fricatives at the end of the word or at the end of the
sentence. In natural sentences, the vowel context was not

J. Acoust. Soc. Am. / 4 November 2022 Database description: Russian fricatives 1
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TABLE I. Token count by sound. Each speaker produced the same amount (N=293) of token for each fricative category. The

number of fricatives is not the same across all fricatives due to restrictions of occurrences in different surrounding contexts in

Russian.

sound [f] [s] [S] [x] [v] [z] [Z] [sj] [C] [vj] [zj]

frequency by speaker 36 67 55 11 29 27 24 15 15 11 3

total automatically and manually aligned 2301 3953 3245 649 1711 1593 1416 885 885 649 177

total automatically aligned 648 1206 990 198 522 486 432 270 270 198 54

controlled. Therefore, stimuli of type a) can appear with
a preceding consonant. It is to note that the amount of
tokens per sound differs strongly between the categories
due to the naturally uneven distribution found in Russian
as shown in Table I.

As an illustration, the fricative [x] is only involved in
a few minimal pairs contrasted by place of articulation.
This fricative was therefore infrequently recorded. Frica-
tives [zj] and [vj] also appear very rarely in words, being
involved in a few minimal pairs contrasted by place of ar-
ticulation or palatalization. Due to these reasons, these
three sounds contain a very small number of examples
per speaker. Furthermore, the preceding and following
vowels vary between the fricatives.

C. Procedure

The recording sessions were conducted in an audio-
metric booth at the phonetic laboratory of the Phonetic
Institute in St. Petersburg. Participants were briefly in-
troduced to the purpose of the experiment, the expected
duration, and the procedure. To avoid a distortion of the
productions only after the recordings it was announced
that it is a research on Russian fricatives. Participants
who were invited to a second recording session were in-
formed after the second recording of the purpose of the
experiment. They were told that they have the right
to withdraw at any time during (and after) the exper-
iment and they were provided with the contact details
of a person that can answer all their questions concern-
ing the research and their rights. The participants were
compensated for their participation.

Demographic data, such as sex and age, were reg-
istered before the experiment started. 19 Participants
agreed to a second recording session.

The recording program Speech-Recorder ver-
sion 3.28.0 https://www.bas.uni-muenchen.de/Bas/
software/speechrecorder/ was used at a sample rate
of 44.1 kHz (16-bit encoding). A clip-on microphone
(Sennheiser MKE 2-P) was placed at a distance of 15cm
from the speakers’ mouth. The microphone was con-
nected through an audio interface (Zoom U-22) to a lap-
top computer.

The participants were then instructed to read the 198
sentences aloud from a computer screen. The sentences
were presented one by one in random order. The partici-

pants could repeat a sentence in the case of a production
error.

III. DATASET DESCRIPTION

The dataset includes 198 audio files from 77 record-
ing sessions. For each of the 198 sentences, a wav and a
TexGrid are provided. The fricative data set consists of
293 tokens for each of the 77 recording sessions.

All audio files were automatically pre-processed
using the Munich Automatic Segmentation System,
MAUS (Kisler et al., 2017; Schiel, 1999) available online
at https://www.bas.uni-muenchen.de/Bas/BasMAUS.
html. During this process TextGrid annotation files were
generated. The TextGrid output contains three Tiers
(Figure 1). The first tier shows the sentence segmented
by word in Russian. In the second tier, the sentence
was transcribed in Sampa (Gibbon et al., 2017). The
third tier provides time-aligned word segmentation at a
phonemic level. In this tier, the boundaries of the target
fricatives were manually corrected using Praat version
3.9 (Boersma and Weenink, 2022). Before prepossess-
ing the raw data, the audio files were filtered below 80
and above 20050Hz with a smoothing of 80Hz to get rid
of parasite noise. It is to be noted that only the first
recordings were manually corrected, and the 18 second
recordings were only automatically reprocessed. In total
there are 22561 fricatives in the database, of which 17287
were extracted and are available as individual wav files.

In order to define the onset and offset of the full con-
sonant, the broadband spectrogram was considered more
relevant than the start of an aperiodic waveform with
rising zero crossing rates. In intervocalic fricatives, the
presence of formant columns is defined as the onset and
offset of the fricative (following (Skarnitzl and Machač,
2011)). Some speakers ended their voiceless fricatives
with a somehow long post-aspiration in intervocalic po-
sitions and/or when the fricative appeared at the end of
the word and sentence. In these cases, the fricatives were
segmented according to the changes in high-energy events
and the post-aspiration part was not considered. The
voiced fricatives represented also a segmentation chal-
lenge, because the waveform and spectrogram may be
insufficiently informative to define the onset and offset.
The boundaries of these sounds were identified according
to perceptual judgments. In general, it should be noted
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The metadata table gives information on the target
fricatives. The columns SentenceNo and intervalNo in-
dicate the sentence and interval number by which the
fricatives can be identified. SentenceTyp refers to one of
the two types of sentences: CS stands for carrier sentence
and NC for none-carrier sentence. The column Position
specifies the location of the target fricative in a carrier
sentence. The annotation 1 stands for ”X” position and
2 for ”Y” position. The column FricativePosition shows
the word-position of the fricative. The annotation B
stands for word-initial position, M for word-middle, and
E for word-final. The columns Sampa and IPA indicate
the transcription format. The columns PrecedingSound
and FollowingSound contain, as the column names in-
dicate, the preceding and following sound of the target
fricatives. The columns Voicing and Palatalization show
whether the target fricative is voiced or palatalized. The
sentence number, interval number and fricative label of
each fricative filename correspond to the columns Sen-
tenceNo, IntervalNo and Sampa in the metadata table.

V. STUDIES ON THE DATA

Different samples were so far used in publications.
The first study dealt with the identification of stable
acoustic cues in the fricatives /f/, /s/ and /S/ (Ulrich
et al., 2021). In this study a sample of 40 speakers
and the three fricatives was used. Several acoustic mea-
sures (peak frequency and peak amplitude, 4 spectral mo-
ments, duration and zcr) were compared with MFCCs. A
second study focusing on intra- and inter-speaker varia-
tion in eight of the 11 fricatives is in revision (13.10.2022).
For this study the full data set of the first recordings
session was employed. The peak frequency, spectral mo-
ments, duration and harmonic to noise ratio were mea-
sured and compared with MFCCs.

VI. CODE AVAILABILITY

The Praat codes used to filter the sound files (Supp-
Pub3 1 filter the noise) and to extract the target frica-
tives (SuppPub4 2 fricative extraction) are available in
Supplementary Materials.
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Chapter 4
Defining linguistic information in fricatives

sounds

In this section, the segmentation and the analysis of three voiceless fricatives are themed.
The following study is a published paper: Ulrich, N., Allassonnière-Tang, M., Pellegrino, F.,
Dediu, D. (2021). Identifying the Russian voiceless non-palatalized fricatives [f], [s], and [S]
from acoustic cues using machine learning. The Journal of the Acoustical Society of America,
150(3), 1806-1820.
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Identifying the Russian voiceless non-palatalized fricatives
/f/, /s/, and /S/ from acoustic cues using machine learninga)

Natalja Ulrich,b) Marc Allassonnière-Tang,c) François Pellegrino, and Dan Dediu
Laboratoire Dynamique Du Langage (DDL) UMR 5596, CNRS/Universit�e Lyon 2, Lyon, France

ABSTRACT:

This paper shows that machine learning techniques are very successful at classifying the Russian voiceless non-

palatalized fricatives [f], [s], and [S] using a small set of acoustic cues. From a data sample of 6320 tokens of read

sentences produced by 40 participants, temporal and spectral measurements are extracted from the full sound, the

noise duration, and the middle 30ms windows. Furthermore, 13 mel-frequency cepstral coefficients (MFCCs) are

computed from the middle 30ms window. Classifiers based on single decision trees, random forests, support vector

machines, and neural networks are trained and tested to distinguish between these three fricatives. The results dem-

onstrate that, first, the three acoustic cue extraction techniques are similar in terms of classification accuracy (93%

and 99%) but that the spectral measurements extracted from the full frication noise duration result in slightly better

accuracy. Second, the center of gravity and the spectral spread are sufficient for the classification of [f], [s], and [S]

irrespective of contextual and speaker variation. Third, MFCCs show a marginally higher predictive power over

spectral cues (<2%). This suggests that both sets of measures provide sufficient information for the classification of

these fricatives and their choice depends on the particular research question or application.

VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005950

(Received 1 February 2021; revised 4 August 2021; accepted 5 August 2021; published online 13 September 2021)
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I. INTRODUCTION

Building efficient techniques for the (semi)automatic

identification of different speech sounds from their acoustic

properties is very important not only for practical applica-

tions in speech processing, but also for advancing funda-

mental research in phonetics and phonology. While certain

sound categories, such as vowels and stop consonants, are

relatively well understood, more complex ones, such as fri-

catives, still represent a challenge, as it is currently unclear

how they can be efficiently identified and classified using

acoustic cues. Fricatives, as continuous and complex aperi-

odic sounds with diffused energy, have so far not been con-

vincingly described by unique and distinct acoustic

properties, because most measured features, such as, for

instance, the spectral peak location or the four spectral

moments, show considerable speaker variation, vowel con-

text dependencies, and language-specific properties

(Jongman et al., 2000; McMurray and Jongman, 2011;

Nirgianaki, 2014; Reidy, 2016).

In this paper, a machine learning-based approach is pro-

posed to tackle this question by showing that computational

classifiers are successful at correctly identifying the Russian

fricatives [f], [s], and [S] from a set of spectral and temporal

acoustic cues. This process identifies a subset of acoustic

cues that carry most of the information about these

fricatives, helping advance the theoretical understanding of

the perception and processing of fricatives in speech. The

predictive power of these parameters is also compared with

that of the more mainstream approach based on mel-

frequency cepstral coefficients (MFCCs). Moreover, by

making the computer code available in the spirit of open sci-

ence, this study should contribute to the emergence of a

standardised computational toolkit in phonetic science.

The paper is structured as follows: Sec. II surveys the lit-

erature concerning the most commonly measured acoustic

cues for fricatives, discussing their applicability, limitations,

and remaining gaps. Section III then introduces the dataset

composed of 6320 tokens containing productions of the

voiceless non-palatal fricatives [f], [s], and [S] by 40 young

native speakers of Russian from St. Petersburg. Please note

that the sample analyzed here is only one part of a larger-

scale investigation of Russian fricatives. The full dataset

contains 22 854 tokens, including voiced and voiceless non-

palatal and palatal fricatives, from 78 recording sessions with

59 (29 females) native speakers of Russian, of whom 19 (nine

females) participated in a second recording session. The man-

ual and automatic segmentation steps as well as the acoustic

measurement procedure are also described. Moreover, an

original classifier based on changes in zero crossing rate to

identify the noise part of a fricative sound is introduced.

Section IV compares four different classifiers (decision

trees, random forests, support vector machines, and feed-

forward neural networks with backpropagation) on a large

set of acoustic cues derived from different approaches and

on 13 MFCCs to predict the fricative sounds. It shows, first,

a)This paper is part of a special issue on Machine Learning in Acoustics.
b)Electronic mail: natalja.ulrich@univ-lyon2.fr
c)ORCID: 0000-0002-9057-642X.
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that all classifiers and both types of measurements have high

predictive power and, second, that traditional measurements

do so while using only a small subset of acoustic cues.

The paper ends with a discussion of the advantages and

limitations of the methods and of the implications of the

findings for understanding fricatives in general and Russian

fricatives in particular.

II. AN OVERVIEW OF FRICATIVES

Even though fricatives have been extensively studied,

neither the relationship between the articulators and their

acoustic output, on the one hand, nor the perception mecha-

nisms involved, on the other, are currently fully understood.

Despite this, the basic mechanisms involved in the pro-

duction of voiceless fricatives are relatively well described:

they are produced by a turbulent airflow in the pharynx and

the oral cavities. The most significant parameters for acous-

tics are the length of the front cavities, the flow rate, and the

presence of an obstacle.

During the production of voiceless fricatives, frication

noise can in general be generated by two mechanisms: the

first source of frication noise is a “channel turbulence”

resulting from the air flow passing through a narrow con-

striction of the vocal tract, producing random fluctuations of

the air-stream (Catford, 1977; Stevens, 1998). Depending on

the fricative place of articulation, frication noise can also be

generated by a second source, due to the airflow encounter-

ing a wall or an obstacle (e.g., the teeth), generating energy

in the high frequency range of the noise spectrum (Catford,

1977; Shadle, 1990). Additionally, secondary articulations

such as palatalization or aspiration can complexify the artic-

ulatory and acoustic structure observed in fricatives. Though

typologically rare, phonologically aspirated voiceless frica-

tives involve, for instance, the production of both frication

and aspiration noise, leading to further challenges in their

characterization (Rabha et al., 2019).
Based on the invariant theory, which predicts that

unique and distinctive temporal, spectral, and/or amplitudinal

characteristics of acoustic signals serve as crucial perceptual

cues (Blumstein and Stevens, 1981), many studies have tried

to find reliable and distinct acoustic cues of fricatives. While

such an approach was successful in finding, for example,

voice onset time and formants as stable acoustic and percep-

tual characteristics for stop consonants and vowels, when it

comes to fricatives, such acoustic invariant properties are

highly debated. On the other hand, several studies argue that

there is no single property that characterizes all fricatives and

that in grouping them, only a distinction between the sibilants

and non-sibilants can be made (Ladefoged and Maddieson,

1996). Recent attempts to automatically classify the fricative

manner of articulation (vs stop or affricate manners) con-

firmed both that a high level of accuracy can be reached and

that performance significantly differs between sibilant and

non-sibilant segments (Patil and Rao, 2008; Vydana and

Vuppala, 2016). Moreover, cross-linguistic studies show

strong differences in the articulation and acoustics of

fricatives among languages and speakers, suggesting the exis-

tence of different acoustic features of the same sound

(Catford, 1988; Gordon et al., 2002; Hayward, 2000;

Ladefoged and Wu, 1984; Reidy, 2016).

Nevertheless, there is an abundant literature that tries to

identify measurements allowing the description and classifi-

cation of fricatives. Most work has concerned the English

voiceless fricatives and the contrasts in places of articulation

(Behrens and Blumstein, 1988; Jassem, 1965, 1995;

Jongman et al., 2000; Maniwa et al., 2009; McMurray and

Jongman, 2011; Shadle, 1986, 1990; Shadle and Mair, 1996;

Strevens, 1960), while the fricative inventories of other lan-

guages, such as Spanish (de Manrique and Massone, 1981),

Polish (Jassem, 1995; _Zygis and Padgett, 2010), Japanese

(Funatsu and Kiritani, 1998), Dutch (Kissine et al., 2003),

and Greek (Nirgianaki, 2014), are much less studied. The

research on the Russian sound system in general, and in par-

ticular on fricatives, is also strongly unrepresented, which

results in a lack of systematic documentation of topologi-

cally contrasting fricatives (Kochetov, 2017). The Russian

phonetic inventory is particularly interesting due to its com-

plex phonetics and rich fricative inventory: there are at least

12 fricatives, at four places of articulation [f, s, S, x], with

voicing [v, z, Z] and palatalization [fj, vj, sj, ˆ:, zj] contrasts

(Timberlake, 2004), offering thus a wide range of possibili-

ties for the investigation of fricatives. However, only a

handful of studies provide a description of the Russian pho-

neme inventory (Bolla, 1981; Shupljakov et al., 1968;

Timberlake, 2004), and most surveys of Russian fricatives

(Derkach et al., 1970; Kochetov, 2017; Padgett and _Zygis,

2007) either do not take into account all its fricative conso-

nants or only consider a small set of tokens, vowel contexts,

word positions, and/or speakers.

Concerning the effects of different vocal tract configu-

rations during the production of fricatives on various acous-

tic measures, it is in general agreed that the size and shape

of the vocal tract determines the spectrum of a fricative

(Stevens, 1998), and it is argued to be well described by the

acoustic features of the spectral peak location and the first

four spectral moments (spectral mean, spread, skewness,
and kurtosis) (Hoelterhoff and Reetz, 2007; Jesus and

Shadle, 2002; Jesus and Jackson, 2008; McMurray and

Jongman, 2011; Shadle and Mair, 1996). Moreover, frica-

tives are not immune to co-articulation, and the articulator

movements have salient acoustic consequences for the spec-

tral energy distribution. As a consequence, the spectro-

temporal trajectory has also been successfully exploited to

study fine-grained differences among voiceless fricatives

(Reidy, 2016). The spectral peak location is probably the

most studied acoustic cue and is defined as the frequency

with the highest amplitude. It has been argued that the fre-

quency of the spectral peak is connected to the tongue

movements during the production of fricatives at different

places of articulation: this value supposedly decreases from

high to low frequencies as the tongue moves from front

to back (Hughes and Halle, 1956; Jongman et al., 2000),
but this could not be confirmed for Greek fricatives
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(Nirgianaki, 2014). Moreover, spectral peak may serve to dis-

tinguish between sibilants and non-sibilants and, within the

former, between the alveolars and palato-alveolars (Behrens

and Blumstein, 1988; Heinz and Stevens, 1961; Jassem,

1965; Shadle, 1990; Strevens, 1960). Controversially, a num-

ber of studies have found a main effect of speaker and gender

(Hughes and Halle, 1956; Jongman et al., 2000; Nirgianaki,
2014) and of the vowel context, which influences the tongue

body during the production of the fricative (Mann and Repp,

1980; Nirgianaki, 2014; Soli, 1981; Stevens, 1998). Indeed,

the impact of the following vowel is stronger for [f] than for

[s] and even less for [S] (Stevens, 1998).

The first spectral moment is also often used and refers

to the mean of the distribution of spectral energy or to the

center of gravity of the fricative (Forrest et al., 1988).

Several studies show that center of gravity can distinguish

between non-sibilants and sibilants and even within sibilants

(Jongman et al., 2000; Kochetov, 2017; Nittrouer et al.,
1989): higher values were found for sibilants than for non-

sibilants (Tomiak, 1991) and for [s] than for [S] (Funatsu

and Kiritani, 1998; Jongman et al., 2000; Nittrouer et al.,
1989; Padgett and _Zygis, 2007; Zsiga, 2000). In Russian, the

center of gravity was reported to be gender- and speaker-

dependent, with higher values in word-initial than in word-

medial positions (Kochetov, 2017).

An acoustic cue less considered in the literature is the

second spectral moment, which refers to the spectral spread

or variance of the energy around the mean. Spectral variance

was found to be lower for sibilants and higher for non-

sibilants (Jongman et al., 2000; Tomiak, 1991), with the

post-alveolar fricative [S] having the lowest variance

(Shadle and Mair, 1996).

More findings are reported for the third and the fourth

spectral moments, skewness and kurtosis. Skewness

describes the spectral tilt and measures the overall asymmetry

of the energy distribution. A skewness of zero indicates a

symmetrical distribution around the mean. A positive skew-

ness suggests a negative tilt with a concentration of energy in

the lower frequencies, and a negative skewness infers a posi-

tive tilt and a predominance of energy in the higher frequen-

cies (Newell and Hancock, 1984; Peeters, 2004). Kurtosis

refers to the “peakedness” or flatness of the distribution:

spectral kurtosis equal to 3 indicates a normal distribution,

while a value smaller than 3 suggests a flat distribution and a

higher value stands for a “peaker” distribution (Newell and

Hancock, 1984; Peeters, 2004). Several studies suggest that

skewness and kurtosis may distinguish between [s] and [S]

(McFarland et al., 1996; Nittrouer et al., 1989; Tomiak,

1991). A negative skewness was found for [s] and a positive

one for [S] (Jongman et al., 2000; McFarland et al., 1996;
Nittrouer et al., 1989), but others report a greater positive

skewness for [s] than for [S] (Tomiak, 1991). For kurtosis, a

large positive value was measured for [s] and a small positive

or a negative one for [S] (Jongman et al., 2000; McFarland

et al., 1996; Nittrouer et al., 1989; Tomiak, 1991).

Thus, multiple studies show that the spectral moments

may be able to distinguish fricatives (Forrest et al., 1988;

Jongman et al., 2000; Tomiak, 1991), but others argue that

while they carry important information about fricatives,

they cannot reliably distinguish their places of articulation

(Shadle and Mair, 1996). On the other hand, the temporal

properties of fricatives were so far much less investigated,

with most studies agreeing that duration is not a distinct cue

in fricatives at all (Jongman et al., 2000; Kochetov, 2017) or

can only contrast non-sibilants and sibilants (Behrens and

Blumstein, 1988).

In terms of the predictive power found in the literature,

temporal and spectral measures achieve quite a low accu-

racy of about 77% (Jongman et al., 2000) and between about

79% and 85% (McMurray and Jongman, 2011) for English

fricative place of articulation and of only about 61% for

Greek fricatives (Nirgianaki, 2014). In contrast, several

recent studies have focused on the extraction of cepstral

coefficients on the mel scale (Kong et al., 2014) or the Bark

scale to describe and distinguish fricative place, voicing,

and palatalization contrasts (Ghaffarvand Mokari and

Mahdinezhad Sardhaei, 2020; Jesus and Jackson, 2008;

Spinu et al., 2018; Spinu and Lilley, 2016), achieving a

much better predictive power of around 90% and higher

than the traditional measures. Even fewer studies

approached the identification of fricatives using machine

learning, and they mostly used deep learning methods

(Anjos et al., 2020; Nagamine et al., 2015). However, while

very interesting, it is generally harder, when using such

methods, to understand how the acoustic cues participate in

the classification process.

III. PRIMARY DATA AND ACOUSTIC CUES

The following R packages are used for the quantitative

analysis: data.table (Dowle and Srinivasan, 2019), e1071

(Meyer et al., 2019), ggfortify (Tang and Horikoshi, 2016),

neuralnet (Fritsch et al., 2019), nnet (Venables et al., 2002),

recipes (Kuhn and Vaughan, 2019), randomForest (Liaw

and Wiener, 2002), randomForestExplainer (Paluszynska

and Biecek, 2017), recipes (Kuhn and Wickham, 2019),

rpart (Therneau and Atkinson, 2019), rpart.plot (Milborrow,

2019), rsample (Kuhn et al., 2019), scales (Wickham and

Seidel, 2020), and tidyverse (Wickham, 2017).

A. Participants and primary data collection

The participants were 40 students (20 female) between

18 and 30 years old, studying in different departments of St.

Petersburg University in Russia. These participants were

born or had lived since their early childhood in St.

Petersburg. No participants reported any speech or hearing

impairment, and only one had to be excluded as he was a

professional musician. All participants were first introduced

to the purpose of the experiment, the expected duration, and

the procedure. They were told that they had the right to

withdraw at any time during the experiment, and they were

provided with the contact details of a person who could

answer all their questions concerning the research and their

rights. The participants were compensated for their
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participation. Demographic data, such as sex and age, were

recorded before the experiment started. The recording ses-

sions were conducted at the phonetic laboratory of the

Phonetic Institute in St. Petersburg, in an audiometric booth

using the recording program SpeechRecorder (Draxler and

J€ansch, 2018) at a sample rate of 44.1 kHz (16-bit encoding).

For the recordings, a clip-on microphone [Sennheiser

(Wedemark, Germany) MKE 2-P] was placed at a distance

of 15 cm from the speakers’ mouth and connected through

an audio interface [Zoom (San Jose, CA) U-22] to a laptop

computer.

The participants were instructed to read 198 sentences

from a computer screen. The stimuli were presented one by

one in a pseudo-random order by the experimenter, and the

participants could repeat a sentence in the case of a produc-

tion error. Ninety-four real words containing one of the 12

Russian fricatives at four places of articulation, voicing con-

trast, and palatalization were embedded either in sentences

where the fricatives occurred without contrast (N¼ 94) or as

minimal pairs in carrier sentences in which the fricatives

were in contrast (N¼ 104). Sentences not containing a con-

trasting fricative were natural-sounding language sentences,

such as “his name is Sasha [salj]” and “I like your [Salj]”

(scarf),1 while the contrasting ones were more constrained:

for example, for the minimal pair [salj] and [Salj], the carrier

sentences were “She said [salj] and not [Salj]” and “She said

[Salj] and not [salj].”2 Some target words have two minimal

pairs (for instance, the word [salj] is embedded in two differ-

ent carrier sentences, once contrasting with [Salj] and a sec-

ond time with [Zalj]), explaining the higher number

(N¼ 104) of carrier sentences.

B. The fricatives

The current study focuses on the differences in the place

of articulation between three Russian fricatives: the labio-

dental [f], the dental [s], and the hard alveolar-palatal [S].

The velar [x] and other voiced and palatalized fricatives

were excluded for several reasons. First, while the contrast

in places of articulation in Russian fricatives has been stud-

ied previously, a gap still exists in the literature (Kochetov,

2017). Studies of Russian fricatives have mostly concerned

pairwise comparisons of places of articulation, such as the

contrast between [s] and [S], while [f] generally has not

been considered so far. In terms of acoustic cues, most stud-

ies have measured noise intensity, F1, F2, F3 onset/offset,

and consonant duration (Kochetov, 2017). Noise spectra

have not been much considered, except in studies that

involved the production from a single speaker (Bolla, 1981)

or only measured the center of gravity (Kochetov, 2017).

Since the documentation of Russian voiceless fricatives is

rather limited, it is preferable to start with a smaller sample

and go deeper in the analysis to achieve a better understand-

ing of how different acoustic cues interact with each other in

the identification of these fricatives.

Second, the velar fricative [x] was excluded, since its

realisations are often very short and show strong co-

articulatory effects, meaning that no or only a very short

noise portion could be detected by the manual and automatic

methods. Therefore, the acoustic cues could only be

obtained from the raw sounds, and even there we saw a very

high variation in the estimated values, suggesting that fur-

ther research is needed to determine how to measure the

velar [x] in a comparable way to the other fricatives.

Furthermore, the occurrence of [x] is much less frequent

than of the other fricatives in Russian, which makes its sam-

ple size too small to be investigated in the current controlled

study.

Third, palatalized and voiced fricatives are not included

to avoid interference between voicing, palatalization, and

place of articulations. That is to say, by only considering

voiceless non-palatalized fricatives, the current study allows

a clear view of how acoustic cues interact with each other to

distinguish fricatives with different places of articulation.

Arguably, this strength can also be construed as a weakness,

since the results shown in the current study are restricted to

a certain subset of Russian fricatives, but since the current

state-of-the-art is relatively limited when it comes to

Russian fricatives and to machine learning, this more

focused approach may be preferable (this is further devel-

oped in Sec. IV).

The final data consist of 6320 sounds: 1440 (22.7%) [f],

2680 (42.4%) [s], and 2200 (34.8%) [S], each equally dis-

tributed among tokens recorded by male and female speak-

ers (e.g., there are 720 [f] sounds recorded by males and 720

recorded by females). Due to the structure of the Russian

lexicon, there are fewer [f] sounds than [s] and [S].

C. Automatic and manual segmentation

The audio files were filtered below 80 and above

20 050Hz with a smoothing of 80Hz and were first pre-

processed online automatically using the Munich Automatic

Segmentation System (MAUS) (Kisler et al., 2017; Schiel,

1999). Its output is a TextGrid containing, among other

things, a tier with the phonetic boundaries, which was used

for further manual boundary corrections, followed by the

extraction of the fricatives with Praat (Boersma and

Weenink, 2021). To define the onset and offset of the full

consonant, the broadband spectrogram was considered as

more important than the start of an aperiodic waveform

with rising zero crossing rates, and in intervocalic fricatives,

the presence of formant columns is defined as the onset and

offset of the fricative [following Skarnitzl and Machač

(2011)].

Applying this segmentation strategy means that the full

segment of a fricative in an intervocalic positions will also

contain part of the transition zone, with co-articulatory

effects of the preceding and following sounds, as can be

seen in Fig. 1. Fricatives preceded by consonants, or in the

last word and sentence position, were segmented according

to the presence of high energy in the spectrogram.3

A third segmentation step was performed to better sepa-

rate the full consonant into temporal components and to
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extract the relevant frication noise portion of the sound. As

shown in Fig. 1, the oscillogram of the full duration of the

consonant is not equal to the pure noise part of the fricative.

Noise is in general defined as an aperiodic signal with high

frequencies and therefore a high number of zero crossings in

a given time, i.e., a high zero crossing rate (zcr). This is

known to detect the voiced and unvoiced parts in speech,

and we used it here to detect the frication noise part in frica-

tives. To visualize the number of zero crossings in Praat, a

PointProcess object4 was generated, as shown in Fig. 2.

The blue bars represent the points where the waveform

passes through zero, and the noise parts of the fricative are

characterized by the high density of the blue bar (appearing

almost as a solid blue rectangle), while the gaps between the

blue bars at the beginning and the end of the sound indicate

fewer zero crossings, which can arise from co-articulatory

effects. Our data show that, in connected speech, the distri-

bution of zero crossings along the sound duration depends to

some degree on linguistic and non-linguistic factors, such as

co-articulation, stress, or speaker-specific production char-

acteristics. Furthermore, many sounds did not show a clear

middle noise portion without any interruption, in which case

no all-encompassing rule could be applied and, to detect the

relevant region, each token had to be considered individu-

ally, explaining why the segmentation of the noise part is

very time-consuming and resists full automatisation and

standardisation.

To overcome these difficulties and allow the full autom-

atisation of the extraction of the noise part, we introduce

here a new method based on training a tree-based computa-

tional classifier, built on the assumption that the zero cross-

ing rate provides sufficient information to divide a speech

signal into a purely aperiodic portion and portions contain-

ing periodics. With this model, each sound is separated into

different windows based on a certain amount of zero cross-

ing points. The zcr within each window is then measured

and compared with the zero crossing rate of the preceding

window (if any). The difference of zero crossing rate

between the two windows (diff) is then computed and used

as a cue to identify the beginning and the end of the noise

part of a sound. Typically, we expect that a rise of zero

crossing rate across two windows indicates the beginning of

the noise, while a drop of zero crossing rate across two win-

dows represents the end of the noise. To have a better under-

standing of which settings are optimal for the model, we

tested different window lengths (here, 64, 128, 256, or 512

points) with different levels of overlap (0%, 30%, 50%, or

80%); please note that the window lengths are considered in

terms of number of zero crossings and do not represent the

window’s absolute duration in terms of wall-clock time, as

the same number of zero crossings may cover different

absolute durations for different sounds.

A “gold standard” subset of 560 fricative sounds, which

had their noise duration identified manually, was used to

annotate each window with noise¼TRUE or noise¼ FALSE

depending on its occurrence within or outside the noise part

identified manually. For the sake of argument, let us consider

FIG. 1. (Color online) An example of a fricative sound. The first tier of this screenshot from Praat shows the full duration of the fricative, while the second

shows only the noise part, excluding the effects of any potential co-articulation.

FIG. 2. (Color online) Visualizing the zero crossings in Praat. The increase

in the spatial density of the blue bars shows a rapid increase in zcr.
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a recording of a certain length, within which there is only one

manually annotated noise part that starts at ts seconds and

ends at te seconds. Each possible window is annotated with a

unique time mark, ti, representing the moment at which the

window starts; if, for a particular window i, this time mark

falls between the starting time and the ending time of the

manually annotated noise of the sound (ts � ti � te), the win-
dow is marked as noise¼TRUE, but if the time mark is

found before the starting time (ti < ts) or after the ending

time of the noise (te < ti), the window is marked as

noise¼ FALSE. This procedure ensures that each window

within each of the sounds is annotated as noise¼TRUE or

noise¼ FALSE, annotations that are used for training a tree-

based computational classifier (Breiman et al., 1984) to iden-

tify the TRUE or FALSE value of each window based on the

gap of zero crossing rates between two consecutive windows.

The classifier was trained on a randomly chosen 70% of

the data (the “training subset”) and evaluated on the remain-

ing 30% of the data (the “test subset”). The random splitting

of the “gold data” into the “training” and “test” samples was

repeated 100 times. For each of these 100 training/test sam-

ples (replications), we evaluated all the possible combina-

tions of window length and overlap so as to identify which

of them generate the highest accuracy at identifying the

noise parts of the sounds. We thus estimated a total of 4

lengths� 4 overlap values¼ 16 possible combinations of

parameters, which were replicated 100 times each, resulting

in a total of 1600 replications. An example decision tree for

window length 512 and 50% overlap is shown in Fig. 3.

The overall performance of the classifier is measured

by its accuracy, which is equal to the percentage of the cor-

rectly classified windows out of the full set of windows

(e.g., if a sound is segmented into ten windows and the

model classifies correctly seven of them, the accuracy of the

model is 7=10 ¼ 70%). A summary of the accuracy of each

of the 16 possible combinations of window lengths and

overlaps is shown in Fig. 4, where each boxplot represents

the distribution of the accuracies of the 100 replications of

the corresponding combination of parameters.

We see that all combinations of parameters result in

accuracies between 78% and 83%, with the best accuracy

being found for a large window length (512 zero crossings)

and a standard overlap (50%), with mean¼median¼ 80.8%

across the 100 replications.5 It is important to note that these

models are much more accurate than the “majority baseline,”

which is equal to what would be obtained by conducting a

deterministic allocation of all the data points into the majority

category (please see below for more details). For our best

parameters (window length¼ 512 and overlap¼ 50%), the

majority baseline is equal to the share of the TRUE sound

segments in the data, i.e., 39 842/61 485¼ 64.8%, but the

accuracy of the model (80.8%) is much higher than this.

Thus, the sound segments classified by this model can then

be used for the extraction of acoustic cues.

However, in general, 80% is far from excellent perfor-

mance and can only be considered as good. Therefore, we

also conducted a brief analysis of the performance of the

classifier for the noise classification task:3 the closer analysis

of the errors generated by the classifier indicates that the pre-

dictions of the classifier tend to wrongfully predict windows

without noise as having noise, which is to say, the model

predicts noise parts that are larger than the actual noises.

FIG. 3. (Color online) A decision tree generated for window length¼ 512

points and 50% overlap. zcr, zero crossing rate; diff, the gap of zero cross-

ing rate between two consecutive windows. A positive diff value represents
an increase in the zero crossing rate, while a negative value refers to a

decrease in the zero crossing rate. The values Sound_TRUE and

Sound_FALSE refer to the presence of noise in a window: a window with

Sound_TRUE is located within the noise part of the sound, while a window

with Sound_FALSE is not. Such a tree is interpreted as follows: the color of

the rounded rectangles (“buckets”) at the bottom of the tree represents the

ratio of correctly predicted TRUE/FALSE value of noise, with the numbers

within showing the number of tokens classified as such (the denominator)

and, of those, which were correctly identified (the numerator). The predic-

tion for a given token starts from the top node and ends in a bucket at the

bottom of the tree. For instance, starting from the top node 1, if zcr < 0.14,

the segment is interpreted as noise¼FALSE; this path classifies 2525

tokens as noise¼FALSE, among which 2042 are correctly identified as

noise¼FALSE, resulting in an accuracy of 2042/2525¼ 80.9% for this pre-

diction. As another example, if the zcr �0.14 and if the gap of zero crossing

rate with the previous sound ranges between –0.036 (node 3) and 0.05

(node 7), the sound segment is interpreted as noise¼TRUE. This path clas-

sifies 6858 tokens as noise¼TRUE, of which 5688 are classified correctly,

resulting in an accuracy of 5688/6858¼ 82.9%. The same logic applies for

the other branches of the tree. The variables that are shown in the decision

tree are the variables considered to have statistically significant explanatory

power given the data, while the variables not shown are considered to not

help in identifying the TRUE/FALSE value of the windows; here, both zcr
and diff are relevant.

FIG. 4. (Color online) The accuracy of the classifiers trained with different

parameters of window length and percentage of overlap (add percentage in

graph). Each combination of parameters is trained and tested for 100 repli-

cations with different training and testing data.
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These errors are equally frequent at the beginning and at the

end of the noise parts of a sound. Furthermore, the windows

from the [f] sounds seem harder to classify, as the accuracies

for the three sounds are [f]¼ 75%, [s]¼ 85%, and [S]¼ 80%,

which is not surprising given that [f] typically has a shorter

noise duration. Additional tuning of the parameters (such as

window length and overlap) may help to further improve the

performance of the classifier, but this goes beyond the aims

of the current study, whose main goal is to investigate

whether machine learning may improve distinguishing frica-

tives. Further discussions can be found in Sec. V.

D. Acoustic cue definition and extraction

To extract acoustic cues, most studies use single spec-

tral slices from the middle and sometimes the beginning and

end of the fricative or of the frication noise, with window

sizes between 25ms (Kochetov, 2017) and 40ms (Jongman

et al., 2000). The extraction of the acoustic cues for frica-

tives is generally not conducted on the full duration of the

consonant. Because here we want to both follow the exam-

ples of previous studies and develop new machine learning

methods, we combined two dimensions for pre-processing

the sound files to subsequently extract the acoustic cues.

For the acoustic analysis, two data sets were used. The

first data set includes the whole corpus of 6320 sounds

(denoted in the following as “A”¼ all sounds): there are

1440 [f] sounds (22.7%), 2680 [s] sounds (42.4%), and 2200

[S] sounds (34.8%). The second data set is the subset of

6068 sounds for which a frication noise window of mini-

mum 30ms could be detected by applying the above men-

tioned automatic noise detection strategy (denoted as

“N”¼ noise sounds); thus, 252 sounds were discarded

[[f]¼ 171 (2.7%), [s]¼ 5 (0.08%), [S]¼ 76 (1.2%)]. To

extract the acoustic cues, four regions of the fricative are

considered: (a) the full consonant duration derived from the

manual segmentation (denoted as “C”¼ consonant), (b) the

identified frication noise duration from the automatic seg-

mentation (“F”¼ frication), (c) the 30ms window placed in

the middle of the consonant (“W”¼window), and (d) the

30ms window place in the middle of the frication noise

(“M”¼middle). Combining these two dimensions results in

six acoustic cue extraction techniques (ACETs): first,

extracting the acoustic measures from the whole corpus

(“A”; 6320 tokens), using (i) the full consonant duration

(“AC”) or (ii) the middle 30ms (“AW”) and, second,

extracting the acoustic measures from the “N” subset (6068

tokens), using (iii) the full duration of the consonant

(“NC”), (iv) the frication noise (“NF”), (v) the 30ms win-

dow placed in the middle of the sound (“NW”), or (vi) the

30ms window placed in the middle of the frication noise

(“NM”) (Table I).

Table II shows the acoustic cues extracted for this

study. All measures were extracted using Praat (Boersma

and Weenink, 2021) and standard settings. The spectral

measurements central peak location (peak) and the four

spectral moments (cog, sdev, kurt, skew) are the most

commonly used cues for fricatives and are discussed above.6

In the temporal domain, we measured the zcr and the dura-

tion of the entire consonant (dur). Furthermore, 13 MFCCs

from the middle 30ms of the sound were extracted.

Figure 5 compares the main acoustic cues computed

using the three ACETs.3 It can be seen that the acoustic cues

behave differently across ACETs, with, for example, [f]

showing more variation for cog and skew than the other

sounds. Likewise, there is variation in the acoustic cues

between the sounds, the most variable being cog, peak,

sdev, and zcr.3

We also conducted a principal component analysis

(PCA) to visualize the relationships between the acoustic

cues. PCA is a technique used for unsupervised dimension

reduction (Jolliffe, 2002). Because multidimensional data

often include variables that are correlated, it is preferable to

transform them before applying other types of analysis.

PCA transforms the correlated input variables into a set of

uncorrelated principal components (PCs) derived from them

and explaining the same variation. The PCs are ordered

decreasingly in terms of the amount of variation in the data

they explain (thus, PC1 explains most of the variance,

PC2 explains most of the remaining variance, and so on).

Figure 6 shows the data projected on the PC1 (x axis) and

PC2 (y axis), which explain together 96.52% of the vari-

ance. 77.66% of the variance is explained by PC1, which is

mostly driven by zcr, cog, and peak, and 18.86% is

TABLE I. The six theoretically possible acoustic cue extraction techniques

(ACETs). The abbreviations shown in each cell are used to refer to each

ACET within the following text. The first letter (A/N) of the abbreviation

refers to the data sample used for the extraction of acoustic measures (all

sounds/noise sounds), and the second letter (C/F/W/M) indicates the consid-

ered region of each sound (full consonant duration/frication noise duration/

middle 30ms of duration/middle 30ms of noise).

All sounds (A) Noise sounds (N)

Consonant duration (C) AC NC

Middle 30 ms of duration (W) AW NW

Frication duration (F) NF

Middle 30 ms of frication (M) NM

TABLE II. Summary of the acoustic cues included in the present study.

Cue Variable Description

Fricative duration dur Duration of the entire sound obtained

from manual segmentation

Zero crossing rate zcr Number of times the wave crosses 0,

computed for each time frame of the signal

Peak frequency peak Frequency of the highest amplitude

Peak amplitude peak_a Amplitude of the highest frequency

Spectral mean cog Mean distribution of spectral energy

(center of gravity)

Spectral variance sdev Spectral spread or variance of the energy

around the mean

Spectral skewness skew Spectral tilt, overall asymmetry of the

energy distribution

Spectral kurtosis kurt Spectral flatness of the distribution
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explained by PC2, which is driven mostly by peak, zcr, cog,

and sdev.
The clusters of [s] and [S] sounds generally stand out

from each other, which implies that the classifiers will prob-

ably not have difficulty in differentiating those two sounds

based on their acoustic cues. On the other hand, the tokens

of [f] are a bit blurred with the [s] and [S] sounds. This

shows that [f] sounds may represent some difficulty for the

classifiers.

IV. PREDICTING FRICATIVES FROM ACOUSTIC CUES

Four computational classifiers were used to predict fri-

catives from acoustic cues. The information about the sex of

the speakers as well as their unique (anonymous) identifiers

was also provided to the classifiers to assess their potential

relevance to the classification of fricatives.7 The first two

are based on binary recursive partitioning (Breiman et al.,

1984): the first classifier generates a single decision tree

based on the data and helps visualize the interactions

between the variables (incidentally, we also used such a

classifier above for sound filtering).

The second, called a “random forest” (Breiman, 2001),

generates a series of 300 decision trees8 that are analyzed as

a whole and used to assess the importance of each variable

with regard to correctly predicting the fricatives. For each

tree, it uses a bootstrap sub-sample of observations and a

random subset of the variables from the entire dataset. This

process of random sampling is also the main strength of ran-

dom forests, as it allows the analysis of small-scale data and

consideration of the possible auto-correlation of variables

(Tagliamonte and Baayen, 2012).

The third classifier is called “support vector machines”

(SVMs), which are able to separate subsets of the data even

when the separation boundary is not linear.

The fourth classifier uses a neural network architecture

(Haykin, 1998; Parks et al., 1998), which searches for non-

linear boundaries between the data points. Here, we use a

feed-forward neural network that consists of an input layer,

a hidden layer, and an output layer, each layer having a spe-

cific number of neurons that are connected to the neurons of

the next layer. The input layer has one neuron for each vari-

able (predictor) in the classification task, while the output

layer has one neuron for each type of predicted sound. The

hidden layer is set to ten neurons in the current experiment.

We chose these four classifiers for the following rea-

sons. The first classifier generates an explicit decision tree

that captures the hierarchical interactions of the variables

within the dataset. The second classifier provides informa-

tion about the relative importance of the predictors. The

third and the fourth classifiers are among the best at dealing

FIG. 5. (Color online) The comparison of acoustic cues based on the three main ACETs reported in the experiments. The names of the ACETs refer to the

acoustic cue extraction techniques listed in Table I.

FIG. 6. (Color online) The PCA visualization of the acoustic cues for each

sound. The length of the arrows relates to how much information is contrib-

uted by the acoustic cues to the PCs. cog, peak, sdev, and zcr are the most

relevant.
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with complex non-linear problems, at the cost of an easy

understanding of the decision process. The interest of com-

paring these four classifiers is in trying to find the best trade-

off in terms of transparency and performance for the classifi-

cation of fricatives based on acoustic cues.

All classifiers were trained on 70% of the data (the

training subset), and their accuracy was evaluated on the

other, non-overlapping, 30% of the data (the test subset).

Importantly, both the training and testing subsets have the

same frequency of the predicted sounds as the full dataset

(e.g., as [f] appears 1440 times in the data, that is, 1440/

6320¼ 22.8% of the time, the subsets each contain about

22% [f] sounds). To be able to generalize the results, we ran

ten replicates, each with the data randomly partitioned into

such training and testing subsets.9

The performance of the computational classifiers was

captured using three measures: accuracy, precision, and

recall. Accuracy provides an overview of the performance on

the entire dataset, and it is the proportion of all correctly clas-

sified sounds. Its value should be compared with an appropri-

ate baseline. One such baseline would be the accuracy of a

model that makes completely random guesses; here, this ran-

dom baseline would be equal to the square of the proportion

of each sound in the data, i.e., ð1440=6320Þ2 þ ð2680=6320Þ2

þð2200=6320Þ2 ¼ 35%, and if our model surpasses this base-

line, it would be considered as performing better than chance.

However, the random baseline is easily affected by the differ-

ent sizes of each category in the data, prompting us to use the

majority baseline as our threshold. This baseline deterministi-

cally allocates all sounds to the biggest category in the dataset:

since [s] appears in the most tokens in our data (42%, 2680/

6320), such a classifier would reach a precision of 42% just

by guessing that all the sounds are [s], so that the accuracy of

our classifiers should be greater than 42%. The majority base-

line is by default at least as good as the random baseline,

making it harder to beat and more reliable for evaluating the

accuracy of classifiers.

However, accuracy gives only a general idea of the per-

formance of the model, and to have a more precise idea as

to how the classifier performs for each sound, we also con-

sidered precision and recall (Ting, 2010). Precision quanti-

fies how many of the sounds classified in each category are

correctly classified (e.g., how many of the sounds classified

as [f] are actually [f] sounds). Recall quantifies how many of

the sounds actually belonging to each category are correctly

classified (e.g., how many [f] sounds are correctly classified

as [f] sounds by the classifier). Precision and recall are com-

puted for each of the three fricatives, resulting in three esti-

mates of precision and three of recall in total.

We now analyze the results of each of the four classi-

fiers in turn.

A. Single decision tree

The mean output of the 10 replications is shown in

Table III. The accuracy does not vary much between the

ACETs, as the maximum is 94.6% and the minimum is

93.0%, but the accuracy of NF is consistently the highest.3

The precision and recall are generally high for all sounds

across the ACETs, without much systematic variation.

Focusing on NF, the accuracy is similar across the repli-

cations, and we show in Fig. 7 the decision tree generated

on the first replication. This tree is to be interpreted in the

same way as in Fig. 3 and shows that cog and sdev are suffi-

cient for the classifier to distinguish between [f], [s], and [S].

For instance, if cog is high (�5486, node 1 to node 2) and

sdev is also high (�4002, node 2 to node 4), the classifier

predicts an [f] sound, while if cog is low (<5486, node 1 to

node 3) and sdev is also low (<2803, node 3 to node 7), the

classifier predicts an [S].

TABLE III. The performance of the classifiers across ten replications ranked according to their mean accuracy. The names of the ACETs refer to the acous-

tic cue extraction techniques listed in Table I. The baseline indicates the majority baseline. Acc., accuracy; upper, upper confidence interval; lower, lower

confidence interval; Pr., precision; Rc., recall. Please note that the slight variation in the accuracy of the majority baseline is due to variations in the dataset

size (NF has fewer tokens than AC since the former is only considering the sounds that were detected with noise parts). The values in bold indicate the

parameters with the highest accuracy for each classifier.

Classifier ACET Baseline (%) Mean Acc. (95% CI) (%) Pr. [f] (%) Rc. [f] (%) Pr. [s] (%) Rc. [s] (%) Pr. [S] (%) Rc. [S] (%)

Single tree MFCC 42.4 93.5 (93.1–93.9) 90.4 89.0 92.3 93.1 97.9 96.9

Single tree AW 42.4 94.6 (94.3–94.9) 91.0 93.4 96.7 93.4 94.7 96.9

Single tree AC 42.4 93.0 (92.8–93.3) 85.9 94.5 94.6 91.8 96.4 93.4

Single tree NF 44.1 94.9 (94.6–95.1) 92.6 91.9 96.1 94.3 94.7 97.3

Random forest MFCC 42.4 98.5 (98.3–98.7) 97.6 96.8 98.2 98.6 99.5 99.6

Random forest AW 42.4 97.4 (97.2–97.6) 96.2 96.9 97.1 97.1 98.1 97.7

Random forest AC 42.4 97.3 (97.0–97.5) 96.2 97.1 97.0 96.9 98.2 97.8

Random forest NF 44.1 97.7 (97.4–97.9) 97.1 96.4 97.8 97.3 97.9 99.0

SVM MFCC 42.4 99.6 (99.5–99.7) 99.2 99.2 99.6 99.6 1.00 1.00

SVM AW 42.4 98.0 (97.8–98.2) 96.8 96.6 97.9 97.7 98.9 99.3

SVM AC 42.4 98.2 (98.0–98.3) 97.6 97.7 98.2 97.6 98.5 99.2

SVM NF 44.1 98.5 (98.3–98.7) 98.1 97.0 98.4 98.4 98.8 99.6

Neural net MFCC 42.4 99.5 (99.4–99.6) 99.1 99.0 99.4 99.4 99.8 99.9

Neural net AW 42.4 97.7 (97.4–98.1) 96.8 96.7 97.4 97.4 98.1 98.3

Neural net AC 42.4 97.8 (97.5–98.1) 97.9 96.9 97.4 97.7 98.2 98.4

Neural net NF 44.1 98.1 (97.8–98.4) 96.9 97.0 98.3 98.0 98.5 98.8
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Interestingly, only cog and sdev matter, while the other

variables (such as zcr, dur, and even speaker information)

are considered as not relevant by the model. This suggests

that the information captured by cog and sdev does not vary
much across speakers (see also Sec. V).

Finally, the confusion matrix generated by this decision

tree on the testing subset is shown in Table IV. It can be

seen that, for example, the testing set includes 358þ 15

þ7 ¼ 380 [f] sounds and that the classifier predicted 358

þ36þ 6 ¼ 400 sounds as [f] sounds, correctly predicting

358 [f] sounds, while 36 were in fact [s] and six were in fact

[S]. Of the actual [f] sounds, 358 were predicted correctly,

while 15 [f] sounds were misjudged as being [s] sounds and

seven [f] sounds were misinterpreted as [S] sounds.

To sum up, the single tree classifier performs generally

well on the data and reaches similar performances across the

three ACETs, but NF consistently ranks first in terms of

accuracy.3 Focusing on one such tree shows that cog and

sdev are the most relevant variables for identifying frica-

tives, a finding supported by the other trees, which all con-

verge in that cog is always at the root, and the two following

branches depend on sdev.

B. Random forest

The accuracy of the random forest classifiers is shown

in Table III, and we can see that, in general, the accuracy is

better when compared to the single decision trees across all

ACETs, all performing comparably well (accuracy between

97.7 and 97.3). NF has a better accuracy than the other

ACETs. However, its accuracy is lower than MFCC-based

extraction.

Random forests allow the estimation of the importance

of each predictor. Here, we used three measures: minimal
depth, the decrease in accuracy, and node purity. The mini-
mal depth of a variable indicates how far from the root node

is the first node where that specific variable matters (for

example, in Fig. 7, cog appears at the root node, having thus

a minimal depth of zero). A variable frequently close to the

root node (thus, with a low minimal depth) is considered to

have a high importance. Table V shows the ranked impor-

tance of the acoustic cues in terms of minimal depth, of the

mean decrease in the accuracy of the model when excluding

a variable (a high decrease means that the variable has pre-

dictive power), and of the mean decrease in the purity (the

Gini coefficient), indicating how the variable contributes to

the homogeneity of the nodes at the bottom of the tree (a

high drop in the purity when removing the variable suggests

strong predictive power). While different measures result in

slightly different rankings, there is a high degree of consis-

tency, with cog and sdev being ranked in the top three most

important variables.

Figure 8 shows how “consistent” the model is when

making decisions, estimated as the probability of the votes

TABLE IV. The confusion matrix generated from the decision tree in

Fig. 7. The columns indicate the actual values, and the rows refer to the pre-

dictions of the classifier. The values in the matrix are from the test set used

to evaluate the accuracy of the classifier, which represents approximately

30% of the data.

[f] [s] [S]

[f] 358 (19.7%) 36 (1.9%) 6 (0.3%)

[s] 15 (0.8%) 741 (40.7%) 10 (0.5%)

[S] 7 (0.4%) 25 (1.4%) 621 (34.1%)

TABLE V. The acoustic cues ranked on their importance as estimated by

minimal depth, mean decrease in accuracy, and purity. These numbers are

based on acoustic cues from the NF data.

Ranking Minimal depth Accuracy Purity

1 cog 2.3 sdev 56.9 cog 625.5

2 peak 2.4 cog 38.8 sdev 516.0

3 sdev 2.4 peak_a 31.5 zcr 483.5

4 zcr 2.6 skew 27.3 peak 437.8

5 peak_a 2.8 zcr 26.3 kurt 167.3

6 skew 2.9 peak 24.6 peak_a 164.1

7 kurt 2.9 kurt 23.2 skew 120.0

8 dur 3.4 dur 14.6 dur 38.8

FIG. 8. (Color online) The confidence of the random forest classifier for

correct and wrong decisions across [f], [s], and [S] for NF.

FIG. 7. (Color online) A decision tree generated with the acoustic cues

from the ACET of NF. The rules for its interpretation are similar to those of

the tree in Fig. 3 except for the color of the “buckets,” which now represent

the sound.
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across all the trees considered (e.g., if 270 of the 300 trees

assign a token to [f], then the confidence of the decision is

270/300¼ 90%). We can see that the model generally has a

confidence level >85% for correct decisions and �35% for

the wrong ones, indicating that the model is “confident”

about decisions that turn out to be correct but that it also

“knows” that a decision is likely to be wrong when it actu-

ally is wrong.

In sum, the results of the decision trees and of the ran-

dom forests with 300 trees converge in identifying a set of

variables considered important for predicting fricatives in

Russian. The accuracy of these two classifiers exceeds by

far the majority baseline.

C. Support vector machine

Again, we perform ten replications using randomly

selected training and testing subsets. Their mean output is

shown in Table III, and, as for the tree-based classifiers, the

accuracy is quite similar across the ACETs (between 98.5%

and 98%). NF also has the highest accuracy.

The accuracy of the SVMs is higher, on average, by

�1% compared to the random forests, showing that the tree-

based classifier already captures most of the information

encoded in the acoustic cues.

D. Neural networks

Once more, we use ten replications, and their mean out-

put is shown in Table III. As for the tree-based classifiers

and the SVM, the accuracy of the ACETs does not vary

much (between 98.1% and 97.7%), NF again has the highest

accuracy, but the differences between ACETs are extremely

small (0.4%).

Thus, the different classifiers have very comparable per-

formances, reaching extremely high accuracies across the

ACETs, showing that there is enough information in the

acoustic cues to correctly classify the fricative sounds [f],

[s], and [S]. Interestingly, NF seems to (very slightly) out-

perform the other ACETs, suggesting that focusing on the

extracted noise may provide the best information for classi-

fying fricatives.

V. DISCUSSION AND CONCLUSIONS

This paper has four (five) inter-related main aims, two

substantive and two methodological. Substantively, we

wanted (i) to check whether using the entire sound, only a

fixed-duration window in the middle of the sound, or only

the noise part makes any difference to the amount of useful

information contained in the extracted acoustic cues and (ii)

to investigate whether conventional acoustic cues do, in

fact, contain enough information to correctly classify frica-

tives, despite previous claims to the contrary.

Methodologically, we tested whether four different compu-

tational classifiers (decision trees, random forests, support

vector machines, and feed-forward neural networks with

backpropagation) are capable of (iii) identifying the noise

part of a fricative sound using only basic acoustic

information and (iv) correctly classifying the Russian frica-

tives [f], [s], and [S] using acoustic cues. Finally, (v) we

compare the predictive power of the acoustic measures with

that of the MFCCs.

Starting with aims (i) and (iii), we defined three ACETs

using either the full consonant duration (AC), its middle

30ms (AW), or only the noise part of each sound file (NF)

(the noise detection used our classifier-based method).

We found that the accuracy of classifying the fricatives

from acoustic cues does not vary much among these ACETs

or among the four classifiers, but differences do exist and

are informative scientifically and methodologically. All four

classifiers perform far above the majority baseline of 44%

accuracy (reaching between about 93% and 98% across

ACETs). The accuracy of the decision trees is generally

lower than of the other three classifiers (as expected, given

that this has the simplest architecture), but, importantly, ran-

dom forests perform almost at ceiling; this result is poten-

tially very important as there is a high interpretability of the

decision rules used.

In particular, extracting acoustic measurements from

the full noise duration seems better than from a 30ms win-

dow (e.g., for cog, sdev, and peak) for all three fricatives

and especially for [f]. That is to say, the most invariant

parameters are the ones estimated from the largest section

that does not show strong co-articulatory effect. Therefore,

we suggest that, depending on the main aim of the investiga-

tion, future work should extract acoustic measurements

from the full noise duration instead of from a small spectral

slice, more so if non-sibilants are the focus of the study.

Similarly, the method we propose can also be useful for

studying fricatives with secondary features such as palatali-

zation (as in Russian) or aspiration (as in Korean). In both

cases, clearly identifying the frication noise section can be

crucial for identifying the phoneme (Rabha et al., 2019).
The ACET NF does not include the speech sounds

where the noise portion was absent or too short to be

detected by the automatic segmentation, resulting in only

6068 tokens being retained (of the 6230 in total), allowing

us to test the potential impact of such errors on the detection

of the fricatives. Most such errors were found in the realiza-

tion of [f], but it is unclear whether this can be generalized

to other datasets. This prompts us to suggest that production

errors should be carefully checked and probably excluded

from the analysis; if the higher error rate for [f] is a general

feature, then this might be particularly relevant for studies

of contrasting front non-sibilant fricatives as is, for example,

the case for English. Furthermore, while our study is rela-

tively well powered in terms of number of tokens per

speaker and the set of speakers, it might be the case that

smaller samples, as typically used in previous studies, do

not have the power to extract the useful information from

the noise.

Focusing now on (ii) and (iv), we think that our study

clearly shows that acoustic cues do contain enough informa-

tion for the correct classification of the Russian fricatives

[f], [s], and [S], in particular, and gives hope that this may

1816 J. Acoust. Soc. Am. 150 (3), September 2021 Ulrich et al.

https://doi.org/10.1121/10.0005950

34



be the case for other fricative sounds in other languages. A

few acoustic cues seem to be necessary and sufficient,

including cog, sdev, and possibly zcr and peak. The impor-

tance of sdev echoes previous studies emphasizing the

importance of dynamical features and spectro-temporal var-

iations in identifying fricatives (Patil and Rao, 2008; Reidy,

2016). Interestingly, the vowel context does not seem to

matter, as is also the case for the speaker’s sex and identity,

suggesting that we may have identified context-independent
characteristics of the fricative sounds themselves beyond

and above the effects of phonetic context (Mann and Repp,

1980; Nirgianaki, 2014; Soli, 1981; Stevens, 1998) and of

sex and other individual-specific factors (Hughes and Halle,

1956; Jongman et al., 2000; Kochetov, 2017; Nirgianaki,
2014).

Concerning (v), as shown in Table III, our results did

not find a large difference in predictive power between the

acoustic measures and the MFCCs, strikingly smaller than

that reported in the literature. In fact, while the MFCCs per-

form better than the acoustic measures (formally, statisti-

cally significantly so), this difference is very small in terms

of effect size (less than 2% accuracy), both performing

effectively at ceiling (above 97% for random forests, SVMs,

and neural nets), and this difference is smaller when the full

frication noise is used. (The fact that such small real-world

differences are statistically significant here is due to the very

small variation between replications.) Thus, both methods

are very good and comparably so at classifying the sounds

[f], [s], and [S], showing that the information necessary for

correctly classifying these three fricatives can be extracted

in several manners. We also considered the performance of

models trained with both acoustic cues and MFCCs.3 While

the results indicate that merging acoustic cues and MFCCs

does not result in a better performance than the MFCCs, the

ranking of the variables represents a mix between acoustic

cues and MFCCs, suggesting that further studies should

investigate how such acoustic cues are captured by the

MFCCs. More precisely, it is not possible at this point to

determine whether the absence of improvement observed

when both acoustic cues and MFCCs are considered is due

to the simplistic merging approach or to a ceiling effect

related to the somehow limited variability offered by our

corpus. The choice of which manner to use should therefore

depend on the particular research question or practical appli-

cation at hand, each having its advantages and disadvan-

tages: the MFCCs are probably more appropriate in an

engineering context, while the acoustic measures give more

insight into the articulatory and perceptual mechanisms rele-

vant for fundamental research.

It is perhaps important to note that our approach here is

to use the acoustic cues to classify the fricative sounds, iden-

tifying, in the process, those cues that matter the most, in

contrast to, for example, McMurray and Jongman (2011),

which, within a regression framework, tries to find statisti-

cally significant differences for a cue given the type of frica-

tive sound. We replicated and extended the methodology in

McMurray and Jongman (2011) using a maximum-

likelihood mixed effects regression approach where the

value of given cue is predicted from the method (the

ACETs), the sound classification ([f], [s], or [S]), and their

interaction as the predictors of interest, controlling for sen-

tence type (carrier or normal sentence), fricative position
(beginning, middle, or end), the sounds preceding and fol-

lowing the fricative (several classes), and sex (F/M) as fixed

effects and for sentence and speaker as random effects (sen-

tence embedded within speaker). In a nutshell, our findings3

suggest that, as expected, there is a high similarity within

speakers and sentences for all cues (high intra-class correla-

tions) and that there are significant differences between

sounds for all cues, with varying influences of sentence

type, fricative position, and context but, again, not of sex.

While they are concordant with our machine learning results

and confirm that, indeed, acoustic cues differ between frica-

tives, these results cannot be directly used to classify frica-

tives from acoustic measures as our classifiers do, which,

arguably, is the relevant question both scientifically and

practically.

Comparing our results of spectral and temporal cues

with the previous findings, we find both overlaps and differ-

ences. Spectral peak location is probably one of the most

promising cues in the literature, but our classifiers did not

find it as crucial for distinguishing fricatives. As for Greek

fricatives (Nirgianaki, 2014), we do not find a clear decrease

in frequency as the place of articulation moves from front to

back, in opposition to other previous research (Hughes and

Halle, 1956; Jongman et al., 2000). In our data, cog is the

most important cue for distinguishing [f], [s], and [S].

Higher values are reported for sibilants than for non-

sibilants (Tomiak, 1991) and for [s] than for [S] (Funatsu

and Kiritani, 1998; Jongman et al., 2000; Nittrouer et al.,
1989; Padgett and _Zygis, 2007; Zsiga, 2000), which our data

confirm, to a certain extent: [f] has the lowest values around

4000Hz (but reaching up even above 7000Hz), while the

energy of [s] is centered around 7500Hz and that of [S] is

centered around 4500Hz.

Despite the spectral spread being much less considered

in the literature, we found that this is one of the most impor-

tant cues in our data: the lowest spread was found for [S]

and the highest for [f] (Jongman et al., 2000; Shadle and

Mair, 1996; Tomiak, 1991).

For the other two spectral moments, skewness and kurto-
sis, our results did not match with previous findings sugges-

ting that these two cues are stable characteristics of fricatives

(McFarland et al., 1996; Nittrouer et al., 1989; Tomiak,

1991). Not only there are no significant differences across the

methods, but both measures are plagued by many outliers.

Temporal measures, such as the full consonant duration

and the frication noise duration, are not distinct cues in our

data. Only the zero crossing rate seems to contain relevant

information, but it is not an important cue for distinguishing

[f], [s], and [S].

Our study has several limitations, probably the most

important being that we are focusing here only on a subset

of the Russian fricative inventory of read speech.
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Nevertheless, we believe our study is a potentially

important contribution to several current debates in phonet-

ics and linguistic typology and to the application of machine

learning techniques to acoustic studies. First, it found that

there may be a set of acoustic cues (cog and sdev) that can

reliably distinguish the Russian fricatives [f], [s], and [S].

This supports the invariant theory and suggests that stable

and descriptive acoustic characteristics can be found

(Blumstein and Stevens, 1981). Second, the results also sup-

port the view that the configuration of the vocal tract during

the production of fricatives shapes their spectrum, with the

relevant spectral cues not residing primarily in the frequency

of the highest amplitude but in the spectral mean and spread,

but more research is needed in this direction. Finally, this

paper shows that acoustic and phonetics studies can be

helped by machine learning (and, more generally, data sci-

ence) approaches: on the one hand, they can help to identify

the voiced and unvoiced parts of a fricative and extract the

frication noise and, on the other, to find patterns in the

acoustic correlates extracted from speech sounds.
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Chapter 5
Defining speaker-specific information in

fricatives

This section deals with the speaker information encoded in fricative sounds. The section is
based on the paper: Ulrich, N., Allassonnière-Tang, M., Pellegrino, F., Inter- and intra- speaker
variation in eight Russian fricatives. The paper was accepted under the consideration of a
Revision due to the 6th of December 2022.

The aim is to understand where and how do speaker exhibit individual differences in the
speech signal. First, gender-speciĄc characteristics are investigated. Second, the analysis is
zoomed into the individual variation of speakers.
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Fricatives
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This paper is part of a special issue on Perception and Production of Sounds in
the High-Frequency Range of Human Speech.

The current study shows that voiceless, voiced and palatal fricative sounds contain infor-
mation specific to gender and individual speakers. The data consist of 15812 tokens from
eight Russian fricatives and 59 speakers. Two types of acoustic cues are selected. First, 11
acoustic speech features (ASFs) including spectral cues, duration and HNR measures and
second, 13 Mel Frequency Cepstral Coefficients (MFCCs) are extracted. Classifiers based on
single decision trees and random forests were trained and tested to predict speakers’ gender
and ID from the two types of acoustic cues. Additional quantitative methods were utilized
to understand the distribution of gender and speaker information across different fricatives
and acoustic cues. The results show gender can be predicted with a good performance by
both ASFs and MFCCs, whereby MFCCs clearly outperform ASFs. The individual speakers
can only be predicted by MFCCs. ASFs encode speakers’ idiosyncrasies in fricative sounds
in a highly individual manner, and no set of cues can predict those idiosyncrasies. The
study concludes that commonly extracted measures in phonetic research are insufficient to
understand the complexity of speakers’ individuality coding in complex speech sounds.
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I. INTRODUCTION

Speech production is influenced by both anatomical
predispositions and movements of the vocal tract, which
are controlled by neuromuscular programming (Dellwo
et al., 2007). Any change in place and length of the con-
striction causes a change in the size and shape of the
cavities behind and in front of the constriction. This, in
turn, can result in a modification in the acoustic charac-
teristics of the produced speech signals related to these
cavities (Stuart-Smith, 2007).

Research on idiosyncrasy assumes that motor control
in speech is highly individual like other modes of human
movements similar to human gait (Matovski et al., 2010).
Those individual features are also reflected in the phys-
ical properties of speech sounds (He and Dellwo, 2014).
Consequently, all produced speech signals carry both the
linguistic meaning, for instance, the place of articulation
or voicing, and certain speaker-specific characteristics.
Research focusing on the idiosyncrasies in speech shows
that a speaker’s gender, accent, language, emotions, or
health status can be exploited not merely by listeners,
but also be determined by technological application and
the extraction of acoustic cues (Dellwo et al., 2007).

aulrichnatalja@gmail.com

The investigation of inter- and intra- speaker varia-
tion and discrimination potential in each speech sound
category represents a different challenge. An influential
aspect which determines our understanding of the acous-
tic nature of sounds is the distribution of periodic and
aperiodic energy. It has been demonstrated that speech
sounds with predominantly periodic energy as vowels are
better understood than speech sounds with a high de-
gree of aperiodic energy, such as fricatives. Most papers
focusing on idiosyncratic information considered vowel
formants (McDougall and Nolan, 2007; Rose, 2007), and
nasals (Enzinger and Balazs, 2011; Kavanagh, 2012).

Fricative sounds on the contrary are more challeng-
ing. They consist of either only aperiodic energy as in
the case of voiceless fricatives or of the interaction of
periodic and aperiodic components as in voiced frica-
tives. Comparing the frequency ranges of fricative sounds
with other consonants, it was early noted that aperiodic
spectral energy is presented in much higher frequency
ranges than in other sounds (Strevens, 1960). Neverthe-
less, analysis investigating the spectral shape of fricatives
primarily considered the bandwidths up to around 10kHz
(Flipsen et al., 1999) and more generally, the relevance
of high-frequency sounds has been overlooked, as under-
lined by Monson and colleagues, 2014 (Monson et al.,
2014). In the past, the main motivation for this filter
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was the technological limitation that only a particular
bandwidth could be analysed (Strevens, 1960). Even
though speech processing technologies developed in the
last decades (e.g. through bandwidth extension (Jax and
Vary, 2003)), description of linguistic and speaker aspects
in fricatives continued investigating a frequency thresh-
old up to 8 to 12 kHz (Forrest et al., 1988; Gordon et al.,
2002; Jongman et al., 2000; Kavanagh, 2011; Kochetov,
2017). Considering this frequency range, existing stud-
ies on idiosyncrasies in fricative sounds found substan-
tial speaker variation and significant potential for speaker
discrimination in fricatives (Kavanagh, 2011; Narayanan
et al., 1995; Newman et al., 2001; Silbert and de Jong,
2008), suggesting their further exploration (Kavanagh,
2012; Schindler and Draxler, 2013). These analyses typi-
cally involved voiceless fricatives with a focus on the alve-
olar [s], whereby almost no observations exist on voiced
and palatal fricatives. Research on the acoustics of Rus-
sian fricatives, in particular, is generally rare. These in-
vestigations were often based on the productions of a
few speakers and speaker-specific attributes were not re-
ported. Speaker and gender variation were considered
so far for sibilant palatal vs. non-palatal fricatives (Ko-
chetov, 2017; Spinu et al., 2018) and for the variation of
vocal fold vibration in voiced fricatives from eight speak-
ers (Barry, 1995).

As a result of the low pass filtering of fricative
sounds, the understanding of how much linguistic and
speaker information and individual variability are coded
in the higher frequency ranges remains unclear. Ar-
ticles on speech production and perception in patients
with cochlear implants and studies of hearing loss in
the elderly have both observed that higher frequencies
matter in speech perception. In the systems of the
cochlear implants, for instance, not all the acoustic in-
formation about the spectral shape in the high-frequency
ranges is sufficiently provided to the user (Moore, 2003).
This, in turn, can cause developmental difficulties in
children perceiving and articulating fricative sounds cor-
rectly (Grandon and Vilain, 2020).

The present study aims to fill these gaps by investi-
gating how the speaker’s gender and identity are encoded
in the acoustic features of voiceless, voiced, and palatal
fricatives in Russian. The article starts with an overview
of the existing literature on gender and speaker variation
in fricative sounds in Section II. Section III describes the
process of data collection, acoustic cue extraction and
acoustic analysis methods. For the current investigation,
we used the same database and similar methods as in
Ulrich et al (2021). However, in the present study, the
recordings of 59 Russian native speakers were considered.
From a dataset of 15812 tokens including the voiceless [f]
[s] [S], voiced [v] [z] [Z] and palatal [sj] [C] fricatives, 11
Acoustic Speech Features (ASF) (spectral cues, duration
and HNR measures) and 13 Mel Frequency Cepstral Co-
efficients (MFCCs) were extracted. To capture speaker-
specific characteristics across all bands, the sounds were
filtered only below 80 and above 20050Hz. For data anal-
ysis, two machine learning classifiers as well as several

statistical methods were applied. Section IV explores the
acoustic differences between gender categories and indi-
vidual speakers. The first objective was to challenge the
predictive power of acoustic measures to classify speak-
ers’ gender and to identify gender-specific traits in frica-
tive sounds. Both sets of acoustic cues (ASFs, MFCCs)
were tested to determine if they provide sufficient infor-
mation to predict a gender by acoustic cues using a ma-
chine learning approach. Several statistical methods were
employed to investigate gender-specific acoustic features
and variation described in previous research. The sec-
ond objective was to zoom into the individual level of a
speaker. The application of the same machine learning
techniques should show whether speakers’ ID can also
be predicted by the extracted cues. Then, a Principle
Component Analysis (PCA) was compared with the ra-
tio of standard deviation, which gave insights into the
distribution of intra- and inter-speaker variation in the
investigated fricatives. The paper finishes with a discus-
sion on gender and inter- and intra-speaker variation in
section V

II. PREVIOUS RESEARCH ON SPEAKER INFORMATION

IN FRICATIVE SOUNDS

For the investigation of speaker-specific properties
and variation in speech sounds, fricatives are particularly
interesting because they consist mainly of turbulent noise
and represent one of the most complex sound categories
in terms of articulation, acoustics and perception.

From a typological view, fricatives represent the sec-
ond largest group of obstruents (after stop consonants)
across the world’s languages (Maddieson and Disner,
1984). Fricatives exist at various places and voice settings
and can undergo several secondary articulation processes
such as palatalisation or aspiration (Ladefoged and Mad-
dieson, 1996; Maddieson et al., 2013). Fricative invento-
ries can vary widely across the languages of the world,
as reported in the LAPSYD database (Maddieson et al.,
2013). There are languages that arguably lack fricatives,
as in Australian languages (Butcher, 2003; Maddieson
and Disner, 1984; Maddieson et al., 2013), to languages
like Russian, with 12 phonological fricatives of five places
of articulation, voicing and palatalization contrast (Bolla,
1981).

Furthermore, in the articulation and acoustics of
fricative sounds, language-specific triads were identified.
Speakers of different languages can apply various strate-
gies to produce the same phoneme, resulting in vary-
ing acoustic properties, as observed by acoustic (Gor-
don et al., 2002; Hayward, 2000; Ladefoged and Mad-
dieson, 1996) and articulatory studies (Narayanan et al.,
1995). For instance, speaker and gender variation in the
duration and the spectral shape was found to be promi-
nent only for some languages, but not for others (Gordon
et al., 2002).

Even though a wide range of factors influences the
acoustics of fricatives, several attempts were made to
explore how the properties of the speech signal may
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vary consistently between female and male speakers and
across speakers in general and whether speaker-specific
attributes can be exploited by human listeners or be pre-
dicted by technological applications using a set of acous-
tic cues. The literature suggests that regularities ex-
ist within those variations (Gordon et al., 2002; Hughes
and Halle, 1956; Jongman et al., 2000; Kavanagh, 2011;
Narayanan et al., 1995; Newman et al., 2001; Silbert and
de Jong, 2008; Smorenburg and Heeren, 2020), which
might help to discriminate between- speakers (Schindler
and Draxler, 2013). Different fields, including acoustic
phonetics, ASR, and forensic speaker comparison, are
interested in investigating gender and inter- and intra-
speaker variation. Therefore, a number of methods and
measures were developed and applied in connection with
the purpose of the research.

One of the best-described speaker characteristics is
gender and the acoustic contrast between female and
male speakers is argued to be well understood and ex-
plained by physiological and sociophonetic differences
(e.g. Jongman et al., 2000; Ludger et al., 2021; Mun-
son et al., 2006). Perception experiments (Schwartz,
1968) and acoustic cue-based recognition tasks (Ghaf-
farvand Mokari and Mahdinezhad Sardhaei, 2020; Spinu
et al., 2018; Spinu and Lilley, 2016) provided evidence
that gender information can be obtained from fricative
sounds. Several studies argued that speaker variation is
dependent on the place of articulation and greater gen-
der variation was identified in anterior fricatives (Gor-
don et al., 2002; Kochetov, 2017). A cross-linguistic
study showed, for instance, that in some languages fe-
male speakers articulate front fricatives differently than
males, resulting in acoustic gender variation (Gordon
et al., 2002).

To evaluate acoustic differences between female and
male speakers, a number of acoustic speech features
including spectral, temporal and amplitude cues were
measured and analysed. These studies have concluded
that the spectral domain provides crucial information
on speakers’ gender. A very early perception exper-
iment on English fricatives concluded that human lis-
teners can identify speakers’ gender in isolated voiceless
sibilant fricatives, relying on higher spectral energy in
female productions. This effect was not present for the
nonsibilants (Schwartz, 1968). Several follow-up studies
also reported higher values for female speakers in the
centre of gravity, and peak frequency (Flipsen et al.,
1999; Gordon et al., 2002; Jongman et al., 2000; Ko-
chetov, 2017; Ludger et al., 2021; Newman et al., 2001).
Gender variation is further found in spectral skewness
(Flipsen et al., 1999; Ludger et al., 2021; Munson et al.,
2006; Stuart-Smith, 2007). Differences between female
and male speakers were also observed in the duration
of single-tone and germinate fricatives (Al-Tamimi and
Khattab, 2015).

To predict gender from acoustic cues, several stud-
ies compared the performance between spectral mea-
sures and cepstral coefficients (Ghaffarvand Mokari
and Mahdinezhad Sardhaei, 2020; Jesus and Jackson,

2008; Spinu et al., 2018; Spinu and Lilley, 2016).
The findings on Azerbaijani (Ghaffarvand Mokari and
Mahdinezhad Sardhaei, 2020), Romanian (Spinu and Lil-
ley, 2016) and a subset of Russian fricatives (Spinu et al.,
2018) showed that cepstral coefficients clearly outperform
common spectral measures. Thereby, very similar accu-
racy rates with around 60% for ASFs and around 80%
and higher for CCs were obtained. These results indicate
that gender variation is best captured by the spectral en-
velope information measured by CCs.

A literature review on idiosyncrasies in fricatives re-
veals controversial results regarding whether individual
speakers can also be predicted from fricative sounds.
Some research demonstrated, for example, that models
built for visual speaker recognition in vowels exhibit a
decrease in performance for fricatives and nasals. The
authors concluded that less speaker information is con-
tained in these sound categories (Gendrot et al., 2020).
Significant differences in speaker discrimination poten-
tial were observed between voiced and voiceless sounds in
general and between fricatives in particular for phoneme-
based speaker identification in Arabic consonants (Alsu-
laiman et al., 2017). Moderate performance in fricatives
was noted in forensic voice comparison of six sound cat-
egories in French (Ajili et al., 2017). Opposite findings
were reported for English fricatives where a high recog-
nition rate was achieved with vowels and also fricatives
(Antal, 2008). Idiosyncratic information in fricatives and
significant potential for speaker discrimination was fur-
ther detected in ASFs (Gordon et al., 2002; Hughes and
Halle, 1956; Kavanagh, 2011; Narayanan et al., 1995;
Newman et al., 2001; Silbert and de Jong, 2008; Smoren-
burg and Heeren, 2020), suggesting their further explo-
ration (Kavanagh, 2012; Schindler and Draxler, 2013).
For instance, the spectral peak frequency in voiceless
fricatives was found to be highly variable between- speak-
ers, and one speaker’s alveolar peaks can appear as
the post-alveolar peak frequencies of another speaker
(Hughes and Halle, 1956). Also, the spectral moments
were considered to serve as reliable acoustic cues for
speaker discrimination in [f] and [s] sounds (Schindler
and Draxler, 2013). The most substantial inter-speaker
variability was identified in the spectral shape of the alve-
olar [s] (Gordon et al., 2002; Kavanagh, 2011, 2012). As
another example, laryngographic analysis of voiced ob-
struents showed that vocal fold vibration varies between-
speakers, resulting in different frication and voicing du-
ration as well as in different patterns of devoicing (Barry,
1995).

Several researchers argued that gender and speaker-
specific properties are not solely reflected in the spec-
tral and temporal domains but also in further acoustic
characteristics. For instance, it was claimed that females
produce stronger acoustic distinctions and articulate con-
trasting vowels and consonants more clearly. The pro-
ductions of vowels (Diehl et al., 1996; Weirich and Simp-
son, 2014) and fricatives (Weirich and Simpson, 2015) of
female speakers tend to occupy a larger phonetic space
than male speakers. Furthermore, duration and spectral
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analysis were discovered to be unequally informative for
different speakers. In discrimination tasks solely some
speakers were identified by these measures. Acoustic
properties were found to provide the best information for
individuals at the extremes rather than in the middle of
the distribution (Kavanagh, 2012). In a study comparing
spectrograms and phonetic features extracted from vow-
els, it was confirmed that significant differences between-
speakers exist. The investigation concluded that there
are some good speakers giving the best results in the iden-
tification task and poor speakers showing poor results
(Gendrot et al., 2019). On the other hand, some ar-
ticulation and acoustic studies claim, that intra-speaker
variability in obstruents is contrast- and/or cue-specific
rather than a general talker characteristic (Harper, 2021;
Romeo et al., 2013).

Regarding the Russian fricative inventory, solely a
few studies were conducted to investigate gender vari-
ation. Most works on Russian fricatives examined the
place of articulation or palatalisation contrast. These
analyses were usually based on the productions of a few
speakers and did not include speaker-specific descriptions
as summarized in (Kochetov, 2017). Speaker and gender
variation were reported so far for sibilant palatal and non-
palatal fricatives produced by ten speakers (Kochetov,
2017; Spinu et al., 2018) and the variation of vocal fold
vibration in voiced fricatives from eight speakers (Barry,
1995).

To summarize, the research on idiosyncratic infor-
mation in fricatives shows that speaker information is
contained in fricative sounds. However, the literature re-
view does not provide a clear overview of which acoustic
cues are the most crucial for speaker recognition. In ad-
dition, so far, the study of inter- and intra-speaker varia-
tion mostly focused on spectral cues and conclusions have
often been made based on a limited number of speakers
or the acoustics of a small set of fricatives. The present
study aims to provide a deeper understanding of idiosyn-
cratic information in noise sounds by looking at Russian
voiceless, voiced, and palatal fricatives in a large data
sample in terms of the number of speakers and tokens.

III. PRIMARY DATA AND ACOUSTIC ANALYSIS

A. Participants, Data Collection and Segmentation

The participants were 59 students (30 females and 29
males) between 18 and 30 years old, studying at different
departments of the St. Petersburg University in Russia.
They were born or lived since their early childhood in St.
Petersburg. No participants reported any speech or hear-
ing impairment. All participants were first introduced to
the purpose of the experiment, the expected duration and
the procedure. They were told that they have the right
to withdraw at any time during the experiment. They
were provided with the contact details of a person that
can answer all their questions concerning the research
and their rights. The participants were compensated for
their participation.

The recording sessions were conducted at the
phonetic laboratory of the Phonetic Institute in
St. Petersburg, in an audiometric booth us-
ing the recording program Speech-Recorder ver-
sion 3.28.0 https://www.bas.uni-muenchen.de/Bas/
software/speechrecorder/ at a sample rate of 44.1 kHz
(16-bit encoding). For the recordings, a clip-on micro-
phone (Sennheiser MKE 2-P) was placed at a distance of
15cm from the speakers’ mouth and connected through
an audio interface (Zoom U-22) to a laptop computer.

Demographic data, such as gender and age, were
recorded before the experiment started. The participants
were instructed to read 198 sentences in random order
from a computer screen. Two sentence structures were
designed to obtain each real-word lexeme produced in
three different contexts. One type of sentence is a so-
called carrier sentence with the structure of “She said
”X” and not “Y”” (RU: [ana skazala salj, a nje Salj]).
Minimal pairs of real words for instance [salj] and [Salj]
containing one of the 11 tested fricatives were placed in
both “X” and “Y” positions. The second type of the pre-
designed sentence is a natural language sentence includ-
ing each of the lexemes for instance “his name is Sasha
[salj]” and “I like your [Salj]”(scarf) (RU: [evo zavut saSa
[salj], mnje nravitsa tvoja [Salj]). The distribution of
voiceless, voiced and palatal fricatives depend on several
phonotactic rules (e.g. Bolla, 1981; Timberlake, 2004).
For example, voiceless fricatives can appear at the initial,
medial, and word-final positions, while voiced fricatives
undergo devoicing at the word-final position. Further-
more, not for all contrastive fricatives, minimal pairs ex-
ist. Consequently, a different number of tokens for each
fricative could be recorded. The raw audio files were first
automatically pre-processed by applying the online tool
Munich Automatic Segmentation system, MAUS (Kisler
et al., 2017; Schiel, 1999) available at https://www.bas.
uni-muenchen.de/Bas/BasMAUS.html. Then, the files
were filtered below 80 and above 20050Hz with a smooth-
ing of 80Hz, and the boundaries were manually corrected
using Praat (Boersma and Weenink, 2022). In order to
determine the onset and offset of the full consonant, the
broadband spectrogram was considered more important
than the start of an aperiodic waveform with rising zero
crossing rates, and in intervocalic fricatives, the presence
of formant columns is defined as the onset and offset of
the fricative (following (Skarnitzl and Machač, 2011)).1

The number of sounds per speaker employed in the cur-
rent study is summarized in Table I. 2

TABLE I. Token count by sound. Each speaker produced

the same amount of token for each fricative category.

sound [f] [s] [S] [v] [z] [Z] [sj] [C]

freq 36 67 55 29 27 24 15 15
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TABLE II. Summary of the acoustic cues included in the present study.

Cue Variable Description

Fricative Duration dur Duration of the entire sound obtained from manual segmentation

Peak Frequency peak Frequency of the highest amplitude

Spectral Mean cog Mean distribution of spectral energy (center of gravity)

Spectral Variance sdev Spectral spread or variance of the energy around the mean

Spectral Skewness skew Spectral tilt, overall asymmetry of the energy distribution

Spectral Kurtosis kurt Spectral flatness of the distribution

HNR mean hmean The mean of Harmonics to Noise Ration (HNR)

HNR sd hsd Standard deviation of HNR

HNR max hmax Maximum of HNR

HNR tmax htmax Time to the maximum HNR

tilt tilt Spectral tilt. Computed by H1-H2

B. Acoustic cue definition and extraction

The identification of speaker idiosyncratic informa-
tion in speech sounds is the aim of diverse research fields
with various purposes. It shows, therefore, significant
theoretical and methodological diversity in the selection
of extracted features as well as in the application of an-
alytical techniques. One of the main aims of phonetic
and acoustic research is to enhance the fundamental un-
derstanding of the relationship between articulation and
acoustic properties by measuring and comparing acoustic
features across phoneme classes and speakers. The most
extracted and best understood acoustic cues are the peak
frequency and the spectral moments, which are known
to be correlated with articulatory and anatomical prop-
erties of a speaker (Newman et al., 2001; Schindler and
Draxler, 2013; Smorenburg and Heeren, 2020). Research
focusing on automatic speaker recognition aims less to
understand the interaction of articulation and acoustics,
but to enhance speaker recognition systems by obtaining
more abstract features such as for instance Mel-frequency
coefficients (MFCCs) (Ganchev et al., 2005).

For the current acoustic analysis, two sets of mea-
surements were extracted from a data sample of 15812
tokens including the fricatives [f], [s], [S], [v], [z], [Z], [sj],
[C] with Praat (Boersma and Weenink, 2022) and stan-
dard settings. The first set of features, to which we will
refer in the following as Acoustic Speech Features (ASF),
contains 11 measurements and is summarized in Table II.

Besides spectral measures which describe the dis-
tribution of the aperiodic energy across the frequency
bands, harmonic-to-noise ratio (HNR) measures were ex-
tracted. The HNR cues give insights into the distribu-
tion of periodic and aperiodic energy. HNR mean and
maximum values around zero indicate equal energy in
harmonics and noise. A value of 20 indicates 99% of
Harmonics and 1% of noise in the signal (Boersma and
Weenink, 2022). The second set of acoustic features is

represented by the extraction of the 13 Mel Frequency
Cepstral Coefficients (MFCCs).

The extraction of these measures was conducted
based on the entire fricative duration. The spectral anal-
ysis was performed on 10ms non-overlapping windows
and averaged over the entire sound. The examination of
all measurements was performed on the frequency bands
from 80 to 20050Hz.

C. Methods for acoustic analysis

To investigate the inter- and intra- acoustic variation
in the target fricatives, first machine learning techniques
were tested to predict speakers’ gender and ID. For fur-
ther exploration of acoustic gender and speaker variation,
a number of statistical analyses were performed. The sig-
nificance of gender differences was visualized and assessed
with Wilcoxon tests’ using the Bonferroni multiple test-
ing correction. The significance of the variables was then
computed with machine learning methods such as ran-
dom forest (RF). The extracted values were normalized
considering their z-score ((x-mean(x))/sd(x)). If a value
is exactly equal to the mean of all the values of the fea-
ture, it will be normalized to 0. If it is below the mean,
it will be a negative number, and if it is above the mean
it will be a positive number.

In order to estimate the potential of gender and
speaker prediction by acoustic cues, we utilized Machine
Learning techniques. The performance of the ASFs and
MFCCs was tested and compared. Two classifiers based
on binary recursive partitioning (Breiman et al., 1984)
were employed: the first classifier generates a single deci-
sion tree (DT) based on the data and helps to visualize
the interactions between the variables. The output of
this classifier is an explicit decision tree that captures
the hierarchical interactions of the variables within the
data set. The second is a ’random forest’ (RF) (Breiman,
2001). It generates a series of 200 decision trees3 that are
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analyzed as a whole and used to assess the importance
of each variable with regard to correctly predicting the
fricatives. For each tree, the algorithm uses a bootstrap
sub-sample of observations and a random subset of the
variables from the entire data set. We adopted this ap-
proach, encouraged by the limited size of the data set
because it is adequate to identify the features that ex-
hibit an interesting identification potential. Additionally,
we were not focused on the absolute classification per-
formances, and the risk of overestimating them was not
crucial in this context. The two classifiers were trained
on 70% of the data (the training subset) and their accu-
racy was evaluated on the other, non-overlapping, 30%
of the data (the test subset). Additional details on the
parameters are available in Supplementary Materials 1
at [URL will be inserted by AIP].

The accuracy is the proportion of all correctly classi-
fied sounds. It provides an overview of the performance
of the entire (balanced) dataset. However, accuracy gives
only a general idea of the performance of the model. To
have a more precise idea as to how the classifier per-
forms for each sound we also reported precision and recall
(Ting, 2010). Precision quantifies how often each gen-
der or speaker was correctly classified (e.g., how many of
the sounds classified as produced by for instance female
speakers were actually classified as produced by female
speakers). Recall quantifies how many of the sounds ac-
tually belonging to each category are correctly classified
(e.g., how many sounds produced by female speakers are
correctly classified as produced by female speakers). Pre-
cision and recall are computed for both genders, resulting
in two estimates of precision and two of recall. Due to
the lack of balance in terms of the token number between
the produced fricatives, the kappa was also used to as-
sess the overall accuracy. The kappa metric compares the
observed accuracy of a classifier with the expected accu-
racy under random classification. This metric is generally
used to compare the performance of different classifiers
on different sets of data, as the comparison with the ac-
curacy under random classification allows a cross-model
and data comparison. It is calculated with the following
formula: (observed accuracy - accuracy based on random
classification)/(1 - accuracy based on random classifica-
tion). For example, if the accuracy of the classifier is
0.7 and the accuracy based on random classification is
0.5, the kappa is equal to 0.4. A kappa higher than 0.75
means excellent performance. A kappa between 0.40 and
0.75 indicates a fair performance, while a kappa lower
than 0.40 shows a poor performance.

In previous research gender and speaker variation
was often accessed by various statistical methods. Fre-
quently computed and compared were the statistical
means of spectral and temporal cues across speakers and
sounds (Gordon et al., 2002; Kavanagh, 2011; Newman
et al., 2001; Silbert and de Jong, 2008). To capture
the produced variance within each category, the range
(Kavanagh, 2011; Silbert and de Jong, 2008), standard-
deviation (Newman et al., 2001), and the Interquartile

Range (IQR) (Ferragne and Pellegrino, 2010) were mea-
sured.

For the current analysis, first, the significance of gen-
der variation was tested across all raw values for each of
the eight fricatives and the 11 ASFs. To visualise gender
differences and compare the acoustic properties of Rus-
sian fricatives to previous analyses the statistical mean
was obtained. Furthermore, the IQR was measured to
determine the variation across gender categories. For
each sound and cue, the IQR average over gender cat-
egories was estimated and the difference between female
and male speakers was tested for significance.

Apart from that, several investigations found that
male and female speakers organize their fricative con-
trasts differently, computing pairwise distances between
the fricatives produced by male and female speakers
(Weirich and Simpson, 2015). As an additional way of
assessing the pairwise distances within the current data
set, two t-SNE (t-distributed stochastic neighbour em-
bedding) representations of the sound tokens are gen-
erated (Van der Maaten and Hinton, 2008). The t-SNE
method is selected to represent the high-dimensional data
of ASFs and MFCCs on two-dimensional plans. For each
representation, the Euclidean distance was computed be-
tween all the tokens of two contrastive sounds in the t-
SNE representations. For the comparison of female and
male speakers, the measured distances were compared by
gender and sound. More precisely, the distance is com-
puted for sound pairs contrasted by places of articulation
[f]- [s], [s]- [S], [v] -[z], [z]- [Z], [sj]- [C], voicing [f]- [v], [s]-
[z], [S]- [Z] and palatalisation [s]- [sj], [S]- [C].

To explore speaker inter- and intra- speaker varia-
tion, the same methods as used for gender don’t lead
to results that can be interpreted. We decided to ex-
plore speaker variation by Principal Component Analysis
(PCA) based on the z-scored ASFs. First, a PCA was
performed on each sound with the goal, to detect acous-
tic cues that explain most of the variation within each
fricative. The PCA showed the overall variation, with-
out making statements on the origin of variation, such
as whether the variation is caused by a high degree of
inter or intra-speaker variation. To evaluate the source
of variation, we added a measure that we will refer to as
the SD-ratio in the following text. For each fricative, we
divided the overall standard deviation of a certain sound
and cue by the speakers’ standard deviation of the same
sound and cue. This measure is expected to capture sim-
ilar information used in previous studies (Schindler and
Draxler, 2013) as a measure to visualize the ratio of inter-
and intra-speaker variability. The same two methods
were further applied to explore the acoustic properties
of individual speakers in more detail. Therefore, a PCA
was performed and an SD-ratio was computed for each
sound and speaker.
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FIG. 1. Cog across sounds for all speakers. The x-axis represents the time windows and each line is a window of 10ms. The Y

axis in frequency in Hz. The energy extends 10Hz clearly in [f], [s] and [sj]

IV. PREDICTIVE POWER OF SPEAKERS‘ GENDER AND

ID AND INTER AN INTRA-SPEAKER VARIATION

Fricative sounds contain spectral energy in higher
frequency ranges than other sounds (Strevens, 1960). Be-
fore discussing gender and speaker-specific characteristics
of fricatives, Figure 1 provides a sense of how spectral en-
ergy is distributed across different bands and time win-
dows. It shows that spectral energy frequently extends
above 10kHz, particularly in [f] and [s] and [sj].

For the investigation of idiosyncratic information,
two main objectives were defined. The first objective
aimed to test the predictive power of the speaker’s gender
and to explore gender-specific traits in fricative sounds.
The second objective focused on predicting individual
speakers and describing inter- and intra-speaker varia-
tion. In the following outline, the main results of the
analysis are reported. Additional details and code can
be found in Supplementary Materials 1 at [URL will be
inserted by AIP].

A. Predictive power of speaker’s gender and acoustic gender

variation

Gender prediction was carried out on the entire data
sample including all eight fricatives. The performance
was tested and compared between the ASFs and the
MFCCs. The results from both data sets (ASF and
MFCC) and both classifiers are summarized in Table III.

TABLE III. The performance of the two classifiers across ten

replications was tested to predict the speaker’s gender. The

abbreviations are interpreted as follows: DT = single decision

tree, RF = random forest, Acc = accuracy, Prec F = precision

female, Rec F = recall female and Prec M = precision male,

Rec M = recall male. The majority baseline is always 0.5008,

due to an extra speaker in the female sample.

Classifier Set Kappa Acc Prec F Rec F Prec M Rec M

DT ASF 0.28 64% 0.64 0.68 0.65 0.6

RF ASF 0.45 72% 0.72 0.76 0.74 0.7

DT MFCC 0.31 66% 0.64 0.73 0.68 0.57

RF MFCC 0.76 88% 0.88 0.88 0.88 0.87

When comparing the performance of the ASF and
MFCCs, we observed accuracies of 64% for ASFs and
66% for MFCCs for the decision tree classifier (DT). With
the second classifier [ random forest] (RF), the predictive
power increases for both sets of data. For both classifiers,
MFFCs clearly outperform the ASFs with 88% in com-
parison to 72%. These results are in line with previous
research, which observed classification rates of around
60% for ASFs and around 80% and more for CCs (Ghaf-
farvand Mokari and Mahdinezhad Sardhaei, 2020; Spinu
et al., 2018; Spinu and Lilley, 2016). Thus, it can be con-
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TABLE IV. Mean values by gender for each ASF. To estimate the significance of the differences between female and male

speakers all tokens were used. The majority of ASFs show significant gender variation and are marked in bold.

gender sound peak cog sdev skew kurt dur hmean hsd htmax hmax tilt

[f] F 1465 3499 3491 2.82 21.4 0.134 1.84 2.67 0.040 8.88 -3.35

M 1662 3730 3545 2.40 16.4 0.132 1.21 2.46 0.039 7.74 -4.64

[s] F 5904 6837 2715 0.17 3.18 0.155 0.42 1.68 0.066 9.84 -23.7

M 5249 6078 2484 0.45 2.92 0.154 -0.16 1.54 0.066 9.32 -33.2

[S] F 2790 3439 1821 1.80 10.1 0.153 -0.21 1.85 0.071 10.4 -33.9

M 2739 3312 1783 1.57 8.41 0.148 -0.56 1.77 0.066 8.59 -27.6

[sj] F 5246 6252 2520 0.52 3.36 0.160 -0.19 1.60 0.063 11.0 -44.8

M 4643 5644 2459 0.75 3.32 0.158 -0.85 1.56 0.061 9.81 -44.4

[C] F 3282 4095 1994 1.29 5.43 0.182 -0.49 1.60 0.08 14.0 -59.6

M 2928 3666 1836 1.38 5.80 0.18 -0.26 1.62 0.082 13 -62.4

[v] F 226 339 452 27 1622 0.076 17.2 2.72 0.041 20.7 -0.60

M 170 277 442 20 1059 0.083 14.2 2.97 0.046 18.1 -0.89

[z] F 1154 2439 2268 5.44 110 0.088 10.74 3.39 0.024 15.7 1.45

M 631 1560 1774 6.16 110 0.097 10.39 2.73 0.034 14.5 -0.4

[Z] F 668 1300 1326 4.27 51 0.087 8.31 2.72 0.026 12.6 2.16

M 399 944 1125 5.22 72 0.095 8.63 2.23 0.041 12.05 0.53

cluded that the detailed information encoded by MFCCs
on a non-linear spectral scale outperforms the simpler
linear features. However, the MFCCs are not ideal to
interpret how gender information is coded in fricative
sounds. The accuracy based on ASF reaches 72% and
has a kappa of 0.45, which means a fair performance.
This suggests that gender can be predicted from spectral
and HNR cues. The most important cues across the eight
fricatives are peak, cog, skew and hmean. The precision
and recall are generally high for both gender across the
two data sets, meaning that gender was generally classi-
fied correctly.

To explore further the variation between gender cat-
egories, a number of tests were performed. As outlined
in the literature review, acoustic characteristics specific
to female and male speakers were reported merely for
a limited set of fricatives and acoustic cues. However,
very narrow information is obtainable about gender dif-
ferences in, for instance, voiced and palatal fricatives. To
address these gaps, the following objective was to inves-
tigate gender variation in voiceless, voiced and palatal
fricatives of different places of articulation. A statisti-
cal analysis of gender-specific properties and variation
was performed. For this description, the raw values, the
statistical mean and the interquartile range (IQR) of all
ASFs from the eight fricatives were considered. In the
current data acoustics differences between gender cate-
gories were detected in almost all eight fricatives and

ASFs. The mean values averaged by gender, sound and
cues are summarised in Table IV.

Significant differences between the female and male
distributions are denoted by values written in bold. To
define the significance of gender variation all realisation
of the speakers were considered and not just the statis-
tical mean. Most p values are smaller than 0.001, they
are thus reported in Supplementary Materials 1 at [URL
will be inserted by AIP] but not listed in this Table.

In line with previous observations (Flipsen et al.,
1999; Jongman et al., 2000; Kochetov, 2017; Newman
et al., 2001; Schwartz, 1968), female speakers produced
higher spectral energy than male speakers in the voice-
less sibilant fricatives. Additionally, the same relation
accounts for palatal and voiced fricatives. Interestingly,
the opposite was found to be the case for the peak and
cog in [f] and females produced lower values than male
speakers. Contrary to previous studies which noted a
greater gender variation in anterior fricatives (Kochetov,
2017), the current results suggest for almost all cues sig-
nificant variation in all three places of articulation. The
second spectral moment sdev was less explored in the lit-
erature. We measured significant gender differences and
higher values for female speakers in [s] and [S], indicat-
ing that female speakers produced more spectral spread
than male speakers. On the contrary, the spectral vari-
ance in [f] was smaller for females. This is also theoret-
ically expected as the spectral spread is correlated with
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the centre of gravity, i.e., a higher cog leads to a higher
sdev. More findings were reported in the literature for
the spectral skewness in [s], with a tendency for negative
skewness in female speakers and positive values or val-
ues centred near to zero for male speakers (Flipsen et al.,
1999; Ludger et al., 2021). The present data shows a
similar trend with values centred around zero for females
and 0.5 for males around. Higher values are found for [f]
and [S] and female speakers exhibit higher positive values
than males. Kurtosis was so far not reported for gender
variation. Across the tested voiceless fricatives kurt is
the lowest in [s] and the highest in [f]. Female speak-
ers produced thereby in all three fricatives higher values
than males.

Gender-specific properties in palatal fricatives were
less explored in previous research. The observed patterns
are convergent with previous studies for the non-palatal
fricatives, with female speakers producing higher spectral
energy (Kochetov, 2017) indicated by the peak and cog.
Furthermore, in both sounds, the female speakers showed
higher positive skew.

Gender variation in voiced Russian fricatives is also
understudied. As in the voiceless fricatives, we found
gender variation in almost all spectral cues. In peak and
cog, female speakers exhibit higher values for all three
voiced fricatives and additionally a higher spectral spread
sdev in sibilants. The highest skewness skew was mea-
sured in the bilabial fricative, with higher values in [v]
and lower values for [Z] for female than for male speakers.
The results of kurtosis in voiced fricatives suggest signifi-
cant gender variation. However, the measured kurtosis is
challenging to interpret because the range of positive kur-
tosis above 3 exhibits a large variation across the sounds,
with values over 1000 in [v]. Such high values observed
in [v] suggest a very compact spectral distribution, which
also can be viewed in Figure 1.

Gender variation was further detected in duration
in the non-palatal fricatives. Female speakers produced
longer voiceless fricatives and male speakers the voiced
fricatives.

While gender differences were widely investigated in
the spectral domain of voiceless fricatives, very little is
known about further noise features like the distribution
of periodic and aperiodic energy. One way to look at
it is through the analyses of the harmonic-to-noise ratio
(HNR). For almost all cues and sounds, significant gen-
der variation was identified in the HNR measures. The
distribution of HNR in the voiceless fricatives differs be-
tween the places of articulation. Table IV shows that
the fricative [f], contains some harmonic energy, and the
sibilant fricatives have higher ratios of noise energy.

Concerning gender variation, female speakers pro-
duced relatively higher harmonics proportions (hmean
hmax ) in their articulations of the voiceless fricatives,
except for the fricative [C]. The same pattern can be ob-
served in the voiced bilabial and alveolar fricatives, but
not for [Z]. Furthermore, female speakers had a higher
variance (as indicated by higher values in hsd) in all
fricatives, except for [v]. This suggests that the distribu-

tion of periodic and aperiodic energy generally differs be-
tween female and male speakers. This outline indicates,
that there are gender-specific properties in the acoustics
of fricatives and these differences manifest in the most
measured cues and sounds.

FIG. 2. The interquartile range is based on z-scored values

for each ASF and each fricative. Significant gender variation

is marked in bold. Female and male speakers show significant

variation for several cues and all fricatives.

To explore additional gender-specific acoustic prop-
erties, the interquartile range (IQR) was analyzed (Fig-
ure 2). The IQR was first computed for each speaker and
then averaged over gender categories. The IQR should
shed light on whether the produced variance within gen-
der categories differs between female and male speakers
and to what extent it is a gender-specific property. When
comparing all sounds and cues together, we observed that
female speaker produced in general more variant cues (p
= 0.0068). However, these conclusions cannot be gen-
eralized, since the values differ with sounds and cues.
Broadly speaking, the IQR values for peak were signifi-
cantly higher in [s] and [Z] for female speakers and in [v]
for male speakers. A higher IQR in female acoustics was
also found for the cog in [s], [S], [z], and [Z]. Interestingly,
male speakers produced significantly more variance in the
duration of palatal fricatives. Female speakers showed
significantly higher variation in the IQR of hmean in [sj]
and [z] and hmax in [z] and [Z].

To sum up the findings so far, it is noticeable that
the ranges occupied by female and male productions are
to a certain degree dependent on the place and manner
of articulation. Furthermore, variation is not systematic
across gender categories.

To test further the hypothesis that female and male
speakers organize their fricative contrasts differently, the
distance was measured for places of articulation between
the fricatives pairs [f]- [s], [s]- [S], [v] -[z], [z]- [Z], [sj]- [C].
Furthermore, the distance was compared between pairs
contrasted by voicing [f]- [v], [s]- [z], [S]- [Z] and palatal-
isation [s]- [sj], [S]- [C]. All the results and Figures are
reported in Supplementary Materials 1 at [URL will be
inserted by AIP].
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Comparing the effect on distances produced by both
genders between contrastive categories across the two
sets of measures, it is noticeable that they show differ-
ent patterns. This has mainly to do with the fact that
ASFs and MFFCs capture different properties of speech
sounds.

For a better overview and for an easier interpreta-
tion, only the findings from ASFs were reported in the
following outline. Figure 3 presents the results of the
place of articulation contrast in the voiceless, voiced and
palatal fricatives.

FIG. 3. Distance measures of the five fricative pairs con-

trasted by place of articulation. Female speakers produce

a greater phonetic distance between the tested non-palatal

sound pairs. The p-values for fricatives pairs where signifi-

cant gender variation is found are smaller than 0.0001. The

p-value for the palatal pair is 0.79

The observations made for voiceless sibilants by pre-
vious research (Weirich and Simpson, 2015) can be ex-
tended to other fricative pairs contrasted by place of
articulation. Figure 3 shows that for both non-palatal
voiceless [f]- [s], [s]- [S], and voiced pairs [v] -[z], [z]- [Z],
contrasted by place of articulation, female speakers pro-
duce in general a larger distance between the tested con-
trastive fricative pairs. However, in the palatal pair [sj]-
[C] no such gender variation was observed. The output
for fricative pairs contrasted by voicing and palatalisa-
tion can be viewed in Supplementary Materials 1 (Sec-
tion 3) at [URL will be inserted by AIP]. In fricative pairs
contrasted by voicing, different patterns can be noticed.
Female speakers produced less distance between the bil-
abial and post alveolar pairs [f]-[v] and [S]-[Z]. However,
they produced more distance in the alveolar pairs [s]-[z]
than male speakers. Female speakers showed also a larger
distance between the two sibilant fricative pairs [s]-[sj],
[S]-[C] contrasted by palatalization.

The analysis of distances between contrastive sounds,
confirms place and manner of articulation trends and
gender variation seems to be less systematic.

B. Predictive power of individual speaker’s and inter- and

intra- speaker variation

In the next step, we asked whether more information
is coded in the extracted ASFs and MFCCs by zooming
into how speakers differ on the individual level. First, we
investigated whether individual speakers can be identi-
fied with machine learning methods based on ASFs and
MFCCs, as it was conducted with the prediction of gen-
der. Second, we explored the variety of acoustic cues
between- and within- speakers.

TABLE V. The performance of the two classifiers across ten

replications to predict individual speakers. The abbreviations

are interpreted as follows: DT = single decision tree, RF =

random forest, Acc = accuracy. The majority baseline is 0.02.

Classifier Set Kappa Acc

DT ASF 0.00 0.014

RF ASF 0.21 0.22

DT MFCC 0.04 0.05

RF MFCC 0.64 0.64

Table VII shows that in terms of predicting speak-
ers, the two decision tree-based algorithms were unable to
identify speakers by ASFs. The accuracy of each model
is extremely low, and the kappa indicates poor perfor-
mance. For instance, the kappa for RF based on ASFs is
only 0.22. Testing MFCCs, the accuracy and kappa were
much higher with around 64%, suggesting a moderate
performance in predicting speaker.

Evidence that fricative sounds do contain certain
speaker information in the spectral moments was found
by previous research (Kavanagh, 2011; Newman et al.,
2001; Schindler and Draxler, 2013). One explanation
about why these findings were not confirmed and the
classifiers failed to predict speakers by ASFs in Russian
fricatives is that the data set is unsuitable for applications
of machine learning techniques used in the current anal-
yses. The employed data has a high number of speakers
(59) to be predicted and a relatively low number of tokens
per sound and speaker. There is also the possibility that
speaker variation is encoded in a more complex way in
ASFs measured in fricative sounds. To explore this com-
plexity of speaker information and individual differences,
we provide a detailed description of speaker specificity in
fricative sounds.

In order to determine the cues and sounds that ex-
plain most of the variation in the data, a Principal Com-
ponent Analysis (PCA) was performed based on the z-
scored ASFs for each sound. The results of the first prin-
cipal component (PC1) are summarized in Table VI.

The data indicate that the variation in the investi-
gated sounds is characterized by different sets of cues.
Nevertheless, some patterns can be detected between
sibilant and non-sibilant and voiceless and voiced frica-
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TABLE VI. Summary of the PC1 of all eight fricatives. The

values indicate how much variation in each sound can be ex-

plained by a certain cue averaged over the speaker. The PC

variance indicates how much variance of the total variance

can be explained by PC1.

cue [f] [s] [S] [sj] [C] [v] [z] [Z]

PC1 variance 0.32 0.41 0.45 0.46 0.46 0.57 0.57 0.43

peak 0.19 0.03 0.01 0.05 0.01 0 0.09 0.06

cog 0.23 0.01 0 0.03 0.01 0.01 0.15 0.1

sdev 0.21 0.03 0.02 0.03 0.01 0.06 0.18 0.13

skew 0.06 0 0.01 0 0 0.32 0.1 0.08

kurt 0.01 0 0 0 0 0.49 0.03 0.02

dur 0.02 0.15 0.13 0.15 0.12 0.01 0.02 0.02

hmean 0.05 0.01 0.02 0 0 0.07 0.12 0.15

hsd 0.17 0.02 0.05 0.02 0.01 0.01 0.23 0.31

hmax 0.06 0.28 0.3 0.24 0.26 0.04 0.04 0.04

htmax 0 0.23 0.18 0.18 0.17 0 0.04 0.07

tilt 0.01 0.23 0.29 0.29 0.39 0 0 0.01

tives. The peak frequency and the spectral moments were
the most variant cues in [f], [v] and [z]. In [v], PC1 mostly
consists of skew and kurt, while the variance in the rest
of the fricatives is distributed across several ASFs. Thus,
in most fricatives, the spectral domain seems to be less
meaningful in explaining variation. In addition, dura-
tion also explains some of the variation in voiceless sibi-
lants. Contrary to expectations, the harmonic-to-noise
ratio cues in sibilant fricatives were more variable than
the spectral cues. Different patterns were observed for
voiceless and voiced fricatives. In voiceless sibilants, the
most variant cues were hmax, htmax and tilt. In voiced
sibilants, the most variant cues were hmean and hsd.
These results suggest that the greatest variation was de-
tected in the distribution of periodic and aperiodic energy
in the sibilant fricatives. The PC1 variance indicates fur-
thermore, how much variance of the total variance is ex-
plained by the first component. For example, the PC1
variance in [f] is only 32% and it is 57% in [v]. In sibilant
fricatives, the lowest PC1 variance value is in [s] and the
highest in [z].

PCA reveals the most variant ASFs across fricatives.
However, it does not provide information on whether the
measured variance is caused by a high variation between
or within speakers. To understand the distribution of
intra- and inter-speaker variation, we computed the SD-
ratio. Figure 4 displays the SD-ratios of the eight frica-
tives and the eleven ASFs.

In acoustic cues, the SD-ratio identifies speakers’ dis-
crimination potential (SDP). It is calculated by dividing
the overall standard deviation of a sound and cue by the
speaker’s standard deviation. The higher the value, the
greater the acoustic difference between speakers and the

FIG. 4. The SD-ratio averaged over all speakers by sound

and cues. For better visualisation, the log10 of an SD-ratio is

used. For instance, 3 is now equal to 0.48, and an SD-ratio of

1 equals 0. The values below 0 in this Figure mean that the

within-speaker variation is higher than the between-speaker

variation. Values above 0 indicate higher between-speaker

variation. The larger the SD-ratio, the higher the between-

speaker variation and the lower the within-speaker variation,

which indicates high speaker-discriminating potential.

higher the SDP. Figure 4 displays that in some of the
cues identified by PCA as highly variant, the variation is
caused by high between-speaker variation, while in others
it is caused by high within-speaker variation.

Common cues with a high between-speaker variation
in [f] and [v] were peak and tilt, suggesting a high speaker
discrimination potential in these cues. The SD-ratios of
cog, sdev, and hsd in [f] are below 1 (below 0 in Figure
4), which indicates that the within- speaker variation is
higher than the between- speaker variation. This in turn
means that these three measures provide little speaker
information in the fricative [f], while in [v], cog and sdev
have very high values. In the sibilant voiceless fricatives,
a higher between-speaker variation than within-speaker
was found in the spectral moments, hmean and hsd, while
hmax and htmax indicated higher within- speaker vari-
ation. In the voiced fricatives, the opposite patterns for
the same cues were observed.

Finally, for a better overview of the relations between
the PC1 and SD-ratios, the values were compared and
the correlation was computed. Figure 5 shows the distri-
bution of the PC1 and SD-ratio values across the eight
fricatives and the ASFs.

In most cases, values with a high PC1 display a low
SD-ratio. Consequently, the majority of cues identified
to explain a large part of the variation were produced by
speakers with a high degree of within-speaker variation.
ASFs with a low PC1 on the other hand showed in a set of
cues a high SD-ratio. Additionally, a correlation analysis
of PC1 and SD-ration found a negative correlation for
almost all cues and sounds.

These findings suggest that no cue effectively ex-
plains variation in general within a sound and has a high
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FIG. 5. Comparison of the PC1 and SD-ratio by cue and

sound. A higher PC1 value shows that more variation within

a sound can be explained by this cue. And as higher the SD-

ratio the higher the between-speaker variation.

degree of between-speaker variation. Therefore, it is chal-
lenging to conclude which cues could potentially serve to
encode speaker information in fricative sounds. To un-
derstand better the distribution of within and between-
speaker variation, a closer look was taken by analysing
individual speakers. Therefore, we provide a more fo-
cused example of the interaction between PC1 and SD-
ratio across three speakers and two sounds in order to
give an indication of how the variation is structured at
an individual level.

Three female speakers showing quite different pat-
terns were chosen based on a visual inspection. A PCA
was performed on each speaker and the SD- value was
computed. The results of the PC1 and SD-ratios across
the two fricatives [f] and [S] and the three speakers are
summarized in Table VII.

TABLE VII. PC1 and SD-ratio for three speakers and two

sounds. The three speakers show remarkable differences in the

distribution of the ratio between PC1 and SD-ratio across the

two fricatives [f] and [S].

sound [f] [f] [f] [S] [S] [S]

speaker 1 1 7 7 16 16 1 1 7 7 16 16

measure SD PC1 SD PC1 SD PC1 SD PC1 SD PC1 SD PC1

peak 1.22 0.1 2.89 0.02 0.25 0.39 1.37 0.01 1.02 0.02 5.52 0.01

cog 1.17 0.13 1.75 0.1 0.48 0.23 1.54 0.01 1.24 0.01 3.05 0

sdev 0.91 0.15 1.27 0.19 1 0.02 1.81 0.01 1.35 0.01 1.43 0.02

skew 1.35 0.02 2.55 0.06 3.74 0.02 1.34 0 2.54 0 0.98 0

kurt 1.62 0 4.4 0.02 15.54 0 1.72 0 2.98 0 0.87 0

dur 1.15 0.08 1.54 0.02 1.18 0.02 1.15 0.12 1.77 0.06 1.79 0.05

hmean 1.06 0.01 1.54 0.1 2.96 0.03 1.36 0 1.56 0.03 1.06 0.04

hsd 0.85 0.08 1.18 0.33 1.42 0.1 0.93 0.03 1.05 0.09 0.94 0.1

hmax 0.89 0.18 0.53 0.11 0.68 0.1 1.06 0.17 1.09 0.4 1.05 0.26

htmax 0.92 0.1 0.82 0.04 1.04 0.04 0.99 0.22 1.07 0.36 1.33 0.03

tilt 0.66 0.15 1.97 0 0.08 0.05 0.95 0.43 1.96 0.03 0.93 0.49

PC1 variace 0.38 0.56 0.56 0.46 0.52 0.55

Extracting the first PC and SD-ratio by speaker gives
an idea of which cues are the most variant and the most
stable within the speakers. A high PC value indicates a

high variation within a speaker and a low value indicates
a small variation within a speaker. In order to identify
the most stable cues within a speaker and the most vari-
ant between- speakers, the PC value needs to be low and
the SD-ratio high.

The data in Table VII shows that some ASFs indeed
fulfil these constraints. This suggests that these cues
were produced by speakers with a low degree of within-
speaker variation and their acoustic characteristics differ
from other speakers. This also means that these cues
could potentially provide speaker-specific information.

It is striking that in both fricatives the three speakers
differed greatly in the set of cues in which they produced
the most and the least variation. The acoustics of speaker
1 is characterised by a lower idiosyncrasy in fricatives in
comparison to the other two speakers. The SD-ratios are
between 1 and 2 at the highest and the PC1 variance
is 38% in [f] and 46% in [S]. Speaker 7 exhibits some
idiosyncrasy in both fricatives, indicated by SD-ratios
between 2 and 3, and higher PC1 variance values for
both fricatives. Speaker 16 has the greatest degree of
individual information in fricatives. The SD-ratios reach
up to 15 and the PC1 variance is almost equal in both
sounds with 56% and 55%.

V. DISCUSSION

The first objective of the current study was to predict
the speaker’s gender and identify gender-specific traits
in fricative sounds. The second objective was to pre-
dict individual speakers and investigate the distribution
of intra- and inter-speaker variation in the eight frica-
tives. To address the defined aims and to understand
how speaker information is encoded in Russian fricative
sounds, various methods and techniques were applied.

The discrimination task of speakers’ gender was
based on machine learning models. We compared the
performance of MFCCs and ASFs using two ML classi-
fiers, decision tree (DT) and random forest (RF). The re-
sults indicate that MFCCs clearly outperform ASFs with
an accuracy of 88% over an accuracy of 72%. Thus, gen-
der can be predicted by acoustic cues and speakers’ gen-
der information is best captured by the fine-graded spec-
tral envelope information measured by MFCCs. With
moderate accuracy, gender can also be predicted from
ASFs and the most important cues are peak, cog, skew
and hmean.

To explore acoustic gender variation, the ASFs were
compared between female and male speakers. The find-
ings suggest that female and male speakers differ sig-
nificantly in the acoustics of the eight fricatives. Gender
variation is found in the min and max values of the ASFs.
Also, the threshold of the range varies between male and
female speakers, which indicates how large the variance
is within and between the gender categories.

A second finding on gender variation shows that fe-
male and male speakers differ in how much contrast they
produce between contrastive fricative categories (place
of articulation, voicing, palatalisation). The analysis
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demonstrated that gender variation in contrasting differ-
ent fricatives is place and manner of articulation depen-
dent. In previous studies, distance measurements were
obtained for vowels (Diehl et al., 1996) and for sibilant
voiceless fricatives (Weirich and Simpson, 2015), sug-
gesting that females produce more distance between two
contrastive sounds and concluding that females produce
more distinct categories. Our data confirm only partly
these findings and give an alternative explanation tak-
ing into account the IQR analysis. It is assumed that a
high IQR indicates considerable variance in the produced
cue. This, in turn, means that with larger values of the
IQR, we find a larger distance between the ASFs. This
difference could explain why the measured distance be-
tween contrastive fricative pairs is for some pairs higher
for females and others higher for male speakers. Having
a wider distance between the categories does not imply
that they are more distinct from one another.

Taken together, the findings suggest that the overall
patterns of gender variation are less systematic across fe-
male and male speakers, but more specific to sound and
acoustic cues. Gender variation was often evaluated by
previous studies measuring spectral moments in [s]. The
current analysis showed (IV) a large variation between
fricatives of different places of articulation and voicing
quality. Patterns found in [s] are not necessarily transfer-
able to for instance [z], [sj] or [S]. It is therefore suggested
in future studies to extend gender-variation research to
other fricatives.

These findings could also explain why machine learn-
ing classifiers performed only moderately when predict-
ing gender by ASFs. Most ASFs show significant differ-
ences, so they probably all contribute to a certain extent
to the distinction between males and females. Never-
theless, to test the importance of the individual ASFs, it
may be necessary to compare separately, for example, the
performance on spectral cues and HNR measures. Fur-
thermore, future analyses should probably include the
comparison of voiced and voiceless fricatives.

The second aim of the study was to test the pre-
dictive power of individual speakers and analyze inter-
and intra- speaker variation across the eight fricatives
and measured acoustic cues. To predict the speaker, we
followed the same methodological approach used to pre-
dict gender from acoustic cues using machine learning
techniques. The two decision tree-based algorithms were
unable to identify speakers based on ASFs. In RF, how-
ever, the speaker ID could be predicted with a kappa and
accuracy of 0.64 using the data set of MFCCs. These ob-
servations imply that fricative sounds do contain speaker
information which can be determined by technological
applications using MFCCs. This observation is not sur-
prising, since MFCCs are successfully used in ASR.

To further explore why the ML classifiers were un-
able to predict speakers using ASFs, the inter- and intra-
speaker variation was investigated in more detail. A PCA
by sound was performed to identify the cues that explain
the most variation. For the analysis, only the results of
the first principal component were considered. The find-

ings show that spectral cues explain the variation only
in [f] across voiceless fricatives and to a certain degree
the variation in voiced fricatives. Duration and the HNR
ratio on the other hand seem to play a role in almost all
fricatives with a different distribution of meaningful cues.
Additionally, the SD-ratio was computed to give informa-
tion on whether the difference shown by PC1 is caused
by between or within-speaker variation. Consequently, it
is concluded that intra- and inter-speaker variation can-
not be defined by a set of cues from the measured ASFs
across the eight fricatives. Most cues found by the PCA
to be variant within a sound are characterized by an SD-
ratio below 1 meaning that the within-speaker variation
is higher than the inter-speaker variation.

A more detailed analysis of three speakers provided
further insights into the distribution of variant and stable
cues across speakers and sounds (Table VII). The results
showed clearly how largely speakers differ in the cues
they produce with a high within-speaker variation and a
high constancy. Taking for instance the peak in [f], the
data shows that while speaker 7 has an SD-ratio of 2.89
and 0.02 in PC1, speaker 16 has the opposite pattern
with an SD-ratio of 0.25 and PC1 of 0.39. This in turn
means that speaker 7 produces a very stable peak, and
speaker 16 has high variation within her peak frequencies.
The analysis demonstrates that speakers can potentially
code their individual information in different cues for the
same sound. Also, it can be noted that no cue seems to
be consistently employed by speakers to code individual
information. Variation is higher than expected, and the
process is more complex than just detecting the most
stable cues within and between- speakers.

From these analyses, it can be concluded that not
only do feature distributions exhibit a variation that
may not be consistent from one feature to the other,
but the level of individuality encoded in fricatives is
highly speaker-dependent, which can in turn explain why
the general performances aforementioned for individual
recognition were so poor using ASFs.

These conclusions contradict previous findings that
suggested speaker discrimination potential in the spec-
tral moments. One explanation is that the sample size
(both the number of speakers and the number of fricative
categories) employed for speaker recognition has a signif-
icant effect on performance. To clarify these questions
further tests would be needed to explore speaker discrim-
ination performance on the same data set but different
data samples. On the other hand, taking into account the
conclusions of the identification of place of articulation in
the same data set (Ulrich et al., 2021), which found that
centre of gravity and spectral spread provide sufficient
information to distinguish [f, s, S] strong speaker effects
were not expected to be found in the spectral domain.

To summarize, from this analysis it can be concluded
that, feature distributions exhibit large variation across
sounds and individuality encoded in fricatives is highly
speaker-dependent. Furthermore, variation within the
speaker across different fricatives depends on the place
and manner of articulation. Intra- and inter-speaker vari-
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ation is highly complex and no set of cues seems to ex-
plain acoustic variability and stability for all fricatives
and speakers. Speakers can potentially code their indi-
vidual information in different cues for the same sound.
Whether patterns between- speakers exist and whether
some speakers can be grouped together according to a
similar distribution of variant and stable cues needs to
be further investigated. Furthermore, it is questionable
to what extent a speaker’s individual variation in one
sound can predict the variation in another sound. From
the analysis of the two sounds, no such pattern can be
obtained.

The current study has implications for phonetic re-
search as well as for ASR applications. In phonetic re-
search, it helps us to understand that individual speaker
information is distributed in fricative sounds across all
ASFs. Which underlying mechanism define speaker
specif patterns and what influences the degree of free-
dom where a speaker can code information on their indi-
viduality needs to be further explored. We found that
MFCCs contain more detailed speaker information in
fricative sounds than the information that can be ob-
tained from regular spectral, temporal and HNR mea-
sures. These findings suggest that the spectral domain
contains such fine-graded information on speakers’ id-
iosyncrasies but the spectral measures used in phonetic
research do not capture this information sufficiently. The
current study indicates that further measurements must
be developed to capture more detailed information, sim-
ilar to MFCCs, but interpretative for phonetic research.
The moderate performance on predicting speakers by the
MFCCs suggests that also in noisy speech sounds such as
fricatives both the periodic and aperiodic parts contain
potentially speaker-specific information allowing to dis-
criminate speakers from each other.
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legrino, F. (2013). “LAPSyd: lyon-albuquerque phono-
logical systems database,” in Interspeech 2013, ISCA,
pp. 3022–3026, https://www.isca-speech.org/archive/
interspeech_2013/maddieson13b_interspeech.html, doi:
10.21437/Interspeech.2013-660.

Matovski, D. S., Nixon, M. S., Mahmoodi, S., and Carter, J. N.
(2010). “The effect of time on the performance of gait biomet-
rics,” 2010 Fourth IEEE International Conference on Biomet-
rics: Theory, Applications and Systems (BTAS) 1–6, http://
ieeexplore.ieee.org/document/5634547/, doi: 10.1109/BTAS.
2010.5634547.

McDougall, K., and Nolan, F. (2007). “Discrimination of
speaker using the formant dynamics of /u/ in British En-
glish.,” Proceedings of the International Congress of Phonetic
Sciences 1825–1828, http://icphs2007.de/conference/Papers/
1567/1567.pdf.

Monson, B. B., Hunter, E. J., Lotto, A. J., and Story,
B. H. (2014). “The perceptual significance of high-frequency
energy in the human voice,” Frontiers in Psychology
5, http://journal.frontiersin.org/article/10.3389/fpsyg.
2014.00587/abstract, doi: 10.3389/fpsyg.2014.00587.

Moore, B. C. J. (2003). “Coding of Sounds in the Auditory System
and Its Relevance to Signal Processing and Coding in Cochlear
Implants:,” Otology & Neurotology 24(2), 243–254, http://
journals.lww.com/00129492-200303000-00019, doi: 10.1097/
00129492-200303000-00019.

Munson, B., McDonald, E. C., DeBoe, N. L., and White, A. R.
(2006). “The acoustic and perceptual bases of judgments of
women and men’s sexual orientation from read speech,” Journal
of Phonetics 34(2), 202–240, https://linkinghub.elsevier.
com/retrieve/pii/S0095447005000379, doi: 10.1016/j.wocn.
2005.05.003.

Narayanan, S. S., Alwan, A. A., and Haker, K. (1995). “An artic-
ulatory study of fricative consonants using magnetic resonance
imaging,” The Journal of the Acoustical Society of America
98(3), 1325–1347, http://asa.scitation.org/doi/10.1121/1.
413469, doi: 10.1121/1.413469.

Newman, R. S., Clouse, S. A., and Burnham, J. L. (2001). “The
perceptual consequences of within-talker variability in fricative
production,” The Journal of the Acoustical Society of Amer-
ica 109(3), 1181–1196, http://scitation.aip.org/content/
asa/journal/jasa/109/3/10.1121/1.1348009, doi: 10.1121/1.
1348009.

Romeo, R., Hazan, V., and Pettinato, M. (2013). “Developmen-
tal and gender-related trends of intra-talker variability in con-
sonant production,” The Journal of the Acoustical Society of
America 134(5), 3781–3792, http://asa.scitation.org/doi/
10.1121/1.4824160, doi: 10.1121/1.4824160.

Rose, P. (2007). “Forensic speaker discrimination with Australian
English vowel acoustics,” ICPhS XVI 6(10).

Schiel, F. (1999). “Automatic Phonetic Transcription of Non-
Prompted Speech,” .

Schindler, C., and Draxler, C. (2013). “Using spectral moments as
a speaker specific feature in nasals and fricatives,” in Interspeech
2013, ISCA, pp. 2793–2796, https://www.isca-speech.org/
archive/interspeech_2013/schindler13_interspeech.html,
doi: 10.21437/Interspeech.2013-639.

Schwartz, M. F. (1968). “Identification of Speaker Sex from Iso-
lated, Voiceless Fricatives,” The Journal of the Acoustical Society

J. Acoust. Soc. Am. / 6 November 2022 Intra- and inter-speaker variation in eight Russian Fricatives 15

54



of America 43(5), 1178–1179, http://asa.scitation.org/doi/
10.1121/1.1910954, doi: 10.1121/1.1910954.

Silbert, N., and de Jong, K. (2008). “Focus, prosodic context,
and phonological feature specification: Patterns of variation in
fricative production,” The Journal of the Acoustical Society of
America 123(5), 2769–2779, http://asa.scitation.org/doi/
10.1121/1.2890736, doi: 10.1121/1.2890736.
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Chapter 6
Discussion

In the following section, the results and the conclusions from both studies are summarized and
discussed within the context of the asked research questions. Then, the scientiĄc contributions
are described. Finally, the investigation ends with an outline of the limitations of the current
project and an outlook on further research in fricatives.

6.1 How can machine learning techniques contribute to

automatizing and standardising the segmentation of

noise duration in voiceless fricatives?

The Ąrst question was motivated by the attempt to extract acoustic cues from the entire
consonant duration and from the entire noise duration of a fricative. This improves from
previous studies, which mostly used a predeĄned window (e.g. Jongman et al., 2000; Kochetov,
2017).

As a Ąrst step towards investigating the acoustic characteristics of speech sounds, the tar-
get phonemes need to be aligned and segmented out of the speech sequence. This process is
highly time-consuming. More precisely, the time to transcribe speech and then to time-align
phonemes is reported to be approximately 800 times longer than the processed speech segment
(Schiel et al., 2012). Over the past decade, a number of signiĄcant computational methods
have been developed to advance transcription, forced alignment, and phoneme segmentation
(Gonzalez et al., 2020). Common forced aligners are for instance the Munich Automatic Seg-
mentation System (MAUS) (Schiel, 1999), the Forced Alignment & Vowel Extraction suite
(FAVE) (Rosenfelder et al., 2014), the Language, Brain and Behaviour Corpus Analysis Tool
(LaBB-CAT) (Fromont and Hay, 2012), and the Montreal Forced Aligner (MFA) (McAuliffe
et al., 2017)). In one study, the performance across these four programs was compared. Further-
more, the accuracy was evaluated between the aligners and humans. The results demonstrate
differences in performance across the programs. MFA and LaBB-CAT show the highest align-
ment quality, followed by FAVE and MAUS. Furthermore, humans show more constancy in a
segmentation task and manual correction improves alignment accuracy (Gonzalez et al., 2020).
In the current investigation, all raw audio Ąles were Ąrst pre-processed by applying the Munich
Automatic Segmentation System (MAUS) (Schiel, 1999).

The performance was inĆuenced by several factors, including the phonological context, as
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found in previous studies (DiCanio et al., 2012). Moreover, differences were observed between
speakers. This might be caused, among other factors, by the speaking rate, which was reported
earlier to affect the automatic segmentation performance (MacKenzie and Turton, 2020). In
general, a boundary correction was needed for all target tokens to deĄne the duration of the
fricatives, which was later used for the extraction of acoustic cues. The predeĄned settings
for the on and offset of the fricatives included thereby some parts of the transition zones.
Furthermore, obtaining acoustic measures including only frication noise, implied a repeated
manual adjustment of the boundaries. In this step, transition zones and therefore co-articulation
effects were excluded.

To avoid a second manual segmentation of all target tokens, a method based on training
a tree-based computational classiĄer was introduced. The model is built on the assumption
that the zero crossing rate provides sufficient information to divide a speech signal into purely
aperiodic and periodic portions. Noise is in general deĄned as an aperiodic signal with high
frequencies and therefore a high amount of zero crossings in a given time, i.e., a high zero
crossing rate (or zcr). This is known to detect the voiced and unvoiced parts of speech. In the
current study, it was used to detect the frication noise part in fricatives. A Şgold standardŤ
subset of 560 fricative sounds, which had their noise duration identiĄed manually, was generated
to annotate each window with noise = TRUE or noise = FALSE depending on its occurrence
within or outside the noise part identiĄed manually. This data served to train the model.

With the model applied in the current research, each sound is separated into windows based
on a certain amount of zero crossing points. The zero crossing rate (zcr) within each window
is then measured and compared with the zero crossing rate of the preceding window (if any).
The difference of zero crossing rate between the two windows (diff ) is then computed and used
as a cue to identify the beginning and the end of the noise part of a sound. To have a better
understanding of which settings are optimal for the model, we tested various window lengths
(here, 64, 128, 256 or 512 points) with different levels of overlap (0%, 30%, 50% or 80%).
The model shows that all combinations of parameters result in an accuracy between 78% and
83%, with the best accuracy being found for a large window length (512 zero crossings) and a
standard overlap (50%), with mean = median = 80.8% across the 100 replications.

Applying this model to the manually pre-segmented fricatives allowed for the extraction
of the full noise duration with a minimum of co-articulation effects. The extracted noise part
was then used to extract acoustic cues and to compare the results with acoustic extraction
techniques applied in previous research. The output of that comparison is analysed in the
second research question.

6.2 What is the effect of window length in extracting

acoustic cues from voiceless fricatives?

To extract acoustic cues, most studies used single spectral slices from the middle and sometimes
the beginning and end of the fricative or of the frication noise, with window sizes between 25ms
(Kochetov, 2017) and 40ms (Jongman et al., 2000). In general, acoustic cues for fricatives were
not extracted from the full duration of the consonant or from its noise part.

In the current investigation, the goal was both to follow the examples of previous studies,
as well as to develop a new approach. Therefore, three acoustic cue extraction techniques
(ACETs) were applied, using either the full consonant duration (AC), its middle 30ms (AW),
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or only the noise part of each sound Ąle (NF) deĄned by the step before. Figure 6.1 shows the
values and ranges of acoustic cues extracted with different ACETs.

Figure 6.1: The comparison of acoustic cues based on the three main ACETs reported in the
experiments. The names of the ACETs refer to the acoustic cue extraction techniques.

The three sets of cues were used by four machine learning classiĄers to predict the place
of articulation in the three voiceless fricatives [f], [s], and [S]. The accuracy of classifying the
fricatives from acoustic cues does not vary much among these ACETs, nor among the four
classiĄers. However, differences do exist and are informative scientiĄcally and methodologically.
All four classiĄers perform far above the majority baseline of 44% accuracy, reaching about 93%
and 98% across ACETs. The accuracy based on a single decision tree is generally lower than
the other three classiĄers (as expected, given that this has the simplest architecture), but,
importantly, random forests perform almost at ceiling. This result is very meaningful as there
is a high interpretability of the decision rules used. In terms of ACETs, extracting acoustic
measurements from the full noise duration works better than from a 30ms window (e.g., for
cog, sdev and peak) for all three fricatives, and especially for [f]. That is to say, the most
invariant parameters are the ones estimated from the largest section that doesnŠt show a strong
co-articulatory effect.

6.3 Can the Russian fricatives [f], [s] and [S] be correctly

classified by a set of acoustic cues? And how does

the performance of the models differ between using

ASFs or/and MFCCs?

Apart from the slightly different results of the ACETs, there is clear evidence that acoustic cues
do contain enough information for the correct classiĄcation of the Russian fricatives [f], [s] and
[S]. A few acoustic cues seem to be necessary and sufficient, including cog, sdev and possibly
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zcr and peak. The importance of sdev echoes previous studies emphasizing the importance of
dynamical features and spectro-temporal variations in identifying fricatives (Reidy, 2016).

Comparing the results of spectral and temporal cues with the previous Ąndings, there are
both overlaps and differences. Spectral peak location is probably one of the most promising cues
in the literature, but our classiĄers did not Ąnd it as crucial for distinguishing fricatives. As for
Greek fricatives (Nirgianaki, 2014), no clear decrease in frequency as the place of articulation
moves from front to back was observed. In all ACETs, peak is a distinct measure for most of
the [s] and [S] sounds, but not for [f], where there is no clear peak. In our data, cog is the most
important cue for distinguishing [f], [s], and [S]. Higher values were reported for sibilants than
for non-sibilants, and for [s] than for [S] (Funatsu and Kiritani, 1998; Jongman et al., 2000;
Nittrouer et al., 1989; Padgett and Zygis, 2007; Zsiga, 2000), which our data conĄrm, to a
certain extend: [f] has the lowest values around 4000Hz (but reaching up even above 7000Hz)
while the energy of [s] is centred around 7500Hz and of [S] around 4500Hz.

Despite the spectral spread being much less considered in the literature, we found that this
is one of the most important cues in our data: the lowest spread was measured for [S] and the
highest for [f] (Jongman et al., 2000; Shadle and Mair, 1996).

For the other two spectral moments, skewness and kurtosis, our results did not match
with previous Ąndings suggesting that these two cues are stable characteristics of fricatives
(McFarland et al., 1996; Nittrouer et al., 1989). Not only there are no signiĄcant differences
across the methods, but both measures are plagued by many outliers. In general, we see a
slightly lower (or negative) skew for [s] than for [f] and [S], supporting earlier Ąndings of a
negative skewness for [s] and a positive one for [S] (Jongman et al., 2000; McFarland et al.,
1996; Nittrouer et al., 1989). For kurtosis, the differences are even less relevant and difficult to
interpret.

Temporal measures, such as the full consonant duration and the frication noise duration,
are not distinct cues in the current data. Only the zero crossing rate seems to contain relevant
information but is not an important cue for distinguishing [f], [s] and [S].

The second part of the third research question deals with the comparison of the predictive
power between the ASFs and MFCCS. The results do not show a large difference in performance
between the acoustic measures and the MFCCs. It is strikingly smaller than that reported in
the literature. In fact, while the MFCCs perform better than the acoustic measures (formally,
statistically signiĄcantly so), this difference is very small in terms of effect size (less than 2%
accuracy), with both performing effectively at ceiling (above 97% for random forests, SVMs and
neural nets). This difference is even smaller when the full frication noise is used (The fact such
small real-world differences are statistically signiĄcant here is due to the very small variation
between replications). Thus, both methods are very good at classifying the sounds [f], [s] and
[S], showing that the information necessary for correctly classifying these three fricatives can be
extracted in several manners.

Furthermore, the performance of models trained with both acoustic cues and MFCCs was
also considered.1 While the results indicate that merging acoustic cues and MFCCs does not
result in a better performance than the MFCCs, the ranking of the variables represents a mix
between acoustic cues and MFCCs, suggesting that further studies should investigate how such
acoustic cues are captured by the MFCCs. More precisely, it is not possible at this point to
determine whether the absence of improvement observed when both acoustic cues and MFCCs
are considered is due to the simplistic merging approach or to a ceiling effect related to the

1See supplementary material 2 at [URL will be inserted by AIP] for the detailed output.
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somehow limited variability offered by our corpus. The choice of which manner to use should
therefore depend on the particular research question or practical application at hand, each
having its advantages and disadvantages: the MFCCs are probably more appropriate in an
engineering context, while the acoustic measures give more insight into the articulatory and
perceptual mechanisms relevant for fundamental research.

It is also important to note that our approach here is to use the acoustic cues to classify
the fricative sounds and to identify which cues matter the most, in contrast to, for example,
McMurray and Jongman (2011), which, within a regression framework, tries to Ąnd statistically
signiĄcant differences for a cue given the type of fricative sound. We replicated and extended
the methodology in McMurray and Jongman (2011) using a maximum-likelihood mixed effects
regression approach where the value of given cue is predicted from the method (the ACETs), the
sound classification ([f], [s] or [S]) and their interaction as the predictors of interest, controlling
for sentence type (carrier or normal sentence), fricative position (beginning, middle or end),
the sounds preceding and following the fricative (several classes) and sex (F/M) s Ąxed effects,
and for sentence and speaker as random effects (sentence embedded within speaker). In a
nutshell, our Ąndings2 suggest that, as expected, there is a high similarity within speakers and
sentences for all cues (high intra-class correlations), and that there are signiĄcant differences
between sounds for all cues, with varying inĆuences of sentence type, fricative position and
context, but, again, not of sex. While being concordant with our machine learning results and
conĄrming that indeed, acoustic cues differ between fricatives, these results cannot be directly
used to classify fricatives from acoustic measures as our classiĄers do and which, arguably, is
the relevant question both scientiĄcally and practically.

Interestingly, in predicting fricatives from acoustic cues, the vowel context does not seem to
matter, as is also the case for the speakerŠs sex and identity, suggesting that we may have iden-
tiĄed context-independent characteristics of the fricative sounds themselves beyond and above
the effects of phonetic context (Mann and Repp, 1980; Nirgianaki, 2014; Soli, 1981; Stevens,
1998), and of sex and other individual-speciĄc factors (Hughes and Halle, 1956; Jongman et al.,
2000; Kochetov, 2017; Nirgianaki, 2014).

These results partly contradict those of previous studies, but also bring new information for
current research on the identiĄcation of speaker-speciĄc properties, which found considerable
speaker variation in the spectral cues of fricative sounds. How much speaker information these
cues provide is approached by the following research questions.

6.4 Can speakers’ gender be predicted by acoustic cues?

And how does the performance of the models differ

between using ASFs or/and MFCCs?

Clarifying to which extent common ASFs provide speaker information motivated the investi-
gation of speaker-speciĄc properties in the spectral domain and of further acoustic correlates.
At Ąrst, it was asked whether a set of acoustic cues extracted from eight fricatives can be iden-
tiĄed to predict speakersŠ gender, using two machine learning classiĄers, Decision Tree (DT)
and Random Forest RF.

2See supplementary material 4 at [URL will be inserted by AIP] for the detailed output of the regression
analysis.
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The results suggest that gender can be predicted by ASFs with moderate accuracy and
the most relevant cues are peak, cog, skew and hmean. Additionally, the performance between
ASFs and MFCCs was compared. The output indicates that MFCCs clearly outperform ASFs
with an accuracy of 88% over an accuracy of 72%. Thus, gender can be predicted by acoustic
cues and speakersŠ gender information is best captured by the Ąne-graded spectral envelope
information measured by MFCCs. These results are in line with previous Ąndings on a subset
of Russian (Spinu et al., 2018), Azerbaijani (Ghaffarvand Mokari and Mahdinezhad Sardhaei,
2020), and Romanian (Spinu and Lilley, 2016) fricatives. These studies also reported that
cepstral coefficients clearly outperform common spectral measures. The difference in accuracy
was very similar with classiĄcation rates around 60% for ASFs and around 80% and higher for
CCs.

For further exploration of gender variation in the eight sounds, the ASFs were compared
between female and male speakers. The results show that contrary to previous studies which
identiĄed a greater gender variation in anterior fricatives (Kochetov, 2017), signiĄcant gender
variation was detected in all three places of articulation and for almost all measured cues.

In previous studies, higher spectral energy was measured in female than in male speakers in
voiceless sibilant fricatives (Flipsen et al., 1999; Jongman et al., 2000; Kochetov, 2017; Ludger
et al., 2021; Newman et al., 2001; Schwartz, 1968). In the current data, the same is true for the
voiceless, palatal and voiced sibilants and for the non-sibilant [v]. The spectral energy in the
voiceless non-sibilant [f], on the other hand, is lower in female speakers, as found in lower values
in peak and cog. In the two palatal sibilant fricatives, the observed patterns are convergent with
previous studies, reporting higher spectral energy in female productions (Kochetov, 2017). To
mention another general observation, previous research stated that the production of Russian
palatal fricatives involves lower spectral energy than non-palatal fricatives (Kochetov, 2017).
In the current data, the same pattern accounts only for the alveolar fricatives [s] and [sj]. The
post-alveolar pair [S] and [C] follow the opposite trend and the values are higher for the palatal
[C].

The second spectral moment indicating spectral spread is less explored in the literature.
In the current data, signiĄcant gender differences and higher values were measured for female
speakers in all sibilants except [sj]. This is also theoretically expected as the spectral spread is
correlated with the centre of gravity, i.e., a higher cog leads to a higher sdev.

More Ąndings are reported concerning spectral skewness. In [s], a tendency for negative
skewness in female speakers and positive values or values centred near zero for male speakers was
observed (Flipsen et al., 1999; Ludger et al., 2021).The female speakers in the present analysis
show a more symmetrical distribution of energy in [s], as reĆected by a skewness around zero.
Male speakers generate signiĄcantly more energy at lower frequencies, with mean values around
0.5. In the representations of [f] and [S], both genders exhibit an asymmetrical distribution of
energy, with higher positive values for female speakers and therefore a predominance of energy
at lower frequencies. The highest skewness was measured in the voiced bilabial fricative, and
female speakers also produce more energy in lower frequency bands than male speakers in [v].
In the realisations of [z] and [Z] male speakers show higher skew than females.

Kurtosis describes the peakedness of the energy distribution and has not yet been reported
for gender variation. In the present data, only the spectral energy in the alveolar [s] and [sj]
is normally distributed, as speciĄed by a kurtosis of around 3. All other sounds show different
degrees of peaked distribution, while the values decrease in both females and males with the
place of articulation moving backwards. Kurtosis of voiced fricatives displays a huge variation,
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with values over 1000 in [v]. Such high values observed in [v] suggest a very compact spectral
distribution. Thus, the analysis indicates signiĄcant gender variation for most sounds. However,
the results of kurtosis are challenging to interpret because the range of positive kurtosis above
3 exhibits a large variation across the sounds.

Gender variation is further present in duration in the non-palatal fricatives. Female speakers
produce longer duration in voiceless fricatives and male speakers in voiced fricatives.

While gender differences were widely investigated in the spectral domain of voiceless frica-
tives, very limited information is known about further noise features such as the distribution
of periodic and aperiodic energy. One way to look at it is through analyses of the harmonic-
to-noise ratio (HNR). The ASFs hmean and hmax measure the distribution of harmonic and
noise energy. Values around zero imply equal energy in harmonics and noise. The overall trend
for non-palatal fricatives is a decrease in harmonic energy as the place of articulation moves
backwards. SigniĄcant gender variation was identiĄed in some of the HNR measures. The data
shows that the distribution of periodic and aperiodic energy generally differs between female
and male speakers. For instance, the hmean in female speakers contains higher harmonic pro-
portions in voiceless fricatives than in male speakers, except for the fricative [C]. In the voiced
bilabial [v] and alveolar [z] fricatives, female speakers follow the same pattern and produce
more harmonic energy than male speakers. And the opposite is the case for the post-alveolar
[Z]. Furthermore, female speakers have higher values in hsd in all fricatives, except for [v]. This
Ąnding was expected since the mean of HNR is correlated with the standard deviation of the
HNR mean.

For the exploration of additional aspects of acoustic gender variation, the interquartile range
(IQR) was measured. The results show that gender variation exists in the min and max values
of the ASFs. The threshold of the range also differs between female and male speakers, which
indicates how large the produced variance is within and between gender categories. Generally
speaking, female speakers exhibit higher variance in acoustic cues than male speakers. However,
this does not account for all ASFs. The Ąndings suggest further that the overall patterns of
gender variation in IQR are less systematic across gender, but more speciĄc to sound and cue.

In addition to the comparison of mean and IQR values between female and male speak-
ers, distance measures were obtained across the eight fricatives testing the contrast of place
of articulation, voicing and palatalisation. In previous studies, the distance was measured be-
tween vowels (Diehl et al., 1996) and sibilant voiceless fricatives (Weirich and Simpson, 2015)
contrasted by place of articulation. Both studies conclude that females produce more distance
between two contrastive sounds and therefore more distinct sound categories. The observations
made for voiceless sibilants by previous research (Weirich and Simpson, 2015) can be extended
to other fricative pairs contrasted by place of articulation. For both non-palatal voiceless [f]-
[s], [s]- [S], and voiced [v] -[z], [z]- [Z] pairs, contrasted by place of articulation, female speakers
produce in general a larger distance between the tested contrastive fricative pairs. However, in
the palatal fricatives [sj]- [C] no such gender variation is observed. Analysis of fricative pairs
contrasted by voicing ([f-v], [s-z], [S- Z]) suggests trends based on places of articulation. Females
produce less contrast between the bilabial [f]-[v] and post-alveolar [S]-[Z] pairs and more contrast
in the alveolar pair than male speakers. Female speakers also show a larger distance between
the two sibilant fricative pairs contrasted by palatalization ([s-sj], [S- C]).

The current data provide an alternative explanation for the observed results taking into
account the IQR analysis, than the previous conclusions drawn in (Diehl et al., 1996; Weirich
and Simpson, 2015). It is assumed that a high IQR indicates high variance in the measures of
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a cue. This, in turn, means that with increasing values of the IQR, a greater distance between
the ASFs can be detected. This difference could explain why the measured distance between
contrastive fricative pairs is for some pairs larger for females and others larger for male speakers.
This does not imply that categories with a greater distance of values in the same cue and sound
are more distinct from each other, but only that these sounds were produced with a high degree
of variation. However, the results suggest that the IQR and the distance produced between
contrastive sounds seem to be irrelevant gender-speciĄc properties. Therefore, it is questioned
whether the variation and distance produced between contrastive sounds represent a perceptual
cue for gender recognition.

Taken together, the Ąndings suggest that female and male speakers differ signiĄcantly in
their acoustic characteristics, but the overall patterns of gender variation are less systematic
across female and male speakers, and more speciĄc to sound and acoustic cues. Gender variation
was often evaluated by previous studies measuring spectral moments in [s]. The current analysis
shows a large variation between fricatives of different places of articulation and voicing quality.
Patterns found in [s] are not necessarily transferable to for instance [z], [sj] or [S]. These Ąndings
could also explain why machine learning classiĄers performed only moderately when predicting
gender by ASFs. Most ASFs show signiĄcant differences, so they probably all contribute to a
certain extent to the distinction between males and females.

6.5 Can speakers’ ID be predicted by acoustic cues?

And how does the performance of the models dif-

fer between using ASFs or/and MFCCs?

In the next step, the same questions as for gender variation were asked to investigate inter-
and intra- speaker variation. First, the two corresponding machine learning classiĄers were
applied to predict speakersŠ IDs from ASFs and MFCCs. The results demonstrate that the
two decision tree-based algorithms are unable to identify speakers based on ASFs. However,
using the dataset of MFCCs, speakers could be predicted with a kappa and accuracy of 0.64 in
RF. This evidence gives reasons to believe that fricative sounds do contain speaker information
which can be determined by technological applications. This is not surprising, since MFCCs
are successfully used in ASR.

The Ąnding that the classiĄers fail to predict speakersŠ ID by ASFs could be attributed to the
fact that the dataset is not suitable for machine learning applications of this type, since there
is a high number of speakers (59) to predict and a relatively low number of tokens per sound
and speaker. Another explanation is that common ASFs measured in fricative sounds may
not contain as much precise speaker information, or that speaker variation in general is more
complex to evaluate. Evidence that fricative sounds do contain certain speaker information in
the spectral moments was found by previous research (Kavanagh, 2011; Newman et al., 2001;
Schindler and Draxler, 2013). To explore this complexity of speaker information encoding and
individual differences in fricative sounds, the inter- and intra- speaker variation in the ASFs
was investigated in more detail.

The application of identical methods employed to identify gender variation within the mea-
sures and across the eight fricatives did not lead to an interpretable output. Therefore, a
Principal Component Analysis by sound was performed, to deĄne cues that explain the most
variation within each sound category. For a better overview, only the results of the Ąrst prin-
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cipal component were reported and discussed. The PC1 explains thereby between 32% (in [f])
and 57% ([v,z]) of the variation in all realisations of each fricative.

Interestingly, spectral cues seem to explain the variation only in [f] across the voiceless
fricatives with the most variable cues of peak, cog, sdev and hsd. All voiceless sibilants show
similar patterns with the most relevant features dur, hmax, htmax, tilt. Among the three voiced
fricatives, the PCA identiĄed in [v] skew and kurt as the most variable cues. Furthermore,
similar patterns were observed across the two voiced sibilants. For both sounds, some variation
is contained by cog and sdev, but more by hmean and hsd.

In general, the PCA provide a good overview of variant cues across the fricatives, but it does
not show the source of the variety. In particular, it is unclear whether the discovered variation
results from a high degree of between or within speaker variation. To clarify this question
the SD-ratio was computed for each cue and sound. A high SD-ratio indicates that a given
cue is produced by speakers with a high between-speaker variation and a low within-speaker
variation. Values below one mean that the inter-speaker variation is higher than the intra-
speaker variation.

Figure 6.2: Comparison of the PC1 on the x-axis and SD-ratio on the y-axis by cue and sound.
The PC1 value shows the variation within a sound which can be explained by this cue. And
as higher the SD-ratio the higher the between-speaker variation. The SD-ratio below 1 means
that the within-speaker variation is higher than the between-speaker variation.

The comparison in Figure 6.2 shows the distribution of inter- and intra- speaker variation
across the tested fricatives and acoustic cues. Combining these two methods, it can be expected
that ASFs with high values in PC1 explain a certain amount of variation and a high SD-ratio
indicate that a given cue is produced by speakers with a high between speaker variation and
a low within speaker variation. Consequently, these cues could potentially contain speaker-
speciĄc information. The visualisation in Figure 6.2 suggests that intra- and inter-speaker
variation cannot be deĄned by the measured set of cues across the eight fricatives. Most
acoustic features found by the PCA to be variable within a sound are characterized by an
SD-ratio below 1 meaning that the within-speaker variation is higher than between speakers.
Low values in PC1 on the other hand show for a set of cues a high SD-ratio. This means that
most cues detected by the PCA explaining the most variation are produced by the speakers
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with a high degree of within-speaker variation. Therefore, it is challenging to determine which
cues could potentially serve to encode speaker information in fricative sounds.

In regard to previous research which identiĄed speaker variation and a high speaker discrim-
ination potential in the spectrum of voiceless fricatives, these Ąndings are somewhat surprising.
On the other hand, taking into account the conclusions of the Ąrst study, in which cog and sdev
were identiĄed as reliable cues for the place of articulation independent of vowel context, gen-
der and speaker, it was not expected to Ąnd these cues to be most prominent to distinguishes
between speakers.

6.6 How do speakers differ in their acoustic characteris-

tics on the individual level?

To understand better the reported Ąndings for inter- and intra- speaker variation across the
measured ASFs and sounds, the acoustic characteristics of three speakers were compared in
more detail. Thereby, the interaction between PC1 and SD-ratio was assessed across the three
speakers for the two sounds [f] and [S] and is summarised in Table 6.1.

Table 6.1: PC1 and SD-ratio for three speakers and two sounds. The three speakers show
remarkable differences in the distribution of the ratio between PC1 and SD-ratio across the
two fricatives [f] and [S].

sound [f] [f] [f] [S] [S] [S]
speaker 1 1 7 7 16 16 1 1 7 7 16 16
Measure SD PC1 SD PC1 SD PC1 SD PC1 SD PC1 SD PC1
peak 1.22 0.1 2.89 0.02 0.25 0.39 1.37 0.01 1.02 0.02 5.52 0.01
cog 1.17 0.13 1.75 0.1 0.48 0.23 1.54 0.01 1.24 0.01 3.05 0
sdev 0.91 0.15 1.27 0.19 1 0.02 1.81 0.01 1.35 0.01 1.43 0.02
skew 1.35 0.02 2.55 0.06 3.74 0.02 1.34 0 2.54 0 0.98 0
kurt 1.62 0 4.4 0.02 15.54 0 1.72 0 2.98 0 0.87 0
dur 1.15 0.08 1.54 0.02 1.18 0.02 1.15 0.12 1.77 0.06 1.79 0.05
hmean 1.06 0.01 1.54 0.1 2.96 0.03 1.36 0 1.56 0.03 1.06 0.04
hsd 0.85 0.08 1.18 0.33 1.42 0.1 0.93 0.03 1.05 0.09 0.94 0.1
hmax 0.89 0.18 0.53 0.11 0.68 0.1 1.06 0.17 1.09 0.4 1.05 0.26
htmax 0.92 0.1 0.82 0.04 1.04 0.04 0.99 0.22 1.07 0.36 1.33 0.03
tilt 0.66 0.15 1.97 0 0.08 0.05 0.95 0.43 1.96 0.03 0.93 0.49
PC1 variace 0.38 0.56 0.56 0.46 0.52 0.55

Table 6.1 shows clearly how large speakers can differ in the degree of variation and constancy
across the measured cues. Taking for instance the peak in [f], the data shows that while speaker
7 has an SD-ratio of 2.89 and 0.02 in PC1, speaker 16 has the opposite pattern with an SD-ratio
of 0.25 and PC1 of 0.39. This in turn means that speaker 7 produces a very stable peak, and
speaker 16 has high variation within peak frequencies. Similar Ąndings can be observed for
most of the ASFs in all eight fricatives.

From this analysis, it can be concluded that the intra- and inter-speaker variation is highly
complex and no set of cues seems to explain acoustic variability and stability for all fricatives
and speakers. Speakers can potentially code their individual information in different cues for the

66



same sound. Feature distributions exhibit a large variation across sounds and the individuality
encoded in fricatives is highly speaker-dependent. Furthermore, the within-speaker variation
across different fricatives depends on place and manner of articulation. Whether patterns
between speakers exist and whether some speakers can be grouped together according to a
similar distribution of variant and stable cues needs to be further investigated. Furthermore,
it is questionable to what extent a speakerŠs individual variation in one sound can predict the
variation in another sound.

6.7 Contributions to linguistic and speaker research in

fricative sounds

The Ąrst contribution of the present work is the generation of a large database on Russian
fricatives. The database provides additional materials to the already existing databases, such as
the open-source Russian language dataset Ű OpenSTT, (available online at https://github.

com/snakers4/open_stt) for the study of underrepresented languages in account-phonetic
research and beyond.

The two follow-up studies on linguistic and speaker characteristics have a signiĄcant impact
on several current debates in phonetics, linguistic typology, forensic speaker comparison and
ASR. Furthermore, the analysis gives examples of how machine-learning techniques can be
applied to acoustic studies.

The analyses provide evidence that there may be a set of acoustic cues (cog and sdev) that
can reliably distinguish the Russian fricatives [f], [s], and [S]. This supports the invariant theory
and suggests that stable and descriptive acoustic characteristics can be extracted from speech
signals (Blumstein and Stevens, 1981). The performance of identifying the three fricatives by
the ASFs is thereby very high and similar to the performance of MFCCs. Both sets of measures
seem to capture equally accurate information on the distinct features of fricative sounds. The
results also support the view that the conĄguration of the vocal tract during the production
of fricatives shapes their spectrum, with the relevant spectral cues not residing primarily in
the frequency of the highest amplitude, but in the spectral mean and spread. However, more
research is needed in this direction.

In research focusing on speaker characteristics in complex sounds, the dissertation con-
tributes to a better understanding of how individual speaker information is distributed in sounds
like fricatives across common ASFs and MFCCs. The output display that speakersŠ gender and
speakersŠ ID can be best predicted by MFCCs. ASFs seem to provide less idiosyncratic infor-
mation. While gender could be predicted by these cues, the classiĄers fail to identify speakersŠ
IDs. Furthermore, the study explored gender variation and inter- and intra-speaker variation
in more detail and gives possible explanations for the decrease in discrimination tasks in perfor-
mance for ASFs. The investigation discovered idiosyncratic information in almost all measured
acoustic features. For most ASFs, signiĄcant gender variation was detected across eight Russian
fricatives. Concerning individual differences, the observations suggest that speaker information
encoding in fricative sounds is highly complex and can concern diverse acoustic cues. The inter-
and intra- speaker variation show for most analysis place and manner of articulation trends.
Finally, this investigation demonstrates that acoustic and phonetics studies can be advanced
by machine learning (and, more generally, Data Science) approaches: they can help to identify
the voiced and unvoiced parts of a fricative and extract the frication noise. They can also be
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useful for Ąnding patterns in the acoustic correlates extracted from speech sounds.

6.8 Limitations of the project and an outlook on further

research

The current dissertation has several limitations. Probably the most important is that the
database represents a subset of the Russian fricative inventory of read speech.

Concerning the application of machine learning methods, in the present study, only ba-
sic deep learning methods (feed-forward neural network) without additional tuning were used.
Fricative place of articulation, gender and speaker were predicted on pre-extracted and selected
measures. Machine learning techniques give also the possibility for pattern and interaction
recognition according to an acoustic or visual representation of speech sounds without pre-
deĄned extracted acoustic correlates. Several studies have shown that for instance speaker
discrimination tasks can also be performed on spectrograms, and machine learning techniques
can recognize patterns among different sound categories and speakers.

Furthermore, the identiĄcation of a set of acoustic cues to predict the place of articulation
in fricatives was performed only on three voiceless fricatives. Additional research is needed
to identify crucial and distinct cues for the place of articulation contrast in voiced fricatives,
voicing contrast of the same place of articulation, and palatalisation contrast.

Moreover, it is worth testing how language-speciĄc are the Ąndings and whether the appli-
cation of similar acoustic cue extraction techniques, as well as identiĄcation methods for the
analysis of distinct and contrastive cues, would lead to comparable results in languages other
than Russian.

Concerning idiosyncratic information in fricatives, the analysis shows that most of the mea-
sured acoustic features differ between female and male speakers. As it was outlined, it is known
that females produce higher spectral energy and that these properties help listeners to distin-
guish speakersŠ gender. The analysis of gender variation demonstrates that further research is
needed to determine the extent to which other acoustic cues such as the harmonics-to-noise
ratio serve as crucial perceptual cues. This information could be accessed through percep-
tual experiments and the manipulation of, for example, harmonic and noise proportions. It
is therefore suggested in future studies to extend gender-variation research to other fricatives.
Nevertheless, to test the importance of individual ASFs in gender prediction, it may be neces-
sary to compare separately, for example, the performance on spectral cues and HNR measures.
Furthermore, future analyses should probably include the comparison of voiced and voiceless
fricatives

A further limitation of the study is that the acoustics of only three speakers could be
analysed in more detail. Considering the Ąndings of how individual speakers differ in their
variant and constant acoustic characteristics, the results argue for a qualitative approach and
supplementary investigations of individual speakers. Furthermore, it remains unclear whether
other speakers employ comparable strategies and that exhibit similar patterns as the three
introduced speakers. Preliminary analyses of the data suggest that if grouping speakers, the
production of one sound should be considered. For most speakers, it seems that the detected
patterns of idiosyncratic information encoding in one sound are not directly transferable to
other sounds. However, this aspect needs also more attention in further phonetic-acoustic
research.
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Appendix

Table 6.2: Summary of the acoustic cues included in the present study. Some cues were used
in both studies, and some others only in one. The column Paper refers to in which study the
cue was used.

Cue Variable Description Paper
Fricative Duration dur Duration of the entire sound obtained from manual segmentation 2,3
Zero Crossing Rate zcr Number of times the wave crosses 0, computed for each time frame of the signal 2
Peak Frequency peak Frequency of the highest amplitude 2,3
Peak Amplitude peak_a Amplitude of the highest frequency 2
Spectral Mean cog Mean distribution of spectral energy (center of gravity) 2, 3
Spectral Variance sdev Spectral spread or variance of the energy around the mean 2,3
Spectral Skewness skew Spectral tilt, overall asymmetry of the energy distribution 2,3
Spectral Kurtosis kurt Spectral Ćatness of the distribution 2,3
HNR mean hmean The mean of Harmonics to Noise Ration (HNR) 3
HNR sd hsd Standard deviation of HNR 3
HNR max hmax Maximum of HNR 3
HNR tmax htmax Time to the maximum HNR 3
tilt tilt Spectral tilt. Computed by H1-H2 3
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