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Super-résolution multi-échelle d’images 3D en sciences des matériaux

Résumé : Les développements récents des techniques d’imagerie et de l’analyse
computationnelle modifient profondément la manière dont les sciences des matériaux sont
abordées. L’image des matériaux est passée d’une résolution à l’échelle microscopique à
une véritable échelle nanométrique pour analyser les défauts et les détails aux interfaces
des matériaux. Ainsi, cette thèse traite du problème de la super-résolution (SR) afin
de reconstruire les images de matériaux en haute résolution, par exemple à l’échelle
nanométrique. Pour atteindre ce but, cette thèse explore plusieurs approches de la SR
pour les images de matériaux.

Les algorithmes de super-résolution d’image unique (SISR) basés sur les patchs ont été
remarqués et largement utilisés au cours de la dernière décennie. Récemment, les modèles
de mélange gaussien généralisé (GGMM) se sont révélés être un outil approprié pour de
nombreux problèmes de traitement d’images en raison de la flexibilité de leur paramètre
de forme. Dans un premier temps, nous proposons d’utiliser un GGMM conjoint appris
à partir de vecteurs concaténés de patchs d’entraînement à haute et basse résolution pour
réaliser une image en super-résolution basée sur la technique de minimum mean square
error (MMSE).

Malheureusement, la dimension des échantillons concaténés est très élevée ce qui
entraîne une forte complexité de calcul des méthodes d’apprentissage des modèles de
mélange tels que le modèle de mélange gaussien et le GGMM. Afin de limiter cette
compléxité, nous proposons une extension de ces deux modèles intégrant une réduction
de la dimensionnalité des données dans chaque composante du modèle par analyse en
composantes principales. Ces modèles sont appelés respectivement PCA-GMM et PCA-
GGMM. Pour apprendre les paramètres (de faible dimension) du modèle de mélange,
nous proposons deux algorithmes EM différents dont l’étape M nécessite la résolution de
problèmes d’optimisation sous contrainte. Ensuite, nous appliquons nos PCA-GMM et
PCA-GGMM pour la super-résolution d’images de matériaux 2D et 3D en nous basant sur
la méthode MMSE pour le modèle GGMM.

Sur le plan applicatif, l’étude des données de matériaux devient difficile car les images
HR et LR possèdent des niveaux de contraste différents. Dans notre dernière contribution,
nous étudions une approche d’apprentissage profond considérant le problème du changement
de contraste dans les images de matériaux. En effet, nous proposons un réseaux antagonistes
génératif (GAN) composé de deux générateurs, chacun répondant à une tâche différente. Le
premier générateur traite le problème du changement de contraste, et le second se concentre
sur la reconstruction des hautes fréquences du SR.

Toutes les méthodes proposées conduisent à des résultats convaincants, tant quantitatifs
que visuels. En particulier, les résultats numériques des méthodes de réduction de la
dimensionnalité confirment une influence modérée de la réduction de la taille sur les résultats
globaux de la SR.

Mots-clés : Super-résolution, science des matériaux, les modèles de mélange Gaussien,
les modèles de mélange Gaussien généralisé, réduction de la dimensionnalité, apprentissage
profond, réseaux antagonistes génératif (GAN).
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Super-resolution of multiscale 3D images from materials science

Abstract: Recent developments in imaging techniques and computational analysis deeply
modify the way materials sciences. The materials image has moved from microscale resolu-
tion to true nanoscale to analysis the defects and details at the interfaces of the materials.
Thus, this thesis deals with the super-resolution (SR) problem in order to reconstruct the
materials images in the high-resolution for instance the nanoscale resolution. To reach this
goal, this thesis explores several SR approaches for materials images.

Single Image Super-Resolution (SISR) algorithms based on patch-based have been no-
ticed and widely used over the past decade. Recently, Generalized Gaussian Mixture Models
(GGMMs) have shown to be a suitable tool for many image processing problems due to the
flexible shape parameter. In the first place, we propose using a joint GGMM learned from
concatenated vectors of high and low resolution training patches to do super-resolution
image based on the minimum mean square error (MMSE) method.

Unfortunately, the dimension of the concatenated samples is too high for the learning
of the mixture models such as Gaussian mixture model and GGMM. Then we propose
these two models Gaussian mixture model (GMM) and GGMM with a reduction of the di-
mensionality of the data in each component of the model by principal component analysis.
These models are called to as PCA-GMM and PCA-GGMM, respectively. To learn the
(low dimensional) parameters of the mixture model we propose two different expectation-
maximization (EM) algorithms whose M-step requires the solution of constrained optimiza-
tion problems. Then we apply our PCA-GMM and PCA-GGMM for the super-resolution
of 2D and 3D material images based on the MMSE method for the GGMM model.

In addition, the study of the material data becomes difficult because the HR and LR
images have a different contrast. In our last contribution, we study a deep learning approach
considering the problem of contrast change in material images. Indeed, we propose a
generative adversarial network (GAN) within two generators, each responding to a different
task. The first generator deals with the problem of contrast changes, and the second one
focuses on the reconstruction of the high frequencies of the SR.

All the proposed methods lead to convincing results, both quantitative and visual. Es-
pecially the numerical results of the dimensionality reduction methods confirm a moderate
influence of the size reduction on the overall SR results.

Keywords: Image super-resolution, materials science, Gaussian mixture model, gen-
eralized Gaussian mixture model, high-dimensional data, dimensionality reduction, deep
learning, generative adversarial network (GAN).
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France.
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Cette thèse a été rédigée à l’Institut de Mathématiques de Bordeaux (IMB),
UMR 5251 et au laboratoire IMS du CNRS (Laboratoire de l’Intégration du
Matériau au Système, UMR 5218) - Université de Bordeaux - Bordeaux INP).
Cette thèse a été financée par l’Agence Nationale de la Recherche (ANR) dans
le cadre du projet ANR-18-CE92-0050 SUPREMATIM1 (SUPerREsolution of 3d
MATerials IMages). L’objectif de ce projet est de développer des méthodes de super-
résolution (SR) pour des images de matériaux en 3D à partir d’une image à basse
résolution (LR) et d’une image locale guidée à haute résolution (HR). Les images
3D de matériaux sont prises dans le cadre du projet MUMMERING2 (MUltiscale,
Multimodal and Multidimensional imaging for EngineeRING).

1.1 Contexte

La super-résolution (SR), qui consiste à obtenir une ou plusieurs images à haute
résolution (HR) à partir d’une ou plusieurs observations à basse résolution (LR),
a trouvé des applications dans de nombreux problèmes du monde réel. Au cours
des deux dernières décennies, un grand nombre d’articles de recherche et de livres
traitant d’objectifs pratiques spécifiques ont été rédigés. Pour un très bon aperçu
des résultats obtenus jusqu’en 2014, nous vous renvoyons à l’étude exhaustive [68].

En ce qui concerne les algorithmes de super-résolution image unique (SISR),
la plupart des travaux sont basés sur l’interpolation ou sur les statistiques de
la paire d’images HR-LR. Diverses méthodes basées sur l’interpolation ont été
proposées à partir d’interpolateurs linéaires ou non linéaires incorporant des noyaux
de reconstruction adaptatifs plus ou moins sophistiqués à partir de structures locales

1https://www.math.u-bordeaux.fr/~jaujol/suprematim/
2http://www.mummering.eu/index

https://www.math.u-bordeaux.fr/~jaujol/suprematim/
http://www.mummering.eu/index
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des images telles que les bords [75]. Récemment, compte tenu de la définition mal
conditionnée du problème de SR, des approches variationnelles ou bayésiennes ont
été envisagées [33, 42]. Les a priori appris sont exploités dans les algorithmes SR
pour concevoir un mappage statistique adapté entre l’image HR et l’image LR.
Des modèles d’image populaires ont été étudiés, allant de la variation totale [42]
aux décompositions de type ondelettes, en passant par les hypothèses de sparsité
[1, 42]. Plus spécifiquement, dans le contexte des problèmes inverses généraux, le
travail de Buades et al. [12] a montré un intérêt dans l’utilisation des patches et de
l’hypothèse d’auto-similarité pour apprendre une mise en correspondance statistique
efficace entre les images observées et restaurées. Dans un travail récent, [33] a
développé une méthode variationnelle de SR pour les images texturées qui vise à
super-résoudre la texture LR en prenant explicitement en compte les patchs HR dans
un schéma de régularisation non-local couplé à plusieurs a priori d’histogrammes
de caractéristiques locales de l’image [33]. Une autre approche de la SR basée
sur l’apprentissage est celle des méthodes basées sur des exemples qui exploitent la
structure récurrente de l’image des patchs à l’intérieur et à travers différentes échelles
[75]. L’objectif principal de cette classe de méthodes est d’une part d’apprendre un
modèle conjoint de paires de patchs HR et LR et d’autre part d’estimer un patch
HR à partir d’un patch LR donné.

Zoran et Weiss [92, 93] ont montré que, malgré leur simplicité, les modèles
de mélanges gaussiens (GMM) sont remarquablement efficaces pour modéliser les
statistiques des patchs d’images. Dans les tâches de restauration d’images, ils
améliorent d’autres méthodes préalables génériques comme, par exemple, le codage
parcimonieux.

Récemment, Sandeep et Jacob [75] ont montré le potentiel de la modélisation
paramétrique pour apprendre la cartographie statistique en SR dans le cas où le
noyau de flou est inconnu. En supposant un grand ensemble de patchs de paires
d’images exemples HR et LR sous le modèle SR, les auteurs ont démontré que le
GMM conjoint est une proposition très compétitive pour les méthodes basées sur
l’apprentissage en termes de performance SR et de charge de calcul. Ils proposent
une étude comparative avec un large panel de méthodes qui tirent parti de techniques
d’apprentissage bien connues consacrées à l’appariement des dictionnaires HR-LR.

Dans le contexte du traitement d’images à partir de l’extraction de
caractéristiques de patchs, des travaux récents [21] tirent parti du modèle de mélange
gaussien généralisé (GGMM) pour apprendre les statistiques des patchs d’images.
C. Deledalle et al. ont montré que le GGMM obtient de meilleures distributions de
patchs qu’un GMM et surpasse le GMM lorsqu’il est utilisé dans le même cadre que
[92]. Divers travaux [2, 10, 71] ont montré la possibilité de considérer des modèles
à fonction de densité de probabilité, qui ont plus de flexibilité pour s’adapter à la
forme des données et moins de sensibilité à la sur-adaptivité du nombre de classes
que le GMM.
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?figurename? 1.1: Rendu 3D d’une électrode de pile à combustible avec, sur la
partie gauche, la porosité (transparente), le conducteur électronique (vert) et le
conducteur ionique (jaune). Sur la partie droite, les lignes rouges représentent les
Triple-Phase-Boundaries où les réactions électrochimiques ont lieu.

1.2 Motivations et objectifs

1.2.1 Motivation en sciences des matériaux

Les développements récents et en cours dans les techniques d’imagerie et l’analyse
computationnelle modifient profondément la façon dont la science et l’ingénierie
des matériaux considèrent leurs sujets de recherche. Notre projet contribue à cette
direction de recherche en développant de nouvelles méthodes de SR guidées par une
sous-image locale de HR des données de matériaux 3D. L’imagerie 3D est passée
d’une résolution à micro-échelle à un véritable régime nano-échelle. Cela permet le
passage de l’analyse statistique à l’analyse des modulations des défauts et des détails
aux interfaces. Les interfaces entre les phases des matériaux sont des caractéristiques
importantes et déterminantes pour les performances de la science des matériaux.
Elles sont décrites comme dans la Figure 1.1. Les méthodes d’imagerie multi-
échelle constituent le pont entre la compréhension à nano-échelle et les modèles de
performance à micro-échelle, non seulement pour les systèmes statiques, mais aussi
pour mesurer les paramètres structurels clés localement et en fonction du temps.

Le projet MUMMERING travaille sur le transport réactif dans les milieux
poreux: une approche d’imagerie et de modélisation multi-échelle. Des approches
d’imagerie et de modélisation multi-échelles ont été utilisées pour étudier le transport
réactif dans les milieux poreux où les réactions hétérogènes sont fondamentales, ce
qui signifie que les frontières solides doivent être décrites avec précision. D’autre
part, la distribution spatiale globale du solide doit également être caractérisée avec
précision, car elle détermine les propriétés moyennes de transport. La méthode SR
d’image nous permet de compléter l’image LR globale avec des informations locales
extraites d’une région donnée de l’image HR et LR. Cela permet d’affiner de manière
itérative une simulation numérique des propriétés de transport dans l’espace global
avec des images HR. À cette fin, notre projet (SUPREMATIM) a été construit pour
explorer le modèle statistique reliant les images LR et HR en collaboration avec le
groupe allemand du professeur Gabriele Steidl à la Technische Universität Berlin et
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du professeur Claudia Redenbach à la Technische Universität Kaiserslautern.
Dans le projet SUPREMATIM, nous examinons deux problèmes transitoires

de la science des matériaux (défaillance des composites en aluminium et réactions
électrochimiques dans les électrodes poreuses), pour lesquels l’imagerie à nano-
échelle et à micro-échelle est nécessaire. Les perspectives de développement de la
SR comme méthode de propagation de l’information géométrique de nano-échelle
à micro-échelle sont encore plus stimulantes ici, puisque l’imagerie à micro-échelle
(tomographie aux rayons X) est non destructive, mais que l’imagerie à nano-échelle
pourrait être destructive (tomographie au microscope électronique à balayage à
faisceau d’ions focalisé (FIB-SEM)). En fait, la caractérisation 3D des matériaux
considérés ici serait facilitée si les acquisitions HR destructives étaient limitées à
des zones suffisamment petites pour maintenir la représentativité de l’échantillon,
lorsque les acquisitions LR et HR sont réalisées.

1.2.2 Objectifs

L’objectif de cette thèse est le développement de méthodes de SR pour des images
3D uniques provenant d’images LR et HR de la même sonde de matériaux. Sur la
base de nos motivations, nous avons décidé de développer de nouvelles méthodes de
SR guidées par des sous-images HR locales à partir d’images LR globales.

Pour cela, le premier objectif de cette thèse est d’étendre la super-résolution
d’image utilisant la méthode GMM des travaux précédents [75, 92] au cas GGMM.
Nous avons l’intention de capturer les statistiques HR de l’image LR d’une manière
plus appropriée en utilisant cette modélisation plus riche. Le deuxième objectif
de cette thèse est d’étudier les techniques de réduction de la dimensionnalité
qui incorporent un GMM ou un GGMM. Enfin, nous considérons les techniques
d’apprentissage profond pour la super-résolution.

1.3 Résumé de nos contributions

Sur la base de nos objectifs, cette thèse est divisée en quatre contributions
principales. Tout d’abord, pour aborder la SR d’images dans des images matérielles
3D guidées par des sous-images HR locales issues d’images LR globales, nous avons
choisi de nous placer dans le cadre d’une approche basée sur l’exemple. Cette
approche s’appuie sur des jeux de données spécifiques fournis à partir de sous-
images HR locales et d’images LR correspondantes issues d’images LR globales.
Elle étend la méthode SR de Sandeep et Jacob [75] au modèle de mélange gaussien
généralisé. À cette fin, nous proposons un algorithme comme première contribution
pour apprendre un modèle de mélange gaussien conjoint basé sur l’algorithme
espérance-maximisation (EM) à partir d’une paire de patchs LR et des patchs HR
correspondants provenant des données de référence. Les paramètres du GGMM
sont estimés en utilisant les itérations d’un algorithme de point fixe (FP) pour
l’estimation du maximum de vraisemblance pondéré dans l’algorithme EM. Cet
algorithme EM incorporant des itérations FP pour le modèle GGMM est appelé
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algorithme FP-EM. Nous reconstruisons ensuite l’image HR en utilisant l’estimateur
de l’erreur quadratique moyenne minimale (MMSE) pour le modèle GGMM. Cette
proposition est appelée la méthode MMSE-GGMM. En outre, l’image du matériau
est passée d’une résolution à l’échelle du micron à une véritable échelle nanométrique.
L’étude des données matérielles est très difficile car les images HR et LR ont des
contrastes différents. De plus, la connaissance de l’opérateur SR n’est pas connue.
Dans cette contribution, nous démontrons que notre méthode gère l’opérateur
inconnu et est invariante au problème de changement de contraste affine.

La deuxième contribution consiste en une nouvelle approche pour la réduction
de la dimension des données avec des applications en super-résolution. En effet, la
réduction de dimensionnalité devient importante dans l’apprentissage de modèles
statistiques lorsque la dimension des données est élevée. Tout d’abord, nous
proposons un modèle de mélanges gaussiens en conjonction avec une réduction de
la dimensionnalité des données dans chaque composante du modèle par analyse
en composantes principales (PCA), appelée PCA-GMM. Ce modèle est généré en
ajoutant le terme de minimisation de la PCA et la fonction de log-vraisemblance
négative du GMM sur les points de données de dimension réduite. Ensuite,
pour apprendre les paramètres (de faible dimension) du modèle de mélange, nous
proposons un algorithme EM dont l’étape M nécessite la résolution de problèmes
d’optimisation sous contrainte. Deuxièmement, nous appliquons notre PCA-GMM
pour la SR d’images de matériaux 2D et 3D en nous basant sur l’approche de
Sandeep et Jacob [75]. Les résultats numériques confirment l’influence modérée de
la réduction de la dimensionnalité sur le résultat du SR.

La troisième contribution étend la contribution précédente au modèle GGMM
pour le problème de réduction de la dimensionnalité. Dans ce travail, nous proposons
de combiner un GGMM avec une PCA et de dériver un algorithme EM pour estimer
les paramètres du modèle qui en résulte. Le nouveau modèle est appelé modèle PCA-
GGMM. Pour gérer la complexité de l’algorithme EM pour le modèle PCA-GGMM,
la technique de séparation semi-quadratique est utilisée dans l’étape d’estimation
du maximum de vraisemblance. Ensuite, le modèle PCA-GGMM peut être appliqué
au SR en utilisant la méthode MMSE-GGMM.

Dans la dernière contribution, cette thèse propose une nouvelle méthode SR
basée sur l’apprentissage profond pour les images de matériaux avec le problème
de changement de contraste. Parmi tous les types de réseaux de neurones
convolutifs qui existent, nous avons choisi de nous placer dans le contexte des
réseaux antagonistes génératifs (GAN). En effet, ces dernières années, les GAN
ont commencé à émerger pour le problème de la super-résolution, notamment suite
à la méthode proposée par Ledig et al. [56]. Cependant, ils manquent encore
d’efficacité lorsque les contrastes des images HR et LR changent. Dans notre
première contribution, nous avons montré que le MMSE-GGMM peut être invariant
avec le problème de changement de contraste sous une transformation affine. Mais
cette méthode n’est pas garantie pour le cas non affine. Pour surmonter ce problème
avec une fonction de transformation non affine, nous proposons un nouveau cadre
GAN dans lequel le générateur G est divisé en deux sous-réseaux. Le premier sous-
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réseau traite du problème des changements de contraste, et le second sous-réseau se
concentre sur la reconstruction des hautes fréquences du SR.

1.4 Organisation du manuscrit

Cette thèse traite du traitement de super-résolution de données matérielles en
utilisant des méthodes basées sur l’apprentissage, en particulier, basées sur des
modèles de mélanges gaussiens généralisés locaux et globaux. Cette thèse apporte
quatre contributions à ce sujet. Notre première contribution vise à prendre en
compte une nouvelle méthode de super-résolution qui utilise l’estimateur MMSE
pour le modèle de mélanges gaussiens généralisés GGMM. Les deuxième et troisième
contributions de cette thèse consistent à introduire deux modèles qui combinent la
méthode PCA de réduction de dimensionnalité avec le modèle de mélanges gaussiens
et le modèle de mélanges gaussiens généralisés. La dernière contribution est de
concevoir l’architecture d’un GAN pour nos données matérielles avec les défis de
changement de contraste et d’opérateur de corruption inconnu.

Dans le chapitre 3, nous donnons une vue d’ensemble des données sur les
matériaux et un état-de-l’art général des méthodes existantes pour aborder et
résoudre le problème de la super-résolution des images de matériaux. Les défis de
la super-résolution pour notre image matérielle sont mentionnés dans ce chapitre.
Il s’agit des changements de contraste, de luminosité de l’image, et des problèmes
de super-résolution avec un opérateur de corruption inconnu. Il existe une grande
variété de méthodes pour résoudre le problème de super-résolution d’image. En
effet, il existe des approches basées sur l’interpolation, des approches basées sur la
reconstruction ou des approches basées sur l’exemple. Par conséquent, ce chapitre
vise à souligner les forces et les faiblesses de chaque type de méthodes.

Le chapitre 4 est consacré à la méthode de super-résolution guidée par la sous-
image HR locale basée sur l’approche par exemple. Tout d’abord, nous présentons
un état de l’art détaillé des approches basées sur les patchs pour le problème de
la super-résolution. Il s’agit notamment de la méthode de super-résolution via le
modèle de mélanges gaussiens conjoints [75] et de la méthode EPLL (Expected patch
log-likelihood) pour la super-résolution [92]. Nous terminons ce chapitre en nous
concentrant sur notre première contribution concernant l’approche MMSE-GGMM
du problème de la SR. Cette contribution a fait l’objet d’une publication lors de la
conférence GRETSI 2022 [69].

Le chapitre 5 traite du défi de la haute dimension des données matérielles. Pour
résoudre ce problème, nous étudions quelques solutions de pointe au problème
de la réduction de la dimensionnalité. Cela inclut le modèle PCA, l’analyse
probabiliste en composantes principales (PPCA) pour la distribution gaussienne,
le modèle MPPCA (Mixture of Probabilistic Principal Component Analyzers) et
la méthode HDDC (High-Dimensional Data Clustering). Ensuite, nos deuxième
et troisième contributions sont présentées dans le contexte de leurs applications
en super-résolution. La deuxième contribution a été publiée dans la revue Inverse
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Problems in Imaging [41] en 2022. La troisième contribution a été soumise à la
revue Inverse Problems in Imaging [70] en 2022.

Ensuite, le chapitre 6 est orienté vers les méthodes basées sur les GAN pour
le problème de changement de contraste de nos images de matériaux. Ce chapitre
commence par une brève introduction aux réseau de neurones convolutif (CNN) et
aux GAN pour le problème des SR. Ensuite, la dernière contribution sur les réseaux
GAN avec deux sous-réseaux dans le générateur est mentionnée.

Le chapitre 7 conclut cette thèse et propose des pistes d’amélioration et des
perspectives pour la tâche SR pour les images de matériaux.
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This thesis was written at the Institute of Mathematics of Bordeaux (IMB),
UMR 5251 and the IMS laboratory (Laboratoire de l’Intégration du Matériau au
Système, UMR 5218) in CNRS - Université de Bordeaux - Bordeaux INP). This
thesis was funded through the French Agence Nationale de la Recherche (ANR)
under the reference project ANR-18-CE92-0050 SUPREMATIM1 (SUPerREsolution
of 3d MATerials IMages). The aim of this project is the development of super-
resolution (SR) methods for 3D materials images originating from a low-resolution
(LR) image and a guided local high-resolution (HR) sub-image. The 3D materials
images are taken within the MUMMERING2 project (MUltiscale, Multimodal and
Multidimensional imaging for EngineeRING).

2.1 Context

Super-resolution (SR), the process of obtaining one or more high-resolution (HR)
images from one or more low-resolution (LR) observation(s) has found applications
in many real-world problems. Over the past two decades a large number of research
papers and books addressing specific practical purposes have been written. For a
very good overview of the results until 2014 we refer to the comprehensive survey
[68].

Considering single image super-resolution (SISR) algorithms, most of the works
are interpolation-based or based on the statistics of the pair HR-LR images.
Various interpolation-based methods have been proposed from linear or nonlinear
interpolators incorporating more or less sophisticated adaptive reconstruction
kernels from local image structures such as edges [75]. Recently, taking into account

1https://www.math.u-bordeaux.fr/~jaujol/suprematim/
2http://www.mummering.eu/index

https://www.math.u-bordeaux.fr/~jaujol/suprematim/
http://www.mummering.eu/index
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the underlying ill-conditioned definition of the SR problem, variational or Bayesian
approaches have been considered [33, 42]. The learned priors are exploited in the SR
algorithms to design an adapted statistical mapping between the HR image and the
LR image. Popular image models have been studied ranging from total variation
[42], wavelet-like decompositions, or sparsity assumptions [1, 42]. More specifically,
in the context of general inverse problems, the special work of Buades et al. [12] has
shown an interest in using patches and self-similarity hypothesis to learn efficient
statistical mapping between observed and restored images. In a recent work, [33]
has developed a variational SR method for textured images that aims to super-
resolve the LR texture by explicitly taking into account HR patches in a non-local
regularization scheme coupled with several histogram priors of local image features
[33]. Another approach to learning-based SR is example-based methods that exploit
the recurrent image structure of patches within and across different scales [75]. The
main purpose of this class of methods is on the one hand to learn a joint model of
HR and LR patch pairs and on the other hand to estimate a HR patch from a given
input LR patch.

Zoran and Weiss [92, 93] showed that, despite their simplicity, Gaussian mixture
model (GMM) is remarkably good at modeling the statistics of natural image
patches. In image restoration tasks they improve other generic prior methods such
as for instance sparse coding.

Recently, Sandeep and Jacob [75] have shown the potential of parametric
modeling to learn statistical mapping in SR in the case where the blur kernel is
unknown. Assuming a large patch set of HR and LR pairs of example images under
the SR model, the authors demonstrated that joint GMM is a very competitive
proposal for learning based methods in terms of SR performance and computational
load. They propose a comparative study with a large panel of methods that take
advantage of well-known learning techniques devoted to pairing HR-LR dictionaries.

In the context of image processing from patch feature extraction, recent work
[21] takes advantage of generalized Gaussian mixture model (GGMM) to learn the
statistics of image patches. C. Deledalle et al. showed that the GGMM obtains
better patch distributions than a GMM and outperforms the GMM when used in
the same framework with [92]. Various works [2, 10, 71] have shown the possibility
of considering probability density function models, which have more flexibility to
adapt the shape of data and less sensibility to overfitting the number of classes than
the GMM.

2.2 Motivations and objectives

2.2.1 Motivation from Materials Sciences

Recent and ongoing developments in imaging techniques and computational analysis
deeply modify the way materials science and engineering consider their research
subjects. Our project contributes to this direction of research by developing new
SR methods guided by a local HR sub-images of 3D materials data. 3D imaging
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?figurename? 2.1: 3D rendering of a fuel cell electrode with, on the left part,
porosity (transparent), electronic conductor (green) and ionic conductor (yellow).
On the right part the red lines represent the Triple-Phase-Boundaries where electro-
chemical reactions take place.

has moved from microscale resolution to true nanoscale regime. This allows the
passage from statistical analysis to the analysis of the modulations of the defects
and details at the interfaces. The interfaces between the phases of materials are
important and determining characteristics for the performance of materials science.
They are described as in Figure 2.1. Multiscale imaging methods form the bridge
between the nanoscale understanding and the microscale performance models, not
only for static systems, but also to measure key structural parameters locally and
as a function of time.

The MUMMERING project is working on reactive transport in porous media:
A multiscale imaging and modelling approach. Multiscale imaging and modeling
approaches were used to investigate reactive transport in porous media where
heterogeneous reactions are fundamental, meaning that the solid boundaries must
be precisely described. On the other hand, the global spatial distribution of the solid
must also be precisely characterized, because it determines the average transport
properties. The image SR method allows us to supplement the global LR image with
local information extracted from a given HR and LR image region. This allows for
the iterative refinement of a numerical simulation of transport properties in global
space with HR images. To this end, our project (SUPREMATIM) was built to
explore the statistical model linking LR and HR images in collaboration with the
German group of Professor Gabriele Steidl at Technische Universität Berlin and
Professor Claudia Redenbach at Technische Universität Kaiserslautern.

In the SUPREMATIM project, we consider two transitory problems of materials
science (failure of Aluminum composites and electrochemical reactions in porous
electrodes), where nanoscale and microscale imaging are necessary. The perspectives
of the development of SR as a method to propagate the geometrical information
from the nanoscale to the microscale are even more stimulating here, since
microscale imaging (X-ray tomography) is non-destructive, but nanoscale imaging
could be destructive (Focused Ion Beam Scanning Electron Microscope (FIB-SEM)
tomography). In fact, 3D characterization of the materials considered here would
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be facilitated if destructive HR acquisitions were limited to zones small enough to
maintain the representativeness of the sample, when LR and HR are acquired.

2.2.2 Objectives

The aim of this thesis is the development of SR methods for single 3D images
originating from LR images and HR images from the same material probe. Based
on our motivations, we decided to develop new SR methods guided by local HR
sub-images from global LR images.

For this, the first goal of this thesis is to extend the image super-resolution using
the GMM method of previous work [75, 92] to the GGMM case. We intend to
capture the HR statistics from the LR image in a more appropriate way by using
this richer modeling. The second goal of this thesis is to study the dimensionality
reduction techniques which incorporate a GMM or GGMM. Finally, we consider
deep learning techniques for super-resolution.

2.3 Summary of our contributions

Based on our objectives, this thesis is divided into four main contributions. First
of all, to address image SR in 3D material images guided by local HR sub-images
from global LR images, we have chosen to place ourselves in the framework of
an example-based approach. This approach relies on specific datasets provided
from local HR sub-images and corresponding LR images from global LR images. It
extends the SR method of Sandeep and Jacob [75] to the generalized Gaussian
mixture model. To this end, we propose an algorithm as a first contribution
to learn a joint GGMM based on the Expectation-Maximization (EM) algorithm
from a pair of LR patches and the corresponding HR patches from the reference
data. The parameters of the GGMM are estimated by using the Fixed-Point (FP)
iterations for the weighted maximum likelihood estimation in the EM algorithm.
This EM algorithm incorporated with FP iterations for the GGMM model is
called the Fixed-Point Expectation-Maximization (FP-EM) algorithm. We then
reconstruct the HR image using the Minimum mean square estimator (MMSE)
estimator for the GGMM model. This proposal is called the MMSE estimator
for joint GGMM (MMSE-GGMM) method. Furthermore, the material image has
moved from micronscale resolution to true nanoscale. Studying the material data
is very challenging because the HR and LR images have different contrasts. In
addition, the knowledge of the SR operator is not known. In this contribution, we
demonstrate that our method handles the unknown operator and is invariant to the
affine contrast change problem.

The second contribution consists of a new approach for data dimensionality
reduction with applications in super-resolution. In fact, dimensionality reduction
becomes important in learning statistical models when the dimension of the data is
high. First, we propose a Gaussian Mixture Model in conjunction with a reduction
of the dimensionality of the data in each component of the model by Principal
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Component Analysis (PCA), called PCA - Gaussian mixture model (PCA-GMM).
This model is generated by adding the minimization term of the PCA and the
negative log-likelihood function of the GMM on the reduced-dimensionality data
points. Then, to learn the (low-dimensional) parameters of the mixture model, we
propose an expectation–maximization (EM) algorithm whose M-step requires the
solution of constrained optimization problems. Second, we apply our PCA-GMM
for the SR of 2D and 3D material images based on the approach of Sandeep and
Jacob [75]. Numerical results confirm the moderate influence of the dimensionality
reduction on the overall SR result.

The third contribution extends the previous contribution to the GGMM model
for the dimensionality reduction problem. In this work, we propose to combine a
GGMM with a PCA and derive an EM algorithm for estimating the parameters of
the arising model. The new model is called the PCA - generalized Gaussian mixture
model (PCA-GGMM) model. To handle the complexity of the EM algorithm for the
PCA-GGMM model, the half-quadratic splitting technique is used in the maximum
likelihood estimation step. Then the PCA-GGMM model can be applied to SR by
using the MMSE-GGMM SR method.

In the last contribution, this thesis proposes a new SR method based on deep
learning for material images with the contrast change problem. Among all the types
of convolutional neural networks that exist, we have chosen to place ourselves in a
framework of Generative adversarial network (GAN). Indeed, in recent years, GAN
has begun to emerge for the super-resolution problem, in particular following the
method proposed by Ledig et al. [56]. However, they still lack effectiveness when
the contrasts of the HR and LR images change. In our first contribution, we showed
that MMSE-GGMM can be invariant with the contrast change problem under an
affine transformation. But this method is not guaranteed for the non-affine case.
To overcome this problem with a non-affine transformation function, we propose a
new GAN framework in which the generator G is divided into two sub-networks.
The first sub-network deals with the problem of contrast changes, and the second
sub-network focuses on the reconstruction of the high frequencies of the SR.

2.4 Organisation of the manuscript

This thesis discusses super-resolution processing of material data using learning-
based methods, in particular, based on local and global generalized Gaussian
mixture models. This thesis provides four contributions to the topic. Our first
contribution aims to take into account a new method for super-resolution that uses
the MMSE estimator for the generalized Gaussian mixture model. The second and
third contributions in this thesis are to introduce two models that combine the
PCA method of dimensionality reduction with the Gaussian mixture model and the
generalized Gaussian mixture model. The last one is to design the architecture of
a generative adversarial network (GAN) for our material data with the contrast
change and unknown corruption operator challenges.
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In Chapter 3, we give an overview of material data and a general state-of-the-
art on existing methods to address and solve the image super-resolution problem
for material image. The challenges of super-resolution for our material image are
mentioned in this chapter. These are the changes in contrast, brightness of image,
and super-resolution problems with unknown corruption operator. There are a wide
variety of methods to address the image super-resolution problem. Indeed, there are
interpolation-based approach, reconstruction-based approach, and example-based
approach. Therefore, this chapter aims to outline the strengths and weaknesses of
each type of method.

Chapter 4 is devoted to the super-resolution method guided by local HR sub-
image based on the example-based approach. First, we present a detailed state-
of-the-art of patch-based approaches for super-resolution problem. It includes the
super-resolution method via the joint Gaussian mixture model [75] and the Expected
patch log-likelihood (EPLL) method for super-resolution [92]. We finish this chapter
by focusing on our first contribution concerning the MMSE-GGMM approach to
the SR problem. This contribution was the subject of a publication at the GRETSI
conference 2022 [69].

Chapter 5 deals with the high dimension challenge of material data. To
address this problem, we study some state-of-the-art solutions of the dimensionality
reduction problem. This includes the PCA model, the Probabilistic Principal
Component Analysis (PPCA) for Gaussian distribution, the Mixture of
Probabilistic Principal Component Analyzers (MPPCA) model, and the High-
Dimensional Data Clustering (HDDC) method. Then, our second and third
contributions are presented in the context of their applications in super-resolution.
The second contribution was published in the Inverse Problems in Imaging journal
[41] in 2022. The third contribution was submitted to the Inverse Problems in
Imaging journal [70] in 2022.

Then, Chapter 6 is oriented towards methods based on generative adversarial
network (GAN) for the contrast change problem of our material images. This
chapter begins with a brief introduction to the Convolutional neural network (CNN)
and GAN for the SR problem. Then the last contribution to the GAN network with
two sub-networks in the generator is mentioned.

Chapter 7 concludes this thesis and proposes avenues for improvement and
perspectives for the SR task for the material images.
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In this chapter, we present the fundamentals of SR, by providing a general
definition in Section 3.1. Section 3.2 discusses our materials data of this thesis.
First, we present the material images on which most of the work in this thesis is
based. After that, some challenges of super-resolution for materials data will be
presented. Finally, we describe some main categories of approaches for SISR, and
the SR imaging model used throughout this work.

3.1 Super-resolution definition

In this section, we provide some brief definitions of the digital image and related
definitions of super-resolution.

Digital image A digital image can be considered as a discrete representation of
data that contains spatial (layout) and intensity (color) information. The discrete
two-dimensional (2D) digital image I is represented by a 2D array. Each element of
the array is called pixel, derived from the term "picture element". Thus, a M ×N

digital image I looks like this

I =


I(1, 1) I(1, 2) · · · I(1, N)

I(2, 1) I(2, 2) · · · I(2, N)
...

...
...

...
I(M, 1) I(M, 2) · · · I(M,N)

 (3.1.1)
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where I(m,n) represents the fixed pixel (m,n) of image I (m = 1, 2, ...,M and
n = 1, 2, ..., N). Image quality is a complex concept, largely subjective, and highly
application-dependent. Basically, a good quality image is an image that has the
following properties:

• it has a high resolution,

• it is not noisy,

• it has good contrast.

We discuss these definitions in the following of this subsection.

Image resolution In general terms, image resolution means the amount of detail
that an image holds. The resolution of an image can be described in many different
ways. According to the particular aspect taken into account, it can be mentioned as:
pixel count, spatial resolution, spectral resolution, temporal resolution, radiometric
resolution, etc. In particular, spatial resolution refers to the level of visual details
discernible in an image. Higher resolutions mean that there are more pixels per inch
(PPI), resulting in more pixel information and creating a high-quality, crisp image.
As for digital images, where the pixel is the base unit used, there is a connection
between spatial resolution and the total number of pixels. In practice, we often take
into account simply the total counts of pixels, horizontally and vertically, which
define what is more precisely called pixel resolution, and serves as upper bounds on
spatial resolution. In this manuscript, the word resolution is intended as a spatial
resolution. The resolution of a 2D image is commonly quoted as C × R (column
by row), e.g. 640 × 480, 512 × 512, 2512 × 2512, etc. An example of quality
of "cameraman image" with different resolutions is given in Figure 3.1. In this
example, we keep the level of contrast and blur of the image constant, and reduce
the resolution from 272× 272 to 34× 34. The three last images are generated using
the downsampling operator as shown in equation (3.2.3) with magnification factors
q = 2, 4, 8, respectively.

?figurename? 3.1: Cameraman image with different resolution from the left to the
right: 272 × 272, 136 × 136, 68 × 68, and 34 × 34 (keep noise and contrast level
constant).
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Image noise Image noise is a random variation of brightness or color information
in an image. It is caused by the image sensor and the circuits of a camera. Figure
3.2 shows the effect of noise when we change the level of noise.

?figurename? 3.2: Cameraman image size 272 × 272 with different level of noise
(keep resolution and contrast level constant).

Contrast image Contrast is the difference in luminance or colour that represents
in an image. Good contrast means that the grey values present in the image range
from black to white, making use of the full range of brightness to which the human
vision system is sensitive. The different contrasts of the image are illustrated in
Figure 3.3.

?figurename? 3.3: Cameraman image with different contrasts (keep resolution
constant and no noise).

Spatial Super-resolution Super-resolution (SR) is a class of image restoration
that increases the resolution of image. According to the number of input LR
images, SR can be classified into single-image super-resolution (SISR) and multi-
image super-resolution (MISR). In the context of this thesis, we refer to SISR,
which allows to increase the spatial resolution of the image from a single LR image.
It means that for a given low-resolution image input, our task is to estimate the
corresponding high-resolution image output and it must also provide an accurate
image signal without distortion.
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3.2 Super-resolution for materials data

As we discussed in Chapter 2, our motivation is to develop new super-resolution
methods for data from 3D material images. In the frame of the ITN MUMMERING
project, a series of multiscale 3D images has been acquired by synchrotron micro-
tomography at the TOmographic Microscopy and Coherent rAdiology experimentTs
(TOMCAT1) beamline of the Swiss Light Source (SLS2) at the Paul Scherrer
Institute in Switzerland.

The series of multi-scale 3D images of two different samples were acquired
following a protocol conceived for testing and validating the SR process by the
following steps:

- Firstly, we selected samples with micro-geometries of different levels of
complexity.

- Secondly, we acquired four tomograms for each sample for three magnifications
2, 4, and 10 following the scheme given Figure 3.4. Two different regions were
scanned at a magnification of 10. The first part is used for training the SR
model and the other for comparing the real and reconstructed micro-geometry.

Materials of two samples were selected to provide 3D images having diverse levels
of complexity:

- The first one is a sample of Fontainebleau sandstone ("FS"), a natural
rock rather homogeneous and commonly used in the oil industry for flow
experiments.

- The second is a composite ("SiC Diamonds") obtained by microwave sintering
of silicon and diamonds, see [81].

Each sample has been taken with different Magnification (MAG) of 2x, 4x, and 10x.
The 3D data with 2x and 4x magnification were collected for the entire sample with
1600×1600×962 and 2560×2560×2160 voxels, respectively. With magnification 10x,
two regions of sample were obtained by perform local microtomography resulting 3D

volumes with 2560×2560×2160 voxels. Figure 3.4 illustrates the multiscale imaging
experiment with cross sections of the Fontainebleau sandstone sample. The two FS
images with MAG of 10x were taken from the yellow and red circles of the FS image
with MAG of 4x. This means that on 10x 3D data we only have 2 private local data,
not the whole sample. We assume that 2x 3D data is a 3D LR image, and 10x 3D
local parts of the data are 3D HR images. Thus we have 2 parts of HR image, not
the entire HR image. This leads to the idea that we study an approach to perform
super-resolution image guided by HR local subimage of 3D materials data. From
the HR local subimage, the LR local subimage can be retrieved. These HR and LR
sub-images are to be used as reference images for training step of super-resolution.

1https://www.psi.ch/en/sls/tomcat
2https://www.psi.ch/en/sls

https://www.psi.ch/en/sls/tomcat
https://www.psi.ch/en/sls
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By extracting these subimages into small patches, we obtain a set of HR patches and
the corresponding LR patches as the dictionaries. From these points of view, this
thesis focuses on the research and development of example-based SR methods. In
this thesis, we propose new super-resolution methods based on Generalized Gaussian
Mixture Models. These methods will be presented in Chapter 4 and Chapter 5.

(a) (b)

(c) (d)

?figurename? 3.4: Cross sections of Fontainebleau sandstone with different
resolutions. a) 2x MAG with pixel size of 3.25µm, b) 4x MAG with pixel size
of 1 : 63µm, c) and d) 10x MAG with pixel size of 0.65µm

In this section, we investigate some of the challenges and solutions of super-
resolution 3D materials data.

3.2.1 Detecting local HR and LR images via Scale-invariant feature
transform (SIFT) algorithm

In materials science, 3D data is acquired using a synchrotron microtomography for
different magnifications at different times. Therefore, the positions of the subject are
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changed between the HR and LR images. This is illustrated in detail in Figure 3.5.
Assume that we consider a cross section with 2x MAG as a 2D LR image and a
cross section with 4x MAG as a 2D HR image. In Figure 3.5, the first column
shows the HR images of FS and Sic-Diamond, and the second column displays the
LR images, which we acquired from synchrotron microtomography. One can easily
notice that the LR image has more black areas than the HR image in the bounder
of the sample. Additionally, the 10x MAG data is obtained with 2 separate local
parts, not the whole data as shown in Figure 3.4. These two arguments lead us
to the important task before image super-resolution, which is to find the position
corresponding to the HR image in the LR image in case of 4x MAG or to detect the
HR parts in the LR image in case of 10x MAG. To detect HR and LR images, we
refer to the Scale-invariant feature transform (SIFT) algorithm [61].

?figurename? 3.5: Top: Material "FS", bottom: Material "SiC Diamonds". First
column: Ground-truth HR image, second column: Input LR image, third column:
Match LR images. The red lines in the second column are the boundaries of the LR
image that correspond to the HR image.

For more than a decade, the SIFT [61] has arguably been the most popular
keypoint detection and matching method. The SIFT algorithm proposed by David
Lowe consists of a keypoint detection which is independent towards image rotation,
scale change, affine transformation, intensity variation, and viewpoint change. Using
the SIFT algorithm, we determine all the match points between the HR and LR
images as shown in Figure 3.6. Then, the boundary of the LR image will be found
by selecting the minimum and maximum coordinates of the keypoints. Finally, we
obtain the 2D LR image which matches with the 2D HR image. The matched LR
image is given in the third column in Figure 3.5.
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?figurename? 3.6: Matched points between the HR and LR image by using SIFT

3.2.2 Modeling contrast change parameters

In practice, the high-resolution image and its low-resolution correspondence were
acquired under different conditions. Therefore, they may have different brightness
and contrast. In fact, the LR and HR images of the FS and sic Diamond data
in Figure 3.5 clearly show this comment. In addition to that, Figure 3.7 shows the
histogram of the HR and LR images of FS material data. It shows that the contrasts
of the HR and LR images are different.

?figurename? 3.7: Histogram of the images of the FS material. The image on the
left is the histogram of the high-resolution image, and the image on the right is its
low-resolution correspondence.

Notably, there exists a celebrated approach which has been explored, for
instance, in midway image equalization [22, 36]. The idea of mid-way equalization
[22] is to give a pair of images the same intermediate histogram. However, in our
project, our aim is to reconstruct the HR image based on the guided HR part of the
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LR image. Therefore, the basic idea is to determine an affine transformation such
that the LR image applied to this transformation has the same contrast as the HR
image.

Let C (t) = αt + β with α, β ∈ R, α > 0 be an affine contrast change function
such that Ỹ = C (Y ) has the same contrast as the HR image X, where Y denotes the
LR image. In the case of data with two gray-level regions, such as our material data,
we can find the maximum values in the two regions of the histogram. We denote
these two values of HR image by mH ,MH , and LR image by mL,ML respectively.
Thanks to the property of the affine function C, we get the following equation:

mH = αmL + β

MH = αML + β.

The affine contrast change function can be easily found by solving the above system
of linear equations. In this manuscript, we propose a method to reconstruct the HR
image without estimating the parameters α, β of the affine contrast change function
C as a pre-processing step. This statement is discussed in chapter 4.

3.2.3 Modeling super-resolution operator

The last challenge of super-resolution materials image processing is the SISR with
unknown corruption, the major challenge in the SR community. The SISR aims to
reconstruct an HR image from a single LR input image. In general, the LR image
is generated by

XL = AXH + ε (3.2.1)

where XL is the low-resolution image, XH is the high-resolution image, ε is a white
Gaussian noise with the standard derivation σ, andA is an unknown super-resolution
operator.

?figurename? 3.8: Sketch of the overall framework of SR.

In the following, we describe the estimation process of the forward operator A
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for super-resolution. For estimation, we assume that we have given a registered
pair (X̃H , X̃L) of a high-resolution and a low-resolution image. We assume that our
forward operator is given by

A = SH. (3.2.2)

Where H is a blur kernel and S is a downsampling operator. The downsampling
operator S : Rm1,n1 → Rm2,n2 (m1 > m2 and n1 > n2) is given by

S =
m2n2
m1n1

F−1
m2,n2

DFm1,n1 , (3.2.3)

where D : Rm1,n1 → Rm2,n2 and for x ∈ Rm1,n1 the (i, j)-th entry of D (x) is given
by


xi,j , if i ≤ m2

2 and j ≤ n2
2 ,

xi+m1−m2,j , if i > m2
2 and j ≤ n2

2 ,

xi,j+n1−n2 , if i ≤ m2
2 and j > n2

2 ,

xi+m1−m2,j+n1−n2 , if i > m2
2 and j > n2

2 .

Fm1,n1 is the discrete two-dimensional Fourier transform (DFT) defined by Fm1,n1
:=

Fn1 ⊗Fm1 , where Fm1 = (exp (−2πikl/m1))
m1−1
k,l=0 .

The question now is how to estimate the blur kernel H. We assume that we
have given a reference HR image X̃H ∈ Rm1,n1 and a corresponding LR image
X̃L ∈ Rm2,n2 related by X̃L = AX̃H = S(H ∗ X̃H)), where the blur kernel H is
unknown. By the definition of downsampling operator S, we apply the DFT on
both sides of X̃L = S(H ∗ X̃H)), we obtain the following

Fm2,n2

(
X̃L

)
=
m2n2
m1n1

D
(
Fm1,n1

(
H ∗ X̃H

))
=
m2n2
m1n1

D (Fm1,n1 (H))⊙D
(
Fm1,n1

(
X̃H

))
,

(3.2.4)
where ⊙ indicates the element-wise product. Now, we can conclude that

D (Fm1,n1 (H)) =
m1n1
m2n2

Fm2,n2

(
X̃L

)
⊘D

(
Fm1,n1

(
X̃H

))
, (3.2.5)

where ⊘ is the element-wise quotient. In practice, we stabilize this quotient by
increasing the absolute value of D

(
Fm1,n1

(
X̃H

))
by 10−5 while retaining the

phase. Thus, assuming that the high-frequency part of H is negligible (i.e., that
DTDH = H), we can approximate Fm1,n1 (H) by

Fm1,n1 (H) ≈ m1n1
m2n2

D−1
(
Fm2,n2

(
X̃L

)
⊘D

(
Fm1,n1

(
X̃H

)))
(3.2.6)

Therefore, the blur kernel H can be estimated by applying the inverse DFT

H ≈ m1n1
m2n2

F−1
m1,n1

(
D−1

(
Fm2,n2

(
X̃L

)
⊘D

(
Fm1,n1

(
X̃H

))))
(3.2.7)
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where F−1
m1,n1

is the inverse of Fm1,n1 .

3.3 State-of-the-art of Super-resolution method

To date, mainstream algorithms of SISR are mainly divided into three families: the
interpolation-based approach, the reconstruction-based approach, and the example-
based approach. We will briefly summarize their principles in the following.

Interpolation-based approach The most widely used interpolation methods in
image processing and super-resolution are generally referred to as nearest neighbors,
bilinear, bicubic [50], and Lanczos [27]. These methods compute the missing pixels
in the HR image as averages of known pixels. However, some objects often show
discontinuities, such as edges and corners. Thus, learning missing pixels leads
to ringing, jagged edges, and blurred artifacts in the output image. Therefore,
interpolation-based SISR methods are fast and straightforward, but suffer from
accuracy deficiencies.

Reconstruction-based approach Reconstruction-based SR methods often use
prior knowledge to improve the quality of reconstruction. This approach includes a
variety of methods that focus on sharpening edges such as [19, 20, 28, 4, 62]. These
methods motivate to design an edge smoothness prior and suppress the ringing,
jagged edge artifact of the interpolation-based methods. In [19, 20], S. Dai et al.
proposed methods that based on soft edge smoothness prior to extract the edges
and corner points of LR image. Then they perform the continuity of these edges
and combine with the interpolation results to yield the final HR image. Similarly, R.
Fattal proposed a method in [28] in which missing information is learned from edge
statistics. Beside that [4, 62] extend to new formulation to solve the SR problem
through regularization term. They use the total variation (TV) regularizer that
specifies the requirements of edge-directed filtering. These reconstruction-based SR
methods provide improved results, yielding sharp edges without ringing or other
artifacts. However when the magnification factor increases, the performance of
these methods degrade rapidly and they are often time consuming.

Example-based approach This third approach is arguably the most successful
because of its fast computation and outstanding performance. The example-based
SR methods use machine learning techniques to analyze statistical relationships
between the LR and corresponding HR image from an image database. These
methods can be typically achieved by dividing images into small (overlapping)
patches. In the upsampling procedure, the LR input image is divided into a set
of patches. Then for each LR input patch, a HR patch is estimated by using
the statistical parameters, that are learned from the examples contained in the
dictionary.
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The first study on this approach was introduced by Freeman et al. [29],
based on Markov Random Field (MRF) framework. For the input LR patch, by
searching the nearest neighbors in the training set, several paired HR candidate
patches will be selected. These HR candidate patches subsequently are used in the
MRF to reconstruct output HR patch. A disadvantage of this method is its high
computational cost, due to the complex solution and the necessity of having large
dictionaries, including a large variety of image patches.

To address the problem of dictionary size, many example-based SR algorithms
consisting of different procedures have been proposed. The neighbor embedding
method [15] proposed by Chang et al. utilized the local geometric similarities
of LR and HR to restore HR patches. The general idea of this method is that
each observed LR patch can be described as a linear combination of its nearest
neighbors in the dictionary of LR patches. In the dictionary, we can select the HR
patches corresponding to the nearest neighbors in the LR patches. Then the output
HR patch can be reconstructed by a linear combination of the HR neighbors with
the same linear weights obtained in LR. In this way, since patch combinations are
enabled, the number of required image patch exemplars can ideally be reduced, while
maintaining the same size of the dictionary. However, the requirement to determine
the nearest neighbors for each patch from a large example dictionary might render
the computation too expensive if the dictionary size is large and the zoom factor is
high.

Another important line of example-based SR methods was initiated in sparse-
coding SR (ScSR) method [84] using sparse representation of image patches over
the joint dictionaries. These joint dictionaries {Dh, Dl} include pairs of HR and
LR patches such that the sparse representation α of the HR patch is the same
as the sparse representation of the corresponding LR patch. Finally, for a given
input LR patch yi, its sparse representation αi is first computed using Dl and the
corresponding HR patch is estimated as x̂i = Dhαi. Due to joint learning, the
estimated HR and LR dictionaries in ScSR are not well adapted to their respective
feature spaces. Some SR algorithms were proposed in [89, 83, 85] by modifying
ScSR, using coupled dictionaries. These sparse coding methods are an improvement
over neighbor embedding and provide impressive results. Although the dictionary
size is significantly reduced, the execution time of the ScSR method is still long.

In recent years, many deep learning (DL)-based SISR methods have been
proposed in the literature. In fact, the use of neural networks has demonstrated
their effectiveness in producing state-of-the-art results. Dong et al. proposed a
SR algorithm named SRCNN in [24, 25] that uses a three-layered convolutional
neural network (CNN) to learn end-to-end mapping between high and low-resolution
images. The input of this network is a HR image interpolated from the LR image
based on Bicubic interpolation method. This leads to erroneous estimates of the
image structure when the inputs have been smoothed by interpolation. To overcome
this issue, some research uses the deconvolution network, which was introduced by
Zeiler et al. [88], to learn an upsampling operator. Fast SRCNN (FSRCNN) method
proposed in [26] by Dong et al. is the pioneering work using the deconvolution
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layer to reconstruct HR images directly from LR images. Using the deconvolution
layer at the end of the network, the mapping is learned directly from the original
low-resolution image (without interpolation) to the high-resolution one. This leads
to a significant reduction in computation of the SRCNN proposal. However, the
deconvolution layer enlarges feature maps by padding the images with zeros and
then does the convolution, which may not be good for the results. Besides that,
Shi et al. proposed an efficient sub-pixel convolution layer in [76], known as
efficient sub-pixel convolutional neural network (ESPCN). ESPCN expands the
multiple-channel feature maps to store the extra points to increase resolution and
then rearranges these points to obtain the HR output. Thus compared with the
deconvolution layer, ESPCN is capable of super-resolving LR to HR images with
low computational cost at the time of training. More recently, inspired by recent
work on Generative Adversarial Neural Networks (GANs) [35], C. Ledig et al.
proposed a SR scheme with outstanding results in [56], called SRGAN. A GAN
is a generative model in which two networks compete each other. The first network
is the generator G, which generates a sample. While its adversary, the discriminator
network D tries to detect if a sample is real or if it is the result of the generator.
With all these adversarial networks, SRGAN significantly improves the overall
visual quality of reconstruction over previous methods. Along with the promising
performance that deep learning algorithms have achieved in SISR, there remain
several important challenges and drawbacks such as the expensive computation of
the depth architecture, the vagueness of the optimization objectives, the unknown
corruption and large upsampling factor of SR.

3.4 Conclusion

This chapter provides a general overview of super-resolution processing as well as
issues of super-resolution for 3D materials data. Firstly, this chapter introduces
our material data and gives some challenges when performing a super-resolution for
3D materials data. The three main challenges are detecting the locality of the HR
image in the corresponding LR image, changing the contrast between the HR and LR
images, and modeling of an unknown downsampling operator. Second, we introduce
and classify the methods that can be used to perform super-resolution. Three main
groups have been presented as interpolation-based approaches, reconstruction-based
approaches, and example-based approaches. Interpolation methods allow one to
resample a low-resolution image at different sampling rates. However, the high-
resolution image intensity values are a fixed linear function of the low-resolution
image. Therefore, only low spatial frequencies are reconstructed in the reconstructed
image. This leads to many artifacts in the output image. Reconstruction-based SR
methods provide results without ringing or other artifacts and improve interpolation
methods significantly. However, the execution time of these method is too large when
the size of image and the magnification factor increases. To improve the results and
execution time, example-based methods were first introduced by Freeman et al. [29]
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using some machine learning techniques. In example-based approaches, the deep
learning for SISR allows end-to-end reconstruction of HR image with successful
results such as SRCNN, ESPCN, and SRGAN. However, these methods still have
some limitations, such as high computation time, large database requirements, and
convergence uncertainty. Besides that in this thesis, we focus on SR guided by
high-resolution local sub-images of 3D materials data. This means that the training
data is taken from the guided HR and LR part pair. Thus, the database is not large
enough to train the network. Moreover we do not know the corruption downsampling
operator when we only know the HR and LR image. This is also a great challenge
for deep learning approaches. So in the first research of material data, we start to
learn SR without deep learning approaches. The example-based approaches have
been selected for research in this thesis, especially the SR approach based on joint
dictionaries and sparse representations of image patches. The next chapter details
some super-resolution approaches with Gaussian mixture distribution which based
on patch-based approach. Then, we propose a new SR method with a generalized
Gaussian mixture model. This method addresses all the requirements of super-
resolution processing for materials data, such as estimating the affine contrast change
function C and the unknown super-resolution operator A. In particular, this method
does not need to estimate the parameters of C, A and can still achieve good results.
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This chapter aims to present the modeling of the super-resolution problem guided
by high-resolution local sub-images from an example-based point of view.

First, a brief overview of the example-based approaches used is provided. A SR
method based on sparse representation of image patches over the joint dictionaries
and particularly of a joint Gaussian mixture model (GMM) is followed by a state-
of-the-art in order to describe the framework of this thesis.

Then an extension method is proposed using the MMSE with the GGMM to
reconstruct HR image.

This chapter is organized as follows. A short summary of patch-based SR
approaches is provided in Section 4.1. The MMSE estimator with GGMM [75] and
EPLL method [92] are mentioned in this section. Section 4.2 proposes a method that
uses the MMSE estimator for the joint GGMM, called the MMSE-GGMM method.
This is a main contribution in this chapter, and it adapts the FP-EM algorithm to
learn the joint GGMM. Finally, the conclusion is given in Sections 4.3.
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4.1 State of the art of patch-based approach

Super-resolution is the task of reconstructing the estimate X̂HR of a HR image XH

based on a LR observation XL. The observed LR image is generated by

XL = AXH + ε (4.1.1)

where ε is a white Gaussian noise with the standard derivation σ, and A is an
unknown downsampling operator.

In recent years, various patch-based super-resolution image algorithms have been
presented, and their efficiency with respect to image super resolution has been
studied. Zoran and Weiss [92] proposed using the negative log-likelihood function
of a GMM as a regularizer of the inverse problem. The estimated HR image X̂HR

is computed by solving

argmin
XH

∥AXH −XL∥2 − λ
∑
i∈I

log p (XH,i) (4.1.2)

where p is the probability density function of the GMM and (XH,i)i∈I are the patches
in the HR image. This method is called EPLL. However, EPLL requires knowledge
of the operator A, which is not the case in some real applications. Therefore, we
investigate the alternative approach of P. Sandeep et al. [75], which uses a joint
GMM of the concatenated vectors of HR and corresponding LR patches. Each HR
patch is estimated from the LR patch by using the Minimum Mean Squared Error
MMSE estimator as:

X̂H ∈ argmin
T

E∥XHR − T (XL) ∥22 (4.1.3)

= µH +ΣHLΣ
−1
L (XL − µL) . (4.1.4)

In the following, we detail the SR method using EPLL method and joint GMM with
MMSE.

4.1.1 Super-resolution via Joint Mixture Models based on MMSE
[75]

In this section, we briefly revisit the super-resolution by Sandeep wt al. [75] using
joint Gaussian mixture models based on MMSE. Let {Pθ : θ ∈ Θ} be a parametric
family of probability distributions with density functions p(·|θ). Then, a mixture
model is a probability distribution defined by the probability density function

F (x|w,Θ) =

K∑
k=1

wkp(x|θk), w = (w1, ..., wK),Θ = (θ1, ..., θK), (4.1.5)

where the weights wk are non-negative and sum up to one. If θ = (µ,Σ) and
Pθ = N (µ,Σ), we speak of a Gaussian mixture model (GMM). The (absolutely
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continuous) d-dimensional normal distribution N (µ,Σ) with mean µ ∈ Rn and
positive semi-definite covariance matrix Σ ∈ SPD(n) has the density

f(x|µ,Σ) = (2π)−
n
2 absΣ− 1

2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (4.1.6)

Throughout this work, we aim to reconstruct the unknown high-resolution image
XH based on a low resolution observation XL. Here, we assume that we have given
a reference image, where the high-resolution image x̃H as well as the low-resolution
observation x̃L are both known.

In this setting, Sandeep and Jacob proposed in [75] to reconstruct XH using the
following steps.

1. Learning a joint mixture model. In a first step, for given low-resolution
patches x̃L,i ∈ Rτ2 of an image and their high-resolution counterparts x̃H,i ∈
Rq2τ2 , q ∈ N, q ≥ 2, i = 1, ..., N , we approximate the distribution of the joint

high- and low-resolution patches xi =
( x̃H,i

x̃L,i

)
∈ Rn, n = (q2 + 1)τ2 by a

mixture model. Here, Sandeep and Jacob use GMMs such that the resulting
approximation is characterized by the parameters

w = (wk)k, µ = (µk)k, Σ = (Σk)k

with

µk =

(
µH,k

µL,k

)
, Σ =

(
ΣH,k ΣHL,k

ΣT
HL,k ΣL,k

)
.

2. Estimation of the high-resolution patches using the MMSE
estimator. In the second step, we estimate the high-resolution
correspondence of a given low-resolution patch xL ∈ Rτ2 . For this purpose,
we first select the component k∗, such that the likelihood that xL belongs to
the k∗-th component is maximal, i.e., we compute

k∗ = argmax
k=1,...,K

wkp(xL|µL,k,ΣL,k)

Afterwards, we estimate the high-resolution patch xH ∈ Rq2τ2 as the minimum
mean square estimator (MMSE) of XH given XL = xL for a random variable
X = (XH , XL) ∼ Pθk . For Gaussian distributions, this corresponds to

x̂H = µH,k +ΣHL,kΣ
−1
L (xL − µL,k).

We give a more detailed explanation on MMSE estimators in Section 4.2.2.

3. Reconstruction of the high-resolution image by patch averaging.
Finally, we estimate for any patch within the low-resolution image, the high-
resolution correspondence. Afterwards, we reconstruct the high-resolution
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image as follows: Let xH = (xk,l)
qτ
k,l=1 ∈ Rqτ,qτ be a two-dimensional high-

resolution patch. Then, we assign to each pixel xk,l the weight

ρk,l := exp
(
− γ

2

(
(k − qτ+1

2 )2 + (l − qτ+1
2 )2

))
.

After that, we add up for each pixel in the high-resolution image the
corresponding weighted pixel values and normalize the result by dividing by
the sum of the weights.

For readability, due to the combination of MMSE estimator with GMM, in
the following of this thesis, we call this method is MMSE-GMM. This method
outperforms the ScSR [84] algorithm with a significant margin. Instead of learning
the pair of dictionaries from the reference HR-LR patch pairs as ScSR algorithm,
the MMSE-GMM method learns the joint GMM from the reference images. This
can improve the speed and performance of the MMSE-GMM algorithm.

4.1.2 Expected patch log-Likelihood (EPLL) method for super-
resolution [92]

The second approach of patch-based SR approaches, which we would like to mention
in this thesis, is the Expected patch log Likelihood (EPLL) method by Zoran and
Weiss [92]. The EPLL of a given image XH is defined under prior p as:

EPLLp (XH) =
∑
i∈I

log p (PiXH) , (4.1.7)

where I = {1, ...N} is a set of pixel indices; Pi : RN → RP is a linear operator
which extracts the i-th patch from the image XH , and log p (PiXH) is the likelihood
of the i-th patch under the prior p. The basic idea of this method is to maximize
the EPLL while the AXH is still being close to the low-resolution image XL. Thus
the EPLL method defines the restored image as the maximum a posteriori estimate,
corresponding to the following minimization problem:

argmin
XH

λ

2
∥AXH −XL∥2 −

∑
i∈I

log p (PiXH) . (4.1.8)

This optimization is a non-convex problem and depends on prior of the operator
Pi (x). Thus the problem therefore becomes difficult to calculate. In order to avoid
the optimization of the prior, Zoran et al. use a classical method, known as "Half
Quadratic Splitting" [32, 53]. This technique introduces a set of patches {zi}Ni=1 ⊂
RP , one for each overlapping patch PiXH in the image, and consider instead the
penalized optimization problem that reads, for β > 0, as:

argmin
XH ,z1,...zN

λ

2
∥AXH −XL∥2 +

∑
i∈I

[
β

2
∥PiXH − zi∥2 − log p (zi)

]
. (4.1.9)
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Equation (4.1.9) for a fixed β value is solved by an alternating optimization
scheme:

• Solving XH while keeping {zi}i∈I constant:

X̂H ∈ argmin
XH

λ

2
∥AXH −XL∥2 +

β

2

∑
i∈I

∥PiXH − zi∥2 (4.1.10)

• Solving zi for all i = 1, ..., N given XH :

ẑi ∈ argmin
zi

β

2
∥PiXH − zi∥2 − log p (zi) (4.1.11)

Sub-problem (4.1.10) corresponds to solving a linear inverse problem with a
Tikhonov regularization, and has an explicit solution often referred to as Wiener
filtering:

X̂H =

(
λATA+ β

∑
i∈I

PT
i Pi

)−1(
λAXL + β

∑
i∈I

PT
i zi

)
. (4.1.12)

The solution to Sub-problem (4.1.11) depends on the prior p and the sub-problem
is considered as a Maximum A-Posteriori estimator (MAP). In the case of
Gaussian mixture model, [92] keeps only 1 component k∗ of Gaussian mixture model
maximizing the likelihood for the given i-th patch. With this assumption, the
solution of (4.1.11) is also given by Wiener filtering:

zi =

(
Σk∗
zi +

1

β
IdP

)−1(
Σk∗
zi z̃i +

1

β
IdPµ

k∗
zi

)
. (4.1.13)

In the same setting reference images and testing images of MMSE-GMM method,
the EPLL method can reconstruct XH with GMM as follows:

1. Learning Gaussian mixture model. In a first step, for given high-
resolution patches x̃H,i ∈ Rq2τ2 , q ∈ N, q ≥ 2, i = 1, ..., N , we approximate the
distribution of the joint high-resolution patches by Gaussian mixture model
such that the resulting approximation is characterized by the parameters

w = (wk)k, µH = (µH,k)k, Σ = (ΣH,k)k.

2. Estimation of the patches {zi}i∈I using the MAP estimator. In the
second step, we first select the component k∗, such that the likelihood that
xL belongs to the k∗-th component is maximal, i.e., we compute

k∗ = argmax
k=1,...,K

wkp(xL|µL,k,ΣL,k).
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We estimate zi for all i ∈ I while give the HR image XH by using
Equation (4.1.13).

3. Reconstruction of the high-resolution image. Finally, we estimate for
the high-resolution image XH by using Equation (4.1.12).

4.1.3 Conclusion

In both MMSE-GMM and EPLL-GMM methods, the GMM is used to estimate the
high-resolution patches. While the MMSE learns the joint GMM of the concatenated
vector of high- and low- resolution patches, the EPLL only needs to learn the GMM
of the high-resolution patches. By using the knowledge of A, the EPLL can achieve
better results than MMSE. However, in some cases, such as our material data, we
have no knowledge of operator A. Thus we have to learn the operator A from the
reference high- and low- resolution images, as discussed in Subsection 3.2.3. This
means that the MMSE method can reconstruct HR image without the knowledge of
operator A. Therefore, we decide to learn the SR method by extending the MMSE
estimator with the joint mixture model. In the following section, we will propose a
method that is based on MMSE estimator with joint generalized Gaussian mixture
model. In this section, we will demonstrate that our method does not need the
knowledge of operator A and is invariant with the contrast change problem.

4.2 Contribution: MMSE estimator with generalized
Gaussian mixture model for super-resolution [69]

In the second step of MMSE-GMM method, the high-resolution patches is estimated
thanks to the parameters of the joint GMM model. GMM can be learned by the
expectation–maximization algorithm (EM) [13, 23]. In the past decade various
works [2] [10] [71] have shown that generalized Gaussian mixture model (GGMM)
has more flexibility to adapt to the shape of data probability density function and
less sensibility for over fitting the number of classes than the GMM. In [21], C.
Deledalle et al. proposed a method that uses the generalized Gaussian mixture
model (GGMM) for the EPLL algorithm (EPLL-GGMM). They showed that the
GGMM gets the distribution of patches better than a GMM and that it outperforms
the GMM when used in the EPLL framework. However, the EPLL-GGMM model
learns the parameters of the mixture model by estimating the covariance matrix
with the following formula:

Σk =

∑N
i=1 ξi,kx̃H,ix̃

T
H,i∑N

i=1 ξi,k
. (4.2.1)

Here {x̃H,i}Ni=1 is a set of all training HR patches and ξi,k is the conditional
distribution of the component k given the patch x̃H,i. Unfortunately, this formula
is not true in the GGMM setting.
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In [10], Z. Boukouvalas et al. introduced a Riemannian averaged Fixed-point
(RA-FP) algorithm for multivariate generalized Gaussian distribution (MGGD)
parameter estimation. The RA-FP algorithm can effectively estimate the scatter
matrix for any value of the shape parameter: for instance, β = 1 is the Gaussian
distribution and β = 0.5 is the Laplacian distribution.

In the case of the generalized Gaussian mixture model, we generalize the
algorithm from [82] for the weighted maximum likelihood estimation using the
EM algorithm based on a fixed-point algorithm. This algorithm estimates
the parameters of the mixture model, including the shape parameters of each
component. This algorithm is called FP-EM algorithm for generalized Gaussian
mixture model. In our work, we provide a method that uses the MMSE estimator
for the super-resolution based on GGMM for joint HR-LR modeling, called MMSE-
GGMM.

4.2.1 Parameter Estimation of Mixture Models

In this subsection, we focus on the parameter estimation of mixture models. For
this purpose, we aim to employ the expectation-maximization EM algorithm. First,
in Subsection 4.2.1.1, we revisit the generic form of the EM algorithm for mixture
models. This algorithm contains as a subproblem the weighted maximum likelihood
estimation for the corresponding parametric distribution family. Thus, we consider
this subproblem in Subsection 4.2.1.2 for some elliptical distributions, namely, the
Gaussian distribution, the generalized Gaussian distribution.

4.2.1.1 EM algorithm for Mixture Models

In the following, we consider the EM algorithm to estimate the parameters of the
mixture models. EM algorithms were introduced in [23] and can be used for various
probability distributions. We refer to [13] for an overview. Given samples x1, ..., xN
aims to minimize the negative log-likelihood function

L(w,Θ) = − 1

N

N∑
i=1

log(F (xi|w,Θ),

where F is defined as in (4.1.5). Then, the EM algorithm for mixture models reads
as Algorithm 1, see e.g. [63].

As outlined in the algorithm, we have to compute the weighted maximum
likelihood estimator as a sub-problem of the EM algorithm, i.e., we need to maximize

ℓ(θ) =
N∑
i=1

αi log(p(xi|θ)) (4.2.5)

for the underlying parametric distribution family. For readability, in the following,
we denote αi,k by αi and θk by θ. In the following sections, we show how the EM
algorithm can be done for various distributions.
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Algorithm 1 EM Algorithm for Mixture Models

Input: x = (x1, ..., xN ) ∈ Rn×N , initial estimate w(0),Θ(0).
for r = 0, 1, ... do

E-Step: For k = 1, ...,K and i = 1, . . . , N compute

α
(r)
i,k =

w
(r)
k p(xi|θ(r)k )∑K

j=1w
(r)
j p(xi|θ(r)j )

(4.2.2)

M-Step: For k = 1, ...,K compute

w
(r+1)
k =

1

N

N∑
i=1

α
(r)
i,k , (4.2.3)

θ
(r+1)
k = argmax

θk

{ N∑
i=1

α
(r)
i,k log(p(xi|θk))

}
. (4.2.4)

end for

4.2.1.2 Weighted Maximum Likelihood Estimation of generalized
Gaussian Distribution

In order to solve subproblem (4.2.5) within the EM algorithm for mixture models,
we consider in the following the weighted maximum likelihood estimation for
several elliptical distributions. Let SPD(n) be the set of positive-definite symmetric
matrices. A probability distribution En(µ,Σ, g) with µ ∈ Rn and Σ ∈ SPD(n) is
called an elliptical distribution if it admits a density function

p(x|µ,Σ, g) ∝ Σ−1/2g((x− µ)TΣ−1(x− µ)),

where g : R≥0 → R≥0 is Lebesgue measurable with∫ ∞

0
tn/2−1g(t)dt <∞.

In this work, we consider Gaussian, generalized Gaussian as examples of elliptical
distributions.

Gaussian distribution. A probability distribution is a Gaussian distribution
N (µ,Σ) with mean µ ∈ Rn and covariance matrix Σ ∈ SPD(n) if it has the
probability density function

p(x|µ,Σ) = 1

(2π)n/2|Σ|1/2
exp

(
− 1

2(x− µ)TΣ−1(x− µ)
)
.

The Gaussian distribution is an elliptical distribution with g(t) = exp (−1
2 t). For

samples x1, ..., xN with weights α1, ..., αN , we can calculate the weighted maximum
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likelihood estimator of µ and Σ, i.e., the solution of (4.2.5) by setting the gradients
of the objective function to zero. This leads to estimators

µ̂ =
1∑N

i=1 αi

N∑
i=1

αixi (4.2.6)

Σ̂ =
1∑N

i=1 αi

N∑
i=1

αi(xi − µ̂)(xi − µ̂)T =
1∑N

i=1 αi

N∑
i=1

αixix
T
i − µ̂µ̂T. (4.2.7)

Generalized Gaussian distribution. We call a probability distribution a
generalized Gaussian distribution GG(µ,Σ, β) with expected value µ ∈ Rn, scatter
matrix Σ ∈ SPD(n) and shape parameter β ∈ R>0, if it has the probability density
function

p(x|µ,Σ, β) = C(β)

|Σ|1/2
exp

(
− 1

2

(
(x− µ)TΣ−1(x− µ)

)β)
, (4.2.8)

where the normalizing constant C is given by

C(β) =
βΓ(n2 )

2n/(2β)πn/2Γ( n
2β )

.

Here, Γ denotes the gamma function. For small values of the shape parameter
β, we obtain heavy-tailed distributions, while large values of β mean that the
corresponding generalized Gaussian distribution is flat-tailed. The generalized
Gaussian distribution includes the Gaussian distribution for β = 1 and the Laplace
distribution for β = 1/2. The generalized Gaussian distribution is an elliptical
distribution with g(t) = exp (−1

2 t
β), β > 0.

In the literature, several algorithms have been proposed to estimate the
parameters of a generalized Gaussian distribution of samples x1, ..., xN . Most
of these methods are based on fixed point (FP) iterations [71, 67] or first-order
computations on the Riemannian manifold of parameters [10]. For this work, we
generalize the algorithm from [82] for weighted maximum likelihood estimation
(4.2.5), i.e., for maximizing

ℓ(µ,Σ, β) =

N∑
i=1

αi log(p(xi|µ,Σ, β)),

for some weights α1, ..., αN > 0. The following proposition gives the computations
for estimating parameters of generalized Gaussian distribution.

Proposition 1. Let GG(µ,Σ, β) be a generalized Gaussian distribution with a
density function q(·|µ,Σ, β). Any maximizer (µ,Σ, β) of the function ℓ(µ,Σ, β)
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should satisfy the following equations:

µ =

∑N
i=1 αiδ

β−1
i xi∑N

i=1 αiδ
β−1
i

, (4.2.9)

Σ =

∑N
i=1 αiδ

β−1
i (xi − µ)(xi − µ)T∑N

i=1 αi

, (4.2.10)

β = β + ρ∇βℓ(µ,Σ, β), (4.2.11)

where δi = (xi − µ)Σ−1(xi − µ) and ρ > 0.

?proofname? In the following, we compute the derivatives of

ℓ(µ,Σ, β) :=

N∑
i=1

αi log fβ(xi|µ,Σ), (4.2.12)

which is up to a constant equal to

N∑
i=1

αi log
Cp(β)

|Σ|1/2
exp

(
− 1

2

(
(xi − µ)TΣ−1(xi − µ)

)β) (4.2.13)

(4.2.14)

Using the notation δi = (xi−µ)TΣ−1(xi−µ), the gradient with respect to µ is given
by

∇µℓ(µ,Σ, β) =
N∑
i=1

αiβΣ
−1(xi − µ)δβ−1

i (4.2.15)

Setting the gradient to zero yields the following result.

µ =

∑N
i=1 αixiδ

β−1
i∑N

i=1 αiδ
β−1
i

. (4.2.16)

Plugging in the formulas

∂aTΣ−1b

∂Σ
= Σ−TabTΣ−T and

∂ log |Σ−1|
∂Σ

=
∂ log |Σ−1|
∂Σ−1

∂Σ−1

∂Σ
= ΣΣ−2 = Σ−1

from [73], we obtain that

∇Σℓ(µ,Σ, β) =

N∑
i=1

αi

(
1
2Σ

−1 − β

2
δβ−1
i Σ−1(xi − µ)(xi − µ)TΣ−1

)
.

Setting the gradient to zero and multiplying by Σ from the left and from the right
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yields that

Σ =

∑N
i=1 αiδ

β−1
i (xi − µ)(xi − µ)T∑N

i=1 αi

.

Finally, the gradient with respect to β is given by

∇βℓ(µ,Σ, β) =

N∑
i=1

αi

(
∇β log(Cn(β))− 1

2∇βδ
β
i

)
Here, we have that ∇βδ

β
i = δβi log(δi) and ∇β log(Cn(β)) =

1
β + n

2β2

(
ψ( n

2β ) + log 2
)
,

where ψ is the digamma function. Hence, we obtain

∇βℓ(µ,Σ, β) =
( 1
β
+

n

2β2
(
ψ( n

2β ) + log 2
)) N∑

i=1

αi +

N∑
i=1

αiδ
β
i log(δi).

The expression of maximizer (µ,Σ, β) motivate us to maximize ℓ (µ,Σ, β) by
generating a sequence (µ(r),Σ(r), β(r)) by fixed-point (FP) iteration.

µ(r+1) =

∑N
i=1 αi(δ

(r)
i )β

(r)−1xi∑N
i=1 αi(δ

(r)
i )β

(r)−1
, (4.2.17)

Σ(r+1) =

∑N
i=1 αi(δ

(r)
i )β

(r)−1(xi − µ(r))(xi − µ(r))T∑N
i=1 αi

, (4.2.18)

β(r+1) = β(r) + ρ∇βℓ(µ
(r),Σ(r), β(r)), (4.2.19)

where δ(r)i = (xi −µ(r))(Σ(r))−1(xi −µ(r)). Note that ∇βℓ(µ,Σ, β) can be explicitly
derived as

∇βℓ(µ,Σ, β) =
( 1
β
+

n

2β2
(
ψ( n

2β ) + log 2
)) N∑

i=1

αi +

N∑
i=1

αiδ
β
i log(δi).

The EM algorithm with the FP iteration for GGMM is called FP-EM algorithm.

Remark 1. In the unweighted case, i.e., α1 = . . . = αN , the authors of [82] show
convergence of the above iteration.

Remark 2. Note that for the estimation of β, several other approaches could be
considered such as the Newton-Raphson method [86].

4.2.2 MMSE Estimator for Generalized Gaussian Distributions

In the following, we consider the computation of a high-resolution patch xH given
the corresponding low-resolution patch xL and a mixture model (4.1.5), where the
distribution Pθk is a generalized Gaussian distribution. In particular, we have that
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the parameters are given by θk = (µk,Σk, βk) for some location µk ∈ Rn, a scatter
matrix Σk ∈ SPD(n) and β > 0.

As in [75], we first split the parameters

µk =
( µH,k

µL,k

)
, Σk =

( ΣH,k ΣHL,k

ΣT
HL,k ΣL,k

)
into components belonging to the high- and low-resolution part of the distribution
p(·|θk). Then we select the component k∗, which best matches the low-resolution
patch xL by

k∗ := argmax
k=1,...,K

p(xL|µL,k,ΣL,k, βk).

Subsequently, we compute xH as the minimum mean square estimator (MMSE)
of XH given XL = xL, where X = (XH , XL) ∼ Pθk .

Remark 3. Given a random variable XL : Ω → Rd in a probability space (Ω,A,P),
we wish to estimate a random variable XH : Ω → RD, i.e., we seek an estimator
T : Rd → RD such that X̂H = T (XL) approximatesXH . A common quality measure
for this task is the mean square error E∥XH − T (XL)∥22, which gives rise to the
definition of the minimum mean square estimator

TMMSE ∈ argmin
T

E∥XH − T (XL)∥22. (4.2.20)

Under weak additional regularity assumptions on the estimator T , the Lehmann-
Scheffé theorem [57] states that the general solution of the minimization problem
(4.2.20) is given by

TMMSE(XL) = E(XH |XL).

In general, it is not possible to give an analytical expression of the MMSE
estimator TMMSE. In the case of elliptical distributions, the following theorem can
be found, e.g., in [34, Theorem 8].

Theorem 1. Assume that X = (XH , XL) : Ω → Rn has an elliptical distribution
Pθ with parameters θ = (µ,Σ, g), where

µ =
( µH
µL

)
, Σ =

( ΣH ΣHL

ΣT
HL ΣL

)
Then, for each PXL

-almost every xL, we have that the conditional distribution
PXH |XL=xL

is given by the elliptical distribution Pθ̂, where the parameters θ̂ =

(µ̂, Σ̂, ĝ) are given by

µ̂ = µH +ΣHLΣ
−1
L (xL − µL), Σ̂ = ΣH − ΣHLΣ

−1
L ΣT

HL, ĝ(t) = g(t+ t0)

with t0 = (xL − µL)
TΣ−1

L (xL − µL).

Since a generalized Gaussian distribution is also an elliptical distribution, the



4.2. Contribution: MMSE estimator with generalized Gaussian
mixture model for super-resolution [69] 41

MMSE estimator TMMSE for the generalized Gaussian distribution is expressed as

TMMSE(XL) = E(XH |XL) = µH +ΣHLΣ
−1
L (xL − µL). (4.2.21)

In our super-resolution task, we assume that the vector
(
xH
xL

)
is a realization

of the random variable
(
XH

XL

)
∼ N (µk∗ ,Σk∗). Then, by (4.2.21), the MMSE can

be computed as
xH = µH,k∗ +ΣHL,k∗Σ

−1
L,k∗(xL,k∗ − µL,k∗). (4.2.22)

Finally, we can apply the reconstruction of the high-resolution image step by patch
averaging as in 3, Subection 4.1.1.

In some applications, the high-resolution image and its low-resolution
correspondence have different brightness and contrast. The following theorem
shows that the MMSE estimator is invariant under affine transformations of the
observation. In particular, the MMSE estimator compensates for the change in
contrast and brightness.

Theorem 2. Assume that X = (XH , XL) : Ω → Rn has a generalized Gaussian
distribution GG(µ,Σ, β), where

µ =
( µH
µL

)
, Σ =

( ΣH ΣHL

ΣT
HL ΣL

)
Further define the random variable X̃L := α1XL + α2 with α1 > 0, α2 ∈ R. Then it
holds

E(XH |X̃L) = E(XH |XL) = µH +ΣHLΣ
−1
L (XL − µL). (4.2.23)

?proofname? The first equality holds true as it holds

σ(X̃L) = σ({X̃−1
L (]−∞, x]) : x ∈ Rd}) = σ({X̃−1

L (]−∞, α1x+ α2]) : x ∈ Rd})
(4.2.24)

= σ({X−1
L (]−∞, x]) : x ∈ Rd}) = σ(XL). (4.2.25)

The second equality follows directly from Theorem 1.

4.2.3 Numerical Results

In this section, we demonstrate the performance on some 2D images such as
Gold-hill, Barbara, Camera-man, and our material data, which was presented in
Chapter. 3. All the implementations were done in Matlab. We run all experiments
on PlaFRIM 1 with 32 cores (4 Go/core) AMD EPYC 7452.

1https://www.plafrim.fr/

https://www.plafrim.fr/
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4.2.3.1 Dataset and quality evaluation

Generation of the dataset. In the experiment, for a given high-resolution image
XH , we now generate the low-resolution image XL by XL = AXH+ε, where epsilon
is a realization of the white Gaussian noise with standard deviation σ = 0.02. For
the downsampling operator A, we use the definition in Equation (3.2.2). The blur
operator H is given by a convolution with a Gaussian kernel with standard deviation
0.5.

?figurename? 4.1: Top: Images for estimating the mixture models. Bottom:
Ground truth for reconstruction. First column: Material "FS", second column:
Material "SiC Diamonds", third column: goldhill image.

Generation of the training dataset. To estimate the parameters of the mixture
model, we used a part of the original HR image, such as the top left quarter as the
top row in Figure 4.1 and the corresponding part of the LR image. Slices of the
3D images and the basic image for training step are given Figure 4.1. From the
training part of the LR image XL, we define a set of overlapping patches of size
τ × τ : {x̃L,i}Ni=1 with x̃L,i ∈ Rτ2 . For the HR image XH , we can also have a set of
qτ × qτ HR patches {x̃H,i}Ni=1 where x̃H,i ∈ Rq2τ2 corresponds to the LR patch x̃L,i.
Finally, we define a set {xi} with a vector xi ∈ Rτ2(q2+1) by concatenating the HR
and LR patches as

xi =
( x̃H,i

x̃L,i

)
∈ Rn. (4.2.26)
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Quality evaluation To evaluate the results, we use the Peak Signal to Noise
Ratio (PSNR) value of two images X and Y . It measures the reconstruction quality
of the fused image,

PSNR(X,Y ) = 10 log10 1

(
d2

MSE(X,Y )

)
(4.2.27)

where MSE(X,Y ) is the mean square error between X and Y with d the peak
value, corresponding to the maximum fluctuation in the image.

4.2.3.2 MMSE-GGMM

First, to underline the advantages of the proposed method MMSE-GGMM, we
compare our method with the MMSE-GMM [75] and the EPLL-GMM [92] as well
as EPLL-GGMM [21]. In this subsection, we use all models in standard images
of size 512 × 512, such as Gold Hill, Camera-Man, Barbara, and material images,
for the magnification factor q = 2. Low-resolution images are created using the
operator A in (3.2.2). To estimate the parameters of the mixture model, we extract
the low-resolution image with the size of the overlap patches τ = 4. Thus, the
corresponding high-resolution patch has size qτ = 8. Then we get N ≈ 1500 patches
for the training data to learn the mixture model. Finally, high-resolution images
can be reconstructed from the learned mixture model and LR images based on
the MMSE as described in Subsection 4.1.1. To implement the EPLL method, we
estimate the mixture models using the EM algorithm, which is introduced in [21].
Once again, EPLL requires the knowledge of the operator A in the image estimation
step. For the standard image experiments, we reconstruct the HR image with the
operator A defined by equation (3.2.2), called ("EPLL with given A"). Besides that,
we implement the EPLL method with the operator A estimated as in [3] from the
reference HR and LR images, called ("EPLL with learned A"). Since the operator A
is learned from the quarter-known image, it is the same size as the reference image.
Thus, we upsample the operator A by a zero padding technique to have the same
size as the whole image.

Table 4.1 shows the performance of the MMSE and EPLL methods in synthetic
images. Both of these methods are compared based on the GMM, LMM, GGMM
with fixed shape parameter β (e.g. β = 0.8, 0.4, 0.25) and the GGMM model which
learns the shape parameter based on FP-EM algorithm. The PSNR values of MMSE-
GGMM with the FP algorithm are slightly higher than those of the MMSE-GMM
and LMM models. To compare our EM algorithm for the GGMM model with the
EM algorithm proposed by Deledalle et al. [21], we compare the MMSE method with
the FP algorithm (MMSE-GGMM FP) and Deledalle’s approach (MMSE-GGMM
Deledalle) in Table 4.1. The MMSE-GGMM FP gives better results than the MMSE-
GGMM Deledalle. Furthermore, we observed that our method can obtain results
similar to those of EPLL with given A, while we do not have to learn the super-
resolution operator A. Besides the results of our method are 1.5 dB higher than
EPLL with the learned operator A.
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Hill Camera Barbara

MMSE

GMM 31.60 32.75 25.27
LMM 31.69 32.82 25.31

GGMM β = 0.8 31.70 32.81 25.29
GGMM β = 0.4 31.68 32.84 25.20
GGMM β = 0.25 31.60 32.80 25.29

GGMM FP 31.70 32.86 25.33
GGMM Deledalle 31.52 32.56 25.20

EPLL with given A

GMM 31.62 32.91 25.39
LMM 31.46 32.85 25.30

GGMM β = 0.8 31.58 32.86 25.28
GGMM β = 0.4 31.43 32.83 25.30
GGMM β = 0.25 31.26 32.65 25.21

GGMM 31.58 32.94 25.33

EPLL with learned A

GMM 30.64 30.74 24.32
LMM 30.57 30.88 24.29

GGMM β = 0.8 30.56 30.79 24.25
GGMM β = 0.4 30.42 30.76 24.31
GGMM β = 0.25 30.40 30.67 24.19

GGMM 30.67 30.99 24.36

?tablename? 4.1: PSNRs of the reconstructions of synthetically downsampled 2D
images using either MMSE and EPLL approaches for GMM and LMM, GGMM
with different shape parameter β. The magnification factor is q = 2.

In practice, LR and HR images were acquired under different conditions.
Therefore, they may have different contrasts. Thus, we have to estimate the contrast
change parameters between the LR and HR images. However, Theorem 2 proves
that MMSE-GGMM is invariant for an affine contrast change. Therefore, MMSE-
GGMM does not require learning these parameters and knowledge of the operator
A, while the EPLL method does. To demonstrate these arguments, we perform the
MMSE and the EPLL approach for our material data. Table 4.2 gives the PSNR
value of the HR reconstructions of real material images using the MMSE and EPLL
approach. The second column group gives the PSNR values of the EPLL approach
with a learned operator A, which is estimated from the known part of the HR image.
The PSNR values in the third column group are obtained from the EPLL method
with the learning contrast parameters and the operator A. This operator is learned
as in [3] from the observed LR image and the whole HR image of the ground truth.
We call this approach is "EPLL with given A". The PSNRs in Table 4.2 show that
our method achieves significantly better results than the EPLL method with the
learning A from the known HR part. Our method gives PSNRs 1 dB lower than the
EPLL method with learned A, while knowledge of the operator A is not required in
our method.
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(a)
HR

(b)
MMSE-
GMM

(c)
MMSE-
GGMM

(d)
LR

(e)
EPLL-
GMM

(f)
EPLL-
GGMM

?figurename? 4.2: Reconstructions of 2D Sic Diamonds image with magnification
factor q = 2 by using MMSE and EPLL method.

4.3 Conclusion

This chapter proposed a new algorithm to perform image super-resolution. We
extended the image super-resolution using the GMM method provided by Sandeep
and Jacob [75] to the GGMM model, which is learned by the FP algorithm. We also
derived a new method based on a Fixed Point approach to estimate the parameters
of GGMM model, which is called FP-EM algorithm. Experiments on synthetic and
material images demonstrate that our method is a promising solution for image SR.

However, the EM algorithm for these models (GMM or GGMM) becomes very
slow as the number of data points becomes large and the 3D images lead to an
increase in the dimensionality of the training data. Therefore, one perspective to
improve this method would be to use a dimensionality reduction method.

With this in mind, the next chapter takes into account that we incorporate
a dimensionality reduction within mixture models of generalized Gaussian
distributions and derive an algorithm for estimating its parameters.
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MMSE EPLL with learned A EPLL with given A

GMM LMM GGMM GMM LMM GGMM GMM LMM GGMM
FS 33.09 33.32 33.35 32.25 32.31 32.39 33.61 33.86 34.22

Sic Diamonds 28.00 28.07 28.08 26.75 26.78 26.82 29.11 29.29 29.45

?tablename? 4.2: PSNRs of the reconstructions of material 2D images with
contrast change problem using either MMSE estimator and EPLL approach for
GMM, LMM, and GGMM. The magnification factor is q = 2.
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5.1 Introduction

This chapter is devoted to the dimensionality reduction problem and presents our
second contribution.

First, a brief overview of the dimensionality reduction problem is provided. A
presentation of the principal component analysis PCA method and related state-of-
the-art of dimentionality reduction are followed in Section 5.2 in order to describe
more precisely the framework of this Chapter.
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Next, we present our main contributions of this chapter. The two dimensionality
reduction models related to GMM and GGMM will be presented, respectively, in
Section 5.3 and Section 5.4. These models are proposed to combine a GMM or
GGMM with a principal component analysis (PCA) and derive an EM algorithm
for estimating the parameters of the arising model. Finally, these dimensionality
reduction models are applied to the SR image using the MMSE estimator with
the GMM and GGMM models. The results of the SR methods are presented in
Section 5.5.

The conclusion is given in Sections 5.6.

5.2 State-of-the-art of dimensionality reduced data

An important motivation for dimensionality reduction is that many datasets have
the property that all data points lie close to a manifold. This manifold has a
much lower dimensionality than the original data space. Dimensionality reduction
is therefore the transformation of data from a high-dimensional space into a
low-dimensional space so that the low-dimensional representation retains some
meaningful properties of the original data. The standard method for dimensionality
reduction is the principal component analysis (PCA) [72], which was introduced
in 1901 by Karl Pearson. Based on this method, [79] introduced the probabilistic
principal component analysis (PPCA) for the Gaussian distribution. It was extended
to the Gaussian Mixture model in [80] with the mixture of probabilistic principal
component analysers (MPPCA) model. Beside that, the authors of [11] proposed
a dimensionality reduction method for Gaussian mixture model, called High-
Dimensional Data Clustering (HDDC) method. It is based on the MPPCA model
to replace the affine space in the PCA by the union of finitely many affine spaces
using a mixture model of probabilistic PCA.

5.2.1 Principal Component Analysis (PCA) [72]

PCA is a well-known technique for dimensionality reduction. PCA can be defined
as the linear projection that minimizes the mean squared distance between the
data points and their projection. Based on this definition, given data samples
X = {x1, ..., xN} in Rn with dimensionality n, the classical PCA finds the latent
d-dimensional affine space {U t + b : t ∈ Rd}, 1 ≤ d ≪ n having smallest squared
distance from the samples by minimizing

P (U, b) =

N∑
i=1

∥(UUT − In)(xi − b)∥2 (5.2.1)

for b ∈ Rn and U ∈ St(d, n), where St(d, n) := {U ∈ Rn,d : UTU = I} is the
Stiefel manifold. By setting the derivative of P with respect to b equal to zero, the
offset (bias) b = x̄ := 1

N (x1 + . . .+ xN ). So that we can reduce our attention to the
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minimization with respect to U ∈ St(d, n), i.e., to the consideration of

P (U) =
N∑
i=1

∥(UUT − In)yi)∥2, yi = xi − x̄.

Now we can estimate matrix U with constraint U ∈ St(d, n). To enforce this
constraint, we introduce a Lagrange multiplier that we will denote by Λ ∈ Rd×d.
The minimization problem to P (U) with constraint U ∈ St(d, n) become an
unconstrained minimization of

L (U,Λ) =
N∑
i=1

∥(UUT − In)yi)∥2 + tr
(
UTU − Id

)
.

By setting the derivative of L (U,Λ) with respect to U equal to zero, this quantity
will have a stationary point when

SU = ΛU

where S =
∑N

i=1 yiy
T
i . This implies that a minimizer can be derived explicitly as

the matrix Û , whose columns are given by the eigenvectors corresponding to the
d largest eigenvalues of the empirical covariance matrix S. This minimizer is not
unique, since it holds P (UV ) = P (U) for any orthogonal matrix V ∈ O(d).

In summary, the formulation of PCA is based on a linear projection of the data
onto a subspace of lower dimensionality than the original data space. To apply
the PCA for dimensionality reduction, we first find eigenvectors and eigenvalues
of matrix S, and then compute the low-dimentional data from original data space
using

{
UT(x− b) : x ∈ Rn

}
. In the next subsection, we consider a reformulation of

PCA, known as probabilistic PCA (PPCA). This formulat shows that PCA can also
be expressed as the maximum likelihood solution of a probabilistic latent variable
model.

5.2.2 Probabilistic Principal Component Analysis PPCA [79]

The probabilistic PCA model was proposed by Tipping and Bishop in [79]. This
model is considered as a Gaussian model. Based on PCA’s goals, the mapping of
latent data to original data can be defined as a linear function of t:

x = Ut+ b+ ε, (5.2.2)

where the latent variables are defined to be independent and Gaussian with a zero-
mean unit-covariance t ∼ N (0, I). The noise of the model is also Gaussian such
that ε ∼ N

(
0, σ2I

)
. Thus the conditional probability distribution over x-space

for a given t is x | t ∼ N
(
Ut+ b, σ2I

)
. The probability density function of this
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distribution is written as

p (x | t) = 1

2πσ2
exp

{
− 1

2σ2
∥x− Ut− b∥2

}
. (5.2.3)

To determine the parameters U, b, σ2 by using maximum likelihood, we need an
expression for the marginal distribution of original variables p (x). The expression
of marginal distribution p (x) can be obtained thanks to the sum and product rules
of probability, in the form:

p (x) =

∫
p (x | t) p (t) dt

= (2π)−n/2
∣∣∣Σ̃∣∣∣−1/2

exp

{
−1

2
(x− b)T Σ̃−1 (x− b)

}
, (5.2.4)

where Σ̃ = UUT+σ2I is the covariance matrix. Now the parameters U, b, σ2 can be
estimated by using maximum likelihood method. Given a data set X = {x1, ..., xN}
in Rn with n-dimensional, the corresponding log-likelihood function is given by

LP

(
U, b, σ2

)
=

N∑
i=1

log (p (x))

− N

2

(
n log (2π) + log

∣∣∣Σ̃∣∣∣+ tr
(
Σ̃−1S

))
, (5.2.5)

where

S =
1

N

N∑
i=1

(xi − b) (xi − b)T (5.2.6)

is the sample covariance matrix of the observed {xi}i=1,...,N . Setting the derivative
of the log-likelihood function L with respect to b equal to zero, the bias b = x =
1
N (x1 + ...+ xN ). The maximization of the log-likelihood is more complex with
respect to U and σ2 than b. In [79], Tipping and Bishop showed that all of the
stationary points of the log-likelihood function can be written as

UML =W
(
Λ− σ2I

)1/2
R, (5.2.7)

where W is a n× d matrix whose d column vectors are principal eigenvectors of S,
with the d largest corresponding eigenvalues λ1, ..., λd in the d× d diagonal matrix
Λ in descending order of magnitude and R is an arbitrary d× d orthogonal rotation
matrix. Maximizing the log-likelihood function LP with respect to σ2 gives

σ2ML =
1

n− d

n∑
j=d+1

λj (5.2.8)

where λd+1, ..., λn are the smallest eigenvalues of S. So that σ2ML is the average
variance associated over the lost dimensions. In practice, to implement probabilistic
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PCA, we first compute the eigen-decomposition of S. Then we estimate σ2ML from
(5.2.8), and finally the matrix UML from equation (5.2.7).

5.2.3 Mixture of probabilistic principal component analysers [80]

The association of a probabilistic PCA model offers attractive prospects for
application to dimensionality reduction. In [80], Tipping and Bishop introduced a
model that consider a mixture distribution in which the components are probabilistic
PCA. This is called Mixtures of Probabilistic PCA (MPPCA) model. By using the
Gaussian mixture models (GMMs) with the density function , the log-likelihood of
observing the data set for such a Gaussian mixture model is:

L =

N∑
i=1

log

{
K∑
k=1

wkp (xn | k)

}
, (5.2.9)

where p (x | k) is a single PPCA model (5.2.4) and wk is the corresponding cluster
weight, with wk are non-negative and sum up to one for all k cluster. As a
consequence, the parameters Uk, bk, σ

2
k are now associated with each of the K

mixture components. This means that the generative model (5.2.2) now requires the
weight wk, and the appropriate parameters UK , bk, σ

2
k of each mixture component.

These parameters can be estimated by using an iterative EM Algorithm 1 for
the mixture model to maximize the log-likelihood function (5.2.9) of all of the
model parameters

{
wk, Uk, bk, σ

2
k

}
. The parameters θk in equation (4.2.4) now

are considered as θk =
{
Uk, bk, σ

2
k

}
. At iteration r, the posterior responsibility

of mixture k of x in the E-Step is given by

α
(r)
i,k =

wkp (xi | θk)∑K
l=1wlp (xi | θl)

, (5.2.10)

and the mixture component weight wk is estimated as in equation (4.2.3). The
parameter bk is updated as

b
(r+1)
k =

∑N
i=1 α

(r)
i,kxi∑N

i=1 α
(r)
i,k

(5.2.11)

The transformation matrix Uk, and the noise σ2k can be obtained from matrix

S
(r)
k =

1

w
(r+1)
k

N∑
i=1

α
(r)
i,k

(
xi − b

(r+1)
k

)(
xi − b

(r+1)
k

)T
(5.2.12)

in the same way as for a single PPCA model and the covariance matrices of the
high-dimensional data are Σ̃k = UkU

T
k + σ2I for all k = 1, ...,K.
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5.2.4 High-Dimensional Data Clustering (HDDC) [11]

In [11], C. Bouveyron et al. proposed a Gaussian mixture models designed for high-
dimensional data, which is called High-Dimensional Data Clustering (HDDC). This
model combines the ideas of subspace clustering and parsimonious modeling based
on the Expectation-Maximization (EM) algorithm [23]. The EM algorithm is used
to estimate the parameter of the specific subspace and the intrinsic dimension of
each mixture component. Given a high-dimensional dataset {xi}i=1,...,N in Rn, we
assume that the variables have Gaussian mixture distribution with means µ̃k and
covariance matrices Σ̃k for k = 1, ...,K. Then the covariance matrix Σ̃k can be
factorized as:

Σ̃k = QkΛkQ
T
k (5.2.13)

where Qk is an orthogonal matrix containing the eigenvectors of Σ̃k and Λk is a
n× n diagonal matrix containing the eigenvalues of Σ̃k. It is further assumed that
λk has the following form:

Λk =



ak1 0
. . .

0 akdk

0

0
bk 0

. . .
0 bk


, (5.2.14)

with akj ≥ bk, j = 1, ..., dk and dk ∈ {1, ..., n− 1} for k = 1, ...,K.
We consider the affine subspace Ek is defined by the dk eigenvectors associated

to the eigenvalues akj and such that µ̃k ∈ Ek. Similarly, the affine subspace E⊥
k

is such that Ek ⊕ E⊥
k = Rn and µ̃k ∈ E⊥

k . Let Pk (x) = Q̃kQ̃
T
k (x− µ̃k) + µ̃k and

Pk (x)
⊥ = QkQ

T
k (x− µ̃k) + µ̃k be the projection of x on Ek and E⊥

k respectively,
where Q̃k is made of the dk first columns of Qk supplemented by n−dk zero columns
and Qk = Qk − Q̃k.

We thus obtain a re-parameterization of the Gaussian mixture model which
depends on θ̃k = {µ̃k, akj , bk, Qk, dk} for all k = 1, ...,K. This mixture model is
denoted by [akj , bk, Qk, dk] and its probability density function of the k mixture
component is written as:

p
(
x | θ̃k

)
=

1

(2π)n/2|QkΛkQ
T
k |1/2

exp
(
− 1

2(x− µ̃k)
T
(
QkΛkQ

T
k

)−1
(x− µ̃k)

)
=

1

(2π)n/2|Λk|1/2
exp

(
− 1

2(x− µ̃k)
T
(
QkΛkQ

T
k

)−1
(x− µ̃k)

)
. (5.2.15)

To estimate this new Gaussian mixture model for the high-dimensional data x, the
High-Dimensional Data Clustering (HDDC) method was introduced based on the
EM Algorithm 1. At iteration r and for each k = 1, ...,K and i = 1, ..., N the
responsibility α(r)

i,k and the mixture component weight w(r+1)
k can be obtained as in
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equation (4.2.2) and (4.2.3) respectively with p
(
x | θ̃k

)
. The optimization equation

(4.2.4) for the new parameters can be solved by using the method of Lagrange
multipliers. We refer to [11] for a demonstration of the following results for each
mixture component k = 1, ...,K:

• The mean is estimated by:

µ
(r+1)
k =

1∑N
i=1 α

(r)
i,k

N∑
i=1

α
(r)
i,kxi.

• The empirical covariance matrix is estimated by:

S
(r+1)
k =

1∑N
i=1 α

(r)
i,k

N∑
i=1

α
(r)
i,k

(
xi − µ

(r+1)
k

)(
xi − µ

(r+1)
k

)T
.

• Sub-space Ek: the dk first columns of Qk are estimated by the eigenvectors
associated to the dk largest eigenvalues λkj of the empirical covariance matrix
S
(r+1)
k .

• The parameters akj are estimated by the dk largest eigenvalues λkj of S(r+1)
k .

• The parameter of bk is estimated by:

b
(r+1)
k =

1

n− dk

tr
(
S
(r+1)
k

)
−

dk∑
j=1

λkj

 .

The main difference between the HDDC method and the others is that it
estimates the dk dimension for each cluster of the model. Within the M step of
EM algorithm, the intrinsic dimensions dk, k = 1, ...,Kk are estimated through
the scree-test of Cattell [14] which is illustrated in Figure 5.1. The selected dk
is the one for which the subsequent eigenvalues differences are smaller than the
threshold (dashed line). In this paper, new Gaussian mixture models designed for
high-dimensional data are introduced. It is assumed that the intrinsic dimension
of each mixture component is much smaller than the one of the original space. In
addition, outside the specific subspace of each group, the noise variance is modeled
by a single parameter. Additional constraints can be imposed on the parameters
within or between the groups in order to obtain further regularized models. This
parameterization in the eigenspaces of the mixture components gives rise to an
EM-based clustering method, called High-Dimensional Data Clustering (HDDC).
Experiments on artificial and real datasets demonstrated the effectiveness of the
different models of HDDC compared to classical Gaussian mixture models.

We will analyze and compare these methods with ours in the following
section 5.3.2.
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?figurename? 5.1: Plot of ordered eigenvalues of Sk (left) and differences between
eigenvalues (right).

5.3 Contribution: Dimensionality-Reduced Gaussian
Distribution: PCA-GMM Model [41]

The main purpose of this section is to propose our contribution in the subject of
dimensionality reduction data. The first contribution is a dimensionality reduction
method that combines the PCA model with the Gaussian mixture model, called
PCA-GMM model. This contribution was published in the Inverse Problems in
Imaging journal [41] in 2022.

5.3.1 PCA-Gaussian mixture model

A first idea would be to couple the GMM and the PCA model in an additive way
and to minimize for data samples X = {x1, ..., xN} in Rn the function

F (U,w,Θ) = L
(
w,Θ|Xlow

)
+

1

2σ2
P (U) , σ > 0 (5.3.1)

for U ∈ St(d, n), w ∈ △K , µk ∈ Rd, Θ = (θ1, . . . , θK) with θk = {µk,Σk} and
Σk ∈ SPD(d), k = 1, . . . ,K, where △K :=

{
w = (wk)

K
k=1 ∈ RK

≥0 :
∑K

k=1wk = 1
}

and
Xlow := {UTy1, . . . , U

TyN}, yi = xi − x̄.
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It is important that the negative log-likelihood function L acts with respect to θ

only on the lower dimensional space Rd. The function F can be rewritten as

F (U,w,Θ) = −
N∑
i=1

(
log
( K∑

k=1

wkf
(
UTyi|θk

))
− 1

2σ2
∥(UUT − In)yi)∥2

)
(5.3.2)

= −
N∑
i=1

(
log
( K∑

k=1

wkf
(
UTyi|θk

)
exp

(
− 1

2σ2 ∥(UUT − In)yi)∥2
)))

.

(5.3.3)

However, knowing that the samples were taken from K different Gaussian
distributions it makes more sense to reduce the dimension individually for each
distribution. Based on the reformulation (5.3.3) and using the notation U = (Uk)

K
k=1

and b = (bk)
K
k=1, we propose to minimize the following PCA-GMM model:

F (U,b,w,Θ) subject to w ∈ △K , Uk ∈ St(d, n),Σk ∈ SPD(d), k = 1, . . . ,K,

(5.3.4)

where bk ∈ Rn, µk ∈ Rd and

F (U,b,w,Θ) := −
N∑
i=1

log

( K∑
k=1

wkf(U
T
k yik|θk) exp

(
− 1

2σ2 ∥(In − UkU
T
k )yik∥2

))
,

(5.3.5)

yik := xi − bk, k = 1, . . . ,K, i = 1, . . . , N. (5.3.6)

Clearly, if Uk = U and bk = x̄ for all k = 1, . . . ,K, we get back to model (5.3.1).

The next lemma shows that our PCA-GMM model can be rewritten as a GMM
model whose parameters incorporate those of the PCA.

Lemma 5.3.1. Let µ ∈ Rd, Σ ∈ SPD(d), U ∈ St(d, n), b ∈ Rn and let f be the
Gaussian density function (4.1.6). Then the following relation holds true:

f
(
UT(x− b)|µ,Σ

)
exp

(
− 1

2σ2 ∥(In − UUT)(x− b)∥2
)
= (2πσ2)

n−d
2 f(x|µ̃, Σ̃),

(5.3.7)

where

µ̃ = Σ̃UΣ−1µ+ b ∈ Rn, (5.3.8)

Σ̃ =
(

1
σ2 (In − UUT) + UΣ−1UT

)−1 ∈ SPD(n). (5.3.9)

?proofname? 1. First of all, we verify that the matrices Σ̃ are well defined, i.e.
that 1

σ2 (In−UUT)+U(Σ)−1UT is invertible. Let Ũ ∈ Rn,(n−d) such that V := (U |Ũ)



56 ?chaptername? 5. Dimensionality reduction

is an orthogonal matrix. Then we obtain

V TΣ̃−1V = V T( 1
σ2 (In − UUT) + UΣ−1UT)V (5.3.10)

= 1
σ2 (In − V TUUTV ) + V TUΣ−1UTV. (5.3.11)

Since (V TU)T = UTV = (Id|0), this is equal to

V TΣ̃−1V = 1
σ2

(
0 0

0 In−d

)
+

(
Σ−1 0

0 0

)
=

(
Σ−1 0

0 1
σ2 In−d

)
(5.3.12)

and the last matrix is invertible.
2. We have to show that

(2π)−
d
2 |Σ|−

1
2 exp

(
− 1

2σ2
∥(In − UUT)(x− b)∥2

− 1

2
(UT(x− b)− µ)TΣ−1(UT(x− b)− µ)

)
= (2π)−

n
2 |Σ̃|−

1
2 exp

(
− 1

2
(x− µ̃)TΣ̃−1(x− µ̃)

)
= (2π)−

n
2 |Σ̃|−

1
2 exp

(
− 1

2
xTΣ̃−1x+ µ̃TΣ̃−1x− 1

2
µ̃TΣ̃−1µ̃

)
.

Straightforward calculation together with the observation that UTΣ̃U = Σ and
hence UTΣ̃−1U = Σ−1 gives

1

2σ2
∥(In − UUT)(x− b)∥2 + 1

2
(UT(x− b)− µ)TΣ−1(UT(x− b)− µ) (5.3.13)

=
1

2
xT
(

1
σ2 (In − UUT) + UΣ−1UT

)
x (5.3.14)

−
(

1
σ2 b

T(In − UUT) + (µT + bTU)Σ−1UT
)
x (5.3.15)

+
1

2
(UTb+ µ)TΣ−1(UTb+ µ) + 1

2σ2 b
T(In − UUT)b (5.3.16)

=
1

2
xTΣ̃−1x− µ̃TΣ̃−1x+

1

2
µ̃TΣ̃−1µ̃. (5.3.17)

Finally, we see by (5.3.12) that |Σ̃|−1 = σ−2(n−d)|Σ|−1 .

By Lemma 5.3.1, we can rewrite our objective function F in (5.3.5) with Θ̃ =

(µ̃, Σ̃) defined by (5.3.8) and (5.3.9) with corresponding indices as

F (U,b,w,Θ) = −
N∑
i=1

log
( K∑

k=1

wkf(xi|θ̃k)
)
+ (n− d) log(

√
2πσ2) (5.3.18)

= L(w, Θ̃|X ) + (n− d) log(
√
2πσ2). (5.3.19)

Up to the constant this is a negative log-likelihood function of a GMM. However,
when minimizing this function, we have to take the constraints (5.3.9) and (5.3.8)
into account. More precisely, our model in (5.3.4) can be rewritten as PCA-GMM



5.3. Contribution: Dimensionality-Reduced Gaussian Distribution:
PCA-GMM Model [41] 57

model:

F(U,b,w,Θ) := L(w, Θ̃|X ) subject to Uk ∈ St(d, n), w ∈ ∆K , Σk ∈ SPD(d),

(5.3.20)

where

Σ̃k =
(

1
σ2 (In − UkU

T
k ) + UkΣ

−1
k UT

k

)−1
, µ̃k = Σ̃kUΣ−1

k µk + bk, k = 1, . . . ,K.

(5.3.21)

The choice of µk and bk is redundant. This can be seen as follows, for any µk
and bk, define µ̂k = 0 and b̂k = µ̃k. Then, it holds

Σ̃k =
(

1
σ2 (In − UkU

T
k ) + UkΣ

−1
k UT

k

)−1
, µ̃k = Σ̃kUΣ−1

k µ̂k + b̂k, k = 1, . . . ,K

(5.3.22)

such that F(U, b̂,w, Θ̂) = F(U,b,w,Θ). Consequently, in the M-step of the EM
algorithm in Section 5.3.3.1 we obtain that the update for the mean µ is given by
µk = 0.

Remark 4 (Different component dimensions). So far the dimension d is the same
for all components k = 1, ...,K. But by some simple adjustments, the PCA-GMM
model can also be rewritten with Uk ∈ St(dk, n), µk ∈ Rdk and Σk ∈ SPD(dk), where
the dk are not necessarily equal for all k. However, to keep the notations as simple
as possible, we will restrict our analysis to the case that dk = d for k = 1, ...,K.
Nevertheless, all the results of this chapter can be derived analogously for other
choices of dk.

Remark 5 (Learning σ). The function F in (5.3.1), resp. (5.3.5), (5.3.19) is strictly
decreasing in σ. Thus it does not make sense to minimize F with respect to σ.

However, the function F = F − n−d
2 log(2πσ2) in (5.3.20) can be optimized with

respect to σ. To keep the M-step of the EM algorithm simple, we associate to each
sum and in the mixture model an own σk, k = 1, . . . ,K such that Σ̃ in (5.3.21)
becomes

Σ̃k =
(

1
σ2
k
(In − UkU

T
k ) + UkΣ

−1
k UT

k

)−1
. (5.3.23)

In this case, we use the notation σ = (σk)
K
k=1.

5.3.2 Comparison with state-of-the-art of dimensionality reduced
data

There are several relations of the PCA-GMM model to other models proposed in
the literature, in particular to mixtures of probabilistic PCAs (MPPCA) [80], high
dimensional data clustering (HDDC) [11] and high-dimensional mixture models for
unsupervised image denoising (HDMI) [45]. In the following, we shortly review
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these methods and comment on similarities and differences to the PCA-GMM model.

For understanding the relation to other models, we first need the following
reformulation of the covariance matrices Σ̃ from the PCA-GMM model. We have as
in (5.3.12) for matrices Σ̃ of the form (5.3.9) and an orthogonal matrix V = (U |Ũ)

that

V TΣ̃V =

(
Σ 0

0 σ2In−d

)
, (5.3.24)

so that{
Σ̃ =

(
1
σ2 (In − UUT) + UΣ−1UT

)−1
: U ∈ St(d, n), Σ ∈ SPD(d)

}
(5.3.25)

=

{
QT

(
diag(λ) 0

0 σ2In−d

)
Q : Q ∈ O(n), λ ∈ Rd

>0

}
. (5.3.26)

As outlined in Remark 5, the σ can either be fixed a priori, or optimized within the
EM algorithm, as later outlined in Section 5.3.3.1, simultaneously with the other
parameters.

In [80], Tipping and Bishop propose mixture models of probabilistic PCAs
(MPPCA), which are GMMs of the form

p(x) =
K∑
k=1

wkf(xi|µ̃k, Σ̃k), (5.3.27)

where
Σ̃k = UkU

T
k + σ2kIn, Uk ∈ St(dk, n).

Here, the parameters σk are optimized simultaneously with the wk and Uk via the
EM algorithm. Hence, skipping the index, instead of minimizing over (5.3.26), they
minimize over sets of the form{

QT

(
(1 + σ2)Id 0

0 σ2In−d

)
Q : Q ∈ O(n)

}
. (5.3.28)

Since this form of the covariance matrices is very restrictive, Bouveyron, Girard
and Schmid generalized MPPCA in [11] to a model called high dimensional data
clustering (HDDC). Again, they minimize a special GMM (5.3.27), but here the
covariances are given by

Σ̃k = Ukdiag(λk)U
T
k + σ2kIn, Uk ∈ St(dk, n), λk ∈ Rdk

>0.

As for the MPPCA, the parameters are optimized via the EM algorithm. For
deriving it, it is important that the parameters σk are not fixed a priori but are
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optimized within the EM algorithm. Skipping the index, instead of minimizing over
(5.3.26) or (5.3.28), this corresponds to a minimization over{

QT

(
diag(λ) + σ2Id 0

0 σ2In−d

)
Q : Q ∈ O(n), λ ∈ Rd

>0

}
. (5.3.29)

In contrast to (5.3.26), where the diagonal values λ are required to be strictly
greater than 0, the diagonal values λ + σ2 in (5.3.29) are automatically strictly
greater than σ2. Consequently, the PCA-GMM model is more general than HDDC.
Note that HDDC model contains the so-called mixture factor analysis [64] as
a special case. Here also the alternating expectation conditional maximization
algorithm [66] is applicable [91], which is an improved version of the EM algorithm.

Finally, Houdard, Bouveyron and Delon proposed in [45] a model selection
algorithm for the dimensions dk. For this, they propose a model called HDMI,
where the only difference to HDDC is, that σ is a priori fixed. They derive
as an intermediate step a corresponding EM algorithm in [45, Proposition 2].
Unfortunately, the M-step only ensures that λ > −σ21d and not λ > 0, such that
the calculations appear to be not fully correct. However, the final model selection
algorithm again ensures that λ > 0 such that this seems not to be a problem in [45].

5.3.3 Minimization Algorithm

We propose to minimize F in (5.3.20) based on the EM algorithm, where we have to
take the special structure of µ̃k ∈ Rn and Σ̃k ∈ SPD(n) in (5.3.21) into account to
work indeed in the lower d-dimensional space. This requires the solution of a special
inner minimization problem within the M-Step of the EM algorithm. We describe
the EM algorithm for our PCA-GMM model in Subsection 5.3.3.1. In particular,
we will see that the M-Step of the algorithm requires the minimization of functions
Gk(U, b), k = 1, . . . ,K, of the same structure. We prove that these functions have
indeed a global minimizer. In particular, these functions do not depend on the
large number of input data xi, i = 1, . . . , N . Therefore it turns out that the E-step
of the algorithm is the most time consuming one. We propose to find at least a
local minimizer of G by the (inertial) proximal alternating linearized minimization
(PALM) in Section 5.3.3.2 and provide convergence results.

5.3.3.1 EM Algorithm for PCA-GMM

For our setting, we obtain a special EM algorithm described in Algorithm 2. Note
that the E-Step of Algorithm 2 requires only the mean and covariance matrix in
θ
(r)
k , k = 1, . . . ,K with respect to the smaller space Rd.

A convergence analysis of the EM algorithm via Kullback-Leibler proximal point
algorithms was given in [17, 18], see also [54] for a nice review. The authors showed
that the objective function decreases for the iterates of the algorithm. Hence we
obtain the following corollary.
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Algorithm 2 EM Algorithm for PCA reduced Mixture Models

Input: X = (x1, ..., xN ) ∈ Rn,N , initialization U(0), b(0), w(0), θ(0) = (µ(0),Σ(0)).
for r = 0, 1, ... do

E-Step: For k = 1, ...,K and i = 1, . . . , N compute

α
(r)
i,k =

w
(r)
k f(xi|θ̃(r)k )∑K

j=1w
(r)
j f(xi|θ̃(r)j )

(5.3.30)

=

w
(r)
k

(σ
(r)
k )n−d

exp

(
− 1

2(σ
(r)
k )2

∥(In − U
(r)
k (U

(r)
k )T)y

(r)
i,k ∥

2

)
f
(
(U

(r)
k )Ty

(r)
i,k |θ

(r)
k

)
∑K

j=1

w
(r)
j

(σ
(r)
j )n−d

exp

(
− 1

2(σ
(r)
j )2

∥(In − U
(r)
j (U

(r)
j )T)y

(r)
i,k ∥2

)
f
(
(U

(r)
j )Ty

(r)
i,k |θ

(r)
j

)
,

(5.3.31)

y
(r)
i,k = xi − b

(r)
k . (5.3.32)

M-Step: For k = 1, ...,K compute

w
(r+1)
k =

1

N

N∑
i=1

α
(r)
i,k , (5.3.33)

(U
(r+1)
k , b

(r+1)
k , σ

(r+1)
k , θ

(r+1)
k ) = argmax

U,b,µ,Σ

N∑
i=1

α
(r)
ik log(f(xi|θ̃k)) (5.3.34)

subject to Uk ∈ St(d, n),Σk ∈ SPD(d) (5.3.35)

with θ̃k = (µ̃k, Σ̃k) as in (5.3.21). (5.3.36)

end for

Corollary 1. For the iterates
(
U(r),b(r), w(r), θ(r)

)
r

generated by Algorithm 2 the
objective function F is decreasing.

The interesting step is the second M-Step which requires again the maximization
of a function. Based on (4.2.6) and (4.2.7) we can prove the following proposition.

Proposition 1. Assume that n + 1 of the points xi, i = 1, ..., N are affinely
independent.

Further, let f be the Gaussian density function (4.1.6) and αi ∈ R≥0, i =

1, . . . , N .
i) For fixed σ2, a solution of

argmax
U,b,µ,Σ

N∑
i=1

αi log(f(xi|θ̃)) (5.3.37)

with θ̃ = (µ̃, Σ̃) of the form (5.3.8) and (5.3.9) is given by

µ̂ = 0, Σ̂ =
1

w
ÛTSÛ, and b̂ =

1

w
m, (5.3.38)
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where

m =
N∑
i=1

αixi, C =
N∑
i=1

αixix
T
i , w =

N∑
i=1

αi, S = C − 1

w
mmT, (5.3.39)

and
Û ∈ argmin

U∈St(d,n)
G(U). (5.3.40)

Here

G(U) := − 1

σ2
tr(UTSU) + w log(|UTSU |). (5.3.41)

ii) If σ is learned, we have

σ̂2 = 1
w(n−d)

(
tr(S)− tr(ÛTSÛ)

)
, (5.3.42)

and G from (5.3.41) is replaced by

G(U) := (n− d) log
(
tr(S)− tr(UTSU)

)
+ log(|UTSU |). (5.3.43)

Note that w in the proposition is defined in another way than in the first M-
step, more precisely, the factor 1

N is skipped. Before presenting the proof of the
proposition, we give the following remark.

Remark 6. By definition of C in Proposition 1 we have that

S =
N∑
i=1

αi(xi − 1
wm)(xi − 1

wm)T. (5.3.44)

Since n + 1 of the points xi, i = 1, ..., N , are affinely independent, S is symmetric
positive definite. In particular, it holds for G from (5.3.41) or (5.3.43) that G(U) >

−∞ for any U ∈ St(d, n). Further, since the function G is continuous and the Stiefel
manifold is compact, we can conclude, that G has a global minimizer.

Proof of Proposition 1. i) Let σ be fixed. Using (5.3.7), we have for fixed U and b,
as in the classical GMM, see (4.2.6) and (4.2.7), that the maximizer in (5.3.37) with
respect to µ and Σ fulfills

µ =
1

w

N∑
i=1

αiU
T(xi − b) =

1

w
(UTm− wUTb), (5.3.45)

Σ =
1

w

N∑
i=1

αi

(
UT(xi − b)− µ

) (
UT(xi − b)− µ

)T (5.3.46)

=
1

w

N∑
i=1

αi

(
UT(xi −

1

w
m)

)(
UT(xi −

1

w
m)

)T

=
1

w
UTSU. (5.3.47)
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By Lemma 5.3.1, the negative objective function in (5.3.37) is given by

2G̃(U, b) = G1(U, b) +G2(U, b) + w log(|Σ|) + const, (5.3.48)

G1(U, b) =
1
σ2

N∑
i=1

αi(xi − b)T(In − UUT)(xi − b) + w(n− d) log(σ2) (5.3.49)

G2(U, b) =
N∑
i=1

αi

(
UTxi − (UTb+ µ)

)T
Σ−1

(
UTxi − (UTb+ µ)

)
. (5.3.50)

In the following, we use const as a generic constant which has values independent
of µ,Σ, U and b. The linear trace operator tr : Rd,d → R fulfills xTAy = tr(AxyT)

and in particular xTUUTx = tr(UTxxTU). Using this property we obtain

G2(U, b) = tr
(
Σ−1

N∑
i=1

αi

(
UTxi − (UTb+ µ)

) (
UTxi − (UTb+ µ)

)T
︸ ︷︷ ︸

=Σ

)
= tr(I).

(5.3.51)

Thus, the only term in (5.3.48) which depends on b and U is G1. Further, minimizing
G1 is equivalent to minimizing

g1(U, b) :=
N∑
i=1

αi(xi − b)T(In − UUT)(xi − b).

For fixed U , we can minimize g1 with respect to b by setting the gradient to 0. Since
g1 is convex in b this is equivalent for being a global minimizer. This yields

0 =

N∑
i=1

αi(In − UUT)(b− xi)

which is equivalent to
0 = (In − UUT)(wb−m).

In particular, b = 1
wm is a global minimizer of g1 resp. G1, and it is independent of

U . Using this, we get

µ =
1

w
(UTm− wUTb) = 0.

Minimizing G1 with respect to U for b = 1
wm is equivalent to minimizing

G1(U,
1

w
m) = − 1

σ2 tr
(
UTSU

)
+ const. (5.3.52)

Further we have log
(∣∣ 1

wU
TSU

∣∣) = log(|UTSU |) + const. Thus, by combining the
above computations, we get that minimizing (5.3.48) with respect to U is equivalent



5.3. Contribution: Dimensionality-Reduced Gaussian Distribution:
PCA-GMM Model [41] 63

to minimizing

G(U) = − 1

σ2
tr
(
UTSU

)
+ w log(|UTSU |). (5.3.53)

ii) Now consider the case, where σ is learned. Again by (5.3.7), the maximizer
in (5.3.37) with respect to σ is given by the maximizer of

N∑
i=1

αi

(
− 1

2σ2 ∥(In − UUT)(xi − b)∥2 − (n− d) log(σ)
)
.

By setting the derivative to zero, one obtains, that

σ2 = 1
w(n−d)

N∑
i=1

αi(xi − b)T(In − UUT)(xi − b).

Then the function in (5.3.49) modifies to

G1(U, b) = w(n− d) log
( N∑

i=1

αi(xi − b)T(In − UUT)(xi − b)
)
+ const. (5.3.54)

Now the monotonicity of the logarithm implies that minimizing G1 is again
equivalent to minimizing g1. Hence, as in case i) we get b = 1

wm is a global minimizer
of g1 resp. G1, and it is independent of U . Using this, we obtain

µ =
1

w
(UTm− wUTb) = 0 and σ2 = 1

w(n−d)

(
tr(S)− tr(UTSU)

)
.

By (5.3.54), minimizing G1 with respect to U for b = 1
wm is equivalent to minimizing

G1(U,
1

w
m) = w(n− d) log

(
tr(S)− tr(UTSU)

)
+ const, (5.3.55)

such that minimizing (5.3.48) with respect to U is equivalent to minimizing

G(U) = (n− d) log
(
tr(S)− tr(UTSU)

)
+ log(|UTSU |). (5.3.56)

By Proposition 1, the M-Step of Algorithm 2 reduces for k = 1, ...,K to the
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computation of

w
(r+1)
k =

1

N

N∑
i=1

α
(r)
i,k , (5.3.57)

mk =
N∑
i=1

αi,kxi, Ck =
N∑
i=1

αi,kxix
T
i , (5.3.58)

(U
(r+1)
k , b

(r+1)
k ) ∈ argmin

U∈SPD(d,n),b∈Rn

Gk(U, b) with Gk in (5.3.41), (5.3.59)

µ
(r+1)
k =

1

Nw
(r+1)
k

(
U

(r+1)
k

)T (
mk −Nw

(r+1)
k b

(r+1)
k

)
, (5.3.60)

Sk = Ck −mk

(
b
(r+1)
k

)T
− b

(r+1)
k mT

k +Nw
(r+1)
k b

(r+1)
k

(
b
(r+1)
k

)T
(5.3.61)

Σ
(r+1)
k =

1

Nw
(r+1)
k

(
U

(r+1)
k

)T
Sk U

(r+1)
k (5.3.62)

Note that the large data set X is involved in the computation of mk and Ck, but
it does not influence the computational time for minimizing the Gk, k = 1, . . . ,K.
Indeed, the E-Step of Algorithm 2 will be the most time consuming one.

5.3.3.2 PALM for Minimizing G

To minimize G in (5.3.41) we propose to use the Proximal alternating linearized
minimization (PALM) [9], resp. its accelerated version iPALM [74], where the ’i’
stands for inertial. As a special case the PALM algorithm can be applied to functions
of the form

F (x) = H(x) + f(x) (5.3.63)

where H ∈ C1(Rd) and a lower semi-continuous function f : Rd → (−∞,∞]. It is
based on the computation of the so-called proximal operators. For a proper and
lower semi-continuous function f : Rd → (−∞,∞] and τ > 0 the proximal mapping
proxfτ : Rd → P(Rd) is defined by

proxfτ (x) = argmin
y∈Rd

{
τ
2∥x− y∥2 + f(y)

}
,

where P(Rd) denotes the power set of Rd.
Starting with an arbitrary x(0) PALM performs the iterations

x(r+1) ∈ proxf
τ (r)

(
x(r) − 1

τ (r)
∇H(x(r))

)
. (5.3.64)

Remark 7. In fact, this special case of the PALM algorithm with one variable U for
the optimization problem (5.3.63) is just the classical Forward-Backward algorithm.
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The Forward-Backwatd algorithm is also supposed to converge in the non-convex
case as soon as the function satisfies the Polyak-Lojasiewics condition (see Theorem
5.1 in [6]). Thus, we can use the Forward-Backwatd algorithm with equation (5.3.64)
as iterations of the algorithm. In this thesis, to get a faster scheme, we propose to
use the iPALM algorithm to minimize G, which is detailed in Algorithm 3.

Indeed, we have applied the iPALM algorithm in our numerical examples.
However, although we observed convergence of the iterates numerically, we have not
proved convergence theoretically so far. Alternatively, we could apply the PALM
algorithm which is slightly slower. Note again, that the E-Step of the algorithm is
the most time consuming one.

Algorithm 3 iPALM

Input: α(r), β(r) initialization x(1), x(0)

for r = 1, 2, ... do until a convergence criterion is reached

y(r) = x(r) + α(r)(x(r) − x(r−1)), (5.3.65)

z(r) = x(r) + β(r)(x(r) − x(r−1)), (5.3.66)

x(r+1) ∈ proxf
τ (r)

(y(r) − 1
τ (r)

∇H(z(r))). (5.3.67)

end for

In the following, we give details on PALM for our setting. For our problem
(5.3.40), we choose f(U) := ιSt(d,n) and

H(U) := G(U)η(∥Id − UTU∥2F ), (5.3.68)

where

η(x) :=


1, if x ∈ (−ρ, ρ),
exp(− ρ

ρ−(|x|−ρ)2
), if x ∈ (−2ρ,−ρ] ∪ [ρ, 2ρ),

0, otherwise

is a smooth cutoff function of the interval (−ρ, ρ) for some ρ > 0. Then, the iteration
scheme reads as

U (r+1) ∈ ΠSt(d,n)(U
(r) − 1

τ (r)
∇H(U (r))) (5.3.69)

where ΠSt(d,n) denotes the orthogonal projection onto the Stiefel manifold.

Remark 8. (Projection onto Stiefel manifolds) Concerning this orthogonal
projection, it is well known [43], that for a matrix A ∈ Rn,d, the projection
ΠSt(d,n)(A) is given by the orthonormal polar factorW from the polar decomposition

A =WM, W ∈ St(d, n), M ∈ SPD(d).
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Further, this orthonormal polar factor can be computed by W = UV , where A =

UΣV is the singular value decomposition of A, see [43]. The authors of [44] propose
to use the so-called Schulz-iteration

Xk+1 = Xk(I +
1
2(I −XT

k Xk))

with X0 = A for computing the orthonormal polar factor of a full rank matrix A.
Unfortunately, the convergence of this iteration requires that ∥I − ATA∥F < 1,
which is usually not fulfilled in our case.

Note that for any r ∈ N, the matrix U (r) belongs to the Stiefel manifold, such
that η(∥Id − UTU∥F ) = 1 in a neighborhood of U (r). Thus, we can replace the
gradient with respect to H by the gradient with respect to G in (5.3.69). Then the
iteration scheme reads as

U (r+1) ∈ PSt(d,n)(U
(r) − 1

τ (r)
∇G(U (r))), (5.3.70)

In particular, we do not need to choose the ρ explicitly within our algorithm.
To show convergence of the algorithm, we need the following two lemmas.

Lemma 5.3.2. Let H be defined by (5.3.68). Then the function ∇H is globally
Lipschitz continuous.

?proofname? The function H is twice continuously differentiable and zero outside
of a compact set. Hence the second order derivative is bounded and ∇UH(·, b) is
globally Lipschitz continuous.

Further, let us recall the notation of Kurdyka-Łojasiewicz functions. For δ ∈
(0,∞], we denote by Φδ the set of all concave continuous functions ϕ : [0, δ) → R≥0

which fulfill the following properties:

1. ϕ(0) = 0.

2. ϕ is continuously differentiable on (0, δ).

3. For all s ∈ (0, δ) it holds ϕ′(s) > 0.

For a proper and lower semicontinuous function γ : Rd → (−∞,+∞] denote by
∂γ the subdifferntial of γ.

Definition 1 (Kurdyka-Łojasiewicz property). A proper, lower semicontinuous
function γ : Rd → (−∞,+∞] has the Kurdyka-Łojasieweicz (KL) property at
ū ∈ dom ∂γ = {u ∈ Rd : ∂γ ̸= ∅} if there exist δ ∈ (0,∞], a neighborhood U

of ū and a function ϕ ∈ Φδ, such that for all

u ∈ U ∩ {v ∈ Rd : γ(ū) < γ(v) < γ(ū) + δ},

it holds
ϕ′(γ(u)− γ(ū))dist (0, ∂γ(u)) ≥ 1.
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We say that γ is a KL function, if it satisfies the KL property in each point u ∈
dom ∂γ.

Lemma 5.3.3. The function H defined in (5.3.68) is a KL function.

?proofname? The functions G and η are sums, products, quotients and
concatenations of real analytic functions. Thus, also H is a real analytic function.
This implies that it is a KL function, see [5, Remark 5] and [59, 60].

The following theorem follows directly from [9, Lemma 3, Theorem 1].

Theorem 5.3.4 (Convergence of PALM). Let F : Rd → (−∞,∞] be given by
(5.3.63) and let ∇H be globally L-Lipschitz continuous. Let (x(r))r be the sequence
generated by PALM, where the step size parameters fulfill

τ (r) ≥ γL

for some γ > 1. Then, for η := (γ − 1)L, the sequence (F (x(r)))r is nonincreasing
and

η
2∥x

(r+1) − x(r))
∥∥2
2
≤ F (x(r))− F (x(r+1)).

If F is in addition a KL function and the sequence (x(r))r is bounded, then it
converges to a critical point of F .

By Lemma 5.3.2 and 5.3.3 and the fact that G coincides with H in a
neighborhood of the Stiefel manifold we obtain the following corollary.

Corollary 2. Let (U (r))r be generated by (5.3.70) with τ (r) ≥ γL, where L is
the Lipschitz constant of ∇H and γ > 1. Consider the sequence generated by
PALM with (5.3.70). Then, the sequence (G(U (r)))r is monotone decreasing and
the sequence (U (r))r converges to a critical point of G.

5.3.4 PCA-GMM model with application in super-resolution

In this subsection, we adapt the super-resolution method proposed by Sandeep and
Jacob [75] to our PCA-GMM model. The method follows 3 steps as described in
subsection 4.1.1. The highlight of our method is the use of PCA-GMM model to
learn the parameters of the mixture model instead of directly learning the original
high-dimensional data.

For given low-resolution patches x̃L,i ∈ Rτ2 of an image and their high-resolution
counterparts x̃H,i ∈ Rq2τ2 , q ∈ N, q ≥ 2, i = 1, ..., N , we learn a PCA-GMM model

based on the data xi =
( x̃H,i

x̃L,i

)
∈ Rn, n = (q2 + 1)τ2 by Algorithm 2. This

provides us with parameters {U,b,w, µ,Σ} of the reduced d-dimensional GMM.
Using these parameters, we compute the parameters of the corresponding high-
dimensional mixture model

{
wk, µ̃k, Σ̃k

}
, k = 1, . . . ,K, where µk and Σk are defined

as in (5.3.8) and (5.3.9). In the following, we use the notations µ̃k =

(
µ̃H,k

µ̃L,k

)
and
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Σ̃k =

(
Σ̃H,k Σ̃HL,k

(Σ̃HL,k)
T Σ̃L,k

)
. With parameters

{
wk, µ̃k, Σ̃k

}
, k = 1, . . . ,K, the

high-resolution patches can be estimated as in equation (4.2.22). Finally, the high-
resolution image is reconstructed by applying the reconstruction of high-resolution
image step by patch averaging as in 3, Subsection 4.1.1. We will demonstrate the
performance of PCA-GMM method by two- and three- dimensional examples in
Subsection 5.5.1.

5.4 Contribution: Dimensionality-Reduced Generalized
Gaussian Distribution: PCA-GGMM Model [70]

This section aims to present our second contribution for dimensionality reduction
topic. This contribution develops the PCA-GMM model by incorporate
a dimensionality reduction within mixture models of generalized Gaussian
distributions and derive an algorithm for estimating its parameters. Additionally
to these methodical improvements, we apply our method to three-dimensional real-
world images showing material microstructures. This contribution was submitted
for the Inverse Problems in Imaging journal [70] in 2022. We will discuss it in the
following.

5.4.1 Combining PCA with generalized Gaussian distribution

In the following, we consider the samples x1, ..., xN ∈ Rn, which are approximately
located in a d-dimensional subspace of Rn. Then, our objective is to find
simultaneously the subspace {Ut + b : t ∈ Rd}, U ∈ St(d, n), b ∈ Rn that contains
the samples xi and a generalized Gaussian distribution GG(µ,Σ, β) with density
function q(·|µ,Σ, β). For this, we propose a model that combines the PCA and the
generalized Gaussian model of the low-dimensional space. Based on the idea of the
PCA-GMM model, we are motivated to minimize the following function

ℓPCA(U, b, µ,Σ, β) :=

N∑
i=1

1

2σ2
∥(UUT − I)(xi − b)∥2 − log(q(UT(xi − b)|µ,Σ, β)),

(5.4.1)
which is a weighted sum of a PCA term and the negative log-likelihood function of
q within the lower dimensional subspace.

The following proposition gives a general property of the function ℓPCA for
the generalized Gaussian distribution. The function ℓPCA is up to a constant the
negative log-likelihood function of a distribution Pθ with θ = (U, b, µ,Σ, β).

Proposition 2. Let GG(µ,Σ, β) be a generalized Gaussian distribution with a
density function q(·|µ,Σ, β). The function ℓPCA(U, b, µ,Σ, β) is up to a constant
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the negative log-likelihood function of a probability density

p(x|U, b, µ,Σ, β) := 1

(2πσ2)(n−d)/2
exp(− 1

2σ2 ∥(UUT−I)(x−b)∥2)q(UT(xi−b)|µ,Σ, β).

(5.4.2)
The distribution Pθ with θ = (U, b, µ,Σ, β) corresponding to this density is given by

Pθ = r#(GG(µ,Σ, β)⊗N (0, σ2In−d)), r(x) = V x+ b,

where V = (U |Ũ) is an orthogonal matrix, ⊗ denotes the product measure and r#P
is the push-forward measure of P under r.

?proofname? Using that UTU = Id and ŨTŨ = In−d, we have that the
distribution GG(µ,Σ, β)⊗N (0, σ2In−d) has at x = (x1, x2) ∈ Rn the density

1

(2πσ2)(n−d)/2
exp(− 1

2σ2 ∥ŨTŨx2∥2)q(UTUx1|µ,Σ, β)

As UTŨ = 0 and ŨTU = 0, we obtain, that this is equal to

1

(2πσ2)(n−d)/2
exp(− 1

2σ2 ∥ŨT(Ux1 + Ũx2)∥2)q(UT(Ux1 + Ũx2)|µ,Σ, β) (5.4.3)

=
1

(2πσ2)(n−d)/2
exp(− 1

2σ2 ∥ŨTV x∥2)q(UTV x|µ,Σ, β) (5.4.4)

Using the change of variables formula for push-forward measures, we obtain that Pθ

has the density

1

(2πσ2)(n−d)/2
exp(− 1

2σ2 ∥ŨTV r−1(x)∥2)q(UTV r−1(x)|µ,Σ, β)|det(∇r−1(x))|

As it holds r−1(x) = V T(x− b) and as ∇r−1(x) = V T is an orthogonal matrix, we
obtain that this is equal to

1

(2πσ2)(n−d)/2
exp(− 1

2σ2 ∥ŨT(x− b)∥2)q(UT(x− b)|µ,Σ, β) (5.4.5)

where we used V V T = In. Finally, the fact that the mapping x 7→ Ũx is an isometry
and that I − UUT = Ũ ŨT imply that

∥ŨT(x− b)∥2 = ∥Ũ ŨT(x− b)∥2 = ∥(UUT − I)(x− b)∥2

such that the density (5.4.5) coincides with p(x|U, b, µ,Σ, β). Taking the negative
logarithm and subtracting n−d

2 log(2πσ2) shows that the negative log-likelihood
function of p(·|U, b, µ,Σ, β) coincides up to a constant with ℓPCA(U, b, µ,Σ, β).

Due to its relationship to the PCA, we call the probability distribution
p(·|U, b, µ,Σ, β) a PCA-reduced generalized Gaussian distribution.
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Remark 9 (PCA-GMM Model [41]). In particular, our PCA-reduced Gaussian
distribution (PCA-GMM model in the case of mixture model) is again a Gaussian
distribution with a special structured covariance matrix. Using this result, we
have derived an EM algorithm for PCA-reduced Gaussian mixture models, which
showed a significant speed-up compared to a high-dimensional GMM. However, for
generalized Gaussian distribution, the PCA-reduced counterpart is not a generalized
Gaussian distribution such that the analysis of [41] is no longer applicable.

In the following subsection, we introduce a method for estimating the parameters
of mixture models for the PCA-reduced generalized Gaussian distribution. We call
this mixture model a PCA-GGMM model, which has density function as

F (x | w,Θ) =
K∑
k=1

wkp (x | θk) (5.4.6)

where the weights wk are non-negative and sum up to one, Θ = {θk}k=1,...,K with
θk = (Uk, bk, µk,Σk, βk) and p (x | θk) is defined as (5.4.2).

5.4.2 Weighted Maximum Likelihood Estimation

The PCA-GGMM model is estimated based on EM Algorithm 1. For each k

mixture cluster of the PCA-GGMM model, the weighted maximum likelihood
estimation (4.2.5) is estimated for PCA-reduced generalized Gaussian distribution.
For readability, we consider the estimation for the the weighted maximum likelihood
estimation with parameter θ = (U, b, µ,Σ, β) instead of θk.

To estimate the parameters of a PCA-reduced generalized Gaussian distribution
from samples x1, ..., xN with weights α1, ..., αN , our objective is to minimize the
weighted negative log-likelihood function

N∑
i=1

αi log(p(xi|U, b, µ,Σ, β)).

By Proposition 2 this is equivalent to minimizing the function

ℓPCA,α(U, b, µ,Σ, β) :=
N∑
i=1

αi

( 1

2σ2
∥(UUT−I)(xi−b)∥2−log(q(UT(xi−b)|µ,Σ, β))

)
,

which is up to the weights α the same function as ℓPCA from (5.4.1). Unfortunately,
we cannot minimize ℓPCA,α directly. Instead, we apply a technique called half-
quadratic splitting [32]. That is, instead of considering ℓPCA,α(U, b, µ,Σ, β), we
minimize for some large η > 0 the function

Hσ,η(z, U, b, µ,Σ, β) :=

N∑
i=1

αi

( 1

2σ2
∥(UUT−I)(xi−b)∥2+η∥UT(xi−b)−zi∥2−log(q(zi|µ,Σ, β))

)
,
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i.e., we replace UT(xi − b) in the second summand by zi and penalize the squared
distance of UT(xi− b) and zi. Thus, for η → ∞, the minimizers of Hσ,η converge to
the minimizers of ℓPCA,α. Now, we minimize Hσ,η iteratively with respect to (U, b),
z and (µ,Σ, β), i.e., we generate a sequence (U (r), b(r), µ(r),Σ(r), β(r))r by iteration

U (r) ∈ argmin
U∈St(d,n)

N∑
i=1

αi

( 1

2σ2
∥(UUT − I)(xi − b(r−1))∥2 + η∥UT(xi − b(r−1))− z

(r−1)
i ∥2

)
,

(5.4.7)

b(r) ∈ argmin
b∈Rn

N∑
i=1

αi

( 1

2σ2
∥(U (r)(U (r))T − I)(xi − b)∥2 + η∥(U (r))T(xi − b)− z

(r−1)
i ∥2

)
,

(5.4.8)

z(r) ∈ argmin
z=(z1,...,zN )∈Rd,N

N∑
i=1

αi

(
η∥(U (r))T(xi − b(r))− zi∥2 − log(q(zi|µ(r−1),Σ(r−1), β(r−1)))

)
(5.4.9)

and finally

(µ(r),Σ(r), β(r)) ∈ argmax
µ∈Rd,Σ∈SPD(d),β>0

N∑
i=1

αi log(q(z
(r)
i |µ,Σ, β)) (5.4.10)

The final step (5.4.10) is the weighted maximum likelihood estimation of the
generalized Gaussian distribution q, which was discussed in the previous section.
It remains to solve the first three steps.

Solving (5.4.7) by Uzawas’ Algorithm. Using that for any y ∈ Rn and U ∈
St(d, n) it holds that

∥(UUT − I)y∥2 = yT(UUT − I)2y = yT(UUTUUT − 2UUT + I)y = yT(UUT − 2UUT + I)y

(5.4.11)

= yT(I − UUT)y = ∥y∥2 − ∥UTy∥2, (5.4.12)

the optimization problem in (5.4.7) reads as

argmin
U∈St(d,n)

N∑
i=1

αi

(
− 1

2σ2
∥UT(xi − b)∥2 + η∥UT(xi − b)− zi∥2

)
Now, we transform the problem in an unconstrained problem by considering the
Lagrangian function

L(U,Λ) =
N∑
i=1

αi

(
− 1

2σ2
∥UT(xi − b)∥2 + η∥UT(xi − b)− zi∥2

)
+ tr(Λ(UTU − I)).
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Then, the solution of (5.4.7) is equivalent to solving the saddle-point problem

argmin
U∈Rn,d

max
Λ∈Rd,d

L(U,Λ).

To solve this saddle-point problem, we use the Uzawas’ algorithm [7], which consists
of the following two steps: First, we minimize L with respect to U . Second, we
perform a gradient ascent step with respect to Λ.

The second step is given by

Λ(r+1) = Λ(r) + ρ((U (r+1))TU (r+1) − I)

In the case of our specific Lagrangian L, the second step is given by the following
proposition.

Proposition 3. Let Λ be fixed. Then, any minimizer of L(U,Λ) solves the Sylvester
equation

(
(η − 1

2σ2 )
N∑
i=1

αi(xi − b)(xi − b)T
)
U + UΛ = η

N∑
i=1

αi(xi − b)zTi .

?proofname? We aim to minimize the Lagrangian function

L(U,Λ) =
N∑
i=1

αi

(
− 1

2σ2
∥UT(xi − b)∥2 + η∥UT(xi − b)− zi∥2

)
+ tr(Λ(UTU − I)).

for fixed Λ with respect to U by setting the gradient to zero. Since it holds by [73]
that

∂aTUUTb

∂U
= UT(abT + baT) and

∂tr(ΛUTU)

∂U
=
∂tr(ΛUTU)

∂(UTU)

∂UTU)

∂U
= 2ΛTUT,

Thus, it holds that

∇UL(U,Λ) = 2(η − 1
2σ2 )

N∑
i=1

αi(xi − b)(xi − b)TU − 2η
N∑
i=1

αi(xi − b)zTi + 2UΛ.

Setting the gradient to zero, it shows that U is a solution of

(
(η − 1

2σ2 )

N∑
i=1

αi(xi − b)(xi − b)T
)
U + UΛ = η

N∑
i=1

αi(xi − b)zTi .

This finishes the proof.

Solving (5.4.8). Setting the gradient of the objective function to zero leads to
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N∑
i=1

αi

[(
1

2σ2
(
I − UUT

)
+ ηUUT

)
(b− xi)− ηUzi

]
= 0 (5.4.13)

which is equivalent to

b =

∑N
i=1 αixi +

[
1

2σ2

(
I − UUT

)
+ ηUUT

]−1
η
∑N

i=1 αiUzi∑N
i=1 αi

. (5.4.14)

Solving (5.4.9) using a Gradient Descent. Due to the sum-structure of
problem (5.4.9), the solution decouples into

z
(r)
i ∈ argmin

zi∈Rd

η∥(U (r))T(xi−b(r))−zi∥2− log(q(zi|µ(r−1),Σ(r−1), β(r−1))). (5.4.15)

This is now a d-dimensional optimization problem, which (owing to its low
dimension) can be solved efficiently via a gradient descent scheme.

Remark 10 (Differentiability of the objective). In the case of generalized Gaussian
distributions, the function g is given by g(x) = exp(−1

2x
β), which is differentiable

in {0,+∞}. Thus, the objective function in (5.4.15) is differentiable for any zi ̸=
µ(r−1). In the case β ≥ 1, the derivative of g can be continuously extended to 0. In
this case, the objective function in (5.4.15) is differentiable.

The reduction in dimensionality of the PCA-GGMM model reduces the execution
time of the E-step, but the M-step is slower than the GGMM due to its higher
complexity. However, all computations in the M-step are on d-dimensional
optimization problems, and the FP iteration is implemented on d-dimensional data.
This limits the numerical instability problem to estimate the generalized Gaussian
mixture model of the original data using the FP-EM algorithm. Moreover, the
PCA-reduced generalized Gaussian distribution can be generalized to the PCA-
reduced elliptical distribution by combining PCA with the elliptical distribution
En(µ,Σ, g) with the density function q(·|µ,Σ, g). We denote p(·|U, b, µ,Σ, g) as a
probability density function of the PCA-reduced elliptical distribution. By using
the half-quadratic splitting technique, we can apply the iterations (5.4.7), (5.4.8),
(5.4.9) and (5.4.10) with q(·|µ,Σ, g) instead of q(·|µ,Σ, β) to estimate the parameters
of a PCA-reduced elliptical distribution p(·|U, b, µ,Σ, g).

5.4.3 PCA-GGMM model with application in super-resolution

In the PCA-GGMM model, the latent data UT(xi − b) have a d-dimensional
generalized Gaussian mixture distribution with parameters θk = {µk,Σk, βk} for
all k = 1, ...,K. Due to the proposition 4 and the definition of the affine
subspace

{
Ut+ b : t ∈ Rd

}
, the high-dimensional variables x1, ..., xN ∈ Rn have

a generalized Gaussian mixture distribution with parameters θk =
{
µk,Σk, βk

}
for
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all k = 1, ...,K. At each k mixture component of the mixture model, the parameters
are given by:

µk = bk + Ukµk, (5.4.16)

Σk = UkΣkU
T
k , (5.4.17)

βk = βk. (5.4.18)

Proposition 4. An absolutely continuous random vector Y has a n-dimensional
elliptical distribution with parameters µ,Σ and g Y ∼ Ed(µ,Σ, g). Let B be a n× d

matrix, and let b ∈ Rn. Then

b+BY ∼ En(b+Bµ,BΣBT , g). (5.4.19)

?proofname? Lemma 3.1, p. 5 [47].

The PCA-GGMM model can be used for super-resolution based on MMSE
estimator approach as in Section 4.2.2. We can apply the MMSE estimator in
equation (4.2.22) presented in Section 4.2.2 to the generalized Gaussian mixture
model with parameters

{
θk
}

of the high dimensional data. Finally, the high-
resolution image is reconstructed by applying the reconstruction of high-resolution
image step by patch averaging as in 3, Subection 4.1.1.

5.5 Numerical results

In this section, we demonstrate the performance of PCA-GMM model and PCA-
GGMM model with applications in super-resolution by two- and three-dimensional
examples, where we mainly focus on material data which introduced in Chapter 3.

Initialization of the EM algorithms. Since the negative log-likelihood function
is non-convex and admits many critical points, EM algorithms for GMMs are
very sensitive with respect to the initialization. For example this can be seen by
considering the case that θ(r)k = θ

(r)
l , k, l = 1, ...,K for some r ∈ N. Then we obtain

that α(r)
i,k = wk and consequently θ

(r+1)
k = θ

(r+1)
l , k, l = 1, ...,K. The same effect

appears for PCA-GMMs, PCA-GGMMs and HDDC. Consequently the initialization
of the EM algorithms is of great importance. For our numerical examples, we
initialize the GMMs as follows. We set w(0)

k = 1
K , for k = 1, ...,K. For initializing the

means, we choose randomly K distinct data points µ1, ..., µK from our training data
xH,1, ..., xH,N . Finally, we choose for each k = 1, ...,K the M points xL,1, ..., xL,M
from xH,1, ..., xH,N which are the closest ones to µk and initialize the covariances by
Σk = 1

M

∑M
i=1 xL,ix

T
L,i. The number M is chosen according to the dimension n of

the data. In our examples, we use M = 2n.
We initialize the PCA-GMMs, PCA-GGMMs and HDDC by taking the

initialization for GMMs, running one E-Step from the EM algorithm for GMMs
followed by the M-step of the PCA-GMMs, PCA-GGMMs or HDDC, respectively.
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Choice of σ and K. The PCA-GMM model and PCA-GGMM model depend
heavily on the choice of the parameter σ. As pointed out in Subsection 5.3.3.1, this
parameter could be learned from the data. However, the forward model for the low-
resolution images XL = AXH + ε for some (unknown) super-resolution operator A,
the high-resolution image XH and noise ε suggest to choose the σ according to the
standard deviation of the noise ε. Note, that in our experiments, the low-resolution
images are artificially generated by applying a downsampling operator and adding
some noise. Consequently, the standard deviation of ε is known. Nevertheless, if the
noise level is unknown, it could be estimated very accurately from the data based
on homogeneous area detection as done, e.g., in [37, 78].

In practice, it can be unstable to estimate the standard deviation of the
noise within the optimization of the mixture model, since this requires that the
image patches belong exactly (and not only approximately) to a dimensionality
reduced GMM and GGMM with K components, which is an unrealistic assumption.
Therefore, it can be beneficial and quite more accurate to estimate the standard
deviation of the noise a priori. In particular, if the standard deviation of the noise
is known, fixing σ can be the better approach.

Note that the noise with standard deviation σ within the super-resolution model
does not necessarily imply that the eigenvalues of the covariance matrices in the
mixture model are greater than or equal to σ2 (which is assumed for HDDC), since
the noise is only applied to the low-resolution images.

Also the number of components K of the mixture models can have a large impact
on the results. For super-resolution, a detailed comparison of the prediction quality
for different choices ofK was done by Sandeep and Jacob in [75]. They observed that
the benefit of taking more than 100 components in the GMM is usually very small.
Therefore, we take K = 100 components for all mixture model in our numerical
examples.

5.5.1 PCA-GMM model

All implementations in this subsection were done in Python and Tensorflow and they
can be parallelized on a GPU. We run all our experiments on a Lenovo ThinkStation
with Intel i7-8700 6-Core processor with 32GB RAM and NVIDIA GeForce GTX-
2060 Super GPU. The code is available online1.

For the implementation of PALM and iPALM, we use the implementation
framework from [40]2. As suggested in [74] we set the extrapolation factors
γ
(r)
1 = γ

(r)
2 = r−1

r+2 and choose τ (r)1 = 1
L̃1(b(r)

and τ
(r)
2 = 1

L̃2(U(r+1))
, where L̃1(b

(r))

and L̃2(U
(r+1)) are estimates of the Lipschitz constant of ∇UG(·, b(r)) and

∇bG(U
(r+1), ·).

1https://github.com/johertrich/PCA_GMMs
2https://github.com/johertrich/Inertial-Stochastic-PALM

https://github.com/johertrich/PCA_GMMs
https://github.com/johertrich/Inertial-Stochastic-PALM
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Comparison of the computation times. Note that there already exist
implementations of HDDC by some of the authors of [11]. However, to provide a fair
comparison of the execution times, we reimplement the EM algorithm for HDDC in
Python and Tensorflow, such that it supports GPU parallelization. Further, note
that we compute the updates of α, m and C simultaneously to the E-step such
that the corresponding execution time is contained in the E-step, even though the
updates technically belong to the M-step. This has the advantage that we have to
iterate only once over the whole data set and enables a better parallelization. We
implemented this optimization of the order of computation for all of the models
(GMM, PCA-GMM and HDDC) analogously.

2D-Data. For estimating the parameters of the mixture models, we use the upper
left quarter of the image as in the top row of Figure 4.1. As ground truth for the
reconstruction we use the whole images as in the bottom row. The images in the
left and middle columns are the middle slices of the material data "FS" and "SiC
Diamonds". The high resolution images have a size of 2560×2560. The right column
contains the goldhill image, which has the size 512× 512.

We estimate the parameters of a GMM and of our PCA-GMM as described in
the previous sections. First, we fix the parameter σ in Algorithm 2 as the standard
deviation of the noise on the low dimensional image (i.e. σ = 0.02). Second, we
consider the case when σ is learned from the data and finally we compare our
results with HDDC [11]. Each mixture model has K = 100 classes. We use the
magnification factors q ∈ {2, 4} and the patch size τ = 4 for the low resolution
patches. This corresponds to a patch size of qτ = 8 or qτ = 16 respectively for the
high resolution images. For the material images, this leads to N ≈ 400000 patches
for q = 2 and N ≈ 100000 for q = 4. Using the goldhill image, we get N ≈ 15000

patches for q = 2 and N ≈ 3700 patches for q = 4. We reduce the dimension of the
pairs of high and low resolution patches from n = (q2+1)τ2 = 80 or n = (q2+1)τ2 =

272 respectively to d for d ∈ {4, 8, 12, 16, 20}. After estimating the mixture models,
we use the reconstruction method from [75] as described in the previous section
to reconstruct the ground truth from the artificially downsampled images. The
resulting PSNRs are given in Table 5.1. As a reference we also measure the PSNR
of the bicubic interpolation. The average execution times for one E-step and one M-
step are given in Table 5.2. Figure 5.2 shows some small areas of the high resolution
images, low resolution images and the corresponding reconstructions for GMMs and
PCA-GMM with d = 12 and d = 20. The result with d = 12 for PCA-GMM is
already almost as good as GMM, whereas the dimension of the patches was reduced
by a factor between 4 and 22 (depending on the case). Further, we observed that
the dimensionality reduction reduces the execution time of the E-step significantly.
On the other hand, the execution time of the M-step is larger than those in the
GMM for all dimension reduced models due its higher complexity. Comparing the
different dimensionality reduced models, we observe that the PCA-GMM with fixed
σ gives significantly better results than the other models, while HDDC achieves the
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fastest M-step due to the closed-form updates. However, compared to the execution
time of the E-step, this advantage seems to be negligible for large data sets as, e.g.,
the patches from the FS and SiC Diamonds image.

Magnification factor q = 2 Magnification factor q = 4

d FS Diamonds Goldhill FS Diamonds Goldhill
bicubic - 30.57 30.67 28.99 25.27 25.19 24.66
GMM - 35.49 37.21 31.63 30.69 30.74 27.80

PCA-GMM,
σ = 0.02

20 35.44 37.24 31.25 30.75 30.74 27.64
16 35.42 37.22 31.25 30.74 30.62 27.59
12 35.47 37.13 31.18 30.67 30.48 27.55
8 35.32 36.69 31.00 30.46 30.16 27.38
4 34.69 35.23 30.42 29.78 29.24 26.89

PCA-GMM,
learned σ

20 35.22 37.06 31.27 30.43 30.51 27.66
16 35.14 37.01 31.14 30.34 30.31 27.51
12 34.95 36.54 30.94 30.13 29.84 27.33
8 34.43 35.47 30.54 29.62 29.08 26.88
4 32.74 33.41 29.69 28.51 27.75 26.16

HDDC [11]

20 35.35 37.12 31.35 30.54 30.63 27.73
16 35.31 37.10 31.25 30.47 30.48 27.62
12 35.24 36.64 31.08 30.27 30.08 27.40
8 34.76 35.66 30.76 29.80 29.34 27.00
4 33.46 33.86 29.93 28.61 27.99 26.37

?tablename? 5.1: PSNRs of the reconstructions of artificially downsampled 2D
images using either bicubic interpolation, a GMM, PCA-GMM for different choices
of d or HDDC. The magnification factor is set to q ∈ {2, 4}. PCA-GMM produces
results almost as good as GMM, with a much lower dimensionality.

Figure 5.3 shows a histogram of the eigenvalues of the covariance matrices Σk,
k = 1, ...,K of the PCA-GMM model with fixed σ = 0.02 for the FS and SiC
Diamonds image with magnification q = 4. We observe, that for the SiC Diamonds
image a significant amount of eigenvalues are smaller than σ2 = 4 ·10−4 which is not
possible within a HDDC model [11]. For the FS image, the eigenvalues are mostly
greater than σ2.

3D-Data. In the following, we present the same experiments as in the 2D-case
but with 3D-data. For this experiment, we crop a 600 × 600 × 600 image from
the material images "FS" and "SiC Diamonds". For the estimation of the mixture
model, we use the upper front left 300 × 300 × 300 part of the images and crop
randomly N = 1000000 patches.

Again, we estimate the parameters of a GMM and a PCA-GMM with K = 100

classes and fixed σ = 0.02 as described in the previous sections. Since we have seen
in the 2D examples that the results of PCA-GMMs with learned σ and HDDC are
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Magnification factor q = 2, i.e. dimension n = 80

FS, N = 405769 Diamonds, N = 405769 Goldhill, N = 15625
d E-step M-step E-step M-step E-step M-step

GMM - 10.91 0.06 10.91 0.06 0.44 0.06

PCA-GMM,
σ = 0.02

20 7.25 0.74 7.42 0.57 0.28 0.54
12 6.58 0.59 6.53 0.51 0.25 0.46
4 6.18 0.56 6.17 0.52 0.24 0.48

PCA-GMM,
learned σ

20 7.28 0.54 7.41 0.54 0.28 0.54
12 6.59 0.47 6.53 0.45 0.25 0.47
4 6.20 0.47 6.17 0.44 0.24 0.51

HDDC [11]
20 7.27 0.27 7.44 0.27 0.28 0.26
12 6.64 0.26 6.64 0.26 0.25 0.26
4 6.27 0.27 6.23 0.26 0.24 0.26

Magnification factor q = 4, i.e. dimension n = 272

FS, N = 100489 Diamonds, N = 100489 Goldhill, N = 3721
d E-step M-step E-step M-step E-step M-step

GMM - 17.15 0.06 17.11 0.06 0.90 0.06

PCA-GMM,
σ = 0.02

20 8.65 3.54 8.68 2.03 0.44 1.83
12 8.17 2.73 8.15 1.99 0.42 1.75
4 7.95 2.10 7.94 2.49 0.41 1.91

PCA-GMM,
learned σ

20 8.65 1.92 8.70 1.83 0.44 1.87
12 8.17 1.99 8.17 1.74 0.42 1.74
4 7.94 2.17 7.93 1.76 0.41 1.72

HDDC [11]
20 8.65 1.53 8.71 1.54 0.44 1.52
12 8.16 1.54 8.14 1.53 0.42 1.52
4 7.95 1.54 7.96 1.54 0.41 1.52

?tablename? 5.2: Average execution time (in seconds) for the E-step and M-step
in the EM algorithm for estimating the parameters of the mixture models.
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?figurename? 5.2: Reconstructions of 2D low resolution images. The columns
from left to right correspond to the following materials images: Diamond with q =
2, Diamond with q = 4, FS with q = 2, FS with q = 4. First row: ground
truth, second row: low resolution, third row: reconstruction with GMM, fourth
row: reconstruction with PCA-GMM and d = 20, fifth row: reconstruction with
PCA-GMM and d = 12. The larger of d, the closer is the result of PCA-GMM to
GMM.
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(a) (b)

?figurename? 5.3: Histograms of the eigenvalues of Σk, k = 1, ...,K for the PCA-
GMM with fixed σ = 0.02 for d = 20. a)FS with magnification q = 4, b) SiC
Diamonds with magnification q = 4

similar, we compare our 3D results just with HDDC. As magnification factor, we use
q = 2. For the low resolution image we use τ×τ×τ -patches with patch size τ = 4 and
for the high resolution image we use a patch size of qτ = 8. We reduce the dimension
of the pairs of high and low resolution patches from n = (q3 + 1)τ3 = 576 to d for
d ∈ {20, 40, 60}. After estimating the mixture models, we use the reconstruction
method from [75] as described in the previous paragraph to reconstruct the ground
truth from of the artificially downsampled images. The resulting PSNRs are given
in Table 5.3 and the average execution times of one E-step and one M-step are given
in Table 5.4. As a reference we also measure the PSNR of the nearest neighbor
interpolation.

d FS Diamonds
Nearest neighbor - 30.10 26.25

GMM - 33.32 30.71

PCA-GMM,
σ = 0.02

60 33.38 30.83
40 33.36 30.75
20 33.25 30.17

HDDC [11]
60 33.23 30.49
40 33.24 30.29
20 33.02 29.47

?tablename? 5.3: PSNRs of the reconstructions of artificially downsampled 3D
images using either nearest neighbor interpolation, GMM or PCA-GMM for different
choices of d. The magnification factor is set to q = 2. As in the 2D case, PCA-
GMM with small d produces results almost as good as GMM, but with a much lower
dimensionality.
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FS Diamonds
d E-step M-step E-step M-step

GMM - 717.91 0.07 718.13 0.07

PCA-GMM,
σ = 0.02

60 338.22 12.29 337.44 17.49
40 327.34 9.73 324.93 13.87
20 320.00 7.85 319.46 9.80

HDDC [11]
60 337.29 4.15 337.42 4.16
40 327.11 4.19 324.95 4.15
20 320.03 4.20 319.07 4.15

?tablename? 5.4: Average execution time (in seconds) of the E-step and M-step
in the EM algorithm for estimating the parameters of the mixture models.

5.5.2 PCA-GGMM

In the second subsection, we focus on the dimensionality reduction task with our
PCA-GGMM model for application in super-resolution. We compare our model
with the PCA-GMM [41] on 2D artificially images as in the subsection 4.2.3 and
the two- and three-dimensional material images: FS", "SiC Diamonds" with the
zooming ratio q = 2, 4.

As in the previous experiments with MMSE-GGMM, we use the patch size τ = 4

for the low resolution and qτ = 8 (or qτ = 16) for high resolution images. For the
material images with size 2500 × 2500 of HR, this leads to N ≈ 400000 patches
for q = 2 and N ≈ 100000 patches for q = 4. These patches will be used for the
training step of the PCA-GGMM model. In this step, we use K = 100 components
for the mixture model. Each training patch V of size D = τ2

(
q2 + 1

)
= 80 or

D = τ2
(
q2 + 1

)
= 272 is reduced to d low dimensional for d ∈ {4, 8, 12, 16, 20}.

The PSNR values in Tables 5.5, 5.6 and 5.7 demonstrate that our PCA-GGMM
model produces results almost as good as MMSE-GGMM and even slightly better
than MMSE-GMM.

For the 3D material data, we crop a 600 × 600 × 600 image from the material
images FS and SiC Diamonds. Training data are taken from the upper left part of
the 3D image 300 × 300 × 300. We use the magnification factor q = 2, the low-
resolution patch size τ = 4, and the high-resolution patch size qτ = 8. Thus, the
dimension of the pair high and low resolution patches is D = τ3

(
q3 + 1

)
= 576.

These high-dimensional data are reduced to d for d ∈ {20, 40, 60} in the PCA-
GGMM model. Table 5.8 shows the PSNR values of the MMSE method for the
GMM, LMM, GGMM model and the PCA-GMM, PCA-GGMM model.

5.6 Conclusion

In this chapter, we presented two new algorithms to perform image super-resolution.
In the first contribution, we added a dimensionality reduction step within the
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d Hill Camera Barbara FS Diamonds
MMSE-GMM 80 31.60 32.75 25.27 35.48 37.23
MMSE-LMM 80 31.69 32.82 25.31 35.53 37.34

MMSE-GGMM 80 31.70 32.86 25.33 35.57 37.39

PCA-GMM

20 31.59 32.69 25.26 35.45 36.22
16 31.46 32.61 25.23 35.43 36.20
12 31.23 32.58 25.11 35.46 36.15
8 30.83 32.36 24.82 35.29 36.67
4 30.71 32.19 24.75 34.71 35.41

PCA-LMM

20 31.61 32.72 25.29 35.51 37.32
16 31.60 32.64 25.28 35.49 37.29
12 31.49 32.61 25.20 35.48 37.23
8 31.09 32.46 25.02 35.36 36.88
4 30.80 32.32 24.93 34.85 35.57

PCA-GGMM

20 31.63 32.74 25.30 35.56 37.38
16 31.60 32.70 25.28 35.52 37.35
12 31.54 32.65 25.25 35.50 37.30
8 31.18 32.53 25.11 35.41 36.97
4 31.02 32.40 24.94 34.97 35.71

?tablename? 5.5: PSNRs of the reconstructions of 2D images using MMSE method
with GMM, LMM and GGMM (with learned shape parameter β) models, and the
PCA with PCA-GMM, PCA-LMM, PCA-GGMM. The magnification factor is set
to q = 2.

d GMM LMM GGMM

FS

MMSE 33.09 33.32 33.35

PCA

20 33.03 33.25 33.29
16 32.99 33.21 33.25
12 32.86 33.17 33.20
8 32.41 32.68 32.91
4 32.10 32.43 32.44

Diamonds

MMSE 28.00 28.07 28.08

PCA

20 27.99 28.02 28.05
16 27.98 28.00 28.02
12 27.85 27.91 27.94
8 27.67 27.70 27.70
4 27.14 27.21 27.23

?tablename? 5.6: PSNRs of the reconstructions of real material 2D image for
magnification factor is set to q = 2 using MMSE method with GMM, LMM and
GGMM (with learned shape parameter β) models, and the PCA with PCA-GMM,
PCA-LMM, PCA-GGMM.
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d Hill Camera Barbara FS Diamonds
MMSE-GMM - 27.15 26.19 23.64 30.72 30.74
MMSE-LMM - 27.16 26.21 23.67 30.76 30.79

MMSE-GGMM - 27.18 26.23 23.72 30.83 30.81

PCA-GMM

20 26.89 26.15 23.47 30.73 30.73
16 26.81 26.07 23.32 30.71 30.61
12 26.73 25.96 23.27 30.68 30.46
8 26.41 25.69 23.01 30.47 30.18
4 26.22 25.19 22.86 29.80 29.23

PCA-LMM

20 27.14 26.18 23.50 30.74 30.76
16 27.05 26.12 23.41 30.71 30.68
12 26.84 26.03 23.29 30.70 30.53
8 26.60 25.87 23.12 30.52 30.24
4 26.46 25.34 22.94 29.84 29.41

PCA-GGMM

20 27.15 26.20 23.65 30.81 30.78
16 27.01 26.14 23.58 30.78 30.73
12 26.83 26.03 23.43 30.74 30.59
8 26.71 25.89 23.21 30.59 30.30
4 26.57 25.40 23.02 29.93 29.48

?tablename? 5.7: PSNRs of the reconstructions of 2D images for magnification
factor is set to q = 4 using MMSE method with GMM, LMM and GGMM (with
learned shape parameter β) models, and the PCA with PCA-GMM, PCA-LMM,
PCA-GGMM.

d GMM LMM GGMM

FS

MMSE 33.34 33.36 33.41

PCA
60 33.28 33.31 33.36
40 33.25 33.27 33.35
20 33.17 33.19 33.23

Diamonds

MMSE 30.68 30.70 30.75

PCA
60 30.63 30.64 30.67
40 30.55 30.57 30.62
20 30.36 30.42 30.48

?tablename? 5.8: PSNRs of the reconstructions of 3D images using MMSE method
and PCA-GGMM with q = 2.
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GMM model using PCA on patches. The new variational model, called PCA-
GMM is of interest on its own, and can be also applied for other tasks. We
solved our PCA-GMM model by an EM algorithm with the usual decreasing
guarantees for the objective if the E-step and M-step can be performed exactly,
see Corollary 1. However, our M-step requires to solve a non-convex constrained
minimization problem. Here we propose to use the PALM algorithm and prove that
all assumptions for the convergence of the sequence of iterates to a critical point
required by [9] are fulfilled, see Corollary 2. Our algorithm has the advantage that
the M-step is cheap in relation to the E-step since it does not rely on the large
numbers of samples in the inner iterations. We have demonstrated the efficiency
of the new model by numerical examples, in the case of 2D and 3D images. They
confirm that PCA-GMM is an efficient way of reducing the dimension of the patches,
while keeping almost the same quality of the results than with a GMM algorithm.
This dimensionality reduction is of the utmost importance when dealing with 3D
images, where the size of the data gets very large.

The second contribution of this chapter, called PCA-GGMM, incorporates the
PCA model with the GGMM model on the low-dimensional data. Experiments
with 2D, 3D synthetic, and real material images demonstrated the effectiveness of
the PCA-GGMM models. They showed that our model gives a similar quality for
the results as MMSE-GGMM and is better than the PCA-GMM model of [41].
Furthermore, our method, which estimates the parameters of the PCA-reduced
generalized model, could be extended to the case of elliptical distributions such
as the Student-t distribution or any other one.

In recent years, many deep learning (DL)-based SISR methods have enabled
many advances in super-resolution topic. We are aware of the effectiveness of
deep learning approaches for super-resolution, e.g. [25, 58, 90, 56]. In the next
chapter, we will consider some deep learning approaches for super-resolution with
high magnification factor and high-dimensional data.
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This chapter focuses on the SR method for the contrast change problem of the
material image in a framework of generative adversarial networks (GANs), which
has made many breakthroughs in image processing recently.

In particular, Sections 6.1, 6.2 provide a brief overview of the tools used. A
presentation of convolutional neural networks (CNNs), and particularly of GANs,
is followed by a state-of-the-art on GANs in order to describe more precisely the
framework of this chapter.

Then in Section 6.3, a RDGAN-contrast method is proposed considering a
generator network including two sub-networks in a GAN context. The first generator
sub-network deals with the contrast change problem, and the second one focuses on
the reconstruction of the HR image.

6.1 Convolutional neural network (CNN) for SISR

Recently, convolutional neural network (CNN) based SR methods have achieved
significant improvements. Convolutional neural networks are a particular class of
neural network designed for image processing. The first convolutional network
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was proposed by LeCun et al. in 1989 [55]. The authors successfully applied
backpropagation to train the convolution kernel coefficients to identify and recognize
patterns within a series of handwritten zip codes. Specifically, the CNN architectures
became popular following the success of the work by Krizhevsky et al. [52].

6.1.1 Convolutional neural network (CNN)

Convolutional neural networks (CNNs) are distinguished from other neural networks
by their superior performance with image, speech, or audio signal inputs. CNNs
allow the relationship between input and output variables to be modeled efficiently
by composing several layers. They have three main types of layers, which are
convolutional layers, pooling layers and fully-connected (FC) layers. In one layer,
each neuron is connected to all neurons in the next layer. The output of the neuron
is defined by a weighted sum of all inputs received from the previous layer. This
weighted sum is then passed through an activation function to produce the output
for the next layer. In this section, we will detail the three main types of layers and
the activation functions.

6.1.1.1 Activation functions

Activation function is a node that is placed at the end or between neural networks.
This function aim to decide whether a neuron’s response would fire or not.This
means that if the output of any individual neuron exceeds a threshold value, that
node will be activated, sending data to the next layer of the network. Otherwise, no
data is transmitted to the next layer. There is a wide variety of different activation
functions that can be used in neural networks. For the CNNs, we mention three
main activation functions: sigmoid function, softmax function and rectified linear
unit (ReLU) function.

Sigmoid function The logistic sigmoid function for x ∈ R is defined by

g(x) =
1

1 + exp (−x)
.

Sigmoid function has a return value in the range 0 to 1 and is differentiable, which
is useful when training a network. However, this function becomes bad for a reliable
training neural network because of the problem of gradient degeneration to zero if
the network is too deep. Therefore, the sigmoid function can cause a neural network
to be blocked at training time.

Softmax function The softmax function is known as the normalized exponential
function and can be regarded as a multiclass generalization of the logistic sigmoid
function. The softmax function for a vector x = (x1, x2, ..., xK) ∈ RK is defined
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when K ≥ 1 by the formula

g(xi) =
exp(xi)∑K
j=1 exp(x)

fori = 1, ...,K.

Rectified Linear Unit (ReLU) function ReLU function is the most widely
used activation function in neural networks today. ReLU is simply a max operation
between an input and 0

g(x) = max(0, x).

This function has less vanishing gradient problem than the sigmoid activation
function, since the gradients will not become zero at least in one direction.

6.1.1.2 Convolutional layers

The convolutional network starts with the convolutional layers. These can be
followed by additional convolutional layers or pooling layers, with the fully-
connected layer being the final layer.

Convolutional layer The convolutional layer is the core building block of CNN
and it accounts for the majority of the computation. The main objective of
convolution is to extract features of different complexity from the input image.
The extraction of these features is adapted to the problem considered by learning
the weights of each convolutional layer. It is the automatic learning of weights
that makes convolutional networks very efficient. The objective of these layers is
to search for all the features of the input images by convolutional filtering. Thus,
the resulting feature map can be seen as a filter that indicates where the features of
interest are located in the image.

Let us assume that the input will be a gray image, which is made up of a matrix of
pixels in two-dimensional (2D). This means that the input will have two dimensions
- height, width. The feature detector is a 2D array of weights that represents part
of the image. The filter is then applied to an area of the image, and a dot product
between the filter and the input pixels is calculated. This dot product is then passed
into an output array. The filter then shifts by a stride, repeating the process until
the kernel has scanned the entire image.

Pooling layer The pooling layer is used to reduce the spatial dimensions of the
data by combining the outputs of neuron clusters at one layer into a single neuron
in the next layer. Two types of pooling used are:

• Max pooling: It selects the pixel with the maximum value for each
neighbourhood to send to the output array (Figure 6.1). In this way, it keeps
the strongest features. This approach tends to be used more often compared
to average pooling.
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?figurename? 6.1: Scheme of max pooling

• Average pooling: It calculates the average value in each neighborhood and
sends to the output array (Figure 6.2).

?figurename? 6.2: Scheme of average pooling

Although a lot of information is lost in the pooling layer, it reduces complexity,
improves efficiency and reduces the risk of overfitting.

Fully-connected (FC) layer Fully connected layers connect every neuron in one
layer to every neuron in another layer. This layer performs the classification task
based on the features extracted by the previous layers and their different filters.

While convolutional and pooling layers tend to use ReLU functions, FC layers
usually use the softmax activation function to calculate the probability distribution
from 0 to 1.

6.1.2 Super-resolution CNN method (SRCNN) [24, 25]

In this section, we mainly discuss the network architecture of super-resolution CNN
(SRCNN), which was proposed by C.Dong et al. [24, 25]. SRCNN has three main
parts: patch extraction and representation, non-linear mapping, and reconstruction,
as shown in Figure 6.3. The input of this network is a bicubic-interpolated image,
which is upscaled from the low-resolution image and has the same resolution of
the high-resolution image. We denote the bicubic-interpolated image as XL and
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the ground truth high-resolution image as XH . The bicubic-interpolated image is
convolved by learned non-linear filters in different layers, merged to reconstruct the
high-resolution image.

?figurename? 6.3: Sketch of the SRCNN architecture [24].

Patch extraction and representation This step extracts the overlapping
patches from the interpolated image XL and represents each patch as a high-
dimensional vector. The first layer performs a standard convolution with a ReLU
activation function on the filter responses and is expressed as an operation F1.:

F1(XL) = max(0,W1 ∗XL +B1) (6.1.1)

where W1 and B1 represent the filters and biases, respectively, and ∗ denotes the
convolution operation. Here, W1 corresponds to n1 filters of support c × f1 × f1,
where c is the number of channels in the input image, f1 is the spatial size of a
filter. B1 is an n1-dimensional vector, each element of which is associated with a
filter. Intuitively, W1 applies n1 convolutions on the image, then combines with
the n1-dimensional bias vector B1 to increase degrees of freedom by 1. Finally, the
output is composed of n1 feature maps and will be passed to the second step.

Non-linear mapping The purpose of this step is to increase the resolution of
each patch to obtain a high-resolution patch. In the second operation, we map each
of the n1-dimensional vectors from the first layer to a n2-dimensional one. The
operation of the second layer is as follows:

F2(XL) = max(0,W2 ∗ F1(XL) +B2). (6.1.2)

W2 contains n2 filters of size n1 × f2 × f2, and B2 is n2-dimensional bias vector.
Each n2-dimensional output vector is a representation of a HR patch that will be
used for the reconstruction step.
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Reconstruction The reconstruction step aggregates all HR patches to restore the
HR image by using the following convolutional layer

F3(XL) = max(0,W3 ∗ F2(XL) +B3). (6.1.3)

W3 and B3 here correspond to c filters of size n2 × f3 × f3 and c-dimensional bias
vector, respectively. This layer therefore reconstructs the HR image by analogy with
the weighted average for high-resolution patches.

Although the three operations of the SRCNN architecture are motivated by
different objectives, they all lead to the same form of convolutional layer with
a ReLU activation function. In this model, all filter weights and biases Θ =

{W1,W2,W3, B1, B2, B3} are learned by minimizing an objective function related to
the mean squared error (MSE) between the HR training image and the corresponding
reconstructed HR image:

L(Θ) =
1

n

n∑
i=1

∥F3(XL,i)−XH,i∥2 , (6.1.4)

where XL,i, XH,i are given LR images and HR images for i = 1, ..., n training
samples. The formulation of SRCNN is relatively simple and is superior to
concurrent traditional methods.

6.2 Generative Adversarial Neural Network (GAN)

6.2.1 Generative adversarial neural network

Generative Adversarial Network (GANs ) is a class of unsupervised learning
algorithms, introduced by Goodfellow et al [35] in 2014. In general, a GAN is
a generative model in which two networks are put in competition, as shown in
Figure 6.4. A generator model for generating new examples, and a discriminator
model for classifying whether the generated examples are real, or fake, generated by
the generator model. Two neural networks compete in a zero-sum game where one
agent gains while the other loses.

Generator The generator (G) learns to generate plausible data. The input of
this network is a random sample, and the output is a generated sample which will
be used in the discriminator network. The objective of the generator is to fool the
discriminator network into thinking that the generated sample is real.

Discriminator The discriminator (D) learns to distinguish the fake data of the
generator from the real data. This network is a basic classification network that
returns the probability that the input sample belongs to the database (that it is
real). Ideally, we consider a sample y. D(y) = 1 if y belongs to the database and
D(y) = 0 if y is a generated sample.
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?figurename? 6.4: Sketch of the GAN architecture [35].

Loss function To define the generator G and discriminator D, we assume that x
is ground truth data and that z is observed data. The objective of D is to properly
classify the real and generated data, this amounts to maximizing equation

max
D

log(D(x)) + log(1−D(G(z))). (6.2.1)

At the same time, the objective of G is to deceive the discriminator, that is, G
is trained to minimize the probability that the discriminator makes the correct
prediction for a generated data set, so we wantD(G(z)) = 1. This amounts to having
to minimize log(1−D(G(z))) with respect to the parameters of G. Therefore, D and
G play the following two-player minimax game with the value function V (G,D):

min
G

max
D

V (G,D) = min
G

max
D

Ex[logD(x)] + Ez[log(1−D(G(z)))]. (6.2.2)

The optimization of the weights of the generator θG and the discriminator θD
is carried out in an alternative way, optimizing in D and then in G from
equation (6.2.2) as in Algorithm 4 [35]. In this algorithm, the parameters are
updated using the stochastic gradient descent method with their stochastic gradient:

∇θG

1

m

m∑
i=1

log(1−D(G(z(i)))) =
1

m

m∑
i=1

[
− 1

1−D(G(z(i)))
D′(G(z(i)))∇G(z(i))

]
,

(6.2.3)

∇θD

1

m

m∑
i=1

[
logD(x(i)) + log(1−D(G(z(i))))

]
=

1

m

m∑
i=1

[
1

D(x(i))
∇D(x(i))− 1

1−D(G(z(i)))
∇D(G(z(i)))

]
, (6.2.4)
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where {z(1), . . . , z(m)} are the observed samples and {x(1), . . . , x(m)} are real
examples.

Algorithm 4 Minibatch stochastic gradient descent training of generative
adversarial nets [35]

Input: noise samples {z(1), . . . , z(m)} and examples {x(1), . . . , x(m)}
for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).

• Sample minibatch of m examples {x(1), . . . , x(m)} from data generating
distribution pdata(x).

• Update the discriminator by ascending its stochastic gradient:

∇θD

1

m

m∑
i=1

[
logD(x(i)) + log(1−D(G(z(i))))

]
.

end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).

• Update the generator by descending its stochastic gradient:

∇θG

1

m

m∑
i=1

log(1−D(G(z(i)))).

end for

In practice, the hyperparameter k is chosen equal to 1 and the Stochastic
Gradient Descent SGD step is done using the ADAptive Moment estimation
(ADAM) algorithm [51]. ADAM algorithm is an adaptive stochastic gradient descent
optimization algorithm specifically designed for training deep neural networks. It
is an algorithm in which the gradient used in each iteration is updated from the
previous one using a moment-based technique.

6.2.2 SRGAN method [56]

For the super-resolution task, Ledig et al. [56] pioneered a super-resolution method
using GAN. This method is called SRGAN. The core concept of GAN is retained
in SRGAN, i.e. the generator G generates a estimated HR image (conditionally for
certain LR images) and the discriminant operator classifies it as a ground truth HR
image or fake HR image.

6.2.2.1 SRGAN Architecture

In order to obtain generator G and the discriminator D, the authors use a GAN
architecture (as shown in Figure 6.5) for the generator and a classification network
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combining dense and convolutional layers for the discriminator.

?figurename? 6.5: Architecture of the GAN [56] with the corresponding kernel
size k, the number of feature maps n and the stride s indicated for each convolution
layer.

Generator Architecture The generator architecture contains B residual blocks
with 16 identical layouts, created by a residual neural network (ResNet). Specifically,
within the residual block, two convolutional layers are used, with small 3×3
kernels and 64 feature maps followed by batch-normalization (BN) layers [48] and
ParametricReLU (PReLU) [38] as the activation function. The PReLU adaptively
learns rectifier parameters and improves accuracy with negligible computational
cost. Then, the LR image is up-resolution using two trained sub-pixel convolutional
layers [76]. Finally, the output of the generator architecture is passed into the
discriminator.

Discriminator Architecture The task of the discriminator is to discriminate
between real HR images and generated SR images. This architecture contains 8

convolutional layers with an increasing number of 3× 3 filter kernels, increasing by
a factor of 2 from 64 to 512 kernels. In this network, the LeakyReLU activation
function is used. To reduce the resolution of the image for distinguishing step, we
use the strided convolutions each time the number of features is doubled. Then
two dense layers with a ReLU function are used in between. Finally, a sigmoid
activation function is added at the end of the network to obtain a probability for
sample classification.

6.2.2.2 Loss function

The SRGAN uses the perpetual loss function lSR for the generator network. The
perceptual term is motivated by the fact that a perceptual loss function gives visually
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better results than a loss function in pixel space. The authors then propose the
loss function, which is the weighted sum of two loss components: content loss and
adversarial loss.

lSR = lSRX + 10−3lSRGen, (6.2.5)

where lSRX is a content loss and lSRGen is a adversarial loss.

Content loss Let the LR image XL that serves as input to the generator network
G and the reference image XH , the content loss function is a VGG loss based on
the ReLU activation function of the pre-trained 19-layer VGG network [77].

lSRV GG/i,j =
1

Wi,jHi,j

Wi,j∑
m=1

Hi,j∑
n=1

[ϕi,j(XH)m,n − ϕi,j(G(XL))m,n]
2 (6.2.6)

Wi,j and Hi,j correspond to the size of the image at the output of the layer ϕi,j .

Adversarial loss The adversarial loss is the loss function that forces the generator
to an image more similar to HR image by using the trained discriminator network
to differentiate realistic images from unrealistic ones. This loss function is expressed
as

lSRGen =
N∑

n=1

− log(D(G(XL))) (6.2.7)

where N corresponds to the batch size.

6.3 Contribution: Residual dense GAN (RDGAN)
network for contrast change problem of super-
resolution

The problem of changing contrast is one of the important challenges of SR for
materials images. In the case where the transformation between LR and HR
image is an affine transformation, we can estimate the contrast change parameters
of this transformation as described in Chapter 3. Moreover, in Chapter 4 we
proposed an SR method, the MMSE-GGMM method, which is invariant under affine
transformations of the observation. However, we are not sure that the change of
contrast is always characterized by a simple affine transformation. It would be
interesting to show some examples of non-affine transformations. To deal with the
non-affine transformation, we propose an SR method based on GAN considering a
bi-generator network that includes two generator sub-networks. The first generator
deals with the contrast change problem, and the second is to reconstruct the high
frequencies. The architecture can be summarized as in Figure 6.6:
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?figurename? 6.6: Scheme of the proposed architecture, where XH is the HR
image, XL the LR image, X̃L the LR image with the good contrast and X̂H the SR
image.

6.3.1 Generator

6.3.1.1 First generator G1

In the SR training step for material images, we have a data set of HR and LR pair
images, which have different contrast and brightness. The first generator of our
GAN network aims to transfer the contrast of the LR image XL to a contrast as
good as the HR image XH . It means, it will be necessary to associate each pixel of
LR image with the pixels of the HR image of which it is closest in terms of distance.
To do this, we will use optimal transport for the LR image and downsampling of
the HR image so that its resolution is equal to the resolution of the LR image.
We denote the downsampling of the HR image as ↓ XH . The way to achieve the
optimal overall cost is to change the range of the LR image to be the same as the
HR image. Therefore, we minimize the distance between the sorted value in pixels
of two images XL and ↓ XH . The first loss function corresponding to G1 is:

L(G1) =

N∑
n=1

||sort(↓ XH)− sort(X̃L)||1 (6.3.1)

6.3.1.2 Second generator G2

The second generator sub-network takes care of the high frequency reconstruction
and returns the final HR image X̂H . As the goal of SR for materials images is to
understand textures and interfaces in materials, we consider that the SR approach
focuses on the image geometry. To enhance the geometric reconstruction of the
images, we propose to consider a regularization term in the generator loss function.
This term was initially proposed by Ballester et al. [8] in a variational framework.
We then use the loss function, which is proposed by Gastineau et al. [30], for this sub-
network with three terms of the loss function such as adversarial loss, content loss,
and geometric loss. The loss function for the second sub-network G2 is expressed as
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follows:

L(G2) =
N∑

n=1

−log(D(X̂H)) + αl1||X̂H −XH ||1 + αg

∑
x∈Ω

|⟨∇XH(x)⊥,∇X̂H(x)⟩|

(6.3.2)
where N corresponds to the batch size, ∇(·) is the gradient, ⊥ the orthogonal
vector, Ω the image domain, and αL1 , αg are the content weight and the geometric
weight respectively. The first term is the adversarial loss that is associated with
the discriminator. The second term is the l1 norm between the target and the
reconstructed image. This third term forces the alignment of the gradient of
the reconstructed image with the gradient of the target image. This allows the
geometry of the reference image to be transferred to that of the one we are trying
to reconstruct. Then the scalar product is used for the orthogonal gradient vector
of the target image and the gradient vector of the reconstructed image at any point
in the image domain. Indeed, a zero scalar product indicates that the vectors are
collinear and therefore the direction of the gradients is preserved.

6.3.1.3 Architecture of generator

First generator The architecture of the first generator, presented in Figure 6.7,
is composed of two convolutional layers and RBi, i = 1, · · · , p residual blocks.

?figurename? 6.7: Architecture of the the first generator, where blocks RBi, i =
1, · · · , p, are p residual blocks, k is the kernel size, n the number of filters and s the
stride of the convolutional layers.

The architecture starts with a convolutional layer with 32 3× 3 filter kernels, 1
stride, and ReLU activation function. This is followed by p residual blocks RBi as in
Figure 6.8. In each residual block, we use 3 convolutional layers with an increasing
number of 3× 3 filter kernels from 32 to 128, stride 1, and ReLU as the activation
function. This block is terminated by a convolutional layer with 32 1×1 filter kernel,
stride 1. The idea of the residual network is that each layer of the neural network
is only responsible for fine-tuning the output of a previous layer by simply adding
the residual learned at the previous layer to the input of that layer.
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?figurename? 6.8: Architecture of each residual block RBi, i = 1, · · · p.

Finally, the architecture of our first generator is completed with a convolution
layer with one 1× 1 filter kernel and stride 1.

Second generator We consider the same architecture as in the RDGAN method
[30], a residual dense architecture as in Figure 6.9.

?figurename? 6.9: Architecture of the second generator, where blocks Bi, i =
1, · · · , p, are p residual dense blocks, k is the kernel size, n the number of filters and
s the stride of the convolutional layers. Arrows represent the dense connections and
the ⊕ residual connection.

The architecture starts with a convolutional layer with 32 3 × 3 filter kernels
and a ReLU activation function. This is followed by p residual dense blocks Bi, i =

1, · · · p, which retain the advantages of Densenet [46] and residual [39] architectures.
Thus, this architecture can avoid the problem of vanishing gradients that is often
encountered during the training step. Each residual dense block is composed of
four convolutional layers. In each block, the input to the lth layer consists of the
feature maps of all previous layers. It means that if we note Hl the non-linear
transformation given by layer l of the network and xl the output of this layer, the
lth layer receives the feature maps of all the previous layers, x0, x− 1, · · · , xl−1, as
input:

xl = Hl([x0, x1, · · · , xl−1]) (6.3.3)

where [·] represents the concatenation, and [x0, x − 1, · · · , xl−1] refers to the
concatenation of the feature-maps produced in layers 0, · · · , l − 1.
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?figurename? 6.10: Architecture of the Dense network. A 5-layer dense block with
a growth rate of k = 4. Each layer takes all preceding feature-maps as input.

In addition, each of these blocks consists of a residual connection. This
connection is represented by adding the input of each block with the output of the
last layer. Therefore, the input information for each block is transmitted without
modification.

After extracting the features in the LR space, we up-sample these features into
the HR space by using the sub-pixel convolutional layer as proposed by Shi et al. [76].
Finally, the architecture of our second generator is completed with one convolution
layer with one 1× 1 filter kernel and stride 1 as in the first generator.

6.3.2 Discriminator

Loss function For the discriminator, we maximize the loss function as follows:

L(D) =
N∑

n=1

log(1−D(G(XL))) + log(D(XH)). (6.3.4)

Architecture of discriminator We consider the same architecture of the
discriminator network as in the MDSSC-GAN SAM method [31]. The first
convolutional layer of the architecture performs a standard convolution with 32

feature maps, 1 stride, and a ReLU activation function. This is followed by an
architecture containing 6 convolutional layers with an increasing number of 3 × 3

filter kernels, increasing by a factor of 2 from 32 to 1024 kernels. Each layer is
followed by the BN layer and the ReLU activation function with stride 2, except
the last layer with 1 stride. These convolutional layers are used to extract sufficient
features and capture the representation of data in a space. Then, two dense layers
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are used to classify whether the generated image is real or fake as in the SRGAN
architecture.

?figurename? 6.11: Architecture of the discriminator, where k is the kernel size,
n the number of filters and s the stride of the convolutional layers.

6.3.3 Numerical results

Database In this contribution, we implement the RDGAN-contrast method for
our material images: FS and Sic diamonds. Due to the complexity of the network,
we cannot train the network from overlapping patches of size 4×4 as in the MMSE-
GGMM experiment. Therefore, we train the network with a patch size of 64 × 64

for LR patches. This leads to the use of the training database from a 2D image
for training is not sufficient. Fortunately, our 3D image was acquired with several
slices of the 2D image. For instance, we obtain a 3D HR image which has a size
of 1652 × 1652 × 40. This gives us 40 2D HR images of size 1652 × 1652. Then,
for each 2D HR image, we have a corresponding 2D LR image of size 826 × 826.
To generate the database for the training step, we use the upper left quarter of 40
pairs of HR and LR images as in the top row of Figure 4.1. Finally, we extract
the quarter of these HR images into a set of HR patches with patch size 128× 128

without overlapping and LR patches with size 64× 64. Therefore, we can obtain a
training set with 1960 pairs of HR and LR images.

For the test process, we reconstruct the HR image for the entire image with a
pixel size of 1652 × 1652 from one of the 40 2D images that we obtained from the
original 3D image. We again extract this image and the corresponding LR image
into a set of HR patches of size 128× 128 and LR patches of size 64× 64 to feed to
the generator network. Thus, we will apply our network to these 225 pairs of HR
LR images for testing.

Quality evaluation To evaluate the results, we use the Peak Signal to Noise
Ratio (PSNR) value in equation (4.2.27) of two images X and Y . In addition, in
order to compare the geometric similarities of two images X and Y , we consider the
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metric of total variation. The total variation (TV) is given as

TV (X,Y ) =
1

|Ω|
∑
Ω

||∇X −∇Y ||2 =
1

|Ω|
∑
Ω

√
|∇xX −∇xY |2 + |∇yX −∇yY |2,

(6.3.5)
where |Ω| is the number of pixels. The l2 norm

||X − Y ||22 =
1

N2

N∑
i

N∑
j

|Xij − Yij |2. (6.3.6)

The metric of total variation allows us to compare the edges of two images.

Details of implementation The proposed method is implemented with
Tensorflow 1.2 and uses the ADAM algorithm to optimize the weights of the
networks with an initial learning rate of 0.0002 and a momentum of 0.5. Finally,
the batch size is adjusted to 10 for our database. Parameters αg, αl1 are optimized
to get the best balance between all the metrics.

Results We compare the proposed method with some state-of-the-art SR
methods. The SR methods in comparison are the bicubic interpolate method,
MMSE-GGMM method, RDGAN and our proposal RDGAN-contrast method.
For a better comparison, we train both networks on the FS and Sic Diamonds
images, which have a contrast change between the LR and HR images. We
know that the MMSE-GGMM and RDGAN-contrast methods can directly solve
the contrast change problem in the case of an affine transformation and a non-
affine transformation, respectively. But the bicubic and RDGAN methods cannot.
Therefore, to make the comparison fair for the bicubic and RDGAN methods, we
first estimate the contrast change parameters using the estimation method as in
Section 3.2.2 for all pairs of HR and LR images from the training data set. Thus,
we apply the affine transformation within these parameters to the reconstructed HR
images, which were obtained by the bicubic and RDGAN method.

FS Sic Diamond
Quality evaluation PSNR Total variation PSNR Total variation

ideal value max min max min
Bicubic 32.01 0.0168 24.94 0.0299

MMSE-GGMM 33.68 0.0152 27.22 0.0266

RDGAN 33.76 0.0153 27.33 0.0261

RDGAN-Contrast 33.71 0.0151 27.62 0.0259

?tablename? 6.1: Quantitative results obtained on FS and Sic Diamonds images,
the best results are in bold.

Table 6.1 shows the PSNR and the metric total variation values of the
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reconstruction of the FS and Sic Diamonds images using either bicubic interpolation,
MMSE-GGMM, RDGAN, and RDGAN-contrast with magnification factor q = 2.
For the bicubic and RDGAN methods, we first estimate the contrast parameters
from the training data. Then we apply the affine transformation to the recontructed
HR images. In the FS image, the PSNR value of the RDGAN method is slightly
higher than our proposal RDGAN-contrast. Its TV value is lower than that of
RDGAN-contrast. However, both the PSNR and TV values of our RDGAN-contrast
method are superior to the other methods for the Sic Diamond image. This means
that when the contrast transformation is affine, the RDGAN-contrast method can
obtain results similar to those of the MMSE-GGMM and RDGAN methods. But
when the contrast transformation is a non-affine, the RDGAN-contrast is more
efficient than the other methods both in contrast and geometry. This can be seen in
more detail in Figure 6.12. In addition, in the case of FS image, our MMSE-GGMM
method results in only 0.1 dB lower than the RDGAN method. However, for model
learning, the MMSE-GGMM method only needs to extract the database from a 2D
image. As for the RDGAN and RDGAN-contrast methods, they need to use the
overlapping patches from 40 2D images.

6.4 Conclusion

In this chapter, we have studied the deep learning approach for super-resolution. We
present a new SR method based on a residual dense generative adversarial neural
network (RDGAN) with the contrast change problem, called RDGAN-contrast.
To solve the contrast change problem, our method considers two generator sub-
networks. The first sub-network focuses on the contrast change problem and the
second one reconstructs the high frequencies. The results show a visual improvement
with our proposal RDGAN-contrast over the RDGAN method and the MMSE-
GGMM method in the case of non-affine transformation. However, in the case of
the affine transformation, the MMSE-GGMM method should be preferred to the
RDGAN-contrast method.
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(a) FS (b) FS part (c) Sic Diamonds (d) Sic Diamonds part

?figurename? 6.12: Reconstructions of 2D low-resolution images with a
magnification factor q = 2. First row: LR image, second row: ground truth, third
row: reconstruction with Bicubic, fourth row: reconstruction with MMSE-GGMM,
fifth row: reconstruction with RDGAN, sixth row reconstruction with RDGAN-
contrast.
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7.1 Conclusions

In this thesis, we are interested in solving the super-resolution problem for material
images using learning methods.The three main challenges of the SR problem
for material images are the contrast change problem, the problem of undefined
corruption operators, and the high dimensionality of the data. We have proposed
four contributions based on the MMSE estimator for GGMM, the PCA method for
GMM and GGMM, and the GAN method to solve these challenges.

The first proposed method [69] mainly addresses our first dual challenge of
material images by considering the MMSE estimator with the GGMM model.
The results obtained for the FS and Sic Diamonds images have shown that the
MMSE-GGMM method is invariant with the contrast change problem under affine
transformations of the observation. We also proved that our SR method using the
MMSE estimator with the GGMM model improves the results over the GMM model
in both synthetic and material images.

The second contribution introduced a method to deal with the last challenge of
our material images. This is the problem of high dimensionality. Our contribution
[41] combined the GMM model with a reduction in the dimensionality of the data
in each component of the model using the principal component analysis method,
called PCA-GMM. Next, this PCA-GMM model is applied to the super-resolution
of 2D and 3D material images based on the MMSE-GMM method. The numerical
results of this second contribution confirm the gain of the PCA-GGMM method in
reducing the dimension of the patches when we learn the mixture model. In addition,
they maintain almost the same quality of results as with a GMM algorithm for the
super-resolution problem.

Following these second results, our third contribution [70] is an extension of the
second one by focusing on the GGMM model with the PCA method. Due to the
complexity of the GGMM model, it is not easy to consider a GGMM in conjunction
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with PCA in the same way as in the second contribution. This PCA-GGMM takes
advantage of the flexibility of the "Half-Quadratic splitting" technique to tackle
the minimization problem in the M-step of the EM algorithm. Then the PCA-
GGMM model can be used for the super-resolution model based on the MMSE
method for GGMM as in the first contribution. The PCA-GGMM model produces
results almost as good as the MMSE-GGMM model and even slightly better than
the MMSE-GMM model.

Finally, the last proposed method mainly focuses on SR method for material
images with the contrast change problem based on the deep learning approach,
specifically the SRGAN method. Indeed, this contribution considers two generators,
each responding to one of the two problems: contrast change and the super-
resolution task. The results of the RDGAN-contrast method obtained on the
material images are encouraging because we can observe a quantitative gain
confirmed by the visual results in both contrast and texture. However, in the
case of the affine transformation, the RDGAN-contrast method requires a larger
database and is more computationally complex than the MMSE-GGMM method,
but it is slightly better than the MMSE-GGMM method. Thus, if the contrast
change is a non-affine transformation or if we have a large database, we prefer to
use the RDGAN-contrast method. Conversely, if the contrast change is an affine
transformation or if we have little data, the MMSE-GGMM method should be
preferred.

7.2 Perspectives

This thesis provides some proposals for the super-resolution problem with several
challenges to material images. However, some other possibilities remain unexplored
such as the SR method with the elliptical mixture model, the super-resolution
problem with a high magnification factor, and the convergence of the GANs.

A first perspective could be to consider a dimensionality reduction method within
mixture models of elliptical distributions. Indeed, throughout this thesis, we have
been interested in dimensionality reduction methods for the GMM and GGMM
models. The generalized Gaussian distribution is a special case of the elliptical
distribution. Thus, the PCA-GGMM model can be generalized to the PCA-reduced
elliptical mixture model by combining PCA with the elliptical mixture model. Then
the PCA-reduced elliptical mixture model can be used for super-resolution task by
using the MMSE estimator following the same methodology as the MMSE-GGMM
method.

The second perspective would be to study the convergence of the GANs. In the
last contribution, we have proposed an SR method based on GANs for the contrast
change problem. On the other hand, GANs are rather unstable algorithms and
may have difficulty in converging. The reason for these problems is that one of
the networks can overtake the adversarial network. In this case, the less efficient
network will not be able to progress. Thus, the training will become unstable. In
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this thesis, we try to solve this issue by using the residual dense network for the
second generator. Recently, a new method [87] using adaptive weighting for the
discriminator has been developed to solve the convergence problem. The author
has shown that this method successfully remedies the problem of instability and
convergence of GANs. Indeed, our RDGAN-contrast network can be improved by
using the discriminator loss, which consists of two different weighted parts: the real
and the fake terms.

From the material imaging point of view, the magnification factor can be up to
5, 10. As the scale factor increases, some essential details may be lost, which has
a serious impact on the material image. The large scale factor is also one of the
major challenge in the SR community and there is still a lack of effective remedies.
Recently, some methods for super-resolution with large scale factor were proposed
such as StyleGAN [49], PULSE [65] method, and GLEAN [16] method. These
methods significantly improve the restoration quality of large-factor image super-
resolution by using the latent space. These methods have achieved the improvements
in fidelity and more realistic textures than existing methods for SR with a large scale
factor. These contributions open up a very promising direction for image SR with
a high scale factor, especially for material images.
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Abstract:
Recent developments in imaging techniques and computational analysis deeply

modify the way materials sciences. The materials image has moved from microscale
resolution to true nanoscale to analysis the defects and details at the interfaces of
the materials. Thus, this thesis deals with the super-resolution (SR) problem in
order to reconstruct the materials images in the high-resolution for instance the
nanoscale resolution. To reach this goal, this thesis explores several SR approaches
for materials images.

Single Image Super-Resolution (SISR) algorithms based on patch-based have
been noticed and widely used over the past decade. Recently, Generalized Gaussian
Mixture Models (GGMMs) have shown to be a suitable tool for many image
processing problems due to the flexible shape parameter. In the first place, we
propose using a joint GGMM learned from concatenated vectors of high and low
resolution training patches to do super-resolution image based on the minimum
mean square error (MMSE) method.

Unfortunately, the dimension of the concatenated samples is too high for the
learning of the mixture models such as Gaussian mixture model and GGMM. Then
we propose these two models Gaussian mixture model (GMM) and GGMM with
a reduction of the dimensionality of the data in each component of the model by
principal component analysis. These models are called to as PCA-GMM and PCA-
GGMM, respectively. To learn the (low dimensional) parameters of the mixture
model we propose two different EM algorithms whose M-step requires the solution
of constrained optimization problems. Then we apply our PCA-GMM and PCA-
GGMM for the super-resolution of 2D and 3D material images based on the MMSE
method for the GGMM model.

In addition, the study of the material data becomes difficult because the HR
and LR images have a different contrast. In our last contribution, we study a deep
learning approach considering the problem of contrast change in material images.
Indeed, we propose a generative adversarial network (GAN) within two generators,
each responding to a different task. The first generator deals with the problem
of contrast changes, and the second one focuses on the reconstruction of the high
frequencies of the SR.

All the proposed methods lead to convincing results, both quantitative and
visual. Especially the numerical results of the dimensionality reduction methods
confirm a moderate influence of the size reduction on the overall SR results.

Keywords: Image super-resolution, materials science, Gaussian mixture
model, generalized Gaussian mixture model, high-dimensional data, dimensionality
reduction, deep learning, generative adversarial network (GAN).


	List of Acronyms
	Introduction (Français)
	Contexte
	Motivations et objectifs
	Motivation en sciences des matériaux
	Objectifs

	Résumé de nos contributions
	Organisation du manuscrit

	Introduction
	Context
	Motivations and objectives
	Motivation from Materials Sciences
	Objectives

	Summary of our contributions
	Organisation of the manuscript

	Super-resolution for 3D images from materials science
	Super-resolution definition
	Super-resolution for materials data
	Detecting local HR and LR images via Scale-invariant feature transform (SIFT) algorithm
	Modeling contrast change parameters
	Modeling super-resolution operator

	State-of-the-art of Super-resolution method
	Conclusion

	GMM and GGMM for Super-resolution
	State of the art of patch-based approach
	Super-resolution via Joint Mixture Models based on MMSE Sandeep
	Expected patch log-Likelihood (EPLL) method for super-resolution EPLL
	Conclusion

	Contribution: MMSE estimator with generalized Gaussian mixture model for super-resolution MMSE-GGMM
	Parameter Estimation of Mixture Models
	MMSE Estimator for Generalized Gaussian Distributions
	Numerical Results

	Conclusion

	Dimensionality reduction
	Introduction
	State-of-the-art of dimensionality reduced data
	Principal Component Analysis (PCA) PCA
	Probabilistic Principal Component Analysis PPCA PPCA
	Mixture of probabilistic principal component analysers MPPCA
	High-Dimensional Data Clustering (HDDC) BGS2006

	Contribution: Dimensionality-Reduced Gaussian Distribution: PCA-GMM Model Johannes
	PCA-Gaussian mixture model
	Comparison with state-of-the-art of dimensionality reduced data
	Minimization Algorithm
	PCA-GMM model with application in super-resolution

	Contribution: Dimensionality-Reduced Generalized Gaussian Distribution: PCA-GGMM Model PCA-GGMM
	Combining PCA with generalized Gaussian distribution
	Weighted Maximum Likelihood Estimation
	PCA-GGMM model with application in super-resolution

	Numerical results
	PCA-GMM model
	PCA-GGMM

	Conclusion

	A generative adversarial network with contrast change challenge
	Convolutional neural network (CNN) for SISR 
	Convolutional neural network (CNN)
	 Super-resolution CNN method (SRCNN) SRCNN2014, SRCNN2016

	Generative Adversarial Neural Network (GAN)
	Generative adversarial neural network
	SRGAN method SRGAN

	Contribution: Residual dense GAN (RDGAN) network for contrast change problem of super-resolution
	Generator
	Discriminator
	Numerical results

	Conclusion

	Conclusions and perspectives
	Conclusions
	Perspectives
	List of publications

	?bibname?

