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INTRODUCTION

The eyes are one of the most sensitive organs. They are responsible for four-fifths of

all the information that is received by the human brain [Acharya et al., 2008]. Persis-

tent ocular diseases give a high risk of retinal damage which can lead to blindness

[Congdon et al., 2004]. Early detection and timely diagnosis of ocular pathologies are

effective ways to prevent visual impairment. The detection of ocular diseases with the

help of computer-aided diagnosis (CAD) is facilitated by the availability of retinal imaging

modalities such as optical coherence tomography (OCT), optical coherence tomography

angiography (OCTA), fluorescein angiography (FA), and color fundus photography (CFP).

Among these modalities, CFP is the most cost-effective and simple approach for eye

screening.

Diabetic Retinopathy (DR), one of the critical ocular abnormalities, is the primary focus of

this research. DR is the most frequent complication of diabetes that can lead to blindness

[Stitt et al., 2016] [WHO, 2021]. Diabetes Mellitus, commonly known as diabetes, is a

condition when the body can not utilize glucose properly to provide energy. It occurs due

to the lack of insulin produced by the pancreas. Uncontrolled diabetes can cause hyper-

glycemia, too much glucose in the bloodstream, which can cause vital damage to many

of the body systems, like nerves and blood vessels. The number of adult people (aged

20-79 years) having diabetes has grown more than 60% over the past ten years, and it

is estimated to reach 578 million by 2030, and 700 million by 2045 [Saeedi et al., 2019].

DR is a direct result of chronic hyperglycemia that causes damage to retinal capillar-

ies which leads to capillary leakage and blockage [Hollow, 2015]. Approximately one in

three people with diabetes have diabetic retinopathy, and one in ten will develop a vision-

threatening form of the disease. DR affects 80% of patients who have had diabetes for

more than ten years [Kertes et al., 2007]. DR is clinically diagnosed by analyzing the

presence of microaneurysm (MA), hemorrhages (HE), soft exudates (SE), and hard ex-

udates (EX) in color fundus images obtained from eye screening test [Yau et al., 2012].

The risk of vision loss caused by DR is preventable by early treatment, and the first visible

symptom of DR in the CFP test is microaneurysms (MAs).
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On the other hand, the possibility of a patient getting affected by more than one ocular

disease increases the necessity to detect multiple ocular abnormalities from a single CFP.

Considering efficiency, a single high-performance multi-label detection model is essential.

However, one of the main challenges in this multi-label detection is to detect both frequent

and rare ocular abnormalities from only a single CFP since rare ocular abnormalities

are usually ignored in the detection because of the limited availability of training data

[Pachade et al., 2021].

Machine learning and computer vision algorithms have been widely used to build CAD

systems for various applications. The information from the input imaging and/or non-

imaging data are extracted and interpreted to predict the outcome for a given task

[Chan et al., 2020]. However, CAD systems built with machine learning generate more

false positives than physicians and thus led to an increment in assessment time and un-

necessary biopsies. Interestingly, deep learning technology overcomes these problems

with great accuracy [Kim et al., 2019]. Deep learning is a neural network with multiple

layers. It focuses to learn the relevant features needed to predict the output based on

the input. Deep learning architecture consists of the input layer, hidden layer(s), and out-

put layer. Deep learning frameworks are classified depending on the task and the type

of data and they are used in various medical applications such as image classification,

object detection, and image segmentation.

1.1/ OBJECTIVES OF THE THESIS

This research follows two main objectives:

1. To build a model for microaneurysms detection from a single color fundus photog-

raphy.

2. To build a multi-label detection model from a single color fundus photography for

both frequent and rare ocular abnormalities.

1.2/ OUTLINE OF THE PHD THESIS DISSERTATION

The dissertation is written with five Chapters. The introduction and the objectives are de-

scribed in Chapter 1. The clinical and theoretical backgrounds are presented in Chapter

2. Chapter 3 presents the first objective of the thesis, microaneurysms (MAs) detection,

while the second objective, multi-label detection, is presented in Chapter 4. Finally, the

conclusion and perspectives are explained in the last chapter, Chapter 5.
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2

BACKGROUND

This chapter is sub-divided into three sections: Clinical Background - consists of in-

formation about the retina and related diseases, imaging modalities, and the datasets;

Theoretical Background - consists of the underlying methods of this research; Evalua-
tion Metrics - consists of various methods that are used to evaluate the performance of

the proposed methods.

2.1/ CLINICAL BACKGROUND

2.1.1/ HUMAN EYE

Eyes are the most sensitive and delicate organs. Figure 2.1 shows the structure of the

human eye. The human eye consists of six main regions: cornea, aqueous humor, iris,

lens, vitreous humor, and sclera. Other ocular domains include the retina and the choroid

[Acharya et al., 2008].

Figure 2.1: Structure of the human eye [Jogi, 2003].
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The details of each main vision region are listed as follows:

• Cornea — the transparent, ellipsoid, anterior part of the eyeball. The cornea is the

main refracting surface of the eye [Jogi, 2003].

• Aqueous Humor — an optically clear solution of water and electrolytes simi-

lar to tissue fluids except that aqueous humor usually has a low protein content

[Galloway et al., 2016].

• Iris — divides the anterior part of the eye into anterior and posterior chambers. It

contains aqueous humor secreted by the ciliary body [Jogi, 2003].

• Lens — has a thick elastic capsule, which prevents molecules (e.g., proteins) from

moving in or out [Galloway et al., 2016].

• Vitreous Humor — a transparent gel consisting of a three-dimensional network of

collagen fibers with inter-spaces filled with polymerized hyaluronic acid molecules

and water [Galloway et al., 2016].

• Sclera — maintains the shape of the eye and gives attachment to the extraocular

muscles [Jogi, 2003].

• Retina — the layer that converts light rays into electrical signals (transduction) for

transmission to the brain [Galloway et al., 2016].

• Choroid — a highly vascularized structure in the human eye that accounts for 85%

of the total ocular blood flow [Acharya et al., 2008].

The visual image which is produced by the optical system of the eye is received by the

retina. It converts the light ray into an electrical signal, which undergoes initial process-

ing, and then is transmitted through the optic nerve to the visual cortex, where the struc-

tural (form, color, and contrast) and spatial (position, depth, and motion) attributes are

perceived. The fovea (the center of the macula) is responsible for good spatial resolu-

tion (visual acuity) and color vision [Vaughan et al., 1977]. On the other hand, the op-

tic disc is a blind spot in human vision since there are no light-sensitive cells present

[Galloway et al., 2016].

2.1.2/ FUNDUS EXAMINATION

Fundus examination is necessary to diagnose ocular abnormalities

[Vaughan et al., 1977]. It is a routine examination performed by doctors and oph-

thalmologists to have an exclusive inspection of the patient’s eye [Walker et al., 1990].

The fundus is the inside, back surface of the eye which is made up of the retina,
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blood vessels, optic disc, macula, and fovea [Turbert, 2020]. Direct ophthalmoscopy

and indirect ophthalmoscopy are the general types of fundus examination. Direct

ophthalmoscopy corresponds to the hand-held ophthalmoscope that provides a monoc-

ular image, including a 15× magnified view of the fundus. The ophthalmoscope is

held by the ophthalmologist to be close to the patient’s pupil in 2-5 cm approximately

[Vaughan et al., 1977]. In contrast, indirect ophthalmoscopy provides a much clear and

wider field inverted view of the mid-air fundus image. The dilated pupil of an eye is

examined through a mirror with a hole in it. The patient stays at arm’s length from

the observer and the mirror is held close to the observer’s eye [Galloway et al., 2016].

However, clinical information and retinal imaging modalities are highly required to assist

the ophthalmologist in diagnosing and monitoring some ocular abnormalities.

2.1.3/ RETINAL IMAGING MODALITIES

Retinal imaging holds an important role in the diagnosis of eye diseases. There are

multiple retinal imaging modalities that are used by ophthalmologists to diagnose the eye

diseases such as optical coherence tomography (OCT), fluorescein angiography (FA),

color fundus photography (CFP), etc. Each imaging modality provides different features

of the retina.

2.1.3.1/ OPTICAL COHERENCE TOMOGRAPHY (OCT)

Optical Coherence Tomography (OCT) is a non-invasive imaging modality. The OCT

image provides a cross-sectional view of the retina with unprecedented high resolution

and allows detailed structures to be differentiated [Fujimoto et al., 2000]. OCT is used to

examine and measure intraocular structures in three dimensions. It can be performed

through an undilated pupil. Posterior segment OCT enables detailed analysis of the optic

disc, retinal nerve fiber layer, and macula whereas the anterior segment provides high-

resolution images and measurements of the cornea, iris, and intraocular devices and

lenses [Riordan-Eva et al., 2011]. Figure 2.2 shows the layers of normal retina.

OCT serves as vital guidance for surgical interventional procedures. The OCT image

can be used to detect and diagnose some retinal diseases such as glaucoma, macular

edema, macular hole, central serous chorioretinopathy, age-related macular degenera-

tion, epiretinal membranes, optic disc pits, and choroidal tumors [Fujimoto et al., 2000].

However, clinicians should be aware that scans and analyses are not without fault. Poor

ocular media, patient compliance, and even saccadic movement can introduce image

artifacts that can masquerade as pathology.
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Figure 2.2: OCT image of normal retina [Reichel et al., 2015].

2.1.3.2/ OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY (OCTA)

Optical Coherence Tomography Angiography (OCTA) is a non-invasive imaging modality

for the microvasculature of the choroid and retina with depth resolution. The OCTA image

is generated using laser light reflectance of the surface of moving red blood cells to accu-

rately depict vessels through different segmented areas of the eye, thus eliminating the

need for intravascular dyes [Koustenis et al., 2017]. Figure 2.3 shows an OCTA image of

a normal eye with details of microvasculature in the macula.

Figure 2.3: OCTA image of a normal eye [O’Keefe, 2022].

OCTA image provides the blood flow of all the vascular layers of the retina which also

offers the possibility of imaging the radial peripapillary capillary network and the interme-

diate and deep capillary plexuses. OCTA images are used to have disease description

and quantification, research into pathogenesis of disease, and development and evalu-

ation of new treatments. OCTA can be performed much more rapidly than Fluorescein

Angiography (FA). However, OCTA imaging protocols require re-scanning the same reti-

nal position multiple times so it requires higher imaging speeds (A-scan rates) or longer

imaging times than structural OCT [Spaide et al., 2018].
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2.1.3.3/ FLUORESCEIN ANGIOGRAPHY (FA)

Fluorescein Angiography is an eye examination that uses fluorescein dye and a special

camera to examine the circulation of the retina and choroid [Reichel et al., 2015]. Flu-

orescein dye emits green light when stimulated by blue light. It highlights vascular and

anatomic details of the fundus photograph [Riordan-Eva et al., 2011].

(a) Normal fundus (b) Abnormal fundus

Figure 2.4: Fluorescein angiogram images [Vaughan et al., 1977].

In a normal fundus FA image (see Figure 2.4a), the choroidal and retinal circulations are

anatomically separated by a thin, homogeneous monolayer of the pigmented cell (pig-

ment epithelium), whereas an abnormal fundus image (see Figure 2.4b) shows a darker

central zone because of the macula denser pigmentation and an abnormal increase in

visibility of the background fluorescence [Vaughan et al., 1977]. FA examination is nec-

essary to plan the laser treatment of retinal vascular disease [Riordan-Eva et al., 2011].

FA is invaluable in the assessment of the choroidal vasculature [Ruia et al., 2021] and

the anatomy, physiology, and pathology of the retinal such as retinal neovascularization,

intraretinal microvascular abnormalities, and capillary nonperfusion [Baumal, 2018].

2.1.3.4/ COLOR FUNDUS PHOTOGRAPHY (CFP)

Compared to other optical imaging modalities, color fundus photography which is taken by

the fundus camera is cost-effective and simple [Yao et al., 2022][Besenczi et al., 2016].

Despite its limitation in the field of view (FOV), CFP is frequently required for the screening

purpose of eye diseases [Xiao et al., 2020]. CFP is a non-invasive technique to record

the fundus image so that it can be referred to in another location or time in a wide variety

of ophthalmic conditions [Besenczi et al., 2016].
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(a) (b)

Figure 2.5: Digital fundus camera. (a) Topcon TRC-NW8Fplus [Topcon, ]. (b) iExaminer [Allyn, ].

A fundus camera is an indirect ophthalmoscope-based camera. It is built with an attached

camera and a specialized low-power microscope. Fundus cameras are described by the

field of view (FOV) - the optical angle of acceptance of the lens. The normal FOV, 30°,

visualizes a retina image that is 2.5 times larger than the actual retina. Fundus camera

provides capturing the images between 45° and 140° [Saine et al., 2002].

The fundus image is captured when a patient sitting upright at the fundus camera while an

ophthalmic photographer focuses and aligns the camera [Panwar et al., 2016]. The con-

ventional traditional fundus cameras have a limited FOV and frequently require pupillary

dilation for reliable examination of eye conditions [Yao et al., 2022]. Despite the advan-

tage of digital retinal imaging that provides rapidly acquired, high-resolution, reproducible

images [Baumal, 2018], the fundus camera is still actively innovated to provide higher

quality and lower cost [Panwar et al., 2016]. Figure 2.5 shows two different types of digi-

tal fundus cameras.

Figure 2.6: Color fundus image.
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The color fundus image consists of three channels (Red-Green-Blue). As seen in

Figure 2.6, the optic disc, macula, fovea, and vessels are clearly visible in a color

fundus image. The color fundus image is also helpful in interpreting the FA image

since some retinal landmarks are visible in the color fundus image but not in the FA

image [Saine et al., 2002]. CFP is used for clinical studies, disease documentation,

telemedicine, and patient education [Baumal, 2018].

2.1.4/ OCULAR ABNORMALITIES

There are several ocular abnormalities out of which 45 abnormalities are discussed in

this section. All the following ocular abnormalities can be diagnosed by analyzing the

color fundus image. RFMiD dataset provides color fundus images annotated with these

abnormalities for the multi-label classification (see details in Section 2.1.5.5).

2.1.4.1/ DIABETIC RETINOPATHY (DR)

Diabetic retinopathy is the most common microvascular complication of diabetes mel-

litus [Vaughan et al., 1977]. The worst condition caused by DR is blindness and hav-

ing a painful eye which makes removal of the eye as the only treatment option

[Galloway et al., 2016]. DR can be diagnosed by analyzing the presence of one or more

lesions that are visible in the color fundus image such as microaneurysms, hemorrhage,

soft exudates, and hard exudates (see Figure 2.7).

Figure 2.7: The symptoms of diabetic retinopathy [Porwal et al., 2018].

2.1.4.2/ AGE-RELATED MACULAR DEGENERATION (ARMD)

The development and progression of age-related macular degeneration (ARMD) are

caused by several factors such as advanced age, white race, heredity, and a history of
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smoking. The symptoms include blurred vision, decreased contrast sensitivity, abnormal

dark adaptation, and the need for brighter light or additional magnification to read smaller

prints [Jager et al., 2008]. A color fundus image is utilized to grade the ARMD with the

drusen characteristics (size, type, area), pigmentary abnormalities, and the presence of

the characteristic of neovascular abnormalities [Davis et al., 2005].

2.1.4.3/ MEDIA HAZE (MH)

Media haze is a condition of opacity in the media called lenticular regions, which mostly

results in bad visual interpretation of the viewed object or any entity [Sengar et al., 2021].

The opacity of media can work as a hallmark for the occurrence of cataracts, vitreous

opacities, corneal edema, or small pupils [Chen et al., 2011]. In order to decrease the

risk of blindness through cataracts, earlier diagnosis is required to facilitate early state

treatment.

2.1.4.4/ DRUSENS (DN)

Drusens (DN) is the earliest abnormal sign of ARMD that is visible in the fundus image.

DN appears as white-yellow deposits on the retina [Sathiyamurthy et al., 2007]. It is an

extracellular material lying between the basement membrane of the retinal pigment ep-

ithelium (RPE) and the inner collagenous zone of Bruch’s membrane [Gella et al., 2016].

2.1.4.5/ MYOPIA (MYA)

Myopia (MYA) is the thinning and tractional changes to various layers and structures

within the eye. The complication of MYA may result in retinal detachment, posterior

staphyloma, retinal pigment epithelium and choroidal atrophy, and subretinal hemor-

rhages [Ho et al., 2017].

2.1.4.6/ BRANCH RETINAL VEIN OCCLUSION (BRVO)

Branch retinal vein occlusion (BRVO) is a group of abnormal conditions such as ar-

teriovenous (AV) crossing with vein compression, degenerative changes of the vessel

wall, and hematological factors that constitute the primary mechanism of vessel occlu-

sion [Rehak et al., 2008]. BRVO is associated with hypertension, diabetes mellitus, hy-

perlipidemia, systemic and inflammatory diseases, thrombophilia and hypercoagulation,

medications, and ocular conditions. The visible clinical characteristic of BRVO in fundus

images are flame-shaped, dot and blot hemorrhage, soft exudates, hard exudates, retinal

edema, and dilated tortuous veins [Jaulim et al., 2013].
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2.1.4.7/ TESSELLATION (TSLN)

Tessellation (TSLN) is a characteristic of myopic eyes. It is an important sign of the de-

velopment of retinochoroidal changes. TSLN is a retinal condition in which the choroidal

vessels are visible through the retina owing to reduced pigmentation or hypoplasia of the

retinal pigment epithelium (RPE) [Yoshihara et al., 2014].

2.1.4.8/ EPIRETINAL MEMBRANE (ERM)

Epiretinal membrane (ERM) is a delicate cellular membrane occurring at the vitreoretinal

juncture [Foos, 1974]. ERM is a thin sheet of glial cells. It appears as an irregular light

reflex and occurs in the macular region [Pachade et al., 2021].

2.1.4.9/ LASER SCARS (LS)

Laser scars (LS) are the damages that occurred in the retinal neurons as a result of laser

therapy. It affects central vision, central acuity, and night vision [Zhang et al., 2011]. LS

appears as circular or irregular-shaped scars on the retinal surface [Pachade et al., 2021].

2.1.4.10/ MACULAR SCAR (MS)

Macular scars (MS) are caused by inflammatory intraocular reaction or infection that

causes slight injury to RPE [Pachade et al., 2021]. MS appears as an egg yolk-shaped,

dense homogeneous yellow deposit [Frangieh et al., 1982].

2.1.4.11/ CENTRAL SEROUS RETINOPATHY (CSR)

Central serous retinopathy (CSR) is an eye disease caused by the watery fluids behind

the retina. It affects the vision causing abnormalities such as obscured vision, metamor-

phopsia, and a decrease in shading vision. CSR is characterized as a dark spot of a

blister of fluid appearing in the macula [Hassan et al., 2021].

2.1.4.12/ OPTIC DISC CUPPING (ODC)

Optic disc cupping (ODC) is a sign of glaucoma. ODC is characterized by the increase in

the size of the optic cup and in the cup-to-disc ratio. It is also characterized by enlarged

chorioretinal atrophy, backward bowing or excavation of the lamina cribrosa, and vertical

elongation of the optic cup. Cupping also occurs as a result of inconsistent and infrequent

optic neuropathies other than glaucoma [Piette et al., 2006].
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2.1.4.13/ CENTRAL RETINAL VEIN OCCLUSION (CRVO)

Central Retinal Vein Occlusion (CRVO) is characterized by the appearance of dilatation,

retinal hemorrhage, optic disc edema, and tortuosity of retinal veins [Fong et al., 1993].

Cotton wool spots and cystoid macular edema are other signs of CRVO. The risk

factors causing CRVO are diabetes, glaucoma, increasing age, and hypertension

[McAllister, 2012].

2.1.4.14/ TORTUOUS VESSELS (TV)

Tortuous vessels (TV) appear as a marked tortuosity of the retinal vessels. It is associated

with diabetes, hypertension, and other genetic disorders [Pachade et al., 2021].

2.1.4.15/ ASTEROID HYALOSIS (AH)

Asteroid hyalosis (AH) is also called Benson disease. It is a condition in which aster-

oid bodies (AB) are present in the vitreous body. AB appears as small yellow-white

and spherical particles. AH is associated with vitreous opacities, hereditary pigmentary

retinopathies, and diabetes mellitus. AH is diagnosed by detecting the presence of AB in

the anterior and central vitreous body in the fundus image [Khoshnevis et al., 2019].

2.1.4.16/ OPTIC DISC PALLOR (ODP)

ODC and optic disc pallor (ODP) are considered as the visible signs of glaucoma, espe-

cially if associated with loss of visual field [Schwartz et al., 1973]. The changes in tissue

transflucency and reflectance following the axonal loss and glial reorganization is the

cause of ODP. ODP can be diagnosed by focusing the observation on the characteristics

of the optic disc [Yang et al., 2019].

2.1.4.17/ OPTIC DISC EDEMA (ODE)

Optic disc edema (ODE) is known as optic disc swelling. ODE is a condition in which

the axonal is swelling and the fluid surrounding the axons is increasing [Van et al., 2007].

ODE may be associated with optic disc ischemia, cotton wool spots, exudates, Paton’s

lines, choroidal folds, and venous pulsation [Yan et al., 2021].
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2.1.4.18/ OPTOCILIARY SHUNT (ST)

Optociliary shunt (ST) vessels are the vessels on the optic nerve head which connect the

retinal and choroidal circulations [Haskes et al., 1995]. ST is associated with optic nerve

sheath meningioma, spheno-orbital meningiomas, triad symptoms of optociliary veins,

disc pallor, CRVO, papilloedema, optic nerve glioma, optic disc drusen, arachnoid cyst of

the optic nerve, phakomatosis, and chronic glaucoma [Lee et al., 2004].

2.1.4.19/ ANTERIOR ISCHEMIC OPTIC NEUROPATHY (AION)

Anterior ischaemic optic neuropathy (AION) is the change in color of the optic disc (into

pale), followed by peripapillary hemorrhages, and invariable optic atrophy in later stages.

AION is characterized by observing the changes in the optic disc and retina. It shows

as chalky-white swelling with a rare hemorrhage or pale pink edema with flame-shaped

hemorrhages depending on the severity of the AION [Hayreh et al., 1981].

2.1.4.20/ PARAFOVEAL TELANGIECTASIA (PT)

Parafoveal telangiectasia (PT) is a microvascular abnormality of the macula

[Millay et al., 1986]. It is detected by changes in macula such as yellow, lipid-rich ex-

udation, parafoveal graying, abnormalities from distention, and tortuous blood vessels

[Pachade et al., 2021].

2.1.4.21/ RETINAL TRACTION DETACHMENT (RT)

Retinal traction detachment is the separation of the neurosensory retina from the reti-

nal pigment epithelium (RPE) due to the traction caused by proliferative membranes

present over the retinal surface. The proliferative membranes can occur due to prolif-

erative retinopathies, the most common being proliferative diabetic retinopathy (PDR).

Retinal traction detachments are caused by tractional forces and the detached retina

takes a concave shape [Mishra et al., 2022].

2.1.4.22/ RETINITIS (RS)

Retinitis (RS) is the inflammation of the retina and an acute RS can cause vision loss.

RS is caused by microbes such as Toxoplasma, Cytomegalovirus, Herpes Zoster, Her-

pes Simplex, and Candida. RS can be diagnosed by detecting some lesions that appear

in the fundus image such as white or slightly yellow lesions in the posterior pole or pe-
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riphery depending upon the aetiological agent. RS may be associated with vasculitis,

hemorrhage, vitreous inflammation, and vascular occlusions [Gupta et al., 2021].

2.1.4.23/ CHORIORETINITIS (CRS)

Chorioretinitis (CRS) is the uveitis or inflammation of the choroid and the retina. It can

occur in the iris, ciliary body, choroid, retina, retinal vessels, vitreous, optic nerve head,

and sclera. Infections are the common cause of CRS and Toxoplasma Gondii is the most

common infection. CRS is characterized by diffuse or focal inflammatory infiltrates which

appear in the retina and choroid while the parasites may appear as free tachyzoites, or

tissue cysts with mononuclear inflammatory infiltrates surrounding retinal blood vessels

[Geetha et al., 2021].

2.1.4.24/ EXUDATION (EDN)

Exudation (EDN) appears as white or yellowish lipid deposits with sharp edges. EDN is

a sign of several eye diseases, for instance, circular exudates surrounding the macular

area are the sign of circinate retinopathy; mass exudates in the macular region are the

sign of exudative maculopathy, and star-like exudates in the macular region are the sign

of the macular star [Pachade et al., 2021].

2.1.4.25/ RETINAL PIGMENT EPITHELIUM CHANGES (RPEC)

Retinal pigment epithelium changes (RPEC) are the changes in the condition of RPE such

as ages, a number of structures, increase in the density of residual bodies, accumulation

of lipofuscin, accumulation of basal deposits on or within Bruch’s membrane, formation

of drusen, thickening of Bruch’s membrane, microvilli atrophy, and disorganization of the

basal infoldings. RPE transports the essential nutrients for the homeostasis of the neural

retina and also helps in regeneration [Bonilha, 2008].

2.1.4.26/ MACULAR HOLE (MHL)

Macular hole (MHL) is a full-thickness defect of retinal tissue involving the anatomic fovea

[Ho et al., 1998]. MHL is associated with laser treatment, retinal vascular disorders, reti-

nal detachment, and cystoid macular edema [Maggon et al., 2009].
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2.1.4.27/ RETINITIS PIGMENTOSA (RP)

Retinitis pigmentosa (RP) is an inherited retinal dystrophy caused by the loss of photore-

ceptors. The most common form of RP is the progressive loss in the peripheral visual

field in daylight and also rod-cony dystrophy that is characterized by night blindness. RP

is diagnosed by observing the presence of night blindness and peripheral visual field de-

fects, hypo-volted electroretinogram traces, progressive worsening of these signs, and

also lesions in the fundus. The characteristics of RP that are visible in fundus image are

pigmentary deposits resembling bone spicules (initially in the peripheral retina), attenu-

ation of the retinal vessels, waxy pallor of the optic disc, and various degrees of retinal

atrophy [Hamel, 2006].

2.1.4.28/ COTTON-WOOL SPOTS (CWS)

Cotton-wool spots (CWS) lie superficially as opaque swellings in the retina, occurring

as acute lesions. The occurrence of CWSs is a sign of serious vascular damage

[Schmidt, 2008].

2.1.4.29/ COLOBOMA (CB)

Ocular coloboma can be seen in isolation and in an impressive number of multisystem

syndromes. Ocular CB is caused by some factors such as inheritance and environmen-

tal influences [Gregory-Evans et al., 2004]. Clinically, ocular CB is caused by defective

closure of the embryonal fissure. The ocular CB which is caused by chromosomal ab-

normalities is usually associated with systemic abnormalities. There are several effects

of the ocular CB. There are several effects of ocular CB. In the lightest case, the struc-

ture and functions of the eye are hardly affected, whereas in the worst case, the eye can

become non-functional because of compression by an orbital cyst. In the fundus image,

the condition of ocular CB is found based on the size variability of the coloboma (an-

teroposterior and transverse extent) and the involvement of the optic disc and also fovea

[Lingam et al., 2021].

2.1.4.30/ OPTIC DISC PIT MACULOPATHY (ODPM)

Optic disc pit maculopathy (ODPM) is characterized by intraretinal and subretinal fluid

accumulation in the macula which causes visual deterioration. The source of this fluid

may be vitreous fluid, cerebrospinal fluid, leakage from blood vessels at the base of the

pit, or leakage from the choroid. ODPM is categorized as a rare diagnosis. The trigger of
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its development is still unclear and there are only limited studies in its treatment guidance

[Moisseiev et al., 2015].

2.1.4.31/ PRERETINAL HEMORRHAGE (PRH)

Preretinal hemorrhage (PRH) may occur after the rupture of retinal vessels. PRH is

associated with excessive physical exercises and increased venous pressure (Valsalva

retinopathy) or retinal vascular alterations (macroaneurysms and proliferative diabetic

retinopathy). The most common site for hemorrhage in Valsalva retinopathy is the pos-

terior pole because of pre-existing anatomical space. However, the term PRH is defined

because of the difficulties in the indication of the accurate site of hemorrhage (between

the retina and internal limiting membrane, or internal limiting membrane and hyaloid)

[Felippe et al., 2004].

2.1.4.32/ MYELINATED NERVE FIBERS (MNF)

Myelinated nerve fibers (MNF) are developmental anomalies that are present in approx-

imately 1% of all eyes. It is associated with ipsilateral high myopia, amblyopia, and var-

ious ocular and systemic abnormalities. MNF is identified by the presence of ectopic

oligodendrocytes [Tarabishy et al., 2007]. The lesions of MNF appear as white or gray-

white striated patches corresponding in shape to the distribution of retinal nerve fibers

and demonstrating frayed borders [Straatsma et al., 1981].

2.1.4.33/ HEMORRHAGIC RETINOPATHY (HR)

Hemorrhagic retinopathy (HR) is a form of retinopathy that is hemorrhagic in na-

ture. HR is associated with diabetes, hypertension, and occlusion of the central vein

[Pachade et al., 2021].

2.1.4.34/ CENTRAL RETINAL ARTERY OCCLUSION (CRAO)

Central retinal artery occlusion (CRAO) is an acute stroke of the eye and is categorized

as an ophthalmic emergency. CRAO is a sign of end-organ ischemia and the underlying

atherosclerotic disease that may become a risk of future cerebral stroke and ischaemic

heart disease. The most common cause of CRAO is embolism usually due to atheroscle-

rotic plaques. The signs that are found in the fundus image of the CRAO are retinal

opacity in the posterior pole, cherry-red spot, cattle trucking, retinal arterial attenuation,

optic disc edema, and pallor [Varma et al., 2013].
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2.1.4.35/ TILTED DISC (TD)

The tilted disc (TD) is a congenital anomaly of the optic nerve head [Dorrell, 1978]. Vi-

sual field deficits, retinal pigment epithelial and choroidal hypoplasia, electro-functional

abnormalities, choroidal neovascular development, and refractive error are examined as

the features of TD [Sowka et al., 1999].

2.1.4.36/ CYSTOID MACULAR EDEMA (CME)

Cystoid macular edema (CME) is a common pathologic sequel of the retina which oc-

curs as the result of the cystic accumulation of extracellular intraretinal fluid in the outer

plexiform and inner nuclear layers of the retina, as a result of the breakdown of the blood-

retinal barrier [Quinn, 1996]. CME may be associated with a wide variety of ocular con-

ditions such as central or branch retinal vein occlusion, diabetic retinopathy, and cataract

[Rotsos et al., 2008]. CME is also a major cause of vision loss for patients who are in-

fected by HIV with immune recovery uveitis [Rothova, 2007]. CME is often detected by

analyzing the fluid which is visible in the macula area [Rotsos et al., 2008].

2.1.4.37/ POST-TRAUMATIC CHOROIDAL RUPTURE (PTCR)

Post-traumatic Choroidal Rupture (PTCR) are breaks in the choroid, Bruch’s membrane,

and RPE which occur as an effect of blunt ocular trauma that can lead to serious macular

or hemorrhagic detachment [Pachade et al., 2021].

2.1.4.38/ CHOROIDAL FOLDS (CF)

Choroidal folds (CF) are clinically detected as dark or light streaks on ophthalmoscopy.

CF is associated with other pathological conditions such as tumors, central serous

retinopathy, papilloedema, and choroidal naevi. CF occurs because of the combination

of an anatomical attachment of Bruch’s membrane to the underlying choriocapillaris and

congestion of the choriocapillaris [Jaworski et al., 1999].

2.1.4.39/ VITREOUS HEMORRHAGE (VH)

The cause of Vitreous Hemorrhage (VH) is unknown except if there is a clinical sign which

clearly points in another direction such as a retinal tear, diabetic retinopathy, and retinal

vein occlusion [Lindgren et al., 1996]. It can be also caused by the pathologic mecha-

nisms of disruption of normal retinal vessels, bleeding from diseased retinal vessels or ab-

normal new vessels, and extension of hemorrhage through the retina from other sources
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[Spraul et al., 1997]. There are some other ocular abnormalities that cause VH infre-

quently such as hemoglobinopathies, age-related macular degeneration, retinal arterial

macroaneurysm, intraocular tumors, and vascular occlusive disease [Goff et al., 2006]

[Lindgren et al., 1996].

2.1.4.40/ MACROANEURYSM (MCA)

Macroaneurysm (MCA) is an uncommon entity affecting the posterior segment of the

eye. MCA is a fusiform or round dilation of the retinal arterioles that occurs in the tempo-

ral retina [Pachade et al., 2021]. MCA results in vision loss because of the presence of

edema, hemorrhage, exudates, or other secondary complications [Singh et al., 2021].

2.1.4.41/ VASCULITIS (VS)

Vasculitis (VS) is classified based on the size of the vessel, the location, and the as-

sociated histological changes. VS is a condition in which the vessel wall is damaged.

Clinically, VS is characterized by intraretinal hemorrhage and cotton wool. VS is caused

by the infections of the virus such as Cytomegalo, Herpes Simplex, Syphilis, and Tuber-

culosis [Rosenbaum et al., 2016].

2.1.4.42/ BRANCH RETINAL ARTERY OCCLUSION (BRAO)

Branch retinal artery occlusion (BRAO) is a decrement of arterial blood flow to the retina

that leads to ischemic damage. The vision is affected due to vascular occlusion. BRAO is

caused by the perfusion decrement in a branch retinal artery that comes from emboli to a

branch of the central retinal artery. Carotid, hypertension, and hypercholesterolemia are

some of the risk factors of BRAO. BRAO is detected by the presence of retinal whitening

following the course of a branch artery [Santos et al., 2021].

2.1.4.43/ PLAQUE (PLQ)

Plaque (PLQ) detection is an important sign of atherosclerosis. PLQ consists of embolic

material from atheromatous lesions in the aorta or carotid arteries and it can cause oc-

clusion of the arteriole. PLQ appears as a bright orange color spot. It is observed at

bifurcations of the retinal arterioles with the occlusive disease within the carotid arterial

system and the vertebral-basilar arterial system [Hollenhorst, 1961].
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2.1.4.44/ HEMORRHAGIC PIGMENT EPITHELIAL DETACHMENT (HPED)

Hemorrhagic pigment epithelial detachment (HPED) is a retinal condition in which the

pigment epithelium is separated from the Bruch’s membrane because of hemorrhage.

HPED is associated with polypoidal choroidal vasculopathy or choroidal neovasculariza-

tion [Pachade et al., 2021].

2.1.4.45/ COLLATERAL (CL)

Collateral (CL) is the existence of the new retinal vessels which are developed within the

existing vessel network. The risk factors of CL are vascular occlusion, glaucoma, and/or

optic nerve sheath meningioma [Sowka et al., 2014]. It is associated with other diseases

such as optic disc drusen, high myopia, and diabetes [Pachade et al., 2021].

2.1.5/ FUNDUS IMAGE DATASETS

Fundus image datasets are the vital key to design a computer-aided-diagnosis (CAD)

system to identify ocular abnormalities. Alongside computer vision, informative analyses

of the fundus images are provided to assist the ophthalmologist to conclude the diagno-

sis. Fundus image datasets provide color fundus images and specific information of the

corresponding fundus image as ground-truth data such as lesions, diseases, or parts of

the retina. All fundus image dataset used in this research are publicly available online.

They are vary depending on the types of data provided:

• E-Ophtha and IDRiD are used in microaneurysms detection since they provide the

lesions of DR overlaid in each color fundus image.

• DRIVE and STARE are used in vessel segmentation as they provide the retinal

vessels annotation of color fundus images.

• MESSIDOR and IDRiD are used in OD and Fovea localization as they provide the

OD and fovea annotation of color fundus images.

• RFMiD is annotated with various eye diseases and is used in multi-disease detec-

tion.

2.1.5.1/ E-OPHTHA

E-Ophtha [Decenciere et al., 2013] is a public dataset of color fundus images that are

collected specially for research in DR. The dataset was generated from the OPH-
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DIAT Telemedical network for DR screening, in the framework of the ANR-TECSAN-

TELEOPHTA project funded by the French Research Agency (ANR). The fundus images

in the E-Ophtha dataset are annotated by expert ophthalmologists. The E-Ophtha dataset

provides the annotation of two lesions of DR, microaneurysms (E-Ophtha-MA) and ex-

udates (E-Ophtha-EX). E-Ophtha-MA consists of 148 images with microaneurysms or

small hemorrhages and 233 images with no lesions, and E-Ophta-EX consists of 47 im-

ages with exudates and 35 images without any lesions. The resolutions of the image

are 1440x960 and 2544x1696 pixels. Data was acquired by Canon CR-DGI and Topcon

TRC-NW6 cameras with 45° FOV.

2.1.5.2/ INDIAN DIABETIC RETINOPATHY IMAGE DATASET (IDRID)

IDRiD dataset [Porwal et al., 2018] is organized in conjunction with IEEE International

Symposium on Biomedical Imaging 2018, Washington D.C. Fundus images are obtained

from an Eye Clinic that is located in Nanded, India. The images with the resolution of

4288 × 2848 pixels are acquired using a digital fundus camera (Kowa VX − 10α) with 50°

FOV.

Figure 2.8: Color fundus image and its annotations (lesions of DR) [Porwal et al., 2018].

IDRiD dataset provides color fundus images with three types of data annotation, anno-

tation of lesions in pixel level (see Fig. 2.8), DR and Diabetic Macular Edema (DME)

disease grading, and center pixel location of Optic Disc (OD) and fovea. The dataset

contains 81 color fundus images with signs of DR and 164 images of healthy eyes. The

81 images with signs of DR are divided into 54 training data and 27 testing data. IDRiD

dataset also provides 516 color fundus images with OD and fovea locations that are di-

vided into 413 training data and 103 testing data. DR and DME grading are provided for

516 images.
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2.1.5.3/ DIGITAL RETINAL IMAGES FOR VESSEL EXTRACTION (DRIVE)

Fundus images in the DRIVE dataset are obtained using a Canon CR5 non-mydriatic

3CCD camera with a 45° FOV. Each image has three channels (RGB) with resolutions of

565 × 584 and 768 × 584 pixels. DRIVE dataset contains 40 color fundus images with 7

abnormal pathology cases. The images are split into 20 images equally for the training

and testing set. The training set consists of a color fundus image with one manual retinal

vessel segmentation (see Fig. 2.9) that was annotated by an ophthalmologist expert while

the testing set consists of color fundus images with two different observations, the first

observation is accepted as ground-truth [Staal et al., 2004].

Figure 2.9: Color fundus image and retinal vessel annotation [Iqbal et al., 2018].

2.1.5.4/ STRUCTURED ANALYSIS OF THE RETINA (STARE)

STARE project was initiated in 1975 by Michael Goldbaum, M.D., at the University of

California, San Diego. The project was funded by the U.S. National Institute of Health.

Fundus images in the STARE dataset were obtained from the Shiley Eye Center at the

University of California, San Diego, and from the Veterans Administration Medical Center

in San Diego. STARE dataset contains around 40 color fundus images with two retinal

vessels annotation. This dataset also provides multi-label with the features (402 images),

artery/vein (10 images), and optic nerve annotations (80 images). The resolution of the

image in this dataset is 700 × 605 pixels. The data was taken by Topcon TRV-50 camera

with 35° FOV [Hoover et al., 2000].

2.1.5.5/ RETINAL FUNDUS MULTI-DISEASE IMAGE DATASET (RFMID)

RFMiD is a public dataset that provides different information on color fundus images.

The fundus images were acquired using three different digital fundus cameras, TOP-

CON 3D OCT − 2000, Kowa VX − 10α, and TOPCON TRC − NW300 with 45° and 50°
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FOV. The images are centered either on the macula or on the optical disk. They pro-

vide images with 2144 × 1424, 4288 × 2848, and 2048 × 1536 resolutions. RFMiD dataset

consists of color fundus images with label annotations of the presence of the diseases.

The annotations fall into two categories, the classification of normal and abnormal reti-

nal images and the multi-label of 45 different ocular abnormalities (explained in Section

2.1.4). RFMiD dataset contains 3200 color fundus images that are divided into 1920

images for the training set, 640 images for the evaluation set, and 640 for the test set

[Pachade et al., 2021].

Figure 2.10: Class distribution of RFMiD dataset.

RFMiD is a dataset that provides multi-label annotation for both frequent and rare ocular

abnormalities. As figured in Fig. 2.10, the highest total number of images for a class is

376 and the lowest is 6 images for a class. Due to the less acquired data for some rare

eye diseases, another class named ’OTHER’ is created. It consists of 19 classes that

have less than 10 color fundus images. These data are split in the same data distribution

into the training set, evaluation set, and testing.

2.1.5.6/ MESSIDOR

Messidor dataset stands for Methods to Evaluate Segmentation and Indexing Techniques

in the field of Retinal Ophthalmology. Messidor was a research program funded by the

French Ministry of Research and Defense within a 2004 TECHNO-VISION program. This

dataset contains 1200 color fundus images, 800 images with pupil dilation (one drop of

Tropicamide at 0.5%), and 400 images without dilation. The images were acquired by

three ophthalmologic departments using a color video 3CCD camera mounted on a Top-

con TRC NW6 non-mydriatic retinograph with a 45° FOV. The color fundus images have
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different resolutions, 1440× 960, 2240× 1488, and 2304× 1536. Messidor dataset provides

information on DR grades and risk of macular edema diagnosis [Decencière et al., 2014].

Some other datasets are publicly available and could be used to conduct this research.

Table 2.1 presents other datasets that also provide color fundus photography with the nec-

essary annotations; microaneurysms, vessels segmentation, multi-label, OD, and Fovea

localization.

Table 2.1: Other public color fundus image dataset. H indicates healthy, R indicates right fundus,
and L indicates left fundus.

Dataset Data Provided Total Images Image Size FOV Camera

ARIA [Farnell et al., 2008]

AMD 92

768 x 576 50 Zeiss FF450+
DR 59
Healthy 61
Vessels 212
OD and Fovea 120

DIARETDB1
[Kauppi et al., 2007]

Microaneurysms 84DR+5H 1500 x 1152 50 Zeiss FF450+

ROC [Niemeijer et al., 2009] Microaneurysms 100
768 x 576,

45
Topcon NW100,

1058 x 1061, Topcon NW200,
1389 x 1383 Canon CR5-

45NM
ODIR [Challenge, 2019] Multi-label 5000R+5000L variety - Kowa, Zeiss, and

Cannon
UoA-DR
[Chalakkal et al., 2017]

Vessels, OD, and
Fovea

200 2124 x 2056 45 Zeiss VISUCAM
500 lenses

2.2/ THEORETICAL BACKGROUND

2.2.1/ DEEP LEARNING IN MEDICINE

The necessity of computer-aided diagnosis (CAD) in medicine is due to several factors

such as the complexity of the medical diagnosis system, the large amounts of diagnostic

knowledge, and the availability of large amounts of complex clinical data relevant to many

diseases and conditions [Yanase et al., 2019]. The main objective of CAD in medicine is

to increase the efficiency of the diagnosis (both computational cost and time) along with

a high performance of diagnosis [Abràmoff et al., 2010]. In particular conditions, CAD

systems can also prevent the error caused by humans that may lead to misdiagnosis. It is

stated in a study proposed by Bejnordi et al. [Bejnordi et al., 2017] that the performance of

the CAD system for the detection of lymph node metastasis of breast cancer is higher than

the diagnosis made by 11 experienced pathologists in terms of cost, time, and accuracy.

However, the diagnostic capabilities of the CAD systems are not completely exploited

due to a lack of research that directly compares artificial intelligence (AI) and physicians’

interpretation or validates AI performance in a real clinical environment [Fujita, 2020].

The advances in machine learning techniques gave an impact on transforming CAD



28 CHAPTER 2. BACKGROUND

systems from aided to automated. Machine learning and computer vision algorithms

allow researchers to analyze the input imaging and/or non-imaging data by extracting

and interpreting the information of the data to predict the outcome for a given task

[Chan et al., 2020]. However, the transition from traditional CAD systems (conventional

image processing and machine learning) to deep learning-based CAD systems is needed

due to limitations such as high development cost, high False Positive (FP) rate, effective-

ness, and limited specific features [Fujita, 2020].

One of the significant differences between deep learning and machine learning is feature

extraction. Instead of having a need for hand-crafted features as in the case of machine

learning, deep learning focuses to learn the domain knowledge so that the machine can

learn the relevant features needed to interpret the output by correlating with the input

data. Deep learning, also called a deep neural network, is a neural network with multiple

layers. The success of deep learning to adapt to various applications such as speech

recognition, natural language processing, and face recognition makes it interesting for

researchers to use it in medical applications [Chan et al., 2020]. In general, deep learning

consists of the input layer, hidden layer(s), and output layer. Deep learning frameworks

are classified depending on the task and the type of data. The types of deep learning

frameworks applied in this research are the Convolutional Neural Network (CNN), the

Encoder-Decoder, and the Generative Adversarial Network (GAN).

2.2.1.1/ CONVOLUTIONAL NEURAL NETWORK

Convolutional neural network (CNN) is the most commonly used deep learning frame-

works for computer vision and pattern recognition tasks. CNN has the ability to en-

code image features into the network architecture and makes it to be suitable for

image-related tasks [O’Shea et al., 2015]. CNN is constructed by stacking several types

of layers such as convolution, pooling, and fully connected layers as shown in Fig-

ure 2.11 [Yamashita et al., 2018]. The CNN-based CAD systems for medical imaging

data are widely implemented to perform several tasks such as eye disease detection

[Gulshan et al., 2016], cancer diagnosis [Esteva et al., 2017] [Wu et al., 2019], and tumor

segmentation [Havaei et al., 2017].

Deeper layers in the network architecture allow the network to learn more object features

but with a complexity of increased computational time and more training data. Fine-

tuning is a method to reduce the necessity of these requirements by extracting the object

features that were learned by a pre-trained network. It is implemented by freezing the

initial layers of the pre-trained network and training only the last layer (or last few layers)

to learn more features that are adaptable to the current dataset.
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Figure 2.11: Simple CNN architecture [O’Shea et al., 2015].

A pre-trained network is a network trained using other datasets for some specific task.

EfficientNet [Tan et al., 2019] and ResNet [He et al., 2016] are the pre-trained networks

that are used in this research considering its applauding performance in the classification

task.

Figure 2.12: Model scaling. (a) is a baseline network example; (b) is scaling the dimension of
width only; (c) is scaling the dimension of depth only, (d) is scaling the dimension of resolution
only; (e) is the compound scaling method that uniformly scales width, depth, and resolution with
a fixed ratio [Tan et al., 2019].

EfficientNet. EfficientNet [Tan et al., 2019] is a CNN architecture with a scaling method

that scales the dimensions of depth, width, and resolution uniformly using a compound

coefficient (see details in Figure 2.12). The intuition behind the compound scaling method

is that the bigger the size of an input image, the higher the number of layers and chan-

nels that are required to increase the receptive field and to capture a more fine-grained

pattern. The base architecture of EfficientNet is similar to the inverted bottleneck residual

blocks of MobileNetV2 [Sandler et al., 2018]. This baseline model is scaled to obtain a

variety of EfficientNet (EfficientNet-B0, EfficientNet-B1, EfficientNet-B2, EfficientNet-B3,

EfficientNet-B4, EfficientNet-B5, EfficientNet-B6, and EfficientNet-B7). A higher version
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in the EfficientNet family has a more complex architecture that can handle the input image

with larger resolutions. EfficientNet is fine-tuned for acquiring maximum accuracy at the

expense of more computation and prediction time. The EfficientNets achieve state-of-the-

art 91.7% accuracy on the CIFAR-100 dataset, 98.8% accuracy for the Flowers dataset,

and other transfer learning datasets with a fewer number of parameters.

Figure 2.13: Residual learning: a building block [He et al., 2016].

ResNet. ResNet (Residual Network) [He et al., 2016] is a CNN architecture that is able to

deal with vanishing gradient issue in training a deep network with large number of layers.

ResNet architecture introduces the identity shortcut connection concept between layers

as illustrated in Figure 2.13. Stacking the identity mappings in the network keeps the

network performance without any degradation. The main idea behind the residual block

is to let the network learns a residual function (F(x)) of the previous layers, the difference

between the input (x) and output layer (F(x) + x), by adding an input identity to the output

activation layer.

ResNet architectures are built by stacking the residual blocks together. ResNet is in-

troduced in variety deeper levels such as ResNet34, ResNet50, ResNet101, ResNet152,

and ResNet1202. A deeper ResNet has more complexity. Though deeper ResNet has no

optimization difficulty, the training may lead to overfitting depending on the quantity of the

training dataset. And, shallower ResNet does not always give the highest performance.

ResNet architecture won the first places in several tracks in ILSVRC and COCO 2015

competitions: ImageNet detection, ImageNet localization, COCO detection, and COCO

segmentation.

2.2.1.2/ ENCODER-DECODER

Inspired by neural machine translation, the encoder-decoder neural network is composed

of an encoder and a decoder. Figure 2.14 shows the general concept of encoder-decoder

in which an encoder is a process to encode the input to the specific state and a decoder

is a process to decode that specific state to become an output. In an encoder-decoder

neural network, the encoder is a stacking of layers that extracts a higher dimensional
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representation of the input data and the decoder is a stacking of layers that uses this

higher dimensional representation to generate the specific-lower dimensional output data

as expected for that specific task [Cho et al., 2014]. In a CNN-based encoder-decoder,

the input image is encoded into a higher dimensional feature map and a new feature map

is generated by the decoder to have the same resolution as the input image to perform

pixel-wise classification [Badrinarayanan et al., 2017]. Encoder-decoder neural network

is implemented to perform several tasks where the output is expected to be in a specific

dimension such as image segmentation in computer vision, and text summarization and

question answering in natural language processing (NLP).

Figure 2.14: The architecture of encoder-decoder.

2.2.1.3/ GENERATIVE ADVERSARIAL NETWORK (GAN)

A generative adversarial network (GAN) is designed to handle the issue of limited labeled

data which is a major challenge in deep learning. GAN is a neural network that consists of

a generator and a discriminator which are trained under the adversarial learning scheme

[Wang et al., 2017]. The overview of the computation procedure and the structure of GAN

is described in Figure 2.15.

Figure 2.15: Computation procedure and structure of GAN [Wang et al., 2017].

The generator (G) is typically a decoder that captures the distribution of the real sam-

ples data (x) from the noise (z) to generate the new data (G(z)), and the discriminator

(D) is an encoder that discriminates the newly generated data (G(z)) with the real sam-

ples (x) as accurate as possible [Gui et al., 2021]. The generator and discriminator learn

simultaneously. The generator is continuously trained to lower the accuracy of the dis-

criminator while the discriminator may be frozen when it has already reached the optimal
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performance. The performance of GAN is optimal when the generator can match the

real data distribution that confuses the discriminator maximally (predicts 0.5 for all input)

[Creswell et al., 2018]. GAN uses the minimax optimization method where the goal is

to reach Nash equilibrium. GAN has been implemented in various applications such as

computer vision, speech processing, and NLP.

2.2.1.4/ TRANSFORMER

Transformer [Vaswani et al., 2017] is a deep learning model that transforms a sequence

of elements into another sequence by adopting self-attention mechanisms. The attention

mechanism is a mapping of the query and a set of key-value pairs to an output.

Figure 2.16: Model architecture of Transformer [Vaswani et al., 2017].

As seen in Figure 2.16, transformer consists of Encoder and Decoder parts. The encoder

is on the left part of the architecture and the decoder is on the right one. The encoder

takes a sequence input to a continuous representation. An encoder contains two sub-

layers, a multi-head attention sub-layer with self-attention, and a feed-forward sub-layer

(FFN). As seen in Figure 2.17, multi-head attention is a stacked scaled-dot product atten-

tion that are concatenated.
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(a) (b)

Figure 2.17: (a) Scaled-dot product attention, (b) Multi-head attention [Vaswani et al., 2017].

As described in Eq. 2.1, the attention is computed by softmax of a dot product between

query (Q) and key vector (K) that is multiplied with value vector (V). This dot product

equation is scaled by 1√
dk

where dk is the dimension of the key vector.

Attention (Q,K,V) = so f tmax

QKT√
dk

 V (2.1)

Feed-forward network (FFN) is a sub-layer that consists of two linear transformations with

a ReLU activation in between (see Eq. 2.2). Residual learning and normalization are

applied in each sub-layer. Positional encoding (PE) is also summed to the input and initial

outputs to capture the information about the relative positions.

FFN(x) = ReLU (xW1 + b1) W2 + b2 (2.2)

The dimension of the positional encoding is the same as the dimension of the model.

Positional encoding can be fixed and learned. Fixed positional encoding is generated

from the sine and cosine functions of different frequencies as described in Eq. 2.3 where

pos is the position and i is the dimension. Each dimension of the positional encoding

corresponds to a sinusoid. The wavelengths form a geometric progression from 2π to

10000 x 2π.
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PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

) (2.3)

The decoder generates the output probabilities from the output of the encoder and the

initial decoder outputs. A decoder contains multi-head attention with self-attention, multi-

head attention with cross-attention, and a FFN sub-layer. Multi-head attention with cross-

attention is the multi-head that receives the key (K) and value (V) from the encoder output

and query (Q) from the decoder self-attention. The last step of the decoder is to linearly

project the Q, K, and V to produce the output probabilities.

Transformer with Image. Transformer model is adopted widely to solve tasks in differ-

ent fields such as NLP and computer vision such as DETR [Carion et al., 2020] and ViT

[Dosovitskiy et al., 2020].

DETR (DEtection TRansformer) [Carion et al., 2020] is one of applications in object de-

tection that applies transformer approach. The goal of object detection in DETR is to

predict a set of bounding boxes and category labels for each object of interest. The ar-

chitecture of DETR model is described in Figure 2.18. A set of features is extracted from

pre-trained CNN to represent the information in the image. Since transformer encoder

needs a sequence input, this spatial information is flattened into one dimension. With

the positional encoding addition, these information are fed into transformer encoder to

encode it into a continuous features. The positional encoding is adopted from the orig-

inal transformer [Vaswani et al., 2017] to the 2D case. The object queries are the initial

output of decoder to generate a mapping of key and value from the encoder output with

the corresponding object queries. The object queries consists of a set of object category

probabilities and the bounding box of the object location.

Figure 2.18: Model architecture of DETR [Carion et al., 2020].

ViT (Vision Transformer) [Dosovitskiy et al., 2020] is another application for image recog-

nition using transformer approach in their method. Different from DETR, ViT applies only

transformer encoder to recognize the image. The goal of the ViT is to classify the im-

age. Transformer encoder requires a sequence as the input. Hence, ViT divides the input

image into several patches that are flattened. As seen in Figure 2.19 about the model
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architecture of ViT, these patches are fed into the transformer encoder added with the

positional embedding as the input. The positional embedding is a 1-dimensional vector

by considering the inputs as a sequence of patches in the raster order. The output of

the transformer encoder is transformed into a class prediction. This class prediction is

a small multi-layer perceptron (MLP) with tanh activation in the single hidden layer. The

initial class prediction is added as an extra learnable class embedding to the input of the

transformer encoder.

Figure 2.19: Model architecture of ViT [Dosovitskiy et al., 2020].

2.2.2/ WORD EMBEDDING

NLP is the intersection of artificial intelligence and linguistics. NLP is a study to process

and analyze natural language data. Word embedding is one of the applications of NLP.

Word embeddings are fixed-length vector representations for words that are built based

on the distributional hypothesis [Almeida et al., 2019]. It aims to map words or phrases

into a low-dimensional continuous space accurately in both syntactic and semantic infor-

mation. Syntactic information represents the structural roles of the words and seman-

tic information represents the meaning of the words [Li et al., 2018]. The conventional

method of word embedding consists in taking a one-hot representation of each word, a

vocabulary-size vector with only one non-zero entry. However, this method faces prob-

lems with sparse data and also lacks semantic information of words. The neural network-

based word embedding produces a better model that can overcome these drawbacks

[Wang et al., 2020]. The neural network language model (NNLM) is a word embedding

method using a neural network proposed by Bengio et al. [Bengio, 2008]. Several word

embedding techniques have been developed by adapting the NNLM and Transformer
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methods to increase the efficiency and the quality of the vectors. Word2Vec and Fast-

Text are examples of NNLM-based word embedding models, which use neural network

language models to generate word vectors. BERT, on the other hand, is an example of

a Transformer-based word embedding model, which uses the transformer architecture to

generate more contextually-rich word vectors.

2.2.2.1/ WORD2VEC

Word2Vec [Mikolov et al., 2013] is the most representative method of the NNLM-based

approach [Li et al., 2018]. The basic assumption behind Word2Vec is that words with

similar contexts are supposed to have similar meanings. Word2Vec model is capable

of capturing the semantic information of the words. This model implements continuous

bag-of-words (CBOW) and skip-gram models to vectorize the words.

Figure 2.20: Word2Vec model architecture (window size = 2) [Mikolov et al., 2013].

As seen in Figure 2.20, CBOW model is trained to predict the center word (w(t)) as the

output based on its context (w(t − 2),w(t − 1),w(t + 1),w(t + 2)) as the input. The goal of

the CBOW model is to find the word representation (projection) that is useful to predict

the target word by its context words, whereas the skip-gram model is the reverse of the

CBOW model. Skip-gram model is trained to predict the context words (w(t − 2),w(t −

1),w(t + 1),w(t + 2)) as the output given the center word (w(t)) as the input. Projection

contains a weight matrix with V × N size, where V is the number of unique words and N

is the number of neurons in the hidden layer.
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The center word and context words are defined by a word window size. For instance, in

the sentence ”I saw a new book store near the park”, the center word ”store” has {”new”,

”book”, ”near”, and ”the”} as its context words with window size ’2’. Before feeding it to

the network, in pre-processing, each unique word is converted into a one-hot encoding

form. Consequently, the negative data are presented more than the positive data. This

condition pushes the network to be more sensitive to overfitting and also increases the

number of data to be trained. Negative sampling is applied in Word2Vec to overcome

this issue by subsampling the negative data based on the distribution of the frequency of

words. Instead of using the network for predicting the output, the projection (the hidden

layer) is used as the word embedding [Almeida et al., 2019].

2.2.2.2/ FASTTEXT

The FastText model [Mikolov et al., 2018] was proposed by the Facebook AI Research

group. FastText is an advancement of the Word2Vec model which is also built based on

CBOW and skip-gram models with negative sampling. The main difference between Fast-

Text and Word2Vec is the vector assignment. Word2Vec assigns the vectors only based

on words while FastText assigns them based on also the characters (called atomic to-

kens). FastText applied subword n-gram information to acquire the relationship between

characters to capture the internal semantics of word information [Wang et al., 2020].

FastText generates character n-grams of specific window sizes to represent the center

word. For instance, the sentence ”I saw a new book store near the park” is divided into

words and a list of character n-gram is generated for each center word. For the center

word ”store”, a list of character n-gram (n = 3) {”sto”, ”tor”, ”ore”} is generated. This

concept adds the advantage to the model to predict the unseen word (out-of-vocabulary)

which is not the case in Word2Vec. FastText model is reportedly acquiring better results

than Word2Vec, especially in the languages that have a heavy morphology and composi-

tional word-building like French, German, and Spanish [Almeida et al., 2019].

2.2.2.3/ BERT

Bidirectional Encoder Representations from Transformers (BERT) [Devlin et al., 2018]

adopts the transformer model to train a language model. The architecture of the BERT

model is a multi-layer bidirectional Transformer encoder. BERT has two different ver-

sions based on the model’s complexity. BERT-base is a transformer encoder model with

12 layers, 768 sizes for the hidden layer, and 12 self-attentions heads, and BERT-large

consists of 24 layers, 1024 size for the hidden layer, and 16 self-attention heads. The

representation of the input in the BERT model is illustrated in Figure 2.21. In the illus-

tration, the input consists of multiple sentences. Firstly, the token [CLS] and [SEP] are
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added to the beginning and the end of the data as the symbol of the beginning of the data

and the end of the sentences. Then each input element is tokenized with the addition of

the position embedding, the position information of all data, and segment embedding, the

segmentation between each sentence.

Figure 2.21: BERT input representation [Devlin et al., 2018].

Clinical BERT. Clinical BERT is a clinically oriented BERT model [Alsentzer et al., 2019].

The model was initialized with BioBERT [Lee et al., 2020] (BERT-base that was trained

with PubMed article abstracts and PubMed Central article full texts) and trained on either

all MIMIC notes or only discharge summaries. MIMIC database contains electronic health

records from ICU patients at the Beth Israel Hospital in Boston, MA.

2.2.2.4/ OUT-OF-VOCABULARY (OOV)

Out-of-vocabulary (OOV) is one of the major challenges in a word embedding. OOV

words correspond to words that are not trained in the network because of the limited

number of such words available in the training datasets. Wang et al. [Wang et al., 2020]

categorized the type of OOV into four:

• Professional nouns and research field names

• Emerging common vocabulary e.g. online terms

• Proper names e.g. name of places, name of people, name of the organization

• Other terminology e.g. name of the products, title of books, the title of movies

Word embedding models like Word2Vec for instance can vectorize the words by learn-

ing the semantic representations of the words on large datasets. However, these

models have no ability to embed the words which belong to the OOV category since

these words produce zero-vectors or no output that degrades the quality of the model

[Lochter et al., 2020]. There are several solutions that are commonly applied to deal with
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OOV such as re-training, ignoring, or replacing with other vectors. Among these solu-

tions, re-training is the most preferred solution as it can expand the vocabulary to cover

all needed words [Wang et al., 2020]. However, the vector representation of OOV words

can only be generated from the model re-training if it is trained with enough data. The

traditional solution to deal with OOV is to ignore the word but it restricts the model to

understand the meaning of the sentence [Adams et al., 2017].

The solution to replace the OOV output with a new representative vector has been ac-

tively studied such as replacing it with the vector’s average of the closest words of an OOV

word in the sample [Khodak et al., 2018], and generating a new vector based on the mor-

phological structure. Though the method proposed by Khodak et al. [Khodak et al., 2018]

is able to generate a new vector for the OOV, it lacks to capture the complex semantic

relationship. The new OOV vector based on morphological structure generates a good

enough representative vector to enhance the model performance. FastText is one of the

word embedding methods that performs the morphological structure (subword) analysis

to deal with OOV. It finds the meaning of the OOV subword by taking the meaning of

the other subwords which are captured from other words in the vocabulary. However, the

main drawback of this approach is that it is incapable of handling words that have different

meanings in a different context. The morphological information approach is capable of

generating only the same representation of the OOV words regardless of the context in

which it appears [Lochter et al., 2020].

2.3/ EVALUATION METRICS

Evaluation metrics computes the performance of the model predictions. In this re-

search, Receiver Operating Characteristic (ROC), Free-Receiver Operating Characteris-

tic (FROC), Precision-Recall (PR), Average Precision (AP), and Euclidean Distance (ED)

metrics are utilized.

2.3.1/ RECEIVER OPERATING CHARACTERISTIC (ROC)

Receiver operating characteristic (ROC) is an effective method to evaluate the perfor-

mance of a diagnostic model [Kumar et al., 2011]. ROC plots the sensitivity or true pos-

itive rate (TPR) on the Y-axis against the false positive rate (FPR) on the X-axis with

different thresholds. TPR and FPR are calculated as follows:

FPR =
FP

FP + T N
(2.4)
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T PR or S ensitivity or Recall =
T P

T P + FN
(2.5)

True Positive (TP) indicates that the result predicts the presence of the label correctly and

True Negative (TN) indicates that the result predicts the absence of the label correctly.

While False Positive (FP) indicates that the result is wrongly predicted to be present and

False Negative (FN) indicates that the result is wrongly predicted to be absent.

The area under the curve (AUC) of ROC-curve is a global measurement of a classification

model to show its ability to distinguish the classes. An ideal model is represented by the

ROC-curve which is closer to the top-left part of the curve and has an AUC value of

almost 1.0, while a model that has no ability to discriminate the classes is represented as

a perfect diagonal ROC curve with an AUC value of almost 0.5 [Hoo et al., 2017].

2.3.2/ FREE-RECEIVER OPERATING CHARACTERISTIC (FROC)

Compared to ROC-curve, FROC-curve is more suitable for evaluating the model with ab-

normal behavior [Bandos et al., 2009]. FROC-curve provides meaningful information with

respect to class imbalance which is vital in many medical applications. This is because

the FROC-curve directly focuses on the number of false-positive (FP) without having any

impact on the true negative (TN) (as in the case of FPR) that may diverge the analy-

sis of the model performance (see Eq. 2.4). FROC-curve plots per-lesion sensitivity as

calculated in Eq.2.5 against the average number of FP detected per image (FPI) for all

classification thresholds (see Figure 2.22). It calculates a sensitivity score at some av-

erage FPI values in a small range between 0 to 8 (1/8, 1/4, 1/2, 1, 2, 4, 8). An ideal

classification model has high sensitivity scores in all average FPI ranges.

Figure 2.22: Illustration of FROC Curve.
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2.3.3/ PRECISION-RECALL (PR)

Precision-Recall (PR) curve plots the precision values (see Eq. 2.6) on the Y-axis against

the recall values (see Eq. 2.5) on the X-axis. The area under the PR curve (AUPR)

represents the performance of a classification model. An ideal model will have high values

for both precision and recall and an AUPR value of 1.0 (the highest value).

Precision =
T P

T P + FP
(2.6)

2.3.4/ AVERAGE PRECISION (AP)

Average precision (AP) is calculated to evaluate the performance of classification models

ideally used for multi-label classification tasks. It summarizes the precision-recall curve

as the weighted mean of precisions achieved at each threshold (Rn), with an increase in

recall from the previous threshold (Pn) as expressed in Eq.2.7.

AP =
∑

n

(Rn − Rn−1) Pn (2.7)

2.3.5/ EUCLIDEAN DISTANCE (ED)

Euclidean distance (ED) is a distance between two points in Euclidean space. The lower

ED value indicates better performance. ED calculation is expressed in Eq. 2.8. ED(ĉ, c)

is the average of ED with N total number of images, ĉ is the ground-truth that contains

the pixel coordinates (ĉx, ĉy), and c is the prediction with (cx, cy) pixel coordinates.

ED(ĉ, c) =
1
N

N∑ √
(ĉx − cx)2 +

(
ĉy − cy

)2
(2.8)
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MICROANEURYSMS DETECTION

3.1/ INTRODUCTION

Early treatment is the most effective way to reduce the risk of vision loss caused by Dia-

betic Retinopathy (DR) [Faust et al., 2012]. Thus, regular eye screening is an important

activity for early DR detection [Stitt et al., 2016]. As mentioned in Section 2.1.4.1, DR

is diagnosed by analyzing the presence of some visible lesions in color fundus images

obtained from an eye examination [Yau et al., 2012]. Among DR lesions, microaneurysm

(MA) is the first symptom of DR that appears as a tiny red spot in the retina image (see

Figure 3.1). MA is the swelling of tiny blood vessels caused by a weakening of the vas-

cular walls [Klein et al., 1984] that has 15 to 60 µm in diameter [Meyerle et al., 2008] and

seldom exceeds 125 µm [Imani et al., 2015].

Figure 3.1: Color fundus image with DR lesions.

Computer-aided detection (CAD) for MAs detection is expected to have high accuracy

and efficiency in terms of computational cost and time [Abràmoff et al., 2010]. Automatic

MAs detection aims to reduce the work of ophthalmologists in examining eye screening by

45
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providing reduced numbers of False Positives (FPs) in the results. However, having a high

sensitivity with a small number of False Positive per Image (FPI) has been a challenge

in automatic MAs detection. The major causes of this issue is a severe imbalanced data

and poor object features. The information of MAs in a color fundus image is much lesser

than the non-MAs which in turn affects the learning process in a machine learning-based

approach. The poor performance of MAs detection for both supervised and unsupervised

approaches shows that, so far, the extracted object features have not represented the

object’s characteristics accurately.

3.2/ OBJECTIVE AND CONSTRAINT

The main objective of the research in this chapter is to build an automatic MAs detection

from a color fundus image using CNN as the classifier. The MAs detection is expected to

have high sensitivity with a reduced number of FPI. The model is evaluated in individual

datasets, so the model should be able to learn from a limited number of training data.

3.3/ OUTLINE OF THE CHAPTER

A brief review of the related works is presented in Section 3.4. Section 3.5 describes the

proposed methodology applied in this research to solve the problem that is mentioned in

Section 3.2. The implementation details of the proposed method is described in Section

3.6, and the results of the experiments are discussed in Section 3.7. Lastly, the conclusion

of the experiments that are conducted for MAs detection is explained in Section 3.8.

3.4/ RELATED WORKS

As illustrated in Figure 3.2, the general pipeline of MAs detection is divided into three

steps: preprocessing, MAs candidate extraction, and MAs detection. All three steps have

a significant impact on the results of MAs detection.

Figure 3.2: General workflow of MAs detection.

Preprocessing is the initial step in MAs detection. It aims to increase the quality of the
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information in the input image. As seen in Figure 3.3, each channel of the input im-

age contains different information. The green channel is extracted from the color fundus

image and enhanced using CLAHE (Contrast Limited Adaptive Histogram Equalization)

[Pizer et al., 1987] since the contrast difference between the background and the lesions

is comparatively more important in the green channel.

(a) Red channel (b) Green channel

(c) Blue channel

Figure 3.3: Fundus image channels, (a) is the red channel, (b) is the green channel, (c) is the
blue channel.

In the second step, MAs candidate extraction is crucial as the sensitivity can decrease

significantly due to missed-real-MAs in MAs detection results. Thus, Budak et al.

[Budak et al., 2017] and Zhang et al. [Zhang et al., 2021] did not ignore any informa-

tion from the image and selected all pixels in the image as MAs candidates. Even though

this approach does not have any missed-real-MA, it increases the computation cost. On

the other hand, Eftekhari et al. [Eftekhari et al., 2019], Long et al. [Long et al., 2020],

and Xia et al. [Xia et al., 2021] select the MAs candidates only from the objects that are

highly potential to be MA. This approach is computationally efficient but with a higher

risk of having missed-real-MA. However, the risk of decrement in sensitivity can be re-

duced, thanks to the accuracy of the MAs candidate extraction. The MAs candidate

can be extracted both with a supervised and unsupervised approach. Eftekhari et al.

[Eftekhari et al., 2019] and Xia et al. [Xia et al., 2021] extract the MAs candidates in a su-

pervised approach by generating a probability map using a deep neural network, whereas

Dai et al. [Dai et al., 2018], Adal et al. [Adal et al., 2014], Long et al. [Long et al., 2020],

and Zhang et al. [Zhang et al., 2020] extract the MAs candidates using an unsupervised
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approach by applying hand-crafted feature extraction techniques such as top-hat mor-

phological transformation, hessian matrix, and shape-based features.

Due to the size of the MA, the MAs candidate image is split into patches with

one MA candidate present in the center of the patch. The MAs candidate

patches are the input of the MAs detection model which is a classifier built to de-

tect MAs by applying machine learning algorithms. In machine learning, the fea-

tures that differentiate MAs and non-MAs are extracted based on local cross-section

[Du et al., 2020], Sliding-Band-Filter [Melo et al., 2020], scale-space, SURF, and Radon-

transform [Adal et al., 2014][Giancardo et al., 2011][Giancardo et al., 2010]. The results

of hand-crafted features combined with machine learning as a classifier are competitively

low and often fail in undefined MAs conditions such as blurry edges and subtle contrast.

In deep learning, the model has the ability to learn the object features based on the given

training sets. However, the training process in deep learning still has many issues, such

as imbalanced data and overfitting. Dai et al. [Dai et al., 2018] tackled the imbalanced

data by applying a cascade learning technique. Cascade learning enables the model to

learn more features from non-MAs data with balanced samples to distinguish MAs and

non-MAs. Cascading also helps to reduce the FP results by building multiple stages of

network filtering. Dai et al. [Dai et al., 2018] also added clinical reports to enrich the

object features. AlexNet architecture [Krizhevsky et al., 2012] is used in order to prevent

overfitting. The network is trained with a private dataset containing 645 images. Instead of

re-training the network with FP data, Budak et al. [Budak et al., 2017] proposed to re-train

only the low-performance batch to increase the detection results. This model is built with

a simple Deep Convolutional Neural Network (DCNN) and trained with 50 images. The

sensitivity of their performance is still lesser than 0.5. Orlando et al. [Orlando et al., 2018]

designed their classifier with LeNet architecture [LeCun et al., 1998] to reduce overfitting.

They feed the network with the ensemble vector of descriptors and apply the Random

Forest as a classifier to refine the prediction results.

Unlike others, Zhang et al. [Zhang et al., 2021] built a stacked fully connected sparse

autoencoder to extract the object features and use the last softmax layer to detect the

MAs. Background suppression based on dissimilarity features is introduced in the input

channel. However, this method requires more training images as it needs to be trained

from scratch. Another strategy to deal with imbalanced data is data augmentation. Since

general data augmentation such as rotating, shifting, and flipping leads to overfitting due

to the small less-texture patch, Xia et al. [Xia et al., 2021] introduced a specific data

augmentation for MAs detection by shifting the location of the MA in the patch until it

is close to the boundary. They used EfficientNet which has multi kernels to detect the

tiny objects. This augmentation technique has less imbalanced data between MAs and

non-MAs, but it fails for the patches having more than one MA.
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Meanwhile, Kou et al. [Kou et al., 2019], Xie et al. [Xie et al., 2020], and Chen et

al. [Chen et al., 2018] detected the MAs using a pixel-based approach. Kou et al.

[Kou et al., 2019] implemented different types of encoder-decoder architectures to seg-

ment the MAs. The networks are basically modified U-Net-based architecture such as

U-Net combined with ResNet blocks (Res-UNet), applied recurrent-convolution blocks

into U-Net (RNN-UNet), and a combination of ResNet and recurrent blocks in U-Net ar-

chitecture. Even though it has high accuracy, this approach still produces many FP pre-

dictions without stating any number in detail. Xie et al. [Xie et al., 2020] and Chen et

al. [Chen et al., 2018] proposed the segmentation for MAs detection with the refinement

of segmentation results by re-segmentation and effective decoder modules to reduce the

number of FPs. But this refinement requires a large number of training data. The methods

of related works in lesion-based MAs detection are summarized in Table 3.1.

Table 3.1: Methods of related works in MAs detection.

Author Methods
MAs Candidate Extraction MAs Detection

[Long et al., 2020] Potential pixels (unsupervised) Machine learning with directional local contrast
[Dashtbozorg et al., 2018] Potential pixels (unsupervised) Machine learning with local convergence
[Eftekhari et al., 2019] Potential pixels (supervised) Deep learning in two-steps
[Orlando et al., 2018] Potential pixels (unsupervised) Machine learning with ensemble features
[Xia et al., 2021] Potential pixels (supervised) Deep learning with custom augmentation
[Zhang et al., 2020] Potential pixels (unsupervised) Image processing with shape-based filter
[Budak et al., 2017] All pixels Deep learning with batch re-training
[Zhang et al., 2021] All pixels Stacked fully connected sparse autoencoder
[Dai et al., 2018] Potential pixels (unsupervised) Deep learning with cascade learning

The performance details of the related works in lesion-based MAs detection are pre-

sented in Table 3.2.

Table 3.2: Performance of related works in MAs detection.

Method Testing dataset Training images FPI
1/8 1/4 1/2 1 2 4 8

[Long et al., 2020] E-Ophta 74 0.075 0.154 0.267 0.358 0.472 0.594 0.699
[Dashtbozorg et al., 2018] E-Ophta 148 0.358 0.417 0.471 0.522 0.558 0.605 0.638
[Eftekhari et al., 2019] E-Ophta 198 0.091 0.258 0.401 0.534 0.579 0.667 0.771
[Orlando et al., 2018] E-Ophta 134 0.14 0.2 0.23 0.37 0.45 0.52 0.62
[Xia et al., 2021] E-Ophta 452 0.668 0.701 0.71 0.718 0.72 0.733 0.74
[Xia et al., 2021] IDRiD 452 0.561 0.563 0.565 0.568 0.575 0.601 0.634
[Zhang et al., 2020] ROC 330 0.12 0.284 0.313 0.391 0.492 0.641 0.654
[Budak et al., 2017] ROC 50 0.039 0.061 0.121 0.22 0.338 0.372 0.394
[Zhang et al., 2021] E-Ophta 621 0.885 0.866 0.909 0.986 0.999 1 1
[Zhang et al., 2021] DIARETDB1 621 0.987 0.984 1 1 0.996 1 1
[Dai et al., 2018] DIARETDB1 735 0.933 0.951 0.972 0.978 0.984 0.99 0.992

Hence, we proposed two techniques for MAs detection using deep learning-based classi-

fiers instead of segmentation to have more comparisons in the evaluation. The proposed

methods tackle the challenges in MAs detection with four factors:

1. Using a better enhancement image technique for the green image channel.

2. Implementing an unsupervised method for MAs candidate extraction to be indepen-
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dent of a large required data in MAs candidate extraction since a supervised method

needs a large training dataset to have less FPs results in MAs candidate extraction.

3. Adding a background suppression image to the classifier to enhance the features.

4. Applying two different training strategies to the classifier (ensemble and cascading)

to reduce the number of FPs.

3.5/ METHODOLOGY

Figure 3.4 illustrates the proposed pipeline to detect the MAs. It starts with preprocessing

of the RGB fundus images by extracting and enhancing the green channel (EnhGreen).

Small patches (so-called MA candidates) are generated from the processed image with

the help of vessel segmentation results. Finally, MAs are detected with two different MAs

classification strategies, ensemble and cascade learning. Overall, the pipeline can be

divided into five parts: Preprocessing, Vessel Segmentation, MAs Candidate Extraction,

Patch Generator, and MAs Classification.

Figure 3.4: The main pipeline of MAs detection.

3.5.1/ PREPROCESSING

The color fundus image is resized into half to reduce the computation cost while preserv-

ing the MAs information. The green channel is extracted as it has the highest contrast

between the background and the lesions. The fundus image background is removed

to focus on the retinal field-of-view (FOV) by applying the threshold to the result of the

median filter (kernel size is 31), followed by the Gaussian filter (kernel size is 31) to re-

move the noise in the image. The threshold value is defined manually (15), with 0 for the

background and 1 for the fundus. Lastly, it is enhanced by r-polynomial transformation
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[Walter et al., 2007] to prevent the hidden-potential lesions due to the uneven illumination,

followed by CLAHE to correct over-amplification of the image contrast.

As explained in Eq. 3.1, the r-polynomial transformation T is mapping G → U, where

G = {gmin, . . . , gmax} is the green channel of the input image, and U = {umin, . . . , umax} is

the transformed gray image. The transformation is defined by parameters µ f , r, umin, and

umax. µ f is calculated as the global intensity mean of the FOV in G, whereas, r = 1,

umin = 0, and umax = 1 are selected heuristically.

T (g) =


1
2 (umax−umin)

(µ f−gmin)r · (g − gmin)r + umin, i f g ⩽ µ f

− 1
2 (umax−umin)

(µ f−gmax)r · (g − gmax)r + umax, i f g > µ f

(3.1)

As seen in Figure 3.5, the combination of r-polynomial transformation and CLAHE

(EnhGreen) can enhance the image much better than using CLAHE alone, preserving

the pixels’ information, especially the dark-red-lesions.

(a) Green channel (b) CLAHE (c) R-polynomial and CLAHE

Figure 3.5: Preprocessing methods, (a) is the original image, (b) and (c) are the results of CLAHE
and the proposed enhancement techniques.

3.5.2/ VESSEL SEGMENTATION

The abnormalities in the retinal vessels (vessel branching pattern, vessel width, tor-

tuosity, and vessel density) can indicate many eye diseases due to the complica-

tion of hypertension, arteriosclerosis, cardiovascular disease, glaucoma, and stroke

[Roychowdhury et al., 2014]. Another usage of retinal vessel segmentation is to remove

the vessels from the image in some retinal abnormalities detection such as hemorrhages

and in optic nerve localization [Gross et al., 2013]. Many studies focus on vessel seg-

mentation, both in supervised and unsupervised methods. The performance of vessel

segmentation with supervised deep learning outperforms the unsupervised methods.

Among deep learning methods, U-Net and multi-models are the leading architectures

[Chen et al., 2021a]. However, vessel segmentation is not the focus of this research. An
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existing vessel segmentation method is applied to generate vessel segmentation for the

fundus images that are used in our MAs detection.

Retinal vessel segmentation is required in MAs candidate extraction to focus on the other

dark-red objects without interference from the intensities of the vessel. The vessel seg-

mentation is implemented based on the method proposed by Son et al. [Son et al., 2017]

to generate the probability map of the retinal vessel. Its performance achieved 0.9803

of ROC, 0.9149 of Precision-Recall, and 0.829 of Dice Coefficient for the DRIVE dataset

and 0.9838 of ROC, 0.9167 of Precision-Recall, and 0.834 of Dice Coefficient for STARE

dataset.

The vessels are segmented with a GAN-based method to have more realistic results. The

full-size color fundus image is provided to the generator instead of patches. The generator

is a U-Net architecture which generates the probability map of the retinal vessels. The

discriminator determines whether the image provided is the image segmented by the

human expert (ground-truth) or the result generated from the generator. The objective

function of this network is the minimax function and a loss function that penalizes the

distance between the ground-truth and generator result.

(a) Vessel segmentation after thresholding (b) Final vessel segmentation

Figure 3.6: Post-processing of retinal vessel segmentation with the red boxes indicates the loca-
tion of ground-truth MAs.

The probability map of the vessel for the color fundus images in this research is predicted

from the pre-trained model on the DRIVE dataset. The threshold value of the probability

map is heuristically determined so that the pixel with the highest probability is selected as

the main vessel. However, some MAs are miss-segmented due to their appearance and

location (close to the vessel). As shown in Figure 3.6, most miss-segmented MAs are

disconnected from the main vessel, so post-processing using a connected-component

algorithm is applied to remove them based on the size of the objects.



3.5. METHODOLOGY 53

3.5.3/ MAS CANDIDATE EXTRACTION

MAs candidates are extracted in an unsupervised approach to reduce the necessity of

a large quantity of training images. Vessel removal is applied to the image by simply

changing all intensities that overlapped with the segmentation result to zero. Background

estimation is applied to the image to separate the image background (outside FOV and

retina background) and the foreground objects. The image background is estimated by

applying a median filter (kernel size is 43) to the image and normalizing it with morpho-

logical reconstruction [Giancardo et al., 2011].

Inspired by the method proposed by Adal et al. [Adal et al., 2014], the MAs candidates are

extracted based on the Gaussian curvature retrieved from the Hessian matrix. Hessian

matrix is defined to hold the information about the second-order derivative of the image I

(see Eq. 3.2).

H =

 ∂2I
∂2 x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂2y2

 (3.2)

The curvature of the overlaid object in the image is analyzed by the eigenvalues of its

Hessian matrix (λ1 and λ2). As explained in Eq. 3.3, circular-like objects can be detected

by calculating the determinant of the Hessian matrix by multiplying its eigenvalues.

det(H) = λ1 · λ2 (3.3)

A circular-like object has large values for both eigenvalues, so the MAs candidate is found

by looking for the local maxima of the det(H). However, other circular-like lesions and

objects with a linear-like structure also have a large value in det(H), such as the border of

FOV and retinal vessels. Hence, the elimination steps based on the value and sign of the

object are applied to det(H) to have only the MAs candidate remaining.

The binary image It is produced by thresholding det(H) with ρ value to eliminate the ob-

jects based on its value. The potential candidates are indicated as 1 in the threshold

results. The selection of threshold value ρ is shown in Eq. 3.4.

ρ =
1
N

N∑
det(H), ∀ det(H) > µ (3.4)

The value ρ is the truncated mean value of det(H) distribution with mean µ. The object

is also eliminated based on the sign of the eigenvalues of its hessian matrix as it defines

the curvature of the object.

• |λ+1 |≪ |λ
−
2 | represents a point located in the bright linear-like structure.
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• |λ+1 |≪ |λ
+
2 | represents a point located in the dark linear-like structure.

• |λ−1 |≈ |λ
−
2 | represents a point located in the bright circular-like structure.

• |λ+1 |≈ |λ
+
2 | represents a point located in the dark circular-like structure.

λ+ indicates the eigenvalues having a positive sign and λ− indicates the eigenvalues hav-

ing a negative sign. As described in Eq. 3.5, MAs candidates are assigned to objects

in the image with positive signed-eigenvalues as it represents the objects with a dark

circular-like or linear-dark circular-like structure for all It = 1.

Ires =


1, It > 0 and

λ1

λ2

 > 0

0, otherwise

(3.5)

Figure 3.7 shows the result of value-base elimination followed by sign-based elimination

as the output of MAs candidates extraction image Ires that contains only MAs candidates.

(a) Value-based elimination (b) Sign-based elimination

Figure 3.7: Results of MAs candidate extraction.

3.5.4/ PATCH GENERATOR

Patch generation aims to minimize the object’s ROI and reduce the computation cost in

the classification step. There are five different patches generated: Red′, Green′, Blue′,

EnhGreen′, and BackS pr. The Red′, Green′, Blue′ patches are generated by cropping the

RGB fundus image and EnhGreen′ patches are generated by cropping EnhGreen, with one

MA candidate located in the center of the patch. BackS pr patch generation is explained

in Section 3.5.4.1. The patch’s size n is selected heuristically so that the MA is covered

completely inside the patch to contain more surrounding information.
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3.5.4.1/ BACKGROUND SUPPRESSION

The goal of background suppression is to remove the background noise by blurring it so

that the only remaining information present is the pixels that belong to the MAs candidate

(see Figure 3.9). Inspired by Zhang et al. [Zhang et al., 2021], the object features are

extracted based on the local Hessian matrix as explained in Eq. (3.2) because of its

effectiveness in representing the structure of objects. The object features are extracted by

calculating the determinant of its Hessian matrix values (see Eq. (3.3)) and differentiate

the MAs from the other objects based on γbs threshold value. The algorithm 1 describes

the background suppression algorithm.

Three regions of interest (ROIs) are selected from the subset of the image to compare the

values of a determinant matrix in order to choose the appropriate γbs value to eliminate

the background objects. First ROI roi1 is located in the center of the image with the size

of its tolerance value (K=5) to directly point to the region where MAs are surely located.

The mean value of this ROI µ1 is computed to be its representation value.

Algorithm 1 Background Suppression

Input: A patch of green enhancement result (EnhGreen′)

Output: Result of background suppression (BackS pr)

1: Extract Hessian matrix as explained in Eq. 3.2 (Ihes)

2: Find the eigenvalues (λ1, λ2)

3: Calculate determinant of Ihes as explained in Eq. 3.3 (Idet)

4: Select ROI (K x K) in the center of the patch (roi1)

5: Calculate mean of roi1 (µ1)

6: Select ROI (2K x 2K) in the center of the patch (roi2)

7: Calculate mean of roi2 (µ2)

8: Calculate mean of Idet (µ3)

9: γbs = max(µ1, µ2, µ3)

10: Threshold EnhGreen′ image with γbs (BackS pr)

11: BackS pr = BackS pr ∩ λ+1 ∩ λ
+
2

12: Return BackS pr

The second ROI roi2 has the same central location as roi1 but double in size, to be able to

learn the contrast difference between the object and nearest-background surroundings.

The contrast difference of the smaller MAs is higher than the bigger MAs since the in-

formation of the background for the small-sized MA could already be found in the roi2.

These ROI selections are illustrated in Figure 3.8.
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Figure 3.8: Illustration of ROI selections in background suppression. Red box indicates roi1 and
green box indicates roi2.

However, there is no background information found in the case of bigger MAs, so the

mean value of a full image is also computed µ3. The highest mean value among these

regions, γbs is selected to differentiate the foreground and background. Finally, the results

which have negative eigenvalues are also discarded as the local maximum is not the only

information contributing to the determinant of the Hessian matrix [Adal et al., 2014]. The

final result of background suppression in a green patch is shown in Figure 3.9.

(a) Green patch (b) Threshold result (c) Final result

Figure 3.9: Background suppression, (a) is the input image, (b) is the mask of foreground (objects
that look like MAs), and (c) is the results of background suppression.

3.5.5/ CLASSIFIER

As mentioned in Section 3.4, a classifier for MAs requires a simple network architecture

due to the limitation of data and object features. The network architecture implemented

in this research is built with EfficientNet-B0 as a base model. Though EfficientNet-B0 is

a more complex and deeper network, it can be trained with smaller-size training images

with less risk of overfitting because of the compound scaling technique. The fine-tuning

of the EfficientNet-B0 that was trained with the ImageNet dataset is applied to reduce the

total number of training images required. However, the number of channels of the input

image needs to be three. To also add a BackS pr image to the classifier, the experiments

in this research have two different network strategies, ensemble and cascade learning.
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Ensemble learning aims to find the best image channel combination for MAs detection

and cascade learning aims to focus to reduce the number of FPs detected.

3.5.5.1/ ENSEMBLE LEARNING

Unlike Orlando et al. [Orlando et al., 2018] who applied the ensemble vector for the de-

scriptors, this experiment implements ensemble learning in the prediction result.

In this experiment, the network learns the object features that are benefited from hand-

crafted features. Instead of combining the features from the hand-crafted and neu-

ral network and giving it directly to the network as the method proposed by Orlando

et al. [Orlando et al., 2018], the hand-crafted features are analyzed beforehand to re-

duce the complexity of the background surrounding the MA (see Section 3.5.4.1). This

background-suppressed image is fed into the network as an additional channel that gives

more features to classify the MAs.

Figure 3.10: Illustration of Ensemble learning. The model consists of three units of identical
networks with different input channels. The final prediction is selected by applying ensemble
learning to all predictions from all unit networks.

The illustration of the ensemble learning strategy is shown in Figure 3.10. The model

consists of three identical unit networks with different input channels followed by an en-

semble learning vector as a decision maker for the final prediction. Each unit network

has three input image channels. The input image consists of the patches that are gen-

erated from the patch generator (see Section 3.5.4). Inspired from [Zhang et al., 2021],
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the combination of input image channels is EnhGreen′, BackS pr, and Red′ for the first unit

network. The Red′ is replaced by Green′ in the second unit network and Blue′ in the third

unit network.

The training of each unit network is independent in order to analyze the impact of each

unit network on the final prediction. The background suppression image (BackS pr) is an

additional channel to the network. The Red′, Green′, Blue′ images are fed into each unit

network separately by considering the information in each color image channel.

The imbalanced dataset is down-sampled randomly to be in an equal number of positive

and negative classes without any data augmentation. Each unit network is trained with

a different down-sampled dataset with binary cross-entropy as the loss function. Instead

of giving more weight to the green channel [Dai et al., 2018][Kou et al., 2019], the weight

for each unit network is equal since the information from the green channel is already

distributed. The final prediction is decided by voting the ensemble vector. The average

probability of the majority unit network is the probability of the final prediction.

3.5.5.2/ CASCADE LEARNING

Cascade learning is the second training strategy implemented in order to reduce the

number of FPI. This experiment is inspired by Dai et al. [Dai et al., 2018] and Zhang et al.

[Zhang et al., 2021]. The input for this network scheme is Blue′, EnhGreen′, and BackS pr

patches. This combination of input image channels is selected based on the outcome of

the ensemble learning experiment (see Section 3.5.5.1).

Figure 3.11: Cascade learning.

The illustration of cascade learning in this experiment is described in Figure 3.11. The

model of this MAs classifier consists of two-unit networks (Network I and Network II). Each

unit network has one neuron in the last layer with a sigmoid activation function. The image
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patches y consist of MA (+) and non-MAs data with a severe imbalance distribution. The

input of Network I consists of all MAs patches in y and non-MAs patches that are down-

sampled into the same number as MAs patches (y1). The Network I is trained with the

ImageNet weight of EfficientNet-B0 as initial weights without any freezing layer applied.

After training, Network I predicts the original data (y) to separate the type of data that is

able to be classified correctly. The MAs prediction is thresholded with 0.5, greater than

0.5 as MA, and less than 0.5 as non-MA. The miss-predicted outputs, which are assumed

to be hard cases, are fed to Network II to learn again. The input of Network II is the FP

output from Network I and MA (+), the same MAs data as Network I. The negative data

(FP) is also down-sampled (y2) to match the total of MAs data.

Network II has the same architecture as Network I but with different weight initialization.

Network I and Network II are trained sequentially. Network II is trained with the final

model of Network I as the initial weights. In testing, the final prediction is decided based

on the prediction of all unit networks since each network learns different features. Only

the patches predicted as MAs in both networks are classified as MAs.

3.6/ IMPLEMENTATION DETAILS

Computations have been performed on the supercomputer facilities in "Mésocentre de

Calcul de Franche-Comté". The experiments of MAs classification are implemented on

the Tensorflow platform with python programming language in Ubuntu-based server ver-

sion 18.04.5 LTS with 252 GB RAM and GPU Tesla V100 DGXS 32 GB. The input image

size is 2000 × 1328, and the patch size is 64x64. The ratio of MA and non-MA patches

that are generated is 1:46. The optimizer for the ensemble classifier is Adam, and it is

trained with 100 epochs for each unit network. While in the cascade classifier, Network

I is trained with Adam optimizer with a 0.001 learning rate and SGD for Network II with

the same learning rate. Each network is trained in 600 epochs with a 0.5 reduction in the

learning rate every two increased validation loss. The hyperparameters of all networks

are selected heuristically. The training and testing for experiments in MAs classification

are independent for each dataset.

3.7/ EXPERIMENTAL RESULTS

This section contains the results of the MAs detection with both ensemble learning as well

as cascade learning. The first experiment is trained and tested with the IDRiD dataset.

The second experiment is trained and tested with IDRiD and E-Ophta dataset. The eval-

uation metrics that are applied to evaluate the performance of MAs detection are FROC
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and PR Curve.

3.7.1/ ENSEMBLE LEARNING

The performance of MAs detection with ensemble learning is categorized into two, global

prediction and local prediction. Global prediction is the performance of the model for a

whole fundus image, and local prediction is the performance of the model for the ROI that

is located close to the fovea. Local prediction is also evaluated since the MAs that are

located close to the fovea have a higher priority in practice. As described in Section 2.1,

the fovea is a tiny pit located in the macula of the retina that provides the clearest vision.

The failure of recognizing the MAs that are isolated in one to two disc diameters (DD) of

fovea often resulted in arbitration for the final gold standard grading [Boucher et al., 2020].

3.7.1.1/ GLOBAL PREDICTION

The performance of this experiment is compared with the other reported state-of-the-art

models that focus on the same IDRiD dataset and the same evaluation indicators. The

performance is evaluated on each unit network separately with the Proposed method (Blue)

which is the unit network with Blue′, the Proposed method (Red) which is the unit network

with Red′, and the Proposed method (Green) which is the unit network with Green′. The

performance of the final prediction is represented as the Proposed method (Final).

As described in Table 3.3, the performance of all the proposed methods in the first exper-

iment is lower than MS-EfficientNet [Xia et al., 2021] which has the highest performance

in the IDRiD dataset. The significant difference in performance between the proposed

method and MS-EfficientNet [Xia et al., 2021] is the number of data used for training of

both MAs segmentation (for MAs candidates extraction) and MAs classification. They ex-

tracted the MAs candidates and classified the MAs in a supervised approach. They used

the cross dataset, a combination of multiple datasets that consists of around 400 images

for training, while the proposed method uses only 54 images for IDRiD. The key issue for

the classification and segmentation of MAs with a deep learning-based approach is the

limited availability of positive data which causes a severe imbalance in the dataset. The

proposed method tackles this issue in two steps. One is by applying an unsupervised

method for MAs candidates extraction which minimizes the necessity of more data in

the training phase and the second is by implementing an ensemble learning scheme with

background suppression information to enhance the features even from less positive data.

It has to be noted that, SESV-DLab [Xie et al., 2020] and DeepLabv3 [Chen et al., 2018]

are evaluated at the pixel level while the proposed methods and Xia et al. are evaluated

at the lesion level.
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Table 3.3: Comparison of the proposed method performance (patch size 64) with other MAs
detection algorithms. Bold values indicate the highest scores among all algorithms. Italic values
indicate the highest scores among internal algorithms.

Algorithms
Dataset FPI

AUC (PR)
Train Test 1/8 1/4 1/2 1 2 4 8

MS-EfficientNet [Xia et al., 2021] Cross dataset IDRiD 0.561 0.563 0.565 0.568 0.575 0.601 0.634 0.779
SESV-DLab. [Xie et al., 2020] Cross dataset IDRiD - - - - - - - 0.51

DeepLabv3 [Chen et al., 2018] Cross dataset IDRiD - - - - - - - 0.487

Proposed method (Blue) IDRiD IDRiD 0.025 0.045 0.065 0.103 0.174 0.246 0.376 0.503

Proposed method (Final) IDRiD IDRiD 0.019 0.036 0.056 0.105 0.189 0.287 0.41 0.49

Proposed method (Red) IDRiD IDRiD 0.009 0.019 0.036 0.072 0.144 0.247 0.337 0.486

Proposed method (Green) IDRiD IDRiD 0.006 0.013 0.026 0.052 0.103 0.207 0.315 0.470

As for the internal performance, the results in Table 3.3 show that the

Proposed method (Blue) achieved a 0.503 score for AUC (PR) which is the highest

score among the other proposed methods. It means that the Proposed method (Blue)

produces almost the same quantity of FPs and FNs in the predictions. Meanwhile,

the AUC (PR) of the Proposed method (Red) is less than the Proposed method (Final)

and Proposed method (Blue). The Proposed method (Green) has the lowest perfor-

mance in FROC and AUC (PR) among other proposed methods. Even though the

Proposed method (Blue) has the highest AUC (PR), the Proposed method (Final) achieved

the highest sensitivity for 1, 2, 4, and 8 FPIs. It shows that applying ensemble learning

for the final predictions gives a positive impact to reduce the FPs and increase sen-

sitivity. The low sensitivity in the Proposed method (Final) for 1/8, 1/4, and 1/2 FPI is

caused by the significant sensitivity difference between the Proposed method (Blue) with

the Proposed method (Red) and the Proposed method (Green).

Thus, it can be inferred that the ensemble learning of all color image channels can reduce

the number of FPs and increase its sensitivity but the combination of the blue channel,

enhanced-green and background suppression holds the highest information to detect the

MAs alongside enhanced-green and its background suppression.

Table 3.4: The performance of the Proposed methods in different patch sizes. Bold values indicate
the highest score among patch sizes. Italic values indicate the highest score in each patch size.

Patch Size Methods
FPI

AUC (PR)
1/8 1/4 1/2 1 2 4 8

64 Proposed method (Blue) 0.025 0.045 0.065 0.103 0.174 0.246 0.376 0.503

64 Proposed method (Green) 0.006 0.013 0.026 0.052 0.103 0.207 0.315 0.470

64 Proposed method (Red) 0.009 0.019 0.036 0.072 0.144 0.247 0.337 0.486

64 Proposed method (Final) 0.019 0.036 0.056 0.105 0.189 0.287 0.41 0.49

86 Proposed method (Blue) 0.054 0.079 0.096 0.117 0.176 0.239 0.334 0.505

86 Proposed method (Green) 0.012 0.025 0.051 0.101 0.203 0.295 0.379 0.526
86 Proposed method (Red) 0.014 0.029 0.054 0.098 0.155 0.218 0.312 0.44

86 Proposed method (Final) 0.01 0.019 0.038 0.077 0.153 0.237 0.344 0.475
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The global MAs detection with different patch sizes has also been implemented to an-

alyze the impact of patch size with each image color channel. The performance of the

Proposed methods for patch sizes 64 and 86 are provided in Table 3.4. Among the patch

sizes, the Proposed method (Green) in patch size 86 achieves the highest score in AUC

(PR). It is contradictive to the Proposed method (Green) which has the lowest AUC (PR) in

patch size 64. The Proposed method (Green) with patch size 86 also achieves the highest

sensitivity in 2 and 4 FPI while the Proposed method (Blue) with the same patch size has

the highest sensitivity in FPI<2. The highest sensitivity in 8 FPI is still achieved by the

Proposed method (Final) with patch size 64.

Increasing the patch size means enlarging the ROI in the MA’s surroundings. The selec-

tion of the patch size is critical in MAs detection because of the size and the structure of

the MA. Decreasing the patch size of MA can give direct focus to the network to learn

MA’s features, but it may lead to a lack of background information when it comes to

blurry edges. Whereas increasing the patch size of MA can give more significant features

between MA and the background image, it may miss-lead the network to learn more fea-

tures of the background that has more structures compared to a tiny MA that is located

in the center of the patch (see Figure 3.12 as the examples). In this experiment, in-

creasing the patch size to 86 pixels helps the network to distinguish the MA and non-MA

better for all unit networks as shown in Table 3.4 especially for the green color channel

as it gives the most contrast information for dark objects. The lower AUC (PR) of the

Proposed method (Red) with patch size 86 shows that increasing the patch size leads to

an increase in the number of wrong prediction results.

In patch size 86, the Proposed method (Red) has the lowest score of AUC (PR)

and lowest sensitivity for 4 and 8 FPI while the lowest sensitivity for FPI<4 is held

by Proposed method (Final). In general, the main factor of the low performance in

Proposed method (Final) is because of the voting scheme to predict the MAs from the en-

semble vectors. In patch size 64, the sensitivity for all the FPIs for Proposed method (Final)

never has the lowest sensitivity compared to other color channels. It shows that

most of the MA predictions made by Proposed method (Blue) which has the highest

performance among other unit networks, is matching with the predictions made by

Proposed method (Red) or Proposed method (Green).

(a) Patch 1 (size: 64) (b) Patch 1 (size: 86) (c) Patch 2 (size: 64) (d) Patch 2 (size: 86)

Figure 3.12: Green Patches in different patch sizes.
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So in patch size 64, the voting scheme from the ensemble vectors benefits the final pre-

diction. However, the voting scheme gives different impacts for patch size 86. In the

patch size 86, the sensitivity of most of FPIs for the Proposed method (Final) is the lowest

compared to other unit networks while most of the sensitivity for all the proposed methods

(Blue, Red, and Green) with patch size 86 is higher than the ones with patch size 64. It

shows that the number of majority prediction vectors in Proposed method (Final) with patch

size 86 are from the unit networks that have wrong predictions with high confidence.

Figure 3.13: Global prediction results for Proposed method (Blue) with patch size 64. The red,
green, and blue bounding box indicates FP, TP, and FN (because of classifier). The white circle
indicates the fovea’s ROI.

As seen in Figure 3.13, the prediction results of the Proposed method (Blue) which gives

the highest and most stable color impacts in ensemble learning, the number of TP, FP,

and FN in all images are almost equal. However, the location of some MAs is often

centralized close to the fovea, and the FPs results of the Proposed method (Blue) are not

located in that area. The performance of the MAs detection in this area is explained in

Section 3.7.1.2.

(a) False negative (FN) (b) False positive (FP)

Figure 3.14: False predictions in IDRiD dataset.

The low performance of proposed methods in FROC and AUC (PR) compared to other

algorithms shown in the Table 3.3 describes that the proposed methods are still weak to
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predict the MAs, and predicting FPs and FNs with a high probability. This failure occurs

in objects that have a similar appearance to MA. As seen in Figure 3.14, the proposed

methods fail to distinguish the object in the center of a patch that has the same size as

MA and moderate blurry edges.

3.7.1.2/ LOCAL PREDICTION

This section provides the evaluation of MAs detection in the R radius from the center

location of the fovea. The need for local prediction is due to the fact that failure in the

detection of MAs which are present within one to two disc diameters (DD) of fovea signif-

icantly affects the final gold standard grading [Boucher et al., 2020].

Figure 3.15: Pipeline for local prediction.

The pipeline of the local prediction shown in Figure 3.15 is the modified one from the

main pipeline (see Figure 3.4) which includes fovea detection.

MAs local prediction requires the location of the fovea in the fundus image. The method

implemented for fovea localization is adapted from the method proposed by Meyer et al.

[Meyer et al., 2018], which has the highest evaluation rank of automatic fovea localization

in the Messidor dataset. The fovea is localized by a pixel-wise Multi-Task-Learning (MTL)-

like strategy by reformulating the problem as regressing the distance from each image

location to the closest of both retinal landmarks of interest (OD and fovea). The aim of this

network is to also find the location of the optic disc (OD) and learn the fovea localization

based on the location of OD.
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Figure 3.16: U-Net architecture for fovea localization [Meyer et al., 2018].

This network is trained and tested in the Localization set of the IDRiD dataset. The fovea

and OD are localized by a segmentation model which is built with U-Net architecture (see

Figure 3.16). Due to a difference in the representation of the ground truth dataset between

Messidor and IDRiD dataset, the proposed method generates two solid spherical objects

with γspr radius from the center coordinates of the fovea and OD as the ground truth data

instead of Gaussian spherical objects. The ground truth of OD and fovea localization for

Messidor dataset is annotated as the Gaussian spherical objects. This data is provided by

Gegundez et al. [Gegundez-Arias et al., 2013] since Messidor dataset does not provide

the annotation of OD and Fovea localization (see Section 2.1.5.6).

Optimized-Mean Square Error (MSE) is applied as a loss function (Lreg(θ)) to calculate

the error distance between ground-truth image (Uθ(x, y)) with its normalized bi-distance

map (BN(x, y)), for fovea location (x f ov, y f ov) and OD location (xod, yod) as follows:

Lreg (θ) =
1
M

∑
x,y∈Ω

∥∥∥Uθ(x, y) − BN(x, y)
∥∥∥2 (3.6)

BN(x, y) =
(
1 −

B(x, y)
maxΩB(x, y)

)γ
(3.7)

B(x, y) = min

√(x − xod)2 + (y − yod)2,

√(
x − x f ov

)2
+

(
y − y f ov

)2
 (3.8)

Normalized bi-distance (BN(x, y)) is a normalized form of bi-distance map (B(x, y)) for

each pixel location (x, y) ∈ Ω, being Ω ⊂ R2 the retinal image I(x, y) domain with γ as

parameter governing the spread across the image domain. Post-processing is applied to

the segmentation result to classify the objects. Fovea and OD are assigned to the two-

highest probability scores. The objects are identified based on their intensities, OD has a

bright intensity and fovea has a dark intensity.
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Table 3.5: Euclidean Distance Comparison of Fovea Localization in Localization Set of IDRiD
Dataset. The bold value in ED indicates the highest scores.

Methods ED (in pixels)

DeepDR [Porwal et al., 2020] 64.492
VRT [Porwal et al., 2020] 68.466

SDNU [Porwal et al., 2020] 85.4

ZJU-Bll-SGEX [Porwal et al., 2020] 570.133

Regression [Meyer et al., 2018] 335.868

Proposed method 175.07

Proposed method (without false detection) 48.97

Table 3.5 shows the evaluation of the fovea localization method that is compared with

the methods that are reported in the result of fovea localization in the IDRiD chal-

lenge (DeepDR, VRT, SDNU, and ZJU-BII-SGEX) [Porwal et al., 2020] and Regression

[Meyer et al., 2018]. The performance is evaluated by calculating the Euclidean Distance

(ED) between pixel coordinates of the prediction and ground truth in the original resolu-

tion.

As seen in Table 3.5, the highest performance is achieved by the winner of the IDRiD chal-

lenge, DeepDR, followed by VRT and SDNU. The low ED values of these three methods

indicate fovea in all testing images is localized correctly with minor coordinates difference

whereas the methods that have ED values for more than 200 pixels such as ZJU-BII-

SGEX [Porwal et al., 2020] and Regression [Meyer et al., 2018] show the miss-detected

fovea (false detection) in a few testing images.

The proposed method of fovea localization has lower ED than Meyer et al. but it is higher

than other methods except for ZJU-BII-SGEX. It is caused by some miss-detected fovea

in the testing images. The proposed method fails to detect fovea in 12 images from

103 testing images. The ED of the proposed method to locate the fovea in true detection

(Proposed method without false detection) could reach 48.97 pixels. Finally, the proposed

method of fovea localization is applied in the same set as the MAs detection dataset

(Segmentation Set of IDRiD dataset). As seen in Figure 3.17, the proposed method

succeeds to detect and localize the fovea in all testing images.

Local MAs detection is centralized to the area with radius R, from the center of the fovea

(see Figure 3.18). The internal evaluation of the local MAs detection is described in

Table 3.6. Proposed method (Blue)∗, Proposed method (Red)∗, Proposed method (Green)∗,

and Proposed method (Final)∗ are the local MAs detection of Proposed method (Blue),

Proposed method (Red), Proposed method (Green), and Proposed method (Final) respec-

tively, with patch size 64.
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Figure 3.17: Fovea localization results of MAs testing images in Segmentation Set of IDRiD
dataset. The red box indicates the location of the fovea.

As seen in Table 3.6, Proposed method (Blue)∗ still has the highest AUC (PR) com-

pared to other proposed methods. Unlike the internal evaluation in global prediction,

Proposed method (Blue)∗ achieves the highest sensitivity for 1/4, 1, 2, 4, and 8 FPI

while Proposed method (Final)∗ achieves the highest sensitivity only in 1/2 FPI, and

Proposed method (Red)∗ achieves the highest sensitivity in 1/8 FPI. In local prediction,

the blue channel has more dominant information towards the final prediction followed by

the red channel and green channel. The low sensitivity of the Proposed method (Final)∗

is caused by a significant sensitivity difference between Proposed method(Green)∗ with

Proposed method (Blue)∗ as well as Proposed method (Red)∗.

Table 3.6: Internal comparison of FROC and AUC-PR for local MAs detection. Bold values indi-
cate the highest scores.

Dataset Methods
FPI

AUC (PR)
1/8 1/4 1/2 1 2 4 8

Proposed method (Blue)∗ 0.0981 0.23 0.28 0.395 0.522 0.6277 0.725 0.574
IDRiD Dataset Proposed method (Final)∗ 0.11 0.1837 0.2975 0.375 0.45 0.55 0.655 0.518

Proposed method (Green)∗ 0.0475 0.1175 0.17 0.245 0.3283 0.395 0.52 0.372

Proposed method (Red)∗ 0.12 0.155 0.215 0.31 0.3825 0.5675 0.635 0.4765
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By classifying the MAs inside the radius R from the center coordinates of the fovea re-

duces the number of FP results. As seen in Figure 3.13, the predictions often fail to

classify the MAs (FP) which are located close to the vessels, especially at the end of

the vessels. MAs local prediction could detect MAs correctly (TP) with lesser FNs and

FPs inside the fovea boundaries (R) since there are fewer vessels in the ROI (see Figure

3.18).

Figure 3.18: Local MAs Prediction Results. The red, green, blue, and yellow bounding box
indicates FP, TP, FN (because of classifier), and FN (because of MAs candidates selection). The
white circle indicates the fovea’s ROI.

3.7.2/ CASCADE LEARNING

The performance of the second experiment for MAs detection, Proposed method (cascade),

is compared with the other reported state-of-the-arts that focus on the same dataset and

evaluation metric (see Table 3.7). The Proposed method (cascade) is compared with the

algorithms based on Directional Local Contrast (DLC) [Long et al., 2020], local conver-

gence [Dashtbozorg et al., 2018], two-step CNN [Eftekhari et al., 2019], ensemble fea-

tures [Orlando et al., 2018], and MS-EfficientNet [Xia et al., 2021] for an evaluation con-

ducted in the E-Ophta-MA dataset, and MS-EfficientNet [Xia et al., 2021], SESV-DLab

[Xie et al., 2020] and DeepLabv3 algorithm [Chen et al., 2018] for the IDRiD dataset.

Table 3.7: Comparison of the proposed method performance with other MAs detection algorithms.

Algorithms
Dataset FPI

AUC (PR)
Train Test 1/8 1/4 1/2 1 2 4 8

DLC [Long et al., 2020] E-Ophta E-Ophta 0.075 0.154 0.267 0.358 0.472 0.594 0.699 -

Local convergence [Dashtbozorg et al., 2018] E-Ophta E-Ophta 0.358 0.417 0.471 0.522 0.558 0.605 0.638 -

Two-stages-CNN [Eftekhari et al., 2019] Cross dataset E-Ophta 0.091 0.258 0.401 0.534 0.579 0.667 0.771 -

Ensemble-features [Orlando et al., 2018] Cross dataset E-Ophta 0.14 0.2 0.23 0.37 0.45 0.52 0.62 -

MS-EfficientNet [Xia et al., 2021] Cross dataset E-Ophta 0.688 0.701 0.71 0.718 0.720 0.733 0.74 0.615
Proposed method (cascade) E-Ophta E-Ophta 0.266 0.299 0.344 0.408 0.538 0.669 0.792 0.576

MS-EfficientNet [Xia et al., 2021] Cross dataset IDRiD 0.561 0.563 0.565 0.568 0.575 0.601 0.634 0.779
SESV-DLab. [Xie et al., 2020] Cross dataset IDRiD - - - - - - - 0.51

DeepLabv3 [Chen et al., 2018] Cross dataset IDRiD - - - - - - - 0.487

Proposed method (cascade) IDRiD IDRiD 0.113 0.121 0.137 0.168 0.23 0.356 0.463 0.424

Proposed method (cascade) E-Ophta IDRiD 0.091 0.099 0.115 0.146 0.208 0.291 0.411 0.448

Proposed method (cascade) IDRiD E-Ophta 0.091 0.135 0.233 0.343 0.477 0.627 0.758 0.498

As shown in Table 3.7, the sensitivity of the Proposed method (cascade) in the E-

Ophta-MA dataset reaches 0.792 for 8 FPI which is the highest sensitivity among the
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other algorithms that are reported. It surpasses the performance of MS-EfficientNet

[Xia et al., 2021] in the 8 number of FPI while they have the highest sensitivity for the

smaller FPIs. The sensitivity of the Proposed method (cascade) in 4 FPI is higher than

all the algorithms compared in Table 3.7 except MS-EfficientNet with a 0.064 difference.

Proposed method (cascade) overperformed the sensitivity of DLC [Long et al., 2020] and

Ensemble-features [Orlando et al., 2018] in all FPI. It is also competing tightly with local

converge-based [Dashtbozorg et al., 2018], and two-stages-CNN [Eftekhari et al., 2019]

in FPI > 1.

DLC [Long et al., 2020] is trained and evaluated in E-Ophta-MA without any addi-

tional dataset. DLC algorithm was trained with 74 training images from the E-Ophta-

MA dataset and tested with another 74 images from the same dataset while the

Proposed method (cascade) was trained in k-fold since there is no separation for training

and testing set in E-Ophta-MA dataset. The images are divided into 80% as training set

and 20% as validation set under 10 folds cross-validation procedure. The results shown

in Table 3.7 are the average of the testing results for all values of 10-folds.

DLC [Long et al., 2020] detects the MAs by extracting 44 local hand-crafted features from

an image patch (patch size 25). There are seven types of features extracted including

color, grayscale, DLC, shape, texture, Gaussian filter-based, and gradient. It is trained

with multiple machine learning techniques to distinguish MA and non-MA. The main fac-

tors that contribute to the failure of this method are image noise, irregular shape, and the

location of the MA. Image noise is the defect from the camera that can be removed man-

ually using post-processing. Since the main contribution of this method is DLC-based

features that focus on the pattern of MA’s shape, irregular shape and larger MA cause

miss-classified between MA and hemorrhage. The location of MA also increases the

number of FN predictions. Some true-MAs are removed in the MAs candidate extraction

step, especially the MAs which are located close to the vessels.

The performance of Proposed method (cascade) that is trained and evaluated in E-Ophta-

MA, is higher than the algorithm proposed by Orlando et al. [Orlando et al., 2018] where

the model is trained with cross-dataset. They trained the classifier using DIARETDB1

and ROC datasets and evaluated it in the E-Ophta-MA dataset. As seen in Table 3.7, the

performance of Proposed method (cascade) that is trained in the different datasets (IDRiD

in this experiment) and evaluated in E-Ophta-MA, also still achieves better sensitivity in

FPI>1/4. In the method proposed by Orlando et al., the ensemble technique is applied

to the features of the MAs candidates. The features are extracted by both hand-crafted

feature extractions and CNN-based features. It has 63 hand-craft features based on its

intensity and shape. Finally, a random forest classifier is applied to detect the MAs from

MAs candidates.

The Proposed method (cascade) achieves higher sensitivity in 1/8, 1/4, 4, and 8 FPI when
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compared to the two-stages CNN algorithm [Eftekhari et al., 2019] but yields compara-

tively lower sensitivity in 1/2, 1, and 2 FPI. The classifier used by [Eftekhari et al., 2019]

is trained and tested with E-Ophta-MA and ROC datasets. Eftekhari et al. extracted

MAs candidates through segmentation using the first CNN to reduce the number of non-

MA and applied the second CNN encoder to classify the MA and non-MA. In the testing

scheme, MAs candidates are assigned to the objects that have a minimum of 0.6 confi-

dence. Applying CNN for both MAs candidate extraction and classifier requires a large

quantity of image training data. The MAs candidate extraction with image segmentation

usually produces more wrong predictions but there is no information explained related to

the performance of the first stage of the CNN in their paper.

Compared to the local-convergence algorithm [Dashtbozorg et al., 2018], the perfor-

mance of the Proposed method (cascade) has higher sensitivity only in 4 and 8 FPI with sig-

nificant differences but a slight-lower sensitivity in other FPIs. Dashtbozorg et al. trained

and tested the model with repeated 10-folds cross-validation of the E-Ophta-MA dataset.

They extract the 29 features from MAs candidates, 7 intensity-based features, 10 shape-

based descriptors, and 12 local convergence-based features. The MA and non-MA are

classified using the Random UnderSampling Boost classifier (RUSBoost) to deal with im-

balanced data issues. The performance of this algorithm is affected by the FN produced

in MAs candidate extraction. The sensitivity of the MAs candidate extraction step in this

method for the E-Ophta-MA dataset is 0.95.

Proposed method (cascade) achieves the highest sensitivity in 8 FPI compared to other

algorithms reported in Table 3.7 including MS-EfficientNet [Xia et al., 2021]. As men-

tioned in Section 3.7.1.1, the significant difference in performance between the proposed

method and Xia et al. is the number of data used for training of both MAs segmen-

tation (for MAs candidates extraction) and MAs classification. Xia et al. used a cross

dataset (around 400 images) for training, while the proposed method uses only two spe-

cific datasets individually (148 images for E-Ophta and 54 images for IDRiD).

Proposed method (cascade) is also evaluated based on the PR curve as shown in Ta-

ble 3.7. In the E-Ophta-MA dataset, Proposed method (cascade) and MS-EfficientNet

[Xia et al., 2021] are the only algorithms that are evaluated in AUC (PR) metric. The

AUC (PR) of Xia et al. is still higher than the Proposed method (cascade).

In the IDRiD dataset, the Proposed method (cascade) is compared with MS-EfficientNet

[Xia et al., 2021] in FROC and AUC (PR) metrics evaluation. Both sensitivities of FPI

and AUC (PR) score for the Proposed method (cascade) are lower than MS-EfficientNet

for the same reasons as in the case of E-Ophta-MA. Even though the AUC (PR) of the

Proposed method (cascade) is lower than SESV-DLab [Xie et al., 2020] and DeepLabV3

[Chen et al., 2018], the performance can not be compared since they are evaluated at

pixel-level while Proposed method (cascade) is evaluated at lesion-level.
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(a) Output 1 (b) Output 2

Figure 3.19: The results of MAs detection in the E-Ophta dataset. Red, green, and blue bounding
boxes indicate FN, TP, and FP. Yellow bounding boxes indicate missed-real-MA from preprocess-
ing.

The results of MAs detection from the E-Ophta-MA dataset are shown in Figure 3.19.

It shows that the model of the Proposed method (cascade) produces more FNs com-

pared to FPs since the cascade learning only focuses to eliminate the FPs. In

Proposed method (cascade), the FP prediction occurs on the objects that have dark dots at

the end of the small vessels and in the region which is surrounded by the brighter objects.

Figure 3.20: FROC curve of E-Ophta-MA dataset.

The Proposed method (cascade) is also tested in different datasets to find out

whether it is generalized. As seen in the last block of rows in the Table 3.7, the

Proposed method (cascade) achieves competitive results without any fine-tuning, so it gen-

eralizes quite well. As seen in Table 3.7, the results of the Proposed method (cascade)

that is tested in IDRiD but trained with E-Ophta tend to have a lower performance, while

the Proposed method (cascade) that is tested in E-Ophta but trained with IDRiD tends to

have a higher performance. It can be inferred that the features extracted from the train-
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ing images from only one dataset may not be enough to distinguish the MA and non-MA

in IDRiD testing images, while IDRiD training images can give good enough features to

classify the MA and non-MA in the E-Ophta dataset.

The evaluation metric of the internal performance of the Proposed method (cascade) that

is conducted on the E-Ophta-MA dataset is described in Figure 3.20. The sensitivity of

Network I is higher than Network II for FPI<2 and it keeps going below the sensitivity of

Network II for FPI>2. On the other hand, the sensitivity of Network II is low for FPI<2

but it increases and surpasses Network I for the FPI>2. As shown in Figure 3.20, the

performance of Final has a sensitivity almost close to Network I for FPI<2 and has a

sensitivity higher than Network II for FPI>2. This shows the sensitivity of the cascade

learning scheme is higher than the individual networks (Network I and Network II).

3.7.3/ DISCUSSION ACROSS METHODOLOGIES

This section explains the comparison between MAs detection with ensemble learn-

ing and cascade learning results. The comparison is described in Table 3.8.

Proposed method (Blue) 64 and Proposed method (Final) 64 are the best performances in

MAs detection with ensemble learning with patch size 64, Proposed method (Blue) 86 and

Proposed method (Green) 86 are the best performances in MAs detection with ensemble

learning with patch size 86.

Table 3.8: Comparison of the performance of the proposed method with ensemble learning and
cascade learning. Bold values indicate the highest scores among all algorithms. Italic values
indicate the highest scores among internal algorithms.

Algorithms
Dataset FPI

AUC (PR)
Train Test 1/8 1/4 1/2 1 2 4 8

Proposed method (Blue) 64 IDRiD IDRiD 0.025 0.045 0.065 0.103 0.174 0.246 0.376 0.503

Proposed method (Final) 64 IDRiD IDRiD 0.019 0.036 0.056 0.105 0.189 0.287 0.41 0.49

Proposed method (Blue) 86 IDRiD IDRiD 0.054 0.079 0.096 0.117 0.176 0.239 0.334 0.505

Proposed method (Green) 86 IDRiD IDRiD 0.012 0.025 0.051 0.101 0.203 0.295 0.379 0.526
Proposed method (cascade) IDRiD IDRiD 0.113 0.121 0.137 0.168 0.23 0.356 0.463 0.424

As seen in Table 3.8, Proposed method (cascade) achieves the highest sensitivity in all

FPI compared to all other proposed methods with ensemble learning, but it has the low-

est AUC (PR) score. Though Proposed method (Green) 86 is the highest AUC (PR), the

score is slightly higher than 0.5. It implies that the MAs detections with both ensemble

and cascade are still weak. However, the cascade learning with Blue-enhanced green-

background suppression input can increase the sensitivity in a small number of FPIs.

All performance of Proposed methods for ensemble learning and cascade learning are

computed including the FN results that are produced from the MAs candidate extraction

process. The MAs candidates extraction gives an average of 95% sensitivity per image.
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3.8/ CONCLUSION

We have proposed methods to answer the objective of this research related to MAs detec-

tion with two strategies. One is by applying an unsupervised method for MAs candidate

extraction which minimizes the necessity of a large number of data in the training phase,

and the second is by implementing both ensemble and cascade learning with background

suppression information to enhance the image features.

The MAs detection with ensemble learning is built with the help of three identical fine-

tuned networks with different input channels and an ensemble vector to decide the final

decision by the voting scheme. This method provides an overall analysis of the impact

of each color channel in MAs detection. Different color channels have different impacts

on MAs detection depending on the patch size of the image. The combination of input

channels (green, enhanced green, and background suppressed image) with patch size

86 achieves the highest AUC (PR) score. In contrast, the combination of input channels

(blue, enhanced green, and background suppressed image) has a more stable perfor-

mance irrespective of the patch size. However, this method fails to classify objects with

blurry edges.

Combining the results of the previous method with cascade learning, the sensitivity of

the MAs detection is increased in smaller numbers of FPI. Cascade learning gives the

classifier the ability to re-learn the features of the object which fails to be learned in the

previous unit network. The final prediction of this method can reduce the number of FPs

per image without a significant reduction in the sensitivity since it is dependent on both

unit networks. With a significantly different quantity of training data, the performance

of the proposed network reaches the highest sensitivity for the 8 FPI and competing

sensitivity values for FPI<8 in E-Ophta dataset. Yet, this method still produces the FPs

for dot-like objects which are located at the end of the small vessels and between some

brighter objects.

3.9/ FUTURE WORKS

Furthermore, the classifier can be improved to focus to reduce not only FP but also FN,

since cascade learning reduces the FP but increases the FN in the end results. The patch

size contributes significantly to the results of MAs detection. Choosing the appropriate

patch size might enhance the results.





4

MULTI-LABEL OCULAR

ABNORMALITIES DETECTION

4.1/ INTRODUCTION

Persistent ocular diseases give a high risk of retinal damage which can lead to blindness

[Congdon et al., 2004]. One major challenge of this situation is the lack of quality diagno-

sis and prevention [Pachade et al., 2021]. Early detection and timely diagnosis of ocular

pathologies are effective ways to prevent this visual impairment. The detection of ocular

diseases with the help of computer-aided diagnosis (CAD) is facilitated by the availability

of retinal image modalities such as optical coherence tomography (OCT), fluorescein an-

giography (FA), and color fundus photography (CFP). Among other retinal image modal-

ities, CFP is the most cost-effective and simple approach for eye screening. Because of

its effectiveness and efficiency, multi-label detection of the CFP is vital considering the

possibility of a patient getting affected by more than one ocular disease. However, one of

the challenges of multi-label detection in ocular diseases is to detect both frequent and

rare ocular abnormalities. Rare ocular abnormalities are usually ignored in the detection

because of the limitation in training data quantity [Pachade et al., 2021].

There are limited studies that address the multi-label detection of ocular abnormalities

from a single color fundus image. The common approach to solve this problem is based

on only spatial relationship learning and ignores the co-occurrence dependency issue

which is a crucial problem in multi-label detection [Zhao et al., 2021b]. The interconnec-

tion between classes (semantic information) can be acquired either only from a visual

modality or from multi-modalities (visual and linguistic modalities). The model of co-

occurrence dependency which is built based on the visual and linguistic modality is widely

studied in general multi-label detection tasks but not in the medical application. The lin-

guistic modality in medical applications may contain uncorrelated labels and semantic

information that becomes the noise that hinders the detector to learn powerful features

[Guan et al., 2020]. However, the label semantic information can be a complement for

75



76 CHAPTER 4. MULTI-LABEL OCULAR ABNORMALITIES DETECTION

the visual features to build the model of co-occurrence dependency in multi-label detec-

tion for both frequent and rare ocular abnormalities considering the image availability. In

the proposed methods, the uncorrelated label semantic information in medical application

issues is prevented by building the semantic dictionary learning to avoid the irrelevant cor-

relation between the label and visual features and handling the out-of-vocabulary (OOV)

in the linguistic modality that causes irrelevant word features.

4.2/ OBJECTIVES

The main objective of the research in this chapter is to analyze the impact of the linguistic

modality as the complement to the visual modality in the multi-label detection of frequent

and rare ocular abnormalities from a color fundus image. The model is trained and tested

in RFMiD dataset (see Section 2.1.5.5), so it is designed to detect 28 labels that consist

of 45 ocular abnormalities.

4.3/ OUTLINE OF THE CHAPTER

A brief review of the related works is presented in Section 4.4. Section 4.5 describes the

proposed methodologies applied in this research to solve the problem that is mentioned

in Section 4.2. The implementation details of the proposed methods are described in

Section 4.6, and the results of the experiments are discussed in Section 4.7. Lastly, the

conclusion of the experiments that are conducted for multi-label detection is explained in

Section 4.8.

4.4/ RELATED WORKS

There are limited numbers of studies that focus on multi-label detection for ocular abnor-

malities, especially from a single color fundus image. Table 4.1 summarizes the earlier

studies related to multi-label detection that is conducted in the RFMiD dataset. The multi-

label detection models of KAMATALAB, Schulich Applied Computing, BNUAA, Nekar-

avuru, WWW, IGSTfencing, MISIT, and Chizu & Arai & Okada [Pachade et al., 2023] are

reported as the highest model performances in the RFMiD dataset challenge, while other

studies shown in Table 4.1 are reported in separate publications. Most of the methods

applied to detect multi ocular abnormalities are ensemble learning, combining multiple

CNNs as the backbone to extract the features. Even though this method can deal with

limited quantity of training data, it requires higher resources.



4.4. RELATED WORKS 77

Table 4.1: Related works in multi-label detection with RFMiD dataset.

Authors Method Labels Training
Dataset

Performance

KAMATALAB
[Pachade et al., 2023]

Ensembling 3 back-
bones. The task is di-
vided into 3 sub-tasks.

28 RFMiD Final score in Evalua-
tion set is 0.802 and
0.782 in Test set.✱

Schulich Applied Comput-
ing [Pachade et al., 2023]

Ensembling 5 back-
bones. Trained with
Asymmetric Loss.

28 RFMiD Final score in Evalua-
tion set is 0.786 and
0.778 in Test set.✱

BNUAA
[Pachade et al., 2023]

Ensembling 2 back-
bones with a heavy
image augmentation.

28 RFMiD Final score in Evalua-
tion set is 0.782 and
0.758 in Test set.✱

Nekaravuru
[Pachade et al., 2023]

Ensembling 3 back-
bones. The task is di-
vided into 2 sub-tasks.

28 RFMiD Final score in Evalua-
tion set is 0.757 and
0.749 in Test set.✱

WWW
[Pachade et al., 2023]

Applying CLAHE
in pre-processing.
Ensembling 6 back-
bones.

28 RFMiD Final score in Evalua-
tion set is 0.7584 and
0.738 in Test set.✱

IGSTfencing
[Pachade et al., 2023]

The model is semi-
supervised siamese
graph CNN. The rela-
tion between labels is
learnt by GCN.

28 RFMiD
and
ODIR

Final score in Evalua-
tion set is 0.791 and
0.71 in Test set.✱

MISIT
[Pachade et al., 2023]

Upsampling the data.
Ensembling 4 back-
bones.

28 RFMiD Final score in Evalua-
tion set is 0.7027 and
0.6893 in Test set.✱

Chizu & Arai & Okada
[Pachade et al., 2023]

Pre-processed the im-
age to have the same
aspect ratio align-
ment. Ensembling
multiple backbones

28 RFMiD Final score in Evalua-
tion set is 0.738 and
0.78 in Test set.✱

[Rodriguez et al., 2022] The model is based
on C-Tran, trans-
former encoder that
is trained with partial
labels.

20 RFMiD,
ARIA,
and
STARE

For 15 labels, final
score is 0.824, F1 is
0.573, mAP is 0.685,
and AUC is 0.962.

[Sun et al., 2022a] The features are ex-
tracted by EfficientNet
with adding a spatial
attention layer.

7 RFMiD Accuracy is 0.883 and
F1 score is 0.762.

Multi-Expert
[Lyu et al., 2022]

Ensembling multi-
ple backbones with
heuristic stacking
to decide the final
predictions.

28 RFMiD Final score in Test set
is 0.778.

✱
indicates the methods presented in the RFMiD challenge.

The imbalanced data issue is tackled by selecting the loss function that focuses on the

imbalance data, such as asymmetric loss, and by dividing the model into multiple sub-

tasks. In task division, each sub-tasks learn to predict some group of labels that has less-

imbalance distribution. The methods proposed by IGSTfencing [Pachade et al., 2021]
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and Rodriguez et al. [Rodriguez et al., 2022] are the only methods that also learn the

correlation between labels (implicitly or explicitly) to detect ocular abnormalities. However,

all the methods use only spatial information as the input of their models. IGSTfencing

[Pachade et al., 2023] computes the labels correlation based on the co-occurrence of the

labels. It needs large training data to build an accurate correlation. Rodriguez et al.

[Rodriguez et al., 2022] learn the correlation between co-occurrence labels and spatial

information implicitly by using C-Tran architecture that masks some labels in the training

phase so that the model can learn many possible labels. This model is trained in a

custom dataset that consists of RFMiD, ARIA, and STARE datasets. However, the model

is designed to predict only 20 labels: 15 labels from RFMiD dataset and 5 labels from

ARIA and STARE datasets. The performance of this model in the RFMiD dataset is

reported with the same evaluation metrics as the RFMiD challenge. However, it is not

mentioned if the model is tested in the Evaluation set or Test set. The same occurred

in the model performance of Sun et al. [Sun et al., 2022a]. The model is evaluated in

the RFMiD dataset but has no information if it is tested in the Evaluation set or Tested

set. The evaluation metrics that they use are accuracy, F1 score, complete match, and

index comparison. Though all the evaluation metrics are different from other studies, they

provide the AUC of the ROC curve for each ocular abnormality in testing phase. The

model is designed to predict 7 ocular abnormalities.

Due to the limited number of studies that focus on the multi-label detection of ocular ab-

normalities from a single color fundus image, other related works that study the multi-label

detection of ocular abnormalities from binocular color fundus images are also reviewed.

In addition, earlier studies related to the multi-label detection of natural images are ex-

plored to learn the correlation between spatial input and label co-occurrence dependency.

These studies are summarized in Table 4.2.

Table 4.2: Other related works in multi-label detection.

Authors Input type Modality Method
[He et al., 2021] Binocular CFP 1 CNN with pixel-wise correlation.
[Gour et al., 2021] Binocular CFP 1 CNN with joint features.
[Sun et al., 2022b] Binocular CFP 2 GCN with LightGBM classifier.
[Zhu et al., 2017] Natural image 1 CNN with attention layer.
[Chen et al., 2019] Natural image 1 Multi GCNs.
[Wen et al., 2020] Natural image 1 Projection of visual and label features.
[Chen et al., 2021b] Natural image 2 C-GCN and P-GCN.
[Nguyen et al., 2021] Natural image 2 Stacked GCN and n-modules CNN.
[Zhao et al., 2021a] Natural image 2 Learning the structural relation graph.
[Zhao et al., 2021b] Natural image 3 Transformer with LGE.
[Zhou et al., 2021] Natural image 2 CNN with dictionary learning.
[Liu et al., 2021a] Natural image 1 Query-based transformer.

The interference of label information in multi ocular abnormalities detection is not yet

studied widely, either from a single CFP or binocular CFPs. More studies related to multi
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ocular abnormalities detection are found from a pair of color fundus photography images

(CFP) such as He et al. [He et al., 2021], Gour et al. [Gour et al., 2021], and Sun et al.

[Sun et al., 2022b]. Like other common approaches, He et al. [He et al., 2021] and Gour

et al. [Gour et al., 2021] use only the spatial information as the input for their detection

model. He et al. [He et al., 2021] learn the pixel-wise correlation between a pair of CFPs

by Spatial Correlation Module (SCM), and Gour et al. [Gour et al., 2021] learn the fea-

tures of individual CFPs and concatenate these features directly to classify the ocular

diseases. Unlike other studies with binocular CFP images, Sun et al. [Sun et al., 2022b]

proposed a multi-label detection by considering the co-occurrence dependency. They

build the graph convolutional network (GCN) to model the correlation between labels and

classify the ocular diseases using LightGBM. This method is designed to detect seven

frequent ocular diseases from binocular CFP images.

In a general multi-label detection task, the co-occurrence dependency can be modeled

from a single visual modality and multi-modality (visual and linguistic modalities). Some

studies model the co-occurrence dependency from a single visual modality (image) by

learning the implicit spatial relations with self-attention mechanism [Zhu et al., 2017] and

enforcing the visual consistency to the attention regions under different spatial trans-

formations. The model of the co-occurrence dependency is built explicitly by graph

models such as Chen et al. [Chen et al., 2019] that generate the graph models of the

co-occurrence dependency between labels from the label frequency, and Wen et al.

[Wen et al., 2020] that learn the correlation between labels from the projection of the vi-

sual features to the label mapping. The features with the same labels are closer to each

other in the projection space.

More studies focus on multi-modality (visual and linguistic modality) as another approach

to model the co-occurrence dependency in the multi-label detection task. The common

method to model co-occurrence dependency from labels is by word embedding. Chen

et al. [Chen et al., 2021b] explicitly model the label semantic information by graph con-

volutional network (GCN). They proposed a classifier GCN (C-GCN) and a prediction

GCN (P-GCN) model. C-GCN learns to map the label semantic information into an inter-

dependent classifier that is shared with all images while P-GCN learns to disentangle

the visual features into class-relevant features. Nguyen et al. [Nguyen et al., 2021] fo-

cus to apply a graph approach to learn the label semantic information and its topology

information. They proposed a divide-and-conquer technique to learn the visual features

of the separate objects using n-modules of CNN. The label embedding and the topol-

ogy structure of the labels are fed to the stacked GCN to support the visual recognition

to classify the labels. Instead of learning the visual features in high dimension, Zhao et

al. [Zhao et al., 2021a] learn the structure relation graph of the visual features that are

extracted from the CNN. The co-occurrence dependency of the labels is modeled using

a GCN. This label semantic information is added to the structural relation graph of the
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visual features information to classify the labels. However, modeling the label features

adds another complexity to the network. The label semantic information using GCN may

learn spurious correlation when the label statistics are not enough [Liu et al., 2021a].

The visual representation of the correlation between visual and linguistic features is im-

portant to study in the multi-label detection task to prevent the irrelevant correlation be-

tween visual and linguistic features. Zhao et al. [Zhao et al., 2021b] proposed the linguis-

tic guided enhancement module (LGE) to enhance the representation across modalities.

The visual modality, semantic modality, and linguistic modality are the inputs of this model.

The visual modality is extracted by linear projection on a sequence of image patches. Se-

mantic modality is extracted from a pre-trained CNN, and linguistic modality is extracted

from the label embedding. The features of all modalities are trained using a multi-modal

transformer. Zhou et al. [Zhou et al., 2021] proposed a semantic dictionary learning as

the visual representation of the visual features and label embedding. This model is con-

strained by the consistency of the label embedding features and visual features. Liu et

al. [Liu et al., 2021a] proposed a query-based transformer to predict the multi-label from

an image. Instead of using the label embedding generated from the pre-trained network,

they choose to learn the label features vector independently. This model is an improved

DETR model [Carion et al., 2020] where each query corresponds to one label class.

Inspired by Zhou et al. [Zhou et al., 2021] and Liu et al. [Liu et al., 2021a], we proposed a

multi-label detection for frequent and rare ocular abnormalities using semantic dictionary

learning since it is an effective way to exploit the correlation between labels and visual fea-

tures to avoid uncorrelated information between labels and visual features. In multi-label

detection for medical application, the label features vector may contain out-of-vocabulary

(OOV) vector because of the category difference, so the method is also designed to be

adaptable with OOV words to reduce the irrelevant word features.

4.5/ METHODOLOGY

The methodology in this chapter is divided into pre-processing section and two differ-

ent proposed methods using semantic dictionary learning. Pre-processing is applied to

all proposed methods as the initial process of multi-label detection. The first proposed

method is a multi-label detection that learns the semantic dictionary learning with visual

and labels embedding consistency. The model is also divided into the OOV model and

the non-OOV model. The second proposed method is a multi-label detection that learns

the semantic dictionary learning with the transformer decoders.
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4.5.1/ PRE-PROCESSING

Pre-processing is an important initial process to uniformize the image size and to select

the ROI of the fundus area. The image size is resized into 224 x 224 pixels for the first

proposed method and 448 x 448 pixels for the second proposed method. The background

of the color fundus image is cropped to have a direct focus on the FOV of the fundus. The

background cropping is described in Algorithm 2.

Algorithm 2 Background Cropping

Input: A color fundus image (I)
Output: Result of background cropping (I′)

1: Igray = CONVERT_RGB_TO_GRAY(I)
2: Ithresh = OTSU_THRESHOLDING(Igray)
3: Icontours = FIND_CONTOURS(Ithresh)
4: Icontours = SORTED_CONTOURS_AREA(Icontours)
5: Icontour = Icontours[0]
6: x, y,w, h = Icontour

7: I′ = I[y : y + h, x : x + w]
8: Return I′

4.5.2/ CNN-BASED SEMANTIC DICTIONARY LEARNING

4.5.2.1/ DATA PREPARATION

The experiments of the data preparation are divided into sampling and non-sampling

categories:

• Sampling Experiment. The sampling experiment is a strategy applied by MISIT

[Pachade et al., 2023] to solve the problem of limited data in a multi-label task for the

RFMiD dataset. They applied a novel distributed upsampling that was introduced

by Müller et al. [Müller et al., 2021b] to increase the number of images that contain

the minority labels-combination in order to balance the data.

1. Distributed Upsampling. Data is upsampled to balance the label dis-

tribution by augmenting the image (flipping, rotation, and color jittering)

[Müller et al., 2021a]. Upsampling is applied in different quantities to each la-

bel depending on its distribution. The quantity of the upsampled data is in-

creased up to three times from the original data with each label occurring at

least 100 times. This upsampling technique can reduce the imbalance issue

in the RFMiD dataset that has a critical imbalance condition (see Figure 2.10).

2. Global Upsampling. Distributed sampling gives equivalent weight for each la-

bel in the upsampled data. It may cause an increment performance for rare oc-
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ular abnormalities, but also decrement performance in frequent labels. Hence,

an experiment with global upsampling is done to compare the model perfor-

mance with distributed upsampling. The global upsampling also utilizes image

augmentation techniques to generate additional images. The upsampling is

applied to each label equally. In this experiment, the original data is upsam-

pled three times.

The upsampled data is split into training and validation data. The intensities of the

image, in training and validation data, are converted into a range [0,1].

• Non-sampling Experiment. The non-sampling experiment consists of data split-

ting, image augmentation, and image conversion. The data is split into training and

validation data without considering the distribution of the labels. The image aug-

mentation (color jitter, horizontal flip, rotation) is applied only to the training data.

The intensities of the image are converted into a range [0,1] for both training and

validation data. Due to the imbalance data issue, the non-sampling experiment is

applied in two different scenarios:

1. Stages. Inspired by Zhou et al. [Zhou et al., 2022], KAMATALAB

[Pachade et al., 2023], and Nekaravaru [Pachade et al., 2023], the prediction

of the label is divided into two stages to reduce the data imbalance.

Figure 4.1: Illustration of stages scenario.

As illustrated in Figure 4.1, the first stage focuses to predict only the large pos-

itive labels (LP), and the small positive labels (SP) are added to OTHER label

(named OTHER1). LP refers to the label that has a minimum of 30 images and

SP refers to the label that has less than 30 images. The second stage focuses

to predict SP labels and also to differentiate between SP labels and OTHER

label. OTHER label is a combination of images with very rare labels. In the
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testing scheme, the input of the second stage is the OTHER1 prediction from

the first stage.

2. No-stage. In this scenario, all labels (27 labels and OTHER label) are pre-

dicted in a network without being divided into multiple stages.

4.5.2.2/ CLASSIFICATION

The first proposed method is inspired by Zhou et al. [Zhou et al., 2021]. The semantic

dictionary built by Zhou et al. fails to learn the labels that contain irrelevant label fea-

tures which are commonly caused by OOV words, the words that are not trained in the

network because of the limited number of such words available in the training datasets.

The main cause of this failure is the zero vector in the label features that represent the

OOV words in a word embedding. Thus, we proposed an OOV-adaptive deep semantic

dictionary learning that considers the visual consistency between image features which

are generated from the color fundus image, and label features which are generated from

the linguistic information.

The overview of the first proposed method is described in Figure 4.2. To avoid the learning

failure in semantic dictionary, the OOV labels are separated from the original data labels.

The classification process of the OOV labels and non-OOV labels are also separated

inside the network. The detection of the image that belongs to OOV labels is predicted

directly from the image features, while the detection of the non-OOV labels is predicted

by the semantic dictionary learning from the image features and label features.

Figure 4.2: Overview of the first proposed method. The background of RGB image is cropped
and fed into a classifier to extract the image features ( f ) while the list of labels is fed into the NLP
model to extract the label features. The correlation between these features is described in the
semantic dictionary (D).
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Image Features Extraction. The input of the classifier is a color fundus image (Img)

with H x W x 3 dimension, the image output of the pre-processing step, and the list of

labels c. The spatial features are extracted by feeding the image Img into a fine-tuned

pre-trained EfficientNet-B4 with the last three trainable layers. The image features have

d dimensions. This proposed method is backbone-agnostic. The pre-trained network to

extract the image features can be changed into another pre-trained network.

Linguistic Features Extraction. The linguistic features are extracted by vectorizing the

labels. However, linguistic features can only be extracted from known labels. Therefore,

the OOV labels need to be eliminated from the labels c (OOV Elimination). Initially, all

labels c are fed into a pre-trained word embedding network by transfer learning. The

non-OOV labels will have non-zero vectors while the OOV labels will have zero vectors

or no vectors. The output of the OOV elimination is the non-OOV label features that have

c′ x k dimension. Each word in the non-OOV labels has k linguistic feature vector. For

the labels that consist of multiple words, the average of the vector from each word with

k elements is calculated to be the final word vector. This proposed network is also label

embedding-agnostic. The pre-trained NLP network to extract the label embedding can be

changed into another word embedding extractor.

Semantic Dictionary Learning. The semantic dictionary consists of a learnable metric

that represents the correlation between non-OOV label embedding and image features.

It is obtained by an auto-encoder network with bidirectional transformation to prevent

overfitting. The auto-encoder is also applied to generate a different dimension for the

semantic dictionary that matches the dimension of image features d.

The semantic dictionary is restricted by information that is consistent with the label em-

bedding vectors. As seen in Eq. 4.1, this consistency is defined by a cost (Lsim) that

maximizes the similarity between each vector of re-generated ( f̂ ) and original ( f ) non-

OOV features as a cosine similarity function, where, ψ is the set of learnable parameters

and n is the number of labels.

arg max
ψ

Lsim : =
1
n

n∑
i=1

cos
(

fi, f̂i
)
=

1
n

n∑
i=1

fi · f̂i
∥ fi∥2 ×

∥∥∥ f̂i
∥∥∥

2

(4.1)

In this network, the Ldic is computed to represent the visual consistency. Visual consis-

tency of the image and label features describe their visual correlation. Instead of forcing

the assumption on the network that the label features contain the same information as

the image features, this network adds the vector α to learn the degree of the correlation

between the image features and label features.

Ldic = ∥r − Dα∥22+λ∥α∥
2
2 (4.2)
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The Ldic is explained in Eq. 4.2 where r is the image features, D is the semantic dictionary,

and λ is the regularization parameter. The vector α is updated in forward propagation as

calculated in Eq. 4.3 where I is an identity matrix.

α =
(
DT D + λI

)−1
DT r (4.3)

The prediction output of the OOV and non-OOV labels are concatenated in the last layer

that is optimized by minimizing the loss of the multi-label prediction (Lml). OOV labels

are predicted directly from the image features while non-OOV labels are predicted from

semantic dictionary learning. The semantic dictionary learning is optimized in backward

propagation by minimizing the Ltotal as the total loss.

Ltotal =
Lml + βLdic

Lsim
(4.4)

As seen in Eq. 4.4, the total loss Ltotal consists of Lml, β, Ldic, and Lsim where β is a hyper-

parameter to balance the loss and Lml is the multi-label loss. Inspired by the focal loss

[Lin et al., 2017b], the multi-label loss Lml (see Eq. 4.5) applied in this method combines

the focal loss and balanced binary cross entropy with weight for each class (wcls) and

weight for the sparsity of the positive and negative labels (wspr) to deal with the imbalance

of labels distribution and the imbalance of label vector.

Lml = −

n∑
i=1

wi
cls (1 − pi

t)
γ (wspr log(pi

t)) (4.5)

The value of pt is equal to p if the label is 1 and (1 − p) if the label is equal to 0.

Class weight (wcls) is computed based on the inverse of the square root of a number of

samples (ISNS), wcls = c wnc∑
wnc

, where wnc =
1

2√Nc
and Nc is the number of samples per

class.

Sparsity weight (wspr) is a coefficient that is calculated as wspr =
N0

N1 . N0 and N1 are the

number of samples in class 0 and class 1.

Figure 4.3: Data Illustration: Two image samples with 5 labels.
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Given a data illustration as described in Figure 4.3, the illustration of the wcls calculation

is explained in Figure 4.4 and the value of wspr is 0.66, N0=4 and N1=6.

Figure 4.4: Illustration: The calculation of wcls.

4.5.3/ TRANSFORMER-BASED SEMANTIC DICTIONARY LEARNING

4.5.3.1/ DATA PREPARATION

The data preparation for the second proposed method consists of data splitting, image

augmentation, intensity conversion, and image normalization. The data is split into train-

ing and validation data without considering the distribution of the labels. The random

augmentation [Cubuk et al., 2020] is applied to the color fundus image only to the train-

ing data. The intensities of the image are converted into a range [0,1] for both training

and validation data. Then, the image is normalized with the standard deviation and mean

of ImageNet [Russakovsky et al., 2015].

4.5.3.2/ CLASSIFICATION

The second proposed method is inspired by Liu et al. [Liu et al., 2021a] and Zhou et al.

[Zhou et al., 2021]. We proposed a semantic dictionary with visual attention that learns

to map the visual features that are extracted from the color fundus image with the label

features that are generated from the label embedding.

Compared to the first proposed method that constrains the label features to have the

same consistency with the image features, the second proposed method focuses to map

the image features as the key and value, with the semantic dictionary as the query, to

have the same focus to the object region attention.
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Figure 4.5: Overview of the second proposed method

The overview of this proposed method is seen in Figure 4.5. The main trans-

former architecture of the second proposed method is mostly adopted from DETR

[Carion et al., 2020]. It uses the features from a pre-trained CNN as the input of the

model and it detects the objects with transformer decoders. The difference with DETR

and the second proposed method lies in the query of the decoder. The query of the

decoder in DETR is to predict the presence and location of ROI for all the seen objects

while the query of the second proposed method is to build a semantic dictionary. The

pre-trained network as a backbone is selected to have a more compact features repre-

sentation and also to reduce the necessity of large training images as the drawback of

ViT [Dosovitskiy et al., 2020].

Image Features Extraction. The classifier aims to detect the presence of c ocular ab-

normalities given a color fundus image (I) as the input image with H x W x 3 dimension.

After cropping the image background in pre-processing, the spatial features of the im-

age with H f x W f x d f are extracted from a backbone and are projected to H f x W f x

dt to match with the dimension of the transformer. The dimension of these features are
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also reshaped into H f W f x dt to be a sequence input for the transformer encoder. The

backbone for the spatial features extraction is a pre-trained CNN, ResNet101. However,

this proposed method is backbone-agnostic. The backbone can be changed with any

pre-trained image network.

Figure 4.6: Encoder detail architecture.

Spatial positional encoding (PE) in this proposed method is fixed value and it is generated

in the same way as the positional encoding generation in DETR. As seen in Figure 4.6, the

image features added with positional encoding are fed into one transformer encoder. The

transformer encoder performs multi-head self-attention (with 4 heads) from the image

features. The residual learning is applied to each Add and Norm block. The key (Ki)

and value (Vi) of the image features, as the output of the encoder, are given into two

transformer decoders.

Linguistic Features Extraction. Linguistic modality is extracted from the list of labels

c and it is used as another input of the classifier. The list of labels c is converted into

a label embedding metric before adding it to the model. The label embedding with k x

c dimension is generated from a pre-trained network that is trained in text documents.

Each label has k vector to represent its linguistic features. The feature vector of the label

that consists of multi-words or phrases is finalized by averaging the vector of each word.

The OTHER label is also computed by the vector average of all ocular abnormalities

that belong to the OTHER label. This proposed method is also agnostic to the label

embedding method. The pre-trained network to generate the label embedding can be

changed with the network that has a non-zero vector for OOV words.
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Semantic Dictionary Learning. The semantic dictionary is a learnable metric that maps

the correlation between image features and linguistic features. The value of the semantic

dictionary is updated by two transformer decoders that inject the image features and

an auto-encoder network that injects the label features. The updates of the semantic

dictionary are constrained by linguistic features consistency and the labels ground-truth

(GT ).

Figure 4.7: Decoders detail architecture.

Similar concept to the first proposed method (see Section 4.5.2.2), the linguistic features

consistency (Lsim) is also restricted by Eq. 4.1. The auto-encoder generates a d x c

semantic dictionary from a k x c label embedding with constant information. As seen

in Figure 4.7, the semantic dictionary is given into the first transformer decoder as the

query (Qs) along with Ki and Vi that comes from the encoder output, and spatial posi-

tional encoding. As mentioned in Section 2.2.1.4, each transformer decoder consists of

a self-attention block, cross-attention block, and FFN block. The four-head self-attention

produces intra-attention that computes the similarity weight (Vs) corresponding to the
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query (Qs) and key (Ks) of the semantic dictionary. The residual connection and layer

normalization are applied to each decoder block. Similar to DETR, the positional encod-

ing of the transformer decoders is the input of the decoder. It is learnable, not a fixed

positional encoding that is applied in the encoder. The input of the decoder can also

act as the positional encoding since the value of the semantic dictionary is expected to

be unique for each class. In Decoder-1, the semantic dictionary as the input of the first

decoder is added to Qs and Ks in the self-attention block.

The semantic dictionary is also added to the Qs in four-head cross-attention as the po-

sitional encoding while spatial positional encoding (PE) is added to the Ki. In cross-

attention block, the query from the semantic dictionary (Qs) learns to map the value (Vi)

from the image based on the image key (Ki) with its positional encoding. The output of

the cross-attention goes through the FFN block before being fed into the next decoder

block. The query of the output from Decoder-1 (Qs) is given to Decoder-2 along with key

(Ki), value (Vi), and spatial positional encoding (PE) from the image.

All decoders consist of the same blocks sequence. In Decoder-2, the Qs is added to

the Qs and Ks in four-head self-attention block, and it is added also to the Qs in four-

head cross-attention block. The output of the Decoder-2 has d x c dimension, the same

dimension as the semantic dictionary. The output is projected into c vector in Linear layer

followed by Sigmoid activation layer to have multi-labels prediction.

The semantic dictionary is optimized by minimizing the multi-label loss (Lml) and maximiz-

ing the label features consistency (Lsim). The total loss for the second proposed method

is described in Eq. 4.6.

Ltotal =
Lml

Lsim
(4.6)

The multi-label loss (Lml) is defined by asymmetric loss (ASL) [Ridnik et al., 2021], a vari-

ant focal loss with different γ for positive and negative. The ASL loss is explained in Eq.

4.7 where p is the probabilities, γ+ is 0, and γ− is 2.

Lml =
1
c

c∑
c=1

(1 − p)γ
+

log(p), y = 1

(p)γ
−

log(1 − p), y = 0
(4.7)

4.6/ IMPLEMENTATION DETAILS

Computations have been performed on the supercomputer facilities in "Mésocentre de

Calcul de Franche-Comté". The experiments of multi-label ocular abnormalities detection

are implemented on the PyTorch platform with python programming language in Ubuntu-
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based server version 18.04.5 LTS with 252 GB RAM and GPU Tesla V100 DGXS 32 GB.

The experiments are conducted in the RFMiD dataset.

For the first proposed method, the optimizer is stochastic gradient descent (SGD) with

0.9 momentum. It is trained with 100 epochs with an early stopper, learning rate 1e-3,

and weight decay 1e-4. The hyper-parameters λ, and β are selected heuristically and

explained in Section 4.7.

The second proposed method is optimized with AdamW optimizer. It is trained in 80

epochs with an early stopper. The learning rate is 1e-4 and 0.01 weight decay. The

dimension of the FFN block is 8192.

4.7/ EXPERIMENTAL RESULTS

All experiments in the first proposed method and second proposed method are conducted

on the RFMiD dataset. Training and validation are conducted in the Training set with

3-fold cross-validation, and the model is tested in the Evaluation set by averaging the

performances from all folds models. The model has also been tested in the Test set only

for the second proposed method. The performance of proposed methods for multi-label

ocular abnormalities detection is evaluated both globally (Eq. 4.8) and also per label (Eq.

4.9). Eq. 4.8 calculates the final score globally by considering each element of the label

indicator matrix as a label.

Final S core =
AUCglobal + mAPglobal

2
(4.8)

While Eq. 4.9 calculates the average of the final score for each label. This does not take

label imbalance into account. C indicates the number of labels.

Final S core =
1
C

C∑
i=1

(AUCi + mAPi)
2

(4.9)

The final score is calculated based on the values of the area under the Receiver Operating

Characteristic (ROC) curve (AUC) and the mean of Average Precision (mAP), which are

explained in 2.3.

4.7.1/ CNN-BASED SEMANTIC DICTIONARY LEARNING

Several experiments have been deployed in this first proposed method. Since the first

proposed method is word embedding-agnostic, the experiments are implemented with

Word2Vec [Mikolov et al., 2013] and FastText [Mikolov et al., 2018] pre-trained word em-
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bedding networks. To analyze the impact of word embedding injection towards the model

with image features, the experiments of CNN-based semantic dictionary learning are cat-

egorized as described in Table 4.3.

Table 4.3: Experiments Details

ID Word Embedding Upsampling Stages
Experiment-1 Word2Vec Distributed no
Experiment-2 Word2Vec Global yes
Experiment-3 Word2Vec - yes
Experiment-4 Word2Vec - no
Experiment-5 FastText - yes
Experiment-6 FastText - no
Experiment-7 - - -

Experiment-1 is carried out with the distributed upsampling to reduce the data imbalance.

In Experiment-2, the model is built with global upsampling to increase the number of

ocular abnormality images globally and it is also built in two stages to have less data

imbalance by separating the large positive (LP) and small positive (SP) data distributions.

Experiment-3 and Experiment-4 are deployed to have a more realistic scenario by not

applying the data upsampling. Instead, the real-time image augmentation is applied to

the training data only. The difference between Experiment-3 and Experiment-4 is the

training strategy. Similar to Experiment-2, the model training in Experiment-3 is done in

two stages, for LP ocular abnormalities and SP ocular abnormalities. As explained in

Section 4.5.2.1, the testing schema is also applied in stages. The first stage predicts the

probability of LP and OTHER1 ocular abnormalities, while the second stage predicts SP

and OTHER ocular abnormalities from the output of OTHER1. Experiment-4 is carried

out without any upsampling or stage scenario to deal with data imbalance. The model

predicts directly all ocular abnormalities and OTHER.

The experiments with FastText as word embedding are carried out without upsampling.

The training and testing in Experiment-5 are done in two stages with the same scenario as

Experiment-3, while Experiment-6 is deployed with no-stage which has a similar scenario

as Experiment-4. Different from other experiments, Experiment-7 is executed to be able

to compare the impact of two input modalities in multi-ocular abnormalities detection.

Experiment-7 has a similar architecture to other experiments but without label features

and a semantic dictionary.

4.7.1.1/ COMPARISON BETWEEN EXPERIMENTS

Word2Vec produces zero vectors for OOV words. From 27 labels in the RFMiD dataset,

three ocular abnormalities belong to OOV words. Differently, FastText gives no vector

value for OOV words. With FastText as word embedding, there is only one word that
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belongs to OOV words.

The training in Experiment-1 and Experiment-2 have no issue with overfitting in the train-

ing phase since the data splitting is done after upsampling the original data. The model

in Experiment-1 is trained with high metrics for both LP and SP ocular abnormalities.

However, the testing results are low for LP ocular abnormalities and it is poor for SP oc-

ular abnormalities. It shows that the model is overfitted to the training data. Though true

prediction for SP ocular abnormalities is necessary, a high false prediction in LP ocu-

lar abnormalities significantly affects the overall prediction performance metrics. Similar

case with Experiment-1, the model in Experiment-2 is trained well with high metrics in

LP and SP ocular abnormalities. Dividing the model to train a different group of labels in

each stage gives higher performance for LP ocular abnormalities, but lower performance

for SP labels. However, the performance for LP ocular abnormalities in Experiment-2 is

higher than that of Experiment-1.

Table 4.4: Testing results in Evaluation Set for experiments without sampling. The mAP, AUC,
and Final scores are calculated globally. Bold values indicate the highest score.

Experiment Word Embedding Stage mAP AUC Final Score

Experiment-3 Word2Vec yes 0.144 0.767 0.456

Experiment-4 Word2Vec no 0.232 0.829 0.530

Experiment-5 FastText yes 0.331 0.845 0.588

Experiment-6 FastText no 0.397 0.881 0.639
Experiment-7 - no 0.338 0.889 0.614

The other performances of the CNN-based semantic dictionary learning with Word2Vec

and FastText experiments without data sampling are described in Table 4.4. Among ex-

periments that are listed in Table 4.4, Experiment-6 has the highest score for final score

and mAP values. The mAP and final score of Experiment-6 surpass Experiment-7, the

baseline model without label features, with a slight difference in AUC values. The in-

terference of word embedding in the detection architecture can increase the detection

performance but also can decrease the detection performance. More OOV words found

in the word embedding with non-zero or non-value vectors affect the performance of the

multi-label detection. Between stages and non-stage scenarios, experiments that predict

the labels without dividing them into multiple stages also have higher performance than

the experiments with stages.
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Table 4.5: Testing results in Evaluation Set for experiments with stages. The mAP, AUC, and Final
scores are calculated globally. Bold values indicate the prediction for complete labels.

ID Experiment Word Embedding Stage mAP AUC Final Score

ID-1 Experiment-3 Word2Vec Stage-1 0.264 0.800 0.532

ID-2 Experiment-3 Word2Vec Stage-2 0.243 0.731 0.487

ID-3 Experiment-3 Word2Vec Overall 0.144 0.767 0.456
ID-4 Experiment-5 FastText Stage-1 0.349 0.824 0.587

ID-5 Experiment-5 FastText Stage-2 0.242 0.756 0.499

ID-6 Experiment-5 FastText Overall 0.331 0.845 0.588

Table 4.5 shows the performance details of the experiments with stages. ID-1 of Table

4.5 is the performance of the Experiment-3 which is tested in Stage-1 to predict LP labels

from all input images, ID-2 is the performance of the Experiment-3 which is tested in

Stage-2 to predict SP labels and OTHER label from all input images, and ID-3 is the

overall performance of the Experiment-3 that is tested to predict LP labels from the model

of Stage-1, and predict the OTHER1 labels into the rest of labels (SP labels and OTHER

label) from the model of Stage-2. ID-4, ID-5, and ID-6 are similar to ID-1, ID-2, and ID-3

respectively but with different word embedding. Though the performance of ID-1 and ID-2

is quite the same, the overall prediction in ID-3 has a lower performance compared to ID-1

and ID-2. The decrement in the performance of the model that is tested with overall labels

is due to the less accurate prediction for SP labels and OTHER label from the Stage-2

model. In contrast, the performance of ID-6 is higher than ID-5 but lower than ID-4 even

though it is not much different in ID-5 and ID-2 performance. It is because of the total

images that are predicted to have OTHER1 ocular abnormality. The input images for

Stage-2 in overall prediction are the images that are predicted to have OTHER1 ocular

abnormalities from Stage-1. The more accurate the model prediction of Stage-2 can

boost the performance of overall prediction. However, the accuracy of OTHER1 label

prediction from Stage-1 is also an important factor since Stage-2 predicts only the images

that are predicted to have OTHER1.

Table 4.6 describes the comparison of the performances between Experiment-6 with the

other algorithms that are reported in their publications such as KAMATALAB, IGSTfenc-

ing, Schulich Applied Computing, BNUAA, WWW, Nekaravuru, Chizu & Arai & Okada,

and MISIT that are reported in RFMiD challenge [Pachade et al., 2023]. KAMATALAB

[Pachade et al., 2023] has the highest performance final score for multi-label detection.

They proposed a detection method that consists of three different paths. Every path is

built with a pre-trained CNN and different input image sizes. One model path is trained

with 3 sub-label groups (stage) while the other two model paths are trained with complete

labels. Post-processing is applied to the model; average blending for major classes only,

providing meta-information, replacement with min-max values, and rank voting.
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Table 4.6: Comparison of Testing Results in Evaluation Set. Bold values indicate the highest
score among all algorithms. Sm refers to Sampling, BBone refers to Backbone, WEmbd refers to
Word Embedding, and FScore refers to Final Score.

Algorithm Sm Stage BBone WEmbd mAP AUC FScore

KAMATALAB [Pachade et al., 2023] no 3 3 - - - 0.802
IGSTfencing [Pachade et al., 2023] no no 1 - - - 0.791

Schulich Applied Computing [Pachade et al., 2023] no no 5 - - - 0.786

BNUAA [Pachade et al., 2023] no no 2 - - - 0.782

Multi-Expert [Lyu et al., 2022] no no multiple - - - 0.778

WWW [Pachade et al., 2023] no no 6 - - - 0.758

Nekaravuru [Pachade et al., 2023] no 2 3 - - - 0.757

Chizu & Arai & Okada [Pachade et al., 2023] no no multiple - - - 0.738

MISIT [Pachade et al., 2023] yes no 4 - - - 0.703

Experiment-6 (Global calculation) no no 1 FastText 0.397 0.881 0.639

Nekaravuru [Pachade et al., 2023] applied the multi-stage approach that was trained to-

gether with different weight loss in each stage. They also stack three pre-trained networks

as the backbone to have more generalized model. However, these methods require larger

resources because of the computation and number of models in both training and testing.

IGSTfencing [Pachade et al., 2023] is the only recent algorithm that proposed the detec-

tion method without a model ensemble. The detection model is built with semi-supervised

siamese GCN. The model is trained with label and unlabeled data and it also learns the

co-occurrence dependencies between labels by constructing two GCNs. This method is

the second-highest performance listed in Table 4.6. Nevertheless, this detection model

needs more data in the training phase. It was trained with RFMiD and ODIR datasets.

This first proposed method is backbone-agnostic and word embedding-agnostic. Select-

ing another word embedding technique for linguistic features that have treated the OOV

words with a non-zero vector can increase the performance of multi-label detection with

semantic dictionary learning.

4.7.1.2/ HYPER-PARAMETER ANALYSIS

There are two special hyper-parameters for CNN-based semantic dictionary learning:

Hyper-parameter λ that is explained in Eq. 4.3 as the regularizer, and hyper-parameter β

that is explained in Eq. 4.4 as the balance between Lml and Ldic. The value of λ and β are

selected heuristically. For Experiment-4, the hyper-parameter λ is 10 and β is 1.00 e−04.

The hyper-parameter λ for Experiment-6 is 1 and β is 5.00 e−04. During training, the value

of λ affects how the model is learning. A lower value of λ makes the model learn slowly

and converge in the non-optimum loss, and a higher value of λ makes the model to be

sensitive only in label 0.

Figure 4.8 shows the different final scores corresponding to different values of β. The
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other hyper-parameters for Word2Vec are set to be the same as Experiment-4, and the

other hyper-parameters for FastText are the same as Experiment-6. As seen in Figure

4.8, the hyper-parameter β is quite sensitive toward the value of the final score. Though

a higher value of β can give also a higher value of final score (see Figure 4.8a), it puts

the stability of the dictionary loss (Ldic) in the risk. In this research, the lowest range for

the selection of β value is 1.00 e−05 to see the impact of a CNN-based semantic dictionary

with visual consistency towards the detection model.

(a) Word2Vec (b) FastText

Figure 4.8: Hyper-parameter beta selection for Experiment-4 and Experiment-6.

4.7.2/ TRANSFORMER-BASED SEMANTIC DICTIONARY LEARNING

Though the transformer-based semantic dictionary is also backbone-agnostic and word

embedding-agnostic, the experiments that are deployed in this research have an identical

backbone and variety of word embeddings. Four experiments are implemented in this

proposed method:

1. Experiment-1 is executed with FastText for the label embedding as the highest

performance in CNN-based semantic dictionary learning.

2. Experiment-2 is executed with BERT [Devlin et al., 2018].

3. Experiment-3 is executed with Clinical BERT [Alsentzer et al., 2019] considering

the source of the training data is the limited clinical reports.

4. Experiment-4 is executed with spatial learnable word embedding

[Liu et al., 2021a]. This model is identical to the model with the second pro-

posed method but without any interference from any word embedding technique.

The learnable word embedding that is generated from this model is the other

representation of the spatial features. This experiment is the baseline for the

second proposed method.
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The performance of the transformer-based semantic dictionary learning experiments are

described in Table 4.7. The experiments are tested in Evaluation Set and Test Set on

the RFMiD dataset. ID-1, ID-2, ID-3, and ID-4 show the performance of Experiment-

1, Experiment-2, Experiment-3, and Experiment-4 which are tested on the Evaluation

Set while ID-5, ID-6, ID-7, and ID-8 are the experiments that are tested on the Test Set

respectively.

Table 4.7: Testing Intra-performances in Evaluation Set and Test Set for multi-label detection
model. Evaluation metrics are calculated per label. Bold values indicate the highest score in each
Data Testing.

ID Algorithm Data Testing Word Embedding mAP AUC Final Score

ID-1 Experiment-1 Evaluation Set FastText 0.432 0.861 0.647

ID-2 Experiment-2 Evaluation Set BERT 0.449 0.856 0.652

ID-3 Experiment-3 Evaluation Set Clinical BERT 0.455 0.874 0.665
ID-4 Experiment-4 Evaluation Set Learnable 0.434 0.863 0.648

ID-5 Experiment-1 Test Set FastText 0.431 0.858 0.645

ID-6 Experiment-2 Test Set BERT 0.430 0.835 0.632

ID-7 Experiment-3 Test Set Clinical BERT 0.442 0.842 0.642

ID-8 Experiment-4 Test Set Learnable 0.443 0.862 0.653

In the testing phase, for Evaluation Set, the model that is trained with Clinical BERT (ID-

3) has the highest scores in mAP, AUC, and final score followed by the model trained

with BERT (ID-2), while the baseline model (ID-8) has the highest score on the Test Set

with a slight different performance with the model trained with FastText (ID-5) followed

by the model trained with Clinical BERT (ID-7). The result in Evaluation Set shows that

the model that is trained with the word embedding technique can increase the model

performance compared with the baseline model. On the other hand, the result in Test Set

shows that the word embedding that is learned from the spatial features (baseline model)

is enough to achieve good performance. Due to these different inferences, the evaluation

metrics that are calculated globally are also provided in Table 4.8.

Table 4.8: Testing Intra-performances in Evaluation Set and Test Set for multi-label detection
model. Evaluation metrics are calculated globally. Bold values indicate the highest score in each
Data Testing.

ID Algorithm Data Testing Word Embedding mAP AUC Final Score

ID-9 Experiment-1 Evaluation Set FastText 0.636 0.929 0.783

ID-10 Experiment-2 Evaluation Set BERT 0.647 0.927 0.787
ID-11 Experiment-3 Evaluation Set Clinical BERT 0.642 0.920 0.781

ID-12 Experiment-4 Evaluation Set Learnable 0.638 0.929 0.783

ID-13 Experiment-1 Test Set FastText 0.661 0.935 0.798

ID-14 Experiment-2 Test Set BERT 0.679 0.929 0.804
ID-15 Experiment-3 Test Set Clinical BERT 0.671 0.925 0.798

ID-16 Experiment-4 Test Set Learnable 0.668 0.934 0.801



98 CHAPTER 4. MULTI-LABEL OCULAR ABNORMALITIES DETECTION

Table 4.8 shows that the experiments with word embedding BERT (ID-10 and ID-14)

achieve the highest final score with also the highest mAP in both Evaluation Set and Test

Set. Overall, the model with the word embedding from the linguistic features has better

performance than the baseline model in most cases.

Table 4.9: Comparison of Testing Results in Evaluation Set. Bold values indicate the highest
score among all algorithms. Sm refers to Sampling, BB refers to Backbone, WEmb refers to Word
Embedding, and FScore refers to Final Score.

Algorithm Sm Stage BB WEmb mAP AUC FScore

KAMATALAB [Pachade et al., 2023] no 3 3 - - - 0.802
IGSTfencing [Pachade et al., 2023] no no 1 - - - 0.791

Schulich Applied Computing [Pachade et al., 2023] no no 5 - - - 0.786

BNUAA [Pachade et al., 2023] no no 2 - - - 0.782

WWW [Pachade et al., 2023] no no 6 - - - 0.758

Nekaravuru [Pachade et al., 2023] no 2 3 - - - 0.757

Chizu & Arai & Okada [Pachade et al., 2023] no no multiple - - - 0.738

MISIT [Pachade et al., 2023] yes no 4 - - - 0.703

2nd Proposed Method (Experiment-3) no no 1 Clinical BERT 0.455 0.874 0.665

Table 4.9 describes the proposed methods compared to other recent studies in multi-

label detection for the RFMiD dataset. All the algorithms reported in Table 4.9 are tested

in Evaluation Set. The evaluation metric of all algorithms is calculated by averaging the

final score per label. The final score of 2nd Proposed Method (Experiment-3) is 0.038

difference with MISIT [Pachade et al., 2023]. Table 4.10 describes the proposed methods

compared to other recent studies in multi-label detection for the RFMiD dataset in Test

Set: the highest performances in the RFMiD dataset challenge [Pachade et al., 2023] and

Multi-Expert [Lyu et al., 2022]. The final score of 2nd Proposed Method (Experiment-1) is

0.044 difference with MISIT [Pachade et al., 2023].

Table 4.10: Comparison of Testing Results in Test Set. Bold values indicate the highest score
among all algorithms. Sm refers to Sampling, BB refers to Backbone, WEmb refers to Word
Embedding, and FScore refers to Final Score.

Algorithm Sm Stage BB WEmb mAP AUC FScore

KAMATALAB [Pachade et al., 2023] no 3 3 - - - 0.782

Schulich Applied Computing [Pachade et al., 2023] no no 5 - - - 0.778

Multi-Expert [Lyu et al., 2022] no no multiple - - - 0.778

BNUAA [Pachade et al., 2023] no no 2 - - - 0.758

Nekaravuru [Pachade et al., 2023] no 2 3 - - - 0.749

WWW [Pachade et al., 2023] no no 6 - - - 0.738

IGSTfencing [Pachade et al., 2023] no no 1 - - - 0.710

MISIT [Pachade et al., 2023] yes no 4 - - - 0.689

2nd Proposed Method (Experiment-1) no no 1 FastText 0.431 0.862 0.645

The results of the 2nd Proposed Method (Experiment-2) are also compared with Sun et

al. [Sun et al., 2022a] who focus to predict 7 frequent ocular abnormalities in the RFMiD

dataset. Table 4.11 presents the AUC-ROC metric of these 7 labels to be compared.
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The model of Sun et al. [Sun et al., 2022a] and 2nd Proposed Method (Experiment-2) are

tested in Test Set. As shown in Table 4.11, the prediction of the frequent labels from

the 2nd Proposed Method (Experiment-2) has competitive results compared to the multi-

frequent label detection model proposed by Sun et al. [Sun et al., 2022a].

Table 4.11: The comparison of AUC-ROC metric per labels in Test Set. Bold value indicates the
highest value.

Label Sun et al. [Sun et al., 2022a] 2nd Proposed Method (Experiment-2)

DR 0.97 0.98
ARMD 0.98 0.95

MH 0.94 0.96
DN 0.84 0.89

MYA 0.98 0.95

TSLN 0.95 0.94

ODC 0.9 0.89

A complete label-level performance of the 2nd Proposed Method (Experiment-2) is pre-

sented in Table 4.12. The Final score and mAP metrics are also provided in Table 4.12

to have a more focused evaluation, especially for the rare ocular abnormalities. It is quite

difficult to evaluate the model performance from only AUC-ROC for rare ocular abnormal-

ities. A contrast value between AUC-ROC and mAP metrics in rare ocular abnormalities

is caused by a small number of total images that are assigned to be positive.

Figure 4.9: Final scores of each label are plotted against the number of training images.

Figure 4.9 describes the plot of the number of training images against the final score

for all the labels. It shows that the labels that have large training images (minimum 100

images) tend to have a final score above 0.6. However, the fluctuated performances are
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captured between 0 and 100 training images. To analyze the behavior of the model’s

performance, the labels are divided into two groups (LP and SP) based on the number of

training images with a threshold of 30. LP (Large Positives) refers to the labels that have

more than 30 training images and SP (Small Positives) refers to the labels that have less

than 30 training images.

Table 4.12: Evaluation metrics per labels in Test Set. Bold values indicate the exception labels.

Label Total Images in Training Set AUC mAP Final score
DR 376 0.982 0.941 0.962
MH 317 0.965 0.911 0.938

ODC 282 0.886 0.676 0.781
TSLN 186 0.940 0.649 0.794

DN 138 0.891 0.461 0.676
MYA 101 0.954 0.864 0.909

ARMD 100 0.947 0.570 0.758
BRVO 73 0.964 0.742 0.853
ODP 65 0.830 0.190 0.510
ODE 58 0.955 0.856 0.905
LS 47 0.931 0.636 0.784
RS 43 0.988 0.811 0.900

CSR 37 0.901 0.544 0.723
OTHER 34 0.714 0.100 0.407

CRS 32 0.900 0.280 0.590
CRVO 28 0.936 0.731 0.834
RPEC 22 0.948 0.104 0.526
AION 17 0.677 0.029 0.353
AH 16 0.988 0.644 0.816

EDN 15 0.836 0.332 0.584
MS 15 0.894 0.209 0.552

ERM 14 0.616 0.214 0.415
RT 14 0.955 0.308 0.632
PT 11 0.617 0.015 0.316

MHL 11 0.727 0.349 0.538
TV 6 0.851 0.505 0.678
RP 6 0.810 0.012 0.411
ST 5 0.572 0.013 0.292

The performance of LP labels is shown in Figure 4.10. It shows that most of LP labels

achieve final scores greater than 0.6 except for three labels: ODP, CRS, and OTHER.

On the other hand, the performance of SP labels is shown in Figure 4.11. The per-

formance of SP labels is 0.534 final score on average with 0.169 standard deviation.

However, the plot of the performance against the final score in SP labels has no pattern.

There are some labels that can achieve high final scores up to 0.8, but there are also

some other labels that have very low final scores.
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Figure 4.10: Final scores of each LP label plotted against the number of training images.

Figure 4.11: Final scores of each SP label plotted against the number of training images.

Figure 4.12 shows the plot between the final score and the number of training images

for SP labels with adding the co-occurrence dependency to be the third variable. The

0.0 value in the ratio of co-occurrence indicates that the label has no co-occurrence with

any other labels, whereas the value 1.0 indicates that the label is highly co-occurrent with

other labels. Based on the data plotted in Figure 4.12, it shows that most of the SP labels

that have a ratio of co-occurrence of more than 0.5 can achieve a final score greater than

0.5 while the SP labels that have low co-occurrence tend to have a low final score (less

than 0.5), except for CRVO label. Co-occurrence dependency gives a positive impact on
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SP labels since most of the co-occurred labels are LP labels.

Figure 4.12: Final scores of each SP label plotted against number of training images. The color
bar denotes the ratio of co-occurrence of the labels.

However, the type of visible sign in the ocular abnormality also affects the prediction

result. The model has difficulties in differentiating labels that have similar visible signs. In

some test images, the model miss-predicts ODP (Optic Disc Pallor) to ODC (Optic Disc

Cupping) and ODC to ODP. Figure 4.13 shows the false predictions of ODP, 4.13a is the

fundus image that is predicted to have ODC when the ground truth is ODP, and 4.13b is

the fundus image that is predicted to have ODP when the ground truth is ODC.

(a) False Positive (b) False Negative

Figure 4.13: ODP false prediction.

The same issue also occurs with CRS (Chorioretinitis) label. The model has hard diffi-

culty differentiating CRS and ARMD (Age-Related Macular Degeneration). Figure 4.14

shows the false predictions of CRS, 4.14a is the fundus image that is predicted to have



4.7. EXPERIMENTAL RESULTS 103

CRS when the ground truth is ARMD, and 4.14b is the fundus image that is predicted to

have ARMD when the ground truth is CRS. This issue is the causing factor of 75% false

prediction.

(a) False Positive (b) False Negative

Figure 4.14: CRS false prediction.

(a) (b)

(c) (d)

Figure 4.15: CRVO images predictions; (a) and (b) are True Predictions, (c) is False Positive, and
(d) is False Negative prediction.

The type of visible sign of an ocular abnormality can also affect the performance incre-

ment. As seen in Figure 4.15, the visible sign of CRVO (Central Retinal Vein Occlusion)

is clearly visible and it spreads all over the fundus. It causes the model to predict the

ocular abnormality correctly. Yet, the false predictions in CRVO are also caused by the

model that is still weak to differentiate CRVO and BRVO. In addition, the low performance
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of OTHER label shows that the model is having difficulty differentiating the visible signs

that belong to multiple ocular abnormalities.

The final prediction results are illustrated in Figure 4.16. Label 1 indicates the existence

of an ocular abnormality and 0 is the opposite. The detection model can predict correctly

all ocular abnormalities in the CFP in Figure 4.16a. Figure 4.16b illustrates the case that

the detection model fails to predict some ocular abnormalities.

(a) Image-1

(b) Image-2

Figure 4.16: The illustration of final prediction results from CFPs in Test Set. Green indicates TP,
orange indicates FP, and red indicates FN.

4.7.3/ DISCUSSION ACROSS METHODOLOGIES

This section explains the comparison between CNN-based and Transformer-based se-

mantic dictionary learning results. The evaluation metrics are calculated globally to
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have a fair comparison. The comparison is described in Table 4.13. It compares the

performances of the multi-label detection with a CNN model without word embedding

(CNN baseline method), the best-performing model from the 1st proposed method, and

the 2nd proposed method (transformer-based) that is trained using the same backbone

(EfficienNet-B4) and word embedding (FastText).

Table 4.13: Comparison of performance of CNN-based and Transformer-based semantic dictio-
nary learning in Evaluation Set for multi-label detection model. Evaluation metrics are calculated
globally. Bold values indicate the highest score.

Algorithm Backbone Word Embedding mAP AUC Final Score

CNN baseline method EfficientNet-B4 - 0.338 0.889 0.614

1st Proposed method EfficientNet-B4 FastText 0.397 0.881 0.639

2nd Proposed method EfficientNet-B4 FastText 0.575 0.924 0.750

As shown in Table 4.13, injecting the word embedding as an additional input modality

along with a single CNN can boost the model performance. Both 1st proposed method and

2nd proposed method has higher performances compared to the CNN baseline method

with 2nd Proposed method as the highest performance. It also shows that treating the

linguistic features as a main part of the detection method (2nd proposed method) can give

a higher impact than treating it as a weak factor (1st proposed method).

4.8/ CONCLUSION

In conclusion, providing linguistic modality along with spatial modality with semantic dic-

tionary learning increases the performance of multi-label detection from a single color

fundus image for frequent and rare ocular abnormalities, compared to the model detec-

tion with only spatial modality. In this chapter, we proposed two different approaches of

semantic dictionary learning: CNN-based (1st Proposed Method) and transformer-based

(2nd Proposed Method). In CNN-based semantic dictionary learning method, the spatial

features are extracted from the pre-trained CNN and linguistic features are extracted from

the word embedding network. The correlation between these features is learned by a

semantic dictionary that is generated based on the visual features representation mod-

ule, whereas in Transformer-based semantic dictionary learning, the correlation between

spatial and linguistic features is learned based on the attention regions with transformer

decoders.

The CNN-based semantic dictionary learning can adapt the detection model with OOV

words that come from the word embedding technique. With a simple fine-tuned CNN as

backbone, the model with multi-modalities (spatial and linguistic) shows an increment in

performance compared with the base-model with only spatial modality. However, more
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OOV words that are produced from word embedding give a higher risk of decrement in

detection performance.

On the other hand, the performance of transformer-based semantic dictionary learning

surpasses the performance of 1st Proposed Method. This 2nd Proposed Method can

map the correlation between spatial and linguistic modality explicitly. Both 1st Proposed

Method and 2nd Proposed Method are backbone-agnostic and word embedding-agnostic.

Changing the backbone and the word embedding technique that has better performance

may boost these multi-label detections. Overall, using a semantic dictionary as a features

correlation method, it is important to consider linguistic features as one of the strong input

factors in multi-label detection for frequent and rare ocular abnormalities.
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5

GENERAL CONCLUSION

5.1/ SUMMARY OF THE PHD THESIS

This thesis presents CAD models involved in ocular abnormalities detection from a single

color fundus photography. The first CAD model is implemented to detect microaneurysms

with high sensitivity and a low number of FPI. The main challenge in MAs detection is the

limited number of data with MA that causes severe data imbalance. We proposed a

MAs detection that consists of three main processes: pre-processing, MAs candidate

extraction, and MAs classification. The green channel of a CFP is enhanced by CLAHE

followed by r-polynomial transformation. To reduce the need for a large number of training

data, the MAs candidates are extracted in an unsupervised approach. The data patches

are generated from MAs candidates to be fed into the MAs classifier. The image back-

ground of the patches is suppressed to reduce its complexity. In MAs classification, few

fine-tuned CNN networks are applied to distinguish MA and non-MA with limited training

data. The MAs classifiers are built in two methods: ensemble and cascade learning. MAs

classifier with ensemble learning is built to analyze the best input channels. The exper-

iments are conducted on the IDRiD dataset. The results show that the combination of

the enhanced-green channel, their background suppression image, and the blue channel

gives the highest performance for MAs detection. This combination is then used in the

second MAs classifier that is built with cascade learning. The aim of the second MAs

classifier is to reduce the number of FPI with high sensitivity. The experiments are con-

ducted in E-Ophta and IDRiD datasets separately. MAs classifier with cascade learning

that is trained and tested with the E-Ophta dataset achieves the highest sensitivity in 8

FPI compared to other existing methods in the literature. Also, the competitive perfor-

mances of MAs classifiers trained and tested with different datasets show that the MAs

classifier generalizes well.

The second CAD model proposed in this thesis is for the multi-label detection of 28 ocular

abnormalities that consist of frequent and rare abnormalities. Rare ocular abnormalities

are usually ignored because of a lack of features. We tackle the condition of rare labels

109
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by adding the co-occurrence dependency factor to the model. Instead of using the hot-

encoded label co-occurrence as the second input modality, the linguistic features of the

labels are applied to represent the co-occurrence features. The model learns the rela-

tion between spatial features and linguistic features represented as a semantic dictionary.

Two approaches for multi-label detection with deep learning are proposed in this thesis:

CNN-based and Transformer-based semantic dictionary learning. CNN-based semantic

dictionary learning focuses to learn the semantic dictionary with the visual representa-

tion constraint. The results show that adding the linguistic modality and generating the

semantic dictionary can increase the model performance compared with the model that

uses only spatial modality. Yet, the semantic dictionary is treated as a weak factor due to

the visual representation constraint. Hence, the second proposed method in multi-label

detection for ocular abnormalities is built based on transformers. In this approach, the

semantic dictionary becomes a crucial part of the model. The semantic dictionary acts as

the query while the spatial features are the key and value. The experiments are conducted

on the RFMiD dataset. The results show that the proposed method can achieve higher

performances compared with the CNN-based semantic dictionary learning method. The

transformer-based approach is also able to detect some rare ocular abnormalities with a

minimum 0.5 final score for the rare labels that have a high ratio of co-occurrence. Adding

linguistic modality along with spatial modality in multi-label detection for frequent and rare

ocular abnormalities can boost the detection performance.

5.2/ PERSPECTIVES

5.2.1/ MICROANEURYSMS DETECTION

By the completion of this thesis, we came across some aspects related to MAs detection

that need deep analysis. The first aspect is the dataset. Though there are numerous an-

notated public datasets available, the quality of the MAs annotation in these datasets is

still uncertain. It has been proven in the study by Krause et al. [Krause et al., 2018], which

shows that there are some disagreements in annotation between the ground-truth dataset

and the experts in the hospital, and the most common disagreement is for MAs annota-

tion. High-quality annotation is an important factor in MAs detection since false predic-

tions usually occur in weak-appearance objects such as blurry edges or less-contrast

backgrounds.

The second aspect is the method to increase the performance of MAs detection. Other

than cascade learning, the method proposed by Galdran et al. [Galdran et al., 2022]

can be a potential method to refine the prediction of MAs detection. Cascade learning

refines the predictions by training another network that focuses to learn the features of
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FP predictions. However, the cascade learning proposed in this thesis is designed only

to decrease the number of FPs without any specific refinement step to reduce the FN

predictions. On the other hand, Galdran et al. proposed a simpler refinement approach

for blood vessel segmentation that has two CNNs, one to segment the vessels from a CFP

and the other to refine the segmentation results by providing pseudo-labels as additional

input. The performance of their method surpassed the other existing methods that are

trained with the combination of multiple datasets (cross-dataset). Considering the results

of their method, it looks feasible for it to be adapted for MAs detection.

Figure 5.1: An illustration of the potential refinement method for MAs detection adapted from
Galdran et al. [Galdran et al., 2022].

The refinement step proposed by Galdran et al. [Galdran et al., 2022] is illustrated in

Figure 5.1. Firstly, the training data is split into source data and target data. The initial

network is trained with the patches (from MAs candidates extraction) and the labels of the

source data. After that, the target data is used to evaluate the performance of the initial

network to get the probability of the labels which are called "pseudo-labels". The source

data and its label along with target data and its pseudo-labels are used in training the

refinement network. The final predictions are based on the results of the refinement net-

work. This method is expected to significantly reduce false (both FP and FN) predictions.

Another interesting approach to increase the performance of MAs detection is Trans-

formers. In the image classification task, the transformers achieve higher perfor-

mance than CNN which can be of significant advantage in MAs detection tasks

[Dosovitskiy et al., 2020]. As for the input image, giving a full fundus image that is divided

into bigger patches can be a wise option instead of giving the small patches of MAs can-

didates extraction that consist of one MA per patch. A bigger patch can consist of one or
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multiple MAs in a patch. It can also give more information about the contrast between ob-

jects and the background to understand the similarity between objects in the same back-

ground. To be suitable with this type of input image, DETR model [Carion et al., 2020]

can be adapted to detect multiple MAs from an image.

Figure 5.2: MAs detection with Transformer.

The illustration of MAs detection based on DETR is shown in Figure 5.2. The spatial

features of the patches are extracted by a backbone network. The spatial features and

positional encoding are given to the transformer encoder. The key and value from the

transformer encoder is mapped by the object query in the transformer decoder to find

the location of the MAs in the patch. The augmentation method proposed by Xia et al.

[Xia et al., 2021] can also be adapted to this approach to increase the number of positive

data. To adapt the DETR model with tiny objects, ViTDet [Li et al., 2022a] can be applied

to give multi-scale features to the ViT backbone.

Overall, a high-performance MAs detection is not only useful to detect the MAs solely but

also boost the performance of DR grading since the inefficient detection of MAs can lead

to miss-grading of the DR between mild and moderate [Krause et al., 2018].

5.2.2/ MULTI-LABEL DETECTION FOR OCULAR ABNORMALITIES

In terms of model improvement for multi-label detection of ocular abnormalities proposed

in this thesis, there are a few main factors that need to be analyzed in depth.

Linguistic Features. The rapid advancement in language modeling paves way for the

improvement in the word embedding models representing the linguistic features in multi-

label detection. GPT (Generative Pre-trained Transformer) [Radford et al., 2018] and

CALM (Confident Adaptive Language Modelling) [Schuster et al., 2022] are language
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models that can be applied to extract the linguistic features in multi-label detection be-

cause of their performances. GPT [Radford et al., 2018] is the backend of ChatGPT, the

recent chatbot that was launched in November 2022. GPT has a variety of versions,

the latest version is GPT-3 [Brown et al., 2020] and the next version (GPT-4) is going

to be released soon. GPT is built based on general transformer architecture. Instead

of fine-tuning, GPT-3 implements zero-shot, one-shot, and few-shot learning in their ex-

periments. GPT-3 was trained in 470 times bigger in parameter size than BERT-Large.

CALM [Schuster et al., 2022] is also a large language model that utilizes a transformer-

based architecture. CALM is built with encoders that change the text input to the dense

representation and decoders to generate the new text. The main advantage of CALM is

the ability to predict the next word before all decoders are completed. CALM is capable

to maintain high performance with high-quality output and also to increase the speed of

text generation.

Although some publicly available language models are trained with medical documents

such as ClinicalBERT [Alsentzer et al., 2019] and PubMedGPT [Bolton et al., 2022], re-

training the network with eye-related documents as text database might be necessary

considering the existence of the rare ocular abnormalities.

Spatial Features. In this thesis, the spatial features are extracted from a single fine-tuned

CNN. As mentioned in Section 4, the proposed methods of the multi-label detection are

backbone-agnostic so it can be changed with multi-CNNs or with a Transformer-based

backbone such as Vision Transformers (ViT) [Dosovitskiy et al., 2020], Shifted Win-

dow transformers (Swin) [Liu et al., 2021b], and Multi-scale Vision Transformers (MViT)

[Fan et al., 2021]. ViT is the standard transformer model used in image classification

while Swin and MViT are the leading adaptations of ViT. Unlike ViT which is implemented

with a fixed patch size, the Swin transformer uses shifted window concept similar to CNNs

with varying patch sizes. The scale-up Swin transformer model with the model capacity

that can receive bigger image resolution is also available in Swin V2 [Liu et al., 2022].

MViT is another variant of ViT that is built by connecting the seminal idea of multiscale

feature hierarchies with transformer models. MViTv2 [Li et al., 2022b] is an upgraded ver-

sion of MViT that incorporates decomposed relative positional embeddings and residual

pooling connections. Both these transformers have shown good performance in image

classification and object detection tasks. Unlike Swin and MViT which are built in hi-

erarchical architecture, Li et al. [Li et al., 2022a] proposed ViTDet architecture with a

single-scale backbone. ViTDet architecture focuses to reserve the backbone to be task-

agnostic. Inspired by Feature Pyramid Networks (FPN) [Lin et al., 2017a], ViTDet builds

a simple pyramid on the single-scale backbone. The network is trained by Masked Au-

toencoder (MAE) [He et al., 2022] with non-overlapping windows.

Sub-task Division. The discussion of the multi-label detection of ocular abnormalities
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in Section 4.7.2 shows that false predictions are usually related to some ocular abnor-

malities that have symptoms with similar appearances. Therefore, it is also important to

focus on differentiating these confusing abnormalities. The abnormalities with symptoms-

similarities can be grouped as follows:

• Optic disc abnormality: ODC, ODE, and ODP

• Vessels abnormality: CRVO and BRVO

• Yellow lesion abnormality: Exudates and drusen

• Red lesion abnormality: Microaneurysm and hemorrhage.

Symptoms-based TSDL (S-TSDL). Although the results of transformer-based semantic

dictionary learning (TSDL) are quite promising in multi-label detection, they can still be

improved. Instead of a class-based semantic dictionary as proposed in this thesis, the

same model can be applied to generate a symptom-based semantic dictionary.

Figure 5.3: The overview illustration of S-TSDL.



5.2. PERSPECTIVES 115

Figure 5.3 shows the possible modification of TSDL to get a symptom-based TSDL (S-

TSDL). The main difference between TSDL and S-TSDL models is the input for the lin-

guistic features. TSDL requires a list of ocular abnormalities for the input of its linguistic

features while S-TSDL requires a list of symptoms of all ocular abnormalities. The other

difference in the architecture is the conversion of the semantic dictionary into labels. In

TSDL, the updated values of the semantic dictionary are projected directly to classify ab-

normalities while in S-TSDL the updated values of the semantic dictionary are projected

to classify symptoms followed by another Linear module to classify abnormalities.

There are some advantages of generating a symptom-based semantic dictionary:

• Instead of learning the features of the ocular abnormality, the S-TSDL model fo-

cuses to learn the features of the symptoms and gives the conclusion of the type of

ocular abnormality based on the symptoms.

• The model learns to define the spatial features of all symptoms.

• The word embedding extracted from symptoms contains the co-occurrence be-

tween symptoms that can describe the co-occurrence between labels.

Furthermore, providing an additional image with a smaller region of interest (ROI) such

as an RGB patch that focuses on OD, can also be considered to extract more detailed

features. It can help the model to differentiate some ocular abnormalities that occur in OD

such as ODE, ODP, and ODC, which are challenging for the network to learn (see details

in Section 4.7.2). The multi-input images can be treated as the multi-modality approach

in the Transformer to avoid channel issues. The necessary modification to adapt these

multiple input images with the TSDL or S-TSDL model is in the transformer encoder part.

There are several ways to design the transformer’s encoder for multi-input images as

explained in [Xu et al., 2022].

Medical Report Generation. S-TSDL is also a potential method to be adapted for medi-

cal report generation. In automatic medical report generation, the input of the model is a

medical image and the main concept is an image-to-text approach. Nooralahzadeh et al.

[Nooralahzadeh et al., 2021] generated a medical report that represents two correspond-

ing medical images by feeding each image to the visual backbones to extract the visual

features before going through the two text generation modules. The first module is to

generate the symptoms of the abnormality based on the visual features and the second

module is to generate the sentences based on the symptoms to have a human-readable

medical report. On the other hand, Kaur et al. [Kaur et al., 2022] implemented a reverse

technique of text generation. Here, the medical report is first generated by text genera-

tion language modeling and then refined by sentiment analysis language modeling to add

sentiment effects to the medical report.
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Figure 5.4: Medical report generation with semantic dictionary learning.

The combination of S-TSDL with the method proposed by [Nooralahzadeh et al., 2021] is

expected to give better visualization features that can help the text generator to produce a

medical report. Figure 5.4 illustrates the main scheme of medical report generation with

S-TSDL. The input of the model is a CFP along with labels and symptoms. Symptoms are

the knowledge base of the model and it is provided only for training. S-TSDL produces

the predicted labels and appeared symptoms that will be provided to the text generator

to generate the medical report. However, the dataset that is publicly available for medical

report generation is limited to x-ray images, but the adaptation of S-TSDL’s concept in

medical report generation from other medical image modalities might be possible.
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Abstract:

Any damage to the retina can lead to severe
consequences like blindness. This visual impairment
is preventable by early detection of ocular
abnormalities. Computer-aided diagnosis (CAD)
for ocular abnormalities is built by analyzing retinal
imaging modalities, for instance, Color Fundus
Photography (CFP). The main objectives of this thesis
are to build two CAD models, one to detect the
microaneurysms (MAs), the first visible symptom
of diabetic retinopathy, and the other for multi-label
detection of 28 ocular abnormalities consisting of
frequent and rare abnormalities from a single CFP
by using deep learning-based approaches. Two
methods were proposed for MAs detection: ensemble-
based and cascade-based methods. Ensemble-based
MAs detection aims to find the best combination of
input channels while the goal of cascade-based MAs

detection is to reduce the false positive predictions
with high sensitivity. The MAs detection with the
cascade learning method achieves 0.792 sensitivity,
the highest sensitivity on the E-Ophta dataset in 8
false positives per image. Two methods were also
proposed for multi-label detection: Convolutional
Neural Network (CNN)-based and Transformer-based
methods. These proposed methods combine the
visual features extracted from a color fundus image
and the label co-occurrence dependencies extracted
from linguistic features. The correlation between
visual and linguistic features is learned by a semantic
dictionary. CNN-based multi-label detection aims to
adapt the model with out-of-vocabulary words. The
results of this model show the positive impact of
linguistic input interference in multi-label detection.
Transformer-based multi-label detection enhances the
linguistic input interference in multi-label detection.

Titre : Diagnostic Assisté par Ordinateur grâce à l’Apprentissage Profond des Anomalies Oculaires à partir
d’Images du Fond d’œil.

Mots-clés : Apprentissage profond, traitement des images, diagnostic automatique, détection de
microanévrismes, détection multi-étiquettes, anomalies oculaires.

Résumé :

Cette thèse présente des modèles de diagnostics
médicaux assistés par ordinateurs (CAD) pour
la détection d’anomalies oculaires à partir de
photographies du fond d’œil. Le premier modèle CAD
est mis en œuvre pour détecter les microanévrismes
(MAs) avec une sensibilité élevée et un faible nombre
de faux positifs. Le principal défi dans la détection
des Mas basée sur des approches apprentissages
profonds résulte de jeux de données fortement
déséquilibrés. Nous avons proposé une détection des
MAs qui se compose de trois processus principaux:
le prétraitement, l’extraction des candidats MAs et
la classification des MAs. Pour réduire le besoin
d’un grand nombre de données (notamment de
MAs), les candidats MAs sont extraits dans une
approche non supervisée. Pour la classification
finale, cette thèse propose deux approches, une
méthode basée sur un ensemble de classifieurs
et l’autre sur des classifieurs en cascade. Les
expériences sont menées sur les jeux de données
IDRiD et E-Ophta. Le classifieur basé sur un
apprentissage en cascade atteint la sensibilité la
plus élevée pour 8 FPI par rapport aux autres
méthodes existantes dans la littérature. Le deuxième
modèle proposé dans cette thèse est destiné à la
la détection multi-étiquettes (labels) de 28 anomalies

oculaires dont certaines très rares. Les anomalies
oculaires rares sont généralement ignorées en raison
d’un manque de caractéristiques visuelles. Pour
enrichir notre modèle, nous proposons une approche
associant les données linguistiques (description des
pathologies) aux caractéristiques visuelles. Le modèle
apprend la relation entre les caractéristiques spatiales
et les caractéristiques linguistiques représentées
sous forme de dictionnaire sémantique. Deux
approches pour la détection multi-étiquettes avec
apprentissage profond sont proposées dans cette
thèse : l’apprentissage par dictionnaire sémantique
basé CNN et basé Transformer. L’apprentissage du
dictionnaire sémantique basé CNN se concentre sur
l’apprentissage du dictionnaire sémantique avec la
contrainte de représentation visuelle. Les résultats
montrent que l’ajout de la modalité linguistique et
la génération du dictionnaire sémantique peuvent
augmenter les performances du modèle par rapport
au modèle qui utilise uniquement la donnée image.
La deuxième méthode proposée est construite sur la
base de Transformers. Le dictionnaire sémantique
agit comme la requête (query) tandis que les
caractéristiques issues des images sont assignées à
la clé (key) et la valeur (value). Les expérimentations
sont menées sur le jeu de données RFMiD.
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