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A B S T R A C T

Deep learning played a significant role in establishing machine learning as a
must-have instrument in several modern industries and sciences. However, the use
of deep learning poses several new challenges. On the one hand, deep learning
requires significant computational power for training models and applying them.
Modern hardware comes to its limits when it is necessary to provide access to deep
learning for millions of users. The enormous energy consumption of such kind
of applications poses additional difficulties. Another problem with modern deep
learning is its inability to estimate the uncertainty of the predictions, which creates
significant obstacles to deploying deep learning in risk-sensitive applications. This
thesis presents four projects to address these problems.

• We propose an approach making use of Optical Processing Units for deep
learning applications. Optical Processing Units (OPUs) are computing de-
vices that perform random projections of input data by exploiting the phys-
ical phenomenon of scattering a light source through a diffusive medium.
This operation can be employed to construct kernel ridge regression models
and serve as a component in deep neural networks. This novel hardware
requires less energy and time to perform computations compared to classical
hardware. However, OPUs require the input data to be binary and performs
a non-differentiable operation, which poses problems when using this de-
vice on non-binary datasets or when integrating it into models trained with
backpropagation. We overcome this difficulty by considering OPU as a black
box and employing the REINFORCE gradient estimator. Then we integrate
the OPU into a deep model, where the first layers serve as a binary encoder.
REINFORCE gradient estimator allows us to calculate the gradient of the loss
function with respect to the weights of the binary encoder and optimize these
together with the parameters of kernel ridge regression with gradient-based
optimization Naturally, our approach allows for the integration of OPUs into
deep models trained with backpropagation to bring the advantages of this
hardware to the domain of deep learning.

• We address the problem of uncertainty estimates for classification with
Bayesian inference. We introduce techniques for shallow and deep models
that can decrease the cost of Bayesian inference.

Carrying out Bayesian inference over parameters of statistical models is
intractable when the likelihood and the prior are non-conjugate. Variational
bootstrap provides a way to obtain samples from the posterior distribution
over model parameters, where each sample is the solution of a task where
the labels are perturbed. For Bayesian linear regression with a Gaussian
likelihood, variational bootstrap yields samples from the exact posterior,
whereas for nonlinear models with a Gaussian likelihood, some guarantees
of approaching the true posterior can be established. In this part of the
thesis, we extend variational bootstrap to the Bernoulli likelihood to tackle
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classification tasks. We use a transformation of the labels, which allows us to
turn the classification task into a regression one. Then we apply variational
bootstrap to obtain samples from an approximate posterior distribution over
the parameters of the model. Variational bootstrap allows us to employ
advanced gradient optimization techniques, which provide fast convergence.
We provide experimental evidence that the proposed approach allows us to
achieve classification accuracy and uncertainty estimation comparable with
Markov Chain Monte Carlo (MCMC) methods at a fraction of the cost.

• Classical non-parametric Bayesian linear models, such as Gaussian Processes,
are hard to scale to large datasets. We developed a novel framework to
accelerate Gaussian process regression (GPR). We considered localization
kernels at each data point to down-weigh the contributions from other data
points that are far away, and we derived the GPR model stemming from
the application of such localization operation. Through a set of experiments,
we demonstrated the competitive performance of the proposed approach
compared to full GPR, other localized models, and deep Gaussian processes.
Crucially, these performances were obtained with considerable speedups
compared to standard global GPR due to the sparsification effect of the Gram
matrix induced by the localization operation.

• Specifying sensible priors for Bayesian neural networks (BNNs) is key to
obtaining good predictive performance and sound predictive uncertainties.
However, this is generally difficult because of the complex way prior dis-
tributions induce distributions over the functions that BNNs can represent.
Switching the focus from the prior over the weights to such functional priors
allows for the reasoning on what meaningful prior information should be in-
corporated. We propose enforcing such meaningful functional priors through
Gaussian processes (GPs), which we view as a form of implicit prior over the
weights. We employ scalable Markov chain Monte Carlo (MCMC) to obtain
samples from the posterior distribution over BNN weights. Unlike previous
approaches, our proposal does not require the modification of the original
BNN model, it does not require any expensive preliminary optimization,
and it can use any MCMC techniques and any functional prior that can be
expressed in closed form. We illustrate the effectiveness of our approach
with an extensive experimental campaign.
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1
I N T R O D U C T I O N

Recent advances in machine learning allowed to completely reshape a lot of fields
of technology, starting from accessible consumer-level computer vision systems
[54], dialog [98], translation systems [140] to complicated systems for controlling
and improving production [77], and financial risk assessment [141]. In addition,
modern machine learning techniques are used to drive scientific discoveries in
various fields like experimental physics [30] and mathematics [74], medicine [58],
chemistry [3], and many others [109].

One of the fascinating things about these advances is that machine learning
as a field existed for a long time, but its applications were scarce. We can track
the origins of machine learning to the middle of the 20th century. Arthur Samuel
was one of the first who started to use the term “machine learning” [119]. His
work in the late 40s introduces a self-learning computer program for playing
checkers and introduces the first machine learning algorithms. Later, Rosenblatt
combined Samuel’s ideas with the model of brain cell interaction, proposed by
[56], to introduce a perceptron model [116]. At that time, this method mainly
had theoretical value as a step to understanding the principles of information
processing in the brain. Still, the practical applicability of the method was limited
to some image processing problems [91]. At the time, it seemed that the future
of machine learning was in more sophisticated techniques from mathematical
statistics.

One such statistical method that impacted machine learning was the classifi-
cation algorithm proposed by [40]. It played a notable role in applied machine
learning in the second half of the 20th century for developing various computer
vision systems [137], [100].

In the 70s, Vapnik [138] and Chervonenkis [139] developed a powerful theoretical
foundation for a new type of machine learning algorithms called Support Vector
Machines. These algorithms proved themselves very powerful and successful in
regression, classification, and clustering problems. Among the aforementioned
methods, SVMs probably have had the most significant impact in industry at the
time and anticipated the deep learning revolution. They were used for natural
language processing [61], various tasks in computer vision [83], problems in
biology [52], and other sciences [53].

The vanilla versions of the aforementioned methods are linear with respect to
input features. Thus, their area of application was quite restricted. They owe their
success on a practical level to the so-called kernel trick [1], wich allowed SVMs
[11], and other classical statistical methods, like Ridge Regression [120], to tackle
complex non-linear problems. At the same time, kernel methods made possible
the application of Gaussian Processes, proposed by [62] to tackle machine learning
problems [99], giving the linear models not only the flexibility to resolve non-linear
problems but also an ability to estimate the uncertainty of the model.
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1.1 machine learning at the speed of light 2

Thus, we can conclude that the advances of practical machine learning in the
second half of the 20th century were mainly based on the solid foundations of
mathematical statistics and their introduction to the Computer Science community.
This strong basis enabled accurate predictions but also a theoretical analysis of
model’s properties, like statistical guarantees for the risk on unseen data [16],
model interpretability [128], and uncertainty quantification [114]. The overwhelm-
ing success of deep learning at the beginning of the 21st century resulted from
a completely different approach based on vast amounts of data, computational
resources, and the simple Perceptron model proposed half a century ago. Extended
with gradient descent optimization and backpropagation to train deeper models,
it enabled striking versatility. Deep learning reduces pipeline creation time by
automatizing the burden of feature engineering due to its ability to train machine
learning pipelines in an "end-to-end" fashion.

Deep neural networks can solve much more complicated problems, but with
a cost. Theoretical guarantees of deep models are an open question in machine
learning, except for some exceptional cases [59]. Predictions of these models tend
to be overconfident [51] and hard to interpret. The community is constantly looking
for effective solutions to counter these problems, but cheap and reliable solutions
are still lacking. Nowadays, it may seem that most of the advances of machine
learning in the 20th century did not play any role in the current state of the art.

This work proposes four separate projects connected by the idea of reintroducing
some advances of classical machine learning and merging them with the power
of deep neural networks. In this chapter, we will discuss the motivation and
contributions of each project.

1.1 machine learning at the speed of light

As mentioned above, the success of deep learning became possible due to signifi-
cant advances in hardware. General purpose CPUs are not very efficient in matrix
and tensor operations, which are a building block of all algorithms for inference
and training of neural networks. Nowadays, GPUs and TPUs are absolutely neces-
sary for research and practical applications of deep learning. The problem is that
even this specialized hardware can face performance problems with applications
that require high loads, such as requests from a significant amount of users or
applications that require low latency.

One of the possible solutions to this problem is to use a completely different
approach to perform computations. In Chapter 3 we consider a device that uses
light to perform computations. It projects an input vector into a high-dimensional
feature space using random projections. Then, it is possible to use these features
to solve a linear regression or classification problem. From the mathematical point
of view, this device allows solving a Kernel Ridge Regression (KRR) problem with
a particular type of kernel: the OPU-kernel.

Utilization of the considered device for practical applications poses two main
challenges. The first problem appears due to the fact that Optical Processing
Units (OPUs) can work only with binary input vectors, and most real-life datasets,
considered by machine learning, are not binary. It means that machine learning
pipelines containing an OPU should also include a binarization mechanism for



1.2 performing classification in a bayesian way 3

input data. The second challenge, posed by the OPU architecture, is due to the fact
that OPUs performs an operation that is non-differentiable. This means that it is not
possible to integrate OPUs into the deep learning pipelines for "end-to-end" training
using standard backpropagation. This situation becomes especially problematic
when it is necessary to work with complicated feature extraction procedures that
should be trained with the rest of the pipeline, like, for example, image data, that
requires using convolutions to extract shift-invariant features.

Chapter 3 is dedicated to creating a training procedure for resolving these
problems. The main contributions of Chapter 3 are:

• a training method that allows building heterogeneous pipelines with the
OPU and training them in an "end-to-end" fashion;

• an empirical demonstration that our approach allows obtaining binary em-
beddings that improve the performance of the pipeline on classification or
regression problems compared to non-supervised binarization techniques;

• an empirical demonstration that the proposed procedure allows integrating
the OPU as a part of complex deep learning pipelines to address machine
learning problems that require learnable feature extraction procedures.

1.2 performing classification in a bayesian way

One of the common pitfalls of modern deep learning is overconfidence in predic-
tions of deep models. Classification models take a vector as input and return a
probability of belonging of this input vector to classes defined by the problem. But
in practice, deep models assign a class label with high probability, even for input
vectors that lie far away from data distribution and do not belong to any class of
interest. We can consider a neural network trained to classify pictures of dogs and
cats as a simple example. If we feed the model an image of a car, it will assign it to
one of the classes with a probability close to 1, while the desired behavior would
be 0.5 probability for each of the two classes.

The problem of overconfidence in predictions can be addressed with a Bayesian
approach. Instead of producing a single prediction, Bayesian Neural Network
produces the distribution of class probabilities or samples from this distribution.
Analyzing the entropy of this distribution, it is possible to reason about the model’s
confidence level.

However, this property of Bayesian neural networks comes with a cost. There
are multiple approaches to performing Bayesian inference for Bayesian Neural
Networks, such as Variational Inference (VI) or Markov Chain Monte-Carlo (MCMC).
VI approaches, in most cases, are unable to recover the true posterior predictive We consider VI

and MCMC
approaches in
detail in
Chapter 2

distributions, which is why they provide inadequate estimates of the uncertainty
of the predictions. MCMC approaches provide good uncertainty estimates, but
they require a lot of time to converge. Thus the main challenges for creating an
inference procedure are obtaining reliable uncertainty estimates of the predictions
and decreasing the time necessary for the inference procedure.

Chapter 4 is dedicated to addressing these challenges. In summary, in Chapter 4

we make the following contributions:
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• we propose a novel algorithm for performing Bayesian inference for classifi-
cation models;

• we demonstrated its applicability both for linear models and deep neural
networks;

• we empirically demonstrated that the proposed method achieves a faster
convergence rate than the MCMC approach while preserving comparable
quality uncertainty estimations.

1.3 gaussian processes in the age of big data

Nowadays, it is common to rely on big amounts of data to train statistical models.
As mentioned, the success of deep learning owes much to a large amount of
training data. And deep models can benefit from the big amount of data because
of the vast amount of parameters that they have. If the big amount of data and
parameters is the key to the machine learning method’s success, can we extend the
same principle to classical machine learning algorithms? Classical machine learning
contains a category of methods based on this principle called non-parametric
methods. This category includes many methods, like the aforementioned Gaussian
Processes and other types of kernel machines. The general idea of all these methods
is to grow the capacity of the model with the size of the training dataset. The
problem is that most of these methods are not adapted to huge datasets of the
deep learning era.

In Chapter 5 we consider one such method: Gaussian Process Regression. This
algorithm possesses several nice properties, like flexibility, thanks to the use of
kernels, which allows encoding various constraints on a modeling function, like
smoothness, trend, or seasonality. In addition to this, Gaussian Processs (GPs) are
Bayesian methods, which means, that they can provide information about the
uncertainty of the predictions, and they have a natural mechanism of taking into
account the information about measurement noise in training labels. However,
classical GPs cannot deal with large data sets even using modern hardware. Another
problem with this algorithm is that it uses that for most of the popular kernel
functions, like Radial Basis Function (RBF) or Matérn, training points that lie far
away from the input point of interest do not affect the prediction, while affecting
the computational complexity of the algorithm. We discuss GPs in

detail in
Section 2.2.1

There were multiple attempts to make GP scalable to large data sets, but most
of these methods are based on distilling or synthesizing some small subset from
training data and then making all predictions based on this small subset. We We consider

different
approaches to
build scalable GPs
at Section 5.2

believe that this approach contradicts the philosophy that made deep learning
successful. Indeed, modern neural networks very often have a larger number of
parameters than the number of training samples. Thus, they do not perform a
shrinking of any sort. In Chapter 5, we propose a method that extends the Gaussian
Process Regression algorithm that is able to perform at scale while keeping all
the training data available for predictions. To obtain this property, we leveraged
the idea of localization. For each test data point, we use only the training points
relevant to this specific region of space. From one point of view, that is how we
avoid wasting computational resources on training points that do not affect this
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specific prediction. From another point of view, the test set, with points located in
different regions of input space, is capable of leveraging the full training set.

The contributions of Chapter 5 are:

• the approach that allows performing Gaussian Process Regression at scale
while effectively using computational resources and exploiting the full size
of the training set;

• the empirical demonstration of the superiority of the proposed approach
above classical GP Regression and other localization and sparsification tech-
niques in terms of computational complexity and prediction performance.

1.4 how gaussian processes can improve bayesian neural networks

Bayesian neural networks have the same advantages as GP, like prediction un-
certainty estimation and the ability to account for noise in training labels, but in
addition they possess the expressiveness of deep models. The problem is that the
Bayesian approach requires choosing the prior over the variable of interest. In the
case of Bayesian Neural Network (BNN) it is the vector of neural network weights.
There are a lot of approaches to impose different kinds of prior distributions over
the weights. Still, most of them cannot address the main challenge of imposing
meaningful functional properties on the model’s output by imposing prior distri-
butions over the model’s weights. The described situation is a particular case of We discuss in

detail priors for
BNNs in
Section 6.2

the problem, general for most deep learning techniques: lack of interpretability.
But in the particular case of BNNs, it works the other way around. In standard
deep learning, the functional properties of the model reflect the properties of a
training set, but it is hard to interpret the intrinsic properties and structure of the
weight. In BNNs, it is hard to interpret how the properties of the weights imposed
by the prior affect the model’s output.

In Chapter 6, we proposed a solution for this problem. Instead of manipulating
the model’s weights by imposing a prior, we decided to put prior distribution over
the model’s output. For this purpose, we need a distribution over functions. Such
distribution can be provided by a GP. The idea of imposing the prior over BNNs is
not novel, but we managed to propose a generalized approach that uses MCMC,
standard for the BNN inference without any additional approximations. While our
method does not provide exact posterior inference, we demonstrated empirically
that it is competitive with other similar techniques. The main contributions of
Chapter 6 are:

• A scalable approach for the inference of BNNs with a GP prior using Markov
Chain Mote-Carlo

• Empirical demonstration of the effectiveness of the proposed approach
compared to other methods of imposing a functional prior.



2
B A C K G R O U N D

2.1 linear methods in machine learning

2.1.1 Linear Ridge Regression

Let X = x1, . . . , xn be a set of input vectors x ∈ Rd and let y = y1, . . . , yn be a set
of labels associated with the input vectors. Let’s model the connection between the
output y and the input vector x in the following way:

yi = f (xi, w) + ε, ε ∼ N (0, σnoise), (2.1)

where f (ϕ(x), w) is a deterministic function with parameters w and ϕ(·) is some
function that extracts features from x. In this section, we will consider f to be a
linear function

f (x, w) = w⊤ϕ(x). (2.2)

Given the Gaussian assumption about the noise ε, we can see that the likelihood
of observing a response y given the input x is Gaussian.

p(y|x) = N (y| f (ϕ(x), w), σnoise). (2.3)

Now we can find a maximum likelihood estimate of the parameters of the model w.
It is easier to minimize a log-likelihood instead of maximizing the likelihood itself.
We will obtain an equivalent solution because the logarithm is a monotonically
increasing function

ŵ = argmin
w

1
2σ2

noise

n

∑
i=1

(yi −w⊤ϕ(xi))
2 + const. (2.4)

It is possible to introduce an L2 regularization term to the optimization objective
that will penalize large values in w. Thus, we can write the optimization objective
of Linear Ridge Regression (LRR):

ŵ = argmin
w

1
2

n

∑
i=1

(yi −w⊤ϕ(xi))
2 +

λ

2
∥w∥2

2, (2.5)

where parameter λ controls the level of regularization. In this formulation, it
reflects the assumption regarding the variance of the observation noise λ = σ2

noise.

2.1.2 Kernel Ridge Regression

Now we can consider a KRR algorithm, which is an extension of LRR. Kernel Ridge
Regression (KRR) is a statistical model which constructs a functional relationship
between the inputs and the labels which belongs to the so-called Reproducing

6
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Kernel Hilbert Space (RKHS). The properties of such functions, such as smoothness,
are characterized by choice of a so-called kernel function k(·, ·) : Rd ×Rd → R

[90], which is a positive semi-definite function of pairs of input points returning a
scalar. The reproducing property of kernel functions is ⟨k(x, ·), k(y, ·)⟩ = k(x, y).
According to Mercer theorem, positive definiteness of kernel functions implies
that we can express k(xi, xj) = ϕ(xi)

⊤ϕ(xj) for some set of (possibly infinite) basis
functions ϕ(·).

In order to derive the conventional formulation of kernel ridge regression, it
is useful to start from linear regression, where a set of model parameters w is
introduced to express a linear relationship between inputs and labels. Then, one
introduces the following optimization problem:

ŵ = argmin
w

1
2

n

∑
i=1

(yi −w⊤xi)
2 +

λ

2
||w||22. (2.6)

The objective function contains two terms; the first is a model fitting term, while
the second is a regularization term, which prevents the weights from becoming
too large. The solution to this optimization problem is available in closed form,
given that the objective is quadratic with respect to the parameters, yielding:

ŵ = (X⊤X + λI)−1y. (2.7)

Using standard algebraic manipulations involving the Woodbury identity, we can
re-express the solution as:

ŵ = X⊤(XX⊤ + λI)−1y. (2.8)

While this is more costly than the previous expression in the common case where
d < n (inversion of a n× n matrix rather than a d× d matrix), this formulation is
useful to derive kernel ridge regression.

Imagining to introduce basis functions ϕ(·) = (ϕ1(·), . . . , ϕD(·))⊤, we can solve
this new optimization problem

ŵ = argmin
w

1
2

n

∑
i=1

(yi −wϕ(xi)) +
λ

2
||w||2, (2.9)

with solution

ŵ = Φ⊤(ΦΦ⊤ + λI)−1y. (2.10)

Evaluating the model at a given input x∗ yields:

ϕ(x∗)⊤ŵ = ϕ(x∗)⊤Φ⊤(ΦΦ⊤ + λI)−1y. (2.11)

In this expression, we recognize the scalar product of vectors of basis functions.
Then we can express these scalar products as a kernel function and obtain the
following:

ϕ(x∗)⊤ŵ = k∗(K + λI)−1y, (2.12)

where k∗ = [k(x1, x∗), . . . , k(xn, x∗)]⊤ and Kij = k(xi, xj). In practice, one first
chooses a kernel function, and this induces a set of basis functions; the beauty of
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this formulation is that one never explicitly works with the set of basis functions,
and all we need to use this model in practice is the evaluation of kernel functions
among inputs.

The same method can be approached from a functional space point of view. In
this case, it is necessary to solve an optimization problem in RKHS imposed by
the kernel function k(·, ·) with respect to a regularization constraint over the RKHS

norm of the function.

f ∗(·) = argmin
f∈H

1
2σ2

n

n

∑
i=1

(yi − f (xi))
2 +

1
2
|| f ||2H. (2.13)

The Representer theorem [89] shows that the solution to this problem has the
following form:

f ∗(·) =
n

∑
i=1

αik(·, xi). (2.14)

We can find an expression for f ∗(·) by substituting this result into (2.13) and
solving it with respect to α

f ∗(x∗) = k∗(K + σ2
nI)−1y, (2.15)

which is equivalent to the expression (2.13) for σ2
n = λ.

The choice of the kernel for the KRR algorithm strongly depends on the specific
problem. The most popular kernel is a RBF kernel, also known as the Gaussian
kernel:

k(x, x′) = α exp(−∥x− x′∥2

l
). (2.16)

This kernel imposes a smoothness assumption on the model f (·), and it has two
parameters α, l. Using these parameters, it is possible to control the amplitude and
smoothness of the modeling function f (·).

Another popular choice for the kernel function is the Polynomial Kernel:

k(x, x′) = (x⊤x′ + c)d. (2.17)

This kernel enables modeling of linear and non-linear relationships between input
and output variables, depending on the degree d. In fact, it maps the input data
into a higher-dimensional space, and it is particularly useful when the amplitude
of the input vector x has significance for the task, as is often the case with computer
vision tasks, for example.

2.1.3 Random Features

One of the main limitations of kernel methods is the scalability to large datasets.
The problem arises from the need to evaluate and perform algebraic operations
with the so-called Gram matrix K. Because K is an n× n matrix, evaluating and
storing K requiresO(n2) computations and storage, while any algebraic operations,
such as factorization to handle the inverse of K + λI, requires O(n3) operations.
These prevent the applicability of kernel methods in their exact form to datasets of
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size beyond a few thousand. It is worth noting that some approaches have been
proposed to solve algebraic operations in an iterative fashion and without the
need to store K [39], [28], [144]. However, they still require O(n2) computations
for each iteration of their solvers. Furthermore, while the number of iterations
of the solvers is much lower than n in practice, in the worst case, it can be O(n),
leading to a worst-case complexity of O(n3).

The literature offers a number of solutions to scale kernel methods to large data
linearly in the number of data, such as Nyström approximations [43] and random
features [111]. In this section, we consider the random features approach and in
Chapter 3 we will consider a hardware implementation of random features in
Optical Processing Units (OPUs) [118]. Random feature approximations form a
class of approximations that attempt to construct a finite set of basis functions
ϕ(·) ∈ RD such that

k(xi, xj) ≈ ϕ(xi)
⊤ϕ(xj). (2.18)

There are different ways to construct such sets of basis functions, depending
on the kernel. For example, so-called random Fourier features are commonly
employed to approximate the Gaussian kernel:

k(xi, xj) = exp(−||xi − xj||2). (2.19)

Appealing to Bochner’s theorem [111], this kernel, which is shift-invariant due
to the dependence on τ = xi − xj, admits an alternative expression as:

k(τ) =
∫

p(ω) exp(i2πωτ)dω, (2.20)

where p(ω) is a proper density function and i =
√
−1. Interpreting this as an

expectation under p(ω), it is possible to approximate the integral as an expectation
using Monte Carlo:

k(τ) =
1
D ∑

r
exp(i2πω(r)τ), (2.21)

with ω(r) ∼ p(ω). Furthermore, it is possible to use simple trigonometric identities
to verify that the complex exponential can be broken down as a scalar product
with terms depending on xi and xj:

k(xi, xj) =
1
D

ϕ(xi)
⊤ϕ(xj), (2.22)

with

ϕr(x) = (sin(x⊤ω(r)), cos(x⊤ω(r))). (2.23)

We refer the reader to [111], [24], [27], [143] for random features derived from
alternative integral representation to the Fourier transform.
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2.2 bayesian methods

In classification and regression tasks, the objective is to tune the parameters w of a
function f (x, w) so that it best explains a set of given observations. The Bayesian
paradigm dictates that we specify a prior distribution p(w), which captures any
prior knowledge about the model. For a dataset D{(xi, yi) | i = 1 . . . n} of n input
vectors xi and labels yi, it is possible to define the posterior distribution over w
after observing the data D by means of Bayes rule:

p(w|D) = p(D|w)p(w)∫
p(D|w)p(w)dw

, (2.24)

where p(D|w) is known as the likelihood of the model, while the integral term in
the denominator above is referred to as marginal likelihood or evidence.

2.2.1 Bayesian Linear Models for Regression

bayesian linear regression We can consider LRR from a Bayesian per-
spective. If we assume that the prior distribution over the parameters N (0, σprior)

is Gaussian, we can easily verify that the maximum a posteriori estimate of the
parameters w corresponds to the LRR optimization objective.

ŵ = argmin
w

1
2

n

∑
i=1

(yi −w⊤ϕ(xi))
2 +

1
2

σ2
noise

σ2
prior
∥w∥2

2. (2.25)

But for the linear regression case, it is possible to go further. Due to the fact, that
the Gaussian prior is conjugate to the Gaussian likelihood [7] it is possible to
solve the integral in the denominator of (2.24) analytically and obtain an analytical
expression for the posterior distribution of the parameters w. After observing n
data points, the posterior distribution of w will be Gaussian with parameters:

µw = σ−2
noiseΣwΦ⊤y,

Σ−1
w = σ−2

priorI + σ−2
noiseΦ⊤Φ.

(2.26)

Having the posterior distribution over the weights it is possible to write the
posterior predictive distribution given the test point x∗

p(y∗|x∗, X, y) = N (y∗|µ⊤wϕ(x∗), σy∗),

σ2
y∗ = σ2

noise + ϕ(x∗)⊤Σwϕ(x∗).
(2.27)

gaussian process A GP regression can be seen as a Bayesian equivalent of
the KRR method. And as the KRR method, GP regression can be approached from
the parametric or the functional space points of view.

Let’s consider a parametric approach first. We can re-express (2.27) using the
kernel k(x, x′) = σ2

wϕ(x)⊤ϕ(x′). In this case, the mean of the predictive distribution
for the input x∗ is given by the following expression:

µ⊤wϕ(x∗) =(σ−2
noise(σ

−2
priorI + σ−2

noiseΦ⊤Φ)−1Φ⊤y)⊤ϕ(x∗) =

σ2
priorϕ(x∗)

⊤Φ⊤(σ2
noiseI + σ2

priorΦΦ⊤)−1y =

k∗(K + σ2
noiseI)−1y.

(2.28)
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And the variance of the predictive distribution becomes:

σ2
y∗ = σ2

noise + ϕ(x∗)⊤(σ2
noiseI + σ2

priorΦ
⊤Φ)−1ϕ(x∗) =

σ2
noise + ϕ(x∗)⊤(σ2

priorI− σ2
priorΦ

⊤(σ2
noiseI + σ2

priorΦΦ⊤)−1σ2
priorΦ)ϕ(x∗) =

σ2
noise + k(x∗, x∗)− k⊤∗ (K + σ2

noiseI)−1k∗.

(2.29)

From the functional space point of view, GP is a distribution over functions.

Definition 1 A Gaussian Process is a collection of random variables, any finite number
of which have a joint Gaussian distribution [114].

The distribution of a finite set of these variables is determined by the mean function
m(x) and the kernel function k(·, ·):

m(x) = E[ f (x)],

k(x, x′) = E[ f (x) f (x′)].
(2.30)

Let’s consider a GP with a constant mean function m(x) = 0. We can denote the
GP as

f (x) ∼ GP(0, k(x, x′)). (2.31)

To apply this concept to regression problems, we consider the model

yi = f (xi) + ε, ε ∼ N (0, σnoise). (2.32)

We can choose a GP with m(x) = 0 as a prior distribution over f (x). Given the
assumption about the Gaussainity of the noise case, the prior distribution over the
outputs is also Gaussian.

y ∼ N (0, K + σ2
noiseI), where Kij = k(xi, xj). (2.33)

Now, given the dataset D{(xi, yi) | i = 1 . . . n}, it is possible to obtain a posterior
distribution over f (·) at the test point x∗. For a non-parametric model such as GP

the posterior distribution plays a role of a predictive distribution of a parametric
model. The posterior distribution over f (·) is also a GP:

f (x)|X, y ∼ GP(m̂(x), k̂(x, x′)). (2.34)

Using the expression for a conditional Gaussian distribution [114], we can obtain
the functions m̂(x) and k̂(x, x′):

m̂(x) = k
(
K + σ2

noiseI
)−1

y,

k̂
(
x, x′

)
= k

(
x, x′

)
− k

(
K + σ2

noiseI
)−1

k′,
(2.35)

where k⊤ = [k(x, x1), . . . , k(x, xn)] and k′⊤ = [k(x′, x1), . . . , k(x′, xn)]. We can sub-
stitute the test point x∗ to these expressions and use the property of the sum of
Gaussian random variables to obtain the expressions (2.28) and (2.29).
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2.2.2 Bayesian model comparison and hyperparameter optimization

Let’s now consider Bayes Theorem (2.24) from a different point of view. We can
use this theorem to perform model comparison and selection. Given a set of
possible models Ml |l = 1, . . . , L and a dataset D, our goal is to define which
model describes the data in the best way. The set of the models is discrete so that
we can write a posterior probability of each model given the data D:

p(Ml |D) =
p(D|Ml)p(Ml)

∑L
l=1 p(D|Ml)p(Ml)

. (2.36)

If it is necessary to choose only one model, we can find a maximum a posteriori
model MMAP. And given the uniform prior over the models, the best model
MMAP is given by

MMAP = argmax
M

p(D|M)p(M) = argmax
M

p(D|M). (2.37)

In this context, let’s consider the models discussed in Section 2.2.1. The per-
formance of the Bayesian method depends on the choice of the noise parameter
σnoise and the prior parameter σprior. We have shown their connection to the regu-
larization parameter λ that controls regularization in frequentist linear methods
in (2.25). Thus, we can conclude that an incorrect choice of these parameters will
lead to the same problems typical for the incorrect choice of regularization. If
σprior is too big, it will lead to model overfitting. If this parameter is too small,
we will underfit the data. The opposite is true for σnoise. Thus, we can claim that
different values of these hyperparameters define different models, and we can
use Bayesian model selection to optimize these parameters. Thus, we can write
p(D|σnoise, σprior) = p(D|M).

To find optimal values for these parameters, we can consider the evidence of the
model, i.e., the denominator of (2.24).

p(D|σnoise, σprior) =
∫

p(D|w, σnoise)p(w|σprior)dw. (2.38)

We can solve the optimization problem (2.37) with respect to the parameters
σnoise and σprior. For linear models with a Gaussian prior and likelihood, we can
obtain an analytical expression for (2.38) using the property for the conditional
distribution in a linear-Gaussian model. According to this property, the distribution
p(D|σnoise, σprior) = p(y|σnoise, σprior) will also be Gaussian. For simplicity, we
consider the prior p(w) to be zero-centered.

p(y|σnoise, σprior) = N (y|0, σ2
noiseI + σ2

priorΦΦ⊤). (2.39)

Instead of maximizing the expression for p(y|σnoise, σprior) directly, we can maxi-
mize its logarithm. After some simple transformations, we can show that:

log p(y|σnoise, σprior) = −
n
2

log σ2
noise −

d
2

log σ2
prior−

1
2σ2

noise
∥y−Φµw∥

2 − 1
2σ2

prior
µ⊤wµw −

1
2

log |Σw| −
n
2

log(2π),
(2.40)
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where µw and Σw are defined in (2.26). The expression for log p(y|σnoise, σprior) can
be maximized with respect to σ2

prior and σ2
noise using a gradient-based optimizer

to obtain the optimal values for these parameters. The main difficulty here is
the computation of µw due to the matrix inversion in (2.26), which has O(d3)

complexity. Given that we have to perform this computation for each step of the
gradient-based optimizer, the overall complexity of obtaining the optimal values
for σ2

prior, σ2
noise is quite high.

We can use the same approach for optimizing the hyperparameters of GP
regression. We can use the expression (2.39) directly by using the representation of
the Gram matrix through basis functions K = ΦΦ⊤. The logarithm of the model
evidence in this case becomes:

log p(y) =− 1
2

log |(K + σ2
noiseI)| − 1

2
y⊤(K + σnoiseI)−1y

− n
2

log(2π).
(2.41)

The computational complexity for this expression is O(n3). We can optimize
log p(y) with respect to the noise parameter σ2

noise and the parameters of the kernel
k(·, ·), such as the lengthscale or output variance in (2.16).

2.2.3 Bayesian Linear Models for Classification

To address classification problems in a Bayesian way, we have to use another type
of likelihood p(D|w) in the expression (2.24). The standard choice is categorical
distribution:

p(y|w) =
n

∏
i
1[yi = j]aij, (2.42)

where aij =
exp(w⊤j xi)

∑c
k=1 exp(w⊤k xi)

for c-class problem, and wj is a subset of w, that corre-

sponds to the output j. With this type of likelihood and a Gaussian prior p(w), we
can no longer leverage the property of conjugate distributions.

The easiest way to bypass this difficulty is to use the Laplace approximation.
We can approximate the true posterior p(w|D) with an approximate posterior
distribution q(w|D). As the approximate posterior q(wvect|D), we can choose a
Gaussian distribution.

q(w|D) = N (wMAP, ΣLaplace), (2.43)

where ΣLaplace = −(∇∇ log p(w|D))−1 and wMAP is the mode of the posterior
distribution p(w|D).

The idea of this approach is simple; we match the mode of the approximate
distribution with the mode of the true posterior distribution. The Hessian of the log-
posterior arises from the second-order Taylor approximation of the unnormalized
log-posterior distribution at wMAP [7].

There are plenty of other approaches to approximate Bayesian linear models, like
Expectation Propagation [99], Evidence Lower Bound maximization, and Markov
Chain Monte Carlo sampling, some of which we will consider later in this chapter.
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In Chapter 4, we will consider another approach, based on a Dirichlet approxi-
mation, that allows replacing the classification problem with the regression one.
The Laplace approximation is used in some experiments carried out in this work.

2.2.4 Bayesian Neural Networks

We can extend the Bayesian approach for linear models to non-linear ones, like
neural networks. Let’s consider a Multilayer Perceptron (MLP). We consider f to be
defined as an MLP with L layers, each of which is given by the following formula:

fl(x) =
1√

Dl−1

(
Wl φ( fl−1(x))

)
+ bl , l ∈ {1, ..., L + 1}, (2.44)

where Wl and bl are the weights and the biases of the l-th layer, φ is some non-
linear function (i.e. ReLU), and Dl denotes the dimension of the input for the
corresponding layer. Wl and bl are the stochastic variables. By dividing each layer
by
√

Dl , we ensure that the variance of the output does not explode in the limit
where the width of the network tends to infinity; this specification is known as
Neural Tangent Kernel parameterization [59]. We shall use w to refer to the set of
parameters: w := vec({Wl , bl}L

l=1) ∈ Rm to be the corresponding vectorized form.
The most popular choice of prior distribution p(w) for BNNs is the fully factorized
Gaussian. We will consider the subject of prior for BNNs more thoroughly in
Chapter 6.

In this work, we will use mostly Bayesian MLPs, but we can note that the
extension of the Bayesian framework to other architectures is straightforward.

2.2.5 Inference techniques for Bayesian Neural Networks

Performing inference for a BNN poses the same challenge as Bayesian Logistic
Regression. We cannot obtain the posterior distribution over the weights p(w|D)
in closed form because the prior and the likelihood are not conjugate. The two
most popular directions to resolve this issue are Variational Inference and Markov
Chain Monte Carlo sampling.

2.2.5.1 Variational inference

The main idea of the Variational Inference approach is to choose a family of
distributions and find such an element q(w) in this family that is closest to the
true posterior distribution p(w|D) according to some metric. The most popular
choice for this metric is the Kullback–Leibler divergence.

KL(p(x)||q(x)) =
∫

p(x) log
p(x)
q(x)

dx. (2.45)

The classical approach to solving minq KL(q||p) is to maximize the Evidence
Lower Bound (ELBO).

log p(w|D) ≥ L(p(w)|D)),

where L(p) = Ew∼q(w) log
p(w|D)

q(w)
.

(2.46)
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It is possible to formulate an ELBO maximization objective as follows [69]:

min
q
−Ew∼q(w)[log p(D|w] + KL(q(w)||p(w)). (2.47)

The classical approach proposes to choose a parametric family of approximate
distributions and solve this optimization problem with respect to the parameters
of the approximate distribution θ.

The problem of this approach is how to choose a rich family for the approximate
distribution that can approximate the true posterior well. From the other point of
view, the second term in the RHS of (2.47) is analytically available for a small set
of priors and approximate posteriors, which makes this approach quite restrictive.

Recently so-called Particle Optimization Variational Inference (POVI) [79] was
proposed as an alternative approach which does not rely on parametric approx-
imations but instead chooses an empirical distribution of particles, where each
particle represents a particular realization of the random variable of interest. Good
examples of this approach were investigated in [79], [29] and [88]. We will discuss
in detail this particular type of VI in Chapters 4 and 6.

2.2.5.2 Markov Chain Monte Carlo

MCMC represents a completely different approach to characterize the posterior over
model parameters in the Bayesian treatment of statistical models. This approach
aims to find a sequence of samples generated by a Markov chain. A Markov chain
is a sequence of random variables where the distribution of each variable depends
only on the previous element of the sequence. In the case of Bayesian inference,
the Markov chain is constructed in such a way as to generate samples from the
posterior distribution.

To explain the details of this approach, we consider a Metropolis-Hastings
algorithm, which is a very basic MCMC algorithm with slow convergence, and we
consider it only for illustration purposes. Our goal is to generate samples from
the posterior distribution p(w|D). For this algorithm, it is necessary to introduce
an auxiliary distribution q(w′|w) that depends on the previous sample in the
sequence w, and it is referred to as the is called a proposal distribution. Starting
from an initial point w0, we generate a new candidate w′ ∼ q(w′|w) at each step.
We accept w′ and add it to the sequence with probability a

a = min
(

1,
p(w′|D)q(w′|w)

p(w|D)q(w|w′)

)
. (2.48)

If the candidate is not accepted, we add to the sequence old sample w to the
sequence. It is easy to notice that for this algorithm, we do not need to compute
the normalization constant in the denominator of (2.24) because it cancels out
during the division operation in (2.48). Thus, the computation of the acceptance
probability boils down to

a = min
(

1,
p̂(w′|D)q(w′|w)

p̂(w|D)q(w|w′)

)
, (2.49)

where p̂(w|D) is unnormalized posterior probability density

p̂(w|D) = p(D|w)p(w). (2.50)
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As mentioned before, the Metropolis-Hastings algorithm has poor convergence
properties, and it requires computing the likelihood function p(D|w) over the
whole dataset, which could be expensive in the case of large datasets. In this work,
we widely use Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) because it
has better convergence rates [21] and it allows for mini-batching, i.e., Monte Carlo
estimates of the log-likelihood using mini-batches of data.

The SGHMC algorithm is based on Hamiltonian Monte Carlo (HMC) [94]. HMC
considers the sampling procedure as a mechanical system with total energy,
defined by the Hamiltonian, and position variables w and momentum variables r:

H(w, r) = U(w) + K(r), (2.51)

In this expression, the potential energy is given by

U(w) = − log p̂(w|D), (2.52)

and the kinetic energy is

K(r) =
1
2

r⊤M−1r. (2.53)

In most cases, the mass matrix M is set to the identity matrix I. To generate a
new sample for w, it is necessary to sample r ∼ N (0, M), and then to simulate
Hamiltonian dynamics of this system for some time t. dw = M−1rdt

dr = −∇U(w)dt
(2.54)

To simulate this dynamics, it is necessary to use discrete integrators, which intro-
duce discretization errors. That is why it is necessary to use Metropolis-Hastings
correction at the end of the Hamiltonian simulation, i.e., accept the resulting w′

with probability a given by (2.49).
The HMC algorithm has much better convergence properties but it still requires

computing the exact likelihood p(D|w), giving it a limited scalability. The SGHMC

algorithm allows resolving this issue using the augmented Hamiltonian dynamics:

 dw = M−1rdt

dr = −∇U(w)dt− BM−1rdt +N (0, 2Bdt),
(2.55)

where B = 1
2 ϵV, with the discretization step ϵ of the numerical integrator and

the covariance V, that comes from the mini-batched estimation of the gradient.
The intuition behind this dynamics is the following. Utilization of the gradient
estimates via mini-batches introduces some noise that, due to the central limit
theorem, is assumed to have a Gaussian distribution. Because the dynamics have
to preserve entropy, it is necessary to introduce a friction term −BM−1r to the
momentum dynamics.

A discretized version of this dynamics, implemented in practice, is the following:

wi = wi−1 − ϵtM−1ri−1

ri = ri−1 − ϵt∇Ũ(wi)− CM−1ri−1 +N (0, 2(C− B̂)ϵt),
(2.56)
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where C is a user-defined friction parameter, Ũ(wi) is a mini-batched estimate of
the U((wi)). The empirical noise covariance B̂ can be estimated using a method
proposed in [127].



3
I N P U T D ATA B I N A R I Z AT I O N F O R O P T I C A L P R O C E S S I N G
U N I T S

3.1 introduction

Statistical models based on kernel methods offer powerful and theoretically well-
understood tools for complex data modeling problems. The limitation of employing
these kernel-based models in practice is that a naive implementation scales poorly
with the size of the data set, and there has been a tremendous amount of work in
the direction of mitigating this issue by introducing approximations.

In this context, Nyström approximations [150] and random features [111] are
very popular techniques to scale kernel methods virtually to any number of data,
thanks to mini-batch formulations [27], [57].

The focus of this chapter is on random feature approximations, whereby kernel-
based models are “linearized” by an equivalent linear model with a set of suitably
constructed random basis functions. The motivation behind this work is to con-
siderably accelerate the construction of random features while reducing power
consumption by resorting to dedicated hardware, which we refer to as Optical
Processing Unit (OPU).

OPUs are computing devices that perform random projections of input vectors
by exploiting the physical phenomenon of scattering a light source through a
diffusive medium [118]. The random projection is then followed by a nonlinear
operation, making the whole pipeline of computation exactly what is needed to
construct random features to approximate kernel-based models. Crucially, OPUs

offer the possibility to operate with a number of random features at the speed of
light and with low power consumption, representing a unique solution to improve
the scalability of kernel machines further. As an example, OPU-based random
feature approximations have successfully been proposed to carry out approximate
kernel ridge regression in [97], [17].

One limitation associated with working with OPUs is that, because of the hard-
ware setup, input vectors need to be binarized. In addition, the random projection
matrix characterizing the device is unknown and can only be retrieved through an
expensive calibration procedure. In this paper, we propose a novel binarization
strategy for OPUs, which is learned along with the regression/classification task in
an end-to-end manner, meaning that the parameters of the binarization part are
learned along with the kernel-based model parameters. In order to achieve this, we
overcome the limitation that OPU projection matrices are unknown by employing
the so-called REINFORCE gradient estimator, which allows us to treat the OPU as a
black-box. Through experiments on several UCI classification/regression problems,
we show that our proposal outperforms alternative unsupervised and supervised
binarization techniques. We provide some analysis of the bounds on the objective
functions of the proposed approaches, and also we consider several classes of
kernels and image-based classification problems.

18
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3.2 overview of the subject field

3.2.1 Binary Neural Networks

In neural networks, binarization is generally targeting intermediate layer activa-
tions, and it may also stem from the binarization of model parameters. In these
cases, binarization is mostly introduced to reduce computational cost and memory
consumption [107]. Neural networks with binary hidden layers find applications in
binary autoencoders for hashing [20], data compression [132], and hard attention
mechanism [154]. The binarization of layer activations is obtained by a suitable
choice of activation functions; for instance, the sign or Heaviside functions for the
deterministic case, or the sigmoid or tanh functions combined with the Bernoulli
distribution for the stochastic case [26], [104]. The most popular technique to prop-
agate gradients through such activation functions is the so-called straight-through
estimator (STE) [6]. This technique assumes that the gradient of non-differentiable
activation functions is equal to 1. Of course, this is quite a crude assumption and
it leads to biased estimations of gradients of estimated variables, but it works
surprisingly well in practice. More recently, there have been proposals to replace
the STE with another estimator through a relaxation technique, also known as the
Gumbel Softmax-trick [60].

Also, different kinds of target propagation are used to learn suitable targets
for each binary layer and then train the associated parameters with relaxation
techniques, or combinatorial optimization [44], [76], [19].

3.2.2 Auxiliary models for binarization

Focusing on OPUs, currently, the standard approach to binarize data makes use of a
binary autoencoder [78], [132]. Such a binary autoencoder is trained independently
from the OPU device, and it gives the possibility to perform the binarization
operation by means of its encoder part. The autoencoder consists of a fully-
connected encoder and decoder. The hidden layer has a Heaviside activation
function, so its output is binary. The training procedure updates the weights of the
decoder with backpropagation, and the weights of the encoder are forced to be
equal to the weights of the decoder in order to be able to reproduce the input.

This task could be performed with a more advanced auxiliary model for bina-
rization. The current state-of-the-art for autoencoders with latent binary space was
proposed in [36]. While this paper is mostly focused on sampling in the latent
Bernoulli space and generating new data, the proposed model itself provides very
competitive image reconstruction performance even compared with non-binary
autoencoders. At its core, it still uses the STE approach for training, but it intro-
duces a novel method of sampling latent representations at the test phase. Thus, it
could be beneficial to use this model to input binarization for OPU-based models.

3.2.3 Optimization of heterogeneous models

In this work, we aim to develop a supervised binarization model which is learned
together with the supervised learning task. That is, we aim to provide a training
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procedure for the heterogeneous model, consisting of the kernel ridge regression
model approximated with random features and the binarization encoder before
the OPU.

In the context of heterogeneous models, a general-purpose framework called
Method of Auxiliary Coordinates (MAC) was proposed in [19] with examples of
application in [20] and [25]. The authors propose to introduce auxiliary variables
into a deep neural network. These auxiliary variables are assigned the role of
pre-activations for each layer, and they get replaced during the forward pass. The
first step of the optimization targets the auxiliary variables, and, after this step,
the parameters of each layer are optimized to regress on these variables, which
take the role of layer-specific labels. This is very beneficial when some layers are
discrete and vanilla backpropagation is not applicable. In [25], this approach is
used to train a fully connected network with binary activation functions, using an
STE to propagate a learning signal through the non-differentiable parts. Reference
[20] is especially interesting because the authors illustrate how discrete binary
layers can be optimized within a larger, non-binary model.

While splitting the optimization of the binarization and the model is a viable
option, we still need a way to train each part individually. There is a wide variety
of ways to obtain a solution for kernel ridge regression with the random feature
approximation, so the most difficult point is how to optimize the part consisting
of the binary encoder and the OPU, because it combines a non-differentiable
binarization function with an implicit random projection, which is a black-box
function, so it is also non-differentiable at each point. These make the STE from
[25] inapplicable. Also, we found that the combinatorial approach used in [20] and
[44] is inapplicable to our case for two reasons. First, it is suitable only when the
binary dimension is relatively small, which might be a limitation for a general
solution. Second, the combinatorial approach combined with MAC converges in
one iteration to poor local optima, and this happens because of the model setup,
which is different from the ones in [20] and [44].

3.2.4 Reinforcement learning approach

From a different point of view, it is possible to view our problem through the lenses
of reinforcement learning, where it is necessary to propagate binary codes through
the OPU instead of discrete actions through the black-box environment. Instead of
maximizing the reward from the environment, we are trying to minimize the loss
function. The classical algorithm to solve this problem is REINFORCE [150]. This
allows one to calculate the gradients of the reward with respect to the parameters
of the policy that generates actions. The applicability of this method to other
settings with black-box elements was shown in [112]. There are various versions of
this algorithm intended to reduce the variance of the gradient of the parameters.
Very frequently, they are based on relaxations of the non-differentiable sampling
procedure [136], or approximation of the black-box part of the model [49]. It is
also worth noting that there exist competitive alternatives to REINFORCE, such
as the Augment-REINFORCE-Merge (ARM) [155], later extended with variance
reduction [70] or relaxation [33]. However, the experimental results, reported
in the publications dedicated to different modifications of ARM, show that the
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performance gain is marginal compared to a REINFORCE method with a proper
variance reduction technique. And given the fact that the REINFORCE method
has proven itself as a very reliable technique applied to a large variety of tasks and
datasets, we prefer to adopt this in the optimization of OPU-based models.

3.2.5 Variance reduction for REINFORCE

The most popular approaches that are used for variance reduction of REINFORCE-
like estimators are conditioning [101] and control variates [102].

The conditioning technique is based on the Rao-Blackwell theorem. The tech- That is why, in
the literature, it is
often referred to
as Rao-
Blackwellization

nique is intended to reduce the variance of the estimator of the expectation
E[ f (x, y)] of the function f over the joint distribution x, y ∼ p(x, y). If it is possi-
ble to obtain the conditional expectation E[ f (x, y)|y], it is possible to define an
estimator f̂

f̂ (y) = E[ f (x, y)|y]. (3.1)

First, we can note that

E[ f̂ (y)] = E[ f (x, y)]. (3.2)

It means that it is possible to replace the standard empirical estimator of the
expectation

E[ f (x, y)] ≈ 1
n

n

∑
i

f (x, y), x, y ∼ p(x, y) (3.3)

with the conditional estimator

E[ f (x, y)] ≈ 1
n

n

∑
i

f̂ (y), y ∼ p(y). (3.4)

We can easily compute the variance of the conditional estimator as:

var( f̂ (y)) = var( f (x, y))−E[( f (x, y)− f̂ (x))2]. (3.5)

Thus, the main motivation to do this replacement is the fact that the variance of
the one-sample conditional estimator is always smaller than the variance of the
original one.

var

(
1
n

n

∑
i=1

f̂ (y)

)
≤ var

(
1
n

n

∑
i=1

f (x, y)

)
, x, y ∼ p(x, y). (3.6)

The main problem of this approach is that the straightforward analytical expression
for E[ f (x, y)|y] sometimes is not available for the chosen model.

The control variates technique provides another way to obtain an estimator with
reduced variance. Unlike the previous method, this technique reduces the variance
of the estimator of E[ f (x)], x ∼ p(x). So, it is applicable to functions that depend
on one variable, and we don’t have to compute any conditional expectation. For
this approach, it is necessary to find an auxiliary function g that is somehow
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similar to the target function f . The nature of this similarity will be revealed later.
Let’s consider the following estimator:

f̃ (x) = f (x)− a(g(x)−E[g(x)]). (3.7)

There are different types of estimators that use control variates. The estimator (3.7)
is one of the most popular ones because it allows for the optimization of variance
reduction with respect to the parameter a. The main requirement for this type of
control variates is the availability of the analytical form of E[g(x)].

Again, we can note that E[ f̂ (x)] = E[ f (x)]. And the most important thing is
that this estimator has a lower variance compared to the original one:

var( f̃ (x)) = var( f (x)) + a2var(g(x))− 2acov( f (x), g(x)). (3.8)

From this expression, we can see that by the similarity measure between f and g is
the implied covariance between these functions. Also, we can find the minimum of
the expression (3.8) with respect to the parameter a and find the optimal value a∗:

a∗ =
cov( f (x), g(x))

var(g(x))
, x ∼ p(x). (3.9)

In practice, it is too expensive to compute cov( f (x), g(x)) and var(g(x)) over the
whole distribution p(x), so we have to use the Monte Carlo approximation.

3.3 random features on optical processing units

In this section, we discuss OPUs in the context of random features. In the previous
section, we discussed random features as a way to approximate models involving
kernels; for OPUs, instead, the device produces random features (fast and with
little power consumption) and the question that we aim to address here is how to
use these to implement approximate kernel machines.

OPUs are computing devices that exploit the physical process of scattering of
light to perform a random projection operation of a given vector. In particular,
given a binary vector xi ∈ Rd , OPUs perform multiplication by a random matrix R
and apply the nonlinear activation function ∥ · ∥2. In other words,

ϕ(x) =
1√
D
∥Rx∥2 (3.10)

The matrix R ∈ CD×d is a complex Gaussian matrix with elements Rij ∼ CN (0, 1).
Previous works have established that in the limit of an infinite number of random
features, the equivalent kernel is the following [97]:

k(x, y) ≈ ϕ(x)ϕ(y) D→∞
= ∥x∥2∥y∥2 + (x⊤y)2 (3.11)

Therefore, when using OPUs for kernel ridge regression, we are implicitly work-
ing with this polynomial kernel.

Recently, a new version of OPUs has been proposed and developed in [34], which
allows one to perform linear random feature projections. To avoid confusion with
the polynomial OPU random features, we will denote them ψ(x).

ψ(x) = CRx (3.12)
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where C is a fixed constant. This novel type of OPU opens the possibility to
approximate a wide variety of kernels by choosing an appropriate activation
function [111], [143]. For example, it is possible to apply trigonometric activation
functions to the outputs of the OPU:

ψ′(x) =

[
sin(ψ(x))

cos(ψ(x))

]
(3.13)

This type of random features is called Random Fourier Features (RFF). It was
proven in [111] that this kind of random features allows approximating RBF kernels.

1
D

D

∑
i=1

ψ′(x)⊤ψ′(y) =

1
D

D

∑
r=1

( [sin(ψ(x))

cos(ψ(x))

]⊤ [
sin(ψ(y))

cos(ψ(y))

] )
=

Eω[cos(ω(x− y))] = kRBF(x, y)

(3.14)

As mentioned before, an important aspect of OPUs is that their input should be
binary; this project proposes a novel way to carry out a binarization of its input
along with the kernel ridge regression task in an end-to-end fashion.

3.4 combinatorial optimization

In order to be able to implement kernel ridge regression on OPUs we need to
binarize the inputs xi. We propose to do so by employing an encoder implemented
as a neural network and parameterized by a set of weights Wenc. A combination of
the OPU-based regression with the binarization network is a heterogeneous model.

Let’s look at the application of the MAC on the OPU-based regression model.
In this case, we have to propagate a temporary learning objective for the binary
encoder through the optical random projection layer. Let’s denote the desired
output of the binary encoder as s and auxiliary variables corresponding to the
activations of the OPU layer ϕ(·) as c.

In Fig. 3.1, we plotted the beginning of the optimization. Here, we use a 2D
plane only for illustration purposes. In general, the discussed vectors are not two-
dimensional. Vectors in the space of auxiliary variables are depicted in blue, and
binary vectors that correspond to the output of the OPU are in red. Originally, we
have an initial binary output of the encoder s(0). We initialize the auxiliary variable
as c(0) = ϕ(s(0)). Auxiliary vector c(0) is depicted collinear to the vector s(0) only
for demonstration purposes to emphasize the deterministic dependence of c(0)

from s(0). And further, we will follow the same scheme of showing deterministic
dependence between vectors. In general, these vectors lay in different spaces with
different dimensionality. At the first step, we have to solve

c(0+
1
2 ) = argmin

c
[∥y− cW(0)

regr∥2 + µ∥c− ϕ(s(0))∥2]. (3.15)
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Figure 3.1: Initialization of the MAC procedure

Here W(0)
regr are the initial weights of the regression model and µ is a regularization

parameter. Let’s note, that c(0+
1
2 ) belongs to a span of vectors c(0) (contribution of

regularization) and c∗(0) (contribution of data), where

c∗(0) = argmin
c

[∥y− cW(0)
regr∥2] (3.16)

. Then, we update the weights of the binary encoder.

W(1)
regr = argmin

Wregr

[∥y− c(0+
1
2 )Wregr∥2] (3.17)

At the end of the iteration, we perform a combinatorial search for the optimal
s(1) among all possible candidates s(1)candidate, which generates the closest to c(0+

1
2 )

activations ϕ(s) (Fig. 3.2). It is possible to argue that an exhaustive combinatorial
search is not a very practical solution, but for illustrative purposes, in this example,
we assume that we have access to some discrete optimization procedure that gives
us a solution for the following optimization objective:

s(1) = argmin
s
∥c(0+ 1

2 ) − ϕ(s)∥2. (3.18)

On the next iteration, the new vector c(1+
1
2 ) will be a solution of (3.15), and it

will lay within a span of the vector c(∗1) = c(0+
1
2 ) of the data contribution and the

vector c(1) = ϕ(s(1)) of the regularization contribution.
It means that the closest vector of activations generated by vectors in discrete

space of binary encodings will be again c(1). The same will happen for all next
iterations (Fig. 3.3). This optimum is mostly defined by W(0), s(0), µ

This argumentation shows that the MAC approach is not applicable for the
models that involve OPUs because it almost immediately gets stuck in a poor local
optimum. That is why we have to switch to another approach to train the binary
encoder for input data.
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Figure 3.2: The state of the MAC algorithm after one iteration

3.5 reinforce for kernel regression with binarized inputs

Another approach to implement kernel ridge regression on OPUs is using stochastic
binarization of the inputs xi, and we propose to do so by employing an encoder,
implemented as a neural network with a stochastic output, parameterized by a set
of weights Wenc. The encoder transforms the inputs to kernel-based models xi and
turns them into a set of Bernoulli-distributed binary random variables zi.

In particular, we denote by fk(x, Wenc) the function implemented by the encoder
which parameterizes the Bernoulli distribution associated with the kth element of
the output, that is zk.

Recalling the random feature formulation of linear regression of Chapter 2, we
propose the following approach to construct an approximate kernel-based model
with binary inputs:

y = Ez[w⊤regrϕ(z)] + ϵ, (3.19)

where z ∼ Bernoulli( f (x, Wenc)) and wregr are the parameters of the linearized
regression model. Note how in this formulation, the binary vectors z are treated
stochastically due to the expectation under the Bernoulli distribution induced
by the encoder. The reason for this is that it allows us to employ the so-called
REINFORCE gradient estimator, as we discuss next.
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Figure 3.3

REINFORCE, also known as the log-derivative trick or score function estimator,
offers a way to estimate the gradient of the expectation of a non-differentiable
function f (z) under the distribution of the input random vector variables z:

∇θEp(z;θ) f (z) = ∇θ

∫
p(z; θ) f (z)dz = (3.20)∫

∇θ p(z; θ) f (z)dz =
∫

p(z; θ)
∇θ p(z; θ)

p(z; θ)
f (z)dz = (3.21)

Ep(z;θ)∇θ log p(z; θ) f (z) ≈ 1
M

M

∑
i=1
∇θ log p(z; θ) f (z) (3.22)

where M is number of samples drown from p(z, θ). Applying REINFORCE to our
approximate kernel-based model yields the following optimization objective:

min
wregr,Wenc

EZ∼Bernoulli( f (X,Wenc))[L(y, ϕ(Z)wregr)]+

λenc∥Wenc∥2 + λregr∥wregr∥2
(3.23)

In this expression, we denoted by L(y, ỹ) the loss function associated with the
task at hand and by Z the matrix that contains binary encoded variables for the
whole training set X. We can optimize this objective by means of gradient-based
techniques; for this, we require that we are able to compute the gradient of the
objective with respect to all parameters. The gradient of the first term of the
objective with respect to Wenc, which is the most involved part, is:

∇WencEz∼q(z)[L(y, w⊤regrϕ(z))] ≈

≈ 1
M

M

∑
i=1
L(y, w⊤regrϕ(zi))∇Wenc log q(zi) (3.24)
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while the derivatives of the other terms are straightforward to compute. With this
derivation, we observe that it is then possible to jointly optimize all parameters,
leading to what it is commonly referred to as an end-to-end approach. In the
remainder of this paper, we refer to this method as End-to-End SE, where SE
stands for Supervised Encoder.

3.6 variance reduction

A straightforward application of the expressison (3.24) for gradient optimization
will lead to a slow convergence due to the variance of the REINFORCE gradient
estimator. In this section, we will discuss the application of variance reduction
techniques for the proposed OPU pipeline.

For the proposed approach, there is no straightforward way of applying the
Rao-Blackwellization technique because, in our case, the stochastic activations of
the encoder are mutually independent. It means that the conditional expectation
of each dimension of the activation vector z with respect to all other dimensions is
equal to its marginal distribution, and the conditional estimator becomes useless.
However, the Rao-Blackwellization technique can still be applied, but it will
require changing the original pipeline or replacing the original Bernoulli stochastic
activations with auxiliary variables [155]. It means that for this particular setting,
we have to use control variates.

There are multiple ways to apply of the control variates technique.As a first
attempt, we could apply the regression estimator (3.7), which is one of the most
popular approaches. In this scenario, we have to find a control variate for h(z) =
∇WencEz∼q(z)[L(y, w⊤regrϕ(z))]. The obvious choice for the control variate is the
score function:

g(z) = ∇Wenc log q(z) (3.25)

This choice of control variate has an analytically available form for the expectation
E[h(z)] = 0. And it has a computational benefit because the score function
∇Wenc log q(z) should be computed anyway for the gradient estimator itself (3.24).
Thus, the modified gradient estimator has the following form:

∇WencEz∼q(z)[L(y, w⊤regrϕ(z))] ≈

≈ 1
M

M

∑
i=1

(L(y, w⊤regrϕ(zi))− a)∇Wenc log q(zi).
(3.26)

Then we have to compute an optimal value for the parameter a according to (3.9),
which implies computation of the empirical variance v̂ar(h(z)) and the empirical
covariance ĉov(h(z), g(z)). The key element, which is necessary for this computa-
tion, is the evaluation of the ∇Wenc log q(zi) with respect to each sample zi ∼ q(z).
All these evaluations should be stored and then used for the computation of the
variance and covariance. This observation shows that this gradient estimator is
computationally inefficient for the proposed pipeline because we have to evaluate
separately the gradients for each data point and for each binary representation of
this data point sampled from the encoder.

In order to reduce the variance of this estimator, we employ control variates [70].
In this approach, we add a set of random variables to the estimator, such that these
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variables have zero means, so they do not alter the expectation of the gradient.
The aim is to construct such variables so as to reduce the overall variance of the
estimator:

∇WencEz∼q(z)[L(y, w⊤regrϕ(z))] ≈

1
M

M

∑
i=1
∇Wenc log q(zi)(L(y, w⊤regrϕ(zi))− vi)

where vi =
1

M− 1 ∑
i ̸=j
L(y, w⊤regrϕ(zj))

(3.27)

3.7 lowering the cost of reinforce

The estimation of the gradient of the End-to-End SE with respect to Wenc can be
expensive when the number of random features is large. This is due to the fact that
this requires multiple samples to be passed from the encoder through the random
projection and the approximate kernel ridge regression model. In this section, we
propose a strategy to reduce the complexity of REINFORCE applied to our model,
whereby we average the set of basis functions under the resampling of the binary
variables as follows:

ỹ = w⊤regrE[ϕ(z)] + ϵ (3.28)

where z ∼ Bernoulli( f (x, Wenc)).
With this new modeling assumption, the training is based on a modified opti-

mization problem as follows:

min
wregr,Wenc

L(y, EZ∼Bernoulli( f (X,Wenc))[ϕ(Z)]wregr)+

λenc∥Wenc∥2 + λregr∥wregr∥2
(3.29)

Again, we can perform gradient-based optimization. Focusing on the first term,
which is the nontrivial one to differentiate in the objective, we obtain

∇WencL =
dL

d(E[ϕ(z])
∇WencE[ϕ(z)] + 2λenc ∑

ij
Wencij (3.30)

where∇WencE[ϕ(z)] is calculated with the REINFORCE estimator. In the remainder
of the paper, we will refer to this method as Isolated Supervised Encoder (SE).

Regarding the comparison of the End-to-End SE and Isolated SE, we can note
the following relationship between these models in the case of regression problems.
In the data term of the optimization objective (3.29) we can put an expectation
over the whole matrix product of the random features map and the regression
weights instead of an expectation over the random features only. Then we can
move the expectation in such a way that it is taken over the whole term within the
squared norm. We can do this because, within one gradient step iteration, neither
y nor Wenc are considered as random variables. In this case, the data term looks
as follows:

∥y−E[ϕ(Z)]wregr∥2 = ∥y−E[ϕ(Z)wregr]∥2

= ∥E[y− ϕ(Z)wregr]∥2 (3.31)
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Figure 3.4: Mean Squared Error (MSE) for regression (top) and negative error on classifica-
tion (bottom) datasets comparison.

In turn, End-to-End SE has the following data term as part of its optimization
objective (3.23):

E[∥y− ϕ(Z)wregr∥2] (3.32)

We can note that the squared loss is a convex function. Thus, we can apply Jensen’s
inequality to obtain the following expression:

E[∥y− ϕ(Z)wregr∥2] ≥ ∥E[y− [ϕ(Z)]wregr]∥2

= ∥y−E[ϕ(Z)]wregr∥2 (3.33)

As a result, End-to-End SE optimizes the upper bound of the Isolated SE objective.

3.8 experiments

3.8.1 Experiments on the UCI datasets

We compared the performance of the proposed approaches for a non-linear OPU

(End-to-End SE and Isolated SE) and a linear OPU that uses trigonometric activa-
tions (End-to-End SE with RFF) against a model based on unsupervised autoen-
coder proposed in [132], an encoder trained with Direct Feedback Alignment (DFA)
[96] and a KRR based on a RBF.

Results are reported in Fig. 3.4 for several UCI regression and classification
problems [34]. We want to emphasize that the main competitors of the proposed
methods are the ones based on unsupervised autoencoder and encoder trained by
DFA, because kernel ridge regression is unable to work with large datasets, and
OPU-based regression just approximates this method and is intended to replace it
on large datasets.
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For the KRR experiments, we used MSE as a loss function. To apply KRR to the
classification problems, we replaced 0 and 1 in class labels with -1, 1 and solved
a classification problem as a regression one using MSE loss as an optimization
objective. For all other models, we used MSE loss for the regression problems and
Cross Entropy (CE) loss for the classification problems. We used a logistic activation
function on the last layer for the classification tasks.

For Isolated SE and End-to-End SE as an encoding function f (x, Wenc) providing
parameters for the Bernoulli distribution, we chose a single linear layer with
sigmoid activation.

f (x, Wenc) = σ(W⊤
encx) (3.34)

All hyperparameters for the DFA encoder, End-to-End SE, and Isolated SE models
(size of binary embedding, learning rate, L2 regularization for the encoder and
the regression layer) were chosen with a random search during cross-validation.
Kernel parameters of KRR were tuned by random search with cross-validation.
This poses computational challenges for the large datasets (MiniBoo, MoCap), so
we resort to RFF approximations for these cases.

For the models involving random features (both Fourier and OPU-generated
ones), we have tuned the variance of the distribution that generates these random
features. Concretely, assuming that the elements of the R matrix generating the
random projections are distributed through the standard Normal distribution, we
can obtain a new random matrix R′ by multiplying R by any variance, for instance:

ϕ′(x) = c|R′x|2 = c|R
α

x|2 = c
1
α2 |Rx|2 (3.35)

It is enough to multiply the output of the OPU by an additional parameter γ,
such that γ2 = 1

α2 , and α optimize them with standard gradient descent. The
parameter γ is not equivalent to the lengthscale parameter of the RBF kernel. In
practice, it has an effect on the outputscale parameter of the RBF kernel, as it has
simply a scaling effect on the kernel.

On the regression problems, both proposed methods outperformed their main
competitors. On the classification problems, the DFA-based approach was better
only on one dataset, and on all other datasets, the proposed methods performed
better or equally well. Regarding the type of kernel approximated by the OPU, the
experiments show that the linear OPU with trigonometric activations performs as
good as OPU kernel for most of the datasets. It gives performance gains only for
some classification problems. Considering the comparison between the proposed
methods, we see that End-to-End SE is more stable and requires a significantly
fewer number of samples from the encoder, although Isolated SE showed slightly
better results on classification problems.

We considered including results obtained by running these models on the
real OPU (Fig. 3.5). Unfortunately, the regression problems required such a large
number of epochs that we could not perform the experiments in a reasonable
amount of time.

We also tested the performance of our approach with respect to the number
of samples required to employ REINFORCE. We found that End-to-End SE can
achieve good results with a small number of samples from the encoder, and the
increase of amount of samples does not seem to improve performance.
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Figure 3.5: Error comparison on classification (bottom) datasets for experiments on the
real hardware.
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Figure 3.6: Convergence of the training procedure on regression problem: boston dataset (left) and
classification problem: mocap dataset (right).

Finally, we evaluated the effect of variance reduction on convergence speed and
performance for the End-to-End SE model. In Fig. 3.6, we report results for one
classification and one regression problem. The convergence curves indicate that
the convergence speed benefits from the gradient variance reduction.

3.8.2 Experiments on image data

In this section, we evaluate an optical random feature regression approach for
image classification tasks with several different binarization techniques, including
the proposed methods.

The kernel generated by OPU (3.11) is an example of a polynomial kernel.
Polynomial kernels, unlike more popular RBF kernels, take into account interaction
between different feature dimensions. This property is especially important for
image data because a relative alignment of pixels is crucial for image classification.
Of course, when we are working with OPUs, the kernel takes into account an
alignment of different dimensions of the binary embedding of an image instead of
the pixels. The relative alignment of different dimensions of the binary embedding
most probably does not contain exactly the same information as the mutual
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Table 3.1: LeNet-based binary encoder architecture

Layer Dimensions

Conv2D 5×5, 6 filters

MaxPooling 2×2

Conv2D 5×5, 16 filters

MaxPooling 2×2

Linear 576×512

Linear 512 × dbinary

Binarization layer dbinary

Table 3.2: Image datasets used in the experiments

Dataset Train/test size C D

MNIST 60000/10000 10 1 × 28 × 28

F-MNIST 60000/10000 10 1 × 28 × 28

CIFAR10 50000/10000 10 3 × 32 × 32

alignment of pixels. But until the binary encoder does not have disentanglement
properties, the mutual interaction of dimensions of the binary embedding has to
contain additional information about the image. That is why it is still important to
use a kernel that is capable to take into account these relationships.

For the experiments on image data, we used two convolutional architectures of
the binary encoder. The first architecture was inspired by the LeNet model (Table
3.1). We performed experiments on three classical image classification datasets
(Table 3.2). We compared End-to-End SE with a model that used an autoencoder
to train the encoder (AE) and a model that used direct feedback alignment (DFA)
for the same purpose. The results are shown in Table 3.3.

Table 3.3: Classification error obtained by the model with the LeNet encoder

Dataset AE DFA End-to-End SE

MNIST 0.06±0.02 0.31±0.03 0.01±0.00

F-MNIST 0.20±0.01 0.47±0.01 0.09±0.00

CIFAR10 0.55±0.01 0.81±0.02 0.32±0.01

We used the same encoder architecture with the same hyperparameters for each
binarization method. The size of the binary embedding was set to 400, except of
the unsupervised AE method.

The reason we trained the unsupervised AE differently for these experiments is
because we were using complex convolutional models, and it was hard to adapt
the method proposed in [132]. This binarization approach requires using exactly
the same values of weights both for the encoder and for the decoder models. It
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means that this method requires building a decoder model that is symmetrical
to the encoder model. Achieving this property for convolutional neural networks
is difficult because, for the decoder, it is difficult to pick equivalent symmetric
operations for convolutional and pooling layers in the encoder. Transposed con-
volutions and interpolation operations that are used in decoders for image data
are suitable for training the autoencoder by end-to-end backpropagation. They
learn operations that are not symmetric to convolutions and pooling layers of the
encoder. The method proposed in [132] assumes that only the decoder is trained,
and the encoder copies weights from it, which is impossible to do for asymmetric
operations in the decoder and encoder. That is why we trained the autoencoder
model in a different way. The encoder of the AE model used an tanh activation
function at the output. We used a parameter β that controls the steepness of the
tanh function. We slowly increased the value of this parameter from β = 1 to
β = 100 in the process of training. At the end of the training, the function tanh
with a high value of the parameter β is almost equivalent to a shifted and scaled
Heaviside function.

2h(x)− 1 ≈ tanh(βx), β→ ∞ (3.36)

The results of the DFA approach signify that this type of gradient update is
not suitable for convolutional models. This observation is supported by other
researchers [5, 75]

Unsupervised AE was able to provide acceptable accuracy for the MNIST dataset,
but on CIFAR-10, its performance dropped significantly. A possible explanation is
that simple convolutional AE is unable to extract a reasonable binary representation
of complex images. The AE model used in the experiments was able to reconstruct
simple images from the MNIST dataset. But the reconstruction quality of the same
model was much worse for the CIFAR-10 dataset. When the dimensionality of the
binary embedding was equal to 400, the AE model was unable to generate any
sensible images. Thus, we had to increase the size of the binary embedding to
1024. But the reconstructed images were very blurry even with this modification.

Because of the poor performance of the unsupervised AE baseline, we decided to
add another baseline to the comparison. For this experiment, we used a RESNET-
based convolutional network as the encoder. LBAE approach proposed in [36]
implements an autoencoder with a latent binary space. The training procedure of
this method is based on the straight-through gradient estimator. The architecture
of the binary encoder is represented in Table 3.4 and Table 3.5. This encoder used
leaky relu as an activation function.

Table 3.6 contains the results of the comparison between the LBAE-based and
End-to-End SE-based encoders in terms of classification error.

Both binarization approaches used the same resnet-based architecture of the
encoder network. We dropped the DFA approach from the comparison because of
its poor performance.

The results of this experiment showed interesting properties of the unsupervised
approach for training the binary encoder. The LBAE-based encoder with a deeper
network performed worse than the simpler autoencoder with tanh annealing in
terms of classification error. At the same time, the LBAE approach was better in the
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Table 3.4: Architecture of the resnet-based binary encoder

Layer Dimensions

Conv2D 3 × 3, 64 filters

Conv2D 4 × 4, 64 filters

Residual Block 3 × 3, 64 filters

Conv2D 4 × 4, 64 filters

Residual Block 3 × 3, 64 filters

Conv2D 4 × 4, 128 filters

Linear 4096 × dbinary

Binarization layer dbinary

Table 3.5: Residual block structure. The number of filters is specified in Tab. 3.4

Layer Dimensions

Conv2d 3 × 3

Conv2d 3 × 3

image reconstruction task. It seems that the binary latent projection of image data,
which is suitable for image reconstruction, is unsuitable for image classification.

As with the UCI data, we evaluated the effect of variance reduction.
As we can see, variance reduction plays a crucial role in image classification.

Without this technique, the proposed method is unable to train the model for
cifar10.

3.9 discussion

Recent advances in alternatives to transistor-based hardware are bringing a new
wave of sustainable computing solutions for machine learning [153]. This paper
focuses on optical-based computing through OPUs [118], which performs random-

Figure 3.7: Training loss with and without variance reduction



3.9 discussion 35

Table 3.6: Classification error for models with the resnet encoder

Dataset LBAE End-to-End SE

MNIST 0.15±0.01 0.01 ± 0.00

F-MNIST 0.24±0.02 0.06±0.01

CIFAR10 0.63±0.02 0.17±0.01

ized projections of binary input vectors at the speed of light with low energy
consumption. In this paper, we considered these randomized computations to
implement kernel-based models for regression and classification tasks through
random feature approximations. In particular, we proposed a novel strategy to
binarize the inputs of the given task to be able to employ OPUs inspired by re-
inforcement learning. The proposed strategy uses an encoder to map the inputs
to a set of binary variables and employs the REINFORCE gradient estimator to
estimate its parameters jointly with the parameters of the kernel-based model. We
also explored ways to reduce the variance of the gradient estimator and accelerate
convergence, which is critical in a number of challenging modeling tasks such as
image classification. Through a series of experiments, we showed that our proposal
outperforms competitors based on unsupervised binarization and those that do
not employ gradient information. We are currently investigating our approach in
the context of other kernel-based models, such as Gaussian Processes [114], and
their extension to deep models, such as Deep Kernel Learning [152] and Deep
Gaussian processes [27].



4
B AY E S I A N A P P R O A C H T O C L A S S I F I C AT I O N

4.1 introduction

The Bayesian treatment of statistical models is desirable in applications where
quantification of uncertainty is a primary requirement. For many classes of models,
this is analytically intractable, and one needs to resort to approximations. Given a
statistical model with parameters on which a prior distribution is assumed, such
approximations yield an approximation to the posterior distribution over these
parameters, either in closed form or in the form of samples. Popular approaches
include the Laplace Approximation, Variational Inference, and Markov chain
Monte Carlo.

In this work, we focus on an alternative approach called variational bootstrap [88].
Variational bootstrap works by producing a set of replicas of the data set with
perturbed labels. Then, each of these perturbed problems is solved by maximum-
a-posteriori-type optimization. Perhaps not surprisingly, in the Bayesian linear
regression case, it is possible to introduce perturbations in a way such that the set
of solutions to the perturbed problems is distributed exactly as the posterior over
the parameters. One remarkable property of this approach is that it transforms the
problem of characterizing the posterior distribution over model parameters into a
set of easily parallelizable optimization problems.

Milios et al. [88] provide an extension of this result to the case of regression
with deep neural networks featuring ReLU activations, where certain theoretical
guarantees are given for the minimization of the KL divergence between the
approximate and the true posterior.

The main limitation of this approach is that no guarantees are provided for
non-Gaussian likelihoods, such as Bernoulli or Multinomial, which are associated
with classification problems.

In this work, we broaden the scope of variational bootstrap by extending it
to classification problems. We propose to transform Bernoulli/Multinomial dis-
tributed labels to a latent representation with Gaussian noise. We can then apply
a model with a Gaussian likelihood to solve a regression problem within this
latent space. To carry out this transformation, we follow the method in [87], where
classification labels are interpreted as the output of a Dirichlet distribution. We
thus propose the combination of variational bootstrap with Dirichlet-based classifi-
cation; this allows one to obtain reliable uncertainty estimates for the classification
model at a lower cost than other Bayesian inference methods, and it enables easy
parallelization.

We study the proposed extension to the nonlinear case on deep neural networks
for classification with ReLU activations. The transformation of the labels from
discrete to continuous allows us to borrow the results obtained in the Gaussian
likelihood case. As a result, we obtain a method for which we have guarantees
that the optimization of the perturbed problems yields an improvement of the

36
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approximation to the posterior over model parameters. In the experiments, we
showcase results on various data sets, demonstrating that this is a competitive
approach to characterize the posterior over model parameters. Crucially, our
proposal is extremely easy to parallelize, and we view this as a considerable
advantage compared to alternatives to obtain the posterior over model parameters.

The proposed extension is also relevant for Bayesian logistic regression applied
to large datasets with a large number of features. An interesting application of this
approach that we showcase in the paper is the approximation of Gaussian process
classifiers with random features [110], which turns the model into a Bayesian
logistic regression model. The larger the set of random features, the better the
approximation, but this has a negative impact on the computational cost. The
proposed approach yields a very practical and effective method to overcome these
difficulties.

4.2 related work

In recent years, neural networks (NN) have gained popularity due to their effec-
tiveness on a broad variety of tasks, including image classification, [55], natural
language processing [31], and many others [13, 47, 95, 105]. One of the most
persistent challenges is that NNs tend to make overconfident decisions [51, 66, 72].
In the literature, overconfident decisions are treated by introducing uncertainty to
the outputs of a NN. In practice, it means that the model produces a predictive dis-
tribution of outputs for each input vector. This practice offers ways to quantify the
uncertainty of predictions, as high predictive variance implies a lack of confidence.
Methods that provide uncertainty quantification for NNs include deep ensembles
[73], Monte Carlo dropout [46], and Bayesian Neural Networks (BNN) [82].

In this work, our focus is on BNNs. In contrast with the deterministic networks,
BNNs consider parameters to be random variables that are associated with some
prior distribution. Instead of a training procedure based on optimization, this
treatment requires characterizing a posterior distribution over their weights given
observations by means of Bayes theorem. The main challenge is that this proce-
dure is intractable for nonlinear models, which has motivated the development of
approximations using, for instance, Variational Inference (VI) [10, 45]. These tech-
niques, while being relatively cheap in terms of computational resources, require
selecting a family of distributions that is used for approximation of the posterior
distribution. The choice of a family of approximate posteriors has a crucial effect
on the performance of the model and on the reliability of uncertainty estimations.
Because different models and tasks require different families of approximate poste-
rior distributions, there are no reliable heuristics for this task. As an alternative to
approximate inference, it is possible to use Markov Chain Monte Carlo (MCMC)
techniques, which allows one to get samples from the true posterior distribution of
the weights. The recently proposed Stochastic Gradient Hamiltonian Monte-Carlo
(SGHMC) method [21] allows obtaining samples from a true posterior distribution
over the weights for large-scale problems using mini-batching. Despite a significant
reduction of the time complexity compared to other MCMC methods, SGHMC
may still be slow to converge.
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Another family of Bayesian inference techniques is particle optimization varia-
tional inference (POVI) [29, 79, 88]. Methods from this family use particles that are
different instances of the model, which are optimized independently. The resulting
set of optimized particles serves as an approximate posterior distribution that is
more flexible than VI solutions. In this work we focus on variational bootstrap
[88], which provides a theoretical connection between POVI and parametric boot-
strap [35] for regression tasks, and our contribution is to extend this method to
classification problems.

4.3 variational bootstrap for classification models

4.3.1 Considered Models

bayesian neural networks In this chapter, we will use Bayesian MLP

described in Section 2.2.4, expression (2.44). The method that we propose is quite
general and does not depend on the choice of the BNN architecture. It can easily
be applied to convolutional and recurrent networks.

random fourier features approximation of gaussian processes

We shall also examine the case of linear models, as they can serve as scalable
approximations to another class of Bayesian models, namely Gaussian processes
[114]. Following the random Fourier features (RFF) approximation [110], we
consider ϕ(xi) ∈ RD×1 to be the projection of an input point xi ∈ Rd×1 onto a
feature space of D trigonometric basis functions. Then Φ ∈ RD×N denotes the
design matrix of the entire training set in the feature space. In this case, the
model parameters can be directly described as a vector: θ := w ∈ Rm. Given
a Gaussian likelihood N (y; f (x, w), σ2) and a Gaussian prior over the weights
w ∼ N (0, α2Im), then the posterior distribution over w after observing the dataset
D is known to be Gaussian, yielding the following predictive mean and variance
for a test point x∗:

E[ f (x∗)] =
1
σ2 ϕ(x∗)⊤A−1Φy,

Var[ f (x∗)] = ϕ(x∗)⊤A−1ϕ(x∗),

where A =
1
σ2 ΦΦ⊤ +

1
α2 I.

(4.1)

We observe that in order to make a prediction, one has to solve two D× D linear
systems: A−1Φy is solved only once, but A−1ϕ(x∗) has to be solved for every
new test point x∗. So for n∗ test points, this translates to O(n∗ × D2) complexity.
If the number of test points is large, then it is preferable to directly calculate
the decomposition of the matrix A, so that it can be reused to solve the linear
systems needed to calculate the predictive distribution for new test points. In
many problems however, a large number of features might be required to obtain
an accurate approximation of a GP. Later, we show that variational bootstrap can
keep the computational cost down when both D and n∗ are large.
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4.3.2 Variational Bootstrap for Neural Network Regression

In its original formulation, variational bootstrap was defined as an alternative
to Bayesian inference for regression tasks. More specifically, the objective is to
approximate the posterior distribution of a nonlinear model with a Gaussian
likelihood and a Gaussian prior as follows:

p(D|w) =
n

∏
i=1
N (yi; f (xi, w), σ2) and p(w) = N (0, α2Im). (4.2)

For this model, variational bootstrap yields a set of samples that represents an
empirical distribution q and approximates the posterior distribution of the param-
eters w. These samples are obtained by optimization of a set of particles. Each
particle is defined as the maximum a posteriori (MAP) estimate for a regression
task on a perturbed version of the joint log-likelihood, with its own set of training
labels and mean parameters of the prior distribution. The training labels for each
particle are obtained by a parametric bootstrap procedure. For each given label
yi, we generate a perturbed label ỹi according to the likelihood function, that is
Gaussian with variance σ2 and mean yi:

ỹ(k)i ∼ N
(
yi, σ2) , k = 1...K (4.3)

Also, each particle is associated with a unique sample from the prior distribution
w̃(k). So the new prior for each model in the ensemble becomes as follows:

p(w(k), w̃(k)) ∼ N (w̃(k), α2Im), where w̃(k) ∼ N (0, α2Im), k = 1...K (4.4)

After resampling K perturbed sets of the labels and parameters of the prior
distribution, we can obtain K samples from the approximate posterior by solving
K optimization problems of the form:

argminw(k)
1

2σ2
n

N

∑
i=1

(ỹ(k)i − f (xi, w(k)))2 +
1

2α2 ||w
(k) − w̃(k)||2,

k = 1...K

(4.5)

The parameters of the particles are updated by a gradient descent algorithm.
For the case of NNs under the additional assumption of linear or piecewise linear
activation functions, it is shown in [88] that each gradient step optimizes the joint
log-likelihood of each model and moves the distribution of parameters q(w) closer
to the true posterior p(w|D).

The main benefit of this procedure is that it allows to use modern gradient
optimization techniques, like Adam, to approximate the posterior distribution of
the parameters of a nonlinear model.

4.3.3 Variational Bootstrap for Random Fourier Features

We demonstrate here that variational bootstrap can induce computational ad-
vantages also for the RFF approximation of Gaussian processes. If the labels are
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perturbed according to the likelihood so that ε ∼ N (0, σ2), and the regularization
term is a sample from the prior so that w̃ ∼ N (0, α2Im), then the MAP solution is:

ŵ =
1
σ2 A−1Φ(y + ε) +

1
α2 A−1w̃, (4.6)

The MAP estimate ŵ is a Gaussian random vector, as it is a linear combination of
two Gaussian random perturbations: ε and w̃. According to [88], we can calculate
the expectation and the covariance of ŵ to obtain the true posterior mean and
covariance for the weights of the linear model:

Eε,w̃[ŵ] =
1
σ2 A−1Φy =: w̄, Eε,w̃[(ŵ− w̄)(ŵ− w̄)⊤] = A−1 (4.7)

Equation (4.6) yields samples from the true posterior distribution. From a com-
putational perspective, we observe that it behaves differently from the predictive
posterior in (4.1). Here, exactly two linear systems have to be solved for every sam-
ple, as opposed to every test point as in (4.1). Let K denote the number of samples;
then the complexity becomes O(K × D2). If the number of test points is larger
than the number of posterior samples, this can induce significant computational
gains, as we demonstrate in the experimental section.

4.3.4 Dirichlet Label Transformation

The goal of Bayesian classification is to estimate the distribution of class probabili-
ties for an input data point. The Gaussian likelihood model we discussed in the
previous section is not appropriate for a classification task; it is more reasonable
to use a Multinomial likelihood instead. For a C-class classification problem, the
class label y for the input point x is a sample from the Multinomial distribution
y ∼ Cat(π). The authors of [87] propose to use a C-dimensional Dirichlet distribu-
tion to model the distribution of class probabilities π ∼ Dir(α), with parameters
α = [α1, ..., αC]

T.

p (π1, . . . , πC; α1, . . . , αC) =
1

B(α)

K

∏
i=1

παi−1
i , B(α) = ∏K

i=1 Γ (αi)

Γ (α0)
(4.8)

Any label observations are treated as Dirichlet distributions: if an input point x
belongs to a class k, then it corresponds to the following Dirichlet parameters:

αi =

1 + αϵ, if i = k.

αϵ, if i ̸= k.
(4.9)

The term αϵ > 0 represents a small quantity added to the Dirichlet parameters in
order to guarantee a valid Dirichlet distribution. Then it is possible to represent
samples from the C-dimensional Dirichlet distribution as samples from C Gamma
distributions: πi =

zi

∑C
c=1 zc

, where zi ∼ Gamma(αi, 1), for i ∈ {1, ..., C}.
The original paper proposes to approximate the Gamma distribution by a

Lognormal(ỹi, σ2
i ) distribution whose parameters are determined by moment

matching. Because the logarithm of the log-normally distributed random variable
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has a Gaussian distribution N (ỹi, σ2
i ), it becomes possible to use a Gaussian

likelihood and thus transform the classification problem into a regression problem:
the transformed labels ỹi become the new targets for the inputs xi and σ2

i becomes
the variance parameter of the Gaussian likelihood.

σ2
i = log(1/αi + 1) ŷi = log αi − σ2

i /2 (4.10)

It is worth mentioning that the expression (4.10) produces different noise parame-
ters σ2 for each observation y. This means that after the transformation, we are
dealing with heteroskedastic linear regression.

In order to train the whole classification model, it is required to solve C re-
gression problems, one for each dimension of the Dirichlet distribution. To make
predictions, one has to apply a softmax transformation to the outputs of the C
regression models f = [ f1, ..., fC]

T, as follows:

E[πi|x] =
∫ exp( fi(x))

∑C
c=1 exp( fc(x)

p( fi(x)|X)df(x) (4.11)

During the inference stage this approach consideres the new type of transforma-
tion, which is different from the common sigmoid or softmax transformations. This
choice is motivated by the opportunity of approximating the posterior distribution
of the transformed labels ỹi with a Gaussian distribution.

4.3.5 Classification with Variational Bootstrap

One of the key components of variational bootstrap for regression is the data
resampling via parametric bootstrap. In the case of classification, it is not straight-
forward to adjust this strategy to produce perturbed versions of the class labels
in a way that reflects the nature of the Bernoulli (or the Multinomial) likelihood.
For example, a class label y can take values in {0, 1}; if we locally fit a distribution
Bern(p) to each y, the maximum-likelihood parameter will be the one-sample
mean, i.e., p = 0 or p = 1. If we use this fitted model (i.e. Bernoulli with parameter
0 or 1) to resample new labels, this will deterministically produce either 0 or 1,
depending on the original label.

Therefore, we have adopted a strategy that combines variational bootstrap with
the Dirichlet labels transformation. Consider a dataset D = {xi, yi}N

i=1 of input
vectors xi and labels yi for a C-class classification problem. As a first step, we
transform each label yi into a pair {ŷi, σi}, ŷi ∈ RC, σi ∈ RC by the means
of the Dirichlet label transformation. The C-class classification problem is then
transformed into a C-dimensional heteroskedastic regression problem with labels
ŷi and observation noise variances σ2

i ; each training sample and each dimension
of the output has observation noise with its own variance.

The second step involves an application of the variational bootstrap method,
where we generate K independent sets of regression labels, as well as K sets of
prior parameters. Perturbations of each transformed label ŷi from the training set
are sampled from the corresponding distribution with variance σ2

i as follows:

ỹi ∼ N (ŷi, Diag(σ2
i )) where Diag(σ2

i ) = I⊙ (σ2
i 1⊤) (4.12)
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Algorithm 1 Variational bootstrap for MLP
1: Input: X, y, α, αϵ, h
2: Output: w ∼ q(w)
3: for i← 1 to N do
4: ŷi, σi ← DirichletTransform(yi, αϵ) ▷ Eq. (4.10)
5: end for
6: for k← 1 to K do
7: ỹ(k)

1 , . . . ỹ(k)
N ∼ N (ŷ1, σ2

1), . . . ,N (ŷN , σ2
N)

8: Draw sample w̃ from N (0, α2I)
9: Initialize w(k) ← w̃

10: w(k) ← for each output dimension optimize (4.5)
11: end for

Algorithm 2 Variational bootstrap for RFF
1: Input: Φ, y, α, αϵ

2: Output: {w(1), . . . , w(K)} ∼ p(w|Φ, y)
3: for i← 1 to N do
4: ŷi, σi ← DirichletTransform(yi, αϵ)
5: end for
6: for k← 1 to K do
7: ỹ(k)

1 , . . . ỹ(k)
N ∼ N (ŷ1, σ2

1), . . . ,N (ŷN , σ2
N)

8: Draw sample w̃ from N (0, α2I)
9: w(k) ← for each output dimension solve (4.6)

10: end for

The procedure for applying variational bootstrap to classification is summa-
rized in Algorithm 1 for MLP models and in Algorithm 2 for the RFF Gaussian
process approximation. In both cases, parameters of the prior distribution for
each particle are sampled according to (4.4), while the labels are perturbed as in
(4.12). Then in Algorithm 1, we optimize K models independently. For Algorithm
2, the main difference is that we obtain the solution of regression problem (4.5)
analytically instead of using gradient optimization. After optimization of the K
particles, it is possible to perform predictions using a Monte Carlo approximation
of Equation (4.11). As a final remark, our choice to employ the Dirichlet label
transformation and to treat the classification problem as regression implies that our
methods enjoy any convergence guarantees that can be proven for the regression
case.

4.3.6 Experiments: Toy dataset

We first demonstrate the application of variational bootstrap on a synthetic one-
dimensional binary classification problem. We considered a Gaussian process
classifier based on a radial basis function (RBF) kernel, and we approximated it
with a Bayesian logistic regression model on a set of random features. We used
Random Fourier Features approximation of the RBF kernel proposed in [110].
For our experiment, we considered 5, 000 random features. On the left panel of
Fig. 4.1, we show the distribution over functions corresponding to the approximate
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posterior distribution over the parameters obtained with variational bootstrap
with the Dirichlet label transformation; optimization was performed via the L-
BFGS algorithm. In the middle panel of the figure, we report the distribution over
functions obtained by the same approximation of the model, but where inference is
carried out by Markov chain Monte Carlo (MCMC). On the right panel of the figure,
we show the distribution of functions obtained with the Laplace approximation.
For the toy dataset, we used the Metropolis-Hastings algorithm with 100 chains. The Laplace

approximation is
described in
Section 2.2.3.

For the prediction, we took the last sample from each chain. R-hat convergence
diagnostic [14] showed that it takes around 106 steps before convergence. The
comparison shows a remarkable property of the proposed approach to accurately
approximate the posterior over model parameters without the need for expensive
or excessively long computations. In fact, the L-BFGS algorithm converged for
variational bootstrap after 16 iterations only.

4.3.7 Experiments: UCI Datasets

Table 4.1: UCI datasets used for evaluation.

Dataset Classes Training instances Test instances Dimensionality

Magic 2 14020 5000 10

HTRU2 2 12898 5000 8

MiniBoo 2 120064 10000 50

Drive 11 48509 10000 54

Letter 26 15000 5000 16

Mocap 5 68095 10000 37

We evaluated our method on several UCI classification problems outlined in
Table 4.1. We applied variational bootstrap with the Dirichlet label transformation
on two different models. First, we considered a two-hidden layer MLP model
with a ReLU activation function and 512 neurons in each hidden layer. We used
Adam [68] to optimize the parameters of the model. This model is referred to as
VBoot-MLP. The second model we considered is the RFF approximation [110] of a
GP, where 5, 000 random features were used to approximate an RBF kernel with
fixed hyperparameters. In this case, we generated 50 samples as prescribed in
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Figure 4.1: Comparison between the predictions with the regression weights, obtained by
the variational bootstrap (left), MCMC (middle) and Laplace approximation
(right)
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Equation (4.6); this required solving 50 linear systems of order O(D2), instead of
thousands as required by Equation (4.1). This model is referred to as VBoot-RFF.

The performance of variational bootstrap is compared against a regular BNN,
whose posterior has been approximated by means of MCMC sampling, and in
particular, SGHMC [21]. The baseline BNN uses the same prior distribution over
the parameters and a Bernoulli likelihood, while its output is given by a softmax ac-
tivation function. VBoot-RFF is compared against the Dirichlet transformation with
a Sparse GP approach proposed in [87]. The hyperparameters of this model were
optimized as in the original paper. We evaluate performance using several metrics,
including classification error and mean negative log-likelihood (MNLL). The re-
sults are outlined in Tables 4.2 and 4.3, respectively. The models considered are
referred to as VBoot-MLP, VBoot-RFF, Sparse GP, and MCMC-MLP, respectively.

Considering the MLP models, our experiments show that the proposed ap-
proach is competitive when compared against a principled framework such as
MCMC. Most importantly, our approach has significantly different behavior in
terms of convergence speed, as it relies on optimization rather than sampling. We
demonstrate this property empirically by monitoring the progression of validation
error for variational bootstrap and MCMC. In Fig. 4.2, we report classification
error on held-out data over the first 200 training epochs. These results indicate
that the variational bootstrap technique provides much faster convergence com-
pared to SGHMC. On the other hand, only in some cases SGHMC eventually
settles to significantly lower validation error. We used the Wilcoxon test [148]
to compare classification errors and MNLLs for VBoot-MLP and MCMC-MLP
methods. The test did not show any statistically significant difference regarding
the performance of these two methods within 0.05 significance level. The lack
of statistical significance appears partly due to the small number of used data
splits. Nevertheless, variational bootstrap is shown to achieve a good trade-off
between accuracy and efficiency. This trade-off can be further exploited in practice,
as variational bootstrap is trivially parallelizable.

Regarding the GP-based models, we also see that VBoot-RFF is highly competi-
tive against traditional sparse GPs that rely on inducing points. In fact, according
to the one-sided Wilcoxon signed-rank test, the VBoot-RFF results are slightly
better than Sparse GP in a statistically significant way for some of the datasets
(marked with “*” in Tables 4.2 and 4.3). Our variational bootstrap framework
allowed us to use a large number of random features (i.e., 5, 000), which would not
be possible for many of the datasets considered. This can be seen in Fig. 4.3, which
shows the computation time for VBoot-RFF and Sparse GP models as a function of
the number of random features and inducing points correspondingly. Of course,
using more random features/inducing points results in a better approximation
of the full GP model, but it also increases computational complexity. We see that
VBoot-RFF has better scalability properties compared to sparse GPs. Regarding
the computation times reported for Sparse GPs, we note that we have excluded
the initial K-Means step needed to initialize the inducing locations, so in practice,
sparse GPs are more expensive than what we report here. Interestingly, sparse GPs
could not scale beyond 1, 000 or 2, 000 inducing points for some datasets due to
memory errors.



4.3 variational bootstrap for classification models 45

Table 4.2: Classification error for variational bootstrap with the Dirichlet transformation
and Markov-chain Monte Carlo approaches.

Dataset VBoot-MLP MCMC-MLP VBoot-RFF Sparse GP

Magic 0.12±0.01 0.12±0.01 0.13±0.01 0.13±0.01

HTRU2 0.02±0.01 0.02±0.00 0.02±0.00 0.02±0.01

MiniBoo 0.11±0.01 0.09±0.01 0.08±0.01 0.08±0.01

Drive 0.01±0.00 0.001±0.000 0.01±0.00
∗

0.02±0.01

Letter 0.05±0.01 0.03±0.01 0.05±0.01
∗

0.08±0.01

Mocap 0.005±0.000 0.007±0.000 0.02±0.00
∗

0.03±0.01

Table 4.3: MNLL for variational bootstrap with the Dirichlet transformation and Markov-
chain Monte Carlo approaches.

Dataset VBoot-MLP MCMC-MLP VBoot-RFF Sparse GP

Magic 0.31±0.00 0.29±0.00 0.33±0.01
∗

0.35±0.01

HTRU2 0.08±0.00 0.07±0.00 0.07±0.01 0.07±0.01

MiniBoo 0.25±0.01 0.22±0.00 0.20±0.01
∗

0.21±0.01

Drive 0.06±0.00 0.01±0.00 0.08±0.03 0.08±0.01

Letter 0.31±0.00 0.24±0.00 0.28±0.01 0.25±0.01
∗

Mocap 0.02±0.00 0.03±0.00 0.09±0.01
∗

0.13±0.01

4.3.8 Discussion of the approach

In this work, we proposed a novel way to carry out Bayesian inference for clas-
sification models based on Neural Networks and Gaussian processes. For NNs,
this is important because, while they achieve state-of-the-art performance in many
tasks, they lack a principled way to characterize uncertainty in predictions, so they
represent a class of models for which a Bayesian treatment is highly desirable but
mathematically and computationally challenging. For Gaussian processes, instead,
while the Bayesian treatment is at the core of its formulation, classification tasks
are difficult to handle because they require expensive approximations. Our work
provides a practical and easily parallelizable way to tackle all these limitations.

We are currently investigating parallel implementations of the proposed ap-
proach to considerably accelerate inference of large-scale problems by operating
on clusters of computing machines. In addition, we are exploring the application
of our approach to problems involving optical-based computing hardware, also
known as Optical Processing Units [118]. OPUs offer a fast and low-power way to
approximate Gaussian processes through random features, and because they are
capable of generating millions of these at the speed of light, we believe that our
approach could be the key to exploit these computations effectively.

Another possible direction is the adaptation of our framework towards a more
efficient marginal likelihood maximization for GPs, which is a standard practice to



4.4 improving the dirichlet-transformation 46

0 50 100 150 200

0.2

0.3

Er
ro

r

Magic

MCMC-MLP

0 50 100 150 200
0.02

0.04

0.06

0.08

HTRU2

0 50 100 150 200

0.15

0.20

MiniBoo

0 50 100 150 200
Training epochs

0.00

0.25

0.50

0.75

Er
ro

r

Drive

0 50 100 150 200
Training epochs

0.25

0.50

0.75

Letter

0 50 100 150 200
Training epochs

0.1

0.2

0.3
Mocap

VBoot-MLP

Figure 4.2: Convergence of the classification error on validation data for variational boot-
strap and SGHMC methods
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Figure 4.3: Computation time complexity for VBoot-RFF and Sparse GP as a function of
the number of random features and inducing points correspondingly.

tune kernel hyperparameters [114]. In this work, we have treated GPs by means
of fixed feature map approximations, which correspond to fixed hyperparameter
values. Estimating marginal likelihoods through samples is an open research
question, and it can be the subject of future work.

4.4 improving the dirichlet-transformation

4.4.1 Motivation

We aim to develop a method that provides well-calibrated predictions and accurate
uncertainty estimates for Gaussian Processes Classification (GPC) by improving
on the idea proposed in [87] and described in Sec. 4.3.4. The original method
proposes to use a Log-normal distribution to approximate a Gamma distribution,
which is used for sampling from a Dirichlet distribution. In fact, the Log-normal
distribution poorly approximates Gamma distributions with a small value of the
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parameter α of the Gamma distribution. The experiments in the original paper [87]
show that the best performance of the original method is achieved exactly for such
cases. This means that an approximate posterior predictive distribution poorly
approximates the true posterior predictive distribution when the classification error
is the smallest. Also, this conclusion is indirectly supported by the visualization of
the predictive posterior for 1D synthetic datasets, provided in [87], where we can
see an underestimation of the variance of the predictive distribution.

The proposed work replaces the Log-normal approximation of the Dirichlet
distribution used in the original work. The idea is to construct a transformation
that allows to transform a Dirichlet distributed random variable to a normally
distributed random variable. With this transformation, it will be possible to project
the Dirichlet distributed class probability π to a latent representation in such a way
that the latent representation is Gaussian. To obtain a class probability distribution
for a test data point, it is necessary to solve a Gaussian process regression in a
latent space with projected training labels. Then we have to apply the inverse of
the initial transform to the prediction for the test data point representation in the
latent space.

4.4.2 Cumulative Density Function Transformation

Considering a two-class classification problem, let’s assume that there is a dataset
D{(xi, yi)} of N input vectors xi and binary labels yi. In this case, the distribution
of class probabilities for each input x is one-dimensional. Thus, it is possible to use a
Beta distribution to model class probabilities instead of a Dirichlet distribution. For
each training data point, there is a Beta distributed random variable π responsible
for a class probability. If y = 0, the corresponding distribution of π will be
Beta(αϵ, 1 + αϵ), if y = 1, the corresponding distribution of π will be Beta(1 +

αϵ, αϵ). The hyperparameter αϵ refers to the uncertainty in class labels.
The goal is to transform class probability π to a normally distributed latent

random variable f centered at −µ for one class and µ for another class. We impose
this symmetry in the latent space to reflect the symmetry that exists between
Beta(αϵ, 1 + αϵ) and Beta(1 + αϵ, αϵ).

FBeta(αϵ,1+αϵ)(π) = 1− FBeta(α1+ϵ,αϵ)(1− π) (4.13)

After the transformation, the symmetric one should be as follows:

FN (−µ,σ2)( f ) = 1− FN (µ,σ2)(− f ) (4.14)

It is known that it is possible to transform a random variable X with a cumulative
density function FX to a random variable Y with a cumulative density function FY
as follows:

Y = F−1
Y (FX(X)) (4.15)

We can apply this expression to transform a Beta distributed random variable into
a normally distributed random variable.

g1(x) = F−1
N (−µ,σ2)

(FBeta(αϵ,1+αϵ)(x))

g2(x) = F−1
N (µ,σ2)

(FBeta(1+αϵ,αϵ)(x))
(4.16)
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Also, the requirement of symmetry provides an intuition for another constraint.
When we observe a latent prediction that lies in the middle between the centers of
the Gaussians, we make a decision that the model is unable to assign a specific
class label to this prediction. Thus, we have to force the inverse transformation to
return 0.5 for this latent prediction. This will signify that the model assigns 0.5
probability for both classes.

g−1
1 (0) = 0.5

F−1
Beta(αϵ,1+αϵ)

(FN (−µ,σ2)(0)) = 0.5 (4.17)

The same derivations applied for the transformation g2 will give the same result.
Thus, we have obtained a connection between parameters µ and σ for the latent
representations of the distributions of class probability.

µ = σ
√

2(erf−1(2FBeta(αϵ,1+αϵ)(0.5)− 1) (4.18)

This constraint gives the following property. Ratios between a probability mass of
the whole distribution and the probability mass belonging to a region of overlap
with the symmetric distribution are equal for the distributions of class probability
and for their latent representations.

1
1− FN (−µ,σ2)(0) + FN (µ,σ2)(0)

=
1

1− FBeta(αϵ,1+αϵ) + FBeta(1+αϵ,αϵ)(0.5)
1

2FN (−µ,σ2)(0)
=

1
2FBeta(αϵ,1+αϵ)(0.5)

(4.19)

The latter equality is satisfied because of equality (4.17).
Now there are two transformations instead of one. This fact poses the question:

which one is necessary to use for the inverse operation? When we observe in
the latent space a GP prediction with parameters −µ, σ2, it is better to use g1,
and g2 for the symmetric case. There is an intuition that it is better to use the
transformation g−1

1 if the latent prediction is closer to the Gaussian, centered at −µ

and the transformation g−1
2 , when the latent prediction is closer to the Gaussian

centered at µ.
Both transformations g−1

1 , g−1
1 represent some activation functions that maps an

interval [−∞, ∞] into [0, 1] (Fig. 4.4).

Figure 4.4: The plot of the activation functions g−1
1 , g−1

2 for µ = 12.74, σ = 10
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There is an asymmetry of each function with respect to the point [0, 0.5]. This
asymmetry imposes the following problem. If we apply both transformations
to the latent predictions with a distribution N (−µ, σ2) the goal is to obtain a
distribution of class probabilities Beta(αϵ, 1 + αϵ) for each transformation.

Figure 4.5: The histograms of predictions in the latent space (right) and corresponding
transformed values in the space of class probabilities (left).

It is possible to see that the transformation g−1
2 gives an incorrect distribution

of class probabilities when we observe the distribution of the latent predictions,
corresponding to y = 0, which is N (−µ, σ). The symmetric situation happens for
y = 1 with g−1

1 transformation. It is possible to overcome the described difficulty
by constructing a hybrid transformation that combines transformations g1 and g2

g(x) =

g1(x), if x < 0.5

g2(x), if x >= 0.5
(4.20)

The inverse transform is as follows:

g−1(x) =

g−1
1 (x), if x < 0

g−1
2 (x), if x >= 0

(4.21)

This transformation is symmetric and thus produces almost correct distributions
of class probabilities π for the extreme cases in the latent space when the GP
predictions are distributed according to N (−µ, σ2) or N (µ, σ2). The quality of
this approximation for non-extreme cases will be analyzed empirically in the next
section.

4.4.3 Experiments

At the beginning, the method was tested on a toy classification dataset. Simple
GP regression was used to solve the classification problem in a latent space.
The hyperparameters of the kernel were optimized by log marginal likelihood
maximization. Obtained predictions were compared with the predictions obtained
with the log-normal approximation proposed in [87] (Fig. 4.6). The same noise
hyperparameter αϵ = 0.2 was used for both methods. As we see in Fig. 4.6, the
proposed method assigns higher uncertainty estimates for the same input points.
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Figure 4.6: Toy dataset predictions obtained with the proposed transformation (top) and
with the log-normal approximation (bottom)

It is worth mentioning that for the toy dataset, the choice of µ hyperparameter
for the latent space does not affect the distribution of class probabilities. Different
values of parameter µ in a range [0.01, 50] were tested, and all of them gave exactly
the same predictions in the space of class probabilities.

Also, the proposed method was tested on several UCI classification datasets and
compared with the log-normal approximation in terms of classification error, mean
negative log-likelihood (MNLL), and expected calibration error (ECE), which is
outlined in Tables 4.4, 4.5, 4.6. In the tables, the proposed method is denoted as
Hybrid Transformation, and the baseline is denoted as Log-normal approximation.
The classification performances of both methods are very similar, but the proposed
method requires solving only one regression problem in a latent space instead of
two, as in the case of the baseline.

Table 4.4: Classification error of the proposed method and log-normal approximation

Dataset Hybrid Transformation Log-normal approximation

EEG 0.18±0.01 0.21±0.03

Magic 0.133±0.002 0.139±0.003

HTRU2 0.0224±0.0006 0.022±0.001

MiniBoo 0.083±0.003 0.085±0.003

4.4.4 Discussion of the approach

The general goal of this work was to obtain an accurate posterior predictive
distribution. The proposed method still uses an approximation, and it does not
allow obtaining the true posterior distribution. But the most problematic part of
this approach is multi-class classification because, in this case, we have to construct
a C-dimensional activation function that maps logits to the [0, 1] interval. The
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Table 4.5: MNLL of the proposed method and log-normal approximation

Dataset Hybrid Transformation Log-normal approximation

EEG 0.40±0.03 0.43±0.04

Magic 0.336±0.006 0.351±0.005

HTRU2 0.074±0.005 0.081±0.005

MiniBoo 0.226±0.008 0.205±0.006

Table 4.6: ECE of the proposed methods and log-normal approximation

Dataset Hybrid Transformation Log-normal approximation

EEG 0.027±0.005 0.022±0.007

Magic 0.0263±0.0009 0.022±0.004

HTRU2 0.043±0.001 0.039±0.001

MiniBoo 0.0274±0.0003 0.0286±0.0009

empirical method of construction of the activation function proposed in this work
is not applicable in a C-dimensional space.

The preliminary experiments conducted in this work for two class datasets
show some advantages of the proposed technique compared to the Dirichlet label
transformation in terms of negative log-likelihood and accuracy, but they are
ambiguous in terms of Calibration Error. Because of these two arguments, this
proposed approach is considered promising while requiring more investigation.
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L O C A L G AU S S I A N P R O C E S S R E G R E S S I O N

5.1 introduction

Function estimation is a fundamental problem in Machine Learning. In supervised
learning tasks applied to a data set composed of observed input data and labels, the
goal of function estimation is to establish a mapping between these two groups of
observed quantities. Function estimation can be approached in various ways, and
we can broadly divide algorithms in two categories, as global and local. Examples
of global algorithms are Neural Networks [93] and kernel machines [123], which
impose a functional form yielding a global representation of the function. The
functional form is parameterized by a set of parameters that are optimized or
inferred based on all the available data. The estimated model can later be used to
query the function at any input points of interest. In local algorithms such as K-
Nearest Neighbors (KNN), instead, the target point is fixed, and the corresponding
value of the function is estimated based on the closest data available.

Obviously, any global algorithm can be made local by training it only for the few
training points located in the vicinity of the target test point. While it may seem
that the idea of localizing global algorithms is not a very profound one, empirical
evidence shows that localization could improve the performance of the best global
models [12]. The idea of localization was therefore applied to global models such
as SVMs [8, 9]. In addition to performance gains, by operating on smaller sets of
data points, these local approaches enjoy computational advantages, which are
particularly attractive for kernel machines for which scalability with the number
of data points is generally an issue [23, 121, 122].

In this work, we develop novel ideas to implement a localization of Gaussian
processes (GPs) in order to obtain performance gains, as well as computational
ones. GPs are great candidates to benefit from computational speedups given
that a naïve implementation requires expensive algebraic computations with the
covariance matrix; denoting by n the number of input data, such operations cost
O(n3) operations and require storing O(n2) elements, hindering the applicability
of GPs to data sets beyond a few thousand data points [108]. Another issue with
GPs is how to choose a suitable kernel for the problem at hand so as to avoid
problems of model misspecification. Both of these issues have been addressed in
various ways, by proposing scalable approximations based on inducing points [57]
and random features [27, 110], and by composing GPs to obtain a rich and flexible
class of equivalent kernels [151].

In this work, we explore an alternative way to address scalability and kernel
design issues by localizing GPs. In particular, we show how the localization
operation leads to a particular form for the localized GP and what is the effect on
the kernel of this model. Furthermore, the localization makes it apparent how to
implement the model with considerable gains compared to other approaches to

52
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approximate GPs. We demonstrate such performance gains on regression tasks on
standard UCI benchmarks [34].

5.2 related work

Local learning algorithms were introduced by Bottou and Vapnik [12], with the
main objective of estimating the optimal decision function for each single testing
point. Examples of local learning algorithms include the well-known K-Nearest
Neighbor regression [2] and local polynomial regression [37]. These methods
provide simple means for solving regression problems for the cases where training
data are nonstationary or their size is prohibitively large for building a global
model. However, neither of these methods provides ways to quantify uncertainty
in predictions, which is a highly desirable feature in cost-sensitive applications.

Gaussian Process Regression (GPR) [114] is a popular nonparametric regression
method based on Bayesian principles, which provides uncertainty estimates for
its predictions. Similarly to other kernel methods (e.g., SVMs and KRR), GPR
is a global method, meaning that it takes into account the whole dataset at
prediction time. Thus, GPR inherits the computational complexity of global kernel
methods, which is prohibitive for large datasets. Among the large class of scalable
approximations for GPR, successful ones are based on Random Fourier Features
[110] and on sparsification of the Gram matrix induced by the kernel [114].

Random feature approximation of the kernel proposed in [110] is based on the
Bochner theorem and allows representing the kernel function as a dot product
of (possibly infinite) feature maps applied to the input data. In practice, infinite
feature maps are replaced by a finite Monte Carlo approximation. The disadvantage
of this approach is that it is necessary to construct a specific random feature
mapping for each type of kernel. While random feature approximations are
known for popular kernels such as RBF [110], and polynomial [103], there is no
straightforward application of this method to approximate arbitrary kernels.

The Gram matrix sparsification approach is based on the idea of introducing
so-called inducing points in order to approximate the full Gram matrix. One of
the most popular methods in this family is the Nyström approximation [114].
The main drawback of this approach is that a low number of inducing points
might lead to a poor approximation of the original model, which affects predictive
performance. An important advancement within this family of approaches which
provides a scalable variational formulation, was proposed in [133].

While providing good performance and scalability for large datasets, these
approaches still require some design choices for the kernel. For stationary kernels,
they assume that the same kernel is suitable for all the regions of input space, and
if data are nonstationary, this may harm the predictive performance. The literature
has a wide range of proposals to address kernel design by incorporating ideas
from deep learning [27, 151].

Recently, partitioning strategies have also gained some attention. The main idea
is to divide the input space into regions where local estimators are defined [18, 86,
92, 131]. In partition-based methods, the main challenge is to define an effective
partitioning of the space.
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There are several approaches that use the idea of local learning for training
GP models. The method proposed in [85] and extended in [84] mostly focuses
on Bayesian parametric linear regression. The methods in these papers build an
ensemble of local models centered at several fixed points, where each training point
is weighted accordingly to the distance from the center of the model. Predictions
are computed as a weighted sum of the local models. The authors claim that
their approach extends to GPR, but in this case, each local model considers
the full training set. This means that these methods use localization to address
nonstationarity but poorly scale to large datasets. The method proposed in [126]
proposes to build local GP models that use only subsets of the training data, but
it lacks a mechanism that assigns importance weight for the training points for
each local model according to the distance from the center of the model. That is
why the model can make overconfident predictions for the points that lay far away
from the centers of the local models. In [48], in order to obtain fast approximate
prediction at a target point, the Authors propose a forward step-wise variable
selection procedure to find the optimal sub-design.

5.3 gaussian processes , kernel ridge regression, and localization

5.3.1 Gaussian Process Regression

We already discussed GP regression in Chapter 2, Section 2.2. The problem with
this approach is that it is required solving a linear system involving a matrix of
size n× n to obtain the parameters of a predictive distribution (2.28), (2.29). Direct
methods to solve these operations require O

(
n3) operations and storing O

(
n2).

Iterative solvers, instead, can reduce these complexities by relying exclusively on
matrix-vector products, which require O

(
n2) operations per iteration and do not

need to store the Gram matrix [28, 38]. However, a quadratic time complexity may
still be prohibitive for large-scale problems.

There is rich literature on approaches that recover tractability by introducing
approximations. One popular line of work introduces m so-called inducing points
as a means to approximate the whole GP prior [108]. This treatment of GPs
was later extended within a scalable variational framework [71, 133], making the
complexity cubic in the number of inducing points m. Another approach proposes
ways to linearize GPs by obtaining an explicit set of features so as to obtain a
close approximation to the original kernel-based model. Within this framework, a
popular approach is based on random features [110]. Denoting by Φ the n× D
matrix obtained by applying a set of D random basis functions to the inputs in
x1 . . . , xn, these approximations are so that ΦΦ⊤ approximates in an unbiased way
the original kernel matrix KXX, that is E[ΦΦ⊤] = KXX. For the Gaussian kernel, for
example, a Fourier analysis shows that the basis functions that satisfy this property
are trigonometric functions with random frequencies [110]. This approach has
been applied to GPs in [80] and later made scalable by operating on mini-batches
in [27].
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Figure 5.1: Examples of local kernels: (a) Rectangular kernel, (b) Epanechnikov kernel, (c)
Gaussian kernel.

5.3.2 Locally Smoothed Gaussian Process Regression

GP regression, as formulated above, is an example of a global learner; for a fixed
training data D, it builds a posterior distribution over functions that can be used
to calculate the predictive distribution for any test inputs. To construct a predictive
distribution for any input point, it is necessary to use all the information available
from the data D, resulting in the need to do algebraic operations with the matrix(
KXX + σ2 In

)
. However, if we focus on the prediction problem locally, at a given

target input x0, most of the information carried by the (potentially large) covariance
matrix might be neglected with little loss of information. The main idea behind
localized GPs is to down-weight the contribution of the data points far from x0,
so that the structure of the covariance matrix is more adapted to the prediction
task at a given point. To make this general idea work, we need to tackle two
challenges. First, we need to specify what it means to be far or close to a given
point; second, the change of the structure of the covariance matrix must give us a
valid covariance matrix, i.e., the resulting covariance matrix should be symmetric
and positive definite. Note that a simple truncation of the covariance function
to obtain a compact-support covariance function may generally destroy positive
definiteness [65].

We accomplish the localization of GPs in a straightforward manner as follows.
We localize the target and the prior in the model (2.32) by multiplying them by the
square root of the weighting function:

kh(x, x0) :=
1
h

k
(
∥x− x0∥

h

)
,

where k : X ⊂ Rd → R is a non-negative, integrable function satisfying
∫

K(x)dx =

1 and ∥ · ∥ is Euclidean norm on Rd. Considering the square root of the weighting
function will be convenient later when we discuss the link between local GPs and
local Kernel Ridge Regression. Some classical examples of the weighting functions
are given in Fig. 1. Because of the linearity of the weighting operation, the resulting
model is another zero-mean Gaussian process f̃ (x) with covariance function given
by

K̃(x, x′; x0) = k
1
2
h (x, x0)K(x, x′)k

1
2
h (x
′, x0). (5.1)

In this formulation, we have localized the relationship between noisy targets
and function realizations as

ỹi = f̃ (xi) + ε i, ε i ∼ N (0, σ2), (5.2)
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Figure 5.2: (a) Samples from a global GP prior with the exponential kernel. (b) Samples
from a GP prior with exponential kernel localized by rectangular smoother
centered at x0 = 0. (c) Samples from a GP prior with exponential kernel
localized by Epanechnikov smoother centered at x0 = 0. (d) Samples from a
GP prior with exponential kernel localized by Gaussian smoother centered at
x0 = 0.

with ỹi =
√

kh(xi, x0)yi, and the prior is given by a zero-mean GP with the localized
covariance kernel (5.1). The model (5.2) can be alternatively written as a model
with heteroscedastic noise

yi = f (xi) +
1√

kh(xi, x0)
ε i, ε i ∼ N (0, σ2).

Making the noise parameter location-dependent can significantly improve the
performance for problems where the assumption of a homoscedastic noise is not
satisfied.

Proposition 1 Let I = {i : ∥xi− x0∥ ≤ h}, XI = {xi : i ∈ I} and yI = {yi}i∈I ∈ R|I|.
Assume that (5.2) holds for the fixed target point x0. Then f (x0) | yI is a Gaussian random
variable with mean and variance given by

m̃(x0) = Kx0XI

(
KXI XI + σ2W−1

x0

)−1
yI (5.3)

K̃ (x0, x0) = K (x0, x0)− Kx0XI

(
KXI XI + σ2W−1

x0

)−1
KXI x0 (5.4)

where Wx0 is the diagonal matrix with main diagonal entries kh(xi, x0), xi ∈ XI .

Proof: Let x0 be any fixed target point. Then the observations yI ∈ R|I| and
GP-function value at target point f0 = f (x0) ∈ R are jointly Gaussian such that[

y

f0

]
∼ N

([
0I

0

]
,

(
KXI XI + σ2W−1

x0
KXI x0

Kx0XI K(x0, x0)

))
.

Then the proposition follows from the basic formula for conditional distributions
of Gaussian random vectors (see, e.g., [113], Appendix A.2).
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Compared to global GPs, in the local formulation, in order to compute the
posterior mean and variance, we need to invert

(
KXI XI + σ2W−1

x0

)
. This might give

a key advantage when dealing with large data sets, as the localization by the
compactly supported kernel (local) could significantly sparsify the Gram matrix
corresponding to KXX. Denoting by s0 the number of inputs for which the localizing
weights are nonzero for a test point x0, the complexity of performing such an
inversion is O(s3

0). Another interesting observation is that the kernel function
K̃ (x, x′) is potentially more flexible than the original kernel function; this is due
to the multiplication by the localizing weighting function, which may introduce
some interesting nonstationarity even for kernel functions which are stationary,
depending on the choice of the weighting function.

The calculation of the predictive distribution with Locally Smoothed Gaussian
Process Regression (LSGPR) is described in Algorithm 3 The parameter selec-
tion in probabilistic models given by GPs is based on the marginal log-likelihood
maximization, which, in our local formulation, can be defined as follows:

log p(yI |XI) =−
1
2

y⊤I
(

KXI XI + σ2W−1
x0

)−1
yI

− 1
2

log
∣∣∣KXI XI + σ2W−1

x0

∣∣∣− n
2

log(2π)

(5.5)

Unfortunately, gradient-based optimization cannot be used to find the optimal
localization parameter h, as the marginal log-likelihood is not continuously differ-
entiable w.r.t. this parameter when compactly supported local kernels are used.
The simplest way to resolve this problem is by using grid search for the localization
parameter h, while kernel parameters can be optimized by gradient-based methods
for any given h.

Algorithm 3 LSGPR

1: Input: X, y, σ2, h, x0
2: Output: m̃(x0), K̃(x0, x0)
3: I := {i : ||xi − x0|| ≤ h}
4: XI := {xi : i ∈ I}
5: yI := {yi : i ∈ I}
6: Wx0 := diag({kh(xi, x0) : i ∈ I})
7: L := Cholesky

(
KXI XI + σ2W−1

x0

)
8: α := (L−1)⊤L−1y
9: m̃(x0) := Kx0,XI α

10: v := L−1Kx0,XI
11: K̃(x0, x0) := K(x0, x0)− v⊤v

5.3.3 Local Kernel Ridge Regression

For every Gaussian process f (x) with covariance function K(x, x′), there is a unique
corresponding Hilbert space HK. This is commonly referred to as a reproducing
kernel Hilbert space (RKHS) and constructed as a completion of the linear space of
all functions:

x 7→
k

∑
i=1

αiK (ai, x) , α1, . . . , αk ∈ R, a1, . . . , ak ∈ X , k ∈N
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relative to the norm induced by the inner product〈
k

∑
i=1

αiK (si, ·) ,
l

∑
j=1

β jK
(
tj, ·
)〉
HK

=
k

∑
i=1

l

∑
j=1

αiβ jK
(
si, tj

)
.

It is well known that the posterior mean of Gaussian process regression can be
alternatively derived by minimizing the regularized empirical risk over the RKHS
[67]; see, e.g., [64] for a recent review. For local GPs, this corresponds to a weighted
least square minimization over the RKHS with the weights given by kh(x, x0), that
is

m̃(x) = arg min
f∈Hk

n

∑
i=1

(yi − f (xi))
2 kh (xi, x0) +

σ2

n
∥ f ∥2

Hk
. (5.6)

Note that in the local formulation, for a given point x0 one has to estimate both
the parameters of the reproducing kernel and the width of the local kernel h. Here
are two examples of well-known classical local methods, which are the solution to
the empirical risk minimization problem (5.6).

k-nearest neighbors This model corresponds to the noise-free case (σ = 0)
with a positive constant reproducing kernel and a rectangular local kernel whose
width is adjusted to contain exactly k data points. The solution of the minimization
problem (5.6) is the mean of the outputs corresponding to the k closest to x0 input
points.

local polynomial regression If we use the polynomial kernel K(x, x′) =
(1 + xx′)k for the space HK, and use any smooth local kernel (i.e. exponential),
then in the noise-free case the solution of the minimization problem (5.6) is so
called local polynomial regression [135]. In this special case, when the degree of
the polynomial is 0, we have Nadaraya-Watson regression, which is the minimizer
of the local squared loss over the constant function.

5.4 experiments

5.4.1 Toy dataset

In order to illustrate the behavior of the proposed Locally Smoothed Gaussian
Process (LSGPs), we start from a toy dataset generated from the Doppler function
(Fig. 5.3).

y(x) =
√

x(1− x) sin
(

2.1π

x + 0.05

)
+ ε, 0 ≤ x ≤ 1, ε ∼ N (0, 0.1) (5.7)

For this experiment, we used the RBF kernel, and the Epanechnikov localizing
kernel

k(x) =
3
4
(1− |x|2)I(|x| ≤ 1). (5.8)

We tuned the lengthscale parameter of the RBF kernel by optimizing the marginal
log-likelihood of the model. We used the L-BFGS algorithm for gradient optimiza-
tion [106]. We chose the value of the parameter h of the localizing kernel that gave
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Figure 5.3: Illustration of the predictive distribution of GPs (left) and LSGPs (right) applied
to data sampled from the Doppler function for 400 training points (top), 200

training points (middle), and 100 training points.

the best Mean Squared Error (MSE) on a validation set. The LSGP model used on
average 7 training points to make a prediction. We compared the predictions of
LSGP with the predictions of standard GP regression.

As we can see from Fig. (5.3), the Gaussian Process with RBF kernel is unable to
make reasonable predictions in the region where the target function contains high-
frequency components. While some nonstationary covariance functions might be
appropriate for this example, the combination of a standard stationary covariance
function with the localization approach offers substantial modeling improvements.

5.4.2 UCI datasets

We evaluated the performance of the LSGP method on several problems from
the UCI datasets collection and compared it against standard GPR, Deep GPs
approximated with random features [27], and k-nearest neighbors (KNN) regres-
sion. In particular, we aim to compare the predictive performance offered by the
localization against the baseline of exact GPR, and to verify that any performance
gains are not just due to localization, meaning that we expect to outperform KNN.
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Table 5.1: UCI datasets used for evaluation.

Dataset Training instances Dimensionality

Yacht 308 6

Boston 506 13

Concrete 1030 8

Kin8nm 8192 8

Powerplant 9568 4

Protein 45730 9

Because our model is more flexible than standard GPR, we also added to the
comparison Deep GP models based on random features expansion. The size and
dimensionality of these problems are outlined in Table 5.1. Since the Euclidean
norm used in the local kernels depends on the units in each coordinate, all the
datasets except the Protein were scaled within the [0, 1] range. We used a stan-
dardization procedure for the Protein dataset because the baseline model worked
much better with this type of preprocessing. For the Deep GP model, we used the
hyperparameters and the data preprocessing described in the original paper.

The LSGPR method requires creating a new local model with its own set of
hyperparameters for each input point where the prediction has to be made. During
the optimization, the kernel parameters of each model were constrained to be
equal among all local models. Considering the hyperparameter h, we found that it
is hard to find values of h that perform well across all regions of the input space.
Thus, for each input point of interest, we chose values of h that ensured that the
localizer considers at least m neighboring training points. In this experiment, we
used 3-fold cross-validation to choose the noise variance σ2, the lengthscale of the
GP kernel, and the parameter m of the localizing kernel. We report the results on
the held-out test set.

In this experiment, we also used the Hilbert localizing kernel [32, 124]

k(x) = ∥x∥−1I(∥x∥ ≤ 1), (5.9)

which showed good performance for most of the datasets. In Table 5.2, locally
smoothed Gaussian Process Regression based on Hilbert kernel is referred to as
LSGPR Hilbert, while the same model based on Epanechnikov kernel is referred to
as LSGPR Epanechnikov. GP regression, Deep GP regression, and KNN regression
are referred to as GP, DeepGP and KNN, respectively.

The results indicate that LSGP offers competitive performance with respect
to GPR and Deep GP baselines. The results also clearly show that LSGP offers
superior performance to KNN, suggesting that the localization alone is not enough
to obtain good performance and that this works well in combination with the GP
model. To make a comparison with the baselines, we used the one-sided Wilcoxon
test [148]. For each method, we measured its performance on 10 data splits, and
we used exactly the same splits for testing the performance of each method, so we
matched samples of the MSEs. Then we used the test to compare methods in pairs,
where the alternative hypothesis was that the MSE of any given method is smaller
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Table 5.2: Comparison in terms of test set MSE between LSGPR a standard GPR.

Dataset LSGPR LSGPR GP DeepGP KNN

Hilbert Epanechnikov

Yacht 0.63±0.12 2.02±0.58 1.09±0.05 0.93±0.13 57.80±16.65

Boston 14.78±0.88 15.30±1.28 17.94±0.71 7.92±0.14 23.30±2.58

Concrete 34.79±1.07 40.43±3.16 37.81±0.61 130.94±3.93 94.23±7.89

Kin8nm 0.01±0.000 0.01±0.00 0.01±0.000 0.06±0.00 0.01±0.00

Powerplant 14.65±0.34 14.40±0.67 16.85±0.69 14.57±0.15 15.35±0.49

Protein 36.85±2.15 12.50±0.26 17.03±0.57 16.94 ±0.16 19.89±4.26

than the MSE of competitors. We used confidence level α = 0.05. In Table 5.2, the
results that are statistically better than the competitors are marked in bold.

5.5 discussion of the method

In this work, we developed a novel framework to localize Gaussian processes
(GPs). We focused, in particular, on Gaussian Process Regression (GPR), and
we derived the GP model after applying the localization operation through the
down-weighting of contributions from input points that are far away from a given
test point. The form of the localized GP maintains positive definiteness of the
covariance, and it allows for considerable speedups compared to standard global
GPR due to the sparsification effect of the Gram matrix.

The proposed method may suffer from the curse of dimensionality. In this
work we chose the localization hyperparameter to ensure, that the local model
considers at least m neighboring training points. This is a reasonable choice for
low-dimensional problems, but it may not be sufficient for high-dimensional
problems.

The proposed method requires cross-validation to tune the scale parameter of the
localizing kernel, while other GP-based techniques use a less expensive marginal
log-likelihood (MLL) gradient optimization to tune these types of parameters. We
found MLL gradient optimization problematic because of the discontinuity of the
local kernel with respect to the scale parameter, which in turn makes the MLL
function discontinuous with respect to this parameter. It would be interesting to
investigate ways to extend the idea of localization for GPR to other tasks, such as
classification.



6
I M P O S I N G F U N C T I O N A L P R I O R S O N B AY E S I A N N E U R A L
N E T W O R K S

6.1 introduction

Artificial Neural Networks (NN) currently represent a general class of successful
models for various machine learning tasks, including computer vision, natural
language processing, and many others. Bayesian Neural Networks (BNN) com-
bine the representation power of NNs with Bayesian inference, making them an
attractive choice in applications where predictive performance and accurate uncer-
tainty quantification in parameter estimates and predictions are both important.
However, BNNs are typically difficult to work with due to the intractability of the
posterior over model parameters, which requires one to resort to approximations.
Furthermore, recent works point to the need to choose sensible priors over model
parameters in order to be able to obtain good performance [41, 134]. In BNNs, the
prior over the weights and the network architecture determine a distribution over
the outputs of such BNNs [130], and we refer to this induced prior as a functional
prior.

The functional prior should encode any prior information on the conditional
distribution of the labels given the inputs. However, it is unclear how to encode this
type of information when having to specify a prior distribution over the weights.

In this paper, we propose a novel framework to enforce such meaningful func-
tional priors. In particular, we rely on scalable Markov chain Monte Carlo (MCMC)
sampling from an approximation to the posterior distribution over BNN weights,
and we specify the prior over the weights implicitly through a prior over the
induced functional prior. Our approach is different from the literature on Implicit
Process Priors (IPPs) [81], where the goal is to obtain an approximate framework
to handle the functional prior implicitly induced by choice of a prior distribution
over the weights. In our work, we operate in the opposite direction by imposing a
functional prior, which implicitly determines a prior over the weights; we do not
know such a prior over the weights in closed form, but we implicitly determine it
through the specification of the induced functional prior.

Stochastic Processes are natural mathematical objects suitable to define distribu-
tions over functions [63], and GPs represent popular examples that are routinely
used in numerous machine learning tasks. This type of stochastic process is well
investigated and has strong theoretical foundations [114]. There are theoretical
guarantees for the generalization error of GP regression, and this method has a
strong connection with non-Bayesian Kernel Ridge Regression (KRRs) [64]. Also, it
was shown in [93] that in the infinite width limit, shallow BNNs are equivalent to
GPs. We propose to use GPs to impose functional priors over BNNs because GPs
provide a flexible set of instruments for encoding different types of beliefs about
functions, such as periodicity or smoothness, through the specification of kernels.

62
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However, our approach is not restricted to GPs, and it can handle any functional
priors that can be written down in the closed form.

6.2 a review of types of prior in bnn

A popular way of choosing prior distributions for BNNs is to employ a Gaussian
distribution over the weight of the model [50, 93]. While this choice of prior
does not render inference tractable, it does offer some practical advantages, for
instance, when employing Variational Inference (VI) [50]. In this case, it is possible
to calculate part of the VI objective without the need to resort to Monte Carlo
sampling, and it requires a linear complexity in the number of parameters when
making a mean-field assumption. This computational benefit comes with a cost of
poor approximation of the true posterior due to the lack of flexibility of the family
of the approximate distributions.

Even when adopting more advanced and generally more accurate inference
techniques, such as Hamiltonian Monte Carlo (HMC) [94], and Stochastic-Gradient
HMC (SGHMC) [22], the Gaussian assumption on the prior over model parameters
is still very common. By studying the entropy of the predictive distribution, it was
shown by [42] that Gaussian priors are problematic in terms of model performance
and the ability to detect Out-of-Domain (OOD) input examples. This work also
shows how Gaussian priors over the weights could be responsible for the cold
posterior effect described by [147]; this effect is characterized by the necessity of
applying temperature scaling to the prior density term in Bayes theorem in order
to obtain good performance.

The poor performance associated with the choice of Gaussian priors gave rise
to alternatives involving flexible distributions, such as a mixture of Gaussians
[10], Student’s t-distribution [42], hierarchical Gaussian distribution [22], and
many others [41]. However, all these types of prior distributions imposed over the
weights of the model share the same issue of preventing from understanding the
effect that they impose on the outputs of the model.

Another way of encoding the desired output prior constraints into the model is
to use an auxiliary probabilistic model which learns the desired distribution of
parameters to fulfill the required output constraints and to use this distribution as
a prior over the weights of the original model [4].

Instead of focusing on the prior over the weights of NNs, an alternative is
to study their effect on the distribution on the NNs output, which we refer to
as functional priors. [130] proposes to use VI to tackle the problem of finding
a Bayesian posterior in the space of functions for a functional prior, defined by
a stochastic process. They introduce a variational objective, which includes the
evaluation of the KL divergence between the approximate predictive posterior
and the functional prior using a finite set of evaluations of the function. It was
shown that the supremum of the KL divergence over all possible sets of input
points is equal to the true KL divergence in functional space. In this setting, the
model is then trained in an adversarial manner, which means that the optimization
procedure simultaneously minimizes the optimization objective with respect to
the parameters of the model and maximizes the KL term with respect to the
input data points, which makes the optimization process unstable. Also, the opti-
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mization objective requires evaluating the gradient of the approximate posterior
density, which is performed with the Stein gradient estimator [125], and this, in
turn, requires a careful choice of a kernel function. The work in [81] focuses on
representing the functional prior as a BNN and uses GPs to obtain an approximate
posterior over functions. The problem with this approach is that GPs may yield a
poor approximation quality for the true functional posterior. The authors in [130]
and [81] use VI to find an approximate posterior distribution, which means that
the optimization objective contains a functional KL divergence term. However, in
[15, 117], it is claimed that the KL divergence between the functional approximate
posterior and the GP process functional prior is problematic as it may go to infinity.
On the other hand, they acknowledge that it does not mean that parametric models
cannot approximate GPs well.

The authors of [134] propose to impose GP functional priors so as to constrain
the parametric prior over the weights of BNNs. They propose several options to
define such a prior, including Gaussian, Hierarchical Gaussian, and Normalizing
Flows [115]. They propose to optimize the parameters of the prior over the weights
so as to minimize the Wasserstein distance between the outputs of the untrained
BNN and samples from the GP prior. Then, the posterior over the weights is
characterized by means of MCMC.

In our work, we aim to avoid the computation of the KL divergence or any
other distance metric in functional space. Instead, we propose to enforce the choice
of a functional prior directly when carrying out approximate inference of BNN
weights.

6.3 imposing functional priors on bnns

Consider a supervised learning task with a dataset D{(xi, yi)}i=1...n of n input
vectors X = {xi}i=1...,n and corresponding labels y = {yi}i=1...,n, and imag-
ine employing a NN-based model with parameters w to establish a paramet-
ric mapping between inputs and labels. We denote the input/output mapping
by fw(x), and for convenience we also define f⊤ = [ fw(x1), . . . , fw(xN)] and
f∗⊤ = [ fw(x1), . . . , fw(xN), fw(x̃1), . . . , fw(x̃M)] as the evaluation of the function
fw(x) at the inputs X and an augmented set of inputs X∗ = [X, X̃], respectively.
The set X∗ has cardinality N∗ = N + Ñ, and the Ñ inputs in X̃ are drawn from a
given p(x). Note that the sets X and X∗ can be disjoint, but in order to keep the
notation uncluttered, we assume X ⊂ X∗

A Bayesian treatment NNs requires specifying a prior distribution p(w) over
the parameters and a likelihood function for the labels given the inputs, that
is p(y|X, w). For this BNN, it is possible to write down an expression for the
posterior distribution over model parameters as:

p(w|y, X) =
p(y|X, w)p(w)∫
p(y|X, w)p(w)dw

(6.1)

Carrying out inference in BNNs is extremely difficult for at least two reasons.
One main difficulty stems from the complex way in which parameters affect the
likelihood function, and this requires approximation techniques to characterize
the posterior over model parameters; popular approaches involve MCMC and
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variational approximations. A second and more subtle challenge is how to specify
priors for BNNs because it is difficult to establish what is the effect of prior
parameters on the distribution over the functions that BNNs can represent. In this
work, we propose a novel way to address the challenge of choosing sensible priors
for BNNs by working with implicit priors over the weights induced by the choice
of functional priors while we follow the recent trend to employ MCMC techniques
to address the intractability of the inference process. We begin by focusing on the
distribution over the functions represented by BNNs. In particular, we consider
the distribution of f∗, which is the distribution of fw(x) evaluated at the set of
input points X∗, and we impose a prior over this set of variables which encourages
functions to behave in a sensible way a priori. Later we will study in particular
Gaussian process priors, but any functional prior can be incorporated as long as it
can be expressed in closed form.

We now rewrite the likelihood function in terms of f rather than w:

p(y|X, w)→ p(y|f). (6.2)

The main idea behind our work is to now define a prior over f instead of w, and to
perform inference over w. With this change of variables, we should account for the
change of measure through a Jacobian term. However, such a change of variables
involves groups of variables of different dimensions in general, and even when
this is not the case, computing this term would be computationally costly. For this
reason, we are going to ignore the Jacobian accepting to settle for an approximate
posterior over w. With this choice, we rewrite Bayes theorem as:

log p(f∗|y, X∗) = log p(y|f) + log p(f∗|X∗) + const. (6.3)

Note that in this equation, we introduced the functional prior:

p(f∗|X∗) =
∫

p(f∗|X∗, w)p(w)dw, (6.4)

where p(f∗|X∗, w) is a Dirac’s delta placed at the evaluation of fw(x) at the inputs
X∗ due to the deterministic way in which inputs are mapped into outputs in NNs.
Again, we stress that while we focus on the distribution of functions represented
by BNNs, we actually use the objective in eq. 6.3 to perform MCMC sampling
in the space of the weights w. Note that we carry out inference over w through
MCMC, but given that we are working with an approximation to the posterior
over w, we could alternatively employ other fast approximate inference techniques
such as Variational Inference. Here, we focus on MCMC so as to isolate the effect
of the way we impose functional priors compared with alternatives that try to
characterize the exact posterior over w [134].

bayesian interpretation. From a Bayesian point of view, imposing a prior
over function by specifying a prior over f∗ induces an implicit prior over the
weights through eq. 6.4. In other words, the prior over f∗ is, in practice, a prior
over a deterministic transformation of w, and this is implemented by the NN. It is
interesting to note that in the literature eq. 6.4 is usually interpreted in the opposite
way; that is, one uses eq. 6.4 starting from a prior over the weights p(w) to define
a functional prior in an implicit way [81]. The likelihood function establishes what
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is the likelihood of the labels y, and it is conditioned on f or equivalently on w
and X. Therefore, the expression in eq. 6.3 can be seen as an expression for the
(approximate) posterior over the weights w (due to the lack of a Jacobian term),
where the prior is assumed over a transformation of such weights. In this paper, we
take this view to carry out Bayesian inference over w using MCMC techniques. We
also note that our approach has some close similarity with the Product of Expert
approach proposed in [146] for inference of parameters of Ordinary Differential
Equations using Gaussian Processes.

regularization interpretation. While we proceed with a Bayesian treat-
ment of w, it is useful to interpret eq. 6.3 as a regularized objective in the following
way. The first term log p(y|f) is the negative loss, which can be equivalently seen
as a function of w and X∗, so this provides a constraint on w because the objective
promotes values of f which are compatible with the labels y, and f depends on
w and X∗. The second term is a regularization term, which penalizes functions
deviating from a behavior established by the functional prior. Because f∗ is a
function of w and X∗, this translates into a regularization term for w.

6.4 gaussian process priors

The proposed formulation focusing on functional representations has the advan-
tage of putting the emphasis on the functions that BNNs can represent, and for
which it is possible to assume sensible priors. Here we specify how to operate in
the case of Gaussian processes (GPs), which yield a prior term in eq. 6.3 as:

log p(f∗|X∗) = −1
2

f∗⊤C−1f∗ + const, (6.5)

where the covariance matrix is C = (KX∗X∗ +σ2
n), and KX∗X∗ contains the evaluation

of the kernel function κ among all the inputs in X∗. For simplicity, we assumed a
zero-mean GP, but other mean functions can be easily included.

In the next subsections, we elaborate on how to use this GP prior in practice
by proposing a way to operate with mini-batches for scalability purposes, by
discussing hyper-parameter optimization, and by discussing the properties of the
proposed approach when N∗ goes to infinity.

6.4.1 Mini-batching

In this work, we aim to employ advanced MCMC sampling methods based on
stochastic gradients, and in particular Stochastic Gradient Hamiltonian Monte
Carlo (SG-HMC) [22] to sample from the weights w of BNNs. In order to do
so, we need to formulate our MCMC objective in a way that is suitable for
mini-batching. However, extending the previous formulation to operate with mini-
batches without care would produce a biased estimation of the quadratic term
f∗⊤C−1f∗ ̸= E[f∗⊤b C−1

b f∗b ], where fb and Cb are computed over a mini-batch Xb.
The main difficulty of full batch training is the necessity of solving linear

systems with the matrix C, which has O(N∗3) complexity in the number of
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inputs in X∗. The literature on GPs offers many cues on how to circumvent this
problem. In particular, there exist formulations of GPs based on inducing points
[57] and random features [80, 110] which operate on mini-batches [27]. In this
work, we focus on approximations based on random features, but inducing points
formulations is also possible.

The Random Features (RF) expansion of the kernel κ(·, ·) allows us to obtain a
finite-dimensional representation for an explicit feature map that approximates its
value. Using this expansion, we can express the Gram matrix as a dot product of
feature maps computed over the data K ≈ ΦΦ⊤. We can use this property and
the Woodbury identity to rewrite the quadratic term as follows:

f∗⊤C−1f∗ = f∗⊤(ΦΦ⊤ + σ2
f I)−1f∗ =

1
σ2

f
f∗⊤f∗ − 1

σ2
f

f∗⊤Φ(Φ⊤Φ + σ2
f I)−1Φ⊤f∗.

(6.6)

In this case, instead of inverting the matrix of size N∗ × N∗, we invert the matrix
of size D× D, where D is the dimensionality of the RF vector. But this approach
has two drawbacks. First, it is extremely unstable when σ2

f → 0, because after
application of the Woodbury identity the term 1

σ2
f
f∗⊤f∗ → ∞. Second, this approach

still does not allow mini-batch training.
We can reformulate our MCMC objective by replacing the nonparametric term

pertaining to the GP with a parametric one based on RFs. For the set f∗, we can
factorize its prior probability as:

p(f∗|X∗) =
∫

p(f∗|β, X∗)p(β)dβ, (6.7)

where β are the parameters of RF approximation of the GP, that is p(β) ∼ N (0, I)
and p(f∗|β, X∗) ∼ N (Φβ, σ2

f I). In this case it is easy to verify that p(f∗) =

N (0, ΦΦ⊤ + σ2
f I) and according to the property of the RF approximation, the

covariance matrix coincides with the prior term of the objective in eq. 6.6. Instead
of sampling directly from the unnormalized posterior p(f∗|X∗, y) marginalized
over β, we can sample from the joint density p(f∗, β|X, y) and discard samples
over β:

p(f∗, β|X∗, y) ∝ p(y|f)p(f∗|β, X∗)p(β). (6.8)

Again, when we refer to the fact that we sample f∗, in practice, we sample w.
This RF-based approach avoids the necessity of inverting the matrix (ΦΦ⊤ + σ2

f I)
during the computation of the objective.

Resuming, the expression for the unnormalized log-posterior in eq. 6.3, where
the GP regularization is approximated using RFs, is as follows:

log p̂(f∗, β|X∗, y) = log p(y|f)−
1

2σ2
f
∥f∗ −Φβ)∥2 − ||β||

2

2
+ const.

(6.9)

It is straightforward to verify that this MCMC objective can be written as a sum
of terms involving individual input points, and it is therefore, amenable to mini-
batching. It is also easy to verify that one can proceed with a Gibbs sampling
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scheme whereby f∗ (that is w) is sampled from the conditional p̂(f∗|β, X∗, y) using
SG-HMC and β is sampled directly from p̂(β|f∗, X∗, y), which has a Gaussian
form.

6.4.2 Hyper-parameter optimization

The choice of a GP prior opens to the need to specify its kernel parameters. In the
absence of any way to determine such hyper-parameters, we propose to optimize
them by marginal log-likelihood (MLL) optimization, which is a popular way to
proceed with GP models. In our case, the random feature approximation lends
itself to a scalable solution, avoiding the need to invert large matrices. In particular,
the marginal likelihood is:

p(y|X) = N (y|0, ΦΦ⊤). (6.10)

Again, using Woodbury matrix identities, it is possible to rewrite the marginal
likelihood so that the cost of computing it is cubic in the number of random
features instead of cubic in the number of input points.

6.4.3 Classification

While for regression, it is natural to specify functional priors through GPs and to
obtain a tractable framework to scale these through random features, for other
likelihoods, things may become more involved. For instance, in classification
problems, we may wish to specify functional priors such that the distribution over
classes is uniform a priori.

Alternatively, following an empirical Bayes approach, we could optimize the
GP prior hyper-parameters so as to maximize the marginal likelihood. In this
case, the random feature approximation of GPs leads to so-called Generalized
Linear Models (GLMs) and this requires approximations to be able to compute
the marginal likelihood. For classification tasks, there exist solutions to bypass
the need to work directly with Bernoulli or Multinoulli likelihoods p(y|w, X).
Here we follow the idea proposed by [87], in which labels are transformed so that
classification models can be replaced by regression models with heteroscedastic
observation noise. In particular, for each one-hot encoded label y we can obtain
real-valued vectors ỹ, σ2

n (see [87] for details):

ỹi = log(αi)−
σ̃2

i
2

; σ̃2
i = log

(
1
αi

+ 1
)

. (6.11)

In this case, we can use a Gaussian likelihood, and thus we can obtain a closed-
form solution for the marginal likelihood of the model using the fact that the
Gaussian likelihood and Gaussian prior are conjugate.

6.4.4 Connections with Kernel Ridge Regression

As already pointed out, in the proposed approach, we are free to choose the
set X∗. In this section, we try to get insights as to what is the behavior of the
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Gaussian process functional prior as a function of the cardinality of X∗, that is N∗.
In particular, we aim to show that the term associated with the functional prior in
eq. 6.3, which is the quadratic form f∗⊤C−1f∗, does not grow indefinitely with N∗.
To do so, we resort to some connections with Kernel Ridge Regression. According
to [149] we can express

f∗⊤C−1f∗ =

min
g∈H

1
σ2

f

N∗

∑
i=1

( fw(x∗i )− g(x∗i ))
2 + ||g||2H.

(6.12)

In the case when fw belongs to the RKHS induced by the kernel κ of the GP prior,
we can easily see that the quadratic term on the LHS of (6.12) is bounded by ∥ f ∥2

H.
Indeed, if ĝ is a unique minimum of the RHS of eq. 6.12, we can write

1
σ2

f

N∗

∑
i=1

( fw(x∗i )− ĝ(x∗i ))
2 + ||ĝ||2H ≤

1
σ2

f

N∗

∑
i=1

( fw(x∗i )− fw(x∗i ))
2 + || fw||2H = || fw||2H.

(6.13)

This means that if || fw||2H is bounded, the quadratic term f∗⊤C−1f∗ is bounded as
well.

As an illustration of this fact, we picked a 1D function that has a following form:

f (·) =
M

∑
i

αiκ(·, xi). (6.14)

We used M = 20, xi ∼ Unifrom(−1, 1), αi ∼ Unifrom(−1, 1). For this function, we
can compute the Hilbert norm analytically. Then, for this function, we evaluated
the value of the quadratic term f∗⊤C−1f∗ for different amounts of points xi (Fig.
6.1).
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Figure 6.1: The value of the quadratic regularization term with respect to the number of
points used for evaluation of the function.
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We can also reuse a result from [149], which allows us to express the projection
of fw ∈ H on a subset of H, H′ ⊂ H. And H′ is a linear span of functions
ϕi(·) = k(·, xi), i ∈ {1, . . . , N∗}.

P( fw) = arg min
g∈H′
|| fw − g||2H = kX∗(·)K−1

X∗X∗f
∗, (6.15)

and we can note that

∥P( fw)∥2
H′ = f∗⊤K−1

X∗X∗f
∗. (6.16)

By increasing the number of basis functions in H′ to infinity we get

min
g∈H′
|| fw − g||2H = || fw − P( f )||2H

N→∞−−−→ 0. (6.17)

Using the expression for P( f ), we obtain:

|| fw −P( f )||2H =

|| fw||2H + f∗⊤K−1
X∗X∗f

∗ − 2⟨ fw, kX(·)K−1
X∗X∗f

∗⟩ =
|| fw||2H − f∗⊤K−1

X∗X∗f
∗.

(6.18)

In the last step, we used the reproducing property of the RKHS H. Substituting
this result into (6.17) we obtain:

f⊤K−1
X∗X∗f

N→∞−−−→ || fw||2H. (6.19)

In cases where the function fw is represented by NNs with smooth and bounded
activation functions, like tanh or sigmoid, at the layer before output, the output
function of the NN fw is smooth and bounded for any bounded w. This is because
a linear combination of smooth and bounded functions with bounded coefficients
is smooth and bounded too. This means that if we are using kernels that have
universal approximation properties, like RBF, exponential or binomial kernels [129],
each function generated by such NNs can be modeled by functions belonging to
the RKHS imposed by this kernel.

With a finite amount of points in X∗, the overall expression for the unnormalized
log-posterior becomes:

log p̂(f|y) = log p(y|f)− 1
2
||ĝ||2H + const,

ĝ = arg min
g∈H′
|| fw − g||2H.

(6.20)

This means that, in fact, we are using an approximation of the correct unnormal-
ized log-posterior, but still, this objective guarantees that for the points in X∗, we
will obtain evaluations of functions sampled from the true posterior.

6.5 experimental evaluation of mcmc for gp priors

6.5.1 Toy regression dataset

We begin by testing our approach on a synthetic 1D dataset. We employ a two-
hidden layer NN with tanh activation function and with 256 neurons at each layer.
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For the functional GP prior, we use an RBF kernel with a length-scale parameter
l = 1 and output variance σ2

out = 1. In Fig. 6.2, we report functions sampled from
the predictive posterior of the BNN with such a GP prior (GP in the figure) along
with the same GP prior approximated with 100 random features with and without
mini-batching (GP RFF and GP RFF mini-batch in the figure). As a regularization
set X̃, we used a grid of 200 equally spaced points. These points were used as a
test set. For comparison, we also include the approach proposed in [134] where
the prior over the weights is optimized so that the functional prior of the BNN
minimizes the Wasserstein distance to the GP prior (WDGPi-G in the figure).
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Figure 6.2: Sampled predictions of BNNs where the GP functional prior is imposed implic-
itly (our work) and by means of the optimization of the Wasserstein distance
with the functional BNN prior (WDGPi-G).

6.5.2 UCI regression datasets

To evaluate the effectiveness of our approach on more challenging problems, we
consider a suite of UCI datasets [34]. For these tests, we use a two-hidden layer
NN with tanh activation function and with 100 neurons at each layer for all data
sets, except for the Protein dataset, for which we used 200 neurons. We imposed a
GP prior with an RBF kernel. Input vectors and labels were initially standardized.
For all experiments, we used the extended dataset X∗, which contained 90% of
real trained data and 10% of uniformly sampled vectors from the input domain.
The uniform distribution has support bounded at each dimension by minimum
and maximum values of the training samples over this dimension. For all the
datasets, we used full-batch training, while for Kin8nm, Power, and Protein, we
used mini-batch training with a batch-size size of 512.

As a baseline, we consider the method proposed in [134], and we choose the
best-performing version from their paper, which is called GPi-G. We denote this as
WDGPi-G here to emphasize the fact that this approach optimizes the Wasserstein
distance of the BNN functional prior to the GP prior to determine the prior over
the BNN weights. This method uses a Gaussian distribution as a parametric form
for the prior over the weights and a Hierarchical GP with a LogNormal distribution
over the length-scale and output variance of the GP kernel. The comparison of our
method and WDGPi-G in terms of RMSE is shown in Table 6.1. We also report
comparisons with deep ensembles [73], where each model in the ensemble had
the same architecture as the NN used in the proposed method.

From these results, we see that our method outperforms WDGPi-G for most of
the datasets. It is particularly interesting to note that WDGPi-G uses a form of
Hierarchical Gaussian Process as a functional prior, whereas we consider a simple
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Table 6.1: Average RMSE for UCI regression datasets

Dataset Functional WDGPi-G Deep

MCMC Ensembles

Boston 2.73±0.02 2.83±0.92 3.69±1.15

Concrete 4.06±0.12 4.80±0.41 3.07±0.26

Energy 0.48±0.18 0.34±0.07 1.37±0.32

Kin8nm 0.04±0.00 0.06±0.00 0.06±0.00

Power 3.24±0.06 3.72±0.18 3.86±0.21

Protein 3.61 ±0.04 3.65±0.02 4.45±0.02

Wine 0.60±0.01 0.60±0.04 0.62±0.02

Table 6.2: MNLL for UCI regression datasets

Dataset Functional WDGPi-G Deep

MCMC Ensembles

Boston 2.45±0.01 2.48±0.12 3.19±1.12

Concrete 2.74±0.16 3.03±0.05 3.07±0.26

Energy 0.80±0.05 0.35±0.15 2.07±0.98

Kin8nm -1.46±0.11 -1.23±0.01 -1.32±0.08

Power 2.73±0.08 2.74±0.04 2.74±0.05

Protein 2.73±0.01 2.75±0.00 2.80±0.01

Wine 0.76±0.04 0.92±0.06 1.08±0.20
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GP in our case. Hierarchical GPs represent a richer functional prior than standard
GPs used in our method, but we still obtain competitive performance.

6.5.3 Toy classification dataset

We now illustrate how the proposed approach behaves on a 2D toy example
involving the so-called banana dataset. Again we used a two-hidden layer NN
with tanh activation function and with 256 neurons at each layer. We transform
the labels using the approach from [87] to obtain labels which allow us to employ
a Gaussian likelihood, as explained in Sec. 3. We then use an RBF kernel σout = 5
with different values for the lengthscale and show how these choices affect the
final results. As a regularization set X̃, we used a grid of 40×40 equally spaced
points. Also, these points were used as a test set. For comparison, we report results
with the WDGPi-G approach from [134]. As we can see on the plot, WDGPi-G
method fails to incorporate the GP prior for a smaller lengthscale (l=0.1) and the
prediction function behaves more smoothly than it should.
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Figure 6.3: Sampled predictions of the neural network with GP prior using Mahalanobis
regularization and WDGPi-G methods

6.5.4 UCI classification datasets

In this section, we test the effectiveness of our approach on various UCI classifica-
tion datasets. We use a two-hidden layer NN with tanh activation function. For
the EEG, HTRU2, Letter, and Magic, we use 100 neurons in each hidden layer,
while we use 200 neurons for Miniboo, Drive, and Mocap. Because all the datasets
are rather large, in all cases, we use the Random Feature approximation of the
functional GP prior with D = 1000 random features and mini-batches of size 512.
GP hyper-parameters are optimized using the marginal likelihood after the label
transformation presented in Sec. 3. We found that using the same transformation
for the classification task with the BNN itself gave slightly better results than using
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Table 6.3: Average classification accuracy for UCI classification datasets

Dataset Functional WDGPi-G Deep

MCMC Ensembles

EEG 92.51±1.82 94.13±1.96 89.04 ± 5.01

HTRU2 98.10±0.26 98.03±0.24 98.03 ± 0.20

Magic 88.16±0.33 88.37±0.29 87.90 ± 0.24

Miniboo 92.54±0.21 92.74±0.39 91.49 ± 0.19

Letter 98.22±0.18 96.90±0.29 96.38 ± 0.30

Drive 99.45±0.09 99.69±0.04 99.33 ± 0.05

Mocap 99.10±0.12 99.24±0.10 99.10 ± 0.08

Table 6.4: Average test NLL for UCI classification datasets

Dataset Functional WDGPi-G Deep

MCMC Ensembles

EEG 0.33±0.04 0.18±0.04 0.24 ± 0.10

HTRU2 0.06±0.002 0.06±0.00 0.07 ± 0.01

Magic 0.31±0.00 0.29±0.00 0.30 ± 0.01

Miniboo 0.18±0.01 0.18±0.00 0.20 ± 0.01

Letter 0.09±0.01 0.17±0.00 0.15 ± 0.01

Drive 0.08±0.01 0.03±0.00 0.05 ± 0.01

Mocap 0.19±0.00 0.03±0.00 0.04 ± 0.00

classification likelihoods, and therefore we report these results in the table. We
attribute this to the fact that the GP hyper-parameters are optimized with the
transformed labels.

As baselines, we chose the same methods as in the regression experiments. The
results in terms of classification accuracy and mean negative test log-likelihood
are presented in Tables 6.3 and 6.4. The results show that even in the classification
setting, the performance of the proposed approach is competitive with the state-of-
the-art. While we perform optimization of GP hyper-parameters, our approach
allows us to get rid of the Wasserstein optimization phase, which is used in
WDGPi-G, without a significant loss in classification performance.

6.6 limitations of the approach

While we consider our approach quite elegant in encoding prior information in
the form of functional priors, we believe that it is important to point out some
limitations compared to other works.

First, we point out that the form of posterior distribution we are targeting is
approximate. Then, the main limitation is that the functional prior density needs
to have a closed form. Even though the class of functional priors which have this
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property is large, this might be too restrictive in applications where it is possible
to sample from such priors, but no closed form is available. Prior works which
perform a preliminary optimization of the prior over the weights (e.g., [134]) can
operate on samples from functional priors without the need to express these in
closed form.

Another limitation related to the choice of a GP functional prior is how to set
hyper-parameters. In this work, we resort to marginal likelihood optimization, but
it is possible that this choice induces overfitting. One way around this would be
to include hyper-parameters in the set of variables to be sampled in SG-HMC to
obtain samples from their posterior at the expenses of having to deal with a more
costly MCMC sampling. Having said that, there are situations where functional
priors are easy to elicit and express without the need to carry out hyperparameter
optimization.

6.7 discussion of the mcmc inference for functional priors

In this paper, we proposed a novel way to incorporate prior knowledge in Bayesian
NNs (BNNs) in the form of functional priors. In our view, such functional priors
implicitly determine priors over BNN weights, and the proposed formulation
yields an approximate posterior over the weights from which it is possible to
sample through MCMC or any other approximate inference techniques. In this
paper, we studied the scenario where functional priors are expressed in the form
of Gaussian processes (GPs), but our formulation can handle any functional prior,
which can be expressed in closed form. We then discussed how to scale our
approach to handle large data sets by operating on mini-batches, despite the
complications stemming from the use of GP priors.

We can also point out that if we look at the proposed method from a different
perspective, we find out that it produces samples from the true posterior distri-
bution p(w|X∗, y) of another probabilistic model, which is depicted on Fig. 6.4.
In this model, we additionally introduced latent variables f1, f2. The variable f1

w

f1 f2 σf

β

y

σn

Figure 6.4: Graphical model representation of an alternative view on the proposed method.
Double line connections are used to indicate a deterministic relationship.

deterministically depends on w, so

p(f1|w) = δ(f1 − f (X∗, w)), (6.21)
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where f (X∗, w) is an output of the BNN. Let’s derive a joint distribution of
variables w, β, f1, f2, y:

p(w, β, f1, f2, y|σn, σf ) =

p(w)p(f1|w)p(y|f1, σn)p(β)p(f2|β, σf )p(f1, f2) =

p(w)p(f1|w)p(y|f1, σn)p(β)p(f2|β, σf )δ(f1 − f2).

In the third line we used the fact that f1 and f2 are deterministically connected,
thus p(f1, f2) = δ(f1 − f2). Using the property of the Dirac delta function, we can
note that:

p(f2|β, σf )δ(f1 − f2) = p(f1|β, σf ).

Also, we can substitute the expression for the p(f1|w) and obtain

p(w, β, f1, y|σn, σf ) =

p(w)δ(f1 − f (X∗, w))p(y|f1, σn)p(β)p(f1|β, σf ).

Then, using the same property of the Dirac delta function

p(w, β, y|σn, σf ) = p(w)p(y| f (X∗, w), σn)p(β)p( f (x, w)|β, σf )

Here we note that this expression is exactly the sampling objective that was used
in the proposed method, with an assumption that the prior distribution over the
weights of the BNN p(w) is uniform. Thus, we can conclude that the proposed
method actually produces samples from the true posterior distribution but from a
different type of model with certain assumptions.

We tested our proposal on regression and classification tasks and compared
it with state-of-the-art approaches to carry out inference and prior optimization
for BNNs. Our results demonstrate that the proposed approach is competitive
in terms of performance and quantification of uncertainty while being easy to
implement.

We are currently investigating ways to handle GP priors with priors over hyper-
parameters for increased flexibility and alternative ways to specify functional priors.
Furthermore, we are investigating applications of BNNs for image classification
tasks for which BNN architectures use convolutional layers.

6.8 variational bootstrap for bnns with functional priors

In this section, we develop another type of VI for BNNs with a GP prior over the
outputs of the model. As it was mentioned before [15, 117], the concept of explicit
utilization of KL divergence as an objective for functional VI, like in [130], [145],
is questionable. One of the possible ways to avoid this problem is to abandon
the explicit KL computation and switch to methods that optimize the divergence
implicitly. Recently, a family of Particle Optimization Variational Inference (POVI)
methods that exploit exactly this trick [29], [79] was proposed.

POVI allows one to obtain samples from the posterior of the BNN without
modification of the model. To achieve this property, methods from this family use
particles which are different instances of the model. The particles are optimized
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independently, with special constraints for each particle. These constraints provide
convergence of a set of particles to an approximate posterior distribution while
preserving their diversity.

The performance of POVI methods depends on a choice of a kernel, which
is independent of a type of prior in general. This work aims to establish some
connection between a kernel used to construct a prior distribution of functions
and a kernel used to solve a POVI problem.

The proposed work takes the idea of Variational Bootstrap (VB) from [88]. We
already described this idea in Section 4.3.2. In the proposed work, the diversity
of the particles is introduced by perturbations of the training labels and different
samples from the functional prior distribution. Mahalanobis regularization, pro-
posed in Section 6.4, ensures the closeness of the set of particles to samples from
the functional prior distribution. The set of perturbed labels and the samples from
the functional prior are unique for each particle.

6.8.1 Linear model case

If there is a dataset D = {xi, yi}N
i=1, a likelihood of the model p(D| f ) and a

functional prior GP , our goal is to get samples from the predictive posterior
distribution of the model with a parametric bootstrap procedure.

Let’s assume, that the functional prior is GP{0, κ} with some kernel κ,a likeli-
hood of the model is Gaussian p(y|f) = N (y|f, σ2

n), where f is a vector of latent
function values and σ2

n is an observational noise. To get samples from a functional
posterior, we can apply a functional version of the parametric bootstrap. Each
particle represents a kernel ridge regression (KRR) problem with perturbed data
labels ỹ ∼ N (y, σ2) and regularization || f − f̃ ||2H, where f̃ ∼ GP(0, κ).

argmin
f

1
σ2

n

N

∑
i=1

(ỹi − f (xi))
2 + || f − f̃ ||2H (6.22)

The solution for each particle is as follows:

f (x∗) = k⊤(K + I)−1(ỹ− f̃) + f̃ (x∗) (6.23)

where f̃ is a vector of evaluations of the function f̃ on the training set. It is easy to
see that

E f̃∼p(0,κ)[ f (x∗)] = k⊤(K + σ2
nI)−1y (6.24)

and

var( f (x∗)) = κ(x∗, x∗)− k⊤(K + σ2
nI)−1k (6.25)

So, the mean and the variance of the predictions of the particles are equivalent to
the mean and the variance of the GP prediction.
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6.8.2 Approximation of the Hilbert space norm

Let’s consider functions f , f̃ ∈ H and denote f − f̃ as g. A vector g is an evaluation
of the function g at the training points {x}N

i=1. Let’s consider a function h

h =
N

∑
i=1

αiκ(·, xi)

with coefficients α

α = gTK−1

We can observe that

||h||2H = gTK−1g

and that

h = argmin
g̃
||g̃||2H

s.t. g̃(x) = g(x) ∀x ∈ {x}N
i=1

(6.26)

So, we can claim that gTK−1g is the Hilbert norm of the smoothest function that
passes through all the points f− f̃. So, this quadratic form gives a lower bound on
|| f − f̃ ||2H. For the KRR, we can reformulate the optimization objective as:

argmin
f

1
σ2

n

N

∑
i=1

(ỹi − f (xi))
2 + (f− f̃)TK−1(f− f̃) (6.27)

This optimization problem will have exactly the same solution as the initial
formulation of the KRR. We can note that the regularization term is equivalent to
a squared Mahalanobis distance. To avoid numerical problems, we can relax the
equality constraint for (6.26)

h′ = argmin
g̃
||g̃||2H

s.t. ||g̃(x)− g(x)||2 < c, ∀x ∈ {x}N
i=1

The optimization objective for this problem is as follows:

h′ = argmin
g̃

1
λ

N

∑
i=1

(g̃(xi)− g(xi))
2 + ||g̃||2H (6.28)

Thus we can obtain a lower bound for the ||h||2H

||h′||2H = gT(K +
1
λ

I)−1K(K +
1
λ

I)−1g

It is possible to train a neural network with the relaxed Mahalanobis regular-
ization. It is necessary to add M points from the input space to the regularization
term to ensure the regularization constraint in the target regions of the input space.
We denote the extended vectors of functions values as f∗ and f̃∗, their difference
as g∗, and the extended Gram matrix as K∗. The optimization objective will be as
follows:

argminw
1
σ2

n

N

∑
i=1

(ỹi − f (xi, w))2 + gT
∗ (K∗ +

1
λ

I)−1K∗(K∗ +
1
λ

I)−1g∗ (6.29)
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Figure 6.5: FBVI predictions of 20 particles

Dataset FBVI WDGPi-G

Boston 2.82±0.06 2.80±0.40

Concrete 4.88±0.16 4.80±0.14

Energy 0.49±0.05 0.34±0.07

Wine 0.62±0.04 0.60±0.04

Table 6.5: RMSE for GP regression (GPR), the proposed method (FBVI) and WDGPi-G

6.8.3 Emprical evaluation

In the beginning, the Functional Bootstrap Variational Inference (FBVI) was tested
on a toy regression dataset. A fully connected network was used for the exper-
iments on synthetic data. The network had two hidden layers with 64 neurons
in each layer and used tanh activation function. An equally spaced grid of input
points was used for the Mahalanobis regularization term. Then the proposed
method was tested on several UCI regression datasets. A network with the same
architecture was used. It had 100 neurons in each layer, and it used the ReLU
activation function. We performed the experiments only for the small UCI datasets,
where full-batch training is available because the proposed method in its current
state is not adopted for mini-batch training.

6.8.4 Discussion of the FVBI method

The proposed idea gave good-looking predictions on toy data (Fig. 6.5, that are
much more similar to a GP than the ones produced by WDGPi-G method (Fig. 6.2).
But the FBVI method failed to outperform the WDGPi-G in the preliminary
experiments on the UCI data, and it demonstrated worse results than MCMC for
GP functional priors proposed earlier in this chapter (Section 6.3). Besides, this
method does not require a Wasserstein distance minimization phase like WDGPi-
G. And as we see in Chapter 4, Fig. 4.2, Variational Bootstrap allows obtaining
faster convergence than MCMC. Also, this method could be extended to mini-batch
training by means of Random Features similarly to the idea in Section 6.4.1.



7
C O N C L U S I O N S

7.1 summary of contributions and open questions

Optical Processing Hardware (Chapter 3)
We proposed a unified approach for integrating OPUs into deep learning models
that allows addressing two issues posed by this device. On the one hand, the
proposed approach allows for dealing with the restrictions that OPUs put on the
input data type. The ability to work exclusively with binary input data made OPU

applicable only to a very narrow set of problems, which was a significant obstacle
to the commercialization and widespread use of the technology. The proposed
approach allows binarizing any input data of any type using an appropriate neural
network in an optimal fashion regarding the loss of the specific machine learning
problem. On the other hand, the proposed method allows integrating OPUs into
deep learning models so that the whole pipeline can be trained in an End-to-
End fashion. It allows for solving problems that could not be solved with the
Kernel Ridge Regression method implemented by the device. As we emphasized
in Chapter 1, machine learning became so successful due to feature extraction
procedures trainable with backpropagation. And nowadays, it is the only way to
achieve high performance for many machine learning tasks. That is why it was
crucial to resolve the problem of non-differentiability of the OPU.

While this work proposes solutions for some problems of the OPU, there are still
challenges that have to be addressed. One of the most problematic things with
optical hardware is the high latency of the data exchange between the OPU and
other devices, such as CPU, GPU, and RAM. This drawback significantly alleviates
the benefits of the OPU. The approach proposed in this work necessitates a consid-
erable exchange of data between the device and the GPU. By conducting the data
exchange in a batch manner, the proposed method prioritizes high bandwidth
over low latency. However, the high latency of the OPU is still a challenge because
it results in a slower training process compared to models that only use the GPU.
Thus, one of the possible directions for future research could be decreasing the
number of data exchanges between OPUs and other hardware. Another issue that
requires further consideration is the possibility of stacking several OPUs in one
pipeline. As it was said, the main benefit of optical hardware is the ability to extract
features in nanoseconds, so if OPUs work on top of deep learning pipelines, the
primary time complexity will come from GPUs. Moving as many computations
as possible to OPUs will significantly decrease the inference time for the whole
pipeline.

Efficient and accurate inference for Bayesian classification (Chapter 4)
Neural networks are widely used for achieving state-of-the-art performance in
various tasks. However, they lack a systematic way to characterize uncertainty in
predictions. This makes a Bayesian treatment of this type of models highly desirable
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but also mathematically and computationally challenging. On the other hand, GPs
are founded on Bayesian principles, but classification tasks using GPs require
computationally expensive approximations. Inspired by the idea of variational
bootstrap, which allows performing fast and accurate Bayesian inference for
regression models, like GPs, we proposed a novel method for conducting Bayesian
inference in classification models such as neural networks and Gaussian Processes.
Our method provides a practical solution to the abovementioned limitations by
offering an easily parallelizable approach for Bayesian inference.

One of the possible directions for further research on the proposed method
is various parallel implementations of our approach to significantly speed up
inference for large-scale problems through the use of clusters of computing ma-
chines. Another possible improvement for the proposed method is to find a better
way to approximate a Dirichlet likelihood used in the approach. Currently, the
approximation is not accurate for the cases when the level of confidence in training
labels is high. This may lead to the degradation of the model’s performance in
terms of classification accuracy and uncertainty estimation. We made some steps
to improve the quality of approximation in Section 4.4, but this problem requires
further investigation. And the third possible research direction for the proposed
method is combining it with the methods presented in Chapter 3 for training
Bayesian models on OPUs. The proposed method is preferable for the OPU setting
because it provides a faster inference procedure compared to other Bayesian infer-
ence techniques.

Making Gaussian Processes scalable with localization (Chapter 5)
In Chapter 5, we introduced a new approach for scaling up GPs. We focused on
regression problems and created a novel GP-based model by applying the localiza-
tion technique. We achieved the localization effect by reducing the contributions
of training points that are distant from a target test point. The training points
outside the radius, defined by the localization hyperparameter, do not contribute
to the prediction. The resulting GP maintains the positive definiteness property
for a covariance matrix and allows for a significant performance improvement
compared to a vanilla GP model that uses the full training set for each test point,
thanks to the effect of sparsification of the Gram matrix. As a result, the model
uses different subsets of training data to perform predictions for test points located
in different regions of the input space.

Currently, the main drawback of the Local Gaussian Process Regression is the
necessity to choose the localization hyperparameter with cross-validation. It is
possible to leverage the marginal log-likelihood optimization approach to select
the appropriate values for this hyperparameter. In a current setting applying this
approach to the proposed method is problematic because the MLL function is not
smooth with respect to the localizing hyperparameter. Addressing this issue could
be one of the directions for future research.

Another direction for future research is extending this approach to random fea-
ture approximation of the localized GP. Some steps in this direction were already
made in [142], but this work addresses a very special combination of GP kernel
and localizing kernel. A more general way of obtaining such approximations for
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localizing GPs is an open question.

Bayesian neural networks with functional priors (Chapter 6)
In this chapter, we proposed a novel approach for incorporating functional prior
knowledge into Bayesian neural networks using GP priors. Our approach connects
the prior distribution over functions with a prior distribution over BNN weights.
Using such type of priors allows for encoding into the deep model some func-
tional properties, like smoothness, seasonality, or trend, which adds an additional
mechanism to control the behavior of the deep model, which is often considered
as a black-box from an interpretability point of view.

Our method allows for estimating the approximate posterior distribution of
the weights using MCMC. Also, we showed the possibility of using a variational
bootstrap approach for the same purpose. In the proposed work, we used GPs as
a functional prior, but our formulation allows for extending the method to any
type of functional distribution that has an analytical expression for the probability
density. For the case of GP prior, we managed to make our approach scalable to
large datasets with mini-batched training by using random feature approximation
to address the scalability issues typical for GPs.

As it was mentioned in Chapter 6, the proposed method performs approximate
posterior inference, and the main challenge for future research is making this
procedure exact. The most promising direction, in this case, is POVI methods that,
under some conditions, can provide an exact solution [29].

Another possible extension of the proposed approach is speeding up the infer-
ence by variational bootstrap. We made some steps in this direction in Section 6.8.
In this case, we are unable to obtain an exact posterior distribution over the weights,
but our experiments in Chapter 4 showed that the variational bootstrap provides a
satisfactory approximate posterior in terms of the performance of the model and
its uncertainty estimation.

7.2 concluding remarks

In conclusion, this work explored some intersections between deep learning,
Bayesian methods, and linear models, with a particular focus on Gaussian Pro-
cesses. In four separate projects, we demonstrated how these approaches can be
combined to enhance their flexibility, improve inference speed and scalability, and
incorporate desirable functional properties into a model.

Deep learning showed outstanding results in complex machine learning prob-
lems, but its utilization in risk-sensitive applications is arguable due to the lack
of uncertainty quantification and control over the properties of its predictions.
Bayesian methods allow addressing both of these issues by forcing it to produce
a predictive distribution instead of single predictions and by introducing prior
knowledge into the model. The first property allows reasoning about the level of
confidence of the predictions, and the second property allows forcing the model
to respect some given constraints, which can be essential for some specific task.

As we explored in this thesis, Bayesian linear models can be modified to stay
relevant in the age of big data on their own and also to work together with deep
models, compensating for some of their drawbacks. The latter gives hope that the
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extensive theoretical framework behind these classical models will play some role
in understanding the theoretical properties of deep models.
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