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Abstract

Computer system architectures have become increasingly complex. Pushing for bet-
ter performance and lower energy consumption, they include multiple cores, GPUs,
accelerators, and sophisticated memory hierarchies. In this context, computer system
simulators play a significant role in the research architecture community. They allow
the evaluation of new architecture ideas while being quicker and avoiding the huge
costs of manufacturing processes. The simulated architectures are often compared
with real state-of-the-art baseline architectures. Thus, the relevance of the conclusions
from such simulators is directly related to the faithfulness of the baseline model. We
observe that having strong baselines is not a simple task due to the lack of detailed
technical information about commercial architectures. In this thesis, we propose a sys-
tematic methodology to extract information from real commercial architectures for the
calibration of their corresponding simulation models. This methodology is based on
handcrafted microbenchmarks that leverage hardware performance counters for non-
intrusive monitoring. We instantiate this methodology on two key components of the
architecture.

First, we target the different levels of the memory hierarchy. We design the mi-
crobenchmarks to produce a signature of the memory system levels. The signature
contains parameter values that are important to calibrate a simulation model of the
real architecture. We implement the methodology with the gem5 simulator and an
ARM Cortex-A53 CPU. Then, we evaluate our methodology with benchmarks from
the SPEC CPU2006 suite. The benchmarks are executed on the commercial CPU and
gemb using our calibrated configuration. The results show that our calibration reduces

the average and maximum simulation error by 43% and 62%, respectively.

Second, we instantiate the methodology on the data prefetching engine, which is a
key component of the memory system that can generate memory requests in parallel
to the core. This new instantiation of our methodology results in Pref-X, a framework
that enables functional analysis of data prefetching engines in in-order cores. For that,
the framework uses memory request sequences to stress the L1 data cache and expose
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the changes in L1 cache content. From those changes, Pref-X deduces the functional
specifications of the data prefetching engine. Finally, we use the extracted information
to build a functional model of the prefetching engine. We apply Pref-X to two in-order
ARM CPUs, the Cortex-A7 and the Cortex-A53, and evaluate its accuracy with mem-
ory traces extracted from the SPEC CPU2006 suite. We execute the traces on both the
commercial CPUs and their corresponding functional models produced by our frame-
work. The results show an average prefetching accuracy of 99.8% and 96.9% for the
Cortex-A7 and the Cortex-A53, respectively.

This thesis builds a detailed understanding of how microbenchmarks can be used
to improve the modeling accuracy of existing architectures. We believe our methodol-
ogy has the potential to be applied to other components beyond the ones covered in
this manuscript, but that is part of future work. We hope our results will enable the

community to use better-calibrated baseline architectures in their simulations.



Résumé de la These

Les architectures de systémes informatiques sont devenues de plus en plus complexes.
Dans le but d’améliorer les performances et de réduire la consommation d’énergie,
elles comprennent plusieurs CPU, des GPU, des accélérateurs ainsi que des hiérarchies
de mémoire sophistiquées. De ce fait, les simulateurs de systémes informatiques jouent
un role important dans la communauté des chercheurs. Ils permettent d’évaluer de
nouvelles idées d’architecture, de facons plus rapides, tout en évitant les cofits des
processus de fabrication.

Les architectures simulées sont souvent comparées a des architectures réelles de
I'état de I’art. Ainsi, la pertinence des résultats obtenus depuis un simulateur est di-
rectement liée a la fidélité du modéle de référence. Nous observons qu’il n’est pas sim-
ple d’avoir des modeles de référence solides, ceci en raison du manque d’informations
techniques détaillées des architectures commerciales. Dans le cadre de cette these, nous
proposons une méthodologie systématique pour extraire des informations depuis des
architectures commerciales réelles. Ces informations sont ensuite utilisées afin de cal-
ibrer les modeles de référence correspondants. Cette méthodologie est basée sur le
design de microbenchmarks et 1'utilisation de compteurs de performance qui perme-
ttent une mesure non-intrusive du systeme. Nous appliquons cette méthodologie sur

deux composants clés de I’architecture.

Dans un premier temps, nous ciblons les différents niveaux de la hiérarchie de la
mémoire. Nous développons des microbenchmarks qui permettent d’extraire une sig-
nature caractéristique du systeme de mémoire. Cette signature contient des valeurs de
parametres importantes que nous utilisons pour la calibration du modéle de référence.
Nous implémentons la méthodologie sur le simulateur gem5 et un processeur ARM,
le Cortex-A53. Puis, nous évaluons la méthodologie avec des benchmarks de la suite
SPEC CPU2006. Ces derniers sont exécutés sur 1’architecture ARM et simulés sur gem5
en utilisant notre configuration calibrée. Les résultats montrent que notre calibration

réduit l’erreur de simulation moyenne et maximale de 43% et 62%, respectivement.

Dans un second temps, nous appliquons la méthodologie sur le data prefetcher, qui
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est un composant clé du systeme de mémoire. Celui-ci pouvant générer des deman-
des de mémoire en paralléle du cceur du processeur. Cette nouvelle instance de notre
méthodologie donne lieu a Pref-X, un framework permettant I’analyse fonctionnelle
des data prefetchers présents dans les coeurs in-order. Pour cela, nous utilisons des
séquences de requétes mémoire pour stresser le data prefetcher et exposer les change-
ments dans le contenu de la cache L1. A partir de ces changements, Pref-X en déduit
les spécifications fonctionnelles du data prefetcher qui permettent la construction un
modele fonctionnel. Nous implementons Pref-X & deux processeurs ARM in-order, le
Cortex-A7 et le Cortex-A53. Nous évaluons les modeles fonctionnels résultants avec
des traces mémoire extraites de la suite SPEC CPU2006. Nous exécutons les traces a
la fois sur les CPU commerciaux et sur les modeles fonctionnels produits par notre
framework. Les résultats montrent en moyenne une précision des modeles de 99,8%
pour le Cortex-A7 et de 96,8% pour le Cortex-A53.

Cette these permet de comprendre en détail comment 1'utilisation de microbench-
marks permet une amélioration de la précision des modéles de référence au sein des
simulateurs. Aussi, nous pensons cette méthodologie est applicable a d’autres élé-
ments de l'architecture, ceci pouvant faire 1’objet de travaux futurs. Finalement, ces
travaux contribuent a la communauté scientifique en permettant 1'utilisation de mod-

eles de référence d’architecture commerciale mieux calibrés.
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Introduction




2 Chapter 1. Introduction

Modern computer systems have become increasingly complex. In order to keep
improving both performance and energy efficiency, modern computer architectures in-
clude multiple processing units such as CPUs, GPUs, or accelerators. All the process-
ing units share the same memory resulting in a meticulously orchestrated hierarchy
of distributed private and shared memories. Additionally, the utilization spectrum of
computer systems becomes very wide, from very energy-efficient embedded systems
to high-performance computing.

1.1 Context

In this section, we present how researchers continue improving modern architecture
by exploring new designs of computer architectures. In particular, we see that the
memory system is a critical component of the architecture, leading to many specific
explorations. We further introduce computer architecture simulators as an alternative
to chip manufacturing for architecture exploration. We finally expose simulator draw-

backs and limitations, which motive this thesis.

1.1.1 Computer Architecture Exploration

In order to keep improving performance and energy efficiency, researchers continue
exploring new designs across all components of the architecture components. Indeed,
multiple components other than the CPUs play a significant role in global architecture
performance, such as the GPUs or the memory system. The main challenge of such
explorations is evaluating new designs’ benefits against state-of-the-art references. A
straightforward solution would be to conduct the exploration by manufacturing new
chips that implement the new design. However, a strong drawback would be the cost
of such explorations. Chip manufacturing is a very long and expensive process mainly
reserved for commercial platforms. In addition, during architecture exploration, we
may evaluate non-existing technologies to identify ideal cases and motivate explo-
ration directions. Also, the monitoring is often limited with actual manufactured chips
and can disturb normal behavior.
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1.1.2 Memory System

The memory system is an essential part of computer system architecture. It provides
necessary data around all the processing units present in the architecture. As a result,
the memory system significantly impacts global architecture performance. Indeed, a
slow reactive memory system can slow down the complete architecture. Addition-
ally, the memory system represents a big part of the system’s energy consumption [1].
Consequently, Modern computer architectures implement complex memory organiza-
tions, including different memory technologies, layouts, and protocols to keep high
performance. Regarding all these aspects, the memory system is a prevalent topic of

exploration within the system architect community.

Moreover, emerging non-volatile memory technologies provide new opportunities
for memory system improvement [2]. However, those technologies have different tech-
nical specifications than existing commercial memory technologies. Thus, the different
memory protocols and organizations must be rethought. Many explorations on using
such non-volatile technologies have already been done [3, 4, 5]. Nevertheless, some
more still need to be made as most of those technologies are not mature yet. They may

become even more attractive in the future.

Architecture simulators are essential tools used by academic and industrial re-
searchers to address all these challenges in modern memory systems.

1.1.3 Architecture Simulator

Computer architecture simulators have become an essential tool for computer archi-
tecture research [6, 7, 8, 9]. Contrary to chip manufacturing, they allow quick and
inexpensive evaluations of new architecture ideas. Computer architecture simulators
are already widely used by the research community. For instance, the gem5 simula-
tor [10] has already been cited several thousand times in the last decade. However,
computer simulators suffer from drawbacks such as the trade-off between simulation
time and model accuracy. The most accurate simulations can achieve very long simu-
lation times. Conversely, the simulation results from an inaccurate model would lead
to misleading conclusions [11]. Thus, it is crucial to select an appropriate level of accu-

racy.

With computer simulators, the evaluation of new ideas is made against a reference
baseline model. This baseline model represents a realistic state-of-the-art architecture.

A common error with such evaluation is to use a flawed baseline model, which com-
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promises the relevance of evaluation results. However, calibrating a baseline model
can be difficult. Indeed, key commercial architecture technical information is often not

public, hindering baseline model calibration.

1.1.4 Simulation Verification

To evaluate the accuracy of a simulator, researchers verify them against real architec-
tures. They first calibrate the simulation model before simulating and executing real-
istic benchmarks on both the simulator and the target. Thus, the simulation error is
the difference between the simulator’s and target’s results. In order to prove the accu-
racy of the simulator, the simulation error needs to be the lowest. In this way, several
works [12, 13, 14] propose verifying the gem5 simulator against architectures. The av-
erage error is around 2% within 18%. However, those evaluations cover only a few
points of the all gem5 architecture coverage. Moreover, the empirical calibration meth-
ods used during those evaluations cannot be generalized to other architectures, limit-
ing the verification of the rest of the architecture coverage. This situation worsens as

state-of-the-art architectures keep advancing, making previous evaluations outdated.

1.2 Contributions

In this thesis, we tackle the problem of accurate computer simulations. Specially, we
focus on a particular type of error that is recurrent in computer architecture simulators,
the flawed calibrations of the simulation baseline. The memory system has a significant
role in general, but more importantly, in multicore architectures. Consequently, our
goal is to calibrate precisely the memory system of multicore architectures against real

state-of-the-art commercial architectures to provide more accurate simulations.

To this end, we propose in this thesis three main contributions that we introduce in
the continuation of this section.

1.2.1 Calibration Methodology

The first contribution is a systematic methodology that we propose to calibrate the
memory system of a computer architecture simulation. The calibration is made against
a real state-of-the-art architecture that we call target architecture. The methodology is
composed of two phases. We determine the simulator parameters we need to calibrate
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during the first one. Then, we calibrate them in the second phase of the methodology.
For that, we start using first-party documentation. However, as part of the techni-
cal information is not public, we propose a method base on handcrafted microbench-
marks and hardware monitoring to extract missing technical information from the tar-
get architecture. In parallel, we use a running example to illustrate the different steps
throughout the methodology description. This contribution is presented in Chapter 4.

1.2.2 Memory System Simulator Calibration

The second contribution is an instantiation of the proposed methodology on the re-
active part of the memory system, i.e., the cache levels and the main memory. We
illustrate the path of memory requests through the memory hierarchy and model it as
a graph of conditions and delays. We then use it to detail the design of microbench-
marks that we execute to extract technical information from target commercial archi-
tectures. We implement the resulting instantiation on the gem5 simulator [10] and
one Cortex-A53 of the MediaTek Helio X20 SoC that we select as target state-of-the-
art architecture [15]. Finally, we evaluate our methodology with benchmarks from the
SPEC CPU2006 suite. We execute them on the board to have a reference, and then we
simulate them on gem5 using the default and calibrated models to expose our method-

ology’s benefits. This contribution is introduced in Chapter 5.

1.2.3 Analysis of In-Order CPU Data Prefetcher

The last contribution is Pref-X [16], a framework to analyze functional characteris-
tics of data prefetching in commercial in-order cores. Pref-X instantiates the proposed
methodology on a commercial data prefetcher engine. It exposes the data prefetching
activity by X-raying the cache memory content after triggering the data prefetcher. That
way, a complete functional data prefetcher model can be extracted from the target com-
mercial architecture. The functional model is verified in a second phase with realistic
benchmark memory traces. Finally, we demonstrate the feasibility of this methodology
by implementing Pref-X on two ARM in-order cores, the Cortex-A7, and the Cortex-
A53. We show a functional accuracy of 99.9% and 96.8% for the Cortex-A7 and the
Cortex-Ab53, respectively. This contribution is described in Chapter 6.
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1.3 Outline

We structure this thesis around seven chapters. Chapter 2 introduces relevant back-
ground about multicore memory systems. It also introduces two simulators that we
further use during evaluations. Chapter 3 discusses related work about computer
simulators. E.g., their different categories, their verification or utilization. Chapter 4
introduces our systematic methodology and details the two phases that compose it.
Chapter 5 and Chapter 6 present two instances of the methodology on the memory
system and the data prefetcher, respectively. Finally, Chapter 7 concludes this thesis

by summarizing the key achievements and discussing future work.
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In this chapter, we introduce the main components present in the memory system
of modern multicore systems. Also, we present key processes of the memory system,
such as data prefetching. Finally, we present the simulators we use to evaluate new

architectural ideas and especially new memory architecture designs.

2.1 Memory System

Modern computer architectures are composed of multiple processing units such as
CPUs, GPUs, or accelerators. The memory system has the role of providing data and
instructions to each processing unit. Consequently, the memory system has a signifi-
cant impact on global architecture performance [17, 18, 19]. Indeed, a slow data access

time or a low memory bandwidth can slow down the whole architecture.

2.1.1 Memory Hierarchy

Depending on its organization and technology, memory can have very different char-
acteristics [20, 21, 22], e.g., small and fast, or big and slow. In this way, the memory
system is composed of different types of memories. These memories are organized in
a hierarchy as illustrated in Figure 2.1. The first level of the hierarchy is the process

unit registers. Then there are three different kinds of memories:

* On-chip Caches. The memory caches are small but very fast. They can be private
or shared between several processing units. They are divided into different levels
that we call L1, L2, and L3. The L1 is the closest memory to the processing unit.
The Last Level Cache (LLC) is the farthest memory cache from the processing
unit. Additionally, modern heterogeneous SoCs implement System Level Cache
(SLC), which is beyond the LLC and shared between all the system components,
i.e., CPUs, GPUs, Neural Processing Units (NPUs), and other accelerators. Usu-
ally, they are implemented with an SRAM technology. Their sizes go from tens of
kilobytes for the L1 to tens of megabytes for the LLC and SLC.

¢ The main memory is a fundamental element of the memory system, as this mem-
ory is shared between all the processing units of the architecture. This memory
contains all the data necessary for Operating System (OS) routine and program
execution. The main memory is mostly implemented with DRAM technology
using standardized interface, e.g., DDR4, LPDDR4. The main memory size goes
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from a few gigabytes for embedded systems to hundreds of gigabytes for big
servers.

¢ The storage memory is the largest memory of the memory system but also the
slowest. Contrary to the main memory and the caches, the storage memory is
Non-Volatile Memory (NVM). Thus, the memory can retain the stored data even
without power. The common non-volatile technology used for storage memory
is the NAND-Flash. The size of the storage memory is usually at least a few giga-
bytes. However, the maximum size cannot be defined as we can always increase

the size, e.g., plugging a new memory disk or using online storage.

This distribution of technologies in memory hierarchy is also due to other metrics
such as the cost per bit or cell endurance. For instance, the L1 cache has high en-
durance, contrary to the storage memory. Indeed, the L1 cache is more written than
the storage memory. In the same way, the cost per bit of the L1 is higher than the stor-
age memory. Thus, the memory hierarchy’s purpose is to balance each technology’s

PU
registers

benefits and drawbacks.

Low access time Low density
Caches
§ multiple levels §
3 S
3 / Main Memory \ 2
£ o
=
/ Storage Memory \
High access time High density

Figure 2.1: Memory hierarchy diagram.

2.1.2 Data Movement

The general purpose of the memory hierarchy is to place hot data, i.e., frequently used
data, close to the processing units to reduce their access times. For that, the memory
hierarchy is based on two principals [20] that characterize data utilization during pro-
gram execution: First, the temporal locality. If a program uses data once, it is likely to
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use it again in a short time. Second, the spatial locality. If a program uses data, it is
likely to use its neighbor.

Thus, when a word of typically eight bytes is requested by the processing unit, a
complete cache line of typically sixty-four bytes, including the word’s neighbors, is
moved to the L1. That way, if the processing unit further requests one of them, the
word would already be present in the L1, exploiting both temporal and spatial local-
ities. As the size of the L1 is limited, when the L1 cache is full, one cache line needs
to be moved back to a lower level before the L1 receives a new one. The cache replace-
ment policy is the set of rules that dictate which address is evicted from the cache. For
instance, the Last Recent Used (LRU) cache replacement policy selects the coldest data
to evict from the cache.

When a cache line is requested to a cache level, a cache hit occurs if the cache line is
present in the requested cache. Contrary, a cache miss occurs when a requested cache
line is missing in the requested cache. Thus, if a memory request causes an L1 cache
miss, the request is then sent to the L2 cache, where it can either produce a cache hit or
a cache miss. Furthermore, we call miss (hit) rate the ratio of miss (hit) out of the total
number of accesses to a specific cache level. This metric is used to measure memory
system activity and optimization. During program execution, an ideal case would be
an L1 miss rate of 0%. Le., all the memory requests are issued with the minimum access
time.

Finally, the granularity of data transfers between the main and storage memory is
a page which generally contains four kilobytes. A page fault occurs when the requested
address is missing in the main memory. In this case, a complex routine is run by the
Operating System (OS) to evict one page from the main memory and replace it with
the one containing the requested address. This operation is very long (e.g., thousands
of CPU cycles) compared to access to the caches or the main memory.

2.1.3 Illustrating Example

We use an illustrating example to present an existing commercial memory hierarchy.
Figure 2.2 shows the architecture of the MediaTek Helio X20 SoC [15]. This commercial
platform contains three clusters providing different performance and energy consump-
tion ratios. ARM introduced this organization with the big.LITTLE concept [23]. Clus-
ters 0 and 1 contain four Cortex-A53 each. They are the low and middle-performance
clusters. Cluster 2 contains two Cortex-A72. It is a high-performance cluster. All the
clusters contain a dedicated L2 cache shared between all the CPUs of the cluster. An
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interconnect allows connecting all the processing units, i.e., the clusters, GPUs, and
accelerators, to the main and storage memory.
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Figure 2.2: Heterogeneous multi-core architecture of the MediaTek Helio X20.

As illustrated with cluster 0, each CPU contains a private L1 cache. This one is
separated into two caches: the L1 data (L1D) cache and the L1 instruction (L1I) cache.
Thus, at this level of the memory hierarchy, the data and the program instruction are

stored in two different memories.

2.2 Memory Components

In this section, we introduce important elements and features of the memory system.
We explain what is the virtual address space and how the memory system manages it.
Then, we describe the organization of the set-associative caches and the main memory:.
Finally, we introduce the data prefetching detailing its purpose and main characteris-
tics.

2.2.1 Virtual Space and the Memory Management Unit

When a program is launched, the OS generates a virtual address space, which defines

the range of addresses the program can access. Every program has its own virtual
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address space. Contrary, the physical address space corresponds to real addresses ac-
cessible in the main memory. The Memory Management Unit (MMU) is the memory
system component mapping virtual addresses to physical addresses. MMU does the
translations at the page granularity. That way, it maps virtual pages to physical pages,
as illustrated in Figure 2.3. As the main memory size is limited, all the virtual pages
are not mapped to physical ones. When a page fault occurs, i.e., a requested virtual
address is not present in the main memory, the OS updates the mapping in the MMU,
replacing one physical page from the main memory.

This abstraction has multiple benefits.

1. It isolates each program from the other, ensuring better security. For instance,
malware cannot use another virtual address space. Additionally, the OS ran-
domizes the mapping to prevent malware attacks.

2. It prevents programs from dealing with shared memory issues between pro-

grams. The OS manages such shared memory portions.

3. Contrary to the size of the physical address space, which corresponds to the size
of the main memory, the OS can create an infinite number of virtual address

spaces.

The MMU stores all translation data used to translate virtual addresses in the main
memory. However, to avoid accessing the main memory for every memory operation,
the MMU contains a Translation Lookaside Buffer (TLB). The TLB can cache a limited
number of translation data close to the processing unit. Thus, each processing unit
has a TLB to process the address translations. A TLB miss occurs when an address
translation data is missing in the TLB. In this case, the translation data is requested to
the Page Walk Unit (PWU), adding an extra translation delay. Finally, a request is sent
to the memory system if the translation data is not present in the PWU.

2.2.2 Caches Associativity

The cache memories are the highest levels of the memory hierarchy before the process-
ing unit registers. They usually use the SRAM technology allowing quick read and
write operations. The caches contain parts of the main memory data. When request-
ing an address to a cache, the first step is to check if the address is either present or
not in the cache, i.e., if there is either a cache hit or a cache miss. This process can be
very long and energy-consuming. Thus, to mitigate this cost, set-associative cache lim-
its an address’s possible locations in the cache. That way, only the possible locations
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Figure 2.3: Virtual to physical address space mapping with memeory management unit.

are checked instead of checking the entire cache, limiting the time and energy cost.
A direct-mapping cache limits an address to only one location, allowing the lowest
time and energy cost but increasing the cache miss rate. Conversely, a fully-associative
cache does not limit any address’s location. The cost is very high in this case, with a
low cache miss rate. Finally, N-way set-associative cache limits the number of possi-
ble locations to N. Depending on the size, the reasonable value of N allows a trade-off
between low cost and a low miss rate.

Figure 2.4 illustrates the case of a 4-way set-associative 32KB cache. This organiza-
tion corresponds to the L1 data cache of one Cortex-A53 [24] present in the MediaTek
Helio X20 SoC introduced in the previous Section 2.1.3. The addresses are indexed in
the cache using a tag, in four arrays, i.e., four ways. The size of one way corresponds
to the size of the cache divided by the number of ways. In this case, the size of one way
is eight kilobytes corresponding to 128 cache lines.

When requesting an address to the cache, the address is first translated into a tag
and an index. The six first Last Significant Bits (LSB) correspond to the cache line
offset. Then, the seven next bits constitute the index. Finally, the rest of the address
represents the tag. To check if the address is present, we check within the four ways
at the corresponding index if one of the four tags matches the requested address tag.
If one tag matches, there is a cache hit. The last step is to load /write the data from/to
the corresponding way.
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Figure 2.4: 4-way associative cache organization.
2.2.3 Main Memory Organization

The main memory can implement several organizations [25, 26]. However, the SDRAM
organization remains the standard organization using JEDEC interface protocols, such
as DDR4 or LPDDR4. Some interfaces, such as HBM [27] or HMC [28] also propose to

use 3D stacking implementation.

The main memory organization is divided into multiple channels [29]. Each chan-
nel is driven by a dedicated DRAM controller, as illustrated in Figure 2.5. A single
channel can contain multiple ranks [30]. Usually, a Dual In-line Memory Module
(DIMM) includes one rank in each face. A rank contains multiple DRAM memory
devices depending on the device output width. For example, according to the JEDEC
standard, a typical rank output width is 64 bits. When using DRAM devices of 8-bit
output, a rank is composed of 8 devices. All devices of the same rank execute the
same commands from the controller in parallel. Then, the outputs of the devices are
concatenated to form the 64-bit rank output.

Furthermore, a DRAM device contains multiple banks. A bank is an array of
DRAM cells where one bit is stored as a charge in a capacitor. To read data from a
bank, a whole bank row is moved to a row buffer. Then, the right column is read
or written using the I/O gatting. The row buffer acts as a cache. Thus, consecutive
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memory accesses to the same bank row will be faster than to different banks. A row
buffer hit occurs when memory access uses a row already present in the row buffer.
Conversely, a row buffer conflict occurs when memory access requests a different row
than the opening one. As the transfer from the bank to the row buffer removes the row
data from the bank (i.e., destructive read), we need to write back the opening row to
bank, and then transfer the requested row to row buffer to be read. This process is the

worst-case scenario.
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Figure 2.5: A DRAM channel architecture.

2.24 Data Prefetching

The data prefetching engine is another important component of the memory system.
Its role is to monitor the accesses made by the processing unit in order to predict the
future necessary addresses. Once the prediction is made, the predicted addresses are
prefetched from the lower levels of the memory hierarchy directly to the caches. If the
prediction is accurate, data prefetching reduces the cache miss rates and minimizes
memory access time, consequently increasing the system performance [31, 32, 33, 34,
35]. Thus, a prefetch is a memory request generated by the data prefetching engine.

The data prefetching engine is characterized by two metrics: coverage and accuracy.
The coverage defines the number of avoided misses thanks to data prefetching. The

accuracy corresponds to the number of useful prefetches, i.e., prefetches that are the
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source of cache hits. The coverage and accuracy depend on the prediction process and
parameters, such as the number of prefetches generated from one prediction. Ideally,
a perfect data prefetcher would have high coverage and high accuracy. However, in
reality, a trade-off remains between those two metrics.

For instance, we use only the high confidence degree predictions to get high accu-
racy but limiting the prefetcher’s coverage. Conversely, an aggressive data prefetcher
achieves high coverage based on low-quality predictions. However, it pollutes the
caches with useless cache lines, degrading the accuracy. Similarly, the number of
prefetches generated from one prediction can impact those metrics. For example, the
ARM Cortex-A53 exposes several data prefetcher configurations [36] to the firmware.
Several parameters, such as the number of outstanding prefetches (from one to eight)
or the number of consecutive cache misses triggering data prefetching (between 3 or

4), can also be tuned to obtain different coverage and accuracy values.

2.3 Computer Architecture Simulators

In this section, we introduce two computer architecture simulators, the gem5 simula-
tor and Ramulator, both event-driven open-source simulators. The gem5 simulator is a
modular platform that can model a complete computer architecture. Contrary, Ramu-
lator only simulates the main memory allowing faster simulations by abstracting the

CPU cores with memory traces.

2.3.1 Gemb

The gemb5 simulator comes from merging the M5 [37] and the GEMS [38] simulators.
This simulator is very popular in the architecture research community as it has already
been cited more than five thousand times. gemb is a very modular platform that can
simulate various ISAs [39]. i.e., Alpha, ARM, SPARC, MIPS, POWER, RISC-V, and
x86. It provides a wide range of modules for every element of the architecture. A
drawback of its great modularity and accuracy is its long simulation time. Thus, for
the same architecture component, gem5 modules provide different levels of accuracy.
For instance, a one-core CPU simulation does not need a high-accurate interconnect
model, as a single core cannot generate cannot generate enough requests to saturate the
interconnect. Conversely, an inaccurate interconnect model can significantly impact

the simulation results in the case of multi-core simulation.
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One very accurate model available on gemb5 is the High Performance In-order (HPI)
CPU model [40]. This model is based on the MinorCPU in-order CPU model, which has
been tuned by ARM to be representative of a modern ARM in-order 64-bit CPU. This
model also includes cache modules and TLB modules, which have also been tuned.
Other equivalent computer architecture simulators exist [41, 42, 43, 44, 45, 46]. How-
ever, we use gemb and its HPI model as simulation reference for the rest of this thesis.

2.3.2 Ramulator

Ramulator is an accurate DRAM simulator [30] from SAFARI Research Group at ETH
Zurich and Carnegie Mellon University. It supports various DRAM commercial stan-
dards such as DDR4, LPDDR4, GDDR5, or WIO2. A few corresponding parameters are
available for each standard and can be set up using pre-listed values in the simulator
code. Contrary to the high modular gem5 simulator, Ramulator is a memory-dedicated
simulator [47, 48, 49, 50, 51]. In this way, it can provide precise and fast main memory
simulations. We use it as a DRAM simulator reference in this thesis.

The standard usage mode of Ramulator is the memory trace-driven mode. Ramu-
lator uses memory traces from an input file and simulates the sub-system DRAM con-
trollers plus DRAM memories. Other modes, e.g., the CPU trace-driven mode, which
includes a simple CPU model, are also available. Additionally, the gem5 driven mode
allows using Ramulator as a module of the gem5 simulator. Thus, gem5 simulates the
complete computer architecture but the main memory, i.e., the DRAM controllers and
DRAM memories, which Ramulator simulates. For that, Ramulator includes a gem5
wrapper module that links both simulators. Ramulator receives the memory requests
from gemb5, simulates main memory responses, and sends them back to gem5. This co-
simulation of gem5 and Ramulator allows a cycle-accurate simulation of a multicore

system including the main memory.
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Computer architecture simulators have become an essential tool for architecture
researchers [6, 7, 8, 9]. They are used to evaluate new architecture ideas and avoid long
and expensive manufacturing processes. That way, their reliability is essential for the
community. Indeed, we need to guarantee the relevance of our results. Some work
already points out that inappropriate use of those simulators may lead to misleading
conclusions [11, 6, 52]. Thus, this chapter provides an overview of related work on

simulator error sources and mitigation approaches.

3.1 Sources of Error in Simulator Baselines

As discussed in Section 2.3, we use simulators to evaluate novel architectures against
a state-of-the-art baseline model. This baseline must represent a real state-of-the-art
architecture called the target architecture. Thus for a workload, the simulation error
is the difference in the metric of interest (e.g., workload execution time) between the
execution on the target architecture and the simulation model. There are two sources

of error in computer simulations: modeling and parametrization errors.

Computer architecture simulators provide many parameters to configure the sim-
ulation model properly. Thus, we tune the simulator parameters to get a model closest
to the target architecture. For instance, we set up parameters such as the associativity
or size of the L1 data cache. However, due to the lack of information about commercial
architectures [7], the simulator may not be appropriately tuned. Consequently, while
comparing results from the target architecture and the simulation model, part of the
error comes from the fact that the simulator is configured with the wrong parameters.
Note that the same simulator can have be more accurate with an adequate parameter
configuration. We define this component of the total simulation error as parametriza-

tion error.

We define modeling error as the remaining error after removing the parametriza-
tion error with an adequate configuration. The modeling error comes from the simu-
lator model accuracy, independently of the parameters. For instance, a simulator can
abstract away processes happening in the real architectures, such as main memory
bank conflicts (see Section 2.2.3). Thus, even with all the necessary technical infor-
mation, i.e., removing the parametrization error, it would not be possible to faithfully
represent the real target main memory. In this case, we can only reduce the error by
extending the simulator with more detailed models (e.g., adding a component that
models bank conflicts).
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Interestingly, some of the available simulators, such as gem5 and Ramulator, al-
ready include very complete and detailed parametric models to cover a wide spectrum
of architectures. Hence, in this thesis, we focus on reducing the parametric error as a

tirst necessary step to achieve accurate simulations.

3.2 Simulator Verification

In order to verify the accuracy of simulators, several works evaluate the simulation
errors against target architectures [53, 54, 55, 56, 30]. They configure the simula-
tors to get a representative simulation model of the target architecture, i.e., reduce
the parametrization error. Then, they use realistic benchmark suites such as SPEC
CPU2006 [57] or PARSEC [58] to execute on the target architectures and calibrated
simulation model. Different metrics are used to compare the execution and simulation
results. Assuming that the simulation model is ideally calibrated, only the modeling

error remains. If this one is low enough, the simulator is verified.

3.2.1 gemb5 Verification

Previous works propose a verification of the gem5 simulator [10]. Endo et al. [12] uses
as target architecture the in-order Cortex-A8 [59] and the Out-of-order Cortex-A9 [60].
They compare the execution time of benchmarks from the PARSEC suite against exe-
cution on the real target architecture (between 7% and 17% error). Butko et al. [13] use
the same target, i.e., the Cortex-A9, but also the Cortex-A7 [61] and the Cortex-A15 [62]
present in the ARM big.LITTLE [23] architectures [63]. They measure a mismatch be-
tween 1.4% and 17.9% with different benchmarks. In the same way, Gutierrez et al. [14]
use the same ARM target architectures but include an OS in the simulation. In order
to reduce the error, they disable on both the target and the simulation some compo-
nents that are not appropriately modeled (e.g., the data prefecher). They finally get
an error between 5% and 17% depending on the benchmarks. Akram et al. propose a
verification of an X86 architecture [64]. They use the perf tool [65] to monitor the target
architecture behavior and faithfully configure the simulator (136% remaining error).
Then, they reduce the modeling error by modifying the simulator code. For instance,
they remap some micro-operations to other functional units. Like that, they reduce the
error from 136% to 6%.
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3.2.2 X86 Simulator Error Comparison

Akram et al. [8] instead of validating simulators, provide a cross-comparison of mul-
tiple simulators: gemb [10], Multi2sim [45], MARSSx86 [42], PTLsim [66], Sniper [41],
and ZSim [43]. After detailing simulator features, they select four of them for a de-
tailed study. They first calibrate them with the same target, Intel’s Haswell archi-
tecture (core i7-4770). Then, they compare the execution and simulation of SPEC
CPU2006 [57] and MiBench [67] realistic benchmark suites. The results show an error
of 9.5%, 38.2%, 44.6%, and 47.6% for respectively Sniper [41], PTLsim [66], gem5 [10],
and Multi2sim [45]. They use PAPI [68] to monitor internal target metrics such as the
number of L1 data cache misses and compare them to the simulator results. That way,
they expose which parts of the simulators need to be improved, e.g., the branch predic-
tor model. Finally, they conclude that the accuracy of the simulators can significantly
change depending on the target architecture. Thus, a verification with one target can-

not prove the full simulator’s accuracy.

3.3 Dedicated Simulators

The architecture coverage of a simulator defines the range of architecture simulations it
can perform. Ideally, a simulator must have the most extensive architecture coverage.
However, significant coverage results in a complex parametrizable simulator and very
long simulation times. Thus, simulators can limit their coverage to provide accurate
simulations while having reasonable simulation times and simulator parametrizable
complexity. In this case, we call them dedicated simulators.

The architecture coverage can be described using three dimensions:

* Architecture component. It corresponds to elements of the architecture that the
simulator models. For instance, the simulator can model the whole architecture

of just one component, such as the main memory.

¢ Architecture variance. It describes the variations of the same component that the
simulator can model. For instance, a CPU can have an x86, RISC-V, alpha, or
ARM architecture.

¢ Simulation metric. It represents the different metrics measured during the sim-
ulation. For instance, simulators only measure performance metrics such as IPC

while others focus also on energy metrics.
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Thus, dedicated simulators limit their architecture coverage. That way, more effort
is spent modeling specific parts or features characteristic of the dedicated architec-
tures. Also, as the choice of target architectures is limited, the default baseline model
calibration is more likely to fit another target architecture instance that belongs to that

restricted domain. Hence, this allows reducing the parametrization error.

3.3.1 Component-Specific Simulators

The first example of component-specific simulators is the GPU simulators [69, 70, 71,
72,73,74,75,76,77,78,79, 80, 81]. They limit the simulation to one part of the archi-
tecture, the GPU, which already includes many processing units and memories. Some
simulators, such as ATTILA [76], are very modular, providing a high architecture vari-
ance and simulation output. Others like [73, 74, 75], focus on energy consumption.
Thus, PowerRed [74] provides details GPU power simulations, including an intercon-
nect power modeling.

Another kind of component-specific simulator focus on memory parts of the ar-
chitecture [30, 82, 48, 47, 83, 84, 85, 86, 87, 51, 49, 50, 88, 89]. Those simulators allow
detailed simulations of the multiple memory components. For instance, Tavakkol et
al. propose MQsim [82], an SSD simulator, which they evaluate against four real SSDs
(less than 18% error). Kim et al. propose Ramulator [30], which provides highly accu-
rate DRAM models. They verify it by comparing it against RTL simulations of DDR3
commercial Verilog models. Then, they show that it performs 2.5x/3.0x speedup com-

pared to the next fastest simulator [51].

Additionally, we give more examples of component-specific simulators. For in-
stance, accelerator simulator [90, 91, 92], e.g., deep neural network simulations. Or,
Network-on-Chip (NoC) simulators [93, 44, 94, 95, 96].

3.3.2 ISA-Specific Simulators

Some simulators limit their architecture coverage by fixing the Instruction-Set Archi-
tecture (ISA). For instance, x86 architecture simulators [66, 42, 41]. By limiting the ISA,
more effort is spent on a dedicated architecture providing better accuracy reducing
modeling error. Also, as the choice of target architectures is limited, the default base-
line model calibration is more likely to fit another target architecture that belongs to
the simulator architecture coverage. Thus the Sniper simulator [41], which is an x86

architecture simulator, provides better accuracy than the modular gem5 simulator on
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this particular architecture, as illustrated in Section 3.2.2. In the same way, Bruschi et
al. introduce GVSoC [97] dedicated event-driven simulator for RISC-V architectures

which is 15% more accurate than gemb.

3.3.3 Metric-Specific Simulators

Dedicated simulators can also limit the architecture coverage by focusing on specific
simulation output, such as power consumption. [98, 99, 100, 101, 102, 103] Power
consumption is a crucial element of modern architecture. Thus, simulators such as
MCcPAT [98] or eSimu [100] are used to precisely estimate the power consumption of
computer architectures. Those simulators also need to be calibrated with target ar-
chitectures. Thus, Lee et al. propose PowerTrain [101] a McPAT calibration against
an ARM Cortex-A15 present in a Samsung SoC, the Exynos 5422. Finally, simulators
can be dedicated to other metric such as the system security. Forcioli et al. present a

framework based on gemb5 to evaluate system security at the architecture level [104].

3.4 Simulation Time Mitigation Techniques

The simulation time remains a problem in computer architecture simulation. Thus,
this section introduces an overview of some mitigation techniques used to reduce the
simulation time. Research still needs to evaluate the necessary accuracy not to simulate

unnecessary processes that may slow down the simulation time.

3.4.1 Workload Sampling

A fundamental problem with computer architecture simulation is that it is difficult to
parallelize in host machines. Indeed, the simulation respects time order execution and
intricate dependencies between components. One solution is to sample the simulation,
e.g., using a checkpointing method [105], and run the samples in parallel [106]. In
order to reduce the noise caused by cold starts, a warmup is added to each sample.
Additionally, due to redundant sample behaviors, works [107, 108] propose to select a
subset of the samples that already significantly represents the benchmark behavior. For
instance, the SimPoint method [108] proposes to use the K-means algorithm and Basic
Block Vectors (BBV) to analyze samples and select this kind of subset. The evaluation
of the SimPoint methodology shows an extra error of 3%.
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3.4.2 Trace-driven Simulator

Another common way to mitigate simulation time is to use traces as input for the
simulators, i.e., trace-driven simulators. The traces are prerecorded fixed inputs. For
instance, traces can be recorded from memory request addresses. Then, memory
trace-driven simulators can directly replay the traces without simulating processing
units [30, 82, 48, 47]. Some traces can be more sophisticated and include dependencies
such as the elastic traces [109, 110, 111] reproducing an out-of-order CPU execution.
However, trace inputs are still different from realistic execution, which includes many

dependencies in the program execution flow.

3.4.3 FPGA-Accelerated Simulation

Field-Programmable Gate Array (FPGA) allows fast evaluation of new designs.
Thus, several works propose to use them to accelerate the simulation of architecture
parts [112, 96, 93, 113, 114, 115, 116, 117]. For instance, Papamichael et al, propose
FIST [93] which uses FPGA to emulate NoC designs. That way, they reduce the sim-
ulation by 3 to 4 orders of magnitude speedup against software-based NoC simula-
tors. Similarly, simulators propose to simulate complete multicore architecture such as
ProtoFlex [114] which achieves an average speedup of 38x compared to Simics [46]
software-based simulator. Despite their promising accelerations, FPGA-accelerated
simulators have only been successfully employed by those who designed them. They
lack the user-friendliness of software simulators. Most previous works focused on ef-
ticiently mapping more of the target to a single FPGA. Unfortunately, the resulting
multithreaded models became more challenging to implement than the architectures
they model, significantly undermining their usability. Some FPGA-based simulators
like FireSim [112] mitigate this problem by running full-system simulations on could
FPGAs, providing a more user-friendly interface equivalent to software-base simula-

tors.

3.4.4 High-Level Simulation

Multiple levels of abstraction exist [118] to model computer architectures. The first
is the digital abstraction that interprets the analog signals as digital. The next one is
the cycle of abstraction. In this case, the time is no longer continuous but counted
using clock cycles. This abstraction is mainly in the computer architecture domain
with cycle-accurate simulators, e.g., the gem5 simulator [10] or Ramulator [30]. The
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last example of a simulation time mitigation technique is to use a higher abstraction
in architecture models [55, 119, 120]. For instance, Genbrugge et al. propose interval
simulations [119] instead of cycle-accurate simulations. Analytic models describe in-
tervals between architecture events, such as branch prediction misses or cache misses.
By increasing the level of abstraction, they reduce both the development time and the
simulation time. Thus, they show a reduction of the simulation time of one order
of magnitude for an average extra simulation error of 4.6%. In the same way, many
simulators [10, 41, 120, 109] propose different levels of accuracy depending on the ex-
periment’s focus to reduce the simulation time. For instance, the gem5 simulator pro-
vides multiple in-order CPU models, from the SimpleCPU model, a purely functional

in-order CPU model, to the very accurate HPI model described in section 2.3.

3.5 Remaining Challenges

This chapter illustrates that simulators are widely used in the architecture research
community. Due to the remaining tradeoff between accuracy and simulation time,
simulators offer various modeling approaches, e.g., dedicated simulators or simulation
time mitigation techniques. Some of the approaches can mitigate the modeling error or,
conversely, increase it while reducing the simulation time. Thus, they provide different
points on the accuracy versus simulation time Pareto. However, the parametrization
error is common to all those simulators and needs to be mitigated following calibration

methodologies.

Previous works provide calibrate methods to reduce parametrization error to mea-
sure the modeling error against real state-of-the-art architectures. However, those cal-
ibrations follow empirical methods, which cover a few targets of the whole simulator
architecture coverage and cannot be generalized to others. Moreover, the continuing
advancement of state-of-the-art commercial architectures pushes extending the archi-

tecture coverage of the simulators, making previous empirical calibration methods out-
dated.

One presumption with evaluation using computer simulations is that simulators
do not need precise calibrations against target architectures as long as the simulation
baseline trend is realistic. For instance, multiple memory exploration works [121, 122,
123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 5, 4] use simulators with
non-calibrated baseline models to evaluate new memory designs. However, as pointed
out by some works [11, 6, 7], this may lead to misleading conclusions, making the

simulator calibration a key element of the evaluation.
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Consequently, the calibration of the computer architecture simulators remains an
important challenge for the community. It remains essential from the verification of
simulators to their utilization during new design evaluations. Thus, this thesis pro-

poses a systematic methodology to calibrate computer architecture simulators.

A critical limitation of architecture simulator calibration is the lake of technical in-
formation about commercial architectures. Several works [136, 56, 14, 7, 137] propose
to use hardware performance monitoring on the target architecture to extract missing
technical information necessary for the baseline model calibration. Alves et al. pro-
pose dedicated microbenchmarks to evaluate and calibrate specific parts of the SiN-
UCA simulator [56]. Other works [138, 139, 140, 140, 139, 138] related to security vul-
nerabilities propose to use microbenchmarks to discover hidden technical information
to exploit the target vulnerability. However, all the proposed methods remain empiric
and cannot easily be extended to other architectures. Open-source generic microbench-
marks have been developed to extract technical information from commercial architec-
tures, such as LMbench suite [141] or STREAM [142]. However, they are not part of a
complete methodology allowing a direct simulator calibration.

Instead, our methodology describes a complete workflow, including simulator pa-
rameters analysis and the detailed design of microbenchmarks used to reveal missing

technical information from the target architecture.

3.6 Summary

To summarize, this chapter introduces several simulators and how they are verified.
Thus, the popular gem5 [10] simulator shows such an average simulation error against
ARM commercial architecture under 20%. However, comparison [8] between several
simulators [10, 45, 42, 66, 41, 43] shows that the simulation error depends on the targe
architecture. In this case, an x86 architecture. Thus, the Sniper simulator [41] shows an
average simulation of 9.5%, contrary to the gem5 simulator with 44.6%.

We further see different kinds of simulators. The component-specific simulators
allow faster simulation abstraction parts of the architecture. For instance, Ramula-
tor [30] allows faster accurate memory simulation (2.5x/3.0x speedup compared to the
next fastest simulator [51]) by abstracting the CPU with memory traces. ISA-specific
simulators allow more accurate simulations, as illustrated in the previous paragraph
with Sniper [41]. Finally, metric-specific simulators increase simulation accuracy by
targeting specific output metrics.
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As the simulation time remains an important limitation for simulators, this chapter
introduces simulation time mitigation techniques. Thus, workload sampling with the
SimPoint method [108] allows a reduction in simulation time and parallelizes it for
an average extra error of 3%. Trace-driven simulator abstract processing units by pre-
recorded trace files, e.g., illustrated in the previous paragraph with Ramulator. FPGA-
accelerated simulations offer good perspectives but are still not modular enough to
be widely used. Finally, high-level simulations use higher abstraction-level models to
reduce the simulation time. Thus, interval simulations provide speedup the simulation

by one order of magnitude for only an average extra error of 4.6%.

As a result, we see that simulator calibration remains a significant problem for all
kinds of simulators. The calibration approaches proposed in previous works follow an
ad hoc method making them not extendable to other architectures. Hence, this thesis

contributes by proposing a systematic calibration methodology.
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In this chapter, we propose a methodology to calibrate the memory system of a
computer architecture simulation. The methodology is composed of two phases. The
first phase consists of determining the different simulator parameters in need of cal-
ibration. In the second phase, we then properly calibrate those parameters. To this
end, we start by using information from first-party documentation. Then, we design
handcrafted microbenchmarks and use hardware performance counters to extract the

missing parameter values from the real target state-of-the-art commercial platform.

4,1 Motivation

Computer system simulators [10, 42, 82, 30, 41, 43, 45, 47] are widely used by re-
searchers. They allow quick evaluations of new ideas avoiding long expensive man-
ufacturing processes. Those new ideas are evaluated with respect to state-of-the-art
baseline architectures. The choice of a baseline depends on the kind of architecture
we target, e.g., low-power mobile architecture or high-performance server architec-
ture. The relevance of the simulated results is directly related to the quality and the
choice of that baseline. The use of inaccurate baselines can add unbounded noise to
the experimental methodology and lead to erroneous conclusions. Unfortunately, sim-
ulation models calibrated with real architectures are rarely available to the research

community.

4.1.1 Memory System Modeling

The memory system plays a key role in all instruction-processor based compute plat-
forms [1]. A slow data access time directly impacts the instruction execution flow and
reduces the whole system performance. This statement is even more true with mod-
ern partly heterogeneous multicore architectures which contain many components like
cores, GPUs or programmable accelerators that compute data at Gigahertz frequencies.
Thus, the data movement in the multiple levels of the memory hierarchy needs to be
fast with low access time but also to provide high bandwidth.

Improving the memory system is not an easy task to do due to its high complexity,
which includes different components, memory technologies, organizations and access
protocols. For example, some new emerging non-volatile memory technologies seem a
promising alternative to reduce memory system leakage energy, providing the same or
better level of performance [2, 143, 3]. However, those technologies have different tech-
nical specifications than the usual memory technologies implemented. This means that
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a straightforward replacement is not efficient [144, 145, 146]. Hence, researchers need
a complete understanding of all the processes/sub-processes running internally in the
memory system. Faithful reference models incorporating all the workload-dependent

effects are important for relevant improvement/optimization of the memory system.

4.1.2 Running Example

To illustrate our methodology’s different elements, features, and processes, we use a
simple running example. We consider a very simple fictional simulator that models the
interconnect, DRAM controller, and the main memory as a fixed latency. We use the
Broadcom BCM2837B0 SoC present on the Raspberry Pi 3B+ development board [147]
as the reference state-of-the-art architecture. This architecture comprises four Cortex-
A53 with four individual L1 data caches and one shared L2 cache.

The objective of our methodology is to find the best instantiation of the simulation
parameters (e.g., the fixed latency) to produce a calibrated simulation (i.e., a simulation
that behaves as close as possible to the reference architecture). Obviously, the quality
of the resulting simulation is limited by the level of detail in the simulation model.
Nevertheless, our objective is not to question the simulation model but to find the best
possible instantiation of its parameters.

4.2 Simulator Parameters Identification

In this section, we describe the first phase of the methodology. The purpose of this
one is to identify the simulator parameters that we need to calibrate. This process
can be very different depending on the kind of simulator we use in the instantiation.
The simulator can either model a single memory component (e.g., Ramulator [30]) or
a complete architecture (e.g., gem5 [10]). Also, they can be modifiable, modular, or
configurable by the user. Even with the same kind of simulator, the parameters may
change accordingly to the modeling approach implemented in the simulator. For in-
stance, two different simulators could have different parameters for modeling the same
component. Also, due to the complexity of modeling all the processes of real architec-
ture, some processes are modeled in a simpler way or are not modeled at all. The
parameters of these simpler models cannot directly be related to a specific architecture
feature. For example, we can model the main memory as a simple component with
tixed bandwidth and latency. However, as we describe in Section 2.2.3, the main mem-

ory is a complex component, including many processes, such as bank conflicts and a
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complex scheduling protocol. In this case, a fixed latency has no realistic meaning, but
its value may be extrapolated to best match reality.

Frequently, simulators provide different models with different levels of accuracy for
the same component. As the trade-off between simulation time and accuracy remains,
researchers must properly choose the right ratio to get relevant results with a reason-
able simulation time. From the previous example, in case of very low main memory ac-
tivity during the simulation (e.g., simulating only one core executing a cache-friendly
application), using a very accurate main memory model is not relevant. Hence, it does
not make sense to needlessly extend the simulation time due to the very low impact
of the main memory on key simulation metrics. This example is further detailed in
Section 5.4.2.

4.2.1 Generic Parameter Template

To provide flexibility and a high degree of accuracy, simulators have become complex,
including hundreds of parameters. Thus, we need to identify the main parameters and
understand how they define the behavior of the simulated memory system. For that,
we determine the path that a memory request follows inside the simulator memory
system from the execution of a memory instruction to the last level of the memory

hierarchy.

As explained in Section 2.1, requests are first generated by the load/store unit and
sent to the TLB to be translated from the virtual to the physical address space. Then, the
request travels through the different cache levels and finally goes to the main memory.
In parallel to the load/store unit, the data prefetcher can generate requests based on
its intern prediction process and send them to one of the cache levels. We divided this
path into six blocks as illustrated in Figure 4.1. For each block, we list the generic pa-
rameters we have to identify in the simulator. For instance, what is (are) the simulator
parameter(s) that control the number of outstanding requests the load/store unit can
generate? Thus, we need to map each generic parameter in Figure 4.1 to real simulator

parameters.

It is important to notice that a straightforward translation is not possible depend-
ing on the model’s accuracy, as illustrated with the running example. In this case, the
last three blocks of the data path, i.e., the Interconnect, the Memory Controller, and the
Main Memory, are modeled as a fixed simple latency. This way, all the generic param-
eters present in those blocks are mapped to one basic simulator parameter. Also, some
frameworks, such as Ramulator or MQsim, only simulate a portion of the memory sys-
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tem, not the full computer architecture. Consequently, we need to limit the template
to the respective blocks. At the end of this process, we have a complete mapping of
the simulator parameters to the generic parameters listed in Figure 4.1. The rest of the
methodology consists of finding the correct value for each simulator parameter.

Memory Unit: Caches: Interconnect: DRAM Controller: Main Memory:

- Outstanding requests - Number, sizes - Latency - Number - Channels, ranks

- TLB levels - Data access time - Bandwidth - Scheduling policy - devices, output

- TLB time penalty - Associativity - Topology - Address mapping - banks,rows, colunms
- Clusivity - Scheduling policy - Open row policy -Timings

Prefetcher: - Replacement policy

- Functional behavior

- Outstanding requests

Figure 4.1: Memory system component blocks with corresponding generic parameters.

4.2.2 Running Example Simulator

With the running example, our fictional simulator is quite simple. It models the in-
terconnect, the DRAM controller, and the main memory as a single element. This one
returns the requests with fixed latency and an infinite bandwidth. For that, the simu-
lator contains only one parameter that we call the memory latency. As there is only
one parameter, the first phase of the methodology is straightforward. We use only
three blocks from the template, i.e., the interconnect, the DRAM controller, and the
main memory block. The only simulator parameter memory latency is selected and
mapped to the two generic parameters: the interconnect latency and the main memory
timings. As we use a very simple model, many generic parameters are not mapped.
Consequently, we need to extrapolate the value of the memory latency tobest match
the reference architecture.

4.3 Simulator Parameter Discovery

To find appropriate values for the selected parameters, we start by looking at public
tirst-party documentation. Unfortunately, not all information is available in the first-
party documentation. For instance, the Raspberry Pi 3B+ documentation [147] indi-
cates that it has a 1IGB LPDDR2 SRAM main memory. We can deduce from it the main
memory timings as LPDDR?2 is a standard protocol. However, the interconnect latency
is still not documented. Consequently, we cannot find the right memory latency
value for our simulator.
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Hence, to discover the undisclosed parameter values, we propose in the second
phase of the methodology to execute handcrafted microbenchmarks on the real hard-
ware. The key process of this phase is to properly design the microbenchmark to stress
specific features of the memory system. Then, we monitor architecture events using
hardware performance counters to expose memory behavior. We finally deduce the

parameter values from the resulting memory behavior.

4.3.1 Architecture Event Monitoring

The hardware performance counters are specific registers implemented in modern ar-
chitectures. They can count architecture events such as accesses/misses to the L1 data
cache, executed instructions, and branch predictions. The list of available events and
the number of performance counters may change from one architecture to another. For
instance, the Cortex-A53 contains six performance counters and fifty-nine architecture
events [148].

Before monitoring, we need to assign one event to each performance counter. Then,
we start monitoring event occurrences. Contrary to software profiling, the hardware
performance counters allow non-intrusive monitoring. The performance counters can
also be used to indirectly measure the execution time by fixing the clock frequency and
counting the number of CPU execution cycles. However, we can alternatively use OS
libraries, e.g., the 1inux time library, to measure execution time as the number of

hardware performance counters is limited.

4.3.2 Inputs and Scenarios

In order to calibrate the parameters of the list established in Section 4.2, we first need
to establish a strategic calibration order, as some dependencies may exist between pa-
rameters. For instance, if we want to monitor the access time to the L2 cache, we can
generate a request to the L2 and measure its traveling time. However, this time is the
addition of the L1D access time and the L2 access time. Consequently, our strategy

would be to determine the L1D access time first and then the L2 access time.

Once all the dependencies are identified and the calibration order established, we
start designing the microbenchmark. The microbenchmark executes purposeful mem-
ory request sequences to stress specific components of the memory system. At the
same time, it uses hardware performance counters to monitor the memory component

behavior. For each memory sequence, we need to select the suitable architecture events
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to monitor in order to expose the targeted memory component behavior when mem-
ory requests travel through the memory hierarchy. Then, we determine the possible

scenarios generated by one memory sequence.

We define a scenario as a memory system behavior resulting from the memory se-
quence execution. We describe each scenario as a set of conditions depending on the
component we target in the memory system. Thus, we use the performance counters
to expose the scenario conditions during sequence execution. Finally, we use the sce-

narios to deduce parameter values. For that, we differentiate between two cases:

* One target scenario. In this case, the purpose is to generate a desired memory be-
havior. Then, we use the measures to deduce the parameter value. For instance,
we generate a request to the L1D cache. We use the performance counters to ver-
ify that we have the expected behavior, i.e., the request goes to the L1D cache,
and the address is not missing. Then, we use the time measurement to deduce

the L1D cache access time.

¢ Multiple possible scenarios. Before executing the memory sequence, we do not
know which scenario will happen, i.e., what will be the memory behavior. In
this case, it is the resulting scenario, out of all the possible ones, that is used to
deduce parameter value. For instance, we want to know the maximum level of
parallelism in the L2 cache. We already know the access time to the L2 cache. We
generate in parallel two requests to the L2 cache. We have two possible scenarios:
the average access time is identical, or the average access is faster. We execute the
sequence and see which scenario happens using the performance counters. If
the average access time is identical, the L2 cache cannot handle two requests in
parallel. If the average access time is faster, the L2 cache can as least handle two
requests in parallel. Then, we use more sequences to deduce the exact value,
more details in Section 5.3.5.

There are two reasons why a memory sequence would not generate a behavior fit-
ting a predefined scenario. The first one is when we do not have an a priori knowledge
of all the possible scenarios. Accordingly, we use the results from the performance
counters to draw new insights about the memory behavior and the memory sequences
to generate. The second reason is when there is noise interfering with the monitored
values. For instance, the core could vary its clock frequency during the execution of the
microbenchmark. In the same way, we use the results from the performance counters

but this time to define the source of the noise and find a strategy to mitigate it.
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4.3.3 Running Example Scenarios

With our running example, we want to calibrate the memory latency simulator pa-
rameter. As there is only one parameter, there is no calibration order to establish.
Hence, we start directly with the design of the microbenchmark. We target a memory
sequence where all the requests go to the main memory. Then, we time the execution
to expose the request traveling time and deduce the parameter value. Figure 4.2 il-
lustrates the possible scenarios. There are three conditions. The first and the second
conditions correspond to cases where all requests miss or hit the L1D and the L2 cache,
respectively. The last condition corresponds to whether there is a conflict or not in the
main memory, e.g., a rowbuffer conflict as introduced in Section 2.2.3. As we want
all the requests to go to the main memory, both scenarios have the same two first-
condition values. For the last condition, the first scenario (green) represents the case
where there is no conflict. In contrast, the second scenario (yellow) represents the case

where there is a conflict in the main memory between the memory requests.

As we want all the requests to go to the main memory;, if either the first or second
condition does not match one of the two scenarios, it indicates that we have unex-
pected behavior. For instance, the data may be prefetched into the caches. Finally, as
the simplified simulator used in this running example does not model main memory
conflicts, we decide to calibrate our parameter to mimic the no-conflict scenario. It
results in a best-case latency, which can be a good enough approximation in memory-
friendly workloads. Consequently, we use only one request in the memory sequence.
That way, we remove the case where requests could have a conflict. On Figure 4.2, only
the first scenario (green) remains. Once we have verified that the sequence matches the

scenario, we use the time measure to deduce the memory latency parameter value.

4.3.4 Microbenchmark Features

In order to create appropriate memory request sequences and reduce noise during
memory system monitoring, our method to build microbenchmarks implements three

important features:

1. Data pinning. The microbenchmark initializes data that is requested by the mem-
ory sequence in a particular part of the memory hierarchy. That way, it forces
memory requests to access a predetermined path through the memory hierarchy.
We call this data pinning. The data could be pinned in the different cache levels

as well as in the main memory. We can force the location of data by controlling



4.3. Simulator Parameter Discovery 37

COnd1 Condg Cond3

no conflict

: . allmiss

all miss

sequence

conflict

\,
~ ’

L1D L2 main
cache cache memory

Scenario 1: ‘ Scenario 2: O

Figure 4.2: Running example scenarios and conditions.

the size of an array we repeatedly access with the memory sequence, e.g., if the
array is small enough to fit in the cache, consecutive accesses will not miss that
cache. Also, we can use dedicated cache flushing instructions (e.g., dc civac
in ARMvS ISA) to directly pin the data in the main memory. The data pinning
should also consider the TLB. We can play with the gap between requests to use
more or fewer pages with the same number of loads to pin the address translation
information in a target level of the TLB. When pinning data in the main memory,
it is also useful to query the OS to know the physical addresses via system calls
(e.g., pagemap in Linux). In this way, we can either target a specific portion of
the main memory or deduce memory organization (e.g., address mapping of the
main memory). Thus, data pinning is an important feature of the microbench-

mark as it allows stressing specific elements of the memory system hierarchy.

2. Memory request dependency. Multiple accesses to the memory hierarchy can
affect each other. Contention conflicts or data movement can occur and modify
the path of the requests through the memory hierarchy. The microbenchmark
needs to control the dependency between consecutive memory requests. For in-
stance, we can use pointer chasing to create data dependency between memory
requests. By playing with the number of pointers, we can select the number of
parallel requests sent to the memory system. For instance, we can instantiate
two pointers with different pointer chasings. Thus, we can load two addresses in
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parallel as there is no data dependency between both pointers. However, three
loads would not be possible. Also, we can use masks on either virtual or phys-
ical addresses to target a specific portion of the memory system (e.g., different
main memory banks). In this way, the microbenchmark can avoid or force such
conflicts, or data movements, depending on memory system feature that the mi-

crobenchmark stresses.

3. Noise minimization. There are two types of noise during microbenchmark exe-
cution. The first one is the unexpected memory activity generated by the input.
For example, a memory sequence that generates a large unexpected number TLB
misses will increase the measured access time. Predictable memory access pat-
terns may trigger data prefetching and change the data location inside the mem-
ory hierarchy. To reduce this type of noise, we need to identify the source using
results from the performance counters. Then, we use the new insights to correct
the memory sequence in order to generate the expected scenario. The second
type of noise is generated by processes other than the memory sequence execu-
tion, such as the OS routine. For instance, starting and reading the performance
counters impact the number of accesses and misses in the memory hierarchy. We
iterate the memory sequence execution in a measured loop to reduce this noise.
That way, the overall execution is large enough to average out punctual noise

and estimate execution time and events occurrences at a coarse granularity.

4.4 Implementation of the Running Example

In this section, we describe the implementation of a microbenchmark, applying our
methodology to the running example.

4.41 PAPIlibrary

In order to monitor a specific portion of the microbenchmark, i.e., the region of inter-
est or the measured loop, we use the Performance Application Programming Interface
(PAPI) library [68]. We first use PAPI to initialize the performance hardware counters
with the designated architecture events. And then monitor the measured loop using
dedicated PAPI functions. The specific PAPI functions we use for the counters initial-
ization and the monitoring are described in Section 7.3 of the Appendix. Table 4.1 lists
the different architecture events and their descriptions that we use in this instantiation.
We select the event 1, 2, 3, and 4 to verify that the memory requests arrive at the main
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memory. This corresponds to condition 1 and 2 in Figure 4.2. We use event 5 to verify
that the effect of TLB misses is negligible compared to the number of memory requests.
Finally, we use event 6 to verify that there is no data prefetching activity.

Table 4.1: Architecture events monitored with PAPI.

N. Event name Description

1 L1D_CACHE_ACCESS Accesses to the L1 data cache

2 L1D_CACHE_REFILL Refills in the L1 data cache due to missing data
3 L2D_CACHE_ACCESS Accesses to the L2 from the L1 data cache

4 L2D_CACHE_REFILL Refills in the L2 due to missing data

5 L1D_TLB_REFILL TLB refills due to missing translation data

6 L1D_CACHE_REFILL_PREFETCH L1 data cache refills due to data prefetching

4.4.2 C-code Implementation

As we run the microbenchmark on a CPU, the C programming language offers a good
compromise to design it. It is a relatively low-level language that allows the program-
mer to control (to a certain degree) the instructions executed by the CPU hardware.
Also, we can easily add to the C-code lines of assembly code in selected places to fully
control the compiled binary. Additionally, the C-code allows a precise utilization of
the address space, which is very useful for implementing the data pinning and data

dependency features described in Section 4.3.4.

Figure 4.3 shows a snippet of the microbenchmark C-code designed for our run-
ning example. To generate the desired memory sequence, we access the address stored
in a pointer we previously flushed from the caches. For that, we need first to initialize
a pointer chasing of one element. Then, we create a pointer that points on the first
element of the pointer chasing (lines 12 and 13). The use of a pointer going through
a pointer chasing allows us to reduce the number of none desired operations in the
measured loop. For instance, a complex access pattern can be implemented in the
pointer chasing using many for-loop and conditional operations during the initializa-
tion. Then, to generate a load in the measured loop, the pointer takes the value of the
address it points on (lines 21, 23, 25, 27, and 29), avoiding the overhead of executing
address generation instructions in the measured loop. As we want to pin the data in
the main memory, we use the flush function, described in Section 7.3 of the Appendix,
to remove the corresponding data from the caches (lines 20, 22, 24, 26, and 28) before
loading the same address again.

We start monitoring before executing the measured loop, stop monitoring right af-
ter, and store the monitoring results for later inspection. Section 7.3 of the Appendix
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describes the specific functions from the PAPI and t ime standard library. We execute
two hundred thousand iterations of the measured loop (lines 2 and 18). This number
of iterations seems a good compromise between the execution time and the averaging
out of the noise. To further reduce the impact of executing auxiliary instructions (e.g.,
loop control instructions) in the measured loop, we can unroll the measured loop. For
instance, in the example code, we execute five flush and load operations sequences
per measured loop iteration (from line 20 to line 29). Hence, our code generates one

million load requests to main memory.

/+ Number of iterations in the Measure loop =/
#define LOOP 200000

long long int main () {

[HFxxkHkxkxkxx Initialization #+xx*kxxk**x/
long long int addr = 0;
long long int xptr = NULL;

/* Create pointer chasing with one element x/
addr = (long long int ) &addr;
ptr = (long long intx) &addr;

papi_init () ;

/*xxkkkxxkkx Measure LOOP *xkxkkx*x*kx*/

papi_start ();

for(long long int loop=0; loop < LOOP; loopt+t) {
flush (ptr) ;

ptr = (long long intx) «*ptr; // 1
flush (ptr);
ptr = (long long int=*) x*ptr; // 2
flush (ptr);
ptr = (long long int=*) =*ptr; // 3
flush (ptr);
ptr = (long long int=*) =*ptr; // 4
flush (ptr);
ptr = (long long int=*) *ptr; // 5

}
papi_read();

return (long long int) xptr;

Figure 4.3: Running example microbenchmark C-code implementation.
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4.4.3 Assembly Code Verification

In order to verify the instructions executed on the real architecture corresponding to
the measured loop, we disassemble the binary and inspect the assembly code. Fig-
ure 4.4 shows the assembly ARMv8 code of the measured loop. We can observe the
five sequences of flush and loads operations (from lines 1 to 11). Lines 10 and 12 are
conditional operations due to the for loop we want to limit. We can see that they are
less present than the flush and load operations. In this case, as the main memory access
time is very long, we do not observe an impact of decreasing/increasing the number
of operation sequences. However, increasing the number of operation sequences can
have a significant impact on the measurement when targeting faster levels of the mem-
ory hierarchy, such as the L1 data cache.

4004b0: dc civac, x0
4004b4: 1dr x0, [x0]
4004b8: dc civac, x0
4004bc: 1dr x0, [x0]
4004c0: dc civac, x0
4004c4: 1dr x0, [x0]
4004c8: dc civac, xO0
4004cc: 1dr x0, [x0]
4004d0: dc civac, x0
4004d4: subs x1, x1, #0x1
4004d8: 1ldr x0, [x0]
4004dc: b.ne 4004b0 <main+0x198>

Figure 4.4: Measured loop assembly code of the running example microbenchmark.

4.4.4 Results

We execute the microbenchmark on one of the four Cortex-A53 of the Raspberry Pi
3B+. Table 4.2 shows the results for the average measure time, i.e., the measured loop
execution time divided by the number of accesses and the occurrences of the selected
architecture events. We determine the expected event values corresponding to the sce-
nario conditions regarding the desired scenario. For the architecture events, we expect
a number of accesses to the L1 data cache equal to the number of loads, i.e., one million
loads. As defined in the scenario, we want the memory requests to travel to the main
memory. Thus, we expect a number of misses in the L1D close to one million. In the
same way, we expect the number of accesses and misses to the L2 to be around one
million. Finally, we want the number of TLB misses and prefetches close to zero as
they add undesired latency (i.e., noise).
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Table 4.2: Measure time and hardware performance counters outputs from microbenchmark
execution on Raspberry Pi 3B+.

Monitored event Expected value Monitored value
Average access time N/A 153 (ns)
L1D_CACHE_ACCESS ~1000000 1000069
L1D_CACHE_REFILL ~1000000 1000066
L2D_CACHE_ACCESS ~1000000 1000282
L2D_CACHE_REFILL ~1000000 1000084
L1D_TLB_REFILL ~0 4
L1D_CACHE_REFILL_PREFETCH ~0 8

We observe that the monitored results are very close to the expected values. The
noise monitored by the performance counters is low enough. Consequently, we can as-
sume we have successfully monitored the desired scenario. We can deduce the memory
latency parameter value from the results. For that, we use the average access time
monitored, removing the time needed by the memory request to go through the L1D
and L2 caches. In this architecture, this time is 22 (ns) (see Section 5.3.7 for a complete

analysis). So the calibrated parameter value is 153 — 22 = 131 (ns).

4.5 Summary

In this chapter, we propose a methodology to calibrate simulator memory systems us-
ing a real state-of-the-art reference architecture. We introduce the two phases of the
methodology. The first one, the simulator parameter identification, allows identify-
ing the different simulator parameters that need calibration. For that, we propose a
method based on a memory system template listing all the generic key parameters of
the main components composing a memory system. At the end of this phase, we have

a list of simulator parameters we need to calibrate.

In the second phase, the simulator parameter discovery, we start calibrating the
simulator parameters using first-party documentation. Then, we detail the design
of microbenchmarks that we execute on the real state-of-the-art architecture to de-
duce parameter values. The microbenchmark executes memory request sequences to
stress specific elements of the memory system. At the same time, it uses hard perfor-
mance counters to monitor memory system behavior and deduce parameter values.
To achieve this goal, we introduce the methodology’s different features to stress the
memory system purposely and monitor the memory system behavior, reducing the
different types of noise.
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We use a running motivational example to instantiate and illustrate each methodol-
ogy phase. In particular, we use a fictional main memory simulator and the Raspberry
Pi 3B+ as the reference architecture. We detail the design of the microbenchmark that
we execute on the Raspberry Pi 3B+, and we show the results from the performance
counters. We verify first that we generate the desired memory behavior, then deduce
the simulator parameter value.

In the following of this thesis, we instantiate the methodology described in this
chapter on two practical use cases: (1) the calibration of the reactive part of a memory
system in Chapter 5, and (2) the functional characterization of an L1 data prefetchers
in Chapter 6.
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In this chapter, we propose to instantiate the methodology described in Chapter 4
in order to realize a timing calibration of simulator memory systems. We first detail
the specifications of the instantiation. Then, we implement it with the gem5 simulator
and one Cortex-A53 of the MediaTek Helio X20 SoC as real reference state-of-the-art
architecture [15]. Thus, we extract from the target architecture multiple technical in-
formation such as the access times to the different cache levels, the main memory, or
the TLB. Finally, we evaluate the methodology instantiation with benchmarks from the
SPEC CPU2006 suite. We execute them on the target architecture to have a reference,
and then we simulate them on gemb using the default and calibrated models to expose

our methodology’s benefits.

5.1 Background and Motivation

Computer system simulators are widely used by researchers. They allow quick eval-
uations of new ideas avoiding long expensive manufacturing processes. Those new
ideas are evaluated with respect to a state-of-the-art baseline corresponding to the tar-
get architecture, e.g., low-power mobile architecture or high-performance server archi-
tecture. Consequently, the relevance of the simulated results is directly related to the
quality and the choice of that baseline.

5.1.1 Memory System Modeling

The memory system plays a key role in all instruction-processor based compute plat-
forms. A slow data access time directly impacts the instruction execution flow and
reduces the whole system performance. This statement is even more true with mod-
ern multicore architectures containing many components like cores, GPU, or pro-
grammable accelerators that compute data at Gigahertz frequencies. Thus, the data
movement in the multiple levels of the memory hierarchy needs to be fast and pro-
vide high bandwidth. However, improving the memory system is not an easy task to
do due to high complexity of the memory hierarchy which includes different memory
technologies, organizations or access protocols. New emerging non-volatile memory
technologies look like a good opportunity [2, 145] to reduce memory system energy
consumption providing the same or better level of performance. However, those tech-
nologies have different technical specifications than the usual memory technologies
implemented. This means that a straightforward replacement is not possible. That
way, researchers need a complete understanding of all the processes/sub-processes
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running internally in the memory system. Faithful reference models incorporating
all the workload-dependent effects are important for relevant improvement/optimiza-
tion. Le., we avoid "black box models" or calibrated analytical models which do not

capture those detailed effects.

5.1.2 Motivational Example

To motivate our work, we execute and simulate, on a real CPU and gem5, benchmarks
from the SPEC CPU2006 suite [57]. We use the Cortex-A53 from the MediaTek Helio
X20 SoC [149] as the reference architecture. This SoC is implemented in many smart-
phones and has the typical ARM mobile architecture, including different performance-
level clusters. For the gem5 simulator, we use the High Performance In-order (HPI)
CPU model provided by ARM. For each benchmark, we plot in Figure 5.1 the number
of Instructions Per Cycle (IPC). Then, we normalize the IPC difference using the real
CPU results. We plot the results, i.e., the absolute IPC error of the simulation model
relative to the execution on the real processor, in Figure 5.2.
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Figure 5.1: IPC for the SPEC CPU2006 benchmarks executed on the MediaTek Helio X20 archi-
tecture and simulated with the default HPI gemb configuration script.

We add to Figure 5.2, the average and maximum IPC error values. We observe
that even with the great detail level in the HPI model, the IPC error is higher than
80% for two of the twenty benchmarks. Those values come from benchmarks with
very low IPC values, probably due to high memory activity, which might slow down
the complete system. The average IPC error comes from absolute IPC error values.
Looking at Figure 5.1 we observe that the error is not always positive or negative. This
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variation may indicate that not only the access latency is different but also the behavior
of the memory system.
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Figure 5.2: Absolute IPC error for the SPEC CPU2006 benchmark suite simulated with the
default HPI gem5 configuration script and normalized by execution on the MediaTek Helio
X20.

Our goal in this chapter is to reduce the average and maximum IPC errors, as they
are too high to compare options properly in a design space exploration activity. In-
deed, the proof of concept provided by the simulator would not be sufficient. For
that, we propose to instantiate the methodology introduced in Chapter 4 to calibrate a
portion of the simulator memory system to match the behavior of real state-of-the-art
architecture faithfully.

5.2 Methodology Instantiation

In this section, we detail key elements of the instantiation of the methodology de-
scribed in Chapter 4. First, we define the reactive memory system. Then, we detail
the path of the data memory requests through the reactive memory system. Finally,
we model it as a set of multiple conditions and delays. Depending on the value of
each condition, a memory request accumulates more or less delay traveling through
the reactive memory system.
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5.2.1 Reactive Memory Subsystem

A typical memory system contains multiple components such as caches, main memory,
memory-management unit, hardware data prefetchers, interconnect, etc. We group
those components into two categories: the proactive components and the reactive com-
ponents. The proactive memory subsystem includes all the elements that issue new
memory requests speculatively expecting that the program might need in the future,
e.g., data prefetchers. On the other hand, the reactive memory subsystem includes
all the components that issue the memory requests based on event triggers from the
context and environment of the programmable cores. In this chapter, we focus on
the reactive memory subsystem while we discuss the proactive memory subsystem in
Chapter 6.
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Figure 5.3: Reactive memory system template. Translation from virtual addresses to physical
addresses through multiple TLB levels and the page walk unit.

Figure 5.3 shows the generic way a request goes through the reactive memory sub-
system. First, the request is generated by the load/store unit. This request goes to
the Translation Lookaside Buffer (TLB) to translate the virtual address into a physical
address. The TLB can have multiple levels of hierarchy. In the figure, the first level of
the TLB is the micro TLB. If the requested address translation is missing in this micro
TLB, i.e., micro TLB miss, the request goes to a larger main TLB. If the address trans-
lation is still missing, i.e., TLB miss, the TLB propagates the request to the Page Walk
Unit (PWU). The address translation data are stored in a page table. Every Page Table
Entry (PTE) corresponds to one address translation. The PWU contains a Page Table
Walker (PTW) and a page walk cache. The PTW compiles missing PTE by executions
several memory accesses. The page walk cache reduces the memory accesses caused
by the PTW. It happens that a process accesses a virtual page for which there is no
PTE in the page table, i.e., a page fault occurs. In that case, the Memory Management
Unit (MMU) raises an exception and hands control over to the OS kernel. The latter
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brings the page from the disks to the main memory and updates the PTE with the cor-
responding physical address in the page table. This process interrupts the application
for several 1000’s of CPU-cycles Once the PTE is present in the PWU, the TLBs are up-
dated, and the memory request is sent to the L1 data cache. Depending on where the
data sits, the request can travel through the different levels of the cache hierarchy and
the main memory. In the case of a load request, the request goes back to the load /store
unit with the requested data updating the cache content on the way. We believe this
template to be generic enough to represent most of the modern reactive memory sub-
systems inside the SoC, i.e., excluding outside components like storage memory. Some
features, like the number of caches or TLB levels, can be easily adapted to represent a

specific target architecture more precisely.

5.2.2 Delay Model

To design adequate microbenchmarks, we study the access time of a request in the
reative memory system. This one departs from the load/store unit of the processor
core and accumulates delay as it travels deeper in the target memory hierarchy. The
sum of these individual delays constitutes the access time of the request, as illustrated
in Figure 5.4. The path followed by a particular request depends on a set of conditions,
such as where the data sits in the memory hierarchy or the current state of the memory
components. For instance, if the data is located in the main memory, the state (i.e.,
either open or close) of the target bank significantly impacts the main memory access
time, as explained in Section 2.2.3. We call this representation in Figure 5.4, the delay
model.

Access time: Start - End +D,
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Figure 5.4: The delay of a memory request increases as it deepens in the hierarchy.

Each particular path on the delay model corresponds to a scenario. In order to de-
termine every delay, we need to first measure the access time of the paths with the
minimum unknown delay. Then, we step by step fill the delay model with the miss-
ing information. For that, we use the microbenchmark features to pass or fail delay
model conditions and isolate one delay. For instance, in Figure 5.4 we configure the
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microbenchmark to pass the Cond,. Thus, we can measure D, as it is directly equal
to the access time. The D, value can next be used to isolate D, by failing Cond; and
passing Cond,. This way, we can fill one by one the delay values and complete the
whole delay model. Finally, we use the delay model to properly set up the simulator

parameters we identify in the first phase of the methodology.

5.3 Methodology Implementation

We implement the described methodology’s instantiation to the gem5 simulator that
we further extend with Ramulator to model the working main memory. An introduc-
tion to those tools is present in Section 2.3. We use the Cortex-A53 as the target refer-
ence CPU architecture. Specifically, we use a development board from 96boards [15],
which includes the MediaTek Helio X20 SoC [149], and we execute our microbench-
marks on one of the eight Cortex-A53 cores included in the SoC!. As described in
Chapter 4, we start by identifying the gem5 simulator parameters. Then, we detail
the design of the microbenchmarks we use to extract missing parameter values from
the MediaTek Helio X20 SoC.

5.3.1 Gemb5 Memory System

We start by creating a first model of the target SoC on the gem5 simulator instanti-
ating all the components. To model the Cortex-A53 of MediaTek Helio X20, we use
the High-Performance In-order (HPI) CPU model available in gem5. This model is
provided by ARM and represents a modern high-performance ARM in-order core.
Section 2.3 provides more details about this model. It includes three cache modules:
HPI_DCache, HPI_ICache and HPI_L2. They respectively represent the L1 data, L1
instruction, and L2 caches. Those modules are derived from the gem5 basic Cache
object instantiated with different parameter values. By default, the interconnect and
the main memory are modeled with the SimpleMemory module. This module sim-
ply issues requests with fixed latency and bandwidth. Regarding the TLB, the ArmTLB
module is used to model the TLB. However, because we use gemb in Syscall Emulation
(SE), we do not simulate a complete operating system. Instead, gem5 SE implements a
simplified address translation process: memory requests always hit in the TLB, adding
a fixed latency. In the same way, we do not model the page faults and the storage sub-

system. This baseline gem5 model is represented in Figure 5.5 with the name Default.

1The MediaTek Helio X20 SoC also includes two Cortex-A72 cores to amount to a total of ten cores.
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During the calibration in Section 5.3.7, to properly model the interconnect as a sin-
gle module, we add a Bridge module between the SimpleMemory and the HPI_L2.
This module is a fixed-size buffer that holds memory requests for a determined time.
This new model is named CalibratedV1 in Figure 5.5. Finally, we propose a last gem5
model, CalibratedV2, in Section 5.3.10. We use Ramulator to replace the SimpleMemory
module in CalibratedV1, allowing a more detailed simulation of the main memory.
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Figure 5.5: Gemb simulated models: CalibratedV1 results from applying our methodology to
the on-chip memory system, CalibratedV2 extends the scope to the main memory, and Default
is the default gemb5 model.

5.3.2 Gemb Key Parameters

As described in the methodology, we analyze the path that the memory requests fol-
low in the memory system to identify key simulator parameters. First, the memory
instruction is executed by the load/store unit of the HPI core, the instruction is issued
to a Load/Store Queue (LSQ), and a memory request is generated. The instruction
stays in the LSQ until the memory request is fully executed. Two parameters are im-
portant: the maximum number of memory accesses and the size of the LSQ. Those
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parameters allow the choice of the number of outstanding requests the core can gen-
erate. We list the relevant modules and their parameters in Table 5.1. Once a memory
request is issued, it goes to the HPI_DTB, which issues the request with a fixed latency.
However, as the simulator does not model TLB processes, we do not identify any key
parameter in the TLB. Its fixed latency is implicitly considered in calibrating the L1
cache access latency. Then, the memory request goes through the different levels of
caches depending on where the data sits. For each HPI cache module, we select five
key simulator parameters: size, associativity, data access latency, replacement policy,
and clusivity, which define the inclusion policy. If a request misses both cache levels, it
goes to the main memory through the interconnect. By default, the SimpleMemory is
instantiated to model that part. As we simulate only one CPU, only the latency is im-
portant in this module. However, in the case of multi-core simulations, the bandwidth
would also be important. We now need to find the correct values for each parameter

to best match the timing of the real hardware platform memory system.

5.3.3 First-party documentation

We start the parameter discovery phase with public first-party documentation. The
first document is Cortex-A53 technical reference manual [148]. This document is pro-
vided by ARM and gives an overview of the Cortex-A53 structure and features. For
instance, we can find the number of outstanding requests the core can generate, which
is three. This value is already different than the default one we have in the HPI CPU
model. We use those new values to do a first calibration of the default model. This
tirst calibration is listed in the column CalibratedV1 of Table 5.1. This document also
gives some information about the caches. We can find the associativity, inclusion, and
replacement policies. As we can see in Table 5.1, the new parameter values are also
different from the default ones. Regarding the sizes of the caches, multiple sizes can
be implemented. Thus, we need to refer to the MediaTek Helio X20 SoC functional
specification documentation [149] to know which size is implemented in this SoC. The
functional specification documentation is also useful to know which DRAM devices
are used in the SoC. In this case, LPDDR3 devices are implemented and divided into
two channels with two 32-bit buses. We highlight in bold in Table 5.1 the parameter
values that we find in the first-party documentation. Importantly, those parameters
are provided by the manufacturer, which can choose whether or not to make them
public. Hence, the public parameter list changes depending on the SoC. At the end
of this step, several key parameters are still missing (e.g., the cache memory access la-
tency, the number of parallel access that a cache can process, or the memory controller
buffering latency).
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Table 5.1: List of key parameters with default and calibrated values.

gem5 Module  gem5 Parameter Default CalibratedV1l CalibratedV2 Source
executeMaxAccesses— 2 3 3 both
InMemory
HPI executeLSQTransfe]lfs— 2 3 3 both
QueueSize
enableIdling True False False pbench.
srcRegsRelativeLats® [2] [0] [0] pbench.
size 32KB 32KB 32KB both
data_latency 1 2 2 pbench.
HPT DCache assoc 4 4 4 ref. manual
- replacement_policy LRURP RandomRP RandomRP both
clusivity incl excl excl ref. manual
writeback_clean False True True ref. manual
size 512KB 512KB 512KB both
HPT 1.2 data_latency 13 10 10 ubench.
- assoc 16 16 16 ref. manual
replacement_policy LRURP RandomRP RandomRP both
Bridge delay NA 48ns 30ns pbench.
SimpleMemory latency 30ns 30ns Ramulator®  ref. manual

2Parameter from the HPI_DefaultMem64 submodule
®Ramulator replaces the SimpleMemory, its parameters are listed in the Table 5.2

5.3.4 Memory Level Microbenchmark

In order to find missing parameter values, we design a microbenchmark following
the structure introduced previously in the section. Thus, to pin the data in a particular
region, we use an array of different sizes. We incrementally increase the array size from
smaller than the first level cache size to larger than the last level cache (LLC) size. That
way, the data is gradually pinned deeper in the memory hierarchy. The granularity
of data transfers in the memory subsystem is a cache line, usually 64 bytes. When a
word is requested by the load/store unit, the complete cache line is first transferred
to the L1 data cache, and then the specific word is issued to the core. To ensure that
the data transfer of a previous load does not affect next load, the microbenchmark
only reads the first word of a cache line. In addition, pointer chasing is implemented
in the array, meaning that each first word of a cache line stores the address of the
next cache line to be accessed. That way, two consecutive loads to the same array
cannot be executed in parallel due to the data dependency. We use multiple arrays
implementing independent pointer chasing to control the number of memory requests
the core can issue in parallel. We designed the microbenchmark to generate one to
four independent loads, exposing the amount of parallelism at each memory system
level. Also, we add permutations in the pointer chasing to generate a random sequence
of memory accesses and prevent triggering hardware data prefetching mechanisms.
Figure 5.6 shows the microbenchmark source code for two independent loads.
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long long int array_1[MAX_ SIZE], array_2[MAX_SIZE];
long long int xptr_1, *xptr_2;

init_hw_perf_counters(); // Initialization of the HPCs
for (int size = MIN_SIZE; size < MAX_SIZE; size += IT_SIZE) {

// INITIALIZATION

init_ptr_chasing(array_1); // Randomly linked cache lines
init_ptr_chasing(array_2); // Randomly linked cache lines
ptr_1 = array[0]; // Init 1lst pointer to a cache line
ptr_2 = array[0]; // Init 2nd pointer to another line

// MEASURED LOOP

start_hw_perf_counters(); // Reset HPC

for(i = 0; i < ACC/NUM_LOADS; i++) {
ptr_1 = xptr_1; ptr_2 = *ptr_2; // Loads 1 and 2
ptr_1 = xptr_1; ptr_2 = *ptr_2; // Loads 3 and 4

ptr_1 *ptr_1; ptr_2 *ptr_2; // Loads 15 and 16

}
read_hw_perf_counters() (); //Read HPC

Figure 5.6: Microbenchmark C code designed to extract memory level signatures

We structure the microbenchmark with an initialization phase and the measured
loop described in the methodology. We iterate those phases with different array sizes,
from the smaller to the bigger. For each iteration, we first fix the size of the array(s) and
implement the pointer chasing. Figure 5.7 illustrates the pointer chasing implementa-
tion with an array of 1KB and eight words per cache line, i.e., 64-bit word. We create
as many pointers as arrays and point them on the corresponding array’s first element.
The measured loop is simply implemented as a for loop. To generate a memory load,
we ask the pointer to take the value of the address it is currently pointing to. We link
the last element of the pointer chasing to the first one. That way, when the pointer
reaches the end of the array, it reads the array again from the beginning without any
extra conditional instruction. We do multiple memory loads in the same loop iteration
to reduce the interference of loop control instructions. After compilation, we verify
that the monitored memory instructions dominate the loop’s body by inspecting the
disassembled binary code.

5.3.5 Memory Level Signatures

To execute the microbenchmark on the board, we first fix the frequency of one Cortex-
A53 to 1.391 GHz using a Linux tool, i.e., the Linux CPUFreq subsystem. Then we
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shut down the rest of the cores present in the cluster. To assign the microbenchmark to
a particular core, we use the command taskset. We run the benchmark with sixteen
loads by loop iteration and more than 10 million iterations . Finally, we execute the
microbenchmark ten times and take the minimum average access time for every array
size. We repeat the process varying the number of independent loads from one to four.
We show the results in Figure 5.8.
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Figure 5.8: Results from the execution of the microbenchmark on one Cortex-A53 of the Medi-
aTek Helio X20.

We can see that the average access becomes higher as the array size increases, which
is the expected behavior. We identify three regions where the average access time
is stable: from 2 to 32KB, from 128KB to 512KB, and around 2048KB. Those regions
represent the cases where the array accessed in our microbenchmark is stored in the L1
data cache, L2 cache, and the main memory, respectively. We can verify this statement

2These parameters were tuned experimentally.
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with the results from the hardware performance counters, i.e., the L1 data miss rate
and the L2 miss rate. Thus, for the three regions the L1 data and L2 miss rates take
respectively the values [0%, 0%], [100%, 0%] and [100%, 100%]. Hence, the results
with no parallel loads executed (1 independent load) expose the data access times of
the L1 data, L2, and the main memory. Hence, we need approximately 3 cycles to
access the L1 data, 13 more cycles to access the L2, and 200 extra cycles to access the
main memory. We see Subsection 5.3.7 how we can extract precise results from the
curves. With 2 and 3 independent loads, the average L1 data cache access time is
divided by two and three, but in the L2 region, we can observe a saturation. With
4 independent loads, the average latency is no longer reduced, indicating memory-
level parallelism saturation. Hence, the benchmark exposes that the Cortex-A53 can
generate up to 3 outstanding memory requests. Between the three stable regions, we
have two transition regions when the array is stored in two levels. Those regions start
when the array can no longer fit in the cache and goes to the next level. That way, we
can deduce the size of the L1 data, 32KB, and the size of the L2, 512KB.

5.3.6 Cache Replacement Policy

The shape of the average access time curve when transitioning between two memory
levels indicates a random replacement policy in the L1 data cache and the L2 cache.
In order to illustrate how another replacement policy could impact the average access
time, we create a simple python script cache model that implements two different re-
placement policies: a Random policy and a Last Recent Used (LRU) policy. We create
exactly the same cache organization as the MediaTek Helio X20 L1D, i.e., 4way asso-
ciative with a size of 32KB. We implement two replacement policies: a Random policy
and a Last Recent Used (LRU) policy. We stress the cache with different array sizes as
the microbenchmark does. For each size, we extract the miss rate depending on the
policy and compare it with the results from the MediaTek Helio X20. Figure 5.9 shows
the results. We can see that the miss rate results from a Random policy perfectly match
the MediaTek Helio X20 L1D miss rate curve. Conversely, the LRU policy generates a
real break in the miss rate, which is distinctive behavior.

5.3.7 Memory Level Access Times

In order to measure more precisely the access time of the different levels, we plot in
Figure 5.10 the average access time depending on the L1 data miss rate. We focus on
the transition between the L1 data and the L2. Each point represents an array size
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Figure 5.9: Miss rate from the L1D of the MediaTek Helio X20 and two cache models imple-
menting a Random and a LRU replacement policy. The size and the associativity are the same
for the three caches.

between 384KB and 6144KB. Like that, we can graphically understand the impact of
the L1 data miss rate on the average access time. We also plot the linear regression line
of the empirically measured data, its equation, and its R? correlation coefficient. We
make two observations. First, the relation is strictly linear as the correlation coefficient
is close to 1. This means no other event affects the access time, i.e., the access time
follows the delay model. Second, we conclude that the L1 data and L2 access times 3
cycles (for x = 0%) and 13 cycles (for x = 100%), respectively.
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Figure 5.10: Average memory access time on the MediaTek Helio X20 depending on the L1D
and L2 miss rates.

We repeat the same analysis but focusing the L2 and the main memory. This time,
we plot the average access time depending on the L2 miss rate. The result is shown in
Figure 5.10. Again, we observe a highly precise linear correlation. We need 16 cycles
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to access the L2, which is coherent with results in Figure 5.10. Then we need 200 extra

cycles to access the main memory.

Finally, we finish the first gem5 calibration using the new parameter values dis-
covered with our microbenchmark. All the parameters of this calibration are listed in
Table 5.1 under Calibrated V1.

5.3.8 Micro TLB Penalty

Even if the TLB processes are not modeled in the gem5 SE simulations used in this The-
sis, we propose to design another microbenchmark to expose TLB information. gem5
also includes a Full-System (FS) simulation mode [150] that can be calibrated using the
information exposed by our microbenchmark. The Cortex-A53 reference manual [148]
provides information about the TLB as the number of levels, which is two: one instruc-
tion and one data micro TLBs and one main TLB. The numbers of entries are 10 for the
micro TLBs and 512 for the main TLB. However, the TLB miss penalty latency is not
public. Consequently, we first design our microbenchmark to pin the address transla-
tion data (i.e., information for virtual to physical address translation) in the data micro
TLB using the same microbenchmark structure illustrated previously in the chapter. To
pin the translation data in the micro data TLB, we implement pointer chasing, which
loads only one cache line per page. To minimize conflict misses (cache misses due to
limited associativity), we use all the L1 data cache indexes by changing the address
page offset of each load. Then, we gradually increase the number of pages accessed by

the microbenchmark.
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Figure 5.11: Average access time depending on the number pages accessed with different page-
offsets on the MediaTek Helio X20.
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We execute the microbenchmark on the MediaTek Helio X20. The results are shown
in Figure 5.11. We identify three distinct regions. The first one is the region before 10
pages. The average access time is stable and equal to 3 cycles. In this region, the data is
present in the L1 data cache, as we can see with the L1 data cache miss rate. Regarding
the translation information, it is present in the micro TLB as this is the fastest possible
address translation. The second region is between 10 and 512 pages. The data is still
present in the L1 data cache, but we now observe a 2-cycle extra latency to access the
L1 data cache. This extra latency comes from a micro TLB miss and the consequent
access to the main TLB (see Figure 5.3). Another observation is that sudden transition
between the first and second regions indicates a Last-Recent-Used entry replacement
policy. The third region corresponds to a number of pages bigger than 512. In this case,
we can observe with the TLB miss rate, reported by the performance counter, that the
translation data start to miss in the main TLB. However, at the same time, the L1 data
cache miss rate also increases as the L1 data cache can no longer store all the pointer
chasing cache lines (32KB = 512 cache lines). Consequently, we cannot directly extract
more information as we cannot isolate the impact of L1 data cache misses and TLB

misses.

5.3.9 Main TLB Penalty

In order to expose the penalty latency of a TLB miss, we modify the microbenchmark
pinning the data in the different levels of the memory system. This time, instead of
using different address page offsets for each load, we use exactly the same page offset.
That way, we use a limited number of indexes in the caches and with a low number
of pages, we can pin the data in the main memory. Then, we increase the number of
pages to generate TLB misses. Finally, we observe the impact on the average access

time to measure the penalty latency of a TLB miss.

We execute the microbenchmark on the MediaTek Helio X20. The results are shown
in Figure 5.12. We identify three regions. The first region is between 128 and 384 pages.
As we can see with the L1 data and L2 cache miss rates, the data is not exclusively
present in the main memory yet, i.e., the length of the pointer chasing is not long
enough. The second region is between 384 and 512 pages. We observe that the data is
now present in the main memory (i.e., 100% L2 miss rate) and the address translation
process is still not missing in the TLB. The third region is after 512 pages. The TLB miss
rate increases, adding extra latency to the average access time. We can observe that the
L1 data and L2 cache miss rates remain stable, indicating only the TLB misses impact
the average access time. As shown in Figure 5.9, how the TLB miss rate is increasing
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Figure 5.12: Average access time depending on the number pages accessed with the same page-
offset on the MediaTek Helio X20.

indicates that a random entry replacement policy is implemented in the main TLB.
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Figure 5.13: Average access time on the MediaTlek Helio X20 depending on the TLB miss with
L1D and L2 miss rates equal to 100%.

To expose precisely the penalty latency of a main TLB miss, i.e., the access time to
the page walk cache, we plot in Figure 5.13 the average access time depending of the
TLB miss rate of the third region. Each point corresponds to a different number of
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pages, from 512 to 1024. We plot the corresponding linear regression line, its equation,
and the R?* correlation coefficient. As we can see with the correlation coefficient equal
to 1, the relation is perfectly linear, i.e., only the TLB miss rate impacts the average
access time. Additionally, the linear direction coefficient gives us the cost of a main

TLB miss, which is 15 cycles.

To summarize, the delay model extracted from our microbenchmarks indicates that
no extra delay is incurred in a micro TLB hit, a 2-cycle penalty is added in a micro TLB
miss and an extra 13-cycle penalty in case of a main TLB miss.

5.3.10 Main Memory Address Mapping

In this section, we extend the Calibrated V1 structure made previously with an accurate
main memory simulator as illustrated in Figure 5.5 with the CalibratedV2 structure.
Basically, Ramulator [30] replaces the gem5 SimpleMemory module intending to pro-
vide more accurate modeling of the main memory subsystem. However, we still do not
simulate the page fault effects. For that, we would need to use a storage disk simulator
such as MQsim [82]. This would imply using another kind of simulation that includes
the full OS routine, i.e., Full System simulation. We give more details in Section 2.3. We
apply our methodology again to rebuild the final stages of a MediaTek Helio X20 de-
lay model continuing from the interconnect to the main memory. Ramulator includes
new parameters that need proper instantiation, such as the number of channels, ranks,
DDR protocol, etc. We find the values of most of the parameters in the MediaTek Helio
X20 documentation [149]. The main memory comprises two LPDDR3_1886 devices of
8Gb with a 32-bit output, which amounts to 2GB of main memory. These devices are
divided between 2 channels with only one rank per channel. We list all the Ramulator

parameters that are relevant to our study in Table 5.2.

Table 5.2: List of Ramulator key parameters

Ramulator parameter Value Source

standard LPDDR3 ref. manual
channels 2 ref. manual
ranks 1 ref. manual
speed LPDDR3_1886 ref. manual
org LPDDR3 8Gb_x32 ref. manual
address mapping Figure 5.16 pbenchmark

Parameter hardcoded in Ramulator source code.

However, no information is provided about the address mapping scheme. The
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address mapping indicates what bits of the physical address are used to identify the
channel, bank, row, and column of a request. Although address mappings may be de-
liberately kept secret to dissuade security attacks, they are essential to properly model

the performance of a main memory system.

In order to expose the address mapping, we use two memory requests that we
pin the main memory. The first request has a fixed physical address, while the second
address varies randomly at each iteration. A row-buffer conflict is triggered when both
addresses sit in the same channel and bank but in a different row. Such row-buffer
conflict adds extra latency to the main memory access time. Thus, by measuring the
main memory access time, we can identify which address pair leads to a row-buffer
conflict. Thus, we have two distinct scenarios, i.e., main memory accesses with and
without row-buffer conflict.

We do ten thousand iterations using different address pairs (always keeping the
same first address while the second one is generated randomly). We access each ad-
dress pair one million times in one iteration to extract an average access time. We verify
the data pinning in the main memory for all the pairs using the performance counters.
We execute the microbenchmark on the MediaTek Helio X20 and plot the result in Fig-
ure 5.14. The figure shows a histogram of the average access time of the ten thousand
address pairs. We make two main observations. First, most of the population has an
average access time around 109 cycles which is coherent with the value in Figure 5.8
using two independent loads. Second, a small group of address pairs has an average
access time close to 138 cycles. We identify them as the address pairs that trigger a
row-buffer conflict in the main memory.
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Figure 5.14: Average delay distribution of main memory request pairs.

In order to deduce the address mapping, we analyze the physical addresses of the
pairs present in the 138-cycle group. This group contains n pairs of addresses. The
tirst address is always the same. We call it Addry. The second address is different
for each pair. We call it Addr, (0 < k < n). All the addresses in this group share
the same channel, rank, and bank (only one rank in our case). Thus, the address bits
mapped to the channel and bank are the same. With the goal of improving memory-
level parallelism, modern memory controllers often X O R multiple bits in the address
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mapping to distribute accesses randomly across banks, ranks, and channels. In this
way, we look for similarities in the 31 address bits® and their XOR combination results.
For that, we define Addrg(i) as the bit i of the address k. For each combination (i, j),
we check if XOR(Addry(i), Addrg(j)) is always equal to XOR(Addry(i), Addry(j)) for
0 < k < n. We print the result on Figure 5.15. From the matrix result, we can make
four observations:
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Figure 5.15: Similarities between bit XOR combinations of the addresses present in the 138-
cycle group of Figure 5.14. Experiments run on the MediaTek Helio X20.

1. The resulting color matrix is diagonally symmetrical. This comes from the fact
that the XOR operation is fully commutative. Also, the diagonal bits are XOR with

331 bits are needed to address the 2GB of DRAM memory in the MediaTek Helio X20 SoC
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themselves, resulting in a 0 every time. Thus, 0 always matches with 0 for all the

combinations.

2. All the combinations with the bits from 0 to 5 always match with the fixed ad-
dress. That is because we generate the memory requests by loading the first word
of the cache line. Consequently, the cache line offset, i.e., the six LSBs, is always
identical.

3. When the bit 8 is XOR with one of the size first LSBs, the result is always the
same. That means that for all the addresses in the 138-cycle group, bit 8 is always
the same. Usually, as the LSBs change more often than the MSBs, the channel is
mapped in the LSBs in order to get benefit of channel parallelism. Consequently,

we deduce that bit 8 is used to select one of the two channels of the main memory.

4. The XOR results of the combinations (13, 16), (14, 17) and (15, 18) always match
the results from the first fixed address. Therefore, we deduce that those three
combinations of bits are used to map the eight banks of the main memory.

For the purpose of avoiding row-buffer conflicts, the rows are usually mapped on
the MSBs. To take advantage of row locality, the columns are mapped with the LSBs.
Considering that, we construct the corresponding address mapping that we expose in
Figure 5.16. The first way to verify the address mapping is to see if we can reconstruct
the organization of the main memory using only the address mapping. For instance,
check that the number of rows multiplied by the number of columns equals the size
of the LPDDR3_1886 bank. Once we finish this first quick verification, we can use
the address mapping to generate many random address pairs that always trigger row-
buffer conflicts. Then, we verify if the resulting average access time is always around
138 cycles. That way, we can effectively challenge the address mapping and guarantee
its correctness.
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Figure 5.16: Helio X20 main memory address mapping.

In conclusion, we propose to improve the CalibratedV1 by replacing the Simple-
Memory module with Ramulator, a very accurate main memory simulator. We cali-
brate Ramulator with technical information from MediaTek Helio X20 documentation.
Then, we design a microbenchmark to expose the non-public address mapping of the
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MediaTek Helio X20 main memory. Finally, we calibrate Ramulator with the resulting
address mapping to finalize the last gem5 structure named Calibrated V2.

5.4 Experimental Evaluation

In this section, we evaluate both gem5 calibrations, i.e., the CalibratedV1 and the
CalibratedV2, that we made in the previous Section 5.3. To this end, we first simulate
our microbenchmarks to verify that the new parameter values lead to the expected be-
havior in the simulator. Once the calibrations are verified, we evaluate the instantiation
of the methodology using benchmarks from the SPEC CPU2006 suite. We execute them
on the MediaTek Helio X20 to get reference results. Later, we simulate them on gem5
models and compare the results with the ones obtained with the reference architecture.

5.4.1 gemb5 Calibrated Models

In order to show how the simulator memory system behaves before and after the cali-
bration, we simulate the microbenchmark described in Section 5.3.5. Thus, Figure 5.17
shows the result of the microbenchmark simulated on the Default gem5 configuration
(refer to Figure 5.5 for details on the model). The parameter values for the Default con-
figuration are listed in Table 5.1. We make three main observations. First, the L1 data
cache and main memory access times are lower than those of the real hardware, while
the opposite is for the L2 access time. Second, we find that the number of outstanding
requests in the gem5 Default model is only two instead of the three indicated in the ref-
erence manual and confirmed by our microbenchmark. Third, the net increases in the
average access time indicate an LRU replacement policy which is the one instantiated
in gem5 HPI caches by default.

In order to validate the calibrated models, we also simulate the microbenchmark on
them. After the first simulation, we observe some unexpected results. We inspect the
simulator source code and we discover some incorrect behaviors in the HPI load /store
unit: two processes, namely the operand forwarding and the idling state activation, are
modeled in a way that obstructs the number of outstanding requests when we increase
it from two to three. Accordingly, we turn off the idling state and disable the operand
forwarding into the load/store unit. The modified parameters are listed in Table 5.1,
which adds two new parameters to our list. Finally, we rerun the simulation to obtain
the expected results. Figure 5.18 shows the microbenchmark simulation results with
the CalibratedV1. We also run the microbenchmark with the CalibratedV2 to update
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Figure 5.17: Memory level signatures on gemb of the Default HPI model configuration.
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Figure 5.18: Memory level signatures on gemb of the CalibratedV1 HPI model configuration.

the Bridge latency and obtain the same result as in Figure 5.18. We can see that the
timings, the number of parallel memory accesses, and the replacement policies are
very similar to the reference architecture (see Figure 5.8). However, due to the model

limitation of the gem5 caches, we cannot replicate the contention measured on the real
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L2 architecture cache. To reduce that error, we need to create a new contention-aware
cache model, as in Evenblij et al. [151], which is considered future work.

The last model verification step is to run the address mapping benchmark on the
CalibratedV2 simulation model. This way, we verify that the address mapping is
rightly implemented in Ramulator and the proper integration of Ramulator in gem5
simulations. Furthermore, we can verify that the latency of a row-buffer conflict corre-
sponds to the one obtained with the real reference architecture.

5.4.2 Evaluation of Simulation Accuracy

To evaluate the methodology, we use twenty benchmarks from the SPEC CPU2006
suite and the number of Instructions Per Cycle (IPC) metric. We first execute them
on the MediaTek Helio X20 to generate the reference results. Then, we simulate the
benchmarks on the three gem5 models, i.e., Default, CalibratedV1, and CalibratedV2.
For that, we follow the standard SimPoint methodology [108] with 100 million instruc-
tions per slice and max K equal to 30. We plot the results in Figure 5.19. In order to
better exhibit the error, we plot in Figure 5.20 the absolute error of each benchmark
normalized by the results from the reference CPU. We also calculate the average abso-
lute IPC error and the maximum absolute IPC error. We can see that the CalibratedV1
and CalibratedV2 reduce the average error by 39.6% and 43.3%, respectively. The Cali-
bratedV1 reduces the maximum error by 61.5%, and the CalibratedV2 reduces it by an
extra 62.5%.
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Figure 5.19: IPC for the SPEC CPU2006 suite executed on the Medialek Helio X20 and simu-
lated on Default, CalibratedV1 and Calibrated V2 gemb configurations.
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Figure 5.20: Normalized IPC error of the Default, CalibratedV1 and CalibratedV2 gem5 con-
figurations with respect to reference hardware, the Medialek Helio X20.

Table 5.3: Cumulative simulation time of CalibratedV1 and Calibrated V2 gemb5 configurations.

gemb Configurations seconds hours

CalibratedV1 463,311s 128h
CalibratedV2 739,159s 205h

Table 5.3 shows the simulation time of the two calibrated configurations, i.e., Cali-
bratedV1 and CalibratedV2. We can observe that the CalibratedV2 model, which uses
Ramulator to model the main memory, increases the simulation time by 60%. This
overhead in simulation time reduces the absolute average IPC error by 6.2% and the
maximum absolute IPC error by 2.5% between CalibratedV1 and Calibrated V2.

5.4.3 Analysis

With the evaluation of the methodology, we observe that we have reached our objec-
tives of reducing the modeling error due to model parametrization (see Section 3.1.
Consequently, we show the impact of the reactive memory system on global system
performance. For instance, the big difference in main memory access time between the
reference MediaTek Helio X20 (208 CPU cycles) and the Default gem5 configuration
(80 CPU cycles) may explain the big IPC errors on Figure 5.20. For the five biggest IPC
errors, i.e., mcf, milc, cactusADM, Ibm and astar. We observe that the IPC is higher for
the Default gem5 configuration than for the MediaTek Helio X20. With CalibratedV1
and CalibratedV2, we can see that for those five benchmarks, the IPC is now lower,

showing that the memory system is slowing down the global performance. For four
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of the five benchmarks, the IPC error is now under 12%, which is sufficiently accu-
rate to perform proper design space exploration. Only cactusADM still has an error
of 37% reducing already by 52% the average IPC error between the Default and the
CalibratedV1 configurations.

The evaluation results also show the impact of using a more accurate model. Cali-
bratedV2 is an upgrade of the CalibratedV1 configuration. We replace the main mem-
ory model of the CalibratedV1 with Ramulator, an accurate main memory simulator.
We observe in Figure 5.20 that the main memory model upgrade still reduces the aver-
age and maximum IPC error by 6.2% and 2.5% respectively while the simulation time
increases by 60%. This illustrates how important it is to adapt the modeling accuracy of
the simulator to the type of application being considered. For instance, with only one
core and applications with a residual main memory activity, a detailed main memory
model may not add extra accuracy while incurring a longer simulation time. On the
contrary, the calibration of the load /store unit, caches, and interconnect latency would

have a larger impact on the simulation results’ precision, as shown.

Even after the implementation of the methodology, we can still observe a modeling
error. So for a few benchmarks, we are still well above 10% error. We observe that
some error comes from modeling error, i.e., the model is not accurate enough. For in-
stance, in Section 5.4.1, the L2 cache model cannot model the contention measured on
the real L2 architecture cache. Some error also comes from no-modeled processes like
the full virtual to physical page translation process or the page fault effects. Also, the
reactive memory system elements as the L2 cache and the main memory, are shared
with other components generating conflicts and the need for cache coherence proto-
cols. Additionally, the SimPoint methodology we use to reduce the simulation time

brings modeling unrelated to the target architecture.

Furthermore, the data prefetcher is a component of the memory system, part of
the proactive memory subsystem. This component plays a key role in memory sys-
tem data movement, as explained in Section 2.2.4. The gem5 HPI model includes a
data prefetcher model, but the proposed methodology cannot be implemented for such
component calibration. Hence, we propose in Chapter 6 a dedicated methodology to

reveal the functional behavior of commercial reference CPUs.
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5.5 Summary

To conclude, this chapter proposes an instantiation of the methodology to calibrate the
reactive memory system of computer architecture simulators. For that, we first detail
the composition of the reactive memory system. Then, we propose a delay model
to represent how memory requests accumulate delay traveling through the reactive
memory system. We use the delay model to describe the different scenarios we target

during microbenchmark design.

In Section 5.3, we detail the design of the microbenchmark depending on the mem-
ory system parameters we target, e.g., the cache access times, TLB penalty latency, or
the main memory address mapping. We use the results from the microbenchmarks
of Subsection 5.3.5 and Subsection 5.3.7 to create a first calibrated configuration of the
simulator we call CalibratedV1. We verify the memory system behavior of Calibrat-
edV1 by simulating the microbenchmark and comparing the output signature with the
reference one in Section 5.4.1. Additionally, we upgrade the CalibratedV1 configura-
tion with an external main memory simulator, i.e., Ramulator, to fully model a working

main memory. We call this configuration Calibrated V2.

Finally, in Section 5.4.2, we evaluate the methodology with benchmarks from the
SPEC CPU2006 suite and the IPC metric. We execute them on the real reference CPU
and both gemb5 configurations. We observe that both CalibratedV1 and CalibratedV2
reduce the average IPC error by 39.6% and 43.3%, respectively, and the maximum error
by 61.5% and 62.5%, respectively. However, Ramulator increases by 60% the simula-
tion time by partially reducing the average and maximum IPC error. From these re-
sults, we can draw the following conclusions. First, the methodology that we propose
reduces the model parametrization error. Second, the trade-off between accuracy and
simulation time exists for each simulator component and needs to be properly decided

depending on the simulated system.
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In this chapter, we propose Pref-X, a framework to analyze functional characteris-
tics of data prefetching in commercial in-order cores. Data prefetching is a memory
process often not documented by the industry. Consequently, we propose our frame-
work to reveal data prefetching by X-raying the cache memory and exposing changes
made by the data prefetching. For that, Pref-X instantiates the methodology described
in Chapter 4. Thus in a phase, we purposely design microbenchmarks to deduce data
prefetching and create a representative prefetcher functional model. Then in a second
phase, we verify this functional model using memory traces extracted from realistic
benchmarks. To demonstrate the feasibility of this methodology, we implement Pref-X
on two ARM in-order cores, the Cortex-A7, and the Cortex-A53. From that, we create
two functional data prefetcher models that we evaluate using memory traces extracted
from the SPEC CPU2006 suite.

6.1 Background and Motivation

One way to reduce the data average access time is to maximize the number of memory
requests that produce a hit in the L1 data cache. That way, the memory requests issued
by the core do not travel through the memory hierarchy’s lower levels, delaying the
access time. Section 2.1 gives more details about how the memory hierarchy works.
With the goal of maximizing the L1D hit rate, the L1 data prefetcher monitors the
core memory activity and predicts addresses that the core could request in the future.
Then, the predicted addresses are fetched into the L1 data. If the prediction is correct,
the L1D hit rate increases. If not, the L1D is polluted by useless addresses, and the L1D
hit rate decreases. Section 2.2.4 explains in more detail the role of the data prefetcher

and different implementation issues.

6.1.1 Stride Prefetchers

By not re-ordering the program instructions, the execution of a program on an in-
order core generates predictable memory sequences, which facilitates the task of data
prefetching. A common data prefetcher category usually implemented in commercial
in-order cores is the stride prefetcher. A stride prefetcher uses a simple prediction pro-
cess that inspects the distance between addresses. If a recurrent distance is detected
between addresses, the prefetcher uses the pattern to predict future addresses. We call
the fixed distance between the addresses the stride. We call stream the sequence formed

by consecutive addresses with the same stride.
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Stride prefetchers implement multiple features, such as the maximum stride length
of a stream or the maximum number of streams that can be detected in parallel. Intend-
ing to capture the diversity in practical stride prefetchers, we propose a meta-model
including the following list of parameters:

* Trigger inputs: The inputs of the prefetcher that are used to trigger a
prefetching process. The prefetcher can monitor events such as misses or hits
in the L1D. The monitored addresses can be either in the virtual or the physical

address space.

®* Initial trigger conditions: Conditions on the inputs to trigger the
prefetching process. For instance, the number of misses on the same stream that
are necessary to trigger a prefetching process. There can be multiple conditions
based on the type of inputs, i.e., hit or miss,

* Burst length: The burst length corresponds to the number of prefetches gen-
erated by one trigger. This length can change depending on the trigger condition.

e Maximum stride length: The maximum stride in a stream that can be de-

tected by the prefetcher.

® Conditions to continue: The conditions to generate additional bursts from
an already detected stream. For instance, the prefetcher can generate more
prefetches if the memory requests from the core hit the previous prefetched ad-

dresses, i.e., if the program execution validates the prefetcher predictions.

®* Burst hitting in L1D: Define behavior in case the prefetcher generates
prefetches that hit in the L1 cache.

* Tracking across pages: Define if the prefetcher is able to detect and con-

tinue streams that expand over one page.

¢ Maximum number of streams: The maximum number of interleaved

streams the prefetcher can track simultaneously.

* Conditions to stop: The condition for a stream to stop being tracked by the
prefetcher. For instance, if the condition to continue is no longer valid or a new

trigger condition appears, stopping the previous tracking.
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6.1.2 Motivation

The gem5 simulator implements by default a stride prefetcher in the High Perfor-
mance In-order core model (HPI) described in Subsection 2.3. We are interested in
understanding how this prefetcher compares with a real one. Hence, we use the mi-
crobenchmark described in Section 5.3.5 (with only one independent load) to compare
the behavior of the gem5 and the Cortex-A53 stride prefetchers. The microbenchmark
accesses all the addresses of an array, which gradually increases its size to drive the
data accesses to the different levels of the memory hierarchy. We create two versions of
the microbenchmark. The first one, random accesses, is the original access pattern using
random address accesses in the array to avoid data prefetching. The second one, con-
secutive accesses, is a new access pattern using sequential address accesses. That way,
the memory sequence generated by the microbenchmark is easy to predict by a stride
prefetcher. We execute the microbenchmark on the Cortex-A53 of the MediaTek Helio
X20 SoC that implements a stride prefetcher [152]. And, simulate it with the Calibrat-
edV1 gem5 configuration created in Section 5.3.5. We plot the results in Figure 6.1.

We identify three different regions on Figure 6.1. The first region is from 2KB to
32KB. In this region, the full array can be stored in the L1D. Thus, there is no need
for data prefetching. The microbenchmark gives the same average access time for the
four executions. The second region is between 32KB and 512KB. We can observe with
the average access time increase that the arrays is now too large to be fully stored in
the L1D. For the MediaTek Helio X20 and the gem5 simulation, we observe that the
consecutive accesses versions have a lower average access time. This reflects a data
prefetching activity that reduces the average access time. We also observe that the
curve from the MediaTek Helio X20 is under the one from CalibratedV1. Meaning
that the data prefetching of the MediaTek Helio X20 in this region provides a better
performance. lLe., the gem5 stride prefetcher reduces the average access time from 16
cycles to 10 cycles while the MediaTek Helio X20 data prefetcher reduces it to 9 cycles.
The last region is after 512KB, the array is now stored in the main memory. Again, we
can observe that the data prefetcher of the MediaTek Helio X20 is more efficient as it

divides the average access time by 5x while the gem5 prefetcher only by 2x.

We conclude that the current gem5 data prefetcher can incur large modeling er-
rors when modeling a real architecture such as the MediaTek Helio X20 shown here.
Consequently, our goal in this chapter is to propose a method to unveil the key mech-
anism in existing stride prefetchers to improve accuracy in the simulation of existing

architectures.
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Figure 6.1: Microbenchmark results for consecutive and random accesses to the array, simu-
lated with CalibratedV1 gemb configuration and executed on oneCortex-A53 of the MediaTek
Helio X20 SoC.

6.2 Key Insights

In this section, we give some insights about how we can deduce data prefetching by
exposing changes in the L1 data cache. For that, we need first to monitor changes in
the L1D and find which one comes from data prefetcher. Then, we need to identify the

memory request sequence that has generated the data prefetching.

6.2.1 Exposing Data Prefetching

In order to deduce L1D content, we use the hardware performance counters to count
the number of L1D accesses and misses. Figure 6.2 represents a typical CPU with
the load/store unit, the PMU, the L1D and L1 data prefetcher. Outside the CPU we
have the rest of the memory hierarchy. The first step is to flush the complete L1 data
cache. That way, one addresses can only be present in the L1D if this address has been
requested by the core or has been prefetched. Then, we reset the performance counters
and generate a memory request sequence D to trigger the prefetcher. In this example
we have three memory requests, i.e., 0, 2 and 4. As we have a cold L1 data cache, all
the addresses miss in the L1D and go to lower levels @. Now, we want to know if
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the L1 prefetcher has generated any prefetch following the stride of 2 in the memory
sequence (3. For that, we access the next address in the stream . In this example,
that is the address 6. We call this address the inspected address. Finally, we use the
results from the performance counters® to deduce if the inspected address has been

prefetched. We have three possible scenarios:

1. There are as many misses than accesses, i.e., the inspected address is missing
in the L1D. This address is not part of the memory sequence and has not been
prefetched.

2. The inspected address is not missing in the L1D because the address is part of the

memory sequence.

3. The inspected address is not missing but the address is not present in the memory

sequence. In this case, the inspected address has been prefetched.

The address inspection can be done of any address of the L1D. Thus, depending on
the monitored scenario, we can determine if the memory sequence trigger or not the
prefetcher and deduce the prefetched addresses.

CPU @

[Load/store ]— (D) e [~ L1 data cache Gvava g
sa AKX [6T T2] [alz]> g .
[(TTT / 2o

—6)— [2]2]> ==

(PMU) O i \ @ 24

L1D_A : | 2
| . \/ I
L1D.R 6 @Lp L1 Prefetcher & @@

Figure 6.2: Helio X20 main memory address mapping.

6.2.2 Identifying the Trigger of a Data Prefetch

In order to deduce the complete functional behavior of the data prefetcher, we develop
a technique based on the approach exposed in Figure 6.2. We first define a fixed area in
the address space we call memory zone. Then, we generate a memory request sequence
that belongs to the memory zone and we inspect one address. We iterate the operation
and inspect all the addresses of the memory zone. Meaning that, for each address & of
the memory zone, we flush the memory zone, we generate the memory sequence and
we inspect the address k. That way, for a defined memory zone and memory sequence,
we are able to know which address is present in the L1D cache due to a data prefetch.
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Figure 6.3 shows a example result of the execution of the technique on the Cortex-
A53. We define the memory zone as one page including 64 cache lines. We stress
the memory zone with the memory sequence (0, 2, 4, 6). We gradually build-up the
memory sequence by adding the memory request one by one starting from an empty
sequence as it shows in the first row of Figure 6.3. That way, we can identify how each
request triggers or not the data prefetcher. Thus, we observe at length 3 that we need
up to three consecutive misses to trigger a prefetcher burst of three cache lines, (6, 8,
10). By adding another address to the sequence, i.e., length with the address 6, we also
observe that a hit in a previous prefetched address generate another prefetcher burst
of three cache lines, (12, 14, 16). The way how we generate Figure 6.3 implementing

the technique is fully explained in Section 6.4.

|:] Empty . Last requested . Accessed in the past |:] Prefetched

Cache line addresses

Length Sequences o0|1|2|3|4|5|6|7|8|9|10|11(12(13|14|15(16|17| .. |63

)
(X210
(6 X4X2X0)

Figure 6.3: L1D cache content when accessing memory sequence(0, 2, 4, 6).

AW NP

6.3 The Pref-X Framework

In this section we introduce our framework, Pref-X. The tool is divided in two phases:
the Reconstruction phase and Verification phase. The first phase aims to create a first func-
tional model version of the target commercial CPU. Then, with the second phase, we
verify the resulting functional model with real memory sequences extracted from SPEC
CPU2006. That way, we stress the functional model with a different wide range of

memory sequences exposing miss matching behaviors that we miss in the first phase.

6.3.1 Reconstruction Phase

The goal of the reconstruction phase is to create a functional model of the target com-
mercial in-order CPU data prefetcher. We represent this phase and its different steps
in blue on Figure 6.4. We start with a data prefetcher meta-model that includes the



80 Chapter 6. Data Prefetching Functional Model

common features of stride prefetcher described in Subsection 6.1.1. We use the meta-
model to design synthetic memory sequences to expose the main feature parameters.
For instance, we can determine the max stride the prefetcher can handle by designing
a list of sequences with increasing stride values. That way, we start from the lowest
stride value and increase it till the prefetcher can no longer detect the pattern which

indicates the maximum stride value.

To execute the memory sequences on the commercial CPU, we use the Prefetcher
inspector, which is a subtool of Pref-X. This subtool comprises two elements: the se-
quence runner executes the synthetic memory sequences on the commercial CPU. And
the graph generator uses metadata generated by the sequence runner to generate the
graphs as described in Subsection 6.2.2. We use the graph to see the data prefetch-
ing activity and extract the main feature parameter values, e.g., the maximum stride
value. Then, we use those results to complete the meta-model and obtain a complete

functional model of the target commercial prefetcher.
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Figure 6.4: Pref-X phases illustration.

6.3.2 Verification Phase

We use the verification phase of Pref-X to verify the functional model created in the
reconstruction phase. We represent this phase and its steps in green in Figure 6.4. Con-
trary to the first phase, we use realistic memory sequences that we extract from real
applications. Those memory sequences are generated from real applications using a
sequence generator. For instance, we can use programs such as the gem5 simulator or
the Pintool from Intel to extract memory traces that we further split into smaller mem-

ory sequences. The memory sequences are executed on the functional model and the
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commercial board with the prefetcher inspector. We compare each memory sequence
results from both the real CPU and the functional model are the same.

If we detect meaningful differences, we identify the problematic memory se-
quences, draw new insights, and correct the functional model. Creating new synthetic
memory sequences might be necessary to validate the new insights properly. We it-
erate this operation to converge to an accurate functional model. Hence, if we do not
challenge the meta-model enough with synthetic memory sequences during the recon-
struction phase, the verification phase would need many more iterations. Once the

desired accuracy is obtained, the execution of Pref-X and the functional are finished.

6.4 Prefetcher Inspector

The prefetcher inspector is a subtool of Pref-X. It contains two different elements,
the sequence runner and the graph generator. The sequence runner takes memory se-
quences as input. Then from one sequence, it generates a list of sub-sequences that
it executes on the commercial CPU. It monitors memory system events using the per-
formance counters of the PMU and generates output metadata files. Then, the second
element, the graph generator, uses the metadata generated by the sequence runner to
create the graph introduced in Subsection 6.2.2.

6.4.1 Sequence Runner

The objective of the sequence runner is to generate from a memory sequence the meta-
data necessary to build the corresponding request-by-request representation graph of
the L1D memory zone content. Figure 6.5 represents the different phases of the se-
quence runner. The first phase divides the input sequence of N memory requests into
N + 1 sub-sequences starting from an empty sub-sequence and incorporates one ad-
dress at a time. We call Seg,, the sub-sequence of length n such that 0 < n < N.
Figure 6.5 illustrates the process for the sequence(0, 2, 4, 6)that is used in Section 6.2.

Then, the sub-sequences are sent to a microbenchmark executed on the commercial
CPU. The goal of the microbenchmark is to execute the sub-sequence Seg, and inspect
the addresses of the defined memory zone. We call M the number of addresses in the
memory zone, i.e., the number of cache lines. Thus, for £ such that —1 < k < M, the
microbenchmark executes the sub-sequence Seg, and then inspect the address k. We
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Figure 6.5: Prefetcher inspector: sequence runner phases illustration.

define k equals —1, the case where we do not inspect any address. This case is used as
a reference when we generate the graph, as explained in the next Section 6.4.2. The mi-
crobenchmark follows the structure introduced in the methodology in Chapter 4 with
the initialization and the measure loop. The measure loop comprises three steps that
are iterated /7" times to reduce the noise-to-signal ratio. The measure loop is executed

with M different values of £, for each sub-sequence Seg,,.

(@ The microbenchmark loads the addresses present in the sub-sequence one by
one. Those addresses are relative to the determined memory zone. For instance, the
address 0 corresponds to the first cache line and 1 to the second cache line. We imple-
ment the memory zone as an array and align them as the first element of the arrays cor-
responds to the first cache line of a page. Then, we add to the array a pointer that goes
through the addresses of the sub-sequence. As a cache line contains multiple words,
we use the first one to implement the pointer chasing as illustrated in Figure 6.7. Fi-
nally, we add a lot of NOP operations between loads in each step1 of the measure loop

to avoid any timing interference. We illustrate the code source on Figure 6.6.

@ The second step consists of loading the inspected address. For that, we extend
the pointer chasing of the step @ to load the address k. We use the second word of the
cache line to be sure we do not overwrite an already-used array cell. The final pointer
chasing is illustrated in Figure 6.7. In case of k is equal to —1, we just do not add any

address, i.e., the microbenchmark does not execute the step 2.

@ The goal of step 3 is to reset the cache data prefetcher states before the next
iteration. At the beginning of each iteration, we hypothesize that we have a cold L1
data cache, and the prefetcher cannot remember the previous iteration. Contrary to
the other steps, this depends on the data prefetcher. For instance, we can use flush
operations to reset the cache and stop active data prefetching. Another method would
be using a different address region with the same relative memory zone and sequence
for each iteration. That way, the addresses would be different for each iteration. The
data cache and the prefetcher could not use previous data from previous iterations.
Those examples are more detailed in the implementation Section 6.5.
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long long int array[M * S]; // S: number of 11d per cacheline

long long int xptr;

init_hw_perf_counters(); // Initialization of the HPCs

for (int n =

0; n <= N; n++) {

for(int k = -1; k < M; k++){
// INITIALIZATION
init_stepl_chasing(array, subSeq);
init_step2_chasing(array);

ptr

= garray|[subSeq[0]]; // Init 1st stepl pointer

// MEASURED LOOP
start_hw_perf_ counters(); // Reset HPC

for(

}

int = it; i < IT; it++){
// Stepl: Execution of the sub-sequence
for(int sl = 0; sl < n; sl++){
ptr = xptrl; NOP_500; }
// Step2: Inspect address k
if(k !'= -1){
ptr = xptr;}
// Step3: Reset cache and prefetcher states
reset () ;

read_hw_perf_counters() (); //Read HPC

Figure 6.6: Sequence runner microbenchmark C code.

During the execution of the measure loop, we monitor the number of misses. In this

manner, for each sub-sequence Seg,, we have M measures for each value of k. We call

Seg, k] the number of misses of the sub-sequence Seg,, when we inspect the address k.

The Graph generator uses those metadata to build the final graph, see Section 6.4.2.

6.4.2 Graph Generator

The graph generator composes the second phase of the prefetcher inspector. We use

the metadata provided by the sequence generator to build an output graph like the one

introduced in Section 6.2.2. Each row corresponds to a Sub-sequence, and each column

to a cache line of the memory zone. We build the graph row by row, starting with the

tirst sub-sequence Seqy. Figure 6.8 shows the complete set of metadata generated at

the first phase with the sequence(0, 2, 4, 6)and one thousand iterations of the measure

loop steps (IT" = 1000). The values are not normalized by the number of iterations and

show very small variations due to the noise. For each sub-sequence, Segq,[—1] gives the

number of misses that come from step (D as we do not inspect any address. For Seg, k]
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Figure 6.7: Sequence runner pointer chasing for memory sequence (0, 2, 4)and the inspection
of the address 5.

such that 0 < k < M, we identify two cases:

e The address k is not present in the L1D. In this case, the execution of the step @
adds one miss at each iteration, i.e., it adds around /7T miss to the reference value
Seq,|—1]

e The address k is present in the L1D. In this case, the execution of the step @
does not add any misses and the number of misses is close to the reference value
Seqn[—1]

Consequently, for each number of misses, we expect the number to be close to an
integer value of /7. In our example, an integer value of a thousand. If the results are
not close to an integer value of /7, that may indicate the number of iterations (/7) is
too low, or the step 3 does not work as expected. Thus, we can define an acceptable
distance to an integer value. If a value is floating between two integer values, that

triggers an interruption in the graph generator execution.

Figure 6.8 uses the same color legend as the Figure 6.3. Thus, we verify that for the
addresses which are present the sub-sequence, i.e., black and blue, have a number of
misses that is close to the reference in grey. We also observe that the sub-sequences
Seqs generates the prefetching of the addresses 6, 8 and 10. Hence, the sub-sequence
Seq, generates one hit in the step . We confirm this with the value of Seqs[—1] and
Seqs|—1] which are very close. Finally, we deduce that Seq, generates the prefetching
of the addresses 6, 8, 10, 12, 14 and 16.
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Figure 6.8: Metadata generated by the sequence runnner, proccessed by the graph generator.

6.5 Implementation

In this Section, we use Pref-X to reveal the functional behavior of the Cortex-A7 [61]
and the Cortex-A53 [148] in-order ARM CPUs. We use two development boards, the
Raspberry Pi 2B [153] and the Raspberry Pi 3B+ [147]. We start with the reconstruction

phase and illustrate the process with some synthetic sequence examples.

6.5.1 Memory Zone

Before starting the first phase of Pref-X, we must define the memory zone first. This one
must be large enough to contain the memory sequences and the generated prefetches
we want to expose. However, if the memory zone is too large, some addresses could
be evicted from the L1D due to the replacement policy and the size/associativity of the
cache.

Thus, we start the process by examining the L1 data cache organization. Both
Cortex-A7 and Cortex-A53 L1 data cache implement the same pseudo-random replace-
ment policy. Also, both caches have the same organization, 4way associative with a
size of 32KB, which means that the cache is divided into 128 sets containing 4 tags
each. Due to the random replacement policy, the only way to avoid evictions is to de-
fine the memory zone so that all its cache line addresses use each set of the cache only
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once. L.e., we need all the cache line addresses present in the memory zone to have dif-
ferent cache indexes. Figure 6.9 shows how the address bits are mapped in the cache:
the six Least-Significant Bits (LSBs) address the byte within the 64B cache line, the next
seven bits index the cache set, and the remaining bits compose the tag. The page offset
remains the same between the virtual and the physical address space. However, the
page number depends on the physical address translation. That way, by limiting the
memory zone to one page, we ensure that 64 cache lines are mapped to 64 different

indexes.

In order to increase the memory zone, we disable the Address Space Layout Ran-
domization (ASLR) feature of the kernel. This way, the operating system maintains
adjacency between pages after the address translation. We can guarantee that two con-
secutive pages will have a different page number LSB in the physical address space.
Consequently, we define the memory zone as two pages with 128 cache lines mapped
on 128 different cache indexes. Three pages would be too large to guarantee no evic-

tions and one page too small to expose data prefetcher behavior across multiple pages.

MMU: Page number Page offset
Address: ... |14|13|12|11|10| 9|8 |7 (6|54 |3|2|1]|0
L1D cache: Cache Tag Cache index Cacheline offset

Figure 6.9: Address mapping L1D of Cortex-A7 and Cortex-A53.

6.5.2 Reset Method

The reset method used in the step 3) in Subsection 6.4.1 needs to be defined. The goal
is to make each iteration of the measure loop independent of the other. For that, we
propose to use multiple regions of the address space. We define the memory zone and
the memory sequence relatively to a region. For instance, we define the memory zone
as page 0 and page 1 of each region. The address 0 of a memory sequence is the first
address of the region. In this manner, the absolute physical addresses change at each
iteration. Additionally, we can add random accesses between iterations to fill internal
prefetcher registers with unrelated addresses before the next iteration. This is only
useful if the prefetcher can track a pattern across pages.

Figure 6.10 shows the final pointer chasing. We use 128 different regions of 8 pages.
The first two pages are the memory zone. The six others are used to do random ac-
cesses. The random sequence is different for each iteration. We start without random

accesses and update the number further in the reconstruction phase. For instance, we
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observe no difference in adding random accesses with the Cortex-A7. For the Cortex-
A53, we add eight random accesses at the end of the reconstruction phase to reduce
some noise on corner cases. If there are no random accesses, the region’s size can be
reduced to the size of the memory zone. Finally, the number of regions needs to be big
enough to ensure the whole eviction of the previous accesses before reusing a region.

Thus, a number of misses too low may indicate a too low number of regions.

\Absolute page number

10 71 18 15 11016 10231
region 0 region 1 region 127

page 0 | page 1 (@D | Page 0 | page 1 . page 0 | page 1
0-50-] 5 \- T ,—-/’,@
|_ ©r" % -0 @1 ®

Figure 6.10: Final pointer chasing implementing reset method.

6.5.3 Cortex-A7 Reconstruction

The first synthetic sequence we create is a simple pattern composed of a stream with
a stride equal to one. We start the sequence at cache line 52 of page 0 and continue
it up to cache line 6 of the next page. Figure 6.11 shows the output of the prefetcher
inspector. From this experiment, we make four observations. First, three consecutive
missing accesses trigger a prefetcher burst, as we can see with the addresses 52, 53, and
54. Second, a prefetcher burst contains three prefetched cache lines, e.g., prefetcher
burst of the addresses 55, 56, and 57. Third, to continue a stream prefetching, we need
a request to miss the following prefetcher burst cache line. This generates another
prefetcher burst of three cache lines, as seen with the addresses 58, 62, and 7. Finally,
the fourth observation is that the prefetcher cannot generate prefetches across a page.
We believe that comes from the fact that the data prefetcher only has access to the

physical addresses and cannot determine the next page.

In order to challenge some more specific features of the Cortex-A7 data prefetcher,
we illustrate in Figure 6.12 three other synthetic memory sequences that we execute
with the prefetcher inspector. Thus, with Sequence #1, we use the same simple stream
of four addresses with a stride of 1, (0, 1, 2, 3). However, this time we break the stream
with a random access to the cache line 12 after the second address of the stream. We
observe that this random access is sufficient to break the stream since neither the access

to address 2 nor the access to address 3 generates a prefetcher burst.

With the sequence #2, we want to expose the behavior of the prefetcher when a
prefetched address hits in the L1D. For that, we first access the cache line 4. Then, we
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PageO Pagel
50(51|52(53|54(55|56|57|58|59|60|61(62|63[{0|1(2|3(4|5(6]|7|8|10|11|12

|:| Empty . Just requested . Accessed in the past D Prefetched

Figure 6.11: Cortex-A7 synthetic sequence: stream stride 1.

generate a prefetcher burst by accessing the addresses 0, 1, and 2. We observe that the
prefetcher detects the stream and starts data prefetching with cache line 3. However,
the burst stops if one address of the prefetcher burst is already present in the L1D. Also,
the accesses to the next missing cache lines 5 and 6 cannot restart the data prefetching.
Thus, a prefetched cache line that hits in the L1D deactivates the stream.

Sequence #1 Sequence #2 Sequence #3
PageO Page0 Page0
0|1(2(3)|4(5|6(7|8]9]|10|11 0|1(2|3|4|5|6(7|8]9(10|11 0|1(2|3(4|5|6|7(8]|9(10|11]...|34

|:| Empty . Just requested . Accessed in the past |:| Prefetched

Figure 6.12: Cortex-A7 synthetic sequences: #1, #2, and #3.
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The previous experiments show that the prefetcher does not monitor the hits in the
L1D. To see if we can continue data prefetching without any hits, we design a new syn-
thetic memory sequence with only misses, sequence #3. Hence, we start the sequence
with the accesses to the addresses 0, 1, and 2. This generates the data prefetching of
the cache lines 3, 4, and 5. Then, instead of continuing the stream and hitting in the
prefetched cache lines, we directly access address 6. We observe that it generates a new
prefetcher burst. Thus, accessing prefetched cache lines is unnecessary to continue a
stream data prefetching.

Additionally, with the sequence #3, we generate random access to address 34 be-
fore continuing the stream with address 11. We observe that the access to the missing
address 11 does not generate another prefetcher burst. We conclude that if a request
to a missing address does not continue a stream, this prevents other access from doing
so. This conclusion also shows that the prefetcher can only handle one stream. We
verify that creating a synthetic sequence of two interleaved streams. The prefetcher
inspector shows that no prefetcher burst is generated (result available on our online
repository [16]).

PageO
o|1|2]3]4]5]6]7]8[10[11]12][13]14]15]16/17|18]19|20|21]22]23|24|25]|26|27|28]29[30[31

____ENNEEEEEEEEEEEEEEEEEEEEEEEE

5

Empty . Just requested . Accessed in the past |:| Prefetched

Figure 6.13: Cortex-A7 synthetic sequence: maximum stride.

An important feature of the stride prefetcher is the maximum stride value till the
stream no longer triggers a prefetcher burst. We use multiple sequences of three ad-
dresses with different stride values to identify the maximum value. We start from the
minimum value, i.e., stride equal to one, and increase it until the prefetcher no longer
generates prefetches. Figure 6.13 shows the results for five sequences with stride val-
ues from one up to five. We only show on Figure 6.13 the last row of each sequence
graph. We observe that up to four, the stream is detected and triggers a prefetcher
burst of three cache lines for all the stride values. Also, we observe that the prefetcher
adapts the burst to the stride value to only prefetch cache lines which are part of the
stream.
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Importantly, we show in this section just a few examples of the complete list of the
synthetic sequences we use to create the functional model of the Cortex-A7. Hence,
we put on our online repository [16] the complete list of sixteen synthetic memory
sequences with their prefetcher inspector outputs.

6.5.4 Cortex-A53 Reconstruction

We implement the reconstruction phase of Pref-X on the Cortex-A53 as we do with the
Cortex-A7. For that, we start with the same simple synthetic sequence. We create a
stream with a stride equal to one from address 0 to address 23. Figure 6.14 shows the
graph prefetcher inspector results. We make four observations.

First, similarly to the Cortex-A7, three missing accesses to a stream trigger a
prefetcher burst, as we can see with the addresses 0, 1, and 2. Second, a prefetcher
burst has a length of three cache lines, as observed with the seven prefetcher bursts
present on the graph. Third, a request that hits a previous prefetched cache line trig-
gers a new prefetcher burst. Thus, in Figure 6.14, only the first burst is generated be-
cause of missing accesses. The six others prefetcher bursts are generated after a request
hits a previous prefetched cache line. Fourth, all the hitting requests do not trigger a
prefetcher burst every time. Gradually, the distance between two prefetcher bursts in-
creases. Thus, addresses 3, 4, and 5 generate one burst each. Then, address 6 does not,
and finally, a burst is generated every three hits, e.g., addresses 7, 10, and 13.

Figure 6.15 shows the prefetcher inspector results of three other synthetic memory
sequences. The sequence #1 shows the behavior of the prefetcher when a prefetcher
burst reaches the end of the page. We observe that a prefetcher burst cannot extend
to the next page. Thus, we believe that the prefetcher works with physical addresses
and cannot know what the next physical addresses of the next page are. However, we
observe that accessing the first cache line of the next page generates a prefetcher burst
of three cache lines. The prefetcher identifies this access as the continuity of the stream
and restarts the data prefetching on this new page.

With the sequence #2 of Figure 6.15, we show the maximum number of unrelated
misses between accesses of the same stream that still triggers a prefetcher burst. Thus,
we observe that the maximum number is six missing accesses. We create two other
similar sequences but with one more missing access between the accesses of cache
lines 1 and 8 and between cache lines 8 and 15. For both sequences, the stream no
longer triggers a prefetcher burst. The distance between the accesses is too large.
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PageO
011|2(3|4|5(6|7|8(9]|10|11(12|13|14|15|16|17(18]|19(20|21|22|23

I:I Empty . Just requested

Figure 6.14: Cortex-A53 synthetic sequence: stream stride 1.

. Accessed in the past |:| Prefetched

Another feature we expose on the sequence #2 is the behavior of the prefetcher if
we access the missing cache line that follows a prefetcher burst. Hence, the end of the
sequence is a request to address 6 just after the prefetched cache lines 3, 4, and 5. We
observe that contrary to the Cortex-A7 prefetcher, this access triggers a one-cache line
prefetch, the address 7.

With the sequence #3 of Figure 6.15, we observe that the prefetched cache lines that
hit in the L1D do not stop the data prefetching. We start the sequence with two accesses
to addresses 4 and 8. Then, we generate a first prefetcher burst that includes address 4
with three consecutive misses to the addresses 0, 1, and 2. We observe that as address
4 is already present in the L1D, the burst is extended to address 6 to conserve the same
number of prefetched cache lines. The second burst that hits address 3 generates the
same behavior. The prefetcher burst jumps the already present address 8.
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Sequence #1 Sequence #2 Sequence #3
PageO Pagel PageO PageO
57|58|59(60[6162[63| 0| 1[2]3 |4 Length [0]1|2[3]4|5[6]7]|8 o[1]23]4a]s[e]7]8]10]11[12
0

1

8

15

| 16 |
. Just requested . Accessed in the past |:| Prefetched

|:| Empty

Figure 6.15: Cortex-A53 synthetic sequence: #1, #2, and #3.

As we see with the sequence #2 of Figure 6.15, the accesses of a stream can be
distanced from other accesses. That way, we build the sequence of Figure 6.16. The
sequence contains three interleaved streams with the same stride equal to 1. We ob-
serve with the accesses to addresses 2 and 34 of page 0 that the first and second streams
are detected and trigger two prefetcher bursts to the corresponding stream in parallel.
The third stream does not trigger any bursts. Also, in parallel, the hitting accesses
to addresses 3 and 35 of the first and second streams generate new prefetcher bursts.
Then, the data prefetching of the first and second streams stops, and the third stream
triggers prefetcher bursts. At the end of the sequence, the first and second streams
access the missing address following the last prefetched cache line, i.e., the addresses 9
and 41. We observe that only the missing access of the second stream (41) generates a
one-cache line prefetch. That may indicate that the prefetcher had to stop tracking the
tirst stream to start tracking the third one. Based on those observations, we conclude
that the prefetcher can track up to two streams in parallel. We create more sequences
to challenge this draw insight, including from two to four interleaved streams. We also
change the stride value of the streams to see if we observe the same behavior. Those
synthetic sequences are available on our online repository [16].

6.5.5 Functional Models

Once we run enough synthetic sequences, we create the Cortex-A7 and Cortex-A53
data prefetcher functional models. We implement them as Python state machines that
react to incoming memory requests. We also create a functional Python model of the
Cortex-A7 and Cortex-A53 L1 data cache. Both L1D caches are 4way associative and
have the same 32KB size. Furthermore, they both use a Last Recent Used (LRU) re-
placement policy. Both functional models are available on our online repository [16].
We summarize the main features of the models in Table 6.1.



6.5. Implementation 93

Page0 Page0 Pagel
0|1(2|3|4|5]|6]|7|8|9]|10| |32|33|34(35|36(37|38(39|40|41|42(43| |0|1|2|3|4|5(6]|7|8|9|10|11(12|13(14|15(16|17

|:| Empty

Figure 6.16: Cortex-A53 synthetic sequence: three interleaved streams.

. Just requested . Accessed in the past |:| Prefetched

To finish the first phase of Pref-X we execute all the synthetic sequences on both
functional models. For each sequence, we verify that the functional model behaves
the same way as the real reference data prefetcher. When the results are precisely the
same, we end the first phase of Pref-X.

6.5.6 Verification

Once we finish the reconstruction phase, we start the verification phase of both func-
tional models. For that, we first generate realistic memory sequences that we execute
and simulate on the real reference commercial CPUs.

We use the gemb simulator and the SPEC CPU2006 suite to generate realistic se-
quences. We use the HPI gem5 model and the SimPoint methodology [108] with only
1 million instructions per slice and K set to 30. For each simpoint, we extract from
the simulation a memory trace. We filter this trace to keep the accesses to L1 and then
split it into segments of 1 thousand lines. We generate realistic memory sequences
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Table 6.1: Comparison of the A7 and the A53 stride prefetchers.

Parameter Cortex-A7 Cortex-A53

Initial trigger cond. 3 misses 3 misses

Trigger input L1 misses L1 misses + hit on prefetch
Burst length 3 3/1

Max. stride length 4 4

Max. dist. in requests 1 7

Miss after Hit on prefetch: burst of 3 /

Cond. to continue prefetched  miss after prefetch: burst of 1

Burst hitting in L1 Stop burst  Keep burst skipping lines in L1
Tracking across pages No Yes

Max. num. of streams 1 2

Max. inter stream dist. - 8: from 3rd miss to any prefetch

from those segments. For that, we remove redundant accesses to the same cache line,
e.g., multiple accesses to different words of the same cache line. In order to reduce the
memory footprint, we compact the page mapping by removing unused intermediate
pages. Finally, we remove the sequences with less than ten accesses or more than one
hundred pages as those sequences would generate very low data prefetching activity.
Overall, we obtain around 149 thousand realistic memory sequences, including over

16 million memory accesses.

Once the realistic sequences are generated, we execute them on both the commercial
CPUs and the functional models. For that, we use a simpler version of the prefetcher
inspector. This version only executes the memory sequences on the CPU and measures
the number of prefetches generated. We compare the number of prefetches generated
on the commercial CPU and the corresponding function model. When a significant
difference is detected, we divide the sequence, which may contain several hundred
accesses and a dozen pages, into smaller portions that we analyze with the prefetcher
inspector. We use the results from the prefetcher inspector to fine-tune the functional
model.

As we see during the reconstruction phase, the Cortex-A7 data prefetcher is not as
complex as the Cortex-A53 one. Thus, we mainly iterate the verification phase with
the Cortex-A53 functional model. We use four sequences that we split into 24 realistic
sequences. All those realistic sequences and prefetcher inspector results are available
on our online repository [16].
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6.6 Evaluation

In this section, we evaluate the functional models of the Cortex-A7 and Cortex-A53
that we create in the previous Section 6.5. We use the memory sequences generated
with gem5 and the SimPoint methodology with different metrics to show the accuracy

of our framework.

One the execution and simulation of memory sequences, Figure 6.17 shows the
prefetcher intensity, which is the ratio between the number of prefetches and memory
accesses. We sum the number of prefetches and memory accesses for all the sequences
belonging to the same benchmark. Then, we process the ratio for each benchmark and
the average of all. We observe that the Cortex-A53 has an average prefetcher inten-
sity close to 40%, which is three times higher than the Cortex-A7. Also, one bench-
mark, 462 libquantum, has a prefetcher intensity higher than 100% with the Cortex-
A53. Thus, more than half of the data movement is due to the data prefetcher with
these memory sequences. Consequently, Figure 6.17 motives the need for accurate

data prefetcher models in architecture simulators.

m Cortex-A7 mCortex-A53

%ZJJ 31 JJ'J‘J!JJ, JJJJJ]JJ

S EE S REND LB OO S RS S X
I R GO Ot RSy
£ W 90e% M MRL S ST W S TP GG P SR T
o AN NS O \ ’\ A
S > o > &
N R Koy b

Figure 6.17: Prefetcher Intensity of SPEC CPU2006 benchmarks executed on the Cortex-A7 and
Cortex-A53, and simulated on their corresponding functional models.

Figure 6.18 shows the modeling error for each benchmark and the average of all
of them. We define the modeling error as the absolute difference in prefetches be-
tween the real execution and the functional model, normalized with the results from
the real execution. We observe that the average and maximum modeling error for
the Cortex-A7 are very low, 0.2% and 0.8%, respectively. For the Cortex-A53, the av-
erage and maximum modeling error for the Cortex-A7 are very low, 3.2% and 5.9%,
respectively. The modeling error difference between both CPUs comes from the more
complex data prefetching processes implemented in the Cortex-A53. In addition, the
higher prefetcher intensity of the Cortex-A53 causes small deviations in behavior to
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generate high modeling errors. However, we believe the modeling error to be low
enough to validate the functional models created with Pref-X.
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Figure 6.18: Normalized modeling error of SPEC CPU2006 benchmarks executed on the
Cortex-A7 and Cortex-Ab3, and simulated on their corresponding functional models.

Furthermore, we show in Figure 6.19 the distribution of the memory sequences de-
pending on the number of prefetches for the Cortex-A7 and the Cortex-A53. Each
sequence is assigned to a bin, defined by a minimum and a maximum number of
prefetches. We calculate the average modeling error for each bin and plot it on Fig-
ure 6.19. From the results, we make two observations. First, most sequences generate
less than ten prefetches for the Cortex-A7 and less than twenty for the Cortex-A53.
Second, the modeling error remains quite constant and low across all bins, meaning
that the accuracy of our functional models does not depend on the prefetcher intensity.
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Figure 6.19: Memory sequences distribution depending on the number of prefetches generated
on the Cortex-A7 and Cortex-A53.
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6.7 Summary

To conclude, we propose in this chapter Pref-X, a framework to analyze functional
characteristics of data prefetching in commercial in-order cores. We first illustrate the
insights we use to build the framework based on the methodology introduced in Chap-
ter 4. Basically, we stress the data prefetcher using specific memory request sequences.
Then, we inspect the addresses present in the cache to detect data prefetching. We enu-
merate the possible scenarios that can arise from executing the sequence and inspect-
ing the cache content. Finally, depending on the scenario monitored, we can conclude

whether either an address has been prefetched or not.

We introduce the two phases of the methodology, i.e., the reconstruction and the
verification phases. The first phase allows to create a functional model of the target
architecture data prefetcher. For that, we describe the prefetcher inspector, a sub-tool
of Pref-X. The prefetcher inspector is a set of microbenchmarks and scripts that take
memory sequences as input and execute them on the target architecture to expose data
prefetching activity.

Once we reconstruct the functional model with the first phase, we start verifying it
with the second one. For that, we use realistic benchmarks and extract from them real-
istic memory sequences. We execute those sequences on the target architecture using a
simpler version of the prefetcher inspector and the functional model. We compare the
results to detect differences. Then, we correct the functional model in function of the

new insights we get from the verification results.

Finally, we implement Pref-X on two ARM in-order cores, the Cortex-A7, and the
Cortex-A53. To evaluate the two data prefetcher functional models, we use bench-
marks from the SPEC CPU2006 suite. We use the gem5 simulator to extract around
149 thousand memory sequences that we execute on both the functional models and
the target architectures. Thus, we show a functional accuracy of 99.8% and 96.8% for,
respectively the Cortex-A7 and the Cortex-A53.
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In summary, this thesis tackles the calibration problem of computer architecture
simulation models. We focus on the on-chip memory subsystem and its interaction
with the main working memory, which significantly impacts modern architecture per-
formance and energy efficiency. In particular, this thesis aims to provide more accurate
computer architecture simulations by reducing parametrization errors in the memory

system of existing simulation models.

In this chapter, we summarize our key findings and propose some recommenda-

tions for future work. Finally, we provide concluding remarks.

7.1 Summary of Key Findings

This thesis contributes to the reduction of parametrization errors in computer architec-

ture simulators with three main contributions that are summarized next.

7.1.1 Memory Timing Calibration

The first main contribution of the thesis is a systematic methodology to calibrate the
memory system of architecture simulations against a real target commercial architec-
ture. Thus, the methodology provides a complete workflow through two phases: Pa-
rameter Identification and Parameter Discovery. The first phase describes the generic
memory system parameters, which are summarized in a template applicable to dif-
ferent simulators. Then, the second phase details the modular design of handcrafted
microbenchmarks that we use to extract missing technical information necessary for
simulator parameter calibration. The design includes multiple microbenchmark fea-
tures, i.e., data pinning, memory requests dependency, and noise minimization, which
are instantiated accordingly to the target architecture. We apply our general method-
ology to two different use cases, which correspond to our next two main contributions.

7.1.2 Memory Levels Instance

The second main contribution is the instantiation of the methodology to the timing cal-
ibration of a simulator’s memory system. We implement the instantiated methodology
on the gem5 simulator and one ARM Cortex-A53 present in the MediaTek Helio X20
SoC as the target architecture. We show that the designed microbenchmarks allow the

extraction of technical information:
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* Cache levels: size, parallelism, replacement policy, and access time.

¢ TLB: micro-TLB penalty, micro-TLB entries, main-TLB penalty, and main-TLB

entries

* Main memory: access time, conflict penalty, and address mapping

To evaluate the methodology, we compare the simulation of the SPEC CPU2006
suite on three gemb configurations against execution on the MediaTek Helio X20. The
three gem5 configurations are the default gem5 baseline, i.e., the HPI model, the cal-
ibrated gem5 configuration, and the calibrated gem5 configuration extended, which
includes Ramulator to simulate the main memory. The results show that the calibrated
gemb configuration (extended) has an average error of 17.6% (16.5%) and a maximum
error of 37.1 % (36.2%). Reducing the average simulation error by 39.6% (43.3%) and
the maximum error by 61.5% (62.5%) compared to the default configuration. Thus, the
evaluation shows that the methodology achieves better simulation accuracy, offering

sufficient baseline models for accurate design explorations.

Additionally, we compare the execution time of both calibrated configurations.
Thus, we observe that to reduce the average and maximum errors by respectively 6.2%
and 2.5%, the extended configuration increases the simulation time by 60%, from 128h
to 205h. Thus, it illustrates that the modeling accuracy needs to be properly adapted
considering the application to optimize the simulation time.

This work resulted in two contributions:

¢ International Conference: Quentin Huppert, Timon Evenblij, Manu Perumkun-
nil, Francky Catthoor, Lionel Torres, and David Novo. "Memory Hierarchy Cali-
bration Based on Real Hardware In-order Cores for Accurate Simulation," in Pro-
ceedings of DATE, 2021.

¢ National Symposium: Quentin Huppert, Lionel Torres, and David Novo. "Mem-
ory Hierarchy Calibration Based on Real Hardware In-order Cores for Accurate
Simulation," Poster in GDR SoC2 Colloque, 2021.

7.1.3 Pref-X Instance

The third main contribution is an instantiation of the methodology on the data
prefetching engine: a key memory system component that was disregarded in our
previous study. The instantiation results in a framework, Pref-X [16], to analyze the
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functional characteristics of data prefetching in commercial in-order cores. We imple-
ment Pref-X on two ARM in-order cores, the Cortex-A7, and the Cortex-A53, and their
respective functional models. We open-source the tool and the results of both imple-

mentations on our online repository [16].

We evaluate Pref-X using memory traces extracted from the SPEC CPU2006 suite.
We first execute the traces on both target CPUs and show that the data prefetcher
has a significant role in the data movement as the average prefetcher intensity of the
Cortex-A7 and Cortex-A53 is respectively 11.1% and 36.6%. However, depending on
the benchmark and the data prefetcher, the prefetcher intensity value can change sig-
nificantly. Thus, the prefetcher intensity for the Cortex-A7 is between 1.2% and 70.0%,
and between 6.8% and 101.6% for the Cortex-A53. Noticeably, more than 100% means

that more than half of the data movement is due to the data prefetcher.

Then, we execute the SPEC CPU2006 memory traces on both functional models
and compare the results with the results from the target CPUs. The results show that
Pref-X provides functional accuracy of 99.8% and 96.8% for the Cortex-A7 and the
Cortex-A53, respectively. Also, we observe that for all the benchmarks, the minimum
accuracy is 99.1% for the Cortex-A7 and 94.1% for the Cortex-A53. It shows that the
accuracy is relatively constant over the benchmarks. The memory traces used for the

evaluation are available on our online repository [16].

Additionally, we bin the memory traces depending on the number of prefetches
they generate on the target CPUs. The population of the binning shows that many
memory traces do not generate high data prefetching activity. However, the aver-
age accuracy remains low and constant over the bins, i.e., from a low to high data
prefetcher activity. Hence, the results show that Pref-X allows good data prefetching
functional modeling stride prefetchers, even with high data prefetching intensity.

This work resulted in two contributions:

¢ International Conference: Quentin Huppert, Francky Catthoor, Lionel Torres,
and David Novo. "Pref-X: a framework to reveal data prefetching in commer-

cial in-order cores," in Proceedings of DAC, 2022.

* Code Release: Quentin Huppert. "Pref-X." https://gite.lirmm.fr/adac/

pref—-x

We also plan to submit an extension of our DAC paper, including the analysis of
the more modern Cortex-A55 data prefetcher, to the IEEE Transactions on Computers
before the end of the year.


https://gite.lirmm.fr/adac/pref-x
https://gite.lirmm.fr/adac/pref-x
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7.2 Recommendations for Future Work

We illustrate in this thesis two instances of the calibration methodology that we pro-
pose. The evaluation of those methodology instances show conclusive results. Hence,
we believe that the number of instances of the methodology should be increased. Thus,
in the rest of the section we introduce different instances of the methodology that we

identify as future work.

7.2.1 Timing Calibration Coverage

We believe that the methodology’s instantiation we propose for the memory system’s
reactive components could be extended for the timing aspects of different parameters
or components. Thus, to illustrate possible extension directions, we introduce different

examples for each element we have just enumerated.

Components parameters. During the instantiation, we extract multiple parameter val-
ues from the target architectures. However, the proposed microbenchmarks do not
extract all the key parameter values introduced in the methodology. For instance, the
bandwidth is a crucial characteristic of the interconnect, especially with multicore sim-
ulations. Thus, a dedicated microbenchmark design should be detailed to calibrate this
parameter which is often not public. In the same, if the associativity of the caches is
not disclosed, microbenchmarks should extract it. Consequently, multiple parameters,
such as the main memory organization, or the DRAM controller policies, should still
be part of microbenchmark designs.

Additional memory system. The methodology instantiation covers multiple compo-
nents of the reactive memory system. However, some of them are still not covered
by it. Thus, the instantiation could further include the storage memory level in the
calibration process. However, adding storage memory to the simulation implies sim-
ulating an OS, as it manages the complete data movement between the main and the
storage memory. Another component that is not covered by the instantiation is the
cache coherence protocol. Multicore architectures can implement many different pro-
tocols. The calibration of this component would be necessary for future explorations.
For instance, to explore the utilization of NVM within the memory system, it could be
necessary to evaluate the impact of the coherent cache protocol against the NVM write

penalty.
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7.2.2 Data Prefetching Analysis

The instantiation of the methodology on the data prefetcher engine results with Pref-
X framework, which suffers from two limitations. First, the framework is limited to
analyzing in-order core data prefetchers. Second, the framework proposes functional
modeling of the data prefetcher, which does not include all the characteristics, such as

the timing characteristics.

Coverage. Pref-X implements the prefetcher inspector to expose data prefetching activ-
ity. The prefetcher inspector microbenchmark is based on three important steps. First,
it executes the memory sequence. Then, it inspects one address. Finally, it resets both
the cache and the prefetcher for the next iterations, i.e., to make each iteration indepen-
dent from the other. The execution of the memory sequence and the address inspection
can easily be done with other target architectures. However, the final reset step is more
tricky as we can not directly flush data prefetcher metadata. For instance, we propose
with the Cortex-A7 and Cortex-A53 to use several relative memory zones like that we
do not use the same addresses over the iterations. However, this reset method could
be usable with all the data prefetcher. Some data prefetchers may identify the same
pattern over different physical addresses and trigger prefetches. Consequently, a sig-
nificant part of the Pref-X coverage depends on the possibility of resetting or not the
state of the data prefetcher. Accordingly, future work would focus on evaluating the
reset method on other architectures to extend Pref-X on them.

Timing metrics. The data prefetcher is part of the complete memory system. Similar
to the other components, it operates concerning timing constraints. In order to focus
on the functional behavior of the data prefetcher, we add many NOPs operations in
the microbenchmark measure loop operations to evict any timing interferences. For
instance, the number of outstanding requests the prefetcher can generate in parallel
does not impact the functional behavior. In this way, we believe that the instantiation
of the methodology could be extended to generate a complete data prefetcher model.
Further, the extended instantiation would be used to calibrate more architecture simu-
lators using flawed data prefetcher baseline models.

7.2.3 Further Instantiations

In this thesis, we instantiate our methodology on typical CPU memory systems with a
traditional cache hierarchy accessed from the main SDRAM-based working memory.
As we develop this methodology to be systematic, we propose instantiating it through
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other kinds of memory system organizations as future work. The principal limitation
of the methodology comes from hardware monitoring. However, performance coun-
ters are available in many other kinds of architecture. Thus, the methodology could
be instantiated on GPU or CNN accelerator memory systems. Moreover, new orga-
nizations of the memory hierarchy would also be included. For instance, scratchpad
implementation [154], or the RISCV MemPool [155] with its shared-L1.

Another way to instantiate the methodology would be to have new hardware mea-
surements available, such as energy consumption. Thus with an energy measure-
ment, the methodology could be instantiated to calibrate power architecture simu-
lators. Hence, exploring new hardware measurements should also be part of future

work.

7.24 Beyond the Memory System

Finally, with the methodology, we focus on a critical component of modern multicore
architectures, the memory system. However, we believe this methodology to be used
as a reference to other calibration methodologies. Thus, future methodologies could
target other elements of the architecture, such as the different functional units of the
core pipelines. Moreover, modern multicore architectures implement many different
process units like GPUs or accelerators. Those elements can significantly impact global
system performance and energy efficiency. In this way, dedicated methodologies can

be part of future work.

7.3 Concluding Remarks

In this thesis, we explore memory system modeling and its calibration against real
state-of-the-art architectures. We illustrate the challenges of calibrating computer ar-
chitecture simulators and propose a systematic methodology to calibrate their memory
system. The methodology details and demonstrates the design of handcrafted mi-
crobenchmarks that use hardware monitoring to reveal hidden technical information
needed for adequate calibration. We describe two instantiations of our methodology
on two different use cases. First, we propose a memory system timing calibration to
extract non-public timing information from commercial architectures. Second, we pro-
pose a framework to analyze in-order core data prefetching and derive a complete
functional model of commercial data prefetchers. We hope our methodology and use-

case instantiations will help the community achieve more accurate simulations, which
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are crucial for exploring new multicore architectures. Also, we hope this thesis will
encourage similar work to improve the accuracy of computer architecture simulation

further.
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Appendix

Cache Flushing

We illustrate in Figure 1 the inline assembly function we use to flush an address. This
function depends on the ISA. Here, we use ARMvS8-A ISA [24].

# define flush(p) {\
asm volatile("dc civac, %0" : : "r"(p) : "memory"),; }

Figure 1: Flush function for ARMv8-A CPUs.
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LOOP Monitoring

Figure 2 illustrates the use of the PAPI library to monitor C-code measure loop and

read the results from the performance counters.

/* Performance Counters Values =*/
long long values[6] = {0, 0, 0, 0O, 0, 0};

/* clock variables =/
clock_t start, end;
float cpu_cyc;

/* Start counting events in the Event Set =«/
if (PAPI_start (EventSet) != PAPI_OK)
printf ("Error: PAPI_start \n");

start = clock();
/+ Reset the counting events in the Event Set =/
if (PAPI_reset (EventSet) != PAPI OK)

printf ("Error: PAPI_reset\n");

[k kkkkkkkx Measure LOOP *xxxxxxxx*x/

for (long long int loop=0; loop < LOOP; loop++){ // Outer Loop
!/
// Measured operations
//

/+* Read the counting events in the Event Set «/
if (PAPI_read(EventSet, values) != PAPI_OK)
printf ("Error: PAPI_read\n");

/+* Read time from time-linux library =/
end = clock{();
cpu_avg_cyc = (float) (end- start) = 1.391;

printf ("L1D_A,L1D_R,L2D_A,L2D_R,L1D_TLB, PREF,CYC\n");
printf("%$11d,%11d,%11d,%11d,%11d,%11d, %$f\n",
values[0], wvalues[l], values[2],
values[3], values[4], values|[5],
cpu_cyc) ;

PAPI_shutdown () ;

Figure 2: Measure loop monitoring with PAPL



125

PAPI implementation

Figure 3 and Figure 4 illustrates the implementation of the PAPI library with a C-code
design. The events are those introduces in Section 4.4.

void papi_init () {

/* PAPI variables */

int retval = 0;

int code[6];

int EventSet = PAPI_NULL;

/+ Setup PAPI library and begin collecting data from the
counters x/
retval = PAPI_library_init (PAPI_VER_CURRENT) ;
if (retval != PAPI_VER_CURRENT) {
printf ("PAPI library init error! %d\n", retval);

/* PAPI Events */
retval = PAPI_event_name_to_code ("L1D_CACHE_ACCESS", &code[0]);

if (retval != PAPI_OK) printf ("Error: PAPI_event 0\n");

retval = PAPI_event_name_to_code ("L1D_CACHE_REFILL", &code[l]);
if (retval != PAPI_OK) printf ("Error: PAPI_event 1\n");

retval = PAPI_event_name_to_code ("L2D_CACHE_ACCESS", &code[2]);
if (retval != PAPI_OK) printf ("Error: PAPI_event 2\n");

retval = PAPI_event_name_to_code ("L2D_CACHE_REFILL", &code[3]);
if (retval != PAPI_OK) {printf ("Error: PAPI_event 3\n");

retval = PAPI_event_name_to_code ("LID_TLB_REFILL", &code[4]);
if (retval != PAPI_OK) printf ("Error: PAPI_event 4\n");

retval = PAPI_event_name_to_code ("L1D_CACHE_REFILL_PREFETCH", \
&code[5]);
if (retval != PAPI_OK) printf ("Error: PAPI_event 5\n");

Figure 3: Microbenchmark C code designed to extract memory level signatures
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/* Create the Event Set =/
retval = PAPI_create_eventset (&EventSet);
if (retval != PAPI_ OK)
printf ("Error: PAPI_create_eventset (%d)\n", retval);

/* Add Total Instructions Executed to our Event Set x/

if (PAPI_add_event (EventSet, code[0]) != PAPI_OK)
printf ("Error: PAPI_add_event 0\n");

if (PAPI_add_event (EventSet, code[l]) != PAPI_OK)
printf ("Error: PAPI_add_event 1\n");

if (PAPI_add_event (EventSet, code[2]) != PAPI_OK)
printf ("Error: PAPI_add_event 2\n");

if (PAPI_add_event (EventSet, code[3]) != PAPI_OK)
printf ("Error: PAPI_add_event 3\n");

if (PAPI_add_event (EventSet, code[4]) != PAPI_OK)
printf ("Error: PAPI_add_event 4\n");

if (PAPI_add_event (EventSet, code[5]) != PAPI_OK)

printf ("Error: PAPI_add_event 5\n");

Figure 4: Microbenchmark C code designed to extract memory level signatures
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