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Abstract

Worldwide, highway accidents have important social and financial impacts. To reduce
their frequency and gravity, crash prediction models (CPM) are used to identify
hazardous roadway segments and to provide actionable clues about the associated
risk factors. CPM are either parametric statistical models, in particular generalized
linear models (GLM), or machine learning models with a large number of parameters
without associated uncertainty estimates (e.g., ensemble of decision trees, support-
vector machine . . . ). Simple parametric models tend to be more interpretable but
less effective than highly flexible non-parametric models that work like black-boxes.
When pondering high stake decisions, such as in the context of highway safety, field
experts expect predictive models to be both effective and glass-box interpretable. The
models must assist them in conceiving and deploying preventive or remedial safety
actions.

As such, we contribute to enhancing the predictive performance of parametric
models while maintaining their interpretability. In the first place, a well-chosen hier-
archical structure can handle correlations among groups of observations and signifi-
cantly improve the quality of the models’ predictions and of their interpretation. We
propose to learn it by leveraging the output of a post-hoc explainability framework
(viz., SHAP) applied to a highly flexible black-box model (viz., XGBoost). In our first
contribution, this hierarchical structure informs a Bayesian multilevel GLM. More-
over, in an effort to further improve the predictive performance of the model without
deteriorating its interpretability, we propose to extend its linear functional form to
account for major first-order interactions between explanatory variables. These inter-
actions are learnt from the data by analyzing the results of a trained self-organized
polynomial network.

In our second contribution, we exploit the hierarchical structure even better by
replacing the GLM with a simulated annealing based multi-objective symbolic re-
gression algorithm to automate feature engineering and feature selection. Thus, by
computing a cluster-specific ranking of expansions of regularized linear models or-
dered by increasing complexity, we facilitate a dynamic interpretative process which
makes it possible to discover effective, efficient and interpretable predictive models.
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Experiments have been conducted on a highway safety dataset and on more than
ten public datasets covering classification and regression tasks. They show promising
results with our two contributions outperforming traditional glass-box interpretable
models while getting close to the best non-parametric models. Finally, we illustrate
the benefits of our approach by introducing, on a realistic case study, an application
we designed for highway safety experts.

iv
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Résumé

Dans le monde entier, les accidents de la route ont des impacts sociaux et financiers
importants. Pour réduire leur fréquence et leur gravité, les modèles de prédiction
d’accidents (CPM) sont utilisés pour identifier les segments de route dangereux et
fournir des indices exploitables sur les facteurs de risque associés. Les CPM sont soit
des modèles statistiques paramétriques, en particulier des modèles linéaires généralisés
(GLM), soit des modèles d’apprentissage automatique avec un nombre important de
paramètres sans estimation d’incertitude associée (e.g., ensemble d’arbres de décision,
machine à vecteurs de support . . . ). Les modèles paramétriques simples ont tendance
à être plus interprétables mais moins performants que les modèles non paramétriques
très flexibles qui fonctionnent comme des boîtes noires. Lorsqu’ils réfléchissent à des
décisions à fort enjeu, comme dans le contexte de la sécurité routière, les experts
métier s’attendent à ce que les modèles prédictifs soient à la fois performants et
interprétables. Les modèles doivent les aider à concevoir et à déployer des actions de
sécurité préventives ou correctives.

Dans ces travaux, nous contribuons à améliorer les performances prédictives des
modèles paramétriques tout en conservant leur interprétabilité. En premier lieu, une
structure hiérarchique bien choisie peut gérer les corrélations entre groupes d’ obser-
vations et améliorer significativement la qualité des prédictions des modèles et leur
interprétation. Nous proposons de l’apprendre en exploitant le résultat d’une méth-
ode d’interprétabilité post-hoc (viz., SHAP) appliquée à un modèle boîte noire flexible
(viz., XGBoost). Dans notre première contribution, cette structure hiérarchique in-
forme un GLM bayésien multiniveaux. De plus, dans le but d’améliorer encore les
performances prédictives du modèle sans détériorer son interprétabilité, nous pro-
posons d’étendre sa forme fonctionnelle linéaire pour tenir compte des interactions
majeures de premier ordre entre variables explicatives. Ces interactions sont apprises
à partir des données en analysant les résultats d’un réseau polynomial auto-organisé.

Dans notre deuxième contribution, nous exploitons encore mieux la structure
hiérarchique en remplaçant le GLM par un algorithme de régression symbolique
multi-objectif basé sur le recuit simulé pour automatiser la sélection des variables
explicatives et l’extraction de caractéristiques (viz., interactions, transformations de
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variables explicatives). Ainsi, en calculant un classement spécifique à chaque cluster
des expansions de modèles linéaires régularisés ordonnés par complexité croissante,
nous facilitons un processus d’interprétation dynamique qui permet de découvrir des
modèles prédictifs efficaces, efficients et interprétables.

Des expériences ont été menées sur un jeu de données de sécurité routière et sur
plus de dix jeux de données publics couvrant des problèmes de classification et de
régression variés. Les résultats obtenus sont prometteurs étant donné que nos deux
contributions surpassent les modèles interprétables traditionnels et se rapprochent des
meilleurs modèles non paramétriques boîtes noires. Enfin, nous illustrons les bénéfices
de notre approche en présentant, sur une étude réelle de cas, une application que nous
avons conçue pour les experts de la sécurité routière.
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Chapter 1

Introduction & problem statement

1.1 Context and objectives
Road safety is a socio-economic concern: according to the World Health Organization
[132], approximately 1, 35 million people are killed each year on roadways around the
world. Related expenses average 3% of the gross domestic product of a country. As
stated by the French Road Safety Observatory [38], these costs grow exponentially
with the severity of the accidents. In 2019, a property damage only accident incurred
expenses up to 5 258 euros while the average cost of an accident with at least one
fatality was 3 429 000 euros1.

Since the 1970s, road safety has become a major challenge for successive French
governments. Many new safety policies have been engaged in, such as reductions of
speed limits, the multiplication of fixed radars, the increase in the amount of speeding
fines. At the same time, vehicles became more secure. Road safety was therefore
continuously improved. However, since 2010, the positive trend was attenuated and
the reduction in the fatality rate started to stagnate. For this reason, the French
government, supported by the European Union, motivated new safety policies whose
main issuers would be local authorities and road managers. Among them, APRR2

group, subsidiary of Eiffage, finances, maintains and manages the infrastructure of
a 2 323 km-long highway network (see Fig. 1.1) in return for toll collection. The
objective of the company is to offer high-performance transport infrastructure and
support road users at every stage of their travel, guaranteeing them the best conditions
for traffic flow and safety.

To secure their network, field experts of APRR leveraged an extension of the User’s
1These amounts include the various costs incurred for territorial and local authorities (hospital-

ization, insurance, etc.) and for road managers (marking, road works, etc.)
2Autoroutes Paris-Rhin-Rhône: https://aprr.com/en

1
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Figure 1.1: APRR’s highway network [9]

Safety on Existing Roads (SURE) approach, a comprehensive and global framework
for network safety management initiated by the French government. First, they im-
plemented a multi-criteria decision analysis method to compute a ranking of segments
based on the values of different crash-related criteria (e.g., annual average daily traf-
fic, fatality or injury rates, . . . ). Then, after studying crash reports and conducting
on-site visits, field experts elaborated pluriannual action plans (operation, mainte-
nance, . . . ) on segments where the safety improvement were potentially the greatest.
In the end, this method contributed to a significant reduction in fatality and severity
rates.

Nevertheless, SURE does not work on reducing the crash likelihood and does not
explain the mechanisms affecting crash-prone areas. Therefore, decision makers have
opted for the development of new intelligent systems inspired by the latest advances
in Artificial Intelligence (AI). A collaboration has been initiated between LIRIS 3

laboratory and Data New Road4, a subsidiary of APRR dedicated to the harnessing
of the company’s historical data. The main objective of this collaboration was to build
an AI system to estimate accurately future hazardous segments and to identify risk
factors. A system that meets these requirements will be a fundamental element in the
implementation of new proactive safety policies, and will therefore have a beneficial
and directly measurable impact.

3Laboratoire d’InfoRmatique en Image et Systèmes d’information: https://liris.cnrs.fr/
4https://www.data-newroad.com/

2
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1.2 Crash prediction models
In the field of road safety, research has focused on obtaining a better understanding
of the mechanisms that affect the probability of an accident. Given the absence of
precise data related to human behavior (lack of attention, fatigue, alcohol, . . . ), crash
prediction models (CPM) do not provide cause-and-effect relationships that would
explain the occurrence of an accident. Instead, they emphasize the use of factors that
could influence the likelihood of an accident over a given period (e.g., year, month)
and in a given geographical area. CPM are trained on historical data to discover
hidden patterns between the crash-related variable and several explanatory variables
(e.g., traffic, speed limit, altitude, . . . ). They are mainly used to identify risk factors
in order to steer the evolution of safety policies.

In their survey [75], Lord and Mannering provide a broad perspective on the
variety of data-related issues raised by crash count prediction: over-dispersion of
count data, temporal and spatial correlations due to multiple measurements of a same
location at different times, fixed parameters that cannot adapt from one roadway to
the next, low sample-mean due to the sparsity of crashes, non-linear relationships
between crash-frequencies and explanatory variables, etc. Most of theses issues are
made more prominent with the use of parametric models, in particular generalized
linear models (GLM). Indeed, GLM must undergo many transformations to adapt
to the crash count prediction context (e.g., the choice of a non-normal likelihood
distribution, the integration of random effects and hierarchical models, etc). Whereas
non-parametric approaches (e.g., neural networks, tree-based algorithms, SVM...)
will deal with most of these issues without the need for specific adaptations and will
usually offer better predictive performances than parametric models. On the other
hand, this improvement in predictive power comes at a cost. These models, which
involve a large number of parameters, are often considered as black boxes that do
not allow direct understanding of the mechanisms that led to a prediction. Thus,
when designing CPM, both dimensions (viz., performance and interpretability) must
be considered. However, while performance is easily measured with widely adopted
metrics, quantifying interpretability remains more debated.

1.3 Model interpretability: concepts, taxonomies
In our study, we consider a predictive model to be glass-box interpretable when it
quantifies explicitly (i.e., not by simulation) the marginal effects of the explanatory
variables and also possibly of a few simple transformations of these variables (e.g.,
multiplicative interactions, log transforms, etc.). Thus, we stress the importance of
favoring simple functional forms namely, expansions of linear models.

3
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On the contrary, non-parametric models allow for very flexible, but often complex,
functional forms. For these models, some sense of the marginal effects can be gained
by studying ceteris paribus profiles. They represent the influence of an explanatory
variable by assuming that all the other variables remain constant. In the case of
flexible functional forms, the choice of the fixed values for all the variables but the
one for which the marginal effects are to be observed has a great influence on the
interpretation of the effect. Often, different choices (if not all) should be considered
to provide a more faithful view of the marginal effects. Of course, the number of
configurations of fixed values grows quickly with the number of explanatory variables.
Some heuristics have been used to manage this complexity. For example, Beck et
al. [13] chose to “hold constant the other variables at two values: high and low
probability” of the target.

To truly measure the marginal effects, one should, as stated in [47], “estimate par-
tial derivative with respect to each input variable and at each observation through re-
peated simulations”. This strategy is computationally prohibitive when implemented
by simulating data from a complex model. Among the oldest computationally conve-
nient variants, we find the permutation based methods applied to variable importance,
partial dependence plots or individual conditional expectation plots. However, Hooker
and Mentch [52] have found that “when features in the training set exhibit statistical
dependence, permute-and-predict methods can be highly misleading when applied to
the original model”. More refined approximation methods have been proposed, such
as LIME or SHAP. They are also based on observing the effects of a perturbation of a
given instance on the output of the model. These approaches are often referred to as
model-agnostic post-hoc explanation methods. However, recent works, in particular
[114] tend to show that it can be difficult to assess their reliability and robustness.
Also, Garreau and Luxburg [41], in a theoretical study of LIME, verified by simu-
lations, showed that, while this post-hoc approach “discovers interesting features, it
might forget some important features and the surrogate model is not faithful”.

Generalized Additive Models (GAM) [49] can be located halfway between complex
flexible functional forms and simple glass-box models. They give some access to the
marginal effects by enabling plots of the expectation of the target given the values
taken by each explanatory variable. Lou et al. [76] designed a GAM variant based
on boosted trees, the Explainable Boosting Machine (EBM). It is often almost as
accurate as flexible black-box models. However, Chang et al. [20] observed that
different GAM algorithms, while offering comparable results in terms of accuracy,
can lead to very different interpretations of the predictions.

Finally, we consider that simple linear models with the inclusion of some trans-
forms of the original explanatory variables and the use of a regularization term (e.g.,
ridge or LASSO) to control the bias/variance trade-off remain promising among the
intrinsically glass-box approaches. However, they come with key challenges. If one

4
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doesn’t want the user to be solely responsible for deciding which functions of the
original variables are to be considered, a strategy must be adopted to explore a com-
binatorial space of potential functional forms. Also, for the model to stay interpretable
in presence of a large number of explanatory variables, the number of relevant coeffi-
cients shouldn’t be too large. However, variable selection is not without drawbacks.
In particular, it suffers from the risk of hiding the main effects behind more complex
correlated terms.

1.4 Machine learning formalization for crash predic-
tion

1.4.1 Data description

Throughout this work, we will refer to x as the vector of explanatory variables de-
scribing a roadway segment during a given period. Each explanatory variable can be
either continuous, discrete or categorical. Continuous variables can assume an infinite
number of real values within a given interval. As opposed to a continuous variable, a
discrete variable can assume only a finite number of numerical values within a given
interval, such as the number of interchanges on a roadway segment in our context.
The categorical variable refers to a variable that takes values in a discrete unordered
set of categories {c1, ...cn}. Sometimes, categorical variables have only two categories
and are therefore called binary variables. For instance, in our crash prediction prob-
lem, the variable presence of tunnel indicates whether a tunnel is present or not on a
roadway segment.

The dependent variable, also known as the target variable, will be denoted y. In
the context of crash count prediction, y is a discrete positive integer that quantifies
the number of crashes observed on a roadway segment for a given time interval. Note
that in the literature, the problem can be tackled with a binary categorical variable.
In this case, the focus is not to predict a crash count, but to know whether or not
a roadway segment will be accidental given the values of the explanatory variables.
These models require the definition of a threshold that is used to differentiate crash-
prone configurations from normal ones.

1.4.2 Supervised learning

In a supervised context, the predictive model must discover how to associate an
observation x to a label y, based on a set of known examples {xi, yi}Ni=1. To model
these dependencies, the process goes through two phases:

5

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0096/these.pdf 
© [T. Véran], [2022], INSA Lyon, tous droits réservés



• training phase: the model is trained to find patterns in the training data that
map the vectors of explanatory variables x to the dependent variables y. To
learn this mapping, the model goes through a stage called model training, where
its parameters (e.g., weights, bias) are updated so the function it approximates
captures the most relevant dependencies among the variables. Sometimes, mod-
els involve hyper-parameters i.e, parameters that are determined before training
and remain fixed afterwards. Thus, an additional step called validation step can
be performed in order to verify the correctness of their values and adjust them
if necessary.

• testing phase: the trained model is evaluated on a set of unknown samples with
appropriate performance metrics (e.g., mean squared error for regression tasks,
f1-score for classification tasks). By doing so, one obtains a less biased estimate
of the predictive performance of the model which will allow, firstly, to validate
the generalization capacity of the model and secondly, to compare the predictive
performance of the selected model with those of others.

However, doing a single train-test split will give, most of the time, an overop-
timistic estimate of the predictive performance of the model. One way to mitigate
this is to use k-fold cross-validation. In k-fold cross-validation, the dataset is split
into k subsets of data (known as folds). The model is trained on k − 1 subsets, and
then evaluated on the remaining subset that was not used for training. This process is
repeated k times, with a different test subset each time. The average performance ob-
tained on the k test subsets gives an estimate of the model’s predictive performance.
In practice, k-fold cross-validation can serve multiple purposes such as defining the
best set of hyper-parameters for a machine learning model or comparing multiple
predictive models and selecting the one that has the best generalization ability.

1.4.3 Application to the highway dataset

In our work for highway safety analysis, the objective is to predict efficiently the crash
count observed on highway segments, given the value of spatial explanatory variables
(e.g., number of lanes, speed limit, . . . ) and temporal explanatory variables (annual
average daily traffic, percentage of heavy vehicles). To learn these relationships, we
leverage supervised learning: first, we start by generating a dataset with samples
representing the crash count and the values of explanatory variables observed on a
segment for a particular year (see table 1.1). The process of generating the dataset
will be described in more detail in section 4.1. Then, we train a predictive model
on a subset of randomly selected samples from the overall dataset (say for example
80%) to learn a function that maps the explanatory variables to the crash count.
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Segment Year Crash count AADTa %HVb #Interchanges . . . Presence of tollgates
A6-2-354-364c 2008 20 26456 19.59 0 . . . 1
A6-2-354-364 2009 20 26343 16.9 0 . . . 1
A6-2-354-364 2010 27 26656 17.31 0 . . . 1
...

...
...

...
...

...
...

...
A40-1-102-112 2017 10 12701 14 0 . . . 0
A40-1-102-112 2018 7 13015 14 0 . . . 0
a annual average daily traffic; b percentage of heavy vehicles
c highway name - direction - reference point begin - reference point end

Table 1.1: Illustrative description of the french highway dataset

To efficiently help field experts, this function will have to meet different challenges
presented in the next section. Finally, we evaluate the performance of the resulting
function on the remaining samples.

1.4.4 Challenges and research questions

If we assume the observed data are generated from an unknown data-generating
process f such that y = f(x) + ε, with ε being a zero-centered Gaussian noise of
variance σ2, our objective is to find a function f̂ that is as close as possible to the
true but unknown process which generated the data. Given the available training
data {(xi, yi)}Ni=1, we estimate f̂ so it minimizes an objective function such as the
mean squared error

∑
i(yi − f(xi))

2.

Bias-variance trade-off To measure the ability of f̂ to generalize to points out-
side of the training data, we compute the expected prediction error (EPE) of the
prediction y∗ = f̂(x∗) + ϵ, with x∗ being an unseen sample. As shown by Hastie et
al. [48], EPE can be decomposed as:

EPE = E[(y∗ − f̂(x∗))2]

= (f(x∗)− E[f̂(x∗)])2 + E[ε2] + E[f̂(x∗)2]− E[f̂(x∗)]2

= bias(f̂)2 + σ2 + var(f̂) (1.1)

We observe that EPE embeds three different sources of error: σ2 is the irreducible
error that cannot fundamentally be reduced by any model, the bias measures the
average error of f̂(x∗), and the variance var gives a measure of the variation of the
prediction f̂(x∗) from one training dataset to another. An ideal model minimizes both
the bias and the variance. However, in a world with imperfect models and finite data,
it is nearly impossible to do both simultaneously. On the one hand, complex models
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Figure 1.2: Bias and variance contributing to total error [37]

(e.g., deep neural networks) approximate precisely training data but are exposed to
over-fitting. On the other hand, simpler models with high bias, such as linear models,
fail to capture important regularities in the data and are therefore prone to under-
fitting. Thus, efforts should be made to reach optimum model complexity for which
the expected prediction error is generally close to its lowest level (see Fig. 1.2). One
way of doing this is to use regularization to find a good trade-off between bias and
variance. Likewise, dimensionality reduction and feature selection also decrease the
variance of complex models.

Finally, when designing predictive models in a high-stakes context, it is necessary
to not focus only on mitigating the bias-variance trade-off, but also to consider model
interpretability because the understanding of the mechanisms that lead to a prediction
is as valuable as the prediction itself.

Performance and interpretability Broadly speaking, non-parametric complex
models, which cover big hypothesis spaces, often obtain very good performance on
many predictive tasks. However, as they involve a large amount of parameters, they’re
often considered as black-boxes [10]. To gain insights into their underlying behaviors,
post hoc explanation tools must be used. Nonetheless, these tools have several draw-
backs w.r.t. the trust and veracity of the explanations they deliver [104, 114]. Indeed,
the representation of the model can be inaccurate in parts of the feature space and
may even be misleading in the under-represented parts [91]. Moreover, even though
these tools can reproduce accurately the predictions of the original model, they may
use completely different features. A well-known example is the proprietary predic-
tion model COMPAS, a recidivism-risk scoring model used widely throughout the
U.S. criminal justice system for parole and bail decisions, which has been criticized
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as being dependent on race based on the interpretations of an explanation model
[60] whereas it has been demonstrated afterwards that COMPAS does not seem to
“depend strongly on either criminal history or proxies for race" [106].

Moreover, when black-box models do not behave as expected (e.g., excellent accu-
racy during training, but very bad performance in production or with testing data),
trying to gain insights into the model is required for troubleshooting (debugging).
Post hoc explanations are commonly used. However, combining a black-box model
and an explanation model (or tool) makes the process of troubleshooting very sensi-
tive. As the explanation is not always correct, it can be difficult to tell whether or
not the black-box model is wrong [105].

Furthermore, as stated by Rudin [105], “black-box models often predict the right
answer for the wrong reason, leading to excellent performance in training but poor
performance in practice". In psychology, this is known as the clever Hans phenomenon
[98], that comes from a horse (of the same name) claimed to perform arithmetic and
other intellectual tasks, but actually was watching the reactions of his trainer. In
the AI context, this phenomenon describes black-box models that can learn different
relationships between variables than the ones of the true data generating process and,
at the same time, provide very accurate predictions. Thus, efforts should be made to
avoid this phenomenon in domains where high-stakes decisions can be made from the
analysis of predictive models such as healthcare, road safety, or criminal justice.

On the other hand, researchers working in the field of interpretable AI observe
that linear models can perform very well on tabular data, especially when the full data
science process is considered (e.g., variable selection, data preparation, model selec-
tion, . . . ) [104]. This could arise from the Rashomon Effect [16], which characterize
problems where many accurate-but-different models exist to describe the same data
[110]. In [110], the authors show empirically that when the Rashomon set (i.e. the
set of almost-equally-accurate models) is large, “most machine learning methods tend
to perform similarly, and also in these cases, interpretable or sparse (yet accurate)
models exist".

Lastly, interpretable models provide a simple and intelligible picture of the rela-
tionship between the explanatory variables and the dependent variable. This not only
ease the process of elaborating new actions, but also allow end users to be confident
in what they plan.
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1.5 Publications and outline

1.5.1 Publications

In this thesis, we try to meet these challenges by extracting, from data and without
prior expert knowledge, the information necessary to build efficient and highly inter-
pretable models. In our first proposal, we consider that data can often be partitioned
so that refined predictive models can apply to different parts more efficiently and
more meaningfully than a global model. We discover such a structure by clustering
the instances based on the features’ scores returned by the SHAP [79] post-hoc anal-
ysis of a flexible black-box model. This clustering then informs a Bayesian multilevel
– hierarchical – generalized linear model. Moreover, we propose to integrate nonlin-
earities by adding to its underlying functional form, the most important interactions
between explanatory variables learnt by a self-organized polynomial network. This
first contribution, described in section 3.2 and section 3.3, was published in:

Crash prediction for a French highway network with an XAI-informed Bayesian hier-
archical model, 2020 IEEE International Conference on Big Data (Big Data) [126]

In our second proposal, we propose to exploit the hierarchical structure even bet-
ter by computing a cluster-specific ranking of expansions of regularized linear models
ordered by increasing complexity. We design a symbolic regression approach for the
automatic discovery of a mapping from the original explanatory variables to a basis
expansion which adds both sparsity and flexibility by including transforms of the vari-
ables. This exploration of the space of potential expansions of linear models is guided
by simulated annealing. More precisely, given a predictive performance metric and a
complexity metric, the meta-heuristic search conducts a multi-objective optimization
to return a list of Pareto optimal models. Through a dynamic interpretative pro-
cess, end users can navigate around these models and select the best model according
to their needs, from the simplest one highlighting main effects to a more specific
one depicting particular configurations related to few instances in the dataset. This
contribution, described in section 3.4, was published in:

Interpretable hierarchical symbolic regression for safety-critical systems with an appli-
cation to highway crash prediction. Engineering Applications of Artificial Intelligence,
117:105534, 2023. [127]
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1.5.2 Outline

In chapter 1, we started by introducing the context and stakes of road safety analysis
and then described the numerous challenges crash prediction models have to face. In
the next chapter, we will first provide more details on the different concepts of model
interpretability through a review of the state of the art before introducing how crash
predictions and explanations have been tackled in the community. In chapter 3, we
present our contributions. More precisely, after giving an overview of our methodol-
ogy in section 3.1, we will describe in section 3.2 the first module of our methodology,
which consists in finding a hierarchical structure in the dataset. In section 3.3, we will
explain how we integrate this hierarchical structure to enhance both the interpretabil-
ity and efficiency of GLM. We will also explain how non-linearities are discovered and
afterwards embedded in the GLM to enhance, yet again, its predictive performance.
In section 3.4, we will describe how the aforementioned methodology can be improved
by replacing the GLM by a symbolic regression approach that allows us to capture
more relevant non-linearities while providing sparse and highly interpretable models.
Then, in chapter 4, we will present the experiments carried out on the highway net-
work dataset and on thirteen public datasets covering different tasks (viz., regression
and classification) which underline very promising results as our framework outper-
forms fully interpretable models (e.g., linear models, shallow decision trees) while
getting close to non-parametric models. Finally, in section 4.6, we unveil its potential
for guiding a dynamic interpretative process with a realistic case study on the highway
network dataset which highlights the benefit of using multi-objective optimization to
help field experts develop new safety policies.
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Chapter 2

Related work

2.1 Model interpretability

2.1.1 Properties

AI systems are used to assist field experts in making high stake decisions which may
indirectly affect humans’ lives. Thus, understanding how does the system behave is
of paramount importance. In many areas, knowing the predictions made by a model
is not enough. There is an emerging need that these models, besides being efficient,
compel to numerous properties regarding their explainability [10]:

• trustworthiness : the models will act as intended when facing a given problem

• informativeness : to support decision making, they provide a great amount of
information on the problem being tackled

• confidence: they communicate on the confidence of their working regime

• accessibility : they allow end users to get more involved in their development
cycle

• interactivity : they allow straightforward interactions with end users.

The design of interpretable AI systems has been tackled with two distinctive
approaches rallied around the field of explainable Artificial intelligence (XAI). On
the one hand, there are models that are inherently interpretable as their complexity
is restricted by their design (e.g., GLM, decision trees). On the other hand, complex
models (e.g., deep Neural Network, ensemble of decision trees) act as black-boxes and
do not provide, at least initially, any information on the relationship that connects
the explanatory variables to the dependent variable. Knowledge is often obtained by
using post hoc explainability techniques.
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2.1.2 Intrinsic interpretability

Some models are inherently interpretable and indeed meet the above properties. They
are often perceived as glass-box models as the relation between the explanatory vari-
ables and the dependent variable is explicit, thus simplifying the understanding of
the marginal effects. Among them, we can find shallow decision trees, generalized
linear models (GLM), generalized additive models (GAM).

Decision trees

Decision trees can be used to answer regression problems and classification problems.
They are commonly found under the term Classification and Regression Trees (CART)
introduced by Breiman [17]. These models aim at predicting the value of a dependent
variable by learning simple decision rules from the features. They divide the input
space by recursively splitting the data into subsets according to tests on features (see
Fig. 2.1). The procedure to select the best split varies according to the problem
at hand. For regression tasks, CART takes a feature and determines which cut-off
minimizes the variance of the dependent variable. For classification tasks, CART
seeks to minimize the Gini impurity of the class distribution defined as:

Gini = 1−
C∑
i=1

(pi)
2

where pi is the probability of an observation to be classified to one of the C classes.
The algorithm continues the search-and-split in the new nodes until a stopping cri-
terion is reached (e.g., minimum number of observations in a node before splitting,
minimum number of observations in a terminal node). Finally, to predict the out-
come of a new observation, CART averages all training instances in the terminal node
reached by the new observation after browsing the tree.

Interpreting the prediction is straightforward as it combines, from the root node
to the terminal node, simple decision rules. However, for deep trees, the high number
of decision rules used for a prediction makes it hard to understand. Thus, in our
study, we consider a CART model to be interpretable if its depth is, at most, equal
to 5.

Generalized linear model

In a GLM [80], the dependent variable Y is assumed to be generated from a particular
distribution in an exponential family (e.g., normal, binomial, Poisson distributions).
The mean µ of the distribution is connected to a linear predictor Xβ such that:

g(E[Y |X]) = g(µ) = Xβ (2.1)
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Figure 2.1: Example of a shallow decision tree trained on the French highway dataset

where g is a link function introduced to map the non-linear transformed mean g(µ)
to the definition space of the linear predictor, the real line. The choice of a relevant
link function depends on the problem at hand. For instance, for a dependent variable
generated from a binomial distribution, the preferable link function is the logit. For
that model, Eq. 2.1 becomes:

logit(µ) = ln(
µ

1− µ
) = Xβ

which is also referred to as logistic regression. For a normally distributed dependent
variable, the link function is simply the identity function id:

id(µ) = µ = Xβ

The coefficient β can be estimated by maximum likelihood estimation or Bayesian
inference (see section 3.3.2 for a detail explanation of these techniques).

Generalized additive model

To model nonlinear but still interpretable relationships between the dependent vari-
able and the explanatory variables, one can apply transformations (e.g., logarithm,
categorization) to the original variables. Another option is to use GAM [49], an ex-
tension of GLM where the linear predictor embeds unknown smooth functions of m
explanatory variables:

g(E[Y |X1, ..., Xm]) = β0 +
m∑
i=1

fi(Xi) (2.2)
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To learn the nonlinear flexible functions fi, different approaches have been proposed:

Spline basis The original one is based on spline basis and makes use of the backfit-
ting algorithm [49], which works by iterative smoothing of partial residuals. However,
it is difficult to estimate the degree of smoothness of splines fi. This parameter can
be either set by the users or estimated with cross-validation during model training.
However, this original approach is computationally expensive (O(n3) with n the num-
ber of observations). Thus, several methods try to reduce the size of the basis used
for smoothing[33, 64], or find sparse representations of the smooth functions using
Markov random fields [107].

Modern machine learning techniques In [122], the authors proposed to train
GAM with a likelihood-based boosting procedure. Lately, Lou et al. [76], in a frame-
work called Explainable Boosting Machine (EBM), proposed a tree-based extension
of GAM that introduces a small number of two-dimensional interactions:

g(E[Y |X1, ..., Xm]) = β0 +
∑

fi(Xi) +
∑

fij(xi, xj) (2.3)

To learn the nonlinear function f , they combine bagging [15], gradient boosting [39]
(further explained in section 3.2.2) and automatic detection of pairwise interactions.
During training, features are trained one at a time in round-robin fashion to mitigate
the effects of multicollinearity. When applied to tabular data, EBM outperforms
standard GAM based on regression splines and is often almost as accurate as flexible
black-box models. Moreover, EBM is also considered to be interpretable because each
feature contributes to the prediction in an additive way (see Eq. 2.3) thus simplifying
the understanding of its influence on the dependent variable.

2.1.3 Post hoc interpretability

Highly flexible models usually reach better predictive performance on some datasets
mainly because they manage to capture nonlinearities in the data. However, this
comes along with more complex design that makes them act like black-boxes. Post-
hoc explanation tools are required to provide some degree of interpretability. Different
approaches have been proposed such as global model-agnostic explanation methods,
simulation-based methods or local explanation methods.

Global model-agnostic explanation methods

These post hoc methods are used to describe the average behavior of a machine
learning model. They quantify the main effects and the interaction effects of the
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Figure 2.2: Partial dependence of the annual average daily traffic for a gradient boosting
tree model on the highway dataset

explanatory variables on the dependent variable. Let us introduce the most prominent
representatives of these methods.

Partial Dependence plots First introduced by Friedman [39], partial dependence
plots (PDP) show the dependence between the dependent variable and a set of features
of interest, marginalizing over the values of the complementary features:

pd(xS) = EXC
[f̂(xS, XC)] =

∫
f̂(xS, xC)p(xC)dxC

where f̂ is the ML model, xS are the features of interest and XC are the comple-
mentary features here treated as random variables. As we marginalize over the other
features, we get a function that depends only on features in S [91]. We obtain the
PDP by computing the integral for various values of xS. This plot provides insights
into the nature of the relationship between the target and a feature (see Fig. 2.2).
However, one main limitation of PDP lies in its assumption of independence between
features which may result in the transmission of misleading information.

Sobol indices In [116], based on a finite expansion of a multivariate function f̂
and under several constraints to maintain its unicity, Sobol was able to decompose
the global variance V (Y ) into parts attributable to input features and combinations
of features:

V (Y ) =
n∑

i=1

Vi +
n∑
i

n∑
j>i

Vij + · · ·+ V12...n (2.4)

16

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0096/these.pdf 
© [T. Véran], [2022], INSA Lyon, tous droits réservés



where

Vi = V (f̂i(xi)) = V (E[Y |xi])

Vij = V (f̂ij(xi, xj)) = V (E[Y |xi, xj])− Vi − Vj

. . .

From Eq. 2.4, one can estimate the main effect of a feature xi with the first-order
Sobol indices, which is the amount of variance in the output explained by that feature:

Si =
V (E[Y |Xi])

V (Y )

Simulation-based methods

These methods seek to obtain a global understanding of a black-box model, not by
using global post hoc analysis tools, but by simulating its prediction function with a
simpler one. Tan et al.[120] proposed to leverage model distillation techniques [18, 50]
to learn global additive explanations of the form:

Ĥ(x) = h0 +
∑
i

hi(xi) +
∑
i̸=j

hij(xi, xj) +
∑
i̸=j

∑
j ̸=k

hijk(xi, xj, xk) + . . . (2.5)

where h are either splines or bagged trees. During training, they seek to minimize the
mean squared error between the prediction function of the black-box model and Ĥ(x).
If h are splines, they use penalized maximum likelihood and estimate the smoothing
parameters with cross-validation. If h are bagged trees, cyclic gradient boosting [76]
is used. To understand the behavior of the model, they analyze the feature shapes
by plotting the feature’s contribution hi(xi) against the domain of xi.

Another approach, proposed by Lakkaraju et al.[68], use sub-space explanations
to mimic the behavior of black-box models in classification problems. They leverage a
two-level decision set representation, where the outer decision rules describe the sub-
spaces (i.e. specific regions of the feature space), and the inner decision rules explain
the decision logic of the black-box model within the related sub-spaces. Moreover,
their approach allow end users to customize explanations by adding certain features
of interest in the outer level representing the sub-spaces.

Local model-agnostic explanation methods

The objective of local explanation method is to learn local approximations to explain
individual predictions. A broad variety of methods has been proposed and will be
discussed in this section. First, we start by explaining how a contribution of a feature
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is computed on a simple linear model prediction and how it is extended to any model
by means of Shapley values, a game theoretic approach. Then, we introduce LIME, a
method to interpret individual model predictions based on locally approximating the
model around a given prediction. Finally, we explain how Shapley values and LIME
have been connected together to provide an efficient tool for local model-agnostic
explanations.

Simple computation of contributions in a linear model setting A simple
linear model prediction for an instance x is computed with:

f̂(x) = β0 +

p∑
i=1

βixi

where βi is the weight corresponding to variable i, and xi the value of variable i on
this instance. The contribution ϕi of the i-th feature can be computed by:

ϕi(f̂) = βixi − E[βiXi]

where E[βiXi] is the average effect of feature i [91]. Thus, with a linear model,
computing a feature’s contribution to a prediction is straightforward. To measure
how much a feature affects the prediction of more complex nonlinear models, a game
theoretic approach based on the computation of Shapley values has been developed.

Model-agnostic computation of a contribution with Shapley regression
value Shapley regression values [112] measure how much feature i contributes to
the prediction of any model f̂ . Specifically, if S is a subset of the p features considered
in the model, then the Shapley value ϕi of a feature i is defined as:

ϕi(f̂) =
∑

S⊆{1,...,p}\{i}

|S|!(p− |S| − 1)!

p!
(v(S ∪ {i})− v(S)) (2.6)

where, for a given instance x, vx(S) is the prediction of feature values in S that are
marginalized over features not included in S [91]:

vx(S) =

∫
f̂(x1, ..., xp)dPx/∈S − EX [f̂(X)]

Local interpretable model-agnostic explanations (LIME) Ribeiro et al. [102]
introduced LIME to approximate the model’s behavior in the neighborhood of a given
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instance. For an instance x, they build a locally faithful and interpretable surrogate
model g by solving:

ξ(x) = argmin
g∈G

L(f̂ , g, πx) + Ω(g) (2.7)

with L a loss function, f̂ the model being explained, G a set of interpretable models
(e.g., decision trees, linear models), and Ω a complexity measure. In Eq. 2.7, Ω can be
perceived as a regularization term that constrains the surrogate model g to provide
short explanations. Moreover, to ensure local fidelity, Ribeiro et al. define L as being
the locality-aware square loss:

L(f̂ , g, πx) =
∑
z,z′

πx(z)(f(z)− g(z′))2 (2.8)

where z′ are binary vectors sampled at random from x′ ∈ {0, 1}p — viz., the inter-
pretable representation of the instance x ∈ Rp, p being the number of input features,
which indicates if the feature i is present (x′

i = 1) or missing (x′
i = 0) in the surrogate

model — and z are the original representations of z′. In Eq. 2.8, πx is a proximity mea-
sure defined by the authors as being the exponential kernel: πx = exp(−d(x, z)2/σ2),
with d a distance function and σ the kernel width.

LIME creates sparse linear explanations with a measure of faithfulness in the
neighborhood of a given instance thanks to the introduction of the kernel πx. How-
ever, LIME highlights some limitations regarding the definition of this neighborhood.
Defining a good neighborhood in an automatic manner with a proper kernel is still
in development. For now, the selection of appropriate kernel settings is made heuris-
tically. Also, as the neighborhood is computed based on points sampled uniformly
at random, the analysis can be performed on unlikely data points. Moreover, recent
work [114] tend to show that it can be difficult to assess its reliability and robustness.
In a theoretical study of LIME verified by simulations, Garreau and Luxburg [114]
showed that, while this post-hoc approach “discovers interesting features, it might
forget some important features and the surrogate model is not faithful".

Shapley additive explanation (SHAP) Lundberg and Lee [79] unify existing
approaches such as LIME [102], Shapley values [112], DeepLIFT [113], etc. SHAP
quantifies the contribution of each original explanatory variable to each prediction.
The authors proposed to represent Shapley value explanations as an additive feature
attribution method. Let hx be an input mapping from simplified inputs x′, indicating
feature presence, to original inputs x such that x = hx(x

′), and f̂ a black-box model.
An additive feature attribution model tends to reach:

g(z′) ≈ f̂(hx(z
′)) whenever z′ ≈ x′
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Moreover, a model g in this class is a linear function of binary variables:

g(z′) = ϕ0 +
M∑
i=1

ϕiz
′
i (2.9)

where the z′i variables indicate if the feature is observed (z′i = 1) or unknown (z′i = 0),
ϕi ∈ R are the feature attribution values, and M is the number of input features.

The authors state that there is a single unique solution that resolves this linear
function while having the three following desirable properties [79]:

• local accuracy : the explanation model g shall match the output of the original
model f̂ for the simplified input x′

• missingness : a missing feature has no impact

• consistency : “if a model changes so that some simplified input’s contribution in-
creases or stays the same regardless of the other inputs, that input’s attribution
should not decrease" [79]

They prove that the coefficients ϕ of this linear function in fact corresponds to the
Shapley values of the features:

ϕi(f̂ , x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[f̂x(z

′)− f̂x(z
′ \ i)]

with M the number of simplified input features, |z′| the number of non-zero entries
in z′, and z′ ⊆ x′ represents all z′ vectors where the non-zero entries are a subset of
the non-zero entries in x′.

In the same paper, the authors introduce KernelSHAP, a model-agnostic approx-
imation method that connects linear LIME and Shapley values. They prove that,
given an appropriate weight function πx′(z′), for an instance x, the Shapley values
of the original features are the coefficients of the linear model g mimimizing the loss
function defined in eq. 2.7:

L(f̂ , g, πx) =
∑
z′∈Z

[f̂(hx(z
′))− g(z′)]2πx′(z′)

where:
πx′(z′) =

M − 1(
M
|z′|

)
|z′|(M − |z′|)
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2.1.4 Model interpretability in the ML community

The machine learning research community offers nuanced perspectives about the mer-
its of post-hoc explanations. As a representative example, Lipton [72] suggests that
post-hoc explanations should not be ruled-out as valid, although indirect, means of
knowledge about the underlying data generating process. Lipton also underlines the
potential risk of focusing on misleading information when relying on post-hoc ex-
planations. Moreover, he considers that transparent linear models may not always
be more interpretable than deep neural networks (DNN) because they often need
heavily engineered features to obtain similar performances. Likewise, Poursabzi-
Sangdeh et al. [99] observe that practitioners can be affected by the information
overload phenomenon [3, 63] when the number of features becomes too large. Other-
wise, Rudin [104] emphasizes the importance of taking into account the whole data
analysis process, including the preprocessing steps: “when considering problems that
have structured data with meaningful features, there is often no significant differ-
ence in performance between more complex classifiers (DNN, boosted decision trees,
random forests) and much simpler classifiers (logistic regression, decision lists) after
preprocessing”. Rudin points out that there is not necessarily a trade-off between
accuracy and interpretability: performance gaps can be reduced iteratively through
better data processing and model understanding. The latter is facilitated by the use
of interpretable models.

2.2 Crash prediction models and their interpretabil-
ity

In their survey, Lord and Mannering [75] describe the different methods used for long-
term crash frequency analysis. These methods can be classified in two categories: on
one side, parametric statistical models explicitly associate the crash related variable
to a vector of input explanatory variables. On the other side, non-parametric models
use more complex design to better fit the data at the expense of their interpretability.
In this section, we describe both approaches, starting with the parametric statistical
models.

2.2.1 Parametric statistical models

Poisson regressions

Crash-count data observations yi being positive integers, they have originally been
modelled by Poisson regressions [58, 59, 88]. Poisson distribution is a special shape
of the binomial distribution with a small probability of an event and a large but
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unknown number of trials. GLM have been used to link a linear predictor made
of p explanatory variables to the rate λi of a Poisson likelihood. As explained in
section 2.1.2, an appropriate canonical link function is chosen to map the definition
space of crash data (viz., discrete and positive only) to the real line covered by the
linear predictor. For Poisson regressions, a log-link function is selected. The model
can be formulated as:

yi ∼ Poisson(λi)

log(λi) = β0 +

p∑
j=1

βjxij

Negative Binomial regression

The Poisson distribution has a unique free parameter, the rate λi. The variance
cannot be adjusted independently of the mean. Yet, the observed variance of crash
count data often exceeds this amount. A negative binomial (NB) distribution can be
proposed to better deal with this over-dispersion phenomenon. Given the probability
of crash, the NB gives the probability of observing n crashes before the α-th non-crash.
With λ representing the mean, its probability mass function can be parameterized as
follows [130]:

NB(n;λ, α) =
(
n+ α− 1

n

)(
λ

λ+ α

)n(
α

λ+ α

)α

The variance of the NB is λ+ λ2

α
. Therefore, the parameter α controls the amount of

over-dispersion. When α→∞, the NB likelihood approaches a Poisson(λ) distribu-
tion. Moreover, as shown in [130], a NB(λ, α) corresponds to a Poisson(λ) where λ
comes from a gamma distribution Gamma(a = α

λ
, b = α) whose probability density

function is defined as:

Gamma(x; a, b) =
abxb−1e−ax

Γ(b)

for x > 0, Γ(b) being the gamma function.
The Poisson-gamma model — a continuous mixture of Poisson distributions with

rates distributed as a gamma distribution — has been identified as a reference model
by road safety experts (see for example the AASHTO Highway Safety Manual [8]). We
find it in the core of many related work [89, 74, 31, 73] where crash count regression
is done with a linear model attached to the λ parameter of the NB through a log-link
function.
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Generalized linear mixed model

In some studies, correlation among observations can be taken into account on the
temporal level. This arises in the context of panel data analysis, where crash data
are considered to be collected through a series of repeated observations of the same
groups (e.g., roadway segments) over a time period. To account for the differences
between segments, GLM are accommodated to introduce random effects in addition
to the usual fixed effects. The resulting model is known as a generalized linear mixed
model (GLMM). In this configuration, Poisson regressions are adapted as follows:

yik ∼ Poisson(λik)

log(λik) = β0 +

p∑
j=1

βjxij + uk

where uk is the random effect for group k, supposed to be distributed according a
zero-centered Gaussian distribution with variance σ2 (σ > 0).

GLMM have found many applications in road safety analysis. Amongst them,
Johansson et al. [56] analyzed the effect of a lowered speed limit on the number of
crashes on Swedish highways. In a study of crashes caused by median crossovers in
Washington State, Shankar et al. [111] compared a standard NB and a NB modified
to account for random effects relating to each site. However, they did not observe
any benefits from using a NB with random effects.

Hierarchical model

GLM can also be refined into hierarchical models to take into account clusters of
related observations. For example, crashes occurring in a given geographical region
may possess specific characteristics while not differing entirely from crashes in other
regions. A simple Poisson regression, by pooling all the observations together, would
assume an invariant population and couldn’t benefit from regional peculiarities. Oth-
erwise, k clusters could be modeled with the addition of k − 1 mutually exclusive
binary variables to the linear model, but this would correspond to no pooling at all
and the clusters would be assumed independent of one another. Contrariwise, hier-
archical models, also known as multilevel models, offer partial pooling through an
adaptive regularizing prior. Thus, in the following multilevel Poisson regression with
k clusters, hyperpriors µ and σ will allow an adaptive shrinkage of the cluster-specific
βjk towards a common mean:
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level 0 - model

yik ∼ Poisson(λik)

log(λik) = β0k +
∑
j

βjkxijk

level 1 - priors
βjk ∼ N (µ, σ)

level 2 - hyperpriors

µ ∼ N (0, 100)

σ ∼ HN (100)

with HN being the half-normal distribution. Gelman indicates in [42] that a half-
normal distribution with high standard deviation is a non-informative but proper
prior for the variance parameter σ.

In this way, Jones and Jørgensen [57] design a multilevel model to predict the
severity of an incident given the involved casualties (level 1), their respective vehicles
(level 2) and the accident location (level 3). Ahmed et al. [4] conceive a multi-level
model to predict crashes on a mountainous freeway by modeling both the dry or snow
seasons and spatial correlation between adjacent sites. Deublein et al. [28] propose
a multilevel model to manage simultaneously 4 response variables (resp. injury ac-
cidents, light injuries, severe injuries and fatalities) through gamma updating of the
parameters. Finally, Fawcett et al. [34] predict future safety hotspots with a multi-
level model where, first, the variance of the rate of a NB increases with the timestamp
of an observation and, second, a global trend effect is altered by site-specific ones.

Intrinsic interpretability

The aforementioned models are interpretable by nature. Indeed, the relation between
the explanatory variables and the dependent one is explicit. Nevertheless, as Poisson
regressions and their variants use a log-link function to map the linear predictor to
the crash-related variable, the effects of the coefficients β are not as obvious as those
of a linear model. To mitigate this, Kweon and Kockelmam [65] proposed to use the
incidence rate ratio which measures the percentage of change in the crash related
variable when an explanatory variable is increased by a unit.

Moreover, analyzing the effects of coefficients shall not be based solely on point
estimates but must come along with the knowledge of the uncertainty associated
with them. Most of studies mitigate this by using Bayesian inference. By associ-
ating a probability distribution to each coefficient, they can measure the underlying
uncertainty of coefficients.
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2.2.2 Non-parametric Machine Learning models

Support vector machines

SVM were originally introduced by Cortes and Vapnik [25] for classification tasks.
A version for regression has been developed by Drucker et al. [30]. Among the
variants proposed for regressions, the epsilon-insensitive SVM (ε-SVM) is the most
common. Given a vector y ∈ Rn of dependent variables and X ∈ Rn×p the associated
explanatory variables, ε-SVM aims to find a function f(xi) that deviates from yi by a
value inferior to ε for each training point xi, i ∈ {1, ..., n} (see Fig. 2.3). In addition,
f has to be as flat as possible. To achieve this, ε-SVM solves the following problem:

min
w,b,ζ,ζ∗

1

2
wTw + C

n∑
i=1

(ζi + ζ∗i ) (2.10)

subject to yi − wTϕ(xi)− b ≤ ε+ ζi,

wTϕ(xi) + b− yi ≤ ε+ ζ∗i ,

ζi, ζ
∗
i ≥ 0, i = 1, ..., n

where ζi, ζ
∗
i penalize observations lying outside the ε margin and C is a positive reg-

ularization constant that controls the penalty imposed by ζi and ζ∗i . In this problem,
ϕ is a transformation function that maps x to a higher dimensional space where the
problem resolution is linear. Without it, ε-SVM won’t have the ability to model non-
linear relationship between explanatory variables and the dependent variable in the
original space.

The optimization problem described above is computationally simpler to solve by
constructing a Lagrangian function which introduce positive multipliers αi and α∗

i for
each observation xi [30]:

min
α,α∗

1

2
(α− α∗)TG(α− α∗) + ε1T (α + α∗)− yT (α∗ − α) (2.11)

subject to 1T (α− α∗) = 0

0 ≤ α, α∗ ≤ C, i = 1, ..., n

In eq. 2.11, G is a n×n positive semidefinite matrix whose elements are computed
with the kernel function k: Gij = k(xi,xj) where k(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩ (⟨·, ·⟩
being the inner product). Here, the explicit mapping ϕ can be avoided as we can
obtain G by computing Gij directly with the kernel function. This process is known
as the kernel trick. By doing so, ε-SVM estimates f in the transformed input space
and not the original one. To generate this transformation, various kernels have been
proposed: linear (k(xi,xj) = xixj), polynomial (k(xi,xj) = (1 + xT

i xj)
d with d the
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Figure 2.3: Toy example of a linear SVM, with the red line being the optimal hyperplane.

degree of the polynomial), or based on radial basis function (k(xi,xj) = exp(−||xi−
xj||2/σ2).

Finally, to make a prediction, ε-SVM computes the contribution of each support
vector (i.e. a vector xi for which αi or α∗

i is equal to zero):

f(x) =
∑
i∈S

(αi − α∗
i )k(xi,x) + b

where S is the set of support vectors.
In the binary classification problem, the objective is not to find an hyperplane that

contains a maximum number of observations within its ε margin, but to determine the
best decision boundary between the two classes. In this case, the goal is to maximize
the margin between the closest vectors of each class and the hyperplane.

In highway safety analysis, SVM have been applied to various problems. Li et
al. [70] compare a NB and a SVM on crash-count predictions for rural roadway
segments located in Texas, USA. They observe that SVM predict crash data more
effectively and accurately than traditional NB. In a study on crash data collected
at 326 freeway diverge areas, Li et al. [71] apply SVM to the task of predicting
crash severities. When compared to an ordered probit model, they found that SVM
produces better prediction performance. Lately, Dong et al.[29] study the effects on
crash-count predictions of spatial correlations at different scales on a dataset including
more than 57 000 crashes in the Hillsborough county of Florida.

Artificial neural networks

Artificial neural networks (ANN) are biologically inspired computational networks
first introduced by McCulloch [81]. ANN are composed of artificial neurons typically
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(a) (b)

Figure 2.4: Multilayer perceptron (a) simple architecture with one single hidden layer (b)
toy example of the computation of an output

organized into a multi-layer structure. Neurons of one layer are connected to neurons
of the next layer. An ANN generally consists of three types of layers: the input
layer receives the external data, then the hidden layer(s) process the data and finally,
the output layer produces a result (e.g. crash-count prediction). In the well-known
configuration of multilayer perceptrons (MLP), neurons are fully connected i.e., every
neuron in one layer is connected to every neuron in the next layer (see Fig.2.4a). Each
neuron has inputs and produces a single output by first computing weighted sum of
its inputs and then applying a nonlinear activation function σ such as sigmoid or
hyperbolic tangent (see Fig. 2.4b).

When training an ANN, the objective is to adjust the connection weights to min-
imize the cost function that measures the overall performance of the network. One
of the most common approach is backpropagation: first, it calculates the gradient of
the cost function associated with a given state with respect to the weights, and then
updates the weights in the opposite direction of the gradient, as it is the direction of
the steepest descent. Several variants of gradient descent have been developed and
are well explained in [103].

ANN have found numerous applications in highway safety analysis. Abdelwa-
hab and Abdel-Aty [1] compares a backpropagation neural network (BPNN) with an
ordered logit statistical model to predict the severity of accidents at intersections.
Chang [21] compares a one hidden layer BPNN with NB regression for crash frequen-
cies prediction. BPNN slightly outperforms the NB model with a difference of 0.6%
of accuracy on testing data. Huang et al. [53] compare a radial basis functions neural
network (RBFNN) with BPNN and NB regression for crash frequencies prediction.
RBFNN obtains the best results. Xie et al. [133] use a bayesian neural network
for crash-count prediction. The neural network model outperforms BPNN and NB
regression.
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Figure 2.5: Sensitivity analysis performed on a Bayesian neural network for the traffic
variable, from Xie et al. [133, p.930]

Post-hoc interpretability

SVM and ANN are opaque decision systems. The former, by introducing the kernel
function, models complex relationships in a high-dimensional space. The later often
involves a large number of parameters growing exponentially with the number of hid-
den layers. To reduce the complexity of the models, one can restrict the kernel of
SVM to be linear or define a simpler architecture for the ANN (e.g. a perceptron
with a single hidden layer with few neurons). However, trying to reduce complexity in
this way will tend to deteriorate the predictive results. To balance performance and
interpretability, all studies of the previous section opted instead for the use of post-
hoc explanation methods. Authors perform a sensitivity analysis of the black-box
model: for each explanatory variable, while keeping all other variables unchanged,
they record the effect on the output prediction of a perturbation of the current vari-
able (see Fig. 2.5). However, as stated in [133], the relationship between the current
explanatory variable and crash frequency may vary due to correlated variables, mak-
ing it difficult to interpret the sensitivity plots. Moreover, by generating simulated
data while assuming the explanatory variables to be independent, sensitivity analysis
will indiscriminately generate potentially misleading hypothetical predictions for un-
likely data points. Finally, this method only provides global interpretations and does
not allow domain experts to identify roadway segments where the predictive model
behaves singularly. To mitigate this, some studies used local model-agnostic expla-
nation methods. Mihaita et al. [90] investigate with SHAP the impact of different
features on arterial incident duration. They observe that the number of affected lanes
and the hour of the day seem to be the most important features which increase the
incident duration prediction. Parsa et al. [93] extend the use of SHAP by analyzing
complex and nonlinear joint impacts of features on the output of a XGBoost model,
in the context of real-time accident detection.
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Chapter 3

Contributions

3.1 Overview

3.1.1 Introduction

In previous chapters, we stressed the need to be able to provide explanations in ad-
dition to predictions when actions are pondered based on the analysis of predictive
models. To obtain such explanations, we saw that two approaches have been de-
veloped: intrinsically interpretable models that offer a direct understanding of their
internal decision process, versus post-hoc analysis of black-box models. However, we
have seen that using post-hoc explanation methods comes with some limitations. For
data-driven high-stakes decisions, it is imperative that the explanations transparently
and truthfully reflect what the model has learned. Moreover, as observed by Rudin
[104], simple and interpretable models can achieve predictive performance similar to
black-box models on well-structured tabular data. For these reasons, we favored the
use of simple interpretable models.

The focus of our work is to enhance the predictive power of simple models without
deteriorating their high degree of interpretability. Our main contributions aim to
achieve this goal in two steps. First, we introduce a supervised method to discover a
partition of the original observations and build a hierarchical model above it. Second,
we introduce two algorithmic approaches (viz., a polynomial neural network, and
an extension of multi-objective symbolic regression) to discover highly discriminant
non-linear transforms of the original variables. The former can handle correlations
among groups of observations which usually lead to improvements in the quality of
the models’ predictions and of their interpretation. The latter, while remaining simple
(e.g. first-order interactions), allow the models to capture more of the variability in
the dependent variable.
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Figure 3.1: Description of a Bayesian hierarchical generalized linear model

3.1.2 Bayesian hierarchical generalized linear model

In our first proposal presented in Fig. 3.1, we describe how to extract, from data
and without prior expert knowledge, the information necessary to build a hierar-
chical Bayesian model with first-order interactions between explanatory variables to
efficiently solve regression or classification problems while preserving interpretability.
First, in the hierarchical structure module described in section 3.2, we elucidate how
Shapley values of the variables give rise to a clustering of the original observations
that is likely to make sense in terms of the problem to be solved. This clustering
then informs a multilevel Bayesian model (see section 3.3). Second, we explain how
a self-organized neural network reveals the most important interactions between ex-
planatory variables (viz., first-order interactions module). These interactions are then
integrated to the functional form of the multilevel model (see section 3.3).

3.1.3 Interpretable hierarchical symbolic regression

In our second proposal (see Fig. 3.2), the discovered hierarchical structure is even
better exploited by using symbolic regression to capture sparser, more complex but
still interpretable relationships between the explanatory variables and the crash count.
To do so, to the whole training dataset and to each cluster of the hierarchical structure,
we apply a variant of the symbolic regression (SR) method to find expansions of linear
models with effective and interpretable functional forms. To this end, presented in
section 3.4, we designed a multi-objective simulated annealing algorithm to solve
the SR problem. Thus, we can discover Pareto optimal predictive models1 with
various trade-offs between accuracy and complexity. In our case, symbolic regression
serves two purposes. First, it discovers global models, learned from the whole training

1A model is said to be Pareto optimal if there is no alternative model that can improve one of
its objective function without deteriorating the others.
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Figure 3.2: Proposed framework for an interpretable hierarchical symbolic regression

dataset, that capture the associations between the explanatory variables and the
target. Second, based on the hierarchical structure of the instances, our SR-based
algorithm implements a partial pooling strategy to refine a global model into cluster-
specific ones.

3.2 Supervised learning of a hierarchical structure

3.2.1 Introduction

As explained in section 2.2.1, a well-chosen hierarchical structure can handle cor-
relations among groups of observations and significantly improve the quality of the
models’ predictions and of their interpretations. However, in the literature, this struc-
ture, which is dependent on the dataset, is the result of either expert knowledge or
unsupervised clustering. The former is not always available, and the latter does not
account for the task being solved (e.g., prediction of crash counts) and tries to group
features without knowing if they’re relevant for an outcome of interest [77]. More-
over, in our work, we would like to group roadway segments that share a similar crash
severity for similar reasons. In other words, when computing clusters, we do not want
to focus only on the distribution of the crash-related variable, but also want to ac-
count for the influence of each explanatory variable. Indeed, a similar crash severity
between segments may be explained by different risk factors. Thus, clustering seg-
ments by considering only the dependent variable may result in segments in a same
cluster that are in fact hazardous for different reasons.

To obtain such a hierarchical structure, we propose to learn it from the data in
two stages. First, we analyze the results of a black-box machine learning model with
a local post hoc explanation tool (viz., SHAP). More specifically, for each instance
of the dataset, SHAP computes the contribution of each explanatory variable to the
prediction. Then, we apply a clustering on these SHAP explanation instances. In
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other terms, we make use of an unsupervised clustering where samples are grouped
together based on their explanations (viz., the SHAP explanation instances), thus
alleviating the aforementioned shortcomings of unsupervised clustering.

In this section, we describe how we successfully retrieve a relevant hierarchical
structure with an unsupervised clustering on labeled datasets2. First, we start by
presenting gradient boosting trees, the models we selected to discover a latent struc-
ture in the data. Then, we explain how the black-box effect induced by these models is
mitigated by leveraging a local explanation tool (viz., SHAP) to measure the features’
contributions to each observation. Finally, we explain how a hierarchical agglomera-
tive clustering applied to these SHAP explanation instances help to discover a relevant
structure made up of similarities of explanations between observations.

3.2.2 Training of a non-parametric ML model

Model selection

We are interested in highly flexible, efficient models with fast training time on tabu-
lar data. To answer the first two requirements, numerous models can be considered:
nonlinear SVM, ensemble of trees, deep learning models, . . . However, training a non-
linear SVM is computationally infeasible on large dataset (between O(n2) and O(n3),
n being the number of samples, for a standard implementation of SVM [2]) which
make them poorly suited to the preliminary task of discovering a hierarchical struc-
ture in the data. On their side, deep learning models are better adapted to image
recognition, natural language processing or speech recognition [77].

In their experiments, Chen et al. [24] observe that tree-based models consistently
outperform standard deep learning models on tabular datasets where “features are
individually meaningful and do not have a strong multi-scale temporal or spatial
structures". Recently, Borisov et al. [14] compare algorithms based on gradient-
boosted trees with a broad variety of deep learning models on three middle and large
size datasets covering two classifications and one regression task. They observe that
gradient-boosted trees outperform deep learning models on all datasets, while having
lower training time.

A balance of computational efficiency, ease of use, and high accuracy have made
tree-based models the most popular non-linear model type. In 2021, 75% of most
popular ML models used by data scientists and engineers are based on trees [61].
Among ensemble of trees, random forest or gradient boosting trees are the most
popular. However, the former tends to reduce only the variance with a bagging

2Note that, in [77], Lundberg et al. call this process a supervised clustering. However, this usually
refers to clustering with access to a “teacher" that knows the right cluster for some of the instances
[12]. In our case, our approach for clustering is unsupervised.
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strategy while the latter, by combining multiple models and gradient descent on
residuals, reduces both the variance and bias. Plus, gradient boosting trees often
outperform random forests [14]. For these reasons, we make use of gradient boosting
trees as a first step to discover the hierarchical structure.

Gradient tree boosting

Given a dataset {(xi, yi)}ni=1, gradient tree boosting aims to build, through additive
training, an ensemble of trees T that minimizes a loss function L (e.g., mean squared
error for regression tasks, logistic loss for classification tasks). The algorithm starts
by initializing the model with the most accurate constant α:

T0(x) = argmin
α

n∑
i=1

L(yi, α)

Then, at each iteration m, the model is expanded in a greedy fashion such that:

Tm(x) = Tm−1(x) + argmin
tm

[ n∑
i=1

L(yi, Tm−1(xi) + tm(xi))

]
where tm is a decision tree. In other words, the model Tm tries to correct the error of
its predecessor Tm−1 by adding a new decision tree, also called weak learner. However,
choosing the decision tree that best reduces the loss function at each iteration has a
high computational cost. Thus, assuming L is differentiable, the optimization process
is simplified by leveraging gradient descent. The new decision tree tm is trained on
{(xi, rim)}ni=1 with rim the residuals indicating locally the steepest direction. Specif-
ically, rim are defined as:

rim = −
[
∂L(yi, T (xi))

∂T (xi)

]
T (x)=Tm−1(x)

, i = 1, . . . , n

Then, tm is added to the expansion such that:

Tm(x) = Tm−1(x) + γm(tm(x))

where γm is selected by minimizing the loss function of the new expansion:

γm = argmin
γ

n∑
i=1

L(yi, Tm−1(x) + γm(tm(x)))

The expansion process stops when a stopping criterion is reached (e.g., maximum
number of iteration, satisfactory value of the loss).
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Implementation

We select the XGBoost3’s implementation of gradient tree boosting. The major ben-
efits of using this library lie in its high portability, scalability, and high performance
as it provides state-of-the-art results on many problems [24, 14].

Moreover, the authors use three different methods to prevent overfitting [24]. First,
they penalize the complexity of the model when optimizing the loss function. Their
definition of model complexity penalizes both the number of leaves in the trained
trees, and the leaf values by means of a l2-regularization term. Then, they add
shrinkage, a technique proposed by Friedman [40], to control the influence of new
added trees during the update process. Finally, they use features subsampling to
lower the number of features available to each new tree and thereby increase the
variance between trees.

3.2.3 Local post hoc explanations

The aforementioned model is an ensemble of trees which consists of hundreds, if not
thousands, of trees grown sequentially (in our experiments, the number of trees is set
to 100, the default value of the XGBoost package). Even though the authors penalize
the complexity of each tree while training, the resulting model is hardly interpretable.
To mitigate this black-box effect, we compute local explanations with SHAP [79] (see
section 2.1.3), to understand how the model maps the original explanatory variables to
an outcome (e.g., a crash count in the case of highway safety). In addition to retaining
local faithfulness, SHAP presents important properties described in section 2.1.3. To
each observation, SHAP associates a linear function g:

g(z′) = ϕ0 +
M∑
i=1

ϕiz
′
i (3.1)

where M is the number of input features, z′i ∈ {0, 1}M and ϕi ∈ R are their contri-
butions which correspond to the game theoretic concept of Shapley values.

Among the different implementations of SHAP, we selected TreeSHAP, an efficient
tree-based algorithm for fast and consistent computations of exact Shapley values
[78, 77]. Compared to KernelSHAP, TreeSHAP reduces the complexity of Shapley
value computation from exponential to low order polynomial time [78]. Aside from
ensuring the properties defined in section 2.1.3 (viz., local accuracy, missingness and
consistency), TreeSHAP is also able to account for feature dependence. Moreover,
in [77], the authors observed that TreeSHAP consistently outperforms alternative
methods across a benchmark of 21 different local explanation metrics.

3https://xgboost.readthedocs.io/en/stable/
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Figure 3.3: Force plot of the explanatory variables’ contributions to the estimated crash
count for a specific observation. On this example, the traffic has the biggest positive contri-
bution and explains most of the crash count shift from its overall expected value

Furthermore, in Lundberg and Lee [79], the authors propose a force plot visu-
alization (see Fig. 3.3) to materialize how much each contribution shifts the output
relatively to the overall expected value of the XGBoost model. These contributions
can be perceived as being forces that shift the output towards or away from the ex-
pected value of the model (hence the name of the plot): the higher the contribution,
the larger the magnitude of the force is in Fig. 3.3. In practice, these plots help us un-
derstand visually how the black-box model behaves on single instances of our dataset.
In the next section, we will describe how they also reveal a hierarchical structure in
the data.

3.2.4 Discovery of a hierarchical structure

When applied to all observations, the SHAP forceplots can be clustered by similarities
of their profiles. On the highway network dataset, we discover clusters of roadway
segments which are similar based on their SHAP explanation instances (see Fig. 3.4):
the left part of the figure characterizes roadway segments that are on average mod-
erately hazardous, while the middle and far right parts represent highly hazardous
segments.

To obtain such a structure in our tabular dataset, we use a hierarchical agglomer-
ative clustering (HAC) of the observations based on the explanatory variables’ contri-
butions as provided by the SHAP analysis. We select the squared euclidean distance
as a measure of distance between pairs of instances and the ward linkage criterion
to measure the dissimilarity of groups of instances. Unlike other distance measures,
one characteristic of the ward linkage criterion lies in the fact that it considers the
inner-variability of clusters when computing distances between two clusters. More
specifically, given A and B two clusters, it states that the distance d between these
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Figure 3.4: Observations grouped by similarity of their forceplots

two clusters is:

d(A,B) =
∑

i∈A∪B

|xi −mA∪B|2 −
∑
i∈A

|xi −mA|2 −
∑
i∈B

|xi −mB|2

=
nAnB

nA + nB

|mA −mB|2

where | · |2 is the norm of the vector, mJ the center of cluster J and nJ the number of
SHAP instances in it. At the beginning, each cluster consists of a unique instance of
SHAP and d is equal to zero. Then, at each iteration, clusters are merged together in a
way that minimizes the increase in d. The procedure is repeated until a unique cluster
is obtained, composed of the whole set of SHAP instances. Finally, we estimate the
optimal number of clusters by detecting the greatest increase in the squared Euclidean
distance between clusters when their number decreases (see Thorndike [121] for the
original presentation of this widely used method).

Furthermore, in production, we do not have a straightforward way of knowing
to which cluster a new observation belongs to. However, we need this information
as our underlying predictive models require this prior knowledge. Thus, to learn
how to associate an observation of the test dataset4 to a cluster, we propose to
train a decision tree classifier to approximate a good mapping between the original
explanatory variables and the cluster of SHAP instances. In section 4.5.1, we report
on cross-validation measures showing, on various datasets, that this association is
very accurate.

4The test dataset materializes a production context as our model did not use these data for
training.
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Figure 3.5: Clusters automatically discovered by the hierarchical structure module, for 2018

3.2.5 Representation of the hierarchical structure in highway
safety

In this section, we suppose that a hierarchical structure has been discovered by using
ten years of data, from January 1st, 2008 to December 31th, 2017. Four clusters
have been identified and are presented in Fig. 3.5. To obtain additional information
on these automatically discovered clusters, we propose to visualize the distributions
of explanatory variables and the dependent variable. In Fig. 3.6a and Fig. 3.6b,
we illustrate this for the observed crash counts and the annual average daily traffic
(AADT) which allows us to understand that clusters do not have the same amount
of historical crash counts, and present as well differences regarding the explanatory
variables such as the traffic related one.

If necessary, experts can fine-tune the number clusters with the help of a dendro-
gram to obtain clusters that better match with their domain knowledge. They may
be interested in broader analysis (with less clusters) or more detailed analysis (with
more clusters) that highlight particular group of roadway segments.

When reducing the number of clusters from 4 to 2, one remains identical (viz.,
Cluster 1 of Fig. 3.7) while the others are merged together. The difference between
the two resulting clusters mainly lies in the Shapley values of the AADT, which
explains most of the critical nature of cluster 1. When looking at the historical data,
we observe that this cluster is more hazardous than cluster 0 (see Fig. 3.8a) and is
composed of roadway segments with high traffic (see Fig. 3.8b) between Lyon and
Dijon and in the vicinity of Paris and Belfort.
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(a) Observed crash count (b) Annual average daily traffic

Figure 3.6: Variables’ distributions for 4 identified clusters

Figure 3.7: Clusters when the number of clusters is reduced to 2

Conversely, when increasing the number of clusters, some particular hazardous
configurations, explained differently by the SHAP analysis, appear on the highway
network. For instance, cluster 0 of Fig 3.5, a moderately hazardous cluster composed
mainly of rural and mountainous segments, is now divided into cluster 1 and 4 in
Fig. 3.9. The most hazardous segments of the previous cluster (see Fig. 3.6a) are now
grouped into cluster 4. These segments are located in the mountainous part of the
network (see Fig.3.10b).

However, moving away from the initial clusters defined by the automatic process
is not without risks, especially when the number of clusters is increased. Indeed,
increasing the number of clusters will cut the explanation space in a way that some
clusters will only be represented by a few samples which will bring a high source
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(a) Observed crash count (b) Annual average daily traffic

Figure 3.8: Variables’ distributions for 2 identified clusters

Figure 3.9: Clusters when the number of clusters is increased to 6

(a) Observed crash count (b) Altitude

Figure 3.10: Variables’ distributions for 6 identified clusters
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of uncertainty in the models. Moreover, we observed in our experiments that the
performance is altered when the number of clusters moves away from the original
value defined in the supervised way. We recommend to stay close to the original
value as it represents a good trade-off between performance and interpretability.

Finally, road safety experts confirm the relevance of these automatically discovered
clusters. They also point out that the time saved can advantageously be spent on,
for example, planning remedial actions.

3.3 Bayesian hierarchical generalized linear model
In our first proposal, the hierarchical structure discovered in the previous chapter is
used to enhance the predictive performance and interpretability of generalized linear
models (GLM). To account for such a structure, we use a Bayesian inferred hier-
archical GLM. In section 3.3.1, we start by describing the multilevel structure of
such models and then explain how Bayesian inference, with advances in probabilistic
programming, infers efficiently the coefficients of these models (see section 3.3.2).

Moreover, as the standard formulation of GLM generally attaches a linear func-
tional form to a parameter of the likelihood distribution, interactions between the
explanatory variables are not taken into account. In section 3.3.3, we also describe
how we mitigate this by first learning simple interactions from the analysis of the
results of a special kind of polynomial neural network, and then by adding them to
the linear functional form.

We finish this chapter by explaining how we evaluate and validate the models with
a well-known technique, the Posterior Predictive Check.

3.3.1 Model description

To integrate the hierarchical structure, made of k clusters, into a GLM, we design
the following multilevel model:
level 0 - model

Yik ∼ L(Yik|µik,Ω)

µik = E[Yik|Xik] = g−1(ηik)

ηik = β0k +
N∑
j=1

βjkXijk

level 1 - priors
βjk ∼ N (µ, σ)
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level 2 - hyperpriors

µ ∼ N (0, 100)

σ ∼ HN (100)

According to this model, output Yik, for observation i in cluster k, is generated
from a likelihood distribution L parameterized with a set of specific parameters Ω and
also µik, the expected value of Yik conditioned on the observations. In section 2.2.1,
we saw that, for crash prediction, L can be a NegativeBinomial(Yik|λ, α) where
λ is the expected number of crashes and α controls the amount of allowed over-
dispersion. Next, ηik is a linear transformation of the explanatory variables. The
inverse link function g−1 is necessary to map the domain of ηik (viz., the real line)
to the one of µik. For example, since the rate λ of a negative binomial must be
positive, the exponential function is used for crash-count prediction. In case of binary
classification, when the Bernouilli(p) likelihood is used, p being a probability, g can
be set to the logit function. Indeed, the logit maps a parameter constrained between
0 and 1 onto the real line (the inverse link function g−1 is, in that case, the logistic
function). Finally, as explained in the previous section, the cluster-specific coefficients
βjk, for the N explanatory variables, depend on hyperpriors µ and σ, thus allowing
an adaptive shrinkage to a mean common to all the observations.

3.3.2 Bayesian inference

Description

Bayesian Inference (BI) treats the parameters as random variable and associates a
probability distribution to each parameter. Specifically, BI derives the posterior prob-
ability from the prior p(θ) and the likelihood p(y | θ):

p(θ | y) ∝ p(y | θ)p(θ) (3.2)

with θ the set of parameters in the models.
Based on the knowledge of observed crash-count data, the parameters are updated

according to eq. 3.2. However, the posterior distribution is usually not obtained in a
closed-form distribution but by means of approximation techniques. In our work, we
estimate the distribution with a sampling procedure based on a Markov Chain Monte
Carlo (MCMC) algorithm. Despite the use of computationally expensive sampling
algorithms, BI becomes more and more efficient thanks to the advances of probabilistic
programming [117, 108].

Note that we could have used the frequentist alternative based on Maximum like-
lihood estimation (MLE). MLE use iterative algorithm, such as the Newton-Raphson
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(a) log(AADT) (b) Percentage of heavy vehicles

Figure 3.11: Two examples of posterior distributions

method or gradient descent, to estimate coefficients βj. MLE is closely connected
to the Maximum A Posteriori (MAP) estimate, which is the mode of the posterior
distribution after BI. Indeed, given a uniform prior, MLE and MAP estimates are
identical. However, with MLE, each coefficient has a unique point estimate, thus the
introduction of prior knowledge is not possible. Moreover, with BI, we also obtain
uncertainty knowledge for each MAP estimate. For these reasons, we use BI to infer
the parameters of our models.

Uncertainty knowledge

The analysis of the posterior distributions (see Fig. 3.11) allows one to measure the
influence of each variable on the crash count. Due to the inherent partial pooling na-
ture of the model, posterior distributions are dissimilar among clusters thus revealing
various impacts of the same explanatory variable on the crash count. For instance, the
posterior’s mean related to the percentage of heavy vehicles in Fig. 3.11b is positive
for cluster 0 and 3, but negative for cluster 1.

Moreover, we observe that the shapes of the posterior distributions are different
from one cluster to another. This variability is linked to the size of the clusters:
in general, the more samples, the more confidence in the estimates. For example,
in Fig. 3.11a the posterior of the traffic related variable (log(AADT)) has a sharp
probability distribution for cluster 0 and 3 but a flatter one for cluster 1 and 2. The
latter highlights a greater uncertainty in estimating the coefficient associated with
the traffic and calls for more vigilance when drawing conclusions for this risk factor.
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3.3.3 Supervised learning of interactions with a polynomial
network

Objectives

When first-order interactions between explanatory variables are integrated into a
GLM, the relationship between a variable and the target may depend on the value
of another variable. This can lessen the gap in predictive power between Bayesian
inferred GLM and ML algorithms inherently able to capture complex nonlinear rela-
tionships. Moreover, these simple interactions are interpretable while the potentially
highly entangled ones discovered by ML algorithms will often remain inaccessible to
human understanding and increase the risk of overfitting.

Group Method of Data Handling algorithm

In our approach, important first-order interactions are discovered with a variant of the
Group Method of Data Handling (GMDH) family of supervised algorithms [54]. This
GMDH algorithm is a self-organized multi-layered structure of nodes (see Fig. 3.12).
Each node generates its output z by applying a linear function with a covariation
term to a pair of inputs (x1, x2) taken among either the nodes of the previous layer
or the original explanatory variables:

z = a0 + a1x1 + a2x2 + a3x1x2

Let n be the number of nodes of the previous layer and m be the number of ex-
planatory variables. To build the next layer, for each of the

(
n+m
2

)
polynomials, the

a0, ..., a3 parameters are set by minimizing through Ridge regression the least square
error made by the polynomial when it approximates the target on a train dataset.
Then, the fitted polynomials are evaluated on a validation dataset to select the top m
constituting the new layer. When the score obtained on the validation dataset by the
best node of the last layer added stops improving, the process terminates and the best
node of the penultimate layer is the output of the network. Thus, this self-organized
network discovers a polynomial that approximates the relationship observed on the
training dataset between the explanatory variables and the target.

In our approach, we use this polynomial to select the most important first-order
interactions between explanatory variables. If the coefficient of a term involving the
product of two variables exceeds a given percentage δ of the magnitude of the biggest
coefficient, δ being a hyper-parameter of our framework, we add to our Bayesian
hierarchical model an interaction between these two variables.
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Figure 3.12: Structure of the GMDH model

Integration of interactions into the GLM

For a given observation i, let {inti1, inti2, ...intiM} be the set of first-order interactions
selected by our GMDH-based methodology. To integrate them into the Bayesian
hierarchical model, we modify the linear predictor ηik (see section 3.3.1) such that:

ηik = β0k +
N∑
j=1

βjkXijk +
M∑

m=1

βmkintim

Visualizing the effects of interactions

In our experiments, the GMDH polynomial highlights a major first-order interaction
between speed limit and altitude. Triptych plots, introduced by Mc Elreath [83,
p.234], are made to visualize such interactions. Thus, Fig. 3.13 depicts the bivariate
relationship between annual average daily traffic (AADT) and predicted crash counts
for cluster 1 from Fig. 3.5, depending on whether or not an interaction with the
number of resting places is integrated into the Bayesian model. We observe that the
slopes of the regression lines, constant and positive for both models, are steeper when
considering an interaction. Thus, taking into account its interaction with the number
of resting places, the positive influence of AADT on predicted crash counts gets more
pronounced when the number of resting places increase.
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(a) Without interaction effects

(b) With interaction effects

Figure 3.13: Triptych plots of predicted crash counts vs. annual average daily traffic. Note
that explanatory variables are standardized (see section 4.2).
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Implementation details

We trained the polynomial network with GmdhPy5, an open source Python implemen-
tation of the GMDH algorithm. For fast computation time, we restrict the maximum
number of layers to 5. The number of selected best neurons is equal to the num-
ber of original features, its default value. Once the model is trained, the underlying
polynomial is obtained by recursive parsing of the network, from the final node to
the input layer containing the explanatory variables. Major first-order interactions
are identified when the absolute value of their coefficients are superior to a threshold
value defined as δ×max, with max being the coefficient with the highest amplitude,
and δ = 0.01.

3.3.4 Model evaluation and validation

To use our model for point-estimate prediction, we must derive a Bayesian estimator
from the posterior distributions. We use the mean of the posteriors which can be
shown to minimize the mean squared error. In that way, we can compare our ap-
proach to black-box ML algorithms with standard quality metrics on a test dataset.
Moreover, to check if the estimation of the posterior distributions converged well, we
use the Posterior Predictive Check (PPC) graphical analysis method. Indeed, accord-
ing to Gelman and Hill in [44, p. 158], PPC is a technique to “simulate replicated
data under the fitted model and then compare these to the observed data”. It allows
one to look for systematic discrepancies between real and simulated data [43].

To illustrate this, we compare in Fig. 3.14, for two examples of clusters, the his-
togram of observed crashes with that of samples drawn from the posterior distribution
of crash-counts. Dashed green lines indicate the means of, respectively, the observed
and replicated data. The two distributions being similar, our model fits adequately
the data. Thus, the integration of latent structure and interactions do not bring
skewed prior knowledge that would disturb the inference.

3.3.5 Conclusion

In this section, we have seen how a Bayesian learning of a hierarchical GLM can be
enhanced by the introduction of a hierarchical structure and interactions identified by
methods from the field of explainable artificial intelligence. In section 4.5, we report
on results obtained on a 5-fold cross-validation, showing that these models improve
the predictive performance of standard GLM (without multilevel formulation and
interaction) and of the other simple interpretable models such as linear models or
shallow decision trees.

5https://github.com/kvoyager/GmdhPy
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(a) PPC on cluster 0

(b) PPC on cluster 2

Figure 3.14: Posterior Predictive Checks (PPC) on two clusters. Left column: observed
data (cluster 0: 1491 samples; cluster 2: 965 samples). Right column: replicated data (2000
simulations)
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However, this first proposal underlines several limitations. First, if one does not
want the user to be solely responsible for deciding which functions of the original
variables are to be considered, a strategy must be adopted to explore a combinatorial
space of potential functional forms. Also, for the model to stay interpretable in
presence of a large number of explanatory variables, the number of relevant coefficient
shouldn’t be too large or ones can suffer from the information overload phenomenom
[3, 63, 99]. Thus, in our second proposal, we try to meet these challenges by computing
a cluster-specific ranking of expansions of sparse regularized linear models ordered by
increasing complexity thanks to symbolic regression.

3.4 Interpretable hierarchical symbolic regression
Throughout the previous sections, we described how a relevant hierarchical structure
identified by analyzing the results of a post hoc explanation tool can enhance the pre-
dictive performance and interpretability of GLM by means of a multilevel formulation.
In this section, we further exploit the discovery of this hierarchical structure by us-
ing symbolic regression to capture more complex but still interpretable relationships
between the explanatory variables and the dependent variable.

First, we detail the related work of symbolic regression (SR) in section 3.4.1.
Then, in section 3.4.2, we introduce SR with a focus on the technique we use to
conduct the search in the space of mathematical expressions, viz., a multi-objective
optimization extension of the simulated annealing algorithm. Moreover, we present in
section 3.4.3 how we successfully manage to build, through a partial pooling approach,
a hierarchical symbolic regression to account for the structure previously discovered.
Finally, in section 3.4.4, we explain how uncertainty knowledge is provided thanks to
Bayesian Inference.

3.4.1 Related work

Symbolic regression consists in exploring a large space of functional forms to discover a
predictive model with a good trade-off between accuracy and simplicity. Each element
of this space is a parametric regression or classification model whose performance is
measured (e.g., with cross-validation) on a given dataset after fitting its parameters.
Both the parameters and the functional form of a predictive model are learned based
on available data. A wide variety of approaches have been tried to effectively explore
the space of functional forms.
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Evolutionary algorithms and other optimization techniques

In genetic programming, population of a mathematical expressions evolves through
selection, crossover and mutation to improve a fitness function [84, 11, 109, 46, 67].
Other SR are based on the metaheuristic algorithm of Pareto simulated annealing to
discover a set of models which are optimal in terms of a balance of both accuracy
and simplicity metrics [119]. Thanks to use of Meijer G-functions, SR can also be
approached by algorithms based on gradient descent [6]. Bayesian processes, with
algorithms based on the Markov Chain Monte Carlo strategy have been used as well
to solve the SR problem [55].

Symbolic regression based on Machine Learning

Recent studies apply deep learning methods to symbolic regression in order to discover
physical laws from experimental data. In [124], Udrescu et al. create a framework for
symbolic regression based on neural network to discover hidden simplicity in the data
(e.g., symmetry, separability) in order to decompose complex problems into simpler
sub-problems. They apply their framework on 120 selected equations from classical
mechanics, electromagnetism, quantum mechanics and obtain promising results on
simulated data as they manage to discover more than 90% of the equations. Lately,
this approach has been improved with the integration of an information complexity
metric by means of Pareto optimization [123]. However, on a recent benchmark
realised by La Cava et al. [67], this framework obtain poor results on real data and
is even dominated by simple linear models.

Recently, Petersen et al. [97] use a hybrid approach that combines genetic al-
gorithms and a recurrent neural network (RNN) trained by reinforcement learning
to generate better symbolic models at each iteration. Finally, Valipour et al. [125]
consider the problem as a sub task of language modelling and train a generative RNN
model with reinforcement learning to produce symbolic equation skeletons whose
constants are further adjusted by the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm [36].

Areas of application

SR finds applications in numerous domains such as physics [109], finance [23], climate
modeling [118] or renewable energies [66]. So far, only few studies applied symbolic
regression to safety analysis. Meier et al. [86] use prioritized grammar enumeration, a
dynamic programming version of symbolic regression, to predict crash severity a few
milliseconds before collision. Patelli et al. [94] design a GP-based symbolic regression
to predict the traffic flow. To the best of our knowledge, symbolic regression has not
been applied to long term crash predictions.
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3.4.2 Symbolic regression with Pareto simulated annealing

General description

Most versions of symbolic regression (SR) discover an expansion of a linear model
with the addition of non-linear effects by searching a space of functional forms. Sec-
tion 3.4.1 gave an overview of the various methods that have been used to perform
this search. Among them, we select simulated annealing, an effective metaheuris-
tic known for its robustness in optimization problems involving a large search space
[32, 26]. Thus, we represent the problem as a local search. Moreover, we adopt a
multi-objective extension of the simulated annealing algorithm to perform the search
while optimizing both the complexity and the accuracy of the models [119]. The
search ends on a set of mutually non-dominated predictive models, the Pareto front.

Definition of a solution

The functional form of a model is extracted from a set of expression trees. Each
expression tree is perfect, binary and consists of internal operator nodes and leaves.
Leaves are either represented by a constant or an explanatory variable. Operator
nodes can be unary (e.g., cos, sin, tan, exp, ln, left, right) or binary (e.g., +,×, /)
and have two children. For unary operators, we indicate with the subscripts " l " (for
"left") and " r " (for "right") to which child the operation is applied. For instance, if
the operator is ln l, then the logarithm is applied to the left child. The left and right
operators apply the identity function to the left and right child, respectively.

We extract the symbolic expression by a breadth-first traversal of the expression
tree. In practice, as operators, constants and input variables are defined with Sympy,
an open-source Python library for symbolic computation [87], the traversal returns
a Sympy expression. Finally, the functional form S of a solution is obtained by the
combination and algebraic simplification of the Sympy symbolic expressions of a set
of expression trees (see Fig. 3.15).

Initialization of a first solution

Function initialize of algorithm 1 generates a first solution represented by a set
Mcur of random expression trees, with Scur the associated functional form. To this
end, this function first creates balanced binary trees, each of the same depth. Then,
for each tree, an inorder traversal associates an index to each node. Odd indices refer
to internal nodes while even indices refer to the leaves (see Fig. 3.16a). In this way, we
have an efficient means to search for a node in a tree and to know directly what type
of node it is (see section Neighbourhood of a solution). At the same time, internal
nodes are initialized with an operator chosen with equiprobability from the set of
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Figure 3.15: A functional form associated with a set of expression trees.

predefined operators introduced in section 3.4.2. Each leaf has a 50% probability of
being initialized either to a constant or to one of the explanatory variables. In the
latter case, each explanatory variable is equiprobable.

Neighbourhood of a solution

Function generate of algorithm 2 generates a new solution Snew in the neighbour-
hood of the current solution Scur. It randomly selects an expression tree from Mcur

and a node index from {0, ..., 2T − 2}, T being the tree depth. Then, a recursive
search finds the node with the selected index. When the node is an operator (viz., its
index is odd), it is replaced by a randomly selected operator. Likewise, when a leaf
is selected (viz., its index is even), it is replaced by a randomly selected constant or
explanatory variable. Fig. 3.16 illustrates this process.

If unchecked, function generate could lead to ill-defined operators. For instance,
a logarithm could be applied to a potentially negative domain. Therefore, function
integrityCheck infers recursively the domain of each operator node and, based on
rules from interval arithmetic, checks its validity (table 3.1 introduces some of these
rules). With interval arithmetic, we have an efficient way to ensure that the functional
form generated from the random process does not contain any undefined values [62].
For more details on the integrity check, we refer to [119].

Cost of a solution

The cost of a solution is measured in terms of both the prediction error (see function
measurePerformance of algorithm 2) and the complexity of the functional form (see
function measureComplexity of algorithm 2).

Performance To obtain a robust estimate of the prediction error of Snew, we com-
pute the average RMSE, for a regression task, or f1-score, for a classification task, on
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Algorithm 1 Symbolic regression with Pareto simulated annealing
Require: m: number of expression trees; Tmin = 0.0001: initial temperature (heat-

ing phase) and minimum temperature (cooling phase); λh = 1.15, λc = 0.85: ra-
tios between two adjacent temperatures in the heating phase and cooling phase,
respectively; sh = sc = 300: number of iterations between two updates of tem-
perature; γc = 1.15: ratio that controls the growth of sc; max: maximum number
of iterations during the cooling phase.

1: function Simulated Annealing(Tmin, λh, sh, λc, sc, γc,max)
2: T = Tmin ▷ Annealing temperature
3: ζ = ∅ ▷ Pareto front
4: acc = 0, rej = 0 ▷ Number of accepted and rejected solutions
5: α = 0 ▷ Acceptance rate
6: i = 0
7: Mcurr,Scurr ← initialize (m)
8: while α ≤ 0.9 do ▷ Heating phase
9: i, ζ,Mcurr,Scurr, acc, rej ← explore(T, i, ζ,Mcurr,Scurr, acc, rej)

10: if i mod sh = 0 then
11: T ← T × λh, α← acc/(acc+ rej)
12: acc← 0, rej ← 0

13: i = 0, ζ = ∅
14: Mcurr,Scurr ← initialize (m)
15: while T > Tmin and i < max do ▷ Cooling phase
16: i, ζ,Mcurr,Scurr, acc, rej ← explore(T, i, ζ,Mcurr,Scurr, acc, rej)
17: if i mod sc = 0 then
18: T ← T × λc, sc ← sc × γc

19: return ζ

(a) x1x2 + x2 (b) x1 + 2x2 (c) x1 + 2x2 (d) x1 + x2 + x0x2

Figure 3.16: A sequence of transformations applied to an expression tree. (a) An initial
expression tree. Blue integers refer to node indices. (b) A transformation is applied to
operator node 1, thus modifying the underlying functional form. (c) The transformation
applied to leaf node 6 is muted due to its left operator parent. (d) Later in the process,
node 6 can be reactivated when its parent is transformed.
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Operation Lower bound Upper bound Invalid if
[a, b] + [c, d] a+ c b+ d
[a, b]− [c, d] a− d b− c
[a, b]× [c, d] min{ac, ad, bc, bd} max{ac, ad, bc, bd}
[a, b]/[c, d] min{a/c, a/d, b/c, b/d} max{a/c, a/d, b/c, b/d} 0 ∈ [c, d]
left([a, b], [c, d]) a b
lnl([a, b], [c, d])

a ln(a) ln(b) a ≤ 0
a lnl designates a ln operator applied to the left child

Table 3.1: Rules for interval arithmetic, from [119, p.318]. We suppose that an
operator node has two children. The left one is defined on [a, b] and the right one on
[c, d].

Algorithm 2 Pseudo code of function explore

1: function explore(T, i, ζ,Mcurr,Scurr, acc, rej)
2: Mnew ← generate(Mcurr)
3: if integrityCheck(Mnew) then
4: Snew ← simplify(Mnew)
5: if Snew ̸= Scurr then
6: perfnew ← measurePerformance(Snew)
7: complnew ← measureComplexity (Snew)
8: if accept(perfnew, complnew, perfcurr, complcurr, ζ, T ) then
9: ζ, Mcurr, Scurr, perfcurr, complcurr ← update(

ζ, Mnew, Snew, perfnew, complnew)
10: acc← acc+ 1
11: else
12: rej ← rej + 1

13: else
14: Mcurr ←Mnew

15: i← i+ 1

16: return i, ζ,Mcurr,Scurr, acc, rej
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the validation subsets of a 5-fold cross-validation process. On each training subset,
the coefficients βi of Snew are learned by solving an l2-regularized linear regression,
for regression tasks, or an l2-regularized logistic regression, for classification tasks.
In either case, the regularization parameter is determined on each training subset
of the aforementioned 5-fold cross-validation either by an efficient generalized cross-
validation [45] for ridge regression or by a nested cross-validation process for logistic
regression. Once the estimate of the prediction error is obtained, the coefficients βi

are fitted one last time on the whole training dataset.

Complexity We improve the strategy introduced in [119] to propose a new measure
of the complexity of a solution. We penalize both the collinearities and the number
of terms present in the symbolic expression of the functional form. The complexity
of a solution S composed of m terms is defined as:

Complexity(S ) =
m∑
i=1

(
1 + max

({
|rij|; j ∈ {1, 2, ...,m} \ i

}))
Ci (3.3)

where rij is the Pearson’s correlation coefficient, computed on the training dataset,
between terms i and j, and Ci is the complexity of the term i. We use algebraic rules
to compute the complexity of each term, some of which are presented in table 3.2.
The complexity of a unary operator (e.g., the natural logarithm) is determined by
approximating the operator, on its inferred domain, by a polynomial of increasing
degree (at most 10) until the score of the fit, as measured on a validation set, is
below a predefined threshold. The complexity of the unary operator is then defined
as the degree of the best polynomial approximation. It should also be noted that,
according to equation 3.3, the more terms a solution has, the more complex it is. We
were able to confirm experimentally that the measured complexity represents well the
complexity perceived by the safety experts.

Comparison of two solutions

The search ends with a set of Pareto optimal solutions that belong to the bound-
ary beyond which neither the prediction error nor the complexity can be improved
without deteriorating the other objective. This can be formally defined in terms of a
dominance relation. Let U1 be the prediction error and U2 be the complexity metric.

Sa dominates Sb

≡
∀i ∈ {1, 2} : Ui(Sa) ≤ Ui(Sb) and ∃j ∈ {1, 2} s.t. Uj(Sa) < Uj(Sb)

Thus, the search returns a set of non-dominated solutions called the Pareto front.
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Term i Complexity Ci Example Computed Ci

const 0 2 0
x 1 x4 1
f(x)n n× C(f(x)) a x2

2 2
f(x)× g(y) C(f(x)) + C(g(y)) x1x

2
2 3

f(g(y)) C(f(x))× C(g(y)) ln(3x2
2) Cunary(ln)× 2 b

a C(.) is the complexity of the inner function
b Cunary(.) is the complexity of the unary operator

Table 3.2: Algebraic rules used to compute the complexity of each term, adapted
from [119, p.320]

Exploration by Pareto simulated annealing

Simulated annealing (SA) is an iterative local search process used to solve optimiza-
tion problems for which a simple hill-climbing approach would most often converge
on a poor local optimum. At each iteration, SA generates randomly a solution Snew

in the neighborhood of the current solution Scur. The probability P of accepting
Snew as the new current solution is a function of both a temperature parameter T
and the difference in cost ∆E between the two solutions.

P = e−∆E/T (3.4)

Annealing temperature T SA mimics the physical process of annealing in metal-
lurgy where a material is first heated before being gradually cooled in order to reach
an equilibrium state with increased ductility and hardness. SA follows a similar
two-steps process.

The heating phase aims at discovering an initial temperature T0 that favors ex-
ploration over exploitation in the beginning of the search. The heating process starts
from a low temperature at which a deteriorating neighbour of the current solution is
rarely accepted. Then, every sh iterations, the temperature is increased according to
a geometric series of ratio λh > 1. The process ends at a temperature T0 at which at
least 90% of the randomly generated neighbours are accepted.

During the cooling phase, the annealing temperature is progressively decreased,
every sc iterations, according to a geometric series of ratio λc < 1. High temperatures
favor the exploration of the space of functional forms by preventing the process from
converging too early on a local optimum (see Fig. 3.17). On the contrary, the more
the temperature decreases, the less likely it is for a deteriorating neighbour to replace
the current solution (see Fig. 3.17). The value of λc controls the speed at which the
annealing temperature decreases. If λc is too small, the optimization may stay stuck
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Figure 3.17: Effect of the annealing temperature on the acceptance probability.

too early in the neighborhood of a poor local optimum. Whereas, if λc is too close to
1, the optimization may take too long to reach a good optimum. Moreover, parameter
sc increases according to a geometric series of ratio γc > 1. Thus, more iterations
are allocated to lower temperatures to favor the exploitation of promising functional
forms. Finally, the search ends when either the temperature falls below a threshold
or the number of iterations reaches a predefined maximum.

∆E and the acceptance of a new solution For a single-objective optimiza-
tion problem, ∆E is simply the difference of the objective function evaluated at two
neighbouring solutions. For our multi-objective optimization problem, we use the
dominance-based performance metric introduced above. When a new solution Snew

dominates, or is as good as, Scur, it is accepted as the new solution (see function
accept of algorithm 3). When Snew is less effective than Scur, it has a probability
P defined by eq. 3.4 to be accepted. In that case, ∆E is defined as:

∆E(Scur,Snew) =
1

|ζ̃|

(
|ζ̃Snew | − |ζ̃Scur |

)
(3.5)

with ζ the set of solutions that approximate the Pareto front, |ζ̃| the cardinality
of ζ ∪ {Scur,Snew}, and |ζ̃S | the number of solutions in |ζ̃| that dominate S (see
Fig. 3.18). Moreover, to smooth the estimated acceptance probability distribution,
new artificial points are added to the attainment surface to get an evenly spread
attainment surface over the two dimensions of the Pareto front [115].

Updates of the Pareto front Finally, when Snew is accepted, the Pareto front ζ
is updated (see function update of algorithm 3) by removing the solutions dominated
by Snew and then adding Snew to ζ when it is not dominated by any other solution
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Figure 3.18: Example of an approximated Pareto front and its attainment surface, adapted
from [119, p. 322]. From Eq. 3.5, ∆E(Scur,Snew) = (2− 4)/9 = −2/9

in ζ. Thus, at the end of each iteration, ζ is the set of non-dominated solutions
encountered during the search.

3.4.3 Partial pooling approach for symbolic regression

To handle correlations among groups of observations in the dataset, we developed a
two-stage partial pooling approach to build hierarchical symbolic regressions. First,
we start by running a symbolic regression on the whole dataset to automatically
discover global models. Then, for each cluster in the hierarchical structure discovered
in section 3.2, we run a new symbolic regression to extract cluster-specific functional
forms that are merged afterwards to the functional form of a global model previously
selected.

Automatic discovery of global models

In section 4.6, where we illustrate the dynamic interpretative process made possible
by our framework, we emphasize the interest of being able to let the user choose a
predictive model on the Pareto front. In that way, the end-user can precisely balance
between the predictive performance and the simplicity of the model. However, in our
proposed methodology, we also need a principled way to automatically select a model
on the Pareto front. To do this, first, we consider the point Ω in the Pareto plan that,
(i) on the performance axis, is at the level of the most efficient model encountered
and, (ii) on the complexity axis, is at the level of the simplest model encountered.
Then, we select the model Sglob on the Pareto front closest to Ω in the sense of the

57

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0096/these.pdf 
© [T. Véran], [2022], INSA Lyon, tous droits réservés



Algorithm 3 Pseudocode of accept and update functions
1: function accept(perfnew, complnew, perfcurr, complcurr, ζ, T )
2: is_accepted← False
3: if perfnew ≤ perfcurr and complnew ≤ complcurr then
4: is_accepted← True ▷ new solution dominates, or is as good as, the

current one
5: else
6: compute P according to Eq. 3.4
7: draw randomly j in [0, 1]
8: if P ≥ j then
9: is_accepted← True

10: return is_accepted

11: function update(ζ,Mnew,Snew, perfnew, complnew)
12: is_dominated = False
13: for solution S in the Pareto front ζ do
14: if S dominates Snew then
15: is_dominated = True
16: if is_dominated = False then
17: remove solutions in ζ dominated by Snew

18: add Snew to ζ

19: return ζ,Mnew,Snew, perfnew, complnew
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Figure 3.19: Extraction of a cluster-specific functional form from a set of expression trees
and the fixed functional form of the global model

Euclidean distance. This model, located in the elbow of the Pareto front, is likely to
offer a good trade-off between predictive performance and complexity. In the next
stage of our approach, it is used as a starting point to build cluster-specific models.

Cluster-specific models

To discover cluster-specific phenomena, for each cluster discovered by the approach
introduced in section 3.2, a modified version of the symbolic regression search is
conducted. It consists in merging the functional form built from the expression trees
with the fixed functional form of Sglob (see Fig. 3.19): common terms are grouped
together and new terms are added to the formula. Hence, the marginal effects already
represented by Sglob can be reduced or amplified and new cluster-specific effects can
be discovered. It corresponds to a partial pooling approach where cluster-specific
models can benefit from the effects already discovered by the global model.

In classification tasks, the dependent variable can be highly imbalanced on some
clusters only. For imbalanced clusters, we apply jointly the synthetic minority over-
sampling technique (SMOTE) [22] and edited nearest neighbor (ENN) [131]. The
former generates samples from the minority class with interpolation. The later applies
under-sampling to clean the noisy samples generated with SMOTE. Also, it should
be noted that in the case of a homogeneous cluster, a cluster-specific model would
not make sense and we propose to stay with the global model Sglob.

3.4.4 Uncertainty estimation

Our approach results in global and cluster-specific expansions of linear models. There-
fore, the marginal effects of the terms composing the models are readily interpretable.
However, since the training set has been used to estimate the l2-regularization hyper-
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parameters, there is no simple linear relationship between uncertainty in the param-
eters and uncertainty in the target.

Bootstrap and asymptotic statistics

Bootstrap techniques could estimate the uncertainty in the parameters. Still, a stan-
dard bootstrap approach is not appropriate since the bias introduced by the penalty
term would not be correctly estimated. Double bootstrap techniques have been pro-
posed [128, 82] to take into account an estimation of the bias. Nonetheless, they are
computationally expensive (O(n3) where n is the number of samples). Also, asymp-
totic statistics have been derived to measure the uncertainty in the parameters under
a fixed setting of the regularization parameter [35]. They wouldn’t be appropriate
in our case since we estimate the regularization parameter by leave-one-out cross-
validation.

Bayesian interpretation of Ridge regression

In our work, we make use of a well-known equivalence [85] between the ridge regression
regularization parameter and the parameters of a Gaussian prior for the Bayesian
formulation of linear regression. It can be shown that the variance of the zero-centered
Gaussian prior τ 2 must be defined as:

τ 2 ≡ σ2

λ

where λ is the ridge regularization parameter and σ2 is the variance of the likelihood
that can be estimated by measuring the variance of the target on the training dataset.

More specifically, in the frequentist approach, the coefficient estimate β̂Ridge of
Ridge regressions is solved from:

β̂Ridge = argmin[(Y −Xβ)⊤(Y −Xβ) + λβ⊤β] (3.6)

In the Bayesian paradigm, no single coefficient estimate is found but a posterior
distribution of β is inferred from the data. From the Bayes theorem, this posterior
distribution can be written as:

p(β|Y,X) ∝ p(β) · p(Y |X, β) (3.7)

where Y |X, β ∼ N (Xβ, σ2I) with σ > 0 is the Bayesian formulation of linear re-
gression. If we suppose zero-centered gaussian priors with variance τ 2, then Eq. 3.7
becomes:

p(β|Y,X) ∝ exp
[
−1

2
(β − 0)⊤

1

τ 2
I(β − 0)

]
· exp

[
−1

2
(Y −Xβ)⊤

1

σ2
(Y −Xβ)

]
= exp

[
− 1

2σ2
(Y −Xβ)⊤(Y −Xβ)− 1

2τ 2
β⊤β

]
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From this expression, we can compute the Maximum A Posteriori estimate β̂MAP:

β̂MAP = argmax exp
[
− 1

2σ2
(Y −Xβ)⊤(Y −Xβ)− 1

2τ 2
β⊤β

]
= argmin

1

σ2
(Y −Xβ)⊤(Y −Xβ) +

1

τ 2
β⊤β

= argmin (Y −Xβ)⊤(Y −Xβ) +
σ2

τ 2
β⊤β

which is equivalent to the Ridge regression estimate found in Eq. 3.6 when λ ≡ σ2

τ2
.

Thus, for each Pareto optimal solution, we start from the discovered functional
form and the value of the ridge regularization hyper-parameter λ to infer again the co-
efficients, but this time, using Bayesian inference with the above prior. The resulting
posterior distributions give an estimate of the parameters’ uncertainty.

3.4.5 Implementation details

We implement our model in Python. In order to converge towards interpretable mod-
els, we restrict the operators available to the symbolic regression to {left , right , ln} for
the unary ones, and {×,+,−} for the binary ones. For the algebraic simplification of
the expression trees by, e.g., grouping common terms together (see function simplify
in algorithm 2), we use a module6 from the Sympy library ([87]).

To fit the coefficients of a newly discovered functional form, we use the scikit-
learn7 [96] implementations of ridge regression (in the case of a regression task)
and l2-regularized logistic regression (in the case of a classification task). The op-
timal coefficients of the linear models are computed with regularized least square
algorithms. Indeed, with the introduction of a weight decay, better generalization
performances can usually be achieved and the models are less prone to the negative
effects of multicollinearities. We optimize the l2-regularization parameter by either
an efficient form of leave-one-out cross-validation (viz., generalized cross validation)
for regression tasks or by five-folds cross-validation for classification tasks. However,
for even moderately large classification datasets (e.g., Adult in table 4.2), performing
a k-fold cross-validation at each iteration of the symbolic regression can take a long
time. In that case, we perform the search using the scikit-learn implementation
of a ridge classifier to benefit from the efficient computation of the generalized cross
validation. Only when a model is added to the Pareto front, do we fit its parame-
ters by l2-regularized logistic regression with k-fold cross-validation to optimize the
regularization parameter. Indeed, we observed experimentally that an l2-regularized

6https://docs.sympy.org/latest/modules/simplify/simplify.html
7https://scikit-learn.org/stable/
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logistic regression model tends to perform slightly better than a ridge classifier. By
adopting this strategy, we reduce the computation time by a factor of 6 on the Adult
dataset, while the final Pareto front remains nearly identical.

For imbalanced classification tasks, we use the imbalanced-learn implementa-
tion8 of the SMOTE-ENN resampling technique [22, 131].

As explained in section 3.4.4, in order to endow our final models with uncertainty
estimates, we use Bayesian inference to compute the posteriors for the coefficients of
each functional form on the Pareto front. We apply gaussian priors corresponding
to the already known optimal value of the regularization hyper-parameter (see sec-
tion 3.4.4). We rely on the pymc39 library with the No U-Turn Sampler ([51]) to run
simultaneously two Markov chains for 3000 iterations, with a burn-in period of 1000
iterations.

8https://imbalanced-learn.org/stable/references/generated/
imblearn.combine.SMOTEENN.html

9https://docs.pymc.io/en/v3/
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Chapter 4

Experiments

In the thesis, we design intrinsically interpretable predictive models to improve high-
stakes decision-making processes. In our first contribution, we propose a methodology
that combines Bayesian learning of hierarchical GLM with automatic detection of a
hierarchical structure and interactions through methods borrowed from the field of
explainable artificial intelligence (XAI). In our second contribution, we develop a novel
methodology to exploit even better the hierarchical structure by combining symbolic
regression and multi-objective optimization to obtain models that are sparser, more
efficient while capturing more relevant interactions.

To validate that our approaches improve the predictive capacities of interpretable
models and get close to the black-box models, our experiments are carried out on the
highway dataset and on more than ten public datasets covering different tasks from
various domains.

In this chapter, we begin by presenting in section 4.1 the different datasets on
which the experiments are carried out and we introduce the different data processing
in section 4.2. Then, we introduce in section 4.3 the evaluation metrics for regressions
and classifications. In section 4.4, we describe all the parametric and non-parametric
models that are used for comparison purposes. Then, we share the results in sec-
tion 4.5. Finally, in section 4.6, we illustrate the benefits of our approach by in-
troducing, on a realistic case study, an application we designed for highway safety
experts
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4.1 Description of the datasets

4.1.1 French highway dataset

To address the problem of crash prediction, we generate a tabular dataset from the
different available data sources. Most of the data come from the APRR’s relational
databases, and the remaining data, in particular topographical surveys of the network
infrastructure, was sent to us by field experts in the form of structured flat files. To
generate the dataset, we first divide the highway network into segments of equal
length, then for each segment, we calculate the different variables on a given time
period. In this section, we describe in more detail the process that leads to the
generation of this dataset, further referred to as the French Highway dataset.

Highway network meshing

In the first place, the network must be divided into segments in order to be able
to identify afterwards more or less crash-prone configurations on the network and
to understand the associated influential explanatory variables. For this, we rely on
spatial surveys of reference points of each highway belonging to the network. Each
highway is divided into one-way segments of equal length. In this study, we select
a length equal to 10 kilometers, in order to be able to capture the variations of the
explanatory variables on the vast network while having a crash count rarely equal to
zero. Of course, at the ends of the network, some segments will have a length less
than the predefined one. Thus, we decide not to consider them in the analysis.

Calculation of variables

Considering the data available to us, we chose to restrict the analysis to the APRR
network only. The study therefore covers 1,894 km of network, since the 429 km of
the AREA subsidiary’s highway network (see Fig. 1.1) have been withdrawn. The
data covers eleven years, from January 1, 2008 to December 31, 2018. In our work,
we focus on predicting the annual crash count. The available temporal explanatory
variables are therefore also aggregated to this time scale. The spatial variables remain
fixed over all the years of the study. In this section, we describe how we calculate
the different variables, starting with the accident count. Descriptive statistics of the
computed variables are given in table 4.1.

Crash count The accident data comes from police reports or descriptive sheets
filled out by APRR staff present at the crash site. The information transmitted are
very detailed: location, date and time, number of individuals involved, type of vehicle,
etc. About 20% of accidents have no time indication because the protagonists did not
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Figure 4.1: Distribution of the observed crash counts

wait for the arrival of help, police or group staff before leaving. However, they are
identified by the patrols on the same day and are therefore also taken into account.

Then, accident data are stored in the company’s large databases. It is from these
databases that we are able to retrieve all crash-related information needed for the
study. For each highway segment, the accidents are aggregated over each year of
the study. The number of crashes per segment varies greatly (see Figure 4.1 for the
distribution of observed crash counts). In table 4.1, we observe that the variance of
the crash count exceeds its mean. This phenomenon, called over-dispersion, is often
witnessed with crash data [75].

Traffic related variables Two traffic-related variables are considered in the study:
the annual average daily traffic (AADT) and the percentage of heavy vehicles. Two
data sources are available to estimate these variables. One, coming from the 797
counting loops integrated into the road pavement, represents the number of vehicles
and the percentage of heavy vehicles having passed through the sensors during a
fixed period of time (6 min). The other comes from transactions at toll gates, taking
into account the class of vehicle (e.g., light vehicle, two-axled truck, etc.). While the
former often has noisy data (e.g., outliers, long absence of data), mainly due to sensor
failures, the latter provides a very reliable estimate of the AADT and percentage of
heavy vehicles on highway segments. We therefore select toll data as a way to estimate
the yearly traffic related variables on the network. We use the weighted mean to
evaluate the traffic on our segments and to be able to capture traffic variations inside
the segments:

x =

∑n
i=1 wixi∑n
i=1wi

(4.1)

with wi being the distance for which the variable has the value xi.
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Name type Min Max Mean Std.
Dependent variable

Crash count discrete 0 78 11.43 8.06

Explanatory variables
Temporal
AADT continuous 659 37644 12828 6791
Percentage of heavy vehicles continuous 1 35.1 17.39 5.80

Spatial
Speed limit continuous 104 130 128.37 4.91
Number of interchanges discrete 0 7 0.2 0.68
Number of resting places discrete 0 3 0.63 0.57
Right shoulder width continuous 0.6 3 2.93 0.25
Altitude continuous 71.97 615.8 250.83 105.71
Presence of ramps binary 0 1 0.24 0.43
Presence of tunnels binary 0 1 0.02 0.13
Presence of tollgates binary 0 1 0.43 0.5
Presence of bridges binary 0 1 0.18 0.39
Number of instances in the dataset: 4152

Table 4.1: Description of the French Highway dataset

Spatial variables A list of spatial variables is given in table 4.1. For the variables
representing specific elements such as interchanges, tunnels, etc., we received from
field experts a spatial statement of their coordinates. Variables that have very small
variation on the network (viz., ramps, tunnels, toll barrier, structures) are binarized
to indicate whether an element is present on a roadway segment or not. The others
(viz., interchanges, resting places) are discrete variables referring to as a count of
the element of interest on the roadway segment. The remaining variables (viz., right
shoulder width, altitude and speed limit), representing continuous elements on the
network, are calculated from the weighted mean defined in eq. 4.1.

4.1.2 Other datasets

As said before, we extend the study to 13 other datasets covering regression and
classification tasks from various domains. The size of these datasets varies greatly,
both in terms of volumes (from 546 to 116640 instances) and dimensionalities (from
7 to 117 features). A general description of the datasets is given in table 4.2.
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Dataset #Instances #Features dependent variable Posa

Regression
French Highway 4152 11 crash count -
Insurance [69] 1338 7 health insurance costs -
Airbnb [5] 48895 12 housing prices -
House (218_house_8L)∗ 22784 8 - -
Puma (225_puma8NH)∗ 8192 8 - -
Satellite (294_satellite_image)∗ 6435 36 - -
Wind (503_wind)∗ 6574 14 - -
Breast tumor (1201_BNG_breastTumor)∗ 116640 9 - -
Music (4544_GeographicalOriginalofMusic)∗ 1059 117 - -
Wine† 4898 12 white wine quality -
Toxicity† 546 9 aquatic toxicity -
Gas† 36733 11 gas emission -

Classification
Breastcancer † 569 30 malignant tumor 0.06
Adult † 48842 14 earnings > $50K/year 0.27
a percentage of positive cases
∗ Datasets taken from https://epistasislab.github.io/pmlb/index.html
† Datasets taken from https://archive.ics.uci.edu/ml/index.php

Table 4.2: Datasets

4.2 Data preparation
For all datasets, we do not apply any process of dimensionality reduction such as
feature selection or principal component analysis. The original data are transformed
in different ways depending on the ML model. Models that introduce regularization
terms have standardized data as input. Standardization makes the values of each
continuous explanatory variable have zero-mean and a unit-variance:

x′ =
x− µ

σ

where µ is the mean value of the variable, and σ its standard deviation.
For neural networks, continuous explanatory variables are re-scaled in the [0, 1]

interval:
x′ =

x−min(x)

max(x)−min(x)

Moreover, categorical explanatory variables are one-hot encoded. More precisely,
if n is the number of different categorical values, then one-hot encoding transforms the
variable into n− 1 binary explanatory variables describing the values of the original
explanatory variable.
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Predicted class
Positive Negative

Actual class Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

Table 4.3: Confusion matrix

4.3 Performance metrics

4.3.1 Regression

To measure the performance of predictive models on regression tasks, we compute
the root mean square error and the mean absolute deviation. Given n the number of
observations, yi the target and ŷi the predicted value:

Root mean square error is a measure of how spread out are the prediction errors,
in the context of numerical predictions. This metric is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2

Mean Absolute Deviation is a measure of variability that indicates the average
distance between the predictions and the average value of the observed variable:

MAD =
1

n

n∑
i=1

|ŷi − ȳ|

with ȳ being the mean value of y.

4.3.2 Classification

To evaluate our models on binary classification tasks, we use metrics derived from
the confusion matrix presented in table 4.3. Each row of the matrix represents the
instances in an actual class while each column represents the instances in a predicted
class. However, many machine learning and statistical models predict a probability.
To know the associated predicted class, a classification threshold is used, most of the
time equal to 0.5. Probability values greater than this threshold are mapped to one
class, and the remaining are mapped to another.

From the confusion matrix in table 4.3, we can compute:
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accuracy is the proportion of correct results that a classifier achieved:

acc =
TP + TN

TP + TN + FP + FN

This very intuitive metric loses interest when data are imbalanced, as it can give
an over-optimistic measure of the model’s predictive performance. For instance, on
the Breastcancer dataset where the percentage of negative cases (viz., the tumor
is benign) is 0.94 (see table 4.2), a model that has learned to detect only benign
tumors will obtain a high accuracy. However, measuring the model’s ability to predict
malignancies can be equally useful, depending on the context. Thus, other metrics
must be considered.

precision is the number of correctly predicted positive observations over the total
number of predicted positive observations:

pre =
TP

TP + FP

recall is the number of correctly predicted positive observations over the total num-
ber of observations in the actual class:

rec =
TP

TP + FN

f1-score is the harmonic mean of the precision and recall:

f1 = 2 ∗ pre ∗ rec
pre+ rec

Both the false positives and false negatives are considered which makes this metric
very useful, especially when the data are imbalanced.

Receiving Operator Characteristic (ROC) curve is designed by plotting the
true positive rate (TPR) against the false positive rate (FPR) at various threshold
values (see Fig. 4.2a). TPR indicates how many positive predicted outcomes occur
among all positive samples:

TPR =
TP

TP + FN
FPR defines how many incorrect positive outcomes occur among all negative samples:

FPR =
FP

FP + TN

ROC curve is appropriate when the observations are well balanced between each class.
However, it can give an overly optimistic view of the model’s performance if datasets
are very imbalanced.
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(a) (b)

Figure 4.2: Examples of (a) ROC curve and (b) precision-recall curve obtained on the
FrenchHighway dataset

Precision-recall curve illustrates the trade-off between precision and recall for
various threshold values (see Fig. 4.2b). This curve is tailored for problems where
classes are very imbalanced, but also when the positive class is more interesting than
the negative one.

The two aforementioned parametric curves are not performance measures by them-
selves but representations of how well classifiers can discriminate between the two
classes for different threshold settings. Thus, to obtain a measure of performance
across all possible classification thresholds, we compute the area under the curve.
These metrics are further referred to as AUROC and AUPR for the ROC curve and
the precision-recall curve, respectively.

4.4 Models used for comparison

4.4.1 Parametric interpretable models

Among the most simple and interpretable models, we select the scikit-learn im-
plementations of ordinary least square regression (OLS ), logistic regression (LR) and
decision trees of depth no more than 5 (to preserve interpretability). We also consider
a standard Bayesian inferred GLM (B-GLM ) implemented with the Pymc3 library.
This model does not include the prior knowledge of a hierarchical structure nor inter-
actions between variables. A variant with interactions discovered by the polynomial
network presented in section 3.3.3 is also considered and is further referred to as B-
GLM-int. On the French Highway dataset, we also train a generalized linear mixed
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model (GLMM ) implemented with the statsmodels1 library.
Moreover, we include two variants of Generalized Additive Models (GAM). For the

first one, GAM-splines, based on a spline basis, we use the PyGAM2 implementation.
For the second one, explainable boosting machine (EBM ), based on gradient boosting
with bagging, we use the implementation provided by the InterpretML framework
[92].

We also compare our approach to genetic programming based symbolic regres-
sions with the reference implementations of the gplearn3 package (SR-GP) and GP-
GOMEA4 (SR-Gomea) [129], the latter being known to perform well on many real
world datasets [67]. For both implementations, the set of operators is restricted to the
one we use in our approach (viz., {+,−,×, ln}). We also consider SR-Gomea-op, the
same model with a less restricted set of operators (viz., {+,−,×, ln, cos , sin,

√
}),

the same as the one used by [67] in their recent survey. Note that GP-GOMEA does
not currently have an implementation for classification problems.

For all the aforementioned interpretable models, we apply a no pooling approach
that accounts for the clusters discovered by our Hierarchical structure module (see
section 3.2). This approach fits a separate model for each cluster and considers that
no similarities exist between them.

4.4.2 Non-parametric black-box models

We select three highly flexible black-box models: (i) the scikit-learn implementa-
tion of Support Vector Machines (SVM) and (ii) Multilayer Perceptrons (MLP), and
(iii) the XGBoost ([24]) gradient tree boosting library5

4.4.3 Models from our proposal

We consider the first proposal of ours namely, the Bayesian hierarchical GLM (BH-
GLM-int). Recall that the latter is based on the bayesian inference of a linear hi-
erarchical model with data-driven discovery of objective priors in the form of i) a
hierarchical structure (chapter 3.2) and ii) strong first-order interactions obtained
through the analysis of the structure of a trained self-adaptive polynomial network
(chapter 3.3). We also include the variant without interactions between variables
(BH-GLM ). For each dataset, the associated parameters and priors are given in ta-
ble 4.4.

1https://www.statsmodels.org/stable/mixed_glm.html
2https://pygam.readthedocs.io/en/latest/
3https://gplearn.readthedocs.io/en/stable/
4https://github.com/marcovirgolin/GP-GOMEA
5https://xgboost.readthedocs.io/en/latest/python/python_intro.html
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Dataset Linka #clusters 1st level 2nd level 3rd level
Regression
FrenchHighway Log 4 Yik ∼ NB(µik, α)

b, α ∼ G(a = 0.5, b = 2.5)c βj ∼ N (µ, σ) µ ∼ N (0, 10), σ ∼ H(5)
Insurance Idd 2 Yik ∼ N (µ, 1000) βj ∼ N (µ, σ) µ ∼ N (0, 100), σ ∼ H(5)
Airbnb Id 4 Yik ∼ N (µ, 5) βj ∼ N (µ, σ) µ ∼ N (0, 10), σ ∼ H(2.5)
House Id 4 Yik ∼ N (µ, 1000) βj ∼ N (µ, σ) µ ∼ N (0, 100), σ ∼ H(5)
Puma Id 3 Yik ∼ N (µ, 10) βj ∼ N (µ, σ) µ ∼ N (0, 10), σ ∼ H(2.5)
Satellite Id 3 Yik ∼ N (µ, 20) βj ∼ N (µ, σ) µ ∼ N (0, 50), σ ∼ H(5)
Wind Id 3 Yik ∼ N (µ, 10) βj ∼ N (µ, σ) µ ∼ N (0, 10), σ ∼ H(2.5)
Breast tumor Id 2 Yik ∼ N (µ, 20) βj ∼ N (µ, σ) µ ∼ N (0, 50), σ ∼ H(5)
Music Id 3 Yik ∼ N (µ, 10) βj ∼ N (µ, σ) µ ∼ N (0, 10), σ ∼ H(2.5)
Wine Id 3 Yik ∼ N (µ, 10) βj ∼ N (µ, σ) µ ∼ N (0, 10), σ ∼ H(2.5)
Toxicity Id 2 Yik ∼ N (µ, 5) βj ∼ N (µ, σ) µ ∼ N (0, 10), σ ∼ H(2.5)
Gas Id 2 Yik ∼ N (µ, 20) βj ∼ N (µ, σ) µ ∼ N (0, 50), σ ∼ H(5)

Classification
Breastcancer Logit 2 Yik ∼ B(p = exp(µik)

1+exp(µik)
)e βj ∼ N (µ, σ) µ ∼ N (0, 100), σ ∼ H(5)

Adult Logit 4 Yik ∼ B(p = exp(µik)
1+exp(µik)

) βj ∼ N (µ, σ) µ ∼ N (0, 100), σ ∼ H(5)
aLink function; bNegative Binomial distribution; cGamma distribution; dIdentity function; eBernoulli distribution

Table 4.4: Parameters and priors for the Bayesian hierarchical models

Moreover, we consider several variants of our second proposal. SR-trad and SR-
max use only the global model of section 3.4.3 while HSR-trad and HSR-max use the
cluster-specific models of section 3.4.3 (prefix “H” stands for hierarchical). We also
train our hierarchical symbolic regression on clusters discovered with a hierarchical ag-
glomerating clustering applied to the training data, including the dependent variable.
These models are further referred to as HSR-naive-trad and HSR-naive-max. Finally,
SR-NP-trad and SR-NP-max are cluster-specific models learned with a no pooling
approach, meaning that they do not include the knowledge of the global model. The
suffixes trad and max are used to distinguish models selected near the elbow of the
Pareto front, that should have a good trade-off (whence trad) between complexity
and predictive performance, from models of maximum complexity (whence max ).

4.4.4 Hyper-parameters tuning

For fair comparisons, the hyper-parameters of the models presented in section 4.4.1
and section 4.4.2 are optimized by cross-validation with grid-search. For each model,
the grid of hyper-parameters’ values are given in table 4.5.

Moreover, we conducted a grid-search for the SR’s hyper-parameters (viz., number
of expression trees, depth of an expression tree, parameters controlling the anneal-
ing temperature in simulated annealing) on two datasets, Insurance and Adult. We
obtained the following results:

Expression tree depth Deeper trees lead to more complex models, mainly due to
the possibility of deep compositions of functions. Motivated by finding a good com-
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Model Hyper-parameters Values
LR C {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}

solver {newton-cg, lbfgs, liblinear}
tol {0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1}
class_weight {balanced,None}

GAM-splines lam {0.001, 0.01, 0.1, 1, 10, 100, 1000}

EBM max_bins {8, 16, 32, 64, 128, 256, 512, 1024}
min_samples_leaf {1, 2, 5, 10, 20}

SR-GP population_size {500, 1000, 1500}
generations {20, 50, 100}

SR-Gomea initmaxtreeheight {4, 6}
popsize {500, 1000}

XGBoost learning_rate {0.0001, 0.001, 0.01, 0.1}
max_depth {2, 3, 5, 10, 15}
min_child_weight {1, 3, 5, 7}
gamma {0, 0.5, 1, 1.5, 2, 5}
col_sample_by_tree {0.3, 0.4, 0.5, 0.7, 1}

SVM C {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}
kernel {linear, poly, rbf}
tol {0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1}

MLP hidden_layer_sizes {(16, 16), (16, 8), (8, 8)}
alpha {0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1}
activation {tanh, relu}
learning_rate_init {0.0001, 0.001, 0.01, 0.1}

Table 4.5: Hyper-parameters tuning
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promise between the complexity of the final models and their predictive performance,
we restrict the tree depth to 4. In this way, each expression tree, being a perfect
binary tree, has 8 leaves.

Number of expression trees There is no noticeable improvement in predictive
performance when the number of expression trees exceeds two-thirds of the number
of features after data preparation (viz., one hot encoding).

Parameters of the simulated annealing The grid-search is also conducted on
the parameters of the simulated annealing. For the heating phase, we find that
λh = 1.15 is a good value for reaching quickly a suitable starting temperature T0. For
the cooling phase, the ratio λc = 0.85 is a good balance between algorithmic efficiency
and not falling into local optimums too quickly. The parameter γc, which controls
the growth of sc (viz., the number of iterations between two updates of temperature)
is set to 1.15.

4.5 Results
We apply a 5-fold cross-validation to measure the predictive performances of the
models. Results obtained on regression datasets are reported in table 4.7 and table 4.8,
the latter for cluster-specific interpretable models trained with a no pooling approach.
Results for classification datasets are shown in table 4.9.

4.5.1 Hierarchical structure module

For each dataset, the optimal number of clusters computed in the Hierarchical struc-
ture module is given in table 4.6. Moreover, to validate the ability of this module to
associate an unknown sample to a cluster, a train-test split approach is applied on
each training subset of the 5-fold cross-validation. For each training subset, the deci-
sion tree classifier is trained, on 80% of the data, to predict, based on the explanatory
variables, the cluster to which a new observation belongs. A f1-score is computed
on the remaining 20% of each training subset. The decision tree classifier is highly
accurate on all datasets (see table 4.6).

4.5.2 Regression datasets

BH-GLM and BH-GLM-int obtain better RMSE and MAD than the fully inter-
pretable models (viz., OLS, decision tree, B-GLM, B-GLM-int) on most datasets.
Moreover, on the French Highway dataset, BH-GLM obtains a 6.64% decrease (6.77%
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Dataset #clusters f1 (std)
Regression
French Highway 4 0.995 (0.003)
Insurance 2 1.0 (0.0)
House 4 0.908 (0.026)
Puma 3 0.975 (0.013)
Satellite 3 0.964 (0.003)
Wind 3 0.944 (0.022)
Breast tumor 2 0.995 (0.004)
Music 3 0.96 (0.029)
Wine 3 0.957 (0.012)
Toxicity 2 0.95 (0.039)
Gas 2 0.99 (0.003)
Airbnb 4 0.985 (0.005)

Classification
Breastcancer 2 0.961 (0.028)
Adult 4 0.995 (0.002)

Table 4.6: For each dataset: number of clusters selected and performance of the
prediction to associate a new observation to its cluster
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for BH-GLM-int) in RMSE when compared to B-GLM, the standard Bayesian model.
As expected, we observe the superior predictive performance of modern tree-based
algorithms (viz., XGBoost and EBM ). However, the black-box models, SVM and
MLP, do not appear to have the expected high predictive performances as BH-GLM
and BH-GLM-int obtain similar if not better RMSE and MAD on most datasets.

SR-GP, the symbolic regression based on genetic programming, obtains poor re-
sults and is even dominated by the fully interpretable models on all datasets. The
more recent approach SR-Gomea obtains better predictive performance than SR-GP
but is still dominated by HSR-trad and HSR-max. SR-Gomea-op does not highlight
significant predictive gains compared to SR-Gomea on most datasets. This validates
that restricting the operators makes it possible to obtain interpretable functional
forms with more than satisfactory predictive performance on real world datasets.

HSR-trad, the model that, according to our second proposal, should offer a good
trade-off between performance and complexity, obtains better RMSE and MAD than
BH-GLM and BH-GLM-int on most datasets. As expected, HSR-max, the most com-
plex model resulting from our approach, performs better than HSR-trad, except for
the Insurance dataset where they obtain similar predictive performance. Moreover,
the fact that these models have performance metrics with low standard deviations
testifies to their robustness. Indeed, they are likely to discover similar solutions on
similar datasets.

HSR-trad and HSR-max, the cluster-specific models, often show a clear improve-
ment when compared to the global models SR-trad and SR-max. The partial pooling
approach has a clear interest given that HSR-trad and HSR-max outperform SR-NP-
trad and SR-NP-max, their no pooling variants. Also, our approach to discover a hier-
archical structure is robust, efficient and obtain better results on all datasets compared
to the approach that considers more naive clusters. Indeed, on all datasets, HSR-
trad and HSR-max are substantially better than HSR-naive-trad and HSR-naive-
max. Moreover, incorporating the data-driven discovery of a hierarchical structure
not only provides better predictive performances, it also offers better interpretability
by capturing cluster-specific phenomena (see section 4.6).

HSR-max and GAM-splines have similar performances on all datasets but the
Insurance dataset where HSR-max discovers a significant interaction between the
body mass index and being a smoker. However, the no pooling variant of GAM-
splines is slightly better than HSR-max on the Insurance dataset. Finally, EBM
performs well on all datasets. It obtains the best performances on the Insurance and
Gas datasets and is similar, if not better, to XGBoost on the French Highway, Airbnb,
and Wine datasets.
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French Highway (8 a) Insurance (6) Airbnb (12) Puma (6)
RMSE (std) b MAD (std) RMSE (std) MAD (std) RMSE (std) MAD (std) RMSE (std) MAD (std)

Local 5.052 (0.250) 3.677 (0.120) - - - - - -
GLMM 5.044 (0.287) 3.676 (0.140) - - - - - -
OLS 6.213 (0.496) 4.458 (0.216) 6077 (287) 4203 (144) 0.50 (0.011) 0.360 (0.004) 4.471 (0.068) 3.649 (0.026)
Decision tree 6.134 (0.422) 4.405 (0.196) 4739 (324) 2738 (125) 0.490 (0.011) 0.352 (0.004) 3.688 (0.05) 2.881 (0.011)
GAM-splines 5.80 (0.344) 4.245 (0.183) 6021 (299) 4229 (158) 0.464 (0.011) 0.330 (0.004) 4.236 (0.065) 3.492 (0.03)
EBM 5.363 (0.233) 3.968 (0.134) 4533 (339) 2528 (131) 0.450 (0.013) 0.321 (0.005) 3.283 (0.049) 2.553 (0.037)
SR-GP 8.06 (0.730) 5.602 (0.408) 5168 (360) 2611 (95) 0.563 (0.026) 0.411 (0.014) 4.504 (0.086) 3.593 (0.045)
SR-Gomea 6.309 (0.303) 4.539 (0.128) 4885 (251) 2931 (113) 0.502 (0.010) 0.363 (0.004) 3.362 (0.033) 2.626 (0.057)
SR-Gomea-op 6.297 (0.267) 4.543 (0.155) 4815 (250) 2852 (160) 0.514 (0.01) 0.371 (0.004) 3.238 (0.059) 2.488 (0.044)
B-GLM 6.468 (0.531) 4.58 (0.241) 6080 (266) 4228 (124) 0.498 (0.011) 0.360 (0.004) 4.464 (0.068) 3.648 (0.026)
B-GLM-int 6.356 (0.513) 4.474 (0.235) 5151 (293) 2950 (140) 0.497 (0.01) 0.360 (0.004) 4.282 (0.065) 3.537 (0.026)
XGBoost 5.571 (0.377) 4.084 (0.175) 4667 (346) 2673 (193) 0.440 (0.011) 0.312 (0.003) 3.257 (0.056) 2.545 (0.028)
SVM 6.310 (0.645) 4.382 (0.268) 4953 (272) 2968 (147) 0.503 (0.011) 0.356 (0.004) 4.493 (0.089) 3.612 (0.037)
MLP 6.140 (0.462) 4.392 (0.212) 4867 (347) 2916 (205) 0.463 (0.013) 0.330 (0.008) 3.170 (0.052) 2.445 (0.029)

BH-GLM 6.102 (0.441) 4.380 (0.187) 4926 (300) 2930 (130) 0.476 (0.019) 0.354 (0.01) 3.873 (0.133) 3.057 (0.091)
BH-GLM-int 6.004 (0.46) 4.315 (0.191) 4925 (301) 2929 (131) 0.474 (0.02) 0.352 (0.011) 3.871 (0.13) 3.056 (0.088)
SR-trad 6.258 (0.509) 4.488 (0.208) 5219 (330) 3176 (209) 0.510 (0.018) 0.373 (0.011) 3.961 (0.031) 3.162 (0.026)
SR-max 6.186 (0.469) 4.44 (0.224) 4889 (293) 3095 (366) 0.507 (0.011) 0.369 (0.008) 3.528 (0.042) 2.791 (0.041)
HSR-naive-trad 6.472 (0.462) 4.644 (0.261) 6429 (307) 3304 (237) 0.584 (0.067) 0.410 (0.031) 4.156 (0.184) 3.064 (0.162)
HSR-naive-max 6.386 (0.473) 4.582 (0.252) 6328 (307) 3170 (243) 0.545 (0.018) 0.401 (0.026) 4.062 (0.078) 3.002 (0.09)
HSR-trad 5.921 (0.54) 4.250 (0.226) 4840 (308) 2930 (153) 0.475 (0.012) 0.343 (0.011) 3.30 (0.084) 2.547 (0.084)
HSR-max 5.80 (0.507) 4.210 (0.282) 4844 (304) 2933 (149) 0.470 (0.011) 0.340 (0.011) 3.277 (0.082) 2.532 (0.087)

Satellite (24) Wind (9) Breast tumor (6) Music (78)
OLS 1.213 (0.009) 1.02 (0.011) 3.289 (0.104) 2.521 (0.077) 10.023 (0.036) 7.88 (0.027) 0.465 (0.039) 0.35 (0.03)
Decision tree 1.061 (0.022) 0.621 (0.017) 3.839 (0.112) 2.980 (0.103) 9.844 (0.039) 7.632 (0.03) 0.705 (0.066) 0.497 (0.053)
GAM-splines 0.90 (0.009) 0.624 (0.007) 3.082 (0.084) 2.366 (0.057) 9.663 (0.047) 7.537 (0.034) 0.898 (0.101) 0.678 (0.069)
EBM 0.851 (0.035) 0.575 (0.021) 3.140 (0.089) 2.398 (0.061) 9.519 (0.049) 7.401 (0.04) 0.60 (0.036) 0.441 (0.035)
SR-GP 1.628 (0.438) 1.055 (0.095) 3.858 (0.216) 2.979 (0.191) 10.441 (0.277) 8.151 (0.23) 0.71 (0.154) 0.51 (0.102)
SR-Gomea 1.164 (0.028) 0.897 (0.036) 3.306 (0.128) 2.545 (0.099) 9.988 (0.056) 7.795 (0.044) 0.523 (0.081) 0.379 (0.056)
SR-Gomea-op 1.102 (0.032) 0.826 (0.029) 3.296 (0.101) 2.534 (0.077) 9.973 (0.049) 7.788 (0.025) 0.499 (0.036) 0.369 (0.036)
B-GLM 1.213 (0.008) 1.019 (0.012) 3.308 (0.098) 2.527 (0.074) 10.018 (0.033) 7.776 (0.03) 0.473 (0.033) 0.353 (0.03)
B-GLM-int 1.117 (0.044) 0.905 (0.069) 3.295 (0.098) 2.517 (0.073) 9.995 (0.034) 7.791 (0.026) 0.469 (0.045) 0.358 (0.031)
XGBoost 0.667 (0.033) 0.35 (0.016) 3.084 (0.075) 2.365 (0.050) 9.435 (0.048) 7.288 (0.041) 0.507 (0.046) 0.367 (0.037)
SVM 1.261 (0.028) 1.003 (0.022) 3.307 (0.102) 2.521 (0.073) 10.045 (0.036) 7.86 (0.029) 0.472 (0.042) 0.348 (0.03)
MLP 0.789 (0.047) 0.448 (0.03) 3.076 (0.087) 2.367 (0.062) 9.67 (0.04) 7.519 (0.023) 0.498 (0.042) 0.36 (0.04)

BH-GLM 0.986 (0.036) 0.598 (0.034) 3.297 (0.101) 2.538 (0.079) 9.76 (0.035) 7.611 (0.031) 0.472 (0.035) 0.356 (0.027)
BH-GLM-int 0.952 (0.029) 0.553 (0.028) 3.291 (0.106) 2.531 (0.084) 9.751 (0.036) 7.598 (0.033) 0.467 (0.037) 0.353 (0.027)
SR-trad 1.175 (0.05) 0.948 (0.059) 3.342 (0.104) 2.568 (0.080) 10.096 (0.064) 7.917 (0.051) 0.543 (0.081) 0.401 (0.049)
SR-max 1.018 (0.04) 0.784 (0.035) 3.176 (0.081) 2.445 (0.059) 10.03 (0.079) 7.864 (0.06) 0.476 (0.045) 0.359 (0.037)
HSR-naive-trad 1.012 (0.064) 0.645 (0.068) 3.547 (0.041) 2.731 (0.050) 11.932 (0.16) 9.289 (0.241) 0.524 (0.045) 0.372 (0.02)
HSR-naive-max 0.991 (0.034) 0.631 (0.031) 3.562 (0.068) 2.711 (0.046) 11.915 (0.108) 9.267 (0.185) 0.507 (0.056) 0.372 (0.039)
HSR-trad 0.95 (0.034) 0.554 (0.032) 3.205 (0.074) 2.457 (0.054) 9.727 (0.056) 7.595 (0.06) 0.497 (0.05) 0.366 (0.031)
HSR-max 0.934 (0.056) 0.529 (0.062) 3.198 (0.074) 2.455 (0.054) 9.662 (0.061) 7.531 (0.049) 0.471 (0.053) 0.351 (0.027)

House (5) Wine (8) Toxicity (6) Gas (7)
OLS 41563 (1270) 24354 (202) 0.754 (0.02) 0.586 (0.012) 1.256 (0.097) 0.949 (0.072) 8.112 (0.133) 5.796 (0.081)
Decision tree 35752 (1199) 20035 (401) 0.753 (0.015) 0.596 (0.013) 1.394 (0.12) 1.059 (0.086) 7.705 (0.127) 5.638 (0.068)
GAM-splines 33460 (1405) 18634 (212) 0.728 (0.029) 0.565 (0.015) 1.245 (0.106) 0.92 (0.08) 5.993 (0.10) 4.187 (0.038)
EBM 31062 (1192) 16921 (133) 0.689 (0.019) 0.537 (0.01) 1.20 (0.095) 0.899 (0.06) 5.476 (0.072) 3.763 (0.038)
SR-GP 56615 (21299) 24687 (2204) 0.857 (0.068) 0.664 (0.055) 1.457 (0.264) 1.087 (0.152) 10.75 (1.107) 8.165 (0.775)
SR-Gomea 36750 (1693) 20768 (976) 0.742 (0.022) 0.582 (0.015) 1.343 (0.189) 0.978 (0.088) 8.703 (0.144) 6.583 (0.176)
SR-Gomea-op 36865 (1434) 20916 (788) 0.739 (0.021) 0.579 (0.015) 1.267 (0.116) 0.956 (0.086) 8.742 (0.278) 6.764 (0.227)
B-GLM 42104 (1406) 22632 (220) 0.753 (0.02) 0.586 (0.012) 1.237 (0.099) 0.934 (0.073) 8.112 (0.134) 5.797 (0.081)
B-GLM-int 39811 (1375) 20872 (335) 0.751 (0.019) 0.583 (0.012) 1.246 (0.089) 0.941 (0.056) 8.112 (0.137) 5.797 (0.081)
XGBoost 29630 (1237) 15733 (120) 0.68 (0.014) 0.531 (0.006) 1.157 (0.129) 0.872 (0.092) 5.705 (0.190) 4.001 (0.126)
SVM 44879 (1676) 21201 (228) 0.748 (0.018) 0.582 (0.01) 1.286 (0.195) 0.959 (0.132) 6.954 (0.372) 4.875 (0.453)
MLP 36004 (851) 20174 (396) 0.757 (0.071) 0.587 (0.051) 1.280 (0.153) 0.973 (0.112) 6.023 (0.239) 4.223 (0.134)

BH-GLM 35212 (1661) 19444 (708) 0.741 (0.017) 0.576 (0.013) 1.235 (0.095) 0.933 (0.069) 6.87 (0.282) 4.768 (0.159)
BH-GLM-int 35039 (1820) 19079 (443) 0.737 (0.017) 0.574 (0.014) 1.237 (0.098) 0.934 (0.073) 6.87 (0.282) 4.769 (0.159)
SR-trad 37412 (2150) 21067 (524) 0.744 (0.024) 0.584 (0.015) 1.253 (0.089) 0.953 (0.078) 8.153 (0.686) 6.131 (0.515)
SR-max 34716 (2049) 18976 (491) 0.731 (0.019) 0.571 (0.016) 1.233 (0.106) 0.935 (0.071) 7.395 (0.553) 5.467 (0.565)
HSR-naive-trad 37518 (1563) 19592 (433) 0.735 (0.021) 0.575 (0.011) 1.363 (0.112) 0.989 (0.08) 7.46 (0.708) 5.557 (0.607)
HSR-naive-max 37640 (1741) 19294 (472) 0.725 (0.019) 0.566 (0.009) 1.266 (0.071) 0.944 (0.057) 6.621 (0.15) 4.762 (0.152)
HSR-trad 33542 (1127) 17964 (258) 0.724 (0.019) 0.566 (0.013) 1.243 (0.097) 0.933 (0.047) 7.181 (0.618) 5.32 (0.776)
HSR-max 33102 (833) 17403 (155) 0.712 (0.014) 0.559 (0.011) 1.214 (0.065) 0.921 (0.038) 6.421 (0.150) 4.662 (0.153)
a number of trees for SR-* and HSR-* models
b averages and standard deviations of performance metrics obtained on 5-fold cross-validation

Table 4.7: Results obtained on 12 regression datasets
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French Highway Insurance Airbnb Puma
RMSE (std) MAD (std) RMSE (std) MAD (std) RMSE (std) MAD (std) RMSE (std) MAD (std)

OLS 6.05 (0.45) 4.323 (0.182) 4971 (293) 2975 (150) 0.484 (0.01) 0.346 (0.003) 3.867 (0.127) 3.039 (0.088)
GAM-splines 5.747 (0.467) 4.022 (0.168) 4913 (346) 2775 (132) 0.751 (0.649) 0.329 (0.01) 3.523 (0.076) 2.752 (0.048)
EBM 5.18 (0.275) 3.819 (0.113) 4512 (354) 2479 (134) 0.444 (0.012) 0.315 (0.003) 3.320 (0.057) 2.556 (0.039)
SR-GP 6.165 (0.555) 4.347 (0.196) 5795 (691) 2518 (195) 0.512 (0.015) 0.363 (0.005) 3.975 (0.178) 2.973 (0.115)
SR-Gomea 5.998 (0.257) 4.357 (0.131) 4872 (252) 2931 (139) 0.478 (0.011) 0.342 (0.004) 3.273 (0.078) 2.512 (0.043)
SR-Gomea-op 5.959 (0.143) 4.268 (0.105) 4625 (307) 2660 (135) 0.477 (0.009) 0.342 (0.002) 3.217 (0.072) 2.447 (0.049)
B-GLM 6.03 (0.453) 4.33 (0.190) 4879 (298) 2910 (149) 0.484 (0.01) 0.345 (0.003) 3.845 (0.112) 3.027 (0.078)
B-GLM-int 6.02 (0.47) 4.328 (0.191) 4872 (299) 2906 (142) 0.484 (0.01) 0.346 (0.003) 3.547 (0.092) 2.764 (0.043)

SR-NP-naive-trad 6.446 (0.42) 4.641 (0.249) 6751 (521) 3595 (365) 0.552 (0.017) 0.407 (0.014) 4.338 (0.229) 3.22 (0.179)
SR-NP-naive-max 6.377 (0.454) 4.572 (0.239) 6550 (365) 3357 (280) 0.554 (0.036) 0.414 (0.035) 4.266 (0.18) 3.157 (0.137)
SR-NP-trad 6.006 (0.473) 4.338 (0.184) 4842 (290) 2942 (137) 0.489 (0.019) 0.351 (0.006) 3.536 (0.087) 2.754 (0.071)
SR-NP-max 6.043 (0.617) 4.399 (0.30) 4844 (318) 2940 (167) 0.483 (0.011) 0.346 (0.005) 3.386 (0.063) 2.653 (0.048)

Satellite Wind Breast tumor Music
OLS 1.101 (0.053) 0.602 (0.05) 3.291 (0.094) 2.532 (0.074) 9.8 (0.123) 7.663 (0.117) 1.028 (0.458) 0.519 (0.116)
GAM-splines 0.899 (0.042) 0.477 (0.026) 3.108 (0.087) 2.387 (0.063) 9.62 (0.067) 7.488 (0.063) 0.827 (0.031) 0.614 (0.024)
EBM 0.874 (0.03) 0.44 (0.017) 3.200 (0.055) 2.453 (0.050) 9.493 (0.057) 7.367 (0.054) 0.613 (0.058) 0.429 (0.042)
SR-GP 1.209 (0.096) 0.659 (0.055) 3.678 (0.099) 2.837 (0.081) 10.242 (0.286) 7.994 (0.249) 0.762 (0.076) 0.545 (0.061)
SR-Gomea 1.025 (0.052) 0.594 (0.027) 3.283 (0.071) 2.514 (0.047) 9.798 (0.098) 7.636 (0.082) 0.624 (0.079) 0.428 (0.048)
SR-Gomea-op 0.991 (0.058) 0.553 (0.018) 3.287 (0.091) 2.516 (0.074) 9.798 (0.103) 7.658 (0.096) 0.584 (0.06) 0.409 (0.043)
B-GLM 0.988 (0.044) 0.598 (0.047) 3.293 (0.094) 2.535 (0.074) 9.8 (0.077) 7.641 (0.088) 0.652 (0.092) 0.431 (0.061)
B-GLM-int 0.986 (0.036) 0.598 (0.035) 3.287 (0.099) 2.529 (0.079) 9.798 (0.064) 7.62 (0.059) 0.721 (0.065) 0.508 (0.058)

SR-NP-naive-trad 1.025 (0.04) 0.673 (0.07) 3.675 (0.139) 2.822 (0.105) 12.0 (0.161) 9.365 (0.254) 0.549 (0.05) 0.408 (0.026)
SR-NP-naive-max 1.035 (0.148) 0.664 (0.125) 3.608 (0.079) 2.734 (0.058) 11.953 (0.149) 9.311 (0.228) 0.576 (0.102) 0.388 (0.03)
SR-NP-trad 0.975 (0.036) 0.574 (0.036) 3.312 (0.073) 2.539 (0.050) 9.865 (0.141) 7.711 (0.126) 0.550 (0.038) 0.392 (0.019)
SR-NP-max 0.953 (0.069) 0.539 (0.038) 3.278 (0.063) 2.449 (0.038) 9.8 (0.117) 7.662 (0.109) 0.564 (0.059) 0.381 (0.034)

House Wine Toxicity Gas
OLS 35162 (1651) 19186 (475) 0.736 (0.017) 0.573 (0.014) 1.264 (0.109) 0.952 (0.073) 7.169 (0.281) 5.06 (0.158)
GAM-splines 32633 (1111) 17535 (316) 0.729 (0.019) 0.566 (0.012) 1.293 (0.168) 0.957 (0.097) 5.671 (0.168) 3.85 (0.069)
EBM 31298 (944) 16426 (209) 0.683 (0.019) 0.527 (0.015) 1.207 (0.114) 0.890 (0.077) 5.423 (0.119) 3.721 (0.060)
SR-GP 49985 (7436) 22503 (1690) 0.807 (0.021) 0.627 (0.01) 1.395 (0.27) 0.99 (0.126) 9.966 (1.797) 6.843 (0.161)
SR-Gomea 33156 (863) 18045 (403) 0.729 (0.017) 0.574 (0.013) 1.238 (0.066) 0.943 (0.049) 7.614 (0.205) 5.607 (0.173)
SR-Gomea-op 33091 (943) 17950 (292) 0.734 (0.016) 0.577 (0.011) 1.273 (0.117) 0.959 (0.092) 7.747 (0.338) 5.78 (0.293)
B-GLM 41837 (1433) 20963 (341) 0.738 (0.019) 0.574 (0.014) 1.278 (0.119) 0.931 (0.081) 6.864 (0.276) 4.765 (0.157)
B-GLM-int 40835 (1380) 20610 (285) 0.739 (0.021) 0.575 (0.017) 1.293 (0.129) 0.959 (0.084) 6.47 (0.152) 4.454 (0.071)

SR-NP-naive-trad 38810 (1892) 20545 (684) 0.734 (0.027) 0.573 (0.013) 1.345 (0.173) 0.97 (0.072) 7.873 (1.55) 6.022 (1.733)
SR-NP-naive-max 38260 (1531) 19466 (315) 0.723 (0.016) 0.568 (0.009) 1.262 (0.096) 0.932 (0.073) 7.105 (0.906) 5.223 (0.827)
SR-NP-trad 33922 (1158) 18147 (247) 0.73 (0.019) 0.574 (0.013) 1.326 (0.125) 0.989 (0.094) 7.549 (0.515) 5.420 (0.439)
SR-NP-max 34021 (1251) 17841 (358) 0.724 (0.018) 0.569 (0.013) 1.347 (0.199) 0.975 (0.069) 7.296 (0.728) 5.34 (0.749)

Table 4.8: Results obtained by cluster-specific interpretable models
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4.5.3 Classification datasets

For the breast cancer dataset, the search for a hierarchical structure (see section 3.2)
identifies two homogeneous clusters and there is no need to learn cluster-specific
models. Thus, for this dataset, we consider only the global models SR-trad and SR-
max. Still for this same dataset, all models perform very well. Nonetheless, SR-max
is as, or even more, efficient than LR and black-box models. Also, we observe that
BH-GLM and BH-GLM-int, the Bayesian models that account for the hierarchical
structure in the data, perform better than the standard Bayesian models B-GLM.
Embedding major first-order interaction also improves the predictive performance.

XGBoost and EBM achieve the best results on the adult dataset. HSR-trad
obtains similar results to LR, thus suggesting that sparse models can have similar
predictive performances than models that consider all explanatory variables, the latter
being prone to the information overload phenomenon. HSR-max obtains similar, if
not better, results than black-box models. Its performance is close to the one of
GAM-splines. As observed previously for regression datasets, HSR-trad and HSR-
max still perform better than BH-GLM and BH-GLM-int. Also, they are better
than the global models (viz., SR-trad and SR-max ), thus confirming the benefits of
incorporating a hierarchical structure in case of classification problems.

4.5.4 Discussion

Confirming previous studies [76, 19], we observe that EBM, as a variant of GAM,
is very efficient on both regression and classification tasks. Moreover, this model
meets many of the expected criteria for interpretability enumerated in [10]. However,
it also has limitations that can make it unsuitable for road safety analysis. First,
different optimization strategies adopted to learn an EBM model, can lead to different
interpretations of its predictions [20]. However, for road safety analysis, trust in the
identification of the main risk factors is required by experts when they elaborate
remedial actions. Moreover, for satisfactory interpretability, it helps if a GAM has
a small number of components and if each component function is relatively smooth.
However, EBM, due to their reliance on boosted trees, can hardly maintain these
constraints [105]. With our approach, field experts are more likely to be confident
in models with cluster-specific behaviors and stable functional forms that highlight a
selection of relevant factors and their interactions.

Furthermore, for the French Highway dataset, as already observed in [126], the
best known strategy to estimate the number of crash counts is to average, for each
highway network segment, the number of accidents that occurred in previous years
(c.f., the Local model in table 4.7). We also observe that the predictive performances
of GLMM are equivalent to those of the Local model. When looking at the model in
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Breast cancer (20)
acc (std) AUPR (std) AUROC (std) f1 (std) pre (std) rec (std)

LR 0.980 (0.012) 0.995 (0.006) 0.995 (0.007) 0.974 (0.014) 0.981 (0.026) 0.968 (0.026)
Decision tree 0.940 (0.004) 0.898 (0.076) 0.921 (0.016) 0.919 (0.002) 0.923 (0.010) 0.915 (0.010)
GAM-splines 0.965 (0.019) 0.991 (0.008) 0.992 (0.008) 0.953 (0.022) 0.962 (0.012) 0.945 (0.035)
EBM 0.963 (0.016) 0.989 (0.011) 0.992 (0.009) 0.950 (0.021) 0.965 (0.015) 0.935 (0.036)
SR-GP 0.946 (0.033) 0.975 (0.021) 0.979 (0.022) 0.925 (0.044) 0.944 (0.073) 0.909 (0.028)
B-GLM 0.965 (0.013) 0.988 (0.009) 0.989 (0.01) 0.956 (0.015) 0.938 (0.022) 0.976 (0.023)
B-GLM-int 0.971 (0.020) 0.983 (0.007) 0.983 (0.009) 0.949 (0.024) 0.945 (0.024) 0.955 (0.040)
XGBoost 0.965 (0.020) 0.988 (0.011) 0.989 (0.011) 0.952 (0.026) 0.966 (0.022) 0.940 (0.038)
SVM 0.978 (0.005) 0.995 (0.006) 0.995 (0.005) 0.971 (0.006) 0.981 (0.027) 0.963 (0.026)
MLP 0.961 (0.023) 0.992 (0.006) 0.993 (0.007) 0.948 (0.031) 0.965 (0.052) 0.936 (0.064)

BH-GLM 0.965 (0.016) 0.985 (0.005) 0.987 (0.006) 0.951 (0.019) 0.964 (0.018) 0.938 (0.035)
BH-GLM-int 0.965 (0.016) 0.987 (0.006) 0.990 (0.006) 0.952 (0.022) 0.966 (0.026) 0.938 (0.041)
HSR-naive-trad 0.939 (0.023) 0.943 (0.044) 0.941 (0.049) 0.911 (0.036) 0.939 (0.058) 0.887 (0.064)
HSR-naive-max 0.941 (0.028) 0.943 (0.045) 0.941 (0.049) 0.915 (0.043) 0.94 (0.059) 0.895 (0.072)
SR-trad 0.944 (0.030) 0.979 (0.011) 0.984 (0.011) 0.926 (0.035) 0.924 (0.059) 0.931 (0.033)
SR-max 0.972 (0.022) 0.994 (0.006) 0.995 (0.007) 0.963 (0.030) 0.972 (0.029) 0.955 (0.056)

Adult (38)
LR 0.850 (0.004) 0.762 (0.010) 0.905 (0.002) 0.657 (0.010) 0.733 (0.014) 0.595 (0.016)
Decision tree 0.846 (0.004) 0.749 (0.006) 0.867 (0.003) 0.614 (0.009) 0.768 (0.011) 0.512 (0.009)
GAM-splines 0.860 (0.001) 0.795 (0.009) 0.915 (0.002) 0.680 (0.010) 0.754 (0.011) 0.621 (0.019)
EBM 0.869 (0.003) 0.819 (0.010) 0.924 (0.004) 0.702 (0.010) 0.777 (0.012) 0.640 (0.018)
SR-GP 0.806 (0.011) 0.663 (0.009) 0.847 (0.007) 0.399 (0.065) 0.790 (0.030) 0.270 (0.057)
B-GLM 0.85 (0.005) 0.766 (0.009) 0.905 (0.003) 0.659 (0.011) 0.732 (0.014) 0.599 (0.017)
B-GLM-int 0.845 (0.004) 0.735 (0.009) 0.870 (0.009) 0.633 (0.011) 0.701 (0.013) 0.578 (0.017)
XGBoost 0.872 (0.002) 0.827 (0.006) 0.927 (0.002) 0.705 (0.005) 0.786 (0.012) 0.639 (0.014)
SVM 0.850 (0.006) 0.756 (0.010) 0.890 (0.004) 0.642 (0.022) 0.747 (0.015) 0.563 (0.033)
MLP 0.851 (0.002) 0.770 (0.011) 0.908 (0.003) 0.675 (0.013) 0.713 (0.028) 0.644 (0.044)

BH-GLM 0.838 (0.011) 0.738 (0.016) 0.875 (0.013) 0.635 (0.015) 0.705 (0.014) 0.578 (0.020)
BH-GLM-int 0.839 (0.012) 0.740 (0.018) 0.878 (0.016) 0.638 (0.020) 0.708 (0.017) 0.580 (0.021)
SR-trad 0.825 (0.009) 0.683 (0.034) 0.852 (0.014) 0.586 (0.054) 0.703 (0.018) 0.501 (0.067)
SR-max 0.842 (0.005) 0.734 (0.009) 0.890 (0.007) 0.633 (0.018) 0.714 (0.009) 0.569 (0.023)
HSR-naive-trad 0.731 (0.076) 0.644 (0.075) 0.832 (0.03) 0.581 (0.021) 0.506 (0.129) 0.773 (0.195)
HSR-naive-max 0.822 (0.014) 0.684 (0.041) 0.862 (0.011) 0.611 (0.034) 0.659 (0.067) 0.589 (0.122)
HSR-trad 0.849 (0.006) 0.760 (0.021) 0.895 (0.011) 0.655 (0.020) 0.730 (0.018) 0.594 (0.022)
HSR-max 0.857 (0.005) 0.778 (0.009) 0.902 (0.007) 0.670 (0.017) 0.739 (0.004) 0.611 (0.026)

Table 4.9: Results on the classification datasets
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Figure 4.3: Global explanation plot provided by the InterpretML framework for an EBM
model on the altitude variable on the French Highway dataset

more detail, we understand that the introduced random effects adjust the predictions
of fixed effects such that they match the averages of the historical crashes observed
on the segments. However, these models (viz., GLMM and Local) do not offer much
insight about the associations between crash counts and risk factors. We observed that
flexible models, such as EBM, are able to approach in performance these local models
by discovering quasi-identifiers of road segments. For example, an EBM discovers
a complex nonlinear relationship between the altitude and the number of accidents,
see Fig. 4.3. Accidents appear more likely for the lowest altitudes. However, this
phenomenon should not be interpreted as a potential risk factor linked to the altitude.
In fact, the model is using the altitude as a proxy variable to identify a group of
nearby road segments. Therefore, in that particular context, EBM, despite its good
predictive performance, does not always provide relevant information to field experts.
It can even, at times, mislead them.

Although plots like the one of Fig. 4.3 make it possible to identify these potentially
misleading models’ behaviors, the EBM model does not provide alternative associ-
ations between the explanatory variables and the target. With our approach, the
risk of misinterpretation is reduced thanks to the successive models on the Pareto
front: from less complex, which capture only overall effects, to most complex, which
are flexible enough to focus on hazardous configurations specific to a few roadway
segments. Through such a dynamic interpretative process, field experts can use the
model best suited to meet their needs. In the next section, we illustrate this process
with an experimental study applied to the French Highway dataset.
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4.6 Dynamic interpretative process

4.6.1 Introduction

A glass-box interpretable crash prediction model able to highlight the marginal effects
of the potential risk factors is a valuable tool to help design effective highway safety
policies. Indeed, in such a context, the predictive model must limit as much as possible
the risks of misinterpretation. In this section, we show how, on a realistic use case
validated by field experts, the framework we propose responds to this challenge by
making possible an efficient dynamic interpretative process that leads to selecting a
predictive model well suited to the task at hand.

Each functional block of our framework (see figure 3.2) plays an important role in
the methodology we propose. The hierarchical structure module brings out a relevant
partition of the highway network. This partitioning of the measured crash counts,
with their associated explanatory variables, not only improves the performance of the
models (see section 4.5) but also refines the analysis of marginal effects by captur-
ing cluster-specific phenomena. Moreover, based on the multi-objective optimization
leading to global and cluster-specific models, safety experts can explore a list of op-
timal models that offers a variety of alternatives along the performance/complexity
trade-off axis. They will often start with the simpler ones that capture only the
global effects, and move towards the more complex ones that can represent more
localized phenomena. To support this methodology, we developed, in dialogue with
field experts, a graphical user interface (see Fig 4.4).

In the following description of a case study, we suppose that the partitioning of
the highway network and the training of the global and cluster-specific models have
already been done on ten years of data, from January 1st, 2008 to December 31th,
2017. Data from 2018 is used to validate that, based on out-of-sample predictions,
the framework provides useful information to safety experts.

4.6.2 Use case

Partitioning the highway network

From the hierarchical structure module of section 3.2, safety experts identified four
relevant clusters (see Fig. 4.5). In table 4.10, we share some descriptive statistics
of explanatory variables and crash count for each cluster. We observe that clusters
are heterogeneous on most of the explanatory variables and on the crash count. For
instance, cluster 1 is representative of hazardous segments with high traffic, whereas
cluster 3 is made of less accidental secondary segments that connect the main high-
ways.
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Figure 4.4: Screenshot of the web application
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Figure 4.5: Clusters identified for 2018

Figure 4.6: Pareto front for cluster 0 specific models

From global models to cluster-specific models

After selecting a cluster of interest, safety experts can navigate within the series of
cluster-specific models that make up the Pareto front (see Fig. 4.6), from the least
complex one (viz., model 1) to the most complex one (viz., model 4). For illustrative
purposes, we focus on the moderately hazardous cluster 0, composed mainly of rural
and mountainous segments. Model 1 corresponds to the functional form of the global
model (section 3.4.3) whose coefficients are inferred based on cluster 0 data.

model 1: ŷ = 5.95 + 0.000394x3 + 0.312x10 + 2.7x2
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(a) Model 1 (b) Model 2

Figure 4.7: Crash count predictions for 2018

with ŷ being the predicted crash count, x3 the average annual daily traffic, x10 the
presence of bridges (binary) and x2 the number of rest areas. From the effects plots
of Fig. 4.8a, it appears that, for model 1, the amount of traffic and the number of
rest areas have the more prominent marginal effects. Moreover, from the posterior
distributions of Fig. 4.8b, one can see that these risk factors have narrow credible
intervals.

Model 1 captures only the global risk factors. When considering models of increas-
ing complexity, more specific effects will appear. For instance, model 2 (see Fig. 4.6)
is defined as:

model 2: ŷ = 3.34 + 0.000555x3 + 2.34x2 + 1.43x1 + 0.055x10 + 0.117x0x8

where the additional variables x0, x1 and x8 are, respectively, the speed limit, the
number of interchanges and the presence of tunnels. Out-of-sample predictions from
models 1 and 2 differ locally (see Fig 4.7a and Fig 4.7b). In particular, in mountainous
areas, segments considered as moderately hazardous by the first model, are now
associated with a high risk of accidents due to the discovery of a first-order interaction
between the presence of tunnel and the speed limit. Safety experts, by combining prior
knowledge of the network with the observed transition from model 1 to model 2,
are confident that this interaction is one of the main reasons why a large number
of accidents have occurred on these segments during the ten years covered by the
training data. This discovery may support a proposal for reducing the authorized
speed limit on these specific segments.

Also, more refined models are sometimes able to better identify less hazardous
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(a) (b)

Figure 4.8: Effects plots and posteriors of the most influencing variables for model 1. Effects
plots are obtained by computing for all observations the effect of a variable j on the crash
count, defined by effect(i)j = βjx

(i)
j , where βj is the coefficient estimate of the j-th variable

of the model and x
(i)
j is the value of variable j on the i-th observation [91].

(a) (b)

Figure 4.9: Effects plots and posteriors plots of the most influencing variables for model 2
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configurations. For instance, a segment close to Belfort was identified as highly haz-
ardous by model 1 (between 20 and 25 predicted crashes) while model 2 considers it
as moderately hazardous (between 15 and 20 predicted crashes). As remedial or pre-
ventive actions may involve significant costs, predicting less hazardous configurations
is therefore beneficial because actions will be implemented at first on more prominent
hazardous segments. So, thanks to this more complex model, field experts optimise
the order of safety policies and funding shall be better allocated.

Nonetheless, one of the major difficulties for the interpretation of more complex
models is related to the introduction of collinearities and interactions between con-
tinuous variables. To illustrate this, consider model 3 from Fig. 4.6:

Model 3: ŷ = −33.3− 0.00489x10 + 1.57x2 − 9.37 · 10−6x3x6 + 0.00286x3 + 0.15x6

Model 3 is characterized by an interaction between the averaged altitude x6 and the
traffic x3. By focusing on this interaction, model 3 better fits training data than
model 2 but its effects plots (see Fig 4.11a) are arguably more difficult to inter-
pret. However, our framework only produces differentiable closed-form expressions
for which it is always possible to compute the partial analytical derivatives (PD) w.r.t.
variables of interest, to quantify explicitly their partial effects (i.e., a measure of the
conditional effect of a variable on the target) [7]. In this sense, we can understand how
a unit change in an explanatory variable affects the crash count when other variables
are held constant. For instance, the partial derivatives for the trafic x3 and altitude
x6 are respectively:

PD(x3) =
δŷ

δx3

= 0.00286− 9.37 · 10−6x6, PD(x6) =
δŷ

δx6

= 0.15− 9.37 · 10−6x3

Histograms of the pointwise partial derivatives can be useful interpretative tools (see
Fig. 4.10). Although the partial effects of the traffic x3 are mostly positive, a few
are negative for segments of high altitudes and above average traffic (see Table 4.11).
Thus, these variations in partial derivatives emphasize that the relation between the
crash count and x3 is more complex than the linear dependency proposed by model 1
and model 2. By introducing this novel interaction, model 3 manages to capture more
variability in the dependent variable than the previous models.

Finally, model 4 is much more complex:

Model 4: ŷ = − 34.7 + 8.5 · 10−6x2
1 − 0.000671x1x3 − 8.5 · 10−6x1x6 + 13.5x1

+ 0.0113x10 + 1.92x2 − 8.5 · 10−6x3x6 + 0.000679x3x8 + 0.00269x3

− 0.0276x4 + 1.61x5 + 0.133x6 + 0.12x7 − 0.276x8 + 0.0472x9

As we can see from Fig. 4.11b, the introduction of new correlated terms improves
slightly the fit. To capture extra variability in the dependent variable, model 4
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(a) PD(x3) (b) PD(x6)

Figure 4.10: Histograms of partial derivatives for (a) the traffic x3 and (b) the altitude x6,
for model 3.

x3 x6

overall PD(x3) < −0.0015 overall PD(x3) < −0.0015
count 1491 64 1491 64
mean 10001 12206 274 579
std 1465 997 105 32
min 7685 10877 79 521
max 14658 14658 616 616

Table 4.11: Description of explanatory variables for the overall cluster-specific data
and for samples where partial derivatives w.r.t. x3 are the lowest.

introduces highly correlated combinations of terms. From model 3 to model 4, a
sharp increase in complexity for a small gain in performance should alert the user
to the risk of no longer understanding the inner workings of model 4: time must be
spent at studying the various partial effects before deciding if the model can still be
trusted.

Specificities and benefits of the ranking-by-complexity approach

Thanks to our complexity metric (see Eq. 3.3), model 3 does not dominate model 2
even though they have the same number of terms and their terms have equal com-
plexities. If we had not penalize collinearities, then model 2, which is of high interest
to field experts, would not have been included in the Pareto front. In this sense, the
ranking-by-complexity favors a progressive analysis of numerous instructive models.

Among Fig. 4.6 models, some can attain similar predictive performances while
bringing out different effects of the explanatory variables. This can be understood
from the point of view of the Rashomon effect [16] which characterizes problems
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(a) Model 3 (b) Model 4

Figure 4.11: Effects plots

where many accurate-but-different models exist to describe the same data [110]. As
discussed by [104], we argue that the availability of multiple efficient predictive models
is useful since field experts may have more flexibility in choosing a model that they
find interpretable. Moreover, we help them in this process as our definition of the
complexity warns them when models are likely to be difficult to understand.

Finally, the dynamic interpretative process can be a useful tool to construct new
handmade predictive models, based on the knowledge learnt by analyzing the Pareto
optimal models. For instance, we have seen that the interactions introduced in
model 2 and model 3 are both valuable. The user could consider building a new
model with both of them.

Towards causality

A central question remains: among these different models, how can be distinguished
the trustworthy ones from the ones based on spurious associations due to inductive
bias? As illustrated above, one way is to rely on the diligence of the user equipped with
expert knowledge and effective tools. This could also be partially automated when
prior knowledge of the conditional independences between variables is formalized, e.g.,
as a causal graph [95]. Such approaches are beyond the scope of our current work.
However, our framework fosters a dynamic interpretative process that, combined with
a clear quantification of uncertainty, is a useful tool to identify variables of interest
and to understand how they interact. Therefore, we can surmise that our framework
could facilitate the development of causal models.
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Chapter 5

Conclusion and perspectives

5.1 Conclusion
Predictive models are being used increasingly to make high stake decisions. For many
applications, there is a need for both accuracy and interpretability. For instance, in
highway safety analysis, we argue that a preference should be given to predictive
models that are both accurate and glass-box interpretable in order to increase the
confidence of safety experts in the identification of hazardous segments.

Motivated by these requirements, in our first contribution, we introduced a frame-
work to build efficient and interpretable Bayesian hierarchical models for regression
or classification tasks. We proposed a data-driven discovery of objective priors in
the form of a hierarchical structure and strong first-order interactions between ex-
planatory variables. We start with a trained and usually efficient, albeit opaque,
ML algorithm in order to compute for each observation the Shapley values of the
explanatory variables. Then, a partition of the instances, related to how the ML
algorithm predicts the target, emerges from the hierarchical agglomerative clustering
of the observations described by the Shapley values. Furthermore, we analyze the
structure of a trained self-adaptive polynomial network to discover important first-
order interactions. This prior knowledge is then embedded into the definition of a
Bayesian hierarchical GLM with nonlinear functional form.

In our second contribution, we proposed to exploit even better the discovery of
the hierarchical structure by using symbolic regression to discover sparse interpretable
models with rich interactions. We combined a multi-objective simulated-annealing-
based symbolic regression and a partial pooling approach to discover models that
capture global effects and cluster-specific effects. More specifically, we start by com-
puting a Pareto front of global predictive models. We select among these models the
one offering a good trade-off between its predictive performance and its complexity.

91

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0096/these.pdf 
© [T. Véran], [2022], INSA Lyon, tous droits réservés



Afterwards, for each cluster of the previously discovered hierarchical structure, the
global model is used as the starting seed for a new multi-objective symbolic regres-
sion. Finally, the best models, i.e. the ones appearing on the Pareto fronts, are
re-estimated through Bayesian inference in order to associate uncertainty estimates
to their coefficients.

On fourteen datasets, covering both regression and classification tasks, our two
proposals outperform most interpretable models. On some datasets, we achieve per-
formance comparable to that of non-parametric black-box models. Furthermore, we
presented a case study based on the highway network dataset to validate the new dy-
namic interpretative process made possible by our second proposal. As our approach
discovers transparent and parsimonious symbolic models, safety experts can be more
confident in their understanding of the relations between the explanatory variables
and the dependent variable. Moreover, thanks to Bayesian inference, the risk factors
are associated with measures of uncertainty. In addition, the use of Pareto optimiza-
tion allows field experts to build a multi-scale view of the risk factors, from the most
general to the most specific.

5.2 Perspectives
First, we plan to improve the dynamic interpretative process by generating human-
readable explanations of the relationships between Pareto optimal models, such as:
model X is an extension of model Y and improves the predictive performance on
training data by 3% thanks to the introduction of a new interaction between variables
xA and xB. In this way, field experts will have a direct understanding of the Pareto
front.

Then, we are going to test several divisions of the road network into segments.
Currently, we generate the dataset for crash prediction, we first divide the network
with segments of equal length and then compute the variables for each segment (see
section 4.1.1). With this procedure, we can capture the heterogeneity of the explana-
tory and dependent variables along the network. However, other types of meshes can
be used. For instance, we can use the segments identified by the SURE approach
(see section 1.1). Also, Deublein et al. [27] divide the network into homogeneous
segments where explanatory variables are constant, assuming that the dependent
variable is weighted by an exposure term that depends on the length of the section
and traffic. Thus, future work will analyze the effects of different types of meshes.
Also, the user interface will allow to choose the type of mesh. Thus, field experts will
be more aware of the effects of this important prior.

Moreover, our framework relies on a specific approach to discover a hierarchical
structure. Even though we validated its robustness on numerous datasets, promis-
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ing next steps involve analyzing other methods that are compatible with ours. For
instance, in [101, 100], the authors propose an efficient ensemble feature importance
method where multiple feature importance approaches are applied to a set of ML
models and their crisp importance values are combined to produce a final importance
for each feature. Thus, we will constitute a benchmark of feature importance meth-
ods [10] and evaluate them based on their efficiency, scalability, and on the quality of
computed clusters.

Lastly, we will also extend the framework for near real-time crash risk assessment.
New spatio-temporal explanatory variables, such as weather-related variables (e.g.
rainfall, snow, wind, etc.) or the pavement quality, will be introduced in the analysis.
In this context, since remedial actions will probably affect humans’ lives even more
directly, having both efficient and interpretable models will be all the more important
to assist safety experts in their work.
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