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Résumeé

Cette these est consacrée a 1’étude de la dynamique hors-équilibre dans les systemes
quantiques fermés et ouverts. La question de l'obtention d’équations dynamiques nu-
mériquement efficaces pour simuler de tels systemes, qui souffrent d’une malédiction de
dimensionnalité lorsqu’ils sont de grande taille est au centre de la these, ainsi que les di-
vers nouveaux résultats physiques qui peuvent étre obtenus grace a ces équations efficaces.
La question de I'obtention de représentations efficaces des états quantiques est également
centrale, a travers la construction d’Ansatz.

En particulier, nous étudions théoriquement la propagation de l'intrication dans les
systemes photoniques dissipatifs a forte interaction, motivés par la réalisation expérimen-
tale récente de telles plateformes. Nos résultats montrent qu’en dépit du caractere dis-
sipatif du systeme étudié, la propagation de l'intrication est ballistique avec une vitesse
en accord avec l'image de quasiparticules impliquées dans la dynamique, des doublons
et des holons photoniques. Notre analyse révele que la dissipation est fortement asymé-
trique dans les deux cas étudiés de l'injection d'un doublon ou de son extraction, avec
une influence plus forte dans le cas de I'extraction.

Ensuite, nous présentons la méthode du sous-espace dynamique, une nouvelle méthode
numérique pour la simulation de I’évolution temporelle de systemes quantiques ouverts
avec une entropie modérée. En représentant la matrice densité par un sous-espace consti-
tué de M états purs, la complexité de I'intégration de ’équation maitresse de Lindblad
est considérablement réduite, et I'algorithme obtenu est entierement déterministe. Nous
appliquons ensuite cette méthode pour modéliser des algorithmes quantiques bruités, en
simulant un algorithme quantique bruité de transformation de Fourier qui est au centre
de l'algorithme de Shor pour la factorisation de nombre premiers. Nous trouvons une loi
d’échelle pour l'erreur en fonction du taux de dissipation, et le comportement de I'infidé-
lité par rapport au circuit idéal est modélisé en fonction des états initiaux qui sont fournis
en entrée a l'algorithme.

Enfin, 'application des méthodes d’apprentissage automatique a la mécanique quan-
tique est présentée, a travers la classe d’Ansatz des états quantiques neuronaux (NQS). La
construction générale des NQS est introduite, ainsi que sa relation avec d’autres Ansatz
tels que les réseaux tensoriels. Ensuite, le probleme de la simulation de la dynamique des
systemes fermés avec NQS est étudié, ainsi que les probléemes courants liés a la géométrie
de I'espace des parametres qui peuvent survenir. Un schéma alternatif est introduit et ap-
pliqué a des dynamiques de trempes dépendantes du temps dans des systemes critiques,
ou le mécanisme de Kibble-Zurek peut étre étudié. Enfin, différentes constructions d’An-
satz pour les systemes ouverts sont présentées, notamment la combinaison de la méthode
du sous-espace dynamique avec un Ansatz neuronal.



Keywords : physique quantique, systemes quantiques ouverts, équation maitresse de
Lindblad, réseaux de tenseurs, circuits quantiques bruités, apprentissage automatique,
états quantiques neuronaux, mécanisme de Kibble-Zurek, dynamique de I'intrication, pho-
tons fortement corrélés.



Summary

This thesis is devoted to the study of nonequilibrium dynamics in both closed and open
quantum systems. The question of obtaining effective dynamical equations for such sys-
tems, that are plagued with a curse of dimensionality when scaled up is at the center of
the thesis, as well as the various new physical results that can be obtained thanks to these
effective equations. The question of obtaining efficient representations of quantum states
is also central, through the construction of educated guesses or ansdtze.

In particular, we theoretically study the propagation of entanglement in dissipative
strongly-interacting photonic systems, motivated by the recent experimental realization
of such platforms. Our findings show that in spite of particle losses the quantum entan-
glement propagation exhibits a ballistic character with propagation speeds related to the
different quasiparticles that are involved in the dynamics, namely photonic doublons and
holons respectively. Our analysis reveals that photon dissipation has a strikingly asym-
metric behavior in the two configurations with a much more dramatic role on the holon
entanglement propagation than for the doublon case.

Then, we present the dynamical corner-space method, a novel numerical method for
the simulation of the dynamical evolution of open quantum systems with moderate en-
tropy. By representing the density matrix by a sub-space of M corner states, the com-
plexity of the integration of the Lindblad master equation is dramatically reduced, and
the obtained algorithm is fully deterministic. We then apply this method to model noisy
quantum algorithms, by simulating a noisy quantum Fourier transform algorithm that is
at the center of the Shor algorithm for factoring. We derive a scaling law for the error as
a function of the dissipation rate, and the behaviour of the infidelity with respect to the
ideal circuit is modeled as a function of the initial states that are fed to the algorithm.
Finally, the application of machine learning methods to quantum mechanics is presented,
through the neural quantum state (NQS) ansatz class. The general construction of NQS
is introduced, as well as its relation to other ansitze such as tensor networks. Then, the
problem of simulating dynamics of closed systems with NQS is investigated, as well as
common problems related to the geometry of parameter space that may occur. An altern-
ative scheme is introduced and applied to time-dependent quenches in critical systems,
where the Kibble-Zurek mechanism can be investigated.

Keywords: quantum physics, open quantum systems, Lindblad master equation, tensor
networks, quantum circuits, machine learning, neural quantum states, Kibble-Zurek mech-
anism, entanglement dynamics, strongly correlated photons.
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General Introduction

Since the scientific revolution, physics has mainly consisted in understanding dynamical
laws that constituents of reality obey. The origin of this paradigm can be traced back to
Galileo [5], who wrote about describing matter in motion to explain physical phenomena.
From there, more and more elaborate theories of matter in motion appeared, from New-
ton’s second law to the Schrodinger wave equation. Physics mainly consisted in finding
the most elaborate dynamical laws, that would explain everything: this would be known
as a theory of everything.

However, this quest, impersonated so well by the minds of Einstein, Feynman, and “the
particle physicist” has terribly failed. The search for a theory of everything, and the
ultimate quest for reduction, can be considered to be lost. Let us say that we find a
theory of everything, a complete description of a dynamical law that all particles and
fields obey, which can be beautifully summed up inside a lengthy Lagrangian; what will
we have learned? This is not to say that reduction brings nothing, but that reduction
does not bring everything. There seems to be a fundamental truth to the nature of reality,
that is that scales decouple; from some laws at the microscopic level, others can emerge at
the macroscopic level. An instance of this general idea can be found in Conway’s Game
of life [6], in which a few deterministic rules suffice to create complex, self-replicating
structures at much larger scales. This game is a perfect example of why reductionism
cannot be enough if we wish to understand physical phenomena in the broadest sense.
There are situations for which we know the rules, the laws of motion, but where we are
fundamentally more interested in the features of the game that appear to be completely
disconnected from these laws. For instance, we have known the laws of classical mechanics
for at least two centuries, however many features of the theory are yet to be discovered
and discussion about many fundamental topics hidden in these laws is ongoing.

From these considerations a new paradigm arose: the paradigm of complexity. Complexity
arises when many particles interact, which leads to behaviour that cannot be computed,
whether it may be with pen and paper or computers. Such considerations are beautifully
explained in the famous article by Anderson, More is different [7]. From this, physics has
largely become the science of effective models, where complete descriptions of physical
systems are abandoned to transition to a more computable and scale-adapted effective
behavior. Nowadays, it seems all fields of physics are filled with effective descriptions,
from quantum chromodynamics [8] to fluid mechanics [9).

This thesis is devoted to the quest of finding better effective descriptions of closed and
open quantum systems, and in particular of the complex dynamics that occur in many-
body quantum systems. The interest of developing such methods is twofold: firstly, a
new understanding of the problem at hand can be obtained by unveiling new aspects of



its mathematical structure, as has been the case with tensor network methods [10]. The
development of such methods has led to the entanglement area law [11] for local unidi-
mensional gapped systems, which has since then proved invaluable. Secondly, they enable
researchers to study new problems, as they are more efficient to treat different regimes
that were previously unattainable. A significant part of the thesis is dedicated to new
physical results that have been obtained thanks to these effective descriptions.

Such models for quantum mechanical systems have for now mostly been applied to equilib-
rium and ground state properties. Density functional theory |12], a theoretically straight-
forward effective model useful for complex molecules, is perhaps the best example of the
success of effective models for equilibrium properties, as it is nowadays ubiquitously used
in research institutions and the private sector. Dynamical properties, as we will see in
more detail in Chapter 1, are harder to pinpoint and involve a more complex mathematical
structure than ground state properties in the general case. In particular, open quantum
systems, a class of systems that describe quantum systems coupled to an external envir-
onment, hence being nonequilibrium almost by definition, are particularly elusive in that
very few general results are known about them. Recently, general properties related to
dissipative phase transitions [13] have been put forward, but the exposition of dynamical
properties for open systems remain rare for now.

In Chapter 1, we present the theoretical framework surrounding the study of nonequi-
librium quantum systems. We start by presenting the problems that arise for closed
quantum systems, where nonequilibrium dynamics involve superpositions of eigenstates
of a many-body Hamiltonian, thus resulting in a highly complex evolution. We present
results related to correlation propagation in such systems [14], as well as the Kibble-
Zurek mechanism, that has been experimentally verified in the last decade [15, |16]. We
also present various numerical methods, from mean-field methods to tensor networks, that
have yielded many important results in previous years. Then, we present the framework of
open quantum systems. When a quantum system is coupled to an external environment,
one can generally not compute the dynamics of the full composite system. Therefore, an
efficient way to treat this problem is to treat the environment as a bath that is weakly
coupled to the system, that is, remains weakly entangled with the system. By also sup-
posing that the timescale related to the dynamics of the bath is much faster than that of
the system, one can treat the system with a Lindblad master equation approach [17]. This
equation closely resembles the Schrodinger equation, and has additional terms account-
ing for the coupling of the system with the environment. We present various numerical
methods that were developed for such systems, as well as superconducting circuits [18],
being a prominent platform for the study of such systems.

In Chapter 2, entanglement and its evolution in a strongly-correlated open quantum
systems is studied. As mentioned, the study of correlation propagation as for now
mostly been concentrated on closed systems [14, |19], and the impact of the interplay
of strong interactions and dissipation on entanglement spreading has remained relatively
untouched [20]. We investigate the nonequilibrium dynamics in a photonic Mott insulator
induced by adding or removing a particle from the center of the chain. As such, we observe
a ballistic entanglement propagation, with a speed that is predicted by an approximate
solution for the closed system in the strongly interacting regime. We also observe a drastic



change in the behaviour of the system as a function of whether we start by removing or
adding a particle, related to the form of the states involved in the dynamics. These results
pave the way to more general results about entanglement dynamics in open systems.

In Chapter 3, the dynamical corner-space method is introduced. This method is based

on the idea that there exists a class of systems whose von Neumann entropy is low enough
that the density matrix describing the state of the open quantum system may be described
as a collection of a limited number of pure states, thus rendering the integration of the
Lindblad master equation more efficient. This idea is at the core of another method de-
veloped a few years ago, the corner-space renormalization method. The application of this
method to the quantum Fourier transform will be presented. This is a key sub-routine in
Shor’s algorithm, and when subject to dissipation and/or decoherence, undergoes open
system dynamics where a sequence of quantum gates are applied, entangling the qubits
that form the register of the algorithm. Thanks to this method, new scaling behaviour
for this algorithm as a function of dissipation and decoherence rates for this was possible
to unveil. The impact of the initial state to the computation is also investigated, and a
highly biased performance is found as a function of the loss channels.
Chapter 4 is devoted to using machine learning techniques to study nonequilibrium dy-
namics. Having shown immense success to represent high-dimensional data, such as
images, text and audio, the latest advances in machine learning are currently strongly
impacting the quantum physics community, where such advances have allowed to make
progress on a large number of problems [21, 22], from ground state search, to quantum
tomography or the simulation of quantum circuits. Such methods will be presented in
detail, and we will then focus on their use for the simulation of nonequilibrium dynamics.
This endeavor has been plagued by several problems, to which we propose a solution by
reformulating the problem at hand onto an optimization problem to be solved at each
time step of the dynamics. We will also see how machine learning methods can be used
to study open quantum systems dynamics, and that representing a density matrix with
neural networks presents several problems. As such, we envision an extension of the
dynamical corner-space method to the use of neural network states, which we describe
towards the end of the chapter.






Nonequilibrium quantum systems

| Introduction

As mentioned in the introduction, it quickly became clear that the Schrodinger equation
could not be solved for more than a few particles in the presence of interactions [23]. This
means that one cannot know the exact dynamics of most physical systems. However, this
does not mean that many features of these dynamics cannot be accessed. Luckily for us,
one can, through various approximation methods and educated guesses on the form of
the wavefunction, referred to as ansdtze in this manuscript, make great progress towards
this goal.

In this section, we present the two main problems that are studied throughout the thesis.
The first problem is understanding the nonequilibrium dynamics of ideal quantum sys-
tems, as described by the Schrodinger equation. Great progress has been made concerning
quantum mechanics at equilibrium, however nonequilibrium properties are only starting
to be properly investigated thanks to the rapid improvement of numerical methods and
experimental platforms. Indeed, there is a much greater scarcity in the tools that can be
used to study such systems. Many long standing problems have not been solved, such
as the eigenstate thermalization hypothesis |24, and the validity of the Kibble-Zurek
mechanism [25] 26|, to name a few. In ideal quantum systems, nonequilibrium dynamics
occur when the initial state of a dynamical process is not an eigenstate of the applied
Hamiltonian [27]. This can be done by locally adding a particle to the system, or to apply
a quench, that can be either time-independent or time-dependent. In the first part of this
chapter, the physical and numerical ramifications of this problem will be presented, as
well as the Kibble-Zurek mechanism and the experimental works that have been devoted
to studying these issues in recent years. The main numerical methods used to study these
issues such as mean-field and tensor networks will be presented in section [[I.3]

The second problem is understanding the dynamical properties of open quantum systems.
Such systems are inherently out of equilibrium, as they can be viewed as ideal quantum
systems coupled to an external environment. As explained in the introduction, studying
open quantum systems is crucial as it enables one to understand quantum noise and its
effect in quantum computational processes [28] as well as thermodynamical tasks [29]. In
this context, dynamical properties can be studied by preparing the system in a certain
state, and evolving the open quantum system in time. Most questions around this problem
aim to understand how results for ideal quantum systems hold when an external environ-



6 Chapter 1. Nonequilibrium quantum systems

ment is present. For example, the spreading of correlations in open quantum systems is
an active field of research [20], that will be discussed in more detail in Chapter[2] On the
quantum information side, understanding how noise processes affect quantum algorithms
is of crucial importance if we wish to use them one day [30]. The theoretical framework
for treating open quantum systems will be presented, as well as various experimental plat-
forms which can be described by this framework. In this context, systems that interact
with a physical environment are considered, nontrivial dynamical phenomena will arise,
as dissipation will act as a new player.

The many-body problem

Let us now be more specific about the many-body problem, in both closed and open
quantum systems. According to the axioms of quantum mechanics, the state of an ideal
quantum system is fully specified by its wavefunction [¢), that belongs to the Hilbert space
associated to the system #H. [¢) can be expanded in a given basis of this Hilbert space.
A natural choice for this basis is a composite basis of local quantum numbers s; (for spin
systems, these local quantum numbers are the local spins), since most quantum systems
we wish to describe are composite: they consist of L interacting degrees of freedom. In
this part, and in most of the manuscript, we suppose that the equations to be solved to
describe the time evolution of a physical system cannot be solved. Therefore, the only
way to go forward is to perform a numerical integration of this equation, which involves
storing in memory the state of the system at each step, and incrementally calculating the
evolution of the system. The basis expansion of |¢) reads:

|1/)> = Z 0513527---75L |51782,~--,SL> (11)

81,82,--,SL

with ¢, 5,5, the amplitudes (complex numbers) corresponding to |sy, Ss,...,s), the
basis elements of the Hilbert space (configurations) of the system. The Born rule tells
us that by taking the modulus square of such amplitudes, we obtain the probabilities
for finding the quantum state in such configuration after performing a measurement, i.e.
p(s1,89,...,5L) = |Coy59....6,|°- A combinatorial explosion can be seen directly here, as
there are I* amplitudes one must store (either on paper or on a computer) if one wishes
to have a complete description of the system, with [ the dimension of the local Hilbert
space (which corresponds to the number of values the local quantum numbers s; can take,
assuming they each can take the same). More concretely, to describe a system of just 50
two-level systems, 2°° ~ 10! complex numbers have to be described, or stored in memory.
This is impossible even with modern day computers.

Regarding an open quantum system, the problem is similar but worse. As will be explained
in this chapter, the state of an open quantum system can be fully described by a density
matrix p, this time belonging to the bounded operator space B(H) associated to H. p
can also be expanded over projectors, of which there will be I%:

A sh.sh,....8" 1o

p= Y, sy sy, ..., sp) (8], 85, ..., 8L (1.2)
51,825++8L
EUNC I

It appears from this expansion that the complete description consists in [** complex
numbers to be stored. Computationally, this means that a naive approach would enable
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to describe open quantum systems of half the size of the largest closed systems we can
simulate. Conveniently, many approaches exist that are tailored for open quantum systems
to describe the properties of open quantum systems without storing the full density matrix.

Il Dynamics of closed systems

II.1 Sudden quenches

As mentioned, the problem of quench dynamics involves solving the time-dependent
Schrodinger equation, starting from a certain state [¢)p). Throughout the manuscript,
we fix A = 1. The Schrodinger equation reads:

dly(t))

L~ it o). (1.3)

If [4)(t = 0)) = |tho) is an eigenstate of H, then the evolution as trivial: the phase of the
state oscillates with frequency wy corresponding to the energy of |¢y) and the solution is:

|9 () = exp(—iwot) [¢o) - (1.4)

However, if the initial state is not an eigenstate of H , the time evolution is nontrivial,
and involves oscillations given by the frequencies of all the eigenstates of H. To see this,
one can expand |1(t)) as a superposition over eigenstates of H, denoted [e;):

[P(t) = _cilt) lei) -

i

where the coefficients ¢;(t) depend on time. Hence the right hand-side of Eq. (1.3) reads:

—iH (1)) = —i Y cit)ele) = D alt) ) -

)

It is clear that if one wishes to integrate this equation and find the coefficients ¢;(t), one
must know what the eigenvalues ¢; of the Hamiltonian are. Computationally speaking,
this requires to diagonalize H and obtain its full spectrum, in contrast to many problems
in quantum physics and chemistry that require the ground state of the system and the first
excited states only. Thus in general, if one wants to obtain a high-precision integration of
Eq. , one requires to be able to describe all the excited states of the system, which
can be of varying complexity. For instance, for local gapped (i.e., outside of the critical
region) one-dimensional systems, the complexity of the ground state is significantly weaker
than that of excited states. This fact will be explained and described in more detail when
discussing tensor network methods, whose limits reside in such considerations.

Note that a quench protocol instantly drives the state away from its previous equilibrium,
thus cannot be treated perturbatively as is routinely done in the context of linear response
theory, in which important results such as the fluctuation-dissipation have been found [31].
Since this protocol involves strong interactions, few general results have been obtained
for it.
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Correlation propagation

A set of results that has been obtained for sudden quench protocols in isolated quantum
systems concerns correlation propagation. In a seminal work by Lieb and Robinson [32],
it was shown that in generic quantum systems with finite-range interactions and a finite
local Hilbert state there exists a speed limit on information propagation. This is known
as the Lieb-Robinson bound, which readq'}

IA(), B]|| < cexp{—ald(X,Y) — v|¢]]} (1.5)

with A and B two observables with finite supports X and Y (for lattice systems, the sites
associated to the Hilbert spaces on which A and B act), and a,c,v positive constants.
As can be seen from the expression inside the exponential, v corresponds to the velocity
of correlationsﬂ: the commutator between two operators with distinct support will decay
exponentially the further one goes out of the light cone d(X,Y) — v|t|. From there an
analogy with the light cone from special relativity was drawn, and such a limit was
experimentally verified for various physical systems |14}, 33].

An intuitive explanation of this phenomenon was first provided by Calabrese and
Cardy [34]. When suddenly quenching some Hamiltonian parameters, excitations, also
known as quasiparticles, will be created, since the equiblibrium quantum state now con-
sists of a superposition of excitations in the new eigenbasis of the quenched Hamiltonian,
as explained in section [.Il Only quasiparticles in close regions will be initially en-
tangled. From there, quasiparticles spread baillistically in different directions with some
group velocity, hence correlations between distant sites will appear as initially entangled
quasiparticles reach them, as shown in Fig. [I.I] In this picture the Lieb-Robinson velo-
city is simply the maximal group velocity of quasiparticles. Such considerations will be
explored further in Chapter [2] where the entanglement dynamics of dissipative quantum
systems will be investigated, as well as the validity of the quasiparticle picture to explain
such dynamics when coupling to an external environment is taken into account.

1.2 Time-dependent quenches and the Kibble-Zurek mechanism

Another equally interesting protocol consists in performing time-dependent quenches on
critical systems that exhibit continuous phase transitions. In this context, a quantum
state |1)o) is prepared as the ground state of some time-dependent Hamiltonian H[A(t)]
at time ¢ = 0, which depends on some control parameter A(¢). Depending on how the
control parameter is tuned, various scenarios can take place. If the control parameter
is tuned abruptly, we recover the case of sudden quenches. On the other hand, if the
control parameter is tuned more slowly than the inverse of the gap of the system, the
system remains in its ground state, which is known as adiabatic tuning. For physical
systems that do not exhibit phase transitions, the system follows an adiabatic evolution
and remains in the ground state of the Hamiltonian H[A(t)] at all times (but may acquire
a phase).

Note that there exists a whole class of Lieb-Robinson bounds, this is just the most generic.
2Correlation functions appear in the expansion of the norm of the commutator [A(t), B].
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Figure 1.1: Sketch of the quasiparticle picture, in this case for bosons trapped in an optical
lattice, described by the Bose-Hubbard model . By quenching the lattice depth (that
is related to the interaction strength of such models), quasiparticle excitations are created
and propagate in the lattice, which leads to correlation propagation that obeys the Lieb-
Robinson bound. From [19).
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Figure 1.2: Scheme of the Kibble-Zurek mechanism according to the adiabatic-impulse
approximation. At times +f, the relaxation time of the system tp crosses the time scale
of the quench, which defines the limit between the adiabatic region, where the system
essentially stays in the ground state of the system at that time, and the impulse regime,
where nonequilibrium dynamics take place.

As an example, let us again consider the transverse-field Ising model, which will serve
in the rest of the manuscript. The Hamiltonian is given by:

Hrp = —J Z 6;62_926727 (1.6)
(m.n) m

with a nearest-neighbor coupling strength J and a magnetic field strength g. It exhibits
a second-order quantum phase transition that separates a ferromagnetic (for J > 0) or
antiferromagnetic (J < 0) phase for ¢ < J from a paramagnetic phase for g > J. It
faithfully describes many physical systems constituted of coupled two-level systems im-
mersed in a magnetic field, such as neutral atom systems or magnetic nanomaterials. In
one-dimension, the model is exactly solvable by using a Jordan-Wigner transformation.
However, for higher dimensions, much less is known about the physics of the system. In
2D, the critical point is situated around g/J = 3.044 as given by quantum Monte-Carlo
simulations [35], which are approximate methods.

The Kibble-Zurek mechanism |25} 26] predicts the formation of topological defects quenched
systems undergoing a second-order phase transition as the parameters are linearly swept
across a critical point. This universal behavior stems from the fact that there exists a
time, denoted £, at which the characteristic evolution time of the system (the relaxation
time tg, related to the inverse of the energy gap) becomes larger than the characteristic
quench time 7,, as schematically shown in Fig. Before £, the dynamics remains quasi-
adiabatic, as the Hamiltonian parameters are tuned slowly with respect to the time scale
of the system. After this time, in contrast, genuinely non-equilibrium dynamics takes
place as critical slowing down sets in and the system dynamics becomes slower than the
Hamiltonian parameters sweep. Ignoring specific details of this dynamics, one can derive
a scaling law for the density of created defects[]at the end of the linear quench [26]. This

3with respect to the ground state at the end of the quench. In a 1D classical spin system, this will be
proportional to the number of domains with spins flipped up if all spins point down in the ground state.
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scaling law is derived quite simply. Consider that for second-order phase transitions, the
correlation length ¢ and relaxation time 7 scale as:

E~gliT~g™ (1.7)

where we have taken the magnetic field g to be an external control parameter. The
freeze-out time # is a solution of the equation

() = g(t)™™ (1.8)

since we suppose these timescales cross at time #. With g(¢) = go(1 —t/7,), corresponding
to a linear quench:

£ = (1/7,) /D) (1.9)
£ = (1/7,) /6D (1.10)

with é the correlation length of the domains induced by the nonequilibrium dynamics.
The final defect density is inversely related to the this average correlation length:

(a(7g)) ~ €7 (1.11)
and the final scaling law therefore reads

(Ralry)) ~ 7, @/, (1.12)
The scaling law for the density of defects has a physical explanation in terms of the
change in the different timescales during the quench. This is shown in Fig. [[.2] Far
away from the critical point, the gap of the system is large, therefore the characteristic
timescale of the system (related to the inverse of the energy gap) remains small; almost any
parameter tuning will be adiabatic (corresponding to the far left and right of the figure).
As one approaches the critical point, precisely at the freeze-out time —f, tp = €(t): the
characteristic time scales of the quench and of the system cross. From there, the evolution
stops being adiabatic, entering the impulse regime. Correlations can therefore develop
within domains of a limited size, related to the freeze-out time, which is time the system
stays in this regime. Then, at +¢, the evolution resumes into the adiabatic regime, and
domains remain frozen.

1.3 Numerical methods

As we have seen in the previous sections, numerical simulations can be an important
tool to study the dynamics of nonequilibrium quantum systems, both in sudden and
time-dependent quench protocols. In this section we will present a few of the important
methods used to study such protocols.
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Mean-field approaches

A class of methods that enables one to treat large quantum systems in arbitrary dimen-
sions is mean-field methods, also known as Gutzwiller ansitze [36]. These methods have
previously mostly been used for electronic systems [37-39] and variants of it have been
used for the study of bosonic gases |[40]. The key idea is to write the wavefunction as a
product of local wavefunctions:

[4) = o) (1.13)

As such, this enables one to separate the Schrodinger equation into L local equations.
One can also view this as a drastic reduction of the number of free parameters required to
describe the many-body wavefunction. Indeed, the single-site wavefunctions are described
by [ parameters, with [ the local Hilbert space dimension. They are subject to the
orthogonality condition (¢;|¢;) = d;;, with J;; denoting the Kronecker delta. In the
case of spin systems, this results in |¢;) having only two coefficients corresponding to
the probability amplitudes of the spin being up or down. This results in /L complex
parameters for an L—body system of local Hilbert space dimension [, which is a drastic
improvement upon the [* coefficients needed for the exact wavefunction. The coefficients
of the many-body wavefunction are given by:

Cs1,82,...,81, — Hzf:slasz- (1.14)
with as, being vectors of dimension [. However, this approach will only work for weakly
correlated quantum systems, since non-separable states cannot be described by such ap-
proaches.

An extension of this idea exists as cluster mean-field approaches [41]. The key idea is
to consider more than one site per factorized wave function. The state is written as:

V) = ® i) (1.15)

with IV, the number of clusters. The size of a cluster is given by L/N,.. This ansatz is able
to capture states with an entanglement between sites belonging to the same cluster, thus
having strictly more capacity to represent entanglement than the ansatz in Eq. (1.13)).

Tensor networks and matrix product states

Beyond mean-field ansitze, powerful methods that have proved very effective in the study
of one-dimensional systems are based on tensor networks [10]. The key idea behind such
methods is to approximate the coefficients of the many-body wave function defined in

Eq. (1.1)) as a product of tensors:

_ 11,02 At2,i3 1L,
Cs1,59,05 = Z AL AL ...ASL . (1.16)

51
11,82, ,0L

This is known as the matriz product state (MPS) ansatz. The tensors A%/ are of rank
3, with one dimension corresponding to the physical degrees of freedom o;, and two
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dimensions given by M? coefficients that can introduce correlations between sites. The
number of parameters contained in an MPS ansatz is therefore /M2, which is no longer
exponential in the system size.
To see how the MPS ansatz is constructed, let us define the Schmidt decomposition
of a quantum state |1)) belonging to a composite Hilbert space H = Ha ® Hp with
dim(Ha4) = m,dim(Hg) = n,m < n. There exists vectors {|ui),...|un)} € Ha and
{lv1),...|vn)} € Hp which are pairwise orthogonal (u;|u;) = 0;; and (v;|v;) = d;; and
a real numbers Ay > Ay > ...A,, > 0 such that [¢)) can be written as a Schmidt
decomposition:

) = Z:lAi |ui) @ [v;) (1.17)
with A; the Schmidt coefficients, and m the Schmidt rank of the state. Note that for a
separable state we have m = 1. Defining the reduced density matrix ps = trg|y )y, it
can be shown that the Schmidt coefficients are related to the entanglement entropy

SA = —tl"{ﬁA log,ﬁA} = —Z |Al|210g |Az|2 (118)
=1

For a one-dimensional system of L sites with a local Hilbert space dimension [, the coef-
ficients c;, s, s, can be expressed as a function of the Schmidt coefficients, by successive
Schmidt decompositions:

1 12 min(i",1F—") l
1]s s — L]s
Corsprnss = 20 D > oo > =TialADTRI2 AR AT (119
a1=1 as=1 an=1 ar=1

The I'l! matrices correspond to a basis transformation between the full basis and the
Schmidt basis, and the Al vectors correspond to the Schmidt coefficients after tracing
out the (L — 4)th site. This encoding seems particularly inefficient, as the I'*/? contains
by itself I elements. However, the beauty and central point of MPS ansitze is that the
entanglement entropy of local, gapped many-body systems is limited. This is known as
the entanglement area law [42]. Formally, for such systems,

Saw) ~ 0L o~ constant (1.20)

with A(L) a subsystem of size L, and JL the size of the boundary region between L
and the rest of the system. This means that the number m of Schmidt coefficients A; is
limited, and they in fact decay exponentially |10]. This enables one to safely truncate the
size of the matrices in the previous equation to a certain bond dimension D. This leads
to the construction presented in Eq., with a number of parameters scaling as [LD?.
These methods are powerful, as they enable to describe states with correlations beyond
that of the mean-field ansatz while keeping the number of parameters polynomial in the
system size. However, for more complex geometries, and in particular in 2D, constructing
such an ansatz presents various problems, and in addition, even if the entanglement of a
2D system follows an area law, the area dL in 2D is not constant anymore, which means
the bond dimension D will scale less favorably than in 1D.
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11.L4 Experimental systems

Sudden quenches

One of the main reasons to study the nonequilibrium dynamics of quantum systems is the
recent progress of experimental platforms that enable researchers to perform controlled
experiments, thus being able to directly test predictions. These platforms are known
as quantum simulators [43], and consist in implementing a Hamiltonian with a physical
analogue to that Hamiltonian. These allow one to tailor a specific Hamiltonian and the
degree of control is such that quenches can be performed, particles can be added, and
many different operations can be performed to study effects presented in the previous
section. This is reminiscent of Feynman’s vision of simulating quantum mechanics by
using an analogous quantum mechanical system [44].

As an example, let us consider the quantum simulation of a spin Hamiltonian, as presented
in ref. [15]. An important platform that has been perfected in the last decades has been
optical lattices, where atoms can be trapped by optical tweezers and one can use the strong
nonlinearity of the energy spectrum of atoms to effectively realize two-level systems. The
atoms are often put in highly excited states, such as Rydberg states [45] that correspond to
a high principal quantum number n. This enables a larger degree of control and coupling
to electromagnetic fields. Such a platform can be faithfully described by the following
Hamiltonian, where the two eigenstates of the 6% operator correspond to the ground |g)
and excited states |e) of the Rydberg atoms:

H= —ZQ&}—Z(L—A)&f—Z?&fAj (1.21)

@ i#]

where V;; = Cg/|r; — r;|% is an atomic potential (Cs is a constant given by experimental
details), 2 is the Rabi frequency of an applied transverse-field that drives transitions
between |e) and |g), and (I; — A) determines the frequency of the longitudinal field.
A is the laser detuning, and I; = >,,.; Vj;/2 represents a site-independent detuning.
Here Vj; is taken to be positive, corresponding to attractive interactions, and in the
absence of transverse and longitudinal fields the ground state of this Hamiltonian is an
antiferromagnetf] Note that by taking a homogeneous spacing between atoms, one can
take V;; to be constant, and simply consider V;; ~ J. Therefore, one obtains a slightly
modified antiferromagnetic Ising Hamiltonian, and quench dynamics can be induced by
suddenly tuning the transverse and longitudinal field.

In Fig. , results of the correlation functions C(i,r) = 4 (<6fﬁf+r> — (6f><6f+,,>> are
shown for a quench from a paramagnetic phase, with A > J > ), to an antiferromagnetic
phase with J > A Q. In the figure, C(i,q) is related to the local magnetization as
C(i,7) = 1 —4(67)2. One can clearly see an inversion of the sign of C'(0,1) and C(1,0) as
a function of the detuning, transitioning from ferromagnetic (A < 0) to antiferromagnetic
(A > 0) correlations. Note that for the upper panels, corresponding to sudden quenches,
the correlations will remain short-ranged, thus the results could be compared to data from
exact diagionalization for a 4 x 4 lattice, which are a good fit to the experiment. Another

4We have added a minus sign to the Hamiltonian in ref. [15] for the sake of simplicity.
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Figure 1.3: (a): Phase diagram of the model described by the Hamiltonian in Eq.(L.21).
One is mostly interested in the antiferromagnetic region (AFM), whose eigenstates can be
probed by suddenly quenching the detuning from deep in the paramagnetic phase, with
A < J. (b) Scheme of the experimental setup: a 2D array of atoms trapped in an optical
lattice whose states |e) (large red spheres) |g) (small blue spheres) can be coupled with an
infrared laser. The top part of the scheme represents the high-resolution objective that
can resolve individual sites, enabling precise analyses of experimental data. (c): Typical
protocol. The system is prepared in a trivial phase, with a small number of defects (left),
and is then quenched into an excited configuration (center). Then, increasing the lattice
depth causes the atoms in the excited state to be lost (right), hence only the atoms in
the ground states remain to simplify detection. Reproduced from .
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Figure 1.4: Correlation functions after a sudden quench in the two-dimensional antiferro-
magnetic Ising model as a function of the detuning A, for different values of the quench
time T'. Dashed lines correspond to linked-cluster calculations, while solid lines corres-
pond to exact diagonalization data. Upper panels (a), (b), (¢) and (d) correspond to time
QT = 0.57, which is fast enough to be considered a sudden quench, while lower panels
(e, (f), (g) and (h) correspond to QT = 2.977, where long-range correlations develop.
Reproduced from [15].

group has performed a similar study the same year [46], and more results on more complex
models, for which the phase diagram is unknown, are expected in the coming years.

Time-dependent quenches

Time-dependent quenches can also be implemented in quantum simulators, and in recent
years many works have investigated this, using Rydberg atoms [16], in a setup close to
what was presented previously, trapped ions [47], Bose-Einstein condensates [48], and even
digital quantum simulators such as IBM’s machines [49]. To implement a time-dependent
quench on Rydberg atom platforms, the transverse and longitudinal fields have to be
tuned linearly in time.

Here we will focus on the implementation of a linear quench to examine the validity
of the Kibble-Zurek mechanism on Rybderg simulator, close to what was presented pre-
viously. In Fig. [1.5] experimental results are shown for a linear quench performed on a
system that undergoes an Ising-like quantum phase transition, breaking Z. symmetry.
In the two-level basis spanned by the ground state |g) and the excited state |e), the
Hamiltonian describing the system is given by:

gy ; pla) plo)
H=335 —AZR-'QHWJ»;)BQ Pl (1.22)
(] K3 7,7
where € is the Rabi coupling frequency between states |g) and |e), A is the laser detuning,

Vij is the interaction strength and pi|9> = %(]L +67) is the projector onto state |g) on site i.
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Figure 1.5: Experimental results for a time-dependent linear quench on a Rydberg
quantum simulator. (a): Single-shot images of the system before the quench (top row),
after a fast quench (medium row) and after a slow quench (bottom row). The correl-
ated domains are larger in the bottom row, as more time is spent in the impulse region
hence domains have more time to develop. A higher density of defects is observed for fast
quenches. (b) Correlation length as a function of the final detuning. The grey dashed
line indicates the critical detuning: if the quench is stopped before this, the correlation
length remains small, as the dynamics remain quasi-adiabatic. (c¢) Scaling of the correl-
ation length as a function of the sweep rate, which is the inverse of the quench time 7,
compared with results from an MPS numerical integration. Reproduced from .
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The system is initialized in a homogeneous state with all atoms in the |g) state, and after
the quench, some domains with atoms all in state |e) appear, whose density is predicted
by the Kibble-Zurek mechanism. As such, the critical detuning can be estimated, and
the Kibble-Zurek mechanism can be verified. In the same work [16], authors investigate
other phases, as their machine is programmable, and other critical phases of the system
can be investigated. Once again, it is really the degree of control of such platforms that
make them ideal to study quench dynamics.

Il Open quantum systems

1.1 General setting

Many other interesting cases of nonequilibrium quantum phenomena can be found within
the framework of open quantum systems. To describe this class of systems, let us consider
a quantum system .S, described by a density matrix p. After performing a few experiments,
one can quickly notice that S interacts with its environment E: for example, if S describes
a photonic system, photons can leak out in the environment. A straightforward way to
understand how the leakage of photons takes place would be to describe the composite
system S + E, made of the system S and the environment E. The composite system
is described by a Hamiltonian ﬁ5+ g that describes the degrees of freedom of both the
system and the environment. It can be written in a general form

Hs p=H ({gk}) + Hp ({fk}) ; (1.23)

with A the system Hamiltonian, Hy the environment Hamiltonian, {5} the set of system
operators and {I';} the set of environment (or bath) operators. It is clear that the many-
body problem appears once again, only worse, as realistic environments can be comprised
of many bosonic and fermionic degrees of freedom that describe the electromagnetic field
and the molecules composing the air and the experimental apparatus. Neglecting these
last contributions and supposing that the system interacts with only a few bosonic modes
is still not enough for us to compute the dynamics of most composite systems, its Hilbert
space still being too large.

A way around this is to search for an effective description of pg and obtain a time-evolution
equation for it. Note that if the reduced system interacts with its environment, the wave
function of the composite system will become entangled (non-separable):

Wsp # s ©IX)E - (1.24)

This means that if one wants to obtain a description of S, by performing a partial trace
on |¥)¢, one will obtain a density matrix pg, and cannot use the Schrodinger equation
anymore. Hence one needs to change the formalism, and see how a time-evolution equation
can be obtained for the density matrix when taking into account the interaction between
system and environment. Let us first properly define the objects we will need to use to
obtain an effective dynamical equation on the system.
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111.2 Density matrices

A density matrix p is an operator in the bounded operator space B(H) associated to a
Hilbert space H and should satisfy the following properties to describe a physical sys-
tem [17]:

1. Trace one: Trp =1,
2. Positive-semidefinite: p; > 0, with p; its eigenvalues,
3. Hermiticity: pf = p.

It also admits infinitely many decompositions of the form
p=2_pilon) (@il (1.25)

with p; its eigenvalues and |¢;) the corresponding eigenstates. The physical interpretation
for such a decomposition is that the density matrix represents a collection of states that
each have a probability p;. According to this view, the density matrix tells us which states
will be measured with which frequency if we perform a large number of experiments. One
can also stay agnostic about the physical interpretation of this picture and consider that
a density matrix describes a reduced quantum state, with uncertainty coming from its
entropy that stems from entanglement with the environment.

1.3 Quantum operations

Let us now see how the a density matrix can change, meaning how it evolves under
quantum operations. A quantum operation is a completely-positive, trace-preserving
(CPTP) map, that one applies to a density matrix. The Kraus theorem [50] states that
this map can be decomposed as the application of N? so-called Kraus operators:

R =Kl = > Kipk] (1.26)

with Y the transformed density matrix. A quantum operation corresponds physically to
any transformation that has happened to the physical system, such as time evolution, a
measurement or a certain experimental protocol. The Kraus operators must satisfy the

condition °; K] K; = 1 for Eq. (T.26) to be valid. K must also be linear
Klapy + Bp2] = aKl[p1] + BK[po] (1.27)

and conserve the Hermiticity of p. All these conditions ensure that the transformed
quantum state y conserves the properties of p. K is a superoperator, meaning that it can
be compactly represented by a N? x N? matrix acting on operators, much like operators
act on vectors. One can already see the inherent complexity to numericaly study open
quantum systems, as objects of size N? x N? must be manipulated.

As an example of a quantum operation, let us consider a single qubit, whose levels are
written |1) and |[{). We assume that the state |1) has been prepared, and encodes some
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kind of information. The simplest model to describe energy relaxation is through the
amplitude damping channel N, that is a quantum operation with Kraus operators given

by:
(10 (0 P
K0_<0 _1_p>,K1_<0 o)‘ (1.28)
The strength of the channel is given by p. Applying this channel on the state |1), we

have:

Ml = (510, ) =i+ @ - (129

which is a statistical mixture of states |]) and |1) with probabilities p and 1 — p, respect-
ively. Through this simple example, we also see how entropy has been created through the
process, since we go from a pure state to a mixed state. We have kept things very simple
here, with only a single qubit, therefore no coupling between qubits, and have supposed
no Hamiltonian inducing some time-evolution. In the general case, these ingredients come
into play and the dynamics is much more complex.

111.4 The Lindblad master equation

Having described what a general quantum operation looks like, recall that we are inter-
ested in obtaining an equation for the time evolution of the quantum system represented
by p. Specifically, we are interested in finding a general form for the map M defined by

p(t +ot) = Mp(t) (1.30)
for vanishing dt. By expanding up to second-order, one obtains:

Pt +0t) = 37 M) p(t) Mi(t) = p(t) + 6t0,p(t) + O(6t) (1.31)

By assuming that the environment of the system is much larger than the system itself,
one can consider time-independent Kraus operators M. Indeed, in this case, the envir-
onment itself acts as a bath and remains at equilibrium at all times, hence the action
of the environment on the system is the same at all times. This is known as the Born
approximation.

Now, some care must be taken with respect to the time increment ¢, by considering
the physical timescales at hand. 0t must be small with respect to the system timescale
Atg (that can be taken to be the smallest characteristic evolution time) for the limit
to make sense. However, 6t must be much larger than Atg, the environment timescale,
so that no coherent effects remain in the system-environment interaction. This happens
when the spectrum of the environment is flat, and the environment operators are then
delta-correlated:

TR®TR(t)) = 6(t —t'). (1.32)

This is known as the Markov approximation. We can now take the appropriate limit
0t — 0, and obtain a general form for the Kraus operators M;. We take one of them to
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be of the order of unity, and others of the order of v/t in order to obtain a second-order
update on the density matrix:

(1.33)

My, =1—idtk
Mi>0 = \/Ejz

One can split the operator K into a Hermitian part and an anti-Hermitian part, given
respectively by [ = (K + K)/2 and G = i(K — K)/2, with K = I —iG. One has

VI p(8) Ny = p(t) — idt(F, p(1)] — SHC, p(t)} + OF2). (1.34)
Using the normalization condition on the Kraus operators, we have:

1= ZMTM MMy + 6t 3" T 4+ O(6t%) = 1 — 26tG + 6t Y. JIJ; + O(5t%). (1.35)

>0 >0

By rearranging terms, we obtain G = >0 jj J; /2. The dynamics of the density matrix
p(t) is therefore given by an equation of the form

At + 6t) = p(t) — idt], +5tz( JT—f{JTJz,p( )})+O(5t2). (1.36)

>0

Recall that the evolution of a closed quantum system is given by the von Neumann
equation:
p(t -+ 6t) = p(t) — iot [H, p| + O(5¢?) (1.37)

we identify the Hamiltonian in Eq. (1.36), and we finally obtain the Lindblad master
equation:

o =i [0 + 5 3 (2Jipd — {717, 4}) (1.38)
>0

where we have dropped the time dependence for readability. By comparing the von
Neumann equation and the Lindblad master equation, one can see that the operators
J; must vanish when the evolution is that of a closed system: therefore we see that
they must describe an effect of the environment. The Lindblad master equation can be
derived in many other ways more formal ways [17, |51]. Let us see how the operators
J; can be physically interpreted as jump operators, that induce a collapse of the system
wavefunction due to a continuous weak measurement process.

I11.5 The stochastic Schrodinger equation and quantum trajectories

Another way to derive the Lindblad master equation is by considering a physical system
under continuous measurement. By doing this, we obtain what is known as an unraveling
of the master equation in terms of a stochastic process. The picture here is that of a
physical system that stochastically undergoes jumps from one state to another, with
a collapse of the wavefunction occuring at random times. For example, consider an
atomic system at room temperature. At each instant, there is a nonzero probability
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that excitations are lost to the thermal environment. This can be seen as a stochastic
process with two outcomes: either the excitation is lost or it is not.
In the general case, this picture is well described by the generalized measurement
picture: the quantum state after a generalized measurement is given by:
N AT A vl
p0) = ot +ot) = 35 P OM
n pu(t)

with M , the measurement operators. That is, by performing a measurement of the system
described by p(t), the state has collapsed to a certain state, but we are uncertain about
which state it is, of which there are n,, possible outcomes. p,(t) = (M JM ) (t) is therefore
the probability of measuring the uth outcome if a projective measurement is carried out.
Let us consider the following choice of measurement operators

My =1 — GH + JtJ/2)ét,
Ml - j\/&,

(1.39)

(1.40)

where we have supposed that there is only one jump operator J. This closely corresponds
to what was given in Eq. : the density matrix gets updated in time as under the
action of the Lindblad master equation. The dynamics of an open system can thus be
interpreted as the result of a continuous weak measurement of the jump operator J by the
environment. The time at which a jump happens is non-deterministic in this view. and
its probability is given by py = (M M) (t) = (J1.J)(t)6t. We refer to a specific realisation
of the stochastic process as a quantum trajectory. In this picture, the density matrix is
interpreted statistically, and represents our ignorance of the particular realisation of the
outcome record 7(t).

When M; is measured (r(t) = 1), the state vector becomes

(s sy M)

= = |)h(t)).
\V/P1(?) \/(JTJ>(t)| &

This corresponds to the collapse of the wave function upon the environment having suc-
cessfully measured the outcome of L. If instead My is measured (r(t) = 0), corresponding
to no jump having occured with associated probability pg = 1 — p;, the system’s state
vector becomes

(1.41)

T pe) i ra las 1o

t4ot)) = ——L =41 —dt|ill — ~J T+ =(JU)(¢ t)). 1.42
ol + 1)) = = = {L—aefifi = 200+ ST 0] f o) (1.42)
Interestingly, in this picture, the coupling of the system to its environment, even in the
event of no jump, influences the time-evolution of the system. By combining Eqs. (1.41])
and [1.42] and considering infinitesimal time intervals dt and outcome records dr(t)°, the

evolution of the wave function is given by the following stochastic differential equation [52]:

dly(t)) = (L= dr(t)) [(o(t + db)) + dr(t) [ (¢ + db)) — |1(1))

~ dt(<ﬁj>(t2) = i) [0+ dr()) (T TD)@) ~ 1) o) (1.43)

Sdr(t) is an infinitesimal stochastic variable, also known as a Wiener process.
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which is known as the stochastic Schrodinger equation. This leads to the following pic-
ture: the wavefunction evolves in time according to a non-Hermitian Hamiltonian, with
sudden quantum jumps occuring at random times. Particular realisations of this process
correspond to conditional single trajectories {|)®)};. It can be shown that one recovers
the density matrix p(¢) at a given time by averaging over infinitely many trajectories

Ntraj

> [OOXO )] (1.44)

i=1

A~ 1) = 1
p( ) Ntrajlr_rg"‘oo Ntraj

thus the map given in Eq. (1.43) is equivalent to that of the Lindblad master equation,
Eq.(1.38). It follows that any observable can be obtained analogously:

Ntraj

> WOD|0 (). (1.45)

=1

Te[p(t)0] =  lim

Ntraj —+00 Ntraj

In the numerical methods section, we will see how this translates to a straightforward
numerical method to reduce the complexity of integrating the Lindblad master equation
in time.

111.6 Numerical methods

Now that the main theoretical framework to treat open quantum systems has been presen-
ted, let us examine in more detail some of the numerical methods that have been developed
over the years to study such systems. There are two main objects of study with open
quantum systems: (i) finding the steady-state and/or the Liouvillian gap, which is the
distance between the two smallest eigenvalues of the Liouvillian, important in the study
of dissipative phase transitions, and (ii): simulating the time-evolution to investigate
transient regimes. This section and most results in this manuscript mostly focus on (ii).

Monte-Carlo wave function (MCWF)

A widely used numerical method that naturally appears from the stochastic Schrédinger
equation is the Monte-Carlo wave function (MCWF') method [53]. This method consists
in evolving a quantum state according to a non-Hermitian Hamiltonian, and applying
quantum jumps by randomly choosing from the set of jump operators .J; describing the
system-environment interaction, according to some probability. The algorithm to simulate
the dynamics of an open quantum system can be decomposed in the following steps:

1. Draw a random number a uniformly between 0 and 1.

2. Time-evolve the wavefunction |¢(t)) according to the non-Hermitian Hamiltonian
H until time #', defined by (¢(¢')|(t")) = a.

3. Compute the jump probabilities p; associated to each jump operator ji, given by

pi= (I (t)) = (JLT) (@) (1.46)
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4. Select the ith jump operator with probability p; and apply it to |¢) (¢') along with
renormalizing it as:

[0(t)) = ——==—=—=10(t)). (1.47)

5. Repeat until the desired time is reached by restarting step 1 with the state W(t’ )>

This algorithm has many variants, but this is computationally the most efficient [54] with
respect to other implementations. By repeating this NVi,; times, one obtains dynamics
that are closer to the exact solution. However, how many trajectories are needed in
practice highly depends on the problem, and no general procedure exists to determine
Niraj [55]. The complexity of this method is given by O(Ny,,;l%), an exponential advantage
with respect to a full integration of the Lindblad master equation. This is particularly
useful for highly dissipative systems and when the number of dissipative channels is high,
as we will see in more detail in chapter [3]

Mean-field and cluster approaches

The ideas presented in section for mean-field ansatze can be naturally extended to
open quantum systems. Rather than taking the wavefunction to be a product of local
wavefunction, we take the density matriz to be a product of local density matrices:

2

i (1.48)
1

>
Il

7

with NV, (N. = L in the Gutzwiller mean-field approach) the number of clusters and p; €
B(H;). As for closed systems, this approach limits quantum correlations to be inside the
cluster, meaning it will work best for weakly and/or locally interacting systems. This has
the same value as for closed systems, reducing the number of free parameters required to
describe the system density matrix p from I* to NI/ with N,./N the size of the cluster.
This leads to N./N equations to solve to integrate the master equation in time, leading to
a more tractable solution. This approach has been quite successful in capturing a certain
number of features of dissipative phase transitions [56] and nonequilibrium properties of
strongly-correlated open quantum systems [57].

Matrix Product Operators

Tensor networks can also be applied to open quantum systems. The problem amounts
to finding an expression for the many-body density matrix coefficients in terms of local
tensors, much like Eq. (1.16). An additional issue when dealing with density matrices is
that positivity must be enforced, without ever constructing the full density matrix®} A
simple ansatz can be constructed by using the Choi isomorphism [58] that associates a
density matrix to a pure state in an enlarged Hilbert space of dimension {?. The then

SNaively, enforcing positivity can be done by diagonalizing the full matrix, but the method then stops
to be computationally efficient.
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vectorised density matrix can be described like an MPS in this Hilbert space, and the
density matrix coefficients defined in Eq.(|1.2]) can be written as a tensor product:
Cs’17s’2,...,sj: _ Aihiz Ai27i3 . _AiN7i1 (1‘49)

/ /
81,82,---,ST, 51,87 ° 782,85, SL,ST

which is equivalent to the MPS ansatz with an additional dimension for each tensor
that corresponds to the set of spin indices {s;}. This is known as the matrix product
operator (MPO) ansatz. While it has proved effective and yielded interesting results for
1D systems, one of the main issues of such a construction is that the positivity of the
density matrix is not ensured when performing time evolution of the ansatz. Note that
this problem has been proved to be computationally hard [59], hence no approach can be
a perfect solution['}

A partial solution to this issue is to built what is known as locally-purified density
operators (LPDO) [60]. This is done by constructing a locally enlarged Hilbert space, built
S HRIA=H A QH; ® A2 ® ... Hp ® Ap with A the ancilla space. A wavefunction
is then written as an MPS in this basis, whose coefficients are given by:

_ _ At1st2 Al2,i3 IN,IL
<317 a152,0a2,...,SL, OJLW}) = Csy,a182,a2,...,51,a1, — As1,a1A52,a2 T ASL,aL' (15())

The density matrix coefficients are then obtained by tracing out the ancilla sites on [¢))(1|:

ezt = BUE BRY - B (1.51)

51,52,.,5L sh,s] 7 sh,sh S8y

Note that this expression is not equivalent to the MPO ansatz, as the B tensors are ob-
tained by doing a partial trace on the wave function [¢)), and the MPO simply corresponds
to a vectorized density matrix. The LPDO ansatz ensures the positivity of the density
matrix, as it is obtained by a partial trace on a quantum state. However, some works
have shown that the required bond dimension to obtain a similar precision is higher with
LPDOs than MPOs [61} 62]. This hints to a lower capacity of LPDO to represent highly
entangled states. Finally, we note that most works employ the MPO ansatz without wor-

rying about the positivity of the resulting density matrix while obtaining highly accurate
results [63, 64].

Corner-space renormalization

A method that is of particular interest for strongly-correlated systems is the corner-space
renormalization method [65]. This method is rather different from mean-field or MPO
methods, as it is constructed from the idea that there exists a class of physical systems,
low-entropy quantum systems, for which the density matrix is accurately described by
only a restricted set of M states. Mathematically, this is written as

p="> Di|or)drl =D i |or) k| + Olenr) (1.52)

with epy = 1 — ZkM pr < 1. This means that one can truncate the eigenvalues to keep
only M states, and the truncated density matrix will still faithfully describe the physical
system at hand.

Tunless P=NP.
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Figure 1.6: Sketch of the corner-space renormalization method. Taken from [65].

The corner-space renormalization method aims to solve the steady-state p € H of
an open quantum system, described by Eq.. The basic idea behind this method
is shown in Fig[I.6] It can be decomposed in three steps, as pictured by the three light
rectangles forming the figure:

1. Take two-subsystems A and B whose steady-state can be found exactly, and ob-
tain the steady-state by brute-force integration. Diagonalize the two corresponding
steady-states p(, piP) to obtain the form given in Eq.(T.52).

2. Merge the two sub-systems into a larger system A U B. Construct a basis C(M),

spanned by product states of the form ‘¢£A)> ‘gb?(fg)>, and retain only the M most

probable ones by keeping only the largest joint probabilities pff‘)pgfg). Solve the

Lindblad master equation in this subspace of dimension M.

3. Repeat until the size of the full system is reached.

Note that this method allows for the states in the solution to be entangled between sub-
systems A and B: product states are constructed as the basis for the solution of the
steady-state, hence this steady-state can comprise any superpositions of these product
states. In this sense, this method is more powerful than mean-field or tensor network
methods. Its limitation mainly resides in the cut-off of the M states, which will be
limiting for high-temperature states with a large entropy. Note that the complexity of
the algorithm for this method resides in the diagonalization of the density matrix at the
end of the first step. This complexity of this step is O(max|[M?3, [3¥4.8]), since the first
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step is done with exact diagonalization of subsystems A, B with Hilbert space dimension
IN4.B and subsequent steps concern density matrices of size M x M.

A method to simulate the dynamics of open quantum systems, based on the same prin-
ciple that only M states may suffice to describe low-entropy systems, will be introduced
in chapter [3

111.7 Experimental systems

As mentioned, any quantum system that couples to an external environment, provided
the Born-Markov approximation is satisfied, can be depicted as an open quantum system.

Superconducting circuits

A class of experimental setups that can be described as open systems are superconducting
circuits. These circuits have proved immensely useful for the development of quantum
information in the past two decades [66], as well as for exploring many-body physics [67].
One of the building blocks of such systems are electromagnetic LC' resonators, composed of
a capacitor C' and an inductor L. One can describe a linear resonator with the Hamiltonian

2 Lo 1 s

H = 20@ + 2L¢ (1.53)
where Q is the quantized charge of the capacitor, and (;Aﬁ is the quantized magnetic flux
flowing through the inductor. These operators are described by the same commutation
rules as for position and momentum, i.e. [Q, QAS] = —i, hence the Hamiltonian can be
diagonalized in exactly the same way as for a harmonic oscillator, by introducing the
bosonic annihilation (and creation) operator, defined as:

a= L L_Z& (1.54)
vw \V2L  V2C
and the Hamiltonian is written as
A 1
H=w (a*a 4 2) . (1.55)

Such a Hamiltonian has a linear spectrum of n levels corresponding to n bosonic excita-
tions, and its energy levels are given by

E, :w(n+;), (1.56)

with w the frequency of the resonator.

What one really wants to investigate issues related to nonequilbrium dynamics is nonlin-
ear terms in the Hamiltonian, so that the states involved in the dynamics are strongly
correlated. The key ingredient to creating a nonlinear superconducting circuit is the
Josephson junction [68], that adds nonlinearities to resonators. These are hybrid struc-
tures, composed of two superconductors separated by an insulating barrier, that behave
as nonlinear inductors. The Hamiltonian term describing this element is given by

IA{J:EJCOSQAﬁl] (157)
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with E; = ly¢o/2m (1o is the current passing through the junction, ¢y is the flux quantum)
and qu s is the flux flowing through the junction, that is again quantized. The cosine term
is at the origin of the nonlinearity. By building a circuit made of a capacitor and a
Josephson junction, one has the following Hamiltonian, that can be Taylor-expanded by
supposing that the system is in a weakly nonlinear regime:

A 1 A A

H= %QZ + Ejcos¢y (1.58)
o L~ 1oy Loy 76

H=5-0"+E; <1 —3%t 24%) +0 <¢J) : (1.59)

The spectrum is now slightly modified, and the energy separation between levels is not ho-
mogeneous. This leads to the following Hamiltonian, in terms of creation and annihilation
operators b, b:

N PN 1 ~ ~
H=uw (b*b + 2) — By — Ec (b + b)4 (1.60)

with w = \/8EcE;, Ec = €*/2C, e being the charge of the electron [18]. This leads to
being able to realize two-level systems known as transmon qubits, crucial for quantum
information provided the nonlinear terms are strong enough, such that a resonant drive
at energy w only couples the first two levels.

Alternatively, one can study nonlinear lattice models with such platforms, such as the
Bose-Hubbard model. This model is described by the following Hamiltonian:

L L—1
=3 (bl + lHbb) — TS (Bl + e, (1.61)
i=1 =1

for a 1D lattice with open boundary conditions, whose features will be studied in more
detail in Chapter [2] w. is the cavity frequency, J the nearest-neighbour coupling, and
U the boson-boson interaction strength. The coupling J can be engineered by capacit-
ive couplings, that are highly tunable elements |66]. Such systems exhibit natural loss
channels, due to their coupling to the external environment. A simple model for such loss
channels is that of local single-particle losses, that are described by jump operators

J, = /Tib. (1.62)

Another ingredient that can be added is an external driving, that can be coherent (entering
the Hamiltonian) or incoherent (entering the dissipative part of the Liouvillian). For a
coherent drive in the rotating wave approximation, the following terms may be added to
the Hamiltonian

Hp =" Fi(b +by). (1.63)

This leads to richer physics, as the system consists of driven-dissipative coupled nonlinear
elements. Many interesting phases can be engineered, and the physics of such systems
has only begun to be explored.

In Fig. [I.7] a driven-dissipative superconducting platform is depicted. The full system is
about 10 mm?, and contains eight coupled transmon resonators, whose observables can be
measured thanks to readout resonators. The chain of transmons is driven by a coherent
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driving on an external site, and another site is coupled to the system, acting as an energy
dump. This enabled authors of ref. [69] to stabilize strongly correlated phases, coined a
Mott insulator of photons, that was never accessed before.
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Figure 1.7: (a): Optical image of a driven-dissipative superconducting circuit where a
chain of transmons, labeled from 1 to 8, are coupled to a reservoir and to a stabilizing
drive. Observables can be measured by the readout resonators. The inset to the figure is
a scan-electron microsopy image of a single transmon qubit. (b) Energy scales in such a
system, where the interaction dominates all other energy scales. (c) Sketch of the effective
model obtained, where a strongly-interacting Bose-Hubbard model is realized, coupled to
two sites that act as a stabilizer for Mott insulator states. Reproduced from .



Entanglement dynamics in

strongly-correlated open quantum
systems

| Introduction

After being a subject of early intense debate at the dawn of quantum mechanics [70, [71],
entanglement is now recognized as a key feature of quantum physics [72]. The efforts
towards building a complete mathematical description of this notion were instrumental
in the development of quantum information. In this context, the core of the theory
is centered around three main tasks: detecting |73], quantifying [74] and manipulating
entanglement [75]. The progress made on these three fronts would allow to outperform
classical methods in the fields of metrology [76], cryptography [77] and computation [28].

In addition to providing sound foundations to the field of quantum information, en-
tanglement theory has also paved the way to new discoveries in other areas of physics. As
anticipated at the beginning of the millenium [78], quantities such as the entanglement
entropy have proved to be very valuable tools for characterizing the ground-state wave
function of many-body quantum systems [79-81]. The study of entanglement in many-
body systems has not been restricted to their ground state properties: entanglement
dynamics and its propagation in space in quantum systems has also been the subject of
intense research activities for spin chains [82-84], fermionic [20] and bosonic systems [33,
85-87]. These works were important in inspecting the validity and limits of predictions
about Lieb-Robinson bounds in lattice systems, as well as providing information about
the properties and excitations of complex many-body systems.

Extending these investigations to open quantum systems represents a timely frontier of
research [88] that is of fundamental importance because much less is known with respect
to the state-of-the-art in isolated quantum many-body systems at thermal equilibrium
or exhibiting unitary Hamiltonian dynamics. Whereas in general experimentalists try to
protect their system from interacting with its environment, other approaches based on
the general concept of "reservoir engineering" try to exploit the openness of a system and
take advantage of judiciously designed dissipation to reach non-trivial quantum states
in the transient regime [89] or in the steady state [69]. In recent years, experimental
progress in tailoring effective photon-photon interactions in cavity and circuit quantum
electrodynamics (QED) devices has lead to the emergence of controllable quantum optical
many-body systems [90-92]. Unlike most condensed matter setups where the system is
close to thermal equilibrium, this new class of systems are open quantum platforms in
which intrinsic losses, due to the photon finite lifetime, have to be compensated by an
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external coherent or incoherent driving.

In the past years, several works have been devoted to transport properties of strongly-
correlated photonic platforms [93H96]. However, only a few exist regarding entanglement
and correlation propagation in driven-dissipative systems, which mainly focus on free fer-
mion systems |20} 97]. The recent experimental demonstration of dissipatively stabilized
photonic Mott insulators |[69] in chains of superconducting microwave resonators paves
the way to the exploration of such an exciting frontier.

In this chapter, after presenting the physics of strongly-interacting bosonic systems,
we will explore entanglement propagation in photonic Mott insulators, showing genuine
physical effects associated to the openness of such systems. In contrast to most works
about correlation propagation in interacting bosonic systems, here we do not consider
global quenches of the system that typically consist in abruptly changing the value of the
interaction strength in all the lattice [33, |87]. Instead, we consider two configurations
where one photon is injected or removed from one cavity in the middle of a chain and
investigate the propagation of entanglement that is produced between distant sites as a
function of time and of their spatial separation. Such a study is achieved by monitoring
the negativity of two-site reduced density matrices, that witnesses entanglement. We
show a strinking different role of photon dissipation in the two configurations.

Il The Bose-Hubbard model

Let us now present a few features of the paradigmatic Bose-Hubbard model. This model
consists of L interacting bosonic modes, described by the following Hamiltonian:

. L U

i=1

L—-1
bjbjbibi> — TS (Bt + hec), (2.1)
=1

with w, the cavity mode frequency, U the photon-photon (Kerr) on-site interaction, J the
nearest-neighbor photon hopping coupling, and b; (b) the annihilation (creation) photon
operators for each site. It presents a Mott phase in the strongly interacting (U > J)
limit and a superfluid phase in the weakly interacting (U < J) regime. In this section
we restrict the discussion to one-dimensional systems for simplicity. The physical systems
described by the Bose-Hubbard Hamiltonian include, but are not limited to, lattices
of microwave resonators in circuit QED platforms as described in Chapter 1 [98-103],
semiconductor microcavities [99, |104] and ultracold gases in optical lattices [105] 106].
These platforms, as most realistic many-body systems, exhibit dissipation and dephasing
due to the coupling to the environment. In cold atom systems dephasing is dominant [87]
while for microwave photons in circuit QED platforms particle loss is typically the most
important channel [107, |10§].

1.1 Strongly correlated regime

One can start by considering the limit U/J — oo. In this limit, one can exactly perform
a fermionization procedure in 1D, which enables one to solve the model |109]. In such a
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limit, bosons become impenetrable, and the Hamiltonian reads:

L L-1
H=w> bib;— T (blbiyy + h.c.), (2.2)

i=1 i=1

which corresponds to a tight-biding model with a local energy w,.. By using a Jordan-
Wigner transform, this model is exactly solvable |109, [110].

In the following we will focus on a more interesting and practical case, where U > J
(but not so much larger). This does not completely wash out interactions, hence there
will be some interplay between interactions and dissipative processes. In such a regime,
in order to describe the physics of a photonic Mott insulator with one photon per site
on average, we can safely truncate the local Hilbert space to a maximum of two photons
per site by retaining only the |0), |1), and |2) Fock number states. The validity of this
assumption was carefully tested numerically by increasing the local Hilbert space cutoff
and checking that the results were unchanged. A Mott insulator phase corresponding to
one photon per site for U > J is approximately described by the factorized state

Tptore) = 1)y @ 1)y ® .. ® 1), = [11...1). (2.3)

In the regime of strong interactions, the Hamiltonian can be diagonalized by using gen-
eralized Jordan-Wigner and Bogoliubov transformations [33], via a mapping to a spin-1
model. By considering L coupled three level systems, one can rewrite the Hamiltonian as
interacting doublon and holon excitations. These fermionic quasiparticles are described
by local creation operators d;r and hzT for doublons and holons respectively, such that
di 1), =12),, hl[1), = |0),. We therefore have:

L

A=xp {_m;czjﬂ — T = V2T (dhEy — hydye) + He. + g (i + ﬁ,m.)} j2
(2.4)
with P = II; (1 — fig;fn;). One sees that the complexity of the model resided in the
projector P7 which contains non-quadratic terms. However, one can reasonably approx-
imate P ~ 1, since the probability of having both a doublon and a holon on the same site
|(fuajfn;)|? should be 0. By doing this, one obtains a quadratic Hamiltonian that we can
diagonalize using a Bogoliubov transform. The eigenmodes of the system are given by:
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with
u(k) = cos(0y/2),v(k) = isin(0x/2), (2.7)
V/32J sin k
_ -~ 2.
f), = arctan (U Sy -~ (2.8)
~ [ 2 ~
hoy=— LZ in(ki)h; (2.10)
k= L+12 sin(ki)h; .
k= %, n € N for open boundary conditions. (2.11)

The Hamiltonian can now be written in a diagonal form:

H= ; ea(k) A Aak + €a(—k)Ah _i3n (2.12)

with
ea(k) = —J cosk + ;\/(U—6Jcos k)2 4 32J2sin k (2.13)
en(—k) = Jcosk + ;\/(U —6J cosk)? + 32J%sin? k. (2.14)

For a closed system, we can extract the velocity for the corresponding doublons and holons
as the derivative of the eigenenergies with respect to k:

1 12JUsink — 8J?%sink k
Ud,h(k) = aked,h(/{?) — +Jsink + = sin sin k cos

4\ /(U - 6J cosk)? + 32J2sin® k

(2.15)

with + respectively corresponding to doublons and holons. This enables one to obtain
bounds on the quasiparticle speed, which for doublons reads v? = 4.J [ — %} +0 (é—i)

max

and vl =2J|1+ 127[}]22 } +0 (é—i) for holons. These results will serve as a basis to under-
stand what happens in terms of entanglement propagation and the effect of dissipation

and decoherence in the case of an open system.

11l Entanglement propagation in dissipative photonic Mott
insulators

We now consider the system described by the Hamiltonian of Eq. (B.1) coupled to an
external environment. Within an open quantum systems approach, the time evolution of
the system density matrix p can be described by the following Lindblad master equation:

dp A L
Tyl
o = il + 3

> 20 p T = LN, py, (2.16)
C

N | —

(2
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Figure 2.1: Upper panel: sketch of the considered system, a chain of coupled photonic res-
onators with on-site photon-photon interaction U and nearest-neighbor hopping coupling
J. The top chain depicts the initial time configuration with a Mott insulator of photons
(one photon per cavity) where a double occupation (doublon) has been created in the
central site ¢ = 7.. The bottom chain depicts the configuration at a later observation time
t, with entanglement existing between distant sites. The photonic modes are subject to
losses and dephasing. Lower panel: entanglement negativity N,.(t) between sites i._, and
ic+r as a function of time ¢ for different values of the spatial separation r = {1,2,3,4}
from the central site i.. The shade of the lines gradually decreases going from r = 1
to r = 4. Calculations were performed with an MPO ansatz with bond link dimension
X = 200 on a chain of L = 20 cavity sites. For each value of r, results for different values
of the photon loss rate v in units of the hopping J are shown. The initial state at t = 0
is [Up) (see the text) corresponding to a doublon excitation localized in the central site.
In this figure, the pure dephasing rate I'; is 0. The on-site interaction for all the cavities
is U/J = 33.3.

with Ji(c) the jump operator for the i-th site and the dissipation channel C. When the
temperature is low enough and the thermal photon occupancy is negligible, the jump
operator for the particle loss channel (C = 1) due to the finite photon lifetime reads
Ji(l) = /7b;, where v is the photon loss rate. The pure dephasing channel (C = d) due to
fluctuations in the environment is described by the jump operator Ji(d) = \/2_de§bi, with
I'; the pure dephasing rate. The factor v/2 here is put to ensure that the norm of the
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jump operators to dephasing and dissipation are the same, to obtain fair comparisons.

1.1 Entanglement generation protocol

Since |yt ) 18 a factorized state, an interesting question is how to perturb such a photonic
Mott insulator in order to create entanglement in a simple way and study its propagation
in a direct fashion. In the following we will show that this is possible by injecting (or
removing) one photon from an occupied site. As shown in the upper panels of Figs.
and [2.2] we will con