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Résumé

Cette thèse est consacrée à l’étude de la dynamique hors-équilibre dans les systèmes
quantiques fermés et ouverts. La question de l’obtention d’équations dynamiques nu-
mériquement efficaces pour simuler de tels systèmes, qui souffrent d’une malédiction de
dimensionnalité lorsqu’ils sont de grande taille est au centre de la thèse, ainsi que les di-
vers nouveaux résultats physiques qui peuvent être obtenus grâce à ces équations efficaces.
La question de l’obtention de représentations efficaces des états quantiques est également
centrale, à travers la construction d’Ansatz.

En particulier, nous étudions théoriquement la propagation de l’intrication dans les
systèmes photoniques dissipatifs à forte interaction, motivés par la réalisation expérimen-
tale récente de telles plateformes. Nos résultats montrent qu’en dépit du caractère dis-
sipatif du système étudié, la propagation de l’intrication est ballistique avec une vitesse
en accord avec l’image de quasiparticules impliquées dans la dynamique, des doublons
et des holons photoniques. Notre analyse révèle que la dissipation est fortement asymé-
trique dans les deux cas étudiés de l’injection d’un doublon ou de son extraction, avec
une influence plus forte dans le cas de l’extraction.

Ensuite, nous présentons la méthode du sous-espace dynamique, une nouvelle méthode
numérique pour la simulation de l’évolution temporelle de systèmes quantiques ouverts
avec une entropie modérée. En représentant la matrice densité par un sous-espace consti-
tué de M états purs, la complexité de l’intégration de l’équation maîtresse de Lindblad
est considérablement réduite, et l’algorithme obtenu est entièrement déterministe. Nous
appliquons ensuite cette méthode pour modéliser des algorithmes quantiques bruités, en
simulant un algorithme quantique bruité de transformation de Fourier qui est au centre
de l’algorithme de Shor pour la factorisation de nombre premiers. Nous trouvons une loi
d’échelle pour l’erreur en fonction du taux de dissipation, et le comportement de l’infidé-
lité par rapport au circuit idéal est modélisé en fonction des états initiaux qui sont fournis
en entrée à l’algorithme.

Enfin, l’application des méthodes d’apprentissage automatique à la mécanique quan-
tique est présentée, à travers la classe d’Ansatz des états quantiques neuronaux (NQS). La
construction générale des NQS est introduite, ainsi que sa relation avec d’autres Ansatz
tels que les réseaux tensoriels. Ensuite, le problème de la simulation de la dynamique des
systèmes fermés avec NQS est étudié, ainsi que les problèmes courants liés à la géométrie
de l’espace des paramètres qui peuvent survenir. Un schéma alternatif est introduit et ap-
pliqué à des dynamiques de trempes dépendantes du temps dans des systèmes critiques,
où le mécanisme de Kibble-Zurek peut être étudié. Enfin, différentes constructions d’An-
satz pour les systèmes ouverts sont présentées, notamment la combinaison de la méthode
du sous-espace dynamique avec un Ansatz neuronal.



Keywords : physique quantique, systèmes quantiques ouverts, équation maîtresse de
Lindblad, réseaux de tenseurs, circuits quantiques bruités, apprentissage automatique,
états quantiques neuronaux, mécanisme de Kibble-Zurek, dynamique de l’intrication, pho-
tons fortement corrélés.



Summary

This thesis is devoted to the study of nonequilibrium dynamics in both closed and open
quantum systems. The question of obtaining effective dynamical equations for such sys-
tems, that are plagued with a curse of dimensionality when scaled up is at the center of
the thesis, as well as the various new physical results that can be obtained thanks to these
effective equations. The question of obtaining efficient representations of quantum states
is also central, through the construction of educated guesses or ansätze.

In particular, we theoretically study the propagation of entanglement in dissipative
strongly-interacting photonic systems, motivated by the recent experimental realization
of such platforms. Our findings show that in spite of particle losses the quantum entan-
glement propagation exhibits a ballistic character with propagation speeds related to the
different quasiparticles that are involved in the dynamics, namely photonic doublons and
holons respectively. Our analysis reveals that photon dissipation has a strikingly asym-
metric behavior in the two configurations with a much more dramatic role on the holon
entanglement propagation than for the doublon case.

Then, we present the dynamical corner-space method, a novel numerical method for
the simulation of the dynamical evolution of open quantum systems with moderate en-
tropy. By representing the density matrix by a sub-space of M corner states, the com-
plexity of the integration of the Lindblad master equation is dramatically reduced, and
the obtained algorithm is fully deterministic. We then apply this method to model noisy
quantum algorithms, by simulating a noisy quantum Fourier transform algorithm that is
at the center of the Shor algorithm for factoring. We derive a scaling law for the error as
a function of the dissipation rate, and the behaviour of the infidelity with respect to the
ideal circuit is modeled as a function of the initial states that are fed to the algorithm.
Finally, the application of machine learning methods to quantum mechanics is presented,
through the neural quantum state (NQS) ansatz class. The general construction of NQS
is introduced, as well as its relation to other ansätze such as tensor networks. Then, the
problem of simulating dynamics of closed systems with NQS is investigated, as well as
common problems related to the geometry of parameter space that may occur. An altern-
ative scheme is introduced and applied to time-dependent quenches in critical systems,
where the Kibble-Zurek mechanism can be investigated.

Keywords: quantum physics, open quantum systems, Lindblad master equation, tensor
networks, quantum circuits, machine learning, neural quantum states, Kibble-Zurek mech-
anism, entanglement dynamics, strongly correlated photons.
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General Introduction

Since the scientific revolution, physics has mainly consisted in understanding dynamical
laws that constituents of reality obey. The origin of this paradigm can be traced back to
Galileo [5], who wrote about describing matter in motion to explain physical phenomena.
From there, more and more elaborate theories of matter in motion appeared, from New-
ton’s second law to the Schrödinger wave equation. Physics mainly consisted in finding
the most elaborate dynamical laws, that would explain everything: this would be known
as a theory of everything.
However, this quest, impersonated so well by the minds of Einstein, Feynman, and “the
particle physicist” has terribly failed. The search for a theory of everything, and the
ultimate quest for reduction, can be considered to be lost. Let us say that we find a
theory of everything, a complete description of a dynamical law that all particles and
fields obey, which can be beautifully summed up inside a lengthy Lagrangian; what will
we have learned? This is not to say that reduction brings nothing, but that reduction
does not bring everything. There seems to be a fundamental truth to the nature of reality,
that is that scales decouple; from some laws at the microscopic level, others can emerge at
the macroscopic level. An instance of this general idea can be found in Conway’s Game
of life [6], in which a few deterministic rules suffice to create complex, self-replicating
structures at much larger scales. This game is a perfect example of why reductionism
cannot be enough if we wish to understand physical phenomena in the broadest sense.
There are situations for which we know the rules, the laws of motion, but where we are
fundamentally more interested in the features of the game that appear to be completely
disconnected from these laws. For instance, we have known the laws of classical mechanics
for at least two centuries, however many features of the theory are yet to be discovered
and discussion about many fundamental topics hidden in these laws is ongoing.
From these considerations a new paradigm arose: the paradigm of complexity. Complexity
arises when many particles interact, which leads to behaviour that cannot be computed,
whether it may be with pen and paper or computers. Such considerations are beautifully
explained in the famous article by Anderson, More is different [7]. From this, physics has
largely become the science of effective models, where complete descriptions of physical
systems are abandoned to transition to a more computable and scale-adapted effective
behavior. Nowadays, it seems all fields of physics are filled with effective descriptions,
from quantum chromodynamics [8] to fluid mechanics [9].
This thesis is devoted to the quest of finding better effective descriptions of closed and
open quantum systems, and in particular of the complex dynamics that occur in many-
body quantum systems. The interest of developing such methods is twofold: firstly, a
new understanding of the problem at hand can be obtained by unveiling new aspects of
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its mathematical structure, as has been the case with tensor network methods [10]. The
development of such methods has led to the entanglement area law [11] for local unidi-
mensional gapped systems, which has since then proved invaluable. Secondly, they enable
researchers to study new problems, as they are more efficient to treat different regimes
that were previously unattainable. A significant part of the thesis is dedicated to new
physical results that have been obtained thanks to these effective descriptions.
Such models for quantum mechanical systems have for now mostly been applied to equilib-
rium and ground state properties. Density functional theory [12], a theoretically straight-
forward effective model useful for complex molecules, is perhaps the best example of the
success of effective models for equilibrium properties, as it is nowadays ubiquitously used
in research institutions and the private sector. Dynamical properties, as we will see in
more detail in Chapter 1, are harder to pinpoint and involve a more complex mathematical
structure than ground state properties in the general case. In particular, open quantum
systems, a class of systems that describe quantum systems coupled to an external envir-
onment, hence being nonequilibrium almost by definition, are particularly elusive in that
very few general results are known about them. Recently, general properties related to
dissipative phase transitions [13] have been put forward, but the exposition of dynamical
properties for open systems remain rare for now.

In Chapter 1, we present the theoretical framework surrounding the study of nonequi-
librium quantum systems. We start by presenting the problems that arise for closed
quantum systems, where nonequilibrium dynamics involve superpositions of eigenstates
of a many-body Hamiltonian, thus resulting in a highly complex evolution. We present
results related to correlation propagation in such systems [14], as well as the Kibble-
Zurek mechanism, that has been experimentally verified in the last decade [15, 16]. We
also present various numerical methods, from mean-field methods to tensor networks, that
have yielded many important results in previous years. Then, we present the framework of
open quantum systems. When a quantum system is coupled to an external environment,
one can generally not compute the dynamics of the full composite system. Therefore, an
efficient way to treat this problem is to treat the environment as a bath that is weakly
coupled to the system, that is, remains weakly entangled with the system. By also sup-
posing that the timescale related to the dynamics of the bath is much faster than that of
the system, one can treat the system with a Lindblad master equation approach [17]. This
equation closely resembles the Schrödinger equation, and has additional terms account-
ing for the coupling of the system with the environment. We present various numerical
methods that were developed for such systems, as well as superconducting circuits [18],
being a prominent platform for the study of such systems.
In Chapter 2, entanglement and its evolution in a strongly-correlated open quantum
systems is studied. As mentioned, the study of correlation propagation as for now
mostly been concentrated on closed systems [14, 19], and the impact of the interplay
of strong interactions and dissipation on entanglement spreading has remained relatively
untouched [20]. We investigate the nonequilibrium dynamics in a photonic Mott insulator
induced by adding or removing a particle from the center of the chain. As such, we observe
a ballistic entanglement propagation, with a speed that is predicted by an approximate
solution for the closed system in the strongly interacting regime. We also observe a drastic
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change in the behaviour of the system as a function of whether we start by removing or
adding a particle, related to the form of the states involved in the dynamics. These results
pave the way to more general results about entanglement dynamics in open systems.

In Chapter 3, the dynamical corner-space method is introduced. This method is based
on the idea that there exists a class of systems whose von Neumann entropy is low enough
that the density matrix describing the state of the open quantum system may be described
as a collection of a limited number of pure states, thus rendering the integration of the
Lindblad master equation more efficient. This idea is at the core of another method de-
veloped a few years ago, the corner-space renormalization method. The application of this
method to the quantum Fourier transform will be presented. This is a key sub-routine in
Shor’s algorithm, and when subject to dissipation and/or decoherence, undergoes open
system dynamics where a sequence of quantum gates are applied, entangling the qubits
that form the register of the algorithm. Thanks to this method, new scaling behaviour
for this algorithm as a function of dissipation and decoherence rates for this was possible
to unveil. The impact of the initial state to the computation is also investigated, and a
highly biased performance is found as a function of the loss channels.
Chapter 4 is devoted to using machine learning techniques to study nonequilibrium dy-
namics. Having shown immense success to represent high-dimensional data, such as
images, text and audio, the latest advances in machine learning are currently strongly
impacting the quantum physics community, where such advances have allowed to make
progress on a large number of problems [21, 22], from ground state search, to quantum
tomography or the simulation of quantum circuits. Such methods will be presented in
detail, and we will then focus on their use for the simulation of nonequilibrium dynamics.
This endeavor has been plagued by several problems, to which we propose a solution by
reformulating the problem at hand onto an optimization problem to be solved at each
time step of the dynamics. We will also see how machine learning methods can be used
to study open quantum systems dynamics, and that representing a density matrix with
neural networks presents several problems. As such, we envision an extension of the
dynamical corner-space method to the use of neural network states, which we describe
towards the end of the chapter.
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1 Nonequilibrium quantum systems

I Introduction

As mentioned in the introduction, it quickly became clear that the Schrödinger equation
could not be solved for more than a few particles in the presence of interactions [23]. This
means that one cannot know the exact dynamics of most physical systems. However, this
does not mean that many features of these dynamics cannot be accessed. Luckily for us,
one can, through various approximation methods and educated guesses on the form of
the wavefunction, referred to as ansätze in this manuscript, make great progress towards
this goal.
In this section, we present the two main problems that are studied throughout the thesis.
The first problem is understanding the nonequilibrium dynamics of ideal quantum sys-
tems, as described by the Schrödinger equation. Great progress has been made concerning
quantum mechanics at equilibrium, however nonequilibrium properties are only starting
to be properly investigated thanks to the rapid improvement of numerical methods and
experimental platforms. Indeed, there is a much greater scarcity in the tools that can be
used to study such systems. Many long standing problems have not been solved, such
as the eigenstate thermalization hypothesis [24], and the validity of the Kibble-Zurek
mechanism [25, 26], to name a few. In ideal quantum systems, nonequilibrium dynamics
occur when the initial state of a dynamical process is not an eigenstate of the applied
Hamiltonian [27]. This can be done by locally adding a particle to the system, or to apply
a quench, that can be either time-independent or time-dependent. In the first part of this
chapter, the physical and numerical ramifications of this problem will be presented, as
well as the Kibble-Zurek mechanism and the experimental works that have been devoted
to studying these issues in recent years. The main numerical methods used to study these
issues such as mean-field and tensor networks will be presented in section II.3.
The second problem is understanding the dynamical properties of open quantum systems.
Such systems are inherently out of equilibrium, as they can be viewed as ideal quantum
systems coupled to an external environment. As explained in the introduction, studying
open quantum systems is crucial as it enables one to understand quantum noise and its
effect in quantum computational processes [28] as well as thermodynamical tasks [29]. In
this context, dynamical properties can be studied by preparing the system in a certain
state, and evolving the open quantum system in time. Most questions around this problem
aim to understand how results for ideal quantum systems hold when an external environ-



6 Chapter 1. Nonequilibrium quantum systems

ment is present. For example, the spreading of correlations in open quantum systems is
an active field of research [20], that will be discussed in more detail in Chapter 2. On the
quantum information side, understanding how noise processes affect quantum algorithms
is of crucial importance if we wish to use them one day [30]. The theoretical framework
for treating open quantum systems will be presented, as well as various experimental plat-
forms which can be described by this framework. In this context, systems that interact
with a physical environment are considered, nontrivial dynamical phenomena will arise,
as dissipation will act as a new player.

The many-body problem
Let us now be more specific about the many-body problem, in both closed and open
quantum systems. According to the axioms of quantum mechanics, the state of an ideal
quantum system is fully specified by its wavefunction |ψ⟩, that belongs to the Hilbert space
associated to the system H. |ψ⟩ can be expanded in a given basis of this Hilbert space.
A natural choice for this basis is a composite basis of local quantum numbers si (for spin
systems, these local quantum numbers are the local spins), since most quantum systems
we wish to describe are composite: they consist of L interacting degrees of freedom. In
this part, and in most of the manuscript, we suppose that the equations to be solved to
describe the time evolution of a physical system cannot be solved. Therefore, the only
way to go forward is to perform a numerical integration of this equation, which involves
storing in memory the state of the system at each step, and incrementally calculating the
evolution of the system. The basis expansion of |ψ⟩ reads:

|ψ⟩ =
∑

s1,s2,...,sL

cs1,s2,...,sL
|s1, s2, . . . , sL⟩ (1.1)

with cs1,s2,...,sL
the amplitudes (complex numbers) corresponding to |s1, s2, . . . , sL⟩, the

basis elements of the Hilbert space (configurations) of the system. The Born rule tells
us that by taking the modulus square of such amplitudes, we obtain the probabilities
for finding the quantum state in such configuration after performing a measurement, i.e.
p(s1, s2, . . . , sL) = |cs1,s2,...,sL

|2. A combinatorial explosion can be seen directly here, as
there are lL amplitudes one must store (either on paper or on a computer) if one wishes
to have a complete description of the system, with l the dimension of the local Hilbert
space (which corresponds to the number of values the local quantum numbers si can take,
assuming they each can take the same). More concretely, to describe a system of just 50
two-level systems, 250 ∼ 1015 complex numbers have to be described, or stored in memory.
This is impossible even with modern day computers.
Regarding an open quantum system, the problem is similar but worse. As will be explained
in this chapter, the state of an open quantum system can be fully described by a density
matrix ρ̂, this time belonging to the bounded operator space B(H) associated to H. ρ̂
can also be expanded over projectors, of which there will be lL:

ρ̂ =
∑

s1,s2,...,sL

s′
1,s

′
2,...,s

′
L

cs
′
1,s

′
2,...,s

′
L

s1,s2,...,sL
|s1, s2, . . . , sL⟩ ⟨s′

1, s
′
2, . . . , sL| . (1.2)

It appears from this expansion that the complete description consists in l2L complex
numbers to be stored. Computationally, this means that a naive approach would enable
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to describe open quantum systems of half the size of the largest closed systems we can
simulate. Conveniently, many approaches exist that are tailored for open quantum systems
to describe the properties of open quantum systems without storing the full density matrix.

II Dynamics of closed systems

II.1 Sudden quenches
As mentioned, the problem of quench dynamics involves solving the time-dependent
Schrödinger equation, starting from a certain state |ψ0⟩. Throughout the manuscript,
we fix ℏ = 1. The Schrödinger equation reads:

d |ψ(t)⟩
dt

= −iĤ |ψ(t)⟩ . (1.3)

If |ψ(t = 0)⟩ = |ψ0⟩ is an eigenstate of Ĥ, then the evolution as trivial: the phase of the
state oscillates with frequency ω0 corresponding to the energy of |ψ0⟩ and the solution is:

|ψ(t)⟩ = exp(−iω0t) |ψ0⟩ . (1.4)

However, if the initial state is not an eigenstate of Ĥ, the time evolution is nontrivial,
and involves oscillations given by the frequencies of all the eigenstates of Ĥ. To see this,
one can expand |ψ(t)⟩ as a superposition over eigenstates of Ĥ, denoted |ϵi⟩:

|ψ(t)⟩ =
∑
i

ci(t) |ϵi⟩ .

where the coefficients ci(t) depend on time. Hence the right hand-side of Eq. (1.3) reads:

−iĤ |ψ(t)⟩ = −i
∑
i

ci(t)ϵi |ϵi⟩ =
∑
i

ċi(t) |ϵi⟩ .

It is clear that if one wishes to integrate this equation and find the coefficients ci(t), one
must know what the eigenvalues ϵi of the Hamiltonian are. Computationally speaking,
this requires to diagonalize Ĥ and obtain its full spectrum, in contrast to many problems
in quantum physics and chemistry that require the ground state of the system and the first
excited states only. Thus in general, if one wants to obtain a high-precision integration of
Eq. (1.3), one requires to be able to describe all the excited states of the system, which
can be of varying complexity. For instance, for local gapped (i.e., outside of the critical
region) one-dimensional systems, the complexity of the ground state is significantly weaker
than that of excited states. This fact will be explained and described in more detail when
discussing tensor network methods, whose limits reside in such considerations.
Note that a quench protocol instantly drives the state away from its previous equilibrium,
thus cannot be treated perturbatively as is routinely done in the context of linear response
theory, in which important results such as the fluctuation-dissipation have been found [31].
Since this protocol involves strong interactions, few general results have been obtained
for it.
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Correlation propagation

A set of results that has been obtained for sudden quench protocols in isolated quantum
systems concerns correlation propagation. In a seminal work by Lieb and Robinson [32],
it was shown that in generic quantum systems with finite-range interactions and a finite
local Hilbert state there exists a speed limit on information propagation. This is known
as the Lieb-Robinson bound, which reads1:

||[Â(t), B̂]|| ≤ c exp{−a[d(X, Y ) − v|t|]} (1.5)

with Â and B̂ two observables with finite supports X and Y (for lattice systems, the sites
associated to the Hilbert spaces on which Â and B̂ act), and a, c, v positive constants.
As can be seen from the expression inside the exponential, v corresponds to the velocity
of correlations2: the commutator between two operators with distinct support will decay
exponentially the further one goes out of the light cone d(X, Y ) − v|t|. From there an
analogy with the light cone from special relativity was drawn, and such a limit was
experimentally verified for various physical systems [14, 33].

An intuitive explanation of this phenomenon was first provided by Calabrese and
Cardy [34]. When suddenly quenching some Hamiltonian parameters, excitations, also
known as quasiparticles, will be created, since the equiblibrium quantum state now con-
sists of a superposition of excitations in the new eigenbasis of the quenched Hamiltonian,
as explained in section II.1. Only quasiparticles in close regions will be initially en-
tangled. From there, quasiparticles spread baillistically in different directions with some
group velocity, hence correlations between distant sites will appear as initially entangled
quasiparticles reach them, as shown in Fig. 1.1. In this picture the Lieb-Robinson velo-
city is simply the maximal group velocity of quasiparticles. Such considerations will be
explored further in Chapter 2, where the entanglement dynamics of dissipative quantum
systems will be investigated, as well as the validity of the quasiparticle picture to explain
such dynamics when coupling to an external environment is taken into account.

II.2 Time-dependent quenches and the Kibble-Zurek mechanism
Another equally interesting protocol consists in performing time-dependent quenches on
critical systems that exhibit continuous phase transitions. In this context, a quantum
state |ψ0⟩ is prepared as the ground state of some time-dependent Hamiltonian Ĥ[λ(t)]
at time t = 0, which depends on some control parameter λ(t). Depending on how the
control parameter is tuned, various scenarios can take place. If the control parameter
is tuned abruptly, we recover the case of sudden quenches. On the other hand, if the
control parameter is tuned more slowly than the inverse of the gap of the system, the
system remains in its ground state, which is known as adiabatic tuning. For physical
systems that do not exhibit phase transitions, the system follows an adiabatic evolution
and remains in the ground state of the Hamiltonian Ĥ[λ(t)] at all times (but may acquire
a phase).

1Note that there exists a whole class of Lieb-Robinson bounds, this is just the most generic.
2Correlation functions appear in the expansion of the norm of the commutator [Â(t), B̂].
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Figure 1.1: Sketch of the quasiparticle picture, in this case for bosons trapped in an optical
lattice, described by the Bose-Hubbard model [14]. By quenching the lattice depth (that
is related to the interaction strength of such models), quasiparticle excitations are created
and propagate in the lattice, which leads to correlation propagation that obeys the Lieb-
Robinson bound. From [19].
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Figure 1.2: Scheme of the Kibble-Zurek mechanism according to the adiabatic-impulse
approximation. At times ±t̂, the relaxation time of the system tR crosses the time scale
of the quench, which defines the limit between the adiabatic region, where the system
essentially stays in the ground state of the system at that time, and the impulse regime,
where nonequilibrium dynamics take place.

As an example, let us again consider the transverse-field Ising model, which will serve
in the rest of the manuscript. The Hamiltonian is given by:

ĤTFI = −J
∑

⟨m,n⟩
σ̂zmσ̂

z
n − g

∑
m

σ̂xm, (1.6)

with a nearest-neighbor coupling strength J and a magnetic field strength g. It exhibits
a second-order quantum phase transition that separates a ferromagnetic (for J > 0) or
antiferromagnetic (J < 0) phase for g < J from a paramagnetic phase for g > J . It
faithfully describes many physical systems constituted of coupled two-level systems im-
mersed in a magnetic field, such as neutral atom systems or magnetic nanomaterials. In
one-dimension, the model is exactly solvable by using a Jordan-Wigner transformation.
However, for higher dimensions, much less is known about the physics of the system. In
2D, the critical point is situated around g/J ≈ 3.044 as given by quantum Monte-Carlo
simulations [35], which are approximate methods.
The Kibble-Zurek mechanism [25, 26] predicts the formation of topological defects quenched
systems undergoing a second-order phase transition as the parameters are linearly swept
across a critical point. This universal behavior stems from the fact that there exists a
time, denoted t̂, at which the characteristic evolution time of the system (the relaxation
time tR, related to the inverse of the energy gap) becomes larger than the characteristic
quench time τq, as schematically shown in Fig. 1.2. Before t̂, the dynamics remains quasi-
adiabatic, as the Hamiltonian parameters are tuned slowly with respect to the time scale
of the system. After this time, in contrast, genuinely non-equilibrium dynamics takes
place as critical slowing down sets in and the system dynamics becomes slower than the
Hamiltonian parameters sweep. Ignoring specific details of this dynamics, one can derive
a scaling law for the density of created defects 3 at the end of the linear quench [26]. This

3with respect to the ground state at the end of the quench. In a 1D classical spin system, this will be
proportional to the number of domains with spins flipped up if all spins point down in the ground state.
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scaling law is derived quite simply. Consider that for second-order phase transitions, the
correlation length ξ and relaxation time τ scale as:

ξ ∼ g−ν , τ ∼ g−zν (1.7)

where we have taken the magnetic field g to be an external control parameter. The
freeze-out time t̂ is a solution of the equation

τ(t̂) = g(t̂)−zν (1.8)

since we suppose these timescales cross at time t̂. With g(t) = g0(1 − t/τq), corresponding
to a linear quench:

t̂ = (1/τq)−zν/(zν+1) (1.9)
ξ̂ = (1/τq)−ν/(zν+1) (1.10)

with ξ̂ the correlation length of the domains induced by the nonequilibrium dynamics.
The final defect density is inversely related to the this average correlation length:

⟨n̂d(τq)⟩ ∼ ξ̂−d, (1.11)

and the final scaling law therefore reads

⟨n̂d(τq)⟩ ∼ τ−dν/(zν+1)
q . (1.12)

The scaling law for the density of defects has a physical explanation in terms of the
change in the different timescales during the quench. This is shown in Fig. 1.2. Far
away from the critical point, the gap of the system is large, therefore the characteristic
timescale of the system (related to the inverse of the energy gap) remains small; almost any
parameter tuning will be adiabatic (corresponding to the far left and right of the figure).
As one approaches the critical point, precisely at the freeze-out time −t̂, tR = ϵ(t): the
characteristic time scales of the quench and of the system cross. From there, the evolution
stops being adiabatic, entering the impulse regime. Correlations can therefore develop
within domains of a limited size, related to the freeze-out time, which is time the system
stays in this regime. Then, at +t̂, the evolution resumes into the adiabatic regime, and
domains remain frozen.

II.3 Numerical methods
As we have seen in the previous sections, numerical simulations can be an important
tool to study the dynamics of nonequilibrium quantum systems, both in sudden and
time-dependent quench protocols. In this section we will present a few of the important
methods used to study such protocols.
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Mean-field approaches

A class of methods that enables one to treat large quantum systems in arbitrary dimen-
sions is mean-field methods, also known as Gutzwiller ansätze [36]. These methods have
previously mostly been used for electronic systems [37–39] and variants of it have been
used for the study of bosonic gases [40]. The key idea is to write the wavefunction as a
product of local wavefunctions:

|ψ⟩ =
⊗
i

|ϕi⟩ . (1.13)

As such, this enables one to separate the Schrödinger equation into L local equations.
One can also view this as a drastic reduction of the number of free parameters required to
describe the many-body wavefunction. Indeed, the single-site wavefunctions are described
by l parameters, with l the local Hilbert space dimension. They are subject to the
orthogonality condition ⟨ϕi|ϕj⟩ = δij, with δij denoting the Kronecker delta. In the
case of spin systems, this results in |ϕi⟩ having only two coefficients corresponding to
the probability amplitudes of the spin being up or down. This results in lL complex
parameters for an L−body system of local Hilbert space dimension l, which is a drastic
improvement upon the lL coefficients needed for the exact wavefunction. The coefficients
of the many-body wavefunction are given by:

cs1,s2,...,sL
= ΠsL

si=s1asi
(1.14)

with asi
being vectors of dimension l. However, this approach will only work for weakly

correlated quantum systems, since non-separable states cannot be described by such ap-
proaches.

An extension of this idea exists as cluster mean-field approaches [41]. The key idea is
to consider more than one site per factorized wave function. The state is written as:

|ψ⟩ =
Nc⊗
i

|ϕi⟩ . (1.15)

with Nc the number of clusters. The size of a cluster is given by L/Nc. This ansatz is able
to capture states with an entanglement between sites belonging to the same cluster, thus
having strictly more capacity to represent entanglement than the ansatz in Eq. (1.13).

Tensor networks and matrix product states

Beyond mean-field ansätze, powerful methods that have proved very effective in the study
of one-dimensional systems are based on tensor networks [10]. The key idea behind such
methods is to approximate the coefficients of the many-body wave function defined in
Eq. (1.1) as a product of tensors:

cs1,s2,...,sL
=

∑
i1,i2,...,iL

Ai1,i2s1 Ai2,i3s2 . . . AiL,i1sL
. (1.16)

This is known as the matrix product state (MPS) ansatz. The tensors Ai,jσi
are of rank

3, with one dimension corresponding to the physical degrees of freedom σi, and two
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dimensions given by M2 coefficients that can introduce correlations between sites. The
number of parameters contained in an MPS ansatz is therefore lM2, which is no longer
exponential in the system size.
To see how the MPS ansatz is constructed, let us define the Schmidt decomposition
of a quantum state |ψ⟩ belonging to a composite Hilbert space H = HA ⊗ HB with
dim(HA) = m, dim(HB) = n,m ≤ n. There exists vectors {|u1⟩ , . . . |um⟩} ∈ HA and
{|v1⟩ , . . . |vn⟩} ∈ HB which are pairwise orthogonal ⟨ui|uj⟩ = δij and ⟨vi|vj⟩ = δij and
a real numbers Λ1 ≥ Λ2 ≥ . . .Λm ≥ 0 such that |ψ⟩ can be written as a Schmidt
decomposition:

|ψ⟩ =
m∑
i=1

Λi |ui⟩ ⊗ |vi⟩ (1.17)

with Λi the Schmidt coefficients, and m the Schmidt rank of the state. Note that for a
separable state we have m = 1. Defining the reduced density matrix ρ̂A = trB|ψ⟩⟨ψ|, it
can be shown that the Schmidt coefficients are related to the entanglement entropy

SA = −tr{ρ̂A log ρ̂A} = −
m∑
i=1

|Λi|2 log |Λi|2. (1.18)

For a one-dimensional system of L sites with a local Hilbert space dimension l, the coef-
ficients cs1,s2,...,sL

can be expressed as a function of the Schmidt coefficients, by successive
Schmidt decompositions:

cs1,s2,...,sL
=

l∑
α1=1

l2∑
α2=1

· · ·
min(ln,lL−n)∑

αn=1
· · ·

l∑
αL=1

= Γ[1]s1
1,α1 Λ[1]

α1Γ[2]s2
α1,α2Λ[2]

α2 · · · Λ[L−1]
αL−1

Γ[L]sL
αL,1 . (1.19)

The Γ[i] matrices correspond to a basis transformation between the full basis and the
Schmidt basis, and the Λ[i] vectors correspond to the Schmidt coefficients after tracing
out the (L− i)th site. This encoding seems particularly inefficient, as the Γ[L/2] contains
by itself lL elements. However, the beauty and central point of MPS ansätze is that the
entanglement entropy of local, gapped many-body systems is limited. This is known as
the entanglement area law [42]. Formally, for such systems,

SA(L) ∼ ∂L ∼
1D

constant (1.20)

with A(L) a subsystem of size L, and ∂L the size of the boundary region between L
and the rest of the system. This means that the number m of Schmidt coefficients Λi is
limited, and they in fact decay exponentially [10]. This enables one to safely truncate the
size of the matrices in the previous equation to a certain bond dimension D. This leads
to the construction presented in Eq.(1.16), with a number of parameters scaling as lLD2.
These methods are powerful, as they enable to describe states with correlations beyond
that of the mean-field ansatz while keeping the number of parameters polynomial in the
system size. However, for more complex geometries, and in particular in 2D, constructing
such an ansatz presents various problems, and in addition, even if the entanglement of a
2D system follows an area law, the area ∂L in 2D is not constant anymore, which means
the bond dimension D will scale less favorably than in 1D.



14 Chapter 1. Nonequilibrium quantum systems

II.4 Experimental systems

Sudden quenches

One of the main reasons to study the nonequilibrium dynamics of quantum systems is the
recent progress of experimental platforms that enable researchers to perform controlled
experiments, thus being able to directly test predictions. These platforms are known
as quantum simulators [43], and consist in implementing a Hamiltonian with a physical
analogue to that Hamiltonian. These allow one to tailor a specific Hamiltonian and the
degree of control is such that quenches can be performed, particles can be added, and
many different operations can be performed to study effects presented in the previous
section. This is reminiscent of Feynman’s vision of simulating quantum mechanics by
using an analogous quantum mechanical system [44].
As an example, let us consider the quantum simulation of a spin Hamiltonian, as presented
in ref. [15]. An important platform that has been perfected in the last decades has been
optical lattices, where atoms can be trapped by optical tweezers and one can use the strong
nonlinearity of the energy spectrum of atoms to effectively realize two-level systems. The
atoms are often put in highly excited states, such as Rydberg states [45] that correspond to
a high principal quantum number n. This enables a larger degree of control and coupling
to electromagnetic fields. Such a platform can be faithfully described by the following
Hamiltonian, where the two eigenstates of the σ̂z operator correspond to the ground |g⟩
and excited states |e⟩ of the Rydberg atoms:

Ĥ = −
∑
i

Ωσ̂xi −
∑
i

(Ii − ∆)σ̂zi −
∑
i ̸=j

Vij
2 σ̂zi σ̂

z
j (1.21)

where Vij = C6/|ri − rj|6 is an atomic potential (C6 is a constant given by experimental
details), Ω is the Rabi frequency of an applied transverse-field that drives transitions
between |e⟩ and |g⟩, and (Ii − ∆) determines the frequency of the longitudinal field.
∆ is the laser detuning, and Ii = ∑

j,i̸=j Vij/2 represents a site-independent detuning.
Here Vij is taken to be positive, corresponding to attractive interactions, and in the
absence of transverse and longitudinal fields the ground state of this Hamiltonian is an
antiferromagnet4. Note that by taking a homogeneous spacing between atoms, one can
take Vij to be constant, and simply consider Vij ≈ J . Therefore, one obtains a slightly
modified antiferromagnetic Ising Hamiltonian, and quench dynamics can be induced by
suddenly tuning the transverse and longitudinal field.
In Fig. 1.4, results of the correlation functions C(i, r) = 4

(
⟨σ̂zi σ̂zi+r⟩ − ⟨σ̂zi ⟩⟨σ̂zi+r⟩

)
are

shown for a quench from a paramagnetic phase, with ∆ ≫ J ≫ Ω, to an antiferromagnetic
phase with J ≫ ∆,Ω. In the figure, C(i, i) is related to the local magnetization as
C(i, i) = 1 − 4⟨σ̂zi ⟩2. One can clearly see an inversion of the sign of C(0, 1) and C(1, 0) as
a function of the detuning, transitioning from ferromagnetic (∆ < 0) to antiferromagnetic
(∆ > 0) correlations. Note that for the upper panels, corresponding to sudden quenches,
the correlations will remain short-ranged, thus the results could be compared to data from
exact diagionalization for a 4 × 4 lattice, which are a good fit to the experiment. Another

4We have added a minus sign to the Hamiltonian in ref. [15] for the sake of simplicity.
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Figure 1.3: (a): Phase diagram of the model described by the Hamiltonian in Eq.(1.21).
One is mostly interested in the antiferromagnetic region (AFM), whose eigenstates can be
probed by suddenly quenching the detuning from deep in the paramagnetic phase, with
∆ ≪ J . (b) Scheme of the experimental setup: a 2D array of atoms trapped in an optical
lattice whose states |e⟩ (large red spheres) |g⟩ (small blue spheres) can be coupled with an
infrared laser. The top part of the scheme represents the high-resolution objective that
can resolve individual sites, enabling precise analyses of experimental data. (c): Typical
protocol. The system is prepared in a trivial phase, with a small number of defects (left),
and is then quenched into an excited configuration (center). Then, increasing the lattice
depth causes the atoms in the excited state to be lost (right), hence only the atoms in
the ground states remain to simplify detection. Reproduced from [15].
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Figure 1.4: Correlation functions after a sudden quench in the two-dimensional antiferro-
magnetic Ising model as a function of the detuning ∆, for different values of the quench
time T . Dashed lines correspond to linked-cluster calculations, while solid lines corres-
pond to exact diagonalization data. Upper panels (a), (b), (c) and (d) correspond to time
ΩT = 0.5π, which is fast enough to be considered a sudden quench, while lower panels
(e, (f), (g) and (h) correspond to ΩT = 2.97π, where long-range correlations develop.
Reproduced from [15].

group has performed a similar study the same year [46], and more results on more complex
models, for which the phase diagram is unknown, are expected in the coming years.

Time-dependent quenches

Time-dependent quenches can also be implemented in quantum simulators, and in recent
years many works have investigated this, using Rydberg atoms [16], in a setup close to
what was presented previously, trapped ions [47], Bose-Einstein condensates [48], and even
digital quantum simulators such as IBM’s machines [49]. To implement a time-dependent
quench on Rydberg atom platforms, the transverse and longitudinal fields have to be
tuned linearly in time.

Here we will focus on the implementation of a linear quench to examine the validity
of the Kibble-Zurek mechanism on Rybderg simulator, close to what was presented pre-
viously. In Fig. 1.5, experimental results are shown for a linear quench performed on a
system that undergoes an Ising-like quantum phase transition, breaking Z2 symmetry.
In the two-level basis spanned by the ground state |g⟩ and the excited state |e⟩, the
Hamiltonian describing the system is given by:

Ĥ = Ω
2
∑
i

σ̂xi − ∆
∑
i

P̂
|g⟩
i + Vij

∑
⟨i,j⟩

P̂
|g⟩
i P̂

|g⟩
j (1.22)

where Ω is the Rabi coupling frequency between states |g⟩ and |e⟩, ∆ is the laser detuning,
Vij is the interaction strength and P̂ |g⟩

i = 1
2(1̂i+σ̂zi ) is the projector onto state |g⟩ on site i.
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Figure 1.5: Experimental results for a time-dependent linear quench on a Rydberg
quantum simulator. (a): Single-shot images of the system before the quench (top row),
after a fast quench (medium row) and after a slow quench (bottom row). The correl-
ated domains are larger in the bottom row, as more time is spent in the impulse region
hence domains have more time to develop. A higher density of defects is observed for fast
quenches. (b) Correlation length as a function of the final detuning. The grey dashed
line indicates the critical detuning: if the quench is stopped before this, the correlation
length remains small, as the dynamics remain quasi-adiabatic. (c) Scaling of the correl-
ation length as a function of the sweep rate, which is the inverse of the quench time τq,
compared with results from an MPS numerical integration. Reproduced from [16].
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The system is initialized in a homogeneous state with all atoms in the |g⟩ state, and after
the quench, some domains with atoms all in state |e⟩ appear, whose density is predicted
by the Kibble-Zurek mechanism. As such, the critical detuning can be estimated, and
the Kibble-Zurek mechanism can be verified. In the same work [16], authors investigate
other phases, as their machine is programmable, and other critical phases of the system
can be investigated. Once again, it is really the degree of control of such platforms that
make them ideal to study quench dynamics.

III Open quantum systems

III.1 General setting
Many other interesting cases of nonequilibrium quantum phenomena can be found within
the framework of open quantum systems. To describe this class of systems, let us consider
a quantum system S, described by a density matrix ρ̂. After performing a few experiments,
one can quickly notice that S interacts with its environment E: for example, if S describes
a photonic system, photons can leak out in the environment. A straightforward way to
understand how the leakage of photons takes place would be to describe the composite
system S + E, made of the system S and the environment E. The composite system
is described by a Hamiltonian ĤS+E that describes the degrees of freedom of both the
system and the environment. It can be written in a general form

ĤS+E = Ĥ
(
{Ŝk}

)
+ ĤE

(
{Γ̂k}

)
, (1.23)

with Ĥ the system Hamiltonian, ĤE the environment Hamiltonian, {Ŝk} the set of system
operators and {Γ̂k} the set of environment (or bath) operators. It is clear that the many-
body problem appears once again, only worse, as realistic environments can be comprised
of many bosonic and fermionic degrees of freedom that describe the electromagnetic field
and the molecules composing the air and the experimental apparatus. Neglecting these
last contributions and supposing that the system interacts with only a few bosonic modes
is still not enough for us to compute the dynamics of most composite systems, its Hilbert
space still being too large.
A way around this is to search for an effective description of ρ̂S and obtain a time-evolution
equation for it. Note that if the reduced system interacts with its environment, the wave
function of the composite system will become entangled (non-separable):

|Ψ⟩SE ̸= |ψ⟩S ⊗ |χ⟩E . (1.24)

This means that if one wants to obtain a description of S, by performing a partial trace
on |Ψ⟩SE one will obtain a density matrix ρ̂S, and cannot use the Schrödinger equation
anymore. Hence one needs to change the formalism, and see how a time-evolution equation
can be obtained for the density matrix when taking into account the interaction between
system and environment. Let us first properly define the objects we will need to use to
obtain an effective dynamical equation on the system.
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III.2 Density matrices
A density matrix ρ̂ is an operator in the bounded operator space B(H) associated to a
Hilbert space H and should satisfy the following properties to describe a physical sys-
tem [17]:

1. Trace one: Trρ̂ = 1,

2. Positive-semidefinite: pi ≥ 0, with pi its eigenvalues,

3. Hermiticity: ρ̂† = ρ̂.

It also admits infinitely many decompositions of the form

ρ̂ =
∑
i

pi |ϕi⟩ ⟨ϕi| , (1.25)

with pi its eigenvalues and |ϕi⟩ the corresponding eigenstates. The physical interpretation
for such a decomposition is that the density matrix represents a collection of states that
each have a probability pi. According to this view, the density matrix tells us which states
will be measured with which frequency if we perform a large number of experiments. One
can also stay agnostic about the physical interpretation of this picture and consider that
a density matrix describes a reduced quantum state, with uncertainty coming from its
entropy that stems from entanglement with the environment.

III.3 Quantum operations
Let us now see how the a density matrix can change, meaning how it evolves under
quantum operations. A quantum operation is a completely-positive, trace-preserving
(CPTP) map, that one applies to a density matrix. The Kraus theorem [50] states that
this map can be decomposed as the application of N2 so-called Kraus operators:

χ̂ = K[ρ̂] =
∑
i

K̂iρ̂K̂
†
i (1.26)

with χ̂ the transformed density matrix. A quantum operation corresponds physically to
any transformation that has happened to the physical system, such as time evolution, a
measurement or a certain experimental protocol. The Kraus operators must satisfy the
condition ∑i K̂

†
i K̂i = 1 for Eq. (1.26) to be valid. K must also be linear

K[αρ̂1 + βρ̂2] = αK[ρ̂1] + βK[ρ̂2] (1.27)

and conserve the Hermiticity of ρ̂. All these conditions ensure that the transformed
quantum state χ̂ conserves the properties of ρ̂. K is a superoperator, meaning that it can
be compactly represented by a N2 ×N2 matrix acting on operators, much like operators
act on vectors. One can already see the inherent complexity to numericaly study open
quantum systems, as objects of size N2 ×N2 must be manipulated.
As an example of a quantum operation, let us consider a single qubit, whose levels are
written |↑⟩ and |↓⟩. We assume that the state |↑⟩ has been prepared, and encodes some
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kind of information. The simplest model to describe energy relaxation is through the
amplitude damping channel Np, that is a quantum operation with Kraus operators given
by:

K0 =
(

1 0
0

√
1 − p

)
, K1 =

(
0 √

p
0 0

)
. (1.28)

The strength of the channel is given by p. Applying this channel on the state |↑⟩, we
have:

Np[|↑⟩⟨↑|] =
(
p 0
0 1 − p

)
= p |↓⟩⟨↓| + (1 − p) |↑⟩⟨↑| (1.29)

which is a statistical mixture of states |↓⟩ and |↑⟩ with probabilities p and 1 − p, respect-
ively. Through this simple example, we also see how entropy has been created through the
process, since we go from a pure state to a mixed state. We have kept things very simple
here, with only a single qubit, therefore no coupling between qubits, and have supposed
no Hamiltonian inducing some time-evolution. In the general case, these ingredients come
into play and the dynamics is much more complex.

III.4 The Lindblad master equation
Having described what a general quantum operation looks like, recall that we are inter-
ested in obtaining an equation for the time evolution of the quantum system represented
by ρ̂. Specifically, we are interested in finding a general form for the map M defined by

ρ̂(t+ δt) = Mρ̂(t) (1.30)

for vanishing δt. By expanding up to second-order, one obtains:

ρ̂(t+ δt) =
∑
i

M̂i(t)ρ̂(t)M̂i(t) = ρ̂(t) + δt∂tρ̂(t) +O(δt2) (1.31)

By assuming that the environment of the system is much larger than the system itself,
one can consider time-independent Kraus operators M̂i. Indeed, in this case, the envir-
onment itself acts as a bath and remains at equilibrium at all times, hence the action
of the environment on the system is the same at all times. This is known as the Born
approximation.
Now, some care must be taken with respect to the time increment δt, by considering
the physical timescales at hand. δt must be small with respect to the system timescale
∆tS (that can be taken to be the smallest characteristic evolution time) for the limit
to make sense. However, δt must be much larger than ∆tE, the environment timescale,
so that no coherent effects remain in the system-environment interaction. This happens
when the spectrum of the environment is flat, and the environment operators are then
delta-correlated:

⟨Γ̂k(t)Γ̂k(t′)⟩ = δ(t− t′). (1.32)

This is known as the Markov approximation. We can now take the appropriate limit
δt → 0, and obtain a general form for the Kraus operators M̂i. We take one of them to
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be of the order of unity, and others of the order of
√
δt in order to obtain a second-order

update on the density matrix: M̂0 = 1− iδtK̂

M̂i>0 =
√
δtĴi.

(1.33)

One can split the operator K̂ into a Hermitian part and an anti-Hermitian part, given
respectively by Î = (K̂ + K̂†)/2 and Ĝ = i(K̂ − K̂)/2, with K̂ = Î − iĜ. One has

M̂ †
0 ρ̂(t)M̂0 = ρ̂(t) − iδt[Î , ρ̂(t)] − δt{Ĝ, ρ̂(t)} +O(δt2). (1.34)

Using the normalization condition on the Kraus operators, we have:

1 =
∑
i

M̂ †
i M̂i = M̂ †

0M̂0 + δt
∑
i>0

Ĵ†
i Ĵi +O(δt2) = 1− 2δtĜ+ δt

∑
i>0

Ĵ†
i Ĵi +O(δt2). (1.35)

By rearranging terms, we obtain Ĝ = ∑
i>0 Ĵ

†
i Ĵi/2. The dynamics of the density matrix

ρ̂(t) is therefore given by an equation of the form

ρ̂(t+ δt) = ρ̂(t) − iδt[Î , ρ̂(t)] + δt
∑
i>0

(
Ĵiρ̂(t)Ĵ†

i − 1
2{Ĵ†

i Ĵi, ρ̂(t)}
)

+O(δt2). (1.36)

Recall that the evolution of a closed quantum system is given by the von Neumann
equation:

ρ̂(t+ δt) = ρ̂(t) − iδt
[
Ĥ, ρ̂

]
+O(δt2) (1.37)

we identify the Hamiltonian in Eq. (1.36), and we finally obtain the Lindblad master
equation:

∂tρ̂ = −i
[
Ĥ, ρ̂

]
+ 1

2
∑
i>0

(
2Ĵiρ̂Ĵ†

i −
{
Ĵ†
i Ĵi, ρ̂

})
(1.38)

where we have dropped the time dependence for readability. By comparing the von
Neumann equation and the Lindblad master equation, one can see that the operators
Ĵi must vanish when the evolution is that of a closed system: therefore we see that
they must describe an effect of the environment. The Lindblad master equation can be
derived in many other ways more formal ways [17, 51]. Let us see how the operators
Ĵi can be physically interpreted as jump operators, that induce a collapse of the system
wavefunction due to a continuous weak measurement process.

III.5 The stochastic Schrodinger equation and quantum trajectories
Another way to derive the Lindblad master equation is by considering a physical system
under continuous measurement. By doing this, we obtain what is known as an unraveling
of the master equation in terms of a stochastic process. The picture here is that of a
physical system that stochastically undergoes jumps from one state to another, with
a collapse of the wavefunction occuring at random times. For example, consider an
atomic system at room temperature. At each instant, there is a nonzero probability
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that excitations are lost to the thermal environment. This can be seen as a stochastic
process with two outcomes: either the excitation is lost or it is not.

In the general case, this picture is well described by the generalized measurement
picture: the quantum state after a generalized measurement is given by:

ρ̂(t) → ρ̂(t+ δt) =
nµ∑
µ

M̂µρ̂(t)M̂ †
µ

pµ(t) , (1.39)

with M̂µ the measurement operators. That is, by performing a measurement of the system
described by ρ̂(t), the state has collapsed to a certain state, but we are uncertain about
which state it is, of which there are nµ possible outcomes. pµ(t) = ⟨M̂ †

µM̂µ⟩(t) is therefore
the probability of measuring the µth outcome if a projective measurement is carried out.
Let us consider the following choice of measurement operatorsM̂0 = 1̂− (iĤ + Ĵ†Ĵ/2)δt,

M̂1 = Ĵ
√
δt,

(1.40)

where we have supposed that there is only one jump operator Ĵ . This closely corresponds
to what was given in Eq. (1.33): the density matrix gets updated in time as under the
action of the Lindblad master equation. The dynamics of an open system can thus be
interpreted as the result of a continuous weak measurement of the jump operator Ĵ by the
environment. The time at which a jump happens is non-deterministic in this view. and
its probability is given by p1 = ⟨M̂ †

1M̂1⟩(t) = ⟨Ĵ†Ĵ⟩(t)δt. We refer to a specific realisation
of the stochastic process as a quantum trajectory. In this picture, the density matrix is
interpreted statistically, and represents our ignorance of the particular realisation of the
outcome record r(t).
When M̂1 is measured (r(t) = 1), the state vector becomes

|ψ1(t+ δt)⟩ = M̂1 |ψ(t)⟩√
p1(t)

= Ĵ√
⟨Ĵ†Ĵ⟩(t)

|ψ(t)⟩ . (1.41)

This corresponds to the collapse of the wave function upon the environment having suc-
cessfully measured the outcome of L̂. If instead M̂0 is measured (r(t) = 0), corresponding
to no jump having occured with associated probability p0 = 1 − p1, the system’s state
vector becomes

|ψ0(t+ δt)⟩ = M̂0 |ψ(t)⟩
√
p0

=
{
1̂− dt

[
iĤ − 1

2 Ĵ
†Ĵ + 1

2⟨Ĵ†Ĵ⟩(t)
]}

|ψ(t)⟩ . (1.42)

Interestingly, in this picture, the coupling of the system to its environment, even in the
event of no jump, influences the time-evolution of the system. By combining Eqs. (1.41)
and 1.42, and considering infinitesimal time intervals dt and outcome records dr(t)5, the
evolution of the wave function is given by the following stochastic differential equation [52]:

d |ψ(t)⟩ = (1 − dr(t)) |ψ0(t+ dt)⟩ + dr(t) |ψ1(t+ dt)⟩ − |ψ(t)⟩

= dt
(⟨Ĵ†Ĵ⟩(t) − Ĵ†Ĵ

2 − iĤ
)

|ψ(t)⟩ + dr(t)
(
Ĵ/
√

⟨Ĵ†Ĵ⟩(t) − 1
)

|ψ(t)⟩ (1.43)

5dr(t) is an infinitesimal stochastic variable, also known as a Wiener process.
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which is known as the stochastic Schrödinger equation. This leads to the following pic-
ture: the wavefunction evolves in time according to a non-Hermitian Hamiltonian, with
sudden quantum jumps occuring at random times. Particular realisations of this process
correspond to conditional single trajectories {|ψ(i)⟩}i. It can be shown that one recovers
the density matrix ρ̂(t) at a given time by averaging over infinitely many trajectories

ρ̂(t) = lim
Ntraj→+∞

1
Ntraj

Ntraj∑
i=1

|ψ(i)(t)⟩⟨ψ(i)(t)| . (1.44)

thus the map given in Eq. (1.43) is equivalent to that of the Lindblad master equation,
Eq.(1.38). It follows that any observable can be obtained analogously:

Tr[ρ̂(t)Ô] = lim
Ntraj→+∞

1
Ntraj

Ntraj∑
i=1

⟨ψ(i)(t)|Ô|ψ(i)(t)⟩ . (1.45)

In the numerical methods section, we will see how this translates to a straightforward
numerical method to reduce the complexity of integrating the Lindblad master equation
in time.

III.6 Numerical methods
Now that the main theoretical framework to treat open quantum systems has been presen-
ted, let us examine in more detail some of the numerical methods that have been developed
over the years to study such systems. There are two main objects of study with open
quantum systems: (i) finding the steady-state and/or the Liouvillian gap, which is the
distance between the two smallest eigenvalues of the Liouvillian, important in the study
of dissipative phase transitions, and (ii): simulating the time-evolution to investigate
transient regimes. This section and most results in this manuscript mostly focus on (ii).

Monte-Carlo wave function (MCWF)

A widely used numerical method that naturally appears from the stochastic Schrödinger
equation is the Monte-Carlo wave function (MCWF) method [53]. This method consists
in evolving a quantum state according to a non-Hermitian Hamiltonian, and applying
quantum jumps by randomly choosing from the set of jump operators Ĵi describing the
system-environment interaction, according to some probability. The algorithm to simulate
the dynamics of an open quantum system can be decomposed in the following steps:

1. Draw a random number a uniformly between 0 and 1.

2. Time-evolve the wavefunction |ψ(t)⟩ according to the non-Hermitian Hamiltonian
H̃ until time t′, defined by ⟨ψ(t′)|ψ(t′)⟩ = a.

3. Compute the jump probabilities pi associated to each jump operator Ĵi, given by

pi = ⟨ψ(t′)|Ĵ†
i Ĵi|ψ(t′)⟩ = ⟨Ĵ†

i Ĵi⟩(t′) (1.46)
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4. Select the ith jump operator with probability pi and apply it to |ψ⟩ (t′) along with
renormalizing it as: ∣∣∣ψ̃(t′)

〉
= Ĵi√

⟨Ĵ†
i Ĵi⟩(t′)

|ψ(t′)⟩ . (1.47)

5. Repeat until the desired time is reached by restarting step 1 with the state
∣∣∣ψ̃(t′)

〉
.

This algorithm has many variants, but this is computationally the most efficient [54] with
respect to other implementations. By repeating this Ntraj times, one obtains dynamics
that are closer to the exact solution. However, how many trajectories are needed in
practice highly depends on the problem, and no general procedure exists to determine
Ntraj [55]. The complexity of this method is given by O(Ntrajl

L), an exponential advantage
with respect to a full integration of the Lindblad master equation. This is particularly
useful for highly dissipative systems and when the number of dissipative channels is high,
as we will see in more detail in chapter 3.

Mean-field and cluster approaches

The ideas presented in section II.3 for mean-field ansätze can be naturally extended to
open quantum systems. Rather than taking the wavefunction to be a product of local
wavefunction, we take the density matrix to be a product of local density matrices:

ρ̂ =
Nc⊗
i=1

ρ̂i, (1.48)

with Nc (Nc = L in the Gutzwiller mean-field approach) the number of clusters and ρ̂i ∈
B(Hi). As for closed systems, this approach limits quantum correlations to be inside the
cluster, meaning it will work best for weakly and/or locally interacting systems. This has
the same value as for closed systems, reducing the number of free parameters required to
describe the system density matrix ρ̂ from lL to Ncl

Nc/N , with Nc/N the size of the cluster.
This leads to Nc/N equations to solve to integrate the master equation in time, leading to
a more tractable solution. This approach has been quite successful in capturing a certain
number of features of dissipative phase transitions [56] and nonequilibrium properties of
strongly-correlated open quantum systems [57].

Matrix Product Operators

Tensor networks can also be applied to open quantum systems. The problem amounts
to finding an expression for the many-body density matrix coefficients in terms of local
tensors, much like Eq. (1.16). An additional issue when dealing with density matrices is
that positivity must be enforced, without ever constructing the full density matrix6. A
simple ansatz can be constructed by using the Choi isomorphism [58] that associates a
density matrix to a pure state in an enlarged Hilbert space of dimension l2L. The then

6Naively, enforcing positivity can be done by diagonalizing the full matrix, but the method then stops
to be computationally efficient.
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vectorised density matrix can be described like an MPS in this Hilbert space, and the
density matrix coefficients defined in Eq.(1.2) can be written as a tensor product:

cs
′
1,s

′
2,...,s

′
L

s1,s2,...,sL
= Ai1,i2s1,s′

1
Ai2,i3s2,s′

2
· · ·AiN ,i1sL,s

′
L

(1.49)

which is equivalent to the MPS ansatz with an additional dimension for each tensor
that corresponds to the set of spin indices {si}. This is known as the matrix product
operator (MPO) ansatz. While it has proved effective and yielded interesting results for
1D systems, one of the main issues of such a construction is that the positivity of the
density matrix is not ensured when performing time evolution of the ansatz. Note that
this problem has been proved to be computationally hard [59], hence no approach can be
a perfect solution7.

A partial solution to this issue is to built what is known as locally-purified density
operators (LPDO) [60]. This is done by constructing a locally enlarged Hilbert space, built
as H ⊗ A = H1 ⊗ A1 ⊗ H2 ⊗ A2 ⊗ . . .HL ⊗ AL with A the ancilla space. A wavefunction
is then written as an MPS in this basis, whose coefficients are given by:

⟨s1, a1s2, a2, . . . , sL, aL|ψ⟩ = cs1,a1s2,a2,...,sL,aL
= Ai1,i2s1,a1A

i2,i3
s2,a2 · · ·AiN ,i1sL,aL

. (1.50)

The density matrix coefficients are then obtained by tracing out the ancilla sites on |ψ⟩⟨ψ|:

cs
′
1,s

′
2,...,s

′
L

s1,s2,...,sL
= Bi1,i2

s′
1,s

′
1
Bi2,i3
s′

2,s
′
2
· · ·BiN ,i1

s′
L,s

′
L
. (1.51)

Note that this expression is not equivalent to the MPO ansatz, as the B tensors are ob-
tained by doing a partial trace on the wave function |ψ⟩, and the MPO simply corresponds
to a vectorized density matrix. The LPDO ansatz ensures the positivity of the density
matrix, as it is obtained by a partial trace on a quantum state. However, some works
have shown that the required bond dimension to obtain a similar precision is higher with
LPDOs than MPOs [61, 62]. This hints to a lower capacity of LPDO to represent highly
entangled states. Finally, we note that most works employ the MPO ansatz without wor-
rying about the positivity of the resulting density matrix while obtaining highly accurate
results [63, 64].

Corner-space renormalization

A method that is of particular interest for strongly-correlated systems is the corner-space
renormalization method [65]. This method is rather different from mean-field or MPO
methods, as it is constructed from the idea that there exists a class of physical systems,
low-entropy quantum systems, for which the density matrix is accurately described by
only a restricted set of M states. Mathematically, this is written as

ρ̂ =
N∑
k

pk |ϕk⟩⟨ϕk| =
M∑
k

pk |ϕk⟩⟨ϕk| +O(ϵM) (1.52)

with ϵM = 1 − ∑M
k pk ≪ 1. This means that one can truncate the eigenvalues to keep

only M states, and the truncated density matrix will still faithfully describe the physical
system at hand.

7unless P=NP.
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Figure 1.6: Sketch of the corner-space renormalization method. Taken from [65].

The corner-space renormalization method aims to solve the steady-state ρ̂ ∈ H of
an open quantum system, described by Eq.(1.38). The basic idea behind this method
is shown in Fig.1.6. It can be decomposed in three steps, as pictured by the three light
rectangles forming the figure:

1. Take two-subsystems A and B whose steady-state can be found exactly, and ob-
tain the steady-state by brute-force integration. Diagonalize the two corresponding
steady-states ρ̂(A), ρ̂(B) to obtain the form given in Eq.(1.52).

2. Merge the two sub-systems into a larger system A ∪ B. Construct a basis C(M),
spanned by product states of the form

∣∣∣ϕ(A)
r

〉 ∣∣∣ϕ(B)
r′

〉
, and retain only the M most

probable ones by keeping only the largest joint probabilities p(A)
r p

(B)
r′ . Solve the

Lindblad master equation in this subspace of dimension M .

3. Repeat until the size of the full system is reached.

Note that this method allows for the states in the solution to be entangled between sub-
systems A and B: product states are constructed as the basis for the solution of the
steady-state, hence this steady-state can comprise any superpositions of these product
states. In this sense, this method is more powerful than mean-field or tensor network
methods. Its limitation mainly resides in the cut-off of the M states, which will be
limiting for high-temperature states with a large entropy. Note that the complexity of
the algorithm for this method resides in the diagonalization of the density matrix at the
end of the first step. This complexity of this step is O(max[M3, l3NA,B ]), since the first
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step is done with exact diagonalization of subsystems A,B with Hilbert space dimension
lNA,B , and subsequent steps concern density matrices of size M ×M .

A method to simulate the dynamics of open quantum systems, based on the same prin-
ciple that only M states may suffice to describe low-entropy systems, will be introduced
in chapter 3.

III.7 Experimental systems
As mentioned, any quantum system that couples to an external environment, provided
the Born-Markov approximation is satisfied, can be depicted as an open quantum system.

Superconducting circuits

A class of experimental setups that can be described as open systems are superconducting
circuits. These circuits have proved immensely useful for the development of quantum
information in the past two decades [66], as well as for exploring many-body physics [67].
One of the building blocks of such systems are electromagnetic LC resonators, composed of
a capacitor C and an inductor L. One can describe a linear resonator with the Hamiltonian

Ĥ = 1
2C Q̂

2 + 1
2Lϕ̂

2 (1.53)

where Q̂ is the quantized charge of the capacitor, and ϕ̂ is the quantized magnetic flux
flowing through the inductor. These operators are described by the same commutation
rules as for position and momentum, i.e. [Q̂, ϕ̂] = −i, hence the Hamiltonian can be
diagonalized in exactly the same way as for a harmonic oscillator, by introducing the
bosonic annihilation (and creation) operator, defined as:

â = 1√
ω

 ϕ̂√
2L

− i
Q̂√
2C

 (1.54)

and the Hamiltonian is written as

Ĥ = ω
(
â†â+ 1

2

)
. (1.55)

Such a Hamiltonian has a linear spectrum of n levels corresponding to n bosonic excita-
tions, and its energy levels are given by

En = ω
(
n+ 1

2

)
, (1.56)

with ω the frequency of the resonator.
What one really wants to investigate issues related to nonequilbrium dynamics is nonlin-
ear terms in the Hamiltonian, so that the states involved in the dynamics are strongly
correlated. The key ingredient to creating a nonlinear superconducting circuit is the
Josephson junction [68], that adds nonlinearities to resonators. These are hybrid struc-
tures, composed of two superconductors separated by an insulating barrier, that behave
as nonlinear inductors. The Hamiltonian term describing this element is given by

ĤJ = EJ cos ϕ̂J (1.57)
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with EJ = I0ϕ0/2π (I0 is the current passing through the junction, ϕ0 is the flux quantum)
and ϕ̂J is the flux flowing through the junction, that is again quantized. The cosine term
is at the origin of the nonlinearity. By building a circuit made of a capacitor and a
Josephson junction, one has the following Hamiltonian, that can be Taylor-expanded by
supposing that the system is in a weakly nonlinear regime:

Ĥ = 1
2C Q̂

2 + EJ cos ϕ̂J (1.58)

Ĥ = 1
2C Q̂

2 + EJ

(
1 − 1

2 ϕ̂
2
J + 1

24 ϕ̂
4
J

)
+O

(
ϕ̂6
J

)
. (1.59)

The spectrum is now slightly modified, and the energy separation between levels is not ho-
mogeneous. This leads to the following Hamiltonian, in terms of creation and annihilation
operators b̂, b̂†:

Ĥ = ω
(
b̂†b̂+ 1

2

)
− EJ − EC

(
b̂† + b̂

)4
(1.60)

with ω =
√

8ECEJ , EC = e2/2C, e being the charge of the electron [18]. This leads to
being able to realize two-level systems known as transmon qubits, crucial for quantum
information provided the nonlinear terms are strong enough, such that a resonant drive
at energy ω only couples the first two levels.
Alternatively, one can study nonlinear lattice models with such platforms, such as the
Bose-Hubbard model. This model is described by the following Hamiltonian:

Ĥ =
L∑
i=1

(
ωcb̂

†
i b̂i + U

2 b̂
†
i b̂

†
i b̂ib̂i

)
− J

L−1∑
i=1

(
b̂†
i b̂i+1 +H.c.

)
, (1.61)

for a 1D lattice with open boundary conditions, whose features will be studied in more
detail in Chapter 2. ωc is the cavity frequency, J the nearest-neighbour coupling, and
U the boson-boson interaction strength. The coupling J can be engineered by capacit-
ive couplings, that are highly tunable elements [66]. Such systems exhibit natural loss
channels, due to their coupling to the external environment. A simple model for such loss
channels is that of local single-particle losses, that are described by jump operators

Ĵi =
√

Γ1b̂i. (1.62)

Another ingredient that can be added is an external driving, that can be coherent (entering
the Hamiltonian) or incoherent (entering the dissipative part of the Liouvillian). For a
coherent drive in the rotating wave approximation, the following terms may be added to
the Hamiltonian

ĤD =
∑
i

Fi(b̂†
i + b̂i). (1.63)

This leads to richer physics, as the system consists of driven-dissipative coupled nonlinear
elements. Many interesting phases can be engineered, and the physics of such systems
has only begun to be explored.
In Fig. 1.7, a driven-dissipative superconducting platform is depicted. The full system is
about 10 mm2, and contains eight coupled transmon resonators, whose observables can be
measured thanks to readout resonators. The chain of transmons is driven by a coherent
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driving on an external site, and another site is coupled to the system, acting as an energy
dump. This enabled authors of ref. [69] to stabilize strongly correlated phases, coined a
Mott insulator of photons, that was never accessed before.
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Figure 1.7: (a): Optical image of a driven-dissipative superconducting circuit where a
chain of transmons, labeled from 1 to 8, are coupled to a reservoir and to a stabilizing
drive. Observables can be measured by the readout resonators. The inset to the figure is
a scan-electron microsopy image of a single transmon qubit. (b) Energy scales in such a
system, where the interaction dominates all other energy scales. (c) Sketch of the effective
model obtained, where a strongly-interacting Bose-Hubbard model is realized, coupled to
two sites that act as a stabilizer for Mott insulator states. Reproduced from [69].



2 Entanglement dynamics in
strongly-correlated open quantum

systems

I Introduction
After being a subject of early intense debate at the dawn of quantum mechanics [70, 71],
entanglement is now recognized as a key feature of quantum physics [72]. The efforts
towards building a complete mathematical description of this notion were instrumental
in the development of quantum information. In this context, the core of the theory
is centered around three main tasks: detecting [73], quantifying [74] and manipulating
entanglement [75]. The progress made on these three fronts would allow to outperform
classical methods in the fields of metrology [76], cryptography [77] and computation [28].

In addition to providing sound foundations to the field of quantum information, en-
tanglement theory has also paved the way to new discoveries in other areas of physics. As
anticipated at the beginning of the millenium [78], quantities such as the entanglement
entropy have proved to be very valuable tools for characterizing the ground-state wave
function of many-body quantum systems [79–81]. The study of entanglement in many-
body systems has not been restricted to their ground state properties: entanglement
dynamics and its propagation in space in quantum systems has also been the subject of
intense research activities for spin chains [82–84], fermionic [20] and bosonic systems [33,
85–87]. These works were important in inspecting the validity and limits of predictions
about Lieb-Robinson bounds in lattice systems, as well as providing information about
the properties and excitations of complex many-body systems.

Extending these investigations to open quantum systems represents a timely frontier of
research [88] that is of fundamental importance because much less is known with respect
to the state-of-the-art in isolated quantum many-body systems at thermal equilibrium
or exhibiting unitary Hamiltonian dynamics. Whereas in general experimentalists try to
protect their system from interacting with its environment, other approaches based on
the general concept of "reservoir engineering" try to exploit the openness of a system and
take advantage of judiciously designed dissipation to reach non-trivial quantum states
in the transient regime [89] or in the steady state [69]. In recent years, experimental
progress in tailoring effective photon-photon interactions in cavity and circuit quantum
electrodynamics (QED) devices has lead to the emergence of controllable quantum optical
many-body systems [90–92]. Unlike most condensed matter setups where the system is
close to thermal equilibrium, this new class of systems are open quantum platforms in
which intrinsic losses, due to the photon finite lifetime, have to be compensated by an
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external coherent or incoherent driving.
In the past years, several works have been devoted to transport properties of strongly-

correlated photonic platforms [93–96]. However, only a few exist regarding entanglement
and correlation propagation in driven-dissipative systems, which mainly focus on free fer-
mion systems [20, 97]. The recent experimental demonstration of dissipatively stabilized
photonic Mott insulators [69] in chains of superconducting microwave resonators paves
the way to the exploration of such an exciting frontier.

In this chapter, after presenting the physics of strongly-interacting bosonic systems,
we will explore entanglement propagation in photonic Mott insulators, showing genuine
physical effects associated to the openness of such systems. In contrast to most works
about correlation propagation in interacting bosonic systems, here we do not consider
global quenches of the system that typically consist in abruptly changing the value of the
interaction strength in all the lattice [33, 87]. Instead, we consider two configurations
where one photon is injected or removed from one cavity in the middle of a chain and
investigate the propagation of entanglement that is produced between distant sites as a
function of time and of their spatial separation. Such a study is achieved by monitoring
the negativity of two-site reduced density matrices, that witnesses entanglement. We
show a strinking different role of photon dissipation in the two configurations.

II The Bose-Hubbard model
Let us now present a few features of the paradigmatic Bose-Hubbard model. This model
consists of L interacting bosonic modes, described by the following Hamiltonian:

Ĥ =
L∑
i=1

(
ωcb

†
ibi + U

2 b
†
ib

†
ibibi

)
− J

L−1∑
i=1

(b†
ibi+1 + h.c.), (2.1)

with ωc the cavity mode frequency, U the photon-photon (Kerr) on-site interaction, J the
nearest-neighbor photon hopping coupling, and bi (b†

i ) the annihilation (creation) photon
operators for each site. It presents a Mott phase in the strongly interacting (U ≫ J)
limit and a superfluid phase in the weakly interacting (U ≪ J) regime. In this section
we restrict the discussion to one-dimensional systems for simplicity. The physical systems
described by the Bose-Hubbard Hamiltonian include, but are not limited to, lattices
of microwave resonators in circuit QED platforms as described in Chapter 1 [98–103],
semiconductor microcavities [99, 104] and ultracold gases in optical lattices [105, 106].
These platforms, as most realistic many-body systems, exhibit dissipation and dephasing
due to the coupling to the environment. In cold atom systems dephasing is dominant [87]
while for microwave photons in circuit QED platforms particle loss is typically the most
important channel [107, 108].

II.1 Strongly correlated regime
One can start by considering the limit U/J → ∞. In this limit, one can exactly perform
a fermionization procedure in 1D, which enables one to solve the model [109]. In such a
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limit, bosons become impenetrable, and the Hamiltonian reads:

H = ωc
L∑
i=1

b†
ibi − J

L−1∑
i=1

(b†
ibi+1 + h.c.), (2.2)

which corresponds to a tight-biding model with a local energy ωc. By using a Jordan-
Wigner transform, this model is exactly solvable [109, 110].

In the following we will focus on a more interesting and practical case, where U ≫ J
(but not so much larger). This does not completely wash out interactions, hence there
will be some interplay between interactions and dissipative processes. In such a regime,
in order to describe the physics of a photonic Mott insulator with one photon per site
on average, we can safely truncate the local Hilbert space to a maximum of two photons
per site by retaining only the |0⟩, |1⟩, and |2⟩ Fock number states. The validity of this
assumption was carefully tested numerically by increasing the local Hilbert space cutoff
and checking that the results were unchanged. A Mott insulator phase corresponding to
one photon per site for U ≫ J is approximately described by the factorized state

|ΨMott⟩ = |1⟩1 ⊗ |1⟩2 ⊗ ...⊗ |1⟩L = |11...1⟩ . (2.3)

In the regime of strong interactions, the Hamiltonian can be diagonalized by using gen-
eralized Jordan-Wigner and Bogoliubov transformations [33], via a mapping to a spin-1
model. By considering L coupled three level systems, one can rewrite the Hamiltonian as
interacting doublon and holon excitations. These fermionic quasiparticles are described
by local creation operators d†

i and h†
i for doublons and holons respectively, such that

d†
i |1⟩i = |2⟩i , h

†
i |1⟩i = |0⟩i. We therefore have:

Ĥ =
L∑
j=1

P̂
{

−2Jd̂†
j d̂j+1 − Jĥ†

jĥj+1 −
√

2J
(
d̂†
jĥ

†
j+1 − ĥj d̂j+1

)
+ H.c.+ U

2 (n̂d,j + n̂h,j)
}
P̂

(2.4)
with P̂ = Πj (1− n̂d,jn̂h,j). One sees that the complexity of the model resided in the
projector P̂ , which contains non-quadratic terms. However, one can reasonably approx-
imate P̂ ≈ 1, since the probability of having both a doublon and a holon on the same site
|⟨n̂d,jn̂h,j⟩|2 should be 0. By doing this, one obtains a quadratic Hamiltonian that we can
diagonalize using a Bogoliubov transform. The eigenmodes of the system are given by:

γ†
d,k = u(k)d†

k + v(k)h†
−k (2.5)

γ†
h,−k = u(k)h†

−k − v(k)h†
k (2.6)
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with

u(k) = cos(θk/2), v(k) = i sin(θk/2), (2.7)

θk = arctan
( √

32J sin k
U − 6J cos k

)
(2.8)

d̂k =
√

2
L+ 1

∑
i

sin(ki)d̂i (2.9)

ĥ−k = −
√

2
L+ 1

∑
i

sin(ki)ĥi (2.10)

k = πn

L+ 1 , n ∈ N for open boundary conditions. (2.11)

The Hamiltonian can now be written in a diagonal form:

Ĥ =
∑
k

ϵd(k)γ̂†
d,kγ̂d,k + ϵd(−k)γ̂†

h,−kγ̂h,−k (2.12)

with

ϵd(k) = −J cos k + 1
2

√
(U − 6J cos k)2 + 32J2 sin2 k (2.13)

ϵh(−k) = J cos k + 1
2

√
(U − 6J cos k)2 + 32J2 sin2 k. (2.14)

For a closed system, we can extract the velocity for the corresponding doublons and holons
as the derivative of the eigenenergies with respect to k:

vd,h(k) = ∂kϵd,h(k) = ±J sin k + 1
4

12JU sin k − 8J2 sin k cos k√
(U − 6J cos k)2 + 32J2 sin2 k

(2.15)

with ± respectively corresponding to doublons and holons. This enables one to obtain
bounds on the quasiparticle speed, which for doublons reads vDmax = 4J

[
1 − 4J2

U2

]
+O

(
J3

U4

)
and vHmax = 2J

[
1 + 17J2

2U2

]
+O

(
J3

U4

)
for holons. These results will serve as a basis to under-

stand what happens in terms of entanglement propagation and the effect of dissipation
and decoherence in the case of an open system.

III Entanglement propagation in dissipative photonic Mott
insulators

We now consider the system described by the Hamiltonian of Eq. (B.1) coupled to an
external environment. Within an open quantum systems approach, the time evolution of
the system density matrix ρ can be described by the following Lindblad master equation:

dρ

dt
= −i[Ĥ, ρ] + 1

2

L∑
i=1

∑
C

2J (C)
i ρJ

(C)†
i − {J (C)†

i J
(C)
i , ρ}, (2.16)
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Figure 2.1: Upper panel: sketch of the considered system, a chain of coupled photonic res-
onators with on-site photon-photon interaction U and nearest-neighbor hopping coupling
J . The top chain depicts the initial time configuration with a Mott insulator of photons
(one photon per cavity) where a double occupation (doublon) has been created in the
central site i = ic. The bottom chain depicts the configuration at a later observation time
t, with entanglement existing between distant sites. The photonic modes are subject to
losses and dephasing. Lower panel: entanglement negativity Nr(t) between sites ic−r and
ic+r as a function of time t for different values of the spatial separation r = {1, 2, 3, 4}
from the central site ic. The shade of the lines gradually decreases going from r = 1
to r = 4. Calculations were performed with an MPO ansatz with bond link dimension
χ = 200 on a chain of L = 20 cavity sites. For each value of r, results for different values
of the photon loss rate γ in units of the hopping J are shown. The initial state at t = 0
is |ΨD⟩ (see the text) corresponding to a doublon excitation localized in the central site.
In this figure, the pure dephasing rate Γd is 0. The on-site interaction for all the cavities
is U/J = 33.3.

with J
(C)
i the jump operator for the i-th site and the dissipation channel C. When the

temperature is low enough and the thermal photon occupancy is negligible, the jump
operator for the particle loss channel (C = l) due to the finite photon lifetime reads
J

(l)
i = √

γbi, where γ is the photon loss rate. The pure dephasing channel (C = d) due to
fluctuations in the environment is described by the jump operator J (d)

i =
√

2Γdb†
ibi, with

Γd the pure dephasing rate. The factor
√

2 here is put to ensure that the norm of the
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jump operators to dephasing and dissipation are the same, to obtain fair comparisons.

III.1 Entanglement generation protocol
Since |ΨMott⟩ is a factorized state, an interesting question is how to perturb such a photonic
Mott insulator in order to create entanglement in a simple way and study its propagation
in a direct fashion. In the following we will show that this is possible by injecting (or
removing) one photon from an occupied site. As shown in the upper panels of Figs.
2.1 and 2.2, we will consider such manipulation on the central site of a linear chain of
resonators. In the case of a photonic insulator with a large U , this can be achieved
simply by applying a coherent π-pulse drive on the central site that induces a Rabi
rotation from the |1⟩ to the |2⟩ (or to the |0⟩) Fock number state in the considered
site. We have explicitly verified that such operation can be performed with fidelity close
to 1 thanks to the strong anharmonicity produced by the large on-site interaction U .
This way, it is possible to prepare the state |ΨD⟩ = |1...2...1⟩ (|ΨH⟩ = |1...0...1⟩) where
D (H) stands for doublon (holon), corresponding to the injection of a single localized
excitation on top of the quasiparticle vacuum. In the doublon case, the excess photon in
the central site can hop to the right nearest-neighbor site or, with the same probability,
to the left site. Due to the symmetry of the chain with respect to the central site and
the lack of which-path information, such propagation creates an entangled state that
can propagate along the chain. For circuit QED platforms, a Mott insulator can be
prepared and maintained through an active stabilization process [69]. In the following,
we will consider the dissipative dynamics of the system after the creation of the localized
doublon (holon) in the absence of stabilization.

III.2 Entanglement detection
In order to witness bipartite entanglement between two partitions A and B of the system,
we have considered the negativity function [111], defined as N (ρAB) = ∑

λ<0 |λ|, where
the sum is taken over the negative eigenvalues λ of ρTA

AB, which is the partial transpose
with respect to subsystem A of the joint density matrix ρAB. In the following, A and B
will be two resonators at a distance r from the central cavity (i = ic). The time-dependent
negativity of the reduced density matrix for these two sites at the positions ic−r and ic+r
will be denoted by Nr(t). For systems with a relatively moderate Hilbert space dimension,
we can compute the time evolution of the full density matrix of the system via an exact
integration of the master equation. Once we get the full density matrix, we can trace out
with respect to the degrees of freedom of all the sites except the two sites under study.

In the regime where we can consider only the |0⟩, |1⟩, and |2⟩ states as local basis
for a given site, we can reconstruct a two-site reduced density matrix by exploiting the
fact that any Hermitian operator can be decomposed over the generators of the group
associated to its Hilbert space [112]. As we truncated the local Hilbert space to states
with up to 2 photons, the generators of the SU(3) ⊗ SU(3) group allows us to reconstruct
the reduced density matrix as:

ρ
(2)
3 = 1

9

8∑
i1,i2=0

ri1i2Λ(i1) ⊗ Λ(i2), (2.17)
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Figure 2.2: Upper panel: sketch like in Fig. 2.1, but where the initial state has an
empty central site (holon). Lower panel: temporal dynamics of the negativity with same
parameters as in Fig. 2.1, but with an initial state |ΨH⟩ corresponding to a holon localized
in the central site.

with Λ(i) the generators 1 of the SU(3) group and

ri1i2 = 9⟨Λ(i1) ⊗ Λ(i2)⟩
tr((Λ(i1) ⊗ Λ(i1))2) .

Using this method we can reconstruct the two-site density matrix for all times and ob-
tain the entanglement negativity. Since the Hermitian operators Λ(i) can also be expressed
as a function of the bosonic creation and annihilation operators up to their third-order
power 2, this tomographic method can be used in experiments to measure the two-site
entanglement negativity. Indeed, the measurement of expectation values of moments of
the photon fields has become a rather standard procedure in circuit QED platforms (see,

1The nonzero matrix elements of the Hermitian Λ(i) matrices, such that Λ(i)
r,s = (Λ(i)

s,r)⋆, are the
following ones: Λ(0)

11 = Λ(0)
22 = Λ(0)

33 = 1, Λ(1)
12 = 1, Λ(2)

12 = −i, Λ(3)
11 = −Λ(3)

22 = 1, Λ(4)
13 = 1,Λ(5)

13 = −i,
Λ(6)

23 = 1, Λ(7)
23 = −i, Λ(8)

22 = 1/
√

3 and Λ(8)
33 = −2/

√
3.

2The eight generators Λ(i) can be expressed in terms of the bosonic annihilation and creation operators.
Namely: Λ(1) = 1

2 (bb†2 + b2b†), Λ(2) = i
2 (b2b† − bb†2), Λ(3) = 3

4b
2b†2 − 1

2bb
†, Λ(4) = 1√

2 (b†2 + b2),
Λ(5) = i√

2 (b2 − b†2), Λ(6) = 1√
2 (b†2b+ b†b2), Λ(7) = i√

2 (b†b2 − b†2b), and Λ(8) = 1√
3 (bb† − b†b).
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e.g. [113]). Note that we have conveniently developed and used this approach for numer-
ical simulations based on the Matrix Product Operator (MPO) technique [93, 114, 115].
Indeed, MPO simulations are effective to simulate longer chains of cavities but do not
allow for a direct access to the full system density matrix, an issue that we bypassed with
the procedure described above.

IV Results and discussion
In Fig. 2.1, we report results for the negativity Nr(t) for different values of r and of the
photon loss rate γ (here no pure dephasing is considered, Γd = 0). The negativity shows a
well resolved peak for most values of the spatial separation r and γ/J : increasing r delays
the negativity peak, showing a clear entanglement propagation. A revival peak of entan-
glement is visible in the r = 1 curve at longer times. Previous studies of two-qubit systems
with non-Markovian environments have revealed entanglement revival effects [116–118].
In our system, the two-site dynamics is non-unitary and non-Markovian even for γ = 0
since the other sites of the chain have been traced out for the calculation of the negativity.
The value of the negativity peaks decreases with increasing dissipation γ. However, it is
remarkable that the entanglement propagation speed is negligibly influenced by dissip-
ation and remains essentially ballistic. In Fig. 2.2, we report the analogous dynamics
of negativity for the other configuration where the holon state |ΨH⟩ is prepared. With
the same parameters as in Fig. 2.1, in the holon case not only the propagation speed is
slower, but the role of dissipation is more dramatic, as we do not see any peaks for the
chosen values of γ/J as soon as r > 1.

IV.1 Propagation speed
In Fig. 2.3, we report the calculated entanglement propagation speeds versus J/U both
for the case of photon injection (doublon excitation) and extraction (holon excitation).
In the same plot, we have also reported the maximal propagation speed of doublons and
that of holons for a closed system, namely vDmax = 4J

[
1 − 4J2

U2

]
+ O

(
J3

U4

)
, and vHmax =

2J
[
1 + 17J2

2U2

]
+ O

(
J3

U4

)
. The fact that the predicted entanglement speed for a closed

system remains close to what we observed in the dissipative case is striking. This means
that even in the presence of losses, the properties of the quasiparticle picture remain valid.

IV.2 Particle-hole asymmetry
The effect of dissipation for the two considered configurations is presented in Fig. 2.4
in which the peak value of Nr=1 is plotted. To compare the genuine effect of dissipation
and dephasing, we considered a holon propagation in a chain with hopping coupling 2J
and a doublon propagation in a chain with hopping J in order to have the same speed
(for U/J ≫ 1 the speeds differ by a factor 2). From the peak value of the negativity
(occurring at the same time), we see that pure dephasing acts on the two cases in the
same identical way (dashed lines), with an exponential decay of the negativity. Indeed,
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Figure 2.3: Entanglement propagation speed (units of J) versus the normalized hopping
J/U . Filled (blue) circles: entanglement speed for the configuration corresponding to the
injection of one additional photon (doublon injection). Empty (red) circles: entanglement
speed for the holon injection. Solid (blue) thick line: maximal speed for doublon qua-
siparticles in a closed Hamiltonian system. Thin (red) solid line: maximal holon speed.
Dashed lines are polynomial fits with linear and quadratic terms in J/U . Error bars were
estimated taking into account uncertainty due to time discretization and to the finite
bond link dimension in the MPO calculations. Parameters: γ/J = 0.1 and for the doub-
lon (holon) configuration U/γ = 100 (1000).

pure dephasing conserves the total number of particles and does not break the particle-
hole symmetry. On the other hand, in the presence of photon losses, our investigation
reveals a striking asymmetry between the doublon (thick solid line) and holon (thin solid
line) cases. Indeed, the negativity vanishes much faster for the holon configuration even
when the speed is the same. The asymmetry can be qualitatively understood if we con-
sider the quantum jump picture [53] for two sites that are entangled. In the quantum
jump picture, the density matrix is seen as the statistical mixture of time-dependent
quantum trajectories. These quantum trajectories represent the time-evolution of the
wavefunction of the system along with sudden changes (quantum jumps) in the state of
the wavefunction due to physical processes such as particle losses, that are inherently
stochastic. In the holon case, by diagonalizing the reduced density matrix associated
to two entangled sites, we have found that the entanglement is mostly due to the Bell
state |ψH,+⟩ = 1√

2

(
|0⟩ic−r |1⟩ic+r + |1⟩ic−r |0⟩ic+r

)
. In a single quantum trajectory picture,

a single quantum jump due to photon decay in one of the two sites transforms such state
into the factorized state |0⟩ic−r ⊗ |0⟩ic+r . By contrast, in the doublon configuration, the
entanglement is mostly due to the state |ψD,+⟩ = 1√

2

(
|2⟩ic−r |1⟩ic+r + |1⟩ic−r |2⟩ic+r

)
. In this

case, the quantum jump produced by a photon loss in site ic−r produces the (normalized)
state 1√

3

(√
2|1⟩ic−r |1⟩ic+r + |0⟩ic−r |2⟩ic+r

)
, which is still entangled. A photon loss in site

ic+r produces an analogous state. The quantitative results in Fig. 2.4 show a remarkable
non-exponential dependence on both doublon and holon negativity as a function of the
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Figure 2.4: Peak value of Nr=1 (log scale) as a function of the photon dissipation rate γ or
dephasing Γd. Thick (thin) solid line: curve for the doublon (holon) configuration versus
γ when only photon particle losses are present (Γd = 0). The holon injection case has
been calculated for a chain with a hopping coupling 2J to have the same maximal speed
of a doublon in a chain with hopping coupling J (see text). Dashed (doublon) and dotted
(holon) lines: negativity peak versus Γd when there is only the pure dephasing channel
(γ = 0). Parameters: L = 5, U/J = 100.

dissipation rate. The holon negativity becomes exactly zero for a finite value of the dis-
sipation γ whereas the decay in the doublon case slows down for increasing values of γ.
Indeed, the two-site reduced density matrix satisfies an effective master equation, which
is in general non-markovian as obtained by tracing out the other degrees of freedom of
the chain, whose dynamics is non-trivial.

V Conclusion
We have theoretically explored the physics of entanglement propagation in photonic Mott
insulators in the presence of photon particle losses and dephasing. We have investigated a
scheme where the entanglement is generated by injecting (or extracting) a photon from a
site of a photonic Mott insulator. We have introduced a relatively simple quantum state
tomography protocol, valid in the limit of strong photon-photon interactions, to study
the bipartite entanglement properties. Our scheme is particularly suited for circuit QED
platforms exhibiting strong photon-photon interactions and allowing the measurement of
quantum optical correlation functions between distant sites. In spite of the losses, the
propagation of the negativity peak exhibits a speed, which is close to the doublon (holon)
quasiparticle propagation speed respectively in the case of the injection (extraction) of a
photon. Remarkably, the impact of particle losses is highly asymmetric for these two con-
figurations, while pure dephasing does not break the doublon-holon symmetry. Our work
paves the way to new investigations on the entanglement propagation in open quantum
systems, where multipartite entanglement spreading could also be investigated [119, 120].
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A future interesting research direction is the characterization of the entanglement dynam-
ics at long times (diffusive vs. ballistic) and the quest for universal features underlying
the dynamics of correlations in this class of systems. Another challenging problem to be
investigated in the future, given the recent experimental success in the dissipative stabiliz-
ation of photonic Mott insulators [69], is the search for protocols to stabilize entanglement
propagation in open quantum systems.
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3 The dynamical corner-space
method

In this chapter, we will introduce a numerical method to simulate the time-evolution of
an open quantum system. This method is based on the same idea as the corner-space
renormalization method, presented in Chapter 1, section III.6, which is that there exists a
class of systems for which M pure states suffices to faithfully represent the density matrix,
with M ≪ N , N being the Hilbert space dimension. This new method, the dynamical
corner-space method, efficiently computes the time evolution of open quantum systems
that have a moderate entropy with controllable accuracy, depending on the effective rank
M of the density matrix. It will here be applied to the continuous-time dynamics of noisy
quantum circuits in the presence of dissipation and decoherence, beyond digital error
models that are commonly used in the quantum information community [121].

I Introduction

As we have seen in the previous chapter, strongly-correlated open quantum systems have
remained relatively unexplored due to the lack of existing numerical methods to tackle
them. In particular, we are interested in methods that put no restriction on the amount of
entanglement that quantum states exhibits, unlike tensor network and mean-field meth-
ods.
A standard method that does this job is the Monte-Carlo wave function method [53, 86].
As explained previously, this method reduces the problem to evolving Ntraj wavefunctions,
and in the Ntraj → ∞ limit one recovers the exact evolution. However, the number of
required trajectories Ntraj to obtain accurate results is not known in general [122] and,
in the case of weak dissipation, the method can quickly become equivalent to a full in-
tegration of the master equation as a greater amount of trajectories are needed to reach
convergence. In recent years, there has been a growing interest in the idea that for a
certain class of low-entropy systems, a limited number of states, belonging to a so-called
“corner" subspace, can efficiently and faithfully represent the density matrix [123–126]. As
presented earlier, such a method, the corner-space renormalization method, exists and has
proved to be extremely useful in the context of dissipative phase transitions. However, this
method is restricted to finding steady-states. An alternative method is therefore needed
to simulate the time-evolution of low-entropy strongly-correlated open quantum systems.
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In the field of quantum information, the tremendous advances on the control of ar-
tificial quantum systems, such as superconducting Josephson qubits [67] and trapped
ions [127], are allowing dramatic progress towards the realisation of devices for quantum
computation [128, 129]. We are currently in the noisy intermediate-scale quantum (NISQ)
era [30], where error correction is not yet possible due to daunting overheads [130], but
where quantum advantage might be already exploited for applications in quantum chem-
istry [131], optimisation [132] and even finance [133]. Scaling up quantum circuits and
designing practically efficient quantum correction protocols make it of crucial importance
to precisely understand the effects of both incoherent and coherent sources of noise on
quantum algorithms [134–137].
To meet these challenges, there is a strong need for accurate numerical simulations of
quantum hardware on classical computers [138–142]. In this perspective, the application
of tensor-network methods to quantum-circuit simulation has been shown to be effective
to model circuits, although with restrictions on the amount of entanglement building up
through the circuit [143–147]. In addition, most existing simulators of quantum hardware
consider local and digital error models [121, 130, 148, 149], that consist in extending the
quantum circuit model to noisy algorithms by including noise gates applied after each
unitary gate. While in close proximity with classical error models, these two approxima-
tions do not necessarily hold, especially for highly-entangling circuits [150], and remain a
challenge in quantum error correction [151]. To take into account realistic sources of noise
for highly-entangling circuits one should revert to a continuous-time description, where
noise is taken into account continuously during the dynamics associated to the quantum
gates. If one neglects non-Markovian effects, this can be done in the framework of the
Lindblad master equation [152]. However, such a description is numerically expensive;
for a chain of L qubits with Hilbert space dimension N = 2L, a density matrix of size N2

must be evolved. Since quantum processors are conceived to be weakly dissipative and
with low entropy, they belong to the class of systems that have a low-entropy. Stabilized
arrays [69, 153], cat qubit systems [154] and quantum hardware with state-of-the-art dis-
sipation rates [121, 155] also belong to this category.
In this chapter, we present the dynamical-corner space method that is particularly suited
to simulate quantum processors in the NISQ era. We start by presenting the method and
the steps that compose the corresponding algorithm in section II. In the next section,
various computational details, such as the complexity of the algorithm, and the question
of stiffness for time-integration are discussed in section III. Then, in section IV, we present
an application of the method to the simulation of a noisy quantum Fourier transform pro-
cessor. We discuss the applicability of our method to this quantum algorithm, and find
scaling laws for the error as a function of the number of qubits, as well as the impact of
dissipative channels on the performance of the algorithm as a function of the considered
initial state. Finally, digital error models are discussed in more detail in section V, in
which key differences between our approach to simulate quantum circuits and such models
are discussed.
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Figure 3.1: (a) Sketch depicting one iteration of the time-dependent corner-space method.

II The dynamical corner-space method
Let us consider an open quantum system whose dynamics is governed by the Lindblad
master equation [152]:

∂tρ̂ = Lρ̂ = −i[Ĥ, ρ̂] +
D∑
i=1

(
Ĵiρ̂Ĵ

†
i − 1

2{Ĵ†
i Ĵi, ρ̂}

)
, (3.1)

where Ĥ is the system Hamiltonian acting on a Hilbert space H of dimension N , and Ĵi
is the ith jump operator. At any time t, the solution ρ̂ may be approximated by

ρ̂(t) ≃
M(t)∑
k=1

pk(t) |ϕk(t)⟩⟨ϕk(t)| , pk(t) ≥ pk+1(t), ∀k, (3.2)

where pk(t) are the M(t) largest eigenvalues of ρ̂ at the time t and |ϕk(t)⟩ their associated
eigenvectors. By construction, the controlled truncation error introduced by such an
approximation is monotonically decreasing with M and quantified by ϵM = 1 −∑M

k=1 pk,
so that the decomposition becomes exact for M(t) = r(t), with r(t) denoting the rank
of ρ̂(t), equivalent to the α = 0 Rényi entropy [156]. Therefore, in a wide class of low-
entropy systems including most platforms relevant for quantum computing, ρ̂ is very well
approximated by M ≪ N basis vectors, and even by M ≳ 1 for close to pure states.
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M will be referred to as the corner dimension. The accuracy of the calculations will be
controlled by a fixed maximum error ϵ with ϵM ≤ ϵ enforced at any time.

It follows from the above that all the information of the density matrix is carried by a
set of weighted corner base vectors of the form √

pk |ϕk⟩. In some arbitrary computational
basis {|n⟩}Nn=1, these can be represented by a N × M matrix with elements Cnk(t) =√
pk(t) ⟨n|ϕk(t)⟩. We have:

ρ̂(t) =
M(t)∑
k=1

pk(t) |ϕk(t)⟩⟨ϕk(t)| = Ĉ(t)Ĉ†(t). (3.3)

The idea behind the dynamical corner-space method is then to evolve Ĉ in time,
without ever reconstructing ρ̂. The evolution Ĉ(t) 7→ Ĉ(t + δt) over a small time step
δt, schematically illustrated in Fig. 3.1, involves two computational operations: (i) the
construction of the transition basis and (ii) the projection onto new principal components.
Below we detail these two steps, respectively represented as the left and right parts of the
figure.
Step (i): The weighted corner basis Ĉ(t) evolves into the transition basis T̂ (t+ δt) as

ρ̂(t+ δt) =
D∑
i=0

M̂iρ̂(t)M̂ †
i =

M(D+1)∑
m=1

|ψm(t+ δt)⟩⟨ψm(t+ δt)| = T̂ (t+ δt)T̂ †(t+ δt). (3.4)

Here, the following Kraus map [52], equivalent to Eq. (3.1), is used to time-evolve the
density matrix:

eδtLρ̂ =
D∑
i=0

M̂iρ̂M̂
†
i , M̂0 = exp(−iδtH̃), M̂i≥1 =

√
δtL̂i, (3.5)

with H̃ = Ĥ − i
2
∑D
i=1L̂

†
i L̂i a non-Hermitian operator depending on the Hamiltonian and

the quantum jump operators, which is reminiscent of the stochastic Schrödinger equation
presented in section III.5. By construction, the transition basis T̂ (t+δt) is aN×[M(t)(D+
1)] rectangular matrix, where D is the number of dissipation channels. Its mth column
is given by |ψm(t+ δt)⟩ = √

pµM̂ν |ϕµ(t)⟩, with ν = (m − 1) ÷ M(t) and µ = (m − 1)
mod M(t)+1. In the quantum trajectories picture, a Kraus operator is drawn at random
at every time step according to the probability for an external observer to measure its
outcome. This generated single trajectories conditioned by a specific record of the history
of the outcomes, which by repeating the procedure could be averaged to recover a correct
density matrix. We here employ a completely deterministic approach: at every time
step, all the (D + 1) possible trajectories branching from each of the corner’s M base
state vectors are generated, naturally weighted by their likelihood. Although exact, no
further processing would result in an exponential growth of the corner dimension with
time, growing as Dnδt , with nδt the number of timesteps. The second step of the algorithm
solves this problem.

Step (ii): The transition matrix is now projected to a new weighted corner basis Ĉ(t+
δt) of lower dimension M(t+ δt) ≤ M(t)(D+ 1) via a new truncated eigendecomposition
P of the form of Eq. (3.3). Crucially, this is possible without ever reconstructing the full
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density matrix. Indeed, the N ×N matrix ρ̂(t+ δt) = T̂ (t+ δt)T̂ †(t+ δt) and the much
smaller [M(t)(D+1)]× [M(t)(D+1)] matrix σ̂(t+δt) = T̂ †(t+δt)T̂ (t+δt) share the same
non-zero eigenvalues pk. The associated eigenvectors, |ϕk,ρ(t+ δt)⟩ and |ϕk,σ(t+ δt)⟩ are
related by the identity [125, 157]:

√
pk |ϕk,ρ(t+ δt)⟩ = T̂ (t+ δt) |ϕk,σ(t+ δt)⟩ . (3.6)

The components of the new decomposition can then be judiciously truncated to only
retain the leading M(t + δt) eigenvalues pk, yielding an updated weighted corner basis
Ĉ(t+ δt), with the same structure as the initial one Ĉ(t).

This procedure can be iterated for an arbitrary time with the possibility of tuning the
length of the time step δt and the tolerance parameter ϵ to control the accuracy at the
desired level. The time evolution of the corner basis involves no explicit reconstruction
of the full density matrix. Indeed, the largest representation of the state of the system
involved in the process, the transition basis T̂ , is comparable in size to that of M(D +
1) closed systems. As we will see, this method is comparable to MCWF in terms of
complexity, where the the entropy is the essential quantity to check for: if the required
corner dimension M is too large, the method fails terribly. For systems with moderate
entropy instead, it can be very efficient.

III Computational details

III.1 Complexity
The method presented above amounts to evolving M(t) closed systems, with M(t) the
corner dimension. For a quantum computation, the initial state is pure, M(t = 0) = 1. As
shown in Fig. 3.1(c), the dimension M(t) grows moderately in time. At every time step,
the most demanding operation is related to the construction of the matrix σ̂ = T̂ †T̂ . This
involves a number of operations of order O(M2[D+ 1]22L). Indeed, the transition matrix
T̂ has a size M(D+1)×N , where N = 2L denotes the dimension of the Hilbert space and
L the size of the system under consideration. Note that the number of jump operators
D typically scales as L for most relevant quantum computing platforms consisting of L
coupled units. The complexity of the method is thus of order O(M2L22L). This represents
an exponential reduction of the complexity with respect to that of a brute-force master
equation integration, which is of order O(4L).

III.2 Memory use

The Kraus operators K̂i are N×N matrices, the same size as the density matrix. However,
their memory requirement is much smaller, thanks to their extreme sparsity for most.
Indeed, jump operators corresponding to dissipative processes are typically single-body
operators and thus as memory-consuming as state vectors1. The largest Kraus operator

1For fully-connected operators of the form K̂ = â1 ⊗ b̂2 ⊗ · · · ⊗ ẑL, this would be an issue, but such
error models are quite unrealistic.



48 Chapter 3. The dynamical corner-space method

4 6 8 10 12 14 16 18 20

Number of qubits

1 kB

1 MB

1 GB

1 TB

M
em

or
y

u
se

N ×N dense matrix

Ĉ
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Figure 3.2: (a) Memory use of different quantities. One can see that the gain in memory
requirement from our method scales exponentially. Note tha the Hamiltonian, being very
sparse, is not the limitation. The largest stored object is the corner Ĉ, that is composed
of M states. Here, as an example, we considered M = 100. (b) Infidelity between the
dissipative output density matrix ρ̂(c)

γ (calculated via the corner-space method) and the
exact integration density matrix ρ̂γ as a function of the maximum corner dimension Mmax,
for an L-qubit circuit and γTQFT = 1.42×10−2. The initial state is |ψ0⟩ = QFT−1 |GHZ⟩.

is K̂0, which roughly corresponds to Ĥ. The RAM needed to store it is shown in Fig. 3.2
together with that associated to other numerically relevant objects as a function of the
number of qubits. Another feature of our implementation is that the dimension of the
corner basis M(t) is dynamically adapted to match the maximum allowed error that we
impose, thus optimizing the computing and memory resources. This is done by means
of memory-contiguous dynamically resizable arrays. This saves considerable computation
time, as M(t) grows in time when starting from a pure state (M(0) = 1).

III.3 Efficient evaluation of relevant observables
The evaluation of relevant metrics in quantum information is challenging with quantum-
trajectory approaches, such as the Monte Carlo wave function method [51, 53, 158]
(MCWF). Such an approach relies on the evolution of n stochastic trajectories {|ψi(t)⟩}ni=1.
The density matrix can then be reconstructed as ρ̂(t) = (1/n)∑n

i=1 |ψi(t)⟩⟨ψi(t)|. To sim-
ulate a quantum computation, this has two downsides: firstly, for weakly dissipative sys-
tems (γT ≪ 1), most trajectories will experience no quantum jump and thus be identical.
This means that most of the computing resources are wasted in performing a redundant
task. Secondly, most relevant metrics involved in quantum-information processing, such
as fidelity and entanglement measures, namely concurrence, negativity, or entanglement
entropy [119], require constructing explicitly the (dense) density matrix of the system and
diagonalizing it. In practice, the latter, of complexity O(N3), is not feasible for systems
larger than ∼ 15 qubits. In contrast, the presented method yields explicitly both the
eigenvalues {pk(t)}Mk=1 and the eigenvectors {|ϕk(t)⟩}Mk=1 at every time step, with no need
for additional calculations.
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To give a concrete example, let us consider the evaluation of the fidelity between two
arbitrary mixed states ρ̂ and ρ̂′ with rank M and M ′ respectively, as given by

F(ρ̂, ρ̂′) = Tr[
√√

ρ̂ρ̂′
√
ρ̂]

=
M∑
m=1

〈
ϕm
∣∣∣{∑M

k,m=1 |ϕk⟩ Akm ⟨ϕm|
}1/2∣∣∣ϕm〉,

with

Akm =
M ′∑
k′=1

p′
k′

√
pkpm ⟨ϕk|ϕ′

k′⟩ ⟨ϕ′
k′|ϕm⟩ , (3.7)

where p(′)
k and ϕ

(′)
k correspond to the kth eigenvalue and eigenvector of ρ̂(′). It appears

from the above that the total complexity of this evaluation is of order

O(2N3) +O(2M ′N) +O(M3) +O(MN) , (3.8)

where the first term accounts for the eigendecomposition of the two density matrices, the
second for the construction of the matrix Akm, the third for its diagonalization and the
last for the trace. An additional subleading complexity of order O(n×N) is to be added if
the density matrices are obtained via Monte Carlo wave function calculations in order to
account for their construction. In contrast, the order O(2N3) is to be discarded when us-
ing the dynamical corner-space method, as the eigendecompositions are known explicitly.
Then, for each method, one finally has to leading order and for M (′) ≪ N the following
scaling figures of merit: In practice, the inconvenient scaling of the complexity for the

MCWF Dynamical corner-space
F(ρ̂, ρ̂′) O(2N3) O(max(M, 2M ′)N)
F(ρ̂, |ϕ⟩) O(nN) O(MN)
S(ρ̂) O(N3) O(M)

Monte Carlo wave function approach, stemming from the two density-matrix diagonaliz-
ations, combined with the necessity of storing dense matrices well beyond the realistically
available RAM makes it impossible to compute the fidelity between two mixed states from
trajectories for systems larger than ∼ 13 sites on a desktop computer. A similar discussion
can be made for the entropy. We here see the superiority of the dynamical corner-space
method, in particular in the context of quantum information where such metrics are often
calculated.

III.4 Scaling of the corner dimension
In our method, the tolerance on the precision of the density matrix is tunable by design and
the convergence versus M is ensured for moderately dissipative systems with low entropy.
This is contrast to the case of quantum trajectories for which the number of needed
trajectories n for a given problem is currently unknown a priori [122]. In Fig. 3.2(b), one
can see that for γTQFT = 1.42×10−2, an infidelity below 10−3 can be reached by choosing
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Figure 3.3: Wigner function of the 4 leading components of the corner-space describing a
cavity subject to a Lindblad evolution as described in section III.5, after time γt = 10. The
first two correspond to states |C±

α ⟩ with opposite parities. Parameters here are κ/γ = 2,
ωc/γ = 1, K/γ = 10, G/γ = 50.

Mmax ∼ L lnL. Hence, the corner dimension grows only polynomially with the size L,
in particular sub-quadratically. Note that this value of γTQFT is slightly higher than the
state-of-the-art, hence the method is well suited to simulate experimental platforms in
the coming years.

III.5 Integration method and stiffness

An issue with the map Ĉ(t) 7→ Ĉ(t+ δt) that updates the corner basis at each time step
is that it involves terms proportional to

√
δt in the Kraus operators. This seems to re-

strict the method to a first order explicit integration scheme, which could result in a poor
stability of the method when dealing with stiff dynamics ensued from nonlinear Hamiltoni-
ans. However, we circumvent this limitation by separating the pseudo-unitary evolution
generated by K̂0 from that of the rest of the Kraus operators. Instead of computing
Tim = ∑

kK0,ikCkm = ∑
k(δik − iδtH̃ik)Ckm, we perform an exact numerical integration

of the differential equation ∂tĈ = −iH̃Ĉ over the time interval [t, t+ δt] via an ordinary
differential equation (ODE) solver well-adapted to the level of stiffness induced by the
Hamiltonian. This allows us to treat stiff problems, via adapted implicit methods, and to
use adaptive time-stepping.

To illustrate this point, let us consider a Kerr-cat qubit [159] as described by the
following Hamiltonian:

Ĥ = Kâ†â†ââ+ ωcâ
†â+G(â2 + â†2) , (3.9)

where â (â†) is a cavity mode annihilation (creation) operator, ωc is the frequency of
the cavity, K its Kerr nonlinearity, and G the two-photon driving frequency. If one
considers jump operators Ĵ1 = √

γâ, Ĵ2 =
√
κâ2 that respectively describe single- and

two-photon losses, a logical qubit can be conceived by considering logical states |+⟩ =
|C+

α ⟩ = (|α⟩ + i |−α⟩)/
√

2 and |−⟩ = |C−
α ⟩ = (|α⟩ − i |−α⟩)/

√
2 as these are steady

states of the system in the γ → 0 limit. Numerically, the simulation of such systems
cannot be efficiently treated with explicit first-order methods as the differential equation
corresponding to their time evolution is stiff because of the Kerr nonlinearity. Thanks to
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the numerical integrator used for the coherent part of the evolution of the corner Ĉ, our
method is capable of describing such systems, whose entropy is limited when κ ≫ γ. In
Fig. 3.3, the Wigner functions of each of the 4 most populated states of the corner are
shown with their associated probabilities pi, after having evolved the system for a time
t = 10/γ via the corner-space method, setting a photon cutoff nph = 20. One sees that
the low-dimensional basis found by the corner indeed closely matches that of a qubit with
Schrödinger-cat logical states while keeping track of the effects of the single-body loss
on the lowly probable states. By tuning the tolerance parameter of the method ϵ, such
dissipative effects can be captured to any desired order. Our method therefore enables
one to investigate the dynamics of such systems in an efficient way, and could be used to
understand how single-photon dissipation impacts quantum operations in multi-Kerr-cat-
qubit systems, among other applications involving bosonic qubits.
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Figure 3.4: (a) Quantum circuit representing the quantum Fourier transform (QFT) in
the presence of dissipation. (b) Continuous-time evolution of the exponential of the von
Neumann entropy S (dash-dotted) with the input state |ψ0⟩ defined in Eq. (3.17), for
L = 8 qubits and γ/δ = 1 × 10−3. The corner-space dimension M(t) is also plotted (plain
line). Temporal intervals corresponding to Hadamard and controlled-phase gates are
indicated by lighter (red) and darker (blue) background colors, respectively. (c) Temporal
build-up of the entanglement entropy Sent(n), as defined in Eq. (3.19), as the different
gates of the QFT are performed.
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IV Application to the noisy QFT

IV.1 The quantum Fourier transform
We will now apply the method to the numerical simulation of noisy quantum circuits.
A quantum circuit consists in a set of gates G, that correspond to unitary operators Ûg,
with g ∈ G. These operators are applied to a register of L qubits that have as input
state |x⟩, that are equivalent to the random-access memory of a classical computer. The
output of a quantum circuit is given by state |y⟩ = f(|x⟩), where f denotes any recursive
function [160], and |y⟩ corresponds to the answer we want from the algorithm.
We consider the noisy quantum Fourier transform (QFT) circuit, that is the cornerstone
of the Shor algorithm and many algorithms related to the hidden subgroup problem [28].
In doing so, we will consider the architecture depicted in Fig. 3.4 (a). The input state
to be Fourier transformed through the circuit is encoded in the state of L qubits. Given
an orthonormal computing basis {|n⟩}Nn=0 spanning the Hilbert space of the system, of
dimension N = 2L, this circuit linearly transforms any input of the form

|x⟩ =
N−1∑
j=0

xj |j⟩ , (3.10)

where x is a vector of complex amplitudes, into

|y⟩ = QFT(|x⟩) =
N−1∑
k=0

yk |k⟩ , with yk = 1√
N

∑
j

e2iπjk/Nxj. (3.11)

This therefore corresponds to the discrete Fourier transform of the N wave-function amp-
litudes. This operation can be reduced to subsequent applications of only two different
types of quantum gates [28], the Hadamard and the controlled-phase gates. In the local
basis:

ÛH |i = 1√
2

 1 1

1 −1

 , ÛR|jk =



1

1

1
e2πi/2k


. (3.12)

⟨0i| ⟨1i|

|0i⟩

|1i⟩

⟨0j0k| ⟨0j1k| ⟨1j0k| ⟨1j1k|
|0j0k⟩

|0j1k⟩

|1j0k⟩

|1j1k⟩

The number of involved such elementary gates, L(L+ 1)/2, is only polynomial in L =
log2(N); the complexity of the QFT algorithm is hence of order O(L2). In contrast, that
of the usual fast Fourier transform (FFT) is exponential: O(N logN) ∼ O(L2L). This
quantum advantage makes the QFT a central building block of many other algorithms.

In the following, the quantum gates introduced above will be executed via a continuous-
time evolution defined by an appropriate master equation taking the form of Eq. (3.1).
The effect of two types of noise will be addressed. We will first consider dissipative pro-
cesses induced by a weak coupling to a zero-temperature environment, as described by
jump operators of the form:

Ĵi = √
γσ̂−

i , (3.13)
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ubiquitous in superconducting platforms. This corresponds to local decay processes from
the excited qubit state |↑⟩j ≡ |0⟩ to the lower energy qubit state |↓⟩j ≡ |1⟩. We will treat
the effect of decoherence as well. This will be described by local pure-dephasing jump
operators:

Ĵi = √
γσ̂zi , (3.14)

whose microscopic origin can be related to different sources such as disorder and phase
fluctuations in the drive [161]. We consider a drive rotating at the qubit Rabi frequency.
The Hadamard gate acting on the ith qubit can be realized via the subsequent application
of the two following Hamiltonians:

Ĥ1
i = δ

2 σ̂
y
i , Ĥ2

i = δ

2 σ̂
z
i , (3.15)

for a time ∆tH1 = π/2δ and ∆tH2 = π/δ, respectively. The controlled-phase gates with
control qubit j and target qubit k can be performed through the Hamiltonian:

Ĥj,k = δ

2 σ̂
z
j + δ

2 σ̂
z
k − δ

2
(
σ̂zj σ̂

z
k + 1̂

)
, (3.16)

applied for a time ∆tR,k = π/δ2k. For simplicity, we will assume sudden switching between
gate Hamiltonians and will not include coherent errors (related to some switching time,or
to some unwanted detuning between the drive and the qubit frequency), although both
effects could be accurately described by the dynamical corner-space method.

A first example of the dynamics of such a circuit is presented in Fig. 3.4 (b) and
Fig. 3.4 (c). There, the initial state is chosen as

|ψ0⟩ = QFT−1(|GHZ⟩) = 1√
2N

N−1∑
n=0

(1 + e2iπn/N) |n⟩ , (3.17)

so as to be the inverse of the Greenberger–Horne–Zeilinger (GHZ) state [162–164]:

|GHZ⟩ = 1√
2

(|00...0⟩ + |11...1⟩) . (3.18)

The latter is known to be a maximally entangled state. Through this choice, the output
state is ensured to be highly entangled, therefore demonstrating that entanglement is not a
limiting factor for the corner-space method, as the intermediate states build up long-range
entanglement. In panel (b) of Fig. 3.4, the time evolution of the corner-space dimension
M as well as the exponential exp(S) of the von Neumann entropy S(ρ̂) = Tr[ρ̂ ln ρ̂] are
shown, exhibiting similar trends. Panel (c) depicts the spatial entanglement propagation
as the circuit’s gates are progressively applied from the first to the last qubit. This is
quantified by the entanglement entropy

Sent(n) ≡ S(Tr1,...,n[ρ̂]), (3.19)

that evaluates entanglement between bipartitions of the form {{1, . . . , n}, {n+1, . . . , L}}.
While this is a rigorous measure of entanglement only for pure states [165], it still gives
a valid qualitative description of the entanglement temporal build-up for states that are
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Figure 3.5: (a) Infidelity between the output density matrix ρ̂(c)
γ calculated with the

corner-space method and the output ρ̂γ obtained via an exact integration as a function
of the maximum corner dimension Mmax for different values of γTQFT and a fixed number
of qubits L = 10. (b) Fidelity as a function of Mmax and L for γTQFT = 2.5 × 10−2. The
parameter N denotes the dimension of the total Hilbert space. Values corresponding to
Mmax = L are highlighted by hollow markers (we find a fidelity F ≳ 0.997 for Mmax ∼
L lnL). The initial state is |ψ0⟩ as in Fig. 3.1 for all three panels. (c) Simulation time
of the QFT algorithm in the presence of dissipation versus the number L of qubits for
the exact solution of the master equation (squared markers) and for the time-dependent
corner-space method (circles) for two different values of the control parameter ϵ. The
dissipation rate is set by γTQFT = 2.5 × 10−2.

close to pure. Note that Sent(n) > S is a sufficient condition2 for showing quantum
entanglement between the two subsystems 1 ⊕ . . . ⊕ n and n + 1 ⊕ . . . ⊕ L. One sees
that the initial localized entanglement spreads through the system in close relation to the
architecture of the circuit. As clearly follows from the shading in panel (b), this takes
place when the (entangling) controlled-phase gates are applied.

IV.2 Benchmarking the method
Let us benchmark the accuracy of our calculations against the results of an exact in-
tegration of the master equation for small values of L, the numbers of qubits. In what
follows, ρ̂γ and ρ̂(c)

γ denote the output density matrices of the noisy QFT obtained via the
exact integration and via the corner method, respectively. Instead, ρ̂0 denotes the ideal
outcome of the noiseless QFT, which is a pure state. The results of this benchmarking
process are presented in Fig. 3.5 for fixed values of γTQFT, where TQFT denotes the phys-
ical duration of the QFT operation. This ensures that the output infidelity with respect
to ρ̂0 remains constant as the circuit size is increased. In particular, Fig. 3.5 (a) shows
the infidelity of the method 1 − F(ρ̂(c)

γ , ρ̂γ) as a function of the rescaled maximum corner
dimension Mmax/L for L = 10. One sees that for Mmax ∼ 10L the exact results are ex-
cellently approximated by the time-dependent corner-space method for all the considered

2This corresponds to the violation of the classical identity SA ≤ SA⊕B .
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Figure 3.7: Infidelity for L = 18 qubits with dissipation (dark blue) or pure dephasing
(orange) for 517 initial states per incoherent process, randomly sampled from the canonical
basis. The infidelity is plotted versus the total number nS of spins up in a given state and
the spin-up barycenter defined in Eq. 3.20. The infidelity in both cases can be fitted by
I(nS, B) = a(nS − nS0)(B −B0) + I0. The surface for pure dephasing shows a negligible
dependence on the initial state. Parameters: γ/δ = 3.7 × 10−4 (γTQFT = 2.5 × 10−2) and
ϵ = 1 × 10−4.
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values of γTQFT. The method still performs reasonably well for noise rates as high as
γTQFT = 1.5 × 10−1, where the fidelity to the output of the noiseless circuit is as low as
F(ρ̂0, ρ̂γ) = 0.758. Fig. 3.5 (b) shows the fidelity of the method F(ρ̂(c)

γ , ρ̂γ) for different
numbers of qubits L as a function of the fraction Mmax/N between the dimension of the
basis spanning the corner and that of the basis of the entire Hilbert space. These results
show that the advantage of the dynamical corner-space method over exact integration
of the master equation increases with L. In particular, to match a desired fidelity, the
required corner dimension M is found to grow as L lnL with the system size. For L = 12,
an excellent agreement of the corner-space method with the exact integration is already
obtained for Mmax/N = 10−2. Finally, in Fig. 3.5 (c), we compare the computation time
of the corner-space method to the exact integration, for two different values of ϵ3. The
corner-space method achieves an exponential speed-up with respect to the master equa-
tion integration. This leads to simulations faster by more than three orders of magnitude
for L ∼ 15. Moreover, tuning the tolerance ϵ from 1 × 10−4 down to 5 × 10−5 preserves
the scaling of the simulation time with L. Simulations of up to 21 qubits are presented.
This represents a Hilbert-space dimension (N = 2L) above 2 million states, corresponding
to (dense) density matrices weighting 64 TiB that could never have been handled with a
brute-force integration of the master equation (3.1). The method presented above is thus
capable of efficiently evolving such high-dimensional objects by means of parsimonious
corner representations of the density matrix. The calculations were performed on a single
six-core Intel Xeon processor at a clock speed of 1.9GHz.

IV.3 Scaling laws
One can now evaluate the impact of incoherent processes on intermediate-scale devices
via a continuous-time description and determine the scaling of errors. In Fig. 3.6, the
fidelity F(ρ̂(c)

γ , ρ̂0) is shown for up to L = 21 qubits, for different values of γ/δ. Here, we
consider dissipation channels described by the jump operators Ĵi = √

γσ̂−
i . Remarkably,

the infidelity scales only quadratically as a function of the number of qubits L. This
scaling dependence allows one to precisely estimate the impact of γ = 1/T1 on the QFT
algorithm, T1 being the energy relaxation time of the considered system.

IV.4 Impact of initial states
Another key property is the dependence of the fidelity on the initial state, crucial to
redesign algorithms that rely preferentially on a certain class of states. In Fig. 3.7, we
address this question for the QFT by sampling initial states. Either energy relaxation
produced by the jump operators Ĵi = √

γσ̂−
i or pure dephasing described by Ĵi = √

γσ̂zi
are considered. Only two simple parameters that characterise the initial state are found
to be crucial for the considered architecture: the total number nS of spins up and the
spin-up “barycenter”

B(ρ̂) = 1
nS

∑
ℓ

ℓ× Tr
[
|↑⟩⟨↑|ℓ ρ̂

]
. (3.20)

3In evaluating these execution times, both the exact integration and corner-space calculations were
carried out on a single six-core Intel Xeon E5-2609 v3 processor at 1.9 GHz.
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Our findings show that, in presence of energy relaxation, the fidelity of the noisy QFT
decreases linearly with the number of spins up in the initial state. This is in stark contrast
to the case of pure dephasing, which shows no significant dependence on nS. The fidelity
also exhibits a strong dependence on the spin barycenter. Indeed, energy relaxation only
affects excited states and the circuit’s Hadamard gates are applied one qubit at a time
starting from the beginning of the chain. As a result, excited qubit states (spin up) close
to the end of the chain are rotated down to the Bloch-sphere equator by the Hadamard
gates later than those on the opposite end. Thus, they are globally more affected by
dissipation.

V Quantum errors
A fundamental question that quickly appeared in the debates on quantum computing
in the early 90s is the question of how quantum errors occur. In classical computing,
this was a problem for a long time and it took some time for classical error correction
to be developed, leading to fault-tolerant classical computers. Quantum error correction
is trickier, as for instance quantum information cannot simply be copied because of the
no-cloning theorem, so all repetition codes developed for classical computing cannot be
reused. Quantum error correction codes are based on digital error models, that are a
simplification of how quantum errors microscopically occur. Here we will examine the
differences between such a model and a full master equation approach.
As presented in section IV, a convenient and widely used model for quantum computation
is the gate-based model [28]. For closed systems, this model is strictly equivalent to the
successive application of unitary time-evolution operators of the form ÛG = e−iĤGτ , with
ĤG the gate Hamiltonian and τ the gate time. In most current classical simulations of
noisy quantum processors, errors are accounted for by extending the gate-based model to
what has been coined digital error models [121]. These consist in applying noise gates after
each unitary gate, expressed as Kraus operators, in analogy to error models for classical
processors. However, in general, a quantum system is subject to a completely-positive,
trace-preserving (CPTP) map acting on the system density matrix ρ̂ in continuous time.
The generator L of such a map can always be expressed in the Lindblad form as a
Liouvillian whose action on the density matrix takes the form L[ρ̂] = U [ρ̂] + D[ρ̂], with
U and D the unitary and dissipative contributions to the time evolution of ρ̂. Explicitly,
for a quantum gate G, one has:

U [ρ̂] = −i[ĤG, ρ̂], (3.21)

D[ρ̂] =
D∑
i=1

(
Ĵiρ̂Ĵ

†
i − 1

2{Ĵ†
i Ĵi, ρ̂}

)
, (3.22)

with Ĵi the jump operators that describe the dissipative channels, which take a simple
form when the environment can be treated within the Born-Markov approximation. Given
an initial density matrix ρ̂, after a time interval τ , the density matrix at the output of
the gate ρ̂(τ) is given by

ρ̂(τ) = eτLρ̂. (3.23)
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Figure 3.8: Absolute value of the elements of the error matrices χerr (normalized by
the characteristic error magnitude γτ) after the continuous-time evolution described in
section V. In panel (a), the system is subject to dissipation (Ĵi = √

γσ−
i ) and in panel

(b) to decoherence channels (Ĵi = √
γσzi ). Here γ/δ = 10−3. For each error matrix the

element χ11 has been set to zero for readability (for such weak values of γ, χ11 ∼ 1).

One can always separate the unitary and dissipative parts of L to obtain

ρ̂(τ) = EG
[
ÛG(τ)ρ̂Û †

G(τ)
]

≡ EG(ρ̂ÛG
), (3.24)

where we have defined the density matrix after the ideal unitary process ρ̂ÛG
= ÛG(τ)ρ̂Û †

G(τ),
with ÛG(τ) the time evolution operator that corresponds to the application of Hamilto-
nian ĤG for time τ , and EG a non-unitary map. In cases where D and U commute, one
explicitly has ÛG(τ) = e−iĤGτ and EG = eτD, for the unitary and the error processes, re-
spectively. However, in general, obtaining EG is non-trivial, and experimentally one would
need to perform a tomography on each gate to determine its exact error process: this is
known as quantum process tomography [166].

Here we numerically simulate the quantum process tomography of a controlled phase
gate of duration τ = π/2δ, δ being the Rabi frequency of the qubits. To do so, we
decompose the error process E in the Pauli basis as:

ρ̂(τ) = E(ρ̂CRπ/2) =
∑
m,n

χerr
mnP̂mρ̂CRπ/2P̂

†
n, (3.25)

with ρ̂CRπ/2 the output density matrix corresponding to an ideal controlled phase gate,
P̂n ∈ {I,X, Y, Z}⊗2 the generators of the Pauli group on 2 qubits and χerr the error
matrix that completely characterizes the error process and that we aim at numerically
determining.

In Fig. 3.8, the error matrix corresponding to a noisy CRπ/2 gate is shown for two
different cases. Panel (b) corresponds to a Lindblad evolution with jump operators Ĵi =√
γσ̂−

i , and panel (a) corresponds to a Lindblad evolution with jump operators Ĵi = √
γσ̂zi .

By using a Choi decomposition [167], one can numerically estimate the error matrix that
recovers the density matrix ρ̂(τ) of the realistic Lindblad evolution. In the first case,
Ĵi = √

γσ̂−
i was considered, which does not commute with the Hamiltonian. This leads
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to a complex error process accounting for the spatial propagation of local errors upon
(non-local) Hamiltonian time evolution. In this case, this manifests through the presence
of single- and two-qubit error events with different magnitudes in the components of the
error matrix. Similar error matrices have also been found experimentally [150]. Each
non-negligible element corresponds to a Kraus operator to be applied after the ideal gate
in the digital-error approach. While two local jump operators suffice to describe the
qubit-environment interaction, up to 16 Kraus operators could be necessary in such an
approach. Note that the noise process acting on two qubits at the same time generally
has a smaller magnitude, which can justify that one can neglect them for low-depth
circuits (the quantum Fourier transform has L(L + 1)/2 gates, meaning these errors can
accumulate in the long run). By contrast, in panel (b) pure-dephasing jump operators were
considered, Ĵi = √

γσ̂zi , which commute with the controlled phase Hamiltonian. Hence,
the error process only involves Z errors in this case, although not strictly local (notice
the ZZ component).

As appears from the above discussion, modeling errors in continuous time is of funda-
mental and applied importance for the following reasons:

(1) The errors induced by the presence of local dissipative events, as captured by local
jump operators, cannot be accounted for via local noise gates, and are affected by
the applied Hamiltonian, an effect that is generally not described by digital error
models. For d-qubit gates, the number of noise gates to be applied goes up to 4d in
a digital-error approach.

(2) For circuits such as the quantum Fourier transform, there are L controlled rotation
gates that are applied for different times, hence one would need to perform tomo-
graphy on each of them to recover their error matrices (as well as for the Hadamard
gate). For multi-qubit gates such as the Toffoli gate, tomography becomes even
more expensive.

(3) Characterizing the jump operators of an experimental platform is much easier than
performing tomography to obtain the error process for each gate. For example, in
the case of superconducting circuits, measuring the T1 and T2 relaxation times is
enough.

(4) Our method is also able to treat collective dissipative processes described by jump
operators such as Ĵz = (1/

√
L)∑i σ̂

z
i [168, 169]. This corresponds to a single Kraus

operator in our method, and is hence inexpensive. With a digital error model, de-
scribing collective effects would require to perform tomography on a L-qubit system,
which is intractable since it requires O(4L) measurements.

VI Conclusion
We investigated the role of dissipation and decoherence in noisy intermediate-scale quantum
circuits. Focusing on the key algorithm of the QFT, we revealed the scaling behavior for
the fidelity and explored its dependence on the initial state. To achieve this goal, we have
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introduced and demonstrated a numerical time-dependent corner-space method that per-
forms a judicious compression of the Hilbert space to faithfully represent the system
density matrix. The method is not limited by entanglement and is suitable for systems
with moderate entropy. Furthermore, our approach could be combined with efficient rep-
resentations of the corner-space wavefunctions, such as neural-network ansätze [170–173].
These qualities make our approach ideally tailored for the NISQ era, where the noise
processes will become weaker as progress is made. This provides a new tool to improve
our understanding of quantum hardware. The presented method can indeed be applied in
many contexts related to quantum information: algorithm design for quantum feedback
[174], machine learning for quantum control [175] and quantum error mitigation [176].



4 Neural-network quantum states

In section 1, we have seen that there exists a plethora of methods to simulate quantum sys-
tems, both in closed and open settings. Each methods has its strengths and weaknesses;
for instance mean-field methods are computationally extremely efficient while they poorly
represent entanglement. Tensor networks slightly improve on this, being more resource-
intensive but accurately representing area-law entangled states. Finally, corner methods
have less limitations on entanglement, but deal poorly with high-entropy quantum sys-
tems. In this chapter, we present neural quantum states (NQS), a new class of methods
that enable to treat systems in the strongly correlated regime, with a higher representative
power than tensor networks. These methods are based on machine learning algorithms,
more precisely on generative models.

I Introduction
Since LeCun’s revolutionary paper on image classification in the 1990s [177], the broad
field of machine learning has exploded. It can perhaps be considered as the latest tech-
nological revolution, nowadays permeating every field of science and having immense
commercial impact. Its impact on physics has already been considerable [21]. In the
braodest sense, machine learning consists in building algorithms that are not symbolic-
ally written: for instance, in the AlphaGo program [178], the instructions of how to play
Go are not explicitly programmed, only a general purpose architecture is built-in, and it is
only through some training procedure that the performance of the algorithm can become
satisfying.

Generative models have recently been at the forefront of machine learning research.
These models enable to reconsitute objects of a certain class from having observed a large
number of instances of objects of this class. For instance, after observing a large number
of human faces, new realistic faces can be constructed [179]. As such, one can claim the
function corresponding to generating a realistic face will have been learned. The same
idea has been applied to language processing, where models are now able to complete
sentences in a high-fidelity and realistic fashion, thus being able to write, e.g., newspaper
columns [180].

It is therefore a somewhat natural question to ask if such powerful models could help
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for our understanding of complex many-body systems. Wavefunctions are indeed high-
dimensional objects that must carry some structure, much like images and language. In
this context, neural quantum states (NQS), a variant of generative models, that consist in
finding faithful low-dimensional representations of many-body wavefunctions by a neural
network were introduced [181]. Many important applications of NQS have been explored,
including finding the ground state [182, 183], investigating the dynamics of strongly cor-
related systems [184, 185], quantum tomography [186], open quantum systems [187–190]
and classical simulation of quantum circuits [191, 192]. In fact, NQS have proved to be
the most accurate variational method in approximating the J1–J2 model’s ground state
in the frustrated regime [183]. In addition, several works have recently demonstrated the
superior capacity of some neural-network architectures over tensor-network states in rep-
resenting volume-law entangled states [193, 194] or area-law entangled states in 2D [195].
All these results indicate that NQS will become a standard tool to numerically study
many-body systems in the coming years.
In this chapter, we introduce neural quantum states as well as applications to simulating
dynamics of closed and open quantum systems. In section II, we introduce the task of
generative modeling, and how its building blocks can be applied to learning quantum
states. In section III, we present present Monte-Carlo Markov chains and their applica-
tion to NQS. Then, we show how many-body wavefunctions are represented in practice
in section IV, and present a few of the main architectures for NQS that were introduced
in recent years. The question of their expressive power, or capacity, with respect to other
approximation methods will be examined in section V.
We then turn to results obtained for the dynamics of many-body systems using NQS in
section VI. We present some of the issues that can occur when trying to propagate an
NQS in time, and provide an alternative solution for these problems. As such, we are able
to obtain results for the Kibble-Zurek mechanism in large two-dimensional lattices, and
can compare these results to state-of-the-art numerical methods.
Finally, in section VII, we present the application of NQS to open quantum systems. We
explain why it is general trickier to construct an NQS for a density matrix, and present
some of the solutions to these issues that have been developed recently. One of these
solutions, that will work well for low-entropy systems, is to use a low-rank representation
of the density matrix and to represent each state of its corner basis by an NQS.

II Generative models

Let us start by introducing the basic ingredients of generative modelling. A generative
model is a statistical model fθ, that depends on a set of variational parameters θ, of a
function f that operates on elements x of a configuration space X . For simplicity, we
will consider a discrete configuration space in what follows, with N the total number of
configurations. As such, the goal of generative modelling is to find the statistical model
fθ that approximates the function f as best as possible. This means that at the end of
the execution of some training algorithm

D (fθ, f) = ϵ, (4.1)
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with ϵ → 0 if the number of training steps goes to infinity with a carefully selected
distance measure D, provided the generative model fθ has enough representative power1.
For instance, a commonly used distance measure in machine learning is the mean square
error [196]:

D (fθ, f) =
xN∑
xi

(fθ(xi) − f(xi))2 (4.2)

which we see approaches 0 as fθ → f . To minimize this, one can use many different
algorithms, that are all variants of gradient descent. Gradient descent consists in cal-
culating the gradient of the distance, and updating the variational parameters so as to
follow the steepest descent of the distance in the variational space. The update rule for
the parameters θ is given by:

θn+1 = θn − η∇θD(f, fθ), (4.3)

where η, known as the learning rate, is a hyperparameter that is adjusted for better
convergence, and n denotes the nth iteration of the training procedure.
In practice, the number N of possible configurations may be exponentially large, hence the
sum in Eq. (4.2) can become intractable. One must therefore approximate the distance
D as well as its gradient. We can therefore identify two major requirements to perform
generative modelling:

1. The evaluation of fθ(x) must be tractable.

2. The sums appearing in D(f, fθ) and ∇θD(f, fθ) must be tractable or made tractable
by approximation.

Before presenting how these requirements are fulfilled in practice, let us specialize the
discussion to quantum states.
In the general case, one wishes to approximate a certain quantum state |ψ⟩. The generative
model, also known as neural quantum state (NQS) will therefore be denoted by |ψθ⟩ in
the rest of the chapter. Throughout the chapter we will restrict the discussion to spin
systems, where spin configurations s = (σ1, σ2, . . . , σL) are associated to states |s⟩ that
belong to a Hilbert space H. |ψθ⟩ and |ψ⟩ can be expanded in the basis spanned by these
states as:

|ψ⟩ =
∑

s

ψ(s) |s⟩ (4.4)

|ψθ⟩ =
∑

s

ψθ(s) |s⟩ . (4.5)

The functions ψ and ψθ operate on vectors s and the resulting amplitudes ψ(s) and
ψθ(s) are complex numbers. Thus the generative model is fully specified by its amp-
litudes ψθ(s), that form a 2L vector of complex numbers. Note that the requirement that
ψθ(s) be tractable means that the number of variational parameters θ must be polynomial
in the system size, or else computing amplitudes will include a super-polynomial number

1We will come back to question in section V.
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of operations.

Originally, these ideas were applied to finding the ground state of a many-body
Hamiltonian Ĥ. In this case, the cost function to minimize is the energy, given by

Eθ = ⟨ψθ|Ĥ|ψθ⟩
⟨ψθ|ψθ⟩

. (4.6)

As the energy converges to its minimum, |ψθ⟩ → |ψ0⟩, with the ground state defined by
Ĥ |ψ0⟩ = E0 |ψ0⟩. By doing this one effectively learns the ground state. The expression
for the expectation value of any operator Â can be written in the following form, for a
given NQS |ψθ⟩:

⟨Â⟩ = ⟨ψθ|Â|ψθ⟩
⟨ψθ|ψθ⟩

(4.7)

=
∑
s,s′⟨ψθ|s⟩⟨s|Â|s′⟩⟨s′|ψθ⟩∑

s |⟨ψθ|s⟩|2
(4.8)

=
∑
s⟨ψθ|s⟩ ⟨s|ψθ⟩

⟨s|ψθ⟩
∑
s′⟨s|Â|s′⟩⟨s′|ψθ⟩∑

s |⟨ψθ|s⟩|2
(4.9)

=
∑
s |⟨ψθ|s⟩|2∑s′⟨s|Â|s′⟩ ⟨s′|ψθ⟩

⟨s|ψθ⟩∑
s |⟨ψθ|s⟩|2

. (4.10)

Two main terms can be identified:

P (s) = |⟨ψθ|s⟩|2∑
s |⟨ψθ|s⟩|2

(4.11)

Aloc(s) =
∑
s′

⟨s|Â|s′⟩⟨s′|ψθ⟩
⟨s|ψθ⟩

. (4.12)

where Aloc(s) is the so-called local estimator of Â. Therefore, the expectation value of
an observable Â can be written as the expectation value of its local estimator Aloc over
the probability distribution P (s):

⟨Â⟩ =
∑
s

P (s)Aloc(s) = ⟨Aloc⟩P . (4.13)

Let us stress that these calculations are feasible for operators with the property that
the number of states s′ such that the elements |⟨s|Â|s′⟩| ≠ 0, for arbitrary s is at most
polynomial in the number of spins. This is known as k-locality, with k the maximum
number of sites a single term in the Hamiltonian acts on (for the transverse-field Ising
model, k = 2). Conversely, evaluating Aloc(s) would not be tractable, given that the
sum over s′ in 4.12 would be over an exponential number of elements. By defining the
logarithmic derivatives, Ok(s) = ∂θk

ψθ(s)/ψθ(s), the components of the gradient can be
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calculated straightforwardly:

∂θk
⟨Â⟩ = ∂θk

∑
s,s′ ψ∗

θ(s) ⟨s|Â|s′⟩ψθ(s′)∑
s |ψθ(s)|2

=
∑

s,s′ ψ∗
θ(s) ⟨s|Â|s′⟩Ok(s′)ψθ(s′)∑

s |ψθ(s)|2 +
∑

s,s′ ψ∗
θ(s)O∗

k(s) ⟨s|Â|s′⟩ψθ(s′)∑
s |ψθ(s)|2

− ⟨Â⟩
∑

s |ψθ(s)|2(Ok(s) +O∗
k(s))∑

s |ψθ(s)|2 ,

which implies ∂θk
⟨Â⟩ = ⟨AlocO

∗
k⟩ − ⟨Aloc⟩⟨Ok⟩ + c.c. (4.14)

III Monte-Carlo Markov Chains
To calculate these quantities in order to perform gradient descent, one needs to truncate
the sum over s in Eq. (4.13) for it to become tractable. A way to do this is to obtain
samples according to P , so as to have a correct estimation of the averages in the expression
of the gradient. This will lead to averages given by

⟨Â⟩ ≈ 1
M

M∑
i=1

Aloc(s(i)), (4.15)

where s(i) are samples drawn according to P . The statistical error associated with such
an estimate scales as ε ∝

√
σ2/M , and it is bounded as long as the variance σ2 of Aloc

is finite2. For instance, when Â is a k-local spin operator with bounded coefficients, its
variance is strictly finite.3 Therefore, the error in the estimate of expectation values
decreases as ε ∼ 1/

√
M , which allows us to reach arbitrary accuracy in the estimation by

increasing the number of samples M , given that limM→∞ ε = 0. However, generating a set
of samples according to the Born distribution, {s(i)} ∼ P (s), is in general a non-trivial
computational task in the case where the variational ansatz, Ψθ(s), is parameterized by
an efficiently computable, yet arbitrary function. One of the most commonly adopted
strategies to sample from P (s) is through Markov chain Monte Carlo [197] methods,
including the Metropolis-Hastings method [198], which generate a sequence of correctly
distributed samples s(i).

Metropolis-Hastings methods construct a markovian stochastic process which satisfies
the detailed balance condition for the target probability distribution

P (s)T (s → s′) = P (s′)T (s′ → s) , (4.16)

where T (s(i) → s(i+1)) is the probability that the state s(i) at step i transitions to the state
s(i+1) at the following step. As the process is Markovian, the transition probability at

2If Aloc is Gaussian, then the error is equal to
√
σ2/M .

3When |ψθ⟩ approaches an eigenstate of Â, it can be shown that the variance vanishes. Consequently,
considering Â = Ĥ, the statistical error vanishes as we approach the ground (or any excited) state. This
is known as the zero-variance property, and is convenient for ground state search as it means the variance
of the error will vanish as the solution is approached, thus ensuring a well-behaved training procedure.
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every step depends exclusively on the current configuration. Assuming that the process is
ergodic, the detailed balance condition ensures that, regardless of the initial configuration
s(0), the sequence eventually converges to the correct distribution P (s) in the long time
limit.

One possible choice of the transition probability T is given by the Metropolis-Hastings
algorithm [198]. The main idea is to express T in terms of a local transition kernel T and
an acceptance probability A such that

T (s → s′) = T (s → s′)A(s → s′) . (4.17)
This way, we split the global stochastic process into the product of two local subprocesses
that we can compute efficiently. For instance, it is very easy to find a normalized local
transition kernel that allows us to modify only a few degrees of freedom, like flipping
a single spin in a given configuration. Conversely, it is hard to find a normalized global
kernel that would act on all spins.

The acceptance probability to go from a configuration s to s′ through a local transition
is defined as

A(s → s′) = min
(

1, P (s′)T (s′ → s)
P (s)T (s → s′)

)
. (4.18)

Notice that the normalization of the Born probabilities cancel out, giving the tractable
expression

P (s′)
P (s) =

∣∣∣∣∣⟨s′|ψθ⟩
⟨s|ψθ⟩

∣∣∣∣∣
2

, (4.19)

which allows us to consider unnormalized variational ansätze. Therefore if the variational
state is computationally tractable, the transition probability is also tractable.

Choosing a valid transition rule T (s → s′) is important, particularly in the case of
systems whose states obey certain symmetries. For example, if the total magnetization
along the direction of the computational basis is known, it may be fixed during the
sampling procedure, and we can use a transition rule that does not project the Markov
chain outside of a certain region in Hilbert space. For ground state search, a somewhat
expensive yet effective choice for the transition kernel is to use the Hamiltonian itself:

T (s → s′) =

∣∣∣⟨s|Ĥ|s′⟩
∣∣∣(1 − δs,s′)∑

s′ ̸=s

∣∣∣⟨s|Ĥ|s′⟩
∣∣∣ , (4.20)

which is known as the Hamiltonian transition rule [181].

Finally, note that obtaining samples through Markov chains yields issues, as the
samples are generally correlated. In addition, since the proposed moves are generally
local, this can fail terribly for states that have multimodal distributions in Hilbert space.
We will come back to these issues while discussing direct sampling in the next section.

IV Representing the wavefunction
Now that we have seen how to compute the quantities of interest using parametrized
quantum states, let us dive into how to devise expressive variational states in practice. The
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main idea is that we need to represent high-dimensional functions with a parametrization
that is flexible and general enough to describe physical systems, while involving only
a polynomial amount of parameters.

Traditionally, researchers have relied on physically-inspired variational ansätze. An
extension of the mean-field ansätze presented in the introduction is the Jastrow wave
function [199, 200], which stands out as one of the most successful and widely used ones
for quantum chemistry. It is based on the assumption that two-body interactions are the
most physically relevant, and it assigns a trainable potential to every interacting pair.
Formally, the Jastrow wave function is given by:

ψJθ (s) = e− 1
2
∑

i ̸=j
θijσiσj , (4.21)

where the sum runs over all possible spin pairs, and θij are the parameters encoding
pairwise spin correlations. Therefore, for a system of L spins, the resulting wave function
has L2 parameters. Moreover, in translationally invariant systems, the parameters θij
can be made depend exclusively on the distance between i and j, resulting in a reduced
number of parameters L.

To design more general variational ansätze, one can use neural networks. In this case,
ψθ(s) corresponds to the output of a neural network, that takes the configuration s as
input in the form of a vector. In a feed-forward neural network of depth D, every layer
l consists of a nonlinear activation function g(l) that acts, component-wise, on a vector
resulting from applying the weight matrix W (l) to the output of the previous layer. This
way, it is possible to write the variational state as the composition of operations g(l)⊙W (l),
where ⊙ indicates point-wise operation, such that

ψθ(s) = g(D) ⊙ W (D) . . . g(2) ⊙ W (2)g(1) ⊙ W (1)s . (4.22)

Hence, the output is a complex scalar representing the probability amplitude of configur-
ation s.

From a mathematical perspective, these ansätze are of great interest given that neural
networks are subject to universal representation theorems [201]. Consider a neural net-
work without nonlinear activation functions. The function realized by such a network
is a simple affine map that consists of multiplying the input by a weight matrix and
adding to it an additional bias vector. This is evidently not enough to represent nonlin-
ear functions. Thus, the addition of nonlinear activation functions is crucial for neural
networks to be able to represent a larger class of functions. Kolmogorov and Arnold [201]
have shown that any arbitrary continuous high-dimensional function can be expressed as
a linear combination of the composition of a set of nonlinear functions

f(x) =
2m∑
i=0

ζi

 m∑
j=1

ςi,j(xj)
 , (4.23)

where ζi, ςi,j are nonlinear functions that act on the individual components of the input
x ∈ Rm. This means that we could represent any function f(x) with a polynomial number
O(m2) of one-dimensional nonlinear functions. This strongly resembles the structure of
a neural network with two hidden layers. Note, however, that the nonlinear functions
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must be carefully chosen depending on the target function. In most machine learning
architectures, the nonlinearities are typically fixed, i.e. ζi = ςi,j ∀i, j. It turns out that
fully-connected neural network composed of a single hidden layer and nonlinear activation
functions are also universal function approximators. That is, given that the target function
is reasonably well-behaved it can be approximated to any desired accuracy given that
its hidden layer contains enough nodes [196, 202, 203]. Note that this may still require
a hidden layer that is exponentially large in the number of nodes. This raises the question
what one can achieve with neural networks that have multiple hidden layers.

The universal approximation theorem guarantees that there exists a neural network,
i.e., choice of the architecture, which approximates the given target function arbitrarily
well. However, it does not guarantee that we are able to find this choice. It turns out that,
in practice, deep neural networks are capable of solving many problems with much less
nodes, i.e., trainable parameters, compared to shallow neural networks. However, these
results hold for arbitrary nonlinear functions, ζi, ςi,j in 4.23, that must be appropriately
found in order to represent the target function. In practice, neural networks use a fixed
nonlinear activation, and we can only adjust the number of operations. In these cases,
the number of neurons does not have a strict polynomial scaling and it can be, in the
worst case, exponential in L [202]. Nevertheless, the state-of-the-art results in computer
vision and natural language processing [180, 204, 205] should be sufficient motivation to
employ similar techniques to represent quantum states. In recent years, a large number of
variational ansätze based on neural networks have also been developed for fermionic [206,
207] and bosonic systems [208, 209].

IV.1 Restricted Boltzmann machines
NQS were first introduced using restricted Boltzmann machines (RBMs) [181]. RBMs are
shallow models featuring two fully-connected layers: a visible layer, consisting of L units,
and a hidden layer, consisting of M units. A scheme of an RBM architecture is presented
in 4.1. The wave function amplitudes of an RBM ansatz are given by:

Ψθ(s) =
∑

h

eb†
vs+b†

h
h+h†W s. (4.24)

where s,h represent the visible and hidden units, respectively, and the parameters θ =
{bv, bh,W } represent the visible and hidden biases and the weight matrix, respectively.
In the NN picture, the RBM is a single-layer nonlinear feed-forward NN, with the visible
units serving as inputs and the exponential serving as the activation function.

By construction, RBMs are designed in such a way that computing the summation
over hidden units, as in Eq. (4.24), can be done analytically. To see this, we can rewrite
Eq. (4.24) in a tractable form considering binary hidden units hi ∈ {−1, 1}, leading to

ψθ(s) = eb†
vs

M∏
i=1

2 cosh (bh,i + W i·s) , (4.25)

where bh,i and W i· denote the i-th hidden bias and weight matrix row, respectively. To
treat spin systems, the visible units will represent the N physical spins, thus the input of
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Figure 4.1: Pictorial representation of a RBM that represents the wave function of an L-
spin system, with s = (σ1, σ2, . . . , σL) and h = (h1, h2, . . . , hd) the hidden units. Adapted
from [22].

the RBM is simply the spin configuration s. In this way we obtain an analytical expression
to evaluate the amplitude for a given spin configuration, and thus represent the full wave
function with this ansatz. One can also interpret the hidden units as M hidden spins, and
in this picture the RBM can be thought of as an interacting spin model with interaction
strengths Wij. Moreover, we can treat an RBM as a model with an associated energy
depending on its parameters, input, and hidden spin values. This is known as an energy-
based model, and explains why input biases are present in Eq. (4.24). In fact, the RBM
is equivalent to a Hopfield network, a type of spin glass [210].

Being the first to be introduced in this context, most of the early works about NQS
employ RBMs, but other architectures have been explored in more recent years, that we
present in the next section. The capacity of RBMs and its relationship to quantum entan-
glement has been examined in various works [211, 212]. An extension of this architecture,
the deep RBM, has also been introduced to solve more complex problems [213], which
consists in stacking more than two fully connected layers.

IV.2 Autoregressive neural networks
Autoregressive neural networks can also be used for constructing NQS, as introduced
in [182] and applied to both quantum [214] and classical problems [215]. Their main
advantage is that the wave function outputs of such models are normalized, allowing for
direct sampling, which is easier to parallelize than Markov chain Monte Carlo and leads
to independent samples. A pictorial representation of both the network and the sampling
algorithm is presented in 4.2. Here, the many-body wave function is expressed in terms



70 Chapter 4. Neural-network quantum states

(a)

σ1

σ2

σ3

σ4

In ψ1

In ψ2

In ψ3

In ψ4

In ψi (σi | ...)Σi

NEURAL AUTOREGRESSIVE 
QUANTUM STATE

Spins Masked Convolutions l 2- normalization
(in log-space)

Normalized
Wave Function

Step 1

(b) SAMPLING (σ1,...,σ4) ~ | Ψ(σ1,...σ4)|2

~σ1

Step 2

~σ2

σ1

Step 3

~σ3

σ1

σ2

Step 4

~σ4

σ1

σ2

σ3

Figure 4.2: Example of an ARNN quantum state for four spins. (a) Pictorial represent-
ation of the network. The arrows representing the weights of the model are skewed in
order not to break the conditional structure of the output probability distribution. These
layers are “masked”, due to some connections being deleted. (b) Sampling algorithm.
One samples consecutive spins using direct sampling on the conditional probabilities at
each step. From [22].

of a product of conditional complex amplitudes:

ψθ(s) =
L∏
i=1

ϕi(σi|σi−1, . . . , σ1) , (4.26)

which is subject to the normalization condition ∑
σ

∣∣∣ϕi(σ|σi−1, . . . , σ1)
∣∣∣2 = 1. With this

kind of architecture, we can compute expectation values by directly sampling state config-
urations instead of building a Markov Chain through the Metropolis-Hastings algorithm.
This is done by iteratively sampling one spin after the other: we start sampling the first
spin σ1 from the reduced probability distribution |ϕ(σ1)|2. Then, we sample the second
one σ2 according to the conditional probability distribution |ϕ2(σ2|σ1)|2, then the next one
|ϕ(σ3|σ2, σ1)|2, and so on until σN . This sampling procedure is embarrassingly parallel.4

This sampling procedure yields independent identically distributed samples. Con-
versely, Markov chain Monte Carlo methods may suffer from highly correlated consecutive
samples, which is problematic for complex probability distributions, e.g. that are far from
Gaussian. Markov chain Monte Carlo methods such as the Metropolis-Hastings algorithm,
generally rely on performing modifications to the spin configurations to sample subsequent
states. Therefore, this process could yield highly correlated consecutive samples that may
have a negative impact on the results. In order to compute expectation values, we need to
estimate the autocorrelation time to draw uncorrelated samples from the resulting chain.
Moreover, when approaching a phase transition, such methods suffer from critical slowing
down, making the sampling of uncorrelated configurations unfeasible in many situations.

4We can use the intermediate conditional probabilities to draw samples for a low computational cost,
e.g., use the probabilities for N − 1 spins and sample from the last one, to obtain new samples; with
Markov chain Monte Carlo we cannot do this.
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Consider a quantum state that spans several separated regions in the Hilbert space, where
the probability is concentrated. In this case, Markov chains generally remain stuck in one
of the regions, given that it must take several penalizing steps to travel from one to
another, resulting into a highly inaccurate sampling. In contrast, the direct sampling
procedure can seamlessly draw spin configurations belonging to all the regions according
to the probability distribution, yielding much better samples.

Let us finish by mentioning that a plethora of different architectures have been im-
plemented as NQS in recent years, such as convolutional neural network wave functions
[184], and, more recently, group convolutional neural networks [216], which are especially
convenient to implement certain symmetries directly built-in to the wave function.

IV.3 The gated recurrent unit ansatz
An ansatz that we will employ in section VI is the gated recurrent unit (GRU) ansatz, a
type of recurrent neural network (RNN). This ansatz is autoregressive, and its conditional
amplitudes are obtained through the following transformation, which depends on si, the
local spin, and hi−1, the hidden unit coming out of the previous recurrent cell:

ϕi(si,hi−1) := GRU(si,hi−1) = A(si) exp{iφ(si)}, (4.27)
A(si) = ς(UAhi + bA), (4.28)
φ(si) = ςς(Uφhi + bφ), (4.29)

where ς and ςς denote a softmax and softsign transformation respectively, and where we
have defined the conditional modulus A(si) and phase φ(si) that depend on matrices UA

and Uφ respectively, which each contain variational parameters. The hidden vector hi is
given by

hi = (1 − zj) ⊙ hi−1 + zj ⊙ h̃j, (4.30)

with the latent hidden vector h̃j given by

h̃j = tanh
(
W̃[rj ⊙ hj−1, sj] + b̃

)
(4.31)

and the update gate zj and reset gate rj:

zj = sig (W z[hj−1; sj−1] − bz) , (4.32)
rj = sig (W r[hj−1; sj−1] − br) , (4.33)

where sig denotes the sigmoid funtion and where we have defined the matrices W̃ ,W r,W z

and bias vectors b̃, br, bz which are all variational parameters. [hj−1; sj−1] denotes a
concatenation of vectors hj−1 and sj−1, the latter corresponding to the one-hot encoding
of the local spin configuration sj−1. The important point here is that the total number
of variational parameters scales quadratically with the dimension of the hidden vector
dh, since the W matrices each contain dh × (dh + 2) variational parameters for a one-hot
encoding of the local spins si. One can see from this transformation that the GRU ansatz
naturally respects the autoregressive property.
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Figure 4.3: Pictorial representation of a recurrent neural network architecture for NQS.
Panel (a) is for real-valued wave functions, which can be relevant for a certain class of
problems, and panel (b) is for complex-valued wave functions. In both schemes, a local
spin configuration si and a hidden vector hi are fed into an RNN cell, which performs
a nonlinear transformation. Then an activation function (ς, for softmax and/or ςς, for
softsign) is applied to obtain the final probability and/or phase corresponding to the
configuration. At the end, the probabilities (and phases) are combined to obtain the final
wave function amplitudes ψ(s).

V Capacity and entanglement

A natural question arises regarding the expressive capacity of NQS and how different
model architectures compare to each other in this respect. In particular, understanding
how they compare to tensor network methods is crucial, as it would be natural that there
is some limit, perhaps stemming from entanglement structure as for tensor networks.
However, as is common in machine learning, this question is tricky to answer. A point we
do not cover here but that is also important is that trainability is also a common issue
for machine learning methods: an ansatz may be highly expressive but not so trainable,
hence in practice it will not be useful.

Tensor networks have been a recurrent tool to study many-body systems. They are
now well established and characterized, and their limits are well understood, hence they
constitute a conceptual framework to study the complexity of quantum states. For this
reason, there has been a significant community effort to study the relationship between
tensor network states and NQS [194, 212, 217] , which provides insight about the ex-
pressive capacity of NQS [193]. Following the first introduction of NQS implementing
RBM [181], early works focused on finding direct relationships between various kinds of
RBM-based states and tensor network states [212, 217]. Recently, it has been proven that
NQS can efficiently approximate, in logarithmic space, all efficiently contractible tensor
network states with arbitrary precision [194]. Therefore, for every tensor network state
there exists an equivalent NQS of polynomial size. Conversely, there are quantum states
that can be efficiently described by NQS, whose representation in terms of tensor networks
requires an exponential amount of parameters. Hence, tensor network states are a subset
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Figure 4.4: Expressive capacity of different classes of variational states, as explicitly
proven in Ref. [194] by mapping tensor networks to NQS. PEPS* refers to a sub-class
of projected entangled pair states, a generalization of MPS for two-dimensional systems.
Adapted from [194].

of NQS [194], as depicted in 4.4.
More precisely, one study the entanglement scaling captured by the different ansätze.

In a generic quantum many-body system with density matrix ρ, the entanglement entropy
is defined as

S(ρ̂) = −Tr [ρ̂ log2 ρ̂] , (4.34)
which is zero for any pure state. Let us consider a partition of the system in two subsets:
I and its complementary O, as well as the reduced density matrix ρI = TrO[ρ]. In general,
ρI represents a mixed state, which can have nonzero von Neumann entanglement entropy.
For a generic quantum state, the entanglement entropy of ρ̂I grows with the volume of the
cut. Thus, it corresponds to a volume-law scaling. NQS can efficiently capture such scaling
with architectures ranging from very basic shallow ones, such as RBM [211], to more
modern and deeper approaches, such as convolutional neural networks or RNNs [193].

We can understand most differences between the ansätze at an intuitive level by,
simply, looking at how they are built. In 4.5, we provide a pictorial representation of the
different connections that some ansätze can draw in a bi-dimensional system. Clearly,
the MPS ansatz, depicted in 4.5(b), is the most locally restricted one, as it can only
account for nearest neighbour connections in a snake-like pattern. This effectively limits
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(b)(a)

(d)(c)

Figure 4.5: Schematic representation of various ansätze inspired by [217]. (a) The Jastrow
ansatz draws connections between all possible pairs of sites. (b) The MPS ansatz draws
connections between nearest-neighbour sites along a line. (c) The RBM ansatz connects
all the sites to every hidden neuron, illustrated in different colours. (d) The RNN ansatz
processes the state sequentially, following the green arrows. The dark blue arrows indicate
the flow of information within the model. Arrows without a starting site correspond to
free parameters. Sketch inspired by [218].

the entanglement that MPS can capture. The RNN ansatz, illustrated in 4.5(d), while
it is limited to parse the state in the same pattern as the MPS, it has the freedom to
account for additional information, allowing it to capture richer correlations.

In contrast, other ansätze such as the Jastrow or RBM wave functions, respectively
illustrated in 4.5(a) and (c), can draw connections between arbitrary sites. The Jastrow
ansatz can account for all possible pairs in the system, regardless of the distance. Then,
the RBM anstaz is a generalization of the Jastrow by means of an auxiliary hidden layer
of variable size. Through the hidden neurons, the ansatz is no longer limited to pairs,
and it can actually consider up to all-to-all connections. This non-local character allows
them to capture volume-law entanglement.
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VI Dynamics of closed systems with NQS
We now turn to the application of NQS to dynamics of nonequilibrium quantum systems.
Impressive results for the transverse-field Ising model on large lattices have been obtained
using convolutional neural networks [184]. It is therefore of particular interest to con-
tinue investigating such problems that could yield important insights into nonequilibrium
phenomena. In particular, studying the quantum Kibble-Zurek mechanism in higher di-
mensions has remained relatively untouched [219], and NQS is deemed to be employed
for the dynamics of time-dependent finite-size systems.
While most previous works focus on the restricted Boltzmann machine (RBM) ansatz,
more recent works on ground state search have employed networks that are closer to the
state-of-the-art in machine learning such as autoregressive convolutional models [182] or
recurrent neural networks [220], for which the accuracy of the variational ground state
energy was significantly improved. These networks have a so-called autoregressive struc-
ture, which means that one can perform direct sampling of uncorrelated configurations
for arbitrarily large system sizes, thereby reducing the number of required samples. It
is therefore of crucial importance to investigate the use of similar networks for quantum
dynamics.

However, the widespread application of more complex and autoregressive neural net-
works for quantum dynamics has been held back by issues arising with time-dependent
variational Monte-Carlo (t-VMC) [221]. This procedure, used to propagate an NQS in
time, involves the inversion of a stochastically constructed singular matrix, which makes
it particularly prone to noise. While some regularization techniques have helped improv-
ing the accuracy of the method [184, 222], accessing all regimes at long times via t-VMC
remains a challenge [22, 222–224].

In this section, we show that the stability of t-VMC strongly depends on the chosen
ansatz, and that, in particular, it fails when applied to those based upon recurrent neural
networks (RNN). To circumvent this issue, we propose an alternative scheme to numeric-
ally solve the dynamics of quantum systems. The scheme consists in casting an arbitrary
Runge-Kutta integration scheme of any order into minimizing a variational distance at
each time step, while only involving a polynomial overhead. This enables one to employ
recurrent neural networks for quantum dynamics, which leads to a drastic reduction the
the number of required samples. Our scheme can be implemented for any order of a chosen
integration method, for a polynomial overhead in memory. We then apply our scheme to
both time-dependent and sudden quenches, enabling one to recover Kibble-Zurek scaling
laws for large system sizes and high precision on the dynamics during the full quench.

VI.1 Issues with t-VMC

In order to propagate a NQS in time according to some Hamiltonian Ĥ, one should
minimize the following variational distance:

D(θ̃) = dist
(
|ψθ̃⟩ , exp

{
−iĤτ

}
|ψθ⟩

)
(4.35)

over the variational parameters θ̃ after each time step τ . By expanding |ψθ̃⟩ as a Taylor
expansion in the variational parameters to obtain the following equation to be solved at
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Figure 4.6: (a): Scheme of the GRU ansatz for a two-dimensional system of L = 4 spins
with open boundary conditions. The system is subject to the TFI Hamiltonian, and
configurations are fed into GRU in an autoregressive fashion, each cell being fed with a
hidden vector hi,j and a spin σi. After the GRU cell, a softmax (ς) and a softsign (ςς)
transformation are applied to obtain the amplitudes and the phases of the conditional
amplitudes ϕi(σi|σi−1, .., σ1). (b) Spectra of the quantum geometric tensors S for different
ansätze optimized to the ground state of the TFI model, for various values of g/J . The
left panel is for a complex RBM ansatz with α = 2, the central panel for a two three
layer convolutional autoregressive network with complex parameters (ARNN), and the
right panel for a GRU ansatz with real parameters with dh = 10, for which is plotted
the spectrum of the imaginary part of the S matrix, as this is the quantity to invert for
ansätze with real parameters.

each time step, so as to obtain θ̇k := ∂tθk [181]:

Sk,k′ θ̇k′ = −iFk, (4.36)

with Fk = ⟨O∗
kEloc⟩ − ⟨O∗

k⟩⟨Eloc⟩, and Sk,k′ = ⟨O∗
kOk′⟩ − ⟨O∗

k⟩⟨Ok′⟩ when keeping only
second-order terms. The Ok terms are the log-derivatives of the NQS ansatz, as given by

Ok(σ) = ∂θk
lnψθ(σ). (4.37)

With most machine learning algorithms, these are obtained through automatic differen-
tiation. The local energy Eloc is local estimator which evaluates as

Eloc(σ) =
∑
σ′

ψθ(σ′)
ψθ(σ) ⟨σ|Ĥ|σ′⟩ . (4.38)

The parameters θ are then updated at each time step according to their derivatives θ̇k
using a numerical solver. This procedure is known as time-dependent variational Monte
Carlo (t-VMC), and is related to natural gradient methods in machine learning [181].
Several issues can arise: (i) The S matrix to be inverted is in general singular, which
makes the process extremely sensitive to stochastic variations coming from sampling.
Hence, regularization must be used to obtain a non-diverging parameters derivative θ̇k
[222]. This increases the stability of the method, although impacting its accuracy, making
it challenging to obtain accurate long-time dynamics. (ii) State-of-the-art regularization
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techniques involve the inversion of the S matrix via its singular-value decomposition,
which makes the complexity of the method of order O(N3

par), with Npar the number of
parameters for the NQS.5 This is one of the reasons why natural gradient methods is
rarely used for other machine-learning applications, which can involve models with up to
billions of parameters. (iii) For NQS with real parameters, one may split the real and
imaginary parts of Eq. (4.36) and solve either of the two resulting equations [225]:

Re(Skk′)θ̇k′ = 0
Im(Skk′)θ̇k′ = −Fk.

Solving the first forces one to impose a condition on θ̇k to obtain a nontrivial solution
(θ̇ ̸= 0), and solving the second one is difficult in general since the diagonal elements of
Im(S) are zero (S is Hermitian) and remaining off-diagonal elements are close to 0 for
various ansätze with real parameters we have tested. When the minimum and maximum
eigenvalues of a matrix are highly separated, λmin/λmax ∼ ϵ, ϵ → 0, this is known as
poor conditioning [196]. It makes regularization schemes even harder to implement and
yields large parameter time derivatives, thereby requiring impractically small time steps
for t-VMC to work.

To further investigate such issues, let us consider the transverse-field Ising (TFI)
Hamiltonian:

ĤTFI = −J
∑

⟨m,n⟩
σ̂zmσ̂

z
n + g

∑
m

σ̂xm, (4.39)

with J the nearest-neighbor coupling strength, and g the transverse field strength. As
mentioned in section II.1, at zero temperature this model exhibits a quantum phase
transition for gc = J in one dimension and for gc ≈ 3.044J in two dimensions [35]. For
J > 0, the transition separates a ferromagnetic 6 phase from a paramagnetic phase, where
the spins tend to align with the transverse-field. In the former, when g ≪ J , the ground
state is degenerate and spanned by |↑, ↑, . . . , ↑⟩ and |↓, ↓, . . . ↓⟩, while in the latter, when
g ≫ J the ground state is |→,→, . . . ,→⟩, with |→⟩ the eigenstate of σ̂x. This model
serves as a convenient benchmark for the dynamics of NQS [181, 184, 185].

In Fig. 4.6(b), the spectra of S, computed at the ground state of the TFI Hamiltonian
is shown for three different ansätze: a restricted Boltzmann machine (RBM), an autore-
gressive convolutional network with complex parameters (ARNN), and the GRU ansatz
presented in the previous section, for different values of g/gc (we have fixed J = 1) for
a two-dimensional array of N = 16 spins. Two key observations can be made from this
figure: first, all spectra become more singular as g/J decreases, something that makes
t-VMC less applicable to ferromagnetic-like states, whether it is for ground state search
or for dynamics, which involves the full spectrum of the Hamiltonian. One can also see
that the RBM spectrum is the less singular, and presents a shell-like structure, making
it simpler to regularize. The ARNN ansatz is similar to this, and presents many eigen-
values of order O(1). In stark contrast, the GRU spectrum indicates that the variational

5Alternatively, one can also perform the inversion with iterative methods such as conjugate gradients,
thereby reducing the complexity. This, however, does not enable all forms of regularization.

6or anti-ferromagnetic if J < 0. For simplicity we will consider J > 0 throughout the paper.
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space that is extremely flat for all values of g/J , as very few eigenvalues are of a high
enough value, and the magnitude of the eigenvalues decrease extremely rapidly. This
inherent poor conditioning implies that if such states are the initial states of a dynamical
evolution, the inversion of S will yield a parameter update θ̇ whose norm is large with
respect to ∥θ∥, forcing one to dramatically reduce the time step which makes calculations
impractical. This last spectrum is tricky to regularize, as there is no clear separation of
the eigenvalues.

VI.2 Variational Runge-Kutta algorithms
As identified in the previous section, t-VMC suffers from a number of limitations that
make it unsuitable for use with certain ansätze, in particular for the GRU ansatz. We
propose to circumvent these issues by resorting back to the original Dirac-Frenkel vari-
ational principle (Eq. (4.35)) and solving an optimization problem at each time step. The
general form of this problem is the minimization of the distance

D(θ̃) = dist
(

|ψθ̃⟩ , T̂ |ψθ⟩
)
, (4.40)

where θ̃ denotes the set of variational parameters to optimize, θ those at the previous
time step t, and T̂ a propagator evolving the state of the system between times t and t+τ
under the action of the Hamiltonian of interest. While expanding the propagator to first
order in τ yields a valid first-order update of the variational state, we instead propose to
build a variational principle upon a s-order Runge-Kutta approximant, as generated by a
propagator T̂s such that:

|ψ(t+ τ)⟩ = T̂s(t) |ψ(t)⟩ +O(τ s+1). (4.41)

General explicit expressions for this operator are derived in Appendix A for arbitrary
diagonally implicit Runge-Kutta schemes. In particular, for the standard (second-order)
Heun method used throughout the paper, one has:

T̂Heun(t) = 1̂− iτĤ(t) − τ 2

2 Ĥ(t+ τ)Ĥ(t). (4.42)

The variational method induced by this scheme involves an integration error per time
step of third order in τ . In practice, rather than the Fubini-Study distance, we use the
following numerically well-behaved metric based upon the quantum fidelity:

dist
(

|ψ⟩ , |ϕ⟩
)

= 1 − |⟨ψ|ϕ⟩|2

⟨ψ|ψ⟩ ⟨ϕ|ϕ⟩
, (4.43)

which for normalized quantum states reduces to

D(θ̃) = 1 − | ⟨ψθ̃|T̂s|ψθ⟩|2

⟨ψθ̃|T̂ †
s T̂s|ψθ⟩

. (4.44)

For the Heun method, one has

= 1 − | ⟨ψθ̃|T̂Heun|ψθ⟩|2 +O(τ 4) (4.45)
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Figure 4.7: (a) Scheme of the Kibble-Zurek mechanism according to the adiabatic-impulse
approximation. At times ±t̂, the relaxation time of the system tR crosses the time scale
of the quench, which defines the limit between the adiabatic region, where the system
essentially stays in the ground state of the system at that time, and the impulse regime,
where nonequilibrium dynamics take place. (b) Scaling of the injected energy Ĥ(τq) −E0
as a function of the quench time τq for different system sizes N = L × L. One can see
that for fast quenches, the NQS dynamics predict very well the injected energy. The data
for system sizes with more than L = 5 cannot be simulated via exact diagionalization,
hence they are compared to the τ 0.72

q scaling obtained in ref. [219]. (c) Average energy for
a quench of total time Jτq = 0.31, for a 6 × 6 system and a GRU ansatz with dh = 8,
with Ns = 200 samples. (d) Average correlation function along the z−axis for the same
quench as in (c).

with
⟨ψθ̃|T̂s|ψθ⟩ ≡ ⟨ψθ̃|T̂loc|ψθ̃⟩ , (4.46)

where T̂loc is an operator acting as a local estimator and whose non-zero entries are given
by

Tloc(σ) := ⟨σ|T̂loc|σ⟩

=
∑
σ′

ψθ(σ′)
ψθ̃(σ) ⟨σ|T̂s|σ′⟩ . (4.47)

It thus appears from the above that any s-order Runge-Kutta update can be cast into a
variational problem consisting in maximizing the squared expectation value of an observ-
able. Furthermore, this expectation value can be efficiently sampled at every step of the
optimization process as the average

⟨ψθ̃|T̂loc|ψθ̃⟩ = Eσ∼|ψθ̃ |2 [Tloc(σ)]. (4.48)

The error of an integration using the Heun propagator is of the order of τ 3, which will
be the lower bound for the error at each time step for the variational method we present.
Note that this involves summing over the connected elements of T̂ as can be seen in
Eq. (4.47). This will in general become more expensive as the order s increases, as powers
of the Hamiltonian will be contained in T̂ . The number of connected elements will depend
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Figure 4.8: Numerical results obtained for a linear quench for various values of the total
quench time τq. On the upper panels, the average correlation function is shown as a
function of time for both the exact (dashed line) and the GRU simulations (solid lines).
The error as a function of time ϵ(t) is shown in the lower panels. For panels (b) and (c),
the time step was chosen to be linear and non-constant, as the characteristic time scale
changes as a function of time. Parameters for each quench are are given in the appendix.

on the sparsity of the Hamiltonian; for the transverse-field Ising model for instance, the
number of connected elements in Ĥs scales as N s (which means N2 for a second-order
explicit integration scheme).

VI.3 Application: critical quench dynamics
The Kibble-Zurek mechanism

The Kibble-Zurek mechanism [25, 26] predicts the formation of topological defects in
quenched systems undergoing a second-order phase transition as the parameters are lin-
early swept across a critical point. This universal behavior stems from the fact that
there exists a time, denoted t̂, at which the characteristic evolution time of the system
(the relaxation time tR, related to the inverse of the energy gap) becomes larger than
the characteristic quench time τq, as schematically shown in Fig. 4.7(a). Before t̂, the
dynamics remains quasi-adiabatic, as the Hamiltonian parameters are tuned slowly with
respect to the time scale of the system. After this time, non-equilibrium dynamics takes
place as critical slowing down sets in and the system dynamics becomes slower than the
Hamiltonian parameters sweep. Ignoring specific details of this dynamics, one can derive
a scaling law for the density of created defects at the end of the linear quench [26], which
reads

⟨n̂d(τq)⟩ ∼ τ−dν/(zν+1)
q (4.49)
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Figure 4.9: Sudden quench dynamics induced by quenching the Hamiltonian parameters
to g/gc = 2, g/gc = 1 and g/gc = 1/10 for various hidden vector dimensions dh, starting
from an initial paramagnetic state. Upper panels show the average magnetization along
the x axis ⟨Ŝx⟩ = ∑

i σ̂
x
i /L

2 and lower panels show the cumulative error as a function of
time.

with d the dimensionality of the system and z, ν universal critical exponents. Note that
n̂d will depend on the geometry of the system, and is not always easily accessible experi-
mentally. For this reason some works consider other observables, such as the number of
domain walls [226], or the injected energy density [219], defined as

E = 1
L2

[
⟨Ĥ(t)⟩ − E0(t)

]
. (4.50)

This quantity is a witness of the injected defects, which are excitations of the system with
respect to its ground state at time t, hence E must scale as the density of defects. This
quantity is convenient as it does not depend on the geometry of the physical system under
consideration. In Ref. [219], authors extract a scaling law in τ 0.72

q for the 2D transverse-
field Ising model based upon various numerical methods that they used to estimate the
gap of the system at different times to extract a correlation length. We consider a similar
protocol in this paper, in which both J and g are varied in time. The Hamiltonian reads

ĤTFI = −J(t)
∑

⟨m,n⟩
σ̂zmσ̂

z
n + g(t)

∑
m

σ̂xm, (4.51)

with J(t) = J(1 − t/τq), g(t) = g0(1 + t/τq), with g0 = gc and J = 1, which will be used
as a reference unit in the rest of the paper. Note that this type of quench involves all
regimes (0 ≤ g/J < +∞), hence stochastic reconfiguration does not enable one to access
the full dynamics [219]. Our approach does not suffer from such issues, which is one of
its major strengths. In Fig. 4.7(b), we show the injected energy (not rescaled for clarity)
⟨Ĥ(t)⟩ − E0(t) for various system sizes, for different values of the quench time. One can
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Figure 4.10: (a): residual error ϵ as a function of the time step δt for the Euler method,
the midpoint method, and the Heun integration methods averaged over the 10 first time
steps of quench dynamics of the TFI model to g/gc = 2. (b) Standard deviation of the
error as a function of time rescaled by

√
Ns. Curves collapse, which is what is predicted

by a direct sampling scheme. This enables us to estimate the required number of samples
to obtain a given error. Note that as the dynamics progress, the variance of the residual
error rises, indicating a rising difficulty to find the best minima in time.

see that the exact results are closely matched for fast quenches, and precision drops for
slower quenches (Jτq > 1). This is related to the fact that dynamics become almost fully
adiabatic, hence the NQS dynamics is not precise enough to capture the small amount of
injected energy. The presented method most accurately reproduces the dynamics of the
system in the non-adiabatic region, where the dynamics presents universal features; this
is the regime of relevance when studying the Kibble-Zurek mechanism. For lattices above
5×5, one cannot compare our results with exact results, but the scaling predicted in [219]
is recovered, indicating that the results are reliable. We also show correlation functions
for various quench times, as well as the residual error corresponding to the full dynamics,
as given by

ϵ(t) = dist
(

|ψθ̃⟩ , T̂ |ψθ⟩
)

(4.52)

= 1 − |⟨ψθ̃|T̂ |ψθ⟩ |2. (4.53)

VI.4 Sudden quenches
One can also investigate the nonequilibrium dynamics of many-body systems without
relying on regularization hyperparameters and instabilities stemming from stochastic re-
configuration. As a benchmark of the presented method, we consider the two-dimensional
time-independent transverse-field Ising model, defined in Eq. (4.39). We prepare the sys-
tem in the ground state of the TFI Hamiltonian for g ≫ J , which is |ψ0⟩ = |→,→, . . . ,→⟩,
and quench the magnetic field to the values g/gc = 2, 1, and 1/10; results are displayed
in panels (a), (b), and (c) of Fig. 4.9 respectively. By doing this, one spontaneously cre-
ates excitations of all the eigenstates of the Hamiltonian corresponding to the final value
of the parameters. This is of high interest experimentally, as it can be used to probe
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the properties of non-integrable systems close to the critical point. It is expected that a
quench to the critical point is the most difficult to simulate, since it involves states that
are correlated at all scales in the thermodynamical limit. In contrast to other approaches,
the use of direct sampling here ensures that the dynamics will be accurate for a lower
number of samples. Here, we have imposed the reflection and Z2 symmetries for panels
(a) and (b), and no symmetry for panel (c), where, surprisingly, imposing symmetries was
found to degrade the accuracy.

VI.5 Error analysis
The residual error ϵ depends on the chosen time step δt. In Fig. 4.10, this is shown
as a function of the chosen time step δt for different integration schemes, namely Euler,
(implicit) midpoint, and Heun methods. The propagators T̂ for the Euler and the implicit
midpoint method are respectively given by

T̂Eul = 1̂− iτĤ (4.54)

T̂mid = 1̂− iτĤ + τ 2

4 Ĥ
2, (4.55)

and the Heun propagator was given by Eq. (4.42). Euler is a first-order method, while
the midpoint and Heun methods are both second-order methods. The midpoint method
conserves a symplectic symmetry in the exact case, which for the Schrödinger equation
corresponds to the energy. Note, however, that propagating an NQS in time, this is no
longer guaranteed, as the time evolution is approximated stochastically. Using T̂mid as a
propagator is equivalent to minimizing the distance proposed in Ref. [185]. Interestingly
though, when using the midpoint method, the norm of the denominator of Eq. (4.44)
contains terms of order 2, whereas they vanish for the Heun method. Indeed, the implicit
midpoint method yields an update of the form

|ψ(t+ δt)⟩ = T̂mid(t) |ψ(t)⟩ +O(δt3), (4.56)

and as such may in principle be regarded as being of second order, provided one is able
to approximate |ψ(t+ δt)⟩ with an NQS up to an error of order O(δt3). However, this
condition cannot be satisfied with a normalized ansatz such as those used in this work.
Indeed, the norm of the ideal updated state to be matched is given by:

⟨ψ(t)|T̂ †
midT̂mid|ψ(t)⟩ = ⟨ψ(t)|

(
1̂+ 3δt2

2 Ĥ2
)

|ψ(t)⟩ +O(δt3) = 1 +O(δt2) . (4.57)

This must depart from 1 to second order in δt, implying that the implicit midpoint method
effectively yields a first-order update when using ansätze normalized by design.

In contrast to the midpoint method, the Heun method does not suffer from this issue,
indeed:

T̂ †
HeunT̂Heun =

(
1̂+ iδtĤ − δt2

2 Ĥ2
)(
1̂− iδtĤ − δt2

2 Ĥ2
)

= 1̂+O(δt4) . (4.58)

This property allowed us to simplify the expression of the distance in Eq. (4.44), consid-
erably reducing the complexity of evaluating the gradients of the loss function.
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These considerations generalize to the time-dependent scenario, where for the Heun
method we have

T̂ †
Heun(t)T̂Heun(t) =

(
1̂+ iδtĤ(t) − δt2

2 Ĥ(t)Ĥ(t+ δt)
)(
1̂− iδtĤ(t) − δt2

2 Ĥ(t+ δt)Ĥ(t)
)

= 1̂+ δt2Ĥ(t)2 − δt2

2 {Ĥ(t), Ĥ(t+ δt)} +O(δt3). (4.59)

Provided one can expand Ĥ(t + δt) = Ĥ(t) + δt∂tĤ(t) + O(δt2), as is the case for any
analytic quench, the second-order terms in Eq. (4.59) cancel out exactly, implying that
the Heun method remains of second order when using normalized ansätze. Therefore, in
this context, this method will effectively be of first-order.

One can clearly observe in Fig. 4.10(a) a δt4 scaling for the Heun method as expected
from the form of the distance we minimize, and a δt2 error for the two other methods.
Hence the midpoint method carries the disadvantage of having an error comparable to
an Euler integration while having the computational complexity of the Heun method.
One can also see that for the Heun method there is a cutoff around gδt = 0.01, for
which the error cannot be reduced by decreasing the time step. This is due to the
fact that the method displays a systematic error coming from the optimization for a
given set of hyperparameters (number of samples, learning rate, number of training step).
Nevertheless, the error can always be decreased by increasing the number of samples.
Note that in the constant error regime, reducing the time step will be penalizing as the
total number of time steps at fixed total simulation time. Hence there is an optimal time
step to be chosen, which we find to be gδt ≈ 0.01 for various hyperparameter choices.
In Fig. 4.10(b), the standard deviation of the error is shown for each time step of a
sudden quench from a paramagnetic phase to g/gc = 2. One can distinguish two regimes,
separated by gt ≈ 1, where before this time the standard deviation of the residual error
grows, and then saturates after this time. This can be attributed to a harder optimization
error after a given time, where the minimum of the distance is found but with a greater
variance. These results are reminiscent of those presented in a recent work where authors
demonstrate that quantum states become harder to fit with an NQS at lated times after a
sudden quench, which is not always related to the growth of entanglement [227]. Standard
deviations are shown for various values of Ns, the number of samples considered for each
optimisation. One can see that σϵ(t) decreases as

√
Ns, as predicted by a direct sampling

scheme.

VII Dynamics of open quantum systems with NQS

VII.1 Representing density matrices
Extensions of neural network techniques to the time evolution of open quantum systems
have been proposed. A first approach relies on purification [186], which obliges one to
use Restricted Boltzmann Machine (RBM) as the ansatz [187–189, 228] for the density
matrix, a requirement that bounds the representative power of such methods. More
recently, new approaches based on autoregressive networks were proposed for the time
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evolution of open quantum systems. These are based on the Positive-Operator-Value-
Measurement (POVM) formalism, in which the density matrix is represented as an average
over outcomes of measurements [229, 230]. By recasting the Lindblad master equation into
a differential equation on a probability distribution, a time-dependent variational principle
can be obtained. An issue with this approach is that the space of density matrices (positive
semi-definite) is more restricted than that of arbitrary probability distributions, therefore
the time evolving map may project distributions out of the space of density matrices, for
example by violating positivity. Finally, a more recent approach consists in building an
autoregressive and positive density matrix that relies on a construction based on Gram
matrices [231].
We also present the extension of the dynamical-corner space method, which consists in
representing each state of the corner basis by an NQS. This restricts the method to low-
entropy quantum systems, therefore will not be practical to study, for instance, steady-
states of critical systems (where the entropy can be high), but ensures positivity and avoids
enforcing a certain structure for the ansatz. In principle, one could even combine different
neural network architectures with such an approach, but this is generally computationally
impractical.

The RBM approach

One wants to obtain a generative model for the coefficients of the density matrix ρθ(s, s′),
defined as:

ρ̂θ =
∑
s,s′

ρθ(s, s′) |s⟩⟨s′| . (4.60)

The first approach consists in using an RBM to represent a pure state |ψθ⟩ that belongs
to an enlarged Hilbert space H = Hs ⊗ Ha, with Hs describing the physical spins and
Ha describing the ancilla spins. Provided that there are at least as many ancilla spins as
physical spins, one can always write:

ρθ(s, s′) =
∑

a

ψθ(s,a)ψ∗
θ(s′,a). (4.61)

However, in the general case, the sum over a is intractable, as there are 2L elements to
sum over. The key point is that since the RBM ansatz has an analytical form, this sum
can be performed analytically and a closed expression for ρθ(s, s′) can be obtained [187].
This is a calculation much like that which led to Eq. (4.25), where a trace over hidden
spins was performed analytically. This leads to a positive and Hermitian ansatz for the
density matrix, with derivatives of the density matrix coefficients also having an analytical
form. However, as we have seen, RBMs are restricted in terms of capacity, hence other
approaches were quickly proposed to obtain more freedom on the choice of the neural
network.

The Gram-Hadamard matrix approach

The Gram-Hadamard approach proposes to re-express the coefficients of a density matrix
by using a Gram matrix form and useful properties of the Hadamard product [231]. The
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Figure 4.11: Tensor network diagram of the Gram-Hadamard ansatz for the density mat-
rix. The plaquette structure of the ansatz is shown: with K plaquettes of rank R, the
obtained density matrix has rank RK , which enables for states that have a high entropy
to be efficiently represented. Adapted from [231].

Gram matrix of a set of R vectors or quantum states
∣∣∣ψ(a)

〉
, a ∈ 1, . . . , R is given by

G =
∑
a=1

∣∣∣ψ(a)
θ

〉〈
ψ

(a)
θ

∣∣∣ . (4.62)

Note the similarity of this form to that of the low-rank density matrix presented in
chapter 3, ρ̂ = ĈĈ†. Now, by noting that the element-wise or Hadamard product of
two positive semi-definite matrices remains positive semi-definite [231], we can define K
Gram matrices, and the final Gram-Hadamard ansatz is built as:

ρ̂θ =
K⊙
h=1

G(h) (4.63)

=
K⊙
h=1

(
R∑
a=1

∣∣∣ψ(a)
θ

〉〈
ψ

(a)
θ

∣∣∣)(h)

. (4.64)

where the element-wise product is taken in the same basis for each Gram matrix. The
elements of the density matrix are therefore given by

ρ̂θ(s, s′) =
K∏
h=1

R∑
a=1

ψ
(a,h)
θ (s)ψ∗(a,h)

θ (s′). (4.65)

where ψ(a,h)
θ (s) are complex amplitudes. Note that this ansatz closely resembles the puri-

fication of Eq. 4.61. A diagram of the ansatz is shown in Fig. 4.11. The power of such a
construction is that by restricting the rank R of the Gram matrices to a small number, the
rank of the final density matrix is obtained as RK . This form is reminiscent of the locally-
purified density operator presented in section III.6 of Chapter 1, where a partial trace is
taken on finite-rank states, therefore is tractable. However, there is no local purification
here, as ψ(h) are global states. A natural question that arises is whether this construction
could also be used with tensor networks architectures as an alternative to LPDOs, hence
creating an alternative positive tensor network ansatz. Note that Gram-Hadamard con-
struction may constrain the entanglement structure of ρ̂θ, and further studies are needed
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to verify this, in which case the full power of machine learning methods could be deployed
to study open quantum systems. Finally, in the same work [231], a similar construction
has been proposed that explictily enforces the autoregressive property, to enable for direct
sampling and normalized wavefunctions. However, again this construction may constrain
the entanglement structure of the ansatz.

The POVM approach

Another approach that does not enforce positivity but allows absolute freedom on the
choice of the ansatz will be referred to as the POVM approach. Here, we decompose the
density matrix as

ρ̂θ =
∑
b

Πb
θM̂

b, (4.66)

where {M̂ b} is a set of tomographically complete measurement operators, with 4L ele-
ments. A simple choice for this is the Pauli set, composed of strings of Pauli operators, i.e.
{M̂ b} = {1, σ̂x, σ̂y, σ̂z}⊗L. Πb

θ = Tr{ρ̂θM̂
b} is the probability for the operator string to be

measured. As such, Πθ is a parametrized probability distribution over 4L outcomes, and
can be parametrized by a neural network, with a freedom on the choice of architecture.
In [214] and [230], the authors use a Transformer architecture and a recurrent neural
network, respectively, to represent Πθ.
Violating the positivity of the ansatz, although unphysical, has not proved to be such an
issue in practical applications, much like for MPOs. However, we expect such approaches
to work best for systems with strong dissipation. Consider a singe qubit system, whose
state is described by a density matrix ρ̂ which lives inside a Bloch sphere. If dissipation is
strong, the state will tend to occupy central regions of the Bloch sphere, thus remaining
in the space of valid quantum states. For states close to pure, thus living on the edge of
the Bloch sphere, if positivity is not enforced the reconstructed state from Πθ may reside
outside the Bloch sphere, i.e. outside the space of physical quantum states.

VII.2 Combining the dynamical corner-space method with NQS
As a perspective to be further investigated in the future, an alternative to the POVM
and Gram-Hadamard matrix approaches is to employ the low-rank representation of the
density matrix detailed in chapter 3. By parametrizing each state in the corner-space by
a NQS and propagating the corner in time, that is now parametrized by a set of NQS, the
time-evolution of the open quantum system is recovered. This approach is particularly
suited to weakly dissipative systems, thus being complementary to POVM approaches.
Its advantage with respect to Gram-Hadamard approaches is that it bears no constraint
on the form of the ansatz, hence the entanglement structure of the final density matrix is
the same as that of the states composing it. In this representation, the corner C(t) at each
time t fully specifies the density matrix, and is defined by its elements as Csk = √

pkψθk(s),
with θk the weights vector of the network that parametrises the k-th corner state. In the
NQS language, the algorithm consists in four important steps:

(i) Evaluate the M(D + 1) states generated by the Kraus operators K̂i acting on the
M states of Ĉ. The state generated by Kraus operator K̂0 can be obtained as
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for closed systems, i.e. using t-VMC with a non-Hermitian Hamiltonian or an
optimisation scheme as presented in the previous section. This step consists of
O(MD) optimizations. This leads to M(D+ 1) states

{∣∣∣ϕηl

〉}M(D+1)

l=1
with updated

weights ηl (that form the transition basis).

(ii) Probabilities of each new state are obtained by using probability conservation; the
probability πl of each state

∣∣∣ϕηl

〉
of the initial corner basis has to lead to D + 1

states whose probabilities sum to pl.

(iii) Now that the parameters ηl represents the M(D + 1) states of the transition basis
and πl their respective probabilities, one can construct T̂ †T̂ through a sampling
procedure, diagonalize, and truncate the eigenvalues below ϵ to obtain the new
probabilities p̃m that will correspond to M̃ new states.

(iv) Obtain the new corner basis C̃ from T̂ . In the neural network picture, obtain the
parameters θ̃

m that correctly represent the states of C̃ from the eigenvalues and
eigenvectors of T̂ †T̂ .

Below each step is detailed. Note that a quantum trajectory approach is also possible,
where a single trajectory is propagated and subject to random jumps, with the same
optimization procedure as the one described below.

Evaluation of corner states generated by jump operators

This parts amounts to minimizing, at each time step t, for every jump operator Ĵi, the
distance

C
(
ηl
)

:= dist
(∣∣∣ϕηl

〉
, Ĵi

∣∣∣ψkθ〉) , (4.67)

with ηl the weights of the ansätz to optimize (once optimized, these will be the parameters
of the lth state of the transition basis), and θk the weights of the states of the kth state of
the corner basis at time step t. For ease of notation, we drop the superscripts l and k in the
calculations that follow. For normalized ansätze, the cost function is simply the fidelity.
We denote a configuration. For local jump operators Ĵi = 1̂1 ⊗ 1̂2 ⊗ . . . ⊗ ȷ̂i ⊗ . . . ⊗ 1̂N
(with ȷ̂i a local operator acting on a single spin) we have:

C (η) = |⟨ϕη|Ĵi|ψθ⟩|2

⟨ϕη|Ĵ†
i Ĵi|ϕη⟩

,

⟨ϕη|Ĵi|ψθ⟩ =
∑
s,s′

ϕ∗
η(s)ψθk(s′)⟨s|Ĵi|s′⟩

=
∑
s

|ϕη(s)|2
∑
s′

ψθk(s′)
ϕη(s) ⟨s|Ĵi|s′⟩

=
∑
s

|ϕη(s)|2
∑
s′

i

ψθ(s′
i|s\si)

ϕη(s) ⟨si|ȷ̂i|s′
i⟩,

⟨ϕη|Ĵi|ψθ⟩ =
∑
s

|ϕη(s)|2Ĵψϕ(s)

= ⟨Ĵψϕ⟩|ϕη |2
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where we have defined

Ĵψϕ(s) =
∑
σ′

i

ψθ(σ′
i|s\σi)

ϕη(s) ⟨σi|ȷ̂i|σ′
i⟩,

and ⟨...⟩|ϕ|2 denotes an average over the probability distribution given by |ϕ(s)|2. The
point here is that Ĵψϕ(s) can be evaluated exactly (in fact, for a k-local operator, it will
be a sum of 2k terms) and its average can therefore be approximated by sampling the
probability distribution over which it is averaged. Therefore, one has:

C (η) = |⟨ϕη|Ĵi|ψθ⟩|2

⟨ϕη|Ĵ†
i Ĵi|ϕη⟩

=
⟨Ĵψϕ⟩|ϕη |2⟨Ĵϕψ⟩|ψθ |2

⟨Ĵ†
i Ĵi⟩|ϕη |2

. (4.68)

C(θ) can be minimized via a stochastic gradient descent, exactly like the cost functions
considered in the chapter. The components of the gradient ∇C(θ) are again given by the
log-derivative trick, with Ok = ∂θk

lnψθ(s):

∂kC (η) =
〈(
Ok − ⟨Ok⟩|ψθ |2

)
Ĵϕψ

〉
|ψθ |2

⟨Ĵψϕ⟩|ϕη |2/⟨Ĵ†
i Ĵi⟩|ϕη |2 (4.69)

which has the same computational complexity as that of minimizing the energy as presen-
ted at the beginning of the chapter.

Evaluate the probabilities

After step (i), one obtains the correct parameters that represent the states
∣∣∣ϕηl

〉
of the

transition basis. We can almost build T †T to diagonalize it, but we still need the associated
probabilities πl. In a regular corner approach, these would naturally arise from step (i).
This is not the case here, so we have to obtain them in another way from the corner basis
C. Using the facts that each state in Ĉ generates D + 1 states and that probability is
conserved, we have:

D+1∑
i=1

π
(k)
i = pk,

and we know that the states generated by the jumps (i ̸= 1) will have a probability
π

(k)
i = δt⟨ψθk |Ĵ†

i Ĵi|ψθk⟩. It naturally follows that π(k)
1 = pk − ∑D+1

i=2 π
(k)
i , and we can

therefore obtain the complete set of probabilities {πl}M(D+1)
l=1 . This step is computationally

for free since the averages ⟨Ĵ†
kĴk⟩ were computed at the previous step. At this step, one

can discard all the probabilities that are below some truncation error ϵ, and renormalize
the probability distribution given by πl.

Evaluation of T †T

From the previous steps one obtains probabilities πl and the parameters ηl corresponding
to each state of the transition basis,

∣∣∣ϕηl

〉
. Since we cannot explicitly reconstruct T †T ,
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we can sample it. Explicitly, the elements of T †T are
[T †T ]ll′ =

∑
s

ϕ∗
ηl(s)ϕηl′ (s)√πlπl′ (4.70)

=
∑
s

|ϕηl(s)|2
ϕηl′ (s)
ϕηl(s)

√
πlπl′ (4.71)

=
〈
ϕηl′

ϕηl

√
πlπ′

l

〉
|ϕ

ηl |2
. (4.72)

We once again find the form of an expectation value. A difference here is that these
expectation values are complex, hence may be more difficult to estimate due to a sign
problem that comes from adding phases together. However there is no optimization here
so it is possible to use a very large number of samples to reconstruct T̂ †T̂ with a low
computational cost. After reconstructing T̂ †T̂ , one can diagonalize it and obtain M̃ ,
the updated corner dimension, as well as p̃m, the corresponding probabilities. However,
we do not obtain the set of parameters θ̃m corresponding to these states, thus another
optimization is needed. This step implies the diagonalization of an M(D + 1) square
matrix, T̂ †T̂ , with no dependence on N .

Obtention of the updated corner basis C̃

In the original dynamical corner-space algorithm, one easily obtains C̃ from T̂ by mul-
tiplying the eigenstates of T̂ by T̂ itself. By denoting |tm⟩ the m-th eigenvector of T̂ †T̂
(which was explicitly diagonalized in step 3) and tmq its q-th component, the elements of
C̃ are obtained as:

C̃m = T̂ |tm⟩ ,
C̃sm =

∑
q

Tsqt
m
q ,

|ψθm⟩ =
∑
q

√
πq√
p̃m
tmq |ϕηq⟩ .

By noting |Ψtar⟩ the target state, one can therefore minimize
dist (|ψθm⟩ , |Ψtar⟩) = |⟨ψθm|Ψtar⟩|2.

In analogy with the previous steps, one has:

⟨ψθm|Ψtar⟩ =
∑
s

|ψθm(s)|2 Ψtar(s)
ψθm(s) =

〈
Ψtar

ψθm

〉
|ψθm |2

,

hence

dist (|ψθm⟩ , |Ψtar⟩) =
〈

Ψtar

ψθm

〉
|ψθm |2

〈
ψθm

Ψtar

〉
|Ψtar|2

. (4.73)

Each state of the updated corner is therefore a particular superposition of the states of the
transition basis for which we know the corresponding amplitudes

√
πq√
p̃k
tmq . By considering

normalized ansätze, we are able to evaluate the correct amplitudes Ψtar(s) and evaluate
this distance and its gradient.
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Computational complexity

The computational complexity of such a method bears no dependence on N , the Hilbert
space dimension. Combining the four steps of the algorithm, the complexity of a single
time step is dominated by the first and third steps. The first step consists in MD op-
timizations that have a number of optimization steps nsteps, where a gradient of size Npar
(the number of variaitonal parameters) is calculated by estimating averages over Nsamples
samples. The third step consists in diagonalizing a M(D + 1) × M(D + 1) matrix. The
complexity of a single time step is therefore given by

O
(
max

{
[M(D + 1)]3,MDnstepsNparNsamples

})
. (4.74)

VIII Conclusion
We have seen how neural-network quantum states presents itself as a powerful numerical
toolbox to study the dynamics of complex quantum systems.
We have presented an alternative scheme for the real time evolution of quantum many-
body systems with an NQS ansatz. This scheme does not rely on hyperparameter tuning
for regularization and is found to be stable, and is not limited by the regime of the physical
system. We therefore expect it to be useful when stochastic reconfiguration fails, when one
uses autoregressive models or for when the network contains a large number of variational
parameters. This scheme could be used to further investigate the limits of the Kibble-
Zurek mechanism in nontrivial quantum systems, such as frustrated systems in triangular
lattices or in systems with multiple critical points. As other applications, quantum control
and pulse optimization problems could also be considered, where accurate methods to
simulate time-dependent dynamics are required, as well as the quench dynamics of bosonic
systems [232]. As an outlook, the scheme could further be improved by considering
different cost functions that lead to weaker optimization errors and variance. We also
expect the scheme to be helpful for the dynamics of open quantum systems [188, 230,
231], where t-VMC can present similar difficulties to those exposed. Finally, we expect
the various approaches for the simulation of open quantum systems to be applied to
noisy quantum circuits. Indeed, ideal quantum circuits have already been shown to be
simulatable by NQS more efficiently than with tensor network methods [192]. In the
regime of low noise, therefore weak entropy, a hybrid dynamical corner-NQS approach
would be particularly suited. We also expect the Gram-Hadamard approach to be effective
for the study of dissipative phase transitions, as well as the study of an extended form of
the Kibble-Zurek mechanism to dissipative critical systems.
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General conclusion and perspectives

In this manuscript, we explored the nonequilibrium dynamics of closed and open quantum
systems and presented some novel methods to deal with the difficult problem of simulating
such dynamics, along with new physical results for various interesting problems entering
this class of systems.

After explaining the key questions and the main numerical methods surrounding the
topic, we investigated the dynamics of entanglement in a strongly-interacting dissipative
quantum system was presented. This chapter was motivated by recent experimental pro-
gress towards large chains of dissipatively stabilized Mott insulator of photons, which open
up a new playground for many-body physics, where solid-state phases can be achieved
in photonic systems. We introduced a new simple protocol to monitor entanglement dy-
namics, where bipartite entanglement can be investigated by looking at the negativity of
reduced density matrices describing pairs of distant sites. We observe a ballistic propaga-
tion of entanglement, in agreement with the quasiparticle picture provided by a closed
system analysis. However, a strikingly asymmetric behaviour is observed as a function of
the chosen protocol, which depends on whether we initially inject or extract a particle.

Then, we presented the dynamical corner-space method. This new method to simulate
the dynamics of open quantum systems fills up a gap in the literature that existed for
low-entropy, highly-entangled states. If the rank of the density matrix describing the
system of interest is small with respect to the Hilbert space dimension, the method can
outperform other methods that do not restrict entanglement, such as Monte-Carlo wave
function methods. We applied this new method to the simulation of a noisy quantum
Fourier transform processor by considering a piecewise continuous-time implementation
of the algorithm, so that microscopic dissipative channels were taken to account as op-
posed to digital error models. By doing so, we were able to derive scaling laws for the
error as a function of the dissipation rate. In addition, the impact of the initial state
on the performance of the algorithm was unveiled, revealing a highly biased algorithm.
We believe this method will enable the study of dissipatively stabilized quantum systems
such as cat qubits, and error mitigation protocols that are strongly needed in the quantum
information community until the era of fault-tolerant quantum computation is reached.

Finally, the general class of ansätze of neural-network quantum states (NQS) was
presented. These were introduced in the context of the general task of generative mod-
eling in standard machine learning. After presenting Monte-Carlo sampling algorithms,
we introduced the various architectures used to represent quantum states. In particular,
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autoregressive models, which enable for normalized quantum states and efficient sampling
algorithms were exposed. We believe such architectures, that are becoming standard in
state-of-the-art machine learning routines, will become a key element of the numerical
physics toolbox to study complex quantum systems. We presented various issues that
arise when trying to simulate quantum dynamics with NQS, as well as an alternative
scheme to perform this task that we developed. This scheme allows one to study time-
dependent quenches, and the transition from adiabatic to genuine nonequilibrium dynam-
ics that occur during such quenches, as explained by the Kibble-Zurek mechanism. We
also presented the issue of representing the state of an open quantum system with NQS,
whose difficulty resides in preserving the positivity of the density matrix. We displayed
key ingredients of a new hybrid method, which uses ideas from the dynamical corner-space
method combined with NQS. We believe such a method will be particularly useful for the
simulation of noisy quantum circuits, to reach sizes well beyond what was achieved using
the original dynamical corner-space method and examine, for example, the entanglement
dynamics and spreading that occur in noisy quantum circuits.

Very recently, a new efficient algorithm for matrix multiplications was discovered by
a machine learning model, coined AlphaTensor [233]. Prior to this discovery, the last
algorithm for such a task was about fifty years old. We believe such phenomena will only
amplify with the increase of computing power along with the improvement of algorithms.
The work presented in this thesis is part of the efforts to design and improve effective
models, to ultimately achieve an era of computationally-assisted scientific discovery [234],
where the task of the scientist becomes that of formulating a problem as precisely as
possible, and algorithms provide solutions to these problems, as complex as they may be.
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A High-order integration methods for
NQS

I Generalization to higher-order methods
Let us consider some linear ordinary differential equation of the form

∂t |ψ(t)⟩ = Φ̂t |ψ(t)⟩ , (A.1)

whose solution |ψ⟩ is discretized over a set of well-defined times {tn}Nn=0 such that |ψ(n)⟩ ≡
|ψ(tn)⟩. Linear Runge-Kutta (RK) methods provide us with the following prescription for
approximately updating |ψ(n)⟩:

|ψ(n+1)⟩ = |ψ(n)⟩ + hn
s∑
i=1

bi|κ(n)
i ⟩, (A.2)

|κ(n)
i ⟩ = Φ̂tn,i

(
|ψ(n)⟩ + hn

∑s
j=1aij|κ

(n)
j ⟩
)
, (A.3)

where s denotes the number of stages of the method, hn = tn+1 − tn, tn,i = tn − cihn and
the coefficients {aij}i,j, {bi}i and {ci}i are completely determined by the Butcher tableau
of the considered method:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
... ... ... . . . ...
cs as1 as2 · · · ass

b1 b2 · · · bs .

(A.4)

Note that the entries are nonzero only on the lowest triangular matrix for explicit methods.
We will here consider methods whose Butcher coefficients satisfy either ai,j>i = 0 (explicit)
or ai,j≥i = 0 (implicit).

For the considered tableaus, the system of Eqs. (A.2) and (A.3) can be solved explicitly
by using the following recurrence identity:

|κ(n)
i ⟩ = Π̂(n)

i |ψ(n)⟩ + hn
i−1∑
j=1

Π̂(n)
i aij|κ

(n)
j ⟩, (A.5)

with
Π̂(n)
i =

[
1̂− aiihnΦ̂tn,i

]−1
Φ̂tn,i

. (A.6)
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Indeed, one has:

|κ(n)
i ⟩ =

{
Π̂(n)
i + hnΠ̂(n)

i a
ijΠ̂(n)

j + h2
nΠ̂(n)

i a
ijΠ̂(n)

j a
jkΠ̂(n)

k + . . .
}

|ψ(n)⟩, (A.7)

and thus
|ψ(n+1)⟩ = T̂ (n)

s |ψ(n)⟩, (A.8)
with

T̂ (n)
s = 1̂+

s∑
i=1

bi

(
hnΠ̂(n)

i + h2
nΠ̂(n)

i a
ijΠ̂(n)

j + h3
nΠ̂(n)

i a
ijΠ̂(n)

j a
jkΠ̂(n)

k + . . .
)
. (A.9)

Representing the wavefunctions above with a variational ansatz, namely
〈
σ
∣∣∣ψηn

〉
=

ψηn
(σ), the generic update can finally be recast into the following optimization process:

|ψηn+1⟩ = arg min
|ψη⟩

dist
(

|ψη⟩, T̂ (n)
s |ψηn

⟩
)
. (A.10)

Time-independent explicit case

The equations above considerably simplify when considering time-independent Hamilto-
nians and an explicit integration method. Indeed, to any order s, we have

T̂ (n)
s =

s−1∑
m=0

λmh
m
n Π̂(n)m =

s−1∑
m=0

λm(−ihnĤ)m , (A.11)

with

λm :=
1, m < 2,

bTam−2c, else.
(A.12)

Two common Butcher tableaus corresponding to the fourth-order Runge-Kutta method
are:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

0
1/3 1/3
2/3 −1/3 1
1 1 −1 1

1/8 3/8 3/8 1/8

(A.13)

For these, we have:

λ0 λ1 λ2 λ3

1 1 1/2 1/6

This corresponds to the usual factor λm = 1/m! of the truncated Taylor expansion of the
propagator. Note, however, that this is generally no longer the case in a time-dependent
scenario, as will appear below.
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Time-dependent implicit midpoint method

The implicit midpoint method is characterized by the tableau

1/2 1/2
1

(A.14)

and yields

T̂ (n)
1 = 1̂+ hnb1Φ̂tn,1 + h2

na
2
11Φ̂2

tn,1 = 1̂− ihnĤ(tn + hn/2) − h2
n

4 Ĥ
2(tn + hn/2). (A.15)

Time-dependent Heun method

The Butcher tableau of this explicit second-order Runge-Kutta method reads

0
1 1

1/2 1/2
(A.16)

and yields the following propagator:

T̂ (n)
2 = 1̂+ hnb1Φ̂tn,1 + hnb2Φ̂tn,2 + b2a21h

2
nΦ̂tn,2Φ̂tn,1

= 1̂− ihn
Ĥ(tn) + Ĥ(tn + hn)

2 − h2
n

2 Ĥ(tn + hn)Ĥ(tn). (A.17)

Time-dependent Ralston method

The Butcher tableau of this explicit second-order Runge-Kutta method reads

0
2/3 2/3

1/4 3/4
(A.18)

and yields the following propagator:

T̂ (n)
2 = 1̂+ hnb1Φ̂tn,1 + hnb2Φ̂tn,2 + b2a21h

2
nΦ̂tn,2Φ̂tn,1

= 1̂− ihn
Ĥ(tn) + 3Ĥ(tn + hn)

4 − h2
n

2 Ĥ(tn + hn)Ĥ(tn). (A.19)



B Résumé substantiel

Cette thèse est consacrée à l’étude de la dynamique hors équilibre dans les systèmes quan-
tiques idéaux (fermés, isolés de leur environnement direct) et dissipatifs (ouverts, couplés
à leur environnement direct). Après une présentation générale de questions liées à la dyna-
mique de systèmes physique ainsi que de leur Histoire, une introduction détaillée du sujet
ainsi qu’une exposition des diverses difficultés apparaissant lors de son étude sont faites
dans le chapitre 1. Ensuite, un premier objet d’étude, la dynamique de l’intrication dans
des systèmes photoniques dissipatifs fortement corrélés, est exposé dans le chapitre 2 ainsi
que les divers nouveaux résultats physiques obtenus par une approche de réseaux de ten-
seurs. Puis, la méthode du sous-espace dynamique, méthode générale pour la dynamique
de systèmes ouverts à entropie faible est présentée dans le chapitre 3. Son application à
l’algorithme de la transformée de Fourier quantique est présentée, encore une fois accom-
pagné de nouveaux résultats obtenus grâce à cette nouvelle méthode. Enfin, la simulation
de la dynamique de systèmes isolés grâce à une représentation en états quantiques neu-
ronaux est détaillée, ainsi qu’une nouvelle méthode développée pour obtenir des résultats
plus fiables pour les systèmes avec un Hamiltonien dépendant du temps sont présentés
dans le chapitre 4. Divers résultats concernant le mécanisme de Kibble-Zurek dans des
systèmes d’Ising avec champ transverse dans la région critique ont ainsi pu être obtenus.

Un système photonique fortement corrélé composé de L résonateurs électromagné-
tiques couplés peut être décrit par l’Hamiltonien suivant

Ĥ =
L∑
i=1

(
ωcb

†
ibi + U

2 b
†
ib

†
ibibi

)
− J

L−1∑
i=1

(b†
ibi+1 + h.c.), (B.1)

avec ωc la fréquence du mode de la cavité, U la force d’interaction photon-photon (Kerr),
J le couplage entre sites voisins, et bi (b†

i ) l’opérateur d’annihiliation (création) sur chaque
site. Un tel système présente une transition de Mott entre un système fortement corrélé,
lorsque U ≫ J et une phase superfluide dans le régime à interactions faibles U ≪ J).
Lorsque les résonateurs sont dissipatifs, le système peut être décrit par l’équation de
Lindblad suivante, sous les approximations de Born et Markov :

dρ

dt
= −i[Ĥ, ρ] + 1

2

L∑
i=1

∑
C

2J (C)
i ρJ

(C)†
i − {J (C)†

i J
(C)
i , ρ}, (B.2)

avec J (C)
i l’opérateur de saut pour le site i et le canal de dissipation C. Nous considérons

deux canaux : le canal de dissipation d’énergie, et le canal de déphasage. En utilisant une
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approche par réseaux de tenseurs (MPO), nous avons obtenus de nombreux résultats sur
la dynamique de l’intrication. Nous considérons deux cas : dans le premier, nous ajoutons
une particule au site central, au dessus d’un état type Mott fortement corrélé. Dans le
deuxième cas, nous considérons le retrait d’une particule (donc l’ajout d’un trou) sur le
site central. Nous pouvons estimer l’intrication grâce à la négativité, qui est une mesure
de l’intrication bipartite. Nous pouvons donc quantifier l’intrication entre deux sites i
et j. En faisant une trace partielle sur l’ensemble du système privé des sites i, j, nous
obtenons une matrice densité réduite, pour laquelle nous calculons la négativité. Ainsi,
nous obtenons que la propagation de l’intrication est ballistique aux temps courts, et est
correctement prédite par les calculs pour le système fermé. Cela indique que l’image de
quasiparticules reste pertinente même lorsque la dissipation est forte. Remarquablement,
la dissipation affecte beaucoup plus la propagation de l’intrication dans le cas du retrait
d’une particule au temps initial. Cela s’explique par une image de trajectoires quantiques,
qui rend compte de la fragilité de la propagation du trou.

Le chapitre 3 est dédié à la simulation numérique de systèmes quantiques ouverts en
général, et en particulier des systèmes ayant une entropie limitée. Ce type de systèmes
est celui généralement construit pour les tâches de traitement de l’information quantique,
ou les systèmes sont isolés le plus possible de leur environnement direct. Cette technique
est basée sur la décomposition de la solution de l’équation maîtresse ρ̂(t) sous la forme,
pour tout instant t :

ρ̂(t) ≃
M(t)∑
k=1

pk(t) |ϕk(t)⟩⟨ϕk(t)| , pk(t) ≥ pk+1(t), ∀k, (B.3)

où les probabilités {pk(t)}k sont les M(t) valeurs propres les plus élevées à l’instant t
et {|ϕ(t)⟩k}k sont leurs vecteurs propres associés. Lorsque l’entropie du système reste
faible au cours de son évolution temporelle, cette décomposition peut être tronquée à un
nombre de composantes M bien plus faible que la dimension de l’espace de Hilbert asso-
cié au système. La méthode du sous-espace dynamique permet ainsi de limiter l’évolution
temporelle à ce nombre très limité de composantes sans jamais reconstruire la matrice
densité complète. S’ensuit un énorme avantage sur le plan de la complexité numérique
de la simulation. À titre d’exemple, pour un ensemble de L spins 1/2, la complexité est
réduite de O(2L × 2L) à O(M × 2L). Cette méthode est appliquée à un algorithme réa-
lisant la transformée de Fourier quantique en présence de dissipation ou de déphasage.
Cet algorithme est au centre de nombreux algorithmes quantiques, comme l’algorithme
de Shor, et en comprendre les mécanismes d’erreur avec une modélisation réaliste est ainsi
de grande importance. Nos simulations montrent que l’erreur introduite par le couplage
du circuit à un environnement extérieur croît quadratiquement avec la taille du système
L. Nous montrons aussi que l’erreur dépend sensiblement du type d’état à partir du-
quel l’opération est menée. Nous envisageons aussi d’étendre ce type de méthode afin de
pouvoir utiliser des états variationnels comme états composant le sous-espace, ce qui en
augmentera considérablement sa compléxité numérique.

Enfin, nous présentons le cadre théorique de la représentation d’états quantiques par
des réseaux de neurones. Pour une fonction d’onde ψ dans un espace de Hilbert discret,
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l’amplitude de chacune des configurations s peut être représenté par un réseau de neurone,
auquel l’on donne en entrée la configuration, et en sortie nous obtenons ψ(s). L’application
canonique d’une telle méthode est trouver l’état fondamental d’un système décrit par un
Hamiltonien Ĥ. En minimisant la quantité

⟨ψθ|Ĥ|ψθ⟩
⟨ψθ|ψθ⟩

(B.4)

sur l’ensemble des valeurs possible de θ, nous pouvons obtenir une estimation de l’état fon-
damental et de son énergie, en vertu du principe variationnel. En utilisant des méthodes
standard d’apprentissage profond, cette quantité peut être minimisée et efficacement, et
ainsi ces méthodes deviennent très utiles pour les problèmes fortement corrélés, ou les
autres méthodes numériques à notre disposition sont très limitées. En particulier, nous
étudions le mécanisme de Kibble-Zurek pour des systèmes d’Ising avec champ transverse.
Ce système présente une transition de phase entre une phase paramagnétique et ferroma-
gnétique (ou antiferromagnétique). Proche de la transition de phase, il est notoirement
difficile d’étudier ce système, notamment lorsque l’Hamiltonien dépend du temps comme
lors de dynamique type Kibble-Zurek. En considérant une intégration numérique alter-
native avec des états quantiques neuronaux, nous sommes capable d’obtenir de résultats
pour ce mécanisme cohérent avec d’autres méthodes numériques, pour ainsi corroborer
de tels résultats. Nous montrons aussi les limites d’autres méthodes d’intégration numé-
riques pour les états neuronaux, comme les méthodes de Monte Carlo variationnelles en
temps (t-VMC). Ces méthodes pourront donc être utilisées à l’avenir pour investiguer ce
mécanisme dans des systèmes plus complexes, voire dissipatifs.
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