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Résumé

La recherche scientifique a montré qu’il existe une relation directe entre le réchauffement cli-
matique et l’émission de carbone et d’autres gaz à effet de serre. En ce qui concerne les pays
européens, le développement de la production d’énergie électrique à partir des sources renou-
velables et le système d’échange de quotas d’émission de l’Union européenne (EU ETS pour
son abréviation en anglais) sont deux outils importants pour réduire les émissions de dioxyde
de carbone (CO2) et faire face au changement climatique. L’objectif principal de ce projet de
recherche doctoral est d’identifier les facteurs explicatifs des émissions de CO2 et d’explorer
comment les principaux outils cités ci-dessus peuvent aider à réduire les émissions au niveau
français et européen. La problématique centrale de la thèse consiste en plusieurs sous-questions
de recherche, abordées dans quatre articles scientifiques connexes mais toutefois nettement dis-
tincts.

Le premier article répond à la question : « Compte tenu d’une augmentation ou d’une
diminution de la production d’énergie renouvelable en France, quelle serait l’évolution prévue
des émissions dans le secteur de l’électricité ? » et identifie la part optimale de chaque source
dans le mix énergétique renouvelable pour minimiser les émissions prévues dans le secteur de
l’électricité dans les scénarios de production d’électricité renouvelable plus élevée en France
sur la période 2013-2021.

Le deuxième article adopte une approche interdisciplinaire de pointe basée sur l’apprentissage
automatique pour caractériser l’impact des conditions climatiques sur les émissions horaires de
CO2 dans le système électrique français de janvier 2013 à décembre 2020. Les résultats de cet
article devraient apporter une contribution importante à la littérature sur les facteurs détermi-
nants des émissions de CO2 dans le secteur de l’électricité et peuvent donner un aperçu de la
sensibilité des émissions liées à l’énergie au changement climatique.

Le troisième article évalue l’efficacité environnementale des trois premières phases (2005-
2019) de l’EU ETS pour réduire les émissions de CO2 dans 248 régions socio-économiques des
États membres de ce système. Considérant le début de chaque phase comme une intervention,
cet article adopte une approche de modélisation prédictive avancée pour construire des émis-
sions de CO2 contrefactuelles pour chaque période post-intervention, et analyse, dans le temps
et dans l’espace, l’effet de l’intervention en comparant les émissions réalisées avec des estima-

4



tions contrefactuelles.
Le quatrième article examine l’impact prédictif des conditions climatiques et de la demande

d’électricité sur les prix spot horaires des quotas d’émission au cours des trois premières phases
du système d’échange de quotas d’émission de l’Union européenne (2005-2019). Cette étude
propose une méthodologie originale pour construire des indices de demande d’électricité et de
climat à l’échelle européenne, et caractérise la relation entre ces indices et les prix des quotas
d’émission. Cet article contribue à la littérature croissante sur les déterminants structurels des
prix du carbone dans l’EU ETS et améliore notre compréhension de l’impact de la variabilité
climatique sur la mesure de marché la plus importante pour réduire les émissions de CO2 en
Europe.

Dans l’ensemble, cette thèse contribue à la littérature sur l’efficacité environnementale de
deux principaux outils pour réduire les émissions de CO2 et faire face au changement clima-
tique, c’est-à-dire la production d’énergie électrique à partir des sources renouvelables et le
système d’échange de quotas d’émission de l’Union européenne, ainsi que la littérature sur les
facteurs explicatifs de ces émissions en Europe.
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CHAPTER1
General Introduction

Anthropogenic greenhouse gas emissions are the predominant driver of climate change, with
carbon dioxide (CO2) emissions bearing the most responsibility for global warming. CO2

emissions from energy use are one of the principal contributors to global climate change and
represent almost 75% of all anthropogenic greenhouse gas emissions in the European Union
(European Commission, 2021). Such emissions come under the influence of multiple climatic,
social and economic factors, and are mainly rooted in the combustion of fossil fuels (e.g. coal,
natural gas and petroleum) for electricity production, transportation, industrial manufacturing
and agricultural purposes. Addressing climate change thus requires that CO2 reduction and
removal measures be taken urgently at national and international level. Carbon pricing (e.g.
through carbon taxes and emissions trading systems) and renewable energy development are
two major tools for climate change mitigation through reducing sources of carbon emissions.

Many countries worldwide have attempted to enact legislation or devise a mechanism for
trading carbon contracts. The main argument for those considerations is that, excessive green-
house gas emissions and their irreversible consequences for the environment cannot be pre-
vented unless there are powerful (pecuniary) incentives for economic actors to promote emis-
sions reductions. As such, application of the ’polluter pays’ principle through putting a price
on carbon dioxide (CO2) and other greenhouse gases has found its place in the national and
international environmental policies aimed at fighting global warming.

It has long been established by economists that carbon pricing through cap-and-trade sys-
tems is one of the most cost-effective ways to decarbonize the economy (Meckling et al., 2017).
The European Union Emissions Trading System (hereinafter referred as the EU ETS) is the
European Union’s major market-based environmental scheme to combat climate change and its
impacts under the Kyoto Protocol. Established in 2005, the scheme is the earliest and biggest
international carbon market in the world, functioning on a cap-and-trade basis. An annually
decreasing cap is set on the total amount of CO2 or the equivalent amount of other notorious
greenhouse gases (referred to as CO2 equivalent and denoted by CO2e) that can be emitted by
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the installations covered by the system. Within the cap, installations buy emissions allowances
(also called emissions certificates, carbon credits or carbon permits). The EU ETS is split into
distinct trading periods or phases with their own specificities, of which three had drawn to a
close by the end of 2020, and the fourth was well under way at the time of writing this disserta-
tion.

Notwithstanding the fact that all sectors should be held accountable for reducing CO2 emis-
sions, the electricity sector is expected to play the lead role in the decarbonization of economy
owing to its more pronounced ability to lower emissions in a cost and time-effective manner
(Edenhofer, 2015; Rodrigues et al., 2020; Goh et al., 2018a; Karmellos et al., 2016). This jus-
tifies the domination of the EU ETS by firms involved in electricity generation (see Ahamada
and Kirat, 2015). Development of renewable energy share of electricity production, leveraging
carbon capture and sequestration (CCS) technologies in power plants, and increasing nuclear
energy supply are three alternative methods for mitigating CO2 emissions in the electricity sec-
tor (Brouwer et al., 2016). Among these options, renewable energy sources have been argued
to be the cornerstone of CO2 mitigation in the power sector (Rogelj et al., 2018), not only from
an environmental point of view but also in the light of economic, social and political considera-
tions (Waisman et al., 2019). Decarbonizion of the power sector, as a crucial factor in mitigating
climate change, is a challenge responding to which requires, in the first place, an in-depth un-
derstanding of explanatory factors behind electricity generation-related emissions. Moreover,
key questions about the “future” of electricity generation and alternative power generation tech-
nologies need to be understood by innovative methods that would possibly allow for a careful
evaluation of the “past”.

In light of the above considerations, this doctoral project attempts to link three strands of
literature on climate change mitigation through reducing sources of carbon emissions. The first
and broader strand is that of explanatory factors for greenhouse gas emissions, with a focus
on energy-related emissions. More precisely, the present research examines how and to what
extent climate impacts on the demand and supply of energy (notably electricity) translate into
CO2 emissions in France as well as the EU ETS zone.

The second strand is effectiveness analysis of the EU ETS and renewable energy develop-
ment, as two main tools for reducing CO2 emissions and dealing with climate change. In order
to evaluate the environmental effectiveness of the EU ETS, this work capitalizes on the statis-
tical structure of regional climate-emissions relationships to estimate counterfactual fossil fuel
CO2 emissions over the period following the beginning of the first three phases, and examines
the impact of the trading scheme by comparing realized monthly emissions with counterfactual
estimates across European socio-economic regions. As regards CO2 emissions reduction from
renewable energy, the present research characterizes the predictive impact of climate-related
renewable electricity generation (i.e. wind, solar photovoltaic, and small-scale run-of-river hy-
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droelectric power) on daily CO2 emissions in the French electric power system and identifies,
based on a counterfactual analysis, the optimal mix of renewable energy sources for minimizing
emissions as well as electricity generation intermittency.

The third strand is that on carbon price drivers in the EU ETS. Although debatable, the
price of emissions allowances traded on a carbon market is often used as a measure of the ef-
fectiveness of the market. Carbon price provides an economic signal to emitters of CO2, and
enables them to decide whether to lower their emissions, or continue emitting and paying for
their emissions (World Bank, 2022). In this regard, it is extremely important to understand what
drives fluctuations in permit prices. This dissertation aims to contribute to the growing body of
literature on the structural determinants of carbon prices in the EU ETS by examining the pre-
dictive impact of climate conditions and electricity demand on hourly spot prices of emissions
allowances during the first three phases of the scheme.

In summary, the key objective of this dissertation is to empirically disentangle the nexus
between climate and carbon emissions in the provision of climate change mitigation policies in
France and Europe. This central objective is divided into a number of sub-objectives that are ad-
dressed in four individual studies. All these essays were under consideration by peer-reviewed
field journals at the the time of writing the dissertation.

The first essay, titled “Climate-related renewable energy sources and carbon emissions:
a machine learning-based investigation of electricity production in France”, aims to char-
acterize the predictive impact of electricity generation from climate-related renewable energy
(CRE) sources (wind, solar photovoltaics, and small-scale run-of-river hydroelectricity) on
daily CO2 emissions in the French electric power sector over the 2013-2021 period. The study
also identifies the optimal mix of CRE sources for minimizing predicted emissions and electric-
ity generation intermittency under four counterfactual scenarios of increased CRE production
in France over the study period.

In an attempt to extend the knowledge about driving factors for CO2 emissions in the elec-
tricity sector, the second essay, titled “Identifying climatic drivers of emissions from electric-
ity production: Insights from a predictive modeling-based approach”, characterizes climate
impacts on hourly CO2 emissions in the French electric power system over the 2013-2020 pe-
riod.

The third essay, titled “Mission Accomplished? An ex-post predictive evaluation of the
effectiveness of the EU ETS in reducing regional fossil fuel carbon emissions”, evaluates
the effectiveness of the first three phases of the EU ETS in reducing monthly fossil fuel CO2

emissions in European socio-economic regions. The study also examines the predictive useful-
ness of climate variables as potential drivers of regional fossil fuel CO2 emissions across the
EU ETS zone. This essay covers the period from 2005 to 2019, i.e. the first two phases and
seven years of the third phase of the EU ETS.
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The fourth essay, titled “Can climate factors and electricity demand predict carbon
emissions allowances prices? Evidence from the first three phases of the EU ETS”, aims to
contribute to the literature on determinants of allowances prices in the European carbon market,
by examining the predictive impact of climate conditions and electricity demand on hourly spot
prices of emissions allowances during the first three phases of the EU ETS. Similar to the third
essay, this study covers the period from 2005 to 2019.

From a methodological point of view, the dissertation revolves, on a broad level, around the
application of a cutting-edge machine learning algorithm in the energy and climate research–
with a clear justification of the choice of methodology in each essay. That being the case, the
contributions of the present work go beyond the mere application of machine learning. While
adhering to the central theme of the dissertation, each essay addresses an original and clear-cut
research problem, which is expected to be of sufficiently immediate interest to a broad range of
scholars in the field of energy and environmental economics.

The essays are presented, in the form of complete manuscripts, in separate chapters. The
chapters are grouped into two overarching sub-themes: climate and electricity production, and
European Union Emissions Trading System. Essay 1 and Essay 2 are associated with the first
theme, and address the interplay between climate and carbon emissions in the power sector in
relation to renewable electricity production. Essay 3 and Essay 4 belong to the second theme
and focus on the leading market-based framework for carbon trading in Europe. The use of
hourly, daily and monthly data in different chapters ensures that the dynamics of the interrela-
tion among climate factors, carbon emissions and key climate change mitigation tools at French
and European level are investigated across multiple time scales.

The remaining part of the dissertation proceeds as follows. Individual essays are presented
in the next four chapters. In light of the fact that the essays share the same predictive modeling
technique and interpretation tools, content duplication in the methods section of the chapters
was inevitable. Nevertheless, the studies rely on different methodological frameworks and ad-
dress entirely distinct (yet related) research questions. The concluding part of the dissertation
(Chapter 6) reiterates the central research theme, and highlights the significance of the findings
and general policy implications.
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CHAPTER2
Climate and Electricity Production:
Renewables and Carbon Emissions

Article Title: “Climate-related renewable energy sources and carbon emissions: a machine
learning-based investigation of electricity production in France” (Eslahi, 2022a)

Abstract: By means of a cutting-edge machine learning-based modeling technique, this study
characterizes the predictive impact of electricity generation from climate-related renewable en-
ergy (CRE) sources (wind, solar photovoltaics, and small-scale run-of-river hydroelectricity)
on CO2 emissions in the French electric power sector over the 2013-2021 period. The results
demonstrate that run-of-river hydroelectricity was the most important feature among the three
CRE sources for predicting emissions, followed by wind energy. Empirical findings based on
a counterfactual analysis also reveal that an increase in the share of energy from CRE sources
would be associated with a statistically significant decrease in predicted emissions over the
study period. Identification of the optimal mix of CRE sources for minimizing predicted emis-
sions under four counterfactual scenarios of increased CRE production reaffirms the greater
relative share of run-of-river hydroelectricity and wind energy within the mix. The findings
of this research have two major implications for renewable energy development and manage-
ment in France. First, they provide fresh quantifiable evidence on the conceptual premise that
replacing carbon-intensive energy sources with renewable ones reduces CO2 emissions from
electricity generation. Second, they cast a new light on the relative importance of each CRE
source with regard to emissions reduction in the electricity sector.

Keywords: Climate-related Renewable Energy, CO2 Emissions, Electricity Production, Coun-
terfactual Analysis, Machine Learning
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2.1 Introduction

Carbon dioxide (CO2) emissions from energy use are one of the principal contributors to global
climate change and represent almost 75% of all anthropogenic greenhouse gas emissions in the
European Union (European Commission, 2021). Such emissions come under the influence of
multiple climatic, social and economic factors, and are mainly rooted in the combustion of fos-
sil fuels for electricity production, transportation, industrial and agricultural purposes. Notwith-
standing the fact that all sectors should be held accountable for reducing CO2 emissions, the
electricity sector is expected to play the lead role in the decarbonization of economy owing
to its more pronounced ability to lower emissions in a cost and time-effective manner (Eden-
hofer, 2015; Rodrigues et al., 2020; Goh et al., 2018a; Karmellos et al., 2016). Development of
renewable energy share of electricity production, leveraging carbon capture and sequestration
(CCS) technologies in power plants, and increasing nuclear energy supply are three alternative
methods for mitigating CO2 emissions in the electricity sector (Brouwer et al., 2016). Among
these options, renewable energy sources have been argued to be the keystone of CO2 mitigation
(Rogelj et al., 2018), not only from an environmental point of view but also in the light of eco-
nomic, social and political considerations (Waisman et al., 2019).

Being a pioneer in the battle against global warming, the European Union already has a sig-
nificantly lower emissions intensity of electric power generation than other large economies
such as the United States, Japan, China, India and Australia (International Energy Agency
(IEA), 2020). The French electricity sector is comparatively even more decarbonized (Shi-
rizadeh and Quirion, 2021), largely due to the considerable share of nuclear energy genera-
tion.1 The 2020 report of the electricity transmission system operator of France2 asserts that, in
2019, emissions from electricity production in the country reached approximately 21.16 million
tonnes of CO2 equivalent (CO2e), accounting for 4.8% of total emissions (Réseau de Transport
d’Électricité (RTE), 2020).

In alignment with France’s carbon neutrality by 2050 objective set by the National Assembly
in 2019 under the title “Ecological Emergency and Climate Crisis” (Ministère de la Transition
écologique, 2019), CO2 emissions from electricity production need to be further reduced either
by retrofitting CCS to existing power plants, building new nuclear reactors or increasing the
share of renewable electricity (Débat national sur la transition énergétique, 2013; Shirizadeh
and Quirion, 2021). Two analyses conducted by the French Environment and Energy Man-
agement Agency (ADEME) have shown that the development of a new generation of nuclear
energy would not be economically efficient for the French electricity system, and that in an ideal
scenario, electricity generation from renewable sources would constitute the largest share–up to

1France has the world’s largest share of electricity production by nuclear power, with about 70% of its electricity
being generated from nuclear energy (World Nuclear Association, 2022).

2RTE–Réseau de Transport d’Électricité (https://www.rte-france.com/)
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95%–of electricity generation in France over the next few decades (see ADEME, 2015, 2018).
It is in this regard that the nexus between CO2 emissions in the electric power sector and various
forms of renewable electricity generation needs careful analysis.

Figure 2.1 depicts the share of total electric energy produced by main fuel categories in
France from 2013 to 2020. From this figure, two main observations are clear. First, while the
share of the fossil fuel mix (i.e. fuel oil, coal and gas in aggregate) in total electricity produc-
tion has only slightly decreased over this period (from 7.91% in 2013 to 7.51% in 2020), the
shares of total electricity production from fuel oil and coal have decreased, respectively, from
0.69% and 3.61% in 2013 to 0.34% and 0.28% in 2020. This decrease has been accompanied
by an increase in the share of total electricity production from gas (from 3.61% in 2013 to
6.89% in 2020), indicating a shift in the fossil fuel mix. Second, the share of the wind-solar-
hydroelectric energy mix in total electricity production has increased from 17.44% in 2013 to
23.55% in 2020. Accompanied by a decrease in the share of total electricity produced from
nuclear energy (from 73.34% in 2013 to 66.99% in 2020), this latter signifies a change in the
composition of non-fossil fuel mix, i.e. a gradual transition from nuclear to wind-solar-hydro
electricity.3

The relationship between CO2 emissions and renewable energy production and consump-
tion has attracted growing interest from scholars in the fields of environmental and energy eco-
nomics. Adopting a range of conventional methodological approaches to time series and panel
data analysis, numerous studies have examined this relationship over different time periods and
with different geographical scopes. As suggested by Sharif et al. (2020), existing research in
this area can be broadly categorized into five groups according to their findings: studies that
indicate a unidirectional causality relationship from renewable energy use to CO2 emissions
(Farhani and Shahbaz, 2014; Jaforullah and King, 2015; Özbuğday and Erbas, 2015; Apergis
and Payne, 2015; Long et al., 2015; Bilgili et al., 2016; Bulut, 2017; Liu et al., 2017b; Khan
et al., 2018; Salazar-Núñez et al., 2021); those arguing that CO2 emissions influence the produc-
tion and consumption of renewable energy (Sadorsky, 2009; Menyah and Wolde-Rufael, 2010;
Shafiei and Salim, 2014; Leitão, 2014; Jebli and Youssef, 2015; Paramati et al., 2017); works
suggesting a bidirectional causal association between CO2 emissions and the production and
consumption of renewable energy (Apergis et al., 2010; Dogan and Seker, 2016; Dong et al.,
2017; Waheed et al., 2018); the ones that imply no causal link between CO2 emissions and the
production and consumption of renewable energy (Qi et al., 2014; Bento and Moutinho, 2016;
Jebli et al., 2016; Saidi and Mbarek, 2016; Boontome et al., 2017; Jebli and Youssef, 2017;
Liu et al., 2017a); and finally studies with mixed or indecisive results on this relationship (Zeb
et al., 2014; Apergis and Payne, 2014; Sebri and Ben-Salha, 2014; Ang and Su, 2016; Bélaïd

3While there is an ongoing dispute over the optimal relative shares of renewable energy resources and nuclear
power in electricity generation in France (Shirizadeh and Quirion, 2021), the share of electricity generation by
nuclear power is to be reduced to 50% by 2035 as per government policy (World Nuclear Association, 2022).
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Figure 2.1: Share of total electric energy produced by main fuel categories in France from 2013 to 2020 (Data
source: https://opendata.reseaux-energies.fr/).

and Youssef, 2017; Sinha et al., 2018; Adams and Nsiah, 2019; Chen et al., 2019; Sharif et al.,
2020; Rodrigues et al., 2020).

All the empirical studies listed above have based their analyses upon annual data, with the
exception of the work of Sharif et al. (2020), which makes use of monthly data disaggregated
from annual series. As emphasized by Adewuyi and Awodumi (2017), this body of literature
remains inconclusive on the topic, both at single and multi-country levels. Interestingly enough,
some studies with the same geographical scope (i.e. region) and overlapping study periods have
yielded inconsistent results (see for example the works of Sebri and Ben-Salha (2014), Dong
et al. (2017) and Liu et al. (2017b) on BRICS countries). This highlights the need for the recog-
nition of the specificity of different research settings, and calls for further investigation into the
matter, possibly by means of more advanced methodologies that are better fitted to answering
the question on the nexus between renewable electricity production and CO2 emissions.

From a methodological point of view, a potential drawback of most existing empirical
studies in this area is the fact that they seek (positive or negative) causal links between CO2

emissions and renewable energy production and consumption, while relying on methods and/or
measures that are inherently inappropriate for drawing such causal inferences. For instance,
commonly used emissions indicators (like the ones used in the present study; see Section 2.2.1)
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are typically estimated by considering the contribution of the combustion of carbon-based fuels
(such as coal, gas and various fuel oil products) to CO2 emissions, and on the assumption that
renewable energy sources (also referred to as clean energy sources) or even biofuels4 create little
to no CO2. Hence, the change in renewable energy production and consumption cannot neces-
sarily be considered to be the “cause” of the change in the values of such emissions variables.
Moreover, prior research has often used composite emissions indicators that may embrace, but
are not necessarily limited to emissions from electricity production (see for example Apergis
et al., 2010; Adams and Nsiah, 2019; Dogan and Seker, 2016). This variable choice could
possibly lead to the omitted-variable bias in statistical models, and question the validity of any
causal claim about the relationship between CO2 emissions and renewable energy production
and consumption.

With reference to the points raised above, it could be argued that most causal claims in this
context can be considered indications of correlation, precedence (Leamer, 1985) or temporal
relation (Granger and Newbold, 2014) based on a set of theoretical assumptions about the data.
One way to overcome this problem of causal interpretation involves the use of advanced pre-
dictive modeling techniques to characterize the “predictive impact” (distinguished from causal
impact) of renewable energy production on CO2 emissions. Instead of attempting to make
a theoretically unsupported causal claim, this alternative approach helps provide answers to
questions of great practical importance such as (1) Given an increase or decrease in renewable
energy production, what would be the predicted change in emissions in the electricity sector?
and (2) Under a higher-renewable-electricity-production scenario, what would be the optimal
share of each source in the the renewable energy mix for minimizing predicted emissions in
the electricity sector? This proposed predictive framework derives its legitimacy from the fact
that an increase in the share of the package of clean energy sources is expected to result in a
decrease in the share of high-carbon energy sources as main drivers of CO2 emissions.

On another note, while some existing works have considered the effect of specific types of
renewable energy sources like hydroelectricity (Long et al., 2015; Khan et al., 2018) or wind
and solar energies (Qi et al., 2014) on CO2 emissions, there has been a general trend towards
viewing renewable energy as a single variable and overlooking potential disparities between
different types of renewable energy in terms of their impact on CO2 emissions. More impor-
tantly, little attention has been paid to the extent to which different renewable energy sources
can be influenced by climate change. In order to fill these gaps, the present study distinguishes
between constituent sources of the renewable energy block, and focuses further on the role of
“climate-related” renewable energy sources in reducing CO2 emissions from electricity pro-

4See for example the description of CO2 emissions data from the methodology section of BP Sta-
tistical Review of World Energy (https://www.bp.com/en/global/corporate/energy-economics/
statistical-review-of-world-energy/using-the-review/methodology.html.html#accordion_
carbon)
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duction. Consistent with the definition of Engeland et al. (2017), climate-related renewable
energy (hereafter referred to as CRE) sources are represented in this paper by wind, solar pho-
tovoltaics, and small-scale run-of-river hydroelectricity energy sources. What justifies the ap-
pellation “climate-related renewable energy” is the fact that the availability and sporadicity of
these resources are dependent on climate factors such as air temperature, wind speed, solar ra-
diation, precipitation, and river runoff. Consequently, among different sources of energy, CRE
sources are most affected by climate change.

The main purpose of this work is to characterize the predictive impact of CRE electricity
production on CO2 emissions in the French electric power system over the 2013-2021 period.
To do so, a machine learning-based empirical modeling framework is employed to first evaluate
the importance of different types of CRE electricity production in predicting CO2 emissions,
and specify the marginal effect of each CRE source on the predicted outcome of the model.
Through a counterfactual analysis, the predictive impact of CRE production potential (as prox-
ied by climate-derived energy indicators) on CO2 emissions is then quantified. This analysis
reveals if exploiting the full potential of CRE sources, which is equivalent to an increase in the
share of CRE electricity production and a decrease in the share of non-CRE sources, would
result in significantly lower predicted emissions over the study period. Finally, four counterfac-
tual scenarios of increased CRE production over the study period are explored, and the optimal
mix of CRE sources for minimizing predicted emissions under each scenario is identified. This
analysis is complemented by the identification of the optimal CRE mix that would minimize
the intermittency of CRE electricity production in France from 2013 to 2021. By limiting the
scope of the study to CO2 emissions from electricity production (instead of using composite or
total emissions indicators), the present research undermines the possibility of the precedence
of emissions over renewable electricity generation. This provides a sound conceptual basis for
delineating the predictive effect of CRE electricity production on CO2 emissions.

The contributions of this study to the literature on the relationship between carbon emis-
sions and electricity production from renewable and non-renewable energy sources are mani-
fold. First, while most of the existing studies in this area are based on annual or monthly data,
the present research capitalizes on emissions and energy indicators data with a high (i.e. daily)
temporal resolution. Indeed, in a similar context to that of the present study, using data with
coarse temporal resolution (e.g. annual or monthly) leads to disregard of intra-monthly or intra-
annual variability and intermittency of renewable energy sources that depend on climate (see
Gernaat et al., 2021). Second, in the attempt to model the relationship between carbon emis-
sions and electricity production from renewable and non-renewable energy sources, this paper
considers all categories and subcategories of fuel types. This kind of fine-grained analysis has
rarely been undertaken in the energy economics literature. Third, to the best of the author’s
knowledge, this study is the first to quantify the predictive impact of the (unexploited) CRE
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electricity production potential on energy-related CO2 emissions. To this should be added the
methodological contributions towards counterfactual estimation of CO2 emissions based on re-
alizable CRE electricity production, particularly in terms of the weighting scheme for energy
indicators (see Section 2.2.2.2). Fourth, by decomposing the CRE package into its constituent
elements (i.e. wind, solar photovoltaics, and run-of-river hydroelectricity) rather than viewing it
as a unified block, the present study is able to determine the optimal share of individual sources
within the package that minimizes counterfactual predictions of CO2 emissions under near-
feasible to idealistic hypothetical CRE production scenarios. This scenario-based approach has
important implications for renewable energy development and management in France, since
it provides evidence of the relative importance of each CRE source with regard to emissions
reduction in the electricity sector. Finally, in the evaluation of the predictive impact of CRE
electricity production on CO2 emissions under the proposed scenarios, this research takes into
account the intermittency of CRE sources that is motivated by the natural variability of climate
factors. So far, this striking aspect of renewable electricity generation has been largely neglected
in the studies on the dynamics between emissions and renewable energies.

The remainder of this paper is structured as follows. Section 2.2 describes data and method-
ology of the analysis. The results are presented in Section 2.3. A discussion of the study
limitations and a few suggestions for future research are provided in Section 2.4. The paper
concludes with a summary of the key findings and the empirical contributions made to the ex-
isting literature (Section 2.5).

2.2 Materials and Methods

2.2.1 Data

2.2.1.1 Realized CO2 emissions and electricity production by different fuel types

Consolidated and final half-hourly data on CO2 equivalent emissions from electricity produc-
tion (g/kWh), and the electrical power production by different fuel types (MW) in France from
January 1, 2013 to August 31, 2021 were obtained from the éCO2mix data set, provided by
the electricity transmission system operator of France and available on the Open Data Réseaux
Énergies (ODRÉ) platform.5 The emissions indicator represents CO2 emissions released only
by the consumption of primary fuel used in power plants, and is calculated based on the rel-
ative contribution of fuel oil, coal, gas and biofuel energy sources to CO2 emissions. For the
sake of this study and consistent with the nature of emissions data, cross-border physical power
exchange (with England, Spain, Italy, Switzerland, Germany and Belgium) and the power con-

5https://opendata.reseaux-energies.fr/. This platform is a subdivision of the open platform for
French public data (https://www.data.gouv.fr/)
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sumed by pumps in pumped-storage hydroelectricity systems were disregarded. Furthermore,
in light of methodological considerations, the analysis was restricted to non-negative values of
power production, and negawatts (negative megawatts), if any, were set to zero. The original
data were aggregated to average daily values,6 and all power values in MW were converted to
energy values in kWh. Table 2.1 presents the the summary statistics for the original emissions
and energy indicators used for empirical modeling (hereafter referred to as “realized” emissions
and energy indicators).

Table 2.1: Summary statistics of realized daily emissions and energy indicators over the study period (from January
1, 2013 to August 31, 2021) based on the data provided by the electricity transmission system operator of France.
CO2 emissions values are expressed in grams (g). The measurement unit of the electric energy produced by
different fuel types is kWh.

Emissions/Energy Indicator Mean Max Min SD

CO2 Emissions per kWh 46.45 124.06 8.56 22.84

Fuel Oil (Combustion Turbine) 674,858 20,340,000 0 1,125,804

Fuel Oil (Cogeneration) 3,081,020 8,260,000 725,000 1,814,021

Fuel Oil (Other) 2,527,667 59,987,500 48,500 4,374,613

Coal 20,267,562 137,553,500 0 24,757,978

Gas (Combustion Turbine) 649,438 11,748,000 0 1,635,438

Gas (Cogeneration) 29,434,352 78,129,500 4,609,500 24,688,399

Gas (Combined Cycle Turbine) 47,794,491 138,265,500 0 40,036,372

Gas (Other) 1,906,760 14,620,500 312,000 1,687,226

Nuclear 1,057,000,000 1,458,000,000 530,400,000 166,199,782

Wind 70,972,076 321,939,000 3,475,500 54,964,062

Solar Photovoltaics 25,356,374 75,390,000 1,288,000 15,205,422

Hydroelectricity (Run-of-river) 113,731,842 190,018,500 34,160,000 35,640,184

Hydroelectricity (Lake) 45,365,080 117,566,500 6,776,500 19,626,978

Hydroelectricity (Pumped-storage) 16,000,279 41,715,000 1,621,500 7,322,262

Biofuel (Waste) 11,637,540 15,270,000 6,078,000 1,524,737

Biofuel (Biomass) 6,151,799 11,123,000 2,792,000 1,572,375

Biofuel (Biogas) 5,918,516 8,558,500 2,904,000 1,401,570

In addition to energy indicators, time-based features (i.e. year and month of the year) were
created with integer encoding7 and included in the empirical model as numerical control vari-

6This aggregation is necessary to ensure consistency in sampling frequency across the different data sets used
in this study.

7The use of integer encoding is permitted since the categories have a natural ordering.
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ables to account for possible year and month seasonality information in the data. The ultimate
data set used for empirical modeling includes 3165 daily observations (from January 1, 2013 to
August 31, 2021) with 19 independent variables (consisting of 17 energy indicators and 2 time-
based features), and the natural logarithm8 of CO2 emissions per kWh of electricity generated
as the response variable.

2.2.1.2 CRE electricity production estimates derived from climate variables

Climate variables such as air temperature, wind speed, solar radiation, precipitation, and river
runoff can be transformed into potential renewable energy indicators by means of physical or
statistical models or a combination of both. Numerical climate models for estimating CRE
production potential are useful for delineating important climate-driven changes in the energy
sector both in the short and the long term.9

By Using a combination of physical and statistical models and considering the available in-
stalled energy capacity, the Copernicus Climate Change Service (C3S) at the European Centre
for Medium-Range Weather Forecasts (ECMWF)10 has provided a set of energy indicators for
Europe derived from gridded reanalysis data on climate variables (Hersbach et al., 2020). This
data set serves as a critical reference for evaluating the quality of climate-to-energy conversion
models. The present study makes use of gridded and aggregated data over France on daily on-
shore wind, solar photovoltaics, and run-of-river hydroelectricity energy indicators from this
collection (Ho et al., 2020; Saint-Drenan et al., 2018) for the period between January 1, 2013
and August 31, 2021.

The estimated energy indicators derived from climate variables are used as proxies for en-
ergy production “potential”, and therefore referred to as “realizable” energy indicators further
on in this paper. Indeed, they are assumed to represent the level of CRE electricity production
that could be attained given the climate conditions of the study area (represented by the set of
grid points within the area) over the period of interest.11 Table 2.2 presents the the summary
statistics for these energy indicators.

Figure 2.2 compares the distributions of original and estimated CRE indicators over the
study period. A comparison of the respective medians in each panel of Figure 2.2 demonstrates
a difference between the location of realized and realizable energy indicators. The significance
of this location shift is further assessed using a non-parametric statistical test.

The results of the paired Wilcoxon signed-rank test (Wilcoxon, 1992; Conover, 1999) in-

8This transformation is necessary for empirical modeling purposes, i.e. to avoid potential negative predicted
values of the response variable. Predicted emissions are back-transformed for the presentation and visualization of
results.

9See Engeland et al. (2017) for a review of the foundations of such models, and a summary of the studies on
the nexus between climate variability and renewable electricity production.

10https://cds.climate.copernicus.eu/
11This assumption, however, is subject to some limitations that are discussed in more detail in Section 2.4.
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Table 2.2: Summary statistics of realizable daily climate-related renewable energy indicators over the study period
(from January 1, 2013 to August 31, 2021) based on the data provided by the Copernicus climate change service
(C3S). The realizable electric energy which could be generated by each fuel type is expressed in kWh.

Energy Indicator Mean Max Min SD

Wind 76,968,009 342,734,701 4,364,166 58,676,724

Solar Photovoltaics 29,833,555 58,314,090 1,865,264 13,638,494

Hydroelectricity (Run-of-river) 116,866,214 184,264,440 42,334,890 32,351,424
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Figure 2.2: Compact box plots of realized (original) and realizable (estimated) CRE indicators over the study
period. Note: The upper (lower) whisker extends from the hinge to the largest (smallest) value no further than 1.5
times the interquartile range. Data points beyond the whiskers are removed from the plot for the sake of better
visualization.

dicate that the median of the population of differences between estimated (model-derived) and
original CRE indicators is greater than zero in all three cases (p < 0.01). From an empirical
point of view, it thus seems perfectly legitimate to consider the so-called realizable energy indi-
cators derived from climate variables as proxies for the CRE electricity production potential.

2.2.2 Methodology

2.2.2.1 Empirical modeling of CO2 emissions from electricity production based on vari-
ous fuel types

In order to empirically model (learn) the relationship between CO2 emissions and the elec-
tric energy produced by different fuel types over the study period, stochastic Extreme Gradient
Boosting (XGBoost) algorithm of Chen and Guestrin (2016) has been utilized.12 XGBoost is

12As with any other predictive model, XGBoost does not in itself imply “causal” relationships between vari-
ables. In this regard, by no means does the present modeling framework suggest that a change in low-carbon (in
particular CRE) electricity production directly causes a change in CO2 emissions. Indeed, in the calculation of
emissions indicator in the éCO2mix data set, the contribution of low-carbon energy sources (nuclear, wind, so-
lar photovoltaics, and hydroelectricity) has been considered equal to zero. Hence, such sources cannot directly
“drive” emissions by definition. That being said, an increase in the share of nuclear and renewable energy sources
inevitably translates into a decrease in the share of high-carbon energy sources as main drivers of CO2 emissions.
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a cutting-edge, speedy and highly performant decision-tree-based ensemble machine learning
algorithm that can provide accurate predictions of a response variable by integrating the esti-
mates obtained from a number of base models (trees). This predictive tool can model complex
nonlinear relationships without assumptions about the data distribution, and is unsusceptible to
multicollinearity. In its most general form, the tree ensemble model of the XGBoost algorithm
that uses K trained trees to predict the value of the response variable for a given data set with N

data points and p features (predictors) {(xi,yi) | i = 1, ...N, xi ∈Rp, yi ∈R} can be expressed as

ŷi = f̂ (xi) =
K

∑
k=1

gk(xi) gk ∈ F (2.1)

where F = {g(x) = wq(x)}(q : Rp → J, w ∈ RJ) is the space of regression trees, q is the
structure of each individual (independent) tree that maps an observation to the corresponding
leaf score w, and J is the total number of leaves in the tree (Chen and Guestrin, 2016).

Each regression tree starts with a root node and is grown to a specific depth (i.e. the longest
path from the root node to a leaf) by repeatedly splitting the training data based on all or some
of the features in the feature space. This process results in a tree with a root node, a number
of internal nodes (each of which split data points by one feature), and some leaves to which
prediction scores (weights) are assigned. The ultimate predicted value of the response variable
for a given observation is obtained by taking the sum of all the scores in the relevant leaves
of individual trees. As proposed by Chen and Guestrin (2016), the choice of splitting points
and the assignment of prediction scores in XGBoost are done by means of an improved and
more regularized version of gradient boosting technique, in such a way as to minimize loss of
an objective function that is composed of training loss and regularization (to avoid overfitting).
Mathematically speaking, the tree building algorithm is reliant upon the minimization of

L =
N

∑
i=1

L(ŷi,yi)+
K

∑
k=1

Ω(gk) (2.2)

where

Ω(gk) = γJk +
1
2

λ

Jk

∑
j=1

w2
j,k

Here, L is a loss (cost) function (i.e. squared error, by default) and measures the differ-
ence between original values of the response variable yi and the predicted values ŷi (Chen and
Guestrin, 2016). Jk and w j,k are the number of leaves and the prediction score assigned to the

In this regard, a change in low-carbon electricity production is expected to be associated with a change in emis-
sions. This is exactly where an empirical modeling framework like the one used here proves useful to characterize
the “predictive” relationship between CO2 emissions and electricity production from different fuel types (including
low-carbon ones).
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j-th leaf of the k-th regression tree, respectively. The parameter γ is the minimum loss reduction
required to further split the leaf node, and λ is the L2 regularization on the prediction scores.
These two, along with a number of tree-related parameters (together called hyperparameters of
the model), cannot be estimated from data and need to be specified a priori.

In order to further minimize overfitting13 and find the best model specification, the present
study combines extensive grid search hyperparameter tuning with repeated n-fold cross-validation
(n = 5 with 5 repetitions). The metric used to evaluate the model performance for each hyper-
parameter configuration is the root-mean-square error (RMSE). There are 2592 variations in the
hyperparameter search space and each variation is evaluated using repeated 5-fold cross vali-
dation with 5 repetitions, resulting in a total number of 2592× 25 tree ensemble models to be
trained and evaluated. The hyperparameter configuration that results in the minimum average
RMSE across all folds is selected as the best tune. Possible hyperparameter values are deter-
mined mainly on the basis of recommendations of Boehmke and Greenwell (2019) and Thakur
(2020). Table 2.3 presents the hyperparameter configurations used for evaluating tree ensemble
models.

Table 2.3: Hyperparameter configurations used for evaluating tree ensemble models

Hyperparameter Range Default Value Selected Values for Tuning

γ [0,∞) 0 {0.1,1,10}

η [0,1] 0.3 {0.05,0.1,0.2,0.3}

Maximum Depth {1..∞} 6 {3..8}

Minimum Child Weight [0,∞) 1 {7,10,20}

Column Sample by Tree (0,1] 1 { 6
19 , 10

19 , 14
19 }

Sub-sample (0,1] 1 {0.3,0.5}

Here, η is the learning rate (also called shrinkage parameter), which shrinks prediction
scores to prevent overfitting. γ is the minimum loss reduction required to make a further split
on a node of a given tree. Increasing γ leads to a more conservative algorithm. The maximum
depth parameter controls the number of terminal nodes in a a tree, and increasing its value makes
the model more complex and more prone to overfitting. Minimum child weight determines the
minimum sum of instance weight (hessian) required in a child node of a tree. A higher min-
imum child weight provides more conservative results. The column sample by tree parameter
controls the fraction of columns (features) used for constructing each tree. Sub-sampling of
columns takes place once for every tree constructed. Using values less than 1 for this parameter

13Although this study takes preventative measures to reduce overfitting, the reader’s attention is drawn to the fact
that overfitting should not, in principle, be cause for concern in the context of modern machine-learning models
such as decision trees and ensemble methods. Belkin et al. (2019) show that modern (and complex) algorithms
with near-perfect fit in training may still exhibit strong performance on unseen data.
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leads to a more conservative algorithm. The sub-sample parameter determines what fraction of
data should be used to build trees in every boosting iteration. Using values less than 1 for this
parameter leads to “stochastic” boosting, distinguished from “regular” boosting (which makes
use of all points to grow a tree). In this analysis, the number of trees used for boosting is set to
50 and 100. In addition, the hyperparameter λ is kept at the default value of 1.

It should be noted that the utilized algorithm is safeguarded against likely temporal auto-
correlation in the data for two reasons. First, the data are divided, in a random manner, into
training and validation data sets during the repeated 5-fold cross-validation process. Second,
using stochastic boosting (as opposed to regular boosting) makes the algorithm randomly se-
lect (without replacement) a proportion of the training data at each iteration. Therefore, the
likelihood of neighboring observations being used by the algorithm at each iteration is very
negligible.

Once the the model with the best tune is obtained from hyperparameter optimization, the
“importance” of CRE sources in predicting emissions is calculated using the permutation fea-
ture importance algorithm with the RMSE ratio as the importance measure (Breiman, 2001;
Fisher et al., 2019; Molnar, 2020), and 1000 repetitions. Permutation with repetition is per-
formed with the aim of constructing the null distribution of importance measures. In its sim-
plified form, the feature importance measure of a feature p can be mathematically expressed
as

Feature Importancep =
RMSE(yi, f̂ (xperm:p

i ))

RMSE(yi, f̂ (xi))
(xi ∈ Rp; yi ∈ R) (2.3)

where xperm:p
i is the ith instance with the pth feature replaced by a randomly sampled value,

without replacement, from another instance. Being based on resampling without replacement,
the permutation feature importance algorithm of Fisher et al. (2019) allows for conducting a
permutation test with the null hypothesis that the importance of feature p is 1:

H0 : Feature Importancep = 1 (2.4)

If the pth feature is not important in the prediction, one should expect that the values for
its feature importance measure be around 1. In point of fact, the proposed permutation test
provides a framework for computing confidence intervals and p-values from resampling without
replacement, and allows for determining statistical significance of a feature’s importance.

As a complement to the features’ importance evaluation, the influence of CRE electricity
production on the prediction of the tree ensemble model is evaluated and visualized using mean-
centered accumulated local effects (ALE) (Apley and Zhu, 2020). In machine learning, the
ALE of a feature at a certain value is interpreted as the main effect of the feature at that value
compared to the average prediction of the data (Molnar, 2020). By aggregating the calculated
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effects at different values, ALE plots–as unbiased alternatives to partial dependence plots–are
hence able to show the (possibly nonlinear) relationship between the response variable and a
given input feature. In mathematical terms, the mean-centered14 ALE of a continuous feature p

at a given value x is estimated as

f̂p,ALE(x) = ˆ̃fp,ALE(x)−
1
N

N

∑
i=1

ˆ̃fp,ALE(x
(i)
p ) (2.5)

where

ˆ̃fp,ALE(x) =
lp(x)

∑
l=1

1
np(l)

∑
i:x(i)p ∈Np(l)

[
f̂ (zl,p,x

(i)
\p)− f̂ (zl−1,p,x

(i)
\p)

]

To estimate ˆ̃fp,ALE(x), the distribution of the feature of interest p is divided into a number of
intervals (grids) denoted by Np(l), with np(l) being the number of feature points that lie within
the interval Np(l). The inner sum adds up the “effects” of all data points within such an interval
(i.e. the differences in predictions, if the value of the feature of interest is replaced with the
starting and end points of the given interval, namely zl−1,p and zl,p). This sum is then divided
by the number of feature points in this interval to obtain the average difference of the predictions
for this interval. Finally, the outer sum accumulates the average effects across all intervals up
to and including the interval lp(x) to which x belongs (Apley and Zhu, 2020; Molnar, 2020). In
order to define the aforementioned intervals, the present study makes use of the percentiles of
the distribution of features. A distinct advantage of this choice is that each interval will contain
the same number of data points. However, in this approach the length of intervals used for the
calculation of ALE may not be the same.

2.2.2.2 Counterfactual estimation of CO2 emissions based on realizable CRE electricity
production

Once the predictive relationship between CO2 emissions and electricity production from dif-
ferent fuel types is learned by the empirical model, original (realized) electricity production
indicators are replaced with new conjectural values, and predictions of counterfactual emis-
sions are generated from the model. The objective of this section is to describe a hypothetical
yet achievable scenario, in which the maximum possible electric energy is generated from cli-
mate variables of the study area at a given time point, and the share of energy from non-CRE
sources is reduced on a pro rata basis. Analyzing such a scenario is the first step towards quan-
tifying the effect of increased share of CRE electricity production on predicted CO2 emissions.

On a given day t, if the realizable value of a CRE source is greater than its corresponding

14Mean-centering the ALE plot makes the average effect over the data be zero.

30



realized value, the former is used as the new energy indicator and the difference between the
realizable and realized values is regarded as the “unexploited” electricity production potential.
Otherwise, the indicator is kept at the realized value, assuming that the potential for CRE elec-
tricity production has already been fully exploited. New counterfactual shares of CRE sources
in the total electricity production are calculated based on the new energy indicators. In the next
step, new counterfactual shares of non-CRE sources are calculated in such a way as to keep the
total electricity production at the original level. This method of share reallocation guarantees
a pro rata contribution of each non-CRE source to electricity production in the new setting. In
other words, an increase in the share of the CRE package is counterbalanced by a proportional
decrease in the share of each source in the non-CRE package.15 In formal notation,

Share(new)
i,t = Share(old)

i,t ×
1−∑ j Share(new)

j,t

∑i Share(old)
i,t

(2.6)

where

Share(old)
i,t =

Energy(old)
i,t

∑S Energyt
,

Share(new)
j,t =

Energy(new)
j,t

∑S Energyt
,

Energy(new)
j,t = max

(
Energy(realized)

j,t ,Energy(realizable)
j,t

)
The superscripts (new) and (old) characterize new conjectural and original (realized) val-

ues, respectively. In addition, i ∈ S \ {W,PV,ROR}, j ∈ {W,PV,ROR}, and S is the set of
all energy indicators. W, PV and ROR denote wind, solar photovoltaics and run-of-river hy-
droelectricity, respectively. For non-CRE sources, new energy indicators are then calculated
by multiplying their corresponding new share by the original sum of electricity production by
different fuel types:

Energy(new)
i,t = Share(new)

i,t ×∑
S

Energyt (2.7)

To test whether there is statistically significant difference between the locations of counter-
factual and observed emissions in this scenario, the non-parametric Wilcoxon signed-rank test is
used. The null hypothesis of this test is that the median difference between pairs of counterfac-
tual and observed emissions is greater than or equal to zero. The rejection of the null hypothesis
leads to the conclusion that, with the same level of total electricity production, increasing the

15While in this proposed framework the relative share of nuclear energy (as the main source of electricity in
France) in the non-CRE package remains unaltered (with a still higher share of other sources in the non-CRE
package), policy concerns are mainly included in the direct substitution of CRE sources for nuclear energy and the
likely exclusion of nuclear power plants in the future.
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share of energy from CRE sources (i.e. exploiting their full potential) decreases CO2 emissions
from electricity production.

2.2.2.3 Characterizing the optimal mix of CRE sources for minimizing predicted CO2

emissions under different production scenarios

In another attempt to specify the effect of CRE electricity production on predicted CO2 emis-
sions, different CRE production scenarios–from near-realistic to ambitious–are investigated and
the optimal mix of CRE sources for minimizing emissions under each scenario is identified.
Such scenarios would have been realized had the CRE electricity capacity been higher over the
study period. Indeed, this analysis provides an overview of the relative importance of each CRE
source (wind, solar photovoltaics and run-of-river hydroelectricity) within the CRE package
with regard to the reduction of predicted CO2 emissions.

With this aim and following the methodology of François et al. (2016), new CRE indicator
daily series from Section 2.2.2.2 are normalized so that the mean production of each source
equals the mean total daily electricity production over the study period (the same notation as
above):

Energy(normalized)
j,t =

Energy(new)
j,t

⟨Energy j,t⟩
×⟨∑

S

Energyt⟩ (2.8)

where ⟨⟩ is the temporal mean operator. In this framework, a CRE mix electricity production
can be described as a weighted sum of the three normalized CRE indicator series:

EnergyCRE,t(ζ ) = ζ ∑
j

α jEnergy(normalized)
j,t (α j ≥ 0,∑

j
α j = 1) (2.9)

where α j is the share of the j-th CRE source in the CRE mix (package), and ζ is the ratio
between the average energy produced by the CRE energy mix and the average total electricity
production over the study period:

ζ =
⟨EnergyCRE,t⟩
⟨∑S Energyt⟩

(2.10)

If ζ = 1, the mean daily CRE electricity production equals the mean daily total electricity
production (i.e. the CRE electricity production is, on average, equal to the total electricity pro-
duction over the study period). If ζ < 1, a fraction of the total electricity production can, on
average, be fulfilled by the CRE mix over the entire period. For the sake of this study, four hy-
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pothetical CRE electricity production scenarios with ζ = 0.25,0.5,0.75 and 1 are considered.16

For each scenario, all different combinations of wind, solar photovoltaics and run-of-river hy-
droelectricity in the CRE mix (with each share α j ranging from 0 to 1 in increments of 0.05)
are used to construct new CRE indicators. This results in 231 unique configurations of the CRE
mix for each value of ζ . Under a specific scenario and for each configuration, the shares of
non-CRE sources are reallocated following the same approach as described in Section 2.2.2.2,
and the empirical model introduced in Section 2.2.2.1 is utilized for generating predictions of
counterfactual emissions. For a given scenario, the configuration that minimizes predicted mean
daily CO2 emissions over the study period is selected as the optimal CRE mix for emissions re-
duction.

Moreover, in order to account for the intermittency of CRE electricity production that is
driven by the natural variability of climate factors (Seyedhashemi et al., 2021), the coefficient
of variation (i.e. the ratio of the standard deviation to the mean) of the normalized daily CRE
mix is calculated for each of the above-mentioned 231 configurations. The configuration that
minimizes the coefficient of variation (hereafter denoted as CV) over the study period is selected
as the optimal CRE mix for reducing intermittency. This additional analysis is offered to com-
pare the optimal mix of CRE sources for minimizing CO2 emissions under different production
scenarios and the optimal mix of CRE sources for reducing problems of intermittency.17

All the analyses and data visualization in this study have been carried out in R software
environment (R Core Team, 2020; Kuhn, 2008; Molnar et al., 2018; Hamilton and Ferry, 2018).

2.3 Results

2.3.1 Influence of CRE electricity production on the prediction of CO2

emissions

Among all hyperparameter configurations for evaluating the tree ensemble models (see Sec-
tion 2.2.2.1), the configuration with the hyperparameter values shown in Table 2.4 proved to
minimize average RMSE across all folds (average RMSE= 0.062; average R2 = 0.986), hence
selected as the best tune.

The model with this optimal hyperparameter configuration was used as the base model for
statistical analyses and prediction purposes of this study. The results of the permutation fea-
ture importance algorithm for the three CRE indicators based on the best empirical model are

16To be as realistic as possible, the present study sets the upper bound of ζ to 1. This means that scenarios with
mean daily CRE electricity production exceeding the original mean daily total electricity production over the study
period are not considered.

17The CV depends only on the shares of wind, solar photovoltaics and run-of-river hydroelectricity in the CRE
mix, and is independent of the production scenario. Consequently, the optimal CRE mix for reducing intermittency
is calculated once, regardless of the value of ζ .
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Table 2.4: Optimal hyperparameter configuration of the tree ensemble model

Hyperparameter Best Tune

γ 0.1

η 0.1

Maximum Depth 7

Minimum Child Weight 10

Column Sample by Tree 14
19

Sub-sample 0.5

Number of Trees 100

presented in Table 2.5. Here, the importance of each feature is measured by calculating the
increase in the model’s prediction error (in terms of the RMSE ratio) at each repetition, when
the values of that feature are shuffled (Molnar, 2020). A given CRE indicator is “important” for
the prediction of emissions, if permuting its values increases the model RMSE (i.e. the model
is reliant on the feature for the prediction). The CRE indicator is unimportant if permuting
its values leaves the model RMSE unaltered (i.e. the feature is ignored by the model for the
prediction).

Table 2.5: Permutation feature importance of CRE sources in predicting CO2 emissions (number of repetitions
= 1000).

Feature
Importance (RMSE Ratio)

5th Percentile Median 95th Percentile

Wind 1.171104 1.181664 1.192710

Solar Photovoltaics 1.007700 1.009709 1.011769

Hydroelectricity (Run-of-river) 1.252940 1.268573 1.282155

For all CRE indicators, the value 1 is outside the 90% confidence interval for feature impor-
tance estimates. This concludes that wind, solar photovoltaics and run-of-river hydroelectricity
features are all important for the prediction of emissions resulting from the generation of elec-
trical power at the 0.1 significance level (see Equation 2.4). Among the three CRE indicators,
run-of-river hydroelectricity proves to be the most important feature for predicting emissions,
followed by wind energy. The importance of solar photovoltaics feature is only marginal, since
the 5th, 50th and 95th percentiles of the distribution of RMSE ratio for this feature are close
to 1. This finding acts as an early indicator of the level of importance of each CRE source for
emissions reduction in France.

The influence of each CRE source on the prediction of emissions by the best model is further
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assessed by calculating ALE values. Figure 2.3 presents ALE plots of wind, solar photovoltaics
and run-of-river hydroelectricity features. In basic terms, multiple panels of this figure illustrate
how the model predictions change–compared to the average prediction of the data–for different
values of each CRE indicator.

As a first observation, the ALE curve is monotonically non-increasing for all CRE indica-
tors.18 This means that the prediction decreases or remains constant, compared to the average
prediction, with increasing CRE electricity production–a finding consistent with expectations
that renewable energy sources can contribute to the reduction of carbon emissions.19 For wind,
solar photovoltaics and run-of-river hydroelectricity features, the prediction of CO2 emissions
remains approximately constant in intervals below the 30th, 70th and 13th percentile (cor-
responding to 34898000, 31780500, and 66610500 kWh of electrical energy produced), and
above 99th, 92nd and 98th percentile (corresponding to 256266500, 50565500, and 178323000
kWh of electrical energy produced), respectively. Compared to the case of wind and run-of-
river hydroelectricity features, the ALE function of the solar photovoltaics feature is constant
on larger intervals. Furthermore, the range of change in the ALE of solar photovoltaics (i.e. as
the feature increases from the its minimum value to the maximum value) is relatively smaller
than those of wind and run-of-river hydroelectricity features (0.009 for solar photovoltaics,
compared to 0.076 for wind and 0.075 for run-of-river hydroelectricity). This is another impor-
tant finding in the understanding of the significance of each CRE source for reducing emissions
that are associated with the generation of electrical power.

2.3.2 Estimated counterfactual CO2 emissions based on realizable CRE
electricity production

Using new conjectural energy indicators constructed from realizable CRE electricity production
(see Section 2.2.2.2), the best model can generate counterfactual estimates of CO2 emissions,
i.e. emissions that would have been realized provided that the full potential of CRE sources
for electricity production had been exploited. Figure 2.4 compares observed (realized) and
estimated counterfactual daily emissions based on new energy indicators in France from January

18Although interval-wise effects are accumulated to construct a smooth ALE curve, the effects are estimated
locally using different data points. Therefore, one should be cautious when interpreting the effect across intervals
(Molnar, 2020).

19Special caution must be taken when evaluating and interpreting the predictive impact of individual low-carbon
power generation technologies on CO2 emissions in the electricity sector. A climate-driven increase (decrease) in
the share of a given CRE source may not necessarily be counterbalanced by a decrease (increase) in the share of
high-carbon energy sources (coal, fuel oil, gas and biofuel). For instance, an increase (decrease) in the share of
solar photovoltaics due to greater (smaller) availability of solar resources may be offset by a decrease (increase) in
the share of other non-polluting energy sources (e.g. nuclear, hydroelectricity, etc.) and not necessarily fossil-fuel
fired electricity generation, hence leaving emission levels unaltered. A full discussion of the elasticity of inter-fuel
substitution between different CRE sources, between nuclear and CRE sources, and between different fossil fuels
and CRE sources lies beyond the scope of this study.
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Figure 2.3: Mean-centered accumulated local effects (ALE) of CRE sources in predicting CO2 emissions over the
study period. The distribution of data points for each feature is displayed on the margin of horizontal axis.

1, 2013 to August 31, 2021.

The percentage difference between estimated counterfactual and observed daily emissions
(calculated as [estimated counterfactual emissions−observed emissions)/observed emissions]
×100) ranges from −20.15 to 19.91, with the average percentage difference being −1.13. This
result highlights that exploiting the full potential of climate variables for electricity production
would have, on average, resulted in 1.13% reduction in predicted CO2 emissions in France
over the study period. The distribution of the difference between estimated counterfactual and
observed emissions over the entire study period is illustrated in Figure 2.5.

The null hypothesis of the non-parametric Wilcoxon signed-rank test (i.e. the median dif-
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Figure 2.4: Observed (realized) and estimated counterfactual daily emissions based on realizable CRE electricity
production over the study period. For visualization purposes, data for each year are presented in a separate panel.
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Figure 2.5: Box plot of the difference between estimated counterfactual emissions (based on realizable CRE elec-
tricity production) and observed emissions over the study period. Note: The upper (lower) whisker extends from
the hinge to the largest (smallest) value no further than 1.5 times the interquartile range. Data points beyond the
whiskers are removed from the plot for the sake of better visualization.
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ference between pairs of counterfactual and observed emissions is greater than or equal to zero)
is rejected at the 0.01 significance level, indicating that an increase in the share of energy from
CRE sources (under a scenario where the maximum possible electric energy is generated from
climate variables) would have been associated with a statistically significant decrease in CO2

emissions from electricity production over the study period.

2.3.3 Optimal mix of CRE sources for minimizing predicted CO2 emis-
sions under different production scenarios

This section presents the results of the analysis of the four electricity production scenarios
outlined in Section 2.2.2.3. Under each scenario, counterfactual estimates of CO2 emissions
(generated by the base empirical model) are compared with observed emissions.

The first scenario corresponds to the situation where the mean daily CRE electricity pro-
duction equals 25% of the mean electricity production over the study period (ζ = 0.25). The
empirical ζ based on the realized and realizable CRE electricity production (as defined in Sec-
tions 2.2.1.1 and 2.2.1.2) over the study period is 0.144 and 0.158, respectively. In other words,
the CRE electricity production satisfied, on average, 14.4% of the total electricity production
over the study period in reality. Had the full potential of CRE sources been exploited over the
same period, this ratio would have risen to 15.8%. From these observations, it is clear that
the first scenario is the most realistic and feasible among the four proposed scenarios. Figure
2.6 compares observed (realized) and estimated counterfactual daily emissions under the first
scenario from January 1, 2013 to August 31, 2021.
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Figure 2.6: Observed (realized) and estimated counterfactual daily emissions over the study period under the first
production scenario (ζ = 0.25). For visualization purposes, data for each year are presented in a separate panel.
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The percentage difference between estimated counterfactual and observed daily emissions
for ζ = 0.25 ranges from −36.07 to 35.69, with the average percentage difference being −9.56.
This suggests that, under the first hypothetical CRE electricity production scenario, daily CO2

emissions would have, on average, decreased by 9.56%.
The second scenario corresponds to the situation where the mean daily CRE electricity

production equals 50% of the mean electricity production over the study period (ζ = 0.5).
Figure 2.7 compares observed (realized) and estimated counterfactual daily emissions under
the second scenario from January 1, 2013 to August 31, 2021.
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Figure 2.7: Observed (realized) and estimated counterfactual daily emissions over the study period under the
second production scenario (ζ = 0.5). For visualization purposes, data for each year are presented in a separate
panel.

The percentage difference between estimated counterfactual and observed daily emissions
for ζ = 0.5 ranges from −78.34 to 36.25, with the average percentage difference being −24.93.
This suggests that, under the second hypothetical CRE electricity production scenario, daily
CO2 emissions would have, on average, decreased by 24.93%.

The third scenario corresponds to the situation where the mean daily CRE electricity pro-
duction equals 75% of the mean electricity production over the study period (ζ = 0.75). Figure
2.8 compares observed (realized) and estimated counterfactual daily emissions under the third
scenario from January 1, 2013 to August 31, 2021.

The percentage difference between estimated counterfactual and observed daily emissions
for ζ = 0.75 ranges from −83.03 to 32.32, with the average percentage difference being −36.92.
This suggests that, under the second hypothetical CRE electricity production scenario, daily
CO2 emissions would have, on average, decreased by 36.92%.

The fourth and last scenario corresponds to the situation where the mean daily CRE elec-
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Figure 2.8: Observed (realized) and estimated counterfactual daily emissions over the study period under the third
production scenario (ζ = 0.75). For visualization purposes, data for each year are presented in a separate panel.

tricity production equals the mean daily total electricity production (ζ = 1). This scenario is the
most ambitious among the four proposed scenarios. Figure 2.9 compares observed (realized)
and estimated counterfactual daily emissions under the fourth scenario from January 1, 2013 to
August 31, 2021.
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Figure 2.9: Observed (realized) and estimated counterfactual daily emissions over the study period under the fourth
production scenario (ζ = 1). For visualization purposes, data for each year are presented in a separate panel.

The percentage difference between estimated counterfactual and observed daily emissions
for ζ = 1 ranges from −87.06 to 32.32, with the average percentage difference being −47.
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This suggests that, under the fourth hypothetical CRE electricity production scenario, daily
CO2 emissions would have, on average, decreased by 47%.

The distributions of the difference between estimated counterfactual and observed emissions
under the four proposed scenarios over the entire study period are illustrated in Figure 2.10.
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Figure 2.10: Box plot of the difference between estimated counterfactual emissions under different production
scenarios (ζ = 0.25,0.5,0.75 and 1), and observed emissions over the study period. Note: The upper (lower)
whisker extends from the hinge to the largest (smallest) value no further than 1.5 times the interquartile range.
Data points beyond the whiskers are removed from the plot for the sake of better visualization.

The null hypothesis of the non-parametric Wilcoxon signed-rank test (i.e. the median dif-
ference between pairs of counterfactual and observed emissions is greater than or equal to zero)
is rejected at the 0.01 significance level for all the proposed scenarios. The results confirm that
an increase in the ratio of mean daily CRE electricity production to mean total electricity pro-
duction, would have been associated with a statistically significant decrease in predicted CO2

emissions in France from 2013 to 2021. From a practical and economic standpoint, this means
that increasing the share of CRE electricity production and decreasing the share of non-CRE
sources, while retaining the same level of total production, would have significantly reduced
emissions over the study period.

In the next step and in order to characterize the relative importance of each CRE source for
reducing predicted CO2 emissions from electricity production, the optimal CRE mix for emis-
sions reduction under each proposed scenario is identified. Figure 2.11 depicts the predicted
mean daily CO2 emissions over the study period in the CRE mix space. The share of each
source in the CRE package ranges from 0 to 1 in increments of 0.05, with the sum of shares
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Figure 2.11: Ternary graphs of the mean daily CO2 emissions over the study period for different shares of wind,
solar photovoltaics and run-of-river hydroelectricity in the CRE mix under different production scenarios (ζ =
0.25,0.5,0.75 and 1). The optimal CRE mix for emissions reduction is marked with a circle on each graph.

Table 2.6 presents the optimal CRE mix for emissions reduction under the four proposed
scenarios (ζ = 0.25,0.5,0.75 and 1), and the corresponding predicted mean daily CO2 emis-
sions for each mix. These results offer additional evidence that run-of-river hydroelectricity is
the most important source for reducing energy-related CO2 emissions in France, with up to 75%
share in the optimal CRE mix. The only exception is when ζ = 0.5, where the share of run-of-
river hydroelectricity is less than the share of wind in the optimal CRE mix. Solar photovoltaics
has the smallest share of CRE sources in the optimal mix under all proposed scenarios.

These results should be considered in comparison with realized and realizable mean shares
of the three sources in the CRE mix. The empirical mean shares of wind, solar photovoltaics
and run-of-river hydroelectricity in the CRE mix based on the realized electricity production
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Table 2.6: Optimal CRE mix for emissions reduction under the four proposed scenarios, and the corresponding
predicted mean daily CO2 emissions.

Scenario
Optimal CRE Mix

gCO2/kWh (Mean)
SW SPV SROR

ζ = 0.25 40% 0% 60% 41.56

ζ = 0.5 55% 5% 40% 34.47

ζ = 0.75 35% 5% 60% 28.15

ζ = 1 20% 5% 75% 22.10

(as defined in Section 2.2.1.1) are 31.11%, 13.06% and 55.82%, respectively, with the corre-
sponding mean daily CO2 emissions being 46.44 gCO2/kWh. In a similar vein, the empirical
mean shares of wind, solar photovoltaics and run-of-river hydroelectricity in the CRE mix based
on the realizable electricity production (as defined in section 2.2.1.2) are 31.84%, 14.98% and
53.17%, respectively, with the corresponding predicted mean daily CO2 emissions being 45.7
gCO2/kWh. From this comparison, two key findings emerge: (1) an increase in the share of
CRE electricity production is associated with a decrease in average emissions from electricity
generation, and (2) in both real and hypothetical contexts, the shares of different sources are not
uniformly distributed within the CRE package.

To characterize the relative importance of each source for reducing the intermittency of CRE
electricity production, the optimal CRE mix that minimizes CV over the study period is identi-
fied. This allows for comparison between the optimal CRE mix for emissions reduction under
different scenarios and the optimal CRE mix for reducing intermittency. Indeed, the configura-
tions that result in the minimum mean daily CO2 emissions under the proposed scenarios do not
necessarily result in low intermittency and high reliability of CRE electricity production over
the study period. Figure 2.12 depicts the CV in the CRE mix space based on the normalized
CRE indicator series over the study period. The share of each source in the CRE package ranges
from 0 to 1 in increments of 0.05, with the sum of shares being equal to 1.

The shares of wind, solar photovoltaics, and run-of-river hydroelectricity in the optimal CRE
mix for reducing the intermittency are 15%, 30% and 55%, respectively, with the corresponding
CV being 0.22.20 This CRE mix would result in the mean daily CO2 emissions of 42.47, 35.5,
28.96 and 23 gCO2/kWh under the first, second, third and fourth proposed scenario, respec-
tively. Comparing these values with the optimal values in Table 2.6, it can be deduced that the
optimal CRE mix for reducing intermittency is associated with slightly larger emissions than
those of the optimal CRE mix for emissions reduction under the proposed scenarios.

These findings are important for two reasons. First, while the share of wind is larger than

20The empirical CV of the CRE package based on the realized and realizable CRE electricity production (as
defined in Sections 2.2.1.1 and 2.2.1.2) are 0.31 and 0.30, respectively.
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Figure 2.12: The coefficient of variation (CV) of the normalized daily CRE mix over the study period. The optimal
CRE mix reducing intermittency is marked with a circle on the graph.

that of solar photovoltaics in the optimal CRE mix for emissions reduction under all the pro-
posed scenarios, solar photovoltaics proves to have a larger share than wind in the optimal CRE
mix for reducing intermittency. Second, among the three sources, run-of-river hydroelectric-
ity has the largest share in the optimal CRE mix as it was the case for the optimal CRE mix
for emissions reduction under three (out of four) proposed scenarios. The results of the present
study can complement those of François et al. (2016), who determined the optimal CRE mix for
maximizing energy penetration in France over the 1980−2012 period (SW = 15%, SPV = 45%,
SROR = 40%, with the corresponding CV being 0.28). While beyond the scope of this paper,
disentangling the complexities in finding the optimal balance among emissions reduction, in-
termittency reduction and energy penetration maximization might prove an important area for
further investigation.

2.4 Discussion

On the part of European countries, the development of electricity generation from renewable
sources and the European Union Emissions Trading Scheme (EU ETS)–the mainspring of the
European Union’s policy to reduce CO2 emissions–are two important tools to address climate
change. Nevertheless, complex interactions between these instruments, and in particular, the
potential dampening effects of renewable electricity growth on emissions allowances prices,
have raised considerable doubts on the feasibility of combining different targets and policies
to effectively reduce carbon emissions (see del Río (2017) and Möst and Fichtner (2010)). A
multidisciplinary economic analysis of this interaction by del Río (2017) indicates that most of
the concerns on this matter are not supported by economic theory, and that the combination of
the EU ETS and renewable energy-based electricity development should be favored. Notwith-
standing, after several years of research, there is still no firm consensus on the environmental

44



viability of combining emissions trading systems and renewable energy expansion. According
to a recent theoretical study, in the long run, emissions trading systems may impede the expan-
sion of renewable energy capacity rather than promoting it (Bersani et al., 2022). In this regard,
a venue for future research includes (1) replicating the findings of the present research in other
Member States of the EU ETS, and (2) empirically investigating the interaction between the EU
ETS and the development of different types of CRE electricity production in Europe, especially
by focusing on the economic value of renewable energy-induced emissions reduction consider-
ing the EU ETS allowance prices and potential carbon leakage.21

As with the majority of studies, the findings of this research have to be considered in the
light of some limitations. The first limitation concerns the choice of proxies for CRE electricity
production potential. It could be argued that in the process of estimating counterfactual CO2

emissions, the construction of new CRE indicators relies only on the realizable CRE indica-
tors that are greater than their corresponding realized values (see Section 2.2.2.2). In statistical
terms, only “overestimated” CRE electricity production derived from climate variables is re-
tained and “underestimated” values are disregarded. The assumption here is that, if the realized
energy indicators are greater than the indicators estimated by the climate-to-energy model, the
potential for CRE electricity production has already been fully exploited and there is therefore
no point in utilizing the climate-derived energy indicators in such a case. In justification of this
assumption, an argument can be made that in 63.06%, 68.53% and 62.27% of daily observa-
tions, the so-called realizable indicators are greater than their corresponding realized values for
wind, solar photovoltaics, and run-of-river hydroelectricity, respectively. Moreover, for wind,
solar photovoltaics, and run-of-river hydroelectricity, the normalized root-mean-square devia-
tion (defined as the square root of the quadratic mean of the differences between realizable and
realized values, divided by the range of realized values) that is associated with “overestimation”
instances is, respectively, 1.6, 1.45 and 1.32 times greater than the normalized root-mean-square
deviation associated with “underestimation” instances for the same energy source. Unless the
models behind the data described in Section 2.2.1.2 are prone to systematic overestimation, one
possible conclusion that can be drawn from these results is that the transformation of gridded
climate variables into energy indicators would provide more of a reference to assess the “poten-
tial” of CRE sources than an estimation of the level of energy generation practically achieved.
This assumption is the primary limitation to the interpretation of the results presented in Section
2.3.2. Nevertheless, in the absence of better alternatives, climate-to-energy conversion models
are the only tools available to measure the (unexploited) potential for electricity production
from CRE sources.

Another limitation of the present study includes the non-consideration of within-country

21As a relevant work in this area, see the study of Beltrami et al. (2021) that has examined the value of carbon
emission reduction induced by renewable energy production in Italy.
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(i.e. regional) dynamics between carbon emissions and electricity production from renew-
able energy sources. This limitation is mainly rooted in the lack of data at the regional level
on CO2 emissions from electricity production at daily time scale. Upon availability of more
spatially-fine-grained data on emissions and climate-derived energy indicators, future studies
could explore such regional dynamics. To provide a starting point for discussion and further
research, Figure 2.13 illustrates the average share of daily electricity production from wind, so-
lar and hydroelectric sources (run-of-river, lake and pumped-storage) by administrative region
in metropolitan France over the study period. As shown in this figure, the share of wind and
solar photovoltaics energy in electricity production is higher in northern and southern (coastal)
regions, respectively. As expected, hydropower generation is more pronounced in mountainous
regions, with the Auvergne-Rhône-Alpes region having a high average share of 44.55% in total
electricity production in France over the study period.

Wind Solar Photovoltaics Hydroelectricity

10

20

30

40

Share (%)

Figure 2.13: Average share of daily electricity production from wind, solar and hydroelectric sources (run-of-river,
lake and pumped-storage) by region in metropolitan France over the study period.

Additionally, neither energy storage and residual load variability nor the economic and so-
cial cost of increasing the share of renewable energy vis-à-vis emissions reduction is considered
in this paper. The study of Shirizadeh and Quirion (2021) has evaluated the relative contribution
of renewable (wind, solar photovoltaics, run-of-river and lake hydroelectric) energy production,
nuclear power and CCS technologies to the cost-optimal electricity mix in France, taking into
account the social cost of carbon. The authors have found that a cost-optimal power mix consists
of approximately 75% electricity production by renewable energy sources, and the remaining
25% is shared among nuclear power and fossil fuels, with or without CCS technologies. In a
subsequent study, Shirizadeh et al. (2022) have examined the robustness of a renewable power
system for France to key technology cost uncertainties by considering several cost scenarios.
They have found that, although the cost-optimal electricity mix in France heavily depends on as-
sumptions about technology costs, investments in the development of renewable energy should
be prioritized even if those underlying cost assumptions prove to be wrong.22 These findings,
together with the results of the present study, may be important for policy and subsequent re-

22Also see the study of Chu and Hawkes (2020) that has proposed a multi-objective optimization model to
find the optimal mix of CRE sources in global electricity systems, considering cost, residual load variability, and
portfolio output variability.
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search.
Last but not least, it is worth noting that the principal outcomes of this explorative study

are based on historical data and a counterfactual analysis of the nexus between CRE electricity
production and CO2 emissions in France. Hence, one should be careful when interpreting or
extrapolating these results to other settings and/or time periods. For instance, in the majority of
proposed scenarios, run-of-river hydroelectricity is identified as the CRE source of greater rel-
ative importance for reducing counterfactual predictions of CO2 emissions over the 2013-2021
period. However, the soundness of increased investment in the development of run-of-river
hydroelectric power facilities (either by increasing the number of run-of-river power plants or
improving the efficiency of installed power plants) to cut CO2 emissions in the future is subject
to the extent that France’s run-of-river hydropower potential is affected by climate change, on
top of cost considerations. A study based on the climate change projections and a set of sce-
nario assumptions for future water use in Europe (Lehner et al., 2005) confirms that run-of-river
hydropower potential (as measured by river discharges) will remain rather stable in the case of
France for the time slices for the 2020s and 2070s. With the help of newly-developed climate
projections, further research on this direction is warranted.

2.5 Conclusion

As a path forward to combat global climate change, the development of renewable energy share
of electricity production remains the cornerstone of CO2 emissions reduction in the electric
power sector. Considering the dependence of the availability and sporadicity of climate-related
renewable energy (CRE) sources (wind, solar photovoltaics, and small-scale run-of-river hydro-
electricity) on climate factors, the relationship between CO2 emissions and electricity produc-
tion from these sources merits careful analysis. By means of a cutting-edge decision-tree-based
modeling technique, this study characterized the relationship between daily CRE electricity
production and energy-related CO2 emissions in France and offered a framework for counter-
factual analysis of such relationship over the 2013-2021 period.

The empirical analysis was undertaken in three steps. In the first step, the importance of
CRE electricity production in predicting CO2 emissions was assessed by means of the permu-
tation feature importance algorithm. Furthermore, the nonlinear relationship between realized
electricity production from CRE sources and predicted emissions was identified through accu-
mulated local effects (ALE) plots. From the results, run-of-river hydroelectricity proved to be
the most important feature among the three CRE sources for predicting emissions, followed by
wind energy. Solar photovoltaics was shown to be of marginal importance in respect of predict-
ing emissions. Next, the predictive impact of CRE electricity production potential (as proxied
by climate-derived energy indicators) on CO2 emissions was quantified. The results demon-
strated that an increase in the share of energy from CRE sources–under a scenario where the
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maximum possible electric energy is generated from climate variables–would have been associ-
ated with a statistically significant decrease in CO2 emissions from electricity production over
the study period. Ultimately, four hypothetical CRE production scenarios were considered and
the optimal mix of CRE sources for minimizing emissions under each scenario was determined.
The findings confirmed greater relative importance of run-of-river hydroelectricity and wind
energy within the CRE package with regard to the reduction of predicted CO2 emissions. This
step was complemented by the identification of optimal CRE mix for reducing intermittency of
CRE electricity production. This complementary analysis found further evidence for a higher
share of run-of-river hydroelectricity in the CRE mix.

The findings of this research, while exploratory, can have important implications for renew-
able energy development and management in France, since they provide some support for the
conceptual premise that replacing carbon-intensive energy sources with renewable ones reduces
carbon emissions from electricity generation. Additionally, the findings cast a new light on the
relative importance of each CRE source with regard to emissions and intermittency reduction
in the electricity sector. Together these results might prove enlightening for policymakers who
decide which renewable energy infrastructure investments should be given priority.
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CHAPTER3
Climate and Electricity Production:

Climatic Predictors of Carbon Emissions

Article Title: “Identifying climatic drivers of emissions from electricity production: Insights
from a predictive modeling-based approach” (Eslahi, 2022b)

Abstract: This research sets out a state-of-the-art interdisciplinary machine learning-based
framework for characterizing the impact of climate conditions on hourly CO2 emissions in the
French electric power system from January 2013 to December 2020. The results indicate that,
while controlling for the effect of time, 86.43% of the variation in CO2 emissions from electric-
ity production can be explained by climatic predictors. Air temperature and relative humidity
are identified as the most and least important factors, respectively, for the prediction of emis-
sions in France. The study also found that the predictive relationship between most climate
variables and CO2 emissions from electricity generation was nonlinear in nature over the study
period. The findings of this research should make an important contribution to the literature
on driving factors for CO2 emissions in the electricity sector, and can provide insight into the
sensitivity of power-related emissions to climate change.

Keywords: Electricity Production, CO2 Emissions, Climate, Predictive Modeling
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3.1 Introduction

Anthropogenic greenhouse gas emissions are the predominant driver of climate change, with
carbon dioxide (CO2) emissions bearing the most responsibility for global warming. Address-
ing climate change thus requires that CO2 reduction and removal measures be taken urgently at
national and international level. Owing to its ability to foster decarbonization of the economy in
a faster and less costly manner than other energy supply and end-use sectors (Karmellos et al.,
2016; Goh et al., 2018b; Rodrigues et al., 2020), the electricity sector is expected to provide one
of the most significant contributions to climate change mitigation and be the keystone of the Eu-
ropean Union’s environmental policy to reach a state of net-zero greenhouse gas emissions by
2050 (European Environment Agency , 2022). As emphasized by the European Environment
Agency, the carbon intensity of electricity production is nevertheless not uniform in the Eu-
ropean Union (EU), and differs significantly from one Member State to the other, depending
mainly on the national electricity mixes.

As a global pioneer in the fight against climate change, France has had time-honored aspi-
rations for transforming its economy towards carbon neutrality. The electricity sector in France
has one of the lowest carbon intensities in the EU, mostly due to the dominance of nuclear
power. The share of electricity generated from nuclear sources in France reaches more than two
thirds of the total electricity production–a larger share than any other country, making France the
world’s largest net exporter of electricity as well (World Nuclear Association, 2022). Notwith-
standing, the French power sector was to blame for emitting 21.16 million tonnes of CO2 equiv-
alent (CO2e) in 2019, corresponding to 4.8% of the country’s total emissions (Réseau de Trans-
port d’Électricité (RTE), 2020). As per France’s commitment to going carbon neutral by 2050,
enacted under the title “Ecological Emergency and Climate Crisis” by the National Assem-
bly in 2019 (Ministère de la Transition écologique, 2019), electricity generation-related CO2

emissions has to be further minimized either by leveraging carbon capture and storage (CCS)
technologies in existing fossil-fuel-fired power plants, or through an increase in the share of
low and zero-carbon electricity production (Débat national sur la transition énergétique, 2013;
Shirizadeh and Quirion, 2021). The latter takes the form of the development of renewable
electricity production and/or augmentation of the nuclear energy supply.1 In the provision of
climate change mitigation, the effective implementation of measures to reduce greenhouse gas
emissions from the electricity sector necessitates in any case an in-depth understanding of po-

1There is ongoing debate about the proper balance between nuclear and renewable energy in France. Two
studies of the French Agency for Ecological Transition (https://www.ademe.fr/) on evolutionary trajectories
of the electricity mix (ADEME, 2018) and the viability of a 100% renewable electricity mix (ADEME, 2015) have
shown that the development of the next generation of nuclear power plants would not be economically viable for
the electricity sector in France, and that in an ideal case, renewable electricity generation holds up to 95% of the
total electricity generation in the decades to follow. The French government policy aims to reduce nuclear share of
electricity generation to 50% by 2035 (World Nuclear Association, 2022).
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tential determinants of such emissions.
CO2 emissions from electricity production come, by and large, under the influence of fac-

tors such as fuel structure, generation efficiency and technology, economic growth,2 and climate
conditions (Christiansen et al., 2005; Alberola et al., 2008; Karmellos et al., 2016; Goh et al.,
2018b; Rodrigues et al., 2020). Climatic factors have a major double impact on CO2 emissions
in the electricity sector for the reason that they affect both the demand and supply of (renewable
and non-renewable) electricity. Indeed, the electricity sector not only is a contributor to climate
change, but also one of the most vulnerable economic sectors to changes in climate variables
(Ebinger and Vergara, 2011; Schaeffer et al., 2012; Yalew et al., 2020). Although the demand
for electricity is closely linked with economic activity and development, it also depends on
non-economic factors, notably climate variables (Moral-Carcedo and Vicéns-Otero, 2005). On
the demand side, climate variations (e.g. alteration in temperature) influence electricity demand
by affecting heating and cooling requirements (Yalew et al., 2020; Yao, 2021). On the supply
side, renewable energy sources such as wind, photovoltaic solar and hydroelectric powers are
directly impacted by climate change to varying degrees on account of changes and variability in
wind speed, solar radiation, and precipitation (Crook et al., 2011; Schaeffer et al., 2012; Bartos
and Chester, 2015; Owusu and Asumadu-Sarkodie, 2016; Yalew et al., 2020; Gernaat et al.,
2021). In an assessment of the sensitivity of European power systems to energy scenarios and
climate change projections, Bloomfield et al. (2021) have shown that sub-continental renewable
supply is significantly influenced by physical climate change, regardless of the choice of power
system pathway. Moreover, fossil fuel, nuclear and biofuel plants undergo climate-related im-
pacts on cooling and power generation efficiency (Yalew et al., 2020), mostly due to changes
and variability in temperature, atmospheric pressure, and relative humidity (Arrieta and Lora,
2005; Ebinger and Vergara, 2011).

A large and growing body of literature has examined climate impacts on electricity demand
and renewable or non-renewable power generation (see among others Van Vliet et al., 2012;
Behrens et al., 2017; Perera et al., 2020; Yalew et al., 2020; Gernaat et al., 2021).3 Despite this,
quantifications of climate impacts on emissions from electricity production remain scarce (but
see Tarroja et al., 2016; Qin et al., 2020). Most studies on the drivers of CO2 emissions from
electricity production in Europe and worldwide have typically focused on fuel mix, generation
efficiency and socio-economic factors (see Karmellos et al., 2016; Ang and Su, 2016; Goh et al.,
2018b; Rodrigues et al., 2020; Scarlat et al., 2022), and have tended to overlook the significance
of climatic factors with respect to electricity generation-related emissions, as well as the poten-

2Despite the 15% increase in France’s gross domestic product (GDP) per capita from 2000 to 2019, along with
the 11% population growth over the same period, emissions from electricity production decreased by 29% over that
decade, indicating a decoupling of economic growth and electricity generation-related CO2 emissions in France
(International Energy Agency, 2021).

3For an extensive literature review on this topic, see Ebinger and Vergara (2011), Gerlak et al. (2018) and
Solaun and Cerdá (2019).
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tial interconnectedness of climatic and non-climatic determinants of such emissions. Hence,
there is still a major gap in our understanding of how and to what extent climate impacts on
the demand and supply of electricity translate into greenhouse gas emissions in the electricity
sector.

Interestingly, a strand of literature dealing with the empirical study of the European Union
Emissions Trading System (EU ETS),4 has recognized climate variables (e.g. air temperature,
rainfall and wind speed), among other factors (e.g. energy prices and fuel switching), as ex-
planatory factors for the carbon price (see Mansanet-Bataller et al., 2007; Alberola et al., 2008;
Benz and Trück, 2009; Keppler and Mansanet-Bataller, 2010; Hintermann, 2010; Bredin and
Muckley, 2011; Lutz et al., 2013; Rickels et al., 2015; Batten et al., 2021) without an explicit
assessment of the (climatic) explicative factors behind CO2 emissions themselves.5 In view of
the fact that the EU ETS is dominated by firms involved in electricity generation (Ahamada and
Kirat, 2015), comprehensive examination of climatic predictors of electricity sector emissions
in the EU Member States will not only advance the debate on climate change mitigation in the
power sector but also benefit the literature on the functioning of the EU ETS, notably research
on carbon price drivers in this emissions trading system.

The main purpose of the present work is to investigate the observed association between
hourly CO2 emissions in the French electric power system and a comprehensive set of climate
factors over the 2013-2020 period. To do so, the study adopts an innovative interdisciplinary
approach to constructing electric power-weighted climate indices from gridded climate vari-
ables and regional power indicators, based on the principal mechanism through which each
climate variable can affect CO2 emissions in the electricity sector. A non-parametric regression
predictive modeling framework is then used to empirically learn the relationship between the
obtained climate indices and CO2 emissions from electricity production. Finally, the learning
model is analyzed using post hoc interpretation methods, with the aim of extracting various
forms of information on the relationship between electricity generation-related emissions and
their climatic predictors.

For the sake of this analysis, six climate variables are identified as potential drivers of emis-
sions from electricity production because of their influence on electricity production and con-
sumption: air temperature, solar radiation, relative humidity, wind speed, total precipitation,
and surface air pressure. Air temperature, solar radiation, wind speed and total precipitation are
expected to serve as a determinant of electricity generation-related emissions as they may affect
(if not always exclusively) electricity consumption, photovoltaic solar power generation, wind

4The EU ETS is the leading market-based measure, functioning on a cap and trade basis, to reduce CO2
emissions in the European Union under the Kyoto Protocol.

5One exception is the study of Gloaguen and Alberola (2013), which has examined the factors behind CO2
emissions during the first two phases of the EU ETS. While acknowledging the potential effect of climate condi-
tions on emissions, the paper has not, however, included any climate variable in its econometric analysis due to
lack of data, and the temporal scale of observations.
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power generation and hydroelectric power generation, respectively. Relative humidity and sur-
face air pressure are candidate predictors for emissions from electricity production, as they can
influence generation cycle and cooling system efficiency of thermal and nuclear power plants.6

There are several important areas where this study makes an original contribution to re-
search on determinants of CO2 emissions from electricity production. First, in order to identify
as fully as possible the effects of climate conditions on CO2 emissions in the electricity sector,
the present research gathers the most extensive set to date of climate variables linked with elec-
tricity generation-related emissions. To this should be added the rather incomparable granularity
and scope of the data used for analysis. On the one hand, the use of high-resolution gridded data
on climate variables over the geographical area of metropolitan France opens up the possibility
to construct composite indices that could represent climate conditions in the country in the most
comprehensive manner possible. On the other hand, the use of hourly emissions and climate
data for a span of 8 years (i.e. 2013-2020) assists in our enhanced understanding of determi-
nants of intra-day CO2 emissions in the French electricity sector. In addition, using a relatively
large data set ensures adequate sample representativeness and maximized performance of the
machine learning algorithm used for empirical modeling.

Second, this work offers a novel methodological contribution, on a well-grounded interdis-
ciplinary basis, to the construction of national climate indices. The suggested framework not
only accommodates intra-country spatial climate heterogeneity but also takes into account the
potential mechanism through which climate variables may have an impact on emissions in the
electricity sector. The proposed approach to climate index construction may as well be applied
in other areas of climate economics research and be used, with slight modifications, for pur-
poses other than characterization of the relationship between climate variables and electricity
generation-related CO2 emissions.

Third, by employing a powerful tree-based ensemble learning algorithm in tandem with
cutting-edge interpretation methods, this study is able to (1) measure the significance of every
single climate index for explaining CO2 emissions from electricity production, and rank those
indices based on their importance in estimating the predictive model; (2) characterize and quan-
tify complex, nonlinear relationships between electricity sector emissions and their climatic

6The more efficient the conversion of fossil fuels and biofuels to electricity, the less fuel is required to generate
the same amount of electricity. This translates into fewer CO2 emissions per unit of electricity generated. As
regards nuclear power generation, efficiency consequences for emissions are less clear-cut. From a technical
standpoint, nuclear power plants resemble standard thermal power plants, with the exception that they use nuclear
fission (instead of fossil fuel or biofuel combustion) as the heat source. Therefore, relative humidity and surface
air pressure are expected to exert a similar effect (if any) on thermal and nuclear power plants. Increase (decrease)
in the efficiency of nuclear power plants leads to increase (decrease) in the amount of electric power produced for
each unit of thermal power. Under the plausible assumption that in the short-run, increase (decrease) in nuclear
electricity production per unit of thermal power is, at least partly, counterbalanced by decrease (increase) in the
use of fossil fuels and/or biofuels for electricity generation, CO2 emissions per unit of electricity generated are
expected to have an inverse relationship with the the efficiency of nuclear power plants.
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predictors, and show for the first time how the effects of such predictors on emissions change
throughout the complete range of values of the predictors while controlling for various types of
time properties; and (3) explore potential interactions between different climate factors in re-
spect of their predictive impact on CO2 emissions from electricity production, and examine both
pure main and second-order effects of climatic predictors. When quantifying climate change
impacts as complex as those in the electric power sector, it might not be enough to focus solely
on a single climate change variable at a time. In this regard, analyzing interactive effects of
multiple climate factors can be a major elementary step towards a more complete understand-
ing of the sensitivity of electricity sector emissions to climate change and variability.

The remaining part of the paper proceeds as follows. Section 3.2 is concerned with the pre-
sentation of the data and methodology used for this study. The research methodology is divided
into three parts: the construction of electric power-weighted national climate indicators, the
empirical modeling of CO2 emissions from electricity production based on climate indices, and
the characterization of the predictive impact of climate indices on such emissions. Section 3.3
presents the findings of the research, focusing on the three key elements of methodology. Sec-
tion 3.4 includes a discussion of some significant and unexpected results, identifies potential
limitations and weaknesses of the study, and makes suggestions for further research. Finally,
Section 3.5 gives a brief summary of the main findings and reiterates the importance of the topic
for policy and subsequent research.

3.2 Materials and Methods

3.2.1 Data

For the purpose of analysis, data on CO2 emissions from electricity production, electric power
consumption and output, and climate variables are collected from publicly-available open data
sources. The two latter sets of data are utilized for building national electric power-weighted
climate indices that serve as the main explanatory variables in the model. The temporal scope
of the study extends from January 1, 2013 (00:00) to December 31, 2020 (23:00). The ultimate
sample used for empirical analysis consists of 70128 hourly observations of one dependent
(CO2 emissions from electricity production) and 10 independent variables (6 electric power-
weighted climate indices and 4 time-based predictors7, namely hour of the day, day of the
week, month of the year and year).

7In addition to electric power-weighted climate indices, numerical time-based predictors are created and in-
cluded in the analysis as independent variables to account for possible seasonality in time series data. See Sec-
tion 3.2.2.2 for more details about the function of time-based predictors.
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3.2.1.1 CO2 emissions from electricity production

Estimates of CO2 emissions resulting from the generation of electrical power in France, ex-
pressed in grams of CO2e per kWh generated, are obtained from the national éCO2mix data
set of RTE (Réseau de Transport d’Électricité8), available on the Open Data Réseaux Énergies
(ODRÉ) platform9. The emission indicator in this data set illustrates CO2 equivalent emissions
produced by the consumption of primary fuel (fuel oil, coal, gas and biofuel) in power plants
located in France, and does not include exchanges of energy at interconnections (i.e. electricity
imports or exports). The original quarter-hourly national emissions estimates are aggregated
into hourly means, so that they match the temporal frequency of climate variables (and conse-
quently climate indices). Additionally, hourly emissions estimates are natural log-transformed
to avoid possibly negative predicted values of the dependent variable in the empirical modeling
process (see Section 3.2.2.2).

3.2.1.2 Electricity consumption and power generation by energy source

Consolidated and definitive data on electricity consumption and power generation by energy
source in metropolitan regions of France, expressed in megawatts (MW), are sourced from
the RTE’s regional éCO2mix data set, available on the open data platform described in Sec-
tion 3.2.1.1. Given the nature of the proposed methodology for the construction of national
climate indices (see Section 3.2.2.1), negative values of power production (aka negawatts), if
any, are set to zero. The original half-hourly power values are aggregated into total hourly
sums, so as to guarantee consistency between the temporal frequency of the electric power in-
dicators and climate variables. For the sake of consistency with the nature of emissions data,
neither inter-regional exchange and cross-border trading of electric power10 nor regional energy
storage potential are considered in the present study.

3.2.1.3 Climate variables

Gridded (0.25◦×0.25◦) hourly historical data on climate variables over the area of metropoli-
tan France from January 1, 2013 (00:00) to December 31, 2020 (23:00) are obtained from the
ERA5 climate dataset (Hersbach et al., 2020). ERA5 is the latest climate reanalysis produced
by the Copernicus Climate Change Service (C3S) at the European Centre for Medium-Range
Weather Forecasts (ECMWF), and provides the most comprehensive picture currently possi-
ble of the past global climate and weather by combining observations with past short-range
forecasts obtained from advanced weather forecasting models (ECMWF, 2020b). Data on air

8The electricity transmission system operator of France
9https://opendata.reseaux-energies.fr/. ODRÉ is a subdivision of the open platform for French

public data (https://www.data.gouv.fr/)
10Cross-border power trading takes place between France and England, Spain, Italy, Switzerland, Luxembourg,

Germany and Belgium.
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temperature at 2m above the surface (K),11 total sky direct solar radiation12 at surface (Jm−2),
total precipitation (m) and surface air pressure (Pa) are directly available from the C3S. For a
given grid point, wind speed (ms−1) is calculated from the eastward (u) and northward (v) wind
components at the height of 100m.13 Relative humidity (%) values are computed from the 2m
air and dew point14 temperatures (K) using the August-Roche-Magnus approximation (Aldu-
chov and Eskridge, 1996). The original dataset represents the mean area average of climate
variables over each grid at a given time point (hour).

3.2.2 Methodology

3.2.2.1 Construction of electric power-weighted climate indices

To construct nation-wide indices that could represent climate conditions across France in the
most comprehensive and relevant manner possible, the study relies on the European Hydro-
ecoregion regionalization framework from hydrology and environmental science (Wasson et al.,
2002, 2007). European Hydro-ecoregions (abbreviated hereafter as HER) by definition are ge-
ographical regions that have similar climatological, topographic, geological and lithological
characteristics (Wasson et al., 2007). Europe (including Eastern Thrace) covers 133 HERs
that are further categorized, according to several climatic factors, into 9 homogeneous cli-
mate regions (also known as climate classes): Alpin Mountain, Boreal, Continental Cold, Hy-
per Mediterranean, Mediterranean, Oceanic, Temperate, Temperate Mountain, and Temperate
Warm. Metropolitan France embraces 33 HERs and 7 of these climate classes (Figure 3.1).

HERs are grouped into climate classes so as to minimize (maximize) intra-class (inter-class)
variations in respect of climate conditions (see Wasson et al., 2007). On this point, the under-
lying assumption of the index construction method put forward by the present study is that the
climate variables used for analysis, namely air temperature, solar radiation, relative humidity,
wind speed, total precipitation and surface air pressure, show slight variation within each cli-
mate class. In light of this assumption, at a given point in time (hour), the mean area average of
a given climate variable over all the HERs belonging to the same climate class is well represen-
tative of the overall value of the variable across the relevant HERs at that time point.

To begin the process of index construction, climate conditions over mainland France at each
hour are aggregated by climate class by taking average of the (hourly) values of climate vari-
ables at the grid points lying within the geographical area of respective climate classes. For

11For ease of interpretability, temperatures are converted from kelvin to degrees Celsius before being used for
regression predictive modeling.

12Solar photovoltaic panels are most productive when exposed to direct (as opposed to diffuse) solar radiation.
13The average hub height of modern land-based wind turbines used for wind power generation is close to 100m

(Wiser et al., 2020).
14The dew point is the temperature at which air is saturated with water vapor (at constant pressure and water

content), resulting in the formation of dew.
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Figure 3.1: Hydro-ecoregions (HERs) and their corresponding climate classes across France, intersected with
metropolitan (administrative) regions excluding Corse. HERs and the 12 metropolitan regions are delineated by
thin light and thick dark lines, respectively. Data used for plotting Hydro-ecoregions and administrative regions are
sourced from Wasson et al. (2007) and OpenStreetMap France (https://www.openstreetmap.fr/donnees/),
respectively.

each climate variable and at each time point (hour), the resulting 7 aggregate climate indicators
are then combined into a single nation-wide climate index by means of an original weighting
scheme based on the regional share of electricity consumption and power production by dif-
ferent energy sources. This weighting scheme relies on the evaluation of the importance that
should be given to each climate class as regards the potential effect of regional climate con-
ditions on national CO2 emissions. The idea is that the primary mechanism through which
climate variables can affect CO2 emissions in the electricity sector is the alteration of electricity
demand and power generation by renewable and nonrenewable energy resources. Consequently,
the relative share of each homogeneous climate region in national electricity consumption and
production is the perfect candidate for measuring the relevance of climate conditions in climate
classes to countrywide emissions indicators. The set of climate variables used for analysis and
their corresponding relevant power indicators are presented in Table 3.1.

In mathematical terms, for a climate variable v, the electric power-weighted index at a given
hour t is defined as the convex combination

Climate Index(t)v = ∑
r

(
Power Share(t)r,v ×Climate Indicator(t)r,v

)
(3.1)

57

https://www.openstreetmap.fr/donnees/


Table 3.1: List of climate variables identified as potential predictors of CO2 emissions from electricity production,
along with their corresponding relevant power indicators used for the construction of electric power-weighted
climate indices. In the case of relative humidity and surface air pressure, total electricity production from fossil
fuels, nuclear power and biofuels is used as the relevant power indicator.

Climate Variable Relevant Power Indicator(s)

Air Temperature Electricity Consumption

Solar Radiation Photovoltaic Solar Power

Relative Humidity Fossil Fuel, Nuclear and Biofuel Powers

Wind Speed Wind Power

Total Precipitation Hydroelectric (Run-of-river, Lake and Pumped-storage) Power

Surface Air Pressure Fossil Fuel, Nuclear and Biofuel Powers

where the summation index r runs over the 7 homogeneous climate regions in France. The
weighting coefficients in Equation 3.1 estimate the relative share of the homogeneous climate
regions in the national consumption or production of the power indicator corresponding to the
climate variable of interest at the given time point. These coefficients are obtained by first cal-
culating the proportion of area of metropolitan (administrative) region15 that is covered by each
homogeneous climate regions. For each hour, the obtained area shares are multiplied by the
relative share of the corresponding metropolitan regions in the national consumption or pro-
duction of the power indicator bearing upon a given climate variable. The sum of the obtained
multiplicative terms over all metropolitan regions provides the desired weighting coefficient for
each climate class:

Power Share(t)r,v = ∑
s

(
Area Sharer,s ×Power Share(t)s,v

)
(3.2)

where

Area Sharer,s =
Areas∩r

Areas
and Power Share(t)s,v =

Power Indicator(t)s,v

∑s Power Indicator(t)s,v

The subscript s denotes the metropolitan regions, Areas is the surface area of the sth metropoli-
tan region (in km2), and Areas∩r is the total area of the metropolitan region s that belongs to
the climate class r (in km2). For a given climate variable v, Power Indicator(t)s,v represents the sth

metropolitan region’s relevant power indicator (in MW) at time t. Power shares are obtained by

15Mainland France is divided into 13 metropolitan regions: Auvergne-Rhône-Alpes, Bourgogne-Franche-
Comté, Bretagne, Centre-Val de Loire, Corse, Grand Est, Hauts-de-France, Île-de-France, Normandie, Nouvelle-
Aquitaine, Occitanie, Pays de la Loire, Provence-Alpes-Côte d’Azur. The island of Corsica (Corse in French) is
excluded from the analysis due to the unavailability of data on electricity consumption and power production by
different energy sources.
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calculating the proportion of the regional power indicator values out of the total power indicator
values across all metropolitan regions.

Table 3.2 presents the summary statistics of the constructed electric power-weighted cli-
mate indices and CO2 emissions indicator, i.e. the variables included in the empirical model
(see Section 3.2.2.2).

Table 3.2: Summary statistics of the explanatory and explained variables (excluding time-based predictors) over
the study period–from January 1, 2013 (00:00) to December 31, 2020 (23:00). The total number of observations is
70128.

Variable Mean Max Min SD

CO2e Emissions per kWh (g) 44.70 138.50 7.00 22.73

Air Temperature Index (◦C) 11.89 35.72 -8.63 6.93

Solar Radiation Index (Jm−2) 373664 2812771 0 583154

Relative Humidity Index (%) 93.49 99.51 71.42 4.61

Wind Speed Index (ms−1) 5.83 17.43 1.06 2.06

Total Precipitation Index (m) 1.19 × 10−4 1.97 × 10−3 0 1.85 × 10−4

Surface Air Pressure Index (Pa) 98020 100514 94293 813.09

3.2.2.2 Empirical modeling of CO2 emissions from electricity production based on cli-
mate indices

The relationship between climate indices and CO2 emissions from electricity production is
quantified using the Extreme Gradient Boosting (XGBoost) algorithm. XGBoost is a pioneer-
ing, highly efficient gradient boosting-based tree ensemble machine learning algorithm that can
be used for regression predictive modeling purposes. The algorithm is capable of estimating
the (possibly complex nonlinear) relationship between independent and dependent variables by
combining the prediction results obtained from several regression trees (for complete details
about the algorithm, see Chen and Guestrin, 2016). As is the case with any tree-based algo-
rithm, multicollinearity does not affect the prediction performance of XGBoost. Furthermore,
the algorithm does not require input normalization and functions perfectly with skewed distri-
butions, noisy data and outliers.

The regression analysis is conducted using log-transformed CO2 emissions indicator as the
dependent variable and 10 independent variables, namely electric power-weighted air tempera-
ture, solar radiation, relative humidity, wind speed, total precipitation and surface air pressure
indices, together with 4 time-based predictors created with integer encoding: hour of the day,
day of the week, month of the year and year). It can be imagined that the learning algorithm
could use time-based predictors to help tease out time-of-year, time-of-month or time-of-day
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type seasonality information. As with other predictive modeling techniques, the proposed em-
pirical modeling framework does not, in and of itself, establish any direct cause-effect rela-
tionship between variables. To be more precise, the utilized approach does not maintain that a
change in climate indices directly causes a change in CO2 emissions in the electricity sector.
Instead, it evaluates the association, if any, between a change in climate indices and the change
in emissions from electricity production. The nature of the weighting scheme for the construc-
tion of climate indices (see Section 3.2.2.1) provides a sound conceptual basis for evaluating
the predictive relationship between these indices and the target variable.16

Chen and Guestrin (2016) define the tree ensemble model of the XGBoost algorithm that
uses K additive trained trees to predict the outcome for a dataset with N data points and p

explanatory variables {(xi,yi) | i = 1, ...N, xi ∈ Rp, yi ∈ R} as

ŷi = f̂ (xi) =
K

∑
k=1

gk(xi) gk ∈ G (3.3)

where G = {g(x) = wq(x)}(q : Rp → J, w ∈ RJ) is the space of regression trees, q(x) is a
function that directs and assigns every data point to the q(x)-th leaf of the tree, wq(x) is the
weight on the q(x)-th leaf, assigned to every data point belonging that leaf, and J is the total
number of leaves in the tree. Each gk features an independent tree structure q and leaf weights
w (Chen and Guestrin, 2016).

Every regression tree gk grows from an initial (root) node and expands to a maximum depth
(i.e. the maximum number of nodes allowed from the root to the farthest leaf of a tree) specified
outside of the training process. Each internal node of a tree partitions the training data by one
of the predictors, and prediction weights are assigned to the new leaves. The tree is eventually
pruned with the aim of removing nodes with negative gains. The tree building algorithm (i.e.
split finding and assignment of prediction scores) is dependent upon the optimization of an
objective function that consists of a training loss and a regularization term to avoid overfitting:

Ob j =
N

∑
i=1

L(ŷi,yi)+
K

∑
k=1

Ω(gk) (3.4)

where

Ω(gk) = γJk +
1
2

λ

Jk

∑
j=1

w2
j,k

16It should be noted that low-carbon energy sources (nuclear, wind, solar photovoltaics, and hydroelectricity)
make, by definition, no contribution to the calculation of emissions indicator in the éCO2mix dataset. In this
regard, a climate-driven change in electricity generation from these sources is not directly linked with a change in
CO2 emissions. Nonetheless, a climate-induced increase (decrease) in the share of clean (nuclear and renewable)
energy sources in electricity production is expected to translate into a decrease (increase) in the share of high-
carbon energy sources (coal, fuel oil, gas and biofuel) as major determinants of CO2 emissions.
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where Jk is the number of leaves pertaining to the k-th regression tree, and w j,k is the predic-
tion weight assigned to the j-th leaf of that tree. L is a convex differentiable function (squared
error, by default) that measures how the model fits on the training data, Ω measures the com-
plexity of trees by penalizing large weights and large number of leaves. This latter term helps
addressing the bias–variance trade-off. The parameter γ is the minimum loss reduction required
to make a further partition on a leaf node of the tree, and λ is the L2 regularization term on
the prediction weights. As is the case with the maximum depth, γ and λ are not internal to the
model, so their values cannot be directly estimated from data. These configuration variables and
a few other parameters (together referred to as the model hyperparameters) control the learn-
ing process and their values are determined through the hyperparameter tuning process. As
argued by Chen and Guestrin (2016), the regularized objective function in Equation 3.4 cannot
be minimized using conventional optimization methods. Instead, it is optimized using a modi-
fied version of the gradient boosting algorithm in such a way that each added tree improves the
model by correcting the errors of the previous one:

Ob j(t) =
N

∑
i=1

L(yi, ŷi
(t−1)+gt(xi))+Ω(gt) (3.5)

where ŷi
(t−1) is the predicted outcome for the i-th data point at the t-th boosting iteration

(refer to Chen and Guestrin, 2016, for complete details on the gradient tree boosting algorithm).

As a complement to the algorithm’s principal regularization on the number of leaves and
the magnitude of leaf weights, additional measures are adopted to prevent overfitting.17 First,
the learning process is slowed down using the shrinkage technique introduced by Friedman
(2002). The shrinkage hyperparameter η scales newly added weights after each step of tree
boosting, hence reducing the influence of individual trees and leaving space for future trees to
improve the model (Chen and Guestrin, 2016). Second, the utilization of stochastic boosting
(as an alternative to regular boosting) requires that the algorithm randomly sub-sample, without
replacement, rows of the training dataset at every boosting iteration. Third, owing to column
sub-sampling, only a proportion of predictors (columns) are used for the construction of each
tree. Finally, and most importantly, hyperparameter tuning is carried out using exhaustive grid
search with repeated 5-fold cross-validation (number of repetitions=5). For a given hyperpa-
rameter configuration, the mean model performance, as measured by root-mean-square error
(RMSE), across all folds and all repeats is calculated and the configuration resulting in the
minimum average RMSE is chosen as the optimal combination of hyperparameters. The grid
search is performed over the parameter values specified in Table 3.3, with the values of the two

17While robust measures are taken in the present research to prevent overfitting, the reader should bear in mind
that overfitting does not necessarily translate into poor generalization of modern machine-learning methods such as
tree-based ensemble algorithms. Belkin et al. (2019) provide empirical evidence on good generalization behavior
of overfitted boosted decision trees.
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remaining hyperparameters, namely the number of trees used for boosting and λ , being kept
at 100 and 1, respectively. The choice of possible hyperparameter values is made principally
according to the suggestions of Boehmke and Greenwell (2019) and Thakur (2020).

Table 3.3: Hyperparameter configurations used for evaluating tree ensemble models.

Hyperparameter Range Default Value Selected Values for Tuning

γ [0,∞) 0 {0.1,1,10}

η [0,1] 0.3 {0.05,0.1,0.2,0.3}

Maximum Depth {1..∞} 6 {3..8}

Minimum Child Weight [0,∞) 1 {7,10,20}

Column Sample by Tree (0,1] 1 { 3
10 , 5

10 , 7
10 }

Sub-sample (0,1] 1 {0.3,0.5}

A lower value of the shrinkage factor η makes the model more robust to overfitting. Like-
wise, decreasing the the maximum depth results in a less complex model that is less likely to
overfit. The larger gamma and minimum child weight (minimum sum of hessians needed in a
leaf node) are, the more conservative the algorithm will be. Given that there are 1296 configura-
tions in the hyperparameter search space, a total number of 1296×5×5 tree ensemble models
are trained and assessed during the cross-validation process.

Thanks to the usage of row sub-sampling and data splitting techniques during the model
training and cross-validation resampling procedures, the probability of a contiguous time series
being used is very low, making the utilized algorithm circumvent possible serial correlation.
That having been said, the inclusion of numerical time-based predictors (hour of the day, day of
the week, month of the year and year) in the machine learning model building guarantees that
additional information pertaining to the temporal aspect of the data (such as possible seasonal-
ity) is accounted for.

3.2.2.3 Characterizing the predictive impact of climate indices on CO2 emissions from
electricity production

The predictive relationship between climate indices and CO2 emissions from electricity pro-
duction is described in two major steps. First, the statistical significance of each climate index
for the prediction of CO2 emissions is assessed through the model-agnostic permutation feature
importance algorithm (Breiman, 2001; Fisher et al., 2019). The significance (importance) of a
given climate index is evaluated by calculating the increase in model’s prediction error (mea-
sured by an error function such as RMSE) when the index values are shuffled and the existing
association between the index and the original values of the dependent variable (CO2 emissions)
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is broken.18

The permutation feature importance algorithm takes the trained tree ensemble model f̂ with
the optimal combination of hyperparameters, the data points {(xi,yi) | i = 1, ...N, xi ∈ Rp, yi ∈
R}, and a loss (error) function L such as RMSE as inputs, and calculates, in a first step, the
original model error L(yi, f̂ (xi)). Next, for each climate index p and at each repetition, the
algorithm permutates the variable of interest while retaining the original values of all other ex-
planatory variables. This permutation results in new feature vectors xperm:p

i that are then used to
compute the model error L(yi, f̂ (xperm:p

i ) based on the predictions of the permuted data. Finally,
the feature importance measure of the climate index p (denoted by FIp) is computed as the ratio
L(yi, f̂ (xperm:p

i )/L(yi, f̂ (xi)).
To construct the null distribution of importance measures and allow for a permutation null

hypothesis testing (H0 : FIp = 1), the algorithm is repeated a sufficiently large number of times
(1000 times in the present study). The larger the increase in model’s prediction error (loss) after
shuffling an explanatory variable, the more important that variable is for predicting the outcome.
Conversely, if permuting the values of a given explanatroy variable leaves the prediction error
unchanged, it could be concluded that the predictive model takes little account of the variable
for making predictions (Molnar, 2020). More concretely, the climate index p is important, at
the significance level α , for predicting CO2 emissions, if FIp does not contain 1 in its (1−α)

confidence interval.
As a second step to characterize the predictive impact of climate indices on CO2 emissions

from electricity production, the main effects of individual indices and their second-order inter-
action effects are estimated and visualized using the accumulated local effects (ALE) approach
(Apley and Zhu, 2020). ALE is a model-agnostic, computationally fast, post hoc interpretation
method that describes the pure (possibly nonlinear) effect of each explanatory variable on the
target variable by blocking the effects of other variables. Unlike other machine learning inter-
pretation methods (e.g. partial dependence plots), ALE is unbiased with correlated predictors
as it uses the conditional distribution of features (Molnar, 2020). Nevertheless, if explanatory
variables are highly correlated, ALE curves require careful interpretation (see Section 3.4).

For a single numerical explanatory variable, ALE values are estimated as follows. First,
the variable of interest is split into multiple intervals. For the sake of the present analysis, the
(unique) percentiles of the distribution of variables are used to define such intervals.19 Next, for

18This permutation also breaks the existing association between the index and other explanatory variables. Con-
sequently, the permutation feature importance algorithm takes into consideration all possible interactions among
explanatory variables. The disadvantage is that the importance of any interaction between a pair of variables is
included in the feature importance of both variables. In addition, in the presence of a strong correlation between
explanatory variables, the algorithm can be biased by unrealistic data points. For detailed description of advantages
and disadvantages of this algorithm, please refer to Molnar (2020).

19There is no hard-and-fast rule for choosing the number of intervals. A small number of intervals results in
not very accurate ALE estimates, whereas if the number is too large, ALE curves can become unstable and shaky
(Molnar, 2020). Using percentiles for defining the ALE evaluation intervals warrants that the same number of data
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the data points in a given interval, the difference in the model’s prediction is calculated when
the values of the variable concerned are replaced with the upper and lower bounds of the inter-
val. These differences are then accumulated over the conditional distribution across all intervals
and centered (so that mean effect over the data is zero), resulting in the ALE curve (Apley and
Zhu, 2020; Molnar, 2020). Each point on the curve thus represents the difference with average
model’s prediction. Formally speaking, for a given numerical predictor p, the mean-centered
accumulated local effect at a certain value x is estimated as

f̂p,ALE(x) = ˆ̃fp,ALE(x)−
1
N

L

∑
l=1

np(l) ˆ̃fp,ALE(zl,p) (3.6)

where

ˆ̃fp,ALE(x) =
lp(x)

∑
l=1

1
np(l)

∑
i:x(i)p ∈Np(l)

[
f̂ (zl,p,x

(i)
\p)− f̂ (zl−1,p,x

(i)
\p)

]

Here, N is the total number of data points, L is the number of evaluation intervals, Np(l)

signifies the lth interval (aka neighborhood) among the intervals into which the distribution of
the predictor p is split, and np(l) is the number of data points whose value of the predictor p

lies within the interval Np(l). Lower and upper limits of the interval are represented by zl−1,p

and zl,p, respectively. In the estimation of the the uncentered ALE ( ˆ̃fp,ALE(x)), the outer sum
runs from the first interval up to and including the interval lp(x) to which the value x belongs.
The ALE value obtained from Equation 3.6 can be interpreted as the main (first-order) effect of
the climate index p at a certain value x compared to the average prediction of CO2 emissions
over the data.

Using the same notation as before, the second-order (interaction) effect of two predictors p

and q at a certain value (xp,xq) is estimated as

f̂{p,q},ALE(xp,xq) =
ˆ̃f{p,q},ALE(xp,xq)−

1
N

L

∑
l=1

L

∑
m=1

n{p,q}(l,m) ˆ̃f{p,q},ALE(zl,p,zm,q) (3.7)

points lies in each of the intervals. This choice however has a disadvantage in that the length of intervals may be
very different. Therefore, caution is needed in interpreting interval-wise effects in the case of skewed distributions.
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where

ˆ̃f{p,q},ALE(xp,xq) = ĝ{p,q},ALE(xp,xq)−
lp(xp)

∑
l=1

1
np(l)

L

∑
m=1

np,q(l,m)
[
ĝ{p,q},ALE(zl,p,zm,q)− ĝ{p,q},ALE(zl−1,p,zm,q)

]
−

lq(xq)

∑
m=1

1
nq(m)

L

∑
l=1

np,q(l,m)
[
ĝ{p,q},ALE(zl,p,zm,q)− ĝ{p,q},ALE(zl,p,zm−1,q)

]
The uncentered effect ĝ{p,q},ALE(xp,xq) defined in Equation 3.7 is estimated by

ĝ{p,q},ALE(xp,xq) =
lp(xp)

∑
l=1

lq(xq)

∑
m=1

1
n{p,q}(l,m) ∑

i:x(i){p,q}∈N{p,q}(l,m)

{
f̂ (zl,p,zm,q,x

(i)
\{p,q})

− f̂ (zl−1,p,zm,q,x
(i)
\{p,q})−

[
f̂ (zl,p,zm−1,q,x

(i)
\{p,q})− f̂ (zl−1,p,zm−1,q,x

(i)
\{p,q})

]} (3.8)

The calculation principles remain the same as for estimating the main effect of a single
predictor, except that instead of one-dimensional intervals, rectangular cells are utilized to ac-
cumulate the effects in two dimensions20 (Molnar, 2020). The method of estimation of second-
order ALE values is adjusted to take account of the overall mean effect, as well as the main
effects of both predictors. Indeed, the estimated ALE value for two explanatory variables can
be interpreted as the the additional interaction effect of the variables after the main effects of the
variables are accounted for (see Apley and Zhu, 2020; Molnar, 2020, for complete details on
the estimation of first and second-order ALE). The notation and concepts used in the estimation
of first and second-order ALE are schematically illustrated in Figure 3.2.

Before proceeding to the analysis results, it would be well to remark that data preparation,
empirical modeling, statistical computing and graphics in the present study are carried out in R
software environment (R Core Team, 2020; Kuhn, 2008; Molnar et al., 2018).

3.3 Results

The first step to characterize the relationship between climate indices and CO2 emissions from
electricity production is to find the model architecture with the maximized performance on the
given data set. This is achieved through cross-validation and hyperparameter tuning. Exhaus-

20Unlike percentile-based first-order ALE estimation which guarantees the same number of data points in all
evaluation intervals (note that the intervals may still have very different lengths), second-order ALE estimation
inevitably uses a different number of data points to calculate the local effect in each rectangular cell. As a con-
sequence, estimates have a different accuracy across the feature space–although they are still the best attainable
estimates of second-order effect (Molnar, 2020)
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Figure 3.2: Simplified schematic illustration of the notation and concepts utilized for computing the first-order
ALE of the pth predictor for a model with two predictors p and q (left), and the second-order ALE of the pth and
qth predictors (right). Illustrations are reproduced from Apley and Zhu (2020).

tive grid search through the specified subset of the hyperparameter space with 1296 unique
configurations (see Section 3.2.2.2) results in the following optimal hyperparameters for the
learning algorithm, pertaining to minimum average RMSE across all folds: γ = 0.1; η =

0.2; Maximum Depth = 8; Minimum Child Weight = 10; Column Sample by Tree = 0.7 and
Sub-sample = 0.5. The average RMSE and R2 across all folds for the best model are 0.2043
and 0.8643, respectively.

Once the the model with the best tune is obtained from hyperparameter optimization, the
statistical significance of each climate index for the prediction of CO2 emissions is evaluated
using the permutation feature importance algorithm. Figure 3.3 presents permutation feature
importance measures (based on 1000 repetitions) for the six climate indices. It can be seen from
this figure that the 90% confidence intervals for feature importance estimates do not contain 1,
hence leading to the rejection of the null hypothesis (H0 : FIp = 1) at the 0.1 significance level.
This compressed global insight into the model’s behavior substantiates that all of the six cli-
mate factors identified as potential drivers of CO2 emissions in the electricity sector are indeed
relied upon as important features for predicting emissions. Different indices, however, do not
bear equal importance for the prediction. The air temperature index proves to be the most im-
portant predictor of CO2 emissions in the French electric sector (median importance= 1.726),
followed by the wind speed index (median importance= 1.63). On the other side, the rela-
tive humidity and total precipitation indices are of the least importance for the prediction of
electricity generation-related CO2 emissions, with median importance of 1.162 and 1.195, re-
spectively. Unsurprisingly and in support of the great attention given to air temperature as a
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key determinant of energy-related emissions in the existing literature, the air temperature index
has been identified as the most relied-upon feature for the prediction of CO2 emissions from
electricity production in France from 2013 to 2020. As to the comparatively low importance of
the relative humidity and surface air pressure indices for the prediction of CO2 emissions in the
electricity sector,21 the findings of this evaluation accords with evidence from previous observa-
tions (e.g. Arrieta and Lora, 2005; Bull et al., 2007; Ebinger and Vergara, 2011; González-Díaz
et al., 2017) that climate impacts on the efficiency of fossil-fuel-fired, nuclear, and biomass-fired
power plants tend to be relatively small. In any case, the results indicate that surface air pressure
bears more importance, in comparison with relative humidity, for the prediction of emissions.

Air Temperature

Solar Radiation

Relative Humidity

Wind Speed

Total Precipitation

Surface Air Pressure

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Permutation Feature Importance (Loss: RMSE Ratio)

Figure 3.3: Permutation feature importance measures (RMSE ratios) for the six electric power-weighted climate
indices. I-shaped bars represent 5% to 95% inter-quantile ranges of importance values from 1000 repetitions. The
solid dot within the interval signifies median importance.

Evaluation of the predictive impact of climate indices on CO2 emissions from electricity
production is accompanied by the estimation and visualization of first-order (main) and second-
order (interaction) effects of indices. Figure 3.4 illustrates first-order (main) ALE plots of dif-
ferent electric power-weighted climate indices. The line graph in each individual panel of this
figure represents the change in predicted emissions when the selected index has the given value,
compared to the average model prediction. From Figure 3.4, it is apparent that there exists a
nonlinear predictive relationship between climate indices and CO2 emissions from electricity
generation in France over the study period.

As would be expected, the ALE of CO2 emissions exhibits a U-shaped response to the
electricity demand-weighted air temperature index. The main effect of air temperature is per-
sistently higher than average prediction of the data at values below 7.40◦C (corresponding to
the 29th percentile of index values) and above 24.03 ◦C (corresponding to the 94th percentile).
When the value of the air temperature index is between 7.40◦C and 24.03 ◦C (corresponding
to the 29%-94% inter-quantile range), the model prediction is lower than the average predic-

21The average annual share of the aggregate of fossil fuel, nuclear and biofuel powers (i.e. relevant power
indicators for relative humidity and surface air pressure) in total electricity production in France over the 2013-
2020 period was 81.61%. If relative humidity and surface air pressure exerted considerable influence on the
generation cycle and cooling efficiency of these types of power plants, the learning model would rely heavily on
the relative humidity and surface air pressure indices for the prediction of emissions in the electricity sector.
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Figure 3.4: First-order (main) mean-centered accumulated local effects (ALE) of electric power-weighted climate
indices on the prediction of CO2 emissions from electricity production over the study period (2013-2020). The
distribution of data points for each index is displayed on the margin of horizontal axis.
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tion, and the global minimum feature effect pertains to 15.56◦C (corresponding to the 69th

percentile), where the model prediction is lower by 0.11 compared to the average prediction.
These findings broadly support the work of other studies linking electricity demand and air
temperature.22 In accordance with the present results, previous studies have demonstrated that
there exists a U-shaped relationship between electricity consumption and air temperature, with
the vertex point ranging between 11.5◦C and 16◦C depending on the region under study (see
Moral-Carcedo and Vicéns-Otero, 2005; Bessec and Fouquau, 2008; Lee and Chiu, 2011).

Moving to the second panel of Figure 3.4, it can be seen that the average prediction de-
creases in general with increasing solar radiation, albeit in a non-monotonic fashion. Above
the index value of 572,707 Jm−2 (corresponding to the 74th percentile), the pure effect of so-
lar radiation on the prediction of emissions is negative in all intervals. At index values below
572,707 Jm−2, model predictions in the majority of intervals are marginally greater than av-
erage prediction. This result is in agreement with expectations that higher photovoltaic solar
power potential–resulting from high solar radiation–can be associated with the reduction of car-
bon emissions in the electricity sector.

Up to the index value of 94.64% (corresponding to the 46th percentile) for relative humidity,
model predictions are lower than average predictions in the vast majority of intervals, although
the ALE curve does not exhibit a monotonic behavior across such intervals. At index values
from 94.64% to 98.74% (corresponding to the 46%-99% inter-quantile range), the estimated
pure effect of relative humidity on the prediction of CO2 emissions is positive in most inter-
vals. These results seem to corroborate the hypothesis that the cooling efficiency of thermal and
nuclear power plants decreases with increasing atmospheric humidity (Wilbanks et al., 2008),
potentially leading to higher emissions from electricity production. Interestingly, however, the
ALE of CO2 emissions drops significantly at the relative humidity index values above 98.74%.
One plausible explanation for this observation is that, at extremely high relative humidity val-
ues, the reduced efficiency of nuclear and fossil fuel-fired power generation (which could lead
to increased emissions) is offset by an increase in net river runoffs due to high humidity, even
when precipitation is unchanged (Milly et al., 2005; Ebinger and Vergara, 2011). This could
have major impacts on the availability of hydropower resources and the amount of electricity
generation from hydropower plants–as a replacement for fossil fuels’ electricity production,
hence making the main effect of relative humidity on CO2 emissions be negative at the extreme
right tail of the distribution.

The ALE curve of wind speed reveals an overall decreasing (yet non-monotonic) behavior
starting from the index value of about 3.03 ms−1 (corresponding to the 5th percentile). This
speed is within the typical cut-in speed range for modern land-based wind turbines (3-5 ms−1),

22As argued by Ampudia et al. (2022), in the short run and given production rigidities, higher demand for
electricity is expected to translate directly into an increase in emissions.
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i.e. the speed at which turbines start to rotate and generate electricity. At wind speed values
above 5.92 ms−1 (corresponding to the 59th percentile), the model prediction is consistently
lower than the average prediction in all evaluation intervals. This confirms the concept that
increased wind power potential (owing to higher wind speeds) is generally associated with an
increase in the share of wind energy and decrease in CO2 emissions from electricity produc-
tion.

As regards total precipitation, no evidence is found for persistent below-average (above-
average) predictions in upper (lower) percentiles of the distribution. Up to the index value of
1.19× 10−5 m (corresponding to the 31st percentile), the main effect of total precipitation on
emissions is negative in all intervals. From 1.19× 10−5 m to 8.71× 10−4 (corresponding to
the 31%-98% inter-quantile range), the feature effects take positive and negative values around
zero, with more intervals bearing positive ALE values. At extremely high index values (above
around 1.12×10−3 m, corresponding to the 99th percentile), however, the model predicts lower
values of CO2 emissions with respect to the average prediction. These findings suggest that,
except in the case of heavy precipitation, increase in precipitation–isolated of all other climate
factors–may not always be associated with a decrease in CO2 emissions from electricity pro-
duction at hourly scale.

Finally, the ALE curve shown in the bottom panel of Figure 3.4 indicates a quasi inverted-
U-shaped relationship between predicted emissions (relative to the average prediction) and the
surface air pressure index. The main feature effect of surface air pressure is negative in the
first percentile (below the index value of 95719 Pa) and in the overwhelming majority of inter-
vals pertaining to index values above 98027 Pa (corresponding to the 48th percentile). For the
intervals in which the surface pressure index value is within the 1%-48% inter-quantile range
(between 95719 Pa and 98027 Pa), ALE estimates are mostly positive, and the peak of the
curve is attained at the 8th percentile. Owing to the fact that empirical research to date has not
yet determined the magnitude and extent of air pressure influence on net power plant efficiency
(see Loew et al., 2020), these exploratory findings are to be further scrutinised before they can
provide immediately dependable conclusions about the nature and mechanisms of surface air
pressure effect on CO2 emissions from electricity production.

Analysis of the combined effects of multiple climate factors on the prediction of CO2 emis-
sions is made possible by the estimation and visualization of second-order accumulated local
effects. Second-order ALE plots cast light on possible hidden information that first-order plots
fail to capture. Figure 3.5 presents second-order (interaction) effects of different pairs of elec-
tric power-weighted climate indices. In the estimation of second-order ALE, the main effect of
each index (as shown in first-order ALE plots, Figure 3.4) is already taken into account, and the
plot shows only the additional interaction effect of the two predictors on the outcome.

Figure 3.5 reveals a noteworthy interaction between some pairs of climate indices. What
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Figure 3.5: Second-order (interaction) mean-centered accumulated local effects (ALE) and partial dependence
plots support (for cells outside the data distribution) of all pairs of electric power-weighted climate indices in
predicting CO2 emissions from electricity production over the study period (2013-2020). The horizontal (vertical)
axis in each subplot (panel) represents the first (second) climate index appearing in the title of the subplot.
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stands out in this figure is the interaction of relative humidity and surface air pressure with total
precipitation and wind speed, as well as the interaction between air temperature and wind speed.

Below the index value of around 85% (corresponding to the 7th percentile) for relative hu-
midity, and above the index value of around 3×10−4 m (corresponding to the 87th percentile)
for total precipitation, predictions are remarkably lower than average, when the main effects are
already taken into consideration. When relative humidity is above 95% (corresponding to the
median), the additional interaction effect of relative humidity and total precipitation is positive.
When total precipitation is below around 85% (corresponding to the 7th percentile) and wind
speed is above around 7.5 ms−1 (corresponding to the 81st percentile), a notable additional posi-
tive effect on predicted emissions is observed. In summary, a climate with low relative humidity
and high precipitation decreases predicted CO2 emissions, whereas arid and windy climate in-
creases the prediction when the main effects of the corresponding indices are accounted for.

Up to the index value of around 96500 Pa (corresponding to the 4th percentile) and for total
precipitation values above 8× 10−4 m (corresponding to the 98th percentile), predictions are
noticeably higher than average when the main effects are already considered. Simply put, high
levels of precipitation together with low-to-moderate atmospheric pressure have an additional
positive effect on predicted CO2 emissions from electricity production. Apropos the interac-
tion between the surface air pressure and wind speed indices, an additional negative effect on
predicted emissions is observed when surface air pressure is below around 97000 Pa (corre-
sponding to the 10th percentile) and wind speed is below around 3 ms−1 (corresponding to the
5th percentile). An additional positive effect on the prediction can be clearly observed when
surface air pressure is above around 98000 Pa (corresponding to the 46th percentile) and wind
speed is above around 7.5 ms−1 (corresponding to the 81st percentile). The latter result is inter-
esting, since the individual first-order (main) effects of surface air pressure and wind speed are
mostly negative in medium-to-high-pressure and high-wind conditions, respectively (see Fig-
ure 3.4). In essence, in low wind speeds and low pressures, the combined effect of surface air
pressure and wind speed on predicted emissions is smaller than the sum of the main effects,
whereas in medium-to-high-pressure and windy climate conditions, the combined effect of the
two climate factors is larger than the sum of the main effects.

At temperatures below 3◦C (corresponding to the 9th percentile of index values) and wind
speeds above around 7.5 ms−1 (corresponding to the 81st percentile), model predictions are
remarkably higher than average when the main effects are already taken into account. When
temperature is above around 23◦C (corresponding to the 93rd percentile) and wind speed is
above around 10 ms−1 (corresponding to the 96th percentile), an additional negative effect on
predicted emissions can be observed. Put simply, at high (low) temperatures and high wind
speeds, the combined effect of air temperature and wind speed on CO2 emissions from electric-
ity production is noticeably smaller (larger) than the sum of the main effects.
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A closer examination of the remaining subplots of Figure 3.5 suggests the existence of some
notable interaction between other pairs of climate indices (e.g., solar radiation and air tempera-
ture; solar radiation and total precipitation; relative humidity and surface air pressure; total pre-
cipitation and wind speed) as well. At temperatures above around 23◦C (corresponding to the
93rd percentile of index values) and solar radiations above around 950,000 Jm−2 (corresponding
to the 84th percentile of index values), an additional negative effect on predicted emissions from
electricity production is observed. It should be reminded that the main effects of air temperature
and solar radiation indicate an increase in predicted emissions in hot hours and a decrease in
predicted emissions in sunny hours, compared to the average prediction and isolated from other
climate factors. In hot and sunny climate, the combined effect of air temperature and solar radi-
ation is therefore not the sum of the main effects, but smaller than the sum. Additionally, above
the index value of around 7×10−4 m (corresponding to the 97th percentile) for total precipita-
tion and for solar radiation values between 1.3×106 and 2.2×106 Jm−2 (corresponding to the
90%-98% inter-quantile range), predictions are remarkably higher than average, when the main
effects are already taken into consideration. Besides, below the index value of around 96000 Pa
(corresponding to the 2nd percentile) for surface air pressure and for relative humidity values
between 82% and 92% (corresponding to the 3%-28% inter-quantile range), model predictions
are remarkably higher than average, when the main effects are already taken into consideration.
In low humidity and low air pressure, the combined effect of relative humidity and surface air
pressure is larger than the sum of the main effects. Ultimately, when total precipitation is above
around 1.12×10−3 m (corresponding to the 99th percentile), predictions are remarkably higher
(lower) than average in low (high) percentiles of the wind speed index (i.e. below around 4
ms−1, corresponding to the 18th percentile, and above around 7.5 ms−1, corresponding to the
81st percentile), when the main effects are already taken into account. For the sake of brevity,
and in order to avoid repetition of the data included in the figure, modest, ambivalent or less
pronounced interactions between climate indices are not described here.

3.4 Discussion

Unlike many other models, decision tree ensembles (e.g. Extreme Gradient Boosting) are able
to learn from data even when explanatory variables are highly (or perfectly) correlated. Corre-
spondingly, the permutation feature importance algorithm and accumulated local effects (ALE)
can very well handle correlated predictors. Notwithstanding, a strong correlation between ex-
planatory variables calls for careful interpretation of feature importance and ALE estimates.
According to Molnar (2020), highly correlated predictors can bias feature importance estimates
by introducing unrealistic (unlikely) data instances. In addition, the permutation feature impor-
tance algorithm may underestimate the importance of each of the two correlated variables by
dividing the importance between them. In analyzing first-order ALE estimates, one should note

73



that an interpretation of the effect across intervals (i.e. comparison of changes in the main effect
of a variable–relative to the average prediction–at different values, assuming that the values of
other variables are fixed) is not allowed if predictors are strongly correlated23 (Molnar, 2020).
Since the effects are calculated per interval using different data points, the interpretation of ALE
estimates should be local, especially if predictors are strongly correlated.

Pairwise correlation analysis of the electric power-weighted climate indices reveals a weak
(yet significantly different from zero, due to large sample size) linear correlation between all
distinct pairs of predictors (magnitude of Pearson correlation coefficients < 0.4), with the
exception of solar radiation-relative humidity (r = −0.77), air temperature-relative humidity
(r = −0.67), solar radiation-air temperature (r = 0.56) and total precipitation-surface air pres-
sure (r =−0.51). Given this, a perhaps more meaningful and practical measure of the strength
of association between variables (also known as effect size) is the coefficient of determination
(R2) from a linear model trained on each pair of indices, which explains the proportion of vari-
ation in one climate index accounted by its association with another index. Figure 3.6 presents
a pairwise scatter plot, along with density plots of the electric power-weighted climate indices
and a pairwise linear model-based variance explained, evaluating how changes in one variable
affect the changes in another variable. The proportion of the variation in any climate index that
is predictable from another index does not exceed 0.59 (the value obtained for solar radiation
and relative humidity). Even though the results indicate no association of practical importance
between any pair of explanatory variables used to build the modeling framework, caution is
advised when interpreting the permutation feature importance and the ALE curve of relative
humidity, solar radiation, air temperature, surface air pressure and total precipitation.

Although this study is, to the best of the author’s knowledge, the most comprehensive ac-
count to date of climatic factors behind CO2 emissions in the French electricity sector, it does
suffer from a number of limitations. Firstly, in order to simplify the interpretation process, the
weighting scheme used in the construction of electric power-weighted climate indices (Sec-
tion 3.2.2.1) considers only the “principal” mechanism through which climate variables can
affect CO2 emissions in the electricity sector. For instance, the present approach presumes that
air temperature induces changes in emissions from electricity production via affecting electric-
ity demand, and therefore bases the construction of climate indices on the relative share of the
homogeneous climate regions in the national electricity consumption. This, however, is not the
sole mechanism through which air temperature can exert its emission-altering effect. Air tem-
perature may as well have an influence on renewable and non-renewable electricity generation.
Higher air temperatures can reduce water storage and power output of hydroelectric facilities

23The rationale behind such constraint derives from the fact that, if two predictors are highly correlated, ana-
lyzing the effect of changing both predictors jointly should be favored over the analysis of the individual effect of
each predictor separately. This disadvantage is, however, a general problem of using strongly correlated explana-
tory variables for empirical modeling, and is not specific to the interpretation of ALE estimates.
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Figure 3.6: Pairwise scatter plot of electric power-weighted climate indices, accompanied by smoothed conditional
means using generalized additive model with integrated smoothness as the smoothing method (lower triangular
portion of matrix); Density plots of climate indices (main diagonal of matrix); Pairwise coefficient of determination
(R2), or the proportion of variation in an index that is predictable from another index (upper triangular portion of
matrix).

(via increasing surface water evaporation), decrease the power output of wind turbines (by caus-
ing a slight decline in air density), and negatively affect the efficiency and power output of solar
photovoltaic cells (see Solaun and Cerdá, 2019, for an extensive account of climate change im-
pacts on renewable energy generation). Furthermore, air temperature is significantly and pos-
itively correlated with surface water temperature (Seyedhashemi et al., 2022)–a variable that
is directly linked with cooling and generation cycle efficiency of fossil-fuel-fired, nuclear, and
biomass-fired plants (Ebinger and Vergara, 2011; Van Vliet et al., 2012). The non-uniqueness of
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the impact mechanism is not limited to air temperature. Wind speed and total precipitation may
also influence seemingly-irrelevant power indicators. In addition to affecting the supply of wind
power, changes in wind speed can have minor implications for solar photovoltaic power genera-
tion (Solaun and Cerdá, 2019). Regional precipitation levels affect water availability–a variable
of special significance for thermoelectric power generation potential (Van Vliet et al., 2012),
and can reduce the efficiency of solar photovoltaic cells as well (Solaun and Cerdá, 2019). This
very limitation of the weighting scheme comes in the shape of the trade-off between the com-
prehensiveness (complexity) of constructed climate indices and the interpretability of results.
In future investigations, it might be possible to incorporate all potential impact mechanisms
pertaining to each climate variable into the design and construction of electric power-weighted
national climate indicators.

Secondly, a central assumption of the proposed weighting scheme is that electricity con-
sumption and power generation by different energy sources are uniformly distributed over
metropolitan regions. In other words, it is assumed that the share of any given segment of a
metropolitan region in the regional electricity consumption and production is proportional to
the geographical area of the segment. While this assumption may not be perfectly realistic from
an empirical point of view, it is an unavoidable part of the proposed weighting scheme for two
interconnected reasons. First, homogeneous climate regions extend over multiple metropolitan
regions of France, and no climate class is exclusive to one metropolitan region. Second, power
indicators data are not available at a more granular level than metropolitan regions, making it
impossible to intersect climate classes with metropolitan regions in a more accurate manner–in
the sense of the contribution that each metropolitan region makes to a climate class’s electricity
consumption and production. That said, this limitation applies only to 75% of metropolitan
regions, and does not concern three regions (Hauts-de-France, Île-de-France, and Centre-Val de
Loire) whose entire geographical areas are covered by a single climate class (i.e. Temperate).

On another note, an arguable weakness of the proposed weighting scheme is the tacit as-
sumption that a climate-driven increase (decrease) in the share of a given low-carbon power
generation technology (nuclear, wind, solar photovoltaics, and hydroelectricity) is inevitably
counterbalanced by a decrease (increase) in the share of high-carbon energy sources (coal, fuel
oil, gas and biofuel) as major drivers of CO2 emissions in the electricity sector. While this as-
sumption holds at an upper level (i.e. when considering nuclear, wind, solar photovoltaics, and
hydroelectricity as a “whole package” of clean energy sources, distinguished from the set of
polluting energy sources such as coal, fuel oil, gas and biofuel), it may not hold for individual
low-carbon power generation technologies. For example, an increase (decrease) in the share of
wind energy due to greater (smaller) availability of wind resources may be offset by a decrease
(increase) in the share of other non-polluting energy sources (e.g. nuclear, hydroelectricity, etc.)
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and not necessarily fossil-fuel fired electricity generation.24 Future research should therefore
concentrate on the investigation of the short and long-run elasticity of inter-fuel substitution
between different (intermittent) renewable energy sources, between nuclear and renewable en-
ergies, and between different fossil fuels and nuclear/renewable resources (see Kumar et al.,
2015; Percebois and Pommeret, 2019; Kim, 2019, as some relevant works in this area) to devise
a more refined method for estimating climate impacts on CO2 emissions in the French electric-
ity industry.

Analysis of simultaneous effects of different pairs of electric power-weighted climate in-
dices on predicted emissions from electricity production is a major step towards a deeper un-
derstanding of the emission sensitivity of the French power system to changing climate con-
ditions, and should make an important contribution to the literature on explanatory factors for
such emissions. Nevertheless, several questions remain unanswered at present as to the theoret-
ical and technical basis for why any two climate factors should have extra, non-additive effects
on CO2 emissions in the electricity sector. A full discussion of the amalgamated “mechanism
of action” of multiple climate factors in re emissions from electricity generation lies beyond the
scope of this study and is left for future work. Additionally, the implications of the findings of
the current study for climate-energy research and policy need to be further explored in light of
climate uncertainty and future, potentially renewable-intensive, power system planning (i.e. en-
ergy scenarios). Comprehensive uncertainty quantification and sensitivity analysis of emissions
in the French power system vis-à-vis climate change and variability are high on the agenda for
future research.

In the provision of climate-related renewable energy production, as a substitute for nuclear
and carbon emitting electricity generation, the current study has found that wind speed is the
most important climatic predictor of CO2 emissions in the French electricity sector. Compara-
tively, solar radiation and total precipitation (in decreasing order of importance) are less relied
upon by the model for the prediction of emissions. Alterations to the share of electricity gener-
ation from renewable energy sources is assumed by the present study to be the sole mechanism
through which wind speed, solar radiation and total precipitation may exert an influence on
predicted electricity generation-related CO2 emissions. In this regard, higher importance of the
wind speed index than the solar radiation index for the prediction of emissions may be explained
by the larger share of wind electricity generation compared to that of solar photovoltaic energy
in France. The average annual share of wind and solar photovoltaic power in total electricity
production in France over the 2013-2020 period was 4.71% and 1.67%, respectively. What is

24It should however be noted that, baseload power plants such as nuclear and large coal-fired facilities–that do
not change their power output rapidly–cannot be relied upon as backup power-generating sources for intermittent
renewable power generation. Immediate changes in the availability of electricity from climate-related renewable
energy sources (wind, solar photovoltaics, and small-scale run-of-river hydroelectricity) can be counterbalanced
by open-cycle gas (or diesel) turbines, pumped-storage hydroelectricity and storage systems.
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surprising, however, is that the total precipitation index–the climate variable linked with hy-
dropower generation with the average annual share of 11.99% in total electricity production in
France between 2013 and 2020, bears the lowest importance–in permutation feature importance
sense–for the prediction of emissions over the study period.

There are several possible explanations for this result. First, among different types of hydro-
electric power generation, small-scale run-of-river hydroelectricity25 has the least operational
flexibility and is most vulnerable to climatic variations (see Ebinger and Vergara, 2011). The
availability of water resources for hydropower generation in run-of-river plants comes under
the major influence of several meteorological variables (e.g. type of precipitation, precipitation
intensity, precipitation duration, soil temperature, soil moisture and relative humidity), and total
precipitation (representing the accumulated amount of liquid and frozen water that falls to the
surface in a given hour) is only partly responsible for changes in runoff. Second, climate impacts
on a hydropower generation are ultimately dependent upon the complexity of the hydropower
system, itself being identified with the relevance of hydropower generation for the whole power
system in the specific region under study (i.e. whether hydroelectricity is complementary to
(as is the case for France) or complemented by other power sources), as well as geographical
dispersion and the level of integration of hydropower through transmission capacity (Ebinger
and Vergara, 2011). That being so, a change in pertinent climate factors (such as total precip-
itation) does not necessarily translate into an immediate change in the share of hydropower of
total electricity generation, and hence a change in CO2 emissions in the power sector. On a
related note, the generalizability of the results obtained from this analysis to contexts with dif-
ferent hydropower system complexity is subject to limitation. Third, overall climate impacts on
hydropower generation have been estimated to be smaller compared to other renewable energy
technologies (e.g. wind and solar energy), but local impacts are most likely greater (Solaun and
Cerdá, 2019). Consequently, it seems possible that aggregating regional-level total precipitation
values into countrywide indicators smooths potentially significant local effects and undermines
the importance of the total precipitation index for predicting CO2 emissions in the electricity
sector. Given these considerations, there is abundant room for further progress in characterizing
the predictive impact of hydropower generation-related climate variables on emissions in the
electricity sector in France and other regions of the world.

3.5 Conclusion

It is well established from a variety of studies, that decarbonizion of the electricity sector has
to be at the heart of any national and international effort to combat climate change. Central

25According to the 2021 Electricity Balance published by RTE, in 2020, run-of-river hydroelectricity accounted
for 50.28% (31.43 TWh) of total hydroelectric power generated in France (62.5 TWh) (RTE-Réseau de Transport
d’Électricité, 2021).
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to the debate on electricity generation-related CO2 emissions is the assessment of explicative
factors behind emissions in the electric power sector. Such as assessment is indeed indispens-
able for identifying the most cost-effective policy measures to lessen the negative environmental
impacts of electricity generation. Climate conditions are certainly among the most important
potential determinants of emissions in the power sector, due to their impact on demand and
supply of electricity from renewable and non-renewable sources. Notwithstanding this, far too
little attention has been paid to understanding and quantifying the relationship between climate
variables and emissions from electricity production. Disentangling the effects of different cli-
matic drivers on emissions in the power sector is, from a policy standpoint, a prerequisite for a
precise analysis of electricity generation options for sustainable energy transition.

The present research was designed to examine the relevance of climate conditions as a de-
terminant of CO2 emissions from electricity production in France. Relying on hourly data on
electricity generation-induced emissions, multiple regional power indicators and an extensive
set of climate variables over the 2013-2020 period, the paper provided a data-driven framework
for characterization and quantification of the complex relationship between climate factors and
CO2 emissions in the French electric power sector. The study’s methodological contribution
lies in formulating an interdisciplinary approach to the construction of aggregate climate in-
dices from gridded climate data, as a viable alternative to population-weighted indices tradi-
tionally used for modeling climate impacts on energy systems and markets. It is expected that
the application of this novel approach in energy and climate research will reveal new, possibly
overlooked aspects of climate-driven changes in electricity sector emissions across Europe, and
result, on a broader level, in new perspectives on the dynamic between spatio-temporal climate
variability and climate change mitigation efforts in the power sector.

The empirical findings suggest that climate variables, namely air temperature, solar radia-
tion, relative humidity, wind speed, total precipitation, and surface air pressure are all of pre-
dictive importance–although not equally–as for the estimation of CO2 emissions from electric-
ity production in France. Along with the quantification of nonlinear main effects of different
climate variables on emissions, the study has discovered and explored several noteworthy inter-
action effects. In spite of its limitations, this work certainly adds to our understanding of the
sensitivity of power sector CO2 emissions to variations in climate variables. Last but not least,
the reader should bear in mind that this study was exploratory in nature. An in-depth discus-
sion of the mechanisms underlying the relationships between electricity generation-related CO2

emissions and single or pairs of climate variables, as well as verification of whether or not such
relationships are causal lie beyond the scope of this paper and are left for future reseach.
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CHAPTER4
European Union Emissions Trading System:

Effectiveness Assessment

Article Title: “Mission Accomplished? An ex-post predictive evaluation of the effectiveness
of the EU ETS in reducing regional fossil fuel carbon emissions” (Eslahi, 2022c)

Abstract: This study evaluates the effectiveness of the first three phases (2005-2019) of the
European Union Emissions Trading System (EU ETS) in reducing fossil fuel CO2 emissions
in 248 socio-economic regions from 25 EU ETS Member States. Considering the beginning of
each phase as an intervention, the paper adopts an advanced predictive modeling framework to
build counterfactual fossil fuel CO2 emissions for each post-intervention period, and analyzes,
in time and space, the intervention effect by comparing actual emissions with counterfactual
estimates. The results of the temporal analysis indicate a significant overall emissions reduction
in the second and third phases and 8 (out of 36) months of the first phase. The spatial analysis
has found evidence for significant emissions reduction in 84, 209 and 226 regions in the first,
second and third phase, respectively. The results also demonstrate that 66 European regions
went through significant emissions reduction in all three phases.

Keywords: The EU ETS, Fossil Fuel CO2 Emissions, Climate Variables, Predictive Model-
ing, Spatio-temporal Analysis, Counterfactual Inference
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4.1 Introduction

According to the statistical office of the European Union,1 carbon dioxide (CO2) emissions from
fossil fuel combustion account for about 80% of all European Union greenhouse gas (GHG)
emissions that originate in human activity. Fossil fuel CO2 emission is produced as a result of
burning non-renewable energy sources such as coal, natural gas and petroleum products mainly
for the purpose of generating electric power, transportation and industrial manufacturing, and is
influenced by several factors including climate conditions and economic indicators.

Economists have long held that carbon pricing through cap-and-trade systems is one of the
most cost-effective ways to decarbonize the economy (Meckling et al., 2017). As the pioneer-
ing and second biggest carbon market across the globe (preceded by China’s Emissions Trading
Scheme, introduced in July 2021), the European Union Emissions Trading System (abbreviated
as the EU ETS) is the keystone of the EU’s policy to fight climate change and its central tool
for reducing CO2 and other greenhouse gas emissions under the 1997 Kyoto Protocol’s com-
mitment periods (European Comission, 2021b).

The EU ETS covers CO2 emissions from the most polluting industrial sectors, accounting
for up to 70% of each member state’s emissions (Ellerman and Buchner, 2008). Since its launch,
the EU ETS has split into a number of trading periods or phases, each characterized by specific
features and legislation. The first trading period (denoted here as “Phase I”) started in January
2005 and ended in December 2007. The second phase (hereinafter referred to as “Phase II”)
extended across a period of five years from the beginning of 2008 to the end of 2012. The third
phase (referred to as “Phase III” in the present work) started in January of 2013 and continued
until the end of December 2020. At the time of writing this paper, the system was in its fourth
phase, which started in January 2021 and was planned to continue until the end of December
2030.

A growing body of literature has examined the effectiveness of different phases of the EU
ETS in reducing CO2 emissions at sector, firm, country and EU levels, but with no decisive
results (see Laing et al., 2013). While some works have evaluated the effectiveness of the EU
ETS over the time periods covering more than one phase, extensive large-scale empirical assess-
ments of the effectiveness of all the first three phases remain scarce. In addition, there is still
a major gap in the regional scale spatio-temporal understanding of the impact of the EU ETS
on realized CO2 emissions. One purpose of this study is to fill this gap and examine whether
the first three phases of the EU ETS were effective in reducing monthly emissions across socio-
economic regions in the EU ETS zone. Relying on high-resolution fine-grained data on realized
fossil fuel CO2 emissions and their potential climatic predictors at regional level, the present
study employs a cutting edge predictive modeling technique to build counterfactual emissions

1https://ec.europa.eu/eurostat
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and compare them with actual emissions.
On a different note, notable but scant among studies on the EU ETS are those investigating

the explanatory factors for CO2 emissions (see Gloaguen and Alberola, 2013; Ellerman and
McGuinness, 2008; Anderson and Di Maria, 2011; de Perthuis et al., 2010). Climate condi-
tions and weather variables are among the least studied of such factors, mainly due to lack of
access to data at European level. Available studies have mostly focused on a limited set of cli-
mate variables such as temperature, rainfall and wind speed, and mainly utilized coarse-grained
(e.g. country-level) climate proxies (see Anderson and Di Maria, 2011; Benz and Trück, 2009).
This could seem to be a naive approach in terms of disregarding a sometimes significant intra-
country climate variability. Moreover, despite the existence of theoretical grounds for the impact
of climate factors on CO2 emissions, there is only little understanding of the extent to which
such factors can prove to be useful for predicting emissions in practice. A second objective
of the present work is thus to evaluate the usefulness of all potential climate variables (includ-
ing understudied ones like solar radiation, cloud cover, surface pressure and relative humidity)
in predicting carbon emissions at regional level, where spatial variation in climate variables is
much less pronounced.

This research contributes to the existing literature on the EU ETS in multiple ways. First,
to date no study has investigated the environmental effectiveness of this trading scheme by
means of a climate-based counterfactual analysis of CO2 emissions in the geographical scope
of the EU ETS. Causal inference based on counterfactuals is indeed known in impact evalu-
ation studies in economics (see among others Ellerman and Buchner, 2008; Declercq et al.,
2011; Anderson and Di Maria, 2011). The selection of appropriate comparison groups or pre-
dictor series that are themselves not affected by the corresponding intervention (e.g. policy) is
often the most challenging step in any counterfactual analysis. Instead of relying on conven-
tional methodological approaches, the present work offers an innovative and intuitive machine
learning-based approach to counterfactual estimation of CO2 emissions based on multiple cli-
mate variables that are theoretically expected to exert an influence on carbon emissions, but
themselves are not influenced by the EU ETS. Such an approach can make a contribution of
wide interest to academic research on the predictors of CO2 emissions, while fulfilling the main
objective of evaluating the environmental effectiveness of the EU ETS. Second, to the best of
the author’s knowledge, no previous research on the explanatory factors for CO2 emissions has
used data sets of comparable quality to the emissions and climate data used in the present work.
Thanks to these data, the drawing of causal inferences about the impact of the EU ETS on fossil
fuel CO2 emissions has been made feasible at the finest possible temporal (monthly) and spa-
tial (regional) scales. Third, this study makes use of the most comprehensive set of potential
climatic predictors of CO2 emissions to develop a counterfactual for assessing the environmen-
tal impact of the EU ETS. Indeed, the predictive impact of some climate factors such as solar
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radiation, cloud cover, surface pressure and relative humidity on fossil fuel CO2 emissions in
Europe is explored for the first time in the literature. Finally, the region-based spatio-temporal
analysis proposed in the present study may complement existing firm, sector, country and EU-
level analyses of the effectiveness of the EU ETS in reducing anthropogenic emissions of CO2

throughout its first three phases.
The remainder of this paper is structured as follows. Section 4.2 reviews existing research

on the effectiveness evaluation of the EU ETS, and lays the foundations of the proposed method-
ology. Section 4.3 introduces the potential climatic predictors of regional fossil fuel CO2 emis-
sions that are used for constructing counterfactual emissions. The research setting, data and
methodology of the empirical analysis are described in Section 4.4, followed by the presenta-
tion of results in Section 4.5. The paper concludes with a discussion of some limitations and
venues for future research (Sections 4.6 and 4.7).

4.2 Evaluation of the effectiveness of the EU ETS

When it comes to the effectiveness assessment of carbon markets, carbon price is regularly the
touchstone of choice where low prices are, explicitly or implicitly, associated with ineffective-
ness (Bayer and Aklin, 2020). However, it has been argued that carbon abatement is justifiable
even if market prices are low, and that the EU ETS may effectively reduce emissions in spite
of low prices (Bayer and Aklin, 2020). Indeed, the primary measure of the performance of any
emissions trading scheme should be the extent of emissions reduction (Ellerman et al., 2016),
and the EU ETS is no exception. Evaluating the effectiveness of the EU ETS should therefore
not be based on market prices but rather an assessment of whether the policy caused emissions
to diminish (Bayer and Aklin, 2020). From a methodological point of view, the difficulty of
such an evaluation relies on the fact that actual emissions under the EU ETS need to be com-
pared to unobservable or counterfactual emissions that would have been realized if the EU ETS
had not been in place (see Bayer and Aklin, 2020; Grubb et al., 2012; Ellerman et al., 2010;
Helm and Sprinz, 2000).

In general, counterfactual approaches to causal inference can be classified into experimen-
tal (e.g. randomized controlled trial), non-experimental (e.g. logically-constructed counterfac-
tual) and quasi-experimental (e.g. difference in differences, (propensity score-based) matching,
instrumental variables estimation, regression discontinuity and statistically-created counterfac-
tual) research designs. Previous studies on the effectiveness of the EU ETS in reducing carbon
emissions have used a variety of non-experimental and quasi-experimental approaches. Ta-
ble 4.1 provides a summary of these studies.

As argued by Ellerman and Buchner (2008), non-experimental studies in this context (i.e.
those relying on baselines or logically-constructed counterfactuals) mainly suffer from potential
bias in and imperfect comparability of data across Europe. On the other hand, classical quasi-
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experimental methods such as (propensity score-based) matching and difference in differences
are either reliant upon strong assumptions (e.g. conditional independence assumption), or lim-
ited in terms of explaining the time evolution of the intervention effect (Brodersen et al., 2015).
From these premises, it could be argued that statistically-created counterfactual designs have
the edge over other quasi-experimental approaches.

An effective statistical technique for creating counterfactuals is to amalgamate a collection
of potential predictor series into a synthetic control (Brodersen et al., 2015; Abadie et al., 2010;
Abadie and Gardeazabal, 2003). Two major sources of information that can be exploited for the
construction of a credible synthetic control are the behavior of the target variable before the in-
tervention and that of other series that could predict the outcome variable in the pre-intervention
period (Brodersen et al., 2015). On condition that such control series are themselves uninflu-
enced by the intervention and that the relationship between them and the treated series remains
stationary over time (Brodersen et al., 2015), any model that captures the relationship between
the response variable and its predictors prior to the intervention can be used for predicting the
outcome variable in the post-intervention period based on the behavior of the predictor series
after the intervention. The assumptions that have been made here are intertwined. In the ab-
sence of any evidence that the predictor series are affected by the intervention, it is reasonable
to presume an unvarying relationship between the target series and the control series before and
after the intervention (Brodersen et al., 2015). Selecting a proper set of series to be used as
contemporaneous controls is thus the most challenging aspect of such a scheme.

Perhaps the most relevant research of this type within the framework of the effectiveness
evaluation of the EU ETS is the study of Bayer and Aklin (2020), which makes use of emis-
sions series of non-ETS sectors across the EU (i.e. sectors that are not covered by the EU ETS)
as synthetic control group units to estimate counterfactual emissions. Naturally, taking non-ETS
sectors or firms as a comparison or control group rests on the fundamental assumption that such
sectors (or firms) are not subject to any type of parallel carbon constraint regulations that may
have been put in place simultaneously with the EU ETS (see Jaraite-Kažukauske and Di Maria,
2016). Nonetheless, this assumption may not be correct for all non-participant sectors (or firms)
at European level. For instance, according to the French Environment and Energy Management
Agency (ADEME), in parallel with the EU ETS, alternative domestic mechanisms have been
established in France to cut emissions from sectors not concerned by the emissions trading sys-
tem (ADEME, 2021). More importantly, since 2008, most sectors not included in the EU ETS
have been targeted by the Effort Sharing regulation set by the EU,2 with the aim of meeting an
emissions reduction target of 30% in the affected sectors by 2030. Therefore, at least in theory,
non-ETS sectors (or firms) may not be the most appropriate control units in a European-scale
study.

2https://ec.europa.eu/clima/policies/effort_en
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Instead of using external units as control groups to build counterfactual emissions in the tar-
get unit, the present study capitalizes on endogenic factors in each region (which are themselves
unaffected by carbon reduction policies) to estimate counterfactuals. Considering the beginning
of each phase of the EU ETS as an intervention, this paper proposes a regression-like setting
where advanced tree-based ensemble models are trained in the pre-intervention period to learn
the relationship between the outcome variable and a number of predictors on a regional scale.
Those models are then applied to the post-intervention period to predict the outcome based on
the predictor series. Those predictions provide the counterfactual estimates of regional fossil
fuel CO2 emissions. In contrast to the methods proposed by Abadie et al. (2010) and Abadie and
Gardeazabal (2003), the approach adopted here does not impose any restrictions (such as con-
vexity condition) on how potential predictor series should be combined, and exploits predictors
exclusively in respect of how well they predict the outcome of interest in the pre-intervention
period. The predictive modeling framework put forward in the current study must be differenti-
ated from a forecasting scheme. Instead of using historical data as input to establish a forecast
of the variable of interest (here emissions) within a given time horizon in the future, the pro-
posed framework focuses on learning how emissions can be explained as a function of climate
variables to make counterfactual predictions. It then capitalizes on disparities between actual
and counterfactual emissions, which are interpreted as the casual impact of the EU ETS on fos-
sil fuel CO2 emissions.

In essence, the methodology of this research follows a similar logic to the method put for-
ward by Brodersen et al. (2015). The key difference between the two methods is that the
present study employs a tree-based ensemble machine learning algorithm, namely Extreme
Gradient Boosting (XGBoost) in lieu of Bayesian structural equation modeling (SEM) to es-
timate counterfactuals. The rational behind this choice of method is that SEM-type modeling
techniques typically require strict assumptions about the relationship between variables–a fea-
ture that makes such tools wholly appropriate for systematic theory-building and hypothesis
testing while limiting their predictive power (Edelsbrunner and Schneider, 2013). Since one
of the main objectives of the present paper is to examine the predictive usefulness of climate
variables as potential drivers of regional fossil fuel CO2 emissions based on the fewest theoret-
ical assumptions about the data, an XGBoost-supported predictive modeling framework seems
more relevant to this research design.

4.3 Potential predictors of regional fossil fuel CO2 emissions

Energy production and consumption originating from fossil fuels are a major determinant of
CO2 emissions (Ang, 2007; Apergis and Payne, 2009; Iwata et al., 2012; Shafiei and Salim,
2014). In Europe, power generation remains the primary source of greenhouse gas emissions,
with CO2 being by a great amount the most dominant greenhouse gas emitted (European En-
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vironment Agency, 2020). While the power sector falls under the jurisdiction of the EU ETS
as the mainspring of the EU’s policy to reduce CO2 emissions, the development of energy gen-
eration from renewable sources (such as wind, solar and hydro power) has attracted increasing
attention as a complementary tool to address climate change. Since increasing the share of en-
ergy from renewable sources is expected to reduce carbon emissions (Dogan and Seker, 2016;
Bento and Moutinho, 2016), special attention should be given to the role of renewable energy
production and consumption in any study on the predictors of fossil fuel CO2 emissions.

Power generation services are, by and large, influenced by climate conditions on the pro-
duction or consumption side (Yalew et al., 2020). Such influence serves as a connecting link
between climate variables and emissions of carbon dioxide. As an example, the share of power
produced by carbon-free sources like hydro power, wind and solar energy is directly affected by
climate variables like rainfalls, wind speed and sunlight (Chevallier, 2013; Bartos and Chester,
2015; Gernaat et al., 2021). Furthermore, changes in climate variables (e.g. air temperature,
and less substantial, wind speed) can be associated with alteration in energy consumption, and
eventually affect CO2 emissions (Perera et al., 2020; Chèze et al., 2020). When it comes to
causal inference based on counterfactuals, climate variables are arguably among the most suit-
able predictors of regional fossil fuel carbon emissions since they are related to the outcome
of interest and conceivably unaffected by policy interventions such as the launch of emissions
trading systems.

For the sake of this study, seven climate variables with a potential predictive impact on emis-
sions via affecting nonrenewable and renewable energy systems are identified: air temperature,
solar radiation, total cloud cover, total precipitation, surface air pressure, relative humidity and
wind speed. To the best of the author’s knowledge, this is the most comprehensive set to date
of climate variables studied in the context of the relationship between climate and carbon mar-
kets. In the following, the association between each climate variable and energy production and
consumption is described.

Air Temperature: Existing research points to a close relationship between air temperature
and energy demand and production in general (See for example Cruz Rios et al. (2017) for
a list of studies on the relationship between temperature and demand for energy in different
countries, and Benz and Trück (2009)). An increase in air temperature is positively (negatively)
related to the need for cooling (heating) (Ebinger and Vergara, 2011). Since cooling demand is
primarily satisfied by air conditioning systems that are powered by electricity, air temperature
rise may translate into a shift in energy delivery from fossil fuels used for heating to electric
power (Pryor et al., 2014). Such an alteration in energy consumption presumably has an effect
on CO2 emissions. Nevertheless, the extent of this influence eventually depends on the sources
of primary energy (renewable or non-renewable) used for electricity generation. On another
note, rising temperatures can negatively affect the efficiency of thermal power plants and solar
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photovoltaic panels, hence leading to increased emissions (Ebinger and Vergara, 2011).
Solar Radiation: The amount of solar radiation that reaches the surface of the Earth is di-

rectly related to solar energy generation as a non-polluting substitute for fossil fuels. The two
main types of solar energy technologies, namely solar thermal generation and solar photovoltaic
generation, are both reliant upon direct sunlight3 to generate heat and electricity. In addition,
increase or reduction in solar radiation may affect some end-uses of energy (Ebinger and Ver-
gara, 2011).

Total Cloud Cover: Solar energy systems are largely reliant on direct radiation, and cloudi-
ness diminishes the effect of direct solar radiation on solar panels (Chrobak et al., 2016). A
change in total cloud cover (i.e. the proportion of the sky covered by cloud) influences solar
power production as well as demand for cooling (Ebinger and Vergara, 2011). It should be noted
that different cloud types can have a slightly different impact on solar radiation. However, since
multiple cloud genera can often be seen in the sky at the same time, the interpretation of the
interrelation between cloud genera and solar radiation is complex and not always possible (Ma-
tuszko, 2012). Hence, for the sake of this study, the effect of cloud genera on the association
between cloud cover and solar power production is disregarded.

Total Precipitation: CO2 production depends on precipitation, mainly due to the fact that
the amount of accumulated liquid and frozen water (i.e. rain and snow) that falls to the surface
is inextricably linked with the generation of hydro power as the most widely-used renewable
energy (Benz and Trück, 2009; Wei et al., 2020). On another note, an increase in total pre-
cipitation increases water availability for cooling purposes, and a drop in precipitation levels
is associated with reduced cloud cover with positive implications for solar energy production
(Ebinger and Vergara, 2011).

Surface Air Pressure and Relative Humidity: The pressure of the atmosphere at the sur-
face, and the moisture content of the atmosphere (relative to air temperature) have major impli-
cations for fossil-fuel-fired power production (Ebinger and Vergara, 2011; Loew et al., 2020).
Such impacts are mainly related to the efficiency of power generation cycle and cooling require-
ments (Wilbanks et al., 2008).

Wind Speed: Wind energy is one of the most important renewable energy sources with
considerable potential owing to its economic and environmental cost advantages over fossil
fuel plants (Wilbanks et al., 2008). Wind speed is a major parameter that affects wind power
production (either positively or negatively) (Ebinger and Vergara, 2011). In this regard, wind
speed affects the share of non-CO2 power generating sources and thus emissions levels (Benz
and Trück, 2009).

From a theoretical standpoint, all of the above-mentioned climate variables fulfill the condi-

3The sunlight that reaches the Earth’s surface is either direct or diffuse (scattered) radiation. Solar thermal
plants require direct radiation to operate effectively (Breeze, 2019). Similarly, solar photovoltaic plants are most
productive when exposed to direct sunlight. Therefore, in the present work diffuse solar radiation is disregarded.
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tions for serving as synthetic control series in the present analysis; they are themselves uninflu-
enced by the beginning of each EU ETS phase (intervention),4 and the nature of their relation-
ship with the outcome variable remains unaltered before and after each intervention. From an
empirical point of view, however, it is not expected that the entire set of climate variables will
prove equally decisive in predicting the fossil fuel CO2 emissions at a regional level in all sta-
tistical units of study. This is exactly why an empirical assessment of the predictive usefulness
of each variable for estimating counterfactual emissions in each socio-economic region proves
useful.

Much research in the energy economics literature has related economic activity to carbon
emissions (see for example Moutinho et al. (2017) for a list of studies on the relationship be-
tween economic growth and emissions, and Benz and Trück (2009)). The global financial crisis
of 2007-2008 is a case in point during which CO2 emissions declined in response to a de-
crease in economic activity (Sadorsky, 2020). A similar pattern could be observed during the
COVID-19 pandemic, which led to a decrease in global CO2 emissions in 2020 as a result of
the disruption in economic activities (Liu et al., 2020). Therefore, when drawing causal infer-
ence based on counterfactual emissions, economic activity needs to be controlled for to avoid
confounding. In this regard, total regional gross value added (GVA) is included as a control
variable in the analyses conducted in this study. Being a proxy of the economic productivity of
a region or an economic sector, GVA measures the value of output subtracting the value of the
goods and services consumed as inputs (OECD, 2008). At the regional level, GVA is favored
over gross domestic product (GDP) since it excludes taxes or subsidies on products that are
difficult to ascribe to local units (Eurostat, 2008).

4.4 Materials and Methods

4.4.1 Research setting

The study area covers economic regions of the EU ETS Member States at the second level of
Nomenclature of Territorial Units for Statistics (NUTS). The NUTS classification is a referenc-
ing system that splits the economic territory of the European Union and the United Kingdom5

4It may be argued that air temperature can be affected by the intervention, even though indirectly. Indeed,
owing to the causal structure between CO2 emissions and air temperature (i.e. increase in global mean surface
temperature due to anthropogenic carbon emissions, as shown by a large body of research on climate change), a
likely reduction in emissions caused by the intervention may make an alteration to air temperature. To rule out the
possibility of incorrectly estimating the true intervention effect due to such possibility, air temperature trend in all
the regions under study was analyzed and tested for the presence of any structural break at intervention periods (see
Section 4.4.3.2). This additional analysis found no evidence of air temperature being affected by the intervention.

5This classification does not cover members of the European Free Trade Association including Iceland,
Liechtenstein and Norway (that joined the EU ETS from Phase II). However, a similar classification system
is used to code the statistical regions of these countries (see https://ec.europa.eu/eurostat/web/nuts/
statistical-regions-outside-eu).
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into three levels of nested regions with the aim of collecting, processing and coordinating of-
ficial statistics, conducting socio-economic analyses and formulating regional policies.6 In the
present work, NUTS level 2 regions (hereafter referred to simply as NUTS regions) are se-
lected as units of analysis. These are basic socio-economic regions in which regional policies
are applicable. Level 3 regions (small regions for particular analyses) were too fine-scale to be
matched with the fossil fuel CO2 emissions and climate data used in this study. In consideration
of the method of attributing gridded data to each region (see section 4.4.2), the first level re-
gions were also unsuitable for this analysis; they were rather coarse-scale in the sense that they
could introduce significant variations in climate conditions and hence reduce the credibility of
counterfactual construction.

The original NUTS 2021 classification includes 283 regions at the second level. Owing
to their gridded nature, the data on fossil fuel CO2 emissions and climate variables (see sec-
tion 4.4.2) provided the most flexibility in terms of determining the geographical scope of the
study. However, the availability of data on regional economic activity, and the late joining of
some countries in the EU ETS7 set a limit on the ultimate number of NUTS regions that could
be retained for the analysis of all the three phases. The eventual sample consisted of a total
number of 248 NUTS regions from 25 countries that were members of the EU ETS from the
first phase: 24 EU Member States plus the United Kingdom.

4.4.2 Data

4.4.2.1 Fossil fuel CO2 emissions

Monthly high-resolution (1×1 degree) fossil fuel CO2 emissions data over the study area were
downloaded from the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) (Oda et al.,
2018). The year 2020 version of ODIAC (ODIAC2020) (Oda and Maksyutov, 2015) emanates
from the latest fossil fuel CO2 emissions estimates provided by the Carbon Dioxide Information
Analysis Center (CDIAC) (Gilfillan and Marland, 2020), and covers the period from January
2000 to December 2019. Capitalizing on manifold spatial proxies such as satellite remote sens-
ing of night lights, ODIAC provides one of the most granular and objective historical data on
fossil fuel CO2 emissions–an attribute that makes such data the ideal candidate for this region-
based study. Emissions are expressed in the unit gC/m2/day (monthly mean). For the sake of
consistency with the spatial resolution of climate variables, the data (i.e. raster layer) were dis-
aggregated, using the raster R package (Hijmans, 2020), to smaller 0.25×0.25 degree cells with
the exact same values as the original cells. This adjustment allowed for an orderly intersection

6See https://ec.europa.eu/eurostat/web/nuts/background for more information.
7Bulgaria and Romania joined the European Union and the EU ETS in 2007. Hence, they were not participants

in the majority of Phase I. Croatia became a European Union’s member state in July 2013, i.e. it was entirely
absent in the first two phases of the EU ETS. Finally, Iceland, Liechtenstein and Norway joined the EU ETS from
Phase II.
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of the grid with the areas of NUTS regions, without altering the accuracy of the data. Grid-
ded emissions were overlayed with the spatial polygons of NUTS regions8 and, at each time
point, the mean of the overlapping grid point values was calculated as the measure of fossil fuel
emissions in each region.

4.4.2.2 Climate variables

Monthly averaged gridded data on climate variables were obtained from the ERA5 dataset at
a 0.25 degree (∼27.75 km at the equator, for both longitude and latitude) spatial resolution
throughout Europe, from 2000 to 2019. ERA5 is the fifth generation reanalysis9 for the global
climate and weather, produced by the Copernicus Climate Change Service (C3S) at the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) (Hersbach et al., 2020). Histori-
cal data on five climate variables, namely temperature of air at 2m above the surface (K), total
sky direct solar radiation at surface (Jm−2), total cloud cover (dimensionless), total precipitation
(m) and surface pressure (Pa) were retrieved directly from the C3S. Wind speed values (ms−1)
were computed using the eastward and northward speed components of the 100m wind.10 Rel-
ative humidity (%) was calculated from the 2m air and dew point temperatures (K) using the
August-Roche-Magnus approximation (Alduchov and Eskridge, 1996). In the original data,
monthly total precipitation values were provided as monthly sums. All other climate variables
were provided as monthly averages. For each climate variable and at a given time point, the
average value of the grid points that lied within the spatial polygon of a NUTS region was
considered the measure of that variable in the region. The moderate size of NUTS regions
guarantees little spatial variation in climate variables across each region, and justifies the use of
mean values of climate variables as the proxy for regional climate.

4.4.2.3 Economic activity

Data on total GVA at basic prices (million EUR) of NUTS regions were obtained from the Urban
Data Platform Plus of European Commission’s Knowledge Centre for Territorial Policies11 for
the period 2000-2019. Annual data were disaggregated12 to monthly time series using the

8Spatial polygons of NUTS regions were retrieved from https://ec.europa.eu/eurostat/web/gisco/
geodata/reference-data/administrative-units-statistical-units/nuts.

9Being extensively used in climate change and variability research (see Parker, 2016; Sheridan et al., 2020, for
numerous examples), reanalysis data provide the most comprehensive picture presently attainable of past weather
and climate worldwide (ECMWF, 2020b). Since most differences between reanalyses and observations are unreal
or insignificant in many cases (Parker, 2016), the vast majority of research regards reanalysis and observational
data as the same, or sufficiently indistinguishable for nearly all comparative or integrative purposes (Sheridan et al.,
2020).

10The choice of the 100m wind over the 10m wind was motivated by the fact that the average hub height of wind
turbines (an essential factor for determination of wind energy potential) is 90 meters (Wiser et al., 2020).

11http://urban.jrc.ec.europa.eu
12Temporal disaggregation is the process of obtaining high-frequency time series from low-frequency data

(Chamberlin, 2010). Temporal disaggregation methods are extensively used across the European Statistical System
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Denton-Cholette interpolation method (Dagum and Cholette, 2006) with temporal additivity
constraint (i.e. preserving the movements of the original series and ensuring that the sum of
monthly values of the resulting series was equal to the corresponding annual values of the
original series) (Sax and Steiner, 2013). A similar temporal disaggregation method has been
employed in a number of previous studies within the field of energy economics (see for example
Sharif et al., 2020; Shahbaz et al., 2017).

The relationship between the explanatory variables and the response variable (fossil fuel
CO2 emissions) is not necessarily expected to be linear, and the choice of empirical modeling
framework (see Section 4.4.3.1) is a reflection of this very fact. Hence, common measures of
linear association between variables may not be the most appropriate statistical tools to describe
such relationship. That being said, a preliminary correlation analysis using Pearson’s product
moment correlation coefficient shows that air temperature, solar radiation, relative humidity and
total GVA have statistically significant linear correlation (at the 5% level of significance) with
fossil fuel CO2 emissions in the vast majority (respectively 235, 232, 220 and 223) of NUTS
regions under study. The extent to which these four variables or the other ones have predictive
usefulness for perfecting the response variable in each region is determined by means of an
algorithm dedicated to the measurement of feature importance (see Section 4.4.3.1).

4.4.3 Methodology

4.4.3.1 Predictive modeling-based construction of counterfactual emissions

In order to estimate counterfactual emissions in each NUTS region, the present study adopts
a predictive modeling framework based on the Extreme Gradient Boosting (XGBoost) algo-
rithm (Chen and Guestrin, 2016). XGBoost is a pioneering, fast and high-performing gradient-
boosted tree ensemble machine learning algorithm that can provide accurate predictions of a
response variable by integrating the estimates obtained from a number of base models (trees).
This predictive tool is theoretically appropriate for modeling complex, (potentially) nonlinear
relationships between a number of variables in a regression-like setting, where the problem of
interest is to learn how a set of predictors can affect the response variable.13 XGBoost does not
make strong assumptions about the data distribution, and is by nature immune to multicollinear-
ity (Chen et al., 2018). The latter inherent feature makes such an algorithm particularly suitable
for the present analysis, considering that some predictors (i.e. climate variables) might be lin-

in the production of official statistics (Buono et al., 2018). For example, in France and Italy quarterly figures of
Gross Domestic Product (GDP) are derived from annual figures using temporal disaggregation methods (Sax and
Steiner, 2013).

13As with any other predictive model, XGBoost does not in itself imply any causal relationship between vari-
ables. In this regard, by no means does the present modeling framework suggest that a change in climate variables
(or economic activity) directly causes a change in fossil fuel CO2 emissions. That being said, a change in cli-
mate conditions is expected to be associated with a change in CO2 emissions from energy systems as the largest
contributor to total CO2 emissions.
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early related.
The value of a response variable yi ∈ R (where i = 1, ...N, and N is the number of data

points) is estimated from predictors xi ∈Rp (with p being the number of predictors) by the tree
ensemble model of the XGBoost algorithm as

ŷi = f̂ (xi) =
K

∑
k=1

gk(xi) gk ∈ G (4.1)

where K is the number of trained trees, G = {g(x) = wq(x)}(q : Rp → J, w ∈ RJ) is the
space of regression trees, q is the structure of each individual (independent) tree that associates
an observation with the corresponding leaf score w, and J is the total number of leaves in the
tree (Chen and Guestrin, 2016).

The algorithm builds each tree from a single root node and grows it to a particular depth (i.e.
the longest path from the root node to a leaf) by continually splitting the training data based on
all or some of the predictors in the predictor space. The outcome of this process is a tree with
a root node, a number of internal nodes (each of which split data points by one predictor), and
some leaves to which prediction scores (weights) are assigned. The final predicted value of the
response variable for a given observation is obtained by taking the sum of all the scores in the
relevant leaves of individual trees. As proposed by Chen and Guestrin (2016), the selection
of splitting points and the appointment of prediction scores in XGBoost are done with the
help of an enhanced more regularized version of gradient boosting technique, in such a way
as to minimize loss of an objective function that consists of training loss and regularization to
avoid overfitting.14 Mathematically speaking, the tree building algorithm is reliant upon the
minimization of

L =
N

∑
i=1

L(ŷi,yi)+
K

∑
k=1

Ω(gk) (4.2)

where

Ω(gk) = γJk +
1
2

λ

Jk

∑
j=1

w2
j,k

Here, L is the squared error loss (cost) function, which measures the difference between
original values of the response variable yi and the predicted values ŷi (Chen and Guestrin, 2016).
Jk and w j,k are the number of leaves and the prediction score attributed to the j-th leaf of the
k-th regression tree, respectively. The parameter γ is one of the parameters that can be tuned
to avoid overfitting, and is defined as the minimum loss reduction required to further split the

14Overfitting occurs when a model learns a great many details about the relationship between the input variables
and the output of interest, hence failing to generalize to formerly unobserved data.
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leaf node. λ is the L2 norm on the prediction scores. These two, in conjunction with a number
of tree-related parameters (together called hyperparameters of the model), cannot be estimated
from data and need to be specified in advance.

For each phase of the EU ETS, tree-based ensemble models are trained to learn the con-
temporaneous relationship between regional fossil fuel CO2 emssion and all its potential cli-
matic predictors in the pre-intervention period, i.e. before the beginning of the phase. To
obtain the most appropriate model specification for each NUTS region and keep overfitting
at a minimum, the present study combines extensive grid search hyperparameter tuning with
k-fold cross-validation (k = 10). K-fold cross-validation is a standard resampling method for
assessing model performance in predicting new unobserved samples. This technique consists
of splitting the training data into k roughly equal-sized partitions (folds), fitting a model using
all data except each individual partition, and making out-of-sample forecasts on the held-out
partition (Kuhn et al., 2013). The out-of-sample forecast performance in each fold is evaluated
by a metric such as root-mean-square error (RMSE), and the summary (e.g. mean) of the k
measures of performance are used to assess the overall predictive performance of the model.

In order to find optimal hyperparameter values, 576 variations in the hyperparameter search
space are considered, each of which being evaluated using 10-fold cross validation. This re-
sults in a total number of 576× 10 tree ensemble models to be trained and evaluated for each
NUTS region. The hyperparameter configuration that results in the minimum average RMSE
across all folds in a given region is selected as the best tune (i.e. the base model for statistical
analyses and prediction purposes) for that region. Possible values of hyperparameters are se-
lected, for the most part, on the basis of recommendations of Boehmke and Greenwell (2019)
and Thakur (2020). Table (4.2) presents the hyperparameter configurations used for evaluating
tree ensemble models in each NUTS region.

Table 4.2: Hyperparameter configurations used for evaluating tree ensemble models for each NUTS region.

Hyperparameter Range Default Value Selected Values for Tuning

γ [0,∞) 0 {0,0.1}

η [0,1] 0.3 {0.05,0.1,0.2,0.3}

Maximum Depth {1..∞} 6 {3..8}

Minimum Child Weight [0,∞) 1 {1,5}

Column Sample by Tree (0,1] 1 { 2
9 , 3

9 , 4
9 }

Sub-sample (0,1] 1 {0.5,0.75}

Here, γ is the minimum loss reduction required to make a further split on a node of a given
tree. Increasing γ leads to a more conservative algorithm. η is the learning rate, which shrinks
prediction scores to prevent overfitting. The maximum depth parameter controls the number of
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terminal nodes in a a tree and increasing its value makes the model more complex and more
susceptible to overfitting. Minimum child weight determines the minimum sum of instance
weight (hessian) needed in a terminal node of a tree. A higher minimum child weight provides
more conservative results and makes the model less likely to overfit the data. The sub-sample
parameter determines what proportion of the training data set should be used to build trees
in every boosting iteration. Using values less than 1 for this parameter leads to “stochastic”
boosting, distinguished from “regular” boosting (which makes use of all points to grow a tree).
The column sample by tree parameter controls the fraction of columns (predictors) used for
constructing each tree. Sub-sampling of columns takes place once for every tree constructed.
Using values less than 1 for this parameter leads to a more conservative algorithm. The number
of trees used for boosting, and the regularization term λ are set to 100 and 1, respectively.

The variables used in the present study are of time series nature. Therefore, when developing
an empirical model based on these data, attention should be given not only to the information
contained in different features, but also the additional information that might be added by the
time component–an aspect that is called temporal autocorrelation (or serial correlation). In this
regard, it should be emphasized that the algorithm utilized in the present study is safeguarded
against likely temporal autocorrelation in the data for two reasons. First, the data are divided, in
a random manner, into training and validation data sets during the 10-fold cross-validation pro-
cess. Second, using stochastic boosting (as opposed to regular boosting) makes the algorithm
train trees on sub-samples of the training dataset at each iteration. Therefore, the likelihood of
adjacent observations being used by the algorithm at each iteration is remote and inconsequen-
tial.

Like many other modern modeling techniques, XGBoost is data-demanding. The smaller
the size of the training data, the higher the prospect that the model has a poor performance.
That being the case, for each EU ETS phase, all available data prior to the beginning of the
phase are used for model construction. This allows for drawing causal inferences about the ef-
fectiveness of each phase separately and independently from the previous phase(s) (in the case
of Phase II and Phase III), presuming that fitted models already embody the impacts of the pre-
vious phase(s) on fossil fuel CO2 emissions, if any. There is an underlying assumption in this
approach to phase assessment that there exists no omitted relevant factor correlated with both
the beginning of each EU ETS phase and variations in fossil fuel CO2 emissions.

In addition to the climate variables and the measure of economic activity, a time-based fea-
ture (month of the year) is created with integer encoding and included in empirical models
as a numerical control variable to account for possible month seasonality information in the
data. The ultimate data set used for empirical modeling (in the pre-intervention period) and
counterfactual estimation (in the post-intervention period) includes 96, 156 and 240 monthly
observations for the first, second and third phases, respectively. Models are constructed with 9
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independent variables (consisting of 7 climate variables, total GVA and the time-based feature),
and the natural logarithm of fossil fuel CO2 emissions15 as the response variable.

Once the the model with the best tune for each NUTS region is obtained from hyperparam-
eter optimization, the usefulness of climate variables for predicting CO2 emissions is calculated
using the permutation feature importance algorithm with the RMSE ratio as the importance
measure (Breiman, 2001; Fisher et al., 2019; Molnar, 2020) and 1000 repetitions. The im-
portance of a feature is measured by calculating the increase in the optimal model’s prediction
error (in terms of the RMSE ratio) at each repetition, when the values of that feature are shuffled
(Molnar, 2020). For the sake of this study, the median of the distribution of feature importance
values for a given climate variable (obtained from 1000 repetitions) in each region is taken
as the predictive usefulness measure of the variable. A given climate variable has predictive
usefulness for the prediction of emissions, if permuting its values increases the model RMSE
(i.e. the model is reliant on the feature for the prediction). A climate variable is unimportant
if permuting its values leaves the model RMSE unaltered (i.e. the feature is ignored by the
model for the prediction). Since shuffling the values of a predictor breaks all its connections not
only with the response variable but also with other predictors, the permutation feature impor-
tance algorithm innately accounts for all interactions among features(Molnar, 2020). As argued
by Molnar (2020), a disadvantage to this attribute, however, is that in case there is interaction
between any pair of variables, the importance of such interaction will be included in the impor-
tance measure of both variables.

All the analyses and data visualization in this study have been carried out in R software
environment (R Core Team, 2020; Kuhn, 2008; Molnar et al., 2018).

4.4.3.2 Causal inference based on counterfactual emissions

In order to draw causal inferences from counterfactual estimates across temporal and spatial
scales, the launch of each phase of the EU ETS is regarded as an intervention. Broadly speak-
ing, the main objective of this analysis is to compare real fossil fuel CO2 emissions in NUTS
regions over the course of each phase with the corresponding counterfactual emissions, and to
verify whether the actual emissions were lower than what would have been realized if no such
emissions reduction mechanism had been in place.

For each NUTS region m (with m ranging from 1 to 248), let y(m)
t and y′t

(m) denote the fossil
fuel CO2 emissions at time t with and without the intervention, respectively. y(m)

t and y′t
(m) may

not be observed simultaneously. Instead, what is observable at time t is

y(m)
t = δty

(m)
t +(1−δt)y′t

(m) (4.3)

15This transformation is necessary for empirical modeling purposes, i.e. to avoid potential negative predicted
values of the response variable. Predicted emissions are back-transformed for the presentation and visualization of
results.
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where δt = 1 if t denotes a point in time after the intervention (beginning of the EU ETS phase),
and δt = 0 if t is a time point before the intervention and

y′t
(m) =

{
y(m)

t t = 1, ...,T0 −1

ŷ(m)
t t = T0, ...,T

(4.4)

where ŷ(m)
t is the estimated counterfactual emissions in region m at time t (resulting from

tree ensemble models), and T0 is the intervention point. For each phase of the EU ETS, the
intervention effect is tested across all NUTS regions in each month succeeding the intervention
(temporal analysis), and over all succeeding months for every NUTS region (spatial analysis)
using the non-parametric Wilcoxon signed-rank test (Wilcoxon, 1992). The null hypothesis of
this test is that the median16 difference between pairs of actual and counterfactual emissions
after the intervention is greater than or equal to zero (see McDonald, 2009). In mathematical
terms, the null and alternative hypotheses for the temporal analysis are

H0 : median(yt − ŷt)≥ 0
H1 : median(yt − ŷt)< 0

(4.5)

where yt = (y(1)t , ...,y(m)
t ) and ŷt = (ŷ(1)t , ..., ŷ(m)

t ) are actual and counterfactual emissions in
m NUTS regions, respectively, at time t (t = T0, ...,T ). The rejection of the null hypothesis for
a given time point t would lead to the conclusion that the intervention was effective in reducing
fossil fuel CO2 emissions at time t. In a similar vein, the null and alternative hypotheses for the
spatial analysis are

H0 : median(y(m)− ŷ(m))≥ 0
H1 : median(y(m)− ŷ(m))< 0

(4.6)

where y(m) = (y(m)
T0

, ...,y(m)
T ) and ŷ(m) = (ŷ(m)

T0
, ..., ŷ(m)

T ) are actual and counterfactual emis-
sions in region m at T −T0 +1 time points after the intervention. If the null hypothesis of this
test is rejected for a NUTS region in a particular phase, it can be concluded that fossil fuel CO2

emissions in that region had significantly decreased compared to what it would have been in the
absence of the intervention.

As a sanity check and in order to quickly evaluate whether it is reasonable, from an empir-
ical point of view, to expect any intervention effect in the proposed framework, emissions time
series of all NUTS regions were tested for the presence of a structural break at the intervention
points using the Chow test (Chow, 1960). For each phase, the two sub-intervals used for con-

16Given the rather broad temporal and geographical scope of the present study, median is less sensitive to
extreme observations and is a better measure of the central tendency of the difference between actual and counter-
factual emissions. On top of the advantages of using a non-parametric test over a parametric test, this is a reason
why Wilcoxon signed-rank test was preferred to the classic parametric Student’s t-test.
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ducting this test are all available time points before the starting date of the phase (intervention
point) and the period of time over which the respective phase runs. Furthermore, to rule out the
possibility of incorrect estimation of counterfactuals and the true intervention effect, a similar
test was carried out on air temperature time series–a predictor of fossil fuel CO2 emissions that
might be indirectly affected by the interventions and jeopardize the causal inference.

4.5 Results
Before proceeding with exploratory and counterfactual analyses and in order to test whether
the starting dates of the EU ETS trading periods (phases) were practically sensible choices for
drawing causal inferences about the effectiveness of this emissions reduction mechanism in the
first place, the Chow test was conducted on longitudinal series of fossil fuel CO2 emissions in
all NUTS regions under study. The results of this test with a significance level of 0.05 indicated
the presence of a structural break in January 2005 (the beginning of the first phase) in 57.66%
of NUTS regions (143 out of 248). The starting date of the second phase (January 2008) proved
to be a break point in 89.11% (221 out of 248) of NUTS regions. Finally, January 2013 (the
beginning of the third phase) was found to be a structural break in emissions series in 94.75%
(235 out of 248) of NUTS regions. According to these findings, empirically speaking, it seems
well justified to consider phase launches as intervention points. To rule out the possibility that
air temperature, as a potential predictor of fossil fuel CO2 emissions, could be influenced by the
interventions, a similar test was carried out on air temperature series, and no evidence of such
influence was found17. Indeed, structural breaks in air temperature series at the starting dates
of the EU ETS phases (January 2005, January 2008 and January 2013) were identified in no
NUTS regions.

4.5.1 Exploratory results

4.5.1.1 Predictive usefulness of climate variables

Through the use of the permutation feature importance algorithm, this study was able to as-
sess the predictive usefulness of different climate variables and characterize the most important
features for the prediction of CO2 emissions at regional level. Figure 4.1 illustrates the predic-
tive usefulness of each climate variable (as represented by the permutation feature importance
measure) in predicting regional fossil fuel CO2 emissions across the three phases of the EU
ETS.

In every single NUTS region, the feature importance of all climate variables is greater than
1 in at least one phase. In other words, in no NUTS region a continual absence of predictive
usefulness of a climate variable is observed. This provides the first empirical evidence of the

17Results available upon request.
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Figure 4.1: Permutation feature importance of climate variables in predicting regional fossil fuel CO2 emissions
across the three phases of the EU ETS. The feature importance measure is the median RMSE ratio and the number
of repetitions is 1000).
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appropriateness of the selected climate variables as predictors of regional CO2 emissions. The
feature importance value of air temperature, solar radiation and relative humidity is greater than
2 across all the three phases in 169, 103 and 29 NUTS regions, respectively. The predictive
usefulness of the remaining four variables is less pronounced, with the feature importance of
total precipitation, surface air pressure, total cloud cover and wind speed being greater than 2
across all the three phases in only 17, 16, 15 and 11 NUTS regions, respectively. These findings
can prove critical in the understanding of the climatic predictors of fossil fuel CO2 emissions
at a regional scale, and can have important implications for energy management. For instance,
comparatively low predictive usefulness of total precipitation and wind speed in a given region
across the three phases may indicate underrepresentation of hydro and wind energy in the en-
ergy mix in that region, and call for attention to the development of these renewable energies.

To provide a general overview of the predictive usefulness of each climate variable at Eu-
ropean level, regional importance measures are summarized by calculating the median feature
importance over NUTS regions (Figure 4.2)

Phase I (2005−2007) Phase II (2008−2012) Phase III (2013−2019)
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Figure 4.2: Permutation feature importance (median over NUTS regions) of climate variables in predicting fossil
fuel CO2 emissions across the three phases of the EU ETS. The feature importance measure is the median RMSE
ratio and the number of repetitions is 1000).

From Figure 4.2, two key findings emerge. First, considering the whole study area and all
the three phases of the EU ETS, the median feature importance over NUTS regions is greater
than 1 for all climate variables. Indeed, despite the spatial variability in the predictive useful-
ness of climate variables (as seen in Figure 4.1), overall, all climate variables have proved to be
important (useful) for the prediction of CO2 emissions. Second, among different climate vari-
ables, air temperature proves to be the most important feature for predicting CO2 emissions in
all the three phases, followed by solar radiation and relative humidity. In general, total precip-
itation, surface air pressure, total cloud cover and wind speed have relatively lower importance
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in predicting emissions across the EU ETS zone. A noteworthy observation here is that two out
of the three most studied climatic drivers of carbon emissions in the existing literature, namely
wind speed and total precipitation, have proved to be relatively less useful than some previously
understudied variables such as solar radiation and relative humidity for the prediction of fossil
fuel CO2 emissions in Europe.

It must be reminded that decision tree ensemble methods such as Extreme Gradient Boosting
are robust to highly (or perfectly) correlated explanatory variables. Likewise, the permutation
feature importance algorithm can deal with correlated predictors. Nevertheless, if explanatory
variables are strongly correlated, the permutation feature importance can be biased by unrealis-
tic data instances and underestimate the importance of each of the two correlated variables by
splitting the importance between them (Molnar, 2020). In light of this issue, comparatively low
feature importance of total cloud cover can be explained in part by the possible high correlation
between total cloud cover and solar radiation. The results shown in Figure 4.2 therefore need to
be interpreted with caution.

4.5.1.2 Emissions status

Figure 4.3 shows the percentage of NUTS regions in which monthly fossil fuel CO2 emissions
were reduced (not reduced) compared to counterfactual estimates during the course of each
EU ETS phase. Over 36 months of the first phase (from January 2005 to December 2007),
between 29.03% and 69.35% NUTS regions experienced a reduction in monthly emissions,
with an average percentage of 48.28%. Over 60 months of the second phase (from January
2008 to December 2012), monthly actual emissions were lower than counterfactual emissions
in 83.99% of NUTS regions on average, with a range between 60.88% and 99.59%. Finally,
over 84 months of the third phase (from January 2013 to December 2019), between 57.25% and
96.37% of NUTS regions went through an emissions reduction against the counterfactual, with
an average percentage of 86.59%. These results indicate that, in terms of the average percentage
of regions with reduced monthly emissions across Europe, Phase III of the EU ETS has been
the most effective trading period.

Figure 4.4 represents the spatial distribution of NUTS regions with emissions reduction in 0
to 100% of months in each phase of the EU ETS. As observed in this figure, the percentage of
months in which fossil fuel CO2 emissions were reduced compared to counterfactual estimates
has increased from the first phase to the next two phases in several regions in England, France,
Germany, Spain, Portugal and eastern Europe. Conversely, a number of regions in Scotland,
Estonia and Republic of Cyprus went through a constant decrease in the percentage of months
with emissions reduction from the first phase to the third phase.

As a complement to Figure 4.4 and in order to get a broader overview of the effectiveness
of each trading period in terms of the fraction of months with emissions reduction at a regional
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Figure 4.3: Percentage of NUTS regions with reduced (non-reduced) monthly fossil fuel CO2 emissions against
counterfactual estimates in each EU ETS phase
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Figure 4.4: Spatial distribution of NUTS regions with reduced fossil fuel CO2 emissions in 0 to 100% of months
in each phase of the EU ETS.

level, the percentage of NUTS regions with emissions reduction or increase in all months as
well as emissions reduction in more than 50% of months in each phase was calculated. The
results are shown in Figure 4.5. Compared to the other two phases, Phase II exhibits the lowest
percentage of regions with emissions increase in all months (0.4% of regions). However, when
it comes to the percentage of regions with emissions reduction in all and more than 50% of
months, Phase III stands out with 40.32% and 94.35% of regions, respectively.

One region in Ireland (Northern & Western Ireland) and one region in Finland (North &
East Finland) experienced reduced emissions in all months from January 2005 to December
2019, and 105 regions underwent an emissions reduction in more than 50% of months in all
the three phases. On the other side, five regions located in Republic of Cyprus, Greece (North
Aegean), Lithuania (Central & Western region), and Poland (Lubelskie and Podlaskie) under-
went an emissions increase in more than 50% of months in all the three phases. Only one region
(Cyprus) experienced increased emissions over the whole period.
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Figure 4.5: Percentage of NUTS regions with emissions reduction or increase in all months as well as emissions
reduction in more than 50% of months in each phase of the EU ETS

In order to characterize the relationship between actual and counterfactual fossil fuel CO2

emissions and its evolution over time, median monthly trajectories of actual (observed) and
counterfactual (fitted) values of emissions for each phase of the EU ETS are plotted. To of-
fer a more detailed overview of the intervention effect, pointwise and cumulative differences
between median actual and counterfactual (fitted) values are also visualized. Figure 4.6 sum-
marizes the effect of the launch of the first phase of the EU ETS on fossil fuel CO2 emissions
across Europe.
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Figure 4.6: Median monthly trajectories of actual (observed) and counterfactual (fitted) values of emissions (top
panel); pointwise deviation of median actual values from median counterfactual (fitted) estimates, accompanied
by 95% bootstrap confidence intervals with 10000 samples (middle panel); cumulative median difference between
actual and counterfactual (fitted) values (bottom panel) for the first phase of the EU ETS.

As observed in Figure 4.6, in the pre-intervention period (from January 2000 to December
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2004), the median model-derived estimates fit the median actual (observed) data points pretty
well, and the seasonal patterns are successfully captured by the tree ensemble models. Sensible
preventative measures taken during the model estimation process guarantee this high goodness-
of-fit against overfitting.18

During Phase I, actual monthly emissions were, in median, 0.79% higher than counterfac-
tual estimates across all NUTS regions, with the range of change being from -4.85% (in August
2006) to 5.05% (in February 2006). A negative (positive) change is indicative of emissions
reduction (increase). In terms of the pointwise difference between median actual and coun-
terfactual series in the post-intervention period, no persistent emissions reduction was attained
in the first 28 months (from January 2005 to April 2007). However, from May 2007 until
the end of Phase I, median actual monthly emissions remained consistently lower than median
counterfactual monthly estimates. Considering the temporal evolution of the cumulative differ-
ence between median actual and counterfactual values, an increasing trend could be observed
from January 2005 to April 2007, followed by a decreasing trend starting in May 2007. For this
phase, the cumulative difference between median actual and counterfactual emissions fluctuated
around zero before the intervention, and its value at the intervention point is almost zero. This
is indicative of no overall under or overestimation of emissions values in the pre-intervention
period.

In a similar vein, the impact of the launch of Phase II on median monthly fossil fuel
CO2 emissions across Europe is demonstrated in Figure 4.7. During the second phase, ac-
tual monthly emissions were, in median, 9.1% lower than counterfactual emissions across all
NUTS regions, with the range of change being from -14.39% (in October 2012) to -1.56% (in
January 2008). As can be seen in Figure 4.7, pointwise difference between median actual and
counterfactual series was negative in all months after the intervention. For this phase, the cumu-
lative difference between median actual and counterfactual emissions at the intervention point
was almost zero, indicating the absence of any remarkable overall under or overestimation in
the pre-intervention period. The slight improvement in model performance compared to the first
phase may be attributed to the increased size of the training data used for model estimation. The
cumulative difference series was on a decreasing trend in all months following the intervention.

Ultimately, Figure 4.8 shows the paths of median actual and counterfactual emissions over
the course of Phase III, accompanied by pointwise and cumulative differences between the
two series. During the third phase, actual monthly emissions were, in median, 8.39% lower
than counterfactual emissions across all NUTS regions, with the range of change being from

18That said, overfitting does not necessarily translate into poor prediction on new (unseen) data in the context
of methods used in modern machine-learning (such as tree-based ensemble algorithms and neural networks). By
reconciling modern machine-learning practice and the classical bias–variance trade-off, Belkin et al. (2019) show
that models such as XGBoost may be trained to (almost) exactly fit the training data, while still performing well
on unseen data. The interested reader is referred to the reference cited herein for more detailed description.
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Figure 4.7: Median monthly trajectories of actual (observed) and counterfactual (fitted) values of emissions (top
panel); pointwise deviation of median actual values from median counterfactual (fitted) estimates, accompanied
by 95% bootstrap confidence intervals with 10000 samples (middle panel); cumulative median difference between
actual and counterfactual (fitted) values (bottom panel) for the second phase of the EU ETS.

-14.66% (in August 2019) to -1.5% (in February 2013). As illustrated by Figure 4.7, pointwise
difference between median actual and counterfactual series was negative in all months after
the intervention, and the cumulative difference series was on a decreasing trend following the
intervention. Similar to Phase II, no overall under or overestimation in the pre-intervention
period was observed for Phase III. Owing to the highest level of data availability for training
the models, predictions made for this phase are expected to be the most reliable.

4.5.2 Inferential results

Inferences about the causal impact of each phase of the EU ETS (i.e. intervention effect) were
drawn based on a statistical test of the significance of difference between actual and counter-
factual emissions. Causal inferences were made based on temporal and spatial analyses. From
a temporal perspective, the present work tested whether the median difference between pairs
of actual and counterfactual emissions across all NUTS regions was significantly greater than
zero in each month following the intervention. Figure 4.9 illustrates the results of the temporal
analysis. This analysis found evidence for the presence of a significant intervention effect in
the second and third phases and 8 (out of 36) months of the first phase. An important observa-
tion is that the median difference between pairs of actual and counterfactual emissions across
all NUTS regions was consistently negative from July 2007 to December 2019, indicating the
effectiveness of the EU ETS in reducing fossil fuel CO2 emissions during the mentioned period.

From a spatial point of view, it was tested whether the median difference between actual
and counterfactual emissions in all months following the intervention was significantly greater

105



Principal Series (Median over NUTS Regions)

0.5

0.6

0.7

0.8

0.9

gC
/m

2 /d
ay

Actual Emissions Fitted/Counterfactual Emissions

Pointwise Difference

−0.10

−0.05

0.00

∆g
C

/m
2 /d

ay

Cumulative Difference

Ja
n 

20
00

Ju
l 2

00
0

Ja
n 

20
01

Ju
l 2

00
1

Ja
n 

20
02

Ju
l 2

00
2

Ja
n 

20
03

Ju
l 2

00
3

Ja
n 

20
04

Ju
l 2

00
4

Ja
n 

20
05

Ju
l 2

00
5

Ja
n 

20
06

Ju
l 2

00
6

Ja
n 

20
07

Ju
l 2

00
7

Ja
n 

20
08

Ju
l 2

00
8

Ja
n 

20
09

Ju
l 2

00
9

Ja
n 

20
10

Ju
l 2

01
0

Ja
n 

20
11

Ju
l 2

01
1

Ja
n 

20
12

Ju
l 2

01
2

Ja
n 

20
13

Ju
l 2

01
3

Ja
n 

20
14

Ju
l 2

01
4

Ja
n 

20
15

Ju
l 2

01
5

Ja
n 

20
16

Ju
l 2

01
6

Ja
n 

20
17

Ju
l 2

01
7

Ja
n 

20
18

Ju
l 2

01
8

Ja
n 

20
19

Ju
l 2

01
9

−4

−3

−2

−1

0

C
um

. ∆
gC

/m
2 /d

ay

Figure 4.8: Median monthly trajectories of actual (observed) and counterfactual (fitted) values of emissions (top
panel); pointwise deviation of median actual values from median counterfactual (fitted) estimates, accompanied
by 95% bootstrap confidence intervals with 10000 samples (middle panel); cumulative median difference between
actual and counterfactual (fitted) values (bottom panel) for the third phase of the EU ETS.
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Figure 4.9: Distribution of the difference between actual and counterfactual emissions in NUTS regions in a given
month during Phase I (top panel), Phase II (middle panel) and Phase III (bottom panel) of the EU ETS. Boxplots
are color-coded based on the rejection (yellow) or non-rejection (blue) of the Wilcoxon signed-rank test’s null
hypothesis at a significance level of 0.05. Note: The upper (lower) whisker extends from the hinge to the largest
(smallest) value no further than 1.5 times the interquartile range. Data points beyond the whiskers are removed
from the plot for the sake of better visualization.

than zero in each NUTS regions. Figure 4.10 depicts the spatial distribution of NUTS regions
where the intervention effect was significant (insignificant) over the course of each EU ETS
phase. This figure provides a general overview of the effectiveness of the EU ETS in reducing
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fossil fuel CO2 emissions across European regions. The spatial analysis found evidence for
significant emissions reduction in 84, 209 and 226 regions in the first, second and third phases,
respectively. Results also demonstrated that 66 European regions went through significant emis-
sions reduction over the course of all the first three phases. On the other side, emissions in the
following nine NUTS regions were not significantly affected by any of the EU ETS phases:
Cyprus, North Aegean (Greece), Central & Western Lithuania region, Latvia, Overijssel and
Flevoland (the Netherlands), Lubelskie, Podlaskie and Mazowiecki regionalny (Poland).

Phase I (2005−2007) Phase II (2008−2012) Phase III (2013−2019)

Reduced Not Reduced

Figure 4.10: Spatial distribution of NUTS regions in which the intervention effect was significant (insignificant)
during Phase I (left panel), Phase II (middle panel) and Phase III (right panel). Regions are color-coded based on
the rejection (yellow) or non-rejection (blue) of the Wilcoxon signed-rank test’s null hypothesis at a significance
level of 0.05.

4.6 Discussion
With reference to the relative ineffectiveness of the first (pilot) phase of the EU ETS (from both
temporal and spatial perspectives) from 2005 to 2007, the results of this study are consistent
with what has been found in previous studies (see for example Bayer and Aklin, 2020; Eller-
man, 2015). As highlighted by Ellerman (2015), such relative ineffectiveness may be attributed
to the oversupply of emissions allowances in Phase I. For the period spanning from 2008 to
2019 the spatial analysis revealed that Phase II was only slightly less effective than Phase III
(which included more sectors) in terms of the number of NUTS regions in which significant
emissions reduction was realized. An argument could be made that this finding is justified by
the difference in allowance allocation between the two phases. While in the first two phases
the best part of allowances were freely allocated with grandfathering, a rather environmentally-
ineffective output-based allocation approach was adopted for incumbent installations in Phase
III, where allocations were associated with historical output of such plants (Economics, 2014).
Although an output-based approach may reduce carbon leakage, it dilutes the effective carbon
price for the recipient entities and minimizes the emissions reduction by those incumbent firms
(Economics, 2014).
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As is the case with the majority of studies, the findings of this paper have to be seen in light
of some limitations. First, it is perhaps not entirely realistic to attribute all fossil fuel CO2 emis-
sions reduction from 2005 to 2019 to the EU ETS. Indeed, other policy packages at regional,
national and EU levels, and the long-term tendency towards increased energy efficiency may
also have contributed to emissions reduction across Europe (Ellerman et al., 2016). Neverthe-
less, as pointed out by Martin et al. (2016), isolating the impacts of emissions trading systems on
emissions reduction from those of other factors is an extremely challenging, if not impossible,
practice. Serving as the EU’s foremost instrument for emissions reduction, the EU ETS already
includes the biggest emitters of fossil fuel CO2 (Jaraite-Kažukauske and Di Maria, 2016). In
addition, as reported by the European Commission, overall emissions not covered by the EU
ETS (emissions from non-ETS industries, transport, buildings, agriculture and waste) have been
rather steady for several years (European Comission, 2021e). In view of these considerations,
it appears perfectly legitimate to consider aggregate regional fossil fuel CO2 emissions as the
target variable in the effectiveness evaluation of the EU ETS. However, the possibility that the
installations targeted by the EU ETS might not be present in all NUTS regions under study
could not be ruled out. Although such possibility does not affect the results of the temporal
analysis carried out in the current study, it can have detrimental effects on inferences made
based on the spatial analysis. Through access to reliable data, future research might investigate
this possibility and further improve this region-based study by intersecting sectoral or firm-level
emissions data with regional boundaries to sort out net emissions from ETS-regulated facilities
at regional scale. Second, the likelihood that some of the regional reductions may be due to out-
sourcing of carbon emissions to other regions within the EU (a situation referred to as carbon
leakage) should be acknowledged. Such a possibility could potentially impact the interpreta-
tion of the findings from the spatial analysis in this paper, but not the temporal analysis. In
any case, as reported by Economics (2014), empirical studies of carbon leakage in the EU ETS
have failed to obtain conclusive evidence of significant leakage. Finally, this study considered
only land fossil fuel CO2 emissions and disregarded emissions from European aviation that has
been included in the EU ETS since 2012. Examinations of the effectiveness of the EU ETS
in reducing emissions from air travel have given mixed results (see Heiaas, 2021; Fageda and
Teixidó, 2022; Anger and Köhler, 2010). Therefore, further research on the causal relationship
between the EU ETS and aviation emissions issue is warranted.

4.7 Conclusion

As the cornerstone of the European Union’s policy to address climate change and reduce CO2

emissions, the EU ETS has attracted great attention of scholars since its launch in January 2005.
However, despite widespread research attention to this trading scheme, comprehensive empiri-
cal evidence on achievement of its main target (i.e. emissions reduction) over the course of the
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first three phases remains scarce. In an effort to fill this gap, this paper offered an innovative
yet intuitive predictive modeling-based approach to the effectiveness evaluation of the the EU
ETS with regard to reducing regional fossil fuel CO2 emissions over the 2005-2019 period. The
paper makes a link between two strands of the debate on carbon emissions by contributing to
the literature on the environmental effectiveness of the EU ETS and climate-related explanatory
factors for fossil fuel CO2 emissions across Europe.

By means of temporal and spatial analyses, this study was able to verify whether each of the
three phases of the EU ETS could reduce monthly fossil fuel CO2 emissions across European
socio-economic regions. The temporal analysis found support for significant emissions reduc-
tion over the course of the second and third phases and 8 (out of 36) months of the first phase.
The results of the spatial analysis demonstrated significant emissions reduction in 84, 209 and
226 regions in the first, second and third phases, respectively. This work also examined the use-
fulness of an extensive set of climate variables for predicting fossil fuel CO2 emissions in each
region. As a result of this investigation, air temperature, solar radiation and relative humidity
were identified as the most important predictors of fossil fuel CO2 emissions in all the three
phases. This is indeed an important finding in the understanding of climate-related explanatory
factors for CO2 emissions, and can have important implications for energy management at re-
gional scale.

At the end, it should be emphasized that the primary purpose of this explorative study was
to examine whether the EU ETS could attain its principal objective of cutting fossil fuel CO2

emissions across Europe, and to identify all climate-related explanatory factors for such emis-
sions across European socio-economic regions. Providing the full story behind the findings
of this research necessitates an in-depth regional analysis based on sectoral and/or firm-level
data–an exercise that goes beyond the scope of this paper and is left to future research.

109



CHAPTER5
European Union Emissions Trading System:

Carbon Price Determinants

Article Title: ct carbon emissions allowances prices? Evidence from the first three phases of
the EU ETS” (Eslahi and Mazza, 2022)

Abstract: This study examines the predictive impact of climate conditions and electricity de-
mand on hourly spot prices of emissions allowances during the first three phases of the European
Union Emissions Trading System (EU ETS) (2005-2019). We propose an original methodol-
ogy for constructing European-scale electricity demand and climate indices and characterize
the relationship between those indices and emissions allowances prices by means of an ad-
vanced predictive modeling technique (Extreme Gradient Boosting). Empirical findings assert
that electricity demand and the climate factors under study were of importance for estimating
EUA prices during the first three phases of the EU ETS, with air temperature and electricity
demand being most relevant to emissions allowances prices. Conversely, total precipitation and
relative humidity proved to be the least relevant variables to the outcome. The results also in-
dicate that the relationship between emissions allowances prices and their climatic predictors
was not linear in the studied period. The paper contributes to the growing body of literature on
the structural determinants of carbon prices in the EU ETS and enhances our understanding of
the impact of climate variability–in the provision of renewable energy production–on the most
prominent market-based measure to reduce CO2 emissions in Europe.

Keywords: The EU ETS, Emissions Allowances Prices, Electricity Demand, Climate Vari-
ables, Predictive Modeling
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5.1 Introduction

In order to reduce greenhouse gas emissions, many countries worldwide have attempted to en-
act legislation or devise a mechanism for trading carbon contracts. The main argument for those
considerations is that, excessive greenhouse gas emissions and their irreversible consequences
for the environment cannot be prevented unless there are powerful (pecuniary) incentives for
companies to promote emissions reductions. As such, application of the ’polluter pays’ princi-
ple through putting a price on carbon dioxide (CO2) and other greenhouse gases has found its
place in the national and international environmental policies aimed at fighting global warming.

The European Union Emissions Trading System (hereinafter referred as the EU ETS) is the
European Union’s major market-based environmental scheme to combat climate change and its
impacts under the Kyoto Protocol. Established in 2005, the EU ETS is the earliest and biggest
international carbon market in the world, functioning on a cap and trade basis. The scheme
is split into distinct trading periods or phases with their own specificities, of which three had
drawn to a close by the end of 2020, and the fourth was well under way at the time of writing.
CO2 emissions allowances (also called carbon credits or emissions certificates) are a class of
assets that represent the right to emit one tonne of CO2 or the equivalent amount of other no-
torious greenhouse gases (referred to as CO2 equivalent and denoted by CO2e) over a specific
period of time, and that can be traded by carbon market participants. Emissions allowances
used in the EU ETS are commonly referred to as European Union Allowances (EUA).

The price of emissions allowances traded on a carbon market is frequently used as a mea-
sure of the effectiveness of the market. Carbon price provides an economic signal to emitters
of CO2, and enables them to decide whether to lower their emissions, or continue emitting and
paying for their emissions (World Bank, 2022). Similar to other financial markets, the dynam-
ics of carbon markets are largely driven by the underlying supply and demand fundamentals
(Christiansen et al., 2005). The supply of carbon allowances in a cap and trade system like the
EU ETS completely depends on the nation or Union-wide limit (cap), and on allocations of the
cap to companies and installations covered by the system (Alberola et al., 2008; Batten et al.,
2021). The total amount of CO2e that can be emitted by the sectors covered by the EU ETS
is controlled by setting an annually-decreasing limit (cap) on the number of emissions permits.
While in the first and second phases of the EU ETS (2005-2012), the cap was determined by
each member state through the so-called National Allocation Plans (NAPs), since the beginning
of phase three (2013-2020), the cap on emissions was set by the European Commission for the
entire set of EU ETS Member States as a whole (European Comission, 2021a).

The allocation of carbon credits takes place in the primary market, where the emissions al-
lowances are issued for free or at an auction-based cost. So as to establish auctioning as the
default method for allocating emission allowances, free allocation has been decreasing each
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year since the launch of the EU ETS, with free allowances being unavailable to power plants
since the beginning of the third phase (European Comission, 2021c). Indeed, electricity pro-
ducers have been obliged since 2013 to buy all the allowances they need to generate electricity
either through auctions on the primary market, or on the secondary market1 (European Comis-
sion, 2021d).

Previously issued emissions allowances can subsequently be traded on the secondary mar-
ket as needed. Spot and derivatives trading of European Union Allowance are carried out over
the counter or via intermediaries like exchanges. The spot market is of particular importance
for traders of emission certificates and emitters of CO2 for two major reasons: first, the val-
uation of potential derivatives is contingent upon understanding spot price dynamics; second,
CO2-emitting entities rely on spot prices in order to better assess their production costs and sup-
port emissions-related investment decisions (Seifert et al., 2008). The European Securities and
Markets Authority (ESMA) confirms that, while the primary market is rather concentrated, the
largest participants (i.e. emitters of CO2) are active in the secondary market to ensure that auc-
tioned or freely-allocated allowances are disseminated to other secondary market participants
(ESMA, 2022).

The demand side of emissions trading in the European Union is in turn primarily based
on the level of CO2 production by the companies and installations covered by the emissions
trading scheme. The level of CO2 emissions itself is dependent on numerous factors such as
economic growth, fuel (crude oil, natural gas and coal) and power (electricity) prices and cli-
mate conditions (Christiansen et al., 2005; Alberola et al., 2008; Creti et al., 2012; Batten et al.,
2021). Among these factors, climate conditions have a substantial double effect since they can
influence CO2 emissions (hence the demand for carbon credits) both through their impact on
energy demand (consumption) and through their impact on renewable and nonrenewable elec-
tricity and heat generation (see Christiansen et al., 2005; Amato et al., 2005; Benz and Trück,
2009; Chevallier, 2013; Batten et al., 2021; Ampudia et al., 2022).

Given the fact that the EU ETS is dominated by firms involved in electricity generation
(Ahamada and Kirat, 2015), careful attention should be given to the impact of climate condi-
tions on the electric power sector. Indeed, the electricity sector is one of the most sensitive
sectors of the economy to climate variations, because the demand for and supply of electricity
are closely linked with several climate variables (Valor et al., 2001; McFarland et al., 2015).

1With the aim of supporting the modernisation of the energy sector, Article 10c of the EU ETS Directive pro-
vides ten lower-income Member States (Bulgaria, Czech Republic, Estonia, Croatia, Latvia, Lithuania, Hungary,
Poland, Romania, and Slovakia) with a derogation from the general rules on no free allocation for electricity
production (European Comission, 2021d). The optional free allocation was initially planned to be available only
during phase 3 of the EU ETS (2013-2020), but its availability was extended by the ETS Directive into the fourth
phase (2021-2030). Not all the eligible Member States, however, decided to make use of the possibility to provide
free allocation to installations for electricity generation during either phase.
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Aside from electricity demand itself as a potential predictor of emissions allowances prices,2

six climate variables are likely to influence CO2 emissions through affecting electricity produc-
tion and consumption, thus leading to a possible change in demand for emissions allowances:
air temperature, wind speed, solar radiation, total precipitation, surface air pressure and relative
humidity.

When it comes to its impact on CO2 emissions, air temperature is often identified with
its strong connection to the demand for energy, and most importantly electricity. The idea is
that low (high) temperatures boost the need for heating (cooling), hence increasing electric
and even non-electric (fossil fuel) energy consumption3 and CO2 emissions (see among others
Mansanet-Bataller et al., 2007; Alberola et al., 2008; Benz and Trück, 2009; Hintermann, 2010;
Yao, 2021). Rising temperatures can also influence the energy supply side either by increasing
water temperatures, hence negatively affecting thermal power plants’ cooling efficiency, or by
reducing the efficiency of solar photovoltaic panels–in either case increasing emissions levels
(Ebinger and Vergara, 2011). Wind speed, solar radiation and total precipitation affect the share
of electricity generated by the most commonly-used non-emitting (clean) energy sources and
thus emissions levels (Christiansen et al., 2005; Benz and Trück, 2009; Wei et al., 2020). Fi-
nally, surface air pressure and relative humidity are related to the generation cycle and cooling
efficiency of fossil-fuel-fired power production, hence changing CO2 emissions levels by af-
fecting the efficiency and reliability of energy supplies from fossil energy sources (Wilbanks
et al., 2008; Ebinger and Vergara, 2011; Loew et al., 2020).

Existing research acknowledges climate conditions, among other factors such as energy
prices and fuel switching, as structural determinants of carbon prices.4 Indeed, several attempts
have been made to empirically explain the relationship between CO2 prices and variations in
some climate factors such as air temperature, rainfall and wind speed in the course of the first,
second or third phase of the EU ETS (Mansanet-Bataller et al., 2007; Alberola et al., 2008;
Redmond and Convery, 2008; Benz and Trück, 2009; Keppler and Mansanet-Bataller, 2010;
Hintermann, 2010; Bredin and Muckley, 2011; Lutz et al., 2013; Rickels et al., 2015; Batten
et al., 2021).

A closer look to the literature on the relationship between emissions allowances prices in
the EU ETS and climatic determinants of those prices, nonetheless, reveals a number of gaps
and shortcomings. First, research on the climatic predictors of EUA prices has been mostly
restricted to the study of a limited set of climate variables (the foremost of which is air tem-

2By way of illustration, pressures from increases in electricity demand may result in the adoption of low-cost
energy sources that are more carbon-intensive, hence changing emission levels in the electricity sector (Goh et al.,
2018b).

3The impact of high temperatures on the use of fossil fuels for purposes other than electricity generation is less
clear since air conditioning systems used for satisfying cooling demand are predominantly powered by electricity
(Melillo et al., 2014).

4See Chevallier (2013) for a review of academic literature on carbon price drivers.
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perature), and has paid little or no attention to other climate factors (such as wind speed, solar
radiation, relative humidity and surface air pressure) that may as well have a predictive impact
on emissions through affecting renewable and nonrenewable energy systems. In particular, the
effect of climate variations on carbon prices in the provision of renewable energy production is
understudied (Ampudia et al., 2022). This is of particular importance for regions like Europe
that rely, to a significant extent, on renewable sources like wind, solar and hydropower5.

Additionally, the effect of climate conditions on EUA price development has, by and large,
been solely attributed to the demand for energy, most importantly electricity, for heating and
cooling purposes (see Mansanet-Bataller et al., 2007; Alberola et al., 2008; Redmond and Con-
very, 2008; Benz and Trück, 2009; Hintermann, 2010). In a specific case, previous research
has in fact treated air temperature as a proxy for energy consumption, rather than view it as a
climate factor that may be correlated with the demand for electric and non-electric (fossil fuel)
energy. Although air temperature can influence emissions on the demand side through increased
heating or cooling-related needs, this is not the only way in which emissions can be affected
by temperature. A rise in air temperature reduces the efficiency of power generation from solar
photovoltaic panels, and that of fossil fuel (thermal) power stations in converting fuel into elec-
tricity (Ebinger and Vergara, 2011; Melillo et al., 2014), hence leading to increased emissions6.
Given these considerations, isolating the effect of electricity demand on emissions allowances
prices will advance the understanding of the effect of climate variables on CO2 emissions and
EUA prices via increasing non-electrical applications of fossil fuels (e.g. heating, in the case
of air temperature) or through affecting renewable and/or nonrenewable electricity production
(the case of air temperature, wind speed, solar radiation, total precipitation, surface air pressure
and relative humidity).

Furthermore, the research to date has tended to rely on climate indicators that are unrep-
resentative of the broad spectrum of climate conditions across Europe, and mostly limited to
one or few cities or countries.7 European territory is, however, sufficiently large to cover a
significant range of climatic conditions, from semi-arid Mediterranean to subarctic (boreal) cli-

5In 2020, renewable energy sources made up 37.5% of gross electricity consumption in the European Union
(Eurostat, 2022).

6The reason for the latter is that fossil fuel power plants (as well as nuclear facilities) use water for cooling,
and the higher the water temperature, the less efficient the power generation. There is strong large-scale empirical
evidence that increase in water temperature is positively related to increase in air temperature (see for example
Seyedhashemi et al., 2022).

7For example, Mansanet-Bataller et al. (2007) have utilized temperature and precipitation data from Germany;
Alberola et al. (2008), Keppler and Mansanet-Bataller (2010) and Bredin and Muckley (2011) have relied on
population-weighted temperature data from France, Germany, Spain and the United Kingdom; Hintermann (2010)
has used a population-weighted temperature index based on data from a number of monitoring locations in Europe,
and precipitation data from Norway, Sweden, Denmark and Finland; Lutz et al. (2013) have based their analysis on
temperature data from France, Germany, Italy, and the United Kingdom (until September 2009) and 18 countries
(since October 2009); Rickels et al. (2015) have made use of wind speed and precipitation data from Germany,
Scandinavia and Spain; and Batten et al. (2021) have used temperatures in Munich, Germany as a proxy for the
temperature in the whole Europe.
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mate (Wasson et al., 2007). As a particular example, France itself hosts seven different types of
climate–from Mediterranean to continental cold.8

Finally, the existing accounts fail to demonstrate what the specific relationships between cli-
mate variables and EUA prices look like. As emphasized by Chevallier (2013), characterization
of possible nonlinearities in such relationships in an extensive European-scale study is called
for.

To address these research gaps, the current study examines, within a predictive modeling
framework, the observed association between EUA prices and a comprehensive set of European-
scale electricity demand and climate indices during the first three phases of the EU ETS. The
originality and significance of this research work lie in the following points. First, to the best
of the authors’ knowledge no study in the literature on climatic drivers of carbon prices has till
date utilized data of comparable spatio-temporal granularity and scope. As concerns the spa-
tial resolution and scope of the data, the use of country-level data on demand for electricity, in
company with large-scale European gridded data sets on climate variables and fossil fuel CO2

emissions, offers the possibility of constructing aggregate indicators that could summarize elec-
tricity demand and climate conditions across the EU ETS zone in the most precise manner. In
regard to the temporal resolution and scope of the analysis, the use of data at hourly frequency
over a 15-year period for empirical modeling allows for a better understanding of the climatic
predictors of intraday emissions allowances prices during the first three phases of the EU ETS.

Second, the study takes advantage of the most extensive set of potential climatic predictors
of carbon prices used to date in the literature on price determinants in the EU ETS. In particular,
the analysis is enriched with the inclusion of all those climate variables that are directly related
to electricity production from wind, solar, and run-of-river hydropower sources–altogether re-
ferred to as climate-related renewable energy (CRE) sources. This choice of variables provides
new empirical insights into the interconnections between CRE production potential and the
leading market mechanism to set a limit on CO2 emissions in Europe.

Third, instead of relying on coarse proxies of electricity demand and climate conditions–as
is common in the relevant academic literature, the present research puts forward a state-of-
the-art intuitive methodology for constructing large-scale indices using data from the entire
geographical scope of the EU ETS. In an attempt to investigate climatic predictors of emis-
sions allowances prices, this is the first study to adopt an interdisciplinary approach to develop
European-scale climate indicators by borrowing the concept of “hydro-ecoregions” from hy-
drology and environmental science. From a methodological standpoint, the proposed hydro-
ecoregions-based approach to the construction of European-scale climate indicators can easily
be reimagined for purposes other than the characterization of climatic predictors of emissions
allowances prices.

8See Section 5.2.2.2 for more details.

115



Ultimately, by virtue of the properties of the empirical modeling framework, this study
makes a major contribution to research on determinants of carbon prices by ranking explana-
tory factors based on their predictive importance. This will contribute to a deeper understanding
of the extent to which each explanatory factor should be given consideration as regards the esti-
mation of carbon prices. Moreover, the present research quantifies complicated, nonlinear pre-
dictive impact of explanatory factors on the price of carbon and explores, for the first time, how
the pure effect of electricity demand and different climate variables on emissions allowances
prices varies with the predictor’s value. The paper departs from previous literature by analyzing
such effect across the entire distribution of predictors (as opposed to the tails of the distribution,
i.e. extreme climate conditions) while controlling for various types of seasonality.

The remaining part of the paper proceeds as follows. Section 5.2 describes the data sets uti-
lized for the analysis, details the methods for constructing the population-weighted electricity
demand index and emissions-weighted climate indices, sets out the approach to the empirical
modeling of emissions allowances prices based on the electricity demand and climate indices,
and delineates the framework for characterizing the predictive impact of such indices on EUA
prices. The findings of the analysis are presented in Section 5.3. Section 5.4 is concerned
with the explanation and interpretation of some major results and makes recommendations for
further research work. The paper concludes by summarising the scope of the study and main
results, and highlighting the significance of the findings and research implications (Section 5.5).

5.2 Materials and Methods

5.2.1 Data

The analysis is undertaken using data on the explained variable, i.e. European Union Allowance
(EUA) prices,9 along with the explanatory variables, namely population-weighted electricity
demand index and emissions-weighted climate indices.10 The data consist of five independent
datasets that could be classified into three major groups: (1) Market data on European Union
Allowance (EUA) prices; (2) Country-level electricity demand and population data, which are
utilized in the construction of the population-weighted electricity demand index for the EU
ETS zone; and (3) Gridded data on climate variables and fossil fuel CO2 emissions, which
are utilized in the construction of emissions-weighted climate indices for the EU ETS zone.
After intersecting the data on the explained and explanatory variables, 33087 observations with
hourly timestamps–from March 8, 2005 (20:00) to December 30, 2019 (10:00)–are retained for

9For methodological reasons, prices are log-transformed prior to the empirical modeling (see Section 5.2.2.3).
This transformation is necessary to avoid potential negative predicted values of the response variable.

10In addition to explanatory variables, integer-encoded time-based features are created and included in the em-
pirical model to account for possible seasonality information in the data. See Section 5.2.2.3 for more details on
time-based features.
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the empirical analysis.

5.2.1.1 European Union Allowance (EUA) prices

Market data on hourly European Union Allowance (EUA) spot prices (in the unit of euros per
tonne of CO2) are sourced from Refinitiv Datascope. The original data consist of spot prices
of emissions allowances from the combination of three major markets of the EU ETS over the
2005-2019 period, namely Powernext, BlueNext and the European Energy Exchange (EEX).
Powernext (based in Paris, France) was the leading trading platform over the 2005-2008 period,
accounting for the largest share of the spot market transactions of emissions allowances during
the first phase of the EU ETS (Daskalakis et al., 2009). Despite being the the largest emissions
secondary market for trading on a Spot basis during the second phase of the EU ETS, BlueNext
(also headquartered in Paris, France) permanently shut down its trading operations in December
2012. Last but not least, the EEX (located in Leipzig, Germany) has been offering spot trading
of the EU ETS allowances since 2005.11

When available, the last transaction price in the original dataset is used as the spot price in
the present study. In the intervals where the last transaction price is not available, the quote
midpoint, defined as the average of Closing Ask and Closing Bid prices, is used as a proxy for
the spot price. The ultimate dataset used for the analysis contains 33087 hourly observations
from March 8, 2005 (20:00) to December 30, 2019 (10:00). The use of sparse trading data with
natural gaps–in lieu of populated data–is based on the consideration that assessing the predictive
impact of climate factors and electricity demand on EUA transaction prices is pointless if time
points with no real market activity are used. From a methodological point of view, including
artificially-populated data points in the response variable would impede the interpretation of
predictive modeling results. It cannot be denied, however, that the analysis would be improved
with a completely continuous data set.

5.2.1.2 Electricity demand

Data on daily electricity demand (the consumption of electricity) expressed as mean power in
megawatts (MW) at the country level for the 2005-2019 period are obtained from the European
Centre for Medium-Range Weather Forecasts (ECMWF)12. The Copernicus Climate Change
Service (C3S) operational energy dataset (ECMWF, 2020a) includes electricity demand in 27
Member States of the EU ETS, namely post-Brexit EU countries excluding Cyprus and Malta,
along with the United Kingdom and Norway.13 However, in light of the late joining of Bulgaria,
Romania, Norway and Croatia in the EU ETS, not all countries present in the dataset have been
persistently used for the construction of electricity demand index over the study period (see

11Powernext activities were merged into EEX in January 2020.
12https://cds.climate.copernicus.eu/
13The dataset does not cover four Member States: Cyprus, Malta, Iceland and Lichtenstein.
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Section 5.2.2.1). With the help of country-level hourly air temperature14 as indicator series, the
daily electricity demand series for each country are disaggregated15 to hourly series using the
regression-based Chow-Lin method (Chow and Lin, 1971) with temporal additivity constraint,
i.e. ensuring that the sum of hourly values of the obtained series is equal to the corresponding
daily values of the original series (see Sax and Steiner, 2013).

Several studies have emphasized the dependence of electricity demand on air temperature
(see for example Henley and Peirson, 1997; Valor et al., 2001; Pardo et al., 2002; Amato et al.,
2005; Thatcher, 2007; Hekkenberg et al., 2009), making the latter a natural candidate for such
temporal disaggregation. With this in mind, before proceeding with the temporal disaggre-
gation, a simple linear regression of the daily electricity demand series on daily averaged air
temperature series for each country over the whole study period is conducted. This step allows
to investigate, in the first place, the correlation between the two variables and to substantiate the
empirical soundness of using hourly air temperature as indicator series in the disaggregation
process. The analysis confirmed a significant relationship between electricity demand and air
temperature at the daily level at 1% significance level for all countries (with the exception of
Greece for which the significance level falls to 10%). The regression analysis is further ac-
companied by an Augmented Dickey-Fuller (ADF) test to examine the validity of choice of the
temporal disaggregation method. The null hypothesis of no-cointegration between daily elec-
tricity demand and daily averaged air temperature series is rejected at the 1% significance level,
supporting the choice of the Chow-Lin method. The results of these statistical tests are not
shown since they are not central to the study’s aims. Derived country-level hourly electricity
demand series are then used to construct an electricity demand index (see Section 5.2.2.1), as a
proxy for the consumption of electricity across the EU ETS zone.

5.2.1.3 Population

Yearly population data for the 27 countries in the electricity demand dataset are obtained from
the World Bank (https://data.worldbank.org/indicator/SP.POP.TOTL) for the 2005-
2019 period. Total population of each country in a given year is the mid-year estimate of the
number of all residents of the country.

14Country-level hourly air temperature series are calculated by taking the average of the gridded ambient air
temperature at 2m above the surface provided by the ERA5 reanalysis (Hersbach et al., 2020) over the area of each
country. These data are retrieved from the Copernicus Climate Change Service (C3S) at the European Centre for
Medium-Range Weather Forecasts (ECMWF).

15The use of temporal disaggregation methods (Chamberlin, 2010) is common in the energy economics lit-
erature. Multiple previous studies have employed similar techniques to obtain high-frequency time series from
low-frequency data (see for example Sharif et al., 2020; Shahbaz et al., 2017).
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5.2.1.4 Climate variables

The present study employs gridded data on climate variables obtained from the ERA5 dataset
(Hersbach et al., 2020) at an hourly temporal resolution and a 0.25 degree (∼27.75 km at the
equator for both longitude and latitude) spatial resolution over the area of the EU ETS zone
during the period under study. Produced by the Copernicus Climate Change Service (C3S) at
the European Centre for Medium-Range Weather Forecasts (ECMWF), this dataset offers the
most comprehensive picture currently available of the global climate and weather (ECMWF,
2020b). Data on temperature of air at 2m above the surface (K)16, total sky direct17 solar
radiation at surface (Jm−2), total precipitation (m) and surface air pressure (Pa) are obtained
directly from the C3S. Wind speed (ms−1) at each grid point is calculated from the eastward
and northward wind vectors at a height of 100m18. Relative humidity (%) values are calculated
using the August-Roche-Magnus approximation (Alduchov and Eskridge, 1996), based on the
2m air and dew point temperatures (K). The original data represent the mean area average of
climate variables over each grid at a given time point (hour).

5.2.1.5 Fossil fuel CO2 emissions

Gridded data on fossil fuel CO2 emissions at a monthly temporal resolution and a 1 degree
(∼111 km at the equator for both longitude and latitude) spatial resolution over the area of the
EU ETS zone during the period under study are obtained from the Open-source Data Inventory
for Anthropogenic CO2 (ODIAC) (Oda and Maksyutov, 2011, 2015; Oda et al., 2018). Derived
from multiple proxies such as point source emissions and satellite remote sensing of night lights,
this database is one of the most temporally and spatially fine-grained data presently available
on global fossil fuel CO2 emissions. Emissions values are expressed as monthly mean of gram
carbon/m2/day.

5.2.2 Methodology

5.2.2.1 Construction of population-weighted electricity demand index

Country-level hourly series of electricity consumption are summarized into a convex combina-
tion, using yearly country-level shares of the total population as the coefficients. Population
shares represent the importance (weight) that should be assigned to electricity demand in each
country under study. The resulting index, hereinafter referred to as population-weighted elec-
tricity demand index, is used as a proxy for the consumption of electricity across the EU ETS

16For easier interpretation, temperatures are converted to degrees Celsius before being used for the empirical
modeling.

17Solar photovoltaic and solar thermal plants are most productive when exposed to direct solar radiation.
18100m is the nearest height to the average hub height of modern land-based wind turbines used for wind power

generation (Wiser et al., 2020).
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zone at a given hour. Mathematically speaking, the population-weighted electricity demand
index at hour t is calculated as follows:

Electricity Demand Index(t) = ∑
it

(
Population Share(t)it ×Electricity Demand(t)it

)
(5.1)

where

Population Share(t)it =
Population(t)it

∑it Population(t)it

(∑
it

Population Share(t)it = 1)

Here, t denotes the time period of interest (in the unit of hour), and the subscript it runs
over the countries that are members of the EU ETS at time t. It should be noted that not all
the 27 countries in the electricity demand dataset were members of the EU ETS from 2005 to
2019. Bulgaria and Romania joined the European Union and the EU ETS in January 2007.
Norway has been a part of the emissions trading scheme since January 2008. Finally, Croa-
tia became an EU member country in July 2013. For this reason, in the construction of the
population-weighted electricity demand index for a given time period (hour), only the data from
the Member States of the EU ETS during the period concerned are used. This means that, for
the periods spanning from March 8, 2005 (20:00) to December 31, 2006 (23:00), from January
1, 2007 (00:00) to December 31, 2007 (23:00), from January 1, 2008 (00:00) to June 30, 2013
(23:00), and from July 1, 2013 (00:00) to December 31, 2019 (23:00), data on 23, 25, 26 and
27 countries, respectively, are utilized for constructing the index. For a given hour t, population
shares are calculated using population estimates for the year in which the time period t lies.
The weighting method is based on the assumption that the hourly population of a target country
throughout the year corresponds to the country’s annual population estimate. This assumption
has its roots in the inherent limitation of the population data that are on an annual frequency.

5.2.2.2 Construction of emissions-weighted climate indices

In order to construct aggregate indicators that could describe, as accurately as possible, climate
conditions across the EU ETS zone, we capitalize on the notion of European hydro-ecoregions
put forward by Wasson et al. (2007). Hydro-ecoregions (hereafter denoted as HER) are defined
as geographical units that exhibit similar climatological, topographic, geological and litholog-
ical characteristics. Wasson et al. (2007) have identified a total of 133 HERs in Europe and
Turkish Thrace, that are further classified into 9 distinct climate classes (aka homogeneous cli-
mate regions) based on several climatic factors: Alpin Mountain, Boreal, Continental Cold,
Hyper Mediterranean, Mediterranean, Oceanic, Temperate, Temperate Mountain, and Temper-
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ate Warm. The EU ETS zone covers 131 HERs that span across 29 countries19 and embody
all the above-mentioned climate classes. Figure 5.1 provides a map of these HERs and their
corresponding climate classes.

Climate Class

Alpin Mountain
Boreal
Continental Cold
Hyper Mediterranean
Mediterranean
Oceanic
Temperate
Temperate Mountain
Temperate Warm

Figure 5.1: Hydro-ecoregions (HERs) and their corresponding climate classes across the EU ETS zone. Data used
for plotting the map are sourced from Wasson et al. (2007).

Given the way the homogeneous climate regions are delineated (so as to minimize intra-
regional and maximize inter-regional differences in terms of climate conditions) (for more de-
tails see Wasson et al., 2007), the present paper presumes that the selected climate variables
(air temperature, solar radiation, relative humidity, wind speed, total precipitation and surface
air pressure) show very little variation within the area of each climate class. In this regard, at a
given time point (hour), the mean area average of climate variables over all the HERs belonging
to the same climate class can well represent the climate conditions in those HERs at that point

1927 post-Brexit EU member countries along with the United Kingdom and Norway. No HER is available for
Iceland and Liechtenstein.
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in time20.
The first step in constructing European-scale emissions-weighted climate indices thus con-

sists in summarizing climate conditions of the EU ETS zone at each hour by climate class. This
is achieved by calculating the average value of each climate variable at the grid points lying
within different homogeneous climate regions. The nine aggregate climate indicators at each
hour are then weighted by the share of fossil fuel CO2 emissions in the corresponding climate
class to total emissions across all climate classes. Since carbon emissions are transmission
channels through which climate variables can affect EUA prices, emissions shares are natural
candidates to represent the importance (weight) that should be assigned to climate variables in
each climate class. For each of the six climate variables, the emissions-weighted index at a
given hour t is constructed as follows:

Climate Index(t) = ∑
j

(
Emissions Share(t)j ×Climate Indicator(t)j

)
(5.2)

where

Emissions Share(t)j =
Emissions(t)j

∑ j Emissions(t)j

(∑
j

Emissions Share(t)j = 1)

Here, the subscript j runs over the nine climate classes. For a given hour t, emissions shares
are calculated using monthly estimates for fossil fuel CO2 emissions, i.e. emissions in the
month in which the time period t lies. Calculation of emissions shares is performed in three
steps. First, monthly gridded emissions are overlayed with the spatial boundaries of each cli-
mate class21, and the mean area average of emissions estimates over all the HERs belonging
to that climate class is used as the measure of emissions in the entire region. Second, emis-
sions estimates (originally expressed in the unit of monthly mean of gram carbon/m2/day) are
multiplied by the total surface area of the climate classes (in m2) to obtain the average monthly
quantity of carbon released per day in the area belonging to each climate class. Finally, the
quantity estimates of carbon released in different climate classes are summed up to provide
the total quantity of carbon released per day (monthly mean) across the entire EU ETS zone.
Emissions shares are obtained by calculating the proportion of emissions released over the area
of each homogeneous climate region out of the total emissions across all homogeneous climate

20For the sake of comprehensiveness, the entire set of homogeneous climate regions–including those overlapping
with Bulgaria, Romania, Norway and Croatia–are used for the construction of emissions-weighted climate indices
over the entire period. Since no climate class is exclusive to these countries, such a choice is not expected to
significantly influence the results.

21In order to match the the spatial resolution of the emissions data to that of the climate variables, the ODIAC
data were disaggregated to 0.25×0.25 degree cells while maintaining values of the original cells. This adaptation
was made to achieve a neatly arranged intersection of grid points with the areas of climate classes, without changing
the accuracy of the data.
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regions.
The underlying assumption of this weighting scheme is that the suggested emissions shares

(calculated based on monthly averages of gram carbon per day) could be regarded as acceptable
proxies for emissions shares at an hourly level. Ideally, the frequencies of emissions shares
and aggregate climate indicators would match. Nonetheless, in the absence of more temporally
fine-grained emissions data, it is well justified to make use of monthly based weighting coeffi-
cients. In view of the slight difference between regional time zones in Europe22–which could
potentially lead to similar intraday patterns of CO2 emissions–the above assumption seems on
the whole to be warranted to hold.

Table 5.1 features summary statistics of the explained and explanatory variables (except
time-based predictors) included in the empirical model (see Section 5.2.2.3), namely the con-
structed electricity demand and climate indices along with emissions allowances (EUA) spot
prices.

Table 5.1: Summary statistics of hourly emissions allowances (EUA) spot prices, electricity demand index and
climate indices from March 8, 2005 (20:00) to December 30, 2019 (10:00). The total number of observations is
33087.

Variable Mean Max Min SD

EUA Price (AC/tonne CO2e) 12.36 53.50 0.01 7.49

Electricity Demand Index (MW) 1395.40 1815.70 975.80 135.21

Air Temperature Index (◦C) 12.30 31.22 -10.94 7.51

Solar Radiation Index (Jm−2) 627288 2273029 0 518677.10

Relative Humidity Index (%) 91.75 98.76 78.28 4.09

Wind Speed Index (ms−1) 5.21 12.22 2.18 1.24

Total Precipitation Index (m) 0.0001 0.00061 0.0000015 0.000068

Surface Air Pressure Index (Pa) 98040 100020 95001 649.7647

5.2.2.3 Empirical modeling of EUA prices based on electricity demand and climate in-
dices

To characterize the predictive impact of climate factors and electricity demand on emissions
allowances prices, the present study employs Extreme Gradient Boosting (Chen and Guestrin,
2016)–a pioneering tree ensemble supervised machine learning algorithm that can be used for
regression predictive modeling. This algorithm can empirically establish (nonlinear) relation-

2218 out of 29 countries under study (17 Member States of the EU together with Norway) share the same time
zone, i.e. Central European Time (UTC+1). Ireland, Portugal and the United Kingdom use Western European
Time (UTC). Lastly, 8 out of 29 countries under study (Finland, Estonia, Latvia, Lithuania, Romania, Bulgaria,
Greece and Cyprus) use Eastern European Time (UTC+2).
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ships between explanatory and response variables, without making any formal distributional
assumptions nor being vulnerable to multicollinearity. As is the case with all predictive models,
Extreme Gradient Boosting does not intrinsically indicate causal relationships between vari-
ables. That being so, the modeling approach proposed here does not imply that a change in
climate conditions or electricity demand leads directly to a change in emissions allowances spot
prices. Instead, we argue that a change in electricity demand and climate conditions is expected
to be associated with a change in emissions, and consequently a change in the demand for emis-
sions certificates. Therefore, evaluating the predictive association between EUA transaction
prices and their explanatory factors is the first step towards establishing any causal relationship
between those variables. The empirical modeling is carried out using log-transformed EUA
spot prices as the explained variable, along with 11 explanatory variables: the electricity de-
mand index, six climate indices (air temperature, solar radiation, relative humidity, wind speed,
total precipitation and surface air pressure) and four time-based features (hour of the day, day
of the week, month of the year and year).

The tree-based model of the Extreme Gradient Boosting algorithm is comprised of a num-
ber of regression decision trees that are trained for predicting a response variable based on the
values of explanatory variables. This model can be expressed in the general form

ŷi = f̂ (xi) =
K

∑
k=1

gk(xi) gk ∈ F (5.3)

where the subscript i indicates the set of N data points used for modeling ({(xi,yi) | i =
1, ...N, xi ∈Rp, yi ∈R}, with p being the number of explanatory variables), and K is the number
of trained regression decision trees utilized by the model. F = {g(x) = wq(x)}(q : Rp → J, w ∈
RJ) denotes the space of regression trees, where q is the structure of each individual tree that
maps a data point to the corresponding leaf score w, and J is the total number of leaves in the
tree (Chen and Guestrin, 2016). The tree growing process of the Extreme Gradient Boosting
algorithm is described by Chen and Guestrin (2016) as follows. A regression tree starts with
a single root node and is extended to a certain depth (i.e. the longest path between the root
node and a leaf) by continually splitting the training data based on all or a subset of explanatory
variables. The result is a tree with a root node, a set of intermediary nodes–that each split
data points by one explanatory variable–and a number of leaves to which prediction scores are
ascribed. The scores assigned to a given observation in the relevant leaves of individual trees are
then added to obtain the ultimate prediction of the explained variable for that observation. The
algorithm decides on splitting points and assigns prediction scores using an enhanced gradient
boosting method, and with the aim of minimizing an objective function that consists of two
parts, namely training loss and regularization:
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L =
N

∑
i=1

L(ŷi,yi)+
K

∑
k=1

Ω(gk) (5.4)

where

Ω(gk) = γJk +
1
2

λ

Jk

∑
j=1

w2
j,k

Here, the squared error loss function L measures the difference between original values of
the explained variable yi and the predicted values ŷi. Jk and w j,k denote the number of leaves
and the prediction score assigned to the jth leaf of the kth regression tree, respectively. The
so-called hyperparameter γ is the minimum loss reduction required to further split a leaf node
of the tree, and λ is the L2 regularization term on the prediction scores. The values of these
two model hyperparameters, together with those of tree-specific parameters control the learning
process of the algorithm and need to be designated in advance (Chen and Guestrin, 2016).

To avoid overfitting23, hyperparameters of the Extreme Gradient Boosting algorithm are
tuned using grid search, and each combination of model hyperparameters are evaluated using
5-fold cross-validation with 5 repetitions. The model performance metric for the evaluation of
each hyperparameter combination is the root-mean-square error (RMSE), which measures the
average prediction error made by the model in predicting the outcome of interest for an obser-
vation. More precisely, the hyperparameter combination that minimizes average RMSE across
all folds is selected as the optimal tune, and the model with the optimal hyperparameter config-
uration is retained as the base model for further analysis.

Table 5.2 presents the domain of hyperparameters defined for the sake of the present anal-
ysis. The number of trees used for boosting, and the L2 regularization term (λ ) are fixed at
100 and 1, respectively. The choice of possible hyperparameter values is motivated principally
by recommendations of Boehmke and Greenwell (2019) and Thakur (2020). The discrete grid
of hyperparameter values includes 1296 unique combinations of hyperparameter values. Each
combination is evaluated 5× 5 times during the model validation procedure. This leads to a
total of 1296×25 tree ensemble models that are trained and evaluated to choose optimal hyper-
parameter values for the Extreme Gradient Boosting algorithm.

Altering hyperparameter values can affect the performance and training behavior of the
Extreme Gradient Boosting algorithm in different ways. Lower values of the learning rate η

make the model more robust to overfitting. Increasing the the minimum loss reduction factor γ

23Although the present study adopts powerful preventative measures against overfitting, it should be noted that
overfitting does not necessarily conduce to poor generalization when it comes to methods used in modern machine-
learning (e.g. tree-based ensemble algorithms and neural networks). Belkin et al. (2019) provide empirical evi-
dence on good generalization behavior of the families of “interpolating” functions explored by boosting with
decision trees and random forests.

125



Table 5.2: Hyperparameter configurations used for evaluating tree ensemble models.

Hyperparameter Range Default Value Selected Values for Tuning

γ [0,∞) 0 {0.1,1,10}

η [0,1] 0.3 {0.05,0.1,0.2,0.3}

Maximum Depth {1..∞} 6 {3..8}

Minimum Child Weight [0,∞) 1 {7,10,20}

Column Sample by Tree (0,1] 1 { 3
11 , 6

11 }

Sub-sample (0,1] 1 {0.3,0.5,0.7}

leads to a more conservative algorithm. The number of terminal nodes in a a tree is controlled by
the maximum depth parameter, decreasing the value of which leads to a more conservative and
so less vulnerable to overfitting model. Minimum child weight specifies the minimum sum of
instance weight (hessian) needed in a child node. A smaller minimum child weight may lead to
the learning of relationships that might relate uniquely to the sample used for tree construction,
therefore increasing the complexity of trees and their susceptibility to overfitting. The fraction
of explanatory variables used for constructing each tree is determined by a parameter called
column sample by tree. The sub-sampling of explanatory variables occurs once for every tree
built. By default this parameter is set to 1 meaning that all explanatory variables are used. A
column sample by tree value less than 1 results in a more conservative algorithm. Finally, the
fraction of data that is used to build trees in each boosting iteration is regulated by the sub-
sample parameter. If this parameter is set to 1, all data points are utilized to grow a tree–an
approach referred to as regular boosting. A sub-sample value less than 1, makes the model
randomly sample a subset of training data prior to growing trees. The latter is referred to as
stochastic boosting.

The empirical modeling framework used in the present study is not likely to suffer from
serial correlation in the time series data for three reasons. First, during the repeated 5-fold cross-
validation procedure used for identifying the optimal hyperparameter configuration, the data are
divided into training and validation data sets in a random manner. Second, when training the
tree ensemble models, we adopt a stochastic boosting approach (as contrasted with regular
boosting), which makes the algorithm randomly select–without replacement–only a fraction of
the training data at each iteration. Ultimately, the unpopulated times series of hourly data used
for modeling present natural gaps and do not necessarily include adjacent observations. Thus,
the odds of adjacent observations being used by the algorithm at each iteration is insignificant.
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5.2.2.4 Characterizing the predictive impact of electricity demand and climate indices
on EUA prices

Characterization of the predictive impact of electricity demand and climate indices on EUA
prices is carried out in two steps. The first step consists of computing permutation feature im-
portance (Breiman, 2001; Fisher et al., 2019) of those indices, and ranking them based on their
significance for the prediction of emissions allowances spot prices. The importance of a given
index is measured by calculating the increase in the base model’s prediction error (measured by
RMSE ratio) after permuting–with repetition–the values of the index. The algorithm is based on
the simple idea that shuffling the values of an index breaks the associations between the index
and the true outcome of interest24 (see Molnar, 2020). The larger the increase in prediction error
(loss) after permuting an explanatory variable, the more important the variable is for predicting
the response variable; correspondingly, if permuting the values of a variable leaves the base
model’s prediction error unaltered, the variable is considered unimportant since in such a case,
the model disregards the variable for the prediction (Molnar, 2020). Permutation of indices is
repeated 1000 times to construct the null distribution of importance measures. In formal terms,
the feature importance measure of an explanatory variable p is computed as

Feature Importancep =
L(yi, f̂ (xperm:p

i )

L(yi, f̂ (xi))
(i = 1, ...N; xi ∈ Rp; yi ∈ R) (5.5)

where L is the RMSE loss (error) function and xperm:p
i is the ith data point with the pth index

replaced by a randomly sampled value, without replacement, from another data point. As the
The permutation feature importance algorithm of Fisher et al. (2019) is based on resampling
without replacement, a permutation test can be carried out with the null hypothesis that the
feature importance of the explanatory variable p is 1:

H0 : Feature Importancep = 1 (5.6)

If the variable p is not important in predicting the outcome of interest, one should expect that
the values for feature importance measure of the variable fluctuate around 1. Indeed, the afore-
mentioned permutation test offers a framework to construct confidence intervals and p-values
from resampling without replacement, hence allowing for determining statistical significance
of a variable’s importance.

24As reminded by Molnar (2020), shuffling the values of an explanatory variable destroys its relationship not
only with the outcome variable, but also with other explanatory variables. In this regard, all interactions among
explanatory variables are naturally taken into account by the permutation feature importance algorithm. Due to
this characteristic, the algorithm nevertheless suffers form the disadvantage of incorporating the importance of
any interaction between a pair of variables into the importance measure of both variables. Moreover, not only
can the permutation feature importance be biased by unrealistic data instances if explanatory variables are highly
correlated, but also including two highly correlated variables can decrease the importance of each variable by
splitting the importance between the two (Molnar, 2020).
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In the second step, we describe how electricity demand and climate indices influence the pre-
dicted outcome of the base model on average. For this aim, mean-centered accumulated local
effects (Apley and Zhu, 2020) are calculated and plotted for every single index. Accumulated
Local Effects (ALE) are model-agnostic global explanation measures used for the evaluation of
the relationship between explanatory variables and the response variable. According to Molnar
(2020), the construction of the ALE plot of a numerical explanatory variable is conducted as
follows. First, the distribution of the variable is divided into a number of intervals. For all the
data points in each interval, the value of the explanatory variable of interest is replaced with
the lower and upper bounds of the defined interval, and the difference in the model’s predicted
outcome for each data point is calculated. This difference in prediction is considered the “ef-
fect” of the explanatory variable for an individual data point that lies in the given interval25.
The effects of all data points within the interval are then added up and divided by the number
of data points that belong to the interval, resulting in an average that represents the “local” ef-
fect of the variable. Ultimately, to find the uncentered ALE of an explanatory variable value
that corresponds to the interval, average effects across all previous intervals are “accumulated”.
In mathematical terms, the uncentered ALE of a numerical explanatory variable p at a certain
value x is estimated as

ˆ̃fp,ALE(x) =
lp(x)

∑
l=1

1
np(l)

∑
i:x(i)p ∈Np(l)

[
f̂ (zl,p,x

(i)
\p)− f̂ (zl−1,p,x

(i)
\p)

]
(5.7)

where Np(l) denotes the lth interval (aka neighborhood) among the intervals into which the
distribution of the variable p is divided, and np(l) is the number of data points whose value of
the variable p lies within the interval Np(l). Starting and end points of this interval are denoted
by zl−1,p and zl,p, respectively. The outer sum runs from the first interval up to and including
the interval lp(x) to which x belongs. In the last resort the uncentered ALE is mean-centered so
that average effect over the data is zero (Apley and Zhu, 2020; Molnar, 2020):

f̂p,ALE(x) = ˆ̃fp,ALE(x)−
1
N

N

∑
i=1

ˆ̃fp,ALE(x
(i)
p ) (5.8)

As argued by Molnar (2020), the definition of intervals for calculating the ALE of an ex-
planatory variable is rather subjective. Using a small number of intervals improves stability of
the estimates but at the cost of compromising on the visualization of the real complexity of the
prediction model. Increasing the number of intervals, on the other hand, results in more accu-
rate albeit shaky ALE plots. For the sake of this study, we use the percentiles of the distribution

25The use of differences in the formula blocks the effect of other (possibly correlated) explanatory variables.
Indeed, ALE estimates are able to determine the pure effect of a variable without mingling the effect with the
effects of correlated features.
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of explanatory variables to define ALE evaluation intervals. Such a choice guarantees that there
is the same number of data points in each interval, with the disadvantage that the length of in-
tervals can be dissimilar. In the case of extremely skewed variables, the latter attribute should
warrant a cautious interpretation of interval-wise effects.

Data analysis, modeling and visualization in the present study have been performed using R
programming language (R Core Team, 2020; Kuhn, 2008; Molnar et al., 2018).

5.3 Results
Amongst the 1296 unique combinations in the hyperparameter grid space (see Section 5.2.2.3),
the hyperparameter values presented in Table 5.3 were selected as the optimal configuration
(tune) since they minimized average RMSE across all folds.

Table 5.3: Optimal hyperparameter configuration (tune) of the tree ensemble model, used as the base model for
further analysis (average RMSE = 0.252; average R2 = 0.963)

Hyperparameter Best Tune

γ 0.1

η 0.1

Maximum Depth 8

Minimum Child Weight 20

Column Sample by Tree 6
11

Sub-sample 0.7

Permutation feature importance measures (based on 1000 repetitions) for the electricity de-
mand and climate indices are illustrated in Figure 5.2. The importance of each index is measured
by calculating the increase in the base model’s prediction error (RMSE ratio) at each repetition,
when the values of the index are permuted.

Electricity Demand

Air Temperature

Solar Radiation

Relative Humidity

Wind Speed

Total Precipitation

Surface Air Pressure

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Permutation Feature Importance (Loss: RMSE Ratio)

Figure 5.2: Permutation feature importance measures (RMSE ratios) for electricity demand and climate indices.
I-shaped bars represent 5% to 95% inter-quantile ranges of importance values from 1000 repetitions. The solid dot
within the interval signifies median importance.
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From Figure 5.2, two key findings emerge. First, the null hypothesis of feature unimpor-
tance (as expressed in Equation 5.6) is rejected at a significance level of 0.1 for the electricity
demand index and all climate indices. None of the 90% confidence intervals for feature impor-
tance estimates include 1, leading to the conclusion that climate factors and electricity demand
are indeed of predictive importance within the proposed empirical modeling framework. This
is an important finding in the understanding of the importance of explanatory factors for the
prediction of emissions allowances prices. Second, among different indices, air temperature
proves to be the most important feature for predicting emissions allowances prices, followed
by electricity demand, surface air pressure and solar radiation. Wind speed, relative humidity
and total precipitation are less important variables (in decreasing order of importance) when it
comes to the prediction of emissions allowances prices.

The assessment of the predictive impact of electricity demand index and climate indices
on EUA prices is complemented by the estimation of ALE values for each index. Figure 5.3
demonstrates ALE plots of the electricity demand and climate indices. Different panels of this
figure show how the predicted outcome of the base model changes, compared to the average
prediction, at different values of each index.

A major implication of Figure 5.3 is that the predictive relationship between emissions
allowances prices and electricity demand and climate indices is nonlinear in nature. This is in-
dicative of the inappropriateness of adopting a linear modeling framework for establishing the
association between carbon price and its electricity demand-related and climatic explanatory
factors.

The inspection of individual panels of the figure permits to identify the effect that each sin-
gle index, isolated of all others, has on the output. Starting from the top panel, the ALE curve
of electricity demand exhibits an overall increasing–yet non-monotonic–behavior from low to
high index values. Given the method of calculation of ALE values, one should however be
careful when interpreting this behavior on a non-local basis, i.e. across different intervals. The
main effect of electricity demand is persistently lower than average prediction of the data at
index values below 1382 MW (corresponding to the 55th percentile). For the intervals in which
the electricity demand index value is above 1591 MW (corresponding to the 90th percentile),
the model predicts higher values of log-transformed EUA prices with respect to the average pre-
diction. This finding is in accordance with expectations and previous findings, indicating that
in the short term and due to production rigidities, higher demand for electrical energy trans-
lates directly into an increase in demand for EUA credits and therefore into higher EUA prices
(Ampudia et al., 2022). Model predictions for moderate values of the electricity demand in-
dex (i.e. from around 1382 to 1591 MW corresponding to the 55%-90% inter-quantile range)
mainly correspond to mean prediction. Overall, the predictive impact of electricity demand on
emissions allowances prices is more pronounced in the extremes of the distribution.
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Figure 5.3: Mean-centered accumulated local effects (ALE) of electricity demand and climate indices in predicting
EUA prices over the study period. The distribution of data points for each index is displayed on the margin of
horizontal axis.
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At temperatures below about 7◦C (corresponding to the 29th percentile), the predicted val-
ues of (logarithmic) EUA prices are persistently lower than average prediction of the data. At
index values above 11.5◦C (corresponding to the 46th percentile), the model persistently pre-
dicts higher values of log-transformed EUA prices with respect to the average prediction. In
cool temperatures (7-11.5◦C, corresponding to the 29%-46% inter-quantile range), model pre-
dictions are mostly in line with the average prediction. When comparing these results to those
of the existing literature, an important finding arises as to the main effect of extreme heat or
extreme cold on carbon prices. While prior research suggests that both high and low tem-
peratures positively influence carbon prices (see for example Mansanet-Bataller et al., 2007),
the findings of the present study demonstrate that the effect of air temperature on predicted
emissions allowances prices (unaccompanied by the potential simultaneous effect of electricity
demand) is greater than average prediction of the data only in the upper half of the distribution.
The positive pure effect of air temperature on emissions allowances prices in upper percentiles
can be attributed to the reduced efficiency (increased emissions) of thermal (fossil fuel) power
plants and, to a lesser extent, the reduced efficiency of solar photovoltaic panels in warmer
climates. If any, the increase in non-electric (fossil fuel) energy consumption for cooling in
high temperatures could only contribute to the intensification of the observed positive effect of
air temperature on EUA prices in warm climates. Interestingly, however, the expected positive
effect of low temperatures on EUA prices through increasing non-electric (fossil fuel) energy
consumption for heating tend to be offset by the increased efficiency of thermal (fossil fuel)
power plants in low temperatures–a phenomenon that allows such plants to produce the same
amount of power with less fuel consumption, and hence emit less CO2. Needless to say, the
expected positive effect of both low and high air temperatures on the price of carbon through
increasing the electricity demand for heating and cooling purposes has already been captured
by the electricity demand index itself (note that both cold and hot climates are associated with
a high demand for electricity (see Figure 5.4 in Section 5.4), with low temperatures pertaining
to a relatively higher electricity demand compared to high temperatures).

The ALE curve of solar radiation does not exhibit a noteworthy overall increasing or de-
creasing behavior. Except for a few spikes observed in the intervals in which there is no or
very little solar radiation (i.e. below 8,522 Jm−2, corresponding to the the 8th percentile of the
distribution), model predictions at different values of the solar radiation are close to the average
prediction. At index values from 8,522 Jm−2 to 713,290 Jm−2 (corresponding to the 8%-60%
inter-quantile range), the pure effect of solar radiation on the prediction is slightly negative in
the majority of intervals. Above the 60th percentile of solar radiation index, model predictions
are marginally greater than average prediction.

Up to the index value of 92.95% (corresponding to the 53rd percentile) for relative humidity,
model predictions are always lower than average predictions, while exhibiting a non-monotonic
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behavior. For the intervals with index values higher than 92.95%, the estimated pure effect of
relative humidity on the prediction of EUA prices is persistently positive. These findings are
in accordance with the premise that high atmospheric humidity has an adverse effect on the
efficiency of cooling systems in the context of climate change (Wilbanks et al., 2008), possibly
leading to higher CO2 emissions and higher demand for emissions allowances.

In the intervals corresponding to relatively low wind speed values (below 5.24 ms−1), pre-
dicted emissions allowances prices are constantly higher than average prediction. Above 5.24
ms−1 (corresponding to the 56th percentile of wind speed values), ALE estimates in all intervals
are continuously non-positive, with the minimum value of the feature effect achieved at 8.77
ms−1 (corresponding to the 98th percentile). For extremely high wind speed values (above 8.77
ms−1), the feature effect on the prediction of EUA prices becomes less pronounced, although it
is still negative. These findings are consistent with expectations that higher (lower) potential for
wind electricity generation is associated with lower (higher) CO2 emissions, hence less (more)
demand for for EUA certificates.

Below the index value of 1.12× 10−4 m (corresponding to the 59th percentile), the ALE
estimates for total precipitation are negative in almost all intervals. Above the total precipi-
tation index of 1.12× 10−4 m, the model predicts slightly higher values of log-transformed
EUA prices with respect to the average prediction in the majority of percentiles, with a level
shift observed in the ALE curve at the 96th percentile. These results indicate that, at least at an
hourly scale, higher (lower) precipitation levels are not, as might be expected, associated with
lower (higher) demand for EUA credits. This finding could be explained by the fact that hourly
precipitation levels mainly affect small-scale run-of-river hydroelectricity, as a climate-related
renewable energy (CRE). According to the European Rivers Network26, although hydroelec-
tric power accounts for about 80% of electricity generation from renewable resources and 19%
of total electricity generation in Europe, the share of run-of-river hydroelectricity in Europe’s
electricity generation is only about 3%. As a consequence, the pure effect of this feature on the
prediction at different values does not bear any practical significance in a real-world sense27.

Ultimately, the ALE of surface air pressure exhibits an inverted U-shaped curve, with the
main feature effect being consistently negative for the intervals with index values below 96896

26https://www.ern.org/
27As argued by Ebinger and Vergara (2011), the extent to which hydroelectric power is affected by variations of

climate variables depends on (1) the availability of hydropower resources (which itself depends on several meteo-
rological factors, including but not limited to precipitation levels) and (2) the complexity of hydropower systems.
This latter could be identified with the relevance of hydropower generation for the whole power system in the
specific region under study (whether hydroelectricity is complementary to (for example France) or complemented
by (for example Norway) other power sources), as well as geographical dispersion and the level of integration
of hydropower through transmission capacity (Ebinger and Vergara, 2011). A comprehensive analysis of climate
impacts on the share of electricity production from hydropower (which could ultimately lead to a change in emis-
sion levels and consequently the demand for carbon credits) is beyond the scope of this paper and left for future
research.
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Pa (corresponding to the 5th percentile) and above 99029 Pa (corresponding to the 93rd per-
centile). In the 5%-93% inter-quantile range of surface air pressure values (from 96896 to
99029 Pa), the sequence of interval-wise feature effects oscillates between negative and posi-
tive values around zero, with the global maximum attained at 97279 Pa, or the 11th percentile
of index values. This finding may be attributed to the potential impact of surface air pressure on
the efficiency of fossil fuel–fired power plants. Nonetheless, given that previous empirical stud-
ies have been inconclusive on whether atmospheric pressure can exert a significant influence
on net power plant efficiency (see Loew et al., 2020), further research is needed to describe the
dynamics of the relationship between carbon emissions and surface air pressure.

5.4 Discussion

In contrast to many machine learning algorithms, decision tree algorithms (including Extreme
Gradient Boosting) are extremely robust to correlated features. ALE estimates are likewise un-
biased in the case of existence of high correlation among features. Nevertheless, if features are
strongly correlated, the interpretation of ALE plots remains rather challenging. The reason is
that, when two variables are highly dependent, it is only reasonable to analyze their joint si-
multaneous effect rather than the individual effect of each variable in isolation. This drawback
does not relate uniquely to ALE estimates though; it is a general problem of using strongly
correlated features for empirical modeling. In the particular case of ALE plots, and as argued
by Molnar (2020), an interpretation of the effect across intervals (i.e. interpreting changes in
the main effect of a feature for a data point (compared to the average prediction) for differ-
ent values, with the assumption that the other feature values are fixed) is not permitted if the
explanatory variables are strongly correlated. Indeed, although interval-level effects are accu-
mulated to construct a smooth ALE curve, the effects are estimated locally using different data
points. Therefore, in the presence of high correlation among variables, the interpretation of the
effect can only be local (Molnar, 2020).

In light of the above-mentioned consideration and as a robustness check to validate the in-
terpretations made in the context of the present study, we performed correlation analysis of
electricity demand and climate indices. With four exceptions (see below for details), the corre-
lation between any pair of indices was found to be weak–albeit statistically significant due to
large sample size. In order to evaluate the practical significance of correlations for predictive
purposes, a linear model was trained to predict each index based on each of the other indices,
and the coefficient of determination was used as the measure of strength of association (aka
effect size) between indices. Figure 5.4 demonstrates a pairwise scatter plot, along with density
plots of the indices and a pairwise linear model-based variance explained, measuring how much
of the variation in one of the indices is associated with variation in another index.

With the exception of four instances (Solar Radiation-Relative Humidity, Solar Radiation-
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Figure 5.4: Pairwise scatter plot of electricity demand and climate indices, accompanied by smoothed conditional
means using generalized additive model with integrated smoothness as the smoothing method (lower triangular
portion of matrix); Density plots of electricity demand and climate indices (main diagonal of matrix); Pairwise
coefficient of determination (R2), or the proportion of variation in an index that is predictable from another index
(upper triangular portion of matrix).

Air Temperature, Air Temperature-Relative Humidity28 and Air Temperature-Electricity De-
mand), all combinations of variables exhibited very low values of variance explained. The
coefficient of determination observed for any pair of indices reaches at the maximum 73%, a
value that is reached for the Solar Radiation-Relative Humidity pair. Although these findings
are not–in practical sense–significant enough to be cause for concern, special emphasis should

28Relative humidity is calculated based on air and dew point temperatures. Hence, a high (negative) association
between relative humidity and air temperature is expected.
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be put on the need to interpret with caution the permutation feature importance measures and
the ALE estimates across intervals in the case of solar radiation, air temperature, relative hu-
midity and electricity demand indices.

Considering the entire set of features used for empirical modeling in the present paper, the
air temperature index exhibits the highest median importance (although accompanied by the
widest 90% confidence interval among all features) for predicting emissions allowances prices.
Such high importance can be partly explained by the presence of interaction effects between air
temperature and other variables such as solar radiation and relative humidity. The importance
of total precipitation in predicting emissions allowances prices is rather limited compared to all
other indices, mainly to the modest share of small-scale run-of-river hydroelectricity in total
electricity production across Europe (see Section 5.3). Among the three indices that directly
affect climate-related renewable energies (wind, solar photovoltaics, and run-of-river hydro-
electricity), solar radiation proves to be the most important feature for predicting emissions al-
lowances prices, followed by wind speed. Total precipitation shows relatively lower importance.
Despite the larger share of electricity production by wind than solar power in Europe (Eurostat,
2022), wind speed is slightly less important–in permutation feature importance sense–than solar
radiation for the prediction of EUA prices. A possible explanation for this finding is that solar
radiation perhaps interacts with other features (such as air temperature and relative humidity)
and the interaction effects are included in the importance measurement of solar radiation. As
discussed in Section 5.2.2.4, this is an inherent limitation of the permutation feature importance
algorithm.

A venue for future research includes the investigation of the relationship between climate
derivatives and the price of emissions allowances traded on the EU ETS. Climate derivatives
are a class of financial contracts used for hedging against financial losses related to fluctuations
in climate conditions (Jewson and Brix, 2005). Financial instruments associated with a variety
of climate variables such as air temperature, rainfall, snowfall, sunshine, wind speed, etc. are
traded in over-the-counter (OTC) and exchange weather markets across the globe, with the dom-
inance of North American market in terms of development (Hess, 2012; Buckley et al., 2002).
Previous research has found that there exists a close connection between energy and weather
markets, in the sense that climate factors are correlated with energy prices (Hess, 2012). As
a particular example, Considine (2000) argues that, in regions where there is a real need for
heating (cooling) in winter (summer), electricity spot market prices are exceedingly sensitive
to forecasts of unusually high or low temperatures. In a similar vein, it could be argued that
weather forecasts–perhaps more importantly than contemporaneous weather conditions–can af-
fect price formation in carbon spot (and derivatives) markets, hence implying a connection
between climate derivatives markets and carbon emission trading. In the European context, the
following two points should, however, be noted. First, although experiencing steady growth
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over the last decades, the European climate derivatives market is not as developed as its Amer-
ican counterpart (Buckley et al., 2002), mainly because energy suppliers as well as consumers
are relatively less concerned about climate risk. The reason may lie in less extreme variations in
weather, less sharp differences between the seasons, and smaller temperature spread in Europe
compared to North America–and the United States in particular. Second, the most common
underlying of European climate derivatives is temperature, and the proportion of contracts re-
lated to other climate factors is rather limited (see Buckley et al., 2002). This sets a limit on the
number of climate factors that could be studied in the context of carbon-climate markets rela-
tionship. In any case, future research should build on the initial empirical findings in the present
study and further examine the effects of climate factors on the price of emissions allowances–
especially those traded in the derivatives market29–by including climate forecasts.

Owing to the fact the analysis was carried out on a time period spanning across the first
three phases of the EU ETS,30 phase-wise characterization of the relationship between elec-
tricity demand and climate factors and emissions allowance prices is not possible in context of
this study. Thanks to the inclusion of time-based features (hour of the day, day of the week,
month of the year and year) in the predictive model that can control phase-specific effects, this,
however, does not pose a serious limitation for the interpretation of the obtained results. That
having been said, phase-wise analyzes could produce interesting findings that account more for
specificities pertaining to individual phases, such as relatively generous allowance allocation in
the first (pilot) phase of the scheme (Oberndorfer, 2009) as well as substantial uncertainty and
high volatility associated with EUA prices during the first phase (Bredin and Muckley, 2011),
or in the years corresponding to the COVID-19 crisis era (2020-2022). These are important
issues to be explored in future research.

5.5 Conclusion

The aim of the present research was to examine the predictive impact of electricity demand
and climate factors on spot prices of emissions allowances during the first three phases of the
European Union Emissions Trading System (EU ETS). Capitalizing on the concept of hydro-
ecoregions from hydrology and environmental science, six emissions-weighted climate indices

29As documented by Cludius and Betz (2020), electricity generators participate more actively in the carbon
derivatives market than in the spot market with the aim of hedging power forward sales. That said, trade in
allowances in the spot market was significant in the first three phases of the EU ETS, although the volumes on the
spot market have been in decline since phase 2 (Bredin and Parsons, 2016).

30The bigger the size of the input data, the higher the likelihood that the Extreme Gradient Boosting algorithm
has a good performance in learning the relationship between explained and explanatory variables. This explains
why models were trained over the entire data period (2005-2019) instead of splitting the period into three sub-
periods each applicable to one phase (i.e. 2005-2007 for the first phase; 2008-2012 for the second phase; and
2013-2019 for the third case). Moreover, the results obtained from separate models trained on data sets with
heterogeneous data sizes (as would be the case with the three trading periods under study) could not be readily
compared, hence limiting the generalizability of the findings.
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were constructed to accurately represent climate conditions across the EU ETS zone. Those
indices, along with a population-weighted electricity demand index were employed for the
empirical estimation of emissions allowances prices within an advanced predictive modeling
framework equipped with novel methodological approaches to results interpretation.

The most obvious finding to emerge from this study is that electricity demand and all cli-
mate factors proved to be important for estimating carbon credits transaction prices during the
first three trading periods of the ETS, with air temperature and electricity demand being most
relevant to emissions allowances prices, and total precipitation and relative humidity being the
least relevant features to the target. The results also indicate that the relationship between emis-
sions allowances prices and the explanatory factors for such prices was not linear.

The empirical findings in this study should enhance our understanding of the impact of
climate fluctuations on the most prominent market-based measure to reduce CO2 emissions in
Europe. On a related note, the provision of renewable energy development–as a complementary
tool to the emissions trading scheme–will be essential for addressing climate change on the part
of the EU countries. Hence, careful examination of the relevance of climate factors directly
related to renewable energy production (e.g. solar radiation, wind speed and total precipitation)
to the formation of carbon prices offers some insight into the complex interplay between these
two principal instruments for the reduction of CO2 emissions.

Finally, it should be recalled that the present study did not try to induce causal relation-
ships between carbon prices and electricity demand and climate factors. Instead of attempting
to make an observation-based causal claim about such relationship, the paper proposed a pre-
dictive modeling framework for the estimation of emissions allowances prices based on the
observed association between those prices and a set of European-scale electricity demand and
climate indices. Determining whether this association is indicative of a causal relationship be-
tween carbon prices and electricity demand and climate variables is beyond the scope of any
statistical analysis per se. Given the exploratory nature of this study, it is thus unquestionably
worthwhile for future research to investigate further into the identification of the underlying
mechanisms and processes through which electricity demand and climate factors can influence
EUA transaction prices.
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CHAPTER6
General Conclusion

There is a direct relationship between global warming and the emission of carbon dioxide (CO2)
and other greenhouse gases. As far as European countries are concerned, the development of
renewable electricity production and the European Union Emissions Trading System (EU ETS)
are two main tools for reducing CO2 emissions and dealing with climate change. The main
objective of this doctoral project was to examine climate variables as explanatory factors for
CO2 emissions, and to explore how the main tools mentioned above can help reduce emissions
at French and European level. This principal objective was pursued in four related but distinct
essays on the association between climate and carbon emissions–in the provision of climate
change mitigation policies, each addressing one or multiple sub-objectives.

Key questions about the “future” of electricity generation and alternative power generation
technologies need to be understood by innovative methods that would possibly allow for a care-
ful evaluation of the “past”. The first essay (see Chapter 2) aims to attain this clear goal by
exploring possible emission outcomes that could have occurred under different conditions of
electricity production in France over the 2013-2021 period. This essay attempts to characterize
the predictive impact of climate-related renewable electricity generation (i.e. wind, solar photo-
voltaic, and small-scale run-of-river hydroelectric power) on daily CO2 emissions in the French
electric power system.

For this aim, the chapter presents a state-of-the-art three-step machine learning-based method-
ology that allows a detailed description of the link between climate-related renewable electricity
production and CO2 emissions per unit of electricity generated in France. In the first step, a tree-
based ensemble model is trained to empirically learn the association between electricity sector
emissions and the electric energy produced by different fuel types to the granularity of days
over a nine-year period. With the help of cutting-edge post hoc interpretability methods, vari-
ous forms of information on the nature of such relationship are then extracted from the learning
model. Next, a statistically based counterfactual analysis framework is proposed to quantify,
for the first time, the predictive impact of (unexploited) climate-related renewable electricity
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production potential on CO2 emissions over the period considered. Finally, four counterfactual
scenarios of increased climate-related renewable electricity production in France over the study
period are explored, and the optimal mix of renewable energy sources for minimizing coun-
terfactual estimates of emissions and the intermittency of climate-related renewable electricity
production under each scenario is identified.

It is expected that the first essay will prove useful for broadening our understanding of en-
vironmental impacts of electricity generation, and serve as a reference for subsequent research
on implementation of sustainable energy policies. The study will hopefully appeal to scholars
engaged with the debates surrounding economics and policy of renewable energy vis-à-vis cli-
mate change and variability.

Decarbonizion of the power sector, as a crucial factor in mitigating climate change, is an en-
vironmental challenge responding to which requires an in-depth understanding of explanatory
factors behind electricity generation-related emissions. While electricity supply and demand
are closely connected with climate conditions, there has been little empirical analysis of how
and to what extent climate impacts on the demand and supply of electricity translate into green-
house gas emissions in the electricity sector. To address this knowledge gap, the second essay
(see Chapter 3) sets out a data-driven predictive modeling framework for investigating the ob-
served association between hourly CO2 emissions in the French electric power system and a
comprehensive set of climate factors over the 2013-2020 period.

This chapter makes several noteworthy contributions to the debate on the relationship be-
tween electricity generation and climate. The study’s methodological contribution lies in for-
mulating a novel interdisciplinary approach to constructing electric power-weighted climate
indices from gridded climate variables and regional power indicators, based on the principal
mechanism through which each climate factor can affect emissions in the electricity sector.
Complex nonlinear relationships between electricity sector emissions and their climatic predic-
tors are characterized, for the first time, employing a cutting-edge regression predictive mod-
eling technique. The empirical modeling framework is further equipped with advanced post
hoc interpretability methods in machine learning, allowing the extraction of various forms of
information on the nature of such relationships.

It is expected that the second essay will prove invaluable for expanding our understanding
of the sensitivity of electricity sector emissions to climate change and variability, while offer-
ing a flexible methodological framework that can easily be re-imagined for the other purposes
other than characterization of the determinants of emissions from electricity production. In this
regard, study will hopefully appeal to scholars engaged with carbon emissions reduction in the
power sector.

As the European Union’s central tool for reducing greenhouse gas emissions in a cost-
effective manner, the European Union Emissions Trading System (EU ETS) has attracted much

140



interest on the part of economics research community. The third essay (see Chapter 4) conducts
a spatio-temporal evaluation of the environmental effectiveness of this scheme in its first three
phases (2005-2019). The chapter puts forward an innovative predictive modeling framework
for causal inference based on counterfactuals. The proposed approach capitalizes on the statis-
tical structure of regional climate-emissions relationships to estimate counterfactual fossil fuel
CO2 emissions over the period following the beginning of each phase, and examines the impact
of the EU ETS by comparing realized monthly emissions with counterfactual estimates across
European socio-economic regions.

The third essay’s methodological contribution lies in adopting a novel approach to coun-
terfactual estimation of CO2 emissions, at the finest possible temporal (monthly) and spatial
(regional) scales, based on the most comprehensive set to date of climatic predictors of emis-
sions that themselves are not influenced by policy instruments. Such an approach extends and
enhances our understanding of determinants of regional fossil fuel carbon emissions across
Europe while allowing for evaluating the environmental effectiveness of the EU ETS. In this
regard, the study explores the intersection between two streams of environmental and energy
economics literature by contributing to the debates on explicative factors behind CO2 emissions
and effectiveness evaluation of the European carbon market.

From a practical point of view, the region-based spatio-temporal analysis proposed in Chap-
ter 4 may complement existing firm, sector, country and EU-level analyses of the effectiveness
of the EU ETS in reducing anthropogenic carbon emissions throughout its first three phases. It is
expected that this chapter will be of wide interest to scholars engaged with discussions surround-
ing climate change and emissions reduction via carbon markets. Thanks to the documentation
of findings in clear and detailed writing, the study is readily accessible to climate policy-makers
in Europe, who may seek ex-post empirical analyses that shed light on the achievement level of
the trading system’s main target (i.e. emissions reduction) in the previous trading periods.

Exploring climate-related predictors of carbon prices in the European carbon market was
the topic of the fourth essay (see Chapter 5). The major objective of this chapter was to inves-
tigate the predictive impact of climate conditions and electricity demand on hourly spot prices
of emissions allowances during the first three trading periods of the EU ETS (2005-2019). Re-
lying on data of incomparable spatio-temporal granularity and scope in the existing literature,
the study sets out an ensemble tree-based predictive modeling framework for estimating carbon
emissions allowances prices based on the explanatory variables.

The fourth essay makes several noteworthy contributions to the empirical analysis of the
EU ETS, and more particularly the determinants of emissions allowances prices in this carbon
market. The study’s methodological contribution lies in formulating an innovative interdisci-
plinary approach to constructing European-scale electricity demand and climate indicators that
embrace the broad spectrum of climate conditions across the EU ETS zone. The complex non-
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linear relationship between the price of carbon and the utilized predictors, namely electricity
demand and climate conditions, is characterized, for the first time, using a cutting-edge statis-
tical modeling framework. Various forms of information on the nature of such relationship are
then extracted from the model by means of advanced post hoc interpretability methods.

From a policy application point of view, the inclusion of predictor variables that are directly
related to electricity production from climate-related renewable energy (wind, solar, and run-
of-river hydropower) sources provides new empirical insights into the interconnections between
the potential for renewable electricity generation and the leading climate policy instrument in
Europe. In this regard, the results of Chapter 5 will lead to a deeper understanding of the impact
of climate variability on the most prominent mechanism for reducing CO2 emissions in Europe.
The study will hopefully appeal to scholars engaged with the dynamics of market-based envi-
ronmental policies on a more specific level.

Despite the fact that the four studies in this dissertation significantly contribute to the dis-
course on the complex climate-emissions nexus and the functioning of climate change mitiga-
tion tools in Europe, some questions remain regarding the extension of research findings and
conclusions to non-European contexts and/or future time periods. Indeed, the dissertation is
concerned with ex post (backward-looking) and counterfactual analyses of the European car-
bon market and electricity generation-related emissions vis-à-vis climate change and variability
based on historical data. There is ample opportunity to supplement and extend obtained promis-
ing results through entering the uncertainty dimension into the equation (e.g. by considering
future energy scenarios and climate change projections), and analyze the challenges of the con-
sidered market and non-market mitigation mechanisms in the decades to follow.
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