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Extended abstract

This thesis is devoted to a family of inverse problems, which consist in recovering an unknown
image from a set of partial measurements, possibly corrupted by some noise. Although the
resolution of ill-posed inverse problems is a classical topic in signal processing, a series of
works conducted over the past thirty years has generated considerable interest. They focus on
the reconstruction of so-called sparse signals using variational methods. The latter rely on a
functional, called the regularizer, whose minimization promotes solutions presenting the same
structure as the sought-after signal.

In this thesis, our aim is to analyze a speci�c choice of regularizer, known as the total (gradient)
variation. This functional has been extensively used in imaging since the pioneering works of
Rudin Osher and Fatemi, conducted in 1992. It is mostly known for its ability to penalize
oscillations while preserving discontinuities. Its minimization is known to produce piecewise
constant images, which are made of a few simple shapes and hence have some form of sparsity.
However, the performance of this regularizer has to our knowledge not extensively been studied
from a sparse recovery viewpoint.

This thesis aims at bridging this gap. First, we consider the reconstructions obtained by
minimizing the total variation in a low noise regime, and study their proximity with the sought-
after image. As the latter is assumed to be sparse (i.e. made of a small number of simple shapes),
we focus on the structure of the reconstructed image, and provide answers to the following
questions: is it itself sparse, made of the same number of shapes, and are these shapes close to
those appearing in the unknown image. Then, we address the numerical resolution of variational
problems associated to this regularizer. Existing methods rely on the introduction of a �xed spatial
discretization, which often yield reconstruction artifacts such as anisotropy or blur. Adapting
recent ideas introduced in the context of sparse spikes recovery, we propose an algorithm which
does not su�er from this grid bias, and produces a sparse representation of the reconstructed
image.

Our contributions can also be considered from a calculus of variations viewpoint. We are
indeed concerned with the theoretical analysis and the numerical resolution of a given variational
problem. In part II, we study the convergence of its solutions as a parameter involved in its
de�nition converges to zero. We obtain results that signi�cantly di�er from those usually derived
in the �eld of calculus of variations. Namely, we prove the convergence of the level sets of
solutions in terms of smooth normal deformations, and also show the number of non-trivial
level sets (and their number of connected components) is preserved. In part III, we propose a
numerical method for solving the considered problem. It does not rely on the resolution of a
�nite dimensional problem associated to a �xed spatial discretization. Our algorithm produces
approximate solutions which have the same structure as some solutions of interest.

Keywords: inverse problems, total variation, sparsity.
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Résumé détaillé

On s’intéresse dans cette thèse à une famille de problèmes inverses, qui consistent à recon-
struire une image à partir de mesures partielles et possiblement bruitées. Si la résolution de
problèmes inverses mal posés est une thématique classique en traitement du signal, une série de
travaux menés depuis une trentaine d’années a particulièrement marqué le domaine. Ces derniers
concernent la reconstruction de signaux dits parcimonieux à l’aide de méthodes variationnelles,
qui reposent sur l’utilisation d’une fonctionnelle, appelée régulariseur, dont la minimisation
produit des solutions de même structure que le signal inconnu.

La principale contribution de cette thèse est l’étude d’un choix particulier de régulariseur, la
variation totale (du gradient). Cette fonctionnelle est utilisée en imagerie depuis les travaux de
Rudin Osher et Fatemi, menés en 1992, notamment pour sa capacité à pénaliser les oscillations
tout en préservant les discontinuités. Alors qu’il est bien connu que sa minimisation produit des
images constantes par morceaux, présentant une forme de parcimonie (elles sont composées d’un
petit nombre de formes simples), ce point de vue n’a à notre connaissance pas été privilégié pour
analyser les performances de ce régulariseur.

Dans cette thèse, on se propose de mener cette étude. Dans la partie II, on considère les
reconstructions obtenues par minimisation de la variation totale dans un régime de faible bruit, et
on étudie leur proximité avec l’image inconnue. Cette dernière étant supposée parcimonieuse (c’est
à dire composée d’un petit nombre de formes simples), on s’intéresse particulièrement à la
structure de la reconstruction: est-elle elle-même parcimonieuse, est-elle composée du même
nombre de formes, et ces formes sont-elles proches de celles présentes dans l’image inconnue.
Dans la partie III, on propose une méthode numérique pour résoudre les problèmes variationnels
associés à ce régulariseur. On adapte des travaux récents sur la reconstruction de mesures
discrètes, a�n d’obtenir un algorithme ne reposant pas sur l’introduction d’une discrétisation
spatiale �xe. Ceci a l’avantage, contrairement aux techniques existantes, de n’introduire ni �ou
ni anisotropie dans les images reconstruites, et d’en produire une représentation parcimonieuse.

Les contributions de cette thèse peuvent aussi être considérées du point de vue du calcul des
variations. On s’intéresse en e�et à une problème variationnel, qu’on analyse théoriquement et
pour lequel on propose une méthode numérique de résolution. Dans la partie II, on s’intéresse à
la convergence des solutions de ce problème lorsque l’un des paramètres le dé�nissant tend vers
zéro. Le type de convergence qu’on obtient est bien plus fort que ceux considérés usuellement
en calcul des variations. Plus précisément, on montre la convergence des ensembles de niveau
des solutions en termes de déformations normales, ainsi que celle du nombre d’ensemble de
niveaux non triviaux (et de leur nombre de composantes connexes). Dans la partie III, on résout
ce problème numériquement sans se ramener à un problème de dimension �nie via l’introduction
d’une discrétisation spatiale �xe. On propose une méthode itérative qui construit des solutions
approximées ayant la même structure que certaines solutions d’intérêt.

Mots-clés: problèmes inverses, variation totale, parcimonie.
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Contributions and outline

Part I. We begin this manuscript with a general introduction to inverse problems and variational
regularization techniques. We then introduce the total (gradient) variation, which is the speci�c
regularizer this thesis is dedicated to. We review existing theoretical results on total variation
regularization, and discuss numerical methods for solving the associated variational problems.
We argue that these subjects have not extensively been studied from a sparse recovery viewpoint,
and state that the main aim of this thesis is to conduct such an analysis. We also stress that our
contributions are attempts to adapt recently introduced ideas for sparse spikes recovery in a
continuous domain.

Part II. This part is devoted to the noise robustness analysis of total variation regularization,
and more speci�cally to the proof of an exact support recovery result.

• Piecewise constant functions. The main purpose of this section is to introduce the class
of sparse objects we aim at recovering, which are piecewise constant functions with a few
speci�c properties. We call them M -simple functions. We �rst begin by collecting results
on the faces of the total variation unit ball, which were �rst proved in [Duval, 2022]. As
we focus on exposed faces (instead of general linearly closed faces in the above-mentioned
work), we are able to provide slightly di�erent (and often simpler) proofs of some results.
It turns out that the elements of �nite dimensional exposed faces are M -simple functions.
This analysis in particular allows to decompose M -simple functions belonging to the same
face using a common set of atoms, which is crucial to prove our support recovery result. As
a byproduct, we are also able to state an abstract su�cient identi�ability condition, which
can be seen as a strengthened source condition.

• The prescribed curvature problem. We then focus on a geometric variational problem
called the prescribed curvature problem, which naturally appears in the analysis conducted
in the previous section. Our aim is to study the behaviour of its solutions under variations
of the associated curvature functional. We prove that, for two su�ciently close curvature
functionals, solutions of the two problems are close in terms of C2 normal deformations.
Assuming some solution of one problem is strictly stable, we show that it has a neighbor-
hood (in terms of C2 normal deformations) which contains at most one solution of the
other problem.

• Exact support recovery. Using the results of the �rst two sections, we are �nally able to
prove our support recovery result. To achieve this, we �rst show that the dimension of
the exposed faces of the total variation unit ball is stable in some sense. We then de�ne a
so-called non-degenerate source condition, under which exact support recovery is guaranteed.

7
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We stress that the term exact refers to the estimation of some measure of sparsity of the
unknown image. The reconstructed image is made of the same number of shapes, each
a C2 normal deformation of a shape appearing in the sougt-after image.

Part III. This third part is dedicated to the numerical resolution of variational problems as-
sociated to total variation regularization. We propose a grid-free approach based on the Frank-
Wolfe (or conditional gradient) algorithm. A complete implementation of the proposed method is
available at https://github.com/rpetit/pycheeger and https://github.com/rpetit/tvsfw.

• Frank-Wolfe approach. In this �rst section, we describe the theoretical algorithm we
propose to solve our variational problem of interest. We explain how the linear minimization
step, which is at the core of Frank-Wolfe algorithm, is closely linked to a shape optimization
problem called the (generalized) Cheeger problem. We then turn to convergence results,
before discussing the interest of a special �nal update, called the sliding step.

• Polygonal approximation of generalized Cheeger sets. This section is devoted to the
numerical approximation of solutions of the (generalized) Cheeger problem. We propose
to optimize its objective over simple polgons with a �xed number of sides, and prove
the existence of optimizers for this new problem. We then discuss a two-step numerical
method to approach them. Finally, we discuss how polygonal maximizers compare to their
continuous counterpart in the speci�c case of radial weight functions.

• Numerical results. We begin this last section by discussing the implementation of the
sliding step. We describe the iterative method we propose to locally optimize the objective,
and also mention the issue of topology changes, which might appear over the course of this
evolution. We conclude this part by assessing the performance of our algorithm on a few
recovery examples. We provide comparisons with two standard �xed-grid methods, and
discuss parameter choices.

Part IV. We conclude this manuscript by discussing interesting avenues for future research.

Publications. This thesis gave rise to two articles, which are listed below.

• [De Castro et al., in preparation] Exact recovery of the support of piecewise con-

stant images via total variation regularization, Y. De Castro, V. Duval and R. Petit, in
preparation.

• [De Castro et al., 2022] Towards o�-the-grid algorithms for total variation regu-

larized inverse problems, Y. De Castro, V. Duval and R. Petit, Journal of Mathematical
Imaging and Vision, 2022

A short version of the second article appeared in the proceedings of the 8th international confer-
ence on scale space and variational methods in computer vision (SSVM 2021) [De Castro et al., 2021].

https://github.com/rpetit/pycheeger
https://github.com/rpetit/tvsfw


Notations

Functions spaces. Let m,n ∈ N∗ and Ω ⊂ Rm be an open set. For any k ∈ N, we de-
note by Ck(Ω,Rn) (Ck(Ω) if n = 1) the set of Rn-valued functions of class Ck on Ω, and
by Ck

b (Ω,Rn) (Ck
b (Ω) if n = 1) the set of functions u ∈ Ck(Ω,Rn) that satisfy ‖u‖Ck(Ω) < +∞

with

‖u‖Ck(Ω)
def.
=

k∑
i=1

‖Diu‖∞ ,

where Diu denotes the i-th derivative of u. If a function u is bounded and uniformly continuous
on Ω, it has a unique continuous extension to Ω. We denote by Ck(Ω) the space of functions
in Ck(Ω) with bounded and uniformly continuous derivatives up to order k.

Hausdor� measure. We denote by H1 the 1-dimensional Hausdor� measure on R2, and, for
every Borel set A ⊂ R2, by H1 A the measure H1 restricted to A, i.e. such that for every Borel
set E we have (

H1 A
)

(E) = H1(A ∩ E) .

9
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1. INVERSE PROBLEMS AND VARIATIONAL REGULARIZATION 12

1. Inverse problems and

variational regularization

Broadly speaking, an inverse problem consists in reconstructing an unknown object from partial
and often indirect observations of it. Many problems fall in this category. To name only a few,
let us mention the reconstruction of a 3D object from a few 2D photographs, the location of an
earthquake’s epicenter from measurements of the resulting seismic waves, or the determination
of the composition of a material from the way it interacts with light (or the way other kinds of
waves travel through it).

This thesis is dedicated to a particular family of inverse problems, which belongs to the class
of imaging inverse problems, in which the unknown object to reconstruct is an image. In this
section, we �rst provide a broad introduction to this domain1, before presenting the problem
we are speci�cally interested in. Then, we introduce a family of methods for solving inverse
problems, namely variational regularization techniques, that are at the core of our work. Finally,
we present the main aim of this thesis, which is to adapt recent advances in the �eld to our
speci�c setting.

1.1. Inverse problems in imaging

As mentioned above, an imaging inverse problem consists in reconstructing an image (in the
general sense) from a set of measurements. Such problems are ubiquitous in biological, medical,
and astronomical imaging, as well as in computational photography. Before discussing these
applications in greater detail, let us introduce the mathematical framework commonly used to
model these problems.

Framework and assumptions. The unknown image is modeled as an element f0 of some vec-
tor space E. We assume that the measurement operator Φ, which accounts for the measurements
acquisition process, is a linear2 mapping from E to some Hilbert space H (a common scenario is
to have access to m real-valued measurements, in which case H = Rm). Finally, the noiseless
and noisy observations are respectively de�ned by y0 = Φf0 and y = y0 + w where w ∈ H is
an additive noise. Solving the inverse problem means (approximately) recovering f from the
knowledge of y0 (noiseless case) or y (noisy case).

Modeling images. The choice of the vector space E in which the sought-after image lies
depends on the application. When dealing with digital images (say grayscale images for simplicity),
which are arrays of real values, it is natural to takeE = Rm×n for some pair of integersm,n ∈ N∗,
or simply E = Rn for some n ∈ N∗. On the other hand, if one wishes to model “continuous
images”, choosing E to be an in�nite dimensional space of functions or measures is relevant. The

1Our presentation is greatly inspired by [Peyré, 2021, Chapter 8]. We refer the reader to this book draft and the
companion website for more details on imaging. Let us also mention the reference book [Scherzer et al., 2008].

2In many situations of interest, the assumption that Φ is linear is unrealistic. Still, the class of linear inverse
problems encompass a large variety of practically relevant applications. We stress that the techniques used to study
nonlinear inverse problems signi�cantly di�er from those we present in this manuscript.

https://mathematical-tours.github.io/


1.1. Inverse problems in imaging 13

main examples of interest for our purpose are E = M(Ω), the set of bounded Radon measures
on Ω, and E = L2(Ω), where Ω is the image domain.

Structural assumptions on the sought-after image. In most cases, a major obstacle towards
the resolution of an inverse problem is the non-injectivity of the measurement operator Φ. To
put it another way, given a set of observations y0, multiple images f in E could satisfy Φf = y0,
and the di�culty is to select the right one among them. Even in situations where Φ is injective,
the linear system Φf = y0 is often ill-conditioned. Inverting Φ hence yields reconstructions
that are highly sensitive to changes of y0, and which are therefore not robust to noise. The
main ingredient usually used to overcome these issues is to make structural assumptions on the
sought-after image f0. If we know a priori that f0 has a special structure, then this information
can be exploited to recover it among all images f satisfying Φf = y0. In the following subsection,
we give examples of interesting structural assumptions on f0, which are all closely linked to the
concept of sparsity.

1.1.1. Sparse signals

A class of signals that has been extensively studied since the 90’s is the class of signals having
some kind of sparsity. Given a set of atoms called a dictionary, a signal is said to be sparse if it
can be decomposed as the weighted sum of a few atoms.

Sparse vectors. The �rst example of sparse objects that were extensively studied are sparse
vectors. The sparsity of a vector x of Rn is de�ned as its number of non-zero coordinates, and a
vector is said to be sparse if its sparsity is signi�cantly smaller than n (it can hence be written as
a weighted sum of a few 1-sparse vectors). The problem of recovering a sparse vector from a set
of linear measurements has a tremendous number of applications. It has been studied empirically
from the 70’s in di�erent domains, including seismic imaging [Claerbout and Muir, 1973]. Its
mathematical analysis started in the 90’s with the work of David Donoho and his co-authors (see
for instance [Donoho, 1992, Chen et al., 1998]). In some situations, it may happen than one is
interested in recovering images directly represented by sparse vectors (for example, if one wishes
to reconstruct a superposition of a few point light sources). However, it often happens that the
sought-after image is not directly sparse, but admits a sparse decomposition in some dictionary.
In other terms, there exists a sparse vector x0 and a dictionary Ψ such that f0 = Ψx0. In this case,
in order to exploit the sparsity of x0 for solving the considered inverse problem, one can de�ne
a new measurement operator A = ΦΨ, and solve the inverse problem associated to x0 and A1.
This ultimately allows to obtain an approximation of f0. We refer the reader to [Mallat, 2008,
Chapter 12 and 13] for more details on this subject.

Discrete measures. If one wishes to reconstruct a superposition of point light sources, it is
often interesting, as explained in Section 1.3, to model the sought-after image as the weighted
sum of a few Dirac masses. In this case, one choses E = M(X) the space of bounded Radon
measures on a domain X (usual choices of X include the n-dimension torus Tn or an open subset

1This is the so-called synthesis approach. Another one is the analysis approach (see for instance [Elad et al., 2007]
and [März et al., 2022, Section 1.2.2]).



1.1. Inverse problems in imaging 14

of Rn), and assumes that the unknown signal is a measure µ0 of the form

µ0 =

s∑
i=1

aiδxi ,

with a ∈ Rs and x ∈ Xs. The recovery of such signals has been the subject of many works
in recent years (see for instance [De Castro and Gamboa, 2012, Bredies and Pikkarainen, 2013,
Candès and Fernandez-Granda, 2014]). We refer the reader to Section 1.3.2 below and the review
article [Laville et al., 2021] for more details. A part of the work presented in this thesis is an
attempt to adapt these results to the reconstruction of piecewise constant functions.

Time-dependant discrete measures. One could also consider the dynamic inverse problem
which consists in recovering the evolution of a superposition of point light sources from a set of
measurements. In this case the unknown signal is a time-dependent measure of the form

µ0 : t 7→
s∑
i=1

ai(t)δxi(t)

where a and x take values in Rs and Xs. This task was notably studied in the �xed mass setting
in [Alberti et al., 2019, Bredies and Fanzon, 2020, Bredies et al., 2021], and then in the varying
mass setting in [Bredies et al., 2022a] .

Measures supported on 1D curves. Another class of signals presenting some kind of sparsity
are measures supported on a few 1D curves. Such measures could be relevant to model structures
of interest in biological imaging. We provide in Figure 1 two images of microtubules to support
this claim. In this context, one would chose E = M(X) but assume the sought-after signal is a
measure µ0 of the form

µ0 =
s∑
i=1

aiH
1 Γi ,

with a ∈ Rs and Γi a connected 1D curve for all i ∈ {1, ..., s}. Let us stress that a related task is
considered in [Laville et al., 2022]. This work however deals with vector-valued measures, which
are hence associated (just as time-dependant measures) to oriented curves.

Piecewise constant functions. In this thesis, the signals we focus on are models for piecewise
constant images (also called “cartoon images”). The recovery of such objects could have potential
applications in e.g. cell imaging. We provide in Figure 2 a set of images which could be considered
piecewise constant as a �rst approximation. In this setting, one could choose E = L2(R2) and
assume the sought-after signal is an element u0 of E of the form

u0 =
s∑
i=1

ai1Ei ,

with a ∈ Rs and (Ei)
s
i=1 a collection of su�ciently regular subsets of the plane. We give a precise

de�nition of the class of piecewise constant functions we deal with in Section 1 of Part 2.
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Microtubules labeled with antibodies (Jonas Ries) 3D dSTORM reconstruction of
microtubules (UMIF)

Figure 1 – Examples of microtubule images.

Human colorectal cancer cells
marked with a chromosomal
protein (Rozenn Jossé, Yves

Pommier)

Immuno�uorescence light micrograph of
human osteosarcoma cells (Nancy Kedersha)

Cytoskeleton imaging using
chromobodies (Bjoern Traenkle, Ulrich,

Rothbauer)

Confocal microscopy of human acute
leukemia cells (Volha Vshyukova)

Figure 2 – Examples of cell images.
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1.1.2. Examples of inverse problems

We now give a few examples of measurement operators of interest.

Denoising. The choice of Φ = Id corresponds to the denoising setting, where one wishes to
recover an image corrupted by some (additive) noise.

Deconvolution. Another setting of interest is when one has access to a blurry version of
the sought-after image. This is modeled by de�ning Φf = ϕ ? f with ϕ a convolution kernel.
The “?” operation denotes a discrete or continuous convolution depending on the nature of f .
The kernel ϕ could for example model the point spread function of an imaging device, or a motion
blur.

Fourier transform sampling. The reconstruction of an image from a sampling of its Fourier
transform has many practical applications. We describe two of them below. The �rst is the
detection of point light sources using radio interferometry in astronomical imaging. The second
is medical imaging, and more precisely X-ray tomography and magnetic resonance imaging.

• Radio interferometry: if one wishes to observe point light sources in the sky, a natural
model for the sought-after image is a measure µ0 that is a combination of a few Dirac
masses. In radio interferometry, one uses an array of antennas to record the light emitted
by celestial bodies. Computing the cross-correlation between these recordings gives access
to a sampling of the Fourier transform of µ0 (see e.g. [Pan et al., 2017]). The measurement
operator can hence be modeled as

Φ : M(Rn)→ C|Ω|

µ 7→
[ˆ

Rd
exp(−i〈ω, x〉) dµ(x)

]
ω∈Ω

,

where Ω ⊂ Rn is a set of observed frequencies, and d is typically equal to two (e.g. in the
context of astronomical imaging).

• X-ray tomography,magnetic resonance imaging: other situations in which one wishes
to recover an image from a sampling of its Fourier transform include X-ray tomographgy
and magnetic resonance imaging (MRI). Here, the aim is to to reconstruct a general digi-
tal (E = Rn) or continuous (e.g. E = L2(R2)) image. The measurement operator is given
by

Φf =
[
f̂(ω)

]
ω∈Ω

,

where f̂ denotes the (discrete or continuous) Fourier transform of f and Ω is a set of
frequencies. The main di�erence between these two imaging techniques is the type of
Fourier samples they give access to. For X-ray tomography Ω is a set of points located on
radial lines in the Fourier plane. In the case of MRI, these points are located on smooth
curves.
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Laplace transform sampling (�uorescence microscopy). A major challenge in modern
biology is to understand mechanisms at the sub-cellular level. This requires the develop-
ment of so-called super-resolution microscopy techniques, able to overcome the di�raction
limit (see Figure 2 for an example of images obtained using such techniques). A popular
method to achieve this is single-molecule localization microscopy (SMLM) [Betzig et al., 2006,
Rust et al., 2006, Shro� et al., 2008]. It consists in introducing �uorophores in a biological sample,
and recording the light they emit after illuminating a random subset of them. In this context,
acquiring depth information on the sample is a major challenge that can be adressed using
several techniques [Huang et al., 2008, Pavani et al., 2009]. Among them, the multi-angle to-
tal internal re�ection �uorescence method (MA-TIRF) [Boulanger et al., 2014, Santos et al., 2014,
Soubies et al., 2014] consists in illumating the biological sample along di�erent directions. The
resulting measurements correspond to a sampling of the Laplace transform (in depth) of the
sought-after image, which is modeled as a discrete measure. In other words, neglecting the
horizontal blur, this corresponds to the choice of E = M(R+) and

Φ : M(R+)→ RK

µ 7→
[ˆ

R+

exp(−skx) dµ(x)

]
k=1,...,K

,

where sk ∈ R+ for every k ∈ {1, ...,K}. Let us stress that this model is a gross simpli�cation
of the real models used in �uorescence microscopy, and we refer the reader to [Denoyelle, 2018,
Chapter 5] for more information on this subject.

1.2. Variational regularization

1.2.1. Presentation

A fruitful idea for leveraging a priori knowledge on the sought-after signal f0 is that of varia-
tional regularization. It consists, in the case of noiseless observations, in �nding an approximation
of f0 by solving

inf
f∈E

R(f) s.t. Φf = y0 , (P0(y0))

where R : E → R ∪ {+∞} is called the regularizer. This mapping is chosen in order to promote
solutions having the same structure as f0. Loosely speaking, the value of R(f) should be small
if f has the desired structure, and large otherwise. The choice of R given a priori assumptions
on the sought-after signal is discussed in Section 1.2.2.

If one has access to noisy observations, i.e. to y = Φf0 + w, then minimizing R among
functions f satisfying Φf = y makes little sense (even f0 would not belong to the admissible
set). One hence solves instead

inf
f∈E

R(f) +
1

2λ
‖Φf − y‖2H , (Pλ(y))

with λ a positive real number called the regularization parameter. Typically, λ should be chosen
according to an estimate of ‖w‖H.

Having de�ned these two variational problems, it is natural to investigate if solving them
allows to solve the considered inverse problems. Three questions therefore arise.
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1. Is f0 the unique solution of (P0(y0))?

2. If w is small and λ well chosen, are solution of (Pλ(y0 +w)) close to solutions of (P0(y0))?

3. Can one numerically solve (P0(y0)) and (Pλ(y))?

1.2.2. Choice of the regularizer and a priori information

Discrete `1 regularization. The most important (and �rst historical) example of regularizer
is arguably the `1-norm in the Euclidean space. From the 70’s, `1 regularization has been used
empirically in various �elds (notably in seismic imaging) to recover sparse vectors. It was later
studied mathematically by David Donoho and its co-authors (among others) from the 90’s (see
e.g. [Donoho, 1992, Chen et al., 1998] and also [Tibshirani, 1996] for applications in statistics).

Convex regularizers. In order to obtain convex problems (P0(y0)) and (Pλ(y)), it is natural to
choose R among convex functions. Although non-convex regularizers could also be considered,
being able to leverage the theory of convex optimization is really useful for analyzing variation
regulatization techniques.

Representer theorems and convex regularization. The following series of recent works
[Chandrasekaran et al., 2012, Boyer et al., 2019, Bredies and Carioni, 2019] has recently shed a
new light on convex regularization. In these articles, the link between the choice of a regularizer
and the structural properties of some solutions of (P0(y0)) and (Pλ(y)) is investigated. Their
main �nding is that the atoms promoted by a convex regularizer are the extreme points of its
associated unit ball: loosely speaking, if H has �nite dimension, then some solutions of (P0(y0))
and (Pλ(y)) are linear combinations of extreme points of {R ≤ 1}. We provide below a few
examples of regularizers and describe the atoms they promote.

• If E = Rn and R = ‖.‖1 is the `1-norm, then the extreme points of {R ≤ 1} are the
vectors ±ei with i ∈ {1, ..., d}, where (ei)i=1,...,n is the canonical basis of Rn.

• If E = Rn×m and R = ‖.‖∗ is the nuclear norm of matrices then the extreme points
of {R ≤ 1} are the matrices uT v with u ∈ Rn, v ∈ Rm and ‖u‖2 = ‖v‖2 = 1.

• If E = M(X) with X and R = |.|(X) is the total variation (of measures) then the extreme
points of {R ≤ 1} are the measures ±δx with x ∈ X.

• If E = L2(R2) and R = |D.|(R2) is the total (gradient) variation then the extreme points
of {R ≤ 1} are the functions±1E/P (E) withE a simple set with positive �nite measure1.

Besides extreme points, the results of [Boyer et al., 2019] show that the structure of the solution set
of (P0(y0)) or (Pλ(y)) is linked to the structure of the faces of {R ≤ 1}. The importance of closely
studying these faces is highlighted in Part 2. If one has access to m observations (i.e. H = Rm),
then some solutions lie in a face of dimension at most m − 1 (or m in degenerate cases). In
particular, these solutions can be written as the sum of at most m (or m + 1) extreme points
of {R ≤ 1}.

1See Section 2.1.1 for a precise de�nition of the total variation and simple sets.
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1.2.3. Identi�ability

If the �rst question stated in Section 1.2.1 has a positive answer, i.e. if f0 is the unique solution
of (P0(y0)), then it is said to be identi�able. Even if we rather focus on noise robustness results
in this thesis, let us brie�y discuss this question.

Discrete `1 regularization. We begin by considering the recovery of sparse vectors using
the `1 norm as a regularizer (i.e. E = Rn, R = ‖ · ‖1 and H = Rm). The �rst histori-
cal example of identi�ability condition is the nullspace property. This name was �rst used
in [Cohen et al., 2009], although the condition also appeared in [Gribonval and Nielsen, 2003]
and implicitly in previous works. If Φ is the measurement matrix, then every s-sparse vector is
identi�able if and only if the nullspace property of order s is satis�ed. This condition is di�cult
to check in practice. To circumvent this issue, the stronger restricted isometry property was
introduced in [Candes and Tao, 2005]. Even if computing the restricted isoperimetry constants
of a matrix is known to be NP-hard, large classes of random matrices satisfy the property with
high probability (see for instance [Candes and Tao, 2006]). We refer the reader to the reference
book [Foucart and Rauhut, 2013] for more details.

Extensions. Su�cient identi�ability conditions also exist for low-rank matrix recovery, i.e.
when E = Rn×m and R = ‖ · ‖∗ (see for instance [Foucart and Rauhut, 2013, Section 4.6]).
Likewise, perfect recovery results were proven in the sparse spikes setting, i.e. with E = M(X)
and R = | · |(X). We provide further details on this case in Section 1.3.2.

1.2.4. Noise robustness

As mentioned above, the second question stated in Section 1.2.1 is closely related to noise
robustness. Indeed, if a signal f0 is identi�able and one proves that solutions of (Pλ(y)) converge
to a solution of (P0(y0)) when w is small and λ well chosen, then solving (Pλ(y)) allows to
approximately recover f0 in a low noise regime.

Stability and model stability. Noise robustness results typically fall into two categories. The
�rst ones are concerned with the convergence of a solution fλ,w of (Pλ(y0 + w)) towards f0

with respect to some distance on the signal space E. This distance is typically the `2 distance
if E = Rn, the L2 distance if E = L2(R2), or an optimal transport-based distance if E = M(X).
This notion of stability is however quite weak. Indeed, if f0 is a combination of a few atoms, a
convergence result of this kind does not tell anything about the structure of fλ,w. To be more
precise, it does not allow to answer the following question: is fλ,w made of the same number of
atoms as f0, and are these atoms related to those appearing in the decomposition of f0? This
shows the necessity of a second category of noise robustness results, allowing to answer these
questions. They are sometimes called model stability results, and are the ones we focus on in this
thesis.

Discrete `1 regularization. Given a sparse vector, several works investigated whether solv-
ing (Pλ(y0 + w)) (with E = Rn and R = ‖.‖1) in a low noise regime allows to exactly recover
its support. To name only a few, let us cite [Fuchs, 2004, Dossal and Mallat, 2005, Tropp, 2006],
in which su�cient conditions are derived. Loosely speaking and using a modern terminology,
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exact recovery is possible if some minimal norm dual certi�cate interpolates the sign of the signal
coordinates.

Extensions. In [Vaiter et al., 2015, Vaiter et al., 2018], the analysis of `1 regularization was
extended to the family of so-called partly smooth regularizers, which promote signals having
some notion of low complexity. Numerous popular regularizers fall in this category. To name
only a few, let us mention the `1 norm, the `1 − `2 norm (used to enforce group sparsity), and
the nuclear norm of matrices. An extension to so-called mirror-strati�able regularizers was also
studied in [Fadili et al., 2018, Fadili et al., 2019]. This last series of works has similarities with the
dual-based approach of [Duval and Peyré, 2015], in which an exact support recovery result is
proved for discrete measures. We discuss this topic in greater details in Section 1.3.2

1.3. Grid-free sparse recovery

At �rst glance, solving (Pλ(y)) or (P0(y0)) with E an in�nite dimensional space seems
intractable. Considering such problems hence only seems to be of theoretical interest. However, a
recent line of works demonstrated that it is in fact possible to solve (Pλ(y)) and (P0(y0)) e�ciently
when E = M(X) and R = |.|(X) is the total variation of measures. Doing so even has numerous
advantages, both from a numerical point of view and with respect to recovery guarantees. This
section provides a review of these advances, and situates the subject of this thesis within this
context.

1.3.1. Sparse spikes super-resolution on thin grids

Sparse spikes recovery and the BLASSO. As explained in Sections 1.1.1 and 1.1.2, the recov-
ery of a discrete measure µ0 =

∑s
i=1 a0,i δx0,i from noisy linear measurements y = Φµ0 + w

has numerous applications. We also mentioned that solving (Pλ(y0 + w)) where y0 = Φµ0

with E = M(X) and R = |.|(X) is a good way to approximate µ0. The resulting problem, which
writes

inf
µ∈M(X)

|µ|(X) +
1

2λ
‖Φµ− y‖2H (Pλ(y))

and is known as the BLASSO1, is however in�nite-dimensional. How to numerically solve it is
hence unclear.

Restriction to a �nite grid. A �rst approach one can consider is to look for an approximate
solution of (Pλ(y)) whose support lies in some discrete grid G = {xi}n−1

i=0 ⊂ X, and therefore
to solve (Pλ(y)) with the additional constraint Supp(µ) ⊂ G. This yields the �nite dimensional
problem

inf
a∈Rn

‖a‖1 +
1

2λ
‖ΦGa− y‖2H , (PG

λ(y))

1The name BLASSO stands for Beurling LASSO, and was coined in [De Castro and Gamboa, 2012]. We provide
more information on this problem in Section 1.3.2 below.
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which is the celebrated basis pursuit, also known as the LASSO (see for instance [Chen et al., 1998,
Tibshirani, 1996]), where ΦG is de�ned by

ΦG : Rn → H

a 7→ Φ

(
n∑
i=1

ai δxi

)
.

Thin grids. Since no information on the support of µ0 is known a priori, it is natural to consider
increasingly “thinner” grids G, in order to cover the whole domain X. However, the analysis
conducted in [Duval and Peyré, 2017] shows this approach yields reconstructed measures whose
structure is di�erent from that of µ0. To be more precise, each spike in µ0 is estimated by a pair
of neighbooring spikes. This demonstrates the impossibility to exactly recover the support of µ0

by relying on `1 regularization techniques on (even arbitrarily thin) �nite grids.

1.3.2. Grid-free sparse spikes recovery

Considering the negative result presented above, it is natural to wonder if, despite its in�nite-
dimensional nature, numerically solving the BLASSO problem (Pλ(y)) is possible. Over the last
ten years, numerous methods have in fact been developed to achieve this. We brie�y review them
here, before discussing available results on noise robustness. We refer the reader to the lecture
notes [Poon, 2019] for a more detailed introduction to sparse spikes recovery using the BLASSO.

Numerical resolution of the BLASSO. The �rst method allowing to solve the BLASSO was
introduced in [Tang et al., 2013, Candès and Fernandez-Granda, 2014]. It relies on the equiva-
lence, in the speci�c case of 1D Fourier measurements, of (Pλ(y)) with a �nite dimensional
semi-de�nite program, for which e�cient solvers exist. Extensions to higher dimensions rely
on the so-called Lasserre hierarchy (see e.g. [Catala et al., 2019], [Catala, 2020, Chapter 2] and
also [De Castro et al., 2017] for the case of polynomial measurements). For general measure-
ments, approaches based on the conditional gradient or Frank-Wolfe algorithm, which does
not require any Hilbertian structure (and is hence particularly well suited for optimization
on the space of measures), were developed in [Bredies and Pikkarainen, 2013, Boyd et al., 2017,
Denoyelle et al., 2019]. Finally, let us mention the work of [Chizat, 2022], which is based on conic
particle gradient descent.

Identi�ability. The groundbreaking work [Candès and Fernandez-Granda, 2014] shows that
a discrete measure can be exactly recovered from 2fc + 1 Fourier samples, provided the minimal
distance ∆ between its atoms satis�es ∆ ≥ 2/fc. In [Tang et al., 2013], it has also been shown
that this result remains valid with high probability if a small number of Fourier samples are
randomly selected. Let us stress that, for positive measures, the minimal separation condition
can be lifted (see for instance [De Castro and Gamboa, 2012, Schiebinger et al., 2018]).

Noise robustness. The convergence of solutions µλ,w of (Pλ(y0 + w)) in a low noise regime
has been investigated in several works. The weak-* convergence of µλ,w towards a solu-
tion µ0 of the noiseless problem is proved in [Bredies and Pikkarainen, 2013]. In a similar spirit,
[Candès and Fernandez-Granda, 2013, Fernandez-Granda, 2013, Azaïs et al., 2015] provide error
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bounds (based on [Burger and Osher, 2004]) which show that µλ,w concentrates around the sup-
port of µ0. However, these results do not address the question of support recovery: if µ0 is
discrete and identi�able, is µλ,w discrete, and does it have the same number of spikes as µ0?

Exact support recovery. In [Duval and Peyré, 2015], an answer to this last question is pro-
vided. The authors prove that, if a so-called non-degenerate source condition holds, µλ,w has
exactly the same number of spikes as µ0 in a low noise regime, and the locations of these spikes (as
well as the associated amplitudes) smoothly converge to the limit ones. This is in sharp contrast
with the negative result presented for �nite grids in Section 1.3.1.

1.3.3. Perspectives

In Section 1.3.2 above, we have seen that, in the context of sparse spikes recovery, grid-free
approaches both have theoretical and numerical bene�ts. In this subsection, we mention recent
attempts to develop similar methods for recovering other kinds of signals. We �nally introduce
the problem this thesis is dedicated to, and advocate for studying noise robustness properties and
developing numerical methods using the fruitful ideas presented in Section 1.3.2.

Dynamic sparse spikes recovery. As mentioned in Section 1.1.1, the recovery of time-
dependant discrete measures has recently been investigated. Several regularizers were introduced
to tackle the �xed and varying mass settings, and extreme points results were derived. Although
we are not aware of any identi�ability or noise robustness result, numerical methods received a
lot of attention, and approaches based on the Frank-Wolfe (or conditional gradient) algorithm
were very recently proposed in [Bredies et al., 2022b, Duval and Tovey, 2021].

Curve recovery. We also discussed in Section 1.1.1, the reconstruction of images which are
the superposition of a few 1D curves. To our knowledge, the only work in which this task is
investigated is the recent work [Laville et al., 2022]. Its authors prove an extreme point result
which we brie�y state below. Let E = M(X)2 be the dual of C0(X,R2) (equipped with the
supremum norm), and let R be de�ned by

R : M(X)2 → R ∪ {+∞}
µ 7→ |µ|(X) + |div(µ)|(X) ,

with div(µ) the divergence of µ (de�ned in the sense of distributions). Then the extreme points
of {R ≤ 1} are the measures µγ/R(µγ) where µγ is the measure canonically associated to a
simple oriented Lipschitz curve γ (see [Laville et al., 2022, De�nition 7] for a precise de�nition).
An interesting avenue for future research is to investigate the performance of this regularizer
for solving inverse problems (i.e. to derive identi�ability and noise robustness results), and also
to develop numerical methods allowing to solve (P0(y0)) and (Pλ(y)) e�ciently. Let us also
stress that the measures this work deals with are associated to oriented curves, and that they also
carry tangential information. Recovering measures supported on unoriented curves has, to our
knowledge, not be considered, although they seem a natural model for images such as those of
Figure 1.
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Reconstruction of piecewise constant images. In this thesis, we are concerned with the
recovery of piecewise constant images, i.e. which are the superposition of a few simple shapes.
To recover such objects, the natural choice of regularizer is the total (gradient) variation. The
�rst appearance of this functional for imaging applications dates back to the pioneering work
of Rudin Osher and Fatemi [Rudin et al., 1992], which focuses on the denoising problem. Since
then, the performance of this regularizer has been the subject of a large number of works. It has
notably been shown in [Chambolle et al., 2016, Iglesias et al., 2018] that, in a small noise regime,
solutions of (Pλ(y0 + w)) converge to a solution of (P0(y0)) (which is unique and equal to the
image to recover in the case of denoising). The type of convergence proved in this result is already
quite strong. Namely, it is shown that the level sets of solutions of (Pλ(y0 + w)) converge to the
level sets of solutions of (P0(y0)) (see Proposition 1.12 for a precise statement). This convergence
result for level sets is of particular interest in the context of imaging. Even if the analysis presented
in Section 1.2.2 suggests that the total variation is particularly well suited to recover piecewise
constant functions, the above mentioned works do not focus on unknown images having this
structure. If we make this assumption, we argue that the emphasis should be on structure-
preserving convergence guarantees, in the spirit of [Duval and Peyré, 2015]. To be more speci�c,
one should study whether the reconstructed image is composed of the same number of shapes
than the sought-after image, and whether these shapes are close to the unknown ones. Finally, let
us mention that, in this setting, the problem of deriving su�cient identi�ability conditions is to
our knowledge mostly open. Still, let us point out that, in [Bredies and Vicente, 2019], a perfect
reconstruction result is obtained in the case where the measurement associated to a function is
its image under a linear partial di�erential operator with unknown boundary conditions.

The main aim of this thesis is to study total variation regularization from a sparse
recovery viewpoint.

2. Total variation regularization

The use of the total variation as a regularizer started with the pioneering work of Rudin Osher
and Fatemi [Rudin et al., 1992] in the context of image denoising. This functional penalizes
oscillations while allowing discontinuities. Reconstruction methods based on its minimization
therefore have the striking feature of preserving image edges (see Figure 3 for a few examples).
Although state of the art algorithms now exhibit much better performance, the total variation is
still routinely used in speci�c applications, and remains an import baseline. In this section, we
provide an introduction to total variation regularization. We review existing theoretical results
and numerical methods, and also mention the open problems that we attempt to address in this
thesis.
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Figure 3 – Reconstructions obtained with [Getreuer, 2012a, Getreuer, 2012b] in the case of
deconvolution (�rst and third rows) and inpainting (second and fourth rows).

Left: observations y = Φu0 + w, middle: unknown image u0, right: approximate solution
of (Pλ(y0 + w)) (source images: bazzier, Le Pays Malouin).
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2.1. Presentation and preliminaries

2.1.1. The total variation

We begin this section by de�ning the total variation functional. Then, we introduce a few
notions to be able to state the extreme point result mentioned in Section 1.2.2, which characterizes
the atoms promoted by this regularizer. Finally, we give several results about the subdi�erential
of the total variation, which are useful for the analysis of the variational problems (P0(y0))
and (Pλ(y)).

De�nition. If u ∈ L1
loc(R2), its total variation is de�ned by

TV(u)
def.
= sup

{
−
ˆ
R2

u divφ

∣∣∣∣φ ∈ C∞c (R2,R2), ‖φ‖∞ ≤ 1

}
. (1)

A function u has �nite total variation if and only if its distributional gradient, denoted Du, is
a �nite Radon measure. In this case one has TV(u) = |Du|(R2). Let us now provide more
intuition on this functional by considering two classical examples. If u has integrable gradi-
ent one has TV(u) =

´
R2 |∇u|. If E is a set of class C1 (see Appendix B for a precise de�ni-

tion) by the Gauss-Green theorem
´
E div φ =

´
∂E φ · νE dH1, which yields TV(1E) = H1(∂E).

Further details about the total variation can be found in [Ambrosio et al., 2000, Chapter 3]
and [Evans and Gariepy, 2015, Chapter 5]. Let us also mention [Chambolle et al., 2010a] for
more information on its use in imaging.
Remark 1.1

In this thesis, we extensively work with square integrable functions with �nite total variation.
These do not belong to the more classical space BV(R2) of integrable functions with �nite to-
tal variation. The main interest of this choice is that, in R2, the total variation dominates
the L2 norm (and more generally the LN/(N−1) norm in RN ), as shown by the isoperimetric
inequality (3) presented below. As a consequence, the total variation unit ball is weakly compact
in L2(R2), which is hence the natural space in which we can obtain existence of solutions for
variational problems with a total variation term.

In all the following we consider TV as a mapping from L2(R2) to R ∪ {+∞}. This function is
convex, proper and lower semi-continuous.

Sets of �nite perimeter. If a measurable set E ⊂ R2 is such that P (E)
def.
= TV(1E) is �nite,

it is said to have �nite perimeter. Such sets have similar properties to those of smooth sets, in
a measure-theoretic sense. In particular, they satisfy a generalized Gauss-Green formula, and
have an approximate normal and an approximate tangent space. They are central in the study
of geometric variational problems, mainly thanks to useful compactness results. We refer the
reader to [Maggi, 2012, Part II] for further details on this subject. We collect notations and a few
properties of sets of �nite perimeter in Appendix A.
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The isoperimetric inequality

We now state the useful isoperimetric inequality, and take this opportunity to make a
digression on its quantitative version. This allows us to introduce several topics of interest
for our purpose, namely shape calculus and stability in geometric variational problems.

For every set of �nite perimeter E ⊂ R2, the isoperimetric inequality states that√
min(|E|, |Ec|) ≤ c2 P (E) , (2)

with equality if and only if E is a ball, and where c2
def.
= 1/

√
4π is the isoperimetric

constant (see e.g. [Maggi, 2012, Chapter 14]). In particular, if E is a set of �nite perimeter,
either E or Ec has �nite measure. The functional version1of (2) is:

∀u ∈ L2(R2), ‖u‖L2(R2) ≤ c2 TV(u) . (3)

A sharp quantitative version of (2) was �rst proved in [Fusco et al., 2008] using sym-
metrization techniques (see also the review article [Fusco, 2015]). Denoting B = B(0, 1)
the unit ball, for every measurable set E ⊂ R2 with |E| = |B|, it writes:

min
x∈R2

|(x+ E)4B|2 ≤ C[P (E)− P (B)] . (4)

Another proof, relying on optimal transport, was given in [Figalli et al., 2010].
A third approach, which is the most relevant for our purpose, was proposed
in [Cicalese and Leonardi, 2012]. It relies on two main ingredients. The �rst is a so-
called selection principle, which allows to reduce the proof to nearly spherical sets, i.e.
sets whose boundary is the normal graph of a su�ciently small Lipschitz function on the
sphere. The second is the proof of (4) for such sets, which dates back to [Fuglede, 1989].

The proof of Fuglede relies on shape calculus. Since nearly spherical sets are
parametrized by a function ϕ on the sphere, one can look at the mapping ϕ 7→ P (Bϕ),
where Bϕ is the nearly spherical set associated to ϕ, and use calculus to study the stability
of B = B0 as a minimizer. To be more precise, one can show that the second order
derivative of this mapping at zero, which is called the second order shape derivative of
the perimeter, is coercive, which ultimately yields the result.

The derivation of stability results using second order shape derivatives has been gener-
alized to other geometric functionals in several works (see [Dambrine and Lamboley, 2019]
and the references therein). The noise robustness analysis we conduct in Part 2 heavily
relies on these ideas, which we apply to the prescribed curvature problem presented below.

Indecomposable and simple sets. Now, we introduce the notion of indecomposable and sim-
ple sets, which are the measure-theoretic analogues of connected and simply connected sets (we
refer the reader to [Ambrosio et al., 2001] for more details). A set of �nite perimeter E ⊂ R2 is
said to be decomposable if there exists a partition of E in two sets of positive measure A and B

1This inequality is for example proved in [Ambrosio et al., 2000, Theorem 3.47] by using (2) and the coarea
formula (see e.g. [Maggi, 2012, Chapter 13]). In this reference u is assumed to be integrable, but the constant m
appearing therein is also zero for any p-integrable function with 1 ≤ p < +∞.
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with P (E) = P (A) + P (B). We say that E is indecomposable if it is not decomposable1. An
indecomposable set E is called simple if E = R2 or |E| < +∞ and R2 \ E is indecomposable.

Extreme points of the total variation unit ball. We are now able to state the extreme point
result mentioned Section 1.2.2.
Proposition 1.2 ([Fleming, 1957, Ambrosio et al., 2001])

The extreme points of the convex set

{TV ≤ 1} def.
=
{
u ∈ L2(R2)

∣∣TV(u) ≤ 1
}

are the functions of the form ±1E/P (E), where E is a simple set with 0 < |E| < +∞.

This result, in conjunction with the representer theorems mentioned in Section 1.2.2, justi-
�es the a�rmation that using the total variation as a regularizer promotes piecewise constant
functions (i.e. that are the weighted sum of a few indicator functions of simple sets).

Subdi�erential. Let us now collect several results on the subdi�erential of TV, which are
useful to derive and analyze the dual problems of (P0(y0)) and (Pλ(y)). Since TV is the support
function of the convex set

C
def.
=
{

div z
∣∣ z ∈ C∞c (R2,R2), ‖z‖∞ ≤ 1

}
,

its subdi�erential at 0 is the closure of C in L2(R2), that is

∂TV(0) = C =
{

div z
∣∣ z ∈ L∞(R2,R2), divz ∈ L2(R2), ||z||∞ ≤ 1

}
. (5)

We also have the following useful identity:

∂TV(0) =

{
η ∈ L2(R2)

∣∣∣∣ ∀u ∈ L2(R2),

∣∣∣∣ˆ
R2

η u

∣∣∣∣ ≤ TV(u)

}
.

Finally, the sudi�erential of TV at some u ∈ L2(R2) is given by:

∂TV(u) =

{
η ∈ ∂TV(0)

∣∣∣∣ ˆ
R2

η u = TV(u)

}
.

Hence, if η ∈ ∂TV(u), then η is an element of ∂TV(0) = C for which the supremum in the
de�nition of the total variation is attained.

From the subdi�erential to the level sets. Now, there is an important su�cient and neces-
sary condition for η ∈ ∂TV(u) to hold. In the rest of the article, given u : R2 → R and t ∈ R,
we use the following notation:

U (t) def.
=

{
{x ∈ R2 |u(x) ≥ t} if t ≥ 0 ,

{x ∈ R2 |u(x) ≤ t} otherwise.

It is worth noting that, if u ∈ L2(R2), then |U (t)| < +∞ for all t 6= 0. With this notation, we
may state the following result.

1This notion is known under the name of inseparable set in the literature on submodular functions (see
e.g. [Bach, 2013]).
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Proposition 1.3 (see e.g. [Chambolle et al., 2016])

Let u ∈ L2(R2) be such thatTV(u) < +∞, and let η ∈ L2(R2). Then the following conditions
are equivalent.

(i) η ∈ ∂TV(u) .

(ii) η ∈ ∂TV(0) and the level sets of u satisfy

∀t > 0, P (U (t)) =

ˆ
U(t)

η and ∀t < 0, P (U (t)) = −
ˆ
U(t)

η .

(iii) The level sets of u satisfy

∀t > 0, U (t) ∈ Argmin
E⊂R2, |E|<+∞

(
P (E)−

ˆ
E
η

)
,

∀t < 0, U (t) ∈ Argmin
E⊂R2, |E|<+∞

(
P (E) +

ˆ
E
η

)
.

The geometric variational problem appearing in (iii), which is

inf
E⊂R2, |E|<+∞

P (E)−
ˆ
E
η , (6)

is called the prescribed curvature problem associated to η. This terminology stems from the fact
that, if η is su�ciently regular, every solution of (6) has a (scalar) distributional curvature (de�ned
in Appendix A) equal to η. This problem plays a crucial role in the analysis of total variation
regularization, as explained below. If η ∈ ∂TV(0), one should note that a set of �nite measure E
solves (6) if and only if P (E) =

´
E η, which is why (ii) and (iii) are equivalent.

2.1.2. Primal and dual problems, dual certi�cates

We can now specialize the variational problems introduced in Section 1.2.1 to our setting,
which corresponds to the choice of E = L2(R2) and R = TV.

Assumptions. In all the following, we assume that Φ : L2(R2) → H is a continuous linear
operator, which is equivalent to the existence of ϕ ∈ L2(R2,H) such that

Φ : L2(R2)→ H

u 7→
ˆ
R2

u(x)ϕ(x) dx .

We also assume that y0 = Φu0 with TV(u0) < +∞.

Primal problems. As mentioned above, in our setting, the two variational problems introduced
in Section 1.2.1 are

inf
u∈L2(R2)

TV(u) s.t. Φu = y0 , (P0(y0))
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inf
u∈L2(R2)

TV(u) +
1

2λ
‖Φu− y‖2H . (Pλ(y))

Existence of solutions for (P0(y0)) and (Pλ(y)) can be shown using the direct method of the
calculus of variations and the isoperimetric inequality (3).

Dual problems. In the remaining of this section, we collect useful results following from
standard duality arguments. We refer the reader to [Iglesias et al., 2018, Section 2] for their
proof (which had been established in the particular case of denoising in [Chambolle et al., 2016]).
The Fenchel-Rockafellar dual problems of (P0(y0)) and (Pλ(y)) are:

sup
p∈H
〈p, y0〉H s.t. Φ∗p ∈ ∂TV(0) , (D0(y0))

sup
p∈H
〈p, y〉H −

λ

2
||p||2H s.t. Φ∗p ∈ ∂TV(0) . (Dλ(y))

The existence of a solution of (D0(y0)) is not always guaranteed. Requiring that there indeed
exists a maximizer is called the source condition in the literature. On the contrary, (Dλ(y)) can be
reformulated as the projection problem of y/λ on the closed convex set {p ∈ H |Φ∗p ∈ ∂TV(0)}.
It hence has a unique solution. Strong duality holds between (P0(y0)) and (D0(y0)) (respec-
tively (Pλ(y)) and (Dλ(y))), as stated in the following two propositions.
Proposition 1.4

Strong duality holds between (P0(y0)) and (D0(y0)). Moreover, if there exists a solution p
to (D0(y0)), then for every solution u of (P0(y0)) we have

Φ∗p ∈ ∂TV(u) . (7)

Conversely, if (u, p) ∈ L2(R2) × H with Φu = y0 and (7) holds, then u and p respectively
solve (P0(y0)) and (D0(y0)).

Proposition 1.5

Strong duality holds between (Pλ(y)) and (Dλ(y)). Moreover, denoting p the unique solution
of (Dλ(y)), for every solution u of (Pλ(y)) we have{

Φu = y − λ p ,
Φ∗p ∈ ∂TV(u) .

(8)

Conversely, if (8) holds, then u and p respectively solve (Pλ(y)) and (Dλ(y)).

Remark 1.6

Although there might not be a unique solution to (Pλ(y)), Proposition 1.5 shows that all of them
have the same image by Φ and the same total variation.
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Dual certi�cates. If η = Φ∗p and η ∈ ∂TV(u), we call η a dual certi�cate for u in (P0(y0)),
as its existence proves the optimality of u for (P0(y0)) (assuming u is admissible). Similarly,
if η = −Φ∗(Φu− y)/λ and η ∈ ∂TV(u), we call η a dual certi�cate for u in (Pλ(y)). There could
be multiple dual certi�cates associated to (P0(y0)). One of them, the minimal norm certi�cate,
plays a crucial role in our analysis. A quick look at the objective of (Dλ(y)) indeed suggests that,
as λ goes to 0, its solution converges to the solution of the limit problem (D0(y0)) with minimal
norm. This is Proposition 1.8 below.
De�nition 1.7

If there exists a solution to (D0(y0)), the minimal norm dual certi�cate associated to (P0(y0)),
denoted η0, is de�ned as

η0 = Φ∗p0 with p0 = argmin ‖p‖H s.t. p solves (D0(y0)) .

If λ > 0, we denote pλ,w the unique solution of (Dλ(y0 +w)), and ηλ,w = Φ∗pλ,w the associated
dual certi�cate. Noise robustness results extensively rely on the behaviour of ηλ,w as λ and w go
to zero. This behaviour is described by the following results.
Proposition 1.8

If there exists a solution to (D0(y0)), then pλ,0 converges strongly to p0 as λ→ 0.

Since pλ,w is the projection of (y0+w)/λ onto the closed convex set {p ∈ H |Φ∗p ∈ ∂TV(0)},
the non-expansiveness of the projection mapping yields

∀(λ,w) ∈ R∗+ ×H, ‖pλ,w − pλ,0‖H ≤
‖w‖H
λ

, (9)

and hence
∀(λ,w) ∈ R∗+ ×H, ‖ηλ,w − ηλ,0‖L2(R2) ≤

‖Φ∗‖ ‖w‖H
λ

.

As a result, if λ → 0 and ‖w‖H/λ → 0, the dual certi�cate ηλ,w converges in L2(R2) to the
minimal norm certi�cate η0.

2.2. Noise robustness results

In this section, we review existing results concerning noise robustness (i.e. question 2 in
Section 1.2.1). The main references on this topic are [Chambolle et al., 2016, Iglesias et al., 2018].

Setting. In all the following we consider two sequences (wn)n≥0 ∈ HN and (λn)n≥0 of noises
and regularization parameters, and we assume that (un)n≥0 is such that un solves (Pλn(y0 + wn))
for every n ≥ 0.

Set convergence. Let us de�ne a useful notion of set convergence, known as Painlevé-Kuratowski
set convergence. We refer the reader to [Rockafellar and Wets, 1998, Chapter 4] for more details.
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De�nition 1.9

If (En)n≥0 is a sequence of sets in Rd, its inner and outer limits are de�ned by

lim inf
n→+∞

En
def.
=

{
x ∈ Rd

∣∣∣∣ lim sup
n→+∞

dist(x,En) = 0

}
,

lim sup
n→+∞

En
def.
=

{
x ∈ Rd

∣∣∣∣ lim inf
n→+∞

dist(x,En) = 0

}
.

If there exists a set E such that

lim inf
n→+∞

En = lim sup
n→+∞

En = E ,

we say that (En)n≥0 converges to E and write lim
n→+∞

En = E.

If a sequence of closed sets (En)n≥0 is bounded (i.e. there exists R > 0 such that En ⊂ B(0, R)
for every n ≥ 0), then the above notion of set convergence is equivalent to convergence in the
Hausdor� sense, that is to

lim
n→+∞

‖dist(·, En)− dist(·, E)‖∞ = 0 .

First convergence result. General convergence results given in [Hofmann et al., 2007] apply
to our setting. This yields the following proposition.
Proposition 1.10 ([Hofmann et al., 2007, Theorem 3.5])

If λn → 0 and ‖wn‖2H = o(λn) then, up to the extraction of a subsequence (not relabeled),
we have that (un)n≥0 converges strongly in L1

loc(R2) and weakly in L2(R2) to a solution u∗
of (P0(y0)). Moreover, we have TV(un)→ TV(u∗).

We stress that the strong L1
loc convergence of (un)n≥0 towards u∗ and the fact TV(un)→ TV(u∗)

imply Dun
∗
⇀ Du∗, which in turn implies1

Supp(Du∗) ⊆ lim inf
n→+∞

Supp(Dun) . (10)

Properties of the level sets in the low noise regime. Stronger convergence results can be
obtained by having a closer look at the level sets of un. Indeed, from Propositions 1.3 and 1.5,
we know they are solutions of the prescribed curvature problem associated to ηλn,wn . This
information can be exploited to obtain uniform properties of the level sets in the low noise regime.
The main ingredient to achieve this is the following lemma, that we use in di�erent parts of this
manuscript.

1This is for instance proved in [Chambolle et al., 2016, proof of Proposition 8].
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Lemma 1.11 ([Chambolle et al., 2016, Section 5])

Let (ηn)n≥0 ⊂ ∂TV(0) be a sequence converging strongly in L2(R2) to η∞, and let E be
de�ned by

E
def.
=

{
E ⊂ R2, 0 < |E| < +∞

∣∣∣∣∃n ∈ N ∪ {∞}, P (E) =

∣∣∣∣ˆ
E
ηn

∣∣∣∣} .
Then the following holds:

1. inf
E∈E

P (E) > 0 and sup
E∈E

P (E) < +∞,

2. inf
E∈E
|E| > 0 and sup

E∈E
|E| < +∞,

3. there exists R > 0 such that, for every E ∈ E, it holds E ⊂ B(0, R),

4. there exists r0 > 0 and C ∈ (0, 1/2) such that for every r ∈ (0, r0] and E ∈ E:

∀x ∈ ∂E, C ≤ |E ∩B(x, r)|
|B(x, r)| ≤ 1− C .

Point 4 in Lemma 1.11 is a weak regularity property. In particular, it ensures that E does not
have cusps.

Convergence of level sets. Before stating Proposition 1.12 below,
Proposition 1.12 ([Chambolle et al., 2016, Iglesias et al., 2018])

If (D0(y0)) has a solution, λn → 0 and

‖wn‖H
λn

≤ 1

4 c2 ‖Φ∗‖
,

then (Supp(un))n≥0 is bounded and, up to the extraction of a subsequence (not relabeled), we
have that (un)n≥0 converges strictly in BV(R2) to a solution u∗ of (P0(y0)). Moreover, for
almost every t ∈ R, we have:∣∣∣U (t)

n 4U (t)
∗

∣∣∣ −→ 0 and ∂U (t)
n −→ ∂U

(t)
∗ .

Remark 1.13

The result of Proposition 1.12 slightly di�ers from the one proved in [Chambolle et al., 2016,
Iglesias et al., 2018]. Indeed, the latter guarantees the convergence of level sets up to the extrac-
tion of a further subsequence. We argue that this can be avoided by using Proposition D.1, that
we prove in Appendix D.
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The extended support. The notion of extended support associated to u0
1 was introduced

in [Chambolle et al., 2016, Section 6]. If (D0(y0)) has a solution and η0 is the minimal norm
certi�cate de�ned in Appendix B, this set, denoted Ext(Du0), is de�ned as follows:

Ext(Du0)
def.
=
⋃{

Supp(Du)
∣∣ η0 ∈ ∂TV(u)

}
.

From Proposition 1.3, the extended support is also characterized by

Ext(Du0) =
⋃{

∂∗E
∣∣∣ |E| < +∞ and P (E) =

∣∣∣∣ˆ
E
η0

∣∣∣∣} ,
where ∂∗E denotes the reduced boundary of E (see Appendix A for a de�nition). In other
words, Ext(Du0) contains the reduced boundary of all solutions of the prescribed curvature prob-
lems associated to the minimum norm dual certi�cate and its opposite. In the above-mentioned
work, the following result was proved in the case of denoising (i.e. Φ = Id). One may check that
it still holds in the case of general measurement operators.
Proposition 1.14

If (D0(y0)) has a solution, λn → 0 and wn = o(λn) then

lim sup
n→+∞

Supp(Dun) ⊆ Ext(Du0) ,

or equivalently, for every r > 0 there exists n0 ∈ N such that

∀n ≥ n0, Supp(Dun) ⊆ {x ∈ R2 | dist(x, Ext(Du0)) ≤ r} .

Combining Proposition 1.14 and (10) yields

Supp(Du∗) ⊆ lim inf
n→+∞

Supp(Dun) ⊆ lim sup
n→+∞

Supp(Dun) ⊆ Ext(Du0) .

Structure-preserving convergence results. Considering the exact support recovery results
mentioned for other reconstruction problems, one could wonder if stronger convergence guar-
antees can be derived. Namely, if u0 is identi�able and the sum of a few indicator functions of
simple sets, are solutions of (Pλ(y0 + w)) made of the same number of atoms? And if so, are
these atoms related to those appearing in the decomposition of u0? In Part 2, we provide an
answer to these questions by adapting the tools introduced in [Duval and Peyré, 2015].

2.3. Numerical methods

In this section, we provide a quick overview of existing numerical methods for solving (Pλ(y))2.
We refer the reader to the recent survey [Chambolle and Pock, 2021a] for a complete review of

1We stress that this set only depends on η0, and hence on y0, rather than on u0.
2One could also wonder how to numerically solve (P0(y0)). As this is less relevant for practical applications, we

choose to not cover this question here.
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the topic. In the following, as we are interested in the practical resolution of (Pλ(y)), we only
consider the case of �nitely many measurements, i.e. H = Rm from some m ∈ N∗.

The main idea behind most numerical methods is to introduce a �xed spatial discretization
and a discrete version of the total variation. To be more precise, one de�nes a discretization
parameter h, a �nite dimensional space Eh, and discrete versions of the measurement operator
and the total variation Φh : Eh → H and TVh : Eh → R, and looks for a solution of

inf
u∈Eh

1

2λ
‖Φhu− y‖2 + TVh(u) . (11)

In most situations (11) is a non-smooth convex problem and can be solved e�ciently using standard
algorithms. The main di�culty usually lies in the choice of a relevant discretization TVh of
the total variation. In the remaining of this section, we brie�y present a few standard choices
for TVh. Our aim is to give an idea of why discretizing the total variation is challenging, and to
underline the drawbacks which are common to most existing approaches.

Spatial discretization. As all solutions of (Pλ(y)) have their support included in some common
ball1, one can equivalently solve (Pλ(y)) in [−R,R]2 (with Dirichlet boundary conditions) for
a su�ciently large R > 0. The most standard choice of spatial discretization is then to take a
positive integer N , de�ne h def.

= 2R/N , and choose Eh to be the space of N by N matrices. Every
element u = (ui,j)(i,j)∈[1,N ]2 of Eh encodes the values of a piecewise constant function on the
partition of [−R,R]2 composed of squares of equal size. The resulting approximate solution
of (Pλ(y)) is hence piecewise constant on this pixel grid.

2.3.1. Finite di�erences discretizations

In order to simplify the exposition, we only review the two most basic discretizations, and
refer to [Chambolle and Pock, 2021a, Section 2] for more details.

For every matrix u = (ui,j)(i,j)∈[1,N ]2 ∈ Eh we de�ne

∂hxui,j
def.
= ui+1,j − ui,j , ∂hyui,j

def.
= ui,j+1 − ui,j ,

for all (i, j) ∈ [0, N ]2, with the convention ui,j = 0 if either i or j is in {0, N + 1}. We also
de�ne the discrete gradient

∇hui,j def.
=
(
∂hxui,j , ∂

h
yui,j

)
Anisotropic total variation. The most basic idea to discretize the total variation is to de-
�ne TVh as follows:

TVh(u)
def.
= h

N∑
i=0

N∑
j=0

|∇hui,j |1 = h‖∇hu‖1,1 .

With this choice TVh(u) = TV(ũ) with ũ the piecewise constant function naturally associated
to u. The main drawback of this choice is that the functional TVh is strongly “anisotropic”: it
over-estimates the total variation of oblique discontinuities, and its minimization hence favors

1To see this, one simply needs to use Proposition 1.3 with Lemma 1.11.
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horizontal and vertical discontinuities. Figure 4 shows how this anisotropy induces a strong
bias on the reconstructed images. In fact, one can prove this discretization is not even consis-
tent, as it Γ-converges towards the perimeter associated with a crystalline total variation (see
e.g. [Chambolle et al., 2010b]).

Original image Anistropic TV Isotropic TV

Figure 4 – Solutions of the discrete Rudin-Osher-Fatemi denoising problem using the anisotropic
and isotropic total variations (�gure taken from [Tabti et al., 2018]).

Isotropic total variation. To avoid the anisotropy of the above-mentioned discretization, it is
standard to consider the so-called isotropic discrete total variation, de�ned by

TVh(u)
def.
= h

N∑
i=0

N∑
j=0

|∇hui,j |2 = h‖∇hu‖2,1 .

It is arguably the most widely used discretization. As explained in [Chambolle and Pock, 2021a,
Sections 2.1 and 2.2], it still has some anisotropy, since it is not invariation by a rotation of 90° of
the input image. Reducing this anisotropy is however possible with slightly more sophisticated
discretizations. Its main drawback (which is also shared by more complex discretizations) is that
its minimization produces blurry images (see Figure 4 for an illustration of this phenomenon),
while the (continuous) total variation is precisely used to recover sharp edges.

2.3.2. Dual-based discretizations

Another idea to de�ne TVh is to consider the dual formulation of TV, given in (1), and
to “discretize” the constraint ‖φ‖∞ ≤ 1 imposed on the dual variable. To be more precise, this
amounts to de�ning TVh as follows:

TVh(u)
def.
= sup

{
h
〈
p,∇hu

〉 ∣∣ ‖Lp‖2,∞ ≤ 1
}
, (12)
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where L is a linear operator encoding the constraints to be imposed on the dual variable p.

Hintermüller, Rautenberg, Hahn and Condat’s discretization. A discretization of the
form (12) was introduced in two independant works [Hintermüller et al., 2014, Condat, 2017]. The
operator L is chosen in this case to enforce the constraint |p| ≤ 1 both at pixel centers and edges.
The performance of this discrete total variation is acknowledged in [Chambolle and Pock, 2021a,
Section 4.2]. The experiments presented in [Condat, 2017] indeed show reconstructions that are
signi�cantly less blurry than those obtained with the isotropic discretization, although recovered
edges are never exactly sharp (i.e. the resulting images are not binary).

Learned dual discretization. In [Chambolle and Pock, 2021b], a learning approach is pro-
posed to �nd the best choice of operator L on a particular task. The consistency of the resulting
discrete total variations is guaranteed: they all Γ-converge towards the continuous total variation1.
Interestingly, discretizations learned on di�erent tasks signi�cantly di�er, which, according to
the authors, show that it is hopeless to look for a universal best discrete total variation.

2.3.3. Motivation for grid-free approaches

We now motivate the numerical approach introduced in Part 3.

Common drawbacks of �xed grid approaches. As mentioned above, most existing numer-
ical methods for solving (Pλ(y)) rely on the introduction of a �xed spatial discretization. This
often yield reconstruction artifacts, such as anisotropy or blur. Most importantly, they often fail
to preserve the structure exhibited by (some) solutions of (Pλ(y)), which are piecewise constant.

Adaptative discretizations. To circumvent these issues, mesh adaptation techniques were
introduced (see e.g. [Viola et al., 2012, Bartels et al., 2021]). The spatial discretization is hence
adapted to the reconstructed image during the reconstruction process. The re�nement rules these
works propose are, however, either heuristic or too restrictive to faithfully recover edges. In any
case, they still rely on a discretization of the whole domain, and hence do not provide a compact
representation of the reconstruced image, which is highly desirable when working with simple
images (i.e. that are the superposition of a few simple shapes).

A �rst grid-free approach. In [Ongie and Jacob, 2016], a method for recovering piecewise
constant images from few Fourier samples is introduced. Its orginiality is to produce a continuous
domain representation of the image, assuming its edge set is a trigonometric curve. However, this
approach heavily relies on relations satis�ed by the Fourier coe�cients of the image. As such, it
does not seem possible to adapt it to handle other types of measurements. In some sense, this
method can be seen as the counterpart of Prony-type methods used for the recovery of sparse
spikes (see e.g. [Catala, 2020, Chapter 1]), which are speci�c to certain type of measurements.
On the other hand, greedy approaches (that we try to adapt to our setting in Part 3) are agnostic
to the choice of measurement operator.

1As underlined by the authors, this consistency is however a bit weak, as it does not provide convergence rates or
error bounds. This property is for example also satis�ed by the isotropic discretization.
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Towards general grid-free numerical methods. Our goal is to design an algorithm which
does not su�er from some grid bias, while providing a continuous domain representation of
solutions. To this aim, we propose to construct an approximate solution built from the atoms
promoted by the total variation, namely indicator functions of simple sets. To obtain numerically
tractable algorithms, we choose the simple sets we deal with to be simple polygons, although
other choices could be considered. A schematic comparison of this approach and grid-based
approaches is provided in Figure 5.

Grid-based discretization Boundary discretization

Figure 5 – Comparison of grid-based and grid-free approaches for representing simple images.





Part 2

Noise robustness

This part is devoted to the noise robustness analysis of total variation regularization. It is based
on the following forthcoming publication.

• [De Castro et al., in preparation] Exact recovery of the support of piecewise con-

stant images via total variation regularization, Y. De Castro, V. Duval and R. Petit, in
preparation.

We begin by collecting results about the total variation unit ball, and more speci�cally about the
structure of its (exposed) faces. The importance of such an analysis, hinted in Section 1.2.2, is
showcased at then end, where we state that elements of a given face can be decomposed using
a common set of atoms. Then, we turn to the analysis of the prescribed curvature problem. Its
solutions are closely linked with elements of exposed faces, and our noise robustness analysis
is intimately related to the stability of its minimizers. Finally, we introduce a so-called non-
degenerate source condition, under which exact support recovery is obtained in a low noise
regime. We end this part by a discussion on this condition, investigating whether it holds in a
simple case.
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1. PIECEWISE CONSTANT FUNCTIONS 41

1. Piecewise constant functions

Piecewise constant functions are the sparse objects associated to the total variation. They play
the same role as sparse vectors for the `1 norm, and as discrete measures for the total variation of
measures. However, these two kinds of objects are arguably easier to deal with, mainly because
there is a canonical way to write them as the sum of a few atoms. Finding a good way to
decompose piecewise constant functions is somewhat more intricate. This increased complexity
is closely linked to properties of the total variation unit ball, whose faces have a non-trivial
structure. In this section, we discuss these issues in detail, and precisely de�ne the class of
piecewise constant functions we aim at recovering, which we call M -simple.

1.1. Exposed faces of the total variation unit ball

Motivation. As a result of Proposition 1.5 (and recalling Remark 1.6), given (λ,w) ∈ R∗+ ×H,
we have that every nonzero solution u of (Pλ(y0 + w)) satis�es

ˆ
R2

ηλ,w
u

TV(u)
= 1 ,

with ηλ,w the dual certi�cate associated to this problem (de�ned in Section 2.1.2). The solution
set of (Pλ(y0 + w)) is hence included (up to a normalization) in the solution set of

sup
u∈L2(R2)

ˆ
R2

ηλ,w u s.t. TV(u) ≤ 1 , (13)

which is in fact the face of {TV ≤ 1} exposed by ηλ,w (see [Rockafellar, 1970, Section 18] for more
details on the notion of exposed face). This observation plays a crucial role in our analysis. In the
following, we describe the structure of the exposed faces of the total variation unit ball, and derive
a useful result allowing to represent its elements using a common set of atoms. This representation
is at the core of the proof of our support recovery result. The following is based on the habilitation
thesis of Vincent Duval [Duval, 2022] and on a forthcoming work [Boyer et al., in preparation]1.
The results we present here are a subset of those given in [Duval, 2022]. In this last work, general
linearly closed faces of the total variation unit ball are considered. We only treat the case of
exposed faces, which is enough for our purpose. This allows slightly di�erent (and often shorter)
proofs.

Setting. Let us �x η ∈ L2(R2), and denote F the face of {TV ≤ 1} exposed by η, which is the
solution set of

sup
u∈L2(R2)

ˆ
R2

ηu

s.t. TV(u) ≤ 1 .

(14)

The weak compactness of {TV ≤ 1} yields that F is non-empty (i.e. the supremum in (14) is
attained). Moreover, if η is not equal to zero almost everywhere, it has a Lebesgue point x such

1We also stress, as in [Duval, 2022, Section 2.6.2], that the total variation is a particular case of submodular function.
The faces of the unit ball de�ned by such functions have been studied in the monographs [Fujishige, 2005, Bach, 2013].
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that |η(x)| > 0. There hence exists r > 0 such that |
´
B(x,r) η| > 0, which shows the value of (14)

is strictly positive, say 1/α for some α ∈ R∗+. Hence, we have that

∀u ∈ L2(R2), TV(u)−
ˆ
R2

(αη)u ≥ 0 ,

with equality if and only if u solves (14). For convenience reasons, we assume in the following
that α = 1 (all the results below remain valid if α 6= 1 by replacing η with η′

def.
= αη), and

consequently obtain
∀u ∈ L2(R2), TV(u)−

ˆ
R2

ηu ≥ 0 . (15)

With this assumption we have the following characterization of F:

F =

{
u ∈ L2(R2)

∣∣∣∣TV(u) ≤ 1 and
ˆ
R2

η u = 1

}
,

and every u ∈ F satis�es
´
R2 η u = TV(u).

Remark 2.1

Let us stress that Problem 14 has value 1 (i.e. α = 1) if and only if their exists a nonzero func-
tion u ∈ L2(R2) which satis�es

´
R2 η u = TV(u) (i.e. η ∈ ∂TV(u)). Dual certi�cates intro-

duced above all fall in this category, unless the unique solution of (P0(y0)) (respectively (Pλ(y)))
is zero.

1.1.1. Indicator functions

From Proposition 1.2, we know that the extreme points of {TV ≤ 1} are the functions of
the form ±1E/P (E), with E a simple set such that 0 < |E| < +∞. Elements of F that are
proportional to indicator functions hence play a special role in the analysis of its structure. Let
us therefore de�ne

E
def.
= E+ ∪ E− ∪ {∅,R2} ,

E+ def.
=

{
E ⊂ R2

∣∣∣∣ |E| < +∞, 0 < P (E) < +∞, 1E
P (E)

∈ F

}
,

E−
def.
=

{
E ⊂ R2

∣∣∣∣ |Ec| < +∞, 0 < P (Ec) < +∞, −1Ec
P (Ec)

∈ F

}
.

(16)

Remark 2.2

We stress that an extreme point of {TV ≤ 1} is not necessarily exposed. In fact, E ∈ E+ if
and only if P (E) =

´
E η (and E ∈ E− if and only if P (Ec) = −

´
Ec η). This is equivalent

to require that E (respectively Ec) is a solution of the prescribed curvature problem associated
to η (respectively −η) studied in Section 2. In particular, this implies that E (respectively Ec)
is bounded, that the number of Jordan curves in the decomposition of ∂ME is �nite, and that
the following weak regularity property holds:

∃r0 > 0, ∀r ∈ (0, r0], ∀x ∈ ∂E, 1

16
≤ |E ∩B(x, r)|

|B(x, r)| ≤ 1− 1

16
.

We refer the reader to [Chambolle et al., 2016, Section 5] for more details.
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The set E has the remarkable property of being closed under several operations that we
describe below. We �rst consider the intersection and union operations, before turning to
M -connected components and holes.
Proposition 2.3

The set E is closed under countable unions and countable intersections.

Proof : If E ∈ E+ and F ∈ E+ the submodularity of the perimeter (see e.g. [Ambrosio et al., 2001,
Proposition 1]) yields:

P (E ∩ F ) + P (E ∪ F ) ≤ P (E) + P (F ) =

ˆ
E

η +

ˆ
F

η =

ˆ
E∩F

η +

ˆ
E∪F

η .

We hence obtain: (
P (E ∩ F )−

ˆ
E∩F

η

)
+

(
P (E ∪ F )−

ˆ
E∪F

η

)
≤ 0 .

Using (15), we get that the two terms above are nonnegative, which yields E ∩ F ∈ E+ (un-
less |E ∩ F | = 0) and E ∪ F ∈ E+. The same reasoning shows that the result also holds when
replacing E+ by E−.

If E ∈ E+ and F ∈ F− we have:

P (E ∩ F ) + P ((E ∪ F )c) = P (E ∩ F ) + P (E ∪ F )

≤ P (E) + P (F )

= P (E) + P (F c)

=

ˆ
E

η −
ˆ
F c
η

=

ˆ
E∩F

η −
ˆ

(E∪F )c
η

Reasoning as above, we obtain E ∩ F ∈ E+ (unless |E ∩ F | = 0) and E ∪ F ∈ E− (un-
less |(E ∪ F )c| = 0), which shows E ∩ F ∈ E.

Now, we have proved thatE is stable under �nite unions and �nite intersections. The countable
case follows from the fact exposed faces are closed in L2(R2).

Proposition 2.4

Let E,F ∈ E with F ⊂ E. If there exists C1, C2 ⊂ R2 such that

1. |C1| > 0 and |C2| > 0

2. E \ F = C1 ∪ C2

3. P (E \ F ) = P (C1) + P (C2)

then F ∪ C1 ∈ E and F ∪ C2 ∈ E.

Proof : We �rst note that C1 ( R2 and C2 ( R2 (otherwise we would have E = R2 and F = ∅,
which would contradict the indecomposability of R2). Using 2. and 3., from [Ambrosio et al., 2001,
Proposition 3] we hence obtain that H1(∂∗C1 ∩ ∂∗C2) = 0. Now, using Proposition 1 of the same
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reference, we obtain:

P (E) + P (F ) = 2P (F ) + P (E \ F )− 2H1(∂∗F ∩ ∂∗(E \ F ))

= 2P (F ) + P (E \ F )− 2H1(∂∗F ∩ ∂∗(C1 ∪ C2))

= (P (F ) + P (C1)− 2H1(∂∗F ∩ ∂∗C1)) + (P (F ) + P (C2)− 2H1(∂∗F ∩ ∂∗C2))

= P (G1) + P (G2) ,

with G1
def.
= F ∪ C1 and G2

def.
= F ∪ C2. We can then conclude as in the proof of Proposition 2.3.

As a consequence of Proposition 2.4, we obtain the following result. We remind the reader
that M -connected components and holes are de�ned in Appendix A.
Corollary 2.5

If E ∈ E, anyM -connected component of E belongs to E. Moreover, for any hole Y of E, we
have that E ∪ Y ∈ E.

1.1.2. Chains and maximal chains

Considering exposed faces (instead of general linearly closed faces) does not allow for shorter
proofs of the results given in this section. We hence do not include them and refer the reader
to [Duval, 2022, Section 2.3].

We say that a collection C of subsets of R2 is a chain if for every E,F ∈ C we have E ⊆ F
or F ⊆ E, i.e. if C is totally ordered for the inclusion relation. We call its cardinal (denoted |C|) the
length of C. Denoting dim(F) the dimension of the a�ne hull of F, we may state the following
result.
Proposition 2.6

If C ⊆ E \ {∅,R2} is a chain and dim(F) = d, then C has length at most d+ 1.

We say that a chain C in E is maximal if there is no E ∈ E \ C such that C ∪ {E} is a chain.
Such a chain must therefore contain ∅ and R2. As a result, if C = {Ei}mi=0 is a maximal chain,
then the collection of its increments {Ei\Ei−1}mi=1 is a partition of R2. The following proposition
shows that every set in E can be written as the union of elements of this partition.
Proposition 2.7

Assume C = {Ei}mi=0 is a maximal chain in E with

∅ = E0 ⊂ E1 ⊂ ... ⊂ Em = R2 .

Then the following holds.

1. For every i ∈ {1, ...,m}, the set Ei \ Ei−1 is indecomposable.

2. For every F ∈ E, there exists I ⊆ {1, ...,m} such that F =
⋃
i∈I

(Ei \ Ei−1).

Even if there could be several maximal chains in F, they all have the same length and the same
collection of increments, as the following proposition shows. In particular, we see that each
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exposed face F with �nite dimension is naturally associated to a partition of R2 (which is the
collection of increments of any maximal chain in F).
Proposition 2.8

If C = {Ei}mi=0 and C′ = {E′i}m
′

i=0 are two maximal chains in E, we have:

1. |C| = |C′| = dim(F) + 3 ,

2. {Ei \ Ei−1}mi=1 = {E′i \ E′i−1}m
′

i=1 .

1.2. Chains associated to a piecewise constant function

1.2.1. De�nition and properties

Let u ∈ L2(R2) be a function with �nite total variation, taking a �nite number of values1

t1 > ... > ti0−1 > ti0 = 0 > ti0+1 > ... > tm .

Let Ei
def.
= {u ≥ ti} if 1 ≤ i ≤ m and E0

def.
= ∅. We hence have ∅ = E0 ⊂ E1 ⊂ ... ⊂ Em = R2,

i.e. {Ei}mi=0 is a chain.
Now if Fi

def.
= Ei \ Ei−1 = {u = ti} for every 1 ≤ i ≤ m, we have CCM (Fi) = {Fi,j}j∈Ji

with Ji at most countable. De�ning J def.
= {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ |Ji|}, for every (i, j) ∈ J

we introduce

Ei,j
def.
= Ei−1

⋃ ⋃
1≤k≤j

Fi,j

 .

With these notations, the lexicographic order on J yields a total order on {Ei,j}(i,j)∈J , which
is hence a chain. We say that it is a chain associated to the function u (see Figure 6 for an
illustration). By construction, u is constant on each of its increments (Fi,j)(i,j)∈J , which are all
indecomposable.
Remark 2.9

Since the order we choose on CCM ({u = ti}) is arbitrary, multiple chains can be associated
to u (see Figure 6 for an illustration). These chains however have the same collection of incre-
ments I, which is given by:

I =

m⋃
i=1

CCM ({u = ti}) .

Considering the construction above, we now de�ne the sparse objects naturally associated
to the total variation, which we call M -simple functions. This is the class of piecewise constant
functions we work with in the rest of this manuscript.

1Meaning that |{u = ti}| > 0 for all i ∈ {1, ...,m} and, for almost every x ∈ R2, we have u(x) ∈ {ti}mi=1.
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E1 E2

Y2

Y1

Figure 6 – A function u = 1E1 − 1E2 .

∅ ∅ ∅

E1 E1 E1

E1 ∪ Y1 Ec2 \ (Y1 ∪ Y2) Ec2 \ (Y1 ∪ Y2)

E1 ∪ Y1 ∪ Y2 Ec2 \ Y1 Ec2 \ Y2

Ec2 Ec2 Ec2

R2 R2 R2

Figure 7 – Three chains associated to u (see Figure 6). Each column corresponds to a chain,
whose elements are ordered from top to bottom.
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De�nition 2.10 (M -simple functions)

We say that a function u : R2 → R isM -simple if there exists a �nite set I , a collection {Ei}i∈I
of indecomposable sets of �nite measure and t ∈ RI such that

u =
∑
i∈I

ti1Ei .

We stress that, with this de�nition, any M -simple function u belongs to L2(R2) and has �nite
total variation. We also have that a function u ∈ L2(R2) with �nite total variation is M -simple
if and only if its associated chains have �nite length. Moreover, the length of these chains is
exactly the sum, over all values t taken by u, of the number of boundedM -connected components
of {u = t}.

Sparsity of a piecewise constant function. The “right” measure of sparsity for
a piecewise constant function u is the sum, over all values t taken by u, of the number of
bounded M -connected components of {u = t}.

We conclude this section by stating the following useful result, whose importance is explained
below.
Proposition 2.11

Assume that dim(F) = d and u ∈ F. Then u isM -simple. Moreover, any chain associated to
u is a chain in E, and hence has at most d + 1 elements (not counting ∅ and R2). Finally, u is
constant on the increments of any maximal chain in E.

Proof : Using Carathéodory’s theorem, we have that u can be written as a convex combination
of d+ 1 extreme points of F, which are of the form ε1E/P (E) with ε ∈ {−1, 1} and E a simple
set such that 0 < |E| < +∞. As a consequence, u takes a �nite number of values. Using the
above-de�ned notations we have:

u =

i0−1∑
i=1

θi 1Ei +

m−1∑
i=i0

θi
(
−1Eci

)
and

ˆ
R2

η u =

i0−1∑
i=1

θi

ˆ
Ei

η −
m−1∑
i=i0

θi

ˆ
Eci

η ,

with θi > 0. By the coarea formula (see e.g. [Maggi, 2012, Chapter 13]), we also have:
i0−1∑
i=1

θi P (Ei) +

m−1∑
i=i0

θi P (Eci ) = TV(u) .

Using
´
R2 η u = TV(u) we hence obtain P (Ei) =

´
Ei
η for 1 ≤ i ≤ i0−1 and P (Eci ) = −

´
Eci
η

for i0 ≤ i ≤ m− 1, which shows {Ei}1≤i≤m−1 is a chain in E. We conclude that {Ei,j}(i,j)∈J
is a chain in E by using Proposition 2.4. The last claim is a straightforward consequence of
Proposition 2.7, since the level sets of u all belong to E.

The main interest of this proposition is that, denoting {Fj}1≤j≤m the collection of increments of
any maximal chain in F, every function u ∈ F is of the form

u =

m∑
j=1

tj 1Fj ,
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with t ∈ Rm. To put it another way, the elements of F can be decomposed using a common set
of atoms, which is the collection {1Fj}1≤j≤m.

1.2.2. A su�cient condition for identi�ability

In this subsection, we derive a su�cient identi�ability condition using the above results.
To this aim, we �rst recall a condition, introduced in [Burger and Osher, 2004] as the source
condition, which ensures that a given function u0 solves (P0(y0)).
De�nition 2.12

A function u0 satis�es the source condition if there exists η ∈ Im Φ∗ such that η ∈ ∂TV(u0).

If u0 is an M -simple function, the source condition can be strengthened to ensure it is the
unique solution of (P0(y0)) (i.e. u0 is identi�able). To this aim, for any M -simple function u and
any chain C associated to u, whose ordered increments are denoted (Fj)1≤j≤m, we de�ne

ΦC : Rm → H

t 7→ Φ

 m∑
j=1

tj 1Fj

 .

We stress that this mapping only mildly depends on the choice of a chain C, in the sense that if C′
is another chain associated to u, then C and C′ have the same collection of increments. There
hence exists a permutation of the coordinates σ such that ΦC = ΦC′ ◦ σ.

We may now state the following result, which is a natural analog of [Duval and Peyré, 2015,
Proposition 5].
Proposition 2.13

Let u0 be an M -simple function. Assume there exists η ∈ Im Φ∗ ∩ ∂TV(u0). If a chain C0

associated to u0 is maximal in the face exposed by η, and if ΦC0 is injective, then u0 is the
unique solution of (P0(y0)).

Proof : Since η ∈ Im Φ∗ and η ∈ ∂TV(u0), by Proposition 1.4 we have that every solution u of
(P0(y0)) satis�es η ∈ ∂TV(u), and hence that u/TV(u) is in the face exposed by η. Since C0

is a maximal chain in this face, denoting (Fj)1≤j≤m its increments, we obtain that u/TV(u) is
constant on each Fj , which yields the existence of t ∈ Rm such that

u =

m∑
j=1

tj1Fj .

The injectivity of ΦC0
�nally allows to conclude.

Remark 2.14

We stress that a chain associated to an M -simple function u is maximal in an exposed face
of {TV ≤ 1} if and only if all chains associated to u are maximal in this face. This directly
follows from the fact all these chains have the same length. As a consequence, the result stated
in Proposition 2.13 does not depend on the choice of a particular chain.
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The main question which remains unanswered is the following: if u0 is M -simple and
identi�able, with w and λ small enough, are solutions of (Pλ(y0 + w)) M -simple, what is the
length of their associated chains, and how are their elements related to those of C0 ? To answer an
analog question for the sparse spikes problem, a non-degenerate version of the source condition
was introduced in [Duval and Peyré, 2015, De�nition 5].

From Proposition 1.3 and (8), the elements of the chains associated to solutions of (Pλ(y0+w))
are all solutions of the prescribed curvature problem associated to ηλ,w. In Section 2.1.2, we
have also seen that, under a few assumptions, ηλ,w converges to the minimal norm certi�cate η0

when w and λ go to zero. It is therefore natural to investigate how solutions of the prescribed
curvature problem behave under variations of the curvature functional, which is the topic of the
following section. The results therein allow us to state a natural analog of the non-degenerate
source condition in Section 3, and to �nally answer the above question.

2. The prescribed curvature problem

As mentioned above, this section is dedicated to the study of the prescribed curvature problem
associated to some function η ∈ ∂TV(0):

inf
E⊂R2, |E|<+∞

J(E)
def.
= P (E)−

ˆ
E
η . (PC(η))

Our main aim is to investigate how the solution set of (PC(η)) behaves when η varies. To be
more speci�c, given two su�ciently close curvature functionals η and η′ we are interested in
answering the following two questions.

(i) Are solutions of (PC(η′)) close to solutions of (PC(η))?

(ii) How many solutions of (PC(η′)) are there in a neighborhood of a given solution of (PC(η))?

In the following subsection, we answer the �rst question using the notion of quasi-minimizers
of the perimeter, as well as �rst order optimality conditions for (PC(η)). Then, under a strict
stability assumption on solutions of (PC(η)), we answer the second question using the notion of
second order shape derivatives.

Tools. As discussed in the following subsection, if η is su�ciently regular, the solutions
of (PC(η)) also enjoy some regularity. In this section, we hence mainly work with smooth
sets and extensively use related notions. Relevant de�nitions and properties are collected in
Appendix B. We also use the notion of curvature (de�ned in Appendix A) and of second funda-
mental form (see e.g. [Maggi, 2012, Section 17.6]). Given a su�ciently smooth set E, we often
consider sets that are normal deformations of E, i.e. whose boundary is a normal graph over ∂E.
Such sets are parametrized by real-valued functions on ∂E, which leads us to use the notion of
tangential gradient, tangential Jacobian, and the spaces Ck(∂E), Lp(∂E) and H1(∂E) (along with
their associated norms). We refer to the reader to [Henrot and Pierre, 2018, Sections 5.4.1, 5.4.3
and 5.9.1] for a precise de�nition of these objects.
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2.1. Generalities and first convergence result

Existence of minimizers. We �rst stress that existence of solutions is guaranteed for (PC(η)).
Indeed, since η ∈ ∂TV(0), the objective J is always nonnegative, and equal to zero when
evaluated at the empty set, which is admissible. From Proposition 1.3, we also know that it has a
non trivial solution as soon as there exists a nonzero function u ∈ L2(R2) such that η ∈ ∂TV(u).

Boundedness. As already mentioned, by Lemma 1.11 all solutions of (PC(η)) are included
in some common ball, i.e. there exists R > 0 such that, for every solution E of (PC(η)), we
have E ⊂ B(0, R).

Regularity of the solutions. Let us now discuss the regularity of solutions of (PC(η)). If we
have η ∈ L∞(R2), then any solution of (PC(η)) is a strong quasi-minimizer of the perimeter,
and, consequently, is of class C1,1 (see [Ambrosio, 2010, De�nition 4.7.3 and Theorem 4.7.4]). If η
is moreover continuous, then the boundary of any solution is locally the graph of a function u
which solves (in the sense of distributions) the Euler-Lagrange equation associated to (PC(η)),
which is (up to a translation and a rotation):(

u′√
1 + u′2

)′
(z) =

u′′(z)(
1 + u′(z)2

)3/2
= η(z, u(z)) . (17)

This in turn implies that u is C2 (Ck+2,α if η ∈ Ck,α(R2)) and solves (17) in the classical sense.
As a result, assuming η is bounded and of class C1, every solution of (PC(η)) is of class C3.

Convergence result. Now, we state a result that, loosely speaking, tells that any neighbor-
hood (in terms of C2-normal deformations) of the solution set of (PC(η0)) contains the solution
set of (PC(η)) provided η is su�ciently close to η0 in C1(R2) and L2(R2). This provides an
answer to question (i).
Proposition 2.15

Let η0 ∈ ∂TV(0)∩C1
b(R2). For every ε > 0 there exists r > 0 such that for every η ∈ ∂TV(0)

with ‖η − η0‖L2(R2) + ‖η − η0‖C1(R2) ≤ r, the following holds: every solution F of (PC(η))
is a C2-normal deformation of size at most ε of a solution E of (PC(η0)) (i.e., with the notation
of Proposition B.5, F = Eϕ with ‖ϕ‖C2(∂E) ≤ ε).

Proof : We argue by contradiction and assume the existence of two sequences (ηn)n∈N∗ and (Fn)n∈N∗

such that

• for all n ∈ N∗, ηn ∈ ∂TV(0) ∩ C1
b(R2),

• the sequence (ηn)n∈N∗ converges to η0 in L2(R2) and C1
b(R2),

• for all n ∈ N∗, the set Fn solves (PC(ηn)) and cannot be written as a C2-normal deformation
of size at most ε of a solution of (PC(η0)) .

We hence have that (Fn)n∈N∗ is bounded and that Fn is a strong (Λ, r0)-quasi minimizer of the
perimeter (in short form Fn ∈ QM(Λ, r0), see [Maggi, 2012, Section 21] and [Ambrosio, 2010,
De�nition 4.7.3]) for all n ∈ N∗, with Λ = sup {‖ηn‖∞, n ∈ N∗} and r0 any positive real number.
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Taking r0 small enough to have Λ r0 ≤ 1, from [Maggi, 2012, Propositions 21.13 and 21.14] we
get that, up to the extraction of a subsequence (not relabeled), (Fn)n≥0 converges in measure to a
bounded set E ∈ QM(Λ, r0), and that (∂Fn)n≥0 converges to ∂E. From |Fn4E| → 0 we obtain
that E is a solution of (PC(η0)), and the convergence of (∂Fn)n≥0 towards E yields

∀r > 0, ∃n0 ∈ N, ∀n ≥ n0, ∂Fn ⊂
⋃
x∈∂E

C(x, r, νE(x)) ,

where C(x, r, νE(x)) denotes the square of axis νE(x) and side r centered at x, de�ned in (60).
From [Ambrosio, 2010, 4.7.4], and arguing as in the proof of [Maggi, 2012, Theorem 26.6], for
every x ∈ ∂E we obtain the existence of r > 0, of n0 ∈ N, of u ∈ C1,1([−r, r]) and of a
sequence (un)n≥n0 which is uniformly bounded in C1,1([−r, r]), such that, in C(x, r, νE(x)), the
set E is the hypograph of u and, for every n ≥ n0, the set Fn is the hypograph of un. Moreover,
we have that ‖un − u‖C1([−r,r]) → 0.

Now, we also have that u and un (for n ≥ n0) respectively solve (in the sense of distributions)
the following equations in (−r, r):

u′′(z)

(1 + u′(z)2)
3/2

= H(z, u(z)) , with H(z, t)
def.
= η0(x+RνE(x)(z, t)) ,

u′′n(z)

(1 + u′n(z)2)
3/2

= Hn(z, un(z)) , with Hn(z, t)
def.
= ηn(x+RνE(x)(z, t)) .

(18)

We hence immediately obtain that u and un belong to C2([−r, r]). Moreover, for every z ∈ (−r, r)
we have:

|u′′n(z)− u′′(z)| =
∣∣∣Hn(z, un(z))

(
1 + u′n(z)2

)3/2 −H(z, u(z))
(
1 + u′(z)2

)3/2 ∣∣∣
≤ (‖Hn −H‖∞ + |H(z, un(z))−H(z, u(z))|)

(
1 + u′n(z)2

)3/2
+ ‖H‖∞

[(
1 + u′n(z)2

)3/2 − (1 + u′(z)2
)3/2]

,

from which we obtain that ‖u′′n − u′′‖∞ → 0.
Using these new results in combination with (18), we get that u and un belong to C3([−r, r]).

Di�erentiating (18), we obtain, for every z ∈ (−r, r):

u(3)(z) =
[
∂1H(z, u(z)) + u′(z) ∂2H(z, u(z))

]
(1 + u′(z)2)3/2

+ 3H(z, u(z))u′′(z)u′(z) (1 + u′(z)2)3/2 ,

u(3)
n (z) =

[
∂1Hn(z, un(z)) + u′n(z) ∂2Hn(z, un(z))

]
(1 + u′n(z)2)3/2

+ 3Hn(z, un(z))u′′n(z)u′n(z) (1 + u′n(z)2)3/2 ,

from which we can �nally show ‖u(3)
n − u(3)‖∞ → 0.

Finally, using the compactness of ∂E, we obtain that (Fn)n≥0 converges in C3 towards E,
and Proposition B.3 allows to eventually write Fn as a C2-normal deformation of E, whose norm
converges to zero. This yields a contradiction.

2.2. Stability result

Question (ii) is closely linked to the stability of minimizers of (PC(η)), that is to the behaviour
of the objective J in a neighborhood of a solution. To analyze this behaviour, we use the general
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framework presented in [Dambrine and Lamboley, 2019], which relies on the notion of second
order shape derivative.

Approach. The natural path to obtain our main stability result, which is Proposition 2.23,
is to prove that J is in some sense of class C2, i.e. that its second order shape derivative is
continuous at zero (see Proposition 2.21 for a precise statement). We could not �nd this result
in the literature. A large part of this section is hence dedicated to its proof. To the best of
our knowledge, deriving such a result is necessary to obtain Proposition 2.23. In particular,
we had to use a stronger condition than the “improved continuity condition” (ICH1,W2,∞)
of [Dambrine and Lamboley, 2019], which is satis�ed by our functional. This condition only
requires some uniform control of second order directional derivatives at zero, which is weaker
than the result of Proposition 2.21.

Structure of shape derivatives. Given an open solution E of (PC(η)), we introduce the
following mapping, where Eϕ denotes the normal deformation of E associated to ϕ, de�ned in
Proposition B.5:

jE : C1(∂E)→ R
ϕ 7→ J(Eϕ) .

With this notation, the following result holds.
Proposition 2.16 (See e.g. [Henrot and Pierre, 2018, Chapter 5])

If E is a bounded open set of class C2 and η ∈ C1(R2), then jE is twice Fréchet di�erentiable
at 0 and, for every ψ ∈ C1(∂E), we have:

j′E(0).(ψ) =

ˆ
∂E

[η −H]ψ dH1

j′′E(0).(ψ,ψ) =

ˆ
∂E

[
|∇τψ|2 −

(
H η +

∂η

∂ν

)
ψ2

]
dH1

where H denotes the curvature of E and ∇τψ def.
= ∇ψ − (∇ψ · ν) ν is the tangential gradient

of ψ with respect to E.

From the expression of j′E(0) and j′′E(0) given above, we immediately notice that j′E(0) can
be extended to a continuous linear form on L1(∂E), and j′′E(0) to a continuous bilinear form
on H1(∂E).

Strict stability. Following [Dambrine and Lamboley, 2019], we say that a solutionE of (PC(η))
is strictly stable if j′′E(0) is coercive in H1(∂E), i.e. if the following property holds:

∃α > 0, ∀ψ ∈ H1(∂E), j′′E(0).(ψ,ψ) ≥ α ‖ψ‖2H1(∂E) .

Under a few assumptions (that are satis�ed by our functional), this strict stability condition
ensures thatE is a strict local minimizer of J (see Theorem 1.1 in the above-mentioned reference),
and is hence the only minimizer (modulo Lebesgue negligible sets) among sets Eϕ with ϕ in a
neighborhood of 0. It plays a crucial role in our answer to question (ii).
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Continuity results. Now, we prove a few results concerning the convergence of j′′E towards j′′0,E
and the continuity of ϕ 7→ j′′E(ϕ), where jE and j0,E are the functionals respectively associated
to η and η0. To achieve this, we need to compute j′′E(ϕ) for ϕ ∈ C1(∂E) in a neighborhood of 0.
This may be done using Lemma 2.17 below. To state it, given a bounded open set E of class C2

and ϕ in a neighborhood of 0 in C1(∂E), we introduce the mapping fϕ = Id + ξϕ, with ξϕ
de�ned as in Lemma B.4. If ‖ϕ‖C1(∂E) is su�ciently small then fϕ is a C1-di�eomorphism, and
we denote its inverse by gϕ.
Lemma 2.17

Let E be a bounded open set of class C2. Then for every ϕ in a neighborhood of 0 in C1(∂E),
and for every ψ ∈ H1(∂E), we have:

j′′E(ϕ).(ψ,ψ) = j′′Eϕ(0).(ξψ ◦ gϕ · νϕ, ξψ ◦ gϕ · νϕ) + j′Eϕ(0).(Zϕ,ψ) (19)

where νϕ is the unit outward normal to Eϕ and

Zϕ,ψ = Bϕ((ξψ ◦ gϕ)τϕ , (ξψ ◦ gϕ)τϕ)− 2(∇τϕ(ξψ ◦ gϕ · νϕ)) · (ξψ ◦ gϕ)τϕ ,

with ζτϕ and ∇τϕζ the tangential part and the tangential gradient of ζ with respect to Eϕ,
and Bϕ the second fundamental form of Eϕ.

Proof : To prove this result, we need to introduce JE
1 de�ned by

JE : C1
b(R2,R2)→ R

ξ 7→ J((Id+ ξ)(E)) .

We denote ν the outward unit normal to E and B its second fundamental form. We also denote ζτ
and ∇τζ the tangential part and the tangential gradient of ζ with respect to E. The structure
theorem (see e.g. [Henrot and Pierre, 2018, Theorem 5.9.2] or [Dambrine and Lamboley, 2019,
Theorem 2.1]) then yields, for every su�ciently smooth vector �eld ζ :

J′E(0).(ζ) = j′E(0).(ζ ∂E · ν) ,

J′′E(0).(ζ, ζ) = j′′E(0).(ζ ∂E · ν, ζ ∂E · ν) + j′E(0).(Zζ) ,

where
Zζ

def.
= B(ζτ , ζτ )− 2 (∇τ (ζ · ν)) · ζτ .

Now, we �rst notice that, for every pair of vector �elds ξ, ζ such that Id+ ξ is invertible, we have:

(Id+ ξ + ζ)(E) = (Id+ ζ ◦ (Id+ ξ)−1)((Id+ ξ)(E)) .

De�ning F def.
= (Id + ξ)(E) we hence obtain JE(ξ + ζ) = JF (ζ ◦ (Id + ξ)−1, ζ ◦ (Id + ξ)−1),

which yields
J′′E(ξ).(ζ, ζ) = J′′F (0).(ζ ◦ (Id+ ξ)−1) .

Using this with ξ = ξϕ and ζ = ξψ , we get:

j′′E(ϕ).(ψ,ψ) = J′′E(ξϕ)(ξψ, ξψ) = J′′Eϕ(0).(ξψ ◦ gϕ, ξψ ◦ gϕ) ,

and we �nally obtain (19) by applying the structure theorem.

1This mapping allows to study the behaviour of the objective in a neighborhood of E with respect to general
deformations, while jE is only related to normal deformations.
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Most of the results below rely on the following technical lemma, whose �rst part is contained
in [Dambrine and Lamboley, 2019, Lemma 4.7].
Lemma 2.18

Let E be a bounded C2 set. If ‖ϕ‖C1(∂E) → 0 we have:

(i) ‖fϕ − Id‖C1(∂E) → 0 , ‖νϕ ◦ fϕ − ν‖C0(∂E) → 0 , (iii)

(ii) ‖gϕ − Id‖C1(∂Eϕ) → 0 , ‖Jacτfϕ − 1‖C0(∂E) → 0 . (iv)

If ‖ϕ‖C2(∂E) → 0 then we also have:

(v) ‖Hϕ ◦ fϕ −H‖C0(∂E) → 0 , ‖Bϕ ◦ fϕ −B‖C0(∂E) → 0 . (vi)

Moreover, the following holds:

(a) lim
‖ϕ‖C1(∂E)→0

sup
ψ∈L2(∂E)\{0}

‖(ξψ ◦ gϕ)τϕ‖L2(∂Eϕ)

‖ψ‖L2(∂E)
= 0 ,

(b) lim
‖ϕ‖C1(∂E)→0

sup
ψ∈H1(∂E)\{0}

∣∣‖∇τϕ(ξψ ◦ gϕ · νϕ)‖L2(∂Eϕ) − ‖∇τψ‖L2(∂E)

∣∣
‖ψ‖H1(∂E)

= 0 ,

(c) lim
‖ϕ‖C2(∂E)→0

sup
ψ∈H1(∂E)\{0}

‖Zϕ,ψ‖L1(∂Eϕ)

‖ψ‖2
H1(∂E)

= 0 .

Proof : See [Dambrine and Lamboley, 2019, Lemma 4.7] for a proof of the results stated in the �rst
part of the lemma. To prove (a) we use the fact that

‖(ξψ ◦ gϕ)τϕ‖2L2(∂Eϕ) =

ˆ
∂E

(ν ◦ gϕ)2
τϕ ◦ fϕ Jacτfϕ ψ

2 dH1

≤ ‖Jacτfϕ‖C0(∂E) ‖(ν ◦ gϕ)τϕ ◦ fϕ‖2C0(∂E) ‖ψ‖2L2(∂E)

= ‖Jacτfϕ‖C0(∂E) ‖ν − (ν · νϕ ◦ fϕ) νϕ ◦ fϕ‖2C0(∂E) ‖ψ‖2L2(∂E) .

which, using (i), (iii) and (iv), yields the result.
To prove (b), we notice that:

∇τϕ(ξψ ◦ gϕ · νϕ) =
[
c1ϕ ψ ◦ gϕ + c2ϕ · ∇τψ ◦ gϕ

]
τϕ ,

with τ = ν⊥, τϕ = ν⊥ϕ
1 and

c1ϕ
def.
= τ ◦ gϕ · νϕ (Jgϕ τϕ) · τ ◦ gϕ + τϕ · ν ◦ gϕ , c2ϕ

def.
= ν ◦ gϕ · νϕ (Jgϕ τϕ) .

We hence obtain

|∇τϕ(ξψ ◦ gϕ · νϕ) ◦ fϕ Jacτfϕ −∇τψ| ≤ cϕ (|ψ|+ |∇τψ|)

with cϕ independant of ψ. Moreover, using (ii) and (iii), we have:

lim
‖ϕ‖C1(∂E)→0

‖cϕ‖C0(∂E) → 0 .

1These two vectors are de�ned as the application of the rotation of angle π/2 to ν and νϕ.
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Denoting A
def.
=
∣∣‖∇τϕ(ξψ ◦ gϕ · νϕ)‖L2(∂Eϕ) − ‖∇τψ‖L2(∂E)

∣∣, this �nally yields

A ≤ ‖∇τϕ(ξψ ◦ gϕ · νϕ) ◦ fϕ Jacτfϕ −∇τψ‖L2(∂E)

≤
√

2 ‖cϕ‖C0(∂E) ‖ψ‖H1(∂E) .

We now prove (c). Since

‖Bϕ((ξψ ◦ gϕ)τϕ , (ξψ ◦ gϕ)τϕ)‖L1(∂Eϕ) ≤ ‖Bϕ‖C0(∂Eϕ) ‖(ξψ ◦ gϕ)τϕ‖2L2(∂Eϕ)

and
B ≤ ‖∇τϕ(ξψ ◦ gϕ · νϕ))‖L2(∂Eϕ) ‖(ξψ ◦ gϕ)τϕ‖L2(∂Eϕ)

with B
def.
= ‖(∇τϕ(ξψ ◦ gϕ · νϕ)) · (ξψ ◦ gϕ)τϕ‖L1(∂Eϕ), we get the result.

Using the above result, we now prove the continuity of ϕ 7→ j′′E(ϕ) by proving the continuity of
the two terms appearing in its expression. In all the following, if E is a (real) vector space, we
denote Q(E) the set of quadratic forms over E.
Proposition 2.19

If E is a bounded C2 set and pE : ϕ 7→ P (Eϕ), the mapping

p′′E : C2(∂E)→ Q(H1(∂E))

ϕ 7→ p′′E(ϕ)

is continuous at 0.

Proof : Using Lemma 2.18, for every ϕ ∈ C2(∂E) in a neighborhood of 0 and ψ ∈ H1(∂E), we
obtain:

p′′E(ϕ).(ψ,ψ)− p′′E(0).(ψ,ψ) = A + p′Eϕ(0).(Zϕ,ψ) ,

with A
def.
= p′′Eϕ(0).((ξψ ◦ gϕ) · νϕ, (ξψ ◦ gϕ) · νϕ)− p′′E(0).(ψ,ψ). Now, we also have:

A = ‖∇τϕ(ξψ ◦ gϕ · νϕ)‖2L2(∂Eϕ) − ‖∇τψ‖2L2(∂E) ,

and using Lemma 2.18 we obtain

lim
‖ϕ‖C2(∂E)→0

sup
ψ∈H1(∂E)\{0}

∣∣∣p′′Eϕ(0).((ξψ ◦ gϕ) · νEϕ , (ξψ ◦ gϕ) · νEϕ)− p′′E(0).(ψ,ψ)
∣∣∣

‖ψ‖2H1(∂E)

= 0 .

Moreover
|p′E(0).(Zϕ,ψ)| ≤ ‖Hϕ‖L∞(∂Eϕ) ‖Zϕ,ψ‖L1(∂Eϕ) ,

and Lemma 2.18 allows to conclude.

Proposition 2.20

If E is a bounded C2 set, η ∈ C1
b(R2) and gE : ϕ 7→

´
Eϕ
η, the mapping

g′′E : C2(∂E)→ Q(H1(∂E))

ϕ 7→ g′′E(ϕ)

is continuous at 0.
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Proof : We proceed as in Proposition 2.19. De�ning

A
def.
= g′′Eϕ(0).((ξψ ◦ gϕ) · νEϕ , (ξψ ◦ gϕ) · νEϕ)

we have:
A =

ˆ
∂Eϕ

[
Hϕ η +

∂η

∂νϕ

]
((ψ ν) ◦ gϕ · νEϕ)2 dH1

=

ˆ
∂E

[
Hϕ η +

∂η

∂νϕ

]
◦ fϕ (ν · νϕ ◦ fϕ)2 Jacτfϕ ψ

2 dH1.

This yields: ∣∣∣g′′Eϕ(0).((ξψ ◦ gϕ) · νϕ, (ξψ ◦ gϕ) · νϕ)− g′′E(0).(ψ,ψ)
∣∣∣

‖ψ‖2L2(∂E)

≤ cϕ ,

with
cϕ

def.
=

∥∥∥∥[Hϕ η +
∂η

∂νϕ

]
◦ fϕ (ν · νϕ ◦ fϕ)2 Jacτfϕ −

[
H η +

∂η

∂ν

]∥∥∥∥
∞
.

Using Lemma 2.18 we obtain

lim
‖ϕ‖C2(∂E)→0

sup
ψ∈H1(∂E)\{0}

∣∣∣g′′Eϕ(0).((ξψ ◦ gϕ) · νϕ, (ξψ ◦ gϕ) · νϕ)− g′′E(0).(ψ,ψ)
∣∣∣

‖ψ‖2H1(∂E)

= 0 .

Moreover
|g′Eϕ(0).(Zϕ,ψ)| ≤ ‖η‖∞ ‖Zϕ,ψ‖L1(∂Eϕ) ,

and using again Lemma 2.18 we �nally obtain the result.

As a consequence of the two propositions above, we obtain:
Proposition 2.21

If E is a bounded C2 set and η ∈ C1
b(R2), the mapping

j′′E : C2(∂E)→ Q(H1(∂E))

ϕ 7→ j′′E(ϕ)

is continuous at 0.

Now, we prove that for ϕ in a neighborhood of 0 in C1(∂E), the mapping j′′E(ϕ) is uniformly
close to j′′0,E(ϕ) provided ‖η − η0‖C1(R2) is small engouh.

Proposition 2.22

Let E be a bounded C2 set and η0 ∈ C1
b(R2). There exists ε > 0 such that

lim
‖η−η0‖C1(R2)→0

sup
‖ϕ‖C2(∂E)≤ε

∥∥j′′E(ϕ)− j′′0,E(ϕ)
∥∥
Q(H1(∂E))

= 0 .
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Proof : Since |(jE − j0,E)′′(ϕ).(ψ,ψ)| ≤ c1ϕ + c2ϕ with

c1ϕ
def.
=

∣∣∣∣∣
ˆ
∂Eϕ

(
Hϕ (η − η0) +

∂ (η − η0)

∂νϕ

)
(ξψ ◦ gϕ · νϕ)2 dH1

∣∣∣∣∣ ,
c2ϕ

def.
=

∣∣∣∣∣
ˆ
∂Eϕ

(η − η0)Zϕ,ψ dH
1

∣∣∣∣∣ ,
the result readily follows from Lemma 2.18.

Stability result. We are now able to state the �nal result of this section, which, loosely speaking,
states that if E is a strictly stable solution of (PC(η0)), there is at most one ϕ in a neighborhood
of 0 such that Eϕ is a solution of (PC(η)), provided ‖η − η0‖C1(R2) is small engouh.
Proposition 2.23

Let η0 ∈ ∂TV(0) ∩ C1
b(R2) and E be a strictly stable solution of (PC(η0)). Then there ex-

ists ε > 0 and r > 0 such that for every η ∈ ∂TV(0) with ‖η− η0‖C1(R2) ≤ r there is at most
one ϕ ∈ C2(∂E) such that ‖ϕ‖C2(∂E) ≤ ε and Eϕ solves (PC(η)).

Proof : The fact E is a strictly stable solution of (PC(η0)) and Propositions 2.21 and 2.22 give
the existence of ε > 0, r > 0 and α > 0 such that, for every (ϕ, η) ∈ C2(∂E) × C1

b(R2)
with ‖ϕ‖C2(∂E) ≤ ε and ‖η − η0‖C1(R2) ≤ r, we have:

sup
ψ∈H1(∂E)\{0}

j′′E(ϕ).(ψ,ψ)

‖ψ‖2H1(∂E)

≥ α

As a result, j′′E(ϕ) is coercive (and hence positive de�nite) for every ϕ such that ‖ϕ‖C2(∂E) ≤ ε.
We therefore obtain that jE is strictly convex on this set and the result follows.

Summary. Combining the results of Propositions 2.15 and 2.23, we have proved that, pro-
vided η is su�ciently close to η0 in C1(R2) and L2(R2), every solution of (PC(η)) belongs to a
neighborhood (in terms of C2-normal deformations) of a solution of (PC(η0)), and that, under a
strict stability assumption, each of these neighborhoods contain at most one solution of (PC(η)).
In Theorem 2.27 below, we prove (under suitable assumptions) that, if η = ηλ,w is the dual certi�-
cate associated to (Pλ(y0 + w)) and η0 the minimal norml dual certi�cate associated to (P0(y0)),
then each neighborhood of a solution of (PC(η0)) contains exactly one solution of (PC(ηλ,w)).

3. Exact support recovery

In this section, we provide an answer to the following question: if u0 isM -simple and identi�able,
are solutions of (Pλ(y0 + w)) M -simple, what is the length of their associated chains, and how
are they related to the chains associated to u0? To answer it, we �rst use the results proved in
Section 2 to show that, under a few assumptions, the dimension of the faces of the total variation
unit ball is in some sense stable. Then, we introduce a non-degenerate version of the source
condition, and �nally prove our exact support recovery result.
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3.1. Stability of the dimension of the faces of the total

variation unit ball

If η ∈ ∂TV(0) ∩ C1
b(R2) and F is the face exposed by η, de�ning E as in (16), we say

that E ⊂ R2 is a strictly stable element of E if E is a strictly stable solution of (PC(η)) or Ec is a
strictly stable solution of (PC(−η)).
Theorem 2.24

Let η0 ∈ ∂TV(0) ∩ C1
b(R2). Assume the face F0 exposed by η0 has a maximal chain C0

whose elements are all strictly stable. Then for every ε > 0 there exists r > 0 such that, for
every η ∈ ∂TV(0) ∩ C1

b(R2) with

‖η − η0‖L2(R2) + ‖η − η0‖C1(R2) ≤ r ,

the face F exposed by η has a maximal chain whose elements are C2-normal deformations of
size at most ε of elements of C0. In particular dim(F) ≤ dim(F0).

Remark 2.25

To be more precise, Theorem 2.24 states that, if C0 = {Ei}mi=0, then F has a maximal chain C

of length n ≤ m, say C = {Fj}nj=0, with

∀j ∈ {1, ..., n− 1}, Fj =
(
Eθ(j)

)
ϕj
,

where θ : {1, ..., n− 1} → {1, ...,m− 1} is a strictly increasing function and

∀j ∈ {1, ..., n− 1}, ‖ϕj‖C2(∂Eθ(j))
≤ ε .

Proof : We argue by contradiction and assume the existence of a sequence (ηk)k∈N∗ converging
in L2(R2) and C1(R2) to η0. We denote by E0 the set associated to F0 de�ned as in (16) (and
similarly by Ek the set associated to the face Fk exposed by ηk). For simplicity, we �rst treat the
case where, for every i ∈ {1, ...,m− 1}, the setEi belongs to E+

0 (i.e. Ei is a solution of (PC(η0))).
The general case, where Ei belongs to E−0 (i.e. Eci is a solution of (PC(−η0))) for every i ≥ i0 + 1
with i0 possibly strictly smaller than m− 1, is discussed at the end of the proof.

From Propositions 2.15 and 2.23 we know that there exists ε > 0 and k1 ∈ N∗ such that, for
every k ≥ k1, every solution of (PC(ηk)) is in a neighborhood of size ε (in terms of C2-normal
deformations) of a solution of (PC(η0)), and that each of these neighborhoods contains at most
one of these solutions. We hence have that, for every i ∈ {1, ...,m− 1}, there exists in�nitely
many k such that the neighborhood of size ε of Ej contains exactly one solution of (PC(ηk)), or
in�nitely many k such that this neighborhood does not contain any solution of (PC(ηk)). We
therefore obtain the existence of a partition (I, J) of {1, ...,m− 1} such that, up to extraction
and possibly increasing k1, for every k ≥ k1 the following holds:

• if i ∈ I then there is no solution of (PC(ηk)) in the neighborhood of Ei of size ε ,
• if i ∈ J there is exactly one solution of (PC(ηk)) in the neighborhood of Ei of size ε.

There hence exists n = |J|+ 1 ≤ m and an increasing bijection θ : {1, ..., n− 1} → J with
the following property: for every k ≥ k1 and j ∈ {1, ..., n − 1}, there exists ϕk,j such
that Fk,j

def.
=
(
Eθ(j)

)
ϕk,j

is the unique solution of (PC(ηk)) in the neighborhood of Eθ(j)of size ε.
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Now, let us show that there exists k2 ∈ N such that, for every k ≥ k2, the collection

Ck
def.
= {Fk,j}0≤j≤n with Fk,0

def.
= ∅ and Fk,n

def.
= R2

is a chain. For every j ∈ {1, ..., n − 2}, we have that (Fk,j ∩ Fk,j+1)k≥k1 solves (PC(ηk)) and
converges in measure to Eθ(j) ∩ Eθ(j+1) = Eθ(j). Arguing as in the proof of Proposition 2.15,
we obtain the existence of k2,j such that Fk,j ∩ Fk,j+1 is in the neighborhood of Eθ(j) of size ε
for every k ≥ k2,j . Using Proposition 2.23 then yields Fk,j ∩ Fk,j+1 = Fk,j for every k ≥ k2,j .
Repeatedly applying this argument we obtain the existence of k2,1, ..., k2,n−2 and de�ning k2 as
the maximum of these integers we get that Ck is a chain for every k ≥ k2.

Now, let us show the existence of k3 ∈ N∗ such that, for every k ≥ k3, the chain Ck is
maximal in the face Fk exposed by ηk. Arguing by contradiction, we assume the existence
of (Gk)k≥k2 such that Gk ∈ Ek \ Ck and Ck ∪ {Gk} is a chain for every k ≥ k2

1. Arguing as
in the proof of Proposition 2.15, we get the existence of G ∈ E0 such that, up to the extraction
of a subsequence that we do not relabel, Gk = Gψk for k large enough, with ‖ψk‖C2(∂G) → 0.
Now, since Ck ∪ {Gk} is a chain for every k ≥ k2, we have that, for every j ∈ {1, n − 1},
there exists in�nitely many k such that Fk,j ⊂ Gk or in�nitely many k such that Gk ⊂ Fk,j .
Up to another extraction, we hence get the existence of j ∈ {0, ..., n− 1} and k3 ∈ N∗ such
that Fk,j ⊂ Gk ⊂ Fk,j+1 for every k ≥ k3. As a result, we obtain

∅ ⊂ G ⊂ Eθ(1) if j = 0 ,

Eθ(n−1) ⊂ G ⊂ R2 if j = n− 1 ,

Eθ(j) ⊂ G ⊂ Eθ(j+1) otherwise.

Using the maximality of C0, we get G = Ei with i ∈ I. Since Gk = Gψk with ‖ψk‖C2(∂G) → 0
and, for every k ≥ k1, su�ciently small neighborhoods of Ei do not contain any solution
of (PC(ηk)), we get a contradiction.

Finally, let us comment on the general case, where there exists i0 ∈ {0, ...,m− 1} such that,
for every i ∈ {1, ...,m− 1}, Ei ∈ E+

0 if i ≤ i0 and Ei ∈ E−0 if i ≥ i0 + 1. The same arguments
can be applied to obtain the result, bearing in mind that if i ≥ i0 + 1, then Eci is a solution
of (PC(−η0)) (instead of Ei being a solution of (PC(η0))).

3.2. Main result

We are now able to introduce a non-degenerate version of the source condition, which
ultimately allows us to state our main result.

1Here Ek denotes the set E de�ned in (16) associated to Fk .
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De�nition 2.26 (Non-degenerate source condition)
Let u0 be anM -simple function and C0 a chain associated to u0. We say that u0 satis�es the
non-degenerate source condition if

1. ΦC0 has full rank

2. η0 ∈ ∂TV(u0),

3. C0 is maximal in the face exposed by η0,

4. every element of C0 is strictly stable,

with η0 the minimal norm certi�cate. In that case, we say that η0 is non-degenerate.

Let us stress that, as pointed out in Remark 2.14, De�nition 2.26 does not depend on the choice of
a chain C0 associated to u0, as one is maximal in an exposed face if and only if they all are.
Theorem 2.27

Let u0 be anM -simple function and C0 = {Ei}mi=0 an associated chain. Assume Φ∗ is contin-
uous fromH to C1

b(R2) and u0 satis�es the non-degenerate source condition. Then there exists
constants α, λ0 ∈ R∗+ such that for every (λ,w) ∈ R∗+ ×H with λ ≤ λ0 and ‖w‖H/λ ≤ α,
any solution uλ,w of (Pλ(y)) isM -simple and its associated chains have the same length as C0.

Moreover, writing

u0 =

m∑
i=1

ti 1Ei\Ei−1
,

we have

uλ,w =
m∑
i=1

tλ,wi 1
Eλ,wi \Eλ,wi−1

, (20)

with Eλ,w0
def.
= ∅, Eλ,wm def.

= R2, and

∀i ∈ {1, ...,m− 1}, Eλ,wi = (Ei)ϕλ,wi
with ϕλ,wi ∈ C2(∂Ei) . (21)

Finally, if λ = ‖w‖H/α, we have:

∀i ∈ {1, ...,m}, lim
w→0

tλ,wi = ti ,

∀i ∈ {1, ...,m− 1}, lim
w→0

∥∥ϕλ,wi ∥∥
C2(∂Ei)

= 0 .

Proof : Let ε and r be such that the results of Theorem 2.24 hold. Since Φ∗ is continuous from H

to C1
b(R2), using Proposition 1.8 and (9) we obtain the existence of α and λ0 such that for

every (λ,w) ∈ R∗+ ×H with λ ≤ λ0 and ‖w‖H/λ ≤ α0, we have:

‖ηλ,w − η0‖L2(R2) + ‖ηλ,w − η0‖C1(R2) ≤ r .

Since C0 is a maximal chain in the face exposed by η0, Theorem 2.24 ensures the existence of a
maximal chain Cλ,w in the face exposed by ηλ,w , whose length is not greater than the length of C0.
As a result, uλ,w is M -simple. We also know the elements of Cλ,w are C2-normal deformations
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Aλ,w

Bλ,w

uλ,w

Figure 8 – Illustration of the result stated in Theorem 2.27. Here u0 is equal to 0 in A and B. The
values taken by uλ,w in Aλ,w and Bλ,w are close (but not necessarily equal) to 0.

of elements of C0. Using the fact uλ,w is constant on each increment of Cλ,w and converges
in L1(R2) towards u0, we obtain that C0 and Cλ,w have equal length, and that (20) and (21) hold.

Finally, the convergence of ϕλ,wi towards 0 in C2(∂Ei) follows from Theorem 2.24, and the
convergence of tλ,wi from the convergence of uλ,w towards u0 in L1(R2).

3.3. A sufficient condition for strict stability

The core assumption in Theorem 2.27 is the strict stability of the elements of the chains
associated to u0, as minimizers of the prescribed curvature functional associated to the minimal
norm certi�cate η0. In this section, we study this strict stability assumption and derive a natural
su�cient condition for it to hold. We then discuss to what extent this condition is necessary.

Setting. We �x η ∈ ∂TV(0)∩C1
b(R2) andE a (non-trivial) solution of the prescribed curvature

problem (PC(η)) associated to η. We recall that E is a strictly stable solution of (PC(η)) if j′′E(0)
is coercive in H1(∂E), with

∀ψ ∈ H1(∂E), j′′E(0).(ψ,ψ) =

ˆ
∂E

[
|∇τEψ|2 −

(
HE η +

∂η

∂νE

)
ψ2

]
dH1 .

Equivalence of coercivity and positive de�niteness. As explained (in a more general con-
text) in [Dambrine and Lamboley, 2019], under a few assumptions, the bilinear form j′′E(0) is in
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fact coercive if and only if it is positive de�nite. Instead of proving that our functional J �ts the
assumptions of Lemma 3.1 in the above reference, we use their arguments to provide a direct
proof in our speci�c setting.
Lemma 2.28 ([Dambrine and Lamboley, 2019, Lemma 3.1])

Let η ∈ C1(R2) and E be a bounded open set of class C2. Then the following propositions are
equivalent:

(i) j′′E(0) is positive de�nite, i.e.

∀ψ ∈ H1(∂E) \ {0}, j′′E(0).(ψ,ψ) > 0 ,

(ii) j′′E(0) is coercive, i.e.

∃α > 0, ∀ψ ∈ H1(∂E), j′′E(0).(ψ,ψ) ≥ α‖ψ‖2H1(∂E) .

Proof : The fact (ii) implies (i) is trivial. We assume (i) and let (ψn)n≥0 be a minimizing sequence
for

inf
ψ∈H1(∂E)

j′′E(0).(ψ,ψ) s.t. ‖ψ‖H1(∂E) = 1 . (22)

Up to the extraction of a subsequence (not relabeled), we have that (ψn)n≥0 converges weakly
in H1(∂E) and (by the compactness of the embedding H1(∂E) ⊂⊂ L2(∂E)) strongly in L2(∂E)
to some ψ ∈ H1(∂E). We hence obtain

lim
n→+∞

ˆ
∂E

(
HE η +

∂η

∂νE

)
ψ2
n dH

1 =

ˆ
∂E

(
HE η +

∂η

∂νE

)
ψ2 dH1 .

Let us now distinguish two cases.

1. If ψ 6= 0, then we use
ˆ
∂E

|∇τEψ|2 dH1 ≤ lim inf
n→+∞

ˆ
∂E

|∇τEψn|2 dH1 ,

which, using (i), yields lim inf
n→+∞

j′′E(0).(ψn, ψn) ≥ j′′E(0).(ψ,ψ) > 0.

2. If ψ = 0, using that ‖ψn‖H1(∂E) = 1 for all n, we obtain

lim inf
n→+∞

j′′E(0).(ψn, ψn) = lim inf
n→+∞

ˆ
∂E

|∇τEψn|2 dH1 = 1 > 0 .

As a result, we obtain that, in both cases, the in�mum in (22) is strictly positive, which shows
that j′′E(0) is coercive.

A su�cient condition for coercivity. Using the expression of j′′E(0) and the equivalence
between coercivity and positive de�niteness, the following result can be directly obtained.
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Proposition 2.29

Let η ∈ C1(R2) and E be a bounded open set of class C2 such that j′E(0) = 0. If

sup
x∈∂E

[
HE(x)2 +

∂η

∂νE
(x)

]
< 0 ,

then j′′E(0) is coercive.

Necessity of the condition? A natural question to investigate is whether the condition given
in Proposition 2.29 is necessary. A �rst result in this direction is given in Proposition 2.30 below.
Before stating it, let us de�ne λ1(Γ), the �rst Dirichlet eigenvalue of the Laplacian associated to
some simple C1 curve Γ with �nite length (see for instance [Kuttler and Sigillito, 1984] for the
more classical case of open bounded sets):

λ1(Γ)
def.
= inf

ψ∈H1
0(Γ)\{0}

‖∇τΓψ‖2L2(Γ)

‖ψ‖2
L2(Γ)

. (23)

The in�mum in (23) is attained and is actually equal to the Dirichlet eigenvalue of the inter-
val I = (0,H1(Γ)) ⊂ R, which is 1/(πH1(Γ)2). To see this, one simply needs to consider an
arc-length parameterization γ of Γ, and notice that, for every ψ ∈ H1

0(Γ) \ {0}, we have:

‖∇τΓψ‖2L2(Γ)

‖ψ‖2
L2(Γ)

=

´
I(ψ ◦ γ)′(t)2 dt´
I(ψ ◦ γ)(t)2 dt

.

We can now state the following proposition.
Proposition 2.30

If there exists α > 0 such that H2
E + ∂η

∂νE
≥ α on a connected subset Γ of ∂E with

αH1(Γ)2 ≥ 1/π ,

then j′′E(0) is not coercive.

Proof : Since the in�mum in the de�nition of λ1(Γ) is attained, we have the existence of a nonzero
function ϕ ∈ H1

0(Γ) such that

‖∇τΓϕ‖2L2(Γ)

‖ϕ‖2L2(Γ)

= λ1(Γ) =
1

πH1(Γ)2
≤ α .

We hence obtainˆ
Γ

[
|∇τΓϕ|2 −

(
H2
E +

∂η

∂νE

)
ϕ2

]
dH1 ≤

ˆ
Γ

[
|∇τΓϕ|2 − αϕ2

]
dH1 ≤ 0 .

We can then extend ϕ to ψ ∈ H1(∂E) whose support is compactly included in Γ, which yields
ˆ
∂E

[
|∇τEψ|2 −

(
H2
E +

∂η

∂νE

)
ψ2

]
dH1 ≤ 0 .

We can therefore conclude that j′′E(0) is not coercive.
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We stress that Proposition 2.30 does not show that the condition in Proposition 2.29 is necessary,
since it does not cover the case where H2

E + ∂η
∂νE

is greater than a “small” positive constant on
a “small” portion of the boundary.

3.4. Computing the minimal norm certificate

In this subsection, we describe two ways to construct candidates for the minimal norm dual
certi�cate de�ned in De�nition 1.7. The �rst one relies on an attempt to adapt the notion of
calibrability, which is exploited for the denoising case in [Chambolle et al., 2016], to general
measurement operators. The second is based on vanishing derivatives pre-certi�cates, introduced
in [Duval and Peyré, 2015, Section 4].

As computing the minimal norm certi�cate in full generality is challenging, we provide a
further study of a particular setting, where Φ is assumed to be a convolution operator with radial
kernel h, and the unknown image u0 is the indicator of a ball of radius R0 > 0. Our aim is to
investigate, in this simpli�ed scenario, when the non-degenerate source condition is satis�ed.

3.4.1. Φ-calibrability

In [Chambolle et al., 2016, Section 4.3], the minimal norm certi�cate is computed when Φ
is the identity (and (Pλ(y)) is hence the Rudin Osher Fatemi denoising problem) for a special
class of sets called calibrable sets (see e.g. [Bellettini et al., 2002, Alter et al., 2005]). It is hence
tempting to adapt this strategy to our setting. An extension of the notion of calibrability for a
set E with respect to Φ is to require that 1E is a singular vector of the total variation as de�ned
in [Benning and Burger, 2013, De�nition 4]. This leads to the following de�nition.
De�nition 2.31

A set E ⊂ R2 is said to be Φ-calibrable if λEΦ∗Φ1E ∈ ∂TV(1E) with λE
def.
= P (E)
‖Φ1E‖2 .

Remark 2.32

If λΦ∗Φ1E ∈ ∂TV(1E) for some λ ∈ R, taking the inner product with 1E shows λ = λE .

In [Chambolle et al., 2016, Proposition 6], it is proven that, if Φ = Id and E is calibrable,
then λE1E is the minimal norm certi�cate. With De�nition 2.31, the following analog of this
result is straightforward to obtain.
Proposition 2.33

If E is Φ-calibrable, then the minimal norm dual certi�cate is λEΦ∗Φ1E .

Proof : Let p ∈ H such that Φ∗p ∈ ∂TV(1E). Then, we have:

P (E) = 〈Φ∗p,1E〉 = 〈p,Φ1E〉 ≤ ‖p‖H‖Φ1E‖H .

Since ‖λEΦ1E‖ = P (E)/‖Φ1E‖H, we obtain that ‖p‖H ≤ ‖λEΦ1E‖.

Now, from Proposition 1.3, we can readily obtain the following useful characterization of Φ-
calibrable sets.
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Figure 9 – Graphs of R0 7→ α(R0) for the Gaussian and ideal low-pass �lters, for several values
of the variance and cut-o� frequency.

Proposition 2.34

A set E is Φ-calibrable if and only if E maximizes

F 7→ K(E,F )
def.
=

〈
Φ

1E
P (E)

,Φ
1F
P (F )

〉
among sets of �nite perimeter with positive �nite measure.

When Φ = Id, a complete characterization of calibrable sets is available [Alter et al., 2005]. We
are not aware of any result outside this speci�c setting. In fact, we provide numerical evidence
below suggesting that even disks are not Φ-calibrable for natural choices of Φ (namely the
convolution with the Gaussian and ideal low-pass kernels).

Deconvolution of a disk. Let us de�ne

α(R0)
def.
= sup

{
K(R,R0)

K(R0, R0)
, R > 0

}
with K(R,R′) = K

(
1B(0,R),1B(0,R′)

)
.

With this notation we have that, if 1B(0,R0) is Φ-calibrable, then α(R0) ≤ 1. Figure 9 shows the
graph of R0 7→ α(R0) when Φ is the convolution with the Gaussian or ideal low-pass kernel,
for several values of the variance and cut-o� frequency. In every situation, these plots seem to
indicate that α(R0) > 1 for every R0 > 0, and hence that 1B(0,R0) is never Φ-calibrable. This
questions the relevance of our de�nition of Φ-calibrability. In fact, it could even be that there are
no Φ-calibrable sets, even for reasonable choices of measurement operator Φ.

3.4.2. Pre-certi�cates

In [Duval and Peyré, 2015, Section 4], the notion of dual pre-certi�cate is introduced. Its
authors de�ne it as any “good candidate” p ∈ H for solving Φ∗p ∈ ∂TV(u), where u is an
admissible function for (P0(y0)) whose optimality is to be proven. In this subsection, we de�ne an
analog of the so-called vanishing derivative pre-certi�cate, in order to study the optimality of 1E
with E a simple set. We assume as in Theorem 2.27 that Φ∗ is continuous from H to C1

b(R2). We
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also assume that E is of class C3, as any set E satisfying Φ∗p ∈ ∂TV(1E) for some p ∈ H has
this regularity.

Necessary optimality conditions. We know that Φ∗p is a dual certi�cate associated to 1E if
and only if Φ∗p ∈ ∂TV(0) and E minimizes J(E)

def.
= P (E)−

´
E Φ∗p. Using the expression of

the �rst order shape derivative of J , we obtain the following necessary optimality conditions:
ˆ
E

Φ∗p = P (E) , (24)

Φ∗p ∂E = HE . (25)

Now, provided E is simple, (25) in particular implies that
ˆ
∂E

Φ∗p =

ˆ
∂E
HE = 2π . (26)

One could then de�ne the vanishing derivative pre-certi�cate as the solution of (24) and (26)
with minimal norm.
De�nition 2.35

We call vanishing derivative pre-certi�cate associated to a simple setE the function ηv = Φ∗pv
with pv the unique solution of

min
p∈H
‖p‖H s.t.

〈
p,

ˆ
E
ϕ

〉
= P (E) and

〈
p,

ˆ
∂E
ϕ

〉
= 2π . (27)

If the source condition holds (i.e. there exists η ∈ ImΦ∗ ∩ ∂TV(0) such that η ∈ ∂TV(1E),
then pv is well-de�ned as Problem (27) is feasible. Since any dual certi�cate satis�es (24) and (26),
we have the following result.
Proposition 2.36

If ηv ∈ ∂TV(0), then ηv is the minimal norm dual certi�cate.

The constraints in (27) can be rewritten as follows:

{〈
p, fE

〉
= 1 ,〈

p, gE
〉

= 1 ,
with


fE

def.
=

1

P (E)

ˆ
E
ϕ ,

gE
def.
=

1

2π

ˆ
∂E
ϕ .

(28)

We hence have that pv satis�es

pv = αfE + βgE with α
def.
=

‖gE‖2 − 〈fE , gE〉
‖fE‖2‖gE‖2 − 〈fE , gE〉2

and β
def.
=

‖fE‖2 − 〈fE , gE〉
‖fE‖2‖gE‖2 − 〈fE , gE〉2

.
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Figure 10 – Plots of Φ∗fE and Φ∗gE de�ned in (27) for E = 1B(0,1) and Φ the convolution with
the Gaussian kernel with variance σ = 0.2.

Remark 2.37

In some sense, the function λEΦ∗Φ1E considered above can be seen as the pre-certi�cate as-
sociated to the single constraint (24). Imposing the second constraint (26) allows to build a
pre-certi�cate which is a combination of the two functions fE and gE (instead of fE only
for λEΦ∗Φ1E). Other constraints could also be considered, as every certi�cate satis�es (25),
which is only exploited “in average” in (26). Considering [Duval and Peyré, 2015, Propositions 7
and 8], it would be interesting to investigate whether the non-degenerate source condition holds
if and only if ηv = η0 and η0 is non-degenerate, and also whether ηv = η0 is a necessary
condition for support recovery.

Deconvolution of the unit disk. We now focus on the case where E = 1B(0,1) and Φ is the
convolution with the Gaussian kernel with variance σ. We provide in Figure 10 a plot of Φ∗fE
and Φ∗gE , which are the two “basis functions” from which ηv is built. From (5), we know that
a way to show ηv ∈ ∂TV(0) is to �nd a vector �eld z ∈ L∞(R2,R2) such that div z = ηv .
Since fE and gE are radial, so is ηv . It is hence natural to look for a radial vector �eld z (i.e. such
that there exists zr : R+ → R with z(x) = zr(‖x‖)x/‖x‖ for almost every x ∈ R2). In this case
we have div z = ηv if and only if, for every r > 0:

η̃v(r) =
1

r

∂

∂r
(r zr)(r) ⇐⇒ r η̃v(r) =

∂

∂r
(r zr)(r)

⇐⇒ zr(r) =
1

r

ˆ r

0
η̃v(s) s ds .

This shows one only needs to ensure the mapping fv de�ned by

fv : R+ → R

r 7→ 1

r

ˆ r

0
η̃v(s) s ds

(29)
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Figure 11 – Graph of fv de�ned in (29) (left: global graph, right: zoom around 1).

satis�es ‖fv‖∞ ≤ 1 to show ηv ∈ ∂TV(0). Figure 11 shows the graph of fv for several values
of σ. This suggests that there exists σ0 > 0 such that ηv is a dual certi�cate (and hence the one
with minimal norm) for every σ < σ0. It even seems that σ0 ≥ 0.75.
Remark 2.38

One could wonder whether looking for a radial vector �eld is not restrictive. In fact, if a vector
�eld z is suitable, then so is the radial vector �eld z̃ de�ned by

z̃(x)
def.
= z̃r(‖x‖)

x

‖x‖ with z̃r(r)
def.
=

1

2π

ˆ 2π

0
zr(r, θ) dθ ,

where zr denotes the radial component of z. Indeed, we have |z̃(r)| ≤ 1 for all r with equality
if and only if zr(r, θ) = 1 for almost every θ or zr(r, θ) = −1 for almost every θ. Moreover

ηv(r) =
1

2π

ˆ 2π

0
ηv(r) dr =

1

r

∂

∂r

(
r

1

2π

ˆ 2π

0
zr(r, θ) dθ

)
+

1

r

1

2π

ˆ 2π

0

∂zθ
∂θ

(r, θ) dθ

=
1

r

∂

∂r
(r z̃r) = div z̃.

Finally, we can investigate if the non-degenerate source condition holds. As explained in Sec-
tion 3.3, it is su�cient to show that

sup
x∈∂E

[
H2
E(x) +

∂η0

∂νE
(x)

]
< 0 .

In our case HE is constant equal to one, and, since η0 is radial, ∂η0

∂νE
is constant on ∂E. Proving

that
∂ηv
∂r

(1) < −1

is hence su�cient. In Figure 12, we numerically compute this quantity and notice it is always the
case, even when ηv /∈ ∂TV(0). This suggests that there exists σ0 > 0 such that, for every σ > 0,
the non-degenerate source condition holds (and, from our experiments, it seems that σ0 ≥ 0.75).
Surprisingly, σ 7→ ∂ηv

∂r (1) does not seem to be monotonous, even on [0, σ0).
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Figure 12 – Graph of ∂ηv∂r (1) as a function of σ.

Beyond the radial case. A way to ensure ηv ∈ ∂TV(0) in the general case is to solve the (gen-
eralized) Cheeger problem associated to ηv . This can be done using the numerical method
presented in Section 2. Now, to ensure the non-degenerate source condition holds, one must also
show that E is the unique (non-trivial) solution of the prescribed curvature problem associated
to ηv . In [Buttazzo et al., 2007, Carlier et al., 2009], a method is proposed to compute a “maximal”
solution of the Cheeger problem, which is closely related to the prescribed curvature problem.
It relies on the introduction of a small strictly convex penalization. We argue that these ideas
could be adapted to numerically compute a “maximal” element of the face exposed by ηv (i.e. a
function whose chains are maximal in this face). If this element is proportional to 1E , then 1E is
identi�able and ηv is the minimal norm certi�cate.

4. Conclusion

Summary. In this part, we collected properties of the total variation unit ball and its (exposed)
faces. The main interest of this analysis is a useful result, stating that elements of a given face can
be decomposed using a common set of atoms. We also de�ned the class of M -simple functions,
which are the sparse objects naturally associated to the total variation. Then, we investigated the
behaviour, under variations of the associated curvature functional, of solutions of the precribed
curvature problem. This allowed us to prove that the dimension of the faces of the total variation
unit ball is in some sense stable. Using this last result, we �nally managed to prove that, under a
so-called non-degenerate source condition, the jump set of an unknown M -simple function can
be exactly recovered in a low noise regime.

Towards grid-free numerical methods. Our support recovery result is yet another moti-
vation for designing grid-free numerical methods allowing to solve (Pλ(y)). Indeed, it shows
that, under suitable assumptions, if y = Φu0 + w with u0 an M -simple function, then solutions
of (Pλ(y)) are themselves M -simple. Being able to compute approximate solutions with this
structure is hence highly desirable. As explained in Section 2.3, traditional grid-based method are
not designed with that goal in mind. They do not produce a continuous domain representation of
the reconstructed images, which are often blurry. The aim of Part 3 is to propose a numerical
solver which does not su�er from these drawbacks, and accurately estimates the jump set of
solutions.





Part 3

Grid-free numerical resolution

In this part, we focus on the numerical resolution of (Pλ(y)). We present a so-called grid-free
algorithm, which does not rely on the introduction of a �xed spatial discretization. It iteratively
constructs an approximate solution built from the atoms promoted by the total variation, namely
indicator functions of simple sets. We choose to numerically represent these sets using simple
polygons. We provide a complete implementation of the proposed method in the following online
repositories.

• https://github.com/rpetit/pycheeger

• https://github.com/rpetit/tvsfw

Its performance is investigated in the last section, and comparisons with grid-based approaches
are provided. This part is based on the following publication.

• [De Castro et al., 2022] Towards o�-the-grid algorithms for total variation regu-

larized inverse problems, Y. De Castro, V. Duval and R. Petit, Journal of Mathematical
Imaging and Vision, 2022.
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1. FRANK-WOLFE APPROACH 73

1. Frank-Wolfe approach

In [Bredies and Pikkarainen, 2013, Boyd et al., 2017, Denoyelle et al., 2019], variants of the con-
ditional gradient algorithm, also known as Frank-Wolfe algorithm, were introduced to perform
continuous domain sparse spikes recovery. In this section, we adapt this fruitful approach to
our setting, and derive a modi�ed Frank-Wolfe algorithm allowing to solve (Pλ(y)) in a grid-free
manner.

In all the following, as we are interested in the numerical resolution of (Pλ(y)), we only
consider the case of �nitely many measurements, i.e. H = Rm from some m ∈ N∗.

1.1. Frank-Wolfe algorithm

Frank-Wolfe algorithm (see Algorithm 1) allows to minimize a function f over a subset C of
a Banach space. The objective f is assumed to be convex and di�erentiable, and the admissible
set C convex and weakly compact. Each step of the algorithm consists in minimizing the �rst
order expansion of f on C , and building the next iterate as a convex combination of the obtained
point and the current iterate.

Algorithm 1: Frank-Wolfe algorithm
Data: objective f , domain C , starting point x[0] ∈ C
Result: point x∗

1 while true do
2 �nd s[k] ∈ Argmin

s∈C
f(x[k]) + df(x[k]).(s− x[k])

3 if df(x[k]).(s[k] − x[k]) = 0 then

4 output x∗ ← x[k], which is optimal
5 else

6 γ[k] ← Argmin
γ∈[0,1]

f(x[k] + γ(s[k] − x[k])) // line search

7 x̃[k+1] ← x[k] + γ[k](s[k] − x[k]) // tentative update
8 choose any x[k+1] such that f(x[k+1]) ≤ f(x̃[k+1]) // �nal update
9 end

10 end

Sparse greedy updates. Our main interest for Frank-Wolfe algorithm lies in the following
classical observation: since the linear minimization step (Line 2) consists in minimizing a linear
form over the weakly compact convex set C , at least one of its solutions is an extreme point
of C . Choosing such a point at every iteration, we obtain that x[k] is a convex combination of
at most k extreme points of C , provided x[0] = 0. This is particularly interesting in situations
where the extreme points of C are “atoms” and where one is looking for a solution which is a
sparse combination of those.
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Choice of the �nal update. An important feature of the algorithm is that, while the clas-
sical update (Line 8) is to take x[k+1] to be equal to x̃[k+1], all convergence guarantees are
preserved if one chooses instead any x[k+1] ∈ C such that f(x[k+1]) ≤ f(x̃[k+1]). As sug-
gested by [Bredies and Pikkarainen, 2013, Boyd et al., 2017, Denoyelle et al., 2019] in the context
of sparse spikes recovery, on can extensively make use of this �exibility to produce iterates that
are as sparse as possible.

1.2. Proposed algorithm

Frank-Wolfe algorithm can not be directly applied to (Pλ(y)), as its objective

F (u)
def.
= TV(u) +

1

2λ
‖Φu− y‖2

is not di�erentiable and its admissible set is unbounded. In this subsection, we derive an equivalent
formulation of (Pλ(y)) which �ts into this framework, and then describe the resulting algorithm.

Epigraphical lift. To obtain a problem equivalent to (Pλ(y)) with a di�erentiable objective
and a weakly compact admissible set, we perform an epigraphical lift. This strategy is used
in [Denoyelle et al., 2019] (following an idea of [Harchaoui et al., 2015, Section 2, Paragraph “pe-
nalized norm minimization”]).
Proposition 3.1

Problem (Pλ(y)) is equivalent to

inf
(u,t)∈L2(R2)×R

G(u, t)
def.
=

1

2λ
‖Φu− y‖2 + t

s.t. TV(u) ≤ t ≤ 1

2λ
‖y‖2 ,

(Qλ(y))

i.e. both problems have the same value and:

1. if (u, t) is a solution of (Qλ(y)), then t = TV(u) and (u, v) is a solution of (Pλ(y)),

2. if u is a solution of (Pλ(y)), then (u,TV(u)) is a solution of (Qλ(y)).

Proof : This is a straightforward consequence of the following fact: if u is a solution of (Pλ(y)), then
we have that F (u) ≤ F (0), which yields TV(u) ≤ 1

2λ‖y‖2. The admissible set of (Pλ(y)) can
hence be restricted to functions u satisfying TV(u) ≤ 1

2λ‖y‖2 without modifying its solutions.

The admissible set of (Qλ(y)) is now weakly compact and convex. Moreover, its objective G is
di�erentiable with, for all (u, t) ∈ L2(R2)× R:

dG(u, t) : L2(R2)× R→ R

(v, s) 7→
[ˆ

R2

1

λ
Φ∗(Φu− y) v

]
+ s .
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Linear minimization step. Applying Algorithm 1 to (Qλ(y)), the linear minimization step at
iteration k (Line 2) writes

inf
(u,t)∈L2(R2)×R

[ˆ
R2

1

λ
Φ∗(Φu[k] − y)u

]
+ t

s.t. TV(u) ≤ t ≤ 1

2λ
‖y‖2 .

(30)

As explained above, there always exists a solution of (30) which is an extreme point of the
admissible set. These points are described by the following lemma, whose proof is given in
Appendix E.
Lemma 3.2

If t∗ > 0, the extreme points of C def.
= {u ∈ L2(R2) |TV(u) ≤ t ≤ t∗} are:

• (0, 0) ,

• (εt∗1E/P (E), t∗) with ε ∈ {−1, 1}, E ⊂ R2 simple and 0 < |E| < +∞ .

With this result, we obtain that �nding a solution of (30) among the extreme points of the
admissible set is equivalent to solving

sup
E⊂R2

ε∈{−1,1}

ε

P (E)

ˆ
E
η[k]

s.t. E simple, 0 < |E| < +∞ ,

(31)

with η[k] def.
= (−1/λ)Φ∗(Φu[k]−y). Indeed, a simple computation shows that, if the value of (31) is

smaller than 1, then (0, 0) is optimal. Otherwise, de�ningM def.
= ‖y‖2/(2λ), for any solution (E, ε)

of (31), we get that (εM1E/P (E),M) is optimal. Properties of (31), which is reminiscent of the
Cheeger problem (see the surveys [Parini, 2011, Leonardi, 2015]), are discussed in Section 2.1.

Form of the iterates. Applying Algorithm 1 to (Qλ(y)) with (30) solved as described above,
one obtains a sequence of iterates (u[k], t[k])k≥0 whose form is described by the following lemma.

Lemma 3.3

If (u[0], t[0]) = (0, 0), for every k ∈ N, we either have that (u[k], t[k]) = (0, 0) or that there
existsN [k] ∈ N∗, ε[k] ∈ {−1, 1}N [k]

, a[k] ∈ (R∗+)N
[k]

and a collectionE[k] =
(
E

[k]
1 , ..., E

[k]

N [k]

)
of simple sets of positive �nite measure such that

(u[k], t[k]) =

N [k]∑
i=1

ε
[k]
i a

[k]
i 1

E
[k]
i

,
N [k]∑
i=1

a
[k]
i P (E

[k]
i )

 . (32)

Proof : We argue by induction. The result is already known for k = 0. Let us �x k ∈ N and assume
that (u[k], t[k]) has the right form.
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1. If (u[k], t[k]) = (0, 0) then:
• if (0, 0) solves (30) then (u[k+1], t[k+1]) = (0, 0),
• otherwise there exists ε ∈ {−1, 1} and a simple set E with 0 < |E| < +∞ such that

the couple (εM1E/P (E),M) solves (30). We therefore obtain that (u[k], t[k]) is as in
(32) with

N [k+1] = 1, ε[k+1] = (ε), a[k+1] = (γ[k]M/P (E)) and E[k+1] = (E) .

2. If (u[k], t[k]) is as in (32) then:
• if (0, 0) solves (30), we get that (u[k+1], t[k+1]) is as in (32) with

N [k+1] = N [k], ε[k+1] = ε[k], a[k+1] = (1− γ[k]) a[k] and E[k+1] = E[k] .

• Otherwise as above denoting (εM1E/P (E),M) a solution of (30) we obtain the result
with

N [k+1] = N [k] + 1, ε[k+1] = (ε[k], ε), a[k+1] = ((1− γ[k]) a[k], γ[k]M/P (E))

and E[k+1] = (E[k], E).

“Fully-corrective” variant. Lemma 3.3 allows us to use a so-called fully corrective variant
of Frank-Wolfe, meaning that instead of obtaining the next iterate as a convex combination of
the new atom and the previous iterate (as in Line 7 of Algorithm 1), we �nd a[k+1] by minimiz-
ing GN (ε, a, E) de�ned by

GN (ε, a, E)
def.
= G

(
N∑
i=1

εiai1Ei ,
N∑
i=1

aiP (Ei)

)

with N = N [k] + 1 and (ε, E) = (ε[k+1], E[k+1]) �xed. This minimization amounts to solving
a LASSO problem with a positivity constraint and a weighted `1 penalty (the weights being the
perimeters of the sets in E[k+1]). Indeed, given N ∈ N∗, a collection of sets E1, ..., EN , and two
vectors a ∈ (R+)N , ε ∈ {−1, 1}N we have:

GN (ε, a, E) =
1

2λ
‖Φε

Ea−y‖2 +

N∑
i=1

P (Ei) ai with Φε
E

def.
=

(εi ˆ
Ei

ϕj

)
1≤i≤N
1≤j≤m

T ∈ Rm×N .

The main interest of Lemma 3.3 is that, considering (32), this choice of a[k+1] yields a value of
the objective no higher than that obtained with the standard update, and hence does not break
convergence guarantees.

Modi�ed Frank-Wolfe algorithm applied to (Qλ(y)). Dropping the dependence on the
auxiliary variable t ∈ R we obtain Algorithm 2. As a result of the equivalence between (Pλ(y))
and (Qλ(y)), this algorithm is a valid application of Algorithm 1 to (Pλ(y)), in the sense that
Proposition 3.5 below holds. Before studying convergence results, let us make a comment on the
stopping condition.
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Algorithm 2: modi�ed Frank-Wolfe algorithm applied to (Pλ(y))
Data: measurement operator Φ, observations y, regularization parameter λ
Result: function u∗

1 u[0] ← 0

2 N [0] ← 0
3 while true do
4 η[k] ← − 1

λΦ∗(Φu[k] − y)

5 (E∗, ε∗)← Argmax
E⊂R2

ε∈{−1,1}

ε
´
E η

[k]/P (E) s.t. E simple, 0 < |E| < +∞

6 if

∣∣∣´E∗ η[k]
∣∣∣ ≤ P (E∗) then

7 output u∗ ← u[k], which is optimal
8 else

9 E[k+1] ← (E
[k]
1 , ..., E

[k]

N [k] , E∗)

10 ε[k+1] ← (ε
[k]
1 , ..., ε

[k]

N [k] , ε∗)

11 a[k+1] ← Argmin
a∈(R+)N

[k]+1

1
2λ‖Φε[k+1]

E[k+1]a− y‖2 +
N [k]+1∑
i=1

P (E
[k+1]
i ) ai

12 remove atoms with zero amplitude
13 N [k+1] ← number of atoms in E[k+1]

14 u[k+1] ←
N [k+1]∑
i=1

a
[k+1]
i ε

[k+1]
i 1

E
[k+1]
i

15 end

16 end

Stopping condition. The stopping condition (Line 3 of Algorithm 1) is replaced in Algorithm 2
by

sup

{
ε

P (E)

ˆ
E
η[k], E ⊂ R2 simple , 0 < |E| < +∞, ε ∈ {−1, 1}

}
≤ 1 , (33)

which is equivalent to η[k] ∈ ∂TV(0). Since the optimality of a[k] at Line 11 always ensures

ˆ
R2

η[k]u[k] =
N [k]∑
i=1

a
[k]
i P (E

[k]
i ) ≥ TV(u[k]) ,

we obtain that u[k] solves (Pλ(y)) as soon as (33) holds.

1.3. Convergence results

1.3.1. Convergence in objective value

Curvature constant. As pointed out in [Jaggi, 2013], in the convergence analysis of Frank-
Wolfe algorithm applied to a function f , a measure of the “nonlinearity” of f , called the curvature



1.3. Convergence results 78

constant, naturally appears. Let f be a convex di�erentiable function and C a weakly compact
convex set. The curvature constant Cf of f with respect to C is de�ned by:

Cf
def.
= sup

x,s∈C,
γ∈[0,1],

y=x+γ(s−x)

2

γ2
[f(y)− f(x)− df(x).(y − x)] .

Proposition 3.4

The curvature constant CG of G with respect to the admissible set C of (Qλ(y)) satis�es:

CG ≤
1

λ

(
c2
‖Φ‖ ‖y‖2

λ

)2

,

where c2 = 1/
√

4π is the isoperimetric constant.

Proof : For any u, v ∈ L2(R2) and t, s ∈ R, we have:

G(u, t)−G(v, s)− dG(u, t).(v, s) =
1

2λ
‖Φ(u− v)‖2 .

We hence obtain that
CG = sup

u,v∈L2(R2)

1

λ
‖Φ(u− v)‖2

s.t. TV(u) ≤ 1

2λ
‖y‖2 ,

TV(v) ≤ 1

2λ
‖y‖2 .

(34)

Now, if u, v are admissible for (34), using the isoperimetric inequality (3), we �nally get:

‖Φ(u− v)‖ ≤ ‖Φ‖‖u− v‖L2(R2)

≤ ‖Φ‖ c2 TV(u− v) ≤ c2
‖Φ‖ ‖y‖2

λ
.

Convergence in objective value. As already mentioned, Algorithm 2 is a valid application of
Algorithm 1 to (Pλ(y)), in the sense that the following property holds (see [Jaggi, 2013]):
Proposition 3.5

Let (u[k])k≥0 be a sequence produced by Algorithm 2. Then for any solution u∗ of (Pλ(y)), we
have:

∀k ∈ N, F (u[k])− F (u∗) ≤ 2CG
k + 2

.

Approximate linear minimization step. As discussed in [Jaggi, 2013], the linear minimiza-
tion step, which consists in solving (30) or equivalently (31), can be carried out approximately.
In fact if there exists δ > 0 such that, for every k, the couple (E∗, ε∗) computed at Line 5 of
Algorithm 2 is an ε[k]- minimizer of (31) with ε[k] = δ CG/(k + 2), then

∀k ∈ N∗, F (u[k])− F (u∗) ≤ 2CG
k + 2

(1 + δ) .
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1.3.2. Convergence of the iterates

Convergence of minimizing sequences. Now, let us state a general property of minimizing
sequences of (Pλ(y)), which hence applies to the sequence of iterates produced by Algorithm 2.
Proposition 3.6

Let (u[k])k≥0 be a minimizing sequence for (Pλ(y)). Then there exists a subsequence which
converges strongly in L1

loc(R2) and weakly in L2(R2) to a solution u∗ of (Pλ(y)). Moreover,
we have TV(u[k])→ TV(u∗).

Proof : We �rst notice that since (u[k])k≥0 is a minimizing sequence then (TV(u[k]))k≥0 is bounded,
and (from the isoperimetric inequality) (u[k])k≥0 is therefore bounded in L2(R2). There hence
exists a subsequence (not relabeled) which converges weakly in L2(R2) to u∗ ∈ L2(R2). Since
this subsequence satis�es

sup
k∈N

[
‖u[k]‖L2(R2) + TV(u[k])

]
< +∞ ,

from [Ambrosio et al., 2000, Theorem 3.23] we obtain that (up to the extraction of a further
subsequence, still not relabeled) (u[k])k≥0 converges strongly in L1

loc(R2) (to a limit which is
necessarily u∗). The fact u∗ solves (Pλ(y)) then follows from the lower semicontinuity of the data
�delity term with respect to the weak L2(R2) topology, and the lower semicontinuity of the total
variation with respect to the strong L1

loc(R2) topology. Finally, since

1

2λ
‖Φu∗ − y‖2 ≤ lim inf

k→+∞

1

2λ
‖Φu[k] − y‖2 ,

TV(u∗) ≤ lim inf
k→+∞

TV(u[k]) ,

1

2λ
‖Φu∗ − y‖2 + TV(u∗) = lim

k→+∞

1

2λ
‖Φu[k] − y‖2 + TV(u[k]) ,

we obtain TV(u[k])→ TV(u∗).

As explained earlier, the fact TV(u[k])→ TV(u∗) and the strong L1
loc convergence of (u[k])k≥0

towards u∗ also imply Du[k] ∗⇀ Du∗.

Properties of sets appearing in Algorithm 2. An important observation is that, for ev-
ery k ∈ N, the set E∗ introduced at Line 5 of Algorithm 2 is a minimizer of the prescribed
curvature problem associated to λ[k]η[k] with 1/λ[k] the value of (31)1. Moreover, if (u[k]) is a
subsequence as in Proposition 3.6, we have that Φu[k] → Φu∗ and hence η[k] → η∗ strongly
in L2(R2) with η∗ = (−1/λ)Φ∗(Φu− y), which also yields λ[k] → 12. This can be exploited
by using Lemma 1.11 to obtain “uniform” properties of sets appearing in Algorithm 2, which
ultimately yields the stronger convergence results presented below.

1The value of (31) is nonzero unless η[k] = 0, which occurs if and only if y = 0 (in which case u∗ = 0 is the
unique solution of (Pλ(y))). To see this, one simply needs to consider a Lebesgue point of η[k] at which the function
is nonzero, and to show the objective is strictly positive for su�ciently small balls.

2To see this, it is su�cient to note that
∣∣∣ ´E η1

P (E)
−

´
E η2

P (E)

∣∣∣ ≤ c2 ‖η1 − η2‖L2(R2) for every E with 0 < |E| < +∞
and P (E) < +∞.
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Additional properties of sequences produced by Algorithm 2. If (u[k])k≥0 is a subse-
quence as in Proposition 3.6 then (λ[k]η[k])k≥0 converges strongly in L2(R2), and its terms all be-
long to ∂TV(0). Lemma 1.11 hence yields the existence ofR > 0 such that Supp(u[k]) ⊂ B(0, R)
for every k ∈ N. We consequently obtain the following strict BV convergence result.
Proposition 3.7

Let (u[k])k≥0 be a sequence produced by Algorithm 2. Then, up to the extraction of a subse-
quence, we have that (u[k])k≥0 converges strictly in BV(R2) to a solution u∗ of (Pλ(y)).

This in turn yields a convergence result for the level sets of the iterates, which is given below (we
remind the reader that the inner limit of a sequence of sets is de�ned in De�nition 1.9).
Corollary 3.8

Let (u[k])n≥0 be a subsequence as in Proposition 3.7. Then for almost every t ∈ R, we have

lim
n→+∞

|U (t)
k 4U

(t)
∗ | = 0 and ∂U

(t)
∗ ⊆ lim inf

n→+∞
∂U

(t)
k .

Proof : The strong convergence of (u[k])k≥0 towards u∗ in L1(R2) and Proposition D.1 yield:

lim
n→+∞

|U (t)
k 4U

(t)
∗ | = 0 for almost every t ∈ R .

We now �x such t ∈ R and let x ∈ ∂U (t)
∗ . We want to show that x ∈ lim inf

n→+∞
∂U

(t)
k , which is

equivalent to
lim sup
k→+∞

dist
(
x, ∂U

(t)
k

)
= 0 .

By contradiction, if the last identity does not hold, we have the existence of r > 0 and of ϕ such
that

∀k ∈ N, B(x, r) ∩ ∂U (t)
ϕ(k) = ∅ .

Hence for all k, we either have

B(x, r) ⊂ U (t)
ϕ(k) or B(x, r) ⊂ R2 \ U (t)

ϕ(k) .

If B(x, r) ⊂ U (t)
ϕ(k) for a given k, using that η∗ ∈ ∂TV(u∗) and hence that U (t)

∗ satis�es point 4
of Lemma 1.11 we obtain∣∣∣U (t)

ϕ(k)4U
(t)
∗

∣∣∣ ≥ ∣∣∣U (t)
ϕ(k) \ U

(t)
∗

∣∣∣ ≥ ∣∣∣B(x, r) \ U (t)
∗

∣∣∣ ≥ C |B(x, r)| .

We can in the same way show ∣∣∣U (t)
ϕ(k)4U

(t)
∗

∣∣∣ ≥ C |B(x, r)|

if B(x, r) ⊂ R2 \ U (t)
ϕ(k), and hence get the inequality for all k. Using that |U (t)

k 4U
(t)
∗ | → 0, we

get a contradiction.
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E Fx

Figure 13 – The sets E and F have the weak regularity property (point 4 of Lemma 1.11), but
E ∪ F does not, since the density ratio of x with respect to E ∪ F converges to 1.

Convergence of the boundaries of the level sets ? Considering Corollary 3.8, it is natural
to wonder whether

lim sup
n→+∞

∂U
(t)
k ⊆ ∂U

(t)
∗

holds, which would yield the convergence of (∂U
(t)
k )k≥0 towards ∂U (t)

∗ . However, it is unclear
whether U (t)

k satis�es point 4 of Lemma 1.11 (a property that one would crucially need to mimic
the proof of Corollary 3.8). The level sets U (t)

k are obtained as a �nite number of unions and
intersections of the sets in E[k] and their complements. Although the latter sets have the desired
property, it is not stable by such operations, as Figure 13 shows.

1.4. Sliding step

1.4.1. Presentation

Several works [Bredies and Pikkarainen, 2013, Boyd et al., 2017, Denoyelle et al., 2019] have
advocated for the use of a special �nal update, which helps identify the sparse structure of the
sought-after signal. Loosely speaking, it would amount in our case to running, at the end of
iteration k − 1, the gradient �ow of the mapping

(a,E) 7→ G(ε[k], a, E) (35)

initialized with (a[k], E[k]), so as to �nd a set of parameters at which the objective is smaller.
Formally, this would correspond1 to �nding a curve t 7→ (ai(t), Ei(t))i=1,...,N [k] such that for
all t:

∀i ∈ {1, ..., N [k]},


a′i(t) = −

(
P (Ei(t))− ε[k]

i

ˆ
Ei(t)

η(t)

)
,

Vi(t) = −ai(t)
(
HEi(t) − ε

[k]
i η(t)

)
,

(36)

1The formulas in (36) can be formally obtained by using the notion of shape derivative, see [Henrot and Pierre, 2018,
Chapter 5].
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where Vi(t) denotes the normal velocity of the boundary of Ei(t) and

η(t) = − 1

λ
Φ∗ (Φu(t)− y) , u(t) =

N [k]∑
i=1

ai(t) ε
[k]
i 1Ei(t) .

The study of this gradient �ow (existence, uniqueness) seems to be challenging, and we did not
investigate these questions.

For our purpose, it is enough to introduce the sliding step as a local descent on the mapping
de�ned in (35) initialized with (a[k], E[k]). We however need to ensure this step does not increase
the value of the objective, and we hence ask to �nd (a,E) = (ai, Ei)1≤i≤N [k] such that Ei is
simple for all i and

GN [k]

(
ε[k], a, E

)
≤ GN [k]

(
ε[k], a[k], E[k]

)
. (37)

The resulting algorithm is Algorithm 3. The introduction of Line 15, which is discussed in the
next paragraph, ensures that all convergence guarantees derived for Algorithm 2 remain valid.

Algorithm 3: modi�ed Frank-Wolfe algorithm applied to (Pλ(y)) (with sliding)
Data: measurement operator Φ, observations y, regularization parameter λ
Result: function u∗

1 u[0] ← 0

2 N [0] ← 0
3 while true do
4 η[k] ← − 1

λΦ∗
(
Φu[k] − y

)
5 (E∗, ε∗)← Argmax

E⊂R2

ε∈{−1,1}

ε
´
E η

[k]/P (E) s.t. E simple, 0 < |E| < +∞

6 if

∣∣∣´E∗ η[k]
∣∣∣ ≤ P (E∗) then

7 output u∗ ← u[k], which is optimal
8 else

9 E[k+1] ← (E
[k]
1 , ..., E

[k]

N [k] , E∗)

10 ε[k+1] ← (ε
[k]
1 , ..., ε

[k]

N [k] , ε∗)

11 a[k+1] ← Argmin
a∈(R+)N

[k]+1

1
2λ‖Φε[k+1]

E[k+1]a− y‖2H +
N [k]+1∑
i=1

P (E
[k+1]
i ) ai

12 remove atoms with zero amplitude
13 N [k+1] ← number of atoms in E[k+1]

14 perform a local descent on (a,E) 7→ GN [k+1](ε[k+1], a, E) initialized
with (a[k+1], E[k+1])

15 repeat the operations of Lines 11-13

16 u[k+1] ←
N [k+1]∑
i=1

a
[k+1]
i 1

E
[k+1]
i

17 end

18 end
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1.4.2. In�uence on convergence

The version of the sliding step we use was introduced in [Denoyelle et al., 2019]. In practice,
it allows to considerably improve the convergence speed of the algorithm. It also produces sparser
solutions: if the solution is a combination of a few indicator functions, removing the sliding step
typically produces iterates made of a much larger number of atoms. In fact, it seems that the
majority of these atoms correct the crude approximations of the support of the solution made
during the �rst iterations.

In [Denoyelle et al., 2019], the introduction of the sliding step allowed the authors to derive
improved convergence guarantees (i.e. �nite time convergence) in the context of sparse spikes
recovery. Their proof relies on the fact that, at the end of every sliding step, a “critical point”
of the objective is reached. However, the existence issues mentioned in Section 1.4.1 make the
adaptation of these results to our setting di�cult.

A reasonable de�nition of “critical point” in our context could be as follows.
De�nition 3.9 (Critical point of GN )

Let N ∈ N∗, ε ∈ {−1, 1}N , a ∈ (R∗+)N and E1, ..., EN be simple subsets of R2 with positive
and �nite measure. We say that (εi, ai, Ei)i=1,...,N is a critical point of the mapping GN if

∀i ∈ {1, ..., N},

P (Ei) = εi

ˆ
Ei

η ,

HEi = εi η ,

(38)

where

η
def.
= − 1

λ
Φ∗ (Φu− y) and u

def.
=

N∑
i=1

ai εi 1Ei .

With this de�nition, reaching a critical point at the end of the sliding step implies all sets
in E[k] have the same distributional curvature (up to a sign). On the contrary, without sliding,
sets are never modi�ed and their curvature depends on the iteration during which they were
introduced.

We stress that if, for a given iteration, a critical point is reached at the end of the sliding step,
then Line 15 can be skipped, since the �rst equality in (38) ensure a[k+1] minimizes

a 7→ GN [k+1](ε[k+1], a, E[k+1]) .

If a critical point is reached, the fact the sets in E[k] have the same distributional curvature
can be exploited to obtain “uniform” density estimates for the level sets of u[k], in the spirit
of [Maggi, 2012, Corollary 17.18]. It is then natural to wonder whether this could be used to
prove

lim sup
n→+∞

∂U (t)
n ⊆ ∂U (t)

∗ , (39)

and hence the convergence of (∂U
(t)
k )k≥0 towards ∂U (t)

∗ . A major obstacle towards this result is
that, although Lemma 1.11 provides a uniform upper bound on the perimeter of sets appearing
in the algorithm, to our knowledge, it does not seem possible to derive such a bound for the
perimeter of the level sets, which prevents one from using the potential weak-* convergence
of D1

U
(t)
k

towards D1
U

(t)
∗

.
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Link with conic particle gradient descent. Assuming for simplicity that ε[k] = (1, ..., 1)
and, for every i 6= j, that H1(∂∗Ei ∩ ∂∗Ej) = 0, we obtain

F

N [k]∑
i=1

ai1Ei

 = GN [k](ε[k], a, E) ,

and hence see that the sliding step amounts to performing a local descent on the mapping

(a,E) 7→ F

N [k]∑
i=1

ai1Ei

 .

In [Chizat, 2021, Chizat, 2022], a seemingly related task is considered. Given Θ a parameter space,
the author investigates the minimization of

J : M+(Θ)→ R

µ 7→ 1

2λ
‖Φµ− y‖2 + µ(Θ)

using conic particle gradient algorithms, which consist in performing gradient-based optimization
on

(a, x) 7→ J

(
N∑
i=1

h(ai)δθi

)
, (40)

with h : R+ → R+ a smooth increasing bijection. The main �nding of these works is that,
for h(a) = a2 and for a speci�c choice of metric on R+ × Θ (plus a few assumptions), the
gradient �ow of (40) converges to a minimizer of J . An interesting avenue for future research
could be to study how this analysis translates to our setting. On the practical side, one could
investigate whether performing multiplicative (rather than additive) updates on the amplitudes a
improves the convergence speed of the local descent, as suggested in [Chizat, 2021].

2. Polygonal approximation of

generalized Cheeger sets

To implement Algorithm 3, one needs two oracles to carry out the operations of Lines 5 and 141.
In this section, we focus on the �rst task (the second is the subject of Section 3.1). Our aim is
hence to design a numerical method to approximately solve

sup
E⊂R2

J(E)
def.
=

1

P (E)

∣∣∣∣ˆ
E
η

∣∣∣∣
s.t. E simple, 0 < |E| < +∞ ,

(41)

which is called a generalized Cheeger problem2. In section 2.1, we explain its connection with the
classical Cheeger problem and provide properties of its solutions, which are called generalized

1We recall that Line 11 amounts to solve a LASSO-type problem for which e�cient solvers exist.
2Indeed, (31) and (41) are equivalent in the sense that (E, ε) solves (31) if and only if E solves (41) and ε is the

opposite of the sign of
´
E
η.
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Cheeger sets. We also review existing numerical methods for solving it, and motivate our choice
to introduce a slightly di�erent procedure.

Our approach consists in choosing a (possibly large) integer n ≥ 3, and looking for an optimal
set among simple polygons with at most n sides. The existence of such sets is proved in Section 2.2.
To approximate this optimal polygon, we optimize the vertices of an initial polygon using a �rst
order algorithm. The initialization is performed by solving a relaxation of (41) on a �xed grid.
The details of this numerical method are presented in Sections 2.3 and 2.4. Finally, in Section 2.5,
we study how these optimal polygons compare to solutions of (41) in a speci�c setting, where η
is assumed to be radial.

2.1. A generalized Cheeger problem

Related problems. We �rst stress that (41) is reminiscent of the Cheeger problem, which,
given an open bounded set Ω ⊂ Rd with Lipschitz boundary, consists in �nding a subset E of Ω
minimizing P (E)/|E| (see the surveys [Parini, 2011, Leonardi, 2015]). Many generalizations of
the Cheeger problem have been considered. Let us mention [Ionescu and Lachand-Robert, 2005],
in which the usual perimeter and volume are replaced by weighted versions (the integral on ∂∗E
and E of some nonnegative weight functions), and [Caselles et al., 2009, Brasco et al., 2014], in
which the case of anisotropic and fractional perimeters are respectively investigated.

Our setting. The problem we consider slightly di�ers from the ones mentioned above. First,
the emphasis is not on the domain Ω anymore ((41) is solved on the whole plane), but on the
weight function η. To put it another way, maximizing J on the whole plane or inside some
domain Ω is equivalent as soon as η2 concentrates1 in a compact subset of Ω. Moreover, contrary
to [Ionescu and Lachand-Robert, 2005], the function η is not assumed to be nonnegative, and is
taken in L2(R2) (instead of L∞(Ω) in this last work).

Existence of solutions. Two strategies can be considered to prove the existence of maximizers
in (41). The �rst is the one hinted in Section 1.2. It consists in proving the existence of maximizers
for

sup
u∈L2(R2)

ˆ
R2

ηu

s.t. TV(u) ≤ 1 ,

(42)

and then showing at least one solution is the indicator function of a simple set (using the
form of the extreme points of {TV ≤ 1} and the Krein-Milman theorem, or a result like
[Carlier and Comte, 2007, Theorem 2]). The second strategy relies on purely geometric argu-
ments, in the spirit of [Maggi, 2012, Section 12]. One can indeed prove a uniform lower bound on
the perimeter of minimizing sequences, and obtain local convergence (up to extraction) towards
some limit set, whose optimality can subsequently be shown.

Generic uniqueness. As explained in [Buttazzo et al., 2007, Proposition 4.1], the solution
of (41) is in some sense generically unique. Indeed, denoting V (η) the value of (42), we obtain

1To be more precise, we mean that there exists a compact set K ⊂ Ω such that
´
R2\K η

2 is su�ciently small.
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that V is a continuous convex function on L2(R2). A theorem of Mazur [Phelps, 1993, Theo-
rem 1.20] then shows V is Gâteaux di�erentiable on a dense Gδ subset of L2(R2). Since ∂V (η)
is precisely the solution set of (41), generic uniqueness follows.

Existing numerical methods. In [Carlier et al., 2009] a method is proposed to approximate
the so-called maximal Cheeger set. It covers the case of a weighted area term and of weighted and
anisotropic perimeters. The proposed approach is to solve a discretized version of (42), where
the maximization is performed over the set of piecewise constant functions on some �xed grid.
A method which is very similar to ours is introduced in [Ionescu and Lupaşcu-Stamate, 2019].
It consists in iteratively deforming an initial domain by computing a shape gradient at each
iteration. We discovered the existence of this work during the writing of this manuscript.

2.2. Existence of polygonal generalized Cheeger sets

The aim of this section is to prove the existence of polygonal generalized Cheeger sets, i.e.
maximizers of J among simple polygons with a given number of sides. In fact, we prove a slightly
stronger result, namely the existence of maximizers of a relaxed energy which coincides with J
on simple polygons, and the existence of a simple polygon among these maximizers.

Existence proofs in polygonal shape optimization problems. To prove the existence of
optimizers for shape optimization problems in the class of polygons, a typical strategy is to use
a compactness result for the Hausdor� convergence of open sets. One constructs a minimiz-
ing sequence whose terms are open polygons included in a common compact set, and obtain
its convergence (up to extraction) in the Hausdor� sense to a “generalized polygon” (see for
example [Henrot, 2006, Theorem 3.3.1] for the minimization of the �rst Dirichlet eigenvalue of
the Laplacian, or [Bucur and Fragalà, 2016, Proposition 9] for the minimization of the Cheeger
constant). At the time we considered the problem we are discussing here, we were not aware of
this literature, and followed a slightly di�erent (but essentially similar) strategy. As explained
below, our approach amounts to considering the objective as a function of the vertices of the
input polygon.

Notations. In the following, we �x an integer n ≥ 3 and denote

Xn =
{
x ∈ Rn×2

∣∣ [x1, x2], ..., [xn, x1] is simple
}
.

We recall that a polygonal curve is said to be simple if non-adjacent sides do not intersect.
If x ∈ Xn, then1 ∪ni=1[xi, xi+1] is a Jordan curve. It hence divides the plane in two regions, one of
which is bounded. We denote this region by Ex (it is hence a simple polygon). With this notation
the set Pn of simple polygons with at most n sides is given by

Pn = {Ex, x ∈ Xn} .
1If i > n we de�ne xi def.

= ximodn, i.e. xn+1 = x1.
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Relaxed perimeter and weighted area. We �rst begin by de�ning relaxed versions of the
perimeter and the (weighted) area. To be able to deal with polygons with a number of vertices
smaller than n, which will be useful in the following, we de�ne for all m ≥ 2 and x ∈ Rm×2 the
following quantities:

P (x)
def.
=

m∑
i=1

‖xi+1 − xi‖ and A(x)
def.
=

ˆ
R2

η χx ,

where χx(y) denotes the index (or winding number) of any parametrization of the oriented polyg-
onal curve [x1, x2], ..., [xm, x1] around y ∈ R2 (see for instance [Rudin, 1986, Theorem 10.10]).
In particular, for every x ∈ Xm (i.e. for every x ∈ Rm×2 de�ning a simple polygon), we
have χx = ±1Ex and

P (x) = P (Ex) and |A(x)| =
∣∣∣∣ˆ
Ex

η

∣∣∣∣ ,
and hence, as soon as P (x) > 0:

J(Ex) =
|A(x)|
P (x)

.

This naturally leads us to de�ne

Ym
def.
=
{
x ∈ Rm×2

∣∣P (x) > 0
}

and to de�ne, abusing notation, J(x)
def.
= |A(x)|/P (x) for every x ∈ Ym.

Properties of the index. As mentioned above, if Ex is simple then χx = ±1Ex . In the gen-
eral case χx is constant on each connected component of R2 \ Γx with Γx

def.
= ∪mi=1[xi, xi+1].

It takes values in {−m, ...,m} and is equal to zero on the only unbounded connected com-
ponent of R2 \ Γx. We also have ∂ supp(χx) ⊂ Γx. Moreover χx has bounded variation and,
for H1-almost every y ∈ Γx, there exists u+

Γ (y), u−Γ (y) in {−m, ...,m} such that

Dχx = (u+
Γx
− u−Γx) νΓxH

1 Γx .

Positivity of the problem value. Now, we de�ne α def.
= sup {J(x), x ∈ Yn}. If η = 0, then

the existence of maximizers is trivial. Otherwise, there exists a Lebesgue point x0 of η at which η
is non-zero. Now the family of regular n-gons inscribed in any circle centered at x0 has bounded
eccentricity. Hence, if xn,r de�nes a regular n-gon inscribed in a circle of radius r centered at x0,
the Lebesgue di�erentiation theorem1 ensures that

lim
r→0+

∣∣∣´Exn,r η∣∣∣
|Exn,r |

> 0 ,

and the fact that α > 0 follows.
1For details on the Lebesgue di�erentiation theorem where balls are replaced by a family of sets with bounded

eccentricity, see [Stein, 1993, Chapter 2, Paragraph 3.1].
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Lemma 3.10

Let C > 0. There exists R > 0 and c > 0 such that, for every x ∈ Yn

J(x) ≥ C =⇒ P (x) ≥ c and ‖xi‖ ≤ R for all i.

Proof : The proof is similar to that of Lemma 1.11.

Upper bound on the perimeter: the integrability of η2 yields that for every ε > 0 there
exists R1 > 0 such that ˆ

R2\B(0,R1)

η2 ≤ ε2 . (43)

Let ε > 0 and R1 > 0 such that (43) holds. We have

P (x) ≤ 1

C
|A(x)|

≤ 1

C

[∣∣∣∣∣
ˆ
R2∩B(0,R)

η χx

∣∣∣∣∣+

∣∣∣∣∣
ˆ
R2\B(0,R)

η χx

∣∣∣∣∣
]

≤ 1

C

[
‖η‖L2 ‖χx‖L∞

√
|B(0, R)|+ ε ‖χx‖L2

]
≤ 1

C

[
‖η‖L2 n

√
|B(0, R)|+ ε

1√
c2
|Dχx|(R2)

]
≤ 1

C

[
‖η‖L2 n

√
|B(0, R)|+ ε

2n√
c2
P (x)

]
.

Now, taking
ε

def.
=

C

4c2n
and c′ =

2n

C
‖η‖L2

√
|B(0, R)| ,

we �nally get that P (x) ≤ c′.

Inclusion in a ball: we take ε = 1
4c2n

and �xR2 > 0 such that
´
R2\B(0,R2)

η2 ≤ ε2. Let us show
that

supp(χx) ∩B(0, R2) 6= ∅ .
By contradiction, if supp(χx) ∩B(0, R2) = ∅, we would have:

P (x) ≤ 1

C
|A(x)| = 1

C

∣∣∣∣∣
ˆ
R2\B(0,R2)

η χx

∣∣∣∣∣ ≤
√ˆ

R2\B(0,R2)

η2 ‖χx‖L2

≤ ε c2 |Dχx|(R2) ≤ 2n ε c2 P (x) .

Dividing by P (x) > 0 yields a contradiction. Now since

∂ supp(χx) ⊂ Γx ,

we have diam(supp(χx)) ≤ P (x) ≤ c′ which shows

supp(χx) ⊂ B(0, R) with R def.
= c′ +R2 .

This in turn implies that ‖xi‖ ≤ R for all i.

Lower bound on the perimeter: the integrability of η2 shows that, for every ε > 0, there
exists δ > 0 such that

∀E ⊂ R2, |E| ≤ δ =⇒
∣∣∣∣ˆ
E

η2

∣∣∣∣ ≤ ε2 .
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Taking ε def.
= C/(2 c2), we obtain that if |supp(χx)| ≤ δ

P (x) ≤ 1

C
|A(x)| = 1

C

∣∣∣∣∣
ˆ

supp(χx)

η

∣∣∣∣∣ ≤ 1

C

√ˆ
supp(χx)

η2
√
|supp(χx)| ≤ ε c2

C
P (supp(χx))

≤ ε c2
C

P (x) ,

the last inequality holding because ∂ supp(χx) ⊂ Γx. We get a contradiction since P (x) is
positive.

Applying Lemma 3.10 with e.g. C = α/2, and de�ning

Y′n
def.
=
{
x ∈ Rn×2

∣∣P (x) ≥ c and ‖xi‖ ≤ R for all i
}
,

we see that any maximizer of J over Y′n (if it exists) is also a maximizer of J over Yn, and
conversely.
Lemma 3.11

Let x ∈ Rn×2. Then, for every a ∈ R2, denoting (c1 c2) the 2 × 2 matrix whose columns
are c1, c2 ∈ R2, we have:

A(x) =

n∑
i=1

sign(det(xi − a xi+1 − a))

ˆ
axixi+1

η

=

n∑
i=1

det(xi − a xi+1 − a)

ˆ
T1

η((xi − a xi+1 − a) y) dy ,

where axixi+1 denotes the triangle with vertices a, xi, xi+1 and

T1
def.
=
{

(α, β) ∈ (R+)2
∣∣α+ β ≤ 1

}
is the unit triangle.

Proof : Let us show that for all a ∈ R2 we have

χx =

n∑
i=1

sign(det(xi − a xi+1 − a))1axixi+1
(44)

almost everywhere. We have that y ∈ R2 is in the (open) triangle axixi+1 if and only if the
ray issued from y directed by y − a intersects ]xi, xi+1[. Moreover, if y is in this triangle, then
det(xi − a xi+1 − a)) is positive if and only if the triangle yxixi+1 is oriented counterclockwise.
This shows that, if R2 \ ∪ni=1[xi, xi+1] does not belong to any of the segments [a, xi], evaluating
the right hand side of (44) at y amounts to computing the winding number χx(y) by applying
the ray-crossing algorithm described in [Hormann and Agathos, 2001]. This in particular means
that (44) holds almost everywhere, and the result follows.

From Lemma 3.11, we get that A is continuous on Rn×2. This is also the case of P . Now Y′n
is compact and included in Yn, hence the existence of maximizers of J over Y′n, which in turn
implies the existence of maximizers of J over Yn.
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Existence of a maximizing simple n-gon. Let us now show there exists a maximizer which
belongs to Xn, i.e. that de�nes a simple polygon. To do so, we rely on the following lemma.
Loosely speaking, it states that starting from a non-simple polygon, one can always construct
another polygon with strictly fewer vertices achieving a higher objective value.
Lemma 3.12

Letm ≥ 3 and x ∈ Ym \ Xm. Then there existsm′ with 2 ≤ m′ < m and y ∈ Ym′ such that

J(x) ≤ J(y) .

Proof : If x ∈ Ym \ Xm then [x1, x2], ..., [xm, x1] is not simple. If there exists i with xi = xi+1 then

y = (x1, ..., xi, xi+2, ..., xm)

is suitable, and likewise if x1 = xm then

y = (x1, ..., xm−1)

is suitable. Otherwise we distinguish the following cases:

If there exists i < j with xi = xj : we de�ne

y = (x1, ..., xi, xj+1, ..., xm) ∈ Rm−(j−i) ,

z = (xi, xi+1, ..., xj−1) ∈ Rj−i .

We notice that 2 ≤ j − i < m and 2 ≤ m− (j − i) < m.

If there exists i < j with xi ∈]xj, xj+1[: we necessarily have (i, j) 6= (1,m). We de�ne

y = (x1, ..., xi, xj+1, ..., xm) ∈ Rm−(j−i) ,

z = (xi, xi+1, ..., xj) ∈ Rj−i+1 .

We again have 2 ≤ m− (j − i) < m, and since (i, j) 6= (1,m), we have j − i < m− 1 which
shows that 2 ≤ j − i+ 1 < m.

If there exists i < j with xj ∈]xi, xi+1[: we necessarily have j > i+ 1. We de�ne

y = (x1, ..., xi, xj , ..., xm) ∈ Rm−(j−i)+1 ,

z = (xi+1, ..., xj) ∈ Rj−i .

We again have 2 ≤ j − i < m, and since j > i+ 1 we obtain that 2 ≤ m− (j − i) + 1 < m.

If there exists i < j with x′ ∈]xi, xi+1[∩ ]xj, xj+1[: if we have j = i + 1 then ei-
ther xi+2 ∈]xi, xi+1[ or xi ∈]xi+1, xi+2[ and in both cases we fall back on the previously treated
cases. The same holds if (i, j) = (1,m). Otherwise, we de�ne

y = (x1, ..., xi, x
′, xj+1, ..., xm) ∈ Rm−(j−i)+1 ,

z = (x′, xi+1, ..., xj) ∈ Rj−i+1 .

Since j > i+ 1 and (i, j) 6= (1,m) we get 2 ≤ m− (j − i) + 1 < m and 2 ≤ j − i+ 1 < m.



2.3. Fixed grid initialization 91

Now, one can see that in each case we have P (x) = P (y) + P (z) and χx = χy+χz almost every-
where, which in turn gives that A(x) = A(y) +A(z). We hence get that P (y) = 0 or P (z) = 0,
and hence J(x) = J(y) or J(x) = J(z), or that P (y) > 0 and P (z) > 0, which yields

|A(x)|
P (x)

≤ |A(y)|+ |A(z)|
P (y) + P (z)

=
P (y)

P (y) + P (z)

|A(y)|
P (y)

+
P (z)

P (y) + P (z)

|A(z)|
P (z)

.

Hence J(x) is smaller than a convex combination of J(y) and J(z), which gives that it is smaller
than J(y) or J(z). This shows that y or z is suitable.

We can now prove our �nal result, i.e. that there exists x∗ ∈ Xn such that

∀x ∈ Yn, J(x∗) ≥ J(x) .

Indeed, repeatedly applying the above lemma starting with a maximizer x∗ of J over Yn, we
either have that there exists m with 3 ≤ m ≤ n and x′∗ ∈ Xm such that J(x∗) = J(x′∗), or that
there exists y ∈ Y2 such that J(x∗) ≤ J(y), which is impossible since in that case J(y) = 0
and J(x∗) = α > 0. We hence have x′∗ ∈ Xm such that

∀x ∈ Yn, J(x′∗) = J(x∗) ≥ J(x) .

We can �nally build x′′∗ ∈ Xn such that J(x′′∗) = J(x′∗) by adding dummy vertices to x′∗, which
allows to conclude.

2.3. Fixed grid initialization

In this section, we detail the initialization of our �rst order method. We proceed almost exactly
as in [Carlier et al., 2009], i.e. we solve a discrete version of (42), in which the minimization is
performed over the set of piecewise constant functions on a �xed grid. The only di�erence with
this last work is that we do not look for some maximal solution of (42), and hence do not need
the strictly concave penalization introduced in [Buttazzo et al., 2007]1.

Discrete problem. Since every solution of (42) has its support included in some ball2, we can
solve (42) in [−R,R]2 (with Dirichlet boundary conditions) for a su�ciently large R > 0. Let N
be a positive integer and h def.

= 2R/N . We denote Eh the set of N by N matrices. For every
matrix u = (ui,j)(i,j)∈[1,N ]2 ∈ Eh we de�ne

∂hxui,j
def.
= ui+1,j − ui,j , ∂hyui,j

def.
= ui,j+1 − ui,j , (45)

for all (i, j) ∈ [0, N ]2, with the convention ui,j = 0 if either i or j is in {0, N + 1}. The isotropic
discrete total variation is then de�ned by

TVh(u)
def.
= h

N∑
i=0

N∑
j=0

||∇hui,j ||2 = h ‖∇h u‖2,1 with∇hui,j def.
=
(
∂hxui,j , ∂

h
yui,j

)
.

1We stress that, although we do not follow this approach, �nding some maximal solution of (42) and adding
several atoms at each iteration could potentially be interesting. This would lead to what could be called a “polyatomic”
Frank-Wolfe algorithm (see [Jarret et al., 2022] and the related approach of [Flinth et al., 2021]).

2Indeed, if u solves (42), then there exists α such that αη ∈ ∂TV(u), and the result follows from Proposition 1.3
and Lemma 1.11
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We then solve the following discretized version of (42) for increasingly small values of h > 0

min
u∈Eh

h2 〈ηh, u〉 s.t. TVh(u) ≤ 1 , (46)

where ηh =
(

1
h2

´
Chi,j

η
)

(i,j)∈[1,N ]2
and (Chi,j)(i,j)∈[1,N ]2 is a partition of [−R,R]2 composed of

squares of equal size, i.e.

Chi,j
def.
= [−R+ (i− 1)h,−R+ ih]× [−R+ (j − 1)h,−R+ jh] .

For convenience reasons, we also use the above expression to de�ne Chi,j if i or j belongs
to {0, N + 1}.

Optimization algorithm. To solve (46), we propose to use the primal-dual algorithm intro-
duced in [Chambolle and Pock, 2011]: we take (τ, σ) such that τσ‖D‖22 < 1 with D def.

= h∇h and
de�ne 

φn+1 = proxσ‖·‖2,∞(φn + σDūn) ,

un+1 = (un − τ D∗φn+1)− τ h2 η̄h ,

ūn+1 = 2un+1 − un ,
(47)

where proxσ‖·‖2,∞ is given by:

proxσ‖·‖2,∞(φ) = φ− σ proj{‖·‖2,1≤1}

(
φ

σ

)
.

The projection onto the (2, 1)-unit ball can be computed e�ciently (see [Condat, 2016]).

Convergence as h → 0. The following proposition shows that, when the grid becomes
�ner, solutions of (46) converge to a solution of (42). Its proof is almost the same as the one
of [Carlier et al., 2009, Theorem 4.1]. Since the latter however gives a slightly di�erent result
about the minimization of a quadratic objective (linear in our case) on the total variation unit
ball, we decided to include it for the sake of completeness.
Proposition 3.13

Let uh be the piecewise constant function on (Chi,j)(i,j)∈[1,N ]2 , extended to 0 outside [−R,R]2

associated to a solution of (46). Then there exists a (not relabeled) subsequence converging
strongly in L1(R2) and weakly in L2(R2) to a solution u∗ of (42) when h → 0. Moreover, we
have Duh

∗
⇀ Du.

Proof : First, let us stress that for any function v that is piecewise constant on (Ci,j)(i,j)∈[1,N ]2

and that is equal to 0 outside [−R,R]2, we have TV(v) = h ‖∇hv‖1,1 where by abuse of
notation ∇hv is given by (45) with vi,j the value of v in Ci,j . Hence TVh(uh) ≤ 1 for all h
implies that TV(uh) (and hence ‖uh‖L2 ) is uniformly bounded in h. There hence exists a (not
relabeled) subsequence that converges strongly in L1

loc(R2) and weakly in L2(R2) to a function u,
with moreover Duh

∗
⇀ Du.



2.3. Fixed grid initialization 93

Let us now take φ = (φ(1), φ(2)) ∈ C∞c (R2,R2) such that ||φ||∞ ≤ 1. The weak-* conver-
gence of the gradients give us that

ˆ
R2

φ · dDu = lim
h→0

ˆ
R2

φ · dDuh

= lim
h→0

N∑
i=0

N∑
j=0

(´
Chi,j∩Chi+1,j

φ(1) dH1
´
Chi,j∩Chi,j+1

φ(2) dH1
)
· ∇huhi,j .

One can moreover show there exists C > 0 such that for h small enough and all (i, j) we have:∣∣∣∣∣
[ˆ

Chi,j∩Chi+1,j

φ(1) dH1

]
− hφ(1)(xhi+1,j+1)

∣∣∣∣∣ ≤ Ch2 ,∣∣∣∣∣
[ˆ

Chi,j∩Chi,j+1

φ(2) dH1

]
− hφ(2)(xhi+1,j+1)

∣∣∣∣∣ ≤ Ch2 ,

with xi,j
def.
= (−R + i h,−R + j h). We use the above inequalities and the fact ‖φ(x)‖ ≤ 1 for

all x to obtain the existence of C ′ > 0 such that for h small enough and for all (i, j) we have:∥∥∥∥∥
(´

Chi,j∩Chi+1,j
φ(1) dH1

´
Chi,j∩Chi,j+1

φ(2) dH1

)∥∥∥∥∥
2

≤ h
√

1 + C ′h .

This �nally yields
N∑
i=0

N∑
j=0

(´
Chi,j∩Chi+1,j

φ(1) dH1

´
Chi,j∩Chi,j+1

φ(2) dH1

)
· ∇huhi,j ≤

N∑
i=0

N∑
j=0

h
√

1 + C ′h ‖∇huhi,j‖

=
√

1 + C ′h TVh(uh) ,

which gives ˆ
R2

φ · dDu ≤ lim sup
h→0

√
1 + C ′h TVh(uh) ≤ 1 .

We now have to show that

∀v ∈ L2(R2), TV(v) ≤ 1 =⇒
ˆ
R2

η u ≤
ˆ
R2

η v .

Let v ∈ C∞([−R,R]2) be such that TV(v) ≤ 1. We de�ne

vh
def.
=

(
v

((
i+

1

2

)
h,

(
j +

1

2

)
h

))
(i,j)∈[1,N ]2

.

One can then show that
lim
h→0

TVh(vh) = TV(v) = 1 ,

so that for every δ > 0 we have TVh
(
vh

1+δ

)
≤ 1 for h small enough. Now this yields

ˆ
[−R,R]2

η u = lim
h→0

ˆ
[−R,R]2

η uh ≤ lim
h→0

ˆ
[−R,R]2

η
vh

1 + δ
=

ˆ
[−R,R]2

η
v

1 + δ
.

Since this holds for all δ > 0 we get that
ˆ

[−R,R]2
η u ≤

ˆ
[−R,R]2

η v . (48)
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Finally, if v ∈ L2(R2) is such that v = 0 outside [−R,R]2 and TV(v) ≤ 1, by standard approxi-
mation results (see [Ambrosio et al., 2000, remark 3.22]) we also have that (48) holds, and hence u
solves (42). Finally, since u solves (42), its support is included in [−R,R]2, which shows the
strong L1

loc(R2) convergence of (uh) towards u∗ in fact implies its strong L1(R2) convergence.

Extraction of a level set. Since we are interested in �nding a simple set E that approximately
solves (41), and now have a good way of approximating solutions of (42), we make use of the
following result, which is a direct consequence of Proposition 1.3.
Proposition 3.14

Let u be a solution of (42). Then the level sets of u are such that for all t ∈ R∗ with |U (t)| > 0,
the set U (t) solves (41).

If we have vh converging strongly in L1(R2) to a solution v∗ of (42), then for almost every t ∈ R
we have that

lim
h→0

∣∣∣V (t)
h 4V

(t)
∗

∣∣∣ = 0 .

The above results hence show we can construct a sequence of sets (Ek)k≥0 such that |Ek4E∗|
converges to 0, with E∗ a solution of (41). However, this convergence only implies that

lim sup
k→∞

J(Ek) ≤ J(E∗) ,

and given that Ek is a union of squares this inequality is likely to be strict, with the perimeter
of Ek not converging to the perimeter of E∗. From the last paragraph of Section 1.3.1, we know
we have to design a numerical method that allows to �nd a set at which the value of J is arbitrarily
close to J(E∗). This hence motivates the introduction of the re�nement step described in the
next subsection.

Obtaining a simple polygon. As a �nal remark, we note that, even for k large enough, Ek
could be non-simple. However, using the notations of (59) and ??, since for every set of �nite
perimeter E, we have that J(E) is a convex combination of the(

J(int(γ+
i ))
)
i∈I ,

(
J(int(γ−i,j))

)
i∈I,j∈Ji

,

there is a simple set F in the decomposition of E such that J(F ) ≥ J(E). In practice, such a set
can be found by extracting all the contours of the binary image 1E , and �nding the one with
highest objective value. This procedure guarantees that the output of the �xed grid step is a
simple polygon. We stress that in all our experiments, vh is close to being (proportional to) the
indicator of a simple set for h large enough, so that its non-trivial level sets are all simple.

2.4. Optimization of the vertices

As explained at the beginning of Section 2, our approach for approximating polygonal Cheeger
sets essentially consists in optimizing the vertices of an initial polygon with a �rst order method.
This is in spirit very similar to so-called shape gradient algorithms (see e.g. [Allaire et al., 2021]).
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We iteratively construct a sequence of polygons by �nding at each step a displacement of steepest
ascent for J , along which the vertices of the previous polygon are moved. This displacement is
found by exploiting Lemmas 3.15 and 3.16 below.

Fixed sign assumption. Given Ex0 the polygon produced by the �xed grid initizalization, we
only aim at locally optimizing the objective J around x0. We can therefore assume the sign of the
weighted area term A remains constant and equal to ε def.

= sign(A(x0)) during the optimization.
In the following, in order to simplify the exposition, we only consider the case ε = 1, and
consequently seek to maximize

J(x) =
A(x)

P (x)
.

Lemma 3.15

If x ∈ Xn we have:

P (Ex+h) = P (Ex)−
n∑
i=1

〈
hi, τ

+
i + τ−i

〉
+ o (‖h‖) , (49)

where τ+
i

def.
= xi+1−xi
‖xi+1−xi‖ and τ

−
i

def.
= xi−1−xi
‖xi−1−xi‖ .

Proof : If ‖h‖ is small enough we have:

P (Ex+h) =

n∑
i=1

‖xi+1 − xi + hi+1 − hi‖

=

n∑
i=1

√
‖xi+1 − xi + hi+1 − hi‖2

=

n∑
i=1

‖xi+1 − xi‖
(

1 +
〈xi+1 − xi, hi+1 − hi〉
‖xi+1 − xi‖2

+ o (‖h‖)
)

= P (Ex) +

n∑
i=1

〈τ+
i , hi+1 − hi〉+ o (‖h‖) ,

and the result follows by re-arranging the terms in the sum.
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Lemma 3.16

Let x ∈ Xn and η ∈ C0(R2). Then we have

ˆ
Ex+h

η =

ˆ
Ex

η +
n∑
i=1

〈
hi, w

−
i ν
−
i + w+

i ν
+
i

〉
+ o (‖h‖) (50)

where ν+
i , ν

−
i are respectively the outward unit normal to Ex on [xi, xi+1], [xi−1, xi] and

w+
i

def.
= ‖xi+1 − xi‖

ˆ 1

0
η((1− t)xi + txi+1)(1− t)dt ,

w−i
def.
= ‖xi−1 − xi‖

ˆ 1

0
η((1− t)xi + txi−1)(1− t)dt .

Proof : Our proof relies on the following identity (see Lemma 3.11 for a proof of a closely related
formula): ˆ

Ex

η = sign
(

n∑
i=1

det(xi xi+1)

)
n∑
i=1

ω(xi, xi+1) ,

where ω(a1, a2)
def.
= det(a1 a2)

´
T1
η((a1 a2) y) dy and T1

def.
=
{

(α, β) ∈ (R+)
2 ∣∣α+ β ≤ 1

}
is

the unit triangle. Assuming η ∈ C1(R2) and denoting adj(A) the adjugate of a matrix A we get:

ω(a1 + h1, a2 + h2) = ω(a1, a2) + det(a1 a2)

ˆ
T1

∇η((a1 a2) y) · ((h1 h2)y) dy

+ tr
(
adj(a1 a2)T (h1 h2)

) ˆ
T1

η((a1 a2) y) dy + o(‖h‖)

= ω(a1, a2)

+ sign(det(a1 a2))

ˆ
Oa1a2

∇η(y) · ((h1 h2) (a1 a2)−1) y) dy

+
tr
(
adj(a1 a2)T (h1 h2)

)
|det(a1 a2)|

ˆ
Oa1a2

η(y) dy + o(‖h‖) .

Denoting g(y)
def.
= (h1 h2)(a1, a2)−1 y, we obtain:

ω(a1 + h1, a2 + h2) = ω(a1, a2) + sign(det(a1 a2))

ˆ
Oa1a2

[∇η · g + η divg] + o(‖h‖)

= ω(a1, a2) + sign(det(a1 a2))

ˆ
∂(Oa1a2)

η (g · νOa1a2) dH1 + o(‖h‖) ,

where we used Gauss-Green theorem to obtain the last equality. Now if ‖h‖ is small enough then

n∑
i=1

det(xi + hi xi+1 + hi+1) and
n∑
i=1

det(xi xi+1)

have the same sign, so that, de�ning gi : y 7→ ((hi hi+1)(xi xi+1)−1 y) we get

d

(ˆ
E•

η

)
(x) . h = ε

n∑
i=1

sign(det(xi xi+1)) ωi ,
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with

ε
def.
= sign

(
n∑
i=1

det(xi xi+1)

)
and ωi

def.
=

ˆ
∂∗(Oxixi+1)

η (gi · νOxixi+1
) dH1 .

Then one can decompose each integral in the sum and show the integrals over [0, xi] cancel out
each other, which allows to obtain

d

(ˆ
E•

η

)
(x) . h =

n∑
i=1

ˆ
[xi,xi+1]

η (gi · νi) dH1 .

But now if y ∈ [xi, xi+1] then

(xi xi+1)−1y =
1

‖xi+1 − xi‖

(
‖y − xi+1‖
‖y − xi‖

)
,

and the result follows by re-arranging the terms in the sum. One can then use an approximation
argument as in [Maggi, 2012, Proposition 17.8] to show it also holds when η is only continuous.

Remark 3.17

The results given in Lemmas 3.15 and 3.16 are in fact closely linked to the notion of shape
derivative1. If Ex is a simple polygon with n vertices, there exists a constant C > 0 such
that, given any displacement h of the vertices of Ex, one can extend h to θ ∈ W1,∞(R2,R2)
with ‖θ‖1,∞ ≤ C‖h‖ and such that Ex+h = (Id+ θ)(Ex) and, for every i ∈ {1, ..., n}

∀t ∈ [0, 1], θ((1− t)xi + txi+1) = (1− t)θ(xi) + tθ(xi+1) = (1− t)hi + thi+1 . (51)

The expressions of the shape derivatives of the perimeter and area (see [Henrot and Pierre, 2018,
Chapter 5] for more details, including precise assumptions on the regularity of E and η) yield

P ((Id+ θ)(E)) = P (E) +

ˆ
∂∗E

HE · θ dH1 + o(‖θ‖1,∞) ,

ˆ
(Id+θ)(E)

η =

ˆ
E
η +

ˆ
∂∗E

η θ · νE dH1 + o(‖θ‖1,∞) ,

whereHE denotes the curvature vector ofE. To recover the formulas given in the above lemmas,
one simply needs to use (51) and the fact

HEx = −
n∑
i=1

(τ+
i + τ−i )δxi with τ+

i
def.
=

xi+1 − xi
‖xi+1 − xi‖

and τ−i
def.
=

xi−1 − xi
‖xi−1 − xi‖

.

Considering Lemmas 3.15 and 3.16, we construct our sequence of polygons as follows:
1We already introduced this tool in Part 2, where we only considered normal deformations (in contrast with the

general deformations we use here).
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given xt ∈ Xn and a step size αt, we de�ne the next iterate by xt+1 = xt + αtθt with

θtj
def.
=

1

P (Ext)

(
θtarea,j −

´
Ext

η

P (Ext)
θtper,j

)
,

θtarea,j
def.
= wt−j νt−j + wt+j νt+j ,

θtper,j
def.
= −(τ t+j + τ t−j ) ,

(52)

where, for all j, νt+j and νt−j are the outward unit normals of the two sides stemming from xtj ,
and

τ t+j
def.
=

xi+1 − xi
‖xi+1 − xi‖

, wt+j
def.
= ‖xi+1 − xi‖

ˆ 1

0
η((1− t)xi + txi+1)(1− t)dt ,

τ t−j
def.
=

xi − xi−1

‖xi − xi−1‖
, wt+j

def.
= ‖xi−1 − xi‖

ˆ 1

0
η((1− t)xi + txi−1)(1− t)dt .

Lemmas 3.15 and 3.16 in fact show that the displacement θt we apply to the vertices of Ext is
such that

lim
α→0+

J(Ext+αθ)− J(Ext)

α
= 〈θt, θ〉 , (53)

i.e. that it is the displacement of steepest ascent for J at Ext .

Numerical computation of θt. To compute the integral of η over Ext , we integrate η on each
triangle of a su�ciently �ne triangulation of Ext (this triangulation must be updated at each
iteration, and sometimes re-computed from scratch to avoid the presence of ill-shaped triangles).
The integral of η on a triangle and wt+j , wt−j are computed using standard numerical integration
schemes for triangles and line segments. If |T| denotes the number of triangles in the triangulation
of Ext , |ST | (resp. |SL|) the number of points used in the numerical integration scheme for trian-
gles (resp. line segments), the complexity of each iteration is of order O (m (|T| |ST |+ n |SL|)).

Comments. Two potential concerns about the above procedure are whether the iterates remain
simple polygons (i.e. xt ∈ Xn for all t) and whether they converge to a global maximizer of J
over Pn. We could not prove that the iterates remain simple polygons along the process, but
since the initial polygon can be taken arbitrarily close to a simple set solving (41) (in terms of the
Lebesgue measure of the symmetric di�erence), we do not expect nor observe in practice any
change of topology during the optimization. Moreover, even if J could have non-optimal critical
points1, the above initialization allows us to start our local descent with a polygon that hopefully
lies in the basin of attraction of a global maximizer.

Critical points. If the sequence of polygons de�ned above converges to a simple polygon Ex,
then Ex is such that

∀j ∈ {1, ..., n}, w+
j ν

+
j + w−j ν

−
j =

´
Ex
η

P (Ex)
(−τ+

i − τ−i ) . (54)

1Here critical point is to be understood in the sense that the limit appearing in (53) is equal to zero for every θ.
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This can be seen as a discrete version of the following �rst order optimality condition for solutions
of (41):

η =

´
E η

P (E)
HE on ∂∗E . (55)

Note that (55) is similar to the optimality condition for the classical Cheeger problem (i.e.
with η = 1 and the additional constraint E ⊆ Ω), namely HE = P (E)/ |E| in the free boundary
of E (see [Parini, 2011, Proposition 2.4]).

2.5. The case of radial weight functions

In this section, we study how generalized Cheeger sets and their polygonal approximations
compare in a particular setting, where the weight function η is radial. To be more precise, we
assume that there exists a strictly decreasing nonnegative function η̃ : [0,+∞)→ R+ such
that η(x) = η̃(‖x‖) for almost every x ∈ R21.

We �rst prove that, in this setting, (generalized) Cheeger sets associated to η are all disks
centered at the origin. Then, we prove that the maximizers of J over Pn are regular and inscribed
in a circle centered at the origin when n ∈ {3, 4}, and conjecture that this result holds for
every n ≥ 3.

To enforce the uniqueness of the generalized Cheeger set, we may also invoke the following
assumption, which is for example satis�ed by η̃ : r 7→ exp(−r2/(2σ2)) for all σ > 0.

Assumption 1. The function η̃ is C1. Moreover, de�ning f : r 7→ r η̃(r), we have f(r)
r→+∞−−−−→ 0.

Finally, there exists r0 > 0 such that f ′(r) > 0 for all r < r0 and f ′(r) < 0 for all r > r0.

2.5.1. Description of generalized Cheeger sets

To prove the above-mentioned result, we rely on Steiner symmetrization. Let us brie�y recall
its de�nition and main property. If E is a set of �nite perimeter with �nite measure, ν ∈ S1

and z ∈ R, we denote
Eν,z

def.
= {t ∈ R | z ν + t ν⊥ ∈ E} .

The Steiner symmetrization of E with respect to the line through the origin and directed by ν,
denoted Esν , is then de�ned by

Esν
def.
= {x ∈ R2 | |〈x, ν⊥〉| ≤ |Eν,〈x,ν〉|/2} .

The fundamental property of Steiner symmetrization is that it preserves volume and does not
increase perimeter (see [Maggi, 2012, section 14.1] for more details).

To prove our result, we �rst prove two useful lemmas.
1In particular, this implies that η is essentially bounded.
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Lemma 3.18

Let f : R→ R+ be even and strictly decreasing on R+. Then for every measurable set A such
that |A| < +∞ we have: ˆ

A
f ≤

ˆ
As
f ,

where As def.
= (−|A|/2, |A|/2). Moreover, equality holds if and only if |A4As| = 0.

Proof : We have ˆ
A

f =

ˆ +∞

0

|{f 1A ≥ t}| dt =

ˆ +∞

0

|{f ≥ t} ∩A| dt .

Since f is even, for all t > 0, there exists α such that {f ≥ t} = [−α, α], so that we have

|{f ≥ t} ∩A| = |[−α, α] ∩A|
≤ min(2α, |A|)
= |[−α, α] ∩ [−|A|/2, |A|/2]|
= |{f ≥ t} ∩As| .

Hence ˆ
A

f ≤
ˆ +∞

0

∣∣{f ≥ t} ∩As∣∣ dt =

ˆ
As
f .

Now if |A4As| > 0, since |A| = |As| then |A \As| = |As \A| > 0 and we have
ˆ
As
f =

ˆ
A∩As

f +

ˆ
As\A

f

>

ˆ
A∩As

f + f(|A|/2) |As \A|

≥
ˆ
A∩As

f +

ˆ
A\As

f =

ˆ
A

f ,

which proves the second part of the result.

Lemma 3.19

Let E ⊂ R2 be a set of �nite perimeter with 0 < |E| < +∞. Then for any ν ∈ S1 we have
´
Esν
η

P (Esν)
≥

´
E η

P (E)
,

with equality if and only if |E4Esν | = 0.

Proof : From [Maggi, 2012, theorem 14.4] we know that we have P (Esν) ≤ P (E). We now perform
a change of coordinates in order to have Esν = {(x1, x2) ∈ R2 | |x2| ≤ |Ex1

|/2} with

Ex1

def.
= {x2 ∈ R | (x1, x2) ∈ E} .

Now, we have ˆ
E

η =

ˆ +∞

−∞

(ˆ +∞

−∞
η(x1, x2)1E(x1, x2) dx2

)
dx1

=

ˆ +∞

−∞

(ˆ
Ex1

η(x1, ·)
)
dx1 ,
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with Ex1
= {x2 ∈ R | (x1, x2) ∈ E}. For almost every x1 ∈ R we have that Ex1

is measurable,
has �nite measure, and that η(x1, ·) is nonnegative, even and strictly decreasing on R+. We can
hence apply Lemma 3.18 and get that

ˆ
E

η ≥
ˆ +∞

−∞

(ˆ
(Ex1)

s
η(x1, ·)

)
dx1 =

ˆ
Esν

η . (56)

Moreover, if |E4Esν | > 0, then since

|E4Esν | =
ˆ +∞

0

(ˆ +∞

0

|1E(x1, x2)− 1Esν (x1, x2)| dx2

)
dx1

=

ˆ +∞

0

(ˆ +∞

0

∣∣∣1Ex1
(x2)− 1(Ex1)

s(x2)
∣∣∣ dx2

)
dx1

=

ˆ +∞

0

∣∣Ex14
(
Esx1

)∣∣ dx1 ,

we get that L1 ({x1 ∈ R | |Ex14 (Ex1)
s| > 0}) > 0 and hence that (56) is strict.

Using the above lemmas, we may now state the following result.
Proposition 3.20

The generalized Cheeger sets associated to η are disks centered at the origin. Moreover, under
Assumption 1, the optimal set is unique and its radius is

R∗ = argmax
R>0

1

R

ˆ R

0
rη̃(r) dr .

Proof : If E ⊂ R2 is a set of �nite perimeter such that 0 < |E| < +∞ and ν ∈ S1 we have:
´
E
η

P (E)
≤

´
Esν
η

P (Esν)
,

with equality if and only if |E4Esν | = 0. Hence if E∗ solves (41), arguing as in [Maggi, 2012,
Section 14.2], we get that E∗ is a convex set which is invariant by re�ection with respect to any
line through the origin, and hence that E∗ is a disk centered at the origin.

Let us de�ne
G(R)

def.
= 2πJ(B(0, R)) =

1

R

ˆ R

0

rη̃(r) dr .

Under Assumption 1 G can be extended to a C1 function on R+ with G(0) = 0, G′(0) = η̃(0)/2
and (denoting f : r 7→ rη̃(r) as in Assumption 1):

∀R > 0, G′(R) =
Rf(R)−

´ R
0
f(r) dr

R2
.

Now de�ningF : R 7→ Rf(R)−
´ R

0
f(r) drwe see thatF ′(R) = Rf ′(R) for allR > 0, so thatF

and f have the same variations. Using Assumption 1, we hence have that F is strictly increasing
on [0, R0] and strictly decreasing on [R0,+∞). Moreover, F (0) = 0 and, since f(R)

R→+∞−−−−−→ 0,
we also get F (R) < 0 for R large enough. Therefore, there exists R∗ > 0 such that F (and
hence G′) is strictly positive on (0, R∗) and strictly negative on (R∗,+∞). We hence obtain
that R∗ is the unique maximizer (and the unique critical point) of G.
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Figure 14 – Steiner symmetrization of triangles

2.5.2. Description of generalized polygonal Cheeger sets

In practice, instead of solving (41), we look for an element of Pn (a simple polygon with at
most n sides) maximizing J , for some given integer n ≥ 3. It is hence natural to investigate the
proximity of these optimal polygons with the “continuous” Cheeger sets. Solving classical geomet-
ric variational problems restricted to the set of n-gons is involved, as the Steiner symmetrization
procedure might increase the number of sides [Polya and Szegö, 1951, Sec. 7.4]. However, using
a trick from Pólya and Szegö, one may prove:
Proposition 3.21

Let n ∈ {3, 4}. Then all the maximizers of J over Pn are regular and inscribed in a circle
centered at the origin.

Proof :

Triangles (n = 3): letE∗ be a maximizer of J among triangles. Then the Steiner symmetrization
of E∗ with respect to any of its heights through the origin (see Figure 14) is still a triangle, and
Lemma 3.19 ensures it has a higher energy except if this operation leaves E∗ unchanged. As
a consequence, E∗ must be symmetric with respect to all its heights through the origin. This
shows E∗ is equilateral and inscribed in a circle centered at the origin.

Quadrilaterals (n = 4): we notice that if E is a simple quadrilateral, then its Steiner sym-
metrization with respect to any line perpendicular to one of its diagonals (see Figure 15) is still a
simple quadrilateral. We can then proceed exactly as for triangles to prove any maximizer E∗
of J over P4 is symmetric with respect to every line through the origin and perpendicular to one
of its diagonals. This shows E∗ is a rhombus centered at the origin. We can now symmetrize with
respect to any line through the origin perpendicular to one of its sides to �nally obtain that E∗
must be a square centered at the origin.

Our proof does not extend to n ≥ 5, but the following conjecture is natural:
Conjecture 1

The result stated in Proposition 3.21 holds for all n ≥ 3.

For n ∈ {3, 4} or if Conjecture 1 holds, it remains to compare the radius of optimal polygons
with the one of “continuous” Cheeger sets. Let us �x a regular n-gon inscribed in the circle of
radius R centered at 0, and denote it Bn(0, R). Abusing notation, we de�ne J(R)

def.
= J(B(0, R))

and Jn(R)
def.
= J(Bn(0, R)), and can now state the following result.
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Figure 15 – Steiner symmetrization of quadrilaterals

Proposition 3.22

It holds

‖Jn − J ||∞ = O

(
1

n2

)
.

Moreover, under Assumption 1 and assuming f is C2 with f ′′(r0) < 0, then for n large enough
we have that Jn has a unique maximizer R∗n and

|R∗n −R∗| = O

(
1

n

)
.

Proof : Recalling that P (Bn(0, R)) = 2πR sin(π/n)
π/n we have:

|J(R)− Jn(R)| =
∣∣∣∣∣ 1

2πR

ˆ
B(0,R)

η − π/n

2πR sin(π/n)

ˆ
Bn(0,R)

η

∣∣∣∣∣
=

∣∣∣∣∣
(

1− π/n

sin(π/n)

)
1

2πR

ˆ
B(0,R)

η +
π/n

2πR sin(π/n)

ˆ
B(0,R)\Bn(0,R)

η

∣∣∣∣∣
≤
∣∣∣∣1− π/n

sin(π/n)

∣∣∣∣ J(R) +
π/n

2πR sin(π/n)
‖η‖∞|B(0, R) \Bn(0, R)| .

Now, we de�ne
Rn(θ)

def.
= R

cos (π/n)

cos ((θ mod 2π/n)− π/n)
,

so that in polar coordinates an equation of ∂Bn(0, R) is given by r(θ) = Rn(θ). We obtain:

|B(0, R) \Bn(0, R)| =
ˆ 2π

0

ˆ R

Rn(θ)

r dr dθ

≤ 2π sup
θ∈[0,2π]

ˆ R

Rn(θ)

r dr

= π sup
θ∈[0,2π]

R2 −R2
n(θ)

= π(R2 −R2cos2(π/n)) .

We hence obtain

‖Jn − J‖∞ ≤ ‖J‖∞
∣∣∣∣1− π/n

sin(π/n)

∣∣∣∣+R‖η‖∞
π/n

sin(π/n)
(1− cos(π/n))
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and we can �nally conclude regarding the �rst statement.
Now, de�ning αn(s)

def.
= cos(π/n)/cos(πs/n), we have:

Jn(R) =
π/n

2πR sin(π/n)

ˆ 2π

0

ˆ Rn(θ)

0

rη̃(r) dr dθ

=
π/n

2πR sin(π/n)
n

ˆ 2π/n

0

ˆ R
cos(π/n)

cos(θ−π/n)

0

rη̃(r) dr dθ

=
π/n

2πR sin(π/n)
2n

ˆ π/n

0

ˆ R
cos(π/n)

cos(θ)

0

rη̃(r) dr dθ

=
π/n

R sin(π/n)

ˆ 1

0

ˆ Rαn(s)

0

rη̃(r) dr ds

=
π/n

sin(π/n)

1

R

ˆ R

0

r

[ˆ 1

0

(αn(s))2 η̃(rαn(s)) ds

]
dr .

We can now de�ne fn : r 7→ r
[´ 1

0
(αn(s))2 η̃(rαn(s)) ds

]
and proceed as in Proposition 3.20:

showing f ′n is strictly positive on (0, r1) and strictly negative on (r1,+∞) for some r1 > 0 is
su�cient to prove Jn has a unique maximizer (its unique critical point). Now, we have:

∀r ∈ R+, f
′
n(r) =

ˆ 1

0

(αn(s))2(η̃(rαn(s)) + rαn(s)η̃′(rαn(s))) ds .

The image of [0, 1] by s 7→ rαn(s) is [rcos(π/n), r]. Since r 7→ η̃(r) + rη̃′(r) = (rη̃)′(r) is
strictly positive on (0, r0) and strictly negative on (r0,+∞), we get that f ′n is strictly positive
on (0, r0) and strictly negative on (r0/cos(π/n),+∞). It hence remains to investigate the sign
of f ′n on the interval [r0, r0/cos(π/n)]. But since f is C2 and f ′′(r0) < 0 there exists ε > 0 such
that f ′′(r) < 0 for every r ∈ (r0 − ε, r0 + ε). For n large enough, we hence have:

[r0cos(π/n), r0/cos(π/n)] ⊂ (r0 − ε, r0 + ε) .

This implies that for all r ∈ [r0, r0/cos(π/n)] we have rαn(s) ∈ (r0 − ε, r0 + ε), and hence
that f ′′n (r) < 0. This �nally shows there exists r1 > 0 such that f ′n is strictly positive on (0, r1)
and strictly negative on (r1,+∞), and the result follows as in Proposition 3.20.

Now R∗ and R∗n are respectively the unique solutions of F (0, R) = 0 and F (π/n,R) = 0
with

F (t, R)
def.
=

[ˆ R

0

ft(r) dr

]
−Rft(R) ,

ft(r)
def.
= r

ˆ 1

0

α(t, s)2 η̃(rα(t, s))ds ,

α(t, s)
def.
=

cos(t)

cos(ts)
.

Moreover, F is C1 in a neighborhood of (0, R∗) and ∂RF (0, R∗) = −R∗f ′(R∗). From As-
sumption 1 we know the unique R > 0 such that f ′(R) = 0 is R0, which (from the proof of
Proposition 3.20) is di�erent from R∗. We can hence apply the implicit function theorem and
obtain that

|R∗n −R∗| =
|∂tF (0, R∗)|
|∂RF (0, R∗)|

1

n
+ o

(
1

n

)
,

which yields the result.
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3. Numerical results

Before assessing the practical performance of Algorithm 3, we brie�y explain how we implement
the sliding step (Line 14).

3.1. Local minimization of the objective

This section is dedicated to the implementation of the sliding step (Line 14 of Algorithm 3).
Our approach is exactly the same as in Section 2.4, that is we optimize the vertices of a set of
polygons and their corresponding amplitudes using a �rst order algorithm. To be more precise,
we perform a gradient descent on the mapping

(a, x) 7→ GN (ε, a, Ex) , (57)

where Ex = (Ex1 , ..., ExN ). Given a step size αt, a vector at ∈ RN and xt1, ..., xtN in Xn, we
de�ne

ut
def.
=

N∑
i=1

ati 1Ext
i

, ηt
def.
= − 1

λ
Φ∗(Φut − y) ,

and perform the following update:

at+1
i

def.
= ati − αt hti ,

hti
def.
= P

(
Exti

)
− εi

ˆ
E
xt
i

ηt,

xt+1
i,j

def.
= xti,j − αt θti,j ,

θti,j
def.
= ati

[
−(τ t+i,j + τ t−i,j ) + εi θ

t
data,i,j

]
,

θtdata,i,j
def.
= 〈Φut − y, wt+i,j 〉 νt+i,j + 〈Φut − y, wt−i,j 〉 νt−i,j ,

where τ t±i,j , νt±i,j are de�ned as in Section 2.4 and

wt+i,j
def.
= ‖xti,j+1 − xti,j‖

ˆ 1

0
ϕ((1− t)xti,j + t xti,j+1) (1− t) dt ,

wt−i,j
def.
= ‖xti,j−1 − xti,j‖

ˆ 1

0
ϕ((1− t)xti,j + t xti,j−1) (1− t) dt .

Using the notations of Section 2.4, the complexity of each iteration is of order

O (N m (|T| |ST |+ n |SL|)) .

Comments. We �rst stress that the above update is similar to the evolution formally described
in (36). Now, unlike the local optimization we perform to approximate Cheeger sets, the sliding
step may tend to induce topology changes (see Section 3.3 for an example). This is of course linked
to the possible appearance of singularities mentioned in Section 1.4.1. Typically, a simple set may
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tend to split in two simple sets over the course of the descent. This is a major di�erence (and
challenge) compared to the sliding steps used in sparse spikes recovery (where the optimization is
carried out over the space of Radon measures) [Bredies and Pikkarainen, 2013, Boyd et al., 2017,
Denoyelle et al., 2019]. This phenomenon is closely linked to topological properties of the faces
of the total (gradient) variation unit ball: its extreme points do not form a closed set for any
reasonable topology (e.g. the weak L2(R2) topology), nor do its faces of dimension d ≤ k for
any k ∈ N. As a result, when moving continuously on the set of faces of dimension d = k, it is
possible to “stumble upon” a point which only belongs to a face of dimension d > k.

Handling (or not) topology changes. Our current implementation does not allow to handle
these topology changes in a consistent way, and �nding a way to deal with them “o�-the-grid” is
an interesting avenue for future research. It is important to note that not allowing topological
changes during the sliding step is not an issue, since all convergence guarantees hold as soon
as the output of the sliding step decreases the energy more than the standard update. One can
hence stop the local descent at any point before any change of topology occurs, which avoids
having to treat them. Still, in order to yield iterates that are as sparse as possible (and probably to
decrease the objective as quickly as possible), it seems preferable to allow topological changes.

3.2. Recovery examples

Here, we investigate the practical performance of Algorithm 3. We focus on the case where Φ
is a sampled Gaussian convolution operator, i.e.

∀x ∈ R2, ϕ(x) =

(
exp

(
−||x− xi||

2

2σ2

))m
i=1

for a given σ > 0 and a sampling grid (xi)
m
i=1. The noise is drawn from a multivariate Gaussian

with zero mean and isotropic covariance matrix τ2 Im. We take λ of the order of
√

2 log(m) τ2.
Numerically certifying that a given function is an approximate solution of (Pλ(y)) is di�cult.

However, as the sampling grid becomes �ner, Φ tends to the convolution with the Gaussian kernel,
which is injective. Relying on a Γ-convergence argument, one may expect that if u0 is a piecewise
constant image and w is some small additive noise, the solutions of (Pλ(y)) with y = Φu0 + w
are all close to u0, modulo the regularization e�ects of the total variation.

Comparison with other algorithms. We assess the performance of our algorithm by com-
paring its output to that of a primal dual algorithm minimizing a discretized version of (Pλ(y))
on a pixel grid, where the total variation term is replaced by the discrete isotropic total varia-
tion or the dual-based discretization of [Hintermüller et al., 2014, Condat, 2017]. To minimize
discretization artifacts, we arti�cially introduce a downsampling in the forward operator, so that
the reconstruction is performed on a grid four times larger than the sampling one.

Experiments. Our �rst experiment consists in recovering a function u0 that is a linear combi-
nation of three indicator functions (see Figures 16 and 17). During each of the three iterations
required to obtain a good approximation of u0, a new atom is added to its support. One can
see the sliding step is crucial: the large atom on the left, added during the second iteration, is
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Figure 16 – From left to right: observations, unknown function, output of Algorithm 3, outputs
of the �xed grid method using the isotropic and Condat’s total variation

signi�cantly re�ned during the sliding step of the third iteration, when enough atoms have been
introduced. The second experiment (see Figure 18) consists in recovering the indicator function of
a set with a hole (which can also be seen as the sum of two indicator functions of simple sets). The
support of u0 and its gradient are accurately estimated. Still, the typical e�ects of total variation
regularization are noticeable: corners are slightly rounded, and there is a “loss of contrast” in
the eye of the pacman. The third experiment (Figure 19) also showcases the rounding of corners,
and highlights the in�uence of the regularization parameter: as λ decreases, the curvature of the
edge set increases. Finally, we provide in Fig. Figure 20 the results of an experiment on a more
challenging task, which consists in reconstructing a natural grayscale image.

Choice of parameters. The number of observations in the �rst experiment is 60×60, 75×75
in the second and third ones, and 64 × 64 in the last one. In all experiments, we solved (46)
on a grid of size 80 × 80. In both local descent steps (for approximating Cheeger sets and for
the sliding step), the simple polygons have a number of vertices of order 30 times the length of
their boundary (100 for the last experiment), and the maximum area of triangles in their inner
mesh is 10−2 (the domain being a square of side 1). The inner triangulation of a simple polygon
is obtained by using Richard Shewchuk’s Triangle library. The boundary of the polygons are
resampled every 30 iterations. Line integrals are computed using the Gauss-Patterson scheme
of order 3 (15 points) and integrals on triangles using the Hammer-Marlowe-Stroud scheme of
order 5 (7 points).

3.3. Topology changes during the sliding step

Here, we illustrate the changes of topology that may occur during the sliding step (Line 14 of
Algorithm 3). All relevant plots are given in Figure 21. The unknown function (see (a)) is the sum
of two indicator functions:

u0 = 1B((−1,0),0.6) + 1B((1,0),0.6) ,

and observations are shown in (b). The Cheeger set computed at Line 5 of the �rst iteration
covers the two disks (see (c)).

In this setting, our implementation of the sliding step converges to a function similar to (f)1,
and we obtain a valid update that decreases the objective more than the standard Frank-Wolfe
update. The next iteration of the algorithm will then consist in adding a new atom to the

1This only occurs when λ is small enough. For higher values of λ, the output is similar to (d) or (e).
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u[1] (before sliding)

−2

0

2

u[1] u0 − u[1] Supp(Du[1]), Supp(Du0)

u[2] (before sliding)

−2

0

2

u[2] u0 − u[2] Supp(Du[2]), Supp(Du0)

u[3] (before sliding)

−2

0

2

u[3] u0 − u[3] Supp(Du[3]), Supp(Du0)

Figure 17 – Unfolding of Algorithm 3 for the �rst experiment (u[k] denotes the k-th iterate)

Figure 18 – From left to right: unknown function, observations, outputs of the �xed grid method
using the isotropic and Condat’s total variation, output of Algorithm 3, gradients support (red:

output of Algorithm 3, black: unknown)
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Figure 19 – Left: unknown function, middle: observations, right: output of Algorithm 3 for
di�erent values of λ

Figure 20 – From left to right: original image, observations, iterates u[k] (k = 1, 4) produced by
Algorithm 3, outputs of the �xed grid method using the isotropic and Condat’s total variation

approximation, with negative amplitude, so as to compensate for the presence of the small
bottleneck.

However, it seems natural that the support of (f) should split into two disjoint simple sets,
which is not possible with our current implementation. To investigate what would happen in
this case, we manually split the two sets (see (g)) and let them evolve independently. The support
of the approximation converges to the union of the two disks, which produces an update that
decreases the objective even more than (f).

Figure 21 – Topology change experiment. (a): unknown signal, (b): observations, (c): weighted
Cheeger set, (d,e,f,g): sliding step iterations (with splitting), (h): �nal function.



4. Conclusion

In this part, we proposed an iterative algorithm for solving (Pλ(y)), which is based on the
conditional gradient (or Frank-Wolfe) algorithm. We studied the convergence of its iterates, and
presented a natural analog of the “sliding step” introduced in [Denoyelle et al., 2019]. Unlike in
the latter work, we left the theoretical analysis of this step open, and in particular could not prove
that a so-called critical point of the objective can be reached at every iteration.

We then discussed the practical implementation of this theoretical algorithm, and presented
two oracles to carry out its main operations. The �rst allows to approximate generalized Cheeger
sets, and builds up on the method proposed in [Carlier et al., 2009]. It consists in optimizing the
vertices of a polygon with a shape gradient-like algorithm, initialized with the output of the
latter method. To support our approach, we also proved the existence of generalized Cheeger
sets in the class of polygons with a given number of sides, and investigated their proximity
with their continuous counterpart in a radial setting. The second oracle we proposed allows
to implement the sliding step mentioned above. We discussed the topological changes that can
appear during the resulting evolution, and argued that handling them in a consistent way is
natural but challenging.

Finally, we assessed the performance of the propose numerical method on a few recovery
examples, providing comparisons with �xed-grid methods. Our approach is particularly suited to
reconstruct simple images (i.e. which are the superposition of a few simple shapes), whereas on
more complex natural images, existing methods perform better.
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Part 4

Conclusion

We end this manuscript by presenting natural avenues for future research. We �rst discuss those
related to theoretical recovery guarantees, before turning to numerical methods.

1. Recovery guarantees

Let us start by recalling our contributions to the theoretical analysis of total variation regulatiza-
tion. In Part 2, we described the structure of the exposed faces of the total variation unit ball, and
introduced the class of M -simple functions, which are the sparse objects naturally associated to
this regularizer. We also considered solutions of the prescribed curvature problem, and studied
their stability under variations of the associated curvature functional. Finally, we introduced a
condition under which the jump set of an M -simple function can be exactly recovered in a low
noise regime.

Su�cient identi�ability conditions. In our opinion, an important question which remains
mostly open is that of identi�ability. Given a function u0 and a measurement operator Φ, being
able to provide su�cient conditions ensuring u0 is the unique solution of (P0(y0)) is highly desir-
able. As already mentioned, the only related work we are aware of is [Bredies and Vicente, 2019].
A major di�erence with the sparse spikes setting is that even the identi�ability of a single atom,
i.e. of u0 = 1E with E simple, seems di�cult to study. Having a clear understanding of this
problem could, subsequently, allow to answer the following question: if two atoms E,F are
separately identi�able and a, b ∈ R∗, how does the relative position of E and F impact the
identi�ability of a1E + b1F ?

Pre-certi�cates. Considering the literature on sparse spikes recovery, the construction of
pre-certi�cates (i.e. good candidates for being a dual certi�cate, possibly of minimial norm) is
highly important for studying both identi�ability and noise robustness. We have discussed in
Section 3.4.2 possible ways to construct such objects in a simpli�ed setting. This investigation
should however be furthered. In particular, the pre-certi�cate we described only uses the �rst
order optimality condition “in average”, and other constraints could hence be considered. To
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ensure a notion of pre-certi�cate is relevant, a natural way would be to �nd out if, as proved
in [Duval and Peyré, 2015] in the sparse spikes setting, the fact it is a true certi�cate is necessary
for (noiseless) exact support recovery.

Error bounds. The noise robustness analysis we presented in Part 2 is not quantitative. It
does not provide bounds on the distance between solutions of (P0(y0)) and (Pλ(y0 + w)) in
terms of the noise level ‖w‖H. In the sparse spikes setting, such bounds were derived by
analyzing the behaviour of dual certi�cates in the so-called far and near regions (see for in-
stance [Azaïs et al., 2015]). In our case, it seems that the near region analysis is closely linked to
the coercivity constant of the second order shape derivative at optimal sets. What seems more
challenging is to quantify how the relevant geometric functional behaves in the far region, i.e.
for sets that are not smooth normal deformations of a minimizer. We argue that this could be
related to the derivation of a quantitative inequality for our functional (we brie�y discussed the
case of the isoperimetric inequality in Section 2.1.1). To prove such a result, one would need to
adapt the selection principle of [Cicalese and Leonardi, 2012], and then use the analysis provided
in Section 2.2 to deal with smooth deformations of a minimizer.

Stability for the total variation �ow. We argue that the stability analysis of Sections 2.2
and 3.1 could possibly be used to study the L2 gradient �ow of the total variation (see for
instance [Bellettini et al., 2002]). A relevant question concerning this evolution could be: if the
�ow is initialized with an M -simple function, is the solution also M -simple for su�ciently
small times? If so, is the length of the chains preserved? In the particular case where the �ow
is initialized with the indicator function of a calibrable set, it has been shown in the above
reference that the solution remains proportional to the initialization. Answering the more general
question formulated above is, to the best of our knowledge, an open problem. Given an initial
data u0 ∈ L2(R2), an idea to apply the results of Sections 2.2 and 3.1 would be to consider the
minimizing movement scheme

min
u∈L2(R2)

TV(u) +
1

2τ
‖u− u0‖L2 , (58)

and to prove a stability result in the spirit of Theorem 2.27 when τ → 0+. The main di�erence
with our setting is that, in (58), no advantage can be taken from the regularity of the measurement
operator, and whether dual solutions converge smoothly to the minimal norm limit certi�cate is
unclear. Finally, let us mention that, although it is even less clear whether our results could be
applied in this setting, one could also consider the same question for the Wasserstein gradient
�ow of the total variation [Carlier and Poon, 2019].

Model bias. In Part 2, we argued that the class of sparse objects associated to the total variation
are M -simple functions. Regularizing an inverse problem with the total variation will hence
often produce M -simple reconstructions. In practical applications, the sought-after image might
be approximately, but not exactly piecewise constant. An interesting question would hence be to
investigate what class of functions can be well approximated with s-sparse M -simple functions,
and how this approximation behaves when s grows. This is related to the notion of model bias, i.e.
to the error one makes by assuming the unknown signal has a speci�c structure. Such an analysis
has been conducted for sparse vectors (see for instance [Foucart and Rauhut, 2013, Section 2.1]). A
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related topic is also the study of nonlinear wavelet approximation (see [Mallat, 2008, Section 9.2]),
and more speci�cally of how the approximation error decreases when the number of coe�cients
grows.

2. Numerical resolution

In Part 3, we proposed an algorithm for solving (Pλ(y)), which is based on the conditional
gradient (or Frank Wolfe) algorithm. It iteratively constructs a sequence of iterates that provably
converges to a solution of (Pλ(y)). Each iterate is a linear combination of the atoms promoted by
the total variation (i.e. indicator functions of simple sets). Then, we discussed the implementation
of this theoretical algorithm, and proposed to numerically represent the above-mentioned atoms
by indicator functions of simple polygons. We �nally assessed the performance of our approach
on a few recovery examples, providing comparisons with traditional grid-based methods.

Convergence in �nite time. In [Denoyelle et al., 2019, Theorem 3], a �nite time convergence
result is proved for the so-called sliding Frank-Wolfe algorithm. It holds under the assumption that
the dual certi�cate associated to the noisy problem is non-degenerate. A crucial ingredient of the
proof is that a critical point of the objective is reached at the end of each sliding step. As explained
above, we cannot guarantee this in our setting. Still, assuming this is true, it would be interesting
to investigate whether the proof of [Denoyelle et al., 2019] can be adapted to Algorithm 3.

Topology changes. In Section 1.4, we presented the so-called sliding step (in the spirit of
[Denoyelle et al., 2019]). We formally described the associated gradient �ow, but its study (exis-
tence, uniqueness) seems challenging. In Section 3.1 we introduced a possible way to mimic this
evolution numerically. We explained that this could lead to the apparition of singularities, and
that we could not handle them consistently with our approach. Even if one can circumvent this
issue by stopping the evolution before the appearance of a singularity (which does not break any
convergence guarantee), it seems preferable to allow them, in order to yield iterates that are as
sparse as possible. This topic is related to the more global issue of handling topology changes
with purely Lagrangian methods. In the shape optimization community, Eulerian methods (such
as the level set method) are preferred to achieve this, as they can treat complicated deforma-
tions of a shape in a very robust way [Allaire et al., 2021]. In a recent work [Lévy, 2022], Bruno
Lévy proposed a new Lagrangian free-surface mesh representation for �uid simulation. He also
mentioned these ideas could possibly be used for shape optimization. It would be interesting to
investigate whether these tools can allow for a robust implementation of the sliding step.

Approximation of maximal elements of exposed faces. We mentioned above that the
construction of pre-certi�cates is highly important to derive identi�ability and noise robustness
guarantees. Given a pre-certi�cate, one can numerically ensure it is a true certi�cate by solving
the associated Cheeger problem, and showing its value is (approximately) one. If this is the
case, it is desirable to �nd which functions are associated to this certi�cate, i.e. to obtain a
complete description of the face it exposes. One can always �nd an element of this face by
solving the associated Cheeger problem, but how to approximate the complete set of maximizers
seems challenging. We argue that a possible way to achieve this would be to adapt the ideas

https://twitter.com/BrunoLevy01/status/1524676740613877760
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of [Buttazzo et al., 2007, Carlier et al., 2009]. These works propose to introduce a small strictly
convex penalization of the objective, in order to select some “maximal” solution of the Cheeger
problem. Their setting however slightly di�ers from ours (the weight functions they deal with
are non-negative), and �nding out whether their techniques can be adapted to our case would be
interesting.

Practical applications. To conclude this part, let us discuss how the work presented here can
be relevant for practical applications. The experiments conducted in Section 3.2 suggest that
traditional grid-based methods perform better on complex natural images, while our approach is
particularly well-suited for reconstructing simple piecewise constant ones. It is hence natural
to wonder in which situations one would be interested in the recovery of such signals, and
in obtaining a continuous domain representation of them. We mentioned in Section 1.1.1 that
this could potentially be the case in cell imaging (see Figure 2). However, it seems natural that
the choice of appropriate measurement operators and the relevance of this approach should
extensively be discussed with practitioners.
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A. Sets of finite perimeter

In this section, we collect a few useful de�nitions and properties related to sets of �nite perimeter.
We refer the reader to e.g. [Maggi, 2012] for further details, and to [Ambrosio et al., 2001] for
more information concerning M -connected components and related notions.

Reduced boundary. The reduced boundary ∂∗E of a set of �nite perimeter E is de�ned as
the set of points x ∈ Supp (|D1E |) at which

νE(x)
def.
= lim

r→0+
− D1E(B(x, r))

|D1E | (B(x, r))

exists and satis�es |νE(x)| = 1.

Choice of representative. From [Giusti, 1984, Proposition 3.1], we know that if E has �nite
perimeter, there exists a Lebesgue representative of E with the property that

∀x ∈ ∂E, 0 < |E ∩B(x, r)| < |B(x, r)| .
In particular, it does not have isolated points. In the following, we always consider such a
representative and consequently obtain

Supp(D1E) = ∂∗E = ∂E .

Distributional curvature. If E ⊂ R2 is a set of �nite perimeter, then the distributional
curvature vector of E is HE : C∞c (R2,R2)→ R de�ned by

∀T ∈ C∞c (R2,R2), 〈HE , T 〉 =

ˆ
∂∗E

divE T dH1 ,

where divE T denotes the tangential divergence of T on E given by

divE T = divT − (DT νE) · νE ,
and DT denotes the di�erential of T . A set E is said to have locally integrable distributional
curvature if there exists a function HE ∈ L1

loc(∂
∗E;H1) such that

HE = HE νE H1 ∂∗E .

For instance, if E is an open set with C2 boundary, it has a locally summable distributional
curvature which is given by the (classical) scalar mean curvature.

M -connected components, holes, exterior. If E ⊂ R2 has �nite perimeter it can be de-
composed (up to Lebesgue negligible sets) into an at most countable union of pairwise disjoint
indecomposable sets of positive measure, i.e.

E =
⋃
i∈I

Ei, P (E) =
∑
i∈I

P (Ei) and ∀i, |Ei| > 0 . (59)

The collection {Ei}i∈I is unique (up to Lebesgue negligible sets), denoted CCM (E), and its
elements are called the M -connected components of E. Any M -connected component of R2 \E
is called a hole of E. The exterior of E, denoted by ext(E), is de�ned as the unique (modulo
Lebesgue negligble sets) M -connected component of R2 \ E with in�nite measure.
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Figure 22 – Illustration of De�nition B.1.

B. Smooth sets: definition

and convergence

In this section, we give some de�nitions and facts about smooth sets. Although these notions are
standard (most of them are for example discussed in [Delfour and Zolesio, 2011]), we recall them
here to keep the exposition (mostly) self-contained.

Smooth sets. We say that a set is smooth if it is locally the hypograph of a smooth function.
If r > 0, x ∈ R2 and ν ∈ S1, we denote by C(x0, r, ν) the square with axis ν and side r centered
at x0, de�ned as follows:

C(x0, r, ν)
def.
= x0 +

{
x ∈ R2

∣∣ |〈x, ν〉| < r, |x− 〈x, ν〉 ν| < r
}
. (60)

With this notation, we have C(0, r, e2) = (−r, r)2. We also denote by Rν the rotation which
maps e2 to ν (and hence (−r, r)2 to C(0, r, ν)). Given a mapping u : (−r, r)→ R we de�ne

graph(u)
def.
= {(z, u(z)), z ∈ (−r, r)} ,

hypograph(u)
def.
= {(z, t) | z ∈ (−r, r), −r < t < u(z)} .

De�nition B.1

Let k ≥ 1. A set E ⊂ R2 is said to be of class Ck if for every x ∈ ∂E there exists r > 0, ν ∈ S1

and u ∈ Ck([−r, r]) such that{
R−1
ν (∂E − x) ∩ (−r, r)2 = graph(u) ,

R−1
ν (intE − x) ∩ (−r, r)2 = hypograph(u) .

As stated in [Delfour and Zolesio, 2011, Theorem 5.2], if E is bounded, the compactness
of ∂E allows to take r in De�nition B.1 independent of x, and the family (ux)x∈∂E uniformly
bounded in Ck with equicontinuous k-th derivative.
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Convergence of smooth sets. Now, we turn to the de�nition of Ck convergence for smooth
sets.
De�nition B.2

Let E be a bounded set of class Ck with k ≥ 1. We say that (En)n≥0 converges to E in Ck if
there exists r > 0 and n0 ∈ N such that

• for every n ≥ n0 we have ∂En ⊂
⋃

x∈∂E
C(x, r, νE(x))

• for every n ≥ n0 and x ∈ ∂E there exists un,x ∈ Ck([−r, r]) such that:{
R−1
νE(x) (∂En − x) ∩ (−r, r)2 = graph(un,x)

R−1
νE(x) (intEn − x) ∩ (−r, r)2 = hypograph(un,x)

• denoting (ux)x∈∂E functions satisfying{
R−1
νE(x) (∂E − x) ∩ (−r, r)2 = graph(ux)

R−1
νE(x) (intE − x) ∩ (−r, r)2 = hypograph(ux)

we have lim
n→+∞

sup
x∈∂E

‖un,x − ux‖Ck([−r,r]) = 0

In Section 2.2, we make use of the following result, which states that, if a sequence of sets
converges in Ck , the boundary of its terms can eventually be written as a normal deformation of
the boundary of the limit set. A related statement can be found for instance in [Acerbi et al., 2013,
Theorem 4.2]. The authors of this last work refer to [Almgren, 1975], which, according to them,
essentially contains the result. We provide a detailed proof below for the sake of completeness.
Proposition B.3

If (En)n≥0 converges to a bounded setE in Ck with k ≥ 2, then for n large enough there exists
a mapping ϕn ∈ Ck−1(∂E) such that ∂En = (Id+ ϕn νE)(∂E), and ‖ϕn‖Ck−1(∂E) → 0.

Proof : In all the following, we denote by ν (instead of νE ) the outward unit normal toE. If u ∈ Ck(Ω)
and δ > 0, we also use the notation

BCk(u, δ)
def.
=
{
v ∈ Ck(Ω)

∣∣∣ ‖u− v‖Ck(Ω) < δ
}
.

We divide the proof in two main steps.

Step 1: we �rst prove that, for every x ∈ ∂E, there exists n0 ∈ N and two open neighbor-
hoods U, V of x such that, for every n ≥ n0, there exists ϕn : ∂E ∩ U → R of class Ck−1

with ∂En ∩ V = (Id+ ϕn ν)(∂E ∩ U) and ‖ϕn‖Ck−1(∂E∩U) → 0.
By the Ck convergence of (En)n≥0 towards E, we can �x x ∈ ∂E, r > 0 and n0 ∈ N such

that, in C(x, r, νE(x)), the set E is the hypograph of u ∈ Ck([−r, r]) and En is the hypograph
of un ∈ Ck([−r, r]) for every n ≥ n0, with ‖un − u‖Ck([−r,r]) → 0. By an abuse of notation, the
normal ν is given in local coordinates by

∀z ∈ (−r, r), ν(z, u(z))
def.
=

1√
1 + u′(z)2

(−u′(z), 1) .
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We notice that if (z, t) ∈ (−r, r)×R and v : (−r, r)→ R, then (z, u(z))+t ν(z, u(z)) ∈ graph(v)
if and only if ∣∣∣∣∣z − t√

1 + u′(z)2
u′(z)

∣∣∣∣∣ < r (61)

and f(v, z, t) = 0 with

f(v, z, t)
def.
= u(z) +

t√
1 + u′(z)2

− v
(
z − t√

1 + u′(z)2
u′(z)

)
.

If (z, t) ∈ (−r′, r′)2 with r′ def.
= r/2, then (61) holds and f(v, z, t) is hence well de�ned.

We claim that f is of class Ck−1 on Ck−1([−r, r])× (−r′, r′)2. To see this, one should �rst
notice that the two mappings

(z, t) 7→ u(z) +
t√

1 + u′(z)2
, (z, t) 7→ z − t√

1 + u′(z)2
u′(z) ,

are of class Ck−1 on (−r′, r′)2. It is then su�cient to observe that, if g : (−r′, r′)2 → (−r, r) is
of class Ck−1, then (v, y) 7→ v(g(y)) is of class Ck−1 on Ck−1([−r, r])× (−r′, r′)2.

Now, we know f is of class Ck−1. Moreover, we have f(u, z, 0) = 0 for every z ∈ (−r′, r′),
and in particular f(u, 0, 0) = 0. Using that u′(0) = 0, we also get ∂tf(u, 0, 0) = 1 6= 0. From
the implicit function theorem, we hence obtain the existence of δ1 > 0, of δ2 ∈ (0, r′), of an
open neighborhood W ⊂ (−r′, r′) of 0, and of a mapping ψ : BCk−1(u, δ1)× (−δ2, δ2)→W of
class Ck−1 such that, for every (v, z, t) in Ck−1([−r, r])× (−r′, r′)2:[

(v, z, t) ∈ BCk−1(u,δ1) × (−δ2, δ2)×W and f(v, z, t) = 0
]

⇐⇒
[
(v, z) ∈ BCk−1(u,δ1) × (−δ2, δ2) and t = ψ(v, z)

]
.

Since f(u, z, 0) = 0, we obtain ψ(u, z) = 0 for every z ∈ (−δ2, δ2). Now, using the fact ψ is
of class Ck−1, we obtain that all its derivatives up to order k − 1 are uniformly continuous on
every compact subset of BCk−1(u, δ1)× (−δ2, δ2). By the Ascoli-Arzelá theorem Ck([−r, r]) is
compactly embedded into Ck−1([−r, r]), and we hence have that, for every δ′2 < δ2, the family of
functions ψv : z 7→ ψ(v, z) converges in Ck−1([−δ′2, δ′2]) towards 0 when ‖v− u‖Ck([−r,r]) → 0.

Now, we de�ne

F : (−r, r)2 → R2

(z, t) 7→ (z, u(z)) + t ν(z, u(z)) =

(
z − t√

1 + u′(z)2
u′(z), u(z) +

t√
1 + u′(z)2

)
.

We have that F is of class Ck−1 and DF (0, 0) = Id. There hence exists two open neighbor-
hoods U1, U2 of 0 such that F is a Ck−1 di�eomorphism from U1 × U2 to F (U1 × U2).

We take δ′2 < δ2 small enough to have (−δ′2, δ′2) ⊂ U1, and δ′1 < δ1 small enough to
have ‖ψv‖∞ ≤ γ for every v ∈ BCk(u, δ′1), with (−γ, γ) ⊂ U2 ∩ W . We claim that, for
every v ∈ BCk(u, δ′1), we have

{F (z, ψv(z)), z ∈ (−δ′2, δ′2)} = graph(v) ∩ V ′ with V ′
def.
= F ((−δ′2, δ′2)× (−γ, γ)) . (62)

By construction, the set on the left-hand side is included in the one on the right-hand side. Now,
if y ∈ graph(v) ∩ V ′, then denoting (z, t)

def.
= F−1(y), we have that z ∈ (−δ′2, δ′2). Moreover, we

also have (v, z, t) ∈ BCk−1(u, δ1)× (−δ2, δ2)×W and f(v, z, t), which shows t = ψv(z), and
hence (62).
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Finally, de�ning

U ′
def.
= (−δ′2, δ′2)× (−r, r), U def.

= x+RνE(x)U
′, V

def.
= x+RνE(x)V

′ ,

ϕv : y 7→ ψv((R
−1
νE(x)(y − x))1) ,

and taking n0 large enough to have un ∈ BCk(u, δ′1) for every n ≥ n0, we obtain

∂En ∩ V = (Id+ ϕn ν)(∂E ∩ U)

and ‖ϕn‖Ck−1(∂E∩U) → 0 with ϕn
def.
= ϕun .

Step 2: from now on, we make the dependencies on x explicit. We know from step 1 that
for every x ∈ ∂E there exists n0(x) ∈ N, a mapping ϕn,x : ∂E ∩ Ux → R, and two open
neighborhoods Ux, Vx of x such that, for every n ≥ n0(x)

∂En ∩ Vx = (Id+ ϕn,x ν)(∂E ∩ Ux) .

Moreover, ‖ϕn,x‖Ck−1(∂E∩Ux) → 0.
Let us �rst show that if y ∈ ∂E ∩ Ux1 ∩ Ux2 and n ≥ max(n0(x1), n0(x2)) then

ϕn,x1(y) = ϕn,x2(y) .

We assume without loss of generality that |ϕn,x1
(y)| ≤ |ϕn,x2

(y)|. From step 1, we know
that ϕn,x2(y) is the unique t ∈ (−γx2 , γx2) such that y + t ν(y) ∈ ∂En ∩ C(x2, δ2, ν(x2)).
But by de�nition y + ϕn,x1(y) ν(y) ∈ ∂En, and since |ϕn,x1(y)| ≤ |ϕn,x2(y)| we also have
that ϕn,x1

(y) ∈ (−γx2
, γx2

) and y + ϕn,x1
(y) ν(y) ∈ C(x2, δ2, ν(x2)). We therefore obtain

that ϕn,x1
(y) = ϕn,x2

(y).
Now, we cover ∂E by

⋃
x∈∂E Ux ∩ Vx and obtain the existence of a �nite set I such

that E ⊂ ⋃i∈I Uxi ∩ Vxi . For every n ≥ maxi∈I n0(xi) we de�ne ϕn globally using the re-
sults above, and obtain

‖ϕn‖Ck−1(∂E) ≤ maxi∈I ‖ϕn,xi‖Ck−1(∂E∩Uxi ) → 0 .

By construction, we also have (Id+ ϕn ν)(∂E) = ∂En, which concludes the proof.

Normal deformations of smooth sets. Considering the result of Proposition B.3, one could
wonder if, given a su�ciently smooth ϕ : ∂E → R in a neighborhood of 0, there is a unique
smooth set F satisfying

∂F = (Id+ ϕνE)(∂E) .

This is indeed the case, as shown below.
Lemma B.4

If E is a bounded set of class Ck (k ≥ 2), then there exists C > 0 such that, for every ϕ
in Ck−1(∂E), the mapping ϕνE can be extended to ξϕ ∈ Ck−1(R2,R2) with

‖ξϕ‖Ck−1(R2,R2) ≤ C ‖ϕ‖Ck−1(∂E) .
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Proof : We use the arguments of [Dambrine and Lamboley, 2019, Section 4]. Since E is bounded and
of class Ck , there exists an open bounded set Ω ⊃ ∂E of class C1, such that the projection π∂E
on ∂E belongs to Ck−1(Ω). For every ϕ ∈ Ck−1(∂E), one can then de�ne ξϕ = (ϕνE) ◦ π∂E
to obtain an extension of ϕνE which belongs to Ck−1(Ω). Using Faà di Bruno’s formula, one
obtains the existence of C > 0 such that

∀ϕ ∈ Ck−1(∂E), ‖ξϕ‖Ck−1(Ω,R2) ≤ C ‖ϕ‖Ck−1(∂E) .

One can then use an extension theorem (see for instance [Stein, 1970, Chapter 6, Theorem 5]) to
obtain the result with Ω = R2, up to a modi�cation of C .

Proposition B.5

Let E be a bounded open set of class Ck (with k ≥ 2). There exists c > 0 such that, for
every ϕ ∈ Ck−1(∂E) with ‖ϕ‖Ck−1(∂E) ≤ c, there is a unique bounded open set of class Ck−1,
denoted Eϕ, satisfying

∂Eϕ = (Id+ ϕνE)(∂E) . (63)

Moreover, there exists an extension ξϕ of ϕνE such that Eϕ = (Id+ ξϕ)(E) and

‖ξϕ‖Ck−1(R2,R2) < 1 .

In particular, Eϕ is Ck−1-di�eomorphic to E.

Proof : Let us �rst prove the existence of Eϕ. Let C be as in Lemma B.4. If c < 1/C , then for
every ϕ such that ‖ϕ‖Ck−1(∂E) ≤ c, we have ‖ξϕ‖Ck−1(R2,R2) < 1. As a result, we obtain
that fϕ

def.
= Id+ ξϕ is a Ck−1 di�eomorphism. We hence have that Eϕ

def.
= fϕ(E) is a bounded

open set of class Ck−1 and satis�es ∂Eϕ = fϕ(∂E) = (Id+ ϕνE)(∂E).
Let us now turn to uniqueness. If F and G are two bounded open sets of class Ck−1 satisfy-

ing (63), in particular we have that ∂F = ∂G. Since F andG are su�ciently smooth and bounded,
they have �nite perimeter and ∂MF = ∂F = ∂G = ∂MG. Using Proposition C.6 below (whose
proof is the object of Appendix C), we obtain that F = G up to a Lebesgue negligible set. Using
that F and G are su�ciently smooth open sets, this �nally yields F = G.

If E and c are as in Proposition B.5, for every ε ≤ c, we say that a set F is a Ck−1-normal
deformation of E of size at most ε if there exists ϕ such that ‖ϕ‖Ck−1(∂E) ≤ ε and F = Eϕ.
Likewise, if E is such that Ec satis�es the assumptions of Proposition B.5, we use the same
terminology for F if F c = (Ec)ϕ.

C. Characterization of sets from their

boundary

The aim of this section is to prove the following result, which, loosely speaking, states that sets
of �nite perimeter and �nite measure are characterized by their measure-theoretic boundary. In
all the following d ≥ 2 is a �xed integer and Hs denotes the s-dimensional Hausdor� measure
on Rd.
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Figure 23 – The topographic function of a set E (gray area).

Proposition C.6

Let E,F ⊂ Rd be sets of �nite perimeter with �nite measure. If ∂ME = ∂MF (mod Hd−1)
then we have E = F (mod Hd).

Although this result is certainly well-known, we were not able to �nd it clearly stated or used,
and hence decided to include a proof for the sake of completeness. To prove it, we rely on a
tool introduced in [Ambrosio et al., 2001, Section 7]: the topographic function (see Figure 23 for
an illustration). To be more precise, if E and F are as in Proposition C.6 and u and v denote
their topographic function, we prove that u = v almost everywhere, which, since 1E = umod 2
and 1F = vmod 2, yields the result. This is done by induction, i.e. by proving that

{u = k} = {v = k} (mod Hd)

for every k ∈ N. Before diving into the proof, we state a few useful lemmas.
Lemma C.7

LetE,F ⊆ Rd be of �nite perimeter. IfE is indecomposable andHd−1(∂MF ∩ E̊M ) = 0 then
we have E ⊆ F (mod Hd) or E ⊆ F c (mod Hd).

Proof : Since supp(D1F ) = ∂MF (mod Hd−1) we have |D1F |(E̊M ) = 0. The indecomposability
of E hence yields, using a result of [Dolzmann and Müller, 1995], that 1F is a.e. equal to 0 on E,
or a.e. equal to 1 on E, hence the result.

In order to initialize our proof by induction, we need to prove the equality of the zero level
set of the topographic functions. From the construction of [Ambrosio et al., 2001, Theorem 6] it
is clear that, if u is the topographic function of a set of �nite perimeter E with �nite measure,
then ext(E) = {u = 0}. We can hence conclude using the following lemma.
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Lemma C.8

Assume E and F are two sets of �nite measure and �nite perimeter in Rd. Then, if

∂ME = ∂MF (mod Hd−1) ,

we have ext(E) = ext(F ) (mod Hd).

Proof : We have:

Hd−1
(
∂MF ∩ ˚ext(E)M

)
= Hd−1

(
∂ME ∩ ˚ext(E)M

)
= 0 .

Since ext(E) is indecomposable from Lemma C.7 we obtain ext(E) ⊆ F (mod Hd) (which is
impossible since ext(E) has in�nite measure andF has �nite measure) or ext(E) ⊆ F c (modHd).
Since ext(E) is indecomposable, it is included (modulo Hd) in an M -connected component of F c,
which is necessarily ext(F ) since ext(E) has in�nite measure. We hence obtain

ext(E) ⊆ ext(F ) (mod Hd) .

Exchanging E and F and applying the same argument yields the result.

Before proving the main result, we need a last lemma, which is Lemma C.9. In the following,
if u has bounded variation, we denote by Ju its approximate jump set and Su its approximate
discontinuity set (see [Ambrosio et al., 2000, Sections 3.6 and 3.7]).
Lemma C.9

Let E ⊆ Rd be a set of �nite perimeter, u its topographic function and k ∈ u(R2). Then
for Hd−1-almost every x ∈ ∂M{u ≤ k} we have x ∈ Ju and, denoting ν(x) the outward unit
normal to {u ≤ k} at x, the following holds:

 
B+(x,r,ν(x))

|u− (k + 1)| r→0+

−−−−→ 0,

 
B−(x,r,ν(x))

|u− k| r→0+

−−−−→ 0 .

Proof : First, let us show that
∂M{u ≤ k} ⊆ Ju (mod Hd−1) . (64)

Since u ∈ BVloc(Rd,N) we have Hd−1(Su \ Ju). Let x ∈ Scu and assume the approximate
limit ũ(x) of u at x satis�es ũ(x) ≤ k. We hence have:
 
B(x,r)

1{u≥k+1} ≤
 
B(x,r)

(u−k)1{u≥k+1} ≤
 
B(x,r)

(u−ũ(x))1{u≥k+1} ≤
 
B(x,r)

|u−ũ(x)| .

Since the last term converges to 0 as r → 0+, we obtain that x ∈ ˚{u ≤ k}M . Likewise if ũ(x) > k

we obtain that x ∈ ˚({u ≤ k}c)M . This shows ∂M{u ≤ k} ⊆ Su, and we �nally obtain (64).
Now, let x ∈ ∂M{u ≤ k} ∩ Ju (which, from our assumptions, is non-empty). We denote by ν

the outward unit normal to {u ≤ k}, and have the existence of a 6= b such that
 
B−(x,r,ν(x))

|u− a| r→0+

−−−−→ 0,

 
B+(x,r,ν(x))

|u− b| r→0+

−−−−→ 0 ,
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with B±(x, r, ν(x)) = {y ∈ B(x, r) | ± 〈y − x, ν〉 > 0}. Since |Du| = Hd−1 ∂ME we also
have |a− b| = 1. Let us show that a ≤ k and b ≥ k + 1. We have:

a =

 
B−(x,r,ν(x))

(a− u) +

 
B−(x,r,ν(x))

u

≤
 
B−(x,r,ν(x))

|u− a|+ 2

[ 
B(x,r)

u1{u≤k} +

 
B(x,r)

u (1B−(x,r,ν(x)) − 1{u≤k})

]

≤
 
B−(x,r,ν(x))

|u− a|+ 2

[
k
|{u ≤ k} ∩B(x, r)|

|B(x, r)| +

 
B(x,r)

u (1B−(x,r,ν(x)) − 1{u≤k})

]
.

The �rst term converges to 0. The second converges to k assuming x ∈ {u ≤ k}(1/2) (which is not
restrictive since Hd−1(∂M{u ≤ k} \ {u ≤ k}(1/2)) = 0). To show that the last term converges
to 0, we write

 
B(x,r)

u (1B−(x,r,ν(x)) − 1{u≤k}) ≤
|B−(x, r, ν(x)) \ {u ≤ k}| 1d

|B(x, r)|

[ˆ
B(x,r)

|u|d/(d−1)

] d−1
d

=

[ |B−(x, r, ν(x)) \ {u ≤ k}|
|B(x, r)|

] 1
d

[ 
B(x,r)

|u|d/(d−1)

] d−1
d

The �rst term converges to 0 assuming x ∈ ∂∗{u ≤ k}. Again, this is not restrictive since

Hd−1(∂M{u ≤ k} \ ∂∗{u ≤ k}) = 0 .

By [Ambrosio et al., 2000, Lemma 3.75] the second term is bounded for Hd−1-a.e. x. We hence
obtain a ≤ k. By using the same arguments, one can show b ≥ k + 1 and we �nally get a = k
and b = k + 1.

Proposition C.10

Let E,F ⊂ Rd be sets of �nite perimeter with �nite measure and u, v their topographic func-
tions. If ∂ME = ∂MF (mod Hd−1) then u = v almost everywhere.

Proof : We already know that {u = 0} = {v = 0}. Let us prove by induction that {u = k} = {v = k}
for every k ∈ N. We �x k ≥ 1 and assume that {u = l} = {v = l} for every l ≤ k.

Let A ∈ CCM ({u = k + 1}). Since A is indecomposable, u is constant on A and

|Du| = Hd−1 ∂ME = Hd−1 ∂MF = |Dv| ,

we obtain that v is a.e. constant on A. The construction of [Ambrosio et al., 2001, Theorem 6]
also yields

Hd−1(∂M{v ≤ k} ∩ ∂MA) = Hd−1(∂M{u ≤ k} ∩ ∂MA) > 0 .

Using Lemma C.9, we obtain that v = k + 1 a.e. on A, and hence A ⊆ {v = k + 1} (mod Hd).
Since this holds for everyA ∈ CCM ({u = k+1)}) we get {u = k+1} ⊆ {v = k+1} (mod Hd).
Exchanging E and F yields {v = k + 1} ⊆ {u = k + 1} (mod Hd), and we can �nally conclude.

D. Convergence of the level sets

The aim of this short section is to prove the following elementary result.
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Proposition D.1

If (Ω,Σ, |.|) is a measure space and ‖un−u‖L1(Ω) → 0 then for almost every t ∈ R we have:

lim
n→+∞

∣∣U (t)
n 4U (t)

∣∣→ 0 . (65)

Before giving its proof, let us stress that this property is certainly well-known, but we could not
�nd it clearly stated or proved. In fact, using Fubini’s theorem, one could directly obtain

lim
n→+∞

ˆ +∞

0

∣∣U (t)
n 4U (t)

∣∣ dt = lim
n→+∞

ˆ
R2

|un − u| = 0 ,

and hence prove the L1 convergence of f : t 7→
∣∣U (t)

n 4U (t)∣∣. This implies the pointwise
convergence of f almost everywhere, but only up to the extraction of a subsequence. Lifting this
requirement is in fact possible, as shown below.
Proof : Let t ≥ 0. We �rst prove that |{un ≥ t} \ {u ≥ t}| → 0. For every h > 0 we have:

‖un − u‖L1 ≥
ˆ t

t−h
|{un ≥ s}4{u ≥ s}| ds

≥
ˆ t

t−h
|{un ≥ s} \ {u ≥ s}| ds

≥
ˆ t

t−h
|{un ≥ t} \ {u ≥ t− h}| ds

= h |{un ≥ t} \ {u ≥ t− h}| .

Using that |A \B| ≤ |A \ C|+ |C \B| for every triple of sets (A,B,C) we get:

|{un ≥ t} \ {u ≥ t}| ≤ |{un ≥ t} \ {u ≥ t− h}|+ |{u ≥ t− h} \ {u ≥ t}| .

We hence obtain:

|{un ≥ t} \ {u ≥ t}| ≤
1

h
‖un − u‖L1 + |{u ≥ t− h} \ {u ≥ t}| ,

which yields
lim sup
n→+∞

|{un ≥ t} \ {u ≥ t}| ≤ |{u ≥ t− h} \ {u ≥ t}| . (66)

Since {u ≥ t − h} \ {u ≥ t} decreases as h decreases and
⋂
h≥0

{u ≥ t − h} \ {u ≥ t} = ∅, we

obtain that the right-hand side in (66) converges to 0 when h goes to 0, and therefore that:

lim
n→+∞

|{un ≥ t} \ {u ≥ t}| = 0 .

Let us now prove that |{u ≥ t} \ {un ≥ t}| → 0. For every h > 0 it holds that:

‖un − u‖L1 ≥
ˆ t+h

t

|{un ≥ s}4{u ≥ s}| ds

≥
ˆ t+h

t

|{u ≥ s} \ {un ≥ s}| ds

≥
ˆ t+h

t

|{u ≥ t+ h} \ {un ≥ t}| ds

= h |{u ≥ t+ h} \ {un ≥ t}| .
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Using that |B \A| ≤ |C \A|+ |B \ C| for every triple of sets (A,B,C) we get:

|{u ≥ t} \ {un ≥ t}| ≤ |{u ≥ t+ h} \ {un ≥ t}|+ |{u ≥ t} \ {u ≥ t+ h}|

≤ 1

h
‖un − u‖L1 + |{u ≥ t} \ {u ≥ t+ h}| ,

and hence
lim sup
n→+∞

|{u ≥ t} \ {un ≥ t}| ≤ |{u ≥ t} \ {u ≥ t+ h}| , (67)

Since {u ≥ t} \ {u ≥ t+ h} decreases as h decreases and
⋂
h≥0

{u ≥ t} \ {u ≥ t+ h} = {u = t},

we obtain that, for almost every t ≥ 0, the right-hand side in (67) converges to 0 and therefore
that:

lim
n→+∞

|{u ≥ t} \ {un ≥ t}| = 0 .

We hence �nally have |{un ≥ t}4{u ≥ t}| → 0 for almost every t ≥ 0. The fact

|{un ≤ t}4{u ≤ t}| → 0

for almost every t ≤ 0 follows from the same arguments.

E. Proof of Lemma 3.2

We now give the proof of Lemma 3.2, whose content is recalled below.
Lemma 3.2

If t∗ > 0, the extreme points of C def.
= {u ∈ L2(R2) |TV(u) ≤ t ≤ t∗} are:

• (0, 0) ,

• (εt∗1E/P (E), t∗) with ε ∈ {−1, 1}, E ⊂ R2 simple and 0 < |E| < +∞ .

Proof : Let (u, t) ∈ ext(C).

1. If t = 0 then u = 0.
2. Otherwise we have

(u, t) = (1− t/t∗)(0, 0) + (t/t∗)(t∗u/t, t∗) ,

which yields t = t∗. Considering that, for any v such that TV(v) ≤ t∗, we have:

(0, t∗) =
1

2
(−v, t∗) +

1

2
(v, t∗) ,

we also obtain TV(u) > 0. Now, since

(u, t∗) = (1− TV(u)/t∗)(0, t∗) + (TV(u)/t∗)(t∗u/TV(u), t∗) ,

we get TV(u) = t∗. Finally, let α ∈ (0, 1) and u1, u2 ∈ L2(R2) with TV(u1) ≤ t∗ and
TV(u2) ≤ t∗. If u = (1− α)u1 + αu2 then writing (u, t∗) = (1− α)(u1, t

∗) + α(u2, t
∗)

we obtain u = u1 = u2, which shows u ∈ ext({u ∈ L2(R2) |TV(u) ≤ t∗}). This shows
that u = εt∗1E/P (E) for some simple set E such that 0 < |E| < +∞ and ε ∈ {−1, 1}.
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Conversely, let (u, t), (u1, t1) and (u2, t2) be in C and α ∈ (0, 1) with

(u, t) = (1− α)(u1, t1) + α(u2, t2) .

1. If (u, t) = (0, 0), since t1, t2 are nonnegative we obtain t1 = t2 = 0 and therefore u1 =
u2 = 0. Hence (0, 0) ∈ ext(C).

2. If (u, t) = (εt∗1E/P (E), t∗) with ε ∈ {−1, 1} andE a simple set such that 0 < |E| < +∞,
then since t1 ≤ t∗ and t2 ≤ t∗ we get t1 = t2 = t∗. Moreover, using that

εt∗1E/P (E) ∈ ext({u ∈ L2(R2) |TV(u) ≤ t∗}) ,

we also obtain u1 = u2 = u. We therefore have (εt∗1E/P (E), t∗) ∈ ext(C).







Mots clés

Problèmes inverses, variation totale, parcimonie.

Résumé

On s’intéresse dans cette thèse à une famille de problèmes inverses, qui consistent à reconstruire une image
à partir de mesures linéaires possiblement bruitées. On cherche à analyser les méthodes de reconstruction
variationnelles utilisant un régulariseur spéci�que, la variation totale (du gradient). Cette fonctionnelle est
utilisée en imagerie depuis les travaux de Rudin Osher et Fatemi, menés en 1992. Alors qu’il est bien connu que
sa minimisation produit des images constantes par morceaux, présentant une forme de parcimonie (elles sont
composées d’un petit nombre de formes simples), ce point de vue n’a à notre connaissance pas été privilégié
pour analyser les performances de ce régulariseur. Dans cette thèse, on se propose de mener cette étude.
Dans un premier temps, on considère les reconstructions obtenues par minimisation de la variation totale
dans un régime de faible bruit, et on étudie leur proximité avec l’image inconnue. Puisque cette dernière est
supposée parcimonieuse, on s’intéresse particulièrement à la structure de la reconstruction: est-elle elle-même
parcimonieuse, est-elle composée du même nombre de formes, et ces formes sont-elles proches de celles présentes
dans l’image inconnue ? Dans une seconde partie, on propose une méthode numérique pour résoudre les
problèmes variationnels associés à ce régulariseur. On introduit un algorithme ne reposant pas sur l’introduction
d’une discrétisation spatiale �xe. Ceci a l’avantage, contrairement aux techniques existantes, de n’introduire ni
�ou ni anisotropie dans les images reconstruites, et d’en produire une représentation parcimonieuse.

Abstract

This thesis is devoted to the recovery of piecewise constant images from noisy linear measurements. We
aim at analyzing variational reconstruction methods based on total (gradient) variation regularization. The
total variation functional has been extensively used in imaging since the 90’s. Its minimization is known to
produce piecewise constant images, which hence have some kind of sparsity (they can be decomposed as the
superposition of a few simple shapes). However, the performance of this regularizer has to our knowledge not
extensively been studied from a sparse recovery viewpoint. This thesis aims at bridging this gap.
We �rst focus on noise robustness results. We assume that sought-after image is sparse, and study the structure
of reconstructions in a low noise regime: are they sparse, made of the same number of shapes, and are these
shapes close to those appearing in the unknown image? We then turn to numerical methods for total variation
regularization. Existing techniques rely on the introduction of a �xed spatial discretization, which often yield
reconstruction artifacts such as anisotropy or blur. We propose an algorithm which does not su�er from this
grid bias, and produces a sparse representation of the reconstructed image.

Keywords

Inverse problems, total variation, sparsity.
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