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Abstract

We introduce a new model called Graphical Bilinear Bandits where a learner (or a central entity)
allocates arms to nodes of a graph and observes for each edge a noisy bilinear reward representing
the interaction between the two end nodes. In this thesis, we study the best arm identification
problem and the maximization of cumulative rewards. For the first problem, a learner wants to
find the graph allocation maximizing the sum of the bilinear rewards obtained through the graph.
For the second problem, during the learning process, the learner has to make a trade-oft between
exploring the arms to gain accurate knowledge of the environment and exploiting the arms that
appear to be the bests to obtain the highest reward. Regardless of the learner’s goal, the graphi-
cal bilinear bandit model reveals an underlying NP-Hard combinatorial problem that precludes
the use of any existing best arm identification (BAI) or regret-based algorithms. For this reason,
we first propose an a-approximation algorithm for the underlying NP-hard problem, and then
tackle the two problems mentioned above. By efficiently exploiting the geometry of the bandit
problem, we propose a random sampling strategy for the BAI problem with theoretical guaran-
tees. In particular, we characterize the influence of the graph structure (e.g., star, complete or
circle) on the convergence rate and propose empirical experiments that confirm this dependence.
For the problem of maximizing the cumulative rewards, we present the first regret-based algo-
rithm for graphical bilinear bandits using the principle of optimism in the face of uncertainty.
Theoretical analysis of the presented method gives an upper bound of O(VT) on the o-regret
and highlights the impact of the graph structure on the convergence rate. Finally, we demonstrate
by various experiments the validity of our approaches.
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Résumé

Nous introduisons un nouveau modele appelé Bandits Bilinéaires Graphiques ot un apprenant
(ou une entité centrale) alloue des bras aux noeuds d’un graphe et observe pour chaque aréte une
récompense bilinéaire bruitée représentant'interaction entre les deux noeuds associés. Dans cette
these, nous étudions le probleme d’identification du meilleur bras et la maximisation des récom-
penses cumulées. Pour le premier, un apprenant veut trouver l’allocation du graphe maximisant
la somme des récompenses bilinéaires obtenues a travers le graphe. Pour le second probleme,
au cours du processus d’apprentissage, 'apprenant doit faire un compromis entre I'exploration
des bras pour acquérir une connaissance précise de I'environnement et I'exploitation des bras qui
semblent étre les meilleurs pour obtenir la récompense la plus élevée. Quel que soit 'objectif de
Papprenant, le modele de bandits bilinéaires graphiques révele un probleme combinatoire sous-
jacent qui est NP-Dur et qui empéche I'utilisation de tout algorithme existant pour I'identification
du meilleur bras (BAI) ou pour la maximisation des récompenses cumulées. Pour cette raison,
nous proposons tout d’abord un algorithme d’a-approximation pour le probléme NP-Dur sous-
jacent, puis nous nous attaquons aux deux problemes mentionnés ci-dessus. En exploitant efhi-
cacement la géométrie du probléme du bandit, nous proposons une stratégie d’échantillonnage
aléatoire pour le probleme BAI avec des garanties théoriques. En particulier, nous caractérisons
Iinfluence de la structure du graphe (par exemple, étoile, complet ou cercle) sur le taux de conver-
gence et proposons des expériences empiriques qui confirment cette dépendance. Pour le prob-
leme de la maximisation des récompenses cumulées, nous présentons le premier algorithme basé
sur le regret pour les bandits bilinéaires graphiques utilisant le principe d’optimisme face a
Pincertitude. Lanalyse théorique de la méthode présentée borne I’a-regret par O(v/T)) et souligne
Pimpact de la structure du graphe sur le taux de convergence. Enfin, nous démontrons par diverses
expériences la validité de nos approches.
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1.1 Context & motivations

This thesis aims at solving centralized multi-agent problems that involve pairwise interactions be-
tween agents. Configuring antennas in a wireless cellular network [89] is an example of those
problems: the choice of a parameter for an antenna has an impact on both its own signal quality
and that of each of its neighboring antennas due to signal interference. Likewise, in a wind farm,
the adjustment of a turbine blade not only impacts its own energy collection efficiency but also
that of its neighbors’” due to wind turbulence [13, 36]. By considering each antenna or turbine
blade as an agent, these problems can be modeled as a multi-agent multi-armed bandit problem
(MA-MAB) [13] with the knowledge of a coordination graph [47] where each node represents an
agent and each edge represents an interaction between two agents. A multi-armed bandit prob-
lem (MAB) is a sequential decision problem where a learner must take an action (also called arm)
at each iteration and gets a (possibly perturbed) associated reward that informs about the qual-
ity of the chosen action. Naturally, the learner does not know the distribution of the reward for
each possible action. The learner may have very different goals, such as maximizing the rewards
accumulated during the process, or in a minimum number of tries and regardless of the accu-
mulated rewards, inferring which action is the best to choose z.e., the most rewarding. Hence, a
multi-agent multi-armed bandit is the setting where several agents face a multi-armed bandit prob-
lem. In the bandit literature, one can distinguish unstructured and structured bandits. While the
unstructured bandit considers that playing an action and getting the associated reward does not
allow to deduce anything about the distribution of rewards of other actions, the structured one
includes the bandit settings where the rewards of the different actions share a common parameter
[59]. For instance, a popular structured bandit setting is the linear bandit [11] where the reward
associated with any action is linearly dependent on an unknown parameter vector 6. Hence at a
given time, choosing an action and receiving its associated reward gives information about 6 and
by definition also about the rewards of all other actions. Here, we are interested in such struc-
tured environments and on that matter we present a novel multi-agent structured bandit called



1 Introduction

Graphical Bilinear Bandits. The specificity of this environment lies in the interdependence of
the rewards obtained by the neighboring agents in the graph and in the assumption that these
rewards are bilinear, which appears to us as the natural extension of linear rewards when agents
are pairwise dependent. Indeed, while MA-MAB problems have been studied in the setting of
unstructured bandits with independent and dependent agents (see e.g., [3, 7, 13, 15, 18, 49, 58, 85,
87,101]), only the setting of structured bandits with independent agents has been explored (see
e.g., [6,28,30]). Through this thesis and the papers it refers to, we want to lay a first stone to the
building.

1.2 Problem setting

1.2.1 Stochastic Graphical Bilinear Bandits

Let G = (V, E) be the directed graph defined by V' the finite set of nodes representing the agents
and E the set of edges representing the agent interactions. We assume that if (4, j) € E then
(4,4) € E. The graph could be considered as undirected but we assume that the interactions
between two neighbors are not necessarily symmetrical with respect to the obtained rewards, so we
choose to keep the directed graph to emphasize this potential asymmetry. For all agenti € V, we
denote NV the set of its neighboring agents. Let n = |V| denote the number of nodes, m = |E|
the number of edges and let X C R? be a finite arm set where K = |X'| denote the number
of arms. The graphical bilinear bandit with a graph G and an arm set X’ consists in the following
sequential decision problem:

Stochastic Graphical Bilinear Bandits

For each round ¢t > 0,
1. Eachagenti € V chooses an arm a:gi) inX
2. Then, eachagenti € V receives a noisy bilinear reward for each of its neighbors j € A;
y? =) ML+ (1)
where M, € R%*? is an unknown matrix, and ngi’j) a zero-mean o-sub-Gaussian ran-
dom variable.

The reward yt(i’j ) reflects the quality of the interaction between the neighboring nodes i and j

when pulling respectively the arm $1(5i) and l’ij ) at time £. The bilinear setting appears as a natural
extension of the commonly studied linear setting to model the interaction between two agents.
Note that this setting can be considered either in a decentralized setting where agents take ac-
tions without consultation with others agents or in the centralized setting where a central entity
chooses the arms of all the agents as well as aggregates the obtained rewards and designs a global

strategy for the agents in the graph.



1.2 Problem setting

In this thesis, we only consider the centralized setting where a central entity manages all the

(1) (n)

agents, chooses at each time ¢ the jointarm (x; 7, ..., x; ') and then receives the associated re-

wards y,gi’j ) forall (i,7) € E. We illustrate the sequential decision problem at a given round ¢ in

: : 1)
o c o

: : Yt

A e

/ The learner / The learner A/ﬁm)
@ chooses 2 @ receives (2 @
»\ (et a2 »\ u') (i, j) € B \y<w>

: : ot
: : v
: : 2

O () ()

Figure 1.1: llustration of the learner’s decision process at a given round ¢ for a simple graph of three nodes

Figure 1.1.

1.2.2 Objectives
As briefly mentioned earlier, there are two different main goals that a learner (here the central

entity) may want to achieve in a bandit problem.

Identifying the best joint arm. The first objective that we want to deal with in this the-
sis is where the learner is interested in finding within a minimum of rounds the best joint arm

(x&l), RN xin)) that maximizes the expected global reward over the graph:
(:Uil), . ,m&n)) = argmax Z 2D TM,z0)

(zW,zM)exn ; Hep

This objective implies that the central entity do not mind choosing a suboptimal joint arm
1 n . . . .
(xg ), e xi )) at each time ¢ as long as it gives enough information on the unknown parameter
M., in order to construct an accurate estimate IML. This objective is known as pure exploration or

best arm identification [10, 24].

Maximizing the cumulative rewards. The second objective is the most commonly consid-
ered in the bandit literature where the learner wishes to maximise the sum of the (expected) re-
wards obtained over the rounds. In our setting, the central entity wants to maximize the cumula-
tive expected global rewards given by

T

Z Z :cgi)TM*xgj) .

t=1 (i,j)eE
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While the first goal allows the learner to be in a pure exploration setting, regardless of the re-
wards obtained throughout the process, the goal of maximizing the cumulative rewards requires a
trade-off between exploring the different possible arms to have an accurate estimate M of M, and
exploiting the arms that seems to be the most optimal given M in order to obtain the maximum
cumulative rewards.

In both objectives (ze., the best arm identification or the maximization of the cumulative re-
wards) and given an estimate M, the learner will have to solve at some point the following opti-
mization problem

OT M)
max Z ' Mz . (1.2)

Indeed, for the best arm identification, this optimization problem must be solved at the end
when the learner wants to return the best joint arm given the estimate M constructed during the
learning procedure. For the maximization of the cumulative rewards, this optimization problem
may need to be solved during the learning procedure when the learner wants to exploit and re-
turn the best estimated joint arm given its current knowledge of the environment which is the
constructed estimate M.

Solving this optimization problem is not trivial, so for both objectives we consider the common
underlying objective of solving this problem.

1.2.3 Outline of the thesis and contributions

In Chapter 2, we introduce and formalize the stochastic multi-armed bandit problem and more
particularly the stochastic linear bandit problem with the algorithms and guarantees that exist for
the best arm identification problem and the maximization of the cumulative rewards. Indeed,
many tools developed in the corresponding literature will be used to solve the problems related to
the graphical bilinear bandits setting. Then we put our graphical bilinear bandits model in per-
spective with some multi-agent bandit models that use structured bandits and bandits in graphs.

In Chapter 3, we tackle the underlying objective of solving the optimization problem given in
(1.2). For this part we consider that the learner already has the best estimate M = M.,. We show
that the problem is NP-Hard and we give two c-approximation algorithms with v > 1/2.

In Chapter 4, we formalize the best arm identification problem relative to the graphical bilinear
bandits. By efficiently exploiting the geometry of this bandit problem, we propose an allocation
strategy based on randomized sampling with theoretical guarantees. In particular, we characterize
the influence of the graph structure (e.g. star, complete or circle) on the convergence rate and
propose empirical experiments that confirm these dependencies.

In Chapter 5, we present a regret-based algorithm (z.e., an algorithm that aims to maximize the
cumulative rewards) for graphical bilinear bandits using the principle of optimism in the face of
uncertainty. Theoretical analysis of this new method yields an upper bound of O(VT) on the
a-regret (a useful measure that we introduce in chapter 2) and evidences the impact of the graph
structure on the rate of convergence. We show through various experiments the validity of our

approach.



1.2 Problem setting

Finally, in Chapter 6 we present the conclusion of this thesis and discuss the difterent research
perspectives that the graphical bilinear bandits model offers.
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In this chapter, we first present the basics of the stochastic multi-armed bandit and the stochas-
tic linear bandit. The different notions and algorithms that appear in the following sections do
not cover the whole field and do not necessarily include the most recent or the most optimal ones
since we only want to () introduce the reader to this domain and give the tools that allow a good
understanding of the following chapters of this thesis and (i7) explain why the existing algorithms
cannot be straightforwardly applied to the graphical bilinear bandit setting. For a more in-depth
view of the field, we refer the reader to the book [59] which provides a detailed and comprehensive
overview of bandit problems.

Besides, in the last section of this chapter, we present some specific works that model structured
multi-agent bandits. Since the studied models are very different from ours, a direct comparison of
the methods would not be appropriate, however they bring perspective to our work. Furthermore
some of the methods and tools used in the cited papers may still be useful for graphical bilinear
bandits problems.

2.1 An introduction to the stochastic multi-armed bandit problem

2.1.1 Motivations and formalization

The bandit problem was first introduced in [93] to model sequential clinical trials where a learner
chooses for each patient a drug and then observes the associated eftects. Then, the stochastic
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multi-armed bandit problem was formalized in [79] to present the general sequential decision
problem: it considers a learner who has access to several actions (most often called arms) and
during a given number of rounds, the learner has to choose an arm at each round that will reveal
an associated perturbed reward. The expected reward of each arm is unknown to the learner. One
of the most popular cases illustrating this situation is that of a gambler who is in a casino and has
access to slot machines with different expected payofts. Given his or her budget, the learner has
a finite number of tries and must choose which slot machine to play at each time and then ob-
tain the associated payout. The common goal of the player is to maximize the cumulative payoffs,
but other goals such as identifying the best slot machine in a minimum number of tries can be
interesting.

Consider a finite set of arms X with K = |X’| the number arms and a collection of distribu-
tionsv = {P, : © € X'}. Given a time horizon T' > 0, the learner faces the following sequential
decision problem:

Stochastic Multi-Armed Bandit

Foreachroundt =1,...,T,
1. the learner chooses an arm x; in a finite arm set X’

2. the environment samples a reward y; € R from P, and reveals y; to the learner.

In the next section, we present an algorithm that solves the problem of maximizing the cumu-
lative rewards obtained during the learning procedure. The algorithms that solves the problem of
identifying the best arm for multi-armed bandits use very different techniques than those used for
linear bandits and by extension those we use for graphical bilinear bandits. For this reason and to
maintain a clearer narrative, we do not present algorithms that tackle the best-arm identification
problem for multi-armed bandits.

2.1.2 Maximizing the cumulative rewards

As we briefly mentioned in the previous section, a natural goal the learner might have is to maxi-
mize the cumulative rewards obtained during the learning process. We recall that the learner does
notknow the expected reward of each arm. Hence it has to explore and try out the different arms to
have an estimate of their associated rewards, but also exploit the arm thatappear to have the highest
reward. These two subgoals are complementary: on the one hand, by exploring, the learner gets
to correctly estimate the different expected rewards associated with all arms; however, this implies
pulling suboptimal arms, which have bad impacts on the cumulative rewards. On the other hand,
by exploiting, the learner gets to pull arms that appears to give the greatest reward; however, since
other arms are disregarded, this could lead to less accurate estimation of the different expected
rewards and thus to over exploiting arms that are actually suboptimal. Hence the learner has to
do a tradeoft between exploration and exploitation in order to maximise the cumulative rewards.
Wanting to maximize cumulative noisy rewards is the same as wanting to pull at each round
the arm that gives the best expected reward p* where (1* = max,ex [ fooo udPy(u). Indeed, the
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learner does not control the randomness coming from the environment, but pulling the arms with
the highest expected reward would give him, in expectation, the highest cumulative rewards. By
defining p1; = [°°_ udP;(u) the expected reward when pulling arm x, we have more formally
that maximizing the cumulative rewards is equivalent to minimizing the psexdo-regret

T
R(T) = TM* - Zﬂxt ’
i=1

The notion of pseudo-regret simply describes the difference between what the learner would
have done with full information, ze., pull the best arm during the 7" rounds, and what is actually
done without initial information on the expected rewards of the arms. In [57], the authors show
thatasymptotically a regret of order log (1) is unavoidable. The objective for the learner is to have
a pseudo-regret R(T") such that

lim R(T)

—=0.
T—oo T

This ensures that the learner chooses the optimal arm almost all the time when 7" tends to infinity.

One of the most popular algorithm for stochastic multi-armed bandit that does the exploration-
exploitation tradeoff is the Upper Confidence Bound (UCB) algorithm [4, 12] using the principle
of Optimism in the Face of Uncertainty (OFU). The idea of the algorithm is to select at each time
t the arm that seems to be the most optimistically optimal. The notion of optimism takes into
account the value of the estimated reward of the arms but also the number of samples used for the
estimations, in other words the precision of the estimations. Indeed, at each time ¢ and for each
arm x € X, the learner has an estimate /i, of the reward of . Hence, instead of only pulling
the arm that has the highest estimated reward max,c x fis (7.¢., only exploiting), it uses the upper
confidence bound (UCB) on the estimate /i, and chooses the arm with the highest UCB. The less
an arm has been pulled the higher the UCB. Intuitively it means that at each round, the learner
either exploits with high confidence or explores other arms that have been less pulled and that
might give (optimistically) a better reward. A lot of versions exist for the UCB algorithm, we
recall here the original method presented in [12] in Algorithm 1.

Algorithm 1: UCBI
Input :armset X = {1,..., K}
Pull each arm & € X once and set ji,, the obtained reward and n, = 1;
fort = K+ 1tTdo

2log(t)

The learner pulls the arm z; = argmax, ¢ y flo + ry

nzt - n:l?t + 17
The learner observes y; ~ Py, s

~ Ny, —1) g, + .
Qo = WM; // Update the estimate
Tt

end
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We state the guarantee of the algorithm on the pseudo-regret in the following proposition that
we borrow from [12].

Proposition 2.1 (Theorem 1in [12]). Forany K > 1 and arm set X = {1,..., K}, if the
policy UCBI is run on X with the associated reward distribution v = (Py, : x € X) with support
in [0, 1), then, for any number of plays T, its pseudo-regret is such that

n 7'1'2
R(T)< (8> It +(1+3> (Zp,*—uz> , (2.1)

,U/* — MKz
MZ€</X* zeX

where forall & € X, jiz = [* udPy(u)

This proposition tells us that, given the sublinear bound on the regret, the learner is constantly
improving his choice, otherwise the regret would have been of order " with the learner remaining
stuck and drawing a suboptimal arm. The reader can refer to [25] for instance for an improved
and asymptotically optimal algorithm.

As stated in the introduction, in bandit theory, one can distinguish unstructured bandits from
structured bandits. A bandit is called unstructured when it is not possible for the learner to learn
information about one arm by drawing another. In other words, we can define an unstructured
bandit as one where v is a product of distributions (that may be of different classes), so that draw-
ing an arm gives a reward from the associated distribution without helping the learner understand
the other distributions. In contrast, structured bandits such as linear bandits allow the learner to
pull an arm and infer information about the rewards of other arms.

2.2 The stochastic linear bandit problem

2.2.1 Formalization

We present the sequential decision problem for the linear bandit in the following:

Stochastic Linear Bandit

Foreachroundt =1,...,7T,
1. the learner chooses an arm ; in a finite arm set ¥ C R% with d > 1

2. the learner obtains from the environment the associated reward
yp = (x4, 05) + 1 (2.2)

where 0, € R%is an unknown parameter vector, and 7 is a random variable sampled
from a certain distribution

10
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When the learner draws an arm & € X and receives a noisy linear reward (x, 6) + 1, it gives
information about 6, and by extension about the other expected reward (2, 6,) forany 2’ € X.
This setting is particularly interesting because it might be enough for the learner to draw d arms
that span R% to start having a reasonable estimate of 6. Therefore, when the number of arms is
large, the learner does not necessarily have to draw all the arms to get a good estimate of 6, and
thus the estimated rewards for all the arms. Notice that this bandit can be formulated for instance
with v = {N((z,0),0) : © € X'} if we consider that the noise is a gaussian random variable.
For the rest of this chapter, we consider that the noise terms are o-sub-Gaussian random variables.

2.2.2 Experimental designs serving the pure exploration setting

When the objective of the learner is to identify the best arm =, = arg max,c v (x, 0,) within a
minimum number of rounds, it is equivalent to look for the arm « € X such thatforallz’ € X,

(x—2',0,) >0 . (2.3)

However, one does not have access to 6., so we have to use its empirical estimate.

Fort > 0, we consider a sequence of arms x; = (z1,...,2¢) € X t and the corresponding
noisy rewards (y1, . .., ¥+). We assume that the noise terms in the rewards are i.i.d., following a
o-sub-Gaussian distribution. Let ét =A; Ly, € R? be the solution of the ordinary least squares
problem with A; = 22:1 xszc;r € R¥*d and b, = Zl;:l TsYs € R4, We suppose that Ay is
nonsingular for all £ > 0. We first recall the following property.

Proposition 2.2 (Proposition 1in [90]). Let ¢ = 20/2. For every fixed sequence Xy, with proba-
bility 1 — 6, for all t > 0 and for all v € X, we have

- 612K
‘mTe* - xTGt‘ < CHZL'HA;” /10g< 5 ) )

Asitis donein [90], let us consider a confidence set S(x;) centered at §; € S(x;) and such that
P<0* ¢ S(Xt)> < 0, for some § > 0. Since 6, belongs to S(Xt) with probability at least 1 — 6,

one can stop pulling arms when an arm has been found, such that the condition (2.3) is verified
forany 6 € S(x;). More formally, the best arm identification task will be considered successful

when an arm & € X verifies the following condition for any 2 € X and any 6 € S(x;):
(x—a' 0, — 0) < Ay(x,2")
where Ay(z,2') = (z — #') " 0 is the empirical gap between x and 2.

Corollary 2.1. Forallt > 0, let S(x;) be such that

d / /) / 612 K>
S(x;)) =40 €R” : Ve e X, Vx EX,(x—x,Ht—9>ScHx—xHA;1 log :

o

With probability 1 — 0, 0, is in S (x¢).

11
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Proof. Using the upper bound in Proposition 2.2 and replacing x by (x — 2’), we get the
result. O

Then, the stopping condition can be reformulated as follows:

6t2K2
o

dr e X, Va' € X, ||z — a;'HA;1 10g< > < At(x,x’) . (2.4)

As mentioned in [90], by noticing that max, ,nex2 (|7 — 2|, 1 < 2maxgex|[z] 41,
’ t t
an admissible strategy is to pull arms minimizing max,e x |||| , -1 in order to satisfy the stop-
t

ping condition as soon as possible. More formally, one wants to find the sequence of arms x} =
(x7,...,x}) such that:

. -1

X} € arg minmax o7 Z:L“Zm;r z . (G-opt-X)
(1,0ymr) T'EX i=1

This is known as G-allocation (see e.g., [76, 90]) and is NP-hard to compute [32, 104]. One way

to find an approximate solution is to rely on a convex relaxation of the optimization problem

(G-opt-X') and first compute a real-valued allocation v* € Sy such that

~1
7" € arg min max 27 Z Al (G-relaxed-X)
vESx TEX zeX

One could either use random sampling to draw arms as z.7.d.samples from the 7* distribution
or rounding procedures to efficiently convert each component in v* into an integer and thus
constructed the optimal matrix A; .

Another way to visualize the effect of the constructed covariance matrix A; ! is through the
confidence ellipsoids which are of the form € = {# € R?, (0:—60)TA;L(0;,—0) < 7} where T
depends on the confidence level. The ellipsoid associated with a confidence parameter § € (0, 1)
represents the region that contains the true parameter 6, with probability 1 — § (see Figure 2.1).
For a fixed confidence parameter 6, one would want to minimize the region covered by the ellip-
soid to ensure that the approximated parameter 6 is as close as possible to the real parameter 6.
Since the ellipsoid depends on A L one way to do so, instead of estimating ét by choosing all
the arms ¢ € A (also called experiments), is to select the one that are the most statistically effi-
cient. This problem is known as experimental design [76] and one criterion that has been studied
is the G-optimal design that minimises max,cx xTAt_ L. The G-optimal design minimizes the
worst possible predicted variance and one can see that this objective coincides exactly with the one
formulated in (G-opt-X).

To approximate the solution of (G-opt-X’), the authors of [90] give a greedy strategy that at
each time ¢ chooses the arm x; € X such that

12
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(0]

Figure 2.1: The §-confidence level ellipsoid

-1
zy = arg min max ' (At—l + xxT> z . (2.5)
reXx TEX

The greedy strategy appears to be a fine way to approximate this problem because the number
of pulls to satisfy the stopping condition is not known in advance, hence, converting directly the
distribution 7y to integers is not relevant. Moreover finding respectively the optimal sequence
(x1,...,2¢) and (21, ..., 2441) by rounding procedure and for a certain ¢ with respect to the
G-allocation strategy gives the same sequence modulo the extra x; 1 arm.

In Algorithm 2, we share the method.

Algorithm 2: Best-arm Identification in Linear Bandit : greedy G-Allocation strategy

Input :armset X C R? confidence § > 0
Sett =0; Ag =109 =0
while (2.4) i5s not true do
t=t+1;
Ty = arg min,c p maxyey ' (At,l + $$T) “ly
The learner observes yy = (x4, Ox) + 73
0 = A7 by

end

A~

return arg max,c y (x, 04 );

Theauthors give a guarantee on the sample complexity of any algorithm that gives a S-approximation
of the solution of (G-opt-X):

13



2 Background

Proposition 2.3 ([90], Theorem 1). Ifthe G-allocation strategy is implemented with a B-approximate
method and the stopping condition (2.4) is used, then with probability at least 1—9, arg max, . v (x, 0;) =
T, and

16¢?d(1 + B) log (%)
t <
B Argnin ’

where Apin = minxex\{x*}@* —2,0,) and c = 202

For Algorithm 2, the greedy algorithm gives a 3 that depends on ¢, we note it 3; and is equal to

d+d>+2
2t -

2.2.3 Optimism in the face of uncertainty for linear bandits (OFUL)

For the objective of maximizing the cumulative rewards with a budget of 7" rounds, the existing
methods use the same idea of optimism in the face of uncertainty but adapted to the linear setting.
Indeed, at each time ¢ we saw in the previous section that the learner can build an estimate 0,. Al-
though the objectives are completely different, one can nevertheless consider again the confidence
ellipsoids of the form € = {0 € R?, (6; —0) T A; 1(0; — 0) < 7} as shown in Figure 2.1. Given
a confidence level 0, one can construct this ellipsoid and tell with probability 1 — ¢ that the true
parameter vector 6, is in it. Hence, a strategy using the optimism in the face of uncertainty would
be to select the arm that gives the best reward with respect to the best § € £. More formally at
each time ¢ the learner would select ; = arg max,cy maxgeg (x, 0). This method has been
presented in [2] and we recall their approach in the following.
Let us define

b= A7 (2.6)

where,
t
Av=Ng+ ) zea]
s=1

with A > 0 a regularization parameter and

t
by = Zfsys .
s=1

We also define the confidence set

R 1 2
Ci(0) = {0: I —‘9tHA;1 < a\/dlog<+t5L/)\> + \F)\S} ,

14
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where we assume that forany z € X, [|z||2 < Land ||04]|2 < S. We know from Theorem 2
in [2] that with probability 1 — §, 6, isin Cy(6) forallt € {1,...,T},and d € (0, 1].

Algorithm 3: OFUL Algorithm

Input :armset X
fort =11 do

(act, Qt,l> = arg max(, gycxxc,_, (T, 0);
Obtain the rewards y;
Compute 0y asin (2.6)

end

return 6,

The pseudo-regret in the linear setting can be formulated as follows:

MH

iEt, ) (27)

T
g x*, * xt»
t=1

where we recall that z,, = arg max, ¢y (z, 04)

H
Il
—

Proposition 2.4 ([2], Theorem 3). Assume that forallt and all x € X, (z,0,) € [—1,1]. Then
with probability 1 — 6, the pseudo-regret of the OFUL algorithm satisfies

R(T) < 4y/Tdlog(x + TL]d)(VAS + oy/2log(1/0) + dlog(1 + TL/(M))) ,

where foranyx € X, ||z||2 < Land ||0,|]2 < S

In the next section, we present the bilinear bandit which appears as the natural extension of the
linear bandit that models the interaction between two agents in the obtained rewards.

2.2.4 Bilinear bandits are linear bandits in a higher dimensional space

In [51], the authors introduce the Bilinear Bandit model where at each round ¢ a learner chooses
an arm 7 from a finite arm set X C RY that contains K arms and a second arm 2} from another
finite arm set X’ C R? that contains K’ arms, and obtains an associated reward that is bilinear
with respect to the two chosen arms and an unknown parameter matrix M, € R4 More
formally, this sequential decision problem is defined as follows:

15
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Stochastic Bilinear Bandit

Foreachroundt =1,...,7T,
1. thelearner chooses an arm 2y € X and z} € X’
2. the learner obtains from the environment the associated reward
yr = x, Myx, + 1 (2.8)

4 . . . .
where M, € R?*?" is an unknown parameter matrix, and 7); is a random variable sam-
pled from a certain distribution

This kind of setting can model difterent real life applications, such as drug discovery applica-
tions [65] or in the context of recommender systems as explained in [51].

The bilinear reward can be written as a linear reward in a higher dimensional space:
Yt = <vec (xtxg) ,vec (M*)> +n (2.9)

where for any matrix A € R4, vec (A) denotes the vector in R? which is the concatenation
of all the columns of A..

Therefore, for both the best arm identification problem and the cumulative rewards maximiza-
tion problem, solving this bilinear bandit problem is equivalent to solving a linear bandit problem
of dimension d x d’ with an arm set Z = {vec (zz'")|(z,2') € X x X'} of K x K’ arms.

To directly apply the existing linear bandit algorithms to the bilinear bandit model, the learner
must coordinate the choices of the two chosen arms (¢, }) at time ¢, which is equivalent to
choosing an arm z; = vec (z,7}') € Z.

Although approaching a bilinear reward from a linear angle is useful, it is less trivial to use linear
bandit algorithms for more complex models such as graphical bilinear bandits. Indeed, our model
exposed in section 1.2 can be viewed as a bilinear bandit problem between each pair of neighbors,
where each agent chooses an arm from a set of arms X’ (in our framework X = A”). Thus, if
the learner coordinates the choice of two neighboring agents and chooses the pair (z,z') € X
and thus its associated arm in Z, it constrains the choices related to all the pairs of neighbors
(j, k) € E since it is already composed of the arm 2’ associated with agent j. Due to the inter-
dependencies of the bilinear bandit problems, it is not possible to consider the graphical bilinear
bandits as simple linear bandits in parallel and directly use the linear bandit algorithms present in
the literature.

Another idea that one could have is to notice that since the unknown parameters matrix M, is
common to all the edges (7, j) of the graph, the expected global reward at time ¢ can also be written

as the scalar product ( 3 (; e vec (mii):z:(j )T) , vec (M*)> Therefore, solving the best-arm

identification problem or maximizing the cumulative rewards in the described graphical bilinear
bandits reduces to solving the same problems in a global linear bandit. Although this trick allows
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the use of classical algorithms in linear bandits, the number of joint arms grows exponentially with
the number of nodes, which makes these methods impractical.

Of course, some tools are still very useful and relevant to solve the presented problems for the
graphical bilinear bandits model and we use them in this thesis.

2.3 Multi-agent bandits and combinatorial bandits

2.3.1 Parallelizing contextual linear bandits

Centralized multi-agent bandit problems where the learner has to choose the actions of all the
agents at each round implies to parallelize the learning process on the agents. In the context of
linear rewards where all the agents share the same reward function (z.e., , the same parameter 6,),
the authors in [30] give a detailed analysis of the problem of maximizing the cumulative rewards
and show that a sublinear regret in 7" can be reached but with an additional cost specific to the
parallelization.

More formally, they consider P agents, and at each round ¢, a context Xt(i) C R is revealed to

agent 7 and a central entity has to choose the arm xgi) € Xt(i) for each agenti € {1,..., P}.
Then the learner receives for all agent ¢ € {1, ..., P} the rewards ygl) = <$§Z), 0.) + nfz) where
(4)

7, is a o-sub-gaussian random variable.
Here the pseudo-regret is formulated as follows:

P
RT) =YY 6. — (a6, (2.10)

(@)

where 2, = argmax__ ) (@, bx).
’ t

On can construct the estimate ; as follows:

0; = A b,
where
t P ] A
Ap= Mg+ > 2Pl
s=1 i=1

with A > 0 a regularization parameter and

t P
b= 303 )

s=1 i=1

We define also the confidence set
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- 1+tPL2/)
Cy(8) = {9 116 = s[5 < o\/dlog<+5/) + fAS} .

The authors show that applying the OFUL algorithm on each agent at time ¢ where ét—l and
Ct—1(9) aggregate the information of all the draws and rewards of the previous rounds, gives the
following bound on the regret:

R(T) < O(dV'TP) + O(dPlog(TP)) (2.11)

where O hides logarithmic factors.

Their analysis shows that parallelizing agents that play the same contextual bandit and applying
the OFUL algorithm for each of them with an aggregation of the information at the end of each
round to construct 0y and Ct(9) give an upper bound on the regret that is the sum of the near-
optimal regret of a single agent pulling 7P arms plus a second term that represents the cost of
parallelizing.

The similarities between the graphical bilinear bandits and their setting is thatif m = | E| is the
number of edges in our considered graph, the central entity in our model plays m bilinear bandits
in parallel that can be seen as m linear bandits in parallel. However, the main difference is that they
consider independent agents whereas we assume interactions between the agents. In particular,
the arm associated with each (bi-)linear bandit problem cannot be chosen independently at each
round since some of them share a mutual information. So we have to deal with both the parallel
aspect and the dependent aspect at the same time.

2.3.2 Bandit problems in graphs

Graphs are often used to bring structure to a bandit problem. But one can distinguish two main
representations.

Single agent. In [99] and [67] for instance, the arms are the nodes of a graph and pulling an arm
gives information on the rewards of the neighboring arms. This kind of setting considers only one
agent which is out of the scope of this thesis. The reader can also refer to [98] for an account on
such problems.

Multi-agents. Asin [28], each node is an instance of a linear bandit and the neighboring nodes
are assumed to have similar unknown regression coefhicients.

More precisely, they consider an undirected graph G = (V, E') where each node i € G hasan

. A .
associated parameter 6, where the authors make the assumption that

ST 06 — 6913 (212)

(i,5)EE
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is small compared to 3,/ H@,(f) 3.

At each time t, the learner receives the index I; of one of the nodes in V' as well as a set of
contexts Xt(lt) where it has to choose a context z; € Xt(lt) and then receives an associated linear
reward of the form (zy, 99) + ;. Note that at each round, only the instance of the linear bandit
of node I} is used, the learner does not choose an arm for each node of the graph. However, given
the assumption that near-by nodes have similar associated parameter vectors 9,((1), the learner may
still get some information on the behaviors of other nodes.

Again, the main difference with our model is that the rewards of the nodes are independent,
and although playing an arm at a given node may give information about its neighbor’s rewards,

the reward is not directly affected by the possible choices of its neighbors.

2.3.3 Link with unstructured multi-agents bandits

In the same way that a linear bandit with canonical arms can be seen as a classical multi-armed
bandit!, hence loosing its structured property, the graphical bilinear bandit can also be seen as
an unstructured graphical multi-agent bandit when the arm set X" is the canonical basis X =
(e1,...,€q).
As mentioned in the introduction, some works have studied this unstructured setting. In par-
ticular, the authors in [7] consider a graph G = (V, E) where at each round ¢ and for each node
‘ (%)

iin V' = {1,...,n}, alearner receives a context ctz), then has to choose an arm z; ” and finally
gets a global reward F'(xy, c¢) where x¢ = (xil), . ,xgn)) and ¢; = (cgl), . ,cgn)). They
assume that the reward can be decomposed as a sum of subfunctions that depend only on subset

of neighboring nodes. More formally, given a collection of subset P C 2V, we have

F(xi,¢t) = Y fp(xp,cp) (2.13)

pPeP

where xp = (:L’gi))iep, cp = (Cgi))iep and fp are unknown functions for any P € P.

Note that a subset P € P contains only nodes that are neighbors one to another.

The main similarity with our framework is that the global function can be decomposed as the
sum of local rewards that depend on the arms of neighboring nodes, which highlights the de-
pendencies between the nodes. The reader can also refer to [13] for such works. However, all the
algorithms that we presented for the graphical bilinear bandit leverage the structured aspect where
pulling an arm informs about the rewards of the other arms through the unknown parameter ma-
trix ML, which is not done in the unstructured setting.

2.3.4 Combinatorial bandits

A combinatorial bandit consists of a sequential decision problem where a learner has access to a set
of K arms, at each round ¢ selects a subset of arms under some constraints and then receives the
associated reward. More formally, consider the arm set X = {0, 1} whereanarm x € X is often

"IfX = (e1, ..., eq), when the learner chooses s = e;, the reward y¢ = (es, 04 ) +n¢ = [0x]i + 1¢, which does
not share any information with the rewards of the other arms.
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2 Background

called a super-arm. When the i-th coordinate of z € X" equals 1 it means that the learner selects
the i-th arm. An example of a constraint that the learner can have is to select an arm = € X such
that |||l < m form > 0, which means that the learner can at most select a subset of m arms
per round. The type of rewards associated with a super arm varies from one setting to another.
For instance, let consider v = { Py, . .. P } where P, is the distribution associated with the i-th
arm. At each round, let us denote X ; the random variable drawn at time ¢ from F;, and denote
X, the vector in R¥ containing in its coordinates all the X; ; foralli € {1, ..., K}. The reward
at time ¢ associated with the super arm x; € &’ is given by

Y = (@, Xit)

In this particular example, we can notice that the reward is linear z.e., the reward y; is the sum
of all the rewards associated with the selected arms by the learner, but other forms of reward can
be considered and the learner may not even know how it is calculated.

Semi-bandit feedback. In what is called the semi-bandit feedback, the learner receives each of
the rewards X; ; if the i-th coordinate of x; is equal to 1.

The number of super-arms being exponential in K and when we do not have the knowledge
on how the reward is computed, these kinds of problems can be hard to solve and the knowledge
of an oracle is often assumed to return the optimal super-arm to play at a round ¢ according to the
estimates of the learner. More precisely, given the estimates ft = (fi1, ..., fixr) of the expected
reward associated with each arm, the learner asks the oracle which super-arm to play at time ¢. A
relaxation in [31] considers an (v, 3)-Approximation-oracle that returns with probability 3, the
a-optimal super-arm given the estimates. More formally, if opt, is the value of the best super-
arm given fi, the («, 3)-Approximation-oracle returns a super arm that gives at least an expected
reward equals to a - opt ;.

Given that (¢, 3)-Approximation-oracle, the authors used the o3-pseudo-regret [52] which is
defined as follows :

T
R(T)=E|>_ apopt, — | .
t=1

where opt, is the optimal expected reward, and where the expectation is on the randomness of
both the environment and the learner’s policy.

The combinatorial bandit setting can be viewed as a similar model to ours in that we solve a
bandit problem with an exponential number of arms and the underlying problem of returning
an estimated best joint-arm (which can be viewed as a super arm under some particular constraint)
at each round is NP-Hard and may require knowledge of an oracle. Although we do not assume
knowledge of an oracle, we instead design an c-approximation algorithm to solve the underlying
problem (see Chapter 3). And as is the case in the combinatorial bandit literature, the use of
a-approximation algorithms makes the notion of a-regret a relevant measure of the performance
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for our algorithms.” Moreover, we present algorithms that takes into account the graph structure,
which has not been considered in the combinatorial framework.

2We drop the /3 parameter, because in our case it is equal to 1.
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In this chapter, we focus on the optimization problem of finding the jointarm (m(l) e a:(”))

that maximizes Z(i7 J)eE 2 TM*m(j ) while knowing the parameter matrix M. This problem
being non-trivial, it is natural to understand the guarantees on the solutions with the full infor-
mation of the matrix IM, (we relax this assumption in the next chapters where the matrix M, will
be considered as unknown). Hence the objective of this chapter is the following:

Objective: Given the parameter matrix My, design an algorithm that returns the allocation

of arms (mil), ce w&n)) that maximises ) ; e p zOTM, z0)

We follow the notations we established in section 1.2.1.

3.1 An NP-Hard problem

3.1.1 Reduction to the max-cut problem
We address the problem of finding the best joint arm given M, and we denote it as follows:

( (1) (n)) _

Ty, Ty arg max Z x(i)TM*x(j) . (3.1)

(:B(l),...,x("))e)(" (i.j)EE

Notice that if the couple (2, 7}, ) = arg max , ;e x2 z " (M, + M] )2’ is such that z, =
'/, then finding the best joint arm is trivial and the solution is to assign . to all nodes. Conversely,
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3 Computing the best allocation for known parameter matrices

if x, # a, the problem may be harder: according to the graph G, the optimal joint arm could
either be composed exclusively of the couple (4, z,) or be composed of other arms in X'. One
might want to use dynamic programming as in [7] to solve this optimization problem, however in
this particular setting, it would lead to use a non-polynomial time algorithm. Indeed, the follow-
ing theorem states that, even with the knowledge of the true parameter M,, identifying the best
join-arm (xil), e x&n)) is NP-hard with respect to the number of nodes n.

Theorem 3.1. Consider a given matrix M, € R 4nd a finite arm set X C R<. Unless P=NP,
there is no polynomial time algorithm guaranteed to find the optimal solution of

max Z x(i)TM* 2\

(m(l),...,x("))e){" (i)EE

Proof. We prove the statement by reduction to the Max-Cut problem that is NP-Hard itself.
LetG = (V,E)beagraph with V = {1,...,n}. Let X = {eg, €1}, where eg = (1, 0)"
0
1
X" let F C E bedefinedas F' = {’L cp() = 61}. Note that

5 20 = 5 1[0 pa0] =2x ¥ e iR

(i,j)eE (3,5)€E (i,J)eE

ande; = (0,1)". Let M, = . For any joint arm assignment ($(1) e 33(”)) €

where 1[-] is the indicator function.

The assignment (3:(1), ...,2(™) induces a cut (F, V\F), and the value of the assign-
ment is precisely twice the value of the cut. Thus, if there were a polynomial time algorithm
solving our problem, this algorithm would also solve the Max-Cut problem.

O

Hence, given the true parameter matrix M, the learner is not guaranteed to find in polynomial

(1) (n)

time the joint arm (x* sy Tx ) maximizing the expected global reward. In the next sections,

we give polynomial time approximation algorithms that have guarantees on the returned expected
global reward with respect to the optimal one.

3.1.2 Approximation algorithm and guarantees

Given the true parameter M, the objective is to design an algorithm that returns a joint arm
(x(l), ey x(")) such that its associated expected global reward y = Z(i,j)eE z@OTM, 2 has
the guarantee to be close to the optimal expected global reward y. = >>(; e p 2 TM, 2.
In other words, we want to find a approximation parameter 0 < « < 1 such that, y > ay,.
Although the optimization problem we seck to solve can be found in the literature on Markov
Random Fields when dealing with a multi-labeled graph (see .., [5]), to the best of our knowl-

edge, algorithms that give an approximation ratio on the optimal solution have not been explored.
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Assumption 3.1 (Positive rewards). A dassical assumption in the linear bandit literature is that
expected rewards are positive. For any (z,2') € X2, since the bilinear reward x" M,x' can be
formulated as a linear reward (vec (xx'"), vec (M) and that in the rest of this thesis we will
use tools from the linear bandit literature, we make the same assumption. We consider that for any
(z,7") € X2, the associated expected reward x " M2’ is positive, v T Myx' > 0.

The approach we present in this section is first to consider the problem locally, ze., at the edge
level. Indeed, let us consider two neighboring nodes 7 and j in V' and only the expected rewards
related to these nodes, which are 2() "M, 2(7) and 2(9) TM, (¥, By summing those two quan-
tities,! we get 2OTM, 20) + 2D TM, () = £@OT (M* + MI)m(j) which represents the
expected reward between the two neighbors (i) and (j). A local strategy that the central en-
tity should carry out is thus to allocate ({9, 21)) = argmax(, ,cxe 2" (My + M] )2/ =
(x4, x,). Naturally, while this local strategy is easy to apply for a couple of neighbors (i, 7), it
becomes infeasible to simultaneously extend it to all the other couples in the graph since some of
them share the same nodes. However, one can learn something from this strategy, which is that

given the optimal joint arm (xil), e x&n)), we have
207 <M n MI):;;SJ) <) <M n Mj)x; . (3.2)

Hence, instead of looking for the optimal joint arm (which is NP-Hard), one can alternatively
aim at secking the allocation that, for any edge (7, j) € E, constructs as many pairs (z(), 20)) =
(x4, x,) as possible. Assigning x, to a subset of nodes and z, to the complementary is equivalent
to cutting the graph into two pieces and creating two distinct sets of nodes V; and V5 such that
V =ViUVaand Vi NV, = (). Thus, the described strategy boils down to finding a cut passing
through the maximum number of edges.

This problem is known as the Max-Cut problem (see ¢.g., [44, 84]), which is also NP-Hard.
However, the extensive attention this problem has received allows us to use one of the many
approximation algorithms (see, e.g., Algorithm 4) which are guaranteed to yield a cut passing
through at least a given fraction of the edges in the graph. Most of the guarantees for the ap-
proximation of the Max-Cut problem are stated with respect to the optimal Max-Cut solution,
which is not exactly the guarantee we are looking for: we need a guarantee as a proportion of the
total number of edges. We thus have to be careful on the algorithm we choose.

From Algorithm 4, one can have a guarantee on the proportion of cut edges with respect to the
total number of edges m = | E|. We state this guarantee in the following Proposition.

Proposition 3.1. Given a graph G = (V, E), Algorithm 4 returns a couple (V1, Va) such that

m

|{(z’,j)eE!(iGVl/\jEVQ)\/(iGVg/\jEVl)}\25.

Those quantities are not equal since the matrix ML, is not necessarily symmetric.
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3 Computing the best allocation for known parameter matrices

Algorithm 4: Approx-MAX-CUT [84]

Input :G = (V,E)
Set V1 = (Z), VQ = (Z)
forinV do

ni = [{(z,7) € E[j € Vi}];

=|{(i,j) e E|j € Va}|;

if n1 > nothen Vo <— Vo U {i}else V) < V3 U {i};

end

return (V7, V3)

Proof. At each iteration, we take a node ¢ that is neither in V; nor in V3, count its neighbors

already in V; and V5 and save the results respectively in 721 and ns. For the sake of simplicity
(1) (1)

in the proof, we will denote them 77 and 75’ to distinguish from one node to the other.

(%)

Since n; ’ represents the number of neighbors of 7 already assigned to V7, if the node 7 is

added to V5, 2 x n( 2 edges would be cut (the factor 2 comes from the fact that between two
(@)

nodes i and j, there are the edges (¢, j) and (j, ¢)). Similarly, since n5,’ represents the number
of neighbors already assigned in V5, if the node 7 is added to V7, 2 x ng) edges would be cut.
In the algorithm, the node ¢ is added to V; or V3 such that we cut the most edges, hence by
denoting m; the number of additional cut edges implied by the assignment of node ¢ in V;

or V5, we have:

(4) (4)
i i 2 2 i i
m; = max<2n§),2ng)) > w = ng) —I—ng) :

By summing for all the nodes in the graph :

3z Sl
=l ;;/1
2

By definition ) ;" ; m; is the total number of edges that are cut which also means that
Zml—|{1] ceE|ieVinjeV)V(iEieVhnje )} .

O

Given this guarantee with respect to the total number of edges, it only remains to present the
full strategy that is to allocate to the nodes in V7 the arm z, and to the nodes in V3 the arm xh.
We give the strategy in Algorithm S.
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3.1 An NP-Hard problem

Algorithm 5: Approximation algorithm of our NP-Hard problem

Input :Graph G = (V, E), arm set X, parameter matrix M,
(V1, Va) = Approx-MAX-CUT(G);
Find (4, 7)) € argmax, ,\cxy2 T (M, +M]) s
foriin Vi do

(1)

‘ x; = x4 // Canbedonein parallel
end
for i in V5 do
‘ l'gi) =a; //Canbe done in parallel
end
recurn (2D ... 2()
With this algorithm, given the returned allocation (M, ..., ™), for some edges (i, j) € E,

the associated allocated arms will be the optimal couples (x4, ) or (2}, z,) and for other edges
(i,7) € E the associated allocated arms will be the suboptimal and unwanted couples (z, )
or (x},x)).

Before we state the guarantee of this algorithm with respect to the optimal global reward, let
us introduce mq (respectively mo) the number of edges that go from nodes in V; (respectively
V3) to nodes in V71 as well (respectively V2) and m1_,2 (respectively mo_,1) the number of edges
that goes from nodes in V1 (respectively V2) to nodes in V3 (respectively V7). Notice that the total
number of edges m = m1_2 + ma_1 + my + Mo and that by definition of the edge set &2 and
using Proposition 3.1 we have mi_,2 = ma_,1 > m/4and mq + my < m/2.

Theorem 3.2. Let us consider the graph G = (V, E), a finite arm set X C R® and the matrix

M, € Rxd given as input to Algorithm 5. Let (xil), e x&n)) be the optimal joint arm as

defined in (3.1) and let 0 < § < 1 be a problem-dependent parameter defined by

¢ = min z M.z
z€EX % E(i,j)eE xi@)TM*xij) )

and set o = %% Then, the expected global reward y = Z( \er x(i)TM*x(j) associated with

2
the allocation (a:(l), e ,x(")) € X" returned by Algorithm S verifies:

Y2 QY .

where vy, = Z(z’,j)EE xy)TM*aﬁg).
Finally, the complexity of the algorithm is in O(K? + n?).
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3 Computing the best allocation for known parameter matrices

Proof. Given the allocation (zM,...,2™) return by Algorithm 5, the associated reward y
can be written as

T / T T T !
Yy =miso Xz, MLz, +mo_1 Xz, Mz, +mq X 2, Mz, + mo X 2, M,z

(a) ()

Let us analyse (a):

T / T
(a) = mi9o X, Mz, + moy1 X o), Mz,

_ % x z] (M* L MI):U’* (because mi—2 = ma—1)
M2 + M2l Z Z < T\ ./
= M* + M* )x*
i=1 jeN;
J>i
S M2+ Mo Z S s m( o+ Mj)xij) (3.3)
i=1 jEN;
5>
m +m i
= X A M)
(i.5)eE
_ M2 Mo
e *

where (3.3) comes from Equation (3.2).
Now, we analyse (b) by using the definition of £ where forany z’ € X,

2 TM, 2 > ;Iél% r M,z (3.4)
*f Z m* *«T* . (3.5)
(i,j)€E
Hence we have,
- , A
)= Y al P+ 26 Y o ML)
(i,)€E (i.)eE
my + ma
= — &y«
m

Thus,
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3.1 An NP-Hard problem

y=(a)+(b)
m1—2 + Moy my + mo

Yx + fy*

m

IV

(3.6)

m —I—m mi1 +m
1-2 2—>1+ 1m 2§>y*

Mi—2 + Mo n (1 _ Mise m2a1>§> .

m

Yx
m

mi—2 + Mo

(1—£)+£>y*

+§>y*

(
(e
Em 2 +mas1 +mE — (M1 + m2—>1)€)
(
1

2
+
2

Moreover, the Approx-Max-Cut Algorithm has a complexity in O(n?), then we do K>
estimations to find the best couple (2, x}) € X, and each round in the first and second
for loop of the algorithm is in O(1) and there are |V} | + | V2| = n rounds.

Hence the complexity is in O(K? + n?). O

What is & and what value can we expect? This parameter measures what minimum gain with
respect to the optimal reward one could get by allocating the unwanted and suboptimal couple
of arms of the form (x, ) for two neighbors. For example, if there exists 9 € X such that
xgl\/[*:cg, = 0, then { = 0 as well and we are in the worst case scenario where we can only
have a guarantee on an a-approximation with @ = 1/2. In practice, having £ = 0 is reached
when given the couple (7, 2}) = argmax(, ,/)cx> z " (M, + M] )2, this 2 is either z,
or 2. In other words, if the unwanted couples of arms (4, z,) and (2, 2/, ) give low rewards,
then the guarantee on the reward will be badly impacted. Hence we can wonder how to prevent
this phenomenon. We answer this question in the next section by taking into account both the
proportion of undesirable couple of arms and their potential rewards at the selection of the pair
(x4, «,) in order to improve the performance of the algorithm both in practice and theoretically.

3.1.3 Improved algorithm using the graph structure

In this section, we want to capitalize on Algorithm S and its 1‘55 -optimal solution to refine the al-
location of the arms ', and 2, such that the obtained suboptimal rewards 2] M 2, and 2, M, 2/,
penalize as less as possible the global reward.

Indeed, in the Algorithm S, the choice of the couple (x4, 2,) is only guided by the potential
gain that could be obtained at the level of the cut edges (z.¢., that goes from a node in V to a node

in V5 or vice versa). It does not take into account all the m; rewards of the form x] Mz, and
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3 Computing the best allocation for known parameter matrices

the mqy rewards of the form xiTM*aﬁi that one gets when allocating 2, to the nodes in V7 and
', to the nodes in V5.

Here, the improvement we can make is to include them in the optimization problem and to
weight the different rewards obtained through the graph using the proportions m1_2, ma_1,
my and my. By denoting (%, 2, ) the solution of the following optimization problem,

(wanews 12 "Mz’ +mosy1 -2’ Myx +my -2 Myz +ma -2’ T Mua' | (3.7)
x,x’)e

we are optimizing the total global reward that one would obtain when allocating only two arms
(z,7") € X% in the graph. This strategy is described in Algorithm 6.

Algorithm 6: Improved approximation algorithm of our NP-Hard problem

Input :Graph G = (V, E), arm set X, parameter matrix M,
(V1, Va) = Approx-MAX-CUT(G);

Ml = ‘{(Z,j) € E|7, eViNng e ‘/2}‘,

Mmo_s1 = ‘{(’L,j) S E|l ceVoNng e ‘/1}‘,

my = ‘{(Z,j) S E|Z eViNng e Vl}‘;

me = |{(i,j) € Eli € Vo Aj € Va};

Find (7, 7, ) solution of (3.7);

foriin V; do

‘ $§i) = Ty; // Canbedonein parallel
end
foriin V5 do

‘ xgi) = ; //Canbe done in parallel
end
recurn (z(D ... 2()

To understand and analyse this new algorithm, let us define A > 0 the global reward difterence
of allocating (Z., Z/,) instead of (x4, 2, ) as follows:

7! 7! T ! =T ~ T
A=mi_9 (:B* M.z, — x, M*x*) + mo_1 (:v* M.,z — x, M*l‘*)
~ ~, ~/ ~/ / /
+mq (xIM*m* — xIM*x*) + meo (QZ*TM*JJ* — x*TM*x*) .

The new guarantees that we get on the reward of the allocation obtained by Algorithm 6 are
stated in the following theorem.

Theorem 3.3. Let us consider the graph G = (V, E), a finite arm set X C RY and the ma-
trix M, € Rxd given as input to Algorithm 6. Let (w&l), ey xin)) be the optimal joint arm as
defined in (3.1) and let 0 < § < 1 be defined as in Theorem 3.2. Let 0 < € < % be a problem de-
pendent parameter that measures the relative gain of optimizing on the suboptimal rewards defined

as:
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3.1 An NP-Hard problem

A
€= P —
Supents) Mozl

and set @ = 1%5 + €. Then, the global reward y = Z(i7 j
allocation (:L‘(l), e ,a:(”)) € X" returned by Algorithm 6 verifies:

)eE 2O TM, 29 sssociated with the

Y = QY

where yy, = Z(m‘)eE a:ii)TM*xij).

Proof. The obtained reward y can be writen as follows:

~T ~/ ~IT ~ ~T ~ ~IT ~/

Y =mio2T, MLZT, +mo_y1 - T, Mz, +my - T, MuZy +mo -2, M, 2,

T / T T A /

=mior, Muz, + moy1 -z, Myx, +my -z, Mux, +mo -2, M,x,
+ A

T / an T T /
= miox, Myx, +moy -z, Myx, +my -z, Myx, +mo -2, My,

+€ Z xii)TM*x@
(i.4)EE
_ T / s T a /
= miox, Myx, + moy1 -z, Mz, +my - 2, Myx, +mg -z, My, + €y,
1+¢

= 79* + €Y«

(1+¢
B <2+6>y* '
O

What is € and what value can we expect? This parameter measures the gain with respect to the
optimal reward one could get by considering the undesirable couple of arms of the form (z, x).
The value of € is high when the rewards associated with the couples (Z, Z/) and (Z,, Z,) are
close to those of (2, z}) and (z}, ) respectively and when the rewards associated with the
suboptimal couples (Z, Z,) and (&, &, ) are much higher than those of (2, z,) and (2, )
respectively. On the contrary, € is low (and close to 0) if the suboptimal couples of arms (., z)
and (), 2} ) already give high rewards (or the highest among the other suboptimal couples of the
form (x, )), hence the central entity does not gain a lot by choosing another couple of arms than
(24, ). Notice that @ = 1—42'5 + € < 1 by construction. In fact when § = 1 it means that
the couple of arms of the form (, x) gives the highest reward, hence (x4, 2,) = (Z, Z,) which
givese = Oand o = 1.

Corollary 3.1. Let us consider the same setting as in Theorem 3.3, the approximation ratio can be
defined with the parameters M2, Ma_s1, M1 and Mo that depend on the graph and the approxi-
mation algorithm of the max-cut problem such that
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mi—2 +mMo—1 M1+ mg
o= + E+e .
m m

Proof. The proof follows exactly the one of Theorem 3.2 where we stop the reasoning at
Equation 3.6 and then plug the result into the proof of Theorem 3.3 O

This corollary is useful to understand in practice the kind of guarantees we can have depending
on the graph structure and the approximation algorithm we use to solve the Max-Cut problem.
For instance, in the most favorable graphs, which are bipartite graphs (z.e., graphs where all the
m edges goes from nodes in V7 to nodes in V3 or vice versa), we have m1_2 + ma_1 = m and
mg + my = 0. Also it implies that (z,,z},) = (Z4, ), so € = 0 which gives &« = 1 and
makes the Algorithm 10 find the optimal solution of the problem. What may also be of interest is
to understand how « varies with respect to &, € and the quantity m; and ms for graphs that are
between a complete graph (that is the worst case scenario in terms of constraints) and a bipartite
graph. We investigate experimentally this dependency in Section 3.2.

3.2 Numerical experiments: influence of the parameters on the
solution

In this section, we give some insights on the problem-dependent parameters  and € and the cor-
responding . Let a1 and cvg be the o stated respectively in Theorem 3.2 and Corollary 3.1. In
the first experiment, we show the dependence of a1 and a2 on the graph type and the chosen
approximation algorithm for the max-cut problem with respect to § and €. We also highlight the
differences between the two parameters vy and ar as well as the significant improvement in guar-
antees that one can obtain using Algorithm 6 depending on the type of the graph. The results are
presented in Table 3.1.

Table 3.1: Values of several parameters with respect to the type of graph. Experiments were performed on
graphs of n = 100 nodes, and results for the random graph are averaged over 100 draws.

Graph types
Complete Random Circle Star  Matching
mlim?2 0.495 0.453 0.01 0 0
oy 0.5+ 0.5¢
s 0.505 +0.495¢ + € 0.547+0.453¢ + ¢ 0.99+0.01{ +€e 1 1

One can notice that the complete graph seems to give the worst guarantee on the c-approximation
with respect to € and £. Thus, we conducted a second experiment where we consider the worst
case scenario in terms of the graph type —e.g., the complete graph— and where there are n = 10
agents. This second experiment studies the variation of € and { with respect to the unknown
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parameter matrix IML,. To design such experiment, we consider the arm-set X’ as the vectors
(e1,...,eq) of the canonical base in R?. We generate the matrix M, randomly in the follow-
ing way: first, all elements of the matrix are drawn 7.z.d.from a standard normal distribution, and
then we take the absolute value of each of these elements to ensure that the matrix only con-
tains positive numbers. The choice of the vectors of the canonical base as the arm-set allows us
to modify the matrix M, and to illustrate the dependence on § and € in a simple way. Consider
the best couple (i*, j*) = argmax(; j)eq1,..4)2 e, M,e;, we want to see how the rewards of
the suboptimal couples of arms (e;+, e;+) and (e;+, e;+) impact the values of &, € and thus cv.
Notice that the reward associated with the couple of arms (e;+, e+ ) (respectively (e;+, €+ )) is
[MLi];x;« (respectively [ML] . ;). Hence we define 0 < ¢ < Land set [M];ujn = [M] u 0 =
¢ x %([M*]i*j* + [ML] 4+ ). We study the variation of &, €, 1 and v with respect to (. The
results are presented in Figure 3.1. One can see that when the associated rewards of (e;+, €;+)
and (e, e;+) are low (thus £ is low and € high), Algorithm 6 gives a much better guarantees than
Algorithm 5 since it focuses on other arms than e;+ and e+ that give a higher global reward. More-
over, even when the unwanted couples (e;+, €;+) and (e, e;+) give high rewards, the guarantees
on the regret of Algorithm 10 are still stronger because it takes into consideration the quantities
m1 and my of the constructed suboptimal couple of arms (e;+, €;+) and (ejx, €+ ).
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Figure 3.1: Variation of €, , &1 and ava with respect to the parameter ¢. The closer ¢ is to 0 the lower the
reward of the unwanted couples (e;+, €;+) and (e, €+ ), the closer ¢ is to 1 the higher the re-
wards of the unwanted couples. The dimension d of the arm-set is 10 (which gives linear reward
with unknown parameter 6, of dimension 100). The plotted curve represents the average value
of the parameters over 100 different matrices M, initiated randomly with positive values.

3.3 Conclusion and perspectives

In this chapter, we showed that the underlying optimization problem is NP-hard and that one
has to rely on approximation algorithms. To that matter, we designed a first a-approximation
algorithm based on the max-cut problem, with ov > 1/2. We showed that by exploiting the graph
structure and the typology of the problem, one can both improve the performance in practice and
have a better theoretical guarantee on av. The method presented in this chapter can be extended
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3 Computing the best allocation for known parameter matrices

in many ways, especially in the choice of the max-cut approximation algorithm. For instance, one
can consider cutting the graph into 3 or more pieces, which is equivalent to approximating the
problem of a Max-k-Cur [43] with k > 3. With the knowledge of such a partition of nodes
Vi,..., Vi, one may want to look for a k-tuple of arms maximizing the optimistic allocated re-
ward rather than a pair, therefore introducing an elegant tradeoft between the optimality of the
solution and the computational complexity of the arms allocation.
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In this chapter, we assume that we do not know the parameter matrix M, and as described
in the problem setting in Section 1.2, a central entity faces a graphical bilinear bandits problem
where at each round it chooses an arm for each node of the graph and observes a bilinear reward
for each edge of the graph. In this chapter, we will focus on the best-arm identification objective
that reads as follows:

(1) (n)

Objective: Find, within a minimum number of rounds, the joint arm (xy’, ..., Tx )
)T i) . .. .

such that the expected global reward ;. . l‘,(:) M*IS(] ) is maximized, where N, is un-

& (i,5)eE

known to the learner.

We follow the notations we established in section 1.2.1.
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4 Best-arm identification in graphical bilinear bandits

4.1 Preliminaries

4.1.1 A two-stage algorithm template

For simplicity, we consider for now that the unknown parameter M, is symmetric, which greatly
simplifies the reasoning, and we will relax this assumption in Section 4.2.3. In Chapter 3, we de-
signed polynomial-time algorithms that allow us to compute an a-approximation solution to the
NP-Hard problem of finding the best joint arm given M. Notice thatin the c-approximation Al-
gorithm 5, ML, is only used to identify the best pair (2, 7, ) as follows:

(20, 2) = ?rg 1;11?‘3; z’ (M* + MI) x
z,x')E

= argmaxz ' M,z . (4.1)
(z,x")eX?

Thus, using an estimate M of M., having the following property:

arg max z Mz = argmax z ' Mz’ = (ac*, 1"*) , (4.2)
(z,2")eXx? (z,2")eX?

allows us to identify the pair (z, 2/, ), and thus gives us the same guarantees as the ones pre-
sented in Theorem 3.2. We thus address the problem of computing M such that, in a minimum
number of rounds, with high probability, we are able to identify the pair (x, z/,) and apply the
Algorithm 5.

Our general algorithm can thus be thought of as a two-part algorithm where, in the first in-
stance, the central entity applies a pure exploration algorithm and draws the arms of the nodes at
each round to compute the best possible estimate M (in a certain sense), and then, in the second
instance, uses M to apply the a-approximation-Algorithm 5 described in chapter 3. We describe
the general procedure in Algorithm 7.

Algorithm 7: General framework for BAI in GBB : a two-stage algorithm

Input :graphG = (V, E),armset X

M = Pure-Exploration-Algorithm(G,X');  // This chapter

(:U(l), ... ,:U(”)) = a-Approximation-Algorithm(G, X, M), // Done in chapter 3
return (:c(l), el x(”))

4.1.2 Stopping condition

Notice that the optimization problem (4.1) is equivalent to the following optimization problem

(24, 2)) = arg max<vec (:p:p’T),vec (M*)> :
(z,2")eX
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. . . A . .
Let us simplify the notations and denote 6, = vec (M,) the vectorized version of the un-

known matrix M. Let us also use the notation z,,» = vec (mx’ T) ,anddefine Z = {2z, |(x,2') €
X2} the set containing such vectors. Then looking for the couple (4, 27,) is the same as looking
for the vector z, € Z where

2z, = argmax (z, 0,) .
2€Z

In other words, we want to find an arm z € Z, such that forall 2’ € Z, (z — 2') "6, > 0.
However, one does not have access to 6, so we have to use its empirical estimate.

Hence at each round ¢, the central entity can choose for each couple of neighbors (4, j) an arm
z € Z and get a noisy linear reward of the form (z, ) + 7 where 7 is a o-subgaussian random
variable, that can be used to compute an estimate ét.

For more clarity, we refer to any x € X’ as a node-arm and any z € Z will be referred as an

edge-arm. If xgz) € X represents the node-arm allocated to the node ¢ € V at time ¢, for each

edge (4, j) € E we will denote the associated edge-arm by Zgi’j) £ vec <x£i)x§j)T> €z

Assumption 4.1 (Bounded edge-arm norm). We considerthat there exists L > 0, for all edge-arm
2 € Z, such that ||z||3 < L.

Assumption 4.2 (Positive rewards). We consider that for any z € Z, the associated expected
reward (z,04) is such that (z,0,) > 0

Assumption 4.3 (Spanning the action space). We consider that X spans RY,

The goal here is to define the optimal sequence (21, ..., Zmt) € Z™ that should be pulled
in the first £ rounds so that (4.2) is reached as soon as possible. A natural approach is to rely on
classical strategies developed for bestarm identification in linear bandits. We define (y1, - . - , Ymt)
the corresponding noisy rewards of the sequence (21, . . ., Zm¢). We assume that the noise terms
in the rewards are 7.7.d., following a o-sub-Gaussian distribution. Let ét = A, LS RY be
the solution of the ordinary least squares problem with A; = Zzzl zizi—r € RExd* 4nd by =
Sz € R% . We first recall the Proposition 2.2 with the notation of our problem.

Proposition 4.1 (Proposition 1 in [90]). For every fixed sequence (21, ..., zmt) € Z™, with
probability 1 — 6, for all t > 0 and forall z € Z, we have

A 6m2t2 K2
‘ZTH* - ZTQt) < 20\/§HZHA;1 \/log<m> .

o

Following the steps of [90] and the ones developed in Section 2.2.2, we can show that if there
exists z € Z such that forall 2’ € Z the following holds:

6m2t2 K4 .
|z — z’HAt1\/802 log (77157r2> < A(z,2) (4.3)
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4 Best-arm identification in graphical bilinear bandits

where Ay(z,2') = (2 — )" 0y is the empirical gap between z and 2/, then with probability at
least 1—0, the OLS estimate ét leads to the best edge-arm z,, which means thatarg max, . z (2, ét>
arg max,c z (2, 04). Therefore, when the Equation (4.3) is true, the learner can stop pulling
arms, we call it the stopping condition.

As mentioned in [90], by noticing that max, ,ez2/z — z’HA;1 <2 maXZEZHZHA;I, an
admissible strategy is to pull edge-arms minimizing max.¢ z|| || A1 inorder to satisfy the stop-
ping condition as soon as possible.

4.1.3 A Constrained G-Allocation

Given the stopping condition (4.3) derived in the previous section, one wants to find the sequence

of edge-arms z77,, = (27, ..., 2},;) such that:

-1

mit

zr, € argmin max Z7 Z ziz) 2. (G-opt-2)
(21, 2mit) EZ™M ez =1

This is known as G-allocation (see e.g., [76, 90]) and is NP-hard to compute ([32, 104]). One way

to find an approximate solution is to rely on a convex relaxation of the optimization problem

(G-opt-Z) and first compute a real-valued allocation ™ € Sz such that

-1

. T
I'* € arg min max 2’ g Lzz"| 2. (G-relaxed-Z)
IreSz ez oz
z

One could either use random sampling to draw edge-arms as 7.2.d. samples from the 1™ distribu-
tion or rounding procedures to efficiently convert each I} into an integer. However, these meth-
ods do not take into account the graphical structure of the problem. Indeed, at a given round,
the chosen edge-arms may result in two different assignments for the same node, we call this phe-
nomenon a collision. In Figure 4.1, we characterise a collision that occurs when the central entity
allocates respectively two edge-arms z and 2’ to two edges that share the same node.

Collision if

Figure 4.1: Collision when allocating directly edge-arms to the edges
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4.2 Algorithm and guarantees

Therefore, random sampling or rounding procedures cannot be straightforwardly used to se-
lectedge-arms in Z. Nevertheless, (G-relaxed- Z) still gives valuable information on the number of
times, in proportion, each edge-arm z € Z must be allocated to the graph. In the next section, we
present an algorithm satisfying both the proportion requirements and the graphical constraints.

4.2 Algorithm and guarantees

4.2.1 Random Allocation over the Nodes

Our algorithm is based on a randomized method directly allocating node-arms to the nodes and
thus avoiding the difficult task of choosing edge-arms and trying to allocate them to the graph
while ensuring that every node has an unique assignment. The validity of this random allocation
is based on Theorem 4.1 below showing that one can draw node-arms in & and allocate them to
the graph such that the associated edge-arms follow the probability distribution 1™ solution of
(G-relaxed-2).

Theorem 4.1. Let v* be a solution of the following optimization problem.:

-1
. T
min max x’ E Y2 Zx . (G-relaxed-X)
yESy ¥'EX cx

x

Let I'* € Sz be defined for all z = vec (:B:L”T) € Zby Iy = iy Then, I' is a solution of
(G-relaxed-2).

To prove Theorem 4.1, we first state a useful lemma. For any finite set X C R and v € Sx,
let Zx(v) = Y cx Yazx . We define the function hx : Sx — R U {+00} as follows: for
any vy € Sx,

maxycx o' Xx(y) "t if Xx () is invertible
hx(7) = .
+00 otherwise .

Lemma 4.1. Let X C R? be a finite set spanning R and let Z = {vec (zz'") | (z,2") € X2}.
Ifv* € Sx is a minimizer of hx, then ¥* is a solution of

—1
T
min max ZT E E Ya Yz VEC <$$,T> vec (ZL'ZL'/T) z .
YESy z€EZ

rzeX z'eX

Proof. First,letus notice that, forany X C R%, onehashy > 0. Thus, ~* isalso a minimizer
of h%,. In addition, X’ is spanning R? so hx (v*) < +0c. Developing hy (7*)? yields:

* *\ T *\—1 T *\—1
") % h(r") = (ma 2B 12 ) x (mag 2 Ser7) o)
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4 Best-arm identification in graphical bilinear bandits
= maxmax ' Yx(v") lzz’T Tp(y*) e
zeX z'eX

a T x\—1,_ . /T *\—1
= max max vec <xx ) vec <EX(*y ) xx X () )
TEX 2'eX

= max max vec <xx'T>T(EX('y*)_1 ® Zx(v*)71) vec <a:3:'T>
TEX 2'eX

=max z' (Zx(v) ' ® Zx(v) M)z,
zZEZ

where ® denotes the Kronecker product. We can now focus on the central term:

-1 1
Zx(v) @ Zxly (Z VaX T > ® <Z'Y;CCCCT>

TEX zeX

-1
IEEI

zeX zeX

—il
( VaYar (a:x ® x’w'T))
zeX x'eX

= [ X=X v vee (2a'T) vee (w2 T)T> - |

zeEX 2'eX

and the result holds. O

Proof of Theoreme 4.1. From [53], we know that minpes, hz(I') = d?® and
minyes, hx(y) = d. Then, using Lemma 4.1, one has

d® = hx(v*) x ha(v*)

—1
T
—
= Izlllél%( & (Z Z Vava vec( )Vec (:c:c' ) > o

zeX z'eX
—1
= max 2’| g IFzzT | 2.
Z'eZ
2€Z

This result implies that hz (I"*) = d?. Since minyes, hz(I') = d?, I'* is a minimizer of
hz.
O
This theorem implies that, at each round ¢ > 0 and each node ¢ € V, if ;UIEZ) is drawn from
~*, then for all pairs of neighbors (7, j) € E the probability distribution of the associated edge-
arms zt(z’]) follows I"™. Moreover, as y* is a distribution over the node-arm set X, I is a joint
(product) probability distribution on X2 with marginal 7*.

40



4.2 Algorithm and guarantees

On the computation of v*.  Let us first state the following proposition:

Proposition 4.2. Lerd > 0, for any set X C R< hy 75 convex.

Proof. Let (v,7') € 8% be two distributions in Sx. If either X'x () or Xx (V) are not
invertible, then for any ¢ € [0, 1] one has

hx(ty + (1 —t)y) < thx(y) + (1 - thx(Y) = +oo .
Otherwise, for t € [0, 1], we define the positive definite matrix Z(t) € R as follows:
Z(t) =tZx(7) + (1 - ) Zx(v) -
Simple linear algebra [74] yields

oZ(t)~t _LOZ(1)
o =207

Using this result and the fact that §?Z(t)/0t? = 0, we obtain

Z(t) L.

0°2(1)" D20 5 ) 1 02(0)

o~ AT 5 2T Z@)™
Therefore, forany z € X,
RxTZ(t) o () Z() -
T_2TZ() L Z() T Z(t) 'z
() (B

>0

— 9

which shows convexity for any fixed € X. The final results yields from the fact that A x is
a maximum over convex functions.

O

Although we face a min-max optimization problem and given the convexity of hx, we apply
the Frank-Wolfe algorithm [41] to compute the solution v* of (G-relaxed-X), as it is more suited
to optimization tasks on the simplex than projected gradient descent. The convergence of the
algorithm has been proven in [34].

Given the characterization in Theorem 4.1 and our objective to verify the stopping condition
in (4.3), we present our sampling procedure in Algorithm 8. We also note that at each round the
sampling of the node-arms can be done in parallel.

This sampling procedure implies that each edge-arm follows the optimal distribution ™. How-
ever, if we take the number of times each z € Z appears in the m pulled edge-arms of a given
round, we might notice that the observed proportion is not close to I}, regardless of the size of
m. This is due to the fact that the m edge-arms are not independent because of the graph structure
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4 Best-arm identification in graphical bilinear bandits

Algorithm 8: Pure-Exploration-Algorithm : Randomized G-Allocation for GBB
Input :graphG = (V, E),arm set X
SetAg ZI;bQ :O;t: 1;
Apply the Frank-Wolfe algorithm to find v* solution of (G-relaxed-X’).

while szopping condition (4.3) is not verified do
// Sampling the node-arms

Draw ﬂfgl)v e 7$§n) n ~* and obtain for all (¢, j) in E the rewards ygi’j);

// Estimating f; with the associated edge-arms
N (AT
Ar=Ar 1+ )k Zy’j)zwgl’]) 5

bt = btfl + E(z,])EE Zt(ZJ)ylglJ);
0 = A7
t+—t+1;

end

return ét

(¢f- Section 4.3.1). Conversely, since each group of m edge-arms are independent from one round
to another, the proportion of each z € Z observed among the mt pulled edge-arms throughout
t rounds is close to 1.

One may wonder whether deterministic rounding procedures could be used instead of ran-
dom sampling on ~*, as it is done in many standard linear bandit algorithms [39, 90]. Applying
rounding procedure on * gives the number of times each node-arm x € X should be allocated
to the graph. However, it does not provide the actual allocations that the learner must choose
over the ¢ rounds to optimally pull the associated edge-arms (z.e., pull edge-arms following I™).
Thus, although rounding procedures give a more precise number of times each node-arm should
be pulled, the problem of allocating them to the graph remains open, whereas by concentration of
the measure, randomized sampling methods imply that the associated edge-arms follow the op-
timal probability distribution I™. In this thesis, we present a simple and standard randomized
G-allocation strategy, but other more elaborated methods could be considered, as long as they
include the necessary randomness.

On the choice of the G-allocation problem. We have considered the G-allocation optimiza-
tion problem (G-opt-Z), however, one could want to directly minimize max, e z2 ||z — 2/|| A7D
known as the XY-allocation [39, 90]. Hence, one may want to construct edge-arms that follow the
distribution 1'%, solution of the relaxed XY-allocation problem:

1
min  max (2 — z”)T<Z FzzzT> (2 =2") .

IreSz (2/,2")ez? ez
Although efhicient in the linear case, this approach outputs a distribution I' %+, which is notajoint

probability distribution of two independent random variables, and so cannot be decomposed as
the product of its marginals. Hence, there is no algorithm that allocates identically and indepen-
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4.2 Algorithm and guarantees

dently the nodes of the graph to create edge-arms following I'%+,. Thus, we will rather deal with
the upper bound given by the G-allocation as it allows sampling over the nodes.

Static design versus adaptive design. Adaptive designs as proposed for example in [90] and
[39] provide a strong improvement over static designs in the case of linear bandits. In our particu-
lar setting however, it is crucial to be able to adapt the edge-arms sampling rule to the node-arms,
which is possible thanks to Theorem 4.1. This result requires a set of edge-arms Z expressed as a
product of node-arms set X. Extending the adaptive design of [39] to our setting would eliminate
edge-arms from Z at each phase, without trivial guarantees that the newly obtained edge-arms set
Z' C Z could still be derived from another node-arms set X’ C X. An adaptive approach is
definitely a natural and promising extension of our method, and is left for future work.

4.2.2 Convergence Analysis

We now prove the validity of the random sampling procedure detailed in Algorithm 8 by con-
trolling the quality of the approximation max ¢z zTAt_ 12 with respect to the optimum of the

. o T N
G-allocation optimization problem max,/¢z 2’ (ZZ L2 z:T) "' described in (G-opt-2).

As is usually done in the optimal design literature (see e.g., [76, 83, 90]) we bound the relative error

Bs:

z€EZ

-1
maxz' A7z < (14 6) maxz <Zz* *T)

Our analysis relies on several results from matrix concentration theory. One may refer for instance
to [96] and references therein for an extended introduction on that matter. We first introduce a
few additional notations.
. . . 2 2
Let fz be the function such that for any non-singular matrix Q € RE*d,
— . . . A
fz(Q) = max,cz 2" Q~!zand for any distribution I' € Sz werecallthat Xz(I") = > > IzzT

mt

is the associated covariance matrix. Finallylet AF = "7 2%2*T be the G-optimal design matrix

constructed during ¢ rounds.

Theorem 4.2. Let I'* be a solution of the optimization problem (G-relaxed-Z). Ler 0 < § < 1
and let to be such that
to = 2Ld*log(2d*/5) /Amin

where Amin 75 the smallest eigenvalue of the covariance matrz’x% > ez 221, Then, at cach round
t > to with probability at least 1 — 9, the randomized G-allocation strategy for graphical bilinear
bandits in Algorithm 8 produces a matrix Ay such that:

fz(Ay) < (1+B)fz(AT)

5 Ld®> |2v | 242 N 1
T e—— — R 0 P
S VI A A Vi)

and v £ HE[(Al — EAl)Q] H

where
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4 Best-arm identification in graphical bilinear bandits

To prove this confidence bound, we need the two following propositions.

Proposition 4.3 ([96], Chapter S and 6). Let Z, . .., Zy be i.i.d. positive semi-definite random
matrices in RY XdZ, such that there exists L > 0 verifying 0 =< Zy = mLIL Let Ay be defined
as A, 2 Zt Zs. Then, forany 0 < € < 1, one can lowerbound Amin(Avy), the minimum

s=1

eigenvalue of Ay, as follows:

t€2)\min(EZ1)
P(Amin(A¢) < (1 — &) Amin(EA,)) < d?e 2mL

If in addition, there exists some v > 0, such that ||E[(Zy — EZq)?]|| < v, then for anyu > 0,

one bhas )

u
P(|S|| > u) < 2d2 2mLu/3+2tv
From the second inequality, [78] derived a slightly different inequality that we use here :

Proposition 4.4 ([78], Appendix A.3). Let Zy, . .., Zy bet ii.d. random symmetric matrices in
REXP sych that there exists L > 0 such that || Z1|| < mL, almost surely. Let Ay & S| 7.
Then, for any u > 0, one has:

L
IP’<||At —EA|| > vV2tou + ’”3“) < e

wherev = ||E[(Z1 — EZ1)?]]|.

Finally, to prove our main theorem, we need the following lemma.

Lemma 4.2. One bas H Yz(I *)_1 H < )\ﬁn, where Amin 25 the smallest eigenvalue of the covari-

| T
ance matrix grz ) ez 2 2

Proof. Define B = {z eR? ; z|l = 1}. First, for any semi-definite matrix A € R4 xd*

we have ||A| = max,ep 2" Az. Because Xz (I'*) ™! is positive definite and symmetric,
and by Rayleigh-Ritz theorem,

T ) —1
_ 2 ' Xz(I™*)" 'z _
oot - gy TR g s

25 42 . . . .
Let Z € RE"X4" be the matrix whose rows are vectors of Z in an arbitrary order. Notice

that Z spans Rdz, since X’ spans R4, Now for any z € B, define ﬁ(‘z) € RE? a5 a vector
such that z = ZT 3 . Then,

12207 = max & Z25(1") 127 5%
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d? d2

= max Z Zﬂfz)ﬁj(z)zg—EZ(F*)_lzj

eB
2= =1

2
BN x max 2] Tz(I*) "2 .

1 (2%}

< max ‘
z€EB

1
s 1 T -1 ST » 2
Define Z; = Xz(I'™*) " 22;. Clearly, max; ; 2, Xz(I™*)” 2; = max;; %, Z; = max; Z;.

So we have

|£2(*) 7| < max Hﬁ(z) : x max 21 Xz (™)1
~ z€B 1 ez

< max Hﬁ(z)

2d2
z€B 1

The lastinequality comes from Kiefer and Wolfowitz equivalence theorem [53]. Now observe

that () can be obtained by least square regression : s = (ZZT)AZZ = (ZT)TZ

where ()1 is the Moore-Penrose pseudo-inverse. Note that ZZ ' is a Gram matrix. It is

known that for a matrix having singular values {0}, its pseudo-inverse has singular values
L ifo

{Ui ifo; 20

for all 7. So for z € B, we have:
0  otherwise

2 2 ]2 K2
1_K b 2_K (Z ) - ’

B o (Z)?

where Opmin(+) refers to the smallest singular value. Let Apin(+) refer to the smallest eigen-
value. Noting that

1
Umin(z)2 — )\min (ZTZ) =S KZ)\min <I(2 Z ZZT> 9

zZ€EZ

yields the desired result.

We can now prove the main theorem.

Proof of Theorem 4.2. Let (Xél))s:17...7t, ol (Xén))s:h“,t be nt i.i.d. random vectors in
R such that forall z € X,P(Xfl) = x) = ;. For (i,j) € Eand 1 < s < t, we define

the random matrix Z{"7 by

709 — vec (X;'Xg'T) vec (X§X§T>T
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Finally, let us define forall 1 < s <'¢, the edge-wise sum Z, € R4 Xdz, that is

Z Z,(9)

(¢,5)EE

One can easily notice that Z1, . . ., Z; are i.i.d. random matrices. We define the overall sum
A = 2221 Z and our goal is to measure how close fz(Ay) is to fz(mt x Xz(I™)),
where mt corresponds to the total number of sampled arms 2z € Z during the ¢ rounds of
the learning procedure. By definition of A, one has

-1

T -1 T
) - 2[a)
<7240 s~y T3 5 z

1 (i,5)eE

-
= max z" E g g it vee (zx' ") vee (za'T) z
z€E
s=1(i,j)eE z,x'eX
-1

= max 2z E g F*,z’z'T %
ZEZ

s=1 (i,j)cE ¥ €2
= fz(mtEg(F*))

This allows us to bound the relative error as follows:
fz(Aq)
fz(mt x Xz(I'%))
max,cz 2 (At_l —(EA) ' + (EAt)_l)z )

fz(mt x Xz(I'))
maX,cz 2 ' (A;1 — (EAt)A)z

= Fa(mt X 2z (T)

By = —1

Using the fact that fz(mtXz(I™*)) = d?/mt [53], we obtain

mt T(A-1 -1
fis g omey o (A7 - A7)
mt 2 —1 -1
S 2] Ay~ — (EA) ||

mtL _ _
<7 <A - BA)TY) -
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4.2 Algorithm and guarantees

Therefore, controlling the quantity ||A; ! — (EA;) ™| will allow us to provide an upper
bound on the relative error. Notice that

IA7! = (BA) ™| = Ay (BA, — A (EAY) |
< ||A7Y IEA; — Al [(BEA) T -

tAmin (EZ))
m

Using Proposition 4.3, we know that for any d?e~ < 0p, < 1, the following holds:

_ EA;)”
art) < — 1A | ,
1— /2L | (BZ:) | log(d /)

with probability at least 1 — 9y,. Similarly, using Proposition 4.4, for any 0 < d; < 1, we

have
2 2

L. d d
1A — EA| < 22 log & + 4 [2tv2log & |
3 Op o

with probability at least 1 — ;. Combining these two results with a union bound leads to

the following bound, with probability 1 — (05 + 05,):

H (mL/3)log(d2/5b)+ 2tv log(d?/dy) .

- < om
1 \/ (2mL/t)H(EZ1)_1H log(d2/6)

In order to obtain a unified bound depending on one confidence parameter 1 — d, one could

optimize over dp and dj, subject to &, + 6, = . This leads to a messy result and a negligible

improvement. One can use simple values 0, = 0, = 0/2, so the overall bound becomes,

with probability 1 — ¢:

m2L2log(2d2 /)

2 1 T
HAfl - (EAt)AH < HZZ (™) 1H d —
t -1 2
\/2L||Zz(1 *) : [| log(2d?/5)

This can finally be formulated as follows:

s @ao| < gl ity () (i)

Using the obtained bound on [|A; ' — E(A;) ™! yields

fz<m{i(§2<r*>>‘1§n§fx (t 2221 <2d>+ (t\1/>>
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4 Best-arm identification in graphical bilinear bandits

L 112 [2v 2d? 1
SWuEZ(F) 1“ t10g<5>+0(\/f) )

By noticing that fz(mt x X z(I'*)) < fz(A}) and by using Lemma 4.2, the result holds.
O

We have just shown that the approximation value max, ¢z 2 T A; 'z converges to the optimal
value with a rate of O (y/v/(m+/t)). In Section 4.3.1, we show that the best case graph implies
av = O(m) matching the convergence rate O (1/v/mt) of a linear bandit algorithm using ran-
domized sampling to pull mt edge-arms without (graphical) constraints. Moreover, we will see
that the worst case graph implies that v = O (m?).

Since we filled the gap between our constraint objective and the problem of best arm identifi-
cation in linear bandits, thanks to Theorem 4.1 and 4.2, we are able to extend known results for
best arm identification in linear bandits on the sample complexity and its associated lower bound.

Corollary 4.1 ([90], Theorem 1). If the G-allocation is implemented with the random strategy of
Algorithm 8, resulting in an B-approximation, then with probability at least 1 — 0, the best arm
obtained with ét is zy and

1280%d%(1 + f3¢) log (67"25#)

mA?2 ’

min

t <

where Apin = minzeg\{z*}(z* — z)TH*.

Moreover, let 7 be the number of rounds sufficient for any algorithm to determine the best
arm with probability at least 1 — 9. A lower bound on the expectation of 7 can be obtained from
the one derived for the problem of best arm identification in linear bandits (see e.¢., Theorem 1 in

[39]):
. 1\ 2072 — 2113,y
Elr] 2 min max log| o— :
I'eSz zeZ\{z} : m((z* - Z)T9*>

As observed in [90] this lower bound can be upper bounded, in the worst case, by 402d? / (m A2 . )

which matches our bound up to log terms and the relative error 3;. Note, however, that since we

borrow this lower bound from the standard linear bandit literature, it does not take into account
the graph constraint, so it may never be reached.

4.2.3 Case where M, is not symmetric

Consider the relaxation of the assumption we made at the beginning of the chapter, namely that
M, is symmetric. We now consider that M, is not necessarily symmetric. We recall here that in
the graph G = (V, E) associated with the graphical bilinear bandits framework, (i,j) € E if
and only if (4, ) € E. Therefore, for a given allocation (21, ..., 2(™) € X™, we can write the
associated expected global reward as follows:
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4.2 Algorithm and guarantees

Z +OTM, () = Z Z tOTM, 20 4 20TV, 2@
(i,j)EE i=1 jeN(3)

N S 2OTMLO + (x(mM*x(i))T

=3 Y dOTMLeO) 4 5 OTM] 20

Let us denote M, = M, + MI One can notice that M, is symmetric. Consider the edge set
E={(i,j)e E|i€V,jeV,j> i}, thereare exactly m/2 edges in E and the objective of
the central entity is to find, within a minimum number of rounds, the joint arm that maximises

> 2TM2) (4.4)
(i,j)eE
Every time the central entity chooses a joint arm (xgl), cey xgn)) at time ¢, it receives for each

edge (i, j) € E the rewards yt(i’j) = a?gi)TMx(j) and yﬁj’i) = a:,gj)TMa?(i). By summing yt(i’j)

and y(j ), one has,

7y = (vec ( ) vec (M*)> + <Zx§j>x£i> , vec (M*)> + (m(i’j) + ﬁgj’i)>

vec (wt xt ) vec (M*)> + <vec (:cgi)a:gj)j—) , vec (MI>>

=
<
+( (w)+17( ))
<Vec (mt xt] 2
(vee (w1
<

vee (M. +M] ) ) + (55 476

)
) vee (M) ()

() *> (7715 i) i 7719#))
—_——

\/ia'-sub-gaussian random variable

(J

vec (a:t Ty
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4 Best-arm identification in graphical bilinear bandits

where 0, = vec (M*) is the vectorized version of the true parameter matrix IM,.

Hence at each round ¢, and for each edge (4, j ) € E, the central entity aggregate the reward
y and y

subgaussian random variable, that can be used to compute an estimate ; of 6. Notice that the

amount of rewards yt(i’j) obtained during a round is 1, but since the central entity needs to sum
Solving this best arm identification problem for the graphical bilinear bandits with a non-

to get a reward of the form (2,6,) + 1 with z € Z and where 7 is a v/20-

to compute 6y, we thus consider only m /2 obtained information per round.

symmetric matrix M, and an edge set £ is exactly solving the best arm identification problem
for graphical bilinear bandits with the symmetric matrix M, and the edge set E. The solution of
this problem is exactly what we proposed throughout the previous sections.

4.3 Influence of the graph structure on the convergence rate

4.3.1 Characterization of the variance associated with the randomized strategy

The convergence bound in Theorem 4.2 depends on v = [|[E[(A; — EA1)?]]|. In this sec-
tion, we characterize the impact of the graph structure on this quantity and, by extension, on the
convergence rate.

Fori € {1,...,n}ands € {1,...,t}, let X be i.id. random vectors in X’ such that for
alz € X,
1) _ )
P(Xl = .fL‘) =z .

Fach X §2) is to be viewed as the random arm pulled at round s for the node 7. Hence one can
write

N N N T
A= Z vec (XY)X@—U vec (sz)ij)T)
(i,5)€E
Let denote Agw) = vec (XpX{J)T) vec (XI(Z)X?)T) suchthat A1 = z(i,j)eE Agw) and

let define for any random matrices A and B the operators Var(A) £ E[(A — E[A])?] and
Cov(A,B) £ E[(A — E[A])(B — E[B])]. We can derive the variance of A as follows:

Var(A;) = Z Var(A(m )
(i,J)eE

+ 3 > cov(al? Al

(i,7)EE (k,)EE

(kD) #(1.7)
One can decompose the sum of the covariances into three groups: a first group where & # 4, j
and [ # 14, j which means that the two edges do not share any node and COV(Agw) , Agk’l)) =0,

and two other groups where the edges share at least one node. For all edges (i, j) € E we consider

50



4.3 Influence of the graph structure on the convergence rate

either the edges (i, k) € E where k # j, yielding COV(Agi’j)7 Agi’k)) o the edges (j, k) € E,
yielding COV(AEW)7 Agj’k))_

Hence, one has

Var(Ap) = Z Var< ’])>

(@ J)GE

+Z Z Z Cov< (lk))

i=1 jeEN (i) keN(7)
k#j

—l—Z Z Z Cov( i-3) Ok)) :

i=1 jEN (i) keN(j)

Let P > 0 be such that forall (¢, j) € E, Var(Agi’j)> < P xTIand M, N > 0 such that
forall (i,7) € E:

Vk € N(i), Cov (A(“), AY”“)) <M XTI,

Vk € N(j), Cov(A( is7) Agj”“) <N xT.

We want to compare the quantity ||Var(A;)|| for different types of graphs: star, complete,
circle and a matching graph. To have a fair comparison, we want graphs that reveal the same
number of rewards at each round of the learning procedure. Hence, we denote respectively ng,
NCo», Nci and nyp the number of nodes in a star, complete, circle and matching graph of m edges

and get:

Star graph. We have,
Var(A;) <mx P-I+ (ng—1)(ng —2)M -I+ng(ng—1)N -1 .
Since the star graph of m edges has a number of nodes ng = m/2 + 1, we have

|[Var(A1)|| <m x P+ (M + N) x O(m2) .

Complete graph.  As for the star graph,
Var(Aj) 2 m x P -1+ nco(nco — 1)(nco —2)M - I+ nco(nco — 1)(nco —1)N - 1 .
Since the complete graph of m edges has a number of nodes nco, = (1 + v4m + 1) /2, we have

[|Var(Aq1)|| <m x P+ (M + N) x O(my/m) .
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4 Best-arm identification in graphical bilinear bandits

Circle graph. Again,
Var(Aj) =mx P-I+42nciM - I+ 4neiN -1 .
Since the circle graph of m edges has a number of nodes nc; = m/2, we have

[Var(Z1)|| <m x P+ (M + N) x O(m) .

Matching graph. Finally,
Var(Aj) =mx P-I4+nyN -1 .

Since the matching graph of m edges has a number of nodes ny = m, we have
|[Var(Aq)|| <mx P+mx N .

We thus obtain the bounds stated in Table 4.2.

Graph Upper bound on || Var(A)]| Bi

Star mP + (M + N)O(m?) O(1/Vt)
Complete  mP + (M + N)O(mym)  O(1/(mivi))
Circle mP + (M + N)O(m) O(1/vmt)
Matching mP 4+ mN O(1/v/mt)

Table 4.2: Upper bound on the variance and convergence rate of Algorithm 8 for the star, complete, circle
and matching graph with respect to the number of edges m and the number of rounds ¢.

These four examples evidence the strong dependency of the variance on the structure of the
graph. The more independent the edges are (.¢., with no common nodes), the smaller the quantity
||Var(Ay)|| is. For a fixed number of edges m, the best case is the matching graph where no edge
share the same node and the worst case is the star graph where all the edges share a central node.

4.3.2 Experimental results validating the dependence on the graph

In this section, we consider the modified version of a standard experiment introduced by [90] and
used in most papers on best arm identification in linear bandits [39, 92, 106, 109] to evaluate the
sample complexity of our algorithm on different graphs. We consider d+1 node-armsin X' C R4

where d > 2. This node-arm set is made of the d vectors (eq, . . ., 4) forming the canonical basis
of R? and one additional arm x4, 1 = (cos(w),sin(w),0,...,0)" with w €]0,7/2]. Note
that by construction, the edge-arm set Z contains the canonical basis (€, . .., €/,) of R The

parameter matrix M, has its first coordinate equals to 2 and the others equal to 0 which makes
2 .

0, = vec(M,) = (2,0,...,0)" € R¥. The best edge-arm is thus 2, = 21 = ef.

One can note that when w tends to 0, it is harder to differentiate this arm from z(@+1.d+1) —
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1054 Worst case (w=0.1)  Best case (w=pi/2) Best case (w=pi/2)
\ —~-- all graph type —4— matching 1207 —4— matching
\ star star
104 4 \\ —A— complete 1001 —4— complete
S —*— circle circle
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Figure 4.3: Number of rounds ¢ needed to verify the stopping condition (4.3) with respect to left: the
number of edges m where the dimension of the edge-arm space Z is fixed and equal to 25 and
right: the dimension of the edge-arm space Z where the number of edges is fixed and equal to
156. For both experiments we run 100 times and plot the average number of rounds needed to
verify the stopping condition.

vec <x(d+1)w&+1))than from the other arms. We set nt(z,y) ~ N(0, 1), for all edges (i, j) and
round .

We consider two cases where w = 0.1 which makes the edge-arms 2(L1) and Z(d+Ld+1) dif.
ficult to differentiate, and w = /2 which makes the edge-arm z(b1) easily identifiable as the
optimal edge-arm. For each of these two cases, we evaluate the influence of the graph structure,
the number of edges 1 and the edge-arm space dimension d? on the sampling complexity. Results
are shown in Figure 4.3.

When w = 0.1, the type of the graph does not impact the number of rounds needed to verify
the stopping condition. This is mainly due to the fact that the magnitude of its associated variance
is negligible with respect to the number of rounds. Hence, even if we vary the number of edges
or the dimension, we get the same performance for any type of graph including the matching
graph. This implies that our algorithm performs as well as a linear bandit that draws m edge-
arms in parallel at each round. When w = 7/2, the number of rounds needed to verify the
stopping condition is smaller and the magnitude of the variance is no longer negligible. Indeed,
when the number of edges or the dimension increases, we notice that the star graph takes more
times to satisfy the stopping condition. Moreover, note that the sample complexities obtained for
the circle and the matching graph are similar. This observation is in line with the dependency on
the variance shown in Table 4.2.

4.4 Conclusion & Perspectives

We provided an algorithm based on the G-allocation strategy that uses randomized sampling over
the nodes to return a good estimate M that can be used instead of M., to identify the couple
(x4, 2, ). Moreover, we highlighted the impact of the graph structure on the convergence rate of
our algorithm and validated our theoretical results with experiments.

While the estimate M is constructed in order to identify the couple (2, ) that is used in

algoriothm 5 and gives a ;rf -approximation solution, a perspective of improvement can be to
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4 Best-arm identification in graphical bilinear bandits

construct the estimate M that identifies with high probability the couple (Z,, &/, ) that is used in

Algorithm 6 that gives the better (% + 6) -approximation guarantee. We let this extension for

future work.! Moreover, in this chapter we based our algorithm on the G-allocation strategy that

minimises max, z 2||z|| , 1 that is upperbound of max(; .,y z2 ||z — 2’| 41, objective of XY~
t ’ t

allocation strategy. An algorithm based on the XY -allocation represents a promising extensions

for our model.

"The design of Algorithm 6 and its associated guarantee are posterior to the best arm identification algorithm that we
proposed in this chapter. This extension is an ongoing work and might be added to the final version of this thesis.
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In this chapter, we also assume that we do not know the parameter matrix M, and as described
in the problem setting in Section 1.2, a central entity faces the graphical bilinear bandits problem
where at each round it chooses an arm for each node of the graph and observes a bilinear reward
for each edge of the graph. The objective of the central entity is the following:

Objective: Design an algorzthm that maximizes the expected cumulative global reward ob-

tained during T rounds Zt 12-(ij)eE T (Z) M*xg ),

We will naturally rely on some ideas and results presented in Chapter 3 where the matrix was
assumed to be known by the central entity. We follow the notations we established in section 1.2.1.

5.1 Optimism in the face of uncertainty for graphical bilinear

bandits

5.1.1 Preliminaries

Let us recall that maximizing the cumulative rewards is equivalent to minimizing its associated
regret. We thus define the global pseudo-regret over 1" rounds as follows:
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5 Regret based algorithms for graphical bilinear bandits

We recall that the objective of the learner is to have a pseudo-regret R(T'), such that

din, T =0

We know from Theorem 3.1 that finding the best joint arm

(m&l),...,xin)) = argmax Z x(i)TM*x(j)
(M .. z(M)ex (i.j)eE

is NP-Hard with respect to the number of agents . We extend this result in the following
corollary.

Corollary 5.1. There does not exist a polynomial time algorithm in 1 such that

. R(T) _
T 6

for any instance of the graphical bilinear bandits described in Section 1.2, unless P = N P.

Proof. Suppose that there exists a polynomial time algorithm in 72 such thatlimp_, % —

0 for any instance of the graphical bilinear bandits described in Section 1.2. In particular con-

sider the class of instances where the graph G is of degree 3 (z.e., each agent has 3 neighbors),
0 1
where X = {eg, e1} is the canonical basis in R? and the parameter matrix M, = 1 al

The pseudo-regret is such that

3f : R — Rwith Tlim f(T) =0, suchthat R(T) =T x f(T)
—00

with a computational time in poly(n) per iteration.

Let us consider the best case scenario for the learner and assume that the matrix M, is
known.

Then, for { = argmax;,_; 7 > Gj)eE T (Z) M*:cg DT e have

TZSU MmJ)T>ZZ DT M *:ct

(3,9)€EE t=1 (i,5)eE

>T7 Y 2P M T x (1)
(.9)eE
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5.1 Optimism in the face of uncertainty for graphical bilinear bandits

which gives,

AsT — oo, f(T) — 0, hence consider the cases where

<c>< g x* *.T}* R

(i,5)€E

for a certain constant ¢ > 0.
It gives that

Z xgi)TM*xgj)TZ Z 2 TMLEDT — e x Z 2 M, 2T
(i,§)eE (4,5)EE (i.5)eE
=(1-¢ Y ¥ MY, (5.2)
(i,9)EE

with a computational time in poly(n) per iteration.

However, we know from the proof of Theorem 3.1 that solving the optimization prob-
lem MAX ;1) z(n)) Z(i,j)eE zOTM,z@T is the same as solving the max-cut problem.
Moreover, we know from Theorem 1 in [14] that there does not exist a polynomial time al-
gorithm in the number of nodes that has an approximation ratio better than 33(1] ~ 0.997
of the optimal solution of the max-cut problem for any graphs of degree 3, unless P = N P.
By taking ¢ = 0.002, Eq. (5.2) gives an approximation ratio of 0.998. This concludes the
proof. ]

Hence, the objective of designing an algorithm with a sublinear regret in 7" is not feasible in
polynomial time with respect to n. However, some NP-hard problems are c-approximable (for
some « € (0, 1]), which means that there exists a polynomial-time algorithm guaranteed to pro-
duce solutions whose values are at least cv times the value of the optimal solution. We refer the
reader to chapter 3 for more information on approximating the optimal solution of our problem.
For these kind of problems, it makes sense to consider the a-pseudo-regret as in [31, 52] which is

defined for all @ € (0, 1] as follows

T
é Z Z xiZ)TM*JI,(;]) - Z ﬂfg) *335/]) ’

t=1| (ij)eE (i.4)EE

and set the objective of designing an algorithm with a sublinear c-regret.
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Finally, as we did in chapter 4, let us recall that the reward obtained for each edge of the graph
at each round can be seen as a noisy linear reward in higher dimension [51] with

ygi’j) = <Vec (:Egi)x(j)—r) , vec (M*)> + nt(i’j) .

To simplify the notation, let us refer to any * € X as a node-arm. Let us use the notation

Zye = vec (z2'"), and define the arm set Z = {z,,/|(z,2') € X%} whereany 2z € Z will
(1)

be referred as an edge-arm. If the arm x;° € X represents the node-arm allocated to the node

i € V attime t, for each edge (i,j) € E we will denote the associated edge-arm by zt(i’j ) 2

(@) ,.(4)

T . . .
vec (xt Ty > € Z and define 0, = vec (M,) the vectorized version of the unknown matrix

M.,. With those notations, the (now) linear reward can be rewritten as follows:

9 = (49, 0,) 149 53)

Assumption 5.1 (Bounded edge-arm norm and parameter norm). We consider that there exists
L > 0, for all edge-arm =z € Z, such that ||z||a < L. Moreover, for some S > 0, the norm of the
true parameter O, is such that ||0,||2 < S.

Assumption 5.2 (Positive and bounded rewards). We consider that for any z € Z, the associated
expected reward (z,0,) is such that 0 < (z,0,) < LS

In this chapter, we choose to design an algorithm based on the principle of optimism in the
face of uncertainty [12], and in the case of a linear reward [2, 63], we need to maintain an estimator
of the true parameter 6,. To do so, let us define for all rounds ¢t € {1, ..., T} the OLS estimator
of 0, as follows:

0= A, (5.4)
where,
Ap=Mp+Y > 20T
s=1 (i,j)eE

with A > 0 a regularization parameter and

btzzt: S iyl

s=1 (i,j)eE

We define also the confidence set
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R 1 12
Cy(5) = {e N6 - Bullp < a\/d2 log<+t7?/)\) 4 fAs} ,

where with probability 1 — §, we have that 8, € Cy(0) forallt € {1,...,T},and 6 € (0, 1].

5.1.2 Algorithm and analysis of the regret

In chapter 3, we presented two algorithms (Algorithm 5 and 6) that use the true parameter matrix
M., to return an allocation of arm that achieve an a-approximation solution of maximizing the
global reward. Naturally, since we do not have access to M., we cannot use it directly at each
iteration to maximise the cumulative global reward (and thus minimize the associated regret).
Nevertheless, one can use the constructed estimator ét and the principal of optimism in the face
of uncertainty to overcome the fact that M, is unknown.

Indeed, we recall that in Algorithm 5, the couple (4, ) is chosen as follows,

(24,2)) = argmax " (M* + MI) 2 (5.5)
(z,x’)eX?

= argmax(2zy + 2z/z, %) (5.6)
(z,x’)EX?

and is used to create as much as possible edge arms of the form 2,/ and z,,, in the graph. Here
instead, at each round ¢, the central entity chooses optimistically the couple (x, 2}) as follows,

(¢, my) = argmax  max  (2gp + Zura, 0)
($,$/)€X2 960,5,1(6)

and then allocates the node-arms to maximize the number of locally-optimal edge-arms 2z, ./

and z/,,. The method is presented in Algorithm 9

Theorem 5.1. Given the Graphical Bilinear Bandits problem defined in Section 1.2.1, ler 0 < & <
1 be a problem-dependent parameter defined by

gm0
e EZ(i,j)€E<Z*7 a9*>
1+¢

and set o« = =35>, then the a-regret of Algorithm 9 satisfies

R,(T) < O((adz + S\FA) Vv Tmmax(2, (LS)2)) + LSm {dz log, <Tm(5LZ/)\>-‘ ’

where O bides the logarithmic factors.
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Algorithm 9: Adaptation of OFUL algorithm for Graphical Bilinear Bandits

Input :graph G = (V, E), node-arm set X

(V1, V) = Approx-MAX-CUT(G)

fort =1z27T do

// Find the optimistic best couple of node-arms

(:vt, x, ét_l) = ArgMax(y . g)ex2xCy_y (Faaw! + Zarzs 0);
// Allocate ¢ and 7} in the graph

xii) = gz, forall 7in V74 xgi) = x} forall i in V5;

Obtain for all (i, j) in E the rewards ylgi’j ),

Compute 0; as in (5.4)

end

return 6;

Proof. To properly derive the regret bounds, we will have to make connections between our
setting and a standard linear bandit that chooses sequentially 7'm arms. For that matter, let
us consider an arbitrary order on the set of edges E and denote E[i] the i-th edge according
to this order with i € {1,...,m}. Wedefineforallt € {1,...,T}andp € {1,...,m}
the OLS estimator

b A-—1
Ot,p - At,p bt,p )

where

t—1 m p
App =2+ > Y LEBLEUT | N B BT
s=1 b=1 k=1

with A a regularization parameter and

t—1 m p
bip=D > 2 tlyfll 4 3 P s (57)
s=1 b=1 k=1

We define also the confidence set

A 1+tmL2/)\
Cupl6) = {0: 16— Oul o ga\/dﬂog(“j;‘/) +ﬁs} C68)

where with probability 1 — §, we have that 6, € C;,(0) forallt € {1,...,T},p €
{1,...,m}andd € (0,1].
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Notice that the confidence set C¢(9) defined in Section 5.1.1 is exactly the confidence set
C't,m (0) defined here. The definitions of the matrix A; ,, and the vector by ,, follow the same
reasoning.

Recall that (xv(kl)v 000y xi”)) = arg max(x(l) x(”)) Z(ZJ)GE x(Z)TM*x(]) is the op-
timal joint arm, and we define for each edge (7, j) € E the optimal edge arm 2 =
vec (ac,(f)wi])T).

Let us borrow the notion of Critical Covariance Inequality introduced in [30], that is for
agivenroundt € {1,...,T}andp € {1,...,m}, the expected covariance matrix A;

satisfies the critical covariance inequality if

Atfl,m < At,p < 2latfl,m o (59)

Letus now define the event Dy as the event where atagiven round ¢, forallp € {1,...,m},
A, satisfies the critical covariance inequality (CCI).
We can write the pseudo-regret as follows:

T
R(T) = 1D Y (9,6, - (*".6,)

t=1 (i,J)EE
T

+>1p5 Y (@60 - (27,6,
t=1 (i,5)EE

<> 1] Y 0,00 - (,6,) + LsSm > (D]
t=1 (i)EE t=1

~~

(a) ®)

We know that the approximation Max-CUT algorithm returns two subsets of nodes V
and V5 such that there are at least 1m/2 edges between V; and V5, and to be more precise: at
least m /4 edges from V; to V5 and at least m /4 edges from V5 to V;. Hence at each time ¢,
if all the nodes of V; pull the node-arm x; and all the nodes of V2 pull the node-arm 7}, we
can derive the term (a) as follows:

T
=5S"1D] Y 25,6, —1[i € Vi Aj € V(=) 6,)

—1fi € Vo Aj € V), 6,)
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—1[i e Vi A j € Vil(2*7, 6,)
—1fi e VoA j € V(2 6,) .

Notice that 3 ; sye 209 = =2 _(i,j)eE 1 D (k1)eE 2D o one has
d 1 k.l g
(a):Z]l[Dt] Z ]I[Z'le/\jEVQ] <m Z Zi’),9*>—<zt(’7]),9*>
t=1 (i,j)EE (k,D)eE
(a1)
+3°1[D] Y 1ieVanjeV < 3 zik’l),9*> — {z",6,)
t=1 (i,j)eE mn (kl)eE
(az)
d 1 k.l
+) 1D > LieViAje V] <m > 2 v>,9*> (289 g,)
t=1 (i,j)€E (kh)eE

(a3)

T
1 55
+Z]1[Dt] Z ]l[iEVQ/\jEVQ](<m Z Z£k7l)’9*><zlg:]),9*>)
t=1 (

(3,9)EE S

(aq)

Let us analyse the first term. By using the fact that 1[D;] < 1, we have

T n
:ZZZﬂ[ieVl/\jeVQ]<i Z zi’“@_( (m)+z(m>’9*> _
(

t=1 i=1 jEN; kl)eE

J>i
By defining (74, 7,) = argmax, ,)cx2 (2za + 2u72, 04), and noticing that in the case
(i.3) _

where a node ¢ is in V; and a neighbouring node j in is V5, then 2,/ = z, 1] We have,

2 (0= 23 T (00 0

(kl)eFE k 15EN
>k

< *Z Z<zx*m’ +Zz’z*a >

k=1jEN
>k

= <Zx*xj( + 23z, 9*)
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< 2y + Zxéxwét*l,m) (optimistic reward)

(4,9)

= <Zt I Zgj,i)v étfl,m> .

Plugging this last inequality yields, with probability 1 — d,

T n
@)<Y > S 1lievinje v2]<z§’*j) + 299 B g — 9*>

t=1 i=1 jEN;

>t

T .. -

= Z ]l[i eViNng e V2]<Zt(z7j),9t_1’m = 9*> .
=il

t=1(i,j)eE

We define, as in Algorithm 9, 1 [zgi’j ) — z
with probability 1 — 9,

} £ 1[i € V4 A j € Va]. Then, one has,

T2,

t=1 (i,j)eE
T m
[_Ek 1/ ElE =
=Y [ = sy (A, Gt 01)
t=1 k=1 -
T m
I Elk 1 FElkl x A Elkl 2
- ZZ]I “t M- Py, <Zt | ]’et—l,m - 9t—1,m> + <Zt [ ]70t—1,m — 9*>
t=1 k=1 -
T m
<> > 1= [k _ Zaat |12 [ ]”Ati’ifl 161 — Bt—1 | Ar s
t=1 k=1

E[k Elk A
#1270 = 2 |12 o 181 — el

T m
Elk Elk A A
< Z Z 1 [Zt 5 = th:té:| Hzt [ ]HA;é_l\/ﬁHet*l,m - atfl,mHAtfl,m (5-10)

Elk Elk N
+ 12| = 2 |12 N a s V2t — Bullai,

Elk Elk
12 = 20| 2v/280O) 2 o1 (5.11)

1

2v280) |7 | yn (5.12)

t,k—1
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with 1/ F(0) < U\/d2 10g<%) + V/AS and where (5.10) uses the critical covari-

ance inequality (5.9), (5.11) comes from the definition of the confidence set Cy_1 1, () (5.8)
and (5.12) upper bounds the indicator functions by 1.
Using a similar reasoning, we obtain the same bound for (a2):

T m
Zz2v2ﬂt Hzt[]HAl

t=1 k=1

-1

Let us bound the terms (a3) and (a4).

(k,)EE

T
< Z Z [ i-) _zxm] <<§1 Z zik,l)79*> _ <Zt(Z,J)’9*>) '
t=1 (i,j)€E

Forallz € X, let &, be the following ratio

vz 0
bo =7 {2 *(>k g : (5.13)
<E Do (kl)eE % 79*>
and let £ be the worst ratio
¢ = min {2z, 6s) (5.14)

26X< Z(kl)eEZikl)79*> ‘

g
> 5 A, (<m SCIARNESS zikvl>,a*>)
t=1 (i,5)eE (k,h)eE (k,))eE
d [ (i, T 1 kD) 1 (k,)
§Z Z 1 zt(’J):zxtm — Z zﬁ’ ,0,) —&( — Z AN
=1 (ij)eE “\\" eer ™ edeE
T r .. q 1
=3 3 1[0 =, (1—g)< 3 zi’“’”,a*>
t=1 (ij)eE i mn (kHeE
ST?(1—€)<; 3 zi"“”,e*> (5.15)
(k)EE
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5.1 Optimism in the face of uncertainty for graphical bilinear bandits

where (5.15) comes from the fact that there is at most m /4 edges that goes from node in
V7 to other nodes in V.
The derivation of this bound for (a3) gives the same one for (a4)

By rewriting (a), we have :

T m
1 i,
<D V2BO sz, + 50 - 6

t=1 k=1

In [30], they bounded the term (b) as follows

T
LSmZ]l[Dtc] < LSm [dz log, <Tmf5}2/)\>_‘ : (5.16)
t=1

We thus have the regret bounded by

> 4V2B: ()17 x| + 51 -, 0

-1
1 k=

2
+ LSm [dQ log, (W)] ,

TFM%

which gives us

I E[k] 9 TmL?/\
SZZZL\/ZB} )2 HA 1 +LSm d* log, — |-

t=1 k=1

Let us bound the first term with the double sum as it is done in [2, 30]:

T m
3> 4B 5

t,k—1
t=1 k=1
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NE

min (228, 428012 L2 )

M-I
7 It

4y/28:@0) min (LS, 12752 )

t=1 k=1
T m
< \|Tmx 326,0) Yo S win (@ 1P, )
t=1 k=1 ’
T m
< 32TmﬁT(5)tzlzlmax log<1+Hzt HZZ;i1> (5.17)

T m
32T'mf7(6) max(2, (LS)?) Z Z log<1 + HztE[k} |2 t_lil>

t=1 k=1

I

= (5.18)

< \/32TmBT(5) max(2, (LS)?)d? log <1 +

< \/32de2 max(2, (LS)? )log<1 + ij/)\> Br(9) ,

where (5.17) uses the fact that for all a,z > 0, min(a,z) < max(2,a)log(1l + ),
(5.18) uses the fact that 23:1 > ey log( + || Bk, 2 || > < d? log(l o 2 //\)
=1

from Lemma 19.4 in [59].
We get the final bound by noticing that

Br(d) < (0\/(12 log<1+T?L2/)\> -+ \f)\S) .

One can notice that the first term of the regret-bound matches the one of a standard linear bandit

O

that pulls sequentially 7'm edge-arms. The second term captures the cost of parallelizing m draws
of edge-arms per round. Indeed, the intuition behind this term is that the couple (x, ;) chosen
at round ¢ is relevant to pull the (tm + 1)-th edge-arm but not necessarily the other (m — 1)
edge-arms that are pulled in parallel. This is because the reward associated with the (¢m + 1)-th
edge-arms could have led to change the central entity choice if it had been done sequentially. In
[30], they characterize this phenomenon and show that this potential change in choice occurs less
and less often as we pull arms and get rewards, hence the dependence in O(log(T'm))).

5.1.3 Improved algorithm and analysis of the regret

We address the problem of designing an improved version of the proposed algorithm using the
idea presented in Algorithm 6 that improves the approximation ratio.
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5.1 Optimism in the face of uncertainty for graphical bilinear bandits

Let us recall that in the previous section in Algorithm 9, the central entity chooses the couple
(¢, 2}) such that

(¢, mp) = argmax  max  (2zp + Zors, 0)
(z,a')EX? 0eCr_1(0)

which maximize the optimistic reward obtained between two nodes if the central entity were
able to allocate x4 to one node and z} to the second. This strategy being optimal locally but
complicated by considering the dependencies between edges, the central entity could take into
consideration the edge arms of the form z,; and 2,7,/ that are created when allocating the graph
node using only two node-arm z and 2’. This idea follows the one presented in Algorithm 6
where we recall with different notations that the couple (Z, &/, ) chosen to allocate the nodes of

the graph are such that

~ o~
(T4, ) = arg max(mi_o - Zga + Moyt 2o/ + M1 Zpe + Mazyra, 0y)
(z,2")eXx?

As in the previous section, we do not have access to 0, we use the principle of optimism to find
at each round the couple (Z;, Z;) such that

~ ~
(Z¢, ) = argmax  max  (M12 - Zeg + Moyl * Zgl = M Zgr + MaZyryr, 0)
(.Z’,:E/)EX2 HeCt,1(5)

(5.19)

Here, instead of maximizing the local reward one can get between two nodes, the central entity
maximizes the global optimistic reward that one would obtain when allocating only two arms
(z,2') € X% in the graph. This strategy is described in Algorithm 10.

Before stating the guarantees on the a-regret, we recall that we defined in Chapter 3 the quan-
tity A > 0 to be the expected reward difference of allocating (Z., &, ) instead of (2, ),

A =(m12 (Zi’*fc’* - Z:c*xﬁ() + ma—1 (Zi’*i** - Zx’*:c*)
+ m]_(Zj*j* - Zﬁ*x*) + ma (Ziiji - indf;) 9 0*>
The new guarantees that we get on the a-regret of Algorithm 10 are stated in the following
theorem.

Theorem 5.2. Given the Graphical Bilinear Bandits problem defined as in Section 1.2, let § be
defined asin Theorem 5.1, let O < € < % be a problem dependent parameter that measures the gain
of optimizing on the suboptimal and unwanted arms defined as:

B A
Z(i,j)eE<Z§l,])a 0s)

€

)

and set o0 = 1%5 + e where ov > 1/2 by construction, then the o-regret of Algorithm 10 satisfies
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5 Regret based algorithms for graphical bilinear bandits

Algorithm 10: Improved OFUL for Graphical Bilinear Bandits

Input :graph G = (V, E), node-arm set X
(Vi, Vo) = Approx-MAX-CUT(G);
M1—2 = ‘{(’L,j) S E|l eVing e ‘/2}‘,
mo_1 = ‘{(Z,j) S E|Z ceVoNje Vl}‘;
my = [{(i,j) € Eli € Vi A j € Vi};
meo = H(Z,j) S E|Z eVoNje ‘/Q}‘,
fort =1tT do

(a1, 001) =

Arg MaX (g o 0)e X2 x Cy_p (M2 * Zzar + M251 * Zarg + M1+ 2z + Mo
:L’gi) = 4 forall iin V7;
xii) = 7} forall i in V&
Obtain for all (i,7) in E the rewards ylgi’j ) ;
Compute 0; as in (5.4)

end

return 6;

R 9);

Ro(T) gé((acﬂ + sﬁ) /T max(2, (LS)2)> + LSm ’Vd2 log, < :
where O hides the logarithmic factors.

Proof. We can write the regret R(T") as in the proof of Theorem 5.1:

T

RT) =Y 1D 3 (7,00 - (.6,
t=1 (i))eE
T
+Y 15 Y (¥9,6,) - <z§i’j), 9*>
t=1 (i))eE

i)

T T
<Y 1D Y (59,0, - <z§i’j>, e*> +LSmy_1[Dj] .
t=1

(i.5)eE t=1
(a) ®)

Here, (b) doesn’t change, we thus only focus on deriving (a).
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= Z Z { £i7j)>9*> ( t(l’])ﬁ*) (where 1[Dy] < 1)

=% % Macss ¥ e (65) i Y, BTG ,)

=1 (i,j)eE L (i,j)eE

(a1)

-3 3 69

t=1(i,j)eE

XT:Z Z 2mH2 R00) 4 ,0) gy

t=1 i=1 jeN;
J>i

d 2m
Z Z 1H2 Zz*a:’ + 2 ac*ae >

=1 =1 jeN;
J>1

T
5 § m1—>2 C Rxiah + mo_q - Zx;m*79*>

~+
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70

T n T n
DD WIFEEHIP IR

t=1 i=1 jeN; t=1 i=1 jEN;
7> J>i

T
= E (M12 - 23,5 +Mas1 - 2315, + M1 - 23,5, + Mo - 2315 ,0,) — A

t=1
T
< E <m1a2 C 2z, T M2o1 Zgg, T 23,3, T M2 0 230, 9t—1,m> —-A
t=1
T
— E (M1 - Zg,e, + M2 - 25041, ) (wpl—29)
t=1

|
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™
N
&

>
=
3

|
M=
DS

|
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.
3

B

_l’_
3
©
=t
&
2

T T T
@ <Y S & Oam) = Y A= mn zee, M2 Zagar,04)
; t=1

t=1 (i,j)eE t=1 t=1
T
mi+me, (;
+3 > =00
t=1(i,j)eE
T T T
~ m y
:Z <Z( ’]),etfl,m_0*> —ZA—Z Elé'm*<zy(( :]),9*>
t=1 (i,j)eE t=1 t=1 (i,j)eE
r ap
m 3 mi+ma, (i
+Z Z 72596’<~J(<J)79*>+Z lm 2<£73)79*>
t=1 (i,j)er t=1 (i,j)€E
3 (@.3) g ¢ d my + mg (4,9)
<) > &m0 =) A=) £(=7,6,)
t=1 (i,j)€E t=1 =1 (ij)eE
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T
+ Z my + m2< 8,]), 9*>
t=1 (i,5)eE
T 2 A T T mi +m ..
=5 N b0 - ALY T2 — )2 0,)
t=1 (i,j)eE t=1 t=1 (i,j)eE
T T
= Z <Zt( ’])a etfl,m - 9*> - Z Z €<Z~)(<’LJ)7 9*>
t=1 (i,j)eE t=1 (i,)eE
T
mi1+m 5
+3 3 P2t
t=1 (i,j)€E
d T m1+m
:Z <Z(l"7)50t71,m_9*>+2 Z |: 1 2(1_5) €:|< (3,5) 0 >
t=1 (i,j)eE t=1 (i,j)€E

T
SISO ARUSEEE +Z > [P - g - o (.00

L (i,j)eE

+ LSm Z 1[D§] ,
t=1

which gives,

T T
my +m ij 03 5
DIP LR RN ECNIES D DR LR
t=1 (i,5)€E

t=1 (:,j)€eE
T
+LSm» _1[Df] .
t=1
Thus,
T T
Rl [ml £)— Z at 1m*0*>+LSmZ]l[Dﬂ
t=1 ZJ)EE t=1

The upper bound of the right hand terms follows exactly what we have already done for
Theorem 5.1 by applying the upper bounds (5.12) and (5.16).
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Moreover,

O

Here one can see that the improvement happens in the a of the a-regret. In the next section,

we confirm this results through experiments.

5.2 Numerical experiments

In Chapter 3, we run experiments on & and how it can varying according to the graph and the

problem parameters. In this subsection, we only focus on the impact on the regret. We design an
experiment that compares in practice the performance of Algorithm 9 and Algorithm 10 with the
Explore-Then-Commit (ETC) algorithm by using the exploration strategy designed in Chapter 4

during the exploration phase, and by allocating the nodes in V7 and V3 with the best estimated

couple (z,2') = argmax, ;) (22’ + Za'z, 1) during the commit phase. However, since the

algorithms that we presented in this section have guarantees on a-regrets with different a, we plot

the fraction of the optimal global reward for each iteration.

1.0

fraction of the optimal global reward

05 pesssnnonsantosnnntonnnssnnns

0.4

e al

— Q2

—@- OFUL for GBB
¥ Improved OFUL for GBB
A~ GBB-BAI

0 2500 5000 7500 10000 12500 15000 17500 20000
T

Figure 5.1: Fraction of the optimal global reward obtained at each round by applying the Algorithm 9,

Algorithm 10 and the Explore-Then-commit algorithm (here named GBB-BAI) using the ex-
ploration strategy in Chapter 4. We use a complete graph of 5 nodes, we run the experiment on
S different matrices as in Figure 3.1 with ¢ = 0 and run it 10 different times to plot the average

fraction of the global reward. We set the confidence § = 0.001.

As in Chapter 3, we observe a clear improvement when choosing at each round ¢ the couple of

arms (&, 7} ) instead of (x4, x}).
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5.3 Conclusion and perspectives

In this chapter, we presented the first regret-based algorithms for the stochastic graphical bilinear
bandits problem with guarantees on the a-regret with > 1/2. We also showed experimentally
that our algorithm achieves a better performance than Explore-Then-Exploit on our synthetic
datasets. One could also study this problem in the adversarial setting, in particular adapting ad-
versarial linear bandit algorithms to our case. Finally, our setting could be extended to the case
where each agent has its own reward matrix.
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6 Conclusion & perspectives

6.1 Summary of the results

In this thesis we introduced a new model that we named Graphical Bilinear Bandits that models
centralized multi-agent problems where pairwise interactions exist between agents.

* In Chapter 3, we have highlighted the fact that the learner faced an underlying optimization
problem that is NP-Hard no matter which goal the learner wanted to reach. Hence we
have proposed an a-approximation algorithm with o« > 1/2 which only required to find
the couple of arms (x4, ) to return the a-approximate solution. Then we have refined
this approximation-parameter with respect to problem dependent parameters based on the
graph structure and a property of the parameter matrix M,.

* In Chapter 4, given the a-approximation algorithm designed in Chapter 3, we have pre-
sented a pure-exploration algorithm that allowed the learner to construct an estimate M
that was statistically efficient in terms of optimal design. Indeed, the problem of finding
within a minimum number of rounds the best couple (2, =/, ) used in the a-approximation
algorithm came down to finding the G-optimal design, also called G-allocation in the ban-
dit literature. Solving this problem in the graphical bilinear bandits implied dealing with
an additional constraint. That was why we have presented an algorithm that respected this
constraint and that used randomized sampling to construct the estimate M. Our theoret-
ical results have revealed a term that depended on the graph structure, so we showed the
impact of the graph in our results.

* Finally, in Chapter 5, we have capitalized on the a-approximation algorithm given in chap-
ter 3 and applied the principle of optimism in the face of uncertainty to design regret-based
algorithms that achieved a sublinear a-regret in 7" where o« > 1/2. Furthermore, we have
presented experimentally the performance of the proposed algorithms and used compared
with an Explore-Then-Commit algorithm relying on the pure-exploration algorithm pre-
sented in chapter 4.

6.2 Perspective and future works
This thesis aimed to introduce the new graphical bilinear bandit setting and to provide the first

solutions to common problems posed in the bandit literature. A lot of other approaches and
modifications can be considered. We state two of them in the following.
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Different parameter matrices M&“ ) for each edge (i,j) € E. While dealing with a com-

mon parameter matrix M, for all the edges (i, j) € E was convenient for aggregating the rewards

. . 9 i,
and constructing a common estimate M for all the agents, when the rewards yg 7 are defined

with different matrices M,(f’] ), the problem becomes more complicated. Indeed consider the set-

ting where the reward ygi’j) is defined as follows for each (i, j) € E:

(1) _ DT g0 6) | (i)

Y =T t
where MU are unknown parameter matrices and né 9) o-sub-gaussian random variables.
This setting is relevant when the agents do not have the same interactions between each of their
neighbors, and thus not the same reward function.

Open questions: In the context of pure exploration, how does the stopping condition
change? Is there a sampling strategy for each agent such that estimates M) are con-
structed by satisfying an optimal design criterion?

Decentralized setting. When agents are controlled by a central entity, it is possible to aggregate
the different rewards and to build a common estimate M of M.,.. Moreover, we have seen that the
different objectives that appear are relative to the edge-arms and not directly to the node-arms
selected by each agent. Indeed, this is due to the fact that we can express the graphical bilinear
bandit as linear bandits at the edge level. This particular aspect makes the decentralized framework
a bit tricky because coordinating two agents without communication to respectively draw the
node-arms that will build the wanted edge-arm becomes even more complicated.

However other problem arise even if the coordination problem is solved. For example, in the
best arm identification problem, we have already designed a sampling procedure that can be exe-
cuted in parallel during a round, hence a decentralized choice for each agent. However, the stop-
ping condition depends on the estimate M constructed with the edge-arms during the learning
procedure, but when the agents do not communicate, this estimate cannot be constructed. This
is because an agent only knows which node arm it is pulling and observes the reward. However,
the reward is linear with respect to the associated edge-arm and the agent does not have access to
this edge-arm since it is constructed with its node arm but also with that of its neighbors (to which
it does not have access).

Open questions: In the fully decentralized setting (without communication), what kind
of algorithms can we design to take advantage of the (bi-)linear bandit setting? If we allow
communication, how can we adapt the proposed algorithms and what is the trade-off be-
tween the amount of communications and their performances?
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This appendix contains the paper “Refined bounds for randomized experimental design”,
Neurips 2019 Workshop "ML with Guarantees”, G. Rizk, I. Colin, A. Thomas and Moez
Draief.
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Experimental design is an approach for selecting samples among a given set so as to obtain the
best estimator for a given criterion. In the context of linear regression, several optimal designs
have been derived, each associated with a different criterion: mean square error, robustness, ezc.
Computing such designs is generally an NP-hard problem and one can instead rely on a convex
relaxation that considers probability distributions over the samples. Although greedy strategies
and rounding procedures have received a lot of attention, straightforward sampling from the op-
timal distribution has hardly been investigated. In this paper, we propose theoretical guarantees
for randomized strategies on E and G-optimal design. To this end, we develop a new concen-
tration inequality for the eigenvalues of random matrices using a refined version of the intrinsic
dimension that enables us to quantify the performance of such randomized strategies. Finally,
we evidence the validity of our analysis through experiments, with particular attention on the
G-optimal design applied to the best arm identification problem for linear bandits.

A.1 Introduction

Experimental designs consist in the selection of the best samples or experiments for the estimation
of a given quantity. A well-known and extensively studied example is the one of the ordinary
least squares (OLS) estimator in the linear regression setting. The OLS estimator being unbiased,
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which experiments must be chosen in a fixed pool of experiments so as to minimize its variance? In
the multi-dimensional case, this is done by minimizing a scalar function of its covariance matrix
and several approaches have been considered such as the minimization of the determinant, the
trace or the spectral norm, respectively denoted D, A and E-optimal design (see e.g., [76, 83]). (See
Appendix 1, for more details on experimental design)

E-optimal design has been exploited in practical settings such as for biological experiments [40]
or for treatment versus control comparisons where useful statistical interpretations have been de-
rived, see e.g., [69, 80]. Another criterion, known as G-optimal design and which minimizes the
worst predicted variance, has recently been investigated in the context of best arm identification
in linear bandits [90, 92, 106] where one is interested in finding the experiment with maximum
linear response.

The optimization problems associated to the aforementioned optimal designs (E, A, D, G) are
known to be NP-hard [32, 104]. The two common approaches have been to resort to greedy
strategies or convex relaxations. A greedy strategy iteratively finds the best experiment whereas
solving a convex relaxation returns a discrete probability distribution over the samples. On the
one hand, performance guarantees for greedy strategies have been obtained by exploiting super-
modularity and approximate supermodularity properties of the different criteria [29, 82, 90]. On
the other hand, for performance guarantees of randomized optimal designs, only the randomized
A-optimal design has been thetoretically studied with bounds on the mean square error of the
associated estimator ([103]).

We propose in this paper to fill the gap concerning randomized E and G-optimal designs. More
precisely we study their theoretical validity by providing finite-sample confidence bounds and
show with experiments that they are worth being considered in practice. The paper is organized
as follows. Section A.2 defines the main notations and recalls the problem of experimental design
as well as the different optimal criteria. Section A.3 presents the main results of this paper for the
random strategies of E and G-optimal designs. Finally, the last section shows empirical results of
the studied random strategies and an application to the best arm identification problem in linear
bandits.

A.2 Preliminaries

Definitions and notations

Throughout the paper, we use small bold letters for vectors (e.g., x) and capital bold letters for
matrices (¢.g., X). For any d > 0 and any vector x € RY, ||x|| will denote the usual £5-norm of
x. For any square matrix X € R%*%, we denote as || X|| the spectral norm of X, that is || X|| £
SUDy.|ly|=1 Xy ||. We let Amin(X) be the smallest eigenvalue of X. Forany 1 < 7,5 < d, any
x € R? and any matrix X € R%*%, [x]; denotes the i-th coordinate of vector x, [X]; the vector
of the i-th row and [X];; the value at the i-th row and j-th column. Finally, we denote by Sji_ the
cone of all d x d positive semi-definite matrices and by Ay = {p € [0,1], Z?:l [i]i = 1} the
simplex in RY.
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Experimental design for linear regression

Given X € RA*4 3 matrix of K experiments’ andy € RX a vector of K measurements, it
is assumed that there exists an unknown parameter 6, € R% such that forall k € {1,..., K},
vk = HIXk +ei wherexy, = [X]pandeq, ..., ek areindependent Gaussian random variables
with zero mean and variance o2. The ordinary least squares (OLS) estimator of the parameter 0,
is given by § = argminy ||y — X6||3 = (X" X)X Ty.> This estimator is unbiased and has
a covariance matrix 371 = ¢?(X X)L

Experimental design [76] consists in estimatingé by selecting only the experiments that are the
most statistically efficient to reduce the variance.

More formally, let 7 be the total number of selected experiments and forall k € {1,..., K},
let ny, be the number of times x;, is chosen. We have n;, > 0 and Zfil ng = n. The covari-
ance matrix obtained with such a design can be written as £3)' = (5 mpxpx) )L The
Loewner order on S;‘ being only a partial order, minimizing 21_)1 over the cone S; is an ill-posed
problem. An optimal design is thus defined thanks to scalar properties of a matrix in S;i", ie,asa
solution of miny,, _n, f(E5") where f : ST — R. The two criterion f we study in this paper
are:

e E-optimality : fr(X') = || 25| The E-optimal design minimizes the maximum
eigenvalue of 251. Geometrically it minimizes the variance ellipsoid in the direction of its
diameter only.

* G-optimality : fg(EBI) = MaXxex XTEBIX. The G-optimal design minimizes the
worst possible predicted variance.

Those two optimality criteria are NP-hard optimization problems [32, 104]. However approxi-
mate solutions can be found in polynomial time by relying on greedy strategies or by relaxing the
problem and looking for proportions p; € [0, 1] instead of integers ng. By letting pp, = ng/n,
the covariance matrix X" can be written as £)! = o2 /n - (Zle XX, )~ and it leads
us to the convex optimiation problem min,,, . c[0,1] f (251) which returns a discrete proba-
bility distribution over the samples. For more details on experimental design and optimal design
criteria see [20, 76].

A.3 Convergence analysis

In this section, we analyze the behavior of random sampling along the distribution associated to

the convex relaxation discussed in Section A.2, for E and G-optimal designs. Let ¥ = {x1,...,xx} C
RY be the set of experiments and let Wy and puf; be the optimal distributions in A ¢ associated

to the convex relaxation of such designs. For any p € Apg, we denote as M(p) the matrix
M(u) = Z,ﬁil peXEx, and fén £ fo((nM(pg)) ™) as the objective at the optimum

pug; for a sample size n.

In the remaining of this paper, we consider a finite set of experiments; some results could be easily transposed to a
continuous setting.

*We assume that the experiments span R? so that the matrix X " X is non singular. If this is not the case then we may
project the data onto a lower dimensional space.
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Theorem A.l. Let X = {X1,...,Xp} be a set of experiments and let |1}, be the solution of the
relaxation of the E-optimal design. Let 0 < 6 < 1 and let n such that

n > 2L||M(uf) || log(d/d),

where L = maxyex ||z||% Then, with probability at least 1 — 6, one has

1

fo(Spy) < [ 1+ - [

\/ 2L V() log(d/)

where S, 15 the sum of 1 i.1.d. random matrices drawn from |7,
Similarly, let g, be the solution of the relaxed G-optimal design and Sq , the associated sample
sum. One has, with probability at least 1 — 26,

0-2
fa(Sah,) < (1 + L a2 2 tog(aso) + (%))fa

witho? £ L2 Zf:l[ﬂ’é]k(l — [1glk)-

Theses results recover the O(1/4/n) that one would expect. In addition, this confirms that the
randomized approach asymptotically converges toward the true optimum, which is not the case—
theoretically—for the greedy strategy. Finally, let us note that the o(1/4/n) in the G-optimal
design rate depends on the interaction between Hoeffding for Amin (S5 ) and Bennett for ||S,, —
ES,, ||. We refer the reader to the supplementary material in Appendix A.6 for the full bound.

A refined approach of the dimension

In this section, we introduce two quantities, derived from the concept of intrinsic dimension [54,
68], that allow us to refine the convergence rate for G-optimal design. We recall the definition of
intrinsic dimension.

Definition A.1 (Intrinsic dimension). Let d > 0and S € R be 4 positive semi-definite
matrix. The intrinsic dimension of 'S, denoted intdim(S), zs defined as follows:

oS

intdim(S) £ is] <

Using this definition, one may alter the concentration results on the spectral norm, by replacing
the dimension d by 2 x intdim(ES,, ). For a matrix with eigenvalues decreasing fast enough, the
improvement may be substantial—see [97, Ch. 7] and references therein for more details. The
main drawback of this definition is that if eigenvalues are all of the same order of magnitude, one
will not notice a sensible improvement; this is typically the case in G-optimal design as eigenvalues
are designed to be large overall. We propose a refined version of the intrinsic dimension allowing
improvements even with a narrow spectrum, in the form of 2 complementary quantities.
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Definition A.2 (Upper and lower intrinsic dimension). Let d > 0and S € R¥? be a posi-
tive semi-definite matrix. The upper and lower intrisic dimensions of S, denoted updim(S) and

lowdim(S) respectively, are defined as follows:

(S = Amin(S)T)

updim(S) £
S ST Au®)
. tr (|S|T-S) .
lowdim(S) & ————— = d— updim(S).
S SN )

These new quantities use both the largest and the smallest eigenvalues to rescale the spectrum,
which is of interest in our setting. Using this definition, one is able to formulate new concentra-
tion results on random matrices, including a concentration result on the lowest eigenvalue. In this
particular case however, we are more interested in the potential speed up provided for the spectral
norm, since it is the value controlling the slowest term in the G-optimal design error.

Theorem A.2. Let X = {Xy,...,Xp} be a set of experiments and let |, be the solution of the

relaxation of the G-optimal design. Let X1, ..., X,, be n i.i.d. random matrices drawn according
to jif, and Sy, their sum. Let V. be the covariance matrix of Xy, that is V. = E[X3] — M(uf,)?
and let K be its condition number.

Let 0 < 6§ < 1and let nsuch that

"= (9]l|€|| ox(i79) )

where L = max,ex ||| and d is defined by d £ updim (V) + lowdim(V)e n(—+"1)/16 <
d. Then, with probability at 1 — 20, one has

fa(Sah,) < (1 + i) 12y 2T 10 (d70) + (%))fc

We refer the reader to the supplementary material in Appendix A.6 for the proof of this result.

A.4 Experiments

In this section we compare the performances of randomized E and G-optimal designs against their
greedy counterparts. We first show the behavior of the randomized E-optimal design on a syn-
thetic data set. We then apply the randomized G-optimal design to the problem of best arm iden-
tification and compare it to the greedy approach used in [90]. We refer the reader to Appendix
A.6 and A.6 for more details on best arm identification for linear bandits and on the experiments
setting, respectively.
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K=1500,d =10 K =500, n =500

Strategy
3500 E sampling 300000 { W Greedy G
—— Greedy == Randomized G

E sampling
== Greedy
— uniform sampling

3
3
8

000 —&— Uniform sampling 250000

2
2
8

a
8
8

2500
200000

150000 %
1500
1000 100000 %
50000 % E
o 100 200 300 400 500 2 5 10 15 20 25 2 3 4 5 6 7 8 9
Number of samples Dimension Dimension

2
8
3

2000

N ow
8 g
8 8
Number of samples

Minimum eigen value of design matrix
5
g

Minimum eigen value of design matrix

°
a
g
s

(a) Evolution of score with n (b) Evolution of score with d (c) Evolution of score with d

A.5 Conclusion

We have shown the convergence of randomized scheme for G and E-optimal criteria at a rate of
O(1/+/n). We also evidenced the dependence of the rate in a specific characteristic of the covari-
ance matrix for the sampling. Empirically, the random sampling enjoys a favorable comparison
with the greedy approach, even in the bandit application. One possible extension of this work
could be to investigate the setting of batch or parallel bandits, using a random sampling to select
a batch of arms before observing the rewards.

A.6 Proofs and details on experiments

Chernoff inequalities on matrices

Many concentration inequalities have been developped for bounding the deviation of a sum of
i.i.d. random variables. In particular, Chernoff inequalities have been extensively studied and de-
rived due to their exponential decay rate on tail distributions. Here we show how these bounds
can be extended to random matrices (see e.g., [96] for an introduction on that matter).

Additional notations

For any Hermitian matrices X, Y, we write X =< Y if and only if the matrix Y — X is pos-
itive semidefinite. Recall that for any Hermitian matrix X, there exists a unitary matrix P and a
diagonal matrix D such that X = PDP " For such a matrix and for any function f : R — R,
we denote as f(X) the extension of f to a Hermitian matrix, defined as follows:

f(Dln)
f(X)2P P’
f([Dlad)
In particular, for any scalar z € R, we define (z); £ max(z,0) so (X) is the projection of
X onto the positive semidefinite cone. We will use the exponential function for both scalars and

matrices: for the sake of clarity, we denote as e” the exponential of a scalar and exp(X) the expo-
nential of a matrix. We will denote as Sp(X) the spectrum of X, that is the set of all eigenvalues
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associated to X. The identity matrix and the zero matrix in dimension d are denoted I; and 0y,
respectively; when clear from context, we drop the d index.

Useful lemmas

Before stating the concentration inequalities of interest, we need to state several useful lemmas.
These lemmas are key for proving concentration of random matrices, as we need similar guarantees
for matrix ordering (<) than for scalar ordering (<). We first state two lemmas that will ensure
order preserving under basic operations.

Lemma A.1 (Conjugation Rule). Ler M, N ¢ R be two Hermitian matrices, such that M <
N. Let p > 0 and ler Q € RP*?. Then, one has

QMQ" < QNQ'.

Proof. The proof is immediate when considering Q(N — M)Q " and using the definition

of a positive semidefinite matrix. O

Lemma A.2 (Transfer Rule). Ler M € R be 4 Hermitian matrix and let f, g - R — R be
such that, for any x € Sp(M), f(x) < g(z). Then, one has

fM) = g(M).

Proof. Let D be the diagonal matrix in the spectral decomposition of M. Since f < g on
Sp(M), one has f(D) < g(D). The conjugation rule then allows us to conclude. O

Finally, we state two lemmas ensuring that two more complex operations (tr exp and log, re-
spectively) preserve the order. Please note that this is usually not the case, even for operators that
are monotone on R—e.g., the exponential does not preserve the order.

Lemma A.3 (Monotonicity of the trace of the exponential). Ler M, N € R4 be two Hermi-
tian matrices such that M < N. Then for any non-decreasing function 1) : R — R, one bas:

tr (¥(M)) < tr ($(N)).

In particular,
trexp(M) < trexp(IN).
Proof. Let \{(M) > ... > Ag(M) and A\{(N) > ... > A\g(IN) be the sorted eigenvalues

of M and N, respectively. Then, for 1 < ¢ < d, one can define an eigenvalue as follows:

Ai(M) = max min  u' Mu.
LCR4:dim L=i u€L:||ul|=1
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Using the fact that M < N, one can deduce that forany 1 < ¢ < d, \;(IM) < X\;(N).
Since ¢/ is a non-decreasing function on IR, one has that forany 1 < i < d, 1 (\;(M)) <
Y ()\Z- (N)) Summing over the dimensions leads to the desired result. O

Lemma A.4 (Monotonicity of the logarithm). Ler M, N € R¥*? be two positive definite matri-
ces such that M =< N. Then one has:

log(M) = log(N).

Proof. We will first prove that forany v € R, (M + 1)1 = (N +4I)~!
The facts that M < N and v > 0 imply that M 4 71 < N + ~I. Using Lemma A.1,
we obtain:

0 < (N+~DV2(M+AI)(N+~I)"V2 <1
Taking the inverse yields:
(N + D)2 (M +41) " (N + D)2 = 1.

Finally, applying again Lemma A.1 with (N + yT)~1/2

yields:
(M+~1)7' = (N+4I)~"

Let us now focus on the main result. First recall that the logarithm of a positive scalar can
be expressed using its integral representation, that is

too /] 1
logx:/ — = dt,
0 1+t x4+t

for any z > 0. Therefore, the logarithm of a matrix X >~ O can be expressed similarly:

o0
log X = —I - (X +1¢I dt.
og / <1+t (X +1tI)” >

In the beginning of the proof, we have shown that foranyy > 0, (M +¢I) ™! = (N-+¢I)~1
Therefore, one has:

1 1
— I - M4~ ' < —I— (N+A~I)
Ty~ (M < T = (N 4
and integrating over 7y yields the final result. O

Chernoff inequalities
Letn > 0andlet Xy,...,X,, be iid. positive semidefinite matrices, such that there exists

L > 0 verifying:
0 <Xy =X LI,
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almost surely. Let us now consider the random matrix S = > | X;. In what follows, we will
develop Chernoff bounds in order to control both ||S||/||ES|| and ||S — ES]|.

In the scalar case, Chernoff’s bounds for the sum of independent variables are based on the
fact that the exponential converts a sum into a products, that is for n iid. random variables

X1, X
n
EeXi=1Xi — £ H eXi,
i=1
and then one uses the independence to pull the product out of the expectation. For two symmetric
matrices M, N € R*? however, the relation exp(M + N) = exp M exp N does not hold in

general—it holds if the matrices commute. Hopefully, the following theorem gives us a way to
overcome this issue.

Theorem A.3. Letn,d > 0and let Xy, ..., X, beiid. symmetric matrices in Re. Then, for
anyt € R, one has

]P (
and similarly

P (Amin <Z Xz) < t) < 71]r<1% e M trexp (Z logE exp(nXi)> :
i=1

i=1

i=1

n
>t| <infe ™t logE X,
> ) < 71]r>106 I exp <Z ogEexp(n z))a

i=1

Proof. We start by the first inequality. Let ¢ € R andletp > 0. As in the scalar case, one

has:
P (

where the last inequality is an application of Markov’s inequality. Using the fact that for a
positive semidefinite matrix X, || X|| < tr X, we obtain:

exp (n z": XZ> < Etrexp (77 Zn: Xi> .
=1

=1
We will now use Lieb’s Theorem [64], which states that for any symmetric matrix A €
the mapping M +— trexp(A + log M) is concave on the cone of positive semidefinite

n

X,

=1

n X, t —nt n X
> t) — P<ennzz=1 > en) < e MR Sin Xl

Eel Zia Xill — |

dxd
Rex4,

matrices. This allows us to bound the above term as follows:

E trexp (77 Z Xz) = EE [tr exp (77 Z Xz) fn—l]

i=1 =1
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n—1
=EE [tr exp (n Z X; + log exp(an)> ]-"n_l]

i=1

n—1
< Etrexp (77 Z X; +logE exp(an)> :
i=1

Iterating over 7 yields:

n n
Etrexp (77 Z Xi> < trexp (Z logE exp(nXi)> )

i=1 =1

hence the result.
The second inequality is a direct consequence from the fact that for any 7 < 0 and any
matrix X, nAnin (X) = [[nX]|. O

The formulation of Theorem A.3, although more complicated than is the scalar case, is very
helpful for matrix concentration analysis. Indeed, since tr exp and log are both order-preserving
operators on positive matrices, 2 bound on E exp (17X ) will now be enough to provide an overall
bound of the extreme eigenvalues.

Hoeffding’s inequality

The bound we develop here ensures that ||S|| and Amin (S) do not deviate too much from their
counterpart on [ES. We are now ready to state the first result.

Theorem A.4. Let X1, ..., X, be i.id. positive semidefinite random matrices, such that there
exists L > 0 verifying 0 < Xy =X LI Let S be defined as:

Then, forany 0 < € < 1, one can lowerbound Amin (S) as follows:

. A i (X 1)
P(umin(S) < (1 — €)Amin(ES)) < d((l_eg)l_g> ’
Similarly, one can upperbound ||S|| as follows:
ef M
RIS 2 (1+ESI) < d 5y

The following corollary shows an alternate (but slightly weaker) formmulation which is closer
to usual concentration results.
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Corollary A.l. Let X1, ..., X, and S be defined as above. For any 0 < € < 1, one can lower-
bound Amin (S) as follows:

P(min(S) < (1 - £)Auin(ES)) < dexp (f”mQSEXl))

Before proving Theorem A.4, we state a useful lemma for bouding moment generating func-
tion of random positive semi-definite matrices.

Lemma A5, Lett € Rand let X be a random matrix such that 0 X X =X LI almost surely for
some L > 0. Then, one bas:

tL_l

e etl —1
Eexp(tX) < I+ EX < exp 7 EX |.

Proof. Both inequalities are derived from the convexity of the exponential. We will write
scalar inequalities based on convexity and then extend them to matrices using the transfer
rulein Lemma A.2. Lett € R, forany 0 < o < L, the following holds:
tL 1

L

etx<eo+—(etL—eO):1+e

x.

Since 0 = X = LI almost surely, this can be extented to the matrix exponential using the
transfer rule in Lemma A.2:

el —1
exp(tX) < I+ X.
Taking the expectation yields the result:
el —1
Eexp(tX) < I+ EX.

The second inequality is also an application of Lemma A.2 using the inequality 1 4+ < e*
forany x € R. ]

Proof of Theorem A.4. Lett > 0. Combining Lemma A.5 and Theorem A.3 yields:

P(Amin(S) < t) < inf e tre 2 = ks
min X .
n<0 P L

Reintegrating || - || into the RHS yields:

et —1
inf e~ tr exp( ]ES> < inf de™ ™"
n<0 L n<0

e —1
ES
(7))
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e"L—l

— lnf de—tﬂ-f- )\mm(ES)

n<0

Since the inequality holds for any 77 < 0, we can optimize over 7). The optimal (lowest) value
is reached for ) = (L) ™! log(t/Amin (ES)), which is negative if and only if t < Apin(ES).
Let us make the change of variable ¢t = (1 — &) Ayin(ES) for 0 < € < 1, so the condition
holds. Substituting the value of 1) into (??) yields:

IP()\mln(S) S (1 _ 5))\m1n(ES)) S de((gil) lOg(].*E)fa—) ”/\miyzOE)(l)7
and the result holds. ]

Remark A1, Without additional characterization of the problem, the bound E||X|| < tr EX <
A\EX|| is tight: consider a diagonal random matrix X such that forany 1 < i < d, P(X =
Ei;) = 1/d, where (Ey;)1<i<q are the diagonal elements from the canonical base. Then, || X|| = 1
and |EX|| = 1/d, so ||X|| = d||EX]||. If we consider the best arm identification application, this
case essentially boils down to the MAB setting and would make the whole linear modeling irrelevant:
maybe there is a more subtle way of characterizing linear bandits in order to avoid a brutal d factor
in the bound.

Bennett’s and Bernstein’s inequalities
Using the Chernoff’s bound, we were able to prove, with high probability, the following:

K -1 n -1 9 K -1
X
xT (nZ[u*Gmxz) x<xT (ZX) x < (ﬂ _"€>Amax(n2[ua1kxkxz> |
=1

k=1 k=1

This is not enough to ensure the convergence of the randomized sampling. Considering again the
random matrix
n
Sn = E X )
i=1

our goal is to bound the following quantity:
x" (S, — (ES,))x.

One way to bound the above quantity is to bound the maximum eigenvalue of S, 1 — (ES,,) L.
One has:

S, — (ES,) ' =8, (I-Sn(ES,) ') =S, (ES - S,)(ES,) .

In Section A.6, we used Hoeffding’s inequality to upperbound ||S;!|| based on ||(ES,)™*|
value. Therefore, we only need to care about the central term. Since the random matrix ES,, — S,
is not necessarily positive semi-definite anymore, we cannot use Hoeffding’s inequality. We can
use Bernstein’s inequality however, as stated in the following theorem.
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Theorem A.5. Let X1, ..., X, ben iid. random symmetric matrices such that EX1 = 0 and
there exists L > 0 such that | X1 || < L, almost surely. Let Sy, = 31 X;. Then, for anyt > 0,

one has:
t2

P(Su]l > t) < de 2Lt/3 +2n0?
where o £ [|E[X]] |

As in the scalar case, Bernstein’s inequality relies on using the Taylor expansion of the exponen-
tial to bound the moment generating function, so we will need the following lemma.

Lemma A.6. Let L > 0 and let X be a random Hermitian matrix such that EX = 0 and
X = LI almost surely. Then, forany0 < t < 3/L, one has:

2
Eexp(tX) < exp <1it/L2/3E [X2]> .

Proof. Similarly to the Hoeffding’s case, we will show a result for the exponential of a scalar
and extend it to a Hermitian matrix. Let L > 0,0 < z < Land 0 < ¢t < 3/L. Let us
define f : [0, L] — R such thatforany 0 < y < L,

Wty —
N ty — 1
f(y):T-

In particular, one has €/® = 1 + tz + 2% f(z). Notice that f is increasing, so €/® < 1 +
tx + 2% f(L). Now, using the Taylor expansion of the exponential, we can write:

et —tL—-1 1 (tL)* tQEE:(tL)k_Z 22

N=-— " — < =
(L) L2 L? K 32~ 1-t(L/3’

where the inequality comes from the fact that k! > 2 x 352 for any k > 2.
Now, using the fact that X < LI almost surely, we can obtain the following bound:

exp(tX) < T +tX + X(f(L)D)X = I+ tX + f(L)X2

Finally, taking the expectation and combining this result with a common bound of the ex-
ponential, we obtain:

t2/2
1-tL/3

2 /2

Eexp(tX) < I+ E[X?] < eXp(l—tL/?;E[XQ]>’

hence the result. O

We are now ready to prove Bernstein’s inequality for matrices.
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Proof of Theorem A.5. Let 0 < 1 < 3/L, using Markov’s inequality one has:
P(Sl] > £) = P(eMSnl > en) < RS-,

By Lemma A.6 and the subadditivity of the matrix CGF [96, Lemma 3.5.1, Ch. 3], we obtain

t2/2
EelSell = B exp(nS,)|| < trEexp(nS,) < tr eXp(l—t/L/BE[S’%])

Plugin the trace back into the exponential yields:

2
EelIS»ll < trexp<1i777/z/3E[Si]) < de'- "L/3HE S2 H

Optimizing on 1) would lead to a complicated result, so we use instead = t/(no? +tL/3),
which verifies the condition 7 < 3/L and yields the final result. O

The relationship between the precision (nt in Theorem A.5) and the confidence level ¢, (the
RHS of the concentration inequality) is more complicated in Bernstein’s inequality than in Ho-
effding’s. It requires solving a second order polynomial equation and leads to:

L. 2 L. 2 202 2d
t=_——log — 41/ =—log +—1

3n 6b n 5b
In our case, we will use the bound provided by Bennett’s inequality applied to random Hermitian
matrices, as it is simpler to derive the precision associated to a confidence level.

Theorem A.6. Let X1, ..., X, ben iid. random Hermitian matrices such that I€X1 = 0 and
there exists 02 > 0 such that |E[X, ] 2 | < 2. In addition, let us assume that there exists ¢ > 0
such that for any q > 3:

EfxL]] < Lo,

where for any symmetric matrix X,(X) . is the artbogonﬂl projection of X onto the semidefinite
positive cone. Then, for anyt > 0, one has:

]1»( znjxi

i=1
The proof is very similar to Bernstein’s: we need an intermediary result on the moment gener-

> V2no?t + ct> < det

ating function, as stated in the following lemma.

Lemma A.7. Let o2, ¢ > 0and let X be a random Hermitian matrix such that EX = 0 and
IE [XQ} | < o2 In addition, we assume that for any q > 3,

l
[E[X)4]]| < Go?e>.
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Then, forany 0 < t < 1/c, one has:

2
Eexp(tX) < exp(lt_/itE[XZ})

The proof of this Lemma is ommitted as it is very similar to Lemma A.6.

Proof of Theorem A.6. This proof can be directly adapted from Bernstein’s using standard
results on concentration (see e.g., [19] for details). O

Proof of Theorem A.1. As mentionned in the beginning of this section, our goal is to bound
1S, (Sn, — ES,,)(ES,,) Y| Let us assume that the batch size n satisfies:

2L1logd
> =
)\min (EXI )

Hlll’l(

Letde™ ™ 2L < 0p, < 1. Using the Chernoff’s bound, we know that with probability
at least 1 — 4y, the following holds true:

I(ES,,) |

874 < —= .
1 — /221 (EX1) 1| log(d/3)

Similarly, let 0 < &, < 1; using Bennett’s inequality, with probability at least 1 — d3, we
have:

L d
IS, — ES,|| < glog— +

5, 2no?log —

o

Combining these two results with a union bound leads to the following bound, with prob-

ability 1 — (0p + On):

(L/3)log(d/dp) + /2nc?log(d/dp)
— v/ (2L/n)|[(EX1)~1[ log(d/dn)
e )|P@mn%www+ 207 Tog(d/5;)
n v (2L/n)[|(EX1)~ [ log(d/dn)
In order to obtain a unified bound depending on one confidence parameter 1 — d, one could
optimize over dp and dp,, subject to dp + d, = 0. This leads to a messy result and a negligible

improvement. One can use simple values 0, = 0, = 0/2, so the overall bound becomes,

with probability 1 — 8, ||S,,* — (ES,)!|| is upper bounded by

%H(Exl)*lyﬁ 2;‘2 log(2d> <1 _1 + /(L2/180%n) log(2d/9) )

IS5 — (ESn) 'l < [I(ESn)~ H2

(A.1)

¢ v (2L/n)[|(EX,) ! log(2d/3)
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This can finally be formulated as follows:

-1 -1 1 _ym 2 2d 1
—(E < Z|(EX = =)+ ,

The final result yields using the fact that maxxey ||x[|? = L and fén="Ibn= %
The bound on f (S, 1) is obtained similarly, only using the Hoeffding’s result on mini-

mum eigenvalue. O

A refined approach of the dimension

Intrinsic dimension

Definition A.3 (Intrinsic dimension). Let d > 0and S,, € R be a positive semi-definite
matrix. The intrisic dimension of Sy, denoted intdim(S,,), is defined as follows:

s tr(S,)

intdim(S,,) B

One always bas 1 < intdim(S,,) < d.

As for the regular concentration proofs, we will need two useful lemmas: one for deriving a
nicer upperbound from Markov’s inequality and the other for forcing the intrinsic dimension
into the bound.

LemmaA.8. Let Z € R? bea random Hermitian matrixandlet) : R — Ry be non-decreasing
and non-negative. Then, for anyt € R such that (t) > 0, one has:

1

B2 2 0 < o

Etr(y(Z)).

Proof. Lett € R. Since 1 is non-decreasing, the event {||Z|| > t} contains {¢(||Z]|) >
¥(t)}. In addition, using the definition of 1)(Z), one can easily notice that ¢)(Z) > 0 and
|(Z)|| > 1(]|Z]). Therefore, one can write:

P(1Z[| > t) < P([[H(Z)]| = ¥(t)) < P(tr(¥(Z)) = (1)),

where we used the fact that ¢)(Z) > 0 in the rightmost inequality. Finally, one can conclude
using Markov’s inequality. 0l

Lemma A.9. Let ¢ : R — R be a convex function and let Z be a positive semi-definite matrix.
Then, one has:

tr (¢(Z)) < intdim(Z)¢(||Z]]) + (d — intdim(Z))x(0).

92



A.6 Proofs and details on experiments

In particular, if p(0) = 0, one has:

tr (p(Z)) < intdim(Z)¢(]|Z]]).

Proof: Let 0 < x < ||Z]|. By convexity of ¢, we can write:

x

p(z) < 9(0) + (¢(12l) - w(O))m'

Using Lemma A.3, we can extend the above inequality to Z:

b (9(2)) < tr (o(0)1) + W i (2),

which can be rearranged as follows:
tr (p(Z)) < intdim(Z)¢(||Z]]) + (d — intdim(Z))¢(0),
and the result holds. O
Using the two previous lemmas, we can adapt the proof in Hoeftding in order to obtain an
improved bound with the intrinsic dimension.

Theorem A.7. Let L > Qandlet X+, ..., X, bei.id. random matrices such that0 < X1 < LL
LetS,, =Y 1 | Xy Forany 0 < € < 1, one can upperbound ||Sy,|| as follows:

[ESH ||
e® L

P([[Sn]l > (1+€)||ES,||) < 2 x intdim(Z) <(1+€)1+E

Proof. Lett,n > 0. Using Lemma A.8 with ¢y : € R — (€™ — 1) yields:

Etr ((exp(nSn) —1)4) = ! tr(exp(nS,) — I), (A.2)

B([Su]l > £) < .

emnt —1

where we used the fact that S;, = 0 implies exp(nS,,) = I. Let 0 < = < L, by convexity

of the exponential, one has:

e —1< (enL — 1)%

Once again, we can extend this result to S,, and obtain:

S I e 1S
t n) < t [ n |-
i (exp(n ) ) I“< >
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Taking the expectation and using the inequality x < e — 1 yields:

eml _ 1 eml _ 1
_1) < e =2 < c - _
E tr ( exp(nSy) I) < tr < T ESn> < tr (exp ( T ESn> I>

We can now use Lemma A.9 with ¢ : € R = € — 1 to obtain a bound depending on
IS

eml 1
Etr (exp(nS,) —I) < tr <exp <LES") - I>

n

o1 pg
< intdim(ES,,) ( e =L SRl _ 1),

Combining the previous inequality with (A.2) yields:

enanl
o et IESall _ 1
P(||S,|| > t) < intdim(ES,,) x T
nt ennL _q

< intdim(ES,,) x oM+ =L [ESa|

ent —1

The remainder of the proof consists in bounding € /(e — 1) by 2 and the rightmost term
as in the regular Hoeffding’s proof (see [96] for additional details). O

There are two main differences between this version of the Hoeffding’s bound and the regular
one. First, there is a factor 2 with the intrinsic dimension. This a not necessarily a big deal as we
can win on other aspects. Then, we have obtained a bound on the highest eigenvalue, but not on
the lowest. This is due to the current definition of the intrinsic dimension: we use this limitation
as a motivation for the refinement we propose in the next section.

A refined approach of the intrinsic dimension

Definition A.4 (Upper and lower intrinsic dimension). Letd > 0and S,, € R*4 pe 4 positive
semi-definite matrix. The upper and lower intrisic dimensions of S, denoted updim(S,,) and

lowdim(S,,) respectively, are defined as follows:

tr (Sn — )\min(sn)I)
1Snll = Amin(Sn)

tr (||SulT — Sn)

1Snll = Amin(Sn)

One always bas1 < updim(S,,),lowdim(S,,) <d — 1

(1>

updim(S,,)

[I>

lowdim(S,,)

= d — updim(S,,).

This definition brings a different information about the matrix at stake: instead of renormaliz-
ing the trace using the spectral norm, we also shift it using the lowest eigenvalue. With these new
quantities, we are able to formulate a refined version of Lemma A.9.
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Lemma A.10. Let ¢ : R — R be a convex function and let Z be a positive semi-definite matrix.
Then, one bas:

tr (¢(Z)) < updim(Z)p(||Z|)) + lowdim(Z)p(Amin(Z))-
This bound is always tighter than the one with the intrinsic dimension, that is:

updim(Z)¢(||Z|) +lowdim(Z)o(Amin(Z)) < intdim(Z)e (|| Z]]) +(d—intdim(Z))e(0).

Proof. To prove both assertions, we will show a more general bound, of the form:

tr (o(Z)) < (1),

for 0 < I < Amin(Z) and then we will show that f is non-increasing. Let 0 < I < Apin(Z)
andlet ! < x < ||Z||. Using the convexity of ¢, one can write:

x—1 x—1 |Z|| — x
p(z) < o) + (e(IZ]]) — (1)) = e(l1Z]) + e(l).
1z -t ||Z]| -1 1Z]| -1
Using Lemma A.3 again, we can extend the above inequality to Z:
tr(Z — IT) tr(||Z]|I — Z)
tr (p(Z)) < U Z]) + — 57— ).
(@) < Tzr= 2] -1

It is immediate to see that taking [ = 0leads to Lemma A.9 and | = Apin (Z) shows the first
assertion of this lemma. The last assertion of the theorem just comes from the convexity of ¢:
when applying the convexity bound on two segments Z C 7, the bound on Z is necessarily

tighter than the bound on J. O

Theorem A.8. Ler X1, ..., X, be i.i.d. positive semidefinite random matrices, such that there
exists L > 0 verifying 0 < Xy X LL Let Sy, be defined as:

S, & zn:X
=1

In addition, let K be the condition number of ES,,, that is

o IES|

" )\min (Esn) )

Then, forany 0 < € < 1, one can lowerbound Amin(Sy,) as follows:

nAmin (EX;)
L

P()\min(sn) < (1 - 8)>\1’nin(ESn)) < Czrnin <(1€_€;15> )
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where

dnin = lowdim(ES,,) + updim(]ESn)e_m)‘"““(]Exl)(“_l)/L.
Similarly, one can upperbound ||Sy, || as follows:

- nH]E;,(lH
~ e

P Sn > (1 ESn Sdmax 71 Nl+e )

(180l (1 )ES. ) < s (5505

where

Aimax = updim(ES,,) + lowdim(ESn)e_m"EXlH(l_”_l)/L.

Proof. The beggining of the proof is similar to the regular Hoeffding’s proof so we can di-
rectly write, for £, > 0:

nL _q
P(|S,l| > 1) < e trexp<e . Esn)

Using Lemma A.10 with p : £ € R — edMT and g : s L1 (e — 1) yields:

trexp(g(n)ES,) < updim(ES,,)e?MIES I 4 Jowdim(ES,, )ed M Amin(ESn)

Using the same value for 7) than in regular Hoeffding’s proof thus yields:

/e \IESalz
> < —
RIS I > (1-+ )ESal) < d 5575 )

where 3
d = updim(ES,,) + lowdim(ES,, )ed™ Amin(ESn)—[[ESn[)

Pluging the value n = L~ !log(1 + €) into d’s expression yields the result. The result on
Amin (Sy) is very similar:

e —1
P(Amin(Sn) <t) =P(]| = Sn)|| > —t) < e trexp(LESn>.

Using the same reasoning, one obtains:

e\ Mmn(ES)/L
P(Awin(S1) < (1= S I) < == )
where
d = lowdim(ES,,) + updim(ES,, )¢9~ ESn = Amin(ESw))
which proves the result since n = —L ™1 log(1 — €). O
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Theorem A.9. Let X1, ..., X, ben i.id. random symmetric matrices such that EX; = 0 and
thereexists L > Osuchthat | X1 || < L, almostsurely. LetS,, = Y 1 X;. Let'V be the covariance
matrix of X1, that is V. £ E[X3] — M(pg,)? and let k be its condition number. Let t verifying

3n|[VJ?

>t V| V|? +

L
3vn
Then, one bas:
t2
Pl > Vi) <de HIVIZ,

where

d = updim(V) + lowdim(V)e 161+,

Proof. One can combine reasonings of Bernstein’s regular proof with the proof of Hoeftd-
ing’s with updim and lowdim to obtain:

t2/2 t2/2 (

P(||Sn|| > v/nt) < updim(V)e 2+Lt/3n 4 lowdim(V)e o>+Lt/3n

2—k~1)

Let us assume that
3no?

L

Then, the previous result can be bounded as follows:

L
>t > no?+ ——.
n

3y

2 _ 2
P(||S,|| > v/nt) < <updim(V) + lowdim(V)e 102 (17* 1>>e—42z
< (updim(V) + lowdim(V)e~ 117 737,

and the result holds. O

Link with the best arm identification in linear bandits

Letd > 0and X C R? a subset of RY, corresponding to the bandit arms. The linear bandit
setting assumes that the conditional distribution of the rewards given the arm follows a linear
model: there exists an unknown parameter 6, € RY such that the reward 7(x) associated to any
action x € X is of the form

r(x) =0)x+e,

where € is a R-subgaussian noise independent from x. This linear structure implies that some
information is shared between arms through the parameter 6,: an action-reward pair (x, r(x))
gives information about 6, and thus about the reward distributions of the other actions. This
makes this setting very different to the classical multi-armed bandit setting where the reward dis-
tributions of each action are assumed to be independent. Whereas multi-armed bandit algorithms
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mainly focus on the estimation of the mean reward of each action, linear bandit algorithms are
mainly interested in the estimation of the parameter 0,.

Depending on the context, the goal of a bandit algorithm can either be to maximize the cumu-
lated reward (the sum of the rewards collected over several iterations) or to find the arm maximiz-
ing the reward, referred to as best arm identification or pure exploration.

We here focus on best arm identification in linear bandits whose objective is to find the arm x,,

maximizing the average reward:
X, = argmax#, X.
xeX

As the parameter 0, is unknown the aim is to design a strategy that will sequentially choose ¢
actions X1, ..., X € X and collect their associated rewards r; = 91— X; + €, 1 <7 <t where
€1, ..., € are independent realizations of €, to obtain an estimate ét of 0. To find the best arm,
the estimated prediction é: x should be close to the real prediction 6, x for all x € X. More
precisely, rather than the reward prediction of an action itself, we are interested in comparing the
predictions of each pair of arms. We thus want |(8; — 6,) T (x — x’)| to be small.

Remark A.2. Note that compared to the multi-armed bandit case where known suboptimal arms
are no longer played, the situation is different for the best arm identification case as playing subop-
timal arms might give information about the parameter 0, and improve the discrimination of the
unknown X, with other arms.

Most of the designed strategies for best arm identification in linear bandits [90, 92, 106] have
relied on two concentration inequalities giving high probability bounds on the prediction error
(6;—0,) Tx| of the regression estimator 0; obtained from a sequence of action-reward pairs. The
first concentration inequality is only valid when the sequence of actions is fixed and hence cannot
depend on the observed random rewards. The authors of [2] derived a concentration inequality
which holds when the sequence of actions is adaptive to the observed random rewards. However
this concentration inequality offers a looser bound than the one given for fixed sequences. In [90]
strategies relying on the fixed sequence bound are developed whereas [106] designed a fully adap-
tive algorithm based on the adaptive bound. These two concentration inequalities are detailed
below.

Let 0;()\) denote the ridge estimate of 6, with a £o-penalty A:
t

A A
0;(\) £ arg min Z(@sz —rs)? + 2]10)*
OcRd s=1 2

The ridge estimate 6(\) can be expressed in closed form:

0:(\) = A;(N) X[ ry,

=
[>

(r1,...,r) and Ay(\) 2 XX, 4 M.
t
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Fixed design concentration inequality. We assume that there is a finite number of arms
|X| = K. If A = 0and (x;)1<i<co is 2 fixed sequence of actions (independent of the random
rewards (I;)1<i<oo) we have the following concentration inequality [90]: forall § € (0, 1),

. 612K
IP’(W eN,Vxe X, 0] x — 6] x| < 2R|x]| 414 /210g< 5 )) >1-4. (A3)

One may notice that this result holds over these directions by replacing K by K 2 in the loga-
rithmic term, as there are of the order of K2 such directions.’

Adaptive design concentration inequality. When the sequence of actions is chosen adap-
tively of the history, ze., for all i € N, x; is allowed to depend on (x1,71,...,X4—1,7—1), we
need to rely on a result established by [2]: if A > 0 and ||x;|| < L forall i then forall 6 € (0,1)
and all x € R,

N 1+tL2/)\
P(wi x— 00 X! < Xl 4,001 (R \/ d10g<(s/> + fmu)) >1-4.

(A.4)

The reader can refer to [2, Appendix B] for the proof of this result. The main difference with

(A.3) is the presence of an extra v/d factor which cannot be removed and which makes adaptive

algorithms suffer more from the dimension than fixed design strategies (see [59, Chapter 20] for a

more complete discussion on this aspect). We now omit the dependence of A;()\)~1in X when
it is not relevant for the purpose of the discussion.

Whichever concentration inequality is used, the bound on the prediction error in a direction
y = x — X, x,x € X depends on the matrix norm ||y|| A7l The goal of a strategy for the
problem of best arm identification in linear bandits as formulated in [90] is to choose a sequence
of actions that reduces this matrix norm as fast as possible for all directions y so as to reduce the
prediction error and be able to identify the best arm. This approach thus leads to the following
optimization problem:

¢ -1
(X1,...,Xp) € argmin maxy ' inxl—-r y. (A.5)
X1,..,XBEX yey =1

If one upper bounds ||y || A;1by2 ||| AjLwe finally obtain the G-optimal design.

Details on experiment setting and comments

For the randomized strategies we use the coxopr python package [8] to compute the solution of
the semi-definite program associated to the E-optimal design and compute the solution of the
convex relaxation of the D-optimal design problem. We recall that as the relaxed G-optimal design
problem is equivalent to the relaxed D-optimal design problem we can use the solution of the latter

*It suffices to consider exactly K (K — 1)/2 directions as the result is the same for x — x" and x’ — x.
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for the former. Finally, for the greedy implementations of E and G-optimal design, when there
are ties between several samples at a given iteration we uniformly select one at random.

Randomized strategy versus greedy strategy for E-optimal design

We recall here that the goal of E-optimal design is to choose experiments maximizing
Amin(31 | XX ). We generate a pool of experiments in R made of K independent and
identically distributed realizations of a standard Gaussian random variable. Figure A.1a shows the
performance of the randomized and greedy strategies against the number of selected samples n
when K = 500 and d = 10. For very small numbers of selected experiments the performances
of the different strategies are equivalent but as the number of experiments increases the random-
ized E-optimal design outperforms the greedy strategy. Figure A.1b shows the performance of the
strategies against the dimension d when K = 500 and the number of selected experiments n
is fixed to 500. For small dimensions the randomized E-optimal design achieves a better perfor-
mance but its superiority decreases when the dimension increases. For both settings we also plot
the performance of the random strategy that selects experiments uniformly at random. Further-
more, the results are averaged over 100 random seeds controlling the generation of the dataset as
well as the random sampling of the experiments.

Application of randomized G-optimal design to best arm identification in linear bandits

We now compare the randomized G-optimal design with the greedy implementation that has
been used for the problem of best arm identification in linear bandits. We note that the objective
of this experiment is not to achieve state-of-the-art results for best arm identification in linear
bandits but rather to show that the randomized strategy while being easy to implement achieves
comparable results as the ones obtained with the greedy strategy.

The underlying model of a linear bandit is the same as the one presented in Section A.2: the
relationship between the experiments X, referred to as arms in the bandit literature, and their
associated measurements ¥ is assumed to be linear. The goal of best arm identification (see e.g., [90,
92,106]) is to find the arm with maximum linear response among a finite set of arms. We focus on
the case where one wants to solve this task with a minimum number of trials for a given confidence
level. The core idea of most of the developed strategies is to sequentially choose arms so as to
minimize a confidence bound on the prediction error of the linear response. Indeed, the sooner
we become confident about the predicted response of each arm the sooner we can identify the

best one with high probability.

One would like to take advantage of the past responses y when choosing future arms. However
the confidence bound that is available for this adaptive setting has a worse dependence on the
dimension d than the confidence bound available for fixed sequences of arm [2]. The confidence
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bound for fixed sequences can be stated as follows: for all § € (0, 1), with probability at least
1 —4,foralln € Nandforallarmsx € X,

. 6t2|X
07 — 67 x| < 2], 1og< WQ‘(S’), (A6)

where én is the OLS estimator obtained with n samples, c is a constant depending on the variance
of the Gaussian noiseand ¥ p = 25:1 ngXpX, . Itcan be observed that designing a strategy that
minimizes this confidence bound for all arms naturally leads to the G-optimal design optimization
problem. The reader can refer to the supplementary material or [90] for more details.

To compare the randomized G-optimal design with the greedy implementation used for best
arm identification in [90] we use the same setting as the one of the experiment presented in Section
6 of [90]. More specifically we consider a set of d + 1 arms in R? where d > 2. This set is
made of the d vectors (ey, ..., eq) forming the canonical basis of R? and one additional arm
X411 = (cos(w),sin(w),0,...,0)" withw = 0.1. The true parameter 6, has all its coordinates
equal to 0 except the first one which is set to 2. In this setting, the best arm, ze., the one with
maximum linear response, is €1. One can also note that it is much harder to differentiate this arm
from x4, 1 than from the other arms. The noise of the linear model is a standard Gaussian random
variable \V'(0, 1) and the confidence level in (A.6) is chosen equal to § = 0.05. We also use the
same condition as in [90] (equation (13) therein) to check when enough arms have been pulled
to be able to identify the best arm with high probability. This condition naturally derives from
the confidence bound (A.6). As explained in Section A.2 the greedy implementation does not
work for the first iterations because the design matrix is singular. As in [90] we thus initialize the
procedure by choosing once each arm of the canonical basis. Although this would not be required
for the randomized strategy as we could start by sampling a given number of experiments, we use
the same initialization for the sake of fairness.

The number of samples required to find the best arm are shown in Figure A.1c which summa-
rizes the results obtained over 100 random seeds controlling the Gaussian noise of the linear model
and the random selection of the experiments. One can see that the randomized G-optimal design,
while being simple to use, achieves similar performances for low dimensions and even better per-
formances on average than the greedy implementation of the G-optimal design as the dimension
increases. We note that for all the random repetitions the best arm returned by both strategies is
always e;.
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B Randomization matters. How to
defend against strong adversarial
attacks.

This appendix contains the paper “Randomization matters, how to defend against strong ad-
versarial attacks”, International Conference on Machine Learning (ICML) 2020, R. Pinot,
R. Ettedgui, G. Rizk, Y. Chevaleyre, J. Atif
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Is there a classifier that ensures optimal robustness against all adversarial attacks? This paper
tackles this question by adopting a game-theoretic point of view. We present the adversarial at-
tacks and defenses problem as an infinite zero-sum game where classical results (e.g. Nash or Sion
theorems) do not apply. We demonstrate the non-existence of a Nash equilibrium in our game
when the classifier and the Adversary are both deterministic, hence giving a negative answer to
the above question in the deterministic regime. Nonetheless, the question remains open in the
randomized regime. We tackle this problem by showing that any deterministic classifier can be
outperformed by a randomized one. This gives arguments for using randomization, and leads us
to a simple method for building randomized classifiers that are robust to state-or-the-art adversar-
ial attacks. Empirical results validate our theoretical analysis, and show that our defense method
considerably outperforms Adversarial Training against strong adaptive attacks, by achieving 0.55
accuracy under adaptive PGD-attack on CIFAR10, compared to 0.42 for Adversarial training.
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B.1 Introduction

Adpversarial example attacks recently became a major concern in the machine learning commu-
nity. An adversarial attack refers to a small, imperceptible change of an input that is maliciously
designed to fool a machine learning algorithm. Since the seminal work of [17] and [91] it became
increasingly important to understand the very nature of this phenomenon [23, 37, 38, 46, 50].
Furthermore, a large body of work has been published on designing attacks [9, 27, 45, 66, 71] and
defenses [33, 45, 66, 72].

Besides, in real-life scenarios such as for an autonomous car, errors can be very costly. It is
not enough to just defend against new attacks as they are published. We would need an algo-
rithm that behaves optimally against every single attack. However, it remains unknown whether
such a defense exists. This leads to the following questions, for which we provide principled and
theoretically-grounded answers.

QI: Is there a deterministic classifier that ensures optimal robustness against any adversarial

attack?
A1: To answer this question, in Section B.3, we cast the adversarial examples problem as an znfinite
zero-sum game between a Defender (the classifier) and an Adversary that produces adversarial
examples. Then we demonstrate, in Section B.4, the non-existence of a Nash equilibrium in the
deterministic setting of this game. This entails that no deterministic classifier can claim to be more
robust than all other classifiers against any possible adversarial attack. Another consequence of our
analysis is that there is no free lunch for transferable attacks: an attack that works on all classifiers
will never be optimal against any of them.

Q2: Would randomized defense strategies be a suitable alternative to defend against strong

adversarial attacks?
A2: We tackle this problem both theoretically and empirically. In Section B.S, we demonstrate
that for any deterministic defense there exists a mixture of classifiers that offers better worst-case
theoretical guarantees. Building upon this, we devise a method that generates a robust random-
ized classifier with a one step boosting method. We evaluate this method, in Section B.6, against
strong adaptive attacks on CIFAR10 and CIFAR100 datasets. It outperforms Adversarial Train-
ing against both £-PGD [66], and ¢2-C&W [27] attacks. More precisely, on CIFARI10, our
algorithm achieves 0.55 (resp. 0.53) accuracy under attack against these attacks, which is an im-
provement of 0.13 (resp. 0.18) over Adversarial Training.

B.2 Related Work

Many works have studied adversarial examples, in several difterent settings. We discuss hereafter
the different frameworks that we believe to be related to our work, and discuss the aspects on
which our contribution differs from them.

Distributionally robust optimization. The work in [88] addresses the problem of adversarial
examples through the lens of distributionally robust optimization. They study a min-max prob-
lem where the Adversary manipulates the test distribution while being constrained in a Wasser-
stein distance ball (they impose a global constraint on distributions for the Adversary, while we
study a local, pointwise constraint, leading to different attack policies). A similar analysis was pre-
sented in [61] in a more general setting that does not focus on adversarial examples. Even though
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our work studies a close problem, our reasoning is very different. We adopt a game theoretic stand-
point, which allows us to investigate randomized defenses and endow them with strong theoretical
evidences.

Game Theory. Some works have tackled the problem of adversarial examples as a two player
game. For example [22] views adversarial example attacks and defenses as a Stackelberg game.
More recently, [81] and [73] investigated zero-sum games. They consider restricted versions of the
game where classical theorems apply, such as when the players only have a finite set of possible
strategies. We study a more general setting. Finally, [35] motivates the use of noise injection as a
defense mechanism by game theoretic arguments but only present empirical results.

Randomization. Following the work of [35] and [105], several recent works studied noise in-
jection as a defense mechanism. In particular, [60], followed by [33, 62, 75,102] demonstrated that
noise injection can, in some cases, give provable defense against adversarial attacks. The analysis
and defense method we propose in this paper are not based on noise injection. However, a link
could be made between these works and the mixture we propose, by noting that a classifier in
which noise is being injected can be seen as an infinite mixture of perturbed classifiers.

Optimal transport. Our work considers a distributionnal setting, in which the Adversary
manipulating the dataset is formalized by a push-forward measure. This kind of setting is close to
optimal transport settings recently developed by [16] and [77]. Specifically, these works investigate
classifier-agnostic lower bounds on the risk for binary classification under attack, with some hy-
pothesis on the data distribution. The main differences are that we focus on studying equilibria
and not deriving bounds. Moreover, these works do not study the influence of randomization.
Finally they express the optimal risk of the Defender in terms of transportation costs between two
distributions, whereas we explicitly study the Adversary’s behaviour as a transport from one dis-
tribution to another. Even though they do not treat the problem from the same prism, we believe
that these works are profoundly related and complementary to ours.

Ensemble of classifiers. Some works have been done to improve the robustness of a model
by constructing ensemble of classifiers [1, 70, 86, 100, 107]. However all the defense methods pro-
posed in those papers subsequently proved to be ineffective against adaptive attacks introduced
in [48, 94]. The main difference with our method is that it is not an ensemble method since it uses
sampling instead of voting to aggregate the classifiers’ output. Hence in terms of volatility, in vot-
ing methods, whenever a majority agrees on an opinion, all others votes will be ignored, whereas
here each classifier always contributes according to its probability weights, which do not depend
on the others.

B.3 A Game Theoretic point of view.

Initial problem statement

Notations. For any set Z with o-algebra 0(Z), if there is no ambiguity on the considered o-
algebra, we denote P(Z) the set of all probability measures over (Z,0(Z)), and Fz the set of
all measurable functions from (Z,0(2)) to (£,0(Z)). Foru € P(Z) and ¢ € Fz, the
pushforward measure of p by ¢ is the measure ¢p#u such that p#u(B) = u(¢™(B)) for any
Beo(2).
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B Randomization matters. How to defend against strong adversarial attacks.

Binary classification task. Let ¥ C R%and Y = {-1, 1}. We consider a distribution D €
P(X x Y) that we assume to be of support X' x ). The Defender is looking for a hypothesis
(classifier) h in a class of functions H, minimizing the risk of h w.r.t. D:

R(h):= E [{h(X)#Y
()= E_[MHX) £ VY
(B.1)
= B[ B 10 £ 7)),
Where H := {h : © — sgng(x) | g : X = Rcontinuous}, v € P()) is the probability
measure that defines the law of the random variable Y, and forany y € Y, pu, € P(X) is the
conditional law of X |(Y = y).

Adversarial example attack (point-wise). Given a classifier b : X — ) and a data sample
(x,y) ~ D, the Adversary seeks a perturbation 7 € X that s visually imperceptible, but modifies
x enough to change its class, z.e. h(x + 7) # y. Such a perturbation is called an adversarial
example attack. In practice, it is hard to evaluate the set of visually imperceptible modifications of
an image. However, a sufficient condition to ensure that the attack is undetectable is to constrain
the perturbation 7 to have a small norm, be it for the £, or the £ norm. Hence, one should
always ensure that ||7|| ., < €x, or || 7|y < €2, depending on the norm used to measure visual
imperceptibility. The choice of the threshold depends on the application at hand. For example,
on CIFAR datasets, typical values for €5, and €3 are respectively, 0.031 and 0.4/0.6/0.8. In the
remaining of this work, we will define our constraint using an £2 norm, but all our results are valid
for an £, based constraint.

Adpversarial example attack (distributional). The Adversary chooses, for every x € &, a
perturbation that depends on its true label y. This amounts to construct, for each label y € )/,
a measurable function ¢, such that ¢, () is the perturbation associated with the labeled exam-
ple (z,y). This function naturally induces a probability distribution over adversarial examples,
which is simply the push-forward measure ¢, #1,,. The goal of the Adversary is thus to find
¢ = (¢-1,91) € (Fale,)? that maximizes the adversarial risk Radv (h, ¢) defined as follows:

Ru(hd)i= B | B [L{4(X) £ VY], (8.2)

Whereforany ez € (0, 1), Fy|c, is the setof functions that imperceptibly modifies a distribution:
Fatw 1= {0 € Fr [ essup [4(2) ~ ol < .
zeX

Adpversarial defense, a two-player zero-sum game. With the setting defined above, the ad-
versarial examples problem can be seen as a two-player zero-sum game, where the Defender tries
to find the best possible hypothesis h, while a strong Adversary is manipulating the dataset distri-
bution:

inf  sup  Raav(h, @). (B.3)
heH ¢6(FX|62 )2
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This means that the Defender tries to design the classifier with the best performance under at-
tack, whereas the Adversary will each time design the optimal attack on this specific classifier. In
the game theoretical terminology, the choice of a classifier A (resp. an attack ¢) for the Defender
(resp. the Adversary) is called a strategy. It is crucial to note that the sup-inf and inf-sup prob-
lems do not necessarily coincide. In this paper, we mainly focus on the Defender’s point of view
which corresponds to the inf-sup problem. We will be interested in understanding the behaviour
of players in this game, z.e. the best responses they have to a given strategy, and whether some
equilibria may arise. This motivates the following definitions.

Definition B.1 (Best Response). Let h € H, and ¢ € (]:X‘EQ)Q. A best response from the
Defender to ¢ is a cassifier h* € H such that Ragy(h*, ) = zmyr_[l Radav(h, @). Similarly, a
€

best response from the Adversary to h is an attack ¢* € (.7:/\»‘62)2 such that Raqv(h, @) =
maxRuav(h, ®).
S (‘Fxlﬁz)

In the remaining, we denote B (D) the set of all best responses of the Adversary to a classifier
h. Similarly BR(¢) denotes the set of best responses to an attack ¢.

Definition B.2 (Pure Nash Equilibrium). 7 the zero-sum game (Eq. B.3), a Pure Nash Equilib-
rium 4s 2 couple of strategies (h, ) € H x (Fxe,) ? such that

h € BR(¢p), and,
¢ € BR(h).

When it exists, a Pure Nash Equilibrium is a state of the game in which no player has any incen-
tive to modify its strategy. In our setting, this simultaneously means that no attack could better
fool the current classifier, and that the classifier is optimal for the current attack.

Remark. All the definitions in this section assume a deterministic regime, ze. that neither the
Defender nor the Adversary use randomization, hence the notion of Pure Nash Equilibrium in
the game theory terminology. The randomized regime will be studied in Section B.5.

Trivial solution and Regularized Adversary

Trivial Nash equilibrium. Our current definition of the problem implies that the Adversary has
perfect information on the dataset distribution and the classifier. It also has unlimited computa-
tional power and no constraint on the attack except on the size of the perturbation. Going back to
the example of the autonomous car, this would mean that the Adversary can modify every single
image that the camera may receive during any trip, which is highly unrealistic. The Adversary has
no downside to attacking, even when the attack is unnecessary, ¢.¢. if the attack cannot work or if
the point is already misclassified.

This type of behavior for the Adversary can lead to the existence of a pathological (and trivial)
Nash Equilibrium as demonstrated in Figure B.1 for the uni-dimensional setting with Gaussian
distributions. The unbounded Adversary moves every point toward the decision boundary (each
time maximizing the perturbation budget), and the Defender cannot do anything to mitigate the
damage. In this case the decision boundary for the Optimal Bayes Classifier remains unchanged,
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B Randomization matters. How to defend against strong adversarial attacks.

even though both curves have been moved toward the center, hence a trivial equilibrium. In the
remaining of this work, we show that such an equilibrium does not exist as soon as there is a
small restraint on the Adversary’s strength, 7.¢. as soon as it is not perfectly indifferent to produce
unnecessary perturbations.

Figure B.1: Representation of the f1.; (blue dotted line) and y¢1 (red plain line) distributions, withoutattack
(left) and with three different attacks: no penalty (second drawing), with mass penalty (third)
and with norm penalty (fourth). On all figures blue area on the left of the axis is Pj,(e2) and
red area on the right is Nj (e2).

Regularized Adversary. To mitigate the Adversary strength, we introduce a penalization
term:

inf sup [Radv(hv ¢) —A Q(¢)] : (B-4)
: Rgdv(hv ¢)

The penalty function €2 represents the limitations on the Adversary’s budget, be it because of
computational resources or to avoid being detected. A € (0, 1) is some regularization weight. In
this paper, we study two types of penalties: the mass penalty (dpas, and the norm penalty Q2 orm.

From a computer-security point of view, the first limitation that comes to mind is to limit the
number of queries the Adversary can send to the classifier. In our distributional setting, this boils
down to penalizing the mass of points that the function ¢ moves. Hence we define the mass
penalty as:

Q) = E [ E [n{x#qby(X)}]]. (B5)

Y~v | X~py

The mass penalty discourages the Adversary from attacking too many points by penalizing the
overall mass of transported points. The second limitation we consider penalizes the expected norm

under ¢:

Onam(®)i= B | E[IX = v (1] (8:6)

C Yew | Xepy

This regularization is very common in both the optimization and adversarial example commu-
nities. In particular, it is used by Carlini & Wagner [27] to compute the eponymous attack’. In
the following, we denote BNRq, ., (resp. BARq,...) the best responses for the Adversary w.r.t the
mass (resp. norm) penalty. Section B.4 shows that whatever penalty the Adversary has, no Pure

mass norm )

1Qorm is not limited to 2 norm. The results we present hold as long as the norm used to compare X and ¢y (X)
comes from a scalar product on X'.
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B.4 Deterministic regime

Nash Equilibrium exists. We characterize the best responses for each player, and show that they
can never satisfy Definition B.2.

B.4 Deterministic regime

Notations. Leth € H,wedenote P, := {x € X' | h(z) = 1},and N}, := {z € X' | h(z) = -1}
respectively the set of positive and negative outputs of h. We also denote the set of attackable
points from the positive outputs P, (0) := {z € P | 32 € Npand ||z — z||2 < 0},and N (9)
likewise.

Adversary’s best response. Let us first present the best responses of the Adversary under
respectively the mass penalty and the norm penalty. Both best responses share a fundamental be-
havior: the optimal attack will only change points that are close enough to the decision boundary.
This means that, when the Adversary has no chance of making the classifier change its decision
about a given point, it will not attack it. However, for the norm penalty all attacked points are
projected on the decision boundary, whereas with the mass penalty the attack moves the points
across the border.

LemmaB.1. Leth € Hand ¢ € BRq,,,, (h). Then the following assertion bolds:

mass (

otherwise.

{ $1(z) € (P)°  ifz € Py(ea)
¢1(x) =

Where (Py)E, the complement of P in X. ¢.1 is characterized symmetrically.

LemmaB.2. Lerh € Hand ¢ € BRq,,,, (h). Then the following assertion holds:

norm (

T otherwise.

@) :{ m(z) ifz € Pules)

Where T is the orthogonal projection on (Py)C. 6.1 is characterized symmetrically.

These best responses are illustrated in Figure B.1 with two uni-dimensional Gaussian distribu-
tions. For the mass penalty, 141 is set to 0 in P, (€2), and this mass is transported into [Ny, (e2). The
symmetric holds for ji.1. After attack, we now have 11 (P, (e2)) = 0, so a small value of /1.1 in
Py, (€2) suffices to make it dominant, and that zone will now be classified -1 by the Optimal Bayes
Classifier. For the norm penalty, the part of 11 that was in P, (€2) is transported on a Dirac dis-
tribution at the decision boundary. Similarly to the mass penalty, the best response now predicts
-1 for the zone Py (€2).

Remark. In practice, it might be computationally hard to generate the exact best response for
the norm penalty, ze. the projection on the decision boundary. That will happen for example if
this boundary is very complex (e.g. highly non-smooth), or when X' is in a high dimensional space.
To keep the attack tractable, the Adversary will have to compute an approximated best response
by allowing the projection to reach the point within a small ball around the boundary. This means
that the best responses of the norm penalty and the mass penalty problems will often match.
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B Randomization matters. How to defend against strong adversarial attacks.

Defender’s best response. At a first glance, one would suspect that the best response for the
Defender ought to be the Optimal Bayes Classifier for the transported distribution. However, itis
only well defined if the conditional distributions admit a probability density function. This might
not always hold here for the transported distribution. Nevertheless, we show that there is a prop-
erty, shared by the Optimal Bayes Classifier when defined, that always holds for the Defender’s

best response.

Lemma B.3. Let us consider ¢ € (]—‘X‘Q)Q. If we take h € BR(), then fory = 1 (resp.
y = -1), and for any B C Py, (resp. B C Ny) one bas

P(Y = y|X € B) > P(Y = —y|X € B)
withY ~ vand forally € Y, X|(Y =y) ~ oy

In particular, when ¢1 #1411 and ¢_1 # 11.1 admit probability density functions, Lemma B.3 sim-
ply means that h is the Optimal Bayes Classifier for the distribution (v, 1 #4u1, ¢.1#p11)*. We

can now state our main theorem, as well as two of its important consequences.

Theorem B.1 (Non-existence of a pure Nash equilibrium). In the zero-sum game (Eq. B.4) with
A € (0,1) and penalty 2 € {Qass, Quorm }> there is no Pure Nash Equilibrium.

Consequence 1. (No free lunch for transferable attacks) To understand this statement, remark
that, thanks to weak duality, the following inequality always holds:

sup  inf RY (h,¢) < inf  sup R (h, o).

adv adv
¢€(]__X‘62)2 hEH hEH d)e(]__X‘e2)2

On the left side problem (sup-inf), the Adversary looks for the best strategy ¢ against any un-
known classifier. This is tightly related to the notion of transferable attacks (see e.g. [95]), which
refers to attacks successful against a wide range of classifiers. On the right side (our) problem
(inf-sup), the Defender tries to find the best classifier under any possible attack, whereas the Ad-
versary plays in second and specifically attacks this classifier. As a consequence of Theorem B.3,
the inequality is always strict:

sup  inf RY, (h,¢) < inf  sup R, (h, ).
(f)e(f)(‘€2)2 heH heH ¢€(FX|€2)2

This means that both problems are not equivalent. In particular, an attack designed to succeed
against any classifier (z.e. a transferable attack) will not be as good as an attack tailored for a given
classifier. Hence she has to trade-off between effectiveness and transferability of the attack.

Consequence 2. (No deterministic defense may be proof against every attack) Let us consider
the state-of-the-art defense which is Adversarial Training [45, 66]. The idea is to compute an effi-
cientattack ¢, and train the classifier on created adversarial examples, in order to move the decision
boundary and make the classifier more robust to new perturbations by ¢.

2 We prove this result in the supplementary material.
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To be fully efficient, this method requires that ¢ remains an optimal attack on h even after
training. Our theorem shows that it is never the case: after training our classifier 4 to become
(h') robust against ¢, there will always be a different optimal attack ¢’ that is efficient against /.
Hence Adversarial Training will never achieve a perfect defense.

B.S Randomization matters

As we showed that there is no Pure Nash Equilibrium, no deterministic classifier may be proof
against every attack. We would therefore need to allow for a wider class of strategies. A natural
extension of the game would thus be to allow randomization for both players, who would now
choose a distribution over pure strategies, leading to this game:

inf sup E [RL,(h, ¢)]. (B.7)
P(H h~
TP e ((Faie)?) g

Without making further assumptions on this game (e.g. compactness), we cannot apply known
results from game theory (e.g. Sion theorem) to prove the existence of an equilibrium. These
assumptions would however make the problem loose much generality, and do not hold here.

Randomization matters. Even without knowing if an equilibrium exists in the randomized
setting, we can prove that randomization matters. More precisely we show that any deterministic
classifier can be outperformed by a randomized one in terms of the worst case adversarial risk. To
do so we simplify Equation B.7 in two ways:

1. We do not consider the Adversary to be randomized, z.e. we restrict the search space of
the Adversary to (F)? instead of P((Fx)?). This condition corresponds to the cur-
rent state-of-the-art in the domain: to the best of our knowledge, no efficient randomized
adversarial example attack has been designed (and so is used) yet.

2. We only consider a subclass of randomized classifiers, called mixtures, which are discrete
probability measures on a finite set of classifiers. We show that this kind of randomization
is enough to strictly outperform any deterministic classifier. We will discuss later the use of
more general randomization (such as noise injection) for the Defender. Let us now define
a mixture of classifiers.

Definition B.3 (Mixture of classifier). Lern € N,h = (hq, ..., hy) € H",andq € P({1,...,n}).
A mixed classifier of h by q s @ mapping my! from X to P(Y) such that for all x € X, mj}(x) is
the discrete probability distribution that is defined for all y € Y as follows:

my(@)(y) == E [L{hi(z) = y}].

We call such a mixture a mixed strategy of the Defender. Given some x € A&, this amounts
to picking a classifier hi; from h at random following the distribution q, and use it to output the
predicted class for z, ze. h;(z). Note that a mixed strategy for the Defender is a non deterministic
algorithm, since it depends on the sampling one makes on q. Hence, even if the attacks are defined
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B Randomization matters. How to defend against strong adversarial attacks.

Figure B.2: Illustration of adversarial examples (only on class 1 for more readability) crossing the decision
boundary (left), adversarially trained classifier for the class 1 (middle), and a randomized classi-
fier that defends class 1. Stars are natural examples for class 1, and crosses are natural examples
for class -1. The straight line is the optimal Bayes classifier, and dashed lines delimit the points
close enough to the boundary to be attacked resp. for class 1 and -1. We focus the drawing on
the star points. Crosses can be treated symmetrically.

in the same way as before, the Adversary now needs to maximize a new objective function which
is the expectation of the adversarial risk under the distribution mg. It writes as follows:

E E E . [n{ff £ YH —AQ(g). (B.8)

Yoo | Xvdy #py | ¥oms]

We also write Rgdv to mean the left part of Equation (B.8), when it is clear from context that the
Defender uses a mixed classifier. Using this new set of strategies for the Defender, we can study
whether mixed classifiers outperform deterministic ones, and how to efficiently design them.

Mixed strategy. We demonstrate that the efficiency of any deterministic defense can be im-
proved using a simple mixed strategy. This method presents similarities with the notions of fic-
titious play [21] in game theory, and boosting in machine learning [42]. Given a deterministic
classifier h, we combine it (via randomization) with the best response hs to its optimal attack.

The rational behind this idea is that, by construction, efficient attacks on one of these two
classifiers will not work on the other. Mixing k1 with hg has two opposite consequences on the
adversarial risk. On one hand, where we only had to defend against attack on 1, we are now also
vulnerable to attacks on hg, so the total set of possible attacks is now bigger. On the other hand,
each attack will only work part of the time, depending on the probability distribution q. If we
can calibrate the weights so that attacks on important zones have a low probability of succeeding,
then the average risk under attack on the mixture will be low.

Toy example where a mixture outperforms AT. To better understand how randomization
can work, let us look at a simple toy example. Figure B.2 illustrates a binary classification setting
between two set of points. Attacking the Optimal Bayes Classifier (bold straight line) consists in
moving all the points that lie between the dotted lines to the opposite side of the decision bound-
ary (Figure B.2, left). The general tactic to defend against an attack is to change the classifier’s
output for points that are too close to the boundary. This can be done all the time, as in Adversar-
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ial Training (where we move the decision boundary to incorporate adversarial examples), or part
of the time as in a randomized algorithm (so that the attack only works with a given probability).

When we use Adversarial Training for the star points (Figure B.2, middle), we change the out-
put on the blue zone, so that 2 of the star (squared) points cannot be successfully attacked any-
more. But in exchange, the dilation of the new boundary can now be attacked. For Adversarial
Training to work, we need the number of new potential attacks (z.e. the points that are circled, 2
crosses in the dilation and 2 stars that are close to the new boundary) to be smaller than the num-
ber of attacks we prevent (the squared points, 2 blue ones that an attack would send in the blue
zone, and 3 red points that are far from the new decision boundary). Here we prevent 5 attacks
at the cost of 4 new ones, so the Adversarial Training improves the total score from 8 to 7.

Similarly, we observe what happens for the randomized defense (Figure B.2, right). We mix the
Optimal Bayes Classifier with the best response to attacking all the points. We get a classifier that
is determinsitic outside the gray area, and random inside it>. If the first classifier hasa weight o =
0.5, 6 of the old attacks now succeed only with probability 0.5 (crosses between the dotted lines),
whereas 3 new attacks are created (stars outside of the gray area) that succeed with probability 0.5
also. At the end, the average rate of successful attacks is 6.5, where adversarial training previously
achieved 7.

More formally, Theorem B.4 shows that whatever penalty we consider, a deterministic classifier
can always be outperformed by a randomized algorithm. We now can state our second main result:
randomization matters.

Theorem B.2. (Randomization matters) Let us consider hy € H, A €
¢ € BRq(h1) and hy € BR(P). Then for any o € (max(\, 1 — N),
BR(my) one has

(07 1)’ Q = Qmam
1) and for any ¢’ €

R, (ML, @) < Riy, (b1, @).

adv adv

Whereh = (hy,hs), q = (a,1 — &), and ml is the mixture of h by q. A similar result holds
when Q) = Qyopp, (see supplementary materials).

Remark Note that depending on the initial hypothesis /1 and the conditional distributions
p11 and g1, the gap between RS, (mf, ¢')and RS (h1, ¢) could vary. Hence, with additional
conditions on h1, 11 and fi.1, we could make the gap appear more explicitly. We keep the formu-
lation general to emphasize that for any deterministic classifier, there exists a randomized one that
outperforms it in terms of worst-case adversarial score.

Based on Theorem B.4 we devise a new procedure called Boosted Adversarial Training (BAT)
to construct a robust mixture of two classifiers. It is based on three core principles: Adversarial

Training, Boosting and Randomization.

B.6 Experiments: How to build the mixture

Simple mixture procedure (BAT). Given a dataset D and a weight parameter o € [0, 1], we
construct by the first classifier of the mixture using Adversarial Training4 on D. Then, we train

*The grey area should actually be bigger since the best response to the attack would also change the decision on the
upper part between the OBC and the doted line. We focus on what happens on the star points for simplicity.
“We use £oo-PGD with 20 iterations and o = 0.031 to train the first classifier and to build D.

113



B Randomization matters. How to defend against strong adversarial attacks.

Natural | Adaptive-l..-PGD Adaptive-/2-C&W
Dataset | Method
Accuracy €0 = 0.031 eg=04 e =06 € =0.8
Natural 0.88 0.00 0.00 0.00 0.00
CIFARI10 | AT [66] 0.83 0.42 0.60 0.47 0.35
Ours 0.80 0.55 0.60 0.57 0.53
Natural 0.62 0.00 0.00 0.00 0.00
CIFAR100| AT [66] 0.58 0.26 0.38 0.29 0.22
Ours 0.56 0.40 0.45 0.41 0.38

Table B.1: Evaluation on CIFAR10 and CIFAR100 without data angmentation. Accuracy under attack
of a single adversarially trained classifier (AT) and the mixture formed with our method (Ours).
The evaluation is made with Adaptive-{..-PGD and Adaptive-{2-C&W attacks both com-
puted with 100 iterations. For Adaptive-{.,-PGD we use an epsilon equal to 8/255 (=~ 0.031),
a step size equal to 2/255 (= 0.008) and we allow random initialization. For Adaptive-{s-
C&W we use a learning rate equal to 0.01, 9 binary search steps, the initial constant to 0.001, we
allow the abortion when it has already converged and we give the results for the different values
of rejection threshold €5 € {0.4,0.6,0.8}. As for EOT, we don’t need to estimate the expected
accuracy of the mixture through Monte Carlo sampling since we have the exact weight of each
classifier of the mixture. Thus we give the exact expected accuracy.

the second classifier /12 on a data set D that contains adversarial examples against h1 created from
examples of D. At the end we return the mixture constructed with those two classifiers where the

first one has a weight of 1 — o and the second one a weight of . The parameter o is found by
conducting a grid-search. In Table B.1 we present results for & = 0.2 under strong state-of-the-art
attacks. The procedure is summarized in Algorithm 12°

Algorithm 11: Boosted Adversarial Training

Input : D the training data set and « the weight parameter.

Create and adversarially train o1 on D

Generate the adversarial data set D against hy.

Create and naturally train s on D

q < (1 —Oé,Oé)
q < (hlth)

q
return mh

Comparison to fictitious play. Contrary to classical algorithms such as Fictitions play that
also generates mixtures of classifiers, and whose theoretical guarantees rely on the existence of a

Mixed Nash Equilibrium, the performance of our method is ensured by Theorem B.4 to be atleast

as good as the classifier it uses as a basis. Moreover, the implementation of Fictitious Play would
be impractical on the high dimensional datasets we consider, due to its computational costs.

SMore algorithmic and implementation details can be found in the supplementary materials.
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Evaluating against strong adversarial attacks. When evaluating a defense against adver-
sarial examples, it is crucial to test the robustness of the method against the best possible attack.
Accordingly, the defense method should be evaluated against attacks that were specifically tai-
lored to it (a.k.a. adaptive attacks). In particular, when evaluating randomized algorithms, one
should use Expectation over Transformation (EOT) to avoid gradient masking as pointed out
by [9] and [26]. More recently, [94] emphasized that one should also make sure that EOT is com-
puted properly®. Previous works such as [35] and [75] estimate the EOT through a Monte Carlo
sampling which can introduce a bias in the attack if the sample size is too small. Since we assume
perfect information for the Adversary, it knows the exact distribution of the mixture. Hence it
can directly compute the expectation without using a sampling method, which avoid any bias.
Table B.1 evaluates our method against strong adaptive attacks namely Adaptive-{~,-PGD and
Adaptive-/5-C&W.

Hard constraint parameter. The typical value of € in the hard constraint depends on the
norm we consider in the problem setting. In this paper, we use an £2 norm, however, the con-
straint parameter for £o,-PGD attack was initially set to be an £, constraint. In order to com-
pare attacks of similar strength, we choose different threshold (€2 or €4) values which result in
balls of equivalent volumes. For CIFAR10 an CIFAR100 datasets [55], which are 3 x 32 x 32
dimensional spaces, this gives €5 = 0.03 and €2 = 0.8 (we also give results for €3 equal to
0.6 and 0.4 as this values are sometimes used in the literature). Since Adaptive-/2-C&W at-
tack creates an unbounded perturbation on the examples, we implemented the constraint from
Equation B.6 by checking at test time whether the £2-norm of the perturbation exceeds a certain
threshold €3 € {0.4,0.6,0.8}. If it does, the adversarial example is disregarded, and we keep the
natural example instead.

Experimental results. In Table B.1 we compare the accuracy, on CIFAR10 and CIFAR100,
of our method and classical Adversarial Training under attack with Adaptive-{.-PGD and
Adaptive-/2-C&W, both run for 100 iterations. We used 5 times more iterations for the evalu-
ation as we used during training, and carefully check for convergence. the rational behind this is
that, for a classifier to be fully robust, its loss of accuracy should be controlled when the attacks
are stronger than the ones it was trained on. For both attacks, both datasets and all thresholds
(i.e. the budget for a perturbation), the accuracy under attack of our mixture is higher than the
single classifier with Adversarial Training. Our defense is especially more robust than Adversarial

Training when the threshold is high.

Extension to more than two classifiers. In this paper we focus our experiments on a mixture
of two classifiers to present a proof of concept of Theorem B.4. Nevertheless, a mixture of more
than two classifiers can be constructed by adding at each step ¢ a new classifier trained naturally on
the dataset D that contains adversarial examples against the mixture atstep ¢ — 1. Since Dhastobe
constructed from a mixture, one would have to use an adaptive attack as Adaptive-{.-PGD. We
refer the reader to the supplementary material for this extended version of the algorithm and for
all the implementation details related to our experiments (architecture of models, optimization
settings, hyper-parameters, etc.).

°In order for the attack to succeed, it it more efficient to compute the expected transformation of the logits instead
of taking the expectation over the loss. More details on this in the supplementary materials.
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B.7 Discussion & Conclusion

Finally, is there a classifier that ensures optimal robustness against all adversarial attacks? We gave
a negative answer to this question in the deterministic regime, but part of the question remains
open when considering randomized algorithms. We demonstrated that randomized defenses are
more efficient than deterministic ones, and devised a simple method to implement them.

Game theoretical point of view. There remains to study whether an Equilibrium exists in
the Randomized regime. This question is appealing from a theoretical point of view, and requires
to investigate the space of randomized Adversaries P((Fx)?). The characterization of this space
is not straightforward, and would require strong results in the theory of optimal transport. A
possible research direction is to quotient the space (F)? so as to simplify the search in P((Fx)?)
and the characterization of the Adversary’s best responses. The study of this equilibrium is tightly
related to that of the value of the game, which would be interesting for obtaining min-max bounds
on the accuracy under attack, as well as certificates of robustness for a set of classifiers.

Advocating for more provable defenses. Although the experimental results show that our
mixture of classifiers outperforms Adversarial Training, our algorithm does not provide guaran-
tees in terms of certified accuracy. As the literature on adversarial attacks and defenses demon-
strated, better attacks always exist. This is why, more theoretical works need to be done to prove
the robustness of a mixture created from this particular algorithm. More generally, our work ad-
vocates for the study of mixtures as a provable defense against adversarial attacks. One could, for
example, build upon the connection between mixtures and noise injection to investigate a broader
range of randomized strategies for the Defender, and devise certificates accordingly.

Improving Boosted Adversarial Training. From an algorithmic point of view, BAT can be
improved in several ways. For instance, the weights can be learned while choosing the new classifier
for the mixture. This could lead to an improved accuracy under attack, but would lack some
theoretical justifications that still need to be set up. Finally, tighter connections with standard
boosting algorithms could be established to improve the analysis of BAT.

B.8 Omitted proofs and Additional results

Notations. Let us suppose that (X]|.][) is a normed vector space.
By (z,€) = {z € X | |[x — 2| < €} is the closed ball of center 2 and radius € for the norm
II-ll. Note that H := {h :  — sgng(x) | g : X — R continuous}, with sgn the function
that outputs 1 if g(z) > 0, —1if g(z) < 0, and 0 otherwise. Hence for any (z,y) ~ D, and
h € Honehas 1{h(x) # y} = 1{g(z)y < 0}. Finally, we denote 1 and /.1 respectively the
probabilities of class 1 and -1.

Introducing remarks. Let us first note that in the paper, the penalties are defined with an ¢,
norm. However, Lemma B.1 and B.2 hold as long as X' is an Hilbert space with dot product <|>
and associated norm ||.|| = /< .|.>. We first demonstrate Lemma B.2 with these general
notations. Then we present the proof of Lemma B.1 that follows the same schema. Note that,
for Lemma B.1, we do not even need the norm to be Hilbertian, since the core argument rely on
separation property of the norm, ze. on the property ||z —y|| =0 <= z =1y.
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LemmaB.2. Lerh € Hand ¢ € BRq,,,, (h). Then the following assertion holds:

norm (

T otherwise.

@) :{ n(x) ifr € Py(e)

Where T is the orthogonal projection on (Ph)c. @1 is characterized symmetrically.

Proof. Let us first simplify the worst case adversarial risk for h. Recall that & = sgn(g) with
g continuous. From the definition of adversarial risk we have:

sup  Rynem (h, @)
S (}-X\EQ)Z

= swp Yy P [1{A(dy(X)) # y} — MIX — dy(X)]| — 0L{[| X — py(X)|| > e2}]

Be(Fx)® y==+1

= sup Yy EM [1{g(¢y(X))y < 0} = AIX — ¢y (X)|| = c0L{[| X = ¢ (X)|| > e2}]

Be(Fx)? y==+1

= v osup B [1{g(¢,(X))y < 0} = AIX = ¢y (X)[| — 0oL {|X — ¢, (X)]| > e2}]

y=t1 GuEFxTHy

Finding ¢1 and ¢ are two independent optimization problems, hence, we focus on charac-
terizing ¢1 (z.e. y = 1).

sup B [1{g(¢1(X)) <0} = A[X = $1(X)[| = 00L{||X = $2(X)[| > e2}]
P1E€Fx 4 HL

= E

B essup  1(g(z) <0) — AIX — 2|
~p1

ZEB” I (X 62)

_ / essup  1{g(2) < 0} — M|z — 2| dyus ().
y Z€BI(@e)

Let us now consider (H) jes a partition of X', we can write.

sup B [1{g(¢1(X)) <0} = AIX = $1(X)[| = o0L{||X — $2(X)[| > ea}]
P1EFx M

-y / essup  1{g(2) < O} — Allz — 2| dpus ()
jed, *EB@e)

In particular, we consider here Hy = P}E, Hy = P, \ Py(e2),and Hy = Py(e€2).

Forz € Hy = P}E. Taking z = x we get 1{g(z) < 0} — AljJx — z|| = 1. Since for any
z € X wehave 1{g(2) < 0} — A||z — z|| < 1, this strategy is optimal. Furthermore, for
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any other optimal strategy z’, we would have ||z — 2/|| = 0, hence 2’ = z, and an optimal
attack will never move the points of Hy = P}E.

Forx € Hy = Py \ Pp(e2). Wehave B |(,€2) C P, by definition of Pp(e2). Hence,
forany z € By (w, €2), one gets g(z) > 0. Then 1{g(z) < 0} — Az — z|| < 0. The
only optimal z will thus be z = x, giving value 0.

Let us now consider © € Hy = Py (e2) which is the interesting case where an attack is
possible. Weknow that B | (z, €2) ﬂP,E‘ # (), and for any z in thisintersection, 1(g(z) <
0) = 1. Hence:

essup 1{g(z) <0} — A||lx — z|| =max(l — A  essinf |l — z||,0) (B.9)

ZEB\LH(vaQ) ZGBH'H (x,eg)ﬂPh
=max(1l — )\ﬂ'BH'” (wse2)VPE (x),0) (B.10)
Where Tp, (we)n PE is the projection on the closure of By (7, €2) N P}E. Note that

o . C.
7TBH |(@e2)n P exists: g is continuous, so Bj| | (x,€2) N Py is a closed set, bounded, and

thus compact, since we are in finite dimension. The projection is however not guaranteed
to be unique since we have no evidence on the convexity of the set. Finally, let us remark
that, since A € (0,1),and ea < 1, one has 1 — )\WBHAH (2,e2)NPE (x) > Oforany x € Hs.

Hence, on Py (€2), the optimal attack projects all the points on the decision boundary. For
simplicity, and since there is no ambiguity, we write the projection 7.

Finally. Since Hy U H; U Hy = X, Lemma B.2 holds. Furthermore, the score for this
optimal attack is:

sup Rikem (h, b)
oS (‘FX\Q)

SND / essup 1{g(2)y < 0} — Al — 21| diuy ()

y=t1 jeJpg. *€Bii@e)

Since the valueis 0 on P, \ Py (€2) (resp. on Ny, \ Np(€2) ) for ¢ (resp. ¢.1), one gets:

| [ (=N = 7@)dm(e) + [ 1dpr(z)

Ph(e2) Pt

toa| [ (=N - r@I)dna(@) + [ 1dpa(a)

Na(e2) N
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i / (1 = Nlz = m(@)]|) dpa () + pa (PF)

Pr(e2)

voa| [ (0= Ao = m@))dua(e) + wa (V)
Np(e2)
—RW+u [ (1Mo - r@)du@) +e [ (1= Ao = (@)l ds @)
Py (e2) Np(e2)
(16) holds since R(h) = P(h(X) # Y)P(g¢(X)Y < 0) = vy (PL) + vapuq (ND).

This provides an interesting decomposition of the adversarial risk into the risk without attack
and the loss on the attack zone.

O

LemmaB.1. Leth € Hand ¢ € BRq,,, (h). Then the following assertion bolds:

{ 1(z) € (P)®  ifx € Py(e)

o1(x) ==z otherwise.

Where (Py), the complement of Py, in X. ¢.1 is characterized symmetrically.

Proof. Following the same proof schema as before the adversarial risk writes as follows:

sup Roge (B, ¢)
P< (}—X\fz)

= sup Y Yy o 1{h ¢y(X)) # y} = A{X # ¢y (X)} — 0ol {[|X — ¢y (X)|| > e2}]

BE(Fx)? y==1

= sup Y vy ]1{9 (y(X))y <0} = A{X # ¢y (X)} — ool {[| X — ¢ (X)| > €2}]

$E(Fx)® y==+1

= v sw [1{g(dy(X))y < 0} = AL{X # ¢y(X)} — 0ol {[|X — ¢y (X)[| > e2}]

y==1 PvEFx XN“?/

Finding ¢1 and ¢ are two independent optimization problem, hence we focus on charac-
terizing ¢y (Z.e. y = 1).

sup B [1{g(¢1(X)) < 0} — M{X # ¢1(X)} — col{[[ X — $1(X)]| > e2}]

p1EFx XM

= E essup 1{g(z) <0} — A\I{X # 2}
X ~H1 ZGB” H(X 62)
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:/ essup  1{g(z) <0} — A\l{z # z} du1(z).

zeB) | (x,€
£ 0111 (5€2)

Let us now consider (H;) je.y a partition of X', we can write.

sup B [1{g(¢1(X)) < 0} = A{X # ¢1(X)} — 00l {||X — $1(X)[| > e2}]
Pr1EFx +VHL

:Z/ essup  1{g(z) <0} — A\l{x # 2} dui(x)

jEJH ZGB”‘H (2762)

In particular, we can take Hy = PE, Hy = P, \ Py(e2),and Hy = Py(e2).

Forz € Hy = P}E orz € Hy = Py \ Pp(e2). With the same reasoning as before, any
optimal attack will choose ¢1 (z) = .

Let v € Hy = Py(e2). Weknow that B ||(z,€2) N P}E # (), and for any z in this inter-

section, one has g(z) < 0and z # x. Hence essup 1{g(z) <0} — A\1{z # z} =
ZEB”H (CE,62)

max(1l — A, 0). Since A € (0,1) onehas1{g(z) <0} —A1{z #x} =1— Aforanyz €
By (=, ez)ﬂPE. Then any function thatgivenaz € & outputs ¢1(v) € B (z, eg)ﬂP,E'
is optimal on Ho.

Finally. Since Ho U H; U Hy = X, Lemma B.1 holds.
O

Lemma B.3. Let us consider ¢ € (.7-";(‘62)2. If we take h € BR(¢), then fory = 1 (resp.
y = -1), and for any B C Py, (resp. B C N},) one has

P(Y =y|X € B) > P(Y = —y|X € B)

withY ~ vand forally € Y, X|(Y =y) ~ ¢y# iy

Proof. We reason ad absurdum. Let us considery = 1, the proof fory = —1 is symmetrical.
Let us suppose that there exists C' C Py, such that v.1¢.1#p.1(C) > vig1#u1(C). We
can then construct hj as follows:

ha(@) _{ hz) ifz ¢ C

-1 otherwise.

Since h and h; are identical outside C, the difference between the adversarial risks of h
and h; writes as follows:

R (h,6) = RO (hn, 6)

adv adv
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_Zyy/ 1{h(2) # v} — L{(2) # v}) d6,#1m,) (@)

y==+1

:V—l]l{h( ) = 1}_1#p1(C) — vil{hi(z) # 1} 141 (C)
=v_19_1#u1(C) — v1¢1#u (C)

Since by hypothesis v_1¢_1#.1(C) > v1¢1#11(C) the difference between the adver-
sarial risks of h and hy is strictly positive. This means that h; gives strictly better adversarial
risk than the best response h. Since, by definition A is supposed to be optimal, this leads to a
contradiction. Hence Lemma B.3 holds. ]

Additional Result. Lez usassumethat there is a probability measure  that dominates both o141

and ¢1# 1. Let us consider ¢ € (]—"X‘Q ) 2 If we take h € BR(¢p), then h is the Bayes Optimal
Classifier for the distribution characterized by (v, o191, -1 #1-1).

Proof. Forsimplicity, we denote fi = dd)l?“ YVand f_1 = 57?&’“) the Radon-Nikodym
derivatives of ¢1# 1 and ¢_1# 1.1 w.r.t. C. The best response h minimizes adversarial risk

under attack ¢. This minimal risk writes:
- Qmass
}}gf 7?’a,dv (h’ ¢))

= inf Z vy B [1{A(6y(2)) # y}] = AA9).

hGH

Since the the penalty function does not depend on h, it suffices to seek

1nf Z Z8 f 1{h(x) # y} d(pyF1y)(x). Moreover thanks to the transfer theorem, one
y— +1

gets the followmg

inf 37 o, / 1{h(x) # v} d(dy#in)(@)

heH

y==1 X
~inf Eluy / 1{h(x) # y} fy () d¢(a)
= nf / yzﬂyyn{h ) # y}fy () ().

Finally, since the integral is bounded we get:

inf / S vl {h(e) # y}y(e) d(a)

hew )
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:/ inf > v 1{h(z) # y}fy(@) | d(2).

X y==%1

Hence, the best response h is such that for every x € X, andy € Y, onehas h(z) =y
if and only if f,(z) < f_y(x). Thus, h is the optimal Bayes classifier for the distribution
(v, p1# 101, G171 ). Furthermore, for y = 1 (resp. y = -1), and for any B C P, (resp.
B C Np,) one has:

P(Y =y|X € B) >P(Y = —y|X € B)

withY ~ vandforally € Y, X|(Y = y) ~ dy#/1y.
]

Theorem B.3 (Non-existence of a pure Nash equilibrium). 1n our zero-sum game with A € (0, 1)
and penalty 2 € {Qass, Luorm ) there is no Pure Nash Equilibrium.

Proof. Let h be a classifier, ¢ € BRq(h) an optimal attack against h. We will show that
h & BR(¢p), ic. that h does not satisfy the condition from Lemma B.3. This suffices for
Theorem B.3 to hold since it implies that there is no (h, ¢) € H x (F, X|62)2 such that
h € BR(p) and ¢ € BRq(h).

According to Lemmas B.1 and B.2, whatever penalty we use, there exists 6 > 0 such
that ¢1# 1 (Pp(0)) = 0 or ¢p_1#4.1(Np(0)) = 0. Both cases are symmetrical, so let us
assume that P, (0) is of null measure for the transported distribution conditioned by y =
1. Furthermore we have ¢_1# 1.1 (Pr(9)) = p1(Pr(d)) > 0 since ¢p_q is the identity
function on P} (6), and since 4.1 is of full support on X'. Hence we get the following:

1711 (Pr(9)) > d1# 11 (Pr(0)).

Since the right side of the inequality is null, we also get:

¢—1# 11 (Pn(0))va > r# 1 (Pa(6))v1.

This inequality is incompatible with the characterization of best response for the Defender
of Lemma B.3. Hence h ¢ BR(¢).
O

Theorem B.4. (Randomization matters) Let us consider hy € H, A €
¢ € BRq(h1) and hy € BR(P). Then for any a € (max(A, 1 — A),
BR(my}) one has

(07 1): Q = Qmam
1) and for any ¢’ €

RQmam (mz’ ¢/) < RQma;f (hl , ¢) .

adv adv

Whereh = (hi, ha), q = (o, 1 — @), and mj} is the mixture of h by q.
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Figure B.3: Illustration of the notations U, U, and U~ for proof of Theorem B.4.

Proof. To demonstrate Theorem B.4, let us denote U = Py, (€2) and define the ea-dilation
of UasU @ €3 := {u +v | (u,v) €U x Xand|jv], < 62}. We can construct hy as

follows

ha() = { —hi(z) ifxeU

hi(x) otherwise.

This means that ho changes the class of all points in U, and do not change the rest, compared
to h1. Then taking o € (0, 1), we can define mj., and ¢' € BRq(mj). We aim to find a
condition on « so that the score of mz is lower than the score of h. Finally, let us recall that

RQmass (m;ll7 ¢/)

adv

= / essup al{hi(z) =-1} + (1 — a)I{ha(z) = -1} — A\{z # 2z} du1(z)
e 2€B).)|(z,€2)

+ 1/.1/ essup al{hi(z) =10} + (1 — a)1{ha(2) =1} — A{z # 2} dp.1 ().
3 Z€Bj(@e2)

The only terms that may vary between the score of 11 and the score of m{ are the integrals
onU,U@esNPy, and ¢, (U) - inverse image of U by ¢.1. These sets represent respectively
the points we mix on, the points that may become attacked — when changing from h; tomj
- by moving them on U, and the ones that were — for k1 — attacked before by moving them
on U. Hence, for simplicity, we only write those terms. Furthermore, we denote

Ut :=U@eNPy, \U, U :=¢7"(U)andrecall U := Py, ().
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One can refer to Figure B.3 for visual interpretation of this sets. We can now evaluate the
worst case adversarial score for hq restricted to the above sets. Thanks to Lemma B.1 that
characterizes ¢, we can write

R (h1, @) v, v+ v-
= (1 — /\) X I/1M1(U) = V.1,u,.1(U)

+0 x v1pg (UY) +vapa (UT)
-+ Vl,ul(Uf) =k (1 — /\) X V_lu.l(Ui).

Similarly, we can write the worst case adversarial score of the mixture on the sets we consider.
Note that the max operator comes from the fact that the adversary has to make a choice
between attacking the zone or just take advantage of the error due to randomization.

R (mi, ¢)w, v+, u-
= max(l —a,1 — A) x 11 (U) + max(a, 1 — A) X vqp1(U)
+ max(0,1 —a—\) X vy (U+) + vpa (U+)
+ vy (U*) +max(0,a0 — A) X vqpg (Uf).

Computing the difference between these two terms, we get the following

R (hn, @) — Rige(mfl, @) (B.11)
=(1—XA-max(l —a,1—\) x vy (U) (B.12)
+ (1 — max(a,1 — \)) x vapa(U) (B.13)
— max(0,1 —a— ) X vy (U+) (B.14)
+(1 = X —max(0,a — A)) x v.qp.1(U7) (B.15)

Let us now simplify Equation (B.11) using additional assumptions.

* First, we have that Equation (B.13) is equal to
min(1 — o, N1 (U)vg > 0.

Thus, a sufficient condition for the difference between the adversarial scores to be pos-
itive is to have the other terms greater or equal to 0.

* To have Equation (B.12) > 0 we can always set max(1 — a,1 — X) = 1 — . This
givesus a > .

* Also note that to get (B.14) > 0, we can force max (1 — o — A, 0) = 0. This gives us
a>1-—\
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* Finally, since @« > A, we have that 1 — A — max(0,a« — A) = 1 — « thus Equa-
tions (B.15) > 0.

With the above simplifications, we have (B.11) > 0 for any @ > max(A,1 — X) which
concludes the proof. O

Theorem B.5. (Randomization matters) Let us consider hy € H, A € (0,1), Q@ = Quorms
¢ € BRq(h1) and hy € BR(P). Let us take 6 € (0, €2), then for any o € (max(l —
A, A(ea — 6)), 1) and for any ¢' € BRa(my) one bas

R (mil, ¢') < R (ha, ).

adv

Whereh = (hi, ha), q = (o, 1 — @), and m is the mixture of h by q.

Figure B.4: Illustration of the notations U, U+, U™ and § for proof of Theorem B.S.

Proof. Letustake U C Py, (€2) such that

I;IEIII} H.CC - th\ph(EQ)($)” =0 € (07 62)

. We construct hs as follows.

() = { —hi(z) ifxeU

hi(z) otherwise.

This means that ha changes the class of all points in U, and do not change the rest. Let

« € (0, 1), the corresponding mixture mj , and ¢’ € BRq(mj). We will find a condition
on « so that the score of mg is lower than the score of h7. Recall that

R (m, @)

adv

=1 / essup  al{hi(z) =-1} + (1 — a)1{ha(z) = -1} — A||z — 2| dpi(x)
ke 2€B|| | (z,€e2)
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As we discussed in proof of Theorem B.4, the only terms that may vary between the score
of h1 and the score of m;ll are the integrals on U, U @ €3 N Py, and (;5711 (U). Hence, for

+ 1/_1/ essup  al{hi(z) =1} + (1 — a)l{ha(z) = 1} = A||z — z|| dp1 ().

z€B) (e
i Il (€2)

simplicity, we only write those terms. Furthermore, we denote

One can refer to Figure B.4 for a visual interpretation of this ensembles. We can now evaluate
the worst case adversarial score for h restricted to the above sets. Thanks to Lemma B.2 that

Ut :=U®eNPy \U, U :=¢7'(U)and P., := Py, (e2).

characterizes ¢, we can write

RQnorm (h17 ¢)

adv

— U/ (1= Mo = 7mgp @ ) dhr (@) + 21020

+u1 / 0dp (z) + vapa (U \ Pe,)

U+\P.,
+u / (1—)\||x—7rpg (Jc)\>du1(ac)—|—1/_1u_1(U+ﬂPe2)
1
U+nP.,
ton(U7) 4 [ (1= Mo = m0@)])dia @)

U-

Similarly we can evaluate the worst case adversarial score for the mixture,
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RQnorm (m;]l, d)/)

adv

=1 /max<1 —a,1 = Az — T pt (:v)||> dp ()
= 1

+a [(max(a, 1= Xo = mus @) dia (o)
U

+u1 / max(0,1 — a — Az — 7y (2)|]) dpa(z) + vapa(U'\ Ps,)
UH\P.,
+ 1 / max(l —a— Mz —mp@)|,1 - Az — pt (x)H) du (z)
1
UtNP,
+vapa (U N Py) + v (U7)
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+ v / max<0, 1— Az — WNEI\U(JL‘)H, a— Az — WU(x)H)d,u_l(x).
U-
Note that we need to take into account the special case of the points in the dilation that
were already in the attacked zone before, and that can now be attacked in two ways, either
by projecting on U — but that works with probability c, since the classification on U is now

randomized — or by projecting on P}El , which works with probability 1 but may use more
distance and so pay more penalty. We can now compute the difference between both scores.

Rege (hn, @) = Regem (mf, &) (B.16)
=1 / 1— Az — T pt (z)]] — max<1 —a,1 = M|z — Tpt (J:)||>du1(m) (B.17)
1 1

U
+uvg / 1 — max(a, 1 — M|z — my+ (2) ) dp1 (x) (B.18)
U
- / max(1 — a — Allz — 70 (@), 0)dys () (B.19)
UH\P.,
tu [ 1-Aa-mg @I
1
UtNP.,
_ max(l —a— Az —my(z)],1 = Az — s (ac)H)dul(w) (B.20)
1
o / 1 - Az — my (@)
i
- max((), 1=z — NG \U(x)H, a— Az — 7TU(:1:)H>d,u_1(x). (B.21)
1

Let us simplify Equation (B.16) using using additional hypothesis:

¢ First, note that Equation (B.18)> 0. Then a sufficient condition for the difference to
be strictly positive is to ensure that other lines are > 0.

* In particular to have (B.17) > 0 it is sufficient to have forallz € U
max<1 —a,1 =Mz — Tt (x)|> =1- Az — Tt (@)]l-
1 1

is oi > —0) > = .
This givesus « > A(eg — 6) > Arglea[}( |E3 Tps ()]
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* Similarly, to have (B.19) > 0, we should setforallz € U \ P,
a>1—= Az —my(z)].

Since min ||z — 7y (x)|| = 6, we get the condition @ > 1 — Aé.
z€UT\P,

* Finally (B.21) > 0, since by definition of U™, forany x € U~ we have

|z = mne \p (@) 2 llz = 7w ()]
iy

Finally, by summing all these simplifications, we have (B.16) > 0. Hence the result hold for
any a > max(1 — AJ, A(ez — 9)) O

B.9 Experimental results

In the experimental section, we consider X = [0, 1]3*32%32 (o be the set of images, and J =

{1,...,10} or Y = {1, ..., 100} according to the dataset at hand.

Adversarial attacks

Let (x,y) ~ D and h € H. We consider the following attacks:

(i) oo-PGD attack. In this scenario, the Adversary maximizes the loss objective function,
under the constraint that the /o, norm of the perturbation remains bounded by some value €.
To do so, it recursively computes:

S = e [ot+ 58 (VL (1), )] 22

where £ is some differentiable loss (such as the cross-entropy), 3 is a gradient step size, and I/ is
the projection operator on .S. One can refer to [66] for implementation details.
(ii) £2-C&W attack. In this attack, the Adversary optimizes the following objective:

arg min ||7||, + A x cost(z 4 7) (B.23)
TeX

where cost(z + 7) < 0if and only if h(z + 7) # y. The authors use a change of variable
7 = $(tanh(w) — 2 + 1) to ensure that z + 7 € X, a binary search to optimize the con-
stant )\, and Adam or SGD to compute an approximated solution. One should refer to [27] for
implementation details.

Experimental setup

Datasets. To illustrate our theoretical results we did experiments on the CIFAR10 and CI-
FAR100 datasets. See [56] for more details.

Classifiers. All the classifiers we use are WideResNets (see [108]) with 28 layers, a widen factor
0f 10, a dropout factor of 0.3 and LeakyRelu activations with a 0.1 slope.
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Natural Training. To train an undefended classifier we use the following hyperparameters.
* Number of Epochs: 200
* Batch size: 128
* Loss function: Cross Entropy Loss

* Optimizer : SGD algorithm with momentum 0.9, weight decay of 2 x 10~# and a learn-
ing rate that decreases during the training as follows:

0.1 if 0 < epoch < 60
B 0.02 if 60 < epoch < 120
] 0004 if 120 < epoch < 160
0.0008 if 160 < epoch < 200

Adversarial Training. To adversarially train a classifier we use the same hyperparameters as
above, and generate adversarial examples using the £o.-PGD attack with 20 iterations. When
considering that the input space is [0, 255]3*32%32, on CIFAR10 and CIFAR100, a perturba-
tion is considered to be imperceptible for €5, = 8. Here, we consider X' = [0, 1]3*32%32 which
is the normalization of the pixel space [0.255]3%32%32, Hence, we choose €2 = 0.031 (=~ 8/255)
for each attack. Moreover, the step size we use for £o,-PGD is 0.008 (= 2/255), we use a random
initialization for the gradient descent and we repeat the procedure three times to take the best
perturbation over all the iterations 7¢ the one that maximises the loss. For the /o,-PGD attack
against the mixture mﬁ, we use the same parameters as above, but compute the gradient over the
loss of the expected logits (as explained in the main paper).

Evaluation Under Attack. Atevaluation time, we use 100 iterations instead of 20 for Adaptive-
{5-PGD, and the same remaining hyperparameters as before. For the Adaptive-{2-C&W attack,
we use 100 iterations, a learning rate equal to 0.01, 9 binary search steps, and an initial constant of
0.001. We give results for several different values of the rejection threshold: €3 € {0.4,0.6,0.8}.

Computing Adaptive-/2-C&W on a mixture To attack a randomized model, it is advised
in the literature [94] to compute the expected logits returned by this model. However this advice
holds for randomized models that return logits in the same range for a same example (e.g. classi-
fier with noise injection). Our randomized model is a mixture and returns logits that depend on
selected classifier. Hence, for a same example, the logits can be very different. This phenomenon
made us notice that for some example in the dataset, computing the expected loss over the clas-
sifier (instead of the expected logits) performs better to find a good perturbation (it can be seen
as computing the expectation of the logits normalized thanks to the loss). To ensure a fair eval-
uation of our model, in addition of using EOT with the expected logits, we compute in parallel
EOT with the expected loss and take the perturbation that maximizes the expected error of the
mixture. See the submitted code for more details.

Library used. We used the Pytorch and Advertorch libraries for all implementations.
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Machine used. 6 Tesla V100-SXM2-32GB GPUs

Experimental details

Sanity checks for Adaptive attacks In [94], the authors give a lot of sanity checks and good
practices to design an Adaptive attacks. We follow them and here are the information for Adaptive-
{-PGD:

* We compute the gradient of the loss by doing the expected logits over the mixture.

* The attack is repeated 3 times with random start and we take the best perturbation over all
the iterations.

* When adding a constant to the logits, it doesn’t change anything to the attack

* When doing 200 iterations instead of 100 iterations, it doesn’t change the performance of
the attack

* When increasing the budget €, the accuracy goes to 0, which ensures that there is no
gradient masking. Here are some values to back this statement:

0.015
0.638

0.031
0.546

0.125
0.027

0.250
0.000

Epsilon

Accuracy

Table B.5: Evolution of the accuracy under Adaptive-{o.-PGD attack depending on the budget €

* The loss doesn’t fluctuate at the end of the optimization process.

Selecting the first element of the mixture. Our algorithm creates classifiers in a boosting
fashion, starting with an adversarially trained classifier. There are several ways of selecting this
first element of the mixture: use the classifier with the best accuracy under attack (option 1, called
bestAUA), or rather the one with the best natural accuracy (option 2). Table B.6 compares both
options.

Beside the fact that any of the two mixtures outperforms the first classifier, we see that the
fisrt option always outperforms the second. In fact, when taking option 1 (bestAUA = True)
the accuracy under £o.-PGD attack of the mixture is 3% better than with option 2 (bestAUA =
False). One can also note that both mixtures have the same natural accuracy (0.80), which makes
the choice of option 1 natural.

Extension to more than two classifiers

As we mention in the main part of the paper, a mixture of more than two classifiers can be con-
structed by adding at each step ¢ a new classifier trained naturally on the dataset D that contains
adversarial examples against the mixture at step t — 1. Since D has to be constructed from a mix-
ture, one would have to use an adaptive attack as Adaptive-/,,-PGD. Here is the algorithm for
the extented version :
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Training method NA of the 1t cIf AUA of the 15t cIf NA of the mixture AUA of the mixture

BAT (bestAUA=True) 0.77 0.46 0.80 0.55
BAT (bestAUA=False) 0.83 0.42 0.80 0.52

Table B.6: Comparison of the mixture that has as first classifier the best one in term of natural accuracy
and the mixture that has as first classifier the best one in term of Accuracy under attack. The
accuracy under attack is computed with the o-PGD attack. NA means matural accuracy, and
AUA means accuracy under attack.

Algorithm 12: Boosted Adversarial Training

Input : n the number of classifiers, D the training data set and o the weight update
parameter.

Create and adversarially train A1 on D

h=(h)sa= (1)

fori =2,...,ndo

Generate the adversarial data set D against mﬁ.

Create and naturally train h; on D

g (1—a)ge Vkeli—1]

g <«
q < (a77Q’L>
h + (hl,...,hi)
end
returnmﬁ

Here to find the parameter o, the grid search is more costly. In fact in the two-classifier version
we only need to train the first and second classifier without taking care of o, and then test all the
values of o using the same two classifier we trained. For the extended version, the third classifier
(and all the other ones added after) depends on the first classifier, the second one and their weights
1 — o and «. Hence the third classifier for a certain value of o can’t be use for another one and,
to conduct the grid search, one have to retrain all the classifiers from the third one. Naturally the
parameters a depends on the number of classifiers  in the mixtures.
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C.1 Contexte & motivations

Cette these vise 4 résoudre des problemes multi-agents centralisés qui impliquent des interactions
par paire entre agents. La configuration d’antennes dans un réseau cellulaire sans fil [89] est un
exemple de ces problemes : le choix d’un parameétre pour une antenne a un impact a la fois sur sa
propre qualité de signal et sur celle de chacune de ses antennes voisines en raison de I'interférence
du signal. De méme, dans un parc éolien, le réglage d’une éolienne a un impact non seulement sur
sa propre efficacité de collecte d’énergie mais aussi sur celle de ses voisines en raison des turbulences
du vent [13, 36]. En considérant chaque antenne ou éolienne comme un agent, ces problemes
peuvent étre modélisés comme un probleme de bandit multi-agents (MA-MAB) [13] avec la con-
naissance d’un graphe de coordination [47] ou chaque noeud représente un agent et chaque aréte
représente une interaction entre deux agents. Un probléme de bandit 4 bras multiples (MAB) est
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un probleme de décision séquentiel ot un apprenant doit choisir une action (aussi appelée bras) a
chaque itération et obtient une récompense associée (éventuellement perturbée) qui informe sur
la qualité de 'action choisie. Naturellement, I'apprenant ne connait pasla distribution de la récom-
pense pour chaque action possible. Lapprenant peut avoir des objectifs tres différents, tels que
maximiser les récompenses accumulées au cours du processus, ou bien en un nombre minimum
d’essais et indépendamment des récompenses accumulées, déduire quelle est la meilleure action
1% q
a choisir - c’est-a-dire la plus gratifiante. Par conséquent, un probleme de bandit multi-agents a
plusieurs bras est le cadre dans lequel plusieurs agents sont confrontés 4 un probleme de bandit a
plusieurs bras. Dans la littérature sur les bandits, on peut distinguer les bandits non structurés et
les bandits structurés. Alors que le bandit non structuré considére que le fait de jouer une action et
q
dobtenir la récompense associée ne permet pas de déduire quoi que ce soit sur la distribution des
récompenses des autres actions, le bandit structuré inclut les modele de bandit ot les récompenses
des différentes actions partagent un parameétre commun [59]. Par exemple, une configuration de
bandit structuré deja treés etudiée dans la litterature est le bandit linéaire [11] o1 la récompense
associée a toute action dépend linéairement d’un vecteur parametre inconnu 6. Par conséquent,
a un moment donné, le fait de choisir une action et de recevoir la récompense qui lui est asso-
ciée donne des informations sur 6 et, par définition, également sur les récompenses de toutes les
autres actions. Nous nous intéressons ici a de tels environnements structurés et nous présentons
A ce sujet un nouveau bandit structuré multi-agents appelé Bandits Bilinéaires Graphiques. La
spécificité de cet environnement réside dans I'interdépendance des récompenses obtenues par les
agents voisins dans le graphe et dans ’hypothese que ces récompenses sont bilinéaires, ce qui nous
apparait comme l'extension naturelle des récompenses linéaires lorsque les agents sont dépendants
par paire. En effet, si les problemes MA-MAB ont été étudiés dans le cadre de bandits non struc-
turés avec des agents indépendants et dépendants (voir e.g., [3, 7,13, 15, 18, 49, 58, 85, 87,101]), seul
le cadre des bandits structurés avec des agents indépendants a été exploré (voir e.g., [6, 28, 30]). A
travers cette these et les articles auxquels elle fait référence, nous voulons poser une premiére pierre

A Iédifice.

C.2 Définition du probleme

Bandits Bilinéaires Graphiques Stochastiques

Soit G = (V, E) le graphe dirigé défini par V I'ensemble fini de nceuds représentant les agents
et IV l'ensemble d’arétes représentant les interactions entre les agents. Nous supposons que si
(i,j) € Ealors (j,i) € E. Le graphe pourrait étre considéré comme non dirigé mais nous
supposons que les interactions entre deux voisins ne sont pas nécessairement symétriques par rap-
port aux récompenses obtenues, nous choisissons donc de conserver le graphe dirigé pour mettre
en évidence cette asymétrie potentielle. Pour tout agent i € V/, nous désignons N Tensemble de
ses agents voisins. Soit n = |V| le nombre de nceuds, m = | E| le nombre d’aréteset ¥ C R% un
ensemble de bras fini out K = | X’| désigne le nombre de bras. Le bandit bilinéaire graphique avec
un graphe G et un ensemble de bras X consiste en le probleme de décision séquentiel suivant :
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Bandits Bilinéaires Graphiques Stochastiques
Pour chaque tour ¢ > 0,

1. Chaque agent € V choisit un bras .ZL'gi) dans X.

2. Ensuite, chaque agent 7 € V regoit une récompense bilinéaire bruitée pour chacun de
ses voisins j € N :

(4,g) _ @&OT (4) i,5)
Yy =T M*xt + R (Cl)
ot M, € R et une matrice inconnue, et n,gw ) une variable aléatoire o-sous-
gaussienne de moyenne nulle.

(4,9)

La récompense y, " reflete la qualité de I'interaction entre les noeuds voisins 7 et j lorsqu’ils
tirent respectivement les bras xgl) et 217 2 Pitération ¢. Le cadre bilinéaire apparait comme une
extension naturelle du cadre linéaire pour modéliser I'interaction entre deux agents.

Notons que ce model peut étre considéré soit dans un cadre décentralisé ol les agents prennent
des actions sans consulter les autres agents, soit dans un cadre centralisé¢ ol une entité centrale
choisit les bras de tous les agents, agrege les récompenses obtenues et congoit une stratégie globale
pour les agents du graphe.

Dans cette these, nous ne considérons que le cas centralisé o1 une entité centrale gere tous les

7

h PEETRRY h . l; 11 . (n) . . 1 7
agents, choisita ¢ aque instant ¢ l'allocation ( y Ly ) et regmt ensuite les recompenses

(.5)

associées y; '’ pour tous les (7, j) € E.

Objectifs

Comme nous l'avons brievement mentionné précédemment, il existe deux principaux objectifs
diftérents qu’un apprenant (ici l'entité centrale) peut vouloir atteindre dans un probleme de ban-

dit.

Identifier la meilleure allocation. Le premier objectif que nous voulons traiter dans cette
these est celui o Iapprenant est intéressé a trouver, en un minimum de tours, la meilleure alloca-

tions de bras (a:il) e 2" ) qui maximise la récompense globale moyenne obtenue sur le graphe
(xil), . ,:vin)) = arg max Z DT M, ()

(m(l),...,m("))eX" (i,§)EE

Cetobjectif implique que l'entité centrale ne se soucie pas de choisir une allocation sous-optimale

("))

1 . . . . \
(:L'E ) ,---, %y )achaqueinstant? tant quelle donne suffisamment d’informations sur le parametre
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inconnu M, afin de construire une estimation précise M. Cet objectif est connu sous le nom
dexploration pure ou d’identification du meillenr bras [10, 24].

Maximiser les récompenses cumulées. Le deuxieme objectif que nous voulons traité est le
plus souvent considéré dans la littérature sur les bandits ot 'apprenant souhaite maximiser la
somme des récompenses (en esperance) obtenues au cours des tours. Dans notre cas, l'entité cen-
trale souhaite maximiser les récompenses globales cumulées, données par la formule suivante

T
Z Z xii)TM*xgj)

t=1 (i,j)eE

Alors que le premier objectif permet a apprenant détre dans un cadre d’exploration pure, in-
dépendamment des récompenses obtenues tout au long du processus, I'objectif de maximisation
des récompenses cumulées nécessite un compromis entre I'exploration des différents bras possibles
pour avoir une estimation précise M de M, et I'exploitation des bras qui semblent étre les plus
optimaux étant donné M afin d'obtenir les récompenses cumulées maximales.

Pour ces deux objectifs (identification du meilleur bras ou maximisation des récompenses cu-
mulées) et étant donné une estimation M, apprenant devra résoudre a un moment donné le
probleme doptimisation suivant

OT M)
max Z "V MaV) . (C.2)
(x(U,...,:B("))GX” (i) e

En eftet, pour l'identification du meilleur bras, ce probléeme d'optimisation doit étre résolu a
la fin lorsque I'apprenant veut retourner la meillieure allocation étant donné I'estimation M con-
struite pendant la procédure dapprentissage. Pour la maximisation des récompenses cumulées,
ce probléeme d’optimisation peut devoir étre résolu pendant la procédure d’apprentissage lorsque
Papprenant veut exploiter et renvoyer le meilleur bras articulé estimé compte tenu de sa connais-
sance actuelle de I'environnement qui est I'estimation construite M.

La résolution de ce probleme d'optimisation n’est pas triviale, aussi pour les deux objectifs nous
considérons l'objectif sous-jacent commun de résolution de ce probleme.

C.3 Trouver la meilleure allocation lorsque la matrice est connu

C.3.1 Un probléme NP-Dur

Nous abordons le probleme de la recherche de la meilleure alloaction étant donné M, et nous le
désignons comme suit :

@M. 2y = argmax > OTM) (C.3)
(;p(l)’_,,,x(”))exn (i’j)eE
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Remarquez que si le couple (7, 2}) = argmax(, ,/)cx> z " (M, + M] )z’ est tel que
x, = ) alors trouver la meilleure allocation est trivial et la solution est d’attribuer x, 2 tous les
noeuds. A Pinverse, si 2, # x,, le probléme peut étre plus difficile : selon le graphe G, Iallocation
optimal pourrait soit étre composée exclusivement du couple (., &, ), soit étre composée d’autres
bras dans X'. On pourrait vouloir utiliser la programmation dynamique comme dans [7] pour ré-
soudre ce probleme d’optimisation, cependant dans ce cadre particulier, cela conduirait a utiliser
un algorithme en temps non-polynomial. En effet, le théoreme suivant indique que, méme en
connaissant le vrai parametre M, l'identification de la meilleure allocation (x&l), e ,xin)) est
NP-Dur par rapport au nombre de noecuds 7.

Theorem C.1. Considérons une matrice donnée M, € R ot yn ensemble de bras finis X C
RY. A moins que P=NP, il n'existe pas d algorithme en temps polynomial pour trouver la solution
optimale de

max 3 20TM, 20
e iz

Par conséquent, étant donné la vraie matrice M, I'apprenant n’est pas assuré de trouver en

(1) (n)

temps polynomial I'alloaction (w* R ) maximisantla récompense globale attendue. Dans

les sections suivantes, nous donnons des algorithmes d’approximation en temps polynomial qui
ont des garanties sur la récompense globale attendue retournée par rapport a la récompense opti-
male.

C.3.2 Algorithmes d’approximation et guaranties théoriques

Etant donné la matrice M, lobjectif est de concevoir un algorithme qui renvoie une alloca-

ij)CE zOTM, 2 ait
. A [ . i) T ]

la garantie d’étre proche de la récompense globale optimale y, = Z(i’ J)EE x,(f) M*CUS(])~ En

d’autres termes, nous voulons trouver un parameétre d’approximation 0 < o < 1 tel que, y >

tion (33(1), .. ,x(”)) telle que sa récompense globale associée y = Z(

oy Bien que le probléeme d’optimisation que nous cherchons a résoudre se trouve dans la littéra-
ture sur les Champs aléatoires de Markov lorsqu’on traite un graphe multi-labeélisé (voir e.g., [S]),
4 notre connaissance, les algorithmes qui donnent un rapport d’approximation sur la solution
optimale n'ont pas été explorés.

L’approche que nous présentons dans cette section consiste d’abord 4 considérer le probleme lo-
calement, z.e., au niveau des arétes. En effet, considérons deux noeuds voisins et j dans V' et seule-
ment les récompenses liées a ces noeuds, qui sont x(i)TM*x(j ) et 22U )TM*w(i). En additionnant
ces deux quamtités,1 on obtient z TM,2) + 20 TM, 20 = z®OT (M* + Mj)x(j) qui
représente la récompense entre les deux noeuds voisins () et (j). Une stratégie locale que Ientité
centrale devrait mettre en ceuvre consiste donc A allouer (z(9,z()) =
argmax(, ,nex2 ' (My + M, )2’ = (2, 2)). Naturellement, si cette stratégie locale est
facile 2 appliquer pour un couple de voisins (7, j), elle ne peut pas etre simultanément appliquée
tous les autres couples du graphe puisque certains d’'entre eux partagent les mémes noeuds. Cepen-

Ces quantités ne sont pas égales puisque la matrice ML, n’est pas nécessairement symétrique.
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dant, on peut tirer un enseignement de cette stratégie, a savoir quétant donné le bras conjoint

optimal (xil), e :c,((n)), ona pour tout (4, j) € E,

2 (M + Mj)xﬁj) <y (M + Mj)x; : (C.4)

Ainsi, au lieu de chercher I'allocation optimal (ce qui est NP-Dur), on peut alternativement
rechercher Iallocation qui, pour toute aréte (4, j) € E, construit autant de paires (2@, 200)) =
(@4, 2, ) que possible. Affecter z, 2 un sous-ensemble de noeuds et 2, au complémentaire revient
a couper le graphe en deux morceaux et a créer deux ensembles distincts de noeuds V7 et Va tels
queV =ViUVeetViNVy = (. Ainsi, la stratégie décrite se résume a trouver une coupe passant
par le nombre maximal d’arétes.

Ce probléme est connu sous le nom de Max-Cut (voir e.g., [44, 84]), qui est également NP-
Dur. Cependant, l'attention considérable portée a ce probleme nous permet d’utiliser 'un des
nombreux algorithmes d’approximation (voir, e.g., Algorithm 13) qui garantissent de produire
une coupe passant par au moins une fraction donnée des arétes du graphe. La plupart des garanties
pour approximation du probleme de Max-Cut sont données par rapport a la solution optimale de
Max-Cut, ce qui n’est pas exactement la garantie que nous recherchons : nous avons besoin d’une
garantie en proportion du nombre total d’arétes. Nous devons donc faire attention a lalgorithme
que nous choisissons.

Algorithm 13: Approx-MAX-CUT [84]
Entrée: G = (V, E)
Inidaliser Vi =0, Vo =0
foriinV do
ni = [{(i,5) € E[j € V1}|;
ng = [{(i,j) € E|j € Va}l;
sing > ngalors Vo < Vo U {i}sinon V) < VU {i};
end
retourner (V1, Va)

A partir de ’Algorithme 13, on peut avoir une garantie sur la proportion d’arétes coupées par
rapport au nombre total d’arétes 7. Nous énongons cette garantie dans la proposition suivante.

Proposition C.1. Etantdonnéun grapheG = (V, E), [Algorithme 13 retourne un couple (V1, V)
tel que

{(6,/)) EE|ieVINGEVa)V (i€ VaAje W)} z%

Etant donné cette garantie par rapport au nombre total d’arétes, il ne reste plus qu présenter
la stratégie complete qui consiste a allouer aux noeuds de V7 le bras x4 et aux noeuds de V5 le bras
. Nous donnons la stratégie dans ’Algorithme 14.

Avec cet algorithme, étant donné I'allocation retournée (D, ... ), pour certaines arétes
(i,§) € E, les bras alloués associés seront les couples optimaux (., =) ou (z}, ) et pour
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Algorithm 14: Algorithm d’approximation pour notre probléeme NP-Dur

Entrée: Graphe G = (V, E), ensemble de bras X', matrice M,
(V1, V) = Approx-MAX-CUT(G);
Trouver (7, T}) € arg max, ,\cxy2 T (M, +M]) 2/
foriin Vi do

(4)

z,x’

‘ x; = T,  //Peutetre fait en parallele
end
for i in V> do

‘ l'gl) =a; //Peutetre fait en parallele
end
recourner (D, ..., z(™)

d’autres arétes (i, j) € E les bras alloués associés seront les couples sous-optimaux et non désirés

(X, ) ou (2, ).

Avant d¥¢noncer la garantie de cet algorithme par rapport 4 la récompense globale optimale, in-
troduisons m (respectivement mg ) le nombre d’arétes qui vont des nceuds de V; (respectivement
V3) aux noeuds de Vi (respectivement V5) et mq 2 (respectivement mo_,1) le nombre d’arétes
qui vont des noeuds de V7 (respectivement V2) aux nocuds de Vo (respectivement V7). Remar-
quez que le nombre total d’arétes m = mi_2 + ma_1 + M1 + Mo et que par définition de
lensemble d’arétes E et en utilisant la Proposition C.1 nous avons mi—2 = ma—1 > m/4 et
my +mg < m/2.

Theorem C.2. Considéronsle graphe G = (V, E), un ensemble fini de bras X C RY et la matrice

M, € R4 Jonnée en entrée de L Algorithme 14. Soit (x,((l), ceey xin)) Lallocation optimale telle
que défini dans (C.3) et s0it 0 < & < 1 un parametre dépendant du probleme défini par

¢ = min z M.
TEX % Z(i,j)eE .Z‘Ej)TM*.%'ij) )

eton fixe o0 = 17% Alors, la récompense globale y = Z(i,j)eE Jr(i)TM*x(j) associée a lallocation
(56(1), ey x(”)) € X" retournée par L Algorithme 14 vérifie :

Y2 QY -

N )T j
o1l Yy = Z(i,j)EE xi) M*xgj).

Enfin, la complexité de [ algorithme est de O(K 24 n2).
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C.3.3 Algorithme amélioré utilisant la structure du graphe

Dans cette section, nous voulons capitaliser sur ’Algorithme 14 et sa solution 1"Q%-Optimale pour

affiner l'allocation des bras x, et 2, de telle sorte que les récompenses sous-optimales obtenues
z] M, 2, et o] Moz, pénalisent le moins possible la récompense globale.

En effet, dans I'Algorithme 14, le choix du couple (x4, 2, ) est uniquement guidé par le gain
potentiel que 'on pourrait obtenir au niveau des arétes coupées (z.e., qui vont d’'un noeud dans V3
a un noeud dans V5 ou vice versa). Elle ne prend pas en compte toutes les m1 récompenses de la
forme xI M., z, et les ma récompenses de la forme x;TM*xi que l'on obtient en attribuant
aux noeuds de V3 et 2, aux noeuds de V5.

Ici, PFamélioration que nous pouvons apporter est de les inclure dans le probléeme d’optimisation
et de pondérer les diftérentes récompenses obtenues par le graphe en utilisant les proportions
M1—2, Ma_1, M1 et ma. En désignant par (Z,, 7 ) la solution du probléme d'optimisation
suivant,

T / a2 T a /
(zrﬁ)aexx2 mi—o-x Myx +mo o Mgtarz +my - x Mgtarz +mo - Myz'

(C5)

nous optimisons la récompense globale totale que 'on obtiendrait en allouant seulement deux
bras (z,2') € X dans le graphe. Cette stratégie est décrite dans PAlgorithme 15.

Algorithm 15: Algorithm d’approximation amélioré pour notre probleme NP-Dur

Entrée : Graphe G = (V, E), ensemble de bras X', matrice M,
(V1, V) = Approx-MAX-CUT(G);

mi_o = ‘{(l,j) S E|Z eVing e VQH,

mo_s1 = |{(’L,j) S E|Z eVoNng € Vl}‘;

my =|{(i,j) € Eli e Vi AjeVi};

mo = [{(i,]) € Eli € VaAj € Va};

Trouver (Z, &, ) solution of (C.5);

forin V1 do

‘ gjgi) = Ty; //Peutetre fait en parallele
end
foriin Vo do

‘ xgi) =; //Peutetre fait en parallele
end
retourner (x(l), e ,x(n))

Pour comprendre et analyser ce nouvel algorithme, définissons A > 0 la différence de récom-
pense globale de lattribution de (Z, ) au lieu de (z, x,) comme suit :

~T ~/ T l ~IT ~ A
A=mi_9 (:c* M.z, — x, M*x*) + mo_1 (:):* M.,z — x, M*x*)
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o (:%IM*:E* - :UIM*:U*) +my (:ﬁ’*TM*i’* - x;TM*x;) .

Les nouvelles garanties que nous obtenons sur la récompense de I'allocation obtenue par ’Algorithme 15
sont énoncées dans le théoreme suivant.

Theorem C.3. Considéronsle graphe G = (V, E), un ensemble fini de bras X C RY et la matrice
M., € R4 donnés en entrée de L Algorithme 15. Soit (CL‘S}), el :cin)) Lallocation optimale telle
que définie dans (C.3) et que 0 < § < 1 s0it défini comme dans le Théoreme C.2. Soit 0 < € < %
un paramétre dépendant du probleme qui mesure le gain relatif de loptimisation sur les récompenses

sous-optimales définies comme :

A
€= . =,
Cpepas’ M
et on fixe o« = 1—";5 + € Alors, la récompense globale y = 3 ; »cp O TM,2) associde &
lallocation (x(l), e ,m(")) € X" retournée par I’ Algorithme 15 vérifie :
Y2 ay .

. OT ;
o1 Yy = Z(i,j)eE :L‘i) M*xy).

Corollary C.1. Considérons le méme cadre que dans le théoreme C.3, le rapport d approximation
peut étre défini avec les parametres i 2, Ma_y1, M1 et Mg qui dépendent du graphe et de lalgorithme
d approximation du probleme de coupe maximale tel que

mis2 +mo1 M1+ mo
o= + E+e .
m m

Ce corollaire est utile pour comprendre en pratique le type de garanties que nous pouvons avoir
en fonction de la structure du graphe et de I'algorithme d’approximation que nous utilisons pour
résoudre le probleme de Max-Cut.

C.4 Identification du meilleur bras pour les bandits bilineaires

graphiques

Dans cette section, nous supposons que nous ne connaissons pas la matrice M, et qu’une entité
centrale fait face 4 un probléme de bandits bilinéaires graphiques ot 4 chaque tour elle choisit
un bras pour chaque noeud du graphe et observe une récompense bilinéaire pour chaque aréte
du graphe. Dans ce chapitre, nous nous concentrerons sur I'objectif d’identification du meilleur
bras.
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C.4.1 Préliminaires

Pour simplifier, nous considérons que la matrice inconnue M, est symétrique, ce qui simpli-
fie grandement le raisonnement. Dans le chapitre C.3, nous avons congu des algorithmes en
temps polynomial qui nous permettent de calculer une solution d’approximation « au prob-
leme NP-Dur consistant a trouver la meilleure allocation étant donné M.,. Remarquez que dans
l'algorithme d’a-approximation 14, ML, n'est utilisé que pour identifier la meilleure paire (2, 2, )
comme suit :

(x*, x;) = ?rg ;nzjc)g z! (M* + MI) 2
z,z')e

= argmaxz ' M, 2 . (C.6)
(z,x’)EX?

Ainsi, utiliser une estimation M de M, ayant la propriété suivante :

argmax ¢ Mz’ = argmax z' Mz’ = (x*, x’*) , (C.7)
(z,x")eX? (z,2")eX?

nous permet d’identifier la paire (z,, 2/, ), et nous donne donc les mémes garanties que celles
présentées dans le Théoréme C.2. Nous abordons donc le probléme de construire M tel que,
en un nombre minimum de tours, avec grande probabilité, nous soyons capables d’identifier la
paire (x4, 2, ) et dappliquer I'Algorithme 14.

Condition d’arrét

Remarquons que le probléeme d’optimisation (C.6) est équivalent au probléme d’optimisation
suivant

(14, 2) = a(uijg;;lea;{<vec (a:x’T) ,vec (M*)>

. . . /. A : Pl
Simplifions les notations et désignons par 6, = vec (M) la version vectorisée de la ma-
. . 1: / . A / .
trice inconnue M. Utilisons également la notation 2,y = vec (:Ca:' T), et définissons Z =
{2par|(z,2") € X?} lensemble contenant de tels vecteurs. Alors, chercher le couple (74, z7,)

revient a chercher le vecteur 2, € Z ou
2z, = argmax(z, 0,) .
z2€Z

En d’autres termes, nous voulons trouver un bras z € Z, tel que pour tout 2’ € Z, (z —
z’)TH* > 0. Cependant, nous n’avons pas acces a 0, donc nous devons utiliser son estimation
empirique.
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Ainsi, 2 chaque tour ¢, Ientité centrale peut choisir pour chaque couple de voisins (7, j) un bras
z € Z et obtenir une récompense linéaire bruitée de la forme (2, 6,) + 1 o1 7) est une variable
aléatoire o-sous-gaussienne, qui peut étre utilisée pour calculer une estimation 0;.

Pour plus de clarté, nous appellerons tout x € X un bras de neeud et tout 2 € Z un bras

(4)

daréte. Siz;’ € X représente le bras de noeud alloué au noeud ¢ € V' au temps ¢, pour chaque

N .. ‘s A Ny 1,J) A ] )T
aréte (4, j) € E nous désignerons le bras d’aréte associé par zt(Z 7 £ vee (atgl)x(] ) ) € Z.
Le but ici est de définir la séquence optimale (21, ..., Zmt) € Zmt qui devrait étre tirée dans

les t premiers tours de fagon a ce que (C.7) soit atteint le plus tot possible. Une approche naturelle
consiste 4 sappuyer sur les stratégies classiques développées pour I'identification du meilleur bras
dans les bandits linéaires. Nous définissons (1, .. ., Ymt) les récompenses bruitées correspon-
dantes de la séquence (21, ..., Zmt). Nous supposons que les termes de bruit dans les récom-
penses sont Zz.d., suivant une distribution o-sous-gaussienne. Soit §; = A; b, € R? la

. N . , . t 2 2
solution du probléme des moindres carrés ordinaires avec Ay = Y1 2z € RT X4 ¢

_ \mt d?
En suivant les étapes de [90], nous pouvons montrer que s’il existe z € Z tel que pour tout
Z' € Z cequisuit est vrai :

6m2t2 K4 «
!/ /
Iz = 2l| o1 802 log <57r2> < A(z,7) (C.8)
ot Ay(z,2') = (2 — 2/) " est Pécart empirique entre z et 2/, alors avec une probabilité d’au

~

moins 1—6, l'estimation §; conduit au meilleur bras de bord 2, ce quisignifie que arg max ¢ z (2, 0¢) =
arg max,c z (2, 04). Par conséquent, lorsque équation (C.8) est vraie, I'apprenant peut arréter
de tirer les bras, nous 'appelons la condition darrét.

Comme mentionné dans [90], en remarquant que max . e z2||z — z’||At_1 < 2max,ecz HZ”A;l ,
une stratégie admissible est de tirer des bras d’aréte minimisant max_.¢ z || 2|| , -1 afin de satisfaire
t
la condition d’arrét dés que possible.

Une strategie G-Allocation contrainte

Etantdonnéla condition d’arrét (C.8) dérivée dans la section précédente, on veut trouver la séquence

debrasdaréte z,, = (27, ..., z,) telle que :
mt -1
Zp,y € argmin  max 2T E iz | 2. (G-opt-Z)
(21,00 2mt)EZ™ME 2 cZ =1

Ceci est connu sous le nom de G-allocation (voir e.g., [76, 90]) et est NP-Dur 2 calculer ([32,
104]). Une fagon de trouver une solution approximative consiste a sappuyer sur une relaxation
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convexe du probléme d’optimisation (G-opt-Z) et a calculer d’abord une allocation 4 valeur réelle

I'* € Sz telle que

1

I'™* € argminmax 2’ Z Iz' 2. (G-relaxed-Z)
resSz Fez z2€EZ

On pourraitsoit utiliser un échantillonnage aléatoire pour tirer des bras d’aréte comme z.7.d. échan-
tillons de la distribution 1™, soit des procédures d’arrondi pour convertir efficacement chaque I
enun nombre entier. Cependant, ces méthodes ne prennent pas en compte la structure graphique
du probleme. En effet, 2 un tour donné, les arétes choisies peuvent donner lieu 4 deux affectations
différentes pour le méme noeud, nous appelons ce phénomene une collision.

Par conséquent, les procédures déchantillonnage aléatoire ou d’arrondi ne peuvent pas étre
utilisées directement pour sélectionner les bras d’aréte dans Z.

Néanmoins, (G-relaxed-Z) donne tout de méme des informations précieuses sur le nombre de
fois, en proportion, ot chaque bras d’aréte z € Z doit étre allouée au graphe. Dans la section
suivante, nous présentons un algorithme satisfaisant a la fois les exigences de proportion et les
contraintes graphiques.

C.4.2 Algorithme et garanties
Allocation aléatoire sur les noeuds

Notre algorithme est basé sur une méthode aléatoire d’allocation directe des bras de noeud aux
noeuds, évitant ainsi la tiche difficile de choisir les bras d’aréte et d’essayer de les allouer au graphe
tout en s’assurant que chaque noeud a une affectation unique. La validité de cette allocation aléa-
toire est basée sur le théoreme C.4 ci-dessous montrant que 'on peut tirer des bras de noeuds

dans X etles allouer au graphe de telle sorte que les bras d’aréte associés suivent la distribution de
probabilité I™ solution de (G-relaxed-Z).

Theorem C.4. Soit v* une solution du probleme d optimisation suivant :

-1

. T
min  max 2’ E ol x . (G-relaxed-X)
yStareSxy v/ €X o
xX

Soit I'* € Sz défini pour tout z = vec (xzP"™°V) € Z par I'Y = i~k Alors, I'* est une
solution de (G-relaxed-2).
(1)

Ce théoréme implique que, a chaque tour ¢ > 0 et pour chaque noeud i € V,si z; ” est tiré
de v, alors pour toutes les paires de voisins (4, j) € E, les bras d’aréte associés zt(l’]) suivent la
distribution de probabilité I™. De plus, comme * est une distribution sur 'ensemble des bras
de noeud, X, I'™ peut etre considéré comme une distribution de probabilité jointe (produit) sur
X2 avec pour marginale *.

Etant donné la caractérisation dans le Théoréme C.4 et notre objectif de vérifier la condition
d’arrétdans (C.8), nous présentons notre procédure déchantillonnage dans’Algorithme 16. Nous
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notons également qu’a chaque tour, I'échantillonnage des bras de noeuds peut étre effectué en par-
allele.

Algorithm 16: Algorithme d’Exploration Pure : G-Allocation randomisé pour GBB

Entrée : Graphe G = (V, E), ensemble de bras X

Définir Ag=1;bp=0;t=1;

Appliquer l'algorithme de Frank-Wolfe pour trouver la solution v* de (G-relaxed-X’).
while /a condition darrét (C.8) n'est pas vérifice do

// Echantillonnage des bras de noeud
(1) (n) (4,4)

. iid . . ,
Tirerz,’/,...,x; ' ~ * et obtenir pour tout (¢, j) dans E les récompenses y; " ;

// Estimation de ét avec les bras dfaré_lge associés
At = Atfl + Z(’L,])EE Zt(%j)zlgl’]) 5

be =bi—1+ > jer zlf”)yt(l’j) ;

0 = A by

t+—t+1;

end

retourner 6;

Cette procédure déchantillonnage implique que chaque bras d’aréte suit la distribution op-
timale /™. Dans cette theése, nous présentons une stratégie de G-allocation aléatoire simple et
standard, mais d’autres méthodes plus élaborées pourraient étre envisagées, tant qu’elles incluent
le caracteére aléatoire nécessaire.

Analyse de la convergence

Nous prouvons maintenant la validité de la procédure déchantillonnage aléatoire détaillée dans
orithme 16 en contrélantla qualité de l'approximation max,cz 2 ' A~z parrapportaloptimum
PAlgorithme 16 trolantla qualité e lapp t ez 2| A; 2 parrapportalopt
N . . -1 . .
du probléme d'optimisation G-allocation max ¢ z 2" (fol 2f2 1) 2 déeritdans (G-opt-2).
Comme cela est généralement fait dans la littérature optimal design (voir e.g., [76, 83, 90]), nous
limitons lerreur relative 3y :

mt -1
maxz' A7 'z < (14 ;) maxz'" E 227 4.
z€Z Z'eZ 1

1=

Notre analyse sappuie sur plusieurs résultats de la théorie de la concentration matricielle. On
peut se référer par exemple 4 [96] et A ses références pour une introduction approfondie sur ce
sujet. Nous introduisons d’abord quelques notations supplémentaires.

Soit fz la fonction telle que, pour toute matrice non singulicre Q € R
fz(Q) = max,cz z' Q !z et pour toute distribution I" € Sz on rappelle que Xz (I') =
> ,ez Iozz" est la matrice de covariance associée. Enfin, laissons A} = Z?itl 2r2r T érela

matrice de G-optimal design construite pendant ¢ tours.
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Theorem C.5. Soit I'™* une solution du probleme d optimisation (G-relaxed-Z). Soiz 0 < § < 1
et soit to tel que

to = 2Ld?log(2d?/5) /Amin

o1t Amin €5t la plus petite valeur propre de la matrice de covariance % > cz 22 1. Alors, & chaque
tourt > to avec une probabilité dan moins 1 — 0, la stratégie randomisée G-allocation pour les
bandits bilinéaires graphigues de I’Algorithme 16 produit une matrice Ay telle gue :

fz(Ay) < (1+8)fz(AT)

5 Ld? 21}1 2d2 N 1
= —=—+/ T log| —— o| —=
! mA\2. \ ¢ S\ 75 Vi)

etv £ HE[(AI — EA1>2] ”

on

Nous venons de montrer que la valeur d’approximation max,cz zTA; 1z converge vers la
valeur optimale avec un taux de O (y/v/(m+/t)). Dans la section C.4.3, nous montrons que le
meilleur cas de graphe implique unv = O(m) correspondantau taux de convergence O (1 / M)
d’un algorithme de bandit linéaire utilisant un échantillonnage aléatoire pour tirer mt edge-arms
sans contraintes (graphiques). De plus, nous verrons que le graphique du pire cas implique que
v=0(m?)

Puisque nous avons comblé Iécart entre notre objectif contraint et le probléme de 'identification
du meilleur bras dans les bandits linéaires, grice au Théoreme C.4 et C.5, nous sommes en mesure
d’étendre les résultats connus pour I'identification du meilleur bras dans les bandits linéaires sur
la complexité d’échantillonnage et sa borne inférieure associée.

Corollary C.2 ([90], Théoreme 1). Sz la G-allocation est mise en ceuvre avec la stratégie aléatoire
de [Algorithme 16, résultant en une approximation de By, alors avec une probabilité d’an moins

1 — 6, le meillenr bras obtenu avec 0; est z, et

12802d2(1 + ) log (255" )

mA2 ’

min

t <

o1t Apin = Mingez\ (5, (25 — 2) 10,

De plus, soit 7 le nombre de tours sufhisant pour qu’un algorithme quelconque détermine le
meilleur bras avec une probabilité d’au moins 1 — §. Une borne inférieure sur I'espérance de 7
peut étre obtenue a partir de celle dérivée pour le probleme de I'identification du meilleur bras
dans les bandits linéaires (voir e.g., Théoreme 1 dans [39]) :

1 >2‘72’Z*_2”222(p)—1
2
2.46 m((z* o Z)T9*>

E[r] > min max log(
[eSz 22\ {2}
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Comme observé dans [90], cette limite inférieure peut étre bornée, dans le pire des cas, par
402d? /(m A2, ), ce qui correspond A notre borne jusqu’aux termes logarithmiques et 3 Perreur
min q P q S q
relative 5.

C.4.3 Influence de la structure du graphe sur le taux de convergence
Caractérisation de la variance associée a la stratégie aléatoire

La limite de convergence du théoréme C.5 dépend de v = ||E[(A; — EA;)?]||. Dans cette
section, nous caractérisons 'impact de la structure du graphe sur cette quantité et, par extension,
sur le taux de convergence. Les limites sont énoncées dans le tableau C.1.

Graphique Limite supérieure sur || Var(A1)|| B

Ecoile mP + (M + N)O (m?) O(1/Vd)
Compléte mP + (M + N)O(my/m) O (1 / (m \/i))
Cercle mP + (M + N)O(m) O(1/vmt)
Correspondance mP +mN O(1/vmt)

Table C.1: Borne supérieure de la variance et du taux de convergence de ’Algorithme 16 pour le graphe en
¢toile, le graphe complet, le cercle et le graphe couplage par rapport au nombre d’arétes m et au
nombre de tours ¢.

Ces quatre exemples mettent en évidence la forte dépendance de la variance a la structure du
graphe. Plus les arétes sont indépendantes (sans noeuds communs), plus la quantité || Var(A;)||
est petite. Pour un nombre fixe d’arétes m, le meilleur cas est le graphe couplage ot aucune aréte
ne partage le méme noeud et le pire cas est le graphe en étoile ou toutes les arétes partagent un
neceud central.

Résultats expérimentaux validant la dépendance du graphe

Dans cette section, nous considérons la version modifiée d’une expérience standard introduite
par [90] et utilisée dans la plupart des articles sur I'identification du meilleur bras dans les bandits
linéaires [39, 92, 106, 109] pour évaluer la complexité déchantillonnage de notre algorithme sur
diftérents graphes.

Nous considérons d + 1 bras de noeuds dans X C R? ot1d > 2. Cet ensemble est constitué
des dvecteurs (eq, . . ., €q) formant la base canonique de R? et d’un bras supplémentaire 441 =
(cos(w), sin(w),0,...,0) " avecw €]0, 7/2]. Notez que par construction, l'ensemble des bras
d’aréte Z contient la base canonique (€, ..., €/,) de R% . La matrice M, a sa premiere coor-
donnée égale 2 2 et les autres égales 4 0, ce qui donne 6, = vec (M) = (2,0, ..., 0)" € R”.
Le meilleur bras d’aréte est donc 2, = 211 = €). On peut noter que lorsque w tend vers 0, il est
plus difficile de diftérencier 2D ep ZldH1d+]) — yec (:C(dJrl)x&_H)) que 2D et les autres

bras. Nous fixons nﬁ"’j) ~ N (0, 1), pour toute aréte (4, j) et tour ¢.

147



C Résumé en frangais de la thése

105 ! Worst case (w=0.1)  Best case (w=pi/2) Best case (w=pi/2)
\ ——- all graph type —4— matching 1207 —4— matching
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1004 N —A— complete 1009 —4— complete
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Figure C.2: Nombre de tours ¢ nécessaires pour vérifier la condition d’arrét (C.8) par rapport 2 gauche: le
nombre d’arétes m ot la dimension de I'espace de Z est fixée et égale 3 25 et right: la dimension
de I'espace de Z ol le nombre d’arétes est fixé et égal a 156. Pour les deux expériences, nous
les exécutons 100 fois et nous tragons le nombre moyen de tours nécessaires pour vérifier la
condition d’arrét.

Nous considérons deux cas ot w = 0.1 qui rend les bras 2D et 2(@+1d+1) difficiles A dif-
férencier, et w = /2 qui rend le bras 2(11) facilement identifiable comme le bras optimal. Pour
chacun de ces deux cas, nous évaluons I'influence de la structure du graphe, du nombre d’arétes m
et de la dimension de l'espace des bras d’aréte d? sur la complexité d’échantillonnage. Les résultats
sont présentés dans la figure C.2.

Lorsque w = 0, 1, le type de graphe n’a pas d’impact sur le nombre de tours nécessaires pour
vérifier la condition d’arrét. Ceci est principalement dfi au fait que l'ampleur de la variance asso-
ciée est négligeable par rapport au nombre de tours. Par conséquent, méme si nous faisons varier
le nombre d’arétes ou la dimension, nous obtenons les mémes performances pour tout type de
graphe, y compris le graphe matching. Cela implique que notre algorithme est aussi performant
qu’un bandit linéaire qui tire m arétes en parallele 2 chaque tour. Lorsque w = 7/2, le nombre
de tours nécessaires pour vérifier la condition d’arrét est plus petit et 'amplitude de la variance n’est
plus négligeable. En effet, lorsque le nombre d’arétes ou la dimension augmente, on remarque que
le graphe en étoile prend plus de temps pour satisfaire la condition d’arrét. De plus, notons que les
complexités déchantillonnage obtenues pour le cercle et le graphe d’appariement sont similaires.
Cette observation est en accord avec la dépendance a la variance montrée dans le Tableau C.1.

C.5 Algorithmes basés sur le regret pour les bandits bilinéaires
graphiques

Dans cette section, nous supposons également que nous ne connaissons pas la matrice des parametres
M, et comme décrit dans la configuration du probleme dans la section C.2, une entité centrale
fait face au probléme des bandits bilinéaires graphiques ot a chaque tour elle choisit un bras
pour chaque noeud du graphe et observe une récompense bilinéaire pour chaque aréte du graphe.

‘objectif de I'entité centrale est de concevoir un algorithme qui maximise 'espérance de la récom-

. T @HT ()

pense globale cumulée obtenue pendant 7" tours ) _,_, Z(L jer Ty Myx;”. Nous nous ap-
puierons naturellement sur certaines idées et résultats présentés dans la section C.3 ot la matrice
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était supposée connue par lentité centrale. Nous suivons les notations que nous avons établies
dans la section C.2.

C.5.1 Optimisme face a P'incertitude pour les bandits bilinéaires graphiques
Préliminaires

Rappelons que la maximisation des récompenses cumulées est équivalente a la minimisation du
regret associé. Nous définissons donc le pseudo-regret global sur 7" tours comme suit :

T

R(T) = Z Z x&i)TM*xi‘j) — Z xii)TM*xEj)

t=1 | (i,j)er (i.j)ek

Nous rappelons que l'objectif de lapprenant est d’avoir un pseudo-regret R(T'), tel que

lim 7R(T) =0
T—oo 1’

Nous savons du Théoreme C.1 que trouver la meilleure allocation

(:1:&1), cee x&n)> = argmax Z 2O TM, 20
(x(l),...,x(n))e.)( (i,j)eE

est NP-Dur par rapport au nombre d’agents 7. Nous étendons ce résultat dans le corollaire
suivant.

Corollary C.3. 1l n'existe pas d algorithme en temps polynomial en n tel que

lim R(T)

T ()

pour toute instance de bandits bilinéaires graphiques décrits dans la section C.2, sauf'si P = N P.

Par conséquent, 'objectif de concevoir un algorithme avec un regret sous-linéaire en 7" n’est
pas réalisable en temps polynomial par rapport a n. Cependant, certains problemes NP-Dur sont
a-approximables (pour un certain o € (0, 1]), ce qui signifie qu’il existe un algorithme en temps
polynomial garanti pour produire des solutions dont les valeurs sont au moins c fois la valeur
de la solution optimale. Nous renvoyons le lecteur 4 la section C.3 pour plus d’informations
sur I'approximation de la solution optimale de notre probléme. Pour ce type de probleémes, il est
logique de considérer I'a-pseudo-regret comme dans [31, 52] qui est défini pour tout € (0, 1]
comme suit
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A )T i )T J
Ra(T):Z « Z xi) M*xﬁ)— Z m§) M*a;g) ,
t=1 (1,9)eE (1,5)eE
et on se fixe comme objectif de concevoir un algorithme avec un a-regret sous-linéaire.

Enfin, comme nous I'avons fait dansle chapitre C.4, rappelons que la récompense obtenue pour
chaque aréte du graphe a chaque tour peut étre vue comme une récompense linéaire bruitée en
dimension supérieure [51] avec

y,gi’j) = <Vec (:cgi)a:(j)T) , vec (M*)> + nti’j)

Pour simplifier la notation, désignons tout x € X" comme un zode-arm. Ultilisons la notation
2z = vec (z2'T), et définissons lensemble de bras Z = {z,,/|(z,2') € X%} olitout z € Z
(@)

sera appelé un bras daréte. Sile bras x; ’ € X représente le bras de noeud alloué au nceud ¢ € V/

. .o , . A .y ,J) A
au temps t, pour chaque aréte (¢ € F nous désignerons le bra d’aréte associé par z( 7 2
pst, p q ) g par z;

3 T O . . . ..
vec (xi” 1(5] ) ) € Z et définissons 6, = vec (M, ) la version vectorisée de la matrice inconnue

M.,. Avec ces notations, la récompense (maintenant) linéaire peut étre réécrite comme suit :

4 (49, 0.) i e

Dans ce chapitre, nous choisissons de concevoir un algorithme basé sur le principe d’optimisme
face a incertitude [12], et dans le cas d’une récompense linéaire [2, 63], nous devons maintenir un
estimateur du vrai paramétre 6. Pour ce faire, définissons pour tous les tours ¢ € {1,...,T'}
I'estimateur MCO de 0, comme suit :

0, = A7, (C.11)

t
At = AIdQ + Z Z zgi’j)z§i7j)T s
s=1(i,j)eE

avec A > 0 un parametre de régularisation et

Nous définissons également 'ensemble de confiance
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. 1 L2
Cy(8) = 0:”99t|]At_1§g\/d210g<W)+\f)\S ’

ol avec une probabilité de 1 —d,onaque 8, € C¢(0) pourtoutt € {1,...,T},etd € (0, 1].

C.5.2 Algorithme et analyse du regret

Dans la section C.3, nous avons présenté deux algorithmes (Algorithm 14 et 15) qui utilisent
la vraie matrice de parametres M, pour renvoyer une allocation de bras permettant d'obtenir
une a-approximation du probleme de maximisation de la récompense globale. Naturellement,
puisque nous n’avons pas accés a la matrice M, nous ne pouvons pas I'utiliser directement a
chaque itération pour maximiser la récompense globale cumulative (et donc minimiser le regret
associé). Néanmoins, on peut utiliser I'estimateur construit 0y et le principe d’'optimisme face a
Iincertitude pour surmonter le fait que M, est inconnu.

En effet, nous rappelons que dans IAlgorithme 14, le couple (4, 2, ) est choisi comme suit,

(z4,2)) = argmax z " (M* + MI) 2 (C.12)
(z,z’)EX?

(C.13)

= arg max(zz, + Zu/e, Ox) (C.14)
(z,2")eX?

et est utilisé pour créer autant que possible des bras d’arétes de la forme 2,/ et 2,7, dans le
graphe. Ici, a chaque tour ¢, lentité centrale choisit de maniére optimiste le couple (2, x}) comme
suit,

(x4, 7}) = argmax  max {2 + 2p4,0)
(z,a)ex2 0€Ci—1(6)

puis alloue les bras-nceuds pour maximiser le nombre de bras-bords localement optimaux 2,/

et Zy/ 4, La méthode est présentée dans 'Algorithme 17

Theorem C.6. Etantdonnéleprobléme de bandits bilinéaires graphiques défini dansla section C.2,
s0it 0 < & < 1 un paramétre dépendant du probleme défini par

€ = min <Z”’9*(>ij) >0,
xe EZ(i,j)€E<Z*’ ,0*>

et on fixe o0 = 1%5, alors loc-regret de L Algorithme 18 satisfait
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Algorithm 17: Adaptation de l'algorithme OFUL pour les bandits bilinéaires graphiques
Input : Graphe G = (V, E), ensemble X
(V1, V) = Approx-MAX-CUT(G)
fort =142T do

// Trouver le meilleur couple optimiste

;5
(.ﬁvt, T, Ht_l) = arg max(x’x/,g)exzchl <me/ + 2y, 9> 5

// Allouer x; et = dans le graphe
:cﬁ” = x4 pour tout ¢ dans V7 ; mgl) = x pour tout ¢ dans V5 ;
(4,3)

Obtenir pour tout (i, j) dans E les récompenses y; " ;
Calculez 0; comme dans (C.11)

end

return ;.

Ro(T) < O(<0d2 + S\&) \/Tm max(2, (LS)2)> 1+ LSm [a? logs <Tm§2/>‘>w 7

0 O cache les facteurs logarithmiques.

C.5.3 Algorithme amélioré et analyse du regret

Nous abordons le probleme de concevoir une version améliorée de I'algorithme proposé en util-
isant 'idée présentée dans ’Algorithme 15 qui améliore le taux d’approximation.

Rappelons que dans la section précédente de ’Algorithme 17, entité centrale choisit le couple
(w1, x}) tel que

(x4, 7}) = argmax  max {2, + 2p/0,0)
(z,a)ex2 0€Ci—1(5)

qui maximise la récompense optimiste obtenue entre deux noeuds si Ientité centrale était capa-
ble d’allouer z; 2 un noeud et z; au second. Cette stratégie étant optimale localement mais com-
pliquée par la prise en compte des dépendances entre les arétes, Ientité centrale pourrait prendre en
considération les bras d’arétes de la forme 2, et 27,2 qui sont créés lors de I'allocation des noeuds
du graphe en utilisant seulement deux bras de nceuds x et 2. Cette idée suit celle présentée dans
I’Algorithme 15 ot1 'on rappelle avec des notations différentes que le couple (Z., Z/,) choisi pour
allouer les noeuds du graphe sont tels que

~ o~
(T, Ty) = Arg max(mi—2 - Zyg + Ma31 * 2o/ + M1 Zgg + M2Zgrar, Os) .
(z,2")eX?

Comme dans la section précédente, nous n’avons pas acces a 0, nous utilisons le principe
d’optimisme pour trouver a chaque tour le couple (Zy, Z}) tel que

152



C.5 Algorithmes basés sur le regret pour les bandits bilinéaires graphiques

~ o~
(T4, &) = argmax  max (M1 - Zeg + Mo - Za/p = M1 Zgs + M2Zgrr, 0) .
(x,x’)€X2 9607571(5)

(C.15)

Ici, au lieu de maximiser la récompense locale que 'on peut obtenir entre deux nceuds, l'entité
centrale maximise la récompense optimiste globale que I'on obtiendrait en allouant seulement
deux bras (x, 2’) € X2 dans le graphe. Cette stratégie est décrite dans I’Algorithme 18.

Algorithm 18: OFUL amélioré pour les bandits bilineqires graphiques
Input : Graphe G = (V, E), ensemble X
(V1, V) = Approx-MAX-CUT(G);
mi—o = ‘{(’L,]) S E’Z eVinge ‘/2}‘,
mo—1 = [{(i,j) € Eli€ VaANjeEVI};
my = ‘{(’L,]) eEElieVIN]E Vl}‘;
my = [{(i,j) € Eli € Va A j € Va}ls
fort =11 do
(&0, 4,001) =
argmax( ./ g)e X2xCy_, (M12 + Zgar + Moyl Zgrg + M - Zog + Mo - Zgrgr, 0);
xgi) = & pour tout ¢ dans V7;

/L' - .
:cg ) — &} pour tout i dans Va;

)

Obtenir pour tout (i, j) dans E les récompenses y; 3
Calculer 8; comme dans (C.11)

end

retourner 6;

Avant d¥énoncer les garanties sur 'a-regret, nous rappelons que nous avons défini dans la sec-
tion C.3 laquantité A > 0 comme étant la différence entre la récompense de I'allocation (Z, Z )
et celle de Iallocation (., x,),

A =(m1s2(25,5, — Ze.a) + Moo (2805, — Zata.)

+mi (22,5, — Ze.e.) + M2 (255, — Zorar ), 0i) -

Les nouvelles garanties que nous obtenons sur 'c-regret de PAlgorithme 18 sont énoncées dans
le théoréme suivant.

Theorem C.7. Etantdonnéle probléme de bandits bilinéaires graphiques défini dans la section C.2,
on définit & comme dans le théoreme C.6, laissez 0 < € < % étre un parametre dépendant du prob-
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leme qui mesure le gain de loptimisation sur les bras sous-optimaux et indésirables défini comme

B A
SpeplA?,0.)

€ )

et on fixe o0 = 1%5 + € on o« > 1/2 par construction, alors le a-regret de IZAlgorithme 18 satisfait

Ro(T) <O((0d? + SVA) /Tmmax(2,(LS)?)) + LSm {CP 1og2<TméL2/Aﬂ ,

on O cache les facteurs logarithmiques.

On peut voir ici que l'amélioration se produit dans le & du c-regret. Dans la section suivante,
nous confirmons ces résultats par des expériences.

C.5.4 Expériences numériques

Nous concevons une expérience qui compare en pratique les performances de PAlgorithme 17 et
del’Algorithme 18 avec I'algorithme Explore-Then-Commit (ETC) en utilisant la stratégie d'exploration
congue dans la section C.4 pendant la phase d’exploration, et en allouant les noeuds dans V7 et V5

avec le meilleur couple estimé (z,2') = argmax(, ,n(2za + 2oz, 0;) pendant la phase de
d’exploitation. Cependant, puisque les algorithmes que nous avons présentés dans cette section

ont des garanties sur les a-regrets avec différents cv, nous tragons la fraction de la récompense glob-

ale optimale pour chaque itération.

1.0

e
©

4
®

o
o

= al
— a2
B e @~ OFUL for GBB
—¥- Improved OFUL for GBB
A~ GBB-BAI

fraction of the optimal global reward
o
S

=3
n

0.4

0 2500 5000 7500 10000 12500 15000 17500 20000
T

Figure C.3: Fraction de la récompense globale optimale obtenue a chaque tour en appliquant
’Algorithme 17, PAlgorithme 18 et algorithme Explore-Then-commit (appelé ici GBB-BAI)
en utilisant la stratégie d’exploration de la Section C.4. Nous utilisons un graphe complet de 5
noeuds, nous exécutons l'expérience sur 5 matrices différentes avec ¢ = 0 et I'exécutons 10 fois
différentes pour tracer la fraction moyenne de la récompense globale
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Comme dans le chapitre C.3, nous observons une nette amélioration en choisissant 4 chaque
tour ¢ le couple de bras (%, 7}) au lieu de (¢, 7).

C.6 Conclusion & perspectives

C.6.1 Résumé des résultats

Dans cette these, nous avons introduit un nouveau modele que nous avons nommé Bandits Bil-
inéaires Graphiques qui modélise les problemes multi-agents centralisés ou des interactions par
paires existent entre les agents.

* Danslasection C.3, nous avons mis en évidence le fait que l'apprenant était confronté a un
probleme d’optimisation sous-jacent qui est NP-Hard quel que soit le but que I'apprenant
souhaite atteindre. Nous avons donc proposé un algorithme d’c--approximation avec ov >
1/2 qui ne nécessite que de trouver le couple de bras (., ', ) pour retourner 'av-approximation.
Nous avons ensuite affiné ce parametre d’approximation par rapport aux paramétres dépen-
dant du probleme en nous basant sur la structure du graphe et sur une propriété de la ma-
trice M.

* Danslasection C.4, étantdonnél’algorithme d’a-approximation congu danslasection C.3,
nous avons présenté un algorithme de pure exploration qui permettait a 'apprenant de con-
struire une estimation M qui était statistiquement efficace en termes d'optimal design. En
effet, le probléme de trouver en un nombre minimum de tours le meilleur couple (x4, 27,)
utilisé¢ dans I'algorithme d'approximation o revenait a trouver le G-optimal design, égale-
ment appelé G-allocation dans la littérature bandit. Résoudre ce probléme dans les bandits
bilinéaires graphiques impliquait de traiter une contrainte supplémentaire. Cest pourquoi
nous avons présenté un algorithme qui respectait cette contrainte et qui utilisait un échan-
tillonnage aléatoire pour construire I'estimation M. Nos résultats théoriques ont révélé un
terme qui dépendait de la structure du graphe, nous avons donc montré 'impact du graphe
dans nos résultats.

* Enfin, danslasection C.5, nous avons capitalisé sur 'algorithme d’a-approximation donné
dans le chapitre C.3 et appliqué le principe d’optimisme face a 'incertitude pour concevoir
des algorithmes basés sur le regret qui ont atteint un a-regret sous-linéaire en 7" ot @ >
1/2. De plus, nous avons présenté expérimentalement les performances des algorithmes
proposés et utilisé en comparaison un algorithme Explore-Then-Commit sappuyant sur
algorithme d'exploration pure présenté dans le chapitre C.4.

C.6.2 Perspective et travaux futurs

Cette these avait pour but d’introduire le nouveau cadre du bandit bilinéaire graphique et de
fournir les premieres solutions aux problemes courants posés dans la littérature sur le bandit. De
nombreuses autres approches et modifications peuvent étre envisagées. Nous en présentons deux
dans ce qui suit.
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Des matrices de parametres différentes M) pour chaque aréte (i,j) € E. Alors que
le traitement d’une matrice commune de paramétres M, pour toutes les arétes (7, j) € E était

pratique pour agréger les récompenses et construire une estimation commune M pour tous les

agents, lorsque les récompenses y,g 7) sont définies avec des matrices différentes Mi J ), le prob-
\ . -y S 14 \ ; 4,7 (oo
leme devient plus compliqué. En effet, considérons le cas ot la récompense y,g 7 est définie
comme suit pour chaque (4, j) € E:

yt(i’j) _ xgi)TMf’j)xgj) + Ut(i’j) :

(

N 1,J . N \ . ,j . [
ott M{"? sont des matrices 2 paramétres inconnus et 7, ) des variables aléatoires o-sous-
gaussiennes.

Ce parametre est pertinent lorsque les agents n’ont pas les mémes interactions entre chacun de
leurs voisins, et donc pas la méme fonction de récompense.

Question ouverte : Dans le contexte de I'exploration pure, comment la condition d’arrét
change-t-elle ? Existe-t-il une stratégie d’échantillonnage pour chaque agent telle que les
estimations M (*4) sont construites en satisfaisant un critére d'optimal design ?

Cadre décentralisé . Lorsque les agents sont contrdlés par une entité centrale, il est possible
d'agréger les différentes récompenses et de construire une estimation commune M de M. De
plus, nous avons vu que les différents objectifs qui apparaissent sont relatifs aux bras d’arétes et
non directement aux bras de noeuds sélectionnés par chaque agent. En effet, cela est dii au fait
que nous pouvons exprimer le bandit bilinéaire graphique comme des bandits linéaires au niveau
des arétes. Cet aspect particulier rend le cadre décentralisé un peu délicat car la coordination de
deux agents sans communication pour tirer respectivement les bras de noeuds qui construiront
bras d’arétes désirés devient encore plus compliqué.

Cependant, d’autres problemes surgissent méme si le probléme de coordination est résolu. Par
exemple, dans le probleme d’identification du meilleur bras, nous avons déja congu une procédure
d’échantillonnage qui peut étre exécutée en paralléle pendant un tour, d'otr un choix décentralisé
pour chaque agent. Cependant, la condition darrét dépend de I'estimation M construite avec les
bras d’arétes pendant la procédure d’apprentissage, mais lorsque les agents ne communiquent pas,
cette estimation ne peut pas étre construite. En effet, un agent ne connait que le bras qu’il tire
et observe la récompense. Or, la récompense est linéaire par rapport  au bras d’aréte associée et
lagent n’a pas acces a ce bras d’aréte puisqu’il est construit avec son bras de noeud mais aussi avec
celui de ses voisins (auquel il n’a pas acces).
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Questions ouvertes : Dans le cadre d’une décentralisation totale (sans communication),
quel type d’algorithmes pouvons-nous concevoir pour tirer parti du cadre du banditlinéaire
? Si nous autorisons la communication, comment pouvons-nous adapter les algorithmes
proposés et quel est le compromis entre la quantité de communication et la performance ?
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RESUME

Nous introduisons un nouveau modeéle appelé Bandits Bilinéaires Graphiques ou un apprenant (ou une entité centrale)
alloue des bras aux noeuds d'un graphe et observe pour chaque aréte une récompense bilinéaire bruitée représentant
I'interaction entre les deux noeuds associés. Dans cette thése, nous étudions le probléme d'identification du meilleur
bras et la maximisation des récompenses cumulées. Pour le premier, un apprenant veut trouver I'allocation du graphe
maximisant la somme des récompenses bilinéaires obtenues a travers le graphe. Pour le second probléme, au cours
du processus d'apprentissage, I'apprenant doit faire un compromis entre I'exploration des bras pour acquérir une
connaissance précise de I'environnement et I'exploitation des bras qui semblent étre les meilleurs pour obtenir la
récompense la plus élevée. Quel que soit I'objectif de I'apprenant, le modéle de bandits bilinéaires graphiques révéle
un probleme combinatoire sous-jacent qui est NP-Dur et qui empéche I'utilisation de tout algorithme existant pour
l'identification du meilleur bras (BAI) ou pour la maximisation des récompenses cumulées. Pour cette raison, nous
proposons tout d'abord un algorithme d'a-approximation pour le probleme NP-Dur sous-jacent, puis nous nous
attaquons aux deux problémes mentionnés ci-dessus. En exploitant efficacement la géométrie du probleme du bandit,
nous proposons une stratégie d'échantillonnage aléatoire pour le probléme BAI avec des garanties théoriques. En
particulier, nous caractérisons l'influence de la structure du graphe (par exemple, étoile, complet ou cercle) sur le taux
de convergence et proposons des expériences empiriques qui confirment cette dépendance. Pour le probleme de la
maximisation des récompenses cumulées, nous présentons le premier algorithme basé sur le regret pour les bandits
bilinéaires graphiques utilisant le principe d'optimisme face a l'incertitude. L'analyse théorique de la méthode présentée
borne I'a-regret par 0(\/T) et souligne l'impact de la structure du graphe sur le taux de convergence. Enfin, nous

démontrons par diverses expériences la validité de nos approches.

MOTS CLES

Apprentissage séquentiel, Bandits Bilinéaires Graphiques, Multi-agents

ABSTRACT

We introduce a new model called Graphical Bilinear Bandits where a learner (or a central entity) allocates arms to nodes
of a graph and observes for each edge a noisy bilinear reward representing the interaction between the two end nodes.
In this thesis, we study the best arm identification problem and the maximization of cumulative rewards. For the first
problem, a learner wants to find the graph allocation maximizing the sum of the bilinear rewards obtained through the
graph. For the second problem, during the learning process, the learner has to make a trade-off between exploring the
arms to gain accurate knowledge of the environment and exploiting the arms that appear to be the bests to obtain the
highest reward. Regardless of the learner's goal, the graphical bilinear bandit model reveals an underlying NP-Hard
combinatorial problem that precludes the use of any existing best arm identification (BAI) or regret-based algorithms. For
this reason, we first propose an a-approximation algorithm for the underlying NP-hard problem, and then tackle the two
problems mentioned above. By efficiently exploiting the geometry of the bandit problem, we propose a random sampling
strategy for the BAI problem with theoretical guarantees. In particular, we characterize the influence of the graph structure
(e.g., star, complete or circle) on the convergence rate and propose empirical experiments that confirm this dependence.
For the problem of maximizing the cumulative rewards, we present the first regret-based algorithm for graphical bilinear
bandits using the principle of optimism in the face of uncertainty. Theoretical analysis of the presented method gives an
upper bound of 0(\/T)on the a-regret and highlights the impact of the graph structure on the convergence rate. Finally,

we demonstrate by various experiments the validity of our approaches.

KEYWORDS

Sequential learning, Graphical Bilinear Bandits, Multi-agents
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