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Chapter 1

Introduction
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1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 NDE methods . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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1.2.2.2 X-ray tomography . . . . . . . . . . . . . . . . . . 10

1.3 Principle of X-ray imaging . . . . . . . . . . . . . . . . . . . 10

1.3.1 X-ray generation . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Photon–matter interactions . . . . . . . . . . . . . . . . . . 12

1.3.2.1 Attenuation of beam intensity: Beer-Lambert’s law 12

1.3.2.2 Photoelectric absorption . . . . . . . . . . . . . . . 14

1.3.2.3 X-ray scattering: Compton effect . . . . . . . . . . 14

1.4 Objectives and approach . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Developed approach . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 Structure of the dissertation . . . . . . . . . . . . . . . . . . 21

1.1 Context

Aeronautics is a jewel of French industry, regularly put in the spotlight during the
aerial display held for the French National Day. On a daily basis, tens of thousands of
flights performed globally by the airline industry carry millions of passengers world-
wide. For the safety of the pilot, crew, passengers, and people on the ground, it is
vital that aircraft and their components meet rigorous safety requirements guaranteed
by the manufacturers.

Aircraft are complex systems whose components, in particular the engine, handle
severe operating conditions. The majority of recent aircraft engines are two-spool jet
engines in which the compressor and turbine are each divided into two sections: the low
pressure (LP) and high pressure (HP) sections. After the ignition of the air-kerosene
mixture in the combustion chamber, hot exhaust gas flows through the HP turbine.
The latter consists of multiple stages, each being composed of a stator and a rotor.
The rotor corresponds to a metallic disk in which blades are fixed.
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These blades, called HP turbine blades, are exposed to the extreme temperature of
exhaust gas, known as the HP turbine inlet temperature. In an effort to improve en-
gines efficiency, these temperatures have continuously increased since the 20th century,
reaching now up to 1580◦C, higher than the blades melting point. In addition, they
endure severe mechanical constraints, inter alia due to the centrifugal force caused
by their rotation around the HP shaft. The blades withstand these intense thermal
and mechanical conditions through multiple solutions that include cooling systems,
thermal barriers consisting of ceramic coating, and the recourse to materials known
for their mechanical properties such as nickel-based alloys with a single-crystal mi-
crostructure. For these features to be efficient, it is essential that HP turbine blades
comply with stringent controls. These controls are performed during periodic main-
tenance operations, but also directly when the part is manufactured, through Non
Destructive Evaluation (NDE).

The French Confederation for Non Destructive Testing (COFREND) defines Non
Destructive Evaluation as “a set of methods for characterizing the state of integrity
of structures or materials, without deteriorating them, and at different stages in their
life cycle”. They ensure the conformity of the produced parts and, for critical aero-
nautic parts, are an essential step towards safety. NDE is widely used in industry to
inspect the compliance of manufactured parts with respect to their design and quality
specifications. Notably, the study of their shape is of great importance during control.

In the following section, we will present the most commonly used NDE techniques
applied to aeronautical parts, in particular to the HP turbine blades. This thesis work
will focus on the control of the shape of an HP turbine blade during its production
phase. Consequently, the attention will be centered on dimensional controls for which
the aim is to detect geometrical indications (dimensional irregularities that may result
in a non-optimal system) in the inspected part.

1.2 NDE methods

Several Non Destructive Evaluation methods are used to control turbine blades
during manufacturing or maintenance operations. The objective is to detect and avoid
any flaw that could propagate and cause a failure. They are divided into (i) material
health inspection methods and (ii) dimensional control methods.

Material health inspections aim to detect and characterize structural defects such
as porosities, cracks, inclusions, or welding defects. They include the thermography
imaging approaches [1, 2], based on the detection of the thermal radiation of the
material using an infrared camera. Magnetic particle inspection [3] relies on detecting
the disturbance in the magnetic flux caused by a defect, e.g. a crack, when a specimen
made of a ferromagnetic material is exposed to a magnetic field. This detection is
made possible by applying ferromagnetic particles, containing colored or fluorescent
pigments, onto the surface of the part. Eddy current testing [4, 5, 6, 7] is based on
the analysis of the local changes in the electromagnetic properties of the material due
to a structural flaw.

Dimensional controls refer to inspections applied on the part to verify the dimen-
sions defining its geometry and quantifying their deviations. Aeronautical parts such
as HP turbine blades operate at very high temperatures, above the material melting
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point. In order to ensure the integrity of the engine, cooling technologies have been
developed [8, 9, 10, 11, 12]. Among them, the internal cooling systems use convective
heat transfer in internal channels to withdraw heat from the blade. The cooling cir-
cuit, in which a flow of cooled air extracted from the LP compressor circulates from
the hub towards the blade tip, needs to be highly efficient. A large internal surface
area is desirable for this technology, so the cooling circuits tend to be serpentine and
full of small structures (fins, ribs). As a result, HP turbine blades have complex ge-
ometries, resulting from a long joint work carried out by researchers and the design
office. Therefore during manufacturing, both external and internal geometries of the
blade must be very carefully controlled.

In the following, the most common dimensional control methods are introduced.
Since the internal structure inspection is of particular interest, only modalities allowing
measurements of internal elements are presented.

1.2.1 Ultrasound control

Ultrasonic control [1] consists of scanning the part to be inspected with elastic
waves to measure material thicknesses. The measuring device, that corresponds to a
transmitter and receiver of ultrasonic waves, is placed onto the surface of the sample
perpendicular to it [13]. The interpretation of the time-of-flight (time difference be-
tween the emission and reception of the ultrasonic wave) allows the measurement of
thickness at the sampling point.

This technique has been thoroughly developed [14, 15, 16, 17, 18], and thus provides
accurate measurements. However, they are performed on a limited number of sampling
points on the external surface: no global information on the geometry is obtained.
In some cases, the device is difficult to position, e.g. for sampling points close to
curved areas, which makes the control difficult. In addition, some measurements are
impossible to assess, such as high thickness measurements or inter-cavity distances.
The difficulty may also arise from weak or distorted “echoes” from the internal surface
(e.g. oblique orientation, curved surface, proximity of a hole).

1.2.2 Radiographic imaging

Radiographic imaging methods used for NDE include X-ray [19, 20, 21], gamma-
ray [22, 23], and neutron radiography/tomography [24, 25]. These technologies allow
the internal structure of the part to be imaged by transmission and operate similarly.
A radiograph is the transmission image of the part by radiation (X-ray, gamma, or
neutron). Because of the interaction between the light beam and the material, these
images allow the detection of dimensional flaws in the part: over-/under-thickness of
the material, mispositioning of an element such as cooling holes, etc..

X-rays and gamma-rays highly interact with dense materials and little with lighter
ones, whereas neutron radiations reveal a different contrast. However, neutron sources
are only available on large instruments — e.g. in France, the Institut Laue–Langevin in
Grenoble — which limits their use. In the industry, and in particular in the aeronau-
tical sector, X-ray imaging is the most widely used radiographic imaging technique.
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1.2.2.1 X-ray radiography

An X-ray source irradiates the part under inspection [26]. Beams are attenuated
at varying levels depending on the straight path they follow as they pass through the
object. The ray intensities are measured by a detector array to obtain a 2D image of
the specimen displaying the spatial distribution of its structure.

The control is then performed based on a restricted set of images, usually about ten,
constituting a limited amount of information about a complex-shaped object. Trained
operators examine the images seeking unusual gray levels, indicating the presence of a
dimensional imperfection. Considering the difficulty of the task, an inter-operator bias
may exist (e.g. due to difference in training or experience) as well as an intra-operator
bias (e.g. due to fatigue, or psychological condition). In addition, the images result
from complex interactions between the object and the X-ray photons, which must be
understood and quantified to properly interpret gray levels. Thus, the characterization
of 3D dimensional imperfections from 2D images is challenging.

1.2.2.2 X-ray tomography

X-ray tomography relies on the same technology and physical phenomena as X-
ray radiography. The difference lies in the number of acquired images, typically a
few thousand. This gain in the amount of information allows the 3D volume of the
part, known as tomogram, to be computed using reconstruction methods [27, 28]. The
tomogram is used to observe the (complex) internal structure of the part in a very
detailed way and to perform measurements of e.g. angles, distances, and volumes.
Furthermore, the alignment of the tomogram with the Computer-Aided Design (CAD)
model of the part describing its nominal geometry allows observation and measurement
of shape deviations.

This method is ill-adapted for production needs as the acquisition of thousands
of images is time-consuming (around one hour per blade). In addition, the complex
interactions underlying the formation of the images generate image artifacts in the
tomogram if they are not properly estimated and corrected, which impedes precise
control.

In light of the above, X-ray radiography appears to be a suitable compromise for
dimensional control of complex-shaped parts. It provides global information about
their geometry (both external and internal surfaces) while allowing a short inspection
time, making it suited to production needs. In the following, a detailed description on
the principle of X-ray radiography is proposed, which will highlight the main difficulties
associated to the NDE of objects via X-ray radiography.

1.3 Principle of X-ray imaging

X-rays are a high-energy electromagnetic radiation. Due to their high capability
of matter penetration, they are widely used to image the inside of objects.

1.3.1 X-ray generation

In electron-impact X-ray sources, the radiation is produced by the deceleration of
fast-moving electrons hitting a solid metal anode [26]. Figure 1.1 represents an X-ray
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Figure 1.1: X-ray tube generator [26].

tube generator using this principle. A filament usually made of thoriated tungsten is
heated, producing electrons through a phenomenon called thermionic emission. They
are accelerated by the electric field between the cathode and the anode. Close to the
anode surface, they undergo several processes, the main one being their deceleration
by the Coulomb fields of the atoms in the metallic anode [29]. The slowdown of
electrically charged particles leads to the emission of electromagnetic waves in the
X-ray spectrum (wavelength from about 10−8 to 10−12 m). A continuous distribution
of energies is thus obtained by the bremsstrahlung. In addition, fast electrons may
directly interact with the inner shell electrons of the anode material. A fast electron
may collide and kick out an electron on a K-shell or L-shell of the atom. An electron of
one of the higher shells fills the vacant position on the K-shell or L-shell, which causes
the emission of a photon. This de-ionization phenomenon creates a large number of
X-ray radiations at discrete energies, known as the characteristic K-line or L-line.

The radiation energy of the emitted X-ray depends on the energy of the accelerated
electron, which in turn depends on the anode-to-cathode voltage, also called the accel-
eration voltage. For material testing, acceleration voltages are usually chosen between
200 kV and 400 kV and can reach up to 500 kV.

Figure 1.2 displays the X-ray spectrum of a tungsten anode, depicting the number
of emitted photons (in arbitrary units) as a function of energy. The spectrum was
calculated using xpecgen [30, 31] without filtering the source and with two types of
filters, copper and aluminum. The characteristic lines are visible at approximately 58
keV and 67 keV. The filters reduce the number of X-ray photons emitted from the
source by absorbing photons at all energies, with lower-energy photons being more
strongly attenuated.
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Figure 1.2: X-ray spectrum produced by a tungsten anode (anode angle of 10◦,
electron kinetic energy of 150 keV) simulated using xpecgen [30, 31] without and

with filtering. The amount of intensity reduction due to the filtering depends on the
energy. The characteristic lines are clearly visible.

1.3.2 Photon–matter interactions

Radiations emerging from the X-ray tube are directed in a conical shape toward
the analyzed part placed in front of a detector panel, a photosensitive device used to
convert X-ray quanta into images. Projection data (i.e. the radiographic images) are
the result of the interaction between those radiations and the material of which the
object is composed. In X-ray imaging, the attenuation a beam of X-ray has undergone
after passing through the object is measured.

This section describes the attenuation law and the two main physical mechanisms
of photon–matter interaction occurring for the targeted acceleration voltage: the pho-
toelectric and the Compton scattering effects.

1.3.2.1 Attenuation of beam intensity: Beer-Lambert’s law

Consider a polyenergetic X-ray traveling along the path Lx joining the source to a
detector position x ∈ Ω, with Ω the domain of all detector positions. The intensity
I(x) recorded at this position is related to the line integral of the material absorption
along Lx according to the polyenergetic Beer-Lambert’s law

I(x) =

∫
E
I0(x, E) exp

(
−
∫
y∈Lx

µ(y, E) dy

)
dE (1.1)
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where E denotes the energy spectrum, µ is the spatially and energy-dependent atten-
uation coefficient, and I0(x, E) the intensity measured when no sample is found along
the X-ray path Lx and whose image as captured by the detector is called flat-field.
For many materials, the linear coefficient µ(y, E) decreases with increasing photon
energy. When passing through an object, low-energy (soft) photons are absorbed pref-
erentially, so that the remaining beam becomes proportionally richer in high-energy
(hard) photons than the original beam. This phenomenon is known as beam harden-
ing. The measured intensity I(x) is proportional to the number of photons of a given
energy impinging on the detector position x weighted by a response efficiency that
depends on the energy.

If the object Ω0 is made of a monomaterial component, the spatial dependence
of the attenuation is removed for the entire path of penetration, i.e. µ(y, E) ≡
µ(E) 1{y ∈Lx∩Ω0}, so that eq. (1.1) can be rewritten as

I(x) =

∫
E
I0(x, E) exp (−µ(E) T (x)) dE (1.2)

where T (x) denotes the distance traveled by the ray inside the object.
The attenuation image P is derived from the measured intensity image I by setting

P (x) = − ln

(
I(x)

I0(x)

)
(1.3)

where I0(x) is obtained by integrating I0(x, E) over all energies (in practice, the
integration is weighted by the detector response depending on the energy). The non-
linearity between the attenuation value P (x) and the thickness of material T (x) calls
for a careful interpretation of the gray levels of the measured images.

A common approach is to model the beam as being monoenergetic. The associ-
ated attenuation law is known as the (monoenergetic) Beer-Lambert’s law, and the
attenuation image is interpreted as

P (x) = µ T (x) (1.4)

This simplified formulation leads to a misinterpretation of the grayscale values. Thick-
nesses are underestimated (see Figure 1.3), or overestimated depending on the calibra-
tion between P and T (such a calibration being required for any practical application
of radiography). Various schemes have been proposed to correct for these deviations.
They can be divided into two main categories: pre-processing of projection data [32, 33]
and dual energy imaging [34, 35].

The attenuation coefficient µ(E) is the sum of several components, each repre-
senting the contribution of a physical phenomenon to the intensity attenuation [36].
In industrial CT, photon energy ranges from around 100 to 400 keV. It is observed
from Figure 1.4 that, within this energy range (cyan area), the predominant processes
responsible for the attenuation of the X-ray beam intensity are the photoelectric ab-
sorption (orange curve) and the Compton scattering (green curve). In this sense,
µ(E) may be written as a combination of a Compton scatter coefficient µs(E), and a
photoelectric absorption coefficient µa(E).
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Figure 1.3: Differences between polyenergetic observations (green dashed line) and
monoenergetic simplification (blue line). When considering monoenergetic

Beer-Lambert’s law, the analysis of grayscale values leads to an underestimation of
the thickness the beam had gone through.

1.3.2.2 Photoelectric absorption

The photoelectric absorption effect is a pure photon absorption process that results
in total absorption of the X-ray photon [29, 38]. This phenomenon is caused by the
collision between a photon, with energy Ee, and an innermost shell (K-shell) electron
bound in an atom of the material with a binding energy Eb < Ee (Figure 1.5, top left).
The photon is entirely absorbed by the atom, and the electron, called photoelectron,
is ejected with kinetic energy equal to the difference Ee − Eb. This energy difference
is thus removed from the incoming X-ray beam. Photoelectric absorption depends
strongly on the unique binding energy of any K-shell electron for a particular material.

The vacancy left by the photoelectron is filled by electrons from outer shells. This
recombination leads to the emission from the atom of characteristic radiations so
that X-ray fluorescence lines can be measured (Figure 1.5, top right). Provided that
the radiation energy resulting from the recombination process is high enough, it may
instead eject another electron from the outer shell of the atom, resulting in the creation
of a so-called Auger electron (Figure 1.5, bottom right). It should be noted that the
emission of characteristic radiations and the creation of an Auger electron are mutually
exclusive outcomes of the vacancy left by the photoelectron.

1.3.2.3 X-ray scattering: Compton effect

Scattering is a phenomenon that causes a reduction of contrast in the acquired
images. Some photons emitted toward the object will deviate from their initial trajec-
tories (straight path) due to their interaction with the material. They will thus hit the
detector at a different position from where they should have been initially detected.
When hitting the detector, a scattered photon will lead to an increase of the measured
intensity away from its initial trajectory, and a decrease at this specific position, pro-
ducing a blur in the images. Usually, image analysis for quantitative imaging only
considers the absorption of the beam and does not account for scattering. This leads
to a deviation of dimensional measurements from their actual values.

X-ray scattering is due to two physical phenomena: the Compton effect and the
Rayleigh effect. The type of scatter that prevails (Compton or Rayleigh) depends
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Figure 1.4: X-ray attenuation curve for Nickel describing the main interactions of
X-ray photons with matter. Compiled with data from the online database XCOM

[37]

on the beam’s energy. Figure 1.4 indicates that, in the target industrial application,
Compton scattering dominates over Rayleigh scattering.

The Compton effect refers to the interaction between a photon from the X-ray
beam with a free electron of the inspected part or an electron weakly bounded to its
atom [26]. As a result, the incident photon loses part of its energy which is transferred
to the electron, and is deflected (scattered away) at a scattering angle φ from its
original path (Figure 1.6) [29, 39]. Because of this energy loss, the wavelength of the
scattered photon is larger (meaning less energetic photons) than that of the incident
radiation: scatter distribution thus has dominant low-frequency components.
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Incident photon

Photoelectron

Auger electron

(a) Photoelectric absorption (b) X-ray fluorescence

(c) Auger process

Figure 1.5: Principle of photoelectric effect. (Top left) Absorption of the X-ray
photon and ejection of the electron. (Top right) The vacancy left by the ejected

electron is filled, resulting in the emission of characteristic radiations. (Bottom right)
The vacancy left by the ejected electron is filled, and an Auger electron is generated.

The probability of photon scattering by a free electron as a function of φ is given
by the differential Klein-Nishina cross-section formula [29, 40]

dσKN

dΩ
=
r2e
2
ε2
(
ε+

1

ε
− sin2(φ)

)
(1.5)

where dΩ = sin(φ) dφ dα denotes the differential solid angle (α being the azimutal
angle), re is the classical electron radius, and ε is the ratio between the scattered
photon energy E ′(φ) and the incident photon energy E, i.e. ε = ε(E,φ). Due to
the rotational symmetry of diffusion around the beam, the scattered intensity only
depends on φ, and hence one may integrate this scattered flux over α so that only the
solid angle dΩ = 2π sin(φ) dφ matters.

When the photon is scattered by a bound electron, the electronic binding effects
must be taken into account. This contribution of surrounding electrons is modeled by
multiplying eq. (1.5) with the incoherent scattering function S(q(φ), Z), where q(φ) is
the momentum transfer variable1 and Z is the atomic number of the absorber material,
yielding the differential Compton cross-section dσc

dΩ
. Integrating this expression over

the entire solid angle Ω gives the Compton scattering cross section

σc = πr2e

π∫
0

ε2
(
ε+

1

ε
− sin2(φ)

)
sin(φ) S(q(φ), Z) dφ (1.6)

1q(φ) = 4π sin
(φ
2

) E′(φ)

hc
where h is Planck’s constant and c is the speed of light.
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Incident photon
Scattered electron

Scattered photon

Figure 1.6: The Compton effect. Collision between a photon and a free electron. The
scattered photon has a longer wavelength than that of the incident one.

The scattering angle thus depends on the energy of the X-ray beam. An example of
angular Compton scattering probability by a single free electron at different energies is
illustrated in Figure 1.7. This figure indicates that the scattering probability decreases
as the energy increases: it is half as small at 350 keV as it is at very low energy. In
addition, at lower energy, scattering occurs more likely in the backward direction.
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Figure 1.7: Angular Compton scattering probabilities for a free electron as a function
of φ for different energies (a) Expressed in millibarn per steradian from the definition

of dσKN

dΩ
. (b) Expressed in millibarn per degree from the definition of dσKN

dφ
.

A scattered photon can still interact with another electron to give rise to a sec-
ond scattered photon, and so on: this is known as multiple scattering. However, the
more a photon undergoes the Compton effect, the more energy it loses, increasing the
absorption probability. The scattering probability being small, only single scattering
may be considered, with a good approximation.

It is essential to note that scattering can be assimilated to absorption for scattering
in a highly different direction. Scattered photons are eliminated from the incident
beam through their interactions with atoms (or, more precisely, electrons) in the same
way as absorption via the photoelectric effect. Given this, the study will be limited to
small angle scattering, in addition to the single scattering approximation.
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1.4 Objectives and approach

This thesis work focuses on the analysis of the shape of an HP turbine blade
during its manufacturing. As discussed in Section 1.2, a multitude of NDE methods
are used to inspect the geometry of such parts during their production. Among them,
X-ray radiography allows the visualization of the whole internal, potentially complex,
and external structures of the part. Additionally, the short acquisition time of X-ray
images makes the NDE from a dozen images adapted to the production needs (i.e. brief
enough not to impact the production rate while ensuring high quality products).

The problem tackled in this work consists in the development of an NDE process
for the identification and characterization of geometrical indications of an HP turbine
blade from a reduced number of X-ray images. Given that numerous controls are
carried out on turbine blades, we restricted ourselves, for practical reasons, to wall
thickness inspections. This control is critical as wall thickness imperfections can impair
the blades integrity when operating at high temperatures. The process is intended to
address the difficulties pointed out in subsection 1.2.2.1, namely:

• the limited number of views : this point is synonymous with using a reduced
amount of information about the inspected part. To circumvent this difficulty,
one may consider exploiting complementary information about the part, such as
its CAD model or its manufacturing process.

• the phenomena involved in the formation of X-ray images : the formation of X-
ray images described in the previous section indicates that a specific attention
must be paid regarding the interpretation of the observed gray levels. The gray
levels of a projection are related to the thickness of material the beam has gone
through, but in a non-linear way due to the beam hardening phenomenon. In
addition, phenomena other than pure absorption, such as Compton scattering,
lead to the observation of a spurious signal. These two aspects are all the more
impacting as the control is performed from a reduced number of images, namely
a dozen. Hence, these phenomena should be correctly modeled and estimated to
properly interpret the observed gray levels.

• the operator dependency : this calls for an automated process, in which the in-
put corresponds to the observed X-ray images (plus additional information, as
mentioned above), and the outputs are markers highlighting the geometrical in-
dications on the part (identification), and accurate dimensional measurements
(characterization). It should be noted that the procedure is not intended to be
a substitute for the operators, but rather to serve as a tool to assist them in
the inspection process. The final decision regarding the part (valid, rejected,
remanufacture) is left in the hands of the human expert.

• the bias of assessing 3D dimensional measurements from 2D images : this issue
suggests that measurements should not be computed directly from the images,
but rather from a 3D model of the inspected part.
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1.4.1 Developed approach

Following these desired features, we developed an NDE process whose pipeline is
displayed in Figure 1.8. It relies on Projection-based Digital Volume Correlation (P-

Figure 1.8: Schematic representation of the NDE process for geometrical indications
from few radiographic views.

DVC) approach, introduced in [41] and further extended to the study of a fatigue
crack in a cast iron sample [42] or to in-situ mechanical tests [43]. It aims at reducing
the differences, known as projection residuals or residuals, between acquired X-ray
images and numerically computed ones. In this work, the simulated projections have
been computed using the ASTRA Toolbox [44]. From the acquired X-ray images
representing the inspected part and its CAD model, the process is described by five
main steps:

0. Noise analysis: A preliminary step in the procedure consists in evaluating the
noise affecting a radiographic image. It allows the cost function in the P-DVC
to be properly defined, and provides a baseline value (standard deviation of the
noise) to interpret the projection residuals. This noise analysis is independent
of the X-ray images of the part, as opposed to the following steps that rely on
these images, hence the distinct color used in Figure 1.8 and the step number.

1. Projection geometry refinement: The simulation of X-ray images requires
the definition of the projection geometry which encompasses the geometry of
the acquisition system (relative position of the source and detector, orientation
of the detector, etc.), along with the position and orientation of the part in it.
The problem of determining the projection geometry from X-ray images is a
subject of interest [45, 46]. It usually requires a phantom whose geometry is
perfectly known [47, 48, 49]. Other approaches include the use of features in
images simulated from a CAD model [50], or AI-based approaches [51]. In this
work, we propose to refine the projection geometry based on a P-DVC method
which exploits the entire image, or Regions Of Interest (ROIs) in it.
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2. Beam hardening estimation: This phenomenon arises from the polyenergetic
nature of the X-ray source, resulting in a non-linear relationship between the
attenuation and the thickness of material the beam has gone through. Estimating
the actual relationship allows the correction of BH, which reduces to a non-linear
gray level re-encoding using a (parametric) correction function. Strategies for
such an estimation include acquiring projections of a known object and fitting the
correction function to the point cloud — pixelwise detector attenuation versus
thickness — by the least-squares method [52], but it does not exploit the spatial
dependency of gray levels. The correction function is usually modeled as an
odd-order polynomial. Another approach consists in performing Monte-Carlo
simulations [53], but their applicability in practice is jeopardized by their time-
consuming nature. In this work, we propose to identify the correction function,
modeled as a piecewise linear function, using P-DVC.

3. Compton scattering estimation: Scattering phenomenon leads to the mea-
surement of a spurious signal. Suggestions to estimate and correct for it include
Monte-Carlo simulations [54, 55], or model the scatter signal as the convolution
between the primary signal and a kernel to be estimated [56] prior to applying
a deconvolution algorithm to obtain scatter-free radiographs. In this work, the
latter model is used. The associated parameters are identified using P-DVC,
and the estimated signal is reproduced on simulated images to avoid numerical
instabilities encountered in deconvolution algorithm.

4. Deformation of model: To obtain deviation measurements, the actual geom-
etry of the imaged part is to be inferred from the X-ray images. This shape
inference relies on deformation models that can be statistical models of global
deformations such as “point distribution models” [57]. Other local deformation
models are based on Markov fields [58]. Deformations may also be encoded in
latent spaces through Convolutional Neural Networks (CNN) [59] or Generative
Adversarial Network (GAN) [60]. Although these approaches are powerful, they
require large amounts of data (for either training the Neural Network or statisti-
cally determining the deformation modes) and are computationally demanding.
In this work, a parsimonious yet representative deformation model is proposed.
It is based on the manufacturing process of turbine blades and has been designed
in collaboration with experts in NDE for turbine blades who are familiar with
the dimensional imperfections encountered in production lines.

It should be noted that, after step 3, simulated projections match observed ones
up to geometrical indications. As a consequence, the projection residuals display the
geometrical discrepancies (i.e. indications) between the manufactured (inspected) part
and its ideal model. These discrepancies can be highlighted by comparing the residuals
with the baseline value defining the noise level, introduced in step 0.
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1.4.2 Structure of the dissertation

This dissertation, which aims at presenting the developed NDE process, is struc-
tured as follows:

• Chapter 2 is dedicated to the study of acquisition noise, that is the noise pollut-
ing a projection. This analysis involves the characterization of the noise polluting
a flat-field image, from which acquisition noise is derived. The latter is found to
be Gaussian, white (spatially and temporally uncorrelated), and characterized
by a deterministic variance. It is worth stressing that this variance reflects the
structural heterogeneities of the detector that cannot be anticipated from first
principles. These heterogeneities are thus to be characterized beforehand.

• Chapter 3 details steps 1 to 3 of the procedure, namely the adjustment of the
projection geometry and the estimation of the beam hardening and Compton
scattering. A state of the art regarding these three aspects is first proposed.
The developed approach, based on P-DVC, is introduced, and the results are
presented and discussed. After these steps, a realistic projection operator is
obtained. This chapter is extracted from [61].

• Chapter 4 focuses on step 4 of the process, that is the deformation model
derived from the manufacturing process of turbine blades. A discussion on wall
thickness inspections is proposed. The parametric deformation model and the
identification parameter methods are presented. The reliability of the approach
is assessed through a repeatability study, with positive and encouraging results.
This chapter is extracted from [62].

• Chapter 5 offers a conclusion concerning the issues addressed in this work.
Avenues for improvement are also suggested, and related works on the treated
aspects are listed.

Complementary notes
Articles from published or submitted works are extended with complementary
notes. The additional text is added in a blue frame, to avoid confusing it with
the original article.
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Chapter 2

Noise quantification
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This research project aims at identifying geometrical imperfections of an aeronau-
tical part (turbine blade) from a limited number of X-ray images acquired with a
CT-scanner. A methodology based on the numerical simulation of radiographic im-
ages is proposed to fulfill this objective. The projection residuals, i.e. the differences
between the acquired and simulated projections, are used to identify the geometrical
indications.

However, the acquired projections are polluted with noise, which must be consid-
ered. It is thus proposed to quantify and characterize the noise polluting a projection.
This quantification allows a reference measure to be obtained for interpreting the pro-
jection residuals: residuals lower than the noise suggest a negligible difference, meaning
that the numerical model matches the imaged part. Additionally, it would permit to
formulate optimization problems designed to minimize the acquisition noise error.

The noise affecting a white field image is first investigated, from which the noise
affecting a projection is derived. The approach adopted here is to build a simple yet
accurate descriptive model of a flat-field image: any deviations from this model will
be considered as noise.
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2.1 Description of a flat-field image

A flat-field image I0(x) is defined as an image acquired by illuminating the detector
with the source, with no sample in between (Figure 2.1). Ideally, a flat-field image is
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Figure 2.1: Example of a flat-field image I0(x). The obscured area corresponds to
the area hidden by the collimator.

(spatially) homogeneous. However, due to the technology of the source (cone-beam
geometry) and the structure of the detector (panel assembly), a dependence of the
measured intensity on the pixel position x = (x1, x2) is observed. Additionally, the
intensity of the X-ray beams emitted by the source varies over time, e.g. due to the
progressive heating of the source. Although subtle, this fluctuation leads to a temporal
dependency on the gray levels of a flat-field image. Hence, such an image is considered
to be space-time dependent, i.e. I0(x, t), where t denotes a time variable.

To establish the desired representation, a set of Nt = 48 flat-field images were
collected, see Table 2.1 for the acquisition parameters. In the following, I0(x, t) will
represent the flat-field image acquired at a time index t. Their study was restricted to
the areas not obscured by the collimator. Although derived from these specific flat-
field images, the description presented in this section is expected to remain relevant
for other sets of images as it is intended to be generic and adaptable.
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Acceleration voltage 400 kV Exposure time 354 ms
Tube current 725 µA Encoding 16-bit uint

Table 2.1: Parameters for X-ray image acquisition using an XT H 450 (Nikon
Metrology) with an XRD 1621 ES detector (Perkin Elmer).

2.1.1 Space-time decomposition

Theoretical development

A common approach to describe a space-time phenomenon consists of using model
reduction methods that provide a low-dimensional description of the phenomenon.

Among the a posteriori reduction methods, one can mention the Proper Orthogonal
Decomposition (POD) [1], also known as Principal Components Analysis (PCA) [2],
Singular Value Decomposition (SVD) [3], or Karhunen-Loève Decomposition (KLD)
[4], depending on the application. It relies on constructing optimal reduced basis
functions using a separated representation. The flat-field is thus represented as a
finite sum of M terms, called modes, expressed in the variables-separated form

I0(x, t) ≈
M∑

m=1

am Φm(x) ψm(t) ∥Φm∥22 = ∥ψm∥22 = 1 (2.1)

The principle of POD is restated here. Such a decomposition can be obtained by the
extraction of one (the dominant) mode from the POD residual (i.e. raw signal from
which all previous modes contributions have been subtracted). The principle of mode
extraction is described for the first mode. The determination of a1, Φ1 and ψ1 is done
by minimizing

J (Φ1, ψ1) = ∥I0(x, t)− a1 Φ1(x) ψ1(t)∥22 (2.2)

Differentiating J with respect to Φ1 and ψ1 respectively, and setting the partial deriva-
tives equal to 0, leads to

a1 Φ1(x) =
∑
t

I0(x, t) ψ1(t) (2.3)

a1 ψ1(t) =
∑
x

I0(x, t) Φ1(x) (2.4)

Using the normalization

a1 =

∥∥∥∥∥∑
x

I0(x, t) Φ1(x)

∥∥∥∥∥
2

=

∥∥∥∥∥∑
t

I0(x, t) ψ1(t)

∥∥∥∥∥
2

(2.5)

one gets

Φ1(x) =
1

a1

∑
t

I0(x, t) ψ1(t) (2.6)

ψ1(t) =
1

a1

∑
x

I0(x, t) Φ1(x) (2.7)
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The expressions of Φ1 and ψ1 given by (2.6) and (2.7) respectively imply

a21 Φ1(x) =
∑
x′

∑
t

I0(x, t) I0(x
′, t) Φ1(x

′) (2.8)

a21 ψ1(t) =
∑
t′

∑
x

I0(x, t) I0(x, t
′) ψ1(t

′) (2.9)

Introducing F (x,x′) =
∑

t I0(x, t) I0(x
′, t) and G(t, t′) =

∑
x I0(x, t) I0(x, t

′), the
problem amounts to an eigenvalue problem

F Φ1 = a21 Φ1 (2.10)
G ψ1 = a21 ψ1 (2.11)

where a21 is the largest eigenvalue of F or G, and Φ1 (resp. ψ1) is the corresponding
eigenvector of F (resp. G). Hence, either one of (2.10) or (2.11) can be solved, from
which (2.6) or (2.7) will complement the determination of the space or time mode and
amplitude. In practice, the smallest matrix size, either F or G, is considered.

Should one decide to compute a second mode, one would solve an identical problem
for the residual but restricted to the subspace orthogonal to the mode. Given that all
modes are orthogonal, Φ2 (or equivalently ψ2) would be the second eigenvector, i.e. a22
would be the second largest eigenvalue of F or G. Thus an iterative algorithm is not
necessary, and all the eigenvalues/eigenvectors can be readily obtained.

This decomposition allows the decoupling of the spatial variation of a flat-field
image from the temporal one through a sparse and faithful representation.

Application

This decomposition is applied to the Nt observed images. The value am quantifies
the energy of the mth mode, i.e. its contribution to the decomposition. It is found that
the first mode contains the majority of the energy of the decomposition achieved using
eight modes (> 99.5%, Table 2.2). Hence, only it is analyzed and used thereafter.

Mode number m 1 2 3 4 5 6 7 8

am∑8
j=1 aj

0.9952 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007

Table 2.2: Relative energies of the POD modes (values rounded to 4 decimal places).

The first temporal mode ψ1(t), Figure 2.2a, shows a slight evolution that is at-
tributed to the (minute) temporal fluctuation of the signal emitted by the X-ray source.
The increasing nature of ψ1 over time is explained by the progressive heating of the
source. The first spatial mode Φ1(x), Figure 2.2b, on the other hand, exhibits much
more disparity resulting from the abovementioned points, namely the cone-beam ge-
ometry and the panel assembly. These factors are expressed in ϕ1(x) through specific
patterns:

• Cone-beam geometry of the source: the center of the detector being more illu-
minated than the edges, the corners (dark) contrast with the center (light), with
a smooth gradient between the center and the corners.
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• Panel assembly: the detector being made of several panels assembled together,
horizontal and vertical streaks are visible.
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Figure 2.2: First mode of the POD of a flat-field image. (a) Temporal mode ψ1(t);
(b) spatial mode a1 Φ1(x). All the represented units correspond to greyscale values.

The temporal mode fluctuates within a very narrow range of 3.10−3.
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Consequently, a more detailed description of the spatial mode is proposed. In order
to keep a typical gray level value close to 1, we introduce ϕ1 as

ϕ1 =
Φ1

⟨Φ1⟩x
where ⟨·⟩x =

1

Nx

∑
x

· (2.12)

with Nx the number of pixels.

2.1.2 Source-detector dissociation

The mode ϕ1(x) reflects the spatial variation of a flat-field image due to the source
and the detector. ϕ1(x) is thus interpreted as being the product of two terms, S(x) and
C(x), which are to be identified to improve the description of a flat-field image. S(x)
expresses the contribution of the source to the flat-field image, while C(x) expresses
the contribution of the detector. In the following, S(x) and C(x) are referred to as
the source and detector terms, respectively.

A formulation of the identification problem is first established, leading to the com-
putation of these terms. A sparse representation of the detector term is then proposed,
which allows the estimation of S(x) and C(x) to be refined.

2.1.2.1 Identification of the source and detector terms

Theoretical development

The pattern characteristic to the technology of the source (dark/light contrast)
can be captured by a smooth function f(x) ∈ V with x = (x1, x2), e.g. a polynomial,
where V denotes a function space.

The problem thus amounts to identifying the function f(x) that best approxi-
mates ϕ1(x) in the least-squares sense, assuming C(x) ≡ 1 (perfect detector). This
identification is described as

S = argmin
f∈V

∥ϕ1(x)− f(x)∥22 (2.13)

Once the minimization problem (2.13) is solved, the detector term C is determined
by

C(x) =
ϕ1(x)

S(x)
(2.14)

Application

Based on the shape of the surface associated with ϕ1(x), Figure 2.3a, the function
f found in eq. (2.13) is chosen as a polynomial of degree 2. The function S that
minimizes this equation is shown in Figure 2.3b. The surface S captures the smooth
variations of ϕ1.

The image of C(x) appears more homogeneous than the one associated with ϕ1(x),
see Figure 2.4. As expected, inhomogeneities due to the cone-beam geometry of the
source (dark/light contrast) are imperceptible; only the streaks (characteristic of the
detector) remain.
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(a)

(b)

Figure 2.3: Comparison between the function ϕ1(x) (a) and its fit by a polynomial of
degree 2, S(x) (b).
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Figure 2.4: Comparison between (a) the function ϕ1(x) and (b) the function C(x)
describing the contribution of the detector to the flat-field image.
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2.1.2.2 Description of the detector term

Theoretical development

A further description of the detector term C(x) with x = (x1, x2) is proposed.
This description may be provided by a POD performed on C, as presented in Section
2.1.1.

However, vertical and horizontal streaks are visible in the detector term C(x),
Figure 2.4b. They are attributed to the detector (XRD 1621) being mounted in panels:
two main panels (upper and lower parts of the detector), each composed of smaller
panels placed side by side. As it is not natural to process the distinct areas (strips)
delineated by these streaks together, several variants of the POD can be considered.
Thus, the following variants are proposed:

1. Subdividing C(x1, x2) in K domains Ωk, one for each distinct panel (see Figure
2.5a), such that

C(x1, x2) =
∑
k

C(x1, x2) 1Ωk
(x1, x2)︸ ︷︷ ︸

Ck(x1,x2)

(2.15)

where 1 denotes the indicator function. A POD is then performed on each
function Ck

Ck(x1, x2) ≈
L∑
l=1

bkl φkl(x1) ωkl(x2) ∥φkl∥22 = ∥ωkl∥22 = 1 (2.16)

2. Subdividing C(x1, x2) in two domains ΩT and ΩB, representing the upper and
lower halves (see Figure 2.5b), such that

C(x1, x2) = C(x1, x2) 1ΩB
(x2)︸ ︷︷ ︸

CB(x1,x2)

+C(x1, x2) 1ΩT
(x2)︸ ︷︷ ︸

CT (x1,x2)

(2.17)

A POD is then performed on the functions CB and CT

CB(x1, x2) ≈
L∑
l=1

bBl φBl(x1) ωBl(x2) ∥φBl∥22 = ∥ωBl∥22 = 1 (2.18)

CT (x1, x2) ≈
L∑
l=1

bT l φT l(x1) ωT l(x2) ∥φT l∥22 = ∥ωT l∥22 = 1 (2.19)

One would note that variant n◦2 corresponds to a particular case of the variant
n◦1 for which a single x2-mode is shared between all panels of a given half.

Application

The spots visible in the image C(x), e.g. at (x1, x2) ≈ (500, 800), are hardly
explainable with a POD. Therefore, we chose to mask them and perform a Gappy-
POD instead [5, 6, 7, 8]. The latter is a modified version of the POD developed to
address the case where the function to be decomposed includes missing information.
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Figure 2.5: Visualization of the subdivisions for (a) the first variant, and (b) the
second variant of the POD.

Multiple algorithms or variants implementing the Gappy-POD have been designed, the
difference lying in the way the missing data are interpolated. In this work, an algorithm
found to yield good results, both in terms of quality results and convergence speed,
with sparse and noisy data was utilized [9].

Variants 1 and 2 of the POD have been evaluated with a single mode, i.e. L = 1,
using the Gappy version. The associated modes are presented in Figures 2.6 and 2.7.

Two remarks are to be made regarding the x2-modes ωk1(x2): (i) the average profile
of the upper part clearly differs from that of the lower part, and (ii) for a given half, the
x2-mode have a similar trend. These observations are explained by the operation of
the detector. Indeed, its specifications state that (i) the upper and the lower parts are
electrically separated and (ii) the data of each half is transferred by so-called read out
groups (previously introduced as panels) that successively scan the sensor columns.

As expected, the first variant provides a more accurate approximation. Indeed, this
approximation captures fine details since less constraints are enforced (more flexibility
for the x2-modes). However, this approximation is considered as over-fitting, in the
sense that it might also capture noise, which we are trying to extract. Hence, the
second variant was retained and used in the following. This choice is supported by the
clear tendency existing for the average profile of ωk1(x2) (Figure 2.6b), which suggests
a common x2-mode for each given half.

An additional hybrid variant has been investigated and is here briefly presented.
For each half, the x2-modes ωk1(x2) are similar (Figure 2.6b). This reflects the fact
that, within each bloc Ωk, the intensity of C(x1, x2) seems not to evolve significantly
with x2. Hence, a hybrid variant is given by:

3. Subdividing C(x1, x2) in K domains Ωk, one for each distinct panel, yielding the
same expression as eq. (2.15). A (very degenerated) POD on each function Ck

is performed, with the x2-modes ωkl(x2) constant, i.e. ωkl(x2) = ωkl such that
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∥ωkl∥2 = 1:

Ck(x1, x2) ≈
L∑
l=1

bkl φkl(x1) ωkl =
L∑
l=1

ckl φkl(x1) ∥φkl∥22 = 1 (2.20)

The associated modes are presented in Figure 2.8. This variant has not been selected
for the description as it does not fit the detector term well enough, i.e. the fitting
residuals were too high.
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Figure 2.6: Modes of the POD of C using the first variant. (a) x1-modes given by
φk1(x1). The dash-lines represent the separation between the various vertical strips

of C (delineated by the vertical streaks). (b) x2-modes given by ωk1(x2). The
dash-line represents the separation between the upper and lower-half of C

(delineated by the horizontal streak).
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Figure 2.7: Modes of the POD of C using the second variant. (a) x1-modes given by
φB1(x1) and φT1(x1). The dash-lines represent the separation between the various

vertical strips of C (delineated by the vertical streaks). (b) x2-modes given by
ωB1(x2) and ωT1(x2). The dash-line represents the separation between the upper and

lower-half of C (delineated by the horizontal streak).
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Figure 2.8: Modes of the POD of C using the third (additional) variant. (a)
x1-modes given by φk1(x1). The dash-lines represent the separation between the

various vertical strips of C (delineated by the vertical streaks). (b) x2-modes given
by ωk1(x2). The dash-line represents the separation between the upper and lower-half

of C (delineated by the horizontal streak).
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2.1.2.3 Refinement of estimation

Theoretical development

Let Ĉ denote the approximation of the detector term C by its POD using one of
the variants above presented. S may be recalculated as

S = argmin
f∈V

∥∥∥ϕ1(x)− Ĉ(x) f(x)
∥∥∥2
2

(2.21)

An iterative algorithm, described in Algorithm 1, is derived.

Algorithm 1: Refinement of source and detector terms
Data: Spatial mode ϕ1(x)

Result: Source and detector terms, S(x) and C(x), and Ĉ(x)
Compute S(x) using eq. (2.13) ; ▷ Initialization
do

Set C(x) = ϕ1(x)/S(x);
Compute Ĉ(x) by the POD of C(x);
Compute S(x) by resolving eq. (2.21);

while Convergence criterion met ;

This algorithm ultimately leads to the identification of the source and detector
terms, S(x) and C(x), together with the POD approximation of C(x) denoted Ĉ(x),
that best represent the spatial mode ϕ1(x).

Application

To refine the estimation of S and C, the algorithm 1 was applied. It was proposed
to enrich the description by a new choice for f , namely a polynomial of degree 4.
Finally, the difference between C and its approximation Ĉ, Figure 2.9, indicates that
an accurate and faithful description has been achieved. For comparison purposes, the
same difference C− Ĉ, but for which Ĉ is approximated using variant n◦1 (resp. n◦3),
is shown in Figure 2.10 (resp. Figure 2.11).
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Figure 2.9: Difference between C and Ĉ after the proposed refinement step. As
ϕ1 = S C, this figure also represents the difference between ϕ1 and its approximation

given by S Ĉ.
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Figure 2.10: Difference between C and Ĉ after the proposed refinement step, using
the first variant of the POD.

200 400 600 800 1000 1200 1400

200

400

600

800

1000

1200

1400
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Figure 2.11: Difference between C and Ĉ after the proposed refinement step, using
the third (additional) variant of the POD.
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2.2 Noise in a flat-field image

Based on the previous description of a flat field-image, an approximation of I0(x, t)
is given by

Î0(x, t) = a1 ⟨Φ1⟩x S(x) Ĉ(x)ψ1(t) (2.22)

where Ĉ is computed using the second variant. The measured signal unexplained by
the previous description is contained in the fitting residuals ρ(x, t) = Î0(x, t)−I0(x, t)
(Figure 2.12). It should be emphasized that, as ψ1 is almost constant, the temporal
fluctuation of ρ is nearly the same as that of I0, which corresponds to the natural
definition of the noise. Hence, ρ contains the fitting residuals as well as the noise.

In this subsection, it is proposed to study the properties of this noise ρ, specifically
its variance, normality, and whiteness.
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Figure 2.12: Fitting residual ρ(x, t)|t=1, i.e. difference between our description of a
flat-field image and an observed one.

2.2.1 Variance

The noise variance is given by Vρ(x) := Vart (ρ(x, t)). Figure 2.13 indicates that
the analyzed flat-field images are similar to one another (low dynamic range, in the
order of 10−5). The low standard deviation of the noise attests to the need to account
for the phenomena underlying image formation (beam hardening, Compton scattering)
which produce imaging artifacts more significant and visible than the noise.

The image Vρ(x), Figure 2.14a, very subtly exhibits a grid structure, similar to the
one observed in Figure 2.4b. In addition, the upper right and left edges are darker,
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Figure 2.13: Relative noise variance Vρ(x)/ ⟨M⟩2x, where M(x) denotes the mean
flat-field image.
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Figure 2.14: Comparison between (a) Vρ(x) and (b) V M
ρ (x). The latter appears to

be more homogeneous.
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and the bottom right is (slightly) lighter. These two patterns are particularly visible
in the first spatial mode ϕ1(x) of the POD of I0(x, t), or equivalently in the mean
flat-field image M(x) := ⟨I0(x, ·)⟩t. This observation suggests a dependence of M(x)
on Vρ(x). Thus, we considered V M

ρ (x) := Vρ(x)/M(x) and compared it to Vρ(x).
V M
ρ (x) appears to be more homogeneous than Vρ(x) (Figure 2.14b). This can

be quantitatively established by computing the intercorrelation coefficient between Vρ
and M on the one hand, γ1, and between V M

ρ and M on the other hand, γ2. As a
reminder, the intercorrelation coefficient between two images A and B is given by

γ =

∑
x′ [A(x′)− ⟨A⟩x] [B(x′)− ⟨B⟩x]√∑

x′ [A(x′)− ⟨A⟩x]
2 ∑

x′ [B(x′)− ⟨B⟩x]
2

(2.23)

We get γ1 ≈ 0.313 and γ2 ≈ 0.011, meaning that V M
ρ is much less correlated to M than

Vρ is (almost by a factor of 30). This result indicates that, at a pixel x of a flat-field
image, the noise variance Vρ(x) is proportional to M(x). In order to estimate the
factor linking these two quantities, we compute σ2 :=

〈
V M
ρ

〉
x
≈ 1.69e−5. Thus, the

noise variance is given by Vρ(x) = σ2M(x).
The images ft(x) defined by

ft(x) =
I0(x, t)−M(x)

σ
√
M(x)

(2.24)

thus represent the realization of noise, normalized by its standard deviation.

2.2.2 Normality

The Gaussian nature of the noise is investigated by considering the statistical
distribution of ft(x). Figure 2.15 displays the probability density function (PDF)
estimate of the noise given by the values ft(x) (blue rectangles). The PDF of the
standard normal distribution (red curve) is superimposed over these rectangles. The
perfect match suggests that the noise follows the Gaussian distribution of zero mean.
This normality was quantitatively confirmed through the computation of the skewness
and kurtosis, respectively the third and fourth standardized moment, for each image
ft(x). The normal distribution is characterized by a zero skewness and a kurtosis equal
to 3. The minor difference between these values and those calculated, summarized in
Table 2.3, supports our assumption.

Average value
Skewness 0.01
Kurtosis 3.00

Table 2.3: Average value of skewness and kurtosis of ft(x) (values rounded to two
decimal places).
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Figure 2.15: Statistical distribution of ft(x).

2.2.3 White noise

The whiteness of the noise is determined by calculating the autocorrelation func-
tions Γt(u)

Γt(u) =
1

Nx

∑
x′

[ft(x
′)− ⟨ft⟩x] [ft(x

′ − u)− ⟨ft⟩x] (2.25)

with u = (u, v). An example of such a function is displayed in Figure 2.16. A null
autocorrelation is observed everywhere, except at the origin u = (0, 0) (and at the four
adjacent pixels, to a lesser extent). This observation indicates that two noise values
measured at two distinct pixel positions are uncorrelated, meaning that the noise is
white.

Eventually, the noise polluting a flat-field image I0(x) is gaussian, white, and with
a variance V (x) = σ2M(x), where M(x) denotes the noiseless flat-field image.
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Figure 2.16: Γt(u) for t = 1. A peak is observed at the origin, i.e. for u = (0, 0).

2.3 Noise in a radiographic image

The noise polluting the logarithm of the radiographic image I(x) normalized by
the flat-field image I0(x) is given by

ln
(
Ĩ(x)

)
= ln

(
I(x)

I0(x)

)
+ ln

 1 +
ηI(x)

I(x)

1 +
ηI0(x)

I0(x)


= −P (x) + ln

(
1 +

ηI(x)

I(x)

)
− ln

(
1 +

ηI0(x)

I0(x)

)
≃ −P (x) + ηI(x)

I(x)
− ηI0(x)

I0(x)
(2.26)

which has been obtained by applying a first order approximation of the attenuation,
and where ηI(x), resp. ηI0(x), denotes the noise contained in I(x), resp. I0(x).
The first term of eq. (2.26) corresponds to the noiseless normalized projection (better
known as the attenuation image). The second and third term represent the noise due
to the radiographic image I(x) and to the flat-field image I0(x), respectively.

Using the results from the previous section, the noise η =
ηI
I
− ηI0

I0
polluting

47



ln

(
I

I0

)
is expected to be white, gaussian, with a variance equal to

Var
(ηI
I

)
+Var

(
ηI0
I0

)
= σ2

(
1

I
+

1

I0

)
(2.27)

These properties need to be verified experimentally. A set of projections, denoted
P n(x), representing the same (static) object has been acquired. The mean, noiseless,
projection is defined as N(x) := ⟨P n(x)⟩n. The noise of the projections is contained
in the residuals

ρn(x) := P n(x)−N(x) (2.28)

The theoretical variance of this noise is to be compared to the experimental one, and
its Gaussian and white nature investigated.

2.3.1 Variance

The variance of the noise, given by V (x) := Varn (P
n(x)), is calculated and com-

pared with

Vth(x) = σ2

(
1

I(x)
+

1

M(x)

)
(2.29)

where I(x) = M(x) exp (−N(x)) represents the noiseless X-ray image. Fig. 2.17 dis-
plays the comparison between the theoretical and experimental results for the noise
variance. Although discrepancies are observed, particularly in areas of high thick-
nesses, the agreement is satisfactory. Applying a small multiplicative factor of 1.3 on
the gray levels of Vth provides an even better agreement. This factor, however, is iden-
tified manually, i.e. independently from the results of the discussions from Sections
2.1 and 2.2.

In the same way as above, the images gn(x) defined by

gn(x) =
P n(x)−N(x)√

Vth(x)
(2.30)

represent the realization of noise, normalized by its standard deviation.
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Figure 2.17: Comparison between (a) the theoretically expected noise variance
Vth(x) and (b) the experimental one V (x).

49



2.3.2 Normality

In Figure 2.18, the probability density function of a zero-mean gaussian distribution
is fitted to the probability density function of the noise, given by the values of gn(x). It
suggests that the statistical distribution of gn(x) is a Gaussian one. This is confirmed
by calculating the skewness and kurtosis for each image gn(x), as shown in Table 2.4.

Figure 2.18: Statistical Distribution of gn(x).

Average value
Skewness 0.02
Kurtosis 3.32

Table 2.4: Average value of skewness and kurtosis of gn(x) (values rounded to two
decimal places).

2.3.3 White noise

The autocorrelation functions

Γn(u) =
1

Nx

∑
x′

[gn(x
′)− ⟨gn⟩x] [gn(x

′ − u)− ⟨gn⟩x] (2.31)

are used to determine whether the noise is white. An example of such a function is
displayed in Figure 2.19. The image shows a peak at the origin u = (0, 0). It should
be noted that the non-zero values observed in the pixels adjacent to the origin are
higher than those in the autocorrelation function Γn. These values are still considered
negligible (< 0.4), such that the noise polluting − ln (I/I0) is regarded as white.
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Figure 2.19: Γn(u) for n = 1.

2.4 Conclusion

In this section, we built a sparse yet representative description of a flat-field image.
This description first rests on the space-time decomposition of the flat-field images.
Then, patterns observed in the spatial mode are studied and explained by the incor-
poration of the characteristic acquisition features, namely the X-ray source (with a
cone-beam geometry) and the detector (panel assembly).

Using this description, the noise polluting a flat field image may be extracted by
computing the fitting residual. The properties of this noise were investigated and was
found to be white, Gaussian, with a (weakly pixelwise-dependent) variance propor-
tional to the measured beam intensity.

The noise affecting a radiographic image was deduced, and its properties predicted.
These predictions were experimentally validated. In the end, it was established that
this noise is white, Gaussian, with a variance given by the formula (2.27). These
properties are used in the rest of this dissertation, as they provide a way to formulate
optimization problems designed to minimize acquisition noise error.
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Chapter 3

Definition of the projective model
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ence and Technology, 33(6):065024, 2022.

Artifacts due to imperfect determination of the scanner geometry, beam hardening
(BH), and diffuse Compton scattering, limit the quantitative exploitation of radio-
graphs or tomographies for Non-Destructive Evaluation. Exploiting the Computer-
Aided Design (CAD) model of an industrial part, a methodology is proposed to refine
the estimation of the Computed Tomography (CT)-scanner geometry up to a scale
factor, to correct or account for artifacts, and to assess the metrology of the part.
A projective model describing the formation of X-ray images in CT-scanners is first
introduced. The optimal parameters of the projective model are identified using a
novel CAD-based calibration method that relies on the registration of simulated pro-
jections onto experimental ones. A metrological analysis based on the comparison
between acquired and simulated X-ray images is proposed. A turbine blade, for which
an automatic inspection procedure from few views is under development, is used as
an example to illustrate the proposed methodology. The parametrization accounts for
the refinement of the projection geometry, the calibration of BH, and the estimation
of scattering. It is shown that, using the proposed procedure, the differences between
acquired and simulated radiographic images are significantly reduced, indicating that
the optimal parameters are properly identified. These differences are then exploited
to detect indications in the part.
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3.1 Introduction

After outstanding developments in medical applications [1, 2], X-ray Computed
Tomography (CT) is rapidly being adopted for Non-Destructive Evaluation (NDE) in
industry [3, 4]. X-ray CT enables the verification of the integrity of industrial parts
by, for instance, detecting porosities and cracks [5], verifying weaving patterns in 3D
woven composites [6], and by performing dimensional metrology [3]. In particular,
the detection of geometrical imperfections of turbine blades is of great importance in
aeronautics to ensure the safety of passengers. Trained operators perform metrological
analyses of turbine blades using radiographic imaging, usually either by examining a
CT volume computed by a reconstruction algorithm [7, 8], or through the meticulous
inspection of the images when insufficient projections are available. In this chapter,
an alternative approach is proposed: the comparison of projections acquired with a
CT-scanner to projections simulated from the reference volume representing the ideal
part, i.e. one without defects, allows the detection of geometrical imperfections of the
inspected part.

Estimating accurate geometrical measurements is essential for an exhaustive de-
tection of dimensional flaws. In these metrological applications, artifacts and time are
limiting factors, especially in production where few projections are available.

Artifacts result from the deviation between the physical phenomena responsible for
the formation of the image and the model used to describe it during the metrological
analysis [9]. Indeed, the model is usually simplified as a geometrical projective model
and with recourse to Beer–Lambert’s law to account for X-ray attenuation. Tomo-
graphic reconstruction methods or the raw analysis of X-ray images require an accu-
rate determination of the projection geometry (e.g. source-to-object distance (SOD),
projection angles). An inaccurate geometry definition undermines the quality of the
reconstruction, e.g. generating blur artifacts, and the metrological analysis, e.g. from
magnification effects. Tomographic reconstructions often rely on the strict application
of Beer-Lambert’s law, which is not perfectly obeyed in CT-scanners used for NDE. In
this work, two main sources of errors that deteriorate X-ray image quality or fidelity
are considered: beam hardening (BH) [10, 11] and Compton scattering [12, 13].

The other limiting factor is time, which can be reduced but at the cost of increased
noise. When using very noisy images, distinguishing noise from artifact-induced sys-
tematic deviations between measured and computed radiographs becomes increasingly
difficult. Thus, a proper usage of fast scans calls for a very accurate determination of
all artifacts.

Various techniques have been developed to mitigate X-ray CT artifacts.

• Projection geometry is usually determined via the study of the projections rep-
resenting a calibration object whose geometry is known with a great accuracy
[14, 15]. It can be further refined in software products when applying reconstruc-
tion algorithms to account for rotation axis offset. However, these steps may be
insufficient to provide an accurate description of the tomograph set-up.

• The calibration of BH consists of acquiring radiographs of a known reference
part and fitting a parametric function to the point cloud of pixelwise detector
attenuation versus traversed thickness by the least-squares method [10, 16]. This
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method produces satisfactory results but only a few parameters can be safely
determined for the attenuation function.

• Signal processing techniques have been used to estimate scattered X-ray beams,
e.g. by modeling the effect of scattered rays in pixel intensities as the convolution
of the primary signal with a kernel to be identified [17, 18]. Deconvolution
algorithms have also been proposed to obtain scatter-free projections [19, 20], but
the numerical stability of such algorithms is poor [21, 22], leading to unreliable
results.

This chapter proposes a CAD-based calibration method to estimate and correct
projection geometry parameters, up to a scale factor, and artifacts in a unique formal-
ism. It uses only the projection images of the inspected object and its numerical model
(e.g. CAD model), i.e. it does not require additional projection data, phantom object,
or landmarks. The use of prior knowledge of the object shape and material yields an
improvement in the quality of the estimation and the correction. Section 3.2 details
the challenges addressed in this chapter, namely the correction of the projection ge-
ometry, the calibration of BH, and the estimation of scattering. Projection geometry
parameters include the source-to-detector distance, the rotation axis, and the orien-
tation of the imaged object. For BH, a parametric representation of the absorption
length curve is used, which reduces the absorption calibration to the estimation of few
parameters. Likewise, scattering is approximated by a convolution of the geometrical
projection by a scattering kernel which is itself parametrized. In these three cases,
it is proposed to formulate the problem as a parametric model, and fine-tune those
parameters so as to match observations. A description of the proposed methodology
used to identify the optimal parameters for the model is given in Section 3.3. Section
3.4 is devoted to the presentation of an example on which the CAD-based calibration
procedure has been applied. It consists of the identification of the optimal parameters
based on a reduced number of radiographic images of a turbine blade. The results are
presented and discussed in Section 3.5.

3.2 Problems addressed

The intensity I(x) measured at detector position x ∈ Ω ⊆ R2 is defined as the
intensity of the incident X-ray beam attenuated along its path through the sample.
The image I0(x) obtained when no sample lies between the source and the detector is
called the flat-field image.

The attenuation image P , also called the projection, is derived from the intensity
image I and the flat-field image I0: P = − ln (I/I0). Beer-Lambert’s law states that
P (x) is equal to the line integral of the material absorption coefficient along the line
joining the source to the detector position x. This relation is the main assumption
used in all tomographic applications as it relates the measured data to the object
geometry and composition. It is an excellent approximation for monochromatic and
incoherent X-ray sources. However, scanner sources typically have a broad spectrum
of energy, and hence Beer-Lambert’s law is usually no more than an approximation.

The projection images are processed via reconstruction algorithms, image process-
ing methods, or simulation of X-ray images, to get a better vision of the inspected
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part. Therefore, for CT, numerical tools are of fundamental importance. The simula-
tion of radiographic images is an easy linear problem, but it makes use of an enormous
amount of data. It is essential that such computations be very fast. One has the choice
of commercial products or open-source tools. Commercial tools implement methods
to simulate projections, taking into account multiple artifacts with elaborated physics-
based models, however, they are not well fitted to inverse problem analyses which is
the purpose of reconstruction and of quantitative NDE. Open-source tools with high
numerical efficiency, including GPU optimized codes (such as GPU-accelerated op-
erations, optimized algorithms), are available [23], but are based on the unmodified
Beer-Lambert’s law. Such powerful open-source tools can still be used efficiently for
optimizing image reconstructions if an accurate description of the formation of the
images is established.

3.2.1 Projection geometry

The information on the projection geometry is usually determined before or after a
tomographic acquisition, often using a calibration object with a well-known geometry
and which is easily readable from its projection [14, 24]. This step aims to deliver the
geometrical description of the X-ray tomograph scanner captured in a set of param-
eters, e.g. position of the source, axis of rotation (position and orientation), detector
(position and orientation). However, these geometrical parameters may be inexact.
The fine tuning of these parameters may be proposed to operators by the commercial
reconstruction software based on a subjective assessment of the reconstruction quality
which is useful because an inaccurate geometry description may compromise a proper
reconstruction in particular for metrology assessment [25].

3.2.2 Beam Hardening

In CT systems, X-ray beams are polychromatic and the attenuation coefficient
varies with photon energy, thus the simple Beer–Lambert attenuation law does not
describe the absorption phenomenon well. Specifically, the distribution of X-ray ener-
gies changes with the traveled distance in the material, and consequently the effective
(i.e. integrating over all X-ray energies) absorption is no longer a material property.
This phenomenon, known as beam hardening (BH), implies for a monomaterial, a
nonlinear relationship between the gray level of an attenuation image and the thick-
ness of the part the beam passed through. Should Beer–Lambert’s law still be used
in the polychromatic case, a deviation between the model and the actual measure-
ments would be observed. This would lead to a misinterpretation of the grayscale
values where thicknesses get underestimated, yielding overestimated attenuation coef-
ficients, which in turn deteriorates the quality of the reconstructed volume in the form
of streaks and flares, known as BH artifacts [11].

In the case of monomaterial parts, these artifacts can be corrected through the
calibration of the attenuation. It consists in identifying the relationship between the
gray level P (x) of the measured attenuation image and the thickness T (x) of material
the X-ray beam has gone through before hitting the pixel detector at x. T is called
a thickness map. It thus reduces to a non-linear gray level re-encoding represented
by a function U : R+ 7→ R+ such that U (T (x)) = P (x), see Figure 3.1. A mere
gray level re-encoding with U−1 allows an attenuation image P to be transformed into
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Figure 3.1: Differences between monochromatic assumptions (blue line), and
polychromatic measurements (green dashed line). The aim is to determine the

relationship between the two curves through the fit of a parametric function u (red
line) to observations.

a thickness map T , hence enabling a legitimate use of Beer–Lambert’s law even for
polychromatic sources. The aim of BH correction is to determine the function u that
best approximates U . Because it depends on the source technology and settings, u
cannot be precomputed and is instead inferred from observations. The parameters
of the correction function are usually identified by acquiring projections of a known
reference part, then fitting the function to the point cloud — pixelwise detector atten-
uation versus thickness — by the least-squares method [10, 16]. This fit is performed
via the minimization of the error between observation and estimation, on a pixel-per-
pixel basis. Such an approach does not allow for many parameters to describe the
attenuation. Usually, odd-order polynomials are chosen to keep the correction func-
tion monotonous, and a maximum polynomial order may be typically 5, leaving two
unknown parameters [26, 27] since the linear term may be conventionally set to a unit
prefactor. The proposed CAD-based calibration procedure permits many more degrees
of freedom to be chosen while avoiding regression stability issues.

The function u is discretized over a basis of shape functions ϕk,

u(ξ) =
K∑
k=1

ck ϕk(ξ) (3.1)

where ck are parameters to be determined, and ξ is a dummy variable representing the
thickness of material. u being defined up to an arbitrary scale factor, a convention is
used to lift this degeneracy, for instance by imposing du

dξ
= 1 for ξ ∼ 0. A desirable

property for ϕk is that the addition or removal of one of these functions has only a
local effect on the function u. This amounts to saying that, for a given k, ϕk acts on
a restricted range of values for ξ, i.e. ϕk has a compact support.

In this work, a piecewise-linear function for u is used. Besides its simplicity, it
has the advantage of being a good interpolant of U with the property that the more
parameters, the better the interpolation, without loss of stability. Considering a dis-
cretization ξ0, ξ1, . . . , ξK+1 of the gray levels of the thickness map, ϕk is the triangular
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function, compactly supported, defined by

ϕk(ξ) =


ξ−ξk−1

ξk−ξk−1
if ξk−1 ≤ ξ < ξk

ξk+1−ξ

ξk+1−ξk
if ξk ≤ ξ < ξk+1

0 otherwise
(3.2)

Once the function u described by (3.1) and (3.2) is identified, it can be applied to
each pixel of the simulated projections. The relevance of this choice of model may be
appreciated by studying the differences between acquired and simulated projections
with the BH correction.

An optimal discretization must meet two conditions:

1. The discretization must properly reflect the curvature of the BH calibration
function: the resolution of the mesh must be higher in zones of high curvature
than in zones of low curvature.

2. The number of points observations covered by the shape function ϕk has to be
large enough to estimate the corresponding parameter ck.

To perform an ideal discretization satisfying condition 2., it is suggested to carry out
a sampling via an arithmetic sequence on the cumulative frequency of the gray levels
of T . This produces a sequence ξ0, ξ1, . . . , ξK . The last shape function is extended to
infinity assuming a constant value so that the model can cope with the highest ma-
terial thicknesses: ξK+1 = +“∞” (in practice, a sufficiently high value, e.g. maximum
thickness, is chosen). This discretization can be further refined so that condition 1.
is verified, potentially at the expense of increasing the number of interpolation shape
functions and thus the number of parameters.

3.2.3 Compton scattering

In a radiographic image, over-intensities are observed in regions away from the
part where the absorption of X-rays is null or negligible. They originate from X-rays
scattered away by the sample due to, inter alia, the Compton effect (Figure 3.2).

The measured intensity at pixel x is described as the sum of two components: a
primary one IP (x), derived from photons passing directly through the object with-
out scattering or absorption, and a secondary contribution IS (x), that corresponds to
photons scattered away from the initial trajectory by the Compton effect. Although
scattering leads to complications in the analysis of radiographic images, it has a very
minor effect in most applications of materials science where energies are large (in con-
trast to medical applications). Hence scattering is treated as a small perturbation
and multiple scattering is neglected in front of single scattering (cf. Section 1.3.2.3).
Usually, CT reconstruction does not account for scatter, leading to artifacts in the
reconstructed volume such as streaking or cupping [11, 13]. It may also cause a devi-
ation of dimensional measurements from their actual values because of the difficulty
to localize edges precisely.

Methods using signal processing techniques have been developed to estimate and
correct for scattering effects. The scattered X-ray distribution can be predicted via
Monte-Carlo (MC) simulations [28, 29]. Although it is a powerful tool, the poor
convergence properties of MC sampling leads to time-consuming calculations. Point-
Spread Functions (PSFs) have been used to describe single scattering of the pencil
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Detector

Source

Figure 3.2: Illustration of the Compton effect. A beam emerging from the source
interacts along its path with the atoms of the object: X-ray photons are scattered
away from their initial trajectory, leading to an additional signal captured by the

elements of the detector around x′.

beam [30, 31, 32, 33]. PSFs are represented as the convolution between the incident
photon flux and a kernel to be determined.

The above modeling is 3D and thus costly and difficult to couple to tomographic
reconstruction. Following [18, 19, 20], it is proposed to resort to an approximation that
captures a large part of the scattering. The approximation formulas are derived from
an expression of the scattered intensity based on the interactions a beam undergoes as
it propagates through the object [34]. The intensity IS(x) received at a pixel x from
all the scattered rays is expressed as

IS(x) =

∫
x′
T (x′) I0(x

′) e−T (x′)/ξa G(x′ − x) dx′ (3.3)

where ξa is the attenuation length of the radiation, and G is a scatter kernel to be
estimated. As long as the scattering occurs in a short range (x′−x small as compared
to ξa), the gradient of I0 may be ignored so that I0(x′)/I0(x) ≈ 1, and thus

IS(x)/I0(x) = (IA ∗G) (x) (3.4)

with IA(x) = T (x) e−T (x)/ξa .

Complementary notes
The expression of the scattered intensity is derived from the interactions a

beam undergoes as it propagates through the object. Only single scattering,
in which photons experience solely one scatter interaction with the sample, is
considered here as it constitutes the prevailing part of the actual secondary
signal.

A beam is emitted towards a direction identified by its intersection with the
detector at x′ and enters the object at a point u0. On its path, it is deflected
at a point u, exits the object at u1 before reaching the detector at x with an
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intensity equal to

J(x′,u,x) = I0(x
′) e−∥u−u0∥/ξa e−∥u1−u∥/ξa ϕ(x′,u,x) (3.5)

where ξa is the attenuation length of the radiation, and ϕ(x′,u,x) represents
the probability for the beam to be deflected towards the pixel x. It is worth
insisting that the object is assumed to be monomaterial, which translates into
a single ξa in eq. 3.5. The intensity IS(x) received at x from all the scattered
rays is given by integrating (3.5) over all possible x′ and u. The idea proposed
here is to condense the 3D volume onto a single plane, namely the median plane
between the source and the detector. Considering that the entire scatter signal
is concentrated on it, one has ϕ(x′,u,x) = ϕ(x′,x), leading to

IS(x) =

∫
x′
I0(x

′)ϕ(x′,x)

∫
u

e−(∥u−u0∥+∥u1−u∥)/ξa dx′ du (3.6)

Provided the scattering angle is low and assuming the normal to the detector
is close to the vector pointing towards the source, ϕ is a function of x′ − x,
i.e. ϕ(x′,x) = G(x′ − x), and ∥u− u0∥+ ∥u1 − u∥ ≈ T (x′), which yields

IS(x) =

∫
x′
I0(x

′)T (x′) e−T (x′)/ξa G(x′ − x) dx′ (3.7)

that corresponds to the expression in (3.3).

The kernel G is parametrized as the weighted sum of basic kernels kσ,

G(x) =
∑
σ∈Σ

aσ kσ(x) (3.8)

with Σ ⊂ R+. Coefficients aσ need to be adjusted to the best fit of the observations.
This parametrization is expected to account for the effective scatter distribution with
a reasonable number of parameters. The contribution of Compton scattering suggests
that the kernel is bell-shaped and symmetric. A superposition of Gaussian functions
can be chosen to describe it, so that the kernels kσ are modeled as

kσ(x) = gσ(x)−
δ(x)

2πσ2
(3.9)

where gσ is the 2D-Gaussian kernel with standard deviation σ. The introduction of
the Dirac function δ is based on the observation that photons that were supposed
to reach the detector at pixel x, but that have been deflected, reach the detector at
another pixel. Hence, its contribution is removed from the measured signal. This part
of the kernel is merely equivalent to increasing the absorption in proportion to the
crossed thickness T (x), as if the coefficient of absorption of the material were slightly
increased by the total amount of scattering. Note that the beam may also be scattered
away from the detector, and here again contributes to an additional attenuation. In
the end, provided that an adjustment of the attenuation coefficient is considered (as
for BH correction), δ in (3.9) may be omitted.

60



In order to account for the scattered photons that reach the detector over a wide
range of distances from pixel x, the set Σ =

{
2k, k ∈ L ⊂ R+

}
is suggested. This

geometric progression is introduced to limit the overlap of Gaussian kernels gσ which
would render the determination of the kernel ill-conditioned.

Once the kernel G is identified, the correction of the images produced by the
system via deconvolution techniques should be avoided because it is known to be
an ill-behaved problem generating spurious high frequency signals [21]. Instead, an
alternative method consists in computing the scatter signal by numerically simulating
the radiographic images and by convolving them with the kernel G. The subtraction
of this signal from the acquired images is expected to produce close to scatter-free
radiographic images provided they are properly registered.

The correction of the above artifacts as well as the determination of the precise
geometry of the tomograph finally reduce to a single problem: the identification of the
optimal parameters needed to produce an accurate synthetic radiographic image from
a known object geometry.

3.3 Calibration of parameters

A calibration procedure, based on sensitivity fields, is proposed to identify optimal
parameters for the model describing the formation of images in X-ray CT-scanners.
This model is defined by the projection geometry parameters p = (pk), the coefficients
c = (ck) of the BH calibration function (3.1), and the amplitudes a = (aσ) of the
scattering kernel (3.9).
Suppose the K parameters dk, gathered in a vector d = (dk), are to be identified.
Let P n

a (x), n ≤ N , be the N projections acquired with a CT-scanner, regarded as
reference images. Given an initial estimate d0 and a reference volume of the inspected
part, projections P n

s (x;d
0) are numerically simulated. The reference volume repre-

senting the ideal design can have several formats including a CAD model described by
analytical functions or by a polygon mesh, or a tomographic volume. The sensitivity
fields

snk(x) =
∂P n

s (x;d)

∂dk

∣∣∣∣
d=d0

(3.10)

are then computed. The partial derivatives involved in the calculation of these fields
may be approximated by finite differences

snk(x) =
P n

s (x;d0 + h ek)− P n
s (x;d0)

h
(3.11)

where ek refers to the kth vector of the canonical basis of the space of parameters,
i.e. (ek)i = δki. These sensitivity fields quantify how small perturbations around the
value d0 affect the simulated projections P n

s (x) for each parameter dk.
Projection residuals ρnd0(x) = P n

a (x)−P n
s (x;d

0), i.e. the differences between X-ray
acquisitions and simulated projections, are interpreted as resulting from the misiden-
tification of the parameters. In order to quantify the discrepancy between estimated
and optimal parameters, these residuals are projected in the least-squares sense onto
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the sensitivity vectors,

δd∗ = argmin
δd

N∑
n=1

∥ρnd0(x)− sn(x) δd∥22 (3.12)

where the notation sn(x) =
(
sn1 (x) . . . snK(x)

)
is used, and δd is the column vector

containing the variables of the minimization problem. The use of the L2-norm can
be justified as being optimal when the images P n

a (x) are polluted by white Gaussian
noise: the maximum of the log-likelihood corresponds to the minimum of the L2-norm.
Equation 3.12 can be seen as minimizing a function that is a linearized version (using
a Gauss-Newton scheme) of the cost function defined by the L2-norm of the differences
between the acquired images P n

a (x) and the simulated images P n
s (x;d), as described in

Section 4.2.2. Assuming a Poisson noise on I(x) and I0(x), a change in the expression
of equation (3.12) into a weighted sum may be used to take into account the local
uncertainty. δd∗ represents the error made in the identification of the parameters and
thus provides the amount by which the parameters d0 are to be changed to reduce the
discrepancy between P n

a (x) and P n
s (x;d

0). This value is given by

δd∗ = H−1b (3.13)

where the matrix H is defined by

Hij =
∑
n

∑
x

sni (x) s
n
j (x)w

n(x) (3.14)

and b is the vector whose components bk are given by

bk =
∑
n

∑
x

snk(x) ρ
n
d0(x)wn(x) (3.15)

with wn(x) the reciprocal of the variance of the noise polluting P n
a (x). Note that H

represents the matrix of the second derivatives of the cost function (3.12) with respect
to δd, assuming the sensitivity fields snk(x) do not depend on δd, and is thus referred
to as the Hessian matrix.

Repeating this CAD-based calibration procedure usually leads to a fixed point
solution (one that no longer evolves) after few iterations. Although there is no guar-
antee to obtain a unique solution, the proposed parametrization together with the
use of a complex shape CAD model (with high and low frequency power) and a good
initialization make the problem well behaved.

It is important to emphasize that if the observed object differs from its model by
a mere homothety, the projection geometry parameters can be adjusted to inexact
values and yet produce a perfect match of the projections. Assuming the analyzed
object has a complex shape, this scale factor is the only degeneracy of the geometrical
calibration. It can only be lifted if one additional length measurement is performed
and used jointly in the calibration process.

It should be noted that the very same procedure holds for any set or subset of
parameters. Because of non-linearities, the order in which subsets may be considered
is important. An appropriate rule is to rank the impact of the projection geometry, BH
and Compton scattering, and fit corresponding parameters in descending impact order.
The impact can be assessed by the observation of the projection residuals computed
before any correction, as it is the case here.
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3.4 Case study

The inspection of a turbine blade (Figure 3.3) was selected as a case study. This
monomaterial part is made of a monocrystalline nickel alloy.

Figure 3.3: View of a turbine blade. Reproduced with permission from [35].

The reference volume representing the ideal part was the CAD model of the part
described by a polygon mesh. To obtain a universal structure — i.e. usable by a vast
majority of software — describing the 3D volume, it was discretized into voxels whose
size were 0.05 mm using a ray tracing algorithm similar to that described in [36]. Each
voxel was characterized by a binary numerical value (0 or 1) depending on whether it
belongs to air or to metal.

A set ofN = 6 intensity images representing one turbine blade from complementary
points of view were exploited, each image being obtained from the average of two
frames with an exposure time of 354 ms each. This is in line with the number of views
routinely used for their inspection. The images have been acquired with the XT H 450
system developed by Nikon Metrology, with a high-energy source of 390kV. The tube
current was set to 641 µA. The system produced 2000× 2000-pixel radiographs, each
pixel being encoded as a 16-bit unsigned integer. The associated attenuation images
were denoted P n

a , n ≤ N .
From the reference volume, attenuation images P n

s , n ≤ N , were simulated using
the ASTRA Toolbox [23]. The latter proposes projection operators with highly flexible
source/detector positioning and GPU-acceleration, and is callable from Matlab and
Python. A scale factor for the gray levels of the reference volume has been adjusted
(by taking into account the actual attenuation coefficient of the nickel alloy) so that
the projection P n

s of the binarized volume matches the true projection P n
a .

The following parameters were used to perform the calibration:

• The projection geometry was controlled by a vector p of 14 parameters: the size
of detector pixels, the SOD, the six components of the position of the detector
(three translations, one of which with respect to the source via the source-to-
detector distance (SDD) and three rotations), and the six components of the
position of the studied object (three rotations and three translations). Although
the size of detector pixels is supposedly known, a readjustment is permitted,
which in practice is very small. The translation and rotation parameters of the
detector are used to model the rotation axis offset.
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• The BH calibration function u was modeled as a sum of K = 8 triangular
functions ϕk controlled by a K-component vector c. In the simulated images,
prior to reproducing the BH using the proposed model, the attenuation of the
X-ray beam follows Beer-Lambert’s law, so that P n

s (x) ∝ T n (x) where T n

denotes the nth thickness map. This relation is based on the assumption that the
simulated (uncorrected) images perfectly match the acquired images. Although
it may not be actually the case at the beginning of the CAD-based calibration
procedure, it becomes more and more valid with each iteration. Hence, the
discretization described in Section 3.2.2 was performed, not on the gray levels
of the unknown T n, but on those of the uncorrected P n

s . The last discretization
point was set to ξk+1 = 20.

• Regarding the scatter kernel used to reproduce the scatter signals and described
by a vector a of seven parameters, the Gaussian standard deviations σ are defined
by the sequence Σ =

{
2k, 2 ≤ k ≤ 8

}
.

The CAD-based calibration procedure was performed using restricted (rectangular)
Regions Of Interest (ROIs) of the images. The information on the projection geometry
and BH only come from the region containing the projection of the object. On the
other hand, the scatter is more observable in regions outside of it (as it is clearly due
only to scattering and does not depend on the other parameters such as geometry or
BH), more specifically next to regions containing the projection of the thickest part
of the object. Based on these elements, two ROIs were considered for each view, as
illustrated in Figure 3.4, depending on which parameters were being fine-tuned. If only
a subset of images is considered, the procedure is not optimal but is much faster (less
data to process), and the benefit of using all data is modest provided the subregions
are well chosen.

Figure 3.4: Example of the two ROIs for one view. The ROI associated to the
calibration of the projection geometry and BH is displayed in green, the one

associated to the calibration of scattering is displayed in red.
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The calibration of the parameters p, c and a was conducted iteratively according
to the procedure described in Algorithm 2. A misregistration between observed and
simulated images is likely to be confused with small angle scattering, distorting the en-
tire calibration procedure. Hence, the scatter parameters were at first not considered,
and were added to the procedure after the parameters p and c first converge. The
first and final convergence criteria can be based on a maximum number of iterations,
on the computed increments (δp∗, δc∗ and δa∗), or, as used in this work, on the dis-
crepancies between observed and simulated projections after the iteration. The order
in which the calibrations were performed was based on the abovementioned principle.
Close to the fixed point, one may refine the parameters in any order.

A study has been performed to quantify the noise polluting a projection and thus
determine wn(x), cf. Chapter 2. It was found that this noise variance is given by
V (x) = σ2

(
1

N(x)
+ 1

M(x)

)
, with σ2 ≈ 1.65× 10−5 (for the CT-scanner and acquisition

parameters used), and where N(x) and M(x) correspond to the noiseless (i.e. simu-
lated) intensity image and flat-field image, respectively.

Once the parameters are estimated, the BH and scatter are reproduced on the
simulated images, which are then denoted with a star superscript, P n,∗

s .

Algorithm 2: Iterative calibration procedure
Data: Initial estimations p0, c0, a0

Result: Optimal values p∗, c∗, a∗

do
Simulate images with the current parameters p, c and a;
Compute δp∗ using (3.13) and update p← p+ δp∗;
Simulate images with the current parameters p, c and a;
Compute δc∗ using(3.13) and update c← c+ δc∗;
if First convergence criterion reached then

Simulate images with the current parameters p, c and a;
Compute δa∗ using (3.13) and update a← a+ δa∗;

while Final convergence criterion reached ;

3.5 Results and discussions

The discrepancy between a simulated and acquired intensity image before and after
the CAD-based calibration procedures for restricted ROIs of the image is displayed in
Figure 3.5. Prior to any adjustment, the differences were mostly due to an incorrect
projection geometry, whose correction is illustrated in Figure 3.6. The major change
concerns the adjustment of the position and orientation of the volume, and of the
position of the detector, see Table 3.1. The second most important factor was the
correction of gray levels brought by BH corrections. The reproduction of BH lead to
an attenuation of the differences inside the part, thus allowing a better interpretation
of the gray level intensities as the thickness of material crossed by the beam. By re-
producing scattering, the differences around the part were reduced, resulting in a finer
edge definition. Figure 3.5 shows that the misestimation of the projection geometry
and the BH phenomena have a greater impact than the scatter (most visible in panels
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(c) and (d)). This observation confirms the order chosen in Algorithm 2. Figure 3.7
indicates that a stable solution was reached after only a few iterations. The norms of
residuals were reduced on average from 959 to 96, that is by a factor of 10.

a b c d e

Figure 3.5: Difference (color) between acquired and simulated intensity images,
before (top) and after (bottom) identification of the projection geometry and

consideration of BH and scatter artifacts. The different panels show: (a) internal air
cooling cavities in the airfoil, (b) internal air cooling cavities and internal structure,
known as a rib structure, in the airfoil, (c) slots on the trailing edge, (d) cooling holes
in the leading edge, (e) internal air cooling cavities and rib structure in the airfoil.

Figure 3.6: Modification of the projection geometry using the proposed CAD-based
calibration method for N = 6 (distance expressed in mm).
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Parameter Initial estimation Final estimation Change
Size of detector pixels (mm) 0.20 0.21 0.01
SOD (mm) 226.43 217.96 -8.47
SDD (mm) 1009.67 1034.67 24.99
Translation vector of the de-
tector (mm)

0.00 -2.60 -2.60
0.00 13.64 13.64

Rotation angles of the detec-
tor (deg)

0.00 -0.16 -0.16
0.00 -0.18 -0.18
0.00 -0.15 -0.15

Translation vector of the stud-
ied object (mm)

3.14 5.99 2.85
8.97 17.20 8.23
0.45 4.26 3.81

Rotation angles of the studied
object (deg)

0.00 -3.30 -3.30
0.00 2.07 2.07
0.00 1.03 1.03

Table 3.1: Change in the projection geometry.

Figure 3.7: Evolution of the L2-norm of residuals over iterations.
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It is assumed that, after the CAD-based calibration procedure, P n,∗
s perfectly

matches P n
a , ∀n. Let P n,+

s be the simulated attenuation images after the calibration
procedure, but for which the BH is left uncorrected. As stated before, the simulation
of radiographic images is based on Beer-Lambert’s law, so that P n,+

s (x) ∝ T n (x).
Thus, by generating the point cloud (P n,+

s , P n
a ) one can observe the discrepancy be-

tween Beer-Lambert’s law and the experimental measurements, see Figure 3.8a. The
estimated function u provides a good approximation of the scatter plot of the pro-
jection data P n

a . It is shown that a different discretization, from 4 to 12 parameters
(Figure 3.8b), leads to a similar function. By applying u to each pixel of P n,+

s , the
simulated images P n,∗

s were more faithful to reality, as shown by the residuals in Figure
3.5.

This quality of calibration can be explained by the fact that, unlike the usual
approaches, the spatial correlations of the projection were exploited. The measured
image resulted from the projection of a part on the detector. This part provided
information on the expected gray levels given its geometry, position and orientation
in space, and chemical composition. The proposed methodology used this knowledge
to produce a more stable and accurate calibration of BH.

The estimated scatter kernel G is represented in Figure 3.9. At high energy, the
scattering probabilities are rather small, and a photon is mostly scattered in the for-
ward direction. Then, the intensity of the scatter signal is negligible compared to that
of the primary signal. These characteristics were observed here as the scatter kernel
had a low amplitude and a small radius. In CT, the correction of such a signal is not
necessary, but it becomes crucial when individual radiographs are to be quantitatively
analyzed.

The final differences, bottom of Figure 3.5, represent the deviation between the
ideal part (CAD model) and the inspected part. A small difference in thickness at the
trailing edge of the blade (panel c) is observed, and two cooling holes (panel d) are
misplaced. These two differences have no consequence on the quality of the produced
part, but simply reveals the excellent sensitivity of the analysis after proper calibration.
They would not be detectable from the raw data (Figure 3.5, top).

The identified parameters are used to enhance the quality of the tomographic
volume. A set of 3000 projections have been acquired using the same CT-scanner and
acquisition parameters as previously. The associated tomographic volume is calculated
(i) without any gray level correction on the projections and (ii) after using the function
u−1 on the gray levels of the projections. Two regions of slices of the reconstructed
volume are displayed in Figure 3.10. They indicate that the gray level gradients in
homogeneous areas are highly reduced, while being increased at the frontiers between
the part and the background. This phenomenon is observed at a global scale (exterior
surface, see Figures 3.10a and 3.10c) and at a more local scale (cooling holes, see
Figures 3.10b and 3.10d). During the industrial inspection process, the tomographic
volume is segmented into two parts: the object and the background. The volume
reconstructed using corrected projections would lead to a more faithful segmentation
and thus a more accurate control.

The findings of this study do have some limitations. Some phenomena that result
in artifacts, e.g. afterglow, are still to be included in the model. The proposed method
renders such additional corrections easily accessible once a suitable parametrization is
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(a)

(b)

Figure 3.8: Result of the calibration of BH. (a) Result for a view n restricted to the
associated ROI with K=8. The blue line shows the ideal case given by

Beer-Lambert’s law, i.e. no BH. The green point cloud presents the measurement
P n
a (x). The red curve shows the piece-wise linear function u after calibration of the
parameters ck. (b) Estimated piece-wise linear function u with fewer and more

parameters.
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(a)

(b) (c)

Figure 3.9: (a) Estimated scatter kernel G over x1 for x2 = 0. Difference (color)
between acquired and simulated intensity images (b) without and (c) with scatter

correction.
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(a) (b)

(c) (d)

Figure 3.10: Tomographic volumes using (a) and (b) uncorrected projections, (c) and
(d) projections corrected with the identified function u−1.
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formulated. Moreover, it is worth emphasizing that we addressed here the two phe-
nomena (BH, Compton scattering) that are responsible for the largest deviation from
the (monoenergetic) Beer Lambert’s attenuation law. Regarding the identification of
the projection geometry, the use of a simple geometry part might lead to an ill-posed
problem. This point was not addressed nor studied in this work as it is not within
the scope of this thesis. Additionally, the sensitivity fields rely on a linearization of
the problem, which suggests that only small corrections are accessible to the proce-
dure. This can be relaxed by a coarse-grained (i.e. multiscale) procedure, in which
the residuals and sensitivity fields are observed at the most relevant scale. Finally, in
practice, another limitation is the important computation time due to the voxelization
step. The voxelization algorithm may be improved (e.g. parallelized) to make this step
faster. Other strategies can be adopted to improve the execution time, e.g. compute
the sensitivity fields in a single judiciously chosen direction and deduce the sensitivity
fields in the other directions from the ones of the previous iteration. This limits the
number of voxelization steps by iteration. Other X-ray simulation tools that use the
CAD model directly, and thus do not require a voxelization step, might reduce the
computation time. The ASTRA toolbox was used here as it was considered appropri-
ate and sufficient for the scope of the thesis.

Complementary notes
Computing the sensitivity fields at each iteration tends to make the procedure

time-consuming. A suggestion to avoid this problem consists in computing only
one sensitivity field at each iteration (along a particular direction) and deriving
the others by utilizing those computed at the previous iteration.

Consider iteration t > 0, such that all the sensitivity fields snk(x) have been
calculated at least once in the iterative algorithm. The correction made at
iteration t − 1 leads to a modification of the parameters in a direction v (unit
vector), from point dt−2 to point dt−1.

The directional derivatives of P n
s at dt−1 in the direction of v are assumed

to be different from those at dt−2 in the same direction. In the contrary, in
a direction w ∈ v⊥, the directional derivatives of P n

s at dt−1 are assumed to
remain close to those at dt−2 in the same direction.

Therefore, the sensitivity field is to be calculated in the direction of v only

s̃nv(x) =
∂P n

s (x;d)

∂v

∣∣∣∣
d=dt−1

(3.16)

The projection tensors in the direction v, P∥
v := v ⊗ v, and in the orthogonal

space, P⊥
v := I − P

∥
v, are introduced. Then the sensitivity field snk(x) at the

current iteration t, denoted sn,tk (x), is approximated by the following decompo-
sition

sn,tk (x) =
[(
P∥

v ek

)
· v
]
s̃nv(x) +

∑
j

[(
P⊥

v ek

)
· ej

]
sn,t−1
j (x)

= vk s̃
n
v(x) +

∑
j

[δkj − vkvj] sn,t−1
j (x)
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The computation of the sensitivity fields using this formula may not be close
enough to the actual sensitivity fields after a few iterations. It is therefore
recommended to regularly recalculate exactly all the sensitivity fields. However,
in between two global updates of all sensitivity fields, a single sensitivity is
needed at each iteration, saving a considerable amount of time.

3.6 Conclusion

A parametric model describing the formation of images in X-ray CT-scanners that
embeds phenomena occurring during acquisition, namely Compton scattering and BH,
is presented. A calibration procedure is proposed to estimate the optimal values of
the model parameters. Using the differences between observations and numerical sim-
ulations from the CAD model, their norm is minimized through the use of sensitivity
fields. This method requires the acquisition of a few projections, without any calibra-
tion object, phantom, or landmark. Applied to a case study, the associated iterative
algorithm has shown the feasibility and interest of the method as the residuals were
significantly attenuated throughout the procedure. Only a few iterations are needed
to obtain a stable solution with a reduced number of views. The CAD-based calibra-
tion procedure introduced in this paper allowed the determination of the projection
geometry and estimation of X-ray artifacts arising from different phenomena.

The chosen parametrization ensures a well-behaved problem. The geometric cor-
rection however suffers from a degeneracy issue involving a scale factor, which is easily
lifted by one additional length measurement. The number of parameters involved in
the calibration procedure appears to have no impact on the quality of the calibration,
provided that no degeneracy of the parametrization is introduced. The multi-view na-
ture of the procedure is essential to produce a good estimate as it permits the model
to take full advantage of different angles of projection.

In this study, the procedure has been carried out with a reduced number of views
to meet the industrial demand for NDE of turbine blades. The final residuals re-
veal the discrepancies between the inspected part and the ideal design given by the
CAD model. Based on this analysis, an NDE can be performed to control the part
under inspection. For instance, a baseline measurement, e.g. derived from the noise
found in a radiographic image, allows the detection of dimensional irregularities. It
is shown that the estimated artifact corrections enhance the quality and reliability of
the reconstructed tomographic volumes.

The question of the number of projections to be exploited is interesting. The
method requires a minimal amount of information to estimate the various parameters.
As more images N are considered, the accuracy in the estimation of the parameters is
expected to improve asymptotically while the processing time is expected to increase
linearly.
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Model-based measurement method
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Reproduced from
Cédric Fragnaud, Clément Remacha, Julián Betancur, and Stéphane Roux.
Model-based dimensional NDE from few X-ray radiographs: Application to the
evaluation of wall thickness in metallic turbine blades. Submitted to Precision
Engineering.

The extraction of 3D dimensional measurements based on a limited number of 2D
X-ray radiographs of a part would offer a significant speed up of quality control pro-
cedures in industry. However, there are challenges with respect to both measurements
and uncertainties. This chapter addresses these questions by creating an estimated nu-
merical model of the imaged part, on which dimensional measurements can be made.
The numerical model is chosen as a parametric deformation model that encodes the
expected shape variability of the part resulting from the manufacturing process. The
value of the deformation model parameters, and their uncertainties, are estimated by
the registration of the computed projections of the model and the observed radio-
graphs. The proposed approach is applied to the NDE of turbine blades manufactured
by investment casting, and in particular to the measurement of their wall thickness,
which is a critical element. The deformable model consists in partitioning the inner
ceramic core into multiple subparts, which may undergo a rigid body motion with
respect to the master die. Wall thickness measurements and their uncertainties can be
determined from the estimation of these rigid body motions. To assess the reliability of
the proposed procedure, a repeatability study has been performed, as well as a direct
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comparison with “ground truth” measurements from a reconstructed tomogram. Both
of them show the reliability and efficiency of the proposed approach for wall thick-
ness measurement. Residual differences between captured and computed projections
were observed. Despite these model errors revealing localized shape mismatches, the
approach has been demonstrated to be operable.

4.1 Introduction

Non Destructive Evaluation (NDE) is performed in industry to control the quality
of produced parts ensuring that they meet their technical specifications. The increasing
complexity of part geometry calls for developing more advanced NDE methods. The
necessity of NDE is even more stringent in sectors where safety is critical, such as
aeronautics.

Turbine blades are key parts of aircraft engines. Their complex geometry is
meticulously designed and optimized [1, 2, 3, 4] to improve the performance of the
engine. In particular, internal air cooling channels allow metal blades to operate at
temperatures higher than their melting point [5, 6, 7]. These extremely high tem-
peratures are necessary to increase the power and fuel efficiency of aircraft engines.
Turbine blades are fabricated following a high precision manufacturing process; never-
theless, geometrical indications — i.e. dimensional irregularities of the part that may
result in a sub-optimal behavior of the engine — may appear [8]. To ensure the struc-
tural integrity of the manufactured turbine blades, it is crucial to have high precision
measurements regarding the geometry of the part for quality control.

Coordinate Measuring Machines (CMM) [9, 10] have been used to identify external
dimensional imperfections. However, they are not suited to detect internal dimensional
imperfections (such as cavities or just complex non-convex shapes). To this end, ra-
diographic imaging methods, and in particular X-ray imaging, have been adopted
[11, 12, 13]. The acquisition of a large number of X-ray radiographs allows the 3D
image (tomography or tomogram) of the part to be reconstructed. By aligning the
nominal model to the reconstructed volume, it is possible to compare the inspected part
with its ideal design and extract measurements of deviation. However, this process
requires long acquisition and processing times considering production needs. Thus,
in production lines, each part is observed from a limited number of views. These
images are then inspected by specialist operators seeking an unusual gray level differ-
ence indicating an irregularity of the part. The measurement of 3D indications from
2D radiographs remains a complex problem for which automated methodology and
procedures are highly desirable.

This chapter presents an NDE method exploiting a limited number of X-ray images
of the part. It relies on the simulation of the X-ray images from a numerical model of
the part using an adequate and calibrated projective model [14, 15]. The CAD model
is extended to a parametric deformable model so that the projections of the inspected
part are registered onto the acquired X-ray images. 3D measurements and the as-
sociated uncertainty can be computed on the corrected model, which corresponds to
the deformable model computed for the optimal transformation parameters. Section
4.2 is devoted to describing the developed method. More specifically, a discussion
regarding the studied dimensional control, namely the wall thickness measurement,
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is provided in Section 4.2.1. There, a discussion is proposed on the uncertainty of
kinematics based on rigid body motion. The method to identify the optimal trans-
formation parameters is then presented in Section 4.2.2. A deformable model derived
from the manufacturing process of turbine blades is proposed in Section 4.2.3. The
parameter identification method and the deformable model are the key features to
generate a corrected numerical model. A repeatability study to assess the reliability of
the proposed approach to measure the wall thickness of a turbine blade is formalized
in Section 4.2.4. It consists of the wall thickness measurement of various samples of
a turbine blade, each inspection being repeated multiple times. Section 4.3 reports
and discusses the results of this study. They reveal that, even with the presence of
model errors, the method is capable of generating a corrected model comparable to
the ground truth (tomogram), which implies similar calculated wall thicknesses.

4.2 Methods

An NDE procedure to compute variations in the wall thickness of turbine blades
based on a limited number of X-ray images has been developed. It requires a de-
formable model M of the inspected part whose shape is controlled by a set of trans-
formation parameters. A registration methodology is proposed to identify the trans-
formation parameters of a reference model of the imaged part that best describe the
difference between computed projections and observed radiographs.

Prior to discussing the model parametrization and the method employed to identify
the optimal transformation parameters, the principle of the studied dimensional control
is introduced.

4.2.1 Wall thickness metrology

Wall thickness corresponds to the distance between two surfaces S1 and S2, be they
internal or external. This distance W12 is classically defined as

W12 = min
p1∈S1
p2∈S2

∥p1 − p2∥2 (4.1)

where p1 and p2 correspond to points on surfaces S1 and S2, respectively. This defini-
tion is however not very convenient from an operational point of view since p1 (resp.
p2) has to visit the entire surface S1 (resp. S2), and the minimum may not be unique.
Hence, in practice, further restrictions can be enforced on p1 or p2. In the following,
this distance is computed using the “Ray method" implemented in VG Studio MAX
(Volume Graphics GmbH, v 2.2). Namely, an initial point p0

1 is chosen along surface
S1, together with a solid angle of possible search. The closest point to p0

1 along surface
S2 is found, and denoted p1

2. Then, the role of the two surfaces is interchanged, and
the closest point to p1

2 along surface S1 is sought (with the same solid angle restric-
tions), and its minimum is denoted p1

2. This process is repeated until convergence,
where a stationary solution (p1,p2) is found. To avoid that the points get out of
a neighborhood of the initial point p0

1, it is necessary to consider escape conditions
where the process does not converge. In case of success, the resulting distance is noted
as W12(p

0
1). This procedure is applied starting for all nodes of the mesh that lie on

surface S1, and finally W12 = minp0
1
W12(p

0
1). Although not strictly identical to the
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above mathematical definition, eq. (4.1), this evaluation of the distance is a very good
approximation when a careful choice of neighborhood is made, and hence the exact
definition will be considered when required in the theoretical analysis.

In the following, a specific class of transformations applied to the surfaces defin-
ing the deformation model will be considered, namely rigid body motions. A brief
discussion about their uncertainty is proposed before assessing the fluctuation of wall
thickness measurement resulting from a rigid body motion.

4.2.1.1 Rigid body motion uncertainty

A rigid body motion is mathematically described by the screw theory [16] and can
be represented by a rotation R and translation T (q) at an arbitrary point q. Although
R is intrinsic, the translation depends on the chosen reference point q. More precisely,
if another point q′ is chosen, then T (q′) = T (q) + (q′q)×R.

An aspect that deserves specific comments is the uncertainty of the measured
rigid body motion. From image registration, a displacement field can be calculated
which can be described by its average Mq = (T (q),R) and its fluctuation, δMq =
(δT (q), δR). This fluctuation is characterized by a null expectation value and a co-
variance matrix Cq, embedding the rigid body motion uncertainty, composed of three
terms, each of which is a 3× 3 matrix:

C(1)
q := ⟨δT (q)⊗ δT (q)⟩

C(2)
q := ⟨δT (q)⊗ δR⟩

C(3) := ⟨δR⊗ δR⟩
(4.2)

where ⟨·⟩ denotes the average of the quantities within the angle braces, and ⊗ the

tensor product. These terms completely define Cq which reads Cq =

(
C

(1)
q C

(2)
q

C
(2)
q

⊤
C(3)

)
.

The covariance matrix of the rotation C(3) is intrinsic. Considering it is a symmetric
positive matrix, it can be diagonalized in the basis of eigenvectors B. However, the
full covariance matrix Cq is not intrinsic. In particular, the non-diagonal terms of the
cross-correlation C

(2)
q depend on the chosen reference point q. It can be shown that

there exists a unique point, denoted q∗, such that the antisymmetric part of C(2)
q∗ is

exactly zero. A privileged frame of reference is then q∗ as the origin while the axes
orientations are given by B.

Complementary notes
In order to find the expression for the point q∗ such that the antisymmetric

part of C(2)
q∗ is zero, let us first define the antisymmetric tensor A(q) of C(2)

q :

[A(q)]ij :=
1

2

([
C(2)

q

]
ij
−
[
C(2)

q

]
ji

)
(4.3)
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The associated dual (or axial) vector a(q) reads

[a(q)]k :=−
1

2
ϵijk [A(q)]ij

=− 1

4
ϵijk

([
C(2)

q

]
ij
−
[
C(2)

q

]
ji

)
=− 1

4
(ϵijk − ϵjik)

[
C(2)

q

]
ij

=− 1

2
ϵijk

[
C(2)

q

]
ij

(4.4)

where ϵijk denotes the Levi-Civita symbol and the Einstein summation conven-
tion is used. Considering another point q′, it is written as

[a(q′)]k =−
1

2
ϵijk

[
C(2)

q′

]
ij

=− 1

2
ϵijk

([
C(2)

q

]
ij
+ ϵilm [qq′]l

[
C(3)

q

]
mj

)
=− 1

2
ϵijk

[
C(2)

q

]
ij
− 1

2
ϵijk ϵilm [qq′]l

[
C(3)

q

]
mj

(4.5)

Using ∑
i

ϵijk ϵilm = δjl δkm − δjm δkl (4.6)

with δjl the Kronecker symbol, we can rewrite [a(q′)]k as

[a(q′)]k = [a(q)]k −
1

2

(
[qq′]j

[
C(3)

q

]
kj
− [qq′]k

[
C(3)

q

]
jj

)
(4.7)

Finally

a(q′) = a(q)− 1

2

(
C(3)

q − tr
(
C(3)

q

)
I
)
(qq′) (4.8)

with I the identity matrix, and tr the trace operator. Then there exist a unique
point, denoted q∗, such that a(q∗) = 0, given by

(qq∗) = 2
(
C(3)

q − tr
(
C(3)

q

)
I
)−1

a(q) (4.9)

=⇒ q∗ = q + 2
(
C(3)

q − tr
(
C(3)

q

)
I
)−1

a(q) (4.10)

4.2.1.2 Uncertainty of the distance between surfaces

Rigid body motions are applied to the surfaces S1 and S2. Because the definition of
the distance between surfaces, eq. (4.1), is not affected by a global rigid body motion
affecting both surfaces, only the relative displacement of one surface with respect to
the other matters. Thus only S2 may be considered to be moving while S1 remains
static. The uncertainty of the measurement of W12 results from the uncertainty of the
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rigid body motion affecting S2. This question is addressed subsequently.
Let p∗

1 denote the point on surface S1 where the minimum distance to S2 is found,
at point p∗

2. The surfaces are supposed to be smooth (no angular edge or corner) in
the neighborhood of p∗

1 and p∗
2 so that the surface around them can be described as

parabolic. After applying the transformation δMq to S2, the shortest distance between
the surfaces changes. Assuming the rigid body motion δMq is of small amplitude, a
first order expansion of the change in distance δW12 is found to be a translation along
the normal common to both surfaces n = p∗

1p
∗
2/ |p∗

1p
∗
2|.

This translation is however not intrinsic as it depends on the point at which the
rigid body motion is expressed (section 4.2.1.1). There exists a unique point q∗ for
which the antisymmetric part of the cross-correlation between δR and δT (q∗) in the
covariance matrix is null. Thus, this point is chosen to compute the statistics of the
correlation Cq∗ , and the orientation of the frame is chosen to be given by the above
introduced basis of eigenvectors B. The variance of δW12 then reads〈

δW 2
12

〉
=
(
C

(1)
q∗ + |q∗p∗

2|
2C(3)

)
: (n⊗ n) +C

(2)
q∗ : ((q∗p∗

2)⊗ n) (4.11)

where : denotes the double dot product.
These findings rely on the assumption that surfaces are smooth in the neighborhood

of p∗
1 and p∗

2. Additionally, the determination of p∗
i after the transformation δMq

requires the curvature tensor (κ1 + κ2 +W12 κ1 κ2) to be inverted, where κ1 and κ2

denote the curvature tensor of surfaces S1 and S2, respectively. When the two surfaces
approach a flat configuration, the inversion gives rise to high values, so that the first
order approximation assumption must be carefully assessed. The curvature tensor may
even become negative, in which case the determination of p∗

i may be unstable. One
should note that, even if the position of the points p∗

i becomes variable, the distance
W12 itself may remain well behaved, but firm conclusions using the above development
rest on the assumption that the change in p∗

i remains small.
Therefore, wall thickness should be computed on smooth surfaces and for which the

curvature tensor (κ1 +κ2 +W12 κ1 κ2) is well-conditioned (stable inversion) to obtain
consistent and reliable measurements. In the following, wall thickness is measured
at measurement points located in the airfoil of the blade, in accordance with these
recommendations.

Complementary notes
The expression of δW12 is here detailled. The two surfaces may be described

locally as parabolic with a tangent plane perpendicular to p∗
1p

∗
2. Let us introduce

a coordinate system such that the first two coordinates (u, v) = u are that of
the tangent plane, and the third coordinate, denoted w, is along p∗

1p
∗
2. Then

surfaces S1 and S2 can be respectively written as

w = −W12 −
1

2
u⊤ κ1 u (4.12)

w =
1

2
u⊤ κ2 u (4.13)

where κi is a 2×2 matrix describing the curvature of the surface Si.
Let (u2, w2) be a point on surface S2, w2 being given by w2 = 1

2
u2 κ2 u2.
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The surface S2 is subjected to the fluctuating part of the rigid body motion δMq

(while the surface S1 stays invariant), causing the point to be moved to (u′
2, w

′
2):

u′
2 = Au2 +Bw2 +D (4.14)

w′
2 = −B · u2 + Cw2 + E (4.15)

where we have introduced A (2×2 matrix) which is a rotation transformation
in the tangent plane (of axis w), B a vector of the tangent plane that results
from rotations about an axis in the tangent plane and C is the corresponding
translation along w, D is a translation in the tangent plane, and E along w.
The rigid body motion δMq is assumed to be of small amplitude, so that only
a first order expansion with respect to the rotation (off diagonal term in A and
vector B) and translation (D and E) is needed. The diagonal terms of A and
C are thus valued 1 up to second order corrections which are neglected.

After moving surface S2, the shortest distance between the surfaces changes.
Point p∗

1 is now at position (u1, w1), and on the displaced surface S2, p∗
2 is now

denoted (u′
2, w

′
2). The question is now to determine those two points and the

resulting distance W ′
12. The latter reads

W ′2
12 =(u1 − u′

2)
2
+ (w1 − w′

2)
2

=

(
u1 −Au2 +

1

2
(u⊤

2 κ2 u2)B +D

)2

+

(
−W12 −

1

2
u⊤

1 κ1 u1 +B⊤u2 −
1

2
u⊤

2 κ2 u2 − E
)2

(4.16)

The two points p∗
i are determined from

∂W ′2
12

∂pi

∣∣∣∣
pi=p∗

i

= 0. Hence, ∂W ′2
12/∂u1 and

∂W ′2
12/∂u2 are computed and set to 0. Only the first-order terms in the rigid

body motion are retained in their expressions, assuming that u1 and u2 are
themselves of order 1. We first keep their expressions truncated at order 1 in
ui, and we further simplify (E ≪ W12, A = I +O(ϵ), . . .), yielding

(I +W12 κ1)u1 − Iu2 = −D (4.17)
−Iu1 + (I +W12 κ2)u2 = D +W12B (4.18)

hence

u1 = (I +W12 κ2)u2 −D −W12B (4.19)
(κ1 + κ2 +W12 κ1 κ2)u2 = B + κ1D +W12 κ1B (4.20)

One is finally interested in the distance between the surfaces after this motion.

W ′2
12 = W 2

12 + 2W12 δW12 +O(ϵ2) (4.21)
= W 2

12 + 2W12 (E −B⊤u2) +O(ϵ2) (4.22)

Hence
δW12 = E −B⊤u2 (4.23)
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The change in distance has a first contribution which is the translation along
the common surface normals E and since the closest point on surface S2 has
been moved by u2, the rotation induces a motion along this normal which reads
B · u2. Using eq. (4.20), δW12 reads

δW12 = E −B⊤ (κ1 + κ2 +W12 κ1 κ2)
−1 (B + κ1 (D +W12B)) (4.24)

Let us note that the second term is of order B2 or BD, and is thus negligible.
This corresponds to expanding the cosine of a small angle θ which departs from
1 by θ2/2, and which can be discarded in a perturbative expansion to first order.

4.2.2 Identification of transformation parameters

Transformation parameters are identified by registering numerically simulated X-
ray projections onto the corresponding set of radiographs that constitutes the obser-
vations. It is thus essential to consider a simulation tool capable of producing realistic
X-ray images accounting for multiple phenomena such as beam hardening and/or scat-
tering, and the appropriate projection geometry [15]. The N acquired radiographs of
the inspected part are denoted P n

a (x) , n ≤ N , where x represents the pixel position
and n is the index of the view (different views implying different orientations of the
part). Let Πn be the projection operator for the view n acting on the model M .
The acquired images correspond to the projections of a modified version of the model
polluted by noise

P n
a (x) ≈ Πn[M(d)](x) + ηn(x) (4.25)

where d is the K-component vector containing the transformation parameters dk,
and ηn(x) denotes the acquisition noise. Because of the detector and the cone-beam
geometry of the source, acquisition noise is not homogeneous and is characterized by a
variance that depends on pixel localization, noted as V n(x). Although a dependence
on n is not generally expected, the averaging of the images performed during the
acquisition of the radiographs is likely to depend on the projection angle to compensate
for different attenuations related to the part orientation. The following cost function
is introduced

Ψ(d) =
∑
n

∥∥∥∥∥ 1√
V n(x)

(P n
a (x)− Πn[M(d)](x))

∥∥∥∥∥
2

2

(4.26)

Minimizing this function with respect to d leads to the identification of the optimal
transformation parameters. The weight term involving V n(x) accounts for local un-
certainties brought by the noise. The weighted L2-norm in eq (4.26) is justified as
being optimal for the acquisition noise. This problem is solved iteratively using a
gradient descent algorithm. At iteration t, the correction vector δd corresponds to
small perturbations, so that the above cost function is linearized about the solution
dt = dt−1 + δd
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Ψlin(δd) =
∑
n

∥∥∥∥∥ 1√
V n(x)

(
P n

a (x)− Πn
[
M
(
dt−1

)]
(x)− Πn

[
∇dM

(
dt−1

)]
(x) · δd

)∥∥∥∥∥
2

2

(4.27)

where ∇dM denotes the derivative of M with respect to d. The projection residuals
and the sensitivity fields are defined respectively as

ρn(x) = P n
a (x)− Πn

[
M
(
dt−1

)]
(x) (4.28)

snk(x) = Πn

[
∂M

∂dk

(
dt−1

)]
(x) (4.29)

Applying (4.28) and (4.29) in (4.27), the linearized cost function is rewritten as

Ψlin(δd) =
∑
n

∥∥∥∥∥ 1√
V n(x)

(
ρn(x)−

∑
k

snk(x) · δdk

)∥∥∥∥∥
2

2

(4.30)

The vector minimizing (4.27), noted δd∗, is

δd∗ = H−1 b (4.31)

where the matrix H = (Hij), the Hessian of Ψlin, and the vector b = (bk) are given by

Hij =
∑
n

∑
x

1

V n(x)
sni (x) s

n
j (x) (4.32)

bk =
∑
n

∑
x

1

V n(x)
snk(x) ρ

n(x) (4.33)

This approach converges towards the minimum of the cost function (4.26), leading to
the identification of the sought vector of transformation parameters d. The analysis of
the uncertainties in the computed optimal parameters is an indicator of their reliability
and is used to assess the quality of the registration. Assuming that the residuals ρn(x)
at convergence mostly contains noise ηn(x), these uncertainties are extracted from the
registration procedure. The uncertainties associated with the estimates δdi together
with their correlations are given by the covariance matrix Cij = ⟨δdi δdj⟩

⟨δdi δdj⟩ =
∑
k,l

H−1
ik H

−1
lj

∑
n,m

∑
x,y

snk(x) s
m
l (y)

〈
ηn(x)

V n(x)

ηm(y)

V m(y)

〉
(4.34)

The noise is considered to be Gaussian and white (spatially and temporally uncorre-
lated), see Chapter 2, such that

⟨ηn(x) ηm(y)⟩ = δnm δxy V
n(x) (4.35)

where δ·· denotes the Kronecker symbol. Using the previous expression, eq. (4.34)
reads

Cij = ⟨δdi δdj⟩ = H−1
ij =⇒ C = H−1 (4.36)

The associated correlation matrix R is defined as

Rij =
Cij√
Cii Cjj

(4.37)

87



Complementary notes
Considering a white noise ηn(x) (spatially and temporally uncorrelated) with
variance V n(x), the probability of obtaining a projection residual ρnd(x) :=
P n

a (x)− Πn[M(d)] (x) is given by the likelihood function

P (ρnd ) :=
∏
x

P (ρnd(x))

=
∏
x

1√
2π V n(x)

exp

(
− [ρnd(x)]

2

2V n(x)

)

=

[
1√
2π

]Nx
[∏

x

1√
V n(x)

][
exp

(
−
∑
x

[ρnd(x)]
2

2V n(x)

)]
(4.38)

with Nx the number of pixel. The associated log-likelihood is

Ln(d) := ln (P (ρnd ))

= ln

([
1√
2π

]Nx
[∏

x

1√
V n(x)

][
exp

(
−
∑
x

[ρnd(x)]
2

2V n(x)

)])

=− 1

2
Nx ln (2π) +

∑
x

ln

(
1√
V n(x)

)
−
∑
x

[ρnd(x)]
2

2V n(x)

=− 1

2

(
Nx ln (2π) +

∑
x

ln (V n(x)) +
∑
x

[ρnd(x)]
2

V n(x)

)
(4.39)

Hence

argmax
d

Ln(d) = argmin
d

(
Nx ln (2π) +

∑
x

ln (V n(x)) +
∑
x

[ρnd(x)]
2

V n(x)

)

=argmin
d

∑
x

[ρnd(x)]
2

V n(x)

= argmin
d

∥∥∥∥∥ 1√
V n(x)

ρnd(x)

∥∥∥∥∥
2

2

(4.40)

The above quadratic norm corresponds to the cost function Ψ introduced in
eq. (4.26), for a single view indexed by n.

4.2.3 Deformable model of a turbine blade

To best capture the shape of the part, it is necessary to consider a deformable
model M describing the expected shape variability. If the chosen deformable model
provides a large flexibility, it will involve many degrees of freedom, at the risk of
rendering the registration procedure ill-conditioned or even ill-posed. The deformable
model thus needs to contain a reasonable number of parameters while describing the
desired range of shapes. A deformable model derived from the a priori information
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on the manufacturing process is ideal to mitigate the lack of information due to the
limited number of views.

The internal air cooling cavity of a turbine blade describing the internal structure
is manufactured by an investment casting process. A ceramic core reproducing the
shape of the desired cavity is positioned in the injection mold, known as master die.
A slight misalignment of the core results in thinner or thicker walls in different regions
of the blade compared to its ideal CAD model. Moreover, the core and master die
may expand or shrink during the manufacturing process due to thermal constraints,
which leads to thickness differences with the blade CAD model. Another potential
source of thickness variation is a manufacturing defect in the core or in the master die
themselves. However, they are considered negligible as compared to those induced by
the core misalignment.

This manufacturing process may be exploited to generate the deformable model.
The model M consists in the partition of the part into two main subparts: the master
die and the core. The shape of the core is then extracted from the master die (see
Figure 4.1). This model can be enriched depending on the structure or the manufac-
turing process of the core, for instance by further dividing the core into subparts. In
this study, the core has been partitioned into five subparts, as illustrated in Figure 4.1
(middle). Each subpart indexed by k is associated with a transformation denoted τk
that maps the model of the corresponding subpart into the corrected one. To correctly
interpret transformations, they need to be expressed in the same frame of reference,
for instance, that of the ideal part CAD model. A corrected model is obtained by
applying the transformations τk to each subpart.

The kinematics of the subparts that define a simple yet representative deformable
model is given by a rigid body motion of the independent subpart k parametrized by
(tk,αk). tk denotes the translation vector of the kth subpart, and αk its rotation with
respect to the center of the bounding box surrounding the initial master die (black
point on Figure 4.1 (right)) which coincides with the origin O of the coordinate system
of reference. To account for thermal shrinkage/dilatation of the core, an additional
scale factor s affecting all subparts of the core is introduced. This representation
assumes that the geometry of each individual subpart perfectly matches its CAD
model without deformation of its surface. This parametric deformable model of the
turbine blade takes advantage of information about the manufacturing process, and is
well suited for NDE. Moreover, the parametric representation of the corrected model
allows for a direct interpretation of the origin of possible deviations from the conceived
nominal model, and hence it provides insights about the manufacturing process itself
and keys for correcting it.

The estimation of the parameters s and (tk,αk) is achieved following the procedure
described in Algorithm 3. The parameters are initialized from the ideal design of the
core and of the master die. The convergence criterion is based on the norm of the
residuals after each iteration.
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Figure 4.1: Illustration of the part divided into six subparts: the master die (left)
and five subparts of the core (middle); and their association (right).

Algorithm 3: Iterative registration procedure
Input: Meshes of each subpart, Initial estimates of parameters

T c := (s, t1, . . . ,α5) and T 0 := (t0,α0)
Output: Optimal values T ∗

c = (s∗, t∗1 , . . . ,α
∗
5) and T ∗

0 = (t∗0,α
∗
0)

Load meshes;
do

for k ← 0 to 5 do
Apply the transformation τk to the corresponding mesh of the kth

subpart;
Compute the sensitivity fields for T c;
Compute the sensitivity fields for T 0;
Compute δT ∗

c using (4.31) from the sensitivity fields computed at lines 3;
Compute δT ∗

0 using (4.31) from the sensitivity fields computed at line 3;
Update T c ← T c + δT ∗

c and T 0 ← T 0 + δT ∗
0 ;

while Convergence criterion reached ;

4.2.4 Repeatability study

A repeatability study was performed to assess the stability of the method and to
evaluate the ability of the deformable model to cope with different parts. Indeed,
the acquisition of X-ray images to control a part involves the manual positioning of
the sample in the acquisition system which induces human variability. In practice,
each control is then realized with a set of (slightly) different viewpoints. Because of
their limited number, these viewpoints would contribute greatly to the determination
of the transformations τk. To eliminate the dependence on the sample positioning
in the acquisition system, the transformation τ−1

0 is to be applied to the computed
corrected model. The idea behind this is to capture the relative motion of the core
with respect to the master die, which fully determines the wall thickness. It also allows
the computation of wall thicknesses in the same reference frame for all samples. This
amounts to only applying the relative transformations τ 0k := τ−1

0 τk, k > 0 to each
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subpart of the core. Although it theoretically solves the issue, it is essential for the
reliability of the NDE procedure to validate this point.

During the repeatability study, X-ray images of six metallic turbine blades, selected
so that they cover or exceed the tolerance interval for the wall thickness measurements,
were acquired nine times each. The inspected turbine blades are referred to as samples
in the following. The images were acquired with the XT H 450 system developed by
Nikon Metrology at the Safran Advanced Turbine Airfoils (PFX) research center; the
acquisition parameters are listed in Table 4.1. During acquisition, the sample was
manually positioned in the acquisition system and rotated by intervals of 30◦, leading
to a total of N = 12 projections. The procedure was reproduced for all six samples
and all nine repetitions.

For each batch of observed radiographs, the above described parametric deformable
model was fitted using Algorithm 3 to generate a corrected model. Wall thickness
was measured for 80 points in the airfoil, as mentioned in Section 4.2.1, using an
automatic routine. Surfaces S1 and S2 introduced in eq. (4.1) correspond in practice
to sub-surfaces around these measurement points. These sub-surfaces contain between
10 and 30 points each.

For each sample, nine sets of optimal transformation parameters were identified,
one for each batch of images. A reasonable assumption of a Gaussian dispersion of the
nine batches of transformation parameters allows the uncertainties on the measure-
ments to be computed. This assumption was verified using Shapiro-Wilk normality
test [17].

Acceleration voltage 400 kV Frames per projection 32
Tube current 500 µA Size of images 2000× 2000 pixels
Pre-filtering 4 mm of copper Voxel size (spatial resolution) 50.55 µm
Exposure time 354 ms Encoding 16-bit uint

Table 4.1: Parameters for X-ray image acquisition using an XT H 450 (Nikon
Metrology).

4.3 Results and discussion

Each identified relative transformation τ 0k is a combination of a scaling by a factor
s, a translation Tk and a rotation specified by Euler angles θk. For every sample, the
average values of the associated estimates over the 9 sets are presented in Figure 4.2.

Figure 4.2 suggests that the transformation parameters show some variability
among the different samples. This observation is due to the selection of the parts
such that they would represent the production operating range. In this sense, Figure
4.2 shows the ability of the registration procedure to handle parts that have the same
ideal design but whose actual geometry differs due to production variability. In addi-
tion, considering that the transformation parameters are noticeable, it confirms to the
necessity of taking into account the transformation of the core to perform accurate
measurements of wall thicknesses. The large variability of the translation vectors T1

and T5 is due to the choice of the point about which rotations are computed. For
rigid body motions, translations are not intrinsic as they depend on the chosen point
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Figure 4.2: Average values of the transformation parameters for all samples: scale
factor s (top), components of the translation vectors Tk (middle), Euler angles θk

(bottom).
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of rotation (cf. subsection 4.2.1.1). As seen in Figure 4.1, subpart 1 (red) is far from
the center of rotation (black). The curved nature of the blade, not visible in Figure
4.1, leads to the same conclusion for subpart 5 (purple).

In the following, results will be presented for the sample number 1 as conclusions
are similar for all samples. The variability of the identified transformation parameters
over the 9 sets is presented in Figure 4.3. Values have been centered around their
median m to better visualize their spread. The figure shows that the variability of the

Figure 4.3: Boxplots showing the variability of the identified optimal transformation
parameters over 9 repetitions for sample number 1. Values have been centered

around their median m to better visualize their spread. Below each box, the median
value (red) and the average magnitude (in µm) of the displacements associated with

the observed variabilities (black) are presented.

transformation parameters are much smaller than the variability between samples: in
the range of 10−3 for the scale factor, 35 µm for the translations parameters, and 0.2◦
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for the Euler angles. To properly interpret theses values, the displacements associated
with these variabilities need to be computed and compared to the voxel size which is
here 50.55 µm. Thus, for each parameter, two transformations are considered: one
using the lowest identified value, the other with the highest (the values of the other
parameters correspond to their medians). These transformations are applied to the
initial model, and the magnitude of the displacement between the two transformed
models is computed at each node. For the rotation and translation parameters, this
magnitude is averaged over the associated subpart; and for the scale factor, over the
entire core. These values, expressed in µm, are reported below each box of Figure 4.3,
in black (second line). A sub-voxel accuracy is observed for all the parameters. The
parameter θ2,z, for which the sub-voxel accuracy is barely met, exhibits the largest
variability, and thus uncertainty. θ2,z represents a rotation of the 2nd subpart, shown
in blue in Figure 4.1, around the Z axis. This can be explained by the cylindrical
shape of the subpart with a small radius of gyration and an axis that almost coincides
with the Z axis. As a consequence, even a large angle variation induces only a minute
displacement along the core boundary.

Using equation (4.36), the covariance matrices C are computed. An example of
such a matrix is displayed in Figure 4.4, together with the associated correlation matrix
R.

Figure 4.4: Element-wise absolute value of the covariance matrix C (left, logarithmic
scale) and correlation matrix R (right) computed at convergence. Black dotted lines

are plotted to better visualize the different subparts.

By definition, the diagonal terms of the correlation matrix R are equal to 1. Non-
diagonal terms, which range from −1 to 1, represent the degree of correlation between
a pair of parameters. As expected, parameters associated with distinct subparts are
weakly correlated (less than 0.5). The scale factor s is mostly (negatively) correlated
to the translation parameter along the main orientation of the subpart, as a result of
its slenderness.

Figure 4.5 displays projection residuals with the initial (top) and optimal (bottom)
transformation parameters, focusing on four areas of interest. Residual values are
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expressed as a percentage of the dynamic range of the observed projections. The
higher level of residuals in the root of the turbine blade, panel (a), is explained by the
fact that some phenomena, particularly visible for high thicknesses, were not included
in the projection operator Πn. It should however be noted that this imperfection
in the projection operator is small as it represents at most, in the thickest area, a
5.6% deviation from the gray levels of the observed projections. In the top row, the
observed residuals are mainly due to the deviation of the core from its ideal design,
as shown for instance in panel (c) where a structure with positive residuals on the
left and negative on the right is visible. Similar structures are apparent on the other
panels. These deviations may be accounted for by the introduced degrees of freedom.
Thus, in the bottom row, the above described structure visible on panel (c) is highly
reduced, as well as for the other panels. The procedure leads to the estimates of the

Figure 4.5: Difference (color) between acquired and simulated projections, before
(top) and after (bottom) identification of the transformation parameters. The

different panels show: (a) a curved region in the root of the turbine blade, (b) an
internal structure, known as a rib structure, in the airfoil, (c) a wall of an internal

cavity, (d) slots on the trailing edge of the blade. Values are expressed as a
percentage of the observed projections dynamic range.

best transformation parameters considering the proposed parametrization.
The transformed CAD models are compared to the ground truth given by a tomo-

graphic volume, also called tomogram, reconstructed from a set of 3000 radiographs.
Figure 4.6 displays the tomogram (gray) with the initial CAD model (orange) and
corrected ones (different shades of blue are used for all 9 estimates). The blue surfaces
are barely distinguishable from each other, which confirms the high similarity between
the identified sets of transformation parameters. It can be seen that the blue surfaces
line up more tightly with the boundaries of the tomogram than those of the initial
CAD model. Discrepancies are observed for the cavity in view (a) or the rib in view
(c) which appears shifted. As displayed in Figure 4.6, these areas are characterized
by a high curvature of the surfaces. These incorrect positionings seem to be large,
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however, the surfaces of these cavities are inclined at a low angle with respect to the
section planes. It thus corresponds in 3D to an offset between the surfaces of a very few
voxels, namely one or two. Despite the number of radiographs used being reduced by
a factor of almost 300, the agreement between the corrected model and the tomogram
when the curvature is low is outstanding.

However, some remaining deviations are observed. In view (c), the CAD design
displays sharp corners, whereas the ones in the manufactured part are smoother. This
discrepancy can be explained by the effect of the sintering of the mold or the surface
tension between the metal and the core during the metal casting. As these phenomena
are not described in the deformable model, such deviations cannot be resolved.

Thus, even with (hopefully localized) model errors, the proposed deformable model
explains most of the differences, which renders the correction efficient and operable.
In addition, the observed differences between the part and its CAD model in highly
curved regions points towards considering other deviations from the original CAD
model, namely non-rigid shape deformations. These deviations may be accounted
for by resorting to a more flexible deformable model, for instance, an additional cor-
rection model acting at a more local scale. An alternative would be to use a more
representative core mesh obtained from actual manufactured cores. Such a procedure
would allow to distinguish more clearly between systematic shape deviation due to the
manufacturing process and intrinsic variability. In the case where the geometry of the
subparts are systematically measured in the control chain, e.g. by Non-Contact CMM,
this approach would allow one to increase the available a priori information without
increasing the time allocated for the control. A weighting to the surfaces based on
their curvature can also be considered to further reduce the weight of these model
errors.

Wall thickness have been measured in the airfoil of the 9 corrected models and of the
tomogram. As illustrated in Figure 4.6, measurements of the transformed models are
similar, so that only the average values of the measurements is representative of further
data acquisition and processing. Figure 4.7 (top) shows a Bland-Altman plot [18] to
illustrate the disagreement between the two measurement methods (corrected models
and tomogram). The bias of 26.6 µm indicates the average difference between the two
measurement methods. This discrepancy represents slightly more than half a voxel,
showing the high accuracy of the proposed approach. The limits of agreement, which
indicate the precision of the measuring system, are to be compared to the tolerance
values defined in the part specification. In the case of aeronautical parts for which
dimensional compliances are very stringent, this large interval of ≈ 196 µm does not
meet the technical requirements. It should however be noted that a less constrained
parametrization of the shape would be likely to yield a transformed model closer to
reality and thus more accurate measurements. In comparison, the same measurements
have been performed on the untransformed model, see Figure 4.7 bottom. Using the
proposed approach, the bias is increased by a slight amount (15 µm), while the limits
of agreement are significantly reduced (185 µm).

The computation of measurement uncertainties based on the covariance matrix C
produced estimates of the order of a few hundred nanometers, which is significantly
lower than the uncertainty values obtained by repeating the same control several times.
The formula (4.34) used for the computation of C relies on the assumption that the
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(a)

(b) (c)

Figure 4.6: Superimposition of the ideal (orange) and transformed (shades of blue)
designs of the core over the tomogram (gray).
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Figure 4.7: Bland-Altman plot of wall thickness measurements by the proposed
model and by X-ray CT tomography. The plot displays the difference ∆W as a

function of the mean value W of measurements using the corrected (top) and initial
(bottom) models. The mean of the differences (blue line) indicates the bias between
the values obtained from the two measurement methods. The limits of agreement
(red lines) delineate the interval where 95% of the differences are expected to lie.
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residual ρn mostly contains noise ηn. For this assumption to be verified, it is necessary
to have a transformed model that exactly matches the imaged part and a perfect
projection operator. From the previous results, it appears that these two conditions
are not met. Figure 4.6 displays differences in geometry between the estimated model
and the ground truth, mainly because the non-rigid deformation of the core is not
included in the deformable model. In addition, Figure 4.5 suggests imperfections in
the projection operator which, although small, violate the assumption.

The findings of this study do have some limitations. A limitation of the approach is
that the proposed deformable model is presumably too simple to account for the exact
shape mismatch. Ideally a flexible model would be required, however, an important
feature is the parametrization of the considered deformation modes. The ones consid-
ered in this work (independent rigid body motions) benefits from a parametrization
that is neither too rich (large uncertainty) nor too poor (realism of shape deviations).
It is this trade-off that motivated the decision to define the modes as independent
rigid body motions. This trade-off leaves a margin of error which leads to residual
shape deviations between the transformed model and the tomogram and thus unreli-
able measurements. To improve the set of transformations one may envision a more
flexible deformable model, adding a local correction model, or replacing CAD models
of the surfaces with measured ones. Furthermore, projection residuals (above denoted
ρn) are indicators of the registration quality and thus of the reliability of the computed
measurements. They may also be used to identify the most appropriate locations for
the measurement points.

It is worth noticing that the images were acquired in a single X-ray cabin (XT H
450), which may constitute a bias in the analysis. Likewise, the procedure was tested
on parts of a single type, i.e. a single reference of a turbine blade, even if multiple
samples were imaged to account for shape variability. It is however expected that
similar results would be observed for a different acquisition system or reference of a
turbine blade with a comparable manufacturing process as no other assumptions other
than the manufacturing process have been made. However, accounting for e.g. the
panel detector used in the X-ray cabin may enrich the projection operator. From an
industrial point of view, endorsing the procedure would require that the same study be
performed with multiple parts to ensure that a change in the blade geometry would not
lead to inconsistent results. Nevertheless, nothing currently suggests that additional
issues are to be encountered.

4.4 Conclusion

In this work, an approach to assess 3D dimensional measurements of complex shape
parts from a limited number of 2D X-ray images has been presented. It consists of
fitting a parametric model of the imaged part to generate a corrected numerical model.
The dimensions to be controlled are measured directly on this corrected model. The
selected application case is the control of wall thicknesses of a hollow turbine blade,
a part with complex internal geometry. Describing the control principle allowed the
definition of guidelines to perform reliable measurements. The optimal transformation
parameters of the model are identified by iteratively matching the projections simu-

99



lated from the transformed model to the observed projections. The parametric model
has been developed in line with the manufacturing process. It relies on the partition of
the part into multiple subparts: one representing the external surface, five representing
the various element of the inner ceramic core describing the internal geometry. The
kinematics of each subpart is a rigid-body motion, plus a scale factor to account for
thermal constraints experienced by the ceramic core during metal casting. This sparse
model mimics what occurs during manufacturing and thus provides a fair description
of the expected shape variabilities. In addition, the observed transformations can be
further exploited to improve the manufacturing process and reduce the range of shape
deviations.

The reliability of the approach was verified via a repeatability study where only a
slight discrepancy in the identified parameters, and thus in the associated corrected
models, was observed. Furthermore, the agreement between measurements computed
from the transformed models and reference values computed from a tomogram demon-
strated the approach performance. Discrepancies are mostly explained by the non-
rigid shape deformations not considered in the simple deformable model proposed
here. These discrepancies, although small, do not comply with the very demanding
requirements for NDE of turbine blades. Suggestions to mitigate the discrepancy are
proposed and include the use of measured surfaces, or the introduction of a more
flexible deformable model.

It is worth emphasizing that the proposed methodology has been designed to min-
imize the acquisition noise error, as expressed in eq. (4.26). This error is currently
much lower than other elements of uncertainty and as a consequence, the method
leads to an over-quality. One can consider faster, therefore noisier, acquisitions while
still remaining below the uncertainties due to other factors.
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Chapter 5

Conclusion and perspectives

This thesis work aimed at developing an NDE process to identify and characterize
geometrical imperfections in complex-shaped objects by multi-view X-ray imaging.
The process has been designed considering the constraints of industrial production
lines of HP turbine blades. The developed approach consisted of producing a 3D
model of the inspected part based on the observed images using Projection-based
Digital Volume Correlation (P-DVC) [1].

The noise properties investigated in Chapter 2 allowed the definition of an optimal
cost function, key element of P-DVC, designed to minimize acquisition noise error.
A description of a flat-field image was built by unraveling the contributions of the
characteristic elements inherent to the acquisition: temporal fluctuation of the X-ray
source and its cone-beam geometry, panel assembly of the detector. It was found that
the noise polluting a flat-field image is gaussian and white, with a variance that can
be readily estimated.

The quantitative comparison of observed and simulated X-ray images calls for:

• the proper definition of the projection geometry. It corresponds to the numeri-
cal positioning of the imaged part with respect to the X-ray cabin components
(source, detector) through an appropriate parametrization,

• accounting for the physical phenomena underlying image formation. The phe-
nomena that cause the largest deviation from the (monoenergetic) Beer Lam-
bert’s attenuation law are beam hardening (resulting from the polyenergetic na-
ture of the source) and Compton scattering (non-pure attenuation phenomenon).
Parametric models have been proposed to describe how these phenomena mani-
fest in the observed images.

These three elements (steps 1-3 represented in Figure 1.8) form a parametric projec-
tive model for which optimal parameter values are identified through a calibration
procedure relying on P-DVC formulated in Chapter 3 [2]. Once this identification is
achieved, the projection residuals obtained using the CAD model of the part point
toward shape deviations from the nominal geometry, known as geometrical indica-
tions. Discrepancies unrelated to these indications are still observed, indicating that
the projection operator is prone to improvements. However, it should be noted that
the remaining deficiencies are not limiting for the sought purpose.

Characterizing the indications relies on the estimation of the 3D model of the part
being imaged on which measurements can be performed. For this, a deformation model
derived from the manufacturing process of the blade has been introduced in Chapter
4 [3]. The numerical model of the part is partitioned into multiple subparts whose
relative kinematics is given by an independent rigid body motion. A scale factor is
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added to account for thermal shrinkage. The reliability of the deformation estimation
approach to measuring the wall thickness of a turbine blade is assessed through a
repeatability study. Despite model errors, the corrected model is comparable to the
ground truth given by the tomogram. This shape agreement implies similar wall
thickness measurements, which may be further refined by addressing model errors
(e.g. non-rigid deformations).

In this sense, the tools developed during this work and detailed in this dissertation
meet the target problem of identifying and characterizing geometrical indications.
Further aspects related to the initial question have been investigated and are reported
below. These are incomplete ideas, i.e. additional developments and tests are necessary
for them to be fully effective. In addition, limitations of the procedure are discussed,
along with suggestions for improvements and future works.

5.1 Partially investigated work

5.1.1 Local geometrical indications

The HP turbine blades feature cooling holes, manufactured by Electrical Discharge
Machining (EDM), to help reduce their temperature. Various controls are performed
to ensure the geometry of these holes meets the specifications, which include:

• Diameter measurement: verify that the diameter of the manufactured hole is in
the tolerance interval;

• Through-hole nature: control that the hole has been manufactured over 100% of
its defined length;

• Position and orientation of the hole axis with respect to the part reference frame:
the axes of the manufactured holes may vary depending on the part reference
frame. Therefore, measuring the deviation between the theoretical axis and the
actual one is necessary.

The NDE procedure formulated in this dissertation and applied to the wall thickness
measurement may be adapted to the inspection of cooling holes. Steps 1-3 (Figure
1.8) remain unchanged, but an appropriate deformation model has to be defined. This
requires proper modeling of a cooling hole. EDM producing straight holes, a realistic
approximation of its geometry is a cylindrical shape, as illustrated in Figure 5.1.

In the (fixed) part reference frame, the axis of the hole is represented by a straight
line ∆ describing the path of the electrodes, a parametric equation of which being

x = ax + αx z

y = ay + αy z

z = z

(5.1)

Two remarks are to be made: (i) this parametrization is not universal, i.e. another
one may be adopted to represent the same axis ∆, (ii) a degeneracy arises when the
axis is parallel to the XY plane, an issue called “coordinate singularity”. In such a
case, this parametrization becomes inadequate, but a mere change of representation
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(a) (b)

Figure 5.1: Representation of a cooling hole, (a) profile view, (b) section view.

of the axis ∆, for instance 
x = ax + αx y

y = y

z = az + αz y

(5.2)

eliminates the singularity. This line encodes information regarding the orientation of
the hole as well as its position, the latter being specified by a point located at the
intersection between ∆ and the surface of the part.

The hole is machined over a length 0 < ℓ ≤ L, where L denotes the maximum
length of the hole given by the wall thickness measured in the direction of ∆. Its
diameter is considered constant along ∆, this constraint being automatically satisfied
due to the machining process (EDM).

Using this representation, the hole can be described by the following 6 parameters:

• the four parameters of the axis ∆, e.g. (ax, αx, ay, αy);

• the length ℓ;

• the diameter D;

The associated deformation model is obtained by the variation of these parameters.
The optimal shape geometry is identified similarly to that detailed in Section 4.2.2.

This approach has been tested on a synthetic case. It yielded very accurate results,
better than the required precision (e.g. absolute error of 10−3 mm in the diameter
estimate, and of 6.10−3 mm in the parameter ax). It has yet to be tested on an actual
case, i.e. real X-ray images of a turbine blade with holes.

It is worth emphasizing that the discussion undertaken in this section illustrates
the versatility of the approach. Provided a proper deformation model is established,
the approach can be tailored to many applications pertaining to dimensional NDE.
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5.1.2 Improved projection views

The identification of the optimal deformation parameters, Section 4.2, has been
demonstrated using a set of 12 X-ray images. Projections have been acquired by
successively rotating the sample around a fixed axis, with a constant angular spacing of
30◦ (0◦, 30◦, 60◦, etc.). These angles are, however, not necessarily the most appropriate
ones to perform the identification. One could even imagine that using a smaller number
of views would yield almost identical results. Optimizing the projection views would
reduce the time spent on part inspections. It requires (i) a criterion to be minimized or
maximized and (ii) an optimization algorithm. Following the formalization introduced
and developed in [4], a brief discussion is presented.

Criterion

The parameter identification method detailed in Section 4.2.2 provides uncertainty
information regarding the model parameters, from which the uncertainties of dimen-
sional measurements computed on the turbine blade numerical model are derived.
Based on these uncertainties, a criterion (cost function) may be proposed whose min-
imization will lead to the optimized set of projection directions. Two such criteria —
which cannot be disclosed for confidentiality — have been investigated.

Optimization algorithm

A greedy approach is proposed to select better-suited projection angles based on
these criteria. The angle space is sampled, e.g. uniformly, to produce a set of candidate
angles Θc =

{
θ1c , . . . , θ

M
c

}
. Starting from the initial configuration Θa =

{
θ1a, . . . , θ

N
a

}
(12 angles with a constant angular spacing of 30◦), it is proposed to iteratively improve
it by

• Computing, for each angle θna in the current configuration and each candidate
angle θmc , the criterion where the sensitivity fields associated with θna are removed
and the ones associated with θmc are added;

• Identifying the couple
(
θn

∗
a , θ

m∗
c

)
that minimizes the criterion;

• Performing the switch, i.e. θm∗
c is added to the configuration while θn∗

a is removed.

In an iterative way, a new and better configuration is built. The decrease in the number
of projection views may be achieved by regularly removing θn∗

a from the configuration
without adding θm∗

c .
This strategy has been tested to select better-suited angles for inspecting turbine

blades. The candidate angles were chosen by sampling at a constant angular spacing
of 5◦. Both criteria yielded successful results for 12 projections: the volume of the
uncertainty ellipsoid was decreased by 29% or by 99% (depending on which of the two
criteria is considered), and the largest uncertainty by 21% or by 50%, respectively.
Although one would expect the optimal angles to be spread out over the [0, 2π[ interval,
the final configurations show a surprising concentration effect over few angles. Such a
result is a promising avenue for future optimization of radiography-based NDE control.
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5.2 Perspectives

Future work could provide improvements on the definition of the deformation
model, and on the algorithms enabling the estimation of the optimal model parameters
for the part being inspected.

5.2.1 Model

As pointed out in Chapters 3 and 4, non-stochastic projection residuals are still
visible. These residuals can be attenuated by including other phenomena occurring
during the acquisition in the definition of the projection operator, allowing to generate
more realistic images. For instance, afterglow may be modeled by a convolution op-
eration of the images in the temporal domain. Another phenomenon to be considered
would be the Bragg diffraction that results from the monocrystalline structure of the
blade. The crystal orientation may potentially be evaluated. However, it is expected
that an accurate model reproducing diffraction would be overly sophisticated for the
gain it would provide.

In addition, results of Chapter 4 suggest that non-rigid shape deformations of the
surface may be considered to better represent the surface of the blade. Deformation
modes derived from mechanical analyses may be envisioned. An example would be to
measure the displacement field of the inner ceramic core when subjected to a given load
through numerical simulations. Then, a POD or other reduction model methods would
allow extracting the dominant deformation modes where the elastic energy is small,
defining a mechanical-based deformation model. Other solutions include statistical
shape analyses on a set of manufactured blades to obtain a reference shape and the
(major modes of) shape variations encoded in the analysis of the deformation to the
reference shape.

5.2.2 Procedure speed up

Computation time is currently a limiting factor of the method. The principal bot-
tleneck corresponds to the voxelization step required for computing sensitivity fields.
Faster alternatives include implementing the voxelization algorithm in a more efficient
programming language (e.g. C++) as it is currently implemented in Matlab, or even
circumventing this difficulty by using directly the 3D model instead of its voxelized
representation. Such a projector has been developed for the ASTRA Toolbox and is
presented in [5]. Similarly, other algorithmic aspects of the procedure may be opti-
mized, such as the computation of BH correction function for the simulated images.

5.3 Outlook of NDE

The works reported in this dissertation provide an up-and-coming solution for
performing NDE based on a few X-ray images. The method has been applied for
detecting dimensional indications, namely wall thickness imperfections. Nevertheless,
it is worth emphasizing that its outputs may be exploited to help detect structural
indications that falls within the scope of material health inspections. Indeed, final
projection residuals might reveal imperfections such as cracks or porosities that may
be difficult to detect in raw X-ray images. This would provide alternatives to other
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control modalities that are less attractive from an economic, applicability, or richness
of measurement point of view. As such, it opens up new possibilities for NDE in an
industrial framework.

Moreover, because the noise was found not to be a limiting factor, the acquisitions
may be noisier that the method would still be efficient. This implies shorter acquisition
times, which can be further shortened if only a few views are considered relevant.

Studies are currently being initiated to verify the applicability of the method in
production lines.
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Appendices

Résumé étendu en français

Dans un moteur d’avion, les aubes de turbine haute pression (HP) sont exposées
à la température extrême des gaz d’échappement, connue sous le nom de température
d’entrée de la turbine HP, pouvant atteindre 1580◦C. Elles subissent en outre de fortes
contraintes mécaniques, notamment en raison de la force centrifuge résultant de leur
rotation autour de l’arbre HP. Les aubes résistent à ces conditions thermiques et
mécaniques intenses grâce à de multiples innovations, qui n’ont de sens que si des
contrôles stricts sont effectués lors de leur production. Parmi les méthodes de Contrôles
Non Destructifs (CND), la radiographie par rayons X se distingue par sa capacité
à imager la structure interne (complexe) de l’aube. Une image radiographique est
obtenue en exposant la pièce à inspecter à une source de rayons X. Les rayons émis
par la source sont atténués à différents niveaux en fonction du trajet qu’ils suivent en
traversant l’objet. Les intensités des rayons en sortie de pièce sont mesurées par un
détecteur afin d’obtenir une image 2D de l’échantillon montrant sa structure interne.
En vue de répondre aux impératifs de la production, le contrôle par radiographie se
doit d’être rapide, ce qui se traduit en l’acquisition et l’analyse par un opérateur d’un
nombre restreint d’images radiographiques de l’aube, typiquement une dizaine.

Dans ce cadre, le travail de thèse présenté dans ce manuscrit vise à développer
une méthode de CND fondée sur un nombre réduit d’images radiographiques, pour
l’identification et la caractérisation d’indications géométriques. De nombreux contrôles
sont effectués sur les aubes de turbine. Nous nous sommes ici limités, pour des raisons
pratiques, aux contrôles d’épaisseur de parois. Ce contrôle est primordial puisque les
imperfections d’épaisseur de parois peuvent nuire à l’intégrité des aubes lorsqu’elles
opèrent à des températures élevées, menaçant ainsi l’intégrité du moteur. Ainsi, nous
proposons de développer une méthode de CND pour le contrôle d’épaisseur de parois.
Le processus à développer vise à contourner les difficultés suivantes :

• le nombre limité de vues : cela implique l’utilisation d’une quantité réduite
d’informations sur la pièce inspectée.

• les phénomènes à l’origine de la formation des images radiographiques : la forma-
tion des images radiographiques indique qu’une attention particulière doit être
portée à l’interprétation des niveaux de gris observés. Pour chaque énergie des
photons, l’atténuation est dictée par la loi de Beer-Lambert. Mais le coefficient
d’absorption varie avec leur énergie. Ce phénomène est connu sous le nom de
durcissement du faisceau et entraîne une relation non-linéaire entre la valeur de
l’atténuation mesurée et l’épaisseur de matière traversée par le rayon. De plus,
en traversant la matière, un photon peut dévier de sa trajectoire (rectiligne) ini-
tiale suite à son interaction inélastique avec les électrons. Ce phénomène, connu
sous le nom de diffusion Compton, conduit à la détection d’un signal parasite
qui entraîne une réduction de contraste dans les images. Ces deux phénomènes
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concourent à invalider une vision purement “géométrique” de la formation des
radiographies, qui prévaut le plus souvent, y compris pour la reconstruction to-
mographique. Ils sont souvent négligés en tomographie, voire “estompés” après
reconstruction, mais ils sont critiques lorsque le contrôle est réalisé à partir d’un
nombre réduit d’images, à savoir une dizaine.

• la dépendance de l’opérateur : ceci appelle à un processus automatisé dans lequel
les données d’entrée correspondent aux images radiographiques observées (et
des informations complémentaires, comme mentionné ci-dessus), et les données
de sortie sont des marqueurs révélant les indications géométriques sur la pièce
(identification), et des mesures dimensionnelles précises (caractérisation).

• le biais de l’évaluation des mesures dimensionnelles 3D à partir d’images 2D :
cette problématique suggère que les mesures ne devraient pas être évaluées di-
rectement à partir des images, mais plutôt à partir d’un modèle en 3D de la
pièce inspectée.

En tenant compte de ces contraintes, nous avons conçu un processus de CND
consistant à créer un modèle 3D déformable de l’aube recalé à partir des images ob-
servées. Les cotes à contrôler sont mesurées sur le modèle recalé sur les projections. Ce
processus repose sur la Corrélation de Volumes Numériques fondée sur les Projections
(Projection-based Digital Volume Correlation, ou P-DVC). La P-DVC vise à minimiser
une fonction de coût faisant intervenir les résidus de projection, définis comme étant
les différences entre les images observées et celles simulées numériquement. À partir
des images radiographiques acquises représentant la pièce inspectée et de son modèle
CAO, le processus est défini par cinq étapes principales :

0. Analyse du bruit : une étape préliminaire de la procédure consiste à évaluer
le bruit polluant une image radiographique. Elle permet d’introduire une fonc-
tion de la P-DVC optimale vis-à-vis du bruit d’acquisition, et fournit une valeur
de référence (écart-type du bruit) pour l’interprétation des résidus de projection.
Les propriétés du bruit affectant une image de blanc ont d’abord été déterminées
(normalité, variance, corrélations spatiales), à partir desquelles celles du bruit af-
fectant une image radiographique ont été inférées et vérifiées expérimentalement.
Cette étape est détaillée au chapitre 2.

1. Affinement de la géométrie de projection : la simulation d’images ra-
diographiques requiert la définition de la géométrie de projection qui englobe la
géométrie du système d’acquisition (position relative de la source et du détecteur,
orientation du détecteur, etc.). Dans ces travaux, nous proposons d’affiner la
géométrie de projection par P-DVC. Cette étape est détaillée au chapitre 3.

2. Estimation du durcissement du faisceau : ce phénomène se traduit par une
relation non-linéaire entre l’atténuation et l’épaisseur de matière traversée par le
faisceau. L’estimation de cette relation permet la correction du durcissement de
faisceau, qui se réduit à un réencodage non-linéaire des niveaux de gris à l’aide
d’une fonction de correction (paramétrique). Dans ces travaux, nous proposons
d’identifier la fonction de correction, modélisée comme une fonction linéaire par
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morceaux, de manière itérative par P-DVC. Outre sa simplicité, une telle fonction
a l’avantage d’être un bon interpolant de la fonction à identifier, avec la propriété
que plus il y a de paramètres, meilleure est l’interpolation, sans perte de stabilité.
Cette étape est détaillée au chapitre 3.

3. Estimation de la diffusion Compton : le phénomène de diffusion entraîne la
mesure d’un signal parasite. Dans ces travaux, le signal du rayonnement diffusé
est modélisé comme le résultat de la convolution entre le signal primaire et un
noyau paramétrique à estimer, dont les paramètres sont identifiés itérativement
par P-DVC. La contribution de la diffusion Compton suggère que le noyau est
symétrique et en forme de cloche. Une superposition de fonctions gaussiennes
peut être choisie pour la décrire, de sorte que le noyau est modélisé comme une
somme pondérée de fonctions gaussiennes de largeurs différentes. Cette étape
est décrite au chapitre 3.

4. Déformation du modèle : pour mesurer les écarts de forme entre pièce idéale
et pièce imagée, la géométrie réelle de la pièce imagée doit être déduite des
images radiographiques. Cette inférence de la forme repose sur la définition
d’un modèle de déformation. Le modèle de déformation doit être suffisamment
riche pour représenter la variabilité de forme attendue, tout en comportant un
nombre minimal de paramètres pour assurer un meilleur conditionnement, et
donc une plus faible incertitude. Dans ces travaux, un modèle de déformation
parcimonieux mais représentatif est proposé. Il s’appuie sur le processus de fab-
rication des aubes de turbine et a été conçu en collaboration avec des experts
en CND des aubes de turbine, familiers des imperfections dimensionnelles ren-
contrées sur les lignes de production. Il consiste en la partition de la pièce en
plusieurs sous-parties : une représentant la surface externe, cinq représentant
les différents éléments du noyau céramique décrivant la géométrie interne. Leur
cinématique relative est donnée par un mouvement de corps-rigide, accompagné
d’un facteur d’échelle pour tenir compte du retrait thermique. Cette étape est
détaillée au chapitre 4.

Il convient de noter qu’à l’issue de l’étape 3, les résidus de projection obtenus en
utilisant le modèle nominal de l’aube (i.e. son modèle CAO) contiennent les écarts
géométriques entre la pièce inspectée et son modèle idéal. Ces écarts peuvent être mis
en évidence en comparant les résidus à la valeur de référence définissant le niveau de
bruit, introduite à l’étape 0.

La fiabilité de l’approche pour mesurer l’épaisseur de paroi d’une aube de turbine
est évaluée par une étude de répétabilité. Malgré les erreurs du modèle, le modèle
corrigé est comparable à la vérité terrain donnée par le tomogramme. Cette similitude
de forme implique des mesures d’épaisseur de paroi similaires, qui peuvent être affinées
en corrigeant les erreurs de modèle.

Des pistes de réflexion pour améliorer la précision des mesures sont envisagées,
dans l’optique de trouver une alternative économiquement plus intéressante que la
tomographie et plus riche et précise que les contrôles ultrasons actuellement opérés
sur les aubes.
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Titre: Estimation de paramètres de forme d’un modèle 3D à partir d’images radiographiques multi-vues
Mots clés: Imagerie Rayons X, Métrologie, Contrôle Non Destructif, Modélisation 3D

Résumé: Les aubes de turbine haute pression des
moteurs d’avion sont soumises à des conditions
thermiques et mécaniques extrêmes. Elles y ré-
sistent grâce à de multiples innovations, qui n’ont
de sens que si des contrôles stricts sont effectués
lors de leur production. Parmi les méthodes de
Contrôles Non Destructifs (CND), la radiographie
par rayons X se distingue par sa capacité à im-
ager la structure interne (complexe) de l’aube. En
vue de répondre aux impératifs de la production,
ce contrôle se doit d’être rapide, ce qui se traduit
en l’acquisition et l’analyse d’un nombre restreint
d’images radiographiques de l’aube, typiquement
une dizaine. Dans ce cadre, le travail de thèse
présenté dans ce manuscrit vise à développer une
méthode de CND fondée sur un nombre réduit
d’images radiographiques, pour l’identification et
la caractérisation d’indications géométriques.

La démarche choisie pour répondre à cette
problématique consiste à créer un modèle 3D dé-
formable de l’aube recalé à partir des images ob-
servées en utilisant une approche Projection-based
Digital Volume Correlation (P-DVC). Les cotes à
contrôler sont mesurées sur le modèle recalé sur
les projections. La P-DVC repose sur la minimi-
sation d’une fonction de coût faisant intervenir
les résidus de projection, définis comme étant les
différences entre les images observées et celles
simulées numériquement. Dans un premier temps,
une étude sur le bruit affectant une image ra-
diographique a été conduite. Les propriétés du
bruit affectant une image de blanc ont d’abord été
déterminées (normalité, variance, corrélations spa-
tiales), à partir desquelles celles du bruit affectant
une image radiographique ont été inférées et véri-
fiées expérimentalement. Cela permet d’obtenir
une mesure de référence pour interpréter les résidus
de projection (niveau de bruit), et d’introduire
une fonction de coût optimale vis-à-vis du bruit
d’acquisition. En outre, les phénomènes physiques

intervenant lors de la formation des images radio-
graphiques se doivent d’être identifiés et correcte-
ment étalonnés pour simuler des images radio-
graphiques réalistes, i.e. comparables à celles ob-
servées. Le durcissement du faisceau et la diffusion
Compton sont les deux mécanismes physiques prin-
cipaux qui entravent l’analyse quantitative des im-
ages. Des modèles paramétriques pour reproduire
ces phénomènes sur les images simulées ont été
proposés. Les paramètres associés sont identifiés
de manière itérative par P-DVC. Les résidus de pro-
jection obtenus en utilisant le modèle nominal de
l’aube (i.e. son modèle CAO) sont exploités pour
identifier des indications géométriques. Leur quan-
tification s’appuie sur la déformation de ce mod-
èle, pour ajuster le modèle recalé susmentionné.
Le modèle de déformation doit être suffisamment
riche pour représenter la variabilité de forme at-
tendue, tout en comportant un nombre minimal
de paramètres pour assurer un meilleur condition-
nement, et donc une plus faible incertitude. Un
modèle inspiré du procédé de fabrication de l’aube
a été construit. Il consiste en la partition de la
pièce en plusieurs sous-parties : une représentant la
surface externe, cinq représentant les différents élé-
ments du noyau céramique décrivant la géométrie
interne. Leur cinématique relative est donnée par
un mouvement de corps rigide, accompagné d’un
facteur d’échelle pour tenir compte du retrait ther-
mique. Les mesures d’épaisseur de paroi de l’aube
calculées sur le modèle recalé sont proches de celles
calculées sur un volume tomographique. Des pistes
de réflexion pour améliorer la précision des mesures
sont envisagées, dans l’optique de trouver une al-
ternative économiquement plus intéressante que la
tomographie et plus riche que les contrôles ultra-
sons actuellement opérés sur les aubes. En outre,
le caractère générique de la méthode permet son
application au CND d’autres pièces métalliques.
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Abstract: High pressure turbine blades in aircraft
engines are exposed to extreme thermal and me-
chanical conditions. They withstand them through
multiple innovations, which demand strict controls
to be carried out during their production. Among
the Non Destructive Evaluation (NDE) methods,
X-ray radiography offers the ability to image the in-
ternal (complex) structure of the blade. To meet
the production requirements, this control must be
fast, which translates into the acquisition and anal-
ysis of a limited number of radiographic images
of the blade, typically around ten. In this con-
text, the thesis work aims at developing an NDE
method based on a limited number of radiographic
images, for the identification and characterization
of geometrical indications.

The selected strategy to address this challenge
consists in generating a deformable 3D model of
the blade registered onto the observed images us-
ing a Projection-based Digital Volume Correlation
(P-DVC) approach. The dimensions to be checked
are calculated on the registered model. The P-
DVC relies on the minimization of a cost function
involving the projection residuals, defined as the
differences between observed and numerically sim-
ulated images. First, a study of the noise present
in radiographic images has been conducted. The
properties of the noise polluting a flat-field image
were first determined (normality, variance, spatial
correlations), from which those of the noise of a ra-
diographic image were inferred and verified exper-
imentally. This provides a reference measurement
to interpret the projection residuals (noise level),
and to introduce a cost function optimal for the ac-
quisition noise. Additionally, the physical phenom-
ena involved in the formation of radiographic im-
ages must be identified and correctly calibrated to

simulate realistic radiographic images, comparable
to those observed. Beam Hardening and Compton
scattering are the two main physical mechanisms
that impede quantitative image analysis. Paramet-
ric models to reproduce these phenomena on sim-
ulated images have been proposed. The associ-
ated parameters are iteratively identified through
P-DVC. The projection residuals obtained using
the nominal model of the blade (i.e. its CAD
model) are processed to identify geometric indica-
tions. Their characterization is achieved through
the deformation of this model, so as to generate
the above-mentioned corrected model. This defor-
mation implies the design of a deformation model,
which needs to be rich enough to represent the ex-
pected shape variability while containing a reason-
able (i.e. small) number of parameters to ensure
a good conditioning, and hence a low uncertainty.
A model derived from the manufacturing process
of the blade has been designed. It consists in the
partition of the part into multiple subparts: one
representing the external surface, five representing
the different elements of the ceramic core describ-
ing the intern geometry. Their relative kinematics
is given by a rigid-body motion, plus a scale factor
to account for thermal shrinkage. The wall thick-
ness measurements of the blade calculated on the
registered model match well those calculated on
a tomographic volume. Further reflections for im-
proving the precision of the measurements are con-
sidered, with a view to finding an alternative eco-
nomically more interesting than tomography and
richer than the ultrasound controls currently car-
ried out on the blades. Additionally, the generic
nature of the method allows its application to the
NDE of other metallic parts.


	Introduction
	Context
	NDE methods
	Ultrasound control
	Radiographic imaging

	Principle of X-ray imaging
	X-ray generation
	Photon–matter interactions

	Objectives and approach
	Developed approach
	Structure of the dissertation


	Noise quantification
	Description of a flat-field image
	Space-time decomposition
	Source-detector dissociation

	Noise in a flat-field image
	Variance
	Normality
	White noise

	Noise in a radiographic image
	Variance
	Normality
	White noise

	Conclusion

	Definition of the projective model
	Introduction
	Problems addressed
	Projection geometry
	Beam Hardening
	Compton scattering

	Calibration of parameters
	Case study
	Results and discussions
	Conclusion

	Model-based measurement method
	Introduction
	Methods
	Wall thickness metrology
	Identification of transformation parameters
	Deformable model of a turbine blade
	Repeatability study

	Results and discussion
	Conclusion

	Conclusion and perspectives
	Partially investigated work
	Local geometrical indications
	Improved projection views

	Perspectives
	Model
	Procedure speed up

	Outlook of NDE

	Appendices
	Résumé étendu en français


