
HAL Id: tel-04097552
https://theses.hal.science/tel-04097552v1

Submitted on 15 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Black-box code analysis for reverse engineering through
constraint acquisition and program synthesis

Grégoire Menguy

To cite this version:
Grégoire Menguy. Black-box code analysis for reverse engineering through constraint acquisition
and program synthesis. Artificial Intelligence [cs.AI]. Université Paris-Saclay, 2023. English. �NNT :
2023UPASG023�. �tel-04097552�

https://theses.hal.science/tel-04097552v1
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

023
UPA

SG0
23

Black-box code analysis for reverseengineering through constraintacquisition and program synthesisAnalyse de code en boîte noire pour la rétro-ingénierievia acquisition de contraintes et synthèse de code

Thèse de doctorat de l’université Paris-Saclay
École doctorale n◦ 580, Sciences et Technologies de l’Information et de la Communication (STIC)Spécialité de doctorat : InformatiqueGraduate School : Informatique et sciences du numérique. Référent : Faculté des sciences d’Orsay

Thèse préparée dans l’unité de recherche Institut LIST (Université Paris-Saclay, CEA),sous la direction de Julien SIGNOLES, ingénieur-chercheur, le co-encadrement de Sébastien BARDIN,ingénieur-chercheur, le co-encadrement de Nadjib LAZAAR, maitre de conférence

Thèse soutenue à Paris-Saclay, le 14 mars 2023, par

Grégoire MENGUY

Composition du jury
Membres du jury avec voix délibérative
Ludovic Mé PrésidentProfesseur, Inria, Université de RennesValérie Viêt Triêm Tông Rapporteure & ExaminatriceProfesseur, CentraleSupelec, Université de RennesCharlotte Truchet Rapporteure & ExaminatriceMaitre de conférence, Université de NantesNathanaël Fijalkow ExaminateurChargé de recherche, CNRS, Université de Bordeaux

2

Remerciements – Acknowledgments

Remerciements. Je tiens à remercier mes encadrants Julien Signoles, Sé-
bastien Bardin, Nadjib Lazaar et enfin Arnaud Gotlieb pour leur soutien et
leur disponibilité. Je remercie tout particulièrement Sébastien Bardin pour
m’avoir initié au monde de la recherche et permis de réaliser des projets am-
bitieux et passionnants, Nadjib Lazaar pour son expertise en machine learn-
ing, Arnaud Gotlieb pour la rigueur apportée tout au long de la thèse, et enfin
Julien Signoles pour ses conseils lors de la rédaction de ce manuscrit.

J’exprime ma gratitude à Valérie Viêt Triêm Tông, Charlotte Truchet, Lu-
dovic Mé et Nathanaël Fijalkow pour avoir accepté de faire partie de mon jury.

J’adresse tous mes remerciements au CEA LIST et notamment au LSL
pour m’avoir offert un cadre de travail motivant et convivial. Notamment, je
tiens à remercier Lesly-Ann Daniel, Guillaume Girol et Olivier Nicole pour
leurs retours constructifs sur mes articles, Adrien Gaonac’h pour nos discus-
sions au bureau, qu’elles soient scientifiques ou non, et Frédérique Descreaux
pour son efficacité au niveau administratif.

Enfin, je remercie ma famille, particulièrement mes parents qui m’ont ac-
compagnés pendant toutes mes études, et ma compagne pour son soutien
(notamment pendant le confinement), son écoute et ses retours constructifs
pendant ces 3 années.

Pour conclure, je remercie tous ceux qui ont rendu cette thèse possible.

Acknowledgments. First, I thank my Ph.D. advisors: Julien Signoles,
Sébastien Bardin, Nadjib Lazaar, and Arnaud Gotlieb. Particularly, I thank
Sébastien Bardin, who introduced me to academic research and allowed me to
work on ambitious and fascinating projects, Nadjib Lazaar for his machine-
learning expertise, Arnaud Gotlieb for his rigor during my thesis, and finally,
Julien Signoles for his advice.

I thank Valérie Viêt Triêm Tông, Charlotte Truchet, Ludovic Mé, and
Nathanaël Fijalkow for being part of my jury.

Thanks to the CEA LIST, especially the LSL, for its excellent, motivating,
and friendly atmosphere. Thanks to Lesly-Ann Daniel, Guillaume Girol, and
Olivier Nicole for checking my papers before submission, to Adrien Gaonac’h
for all our discussions, and to Frédérique Descreaux for her help in adminis-
trative procedures.

My thoughts go out to my family, particularly to my parents, who sup-
ported me during all my studies, and to my partner who helped me during
the Ph.D. (especially during quarantine) and took the time to listen to my
presentations, always giving helpful advice.

Finally, I thank anyone who made this Ph.D. possible.

Contents

Remerciements – Acknowledgments 2

Résumé long . 5

Abstract . 6

I Introduction 7

1 Introduction 9

1.1 Context . 9

1.2 Problematic . 10

1.3 Challenges . 11

1.4 Contributions . 13

1.5 Outline . 17

2 Background 19

2.1 Program semantics . 19

2.2 Automated program analysis 22

2.3 Binary-level code analysis . 26

2.4 Program synthesis . 28

2.5 Logic and constraints to specify code 30

II Contributions 35

3 Synthesizing function contracts 37

3.1 Introduction . 37

3.2 Background . 39

3.3 Motivation . 43

3.4 Precondition Acquisition . 45

3.5 PreCA for Memory-oriented Preconditions 48

3.6 Experimental Evaluation . 50

3.7 Related Work . 53

3.8 Conclusion . 53

4 Synthesizing code semantics 55

3

4 CONTENTS

4.1 Introduction . 55
4.2 Background . 58
4.3 Motivation . 60
4.4 Understand Black-box deobfuscation 62
4.5 Improve Black-box deobfuscation 69
4.6 Comparison with other approaches 76
4.7 Deobfuscation with Xyntia 79
4.8 Counter Black-box deobfuscation 81
4.9 Related Work . 86
4.10 Conclusion . 87

III Conclusion and Future Work 89

5 Conclusion and Future Work 91
5.1 Summary of our Contributions 91
5.2 Perspectives . 92

Bibliography 97

CONTENTS 5

Résumé long

Les logiciels deviennent de plus en plus grands et complexes. Ainsi, certaines tâches,
pourtant cruciales, telles que le test et la vérification de code ou plus généralement
la compréhension de code, sont de plus en plus difficiles à réaliser pour un humain.
D’où la nécessité de développer des outils d’analyse de code automatiques.

L’analyse de code automatique permet de prouver des propriétés sur le code,
comme la correction ou l’incorrection. Plus généralement, cela permet de mieux com-
prendre les programmes. Ces méthodes sont usuellement en bôıte blanche, i.e., elles
utilisent la syntaxe du code pour déduire ses propriétés via des raisonnements logiques.
Ces méthodes sont très efficaces et ont été notamment utilisées par Microsoft, Face-
book et Airbus. Néanmoins, elles présentent certaines limitations. Tout d’abord, elles
nécessitent le code source qui n’est pas toujours accessible (ex: codes propriétaires,
maliciels). De plus, la taille et la complexité des structures manipulées impactent
drastiquement leur efficacité. Enfin, elles sont fortement impactées par la complexité
syntaxique, pouvant être accentuée par des passes d’optimisation (améliorant la ra-
pidité du code) et d’obfuscation (protégeant la propriété intellectuelle du code).

Cette thèse explore comment les méthodes en bôıte noire peuvent inférer des
propriétés utiles pour la rétro-ingénierie et la compréhension de code. Ces approches
sont orthogonales aux approches en bôıte blanche. Elles ne se reposent pas sur la
syntaxe mais sur des exécutions du code et infèrent les propriétés voulues via des
méthodes d’intelligence artificielle (IA) et notamment du machine learning (ML).
Ainsi, elles n’ont pas besoin du code source mais uniquement du binaire. Elles peuvent
analyser des programmes grands et complexes. De plus, elles ne sont pas impactées
par la complexité syntaxique du code. Nous nous concentrons sur deux scénarios.

En premier lieu, nous étudions le problème de l’inférence de contrats de fonctions
qui a pour objectif d’apprendre sur quelles entrées une fonction peut être exécutée
pour obtenir les sorties souhaitées. Nous adaptons l’acquisition de contraintes, en
résolvant une de ses principales limitations: la dépendance à un être humain. En
est ressortie notre première contribution, PreCA, qui peut-être utilisée par des
développeurs pour comprendre du code inconnu ou par des outils de vérification
pour prouver la (in)correction du code. PreCA est la première approche totalement
bôıte noire et offrant des garanties de correction claires, le rendant particulièrement
approprié pour l’aide au développement et la vérification.

Nous étudions ensuite le problème de la déobfuscation de code, qui vise à sim-
plifier du code obfusqué. Notre seconde contribution, Xyntia, synthétise via des S-
métaheuristiques une version compréhensible de blocs de code hautement obfusqués.
Xyntia améliore grandement l’état de l’art. Il est plus robuste et plus rapide que les
approches précédentes, qualités essentielles pour outrepasser le plus de protections
possibles et être utilisable sur du code hautement obfusqué. De plus, nous proposons
les deux premières protections efficaces contre la déobfuscation en bôıte noire.

Tout au long de cette thèse, nous montrons le potentiel des méthodes en bôıtes
noire, liant l’IA et l’analyse de code. Nous pensons que ces travaux pourraient ouvrir
de nouvelles directions de recherche pour l’analyse de code et l’IA. En effet, de nou-
veaux algorithmes d’IA pourraient être développés pour aider les analyses de code.
Enfin, l’IA pourrait profiter de l’analyse de code, offrant un nouveau cas d’usage avec
de nouvelles exigences et nécessitant ainsi de nouveaux compromis.

6 CONTENTS

Abstract

Software always becomes larger and more complex, making crucial tasks such as
code testing, verification, or code understanding more and more difficult for humans.
Hence the need for tools to reason about code automatically.

Automated program analysis enables to prove code properties like correctness
or incorrectness and more generally helps to understand software. Such methods
are usually white-box, i.e., they rely on the code syntax to deduce code properties
through logical reasoning. While white-box methods have proven to be very powerful,
being used for example at Microsoft, Facebook, and Airbus, they also suffer from
some limitations. First, they need the source code, which is not always available
(e.g., proprietary software, malware). Second, the code size and the complexity of
the data structures manipulated degrade their efficiency drastically. Third, they
are highly impacted by syntactic code complexity, which optimizations (improving
code speed and memory consumption) and obfuscation (impeding end-users from
extracting intellectual property contained in the code) can amplify.

This thesis explores how black-box code analysis can infer valuable properties
for reverse engineering and code understanding through data-driven learning. These
approaches are completely orthogonal to white-box methods, as they do not use the
code syntax but rely on executions to infer code properties using artificial intelligence
(AI), especially machine learning (ML). As such, they do not need the source code
(only the binary), can handle large and complex code, and are not impacted by
syntactic code complexity. We focus, especially on two major application scenarios.

First, we consider the function contracts inference problem, which aims to infer
over which inputs a code function can be executed to get good behaviors only. We
adapt and extend the constraint acquisition learning framework, notably solving one
of its major flaws: the dependency on a human user. It leads to our first contribution,
PreCA, which can be used by developers to understand others’ code like propri-
etary libraries or by automated program analyzers to verify software (in)correctness.
PreCA is the first completely black-box approach enjoying clear theoretical guaran-
tees. It makes PreCA especially suitable for development and verification uses.

Second, we consider the deobfuscation problem, which aims to simplify obfuscated
code. Our second contribution, named Xyntia, synthesizes code block semantics
through S-metaheuristics to offer a simple and understandable version of the code.
Xyntia significantly improves the state-of-the-art, being a lot more robust and faster
than prior work, which is crucial to bypass as many protections as possible and be
usable over highly obfuscated codes. In addition, we propose the two first protections
efficiently protecting against black-box deobfuscation.

Throughout this thesis, we show the potential of black-box methods, connecting

AI to program analysis. We believe it opens the way for new research directions in the

program analysis and AI communities. In the former community, new AI algorithms

could be adapted to improve analyzers. In the later community, AI could benefit

from the program analysis application scenario, which offers new requirements, hence

new algorithm trade-offs.

Part I

Introduction

7

Chapter 1

Introduction

1.1 Context

Software is omnipresent in all areas from energy, transport, health, or defense.
It brings many safety [1] and security [2] challenges, from software verification
[3] to malware analysis [4]. It is crucial to handle them as security flaws can
have huge economic [5] and geopolitical impacts [6].

Still, software is becoming always larger and more complex. In several
areas, we observe exponential growth in software size [7]. Moreover, soft-
ware usually relies on third-party, uncontrolled, and often not formally doc-
umented code. They can also combine different languages (e.g., 28% of the
top C projects on GitHub contain inline assembly, according to Rigger et al.
[8]) or integrate proprietary libraries whose source code is not available. All
these new trends make crucial tasks such as code testing, verification, or code
understanding more and more difficult for humans. For example, Vahabzadeh
et al. [9] show that half of the 211 crawled projects from the Apache Software
Foundation contains bugs in their test suite.

On top of this observation, software engineering pipelines regularly inte-
grate optimization [10] or obfuscation [11, 12, 13] passes. Code optimization
(resp., obfuscation) translates a program P to an equivalent but faster (resp.,
harder to understand) program P ′. Such methods are usual in many contexts
like in Android applications, where 50% of most popular apps are obfuscated
according to Wermke and al. [14], web development [15], military code [16]
and video games [17]. However, even if they conserve code semantics, they
also impact code readability. For example, the function clean in Listing 1.1
can be obfuscated as presented in Listing 1.2. Here, clean and obfuscated are
semantically equivalent, but clean is simpler to understand. Such transforma-
tions make manual program analysis even harder. Hence the need for robust
tools to reason about code automatically and scale to big and complex code.

Program analysis. Automated program analysis enables to prove code
properties like correctness, incorrectness, or more generally to help under-

9

10 CHAPTER 1. INTRODUCTION

1 int clean(int x, int y)

2 {

3 int ret = x-y;

4 return ret;

5 }

Listing 1.1: Clean toy example.

1 int obfuscated(int x, int y)

2 {

3 int ret = (x^-y)+2*(x&-y);

4 return ret;

5 }

Listing 1.2: Obfuscated toy example.

stand software. Different approaches exist like abstract interpretation [18, 19],
model checking [20, 21] or symbolic execution [22, 23, 24, 25]. Such methods
are white-box, i.e., they rely on the code syntax to deduce code properties
through logical reasoning. While white-box methods have been proven to be
very powerful, being used for example at Microsoft [26], Facebook [27], Ama-
zon [28] and Airbus [29], they also suffer from some limitations. First, they
need the source code, which is not always available (e.g., proprietary soft-
ware, malware). Second, the code size and the complexity of manipulated
data structures degrade their efficiency drastically. Third, they are highly
impacted by syntactic code complexity, which optimizations and obfuscation
can amplify. Such limitations can make these methods unusable. For example,
trying to understand what obfuscated returns through symbolic execution [25,
30] would answer (x⊕−y)+2(x∧−y). This is not understandable by a human
user and complementary simplification steps should be added to hopefully in-
fer x − y. However, this can be even worst: analysis may never terminate or
infer nothing [31, 32, 33].

Artificial intelligence. Meanwhile, artificial intelligence (AI) methods, in
particular machine learning, have made strong progress enabling to solve very
complex problems quickly. Constraint programming [34, 35] is a program-
ming paradigm that only asks a developer to model problems, then is used by
dedicated solvers to answer questions about the model. Constraint program-
ming has notably been successfully integrated in many industrial processes
[36, 37]. Search algorithms also brought strong success in many areas. In
board games, AlphaGo [38] successfully beat the Go world champion Ke Jie
in 2017. This was a strong achievement as Go has no clear heuristics to guide
the algorithms. Another great success of AI is program synthesis, especially,
programming by example, which helps a non-expert user to generate code au-
tomatically. A great achievement has been the integration of Flash Fill [39] in
Microsoft Excel, which enables to synthesize functions manipulating strings.

1.2 Problematic

This thesis explores how AI-based black-box code analysis can derive valuable
properties for reverse engineering and code understanding through inference.
These are completely orthogonal to white-box (deductive) methods. Indeed,

1.3. CHALLENGES 11

they do not use the code syntax but collect a representative set of code behav-
iors by monitoring code executions. From such observed behaviors, black-box
methods infer useful code properties using artificial intelligence (AI) and ma-
chine learning (ML). As such, they do not need the source code (only the bi-
nary) and can handle big and complex code. Moreover, they are not impacted
by syntactic code complexity i.e., all code transformations that preserve code
semantics do not impact black-box methods. Thus, black-box approaches are
very promising to analyze highly optimized and obfuscated software.

Scenarios. We especially focus on two major application scenarios:

• Function contract inference. Contracts specify on which inputs a code
function can be executed to get good behaviors only. Giving such con-
tracts was shown to help code understanding and thus the full develop-
ment process [40]. They are especially useful in contexts where the code
is proprietary and thus not available at the source level. Contracts are
not only useful for code understanding but also for automated program
analyzers, like Frama-C [41], OpenJML [42], KeY [43], or Why3 [44], to
verify software correctness. Our goal is to design a new function con-
tracts inference method. It should be completely black-box to be usable
on proprietary software, highly optimized code, or multiple languages
contexts;

• Deobfuscation. In many contexts from military development [16] to video
games [17], the software contains intellectual property that can be stolen
by the end-users. As such, the software itself must be protected. To do
so, the code is obfuscated, i.e., translated to an equivalent but more
complex program. On the contrary, deobfuscation aims to simplify ob-
fuscated code to help reverse engineering. Designing efficient deobfus-
cation methods is crucial. First, it enables to assess the robustness of
obfuscation used by companies. Second, it helps fight against cyber-
crime. Especially, because it eases malware analysis. Our goal is to
design a new deobfuscation method, completely black-box to be com-
pletely insensible to semantic preserving code transformations and so
bypass state-of-the-art protections.

1.3 Challenges

Black-box code analysis enables to bypass many limitations of white-box anal-
ysis. It is insensible to syntactic code complexity and as such is not impacted
by optimization or obfuscation passes. It is very general and enables to han-
dle big, complex, and multi-language software. However, they also come with
challenges that must be tackled to make them usable in practical applications.

First, we aim to analyze software whose source code is not available (mal-
ware, proprietary libraries). Thus, we cannot rely on prior user knowledge

12 CHAPTER 1. INTRODUCTION

as in our context, the code may be completely unknown to them. Especially,
we cannot assume that the users can provide a representative set of inputs to
exercise the code. Hence our methods should be fully automated.

Challenge 1 Analysis should be fully automated.

Second, in our black-box context, the only available information is ob-
served input-output behaviors. Relying only on executions enables to be com-
pletely immune to syntactic code complexity introduced by obfuscation and
optimization. Still, this is a major challenge to be able to infer useful proper-
ties from such sparse information.

Challenge 2 Few information should be needed by our analysis methods.

Third, proposed methods express properties in a given language. To be
usable in practical contexts, from code understanding to deobfuscation, they
must be robust i.e., able to infer a wide variety of properties of interest quickly.
Of course, what “quick” means depends on the usage. For code understanding,
the human-in-the-loop process is usual. Thus, inference methods must be
fast enough to be used in such human-in-the-loop scenarios where the user
leverages our methods to analyze local and complex code sections.

Challenge 3 Analysis must be robust and fast enough for human-in-the-loop
scenarios.

Finally, the results of our black-box analysis are used to better understand
code or verify software. As such, they must offer, if possible, clear correctness
guarantees or, at least, return correct results with high probability.

Challenge 4 Inference method should enjoy clear correctness guarantees.

Of course, we would like to solve all these challenges at once. However,
inferring useful properties in the black-box context is very difficult. Indeed,
the search space is huge and cannot be adapted by observing the code syn-
tax, which is not available. Just as white-box methods trade soundness or
completeness for efficiency [18, 45, 22, 23], black-box methods must trade ro-
bustness or correctness for practical efficiency. Depending on the use case,
we prefer to be more robust while in other cases clear correctness guarantees
are crucial. Such considerations highly influence the choice of inference algo-
rithms to use in order to extract information from code executions. This thesis
focuses on two main scenarios: function contract inference and deobfuscation.
The following describes their specific features and the challenges induced.

1.3.1 Function contract inference

Writing software is a tedious task needing a full understanding of programming
languages, but also of libraries used. However, the available documentation is
often not precise enough (if not even deprecated or missing). Function con-
tracts enable solving these issues by specifying function behaviors formally.

1.4. CONTRIBUTIONS 13

For example, consider that a developer wonders over which inputs clean and
obfuscated can be called to get a return value equal to 0. If we could design
function contract inference tools, we would be able to infer that clean and
obfuscated must be called with inputs s.t., x = y. Such a piece of information
is really helpful for code understanding but it is not limited to it. Indeed,
function contracts also help to prove software. This double usage (during the
development and verification processes) asks for clear correctness guarantees.
Indeed, if inferred function contracts are incorrect, developers could write un-
safe and insecure code, while code verification could generate incorrect proofs.
Thus, special care should be taken in Challenge 4.

1.3.2 Deobfuscation

The software contains intellectual property like secrets, cryptographic keys,
or algorithms. Such valuable assets can be extracted by a malicious user.
To impede reverse engineering the code, obfuscation methods are the only
solution for now. Obfuscation will translate the clean version of the code to
a very complex one that makes analysis very hard. For example, arithmetic
expressions can be protected just like in Listing 1.2, useless code can be added
or data (e.g., passwords, keys) can be encoded.

Thus, deobfuscation methods should be able to handle such excess of com-
plexity. While the correctness of deobfuscation methods is important – the
result will be used by a reverse engineer – it is less determining than for func-
tion contract inference. However, speed and robustness (Challenge 3) are
crucial to be applied to many different codes and bypass a lot of protections.
Otherwise, marginal protection changes could impede deobfuscation. In the
black-box setting, the deobfuscator tries to infer the semantics of code blocks
in an understandable format. Thus, being robust means handling a great
variety of code quickly, not only simple ones.

1.4 Contributions

We devise new black-box AI-based code analysis methods to help reverse engi-
neering and code understanding. They do not need the source code, but only
the binary. Indeed, they deduce code properties by monitoring only code ex-
ecutions. Being black-box, they are not impacted by semantic preserving code
transformations like state-of-the-art obfuscation and optimization methods.

14 CHAPTER 1. INTRODUCTION

Contributions. This thesis makes the following contributions:

• We present different design choices adapted to each scenario. As seen
previously, distinct constraints can be induced by the application sce-
narios. This thesis demonstrates that black-box analysis can be applied
to distinct scenarios leading to different strengths and limits. It shows
that the choice of the inference algorithm is crucial. Especially, a bal-
ance should be found to propose methods adapted to an application and
its constraints. Thereby, it relies on active constraint acquisition to infer
function contracts with clear correctness guarantees. For deobfuscation,
however, it uses search-based algorithms to focus on robustness;

• We propose the first black-box function contract inference method based
on constraint acquisition (Chapter 3).

– This is the first application of constraint acquisition (a learning
framework from constraint programming) for program analysis. It
offers a new application scenario with new specific constraints. Es-
pecially, it enables to remove the human user from the learning
loop and replaces it with an oracle, solving thereby constraint ac-
quisition main flaw.

– We extend the usual constraint acquisition framework. We espe-
cially benefit from our application context (program analysis) to
devise new extensions improving learning speed.

– It leads to our new framework, named PreCA, the first black-
box contract inference method with clear correctness guarantees.
If PreCA language is expressive enough to represent the target
contract, then we are sure to infer it;

• We propose a new efficient black-box deobfuscation method (Chapter 4)

– We deepen the understanding of black-box deobfuscation. Espe-
cially, we dig into the previous MCTS-based black-box deobfusca-
tor to assess and explain its strengths and weaknesses.

– We propose Xyntia a new black-box deobfuscation method that
solves previous approach flaws. We see the deobfuscation problem
as an optimization one and advocate for the use of S-metaheuristics.
Compared to prior works, Xyntia is a lot faster and more robust,
i.e., able to deobfuscate semantically complex expressions. Xyn-
tia also outperforms tested white-box approaches, based on rewrit-
ing rules, and grey-box ones, which combine white- and black-box
views.

– Finally, we propose the two first protections efficient against black-
box deobfuscation. They locally increase code semantic complexity
instead of syntactic one.

1.4. CONTRIBUTIONS 15

Throughout this thesis, we show the potential of black-box methods, con-
necting AI to program analysis. We believe it could pave the way for new
research directions in program analysis and AI communities. In the former
community, new AI algorithms could be adapted to improve analyzers. In
the later community, AI could benefit from the program analysis application
scenario, which offers new requirements, hence new algorithm trade-offs.

1.4.1 Secondary contributions

Publications. The work presented in Chapters 3 and 4 have been published
in the following top tier conferences:

• Search-Based Local Black-Box Deobfuscation: Understand, Improve and
Mitigate, Grégoire Menguy, Sébastien Bardin, Richard Bonichon and
Cauim de Souza Lima. Published in the proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security (CCS).

• Automated Program Analysis: Revisiting Precondition Inference through
Constraint Acquisition, Grégoire Menguy, Sébastien Bardin, Nadjib Lazaar,
Arnaud Gotlieb. Published in the proceedings of the 31st International
Joint Conference on Artificial Intelligence and the 25th European Con-
ference on Artificial Intelligence (IJCAI-ECAI).

Code and artifacts. All code and artifacts have been released:

• The Xyntia framework is included in the open-source Binsec frame-
work. Artifacts are available at https://zenodo.org/record/5094898#
.YO2UchMzbSw.

• The PreCA framework is included in the open-source Conacq frame-
work. Artifacts are available at https://zenodo.org/record/6513522#
.YnD1GnVfjmE.

Research talks. Published works have also been presented in:

• International invitation based seminars:

– Schloss Dagstuhl – Leibniz Center for Informatics
Seminar entitled “Machine Learning and Logical Reasoning: The
New Frontier”, which aimed to foster discussions accross the ma-
chine learning and logic communities;

• International workshops:

16 CHAPTER 1. INTRODUCTION

– Machine Learning for Program Analysis (MLPA) 2020
Workshop co-localized with the IJCAI 2020 conference, which aims
to encourage new discussions between the machine learning and
program analysis communities;

– 6th Franco-Japanese Cybersecurity Workshop
Workshop organized by Inria, which aims to help exchanges be-
tween French and Japanese researchers working on cybersecurity;

– KLEE workshop 2022
Workshop organized by the by the Software Reliability Group at
Imperial College London and specialized on symbolic execution and
related areas;

• National conferences:

– Conference on Artificial Intelligence and Defense (CAID)
2020 and 2021
Conference co-located with the European Cyber Week (ECW) and
focused on the use of artificial intelligence for military applications;

– Forum International de la Cybersécurité (FIC) 2022
Europe’s leading industrial forum on digital security and trust is-
sues;

• National seminars:

– SoSySec seminar
Cybersecurity seminar co-organised by the Institut national de recherche
en informatique et en automatique (Inria) and Direction Générale
de l’Armement (DGA);

– 2022 Annual Meeting of the WG “Formal Methods for Se-
curity”
Meeting organized by the Centre national de la recherche scien-
tifique (CNRS) and focused on formal methods for security;

– Rendez-Vous de la Recherche et de l’Enseignement de la
Sécurité des Systèmes d’Information (RESSI) 2022
Meeting organized by the Centre national de la recherche scien-
tifique (CNRS) and focused on security

• Internal seminars:

– Laboratoire d’Informatique, de Robotique et de Microélectronique
de Montpellier (LIRMM)
Seminar organised by the Coconut team from the LIRMM and spe-
cialized in artificial intelligence, especially constraint programming
and constraint acquisition;

1.5. OUTLINE 17

– Simula Research Laboratory
Norwegian research institute;

– Quarkslab
French company focused on software analysis for security;

– Emproof
Company founded at the leading IT-security Horst-Görtz Institute
for IT-Sicherheit (HGI) in Bochum and specialized on code obfus-
cation for embeded systems.

1.5 Outline

This thesis is organized as follows:

• Chapter 2 introduces the needed background to understand Chapters 3
and 4. It presents automated program analysis concepts from code se-
mantics (Section 2.1) to symbolic execution and abstract interpretation
(Section 2.2.1). Notably, it shows challenges induced by automatic static
analysis and introduces dynamic analysis in Section 2.2.2. Section 2.3
presents the additional challenges of binary analysis and Section 2.3.3
shows that another layer of complexity can be added with obfuscation.
Finally, Section 2.4 presents program and specification synthesis, which
shapes the basis of both PreCA and Xyntia;

• Chapter 3 presents our first contribution: PreCA – for Precondition
Constraint Acquisition. This is a completely black-box weakest pre-
condition inference method, relying on active constraint acquisition.
PreCA is the first black-box weakest precondition learner, showing good
correctness guarantees. Indeed, state-of-the-art black-box methods ask
the user for test cases or generate them stochastically. On the other
hand, PreCA takes as input a language and generates test cases auto-
matically. If its search language is expressive enough, PreCA is proved
to infer the correct weakest precondition;

• Chapter 4 presents our second contribution: (i) the in-depth evaluation
of the black-box deobfuscator Syntia; (ii) our new prototype Xyntia,
outperforming Syntia in terms of speed and robustness; (iii) the first
protections against black-box deobfuscation. Especially, we show why
design choices of Syntia are not appropriate and why Xyntia is more
efficient;

• Chapter 5 concludes the thesis. Section 5.1 resumes contributions pre-
sented in Chapters 3 and 4. It is followed (Section 5.2) by possible
perspectives for the domain of black-box code analysis and more specif-
ically for our two contributions PreCA and Xyntia.

Chapter 2

Background

We introduce in this chapter the background material necessary to understand
and assess our contributions:

• Section 2.1 introduces program semantics, especially operational seman-
tics. It enables to define properly what code execution means and is
mandatory to formalize program analysis and synthesis;

• Section 2.2 gives an overview of automated program analysis methods,
which aim to prove useful code properties. It presents both static and
dynamic approaches and describes the pros and cons of each method;

• Section 2.3 presents when analyzing binary code is mandatory and the
additional challenges of such analysis. Especially, it discusses two appli-
cation scenarios: managed and adversarial binaries;

• Section 2.4 digresses from program analysis to give an overview of pro-
gram and specification synthesis. Unlike program analysis, which aims
to prove code properties, program synthesis aims to infer a code respect-
ing a given specification. Closely related, specification synthesis takes a
code snippet and infers its specification. Synthesis methods are strongly
related to program analysis ones and are used all along this thesis;

• Section 2.5 presents how logic and constraints enable to define program
properties and to reason about them. Logic is mainly used in automated
proof systems while constraints are used to design models in constraint
programming. It will present each framework, their relationships, and
how they are used in program analysis.

2.1 Program semantics

To reason about program execution, it is necessary to formalize what is a
program and what it executes. To do so, different formalisms have been

19

20 CHAPTER 2. BACKGROUND

proposed like denotational and axiomatic semantics [46, 47, 48]. This thesis
relies on the operational semantics [49], which describes an execution of a
program as a sequence of simple steps.

First, let us formalize what a program is. In operational semantics, a pro-
gram, often called a command, is run over a memory state. The combination
of a command and a memory state is called a configuration, which represents
the current memory state and the remaining commands to execute. As such,
a command can either be a single command c or represent a full program as
c1; c2 is also a command. The special command skip (which does not modify
the memory state) is used to represent the computation end.

Definition 1. (Configuration) A configuration is a tuple composed of a
command c and a memory state s, denoted c/s.

Configurations describe a program to run over a given memory state. We
can then define the operational semantics, formalizing one execution step i.e.,
execution of one command.

Definition 2. (Operational semantics) An operational semantics is a
transition function “;” specifying transitions between pairs of configurations.

We can then define the reflexive closure ;∗, which corresponds to succes-
sive execution steps. This enables to describe full program execution and so,
the following reachability properties: end, diverge, or stuck.

Definition 3. (End/diverge/stuck) A configuration c/s:

• ends if and only if it exists s′ s.t. c/s ;∗ skip/s′ ;

• diverges if and only if it can be derived infinitely ;

• is stuck if and only if there is no c′/s′ s.t. c/s ; c′/s′.

Intuitively, they describe the possible behaviors of a code snippet. The
“end” case means that the code was successfully executed (code terminated
without crashing). The “diverge” case means the execution never terminates
(i.e., infinite loop or infinite recursion). Finally, the “stuck” state enables the
description of runtime errors (RTE). Especially, a configuration c/s leads
to an RTE if and only if c/s ;∗ c′/s′ where c′/s′ is stuck.

Example 1. We describe here simple operational semantics for the toy lan-
guage IMP from Table 2.1. IMP is a simple imperative language with con-
ditionals (if then else) and loops (while). It manipulates integer values and
enables to check internal states at run-time through the assert primitive. Each
code construct is associated with semantics specifying code behavior. For exam-
ple, when executing (x := a)/s the first rule applies and updates the memory
state s by setting the variable x to the value of the arithmetic expression a
(noted s[x ← [[a]]]). For the while loop, operational semantics provides two

2.1. PROGRAM SEMANTICS 21

Table 2.1: IMP language syntax and evaluation rules

Grammar

a := x | n | a1 + a2 | a1 × a2 | a1 ÷ a2

b := true | false | a1 = a2 | a1 ̸= a2 | a1 < a2 | a1 ≤ a2

c := skip | x := a | c1; c2 | if b then c1 else c2 | while b do c | assert(b)

Evaluation rules

Commands:

(x := a)/s ; skip/s[x← [[a]]] (skip; c)/s ; c/s

c1/s ; c′1/s
′

(c1; c2)/s ; (c′1; c2)/s
′

[[b]]s = true

(if b then c1 else c2)/s ; c1/s

[[b]]s = false

(if b then c1 else c2)/s ; c2/s

[[b]]s = true

(while b do c)/s ; (c; while b do c)/s

[[b]]s = false

(while b do c)/s ; skip/s

[[b]]s = true

assert(b)/s ; skip/s

Boolean expressions:

a1/s ; a′
1/s

(a1 • a2)/s ; (a′
1 • a2)/s

a2/s ; a′
2/s

(n • a2)/s ; (n • a′
2)/s

n •m
(n •m)/s ; true/s

¬(n •m)

(n •m)/s ; false/s

Arithmetic expressions:

[[x]]s = n

x/s ; n/s

a1/s ; a′
1/s

(a1 ⋄ a2)/s ; (a′
1 ⋄ a2)/s

a2/s ; a′
2/s

(n ⋄ a2)/s ; (n ⋄ a′
2)/s

r = n ⋄m ⋄ ̸= ÷
(n ⋄m)/s ; r/s

m ̸= 0 r = n÷m

(n÷m)/s ; r/s

where x represents a variable, c a command, a an arithmetic expression, b a Boolean expression,
n,m, r constant values, • ∈ {=, ̸=, <,≤}, ⋄ ∈ {+,×,÷} and [[a]] (resp. [[b]]) is the evaluation of
the arithmetic expression a (resp. Boolean expression b).

22 CHAPTER 2. BACKGROUND

rules, one when the condition is true and another when it is false. Observe
that there is no rule in the operational semantics to evaluate a division by 0
or an assert(false). This is used to describe stuck states.

From this language and operational semantics, we can define 3 programs
describing each code behavior:

1. end. (x := 0; (while x < 10 do x := x+ 1); skip)/s ;∗ skip/s[x← 10]

2. diverge. (x := 0; (while true do x := x+ 1); skip)/s ;∗

3. stuck. (x := 0; assert(x ̸= 0); skip)/s ;∗ (assert(x ̸= 0); skip)/s[x← 0]

Note

While giving the programming language grammar along with its oper-
ational semantics is necessary for white-box methods (Section 2.2.1),
in the previous example, we only give them for clarity. Indeed, in our
contributions (Chapters 3 and 4), we propose black-box methods. These
observe code behaviors and infer properties based on them. As such, in
our context, operational semantics is used to define precisely what are
possible code behaviors: end, diverge, or stuck.

2.2 Automated program analysis

Automated program analysis enables to prove software properties. In general,
it aims to prove reachability properties, i.e., given a command c, is there an
initial memory state s s.t., c/s ;∗ c′/s′ where the state c′/s′ is of interest
(e.g., it is an error state). A wide variety of approaches exist. Static methods
read the code syntax to deduce properties from it. They require a white-
box access to the code (source code or binary). Dynamic methods extract
information from observed code executions. They can be white-box (reading
execution traces) or black-box (relying only on input-output behaviors). Ide-
ally, such analyzers would be fully automated, always terminate, be sound
(no false positive, i.e., never returns that a property hold if it is not) and
complete (no false negative, i.e., never returns that a property does not hold
if it is). However, Rice’s theorem [50] states that any semantic property of a
language recognized by a Turing machine is undecidable. For example, there is
no decision procedure P, such that, for all programs P , P states in finite time
if P never raises an error. From a reverse engineering point of view, there is
no decision procedure P, such that, for all pairs of programs (P1, P2), P can
state in finite time if P1 and P2 are semantically equivalent [50].

Such an impossibility result led to the creation of analysis methods that
give up on properties to work in practice. Static analysis methods reasons
on the code syntax to deduce its properties. They can over-approximate or
under-approximate the possible code behaviors. In the former case, methods

2.2. AUTOMATED PROGRAM ANALYSIS 23

focus on soundness and renounce completeness. In the latter one, the analysis
aims for completeness but loses soundness. Another approach, called dynamic
analysis, proposes to execute the software to infer useful properties. In such
a case, the analysis is complete but not sound.

The following proposes a brief presentation of major static and dynamic
approaches. Concerning static methods, we present the difference between
over- and under-approximation-based analysis. We especially touch on ab-
stract interpretation, symbolic execution, and model checking as they are used
in many code understanding, reverse engineering, and deobfuscation frame-
works. Weakest precondition calculus is presented extensively in Chapter 3,
which especially tackles this problem. Concerning dynamic methods, which
are by nature under-approximation-based, we describe the difference between
the white- and the black-box framework that is used all along the thesis.

2.2.1 Static program analysis

Static program analysis reads the code – be it high levels like JAVA and
Python or low levels like C or assembly – to infer properties on it. These
are white-box methods that can be used to prove software correctness [18, 45,
51, 52, 53, 54], find bugs [55, 25, 56, 57], or reverse engineer software [58,
59, 30, 60, 61, 62]. As stated previously, all static program analysis methods
must renounce some good properties to work in practice. Here we present
approaches making different choices to match their respective use-case.

Safe

Error

Reachable ✗

Figure 2.1: Over-approximation

Safe

Error

Reachable

✗

Figure 2.2: Under-approximation

2.2.1.1 Over-approximation-based analysis

Static program analysis can over-approximate the possible behaviors of the
code, e.g., abstract interpretation [18, 19]. Fig. 2.1 describes such a setting:
all reachable code behaviors are included in the approximation (represented by
the dotted polygon). Thus, over-approximation-based methods are sound. It
makes them especially appropriate to prove software automatically. However,
completeness (i.e., all found bugs are real bugs) is not prominent, and to work
in practice, these methods renounce to it. Thus, it may return false alarms,

24 CHAPTER 2. BACKGROUND

i.e., unreachable bugs. For example, in Fig. 2.1, the over-approximation of
considered behaviors includes error states which are in fact unreachable. Still,
if it raises no alarm it means that the code under analysis is correct.

The false alarm problem. Over-approximations of code behaviors intro-
duce imprecisions. If such imprecisions are too high, many false alarms, warn-
ing for errors that are in fact not reachable, are raised. Finding a good balance
between precision and efficiency is thus necessary to verify complex code. How-
ever, it is also a very hard task needing for now human experts. In Fig. 2.1,
the analysis is too imprecise and is not able to prove that the code is safe.

2.2.1.2 Under-approximation-based analysis

Other methods, like symbolic execution [22, 23, 24, 25] and bounded model
checking [21, 63], under-approximate the possible behaviors of the code. As
presented in Fig. 2.2, only reachable code behaviors are included in the ap-
proximation (represented by the dotted ellipse). Still, some reachable ones are
not included. Thus, these methods renounce soundness to keep completeness.
They are fully automatized methods that can prove error existence. How-
ever, if no error is found, it does not mean there is no error. Indeed, being
unsound, they can miss some code behaviors. For example, in Fig. 2.2, the
approximation does not see some error states which are in fact reachable.

Path explosion problem. Software can present many or even an infinite
number of different execution paths. However, under-approximation-based
analysis can only consider a finite set of execution paths. This causes the
path explosion problem: so many paths exist that analysis will not be able to
handle all of them. For example, symbolic execution exercises one path at a
time. Thus, it needs to prioritize promising paths first using ad-hoc heuristics
or machine learning [64]. On the other hand, bounded model checking extracts
the formula representing the code for paths of size up to a fixed bound.

Remark

In general, under-approximation-based analysis cannot prove software.
Still, if the number of paths in the code is finite, it can prove code
correctness by exercising all paths. In such a case, it is sound and
complete – but is restricted to special programs. Some approaches rely
on such methods to prove code correctness [65].

2.2.1.3 Limitations

Static methods allow to prove properties on code. While highly powerful,
some practical limitations arise. First, they are highly sensitive to syntactic
code complexity introduced by obfuscation and optimization passes. Second,
as the code is not really executed, it is unclear how to handle system calls

2.2. AUTOMATED PROGRAM ANALYSIS 25

(not always well specified). The usual method consists in writing stubs for
system calls and dynamic libraries functions, which is time-consuming and
error-prone. Third, as we have seen, they suffer precision or path explosion
problems making them irrelevant in some practical contexts.

Link to the thesis

This thesis studies application scenarios where static analysis struggles
and is not usable. We propose two new frameworks, based on black-box
dynamic analysis, outperforming static ones.

2.2.2 Dynamic program analysis

An orthogonal solution to static analysis is dynamic analysis – also named
data-driven analysis. It runs the code over concrete inputs to observe how
it behaves. Because it executes the code, no problem with system calls or
library calls arises: they are executed. Moreover, even if such methods are
not sound (the code is run over a finite set of inputs), it is usually complete.
The following discusses the difference between black- and white-box dynamic
analysis.

2.2.2.1 Black-box dynamic analysis

In black-box dynamic analysis, the code is simply run over a finite set of inputs.
The analyzer monitors observable input-output (I/O) behaviors like standard
outputs, network connections, system calls, library calls, and returned values.
However, in the black-box context, the code is supposed to be a black-box
and execution traces cannot be extracted. In terms of operational semantics,
black-box methods monitor a full execution c/s ;∗ skip/s′ without any access
to the atomic ; operator.

In the literature, dynamic methods can analyze the full code or focus on
local sub-parts. It depends on the use-case. For example, in fully automated
methods, analyzers execute more likely the full code over concrete inputs. It
enables to observe the behavior(s) of the full software. This is especially useful
to perform behavioral malware analysis [4] or black-box fuzzing [66]. However,
in man-in-the-loop scenarios where analyses help reverse engineering the code,
analyses can focus on a small piece of code like a code block or a function.
This enables to observe simpler behaviors that can be more easily understood.
Such local analyses are especially used in deobfuscation [67] or precondition
inference [68, 69, 70].

2.2.2.2 White-box dynamic analysis

White-box dynamic methods extend black-box ones by not only monitoring
observable behaviors but also execution traces. In terms of operational seman-

26 CHAPTER 2. BACKGROUND

tics, it monitors all or parts of the execution steps c/s ; c′/s′ – note that we
use ; and not its transitive closure ;∗. All these data can be highly useful
in different contexts, e.g., to handle self-modifying code [71] or to recover part
of the control-flow graph [72]. Especially, white-box dynamic analysis is used
in behavioral malware analysis [4], deobfuscation [73], grey-box fuzzing [74],
and invariant inference [40].

2.2.2.3 Limitations

Independently of the approach used, dynamic methods come with inherent
limitations. First, the choice of the inputs to exercise the code is prevalent.
Wrongly chosen inputs may lead to useless observations. Especially, in some
contexts like fuzzing, code coverage is highly important, and finding a good
set of inputs is crucial [75]. Second, in local scenarios, finding good reverse
windows – i.e., a sub-part of the code to focus on – is highly important. A
wrongly chosen reverse window could lead to overly complex behaviors imped-
ing analysis [67, 76, 73]. Third, dynamic analysis needs a compiled version
of the code. As such, observed behaviors could be architecture dependant
or could depend on the compiler and compiling optimizations used. Finally,
some errors can remain silent like stack buffer overflows making the detection
of incorrect behaviors harder.

Link to the thesis

This thesis proposes two black-box analysis methods. They enable by-
passing presented limitations of white-box methods relying on abstract
interpretation, symbolic execution, or white-box dynamic analysis. To do
so, they combine black-box dynamic analysis with artificial intelligence.

2.3 Binary-level code analysis

Our work can be beneficially used to analyze binary code i.e., compiled version
of the software. The following presents the different applications where binary-
level code analysis is needed and what are its main challenges.

2.3.1 Application scenarios

Binary analysis is needed when the source code of the software is not available.
This is the case in different contexts like:

1. Malware. Malware authors often release malware in binary format. In-
deed, binary analysis is known to be harder than source-level analysis.
Thus, it enables to impede detection and reverse engineering;

2.3. BINARY-LEVEL CODE ANALYSIS 27

2. Third-party code. Companies who want to share or sell software usually
release binary executables. This helps to protect intellectual property
by integrating for example water-marking – which could be removed
during the compilation process otherwise. Such water-marking can then
be used to detect fraudulent use/sharing of the software [77];

3. Legacy code. It is not rare that companies use obsolete code whose source
is lost. As some crucial services may need this code, it is important to
understand the binary, in order to use it well, or try to refactor the code.

Independently of the context, working at the binary level impedes the use
of efficient source-level analyses and makes hand-made reverse engineering a
lot harder. Moreover, by manipulating the binary code, authors can inte-
grate very complex obfuscation methods, breaking abstractions kept by the
compiler.

2.3.2 Challenges of managed binary analysis

Analyzing managed binaries, i.e., obtained by compiling clean source codes
through legit compilation workflows, comes with additional complexity com-
pared to source code analysis. Especially, binary-level analysis can rely on
fewer abstractions compared to source-level analysis.

• Stripped binaries. Much information is lost during compilation. Es-
pecially, if the binary is stripped, all function and variable names are
removed. This makes reverse engineering by a human tedious. Thus,
methods propose to recover such debug information [78, 79, 80];

• Unknown control-flow graph (CFG). At the binary level, retrieving the
control-flow (if, else, switch, for, while) is undecidable. This makes
automated binary analysis a lot harder as many methods need the CFG
to work. As such, different disassembly methods have been proposed
like linear and recursive disassembly. However, they all have strengths
and drawbacks;

• Untyped memory. Assembly code directly operates on a finite set of
registers and a unique, large, untyped memory. The next instruction to
execute is referenced by the program counter (eip in x86). A memory
area, called the stack is used to keep track of function local variables. In
x86, the stack is delimited by the registers ebp and esp. Thus, function
arguments and variables are referenced as offsets of these registers and
any addresses is reachable. It makes analysis a lot harder.

2.3.3 Challenges of adversarial binary analysis

On top of the previously presented challenges, another complexity layer can
be added on purpose to protect valuable assets (e.g., encryption keys and pro-

28 CHAPTER 2. BACKGROUND

prietary algorithms) contained in the software. Such adversarial binaries rely
on obfuscation [77, 11] to protect code against the user, who can read, run and
tamper with the released (binary) code. While provably secure obfuscation
is impossible in such a context [81], efficient anti-reverse-engineering methods
can be included in the released version of the code to make analyses a lot
harder (more expensive in time or in money).

Obfuscation [77, 11, 82] is, thus, a set of methods designed to make reverse
engineering (understanding program internals) hard. It transforms a program
P to a functionally equivalent, more complex program P ′ with an accept-
able performance penalty. Obfuscation aims to delay the analysis as much as
possible in order to make it unprofitable. Thus, it is especially important to
protect the software from automated program analysis and different methods
have been proposed to kill previously presented white-box analysis methods
[32, 83].

Remark

Obfuscation distinguishes from so-called security by obscurity. In the
latter case, security is enforced by the fact that the (crypt-)analyst
does not know which algorithm is used. In obfuscation, the protection
algorithm is known but the seed to initialize it is the secret. Thus, it
must rely on hard program analysis problems. This way, even if the
reverse engineer knows which obfuscation is used, analyzing the code
remains very hard.

Link to the thesis

Methods proposed in this thesis are especially appropriate to handle bi-
nary and obfuscated code. They need few pieces of information, which
is pleasant to handle the loss of abstraction at the binary level. More-
over, being black-box, they are insensitive to obfuscation. In Chapter 4,
we especially devise a deobfuscator, simplifying highly obfuscated code
blocks.

2.4 Program synthesis

While verification takes a program and a specification to prove code correct-
ness, program synthesis and specification synthesis explore different directions.
Especially, program synthesis takes a specification and generates a program
from it. Conversely, specification synthesis takes a program and infers its
specification. Program and specification synthesis are closely related. The
following presents and discusses each approach.

2.4. PROGRAM SYNTHESIS 29

2.4.1 Program synthesis

Program synthesis aims to infer a code implementation based on a user-given
specification. Such a specification can be formal [84, 85], given in natural
language [86, 87, 88] or given through input-output (I/O) examples [89, 90,
67]. Historically, program synthesis is viewed as a problem from deductive
theorem proving [84]. It takes a formal specification (P,R), where P is a
predicate over the function inputs and R is a predicate over function in-
puts and outputs. It computes from it a constructive proof for the sentence
∀a, P (a) =⇒ ∃z,R(a, z), hence generating a program coherent with the
specification. In such a context, program synthesizers take as input a formal
specification and a set of deduction and re-writing rules.

Syntax-guided synthesis. Depending on the application scenario consid-
ered (synthesizing SQL queries, web application, or Excel MACRO) it may
be beneficial to enforce a dedicated domain-specific language (DSL). Syntax-
guided synthesis enables to restrict the search-space by specifying such DSL.
The induced search space can then be explored through enumerative search
[91, 92, 93], constraint solving [94] or stochastic search [10]. It also enables to
devise appropriate heuristics, hence improving efficiency.

Programming by example (PBE). Synthesis methods fed with formal
specifications need experts to specify the desired behaviors. Programming by
example proposes to replace such a formal specifications by user-given input-
output examples. This is a big drive in program synthesis as it enables non-
expert users to synthesize code. For example, PBE has been successfully
integrated into Microsoft Excel [39]. If the examples are given by the user,
the method is said to be passive. On the other hand, if the examples are
automatically generated, then the method is said to be active.

2.4.2 Specification synthesis

Unlike program synthesis, which takes a code specification and infers an im-
plementation for it, specification synthesis [40, 95, 68, 96, 69] takes a code
implementation and tries to infer its specification i.e., on which inputs the
code is correct. Program synthesis and specification synthesis are highly re-
lated. Especially, it is often useful to define DSL to describe specifications,
paving the way for syntax-guided methods [70, 68]. Moreover, code behaviors
can also be approximated by a finite set of examples. The following discusses
two approaches: white- and black-box synthesis.

White-box specification synthesis. White-box methods take as input a
formal representation of the code to synthesize its specification. It often relies
on static code analysis to infer the specification or prove its correctness. A
popular framework is Counter-Example Guided Inductive Synthesis (CEGIS).
Usually applied to program synthesis, it is also commonly used in specification

30 CHAPTER 2. BACKGROUND

synthesis [97, 98, 99, 100]. It generates candidate solutions and queries a
program analyzer to check their correctness. If the solutions are incorrect,
they are refined thanks to the counter-examples given by the static analyzer.

Black-box specification synthesis. Still, extracting code semantics to syn-
thesize its specification can be very challenging (obfuscation, multi-language
code, etc). Thus, just like PBE relying on I/O examples, black-box approaches
approximate the code behaviors with I/O examples. Some methods [40] only
rely on positive examples – i.e., good executions of the code – while others
combine positive and negative ones for improved precision [70, 68]. Moreover,
such methods can be passive or active.

2.4.3 Limitations

Both program and specification syntheses come with limitations. Especially,
programming by example and black-box specification synthesizers must take
as input a representative set of I/O examples. How to generate this set is
still a hot topic. Some approaches consider that the user is able to give such
examples [40], while others do not [68]. In the former case, passive approaches
(needing user examples) can be applied. In the latter case, synthesizers must
generate examples themselves. Moreover, as examples only approximate the
semantics of the code, they do not enjoy clear correctness guarantees. Im-
proving confidence in synthesized results is an important problem.

Link to the thesis

This thesis devises two new black-box analysis methods using synthe-
sis to extract properties from code executions. Chapter 3 proposes an
active black-box specification synthesizer to infer with clear guarantees
function contracts. Chapter 4 proposes a new passive and stochastic
programming by example method for black-box deobfuscation.

2.5 Logic and constraints to specify code

Over the last decade, more and more program analysis and synthesis methods
rely on logic [20, 22]. It enables to specify formally code, its properties, and
to reason about them. Such formal reasonings also expresses deduction rules
to prove code properties. An alternative to logic is constraints [101] from
the constraint programming community. The following presents fundamental
definitions of logic and constraints and how they have been used for program
analysis.

2.5. LOGIC AND CONSTRAINTS TO SPECIFY CODE 31

2.5.1 Logic

Logic is composed of a language and a semantics. The language is described
using a syntax defining well-formed formulas. On the other hand, the seman-
tics maps code constructs to values.

Propositional logic. The simplest standard logic is the propositional logic
representing propositions, i.e., statements that can be true or false. The lan-
guage associated describes all well-formed formulas with propositional connec-
tive symbols (¬,∧,∨, =⇒ , ⇐⇒). Each symbol is Boolean. Each well-formed
formula is associated to a semantics, i.e., a function that assigns meaning to
it. For the propositional logic, the semantics is recursively defined thanks to
the usual truth tables for propositional connective symbols. An example of a
propositional logic formula is: [(x =⇒ y) ∧ x] =⇒ y, where x, y, and z are
Boolean variables.

First order logic. First-order logic extends propositional logic with quan-
tifiers (∃ and ∀) and non-logical symbols. Restrictions of a logic are called
a fragment. Especially, quantifier-free first-order logic is a fragment of first-
order logic with no quantifier. The language extends the propositional logic
language with a finite number of predicate and function symbols over the non-
logical symbols. Thus, first-order logic formulas enable to describe relations
between elements. The semantics inherits the meaning of propositional con-
nective symbols (∧,∨, etc) from the propositional semantics. Predicate and
function symbols can be given any meaning depending on the usage. Still,
first-order logic is often combined with theories, e.g., the linear integer arith-
metic (LIA) theory. Such a theory defines the semantics of predicate and
function symbols. Moreover, it extends the semantics with axioms from the
underlying theory. For example, the LIA theory manipulates 0-ary function
symbols representing integers. Predicates to reason about integers are also
added, e.g., the “⋆ = ⋆” states that two integers are equal. On top of it,
the theory adds new axioms, like the reflexivity or the transitivity proper-
ties of “⋆ = ⋆”. An example of a first-order logic formula for LIA theory is:
∀x,∃(y, z), x = y + z where x, y and z are integers. Here, the theory defines
the meaning of the “⋆ = ⋆” predicate and the 2-ary function symbol “⋆ + ⋆”
over integers.

Solvers. Decision procedures [102] enable solving formulas expressed in some
logic. Depending on the logic considered, different algorithms may exist.
SAT solvers are decision procedures dedicated to solve propositional formulas.
They often rely on Conflict-Driven Clause Learning (CDCL) [103]. Satisfiabil-
ity Modulo Theories (SMT) solvers extend SAT solvers to handle first-order
logic. They often rely on DPLL(T) [104], an extension of the Davis-Putnam-
Loveland-Logemann (DPLL) algorithm for SAT solving, intertwining SAT
with reasoning over some theory T .

32 CHAPTER 2. BACKGROUND

Logic for program analysis. Logic, and especially first-order logic, is often
used to express code properties. It can be used to express formally the derived
specification of a code snippet [51], the behaviors of code [21], of an execution
path [105, 25], or of a set of execution paths (hyper-properties) [65, 106, 107].
Combined with solvers, and more generally to proof systems, it has been used
to prove useful code properties like memory safety [108, 51], noninterference
[109] or incorrectness [57].

Link to the thesis

In Chapter 4, we create a new program synthesizer for black-box de-
obfuscation. It takes as input a quantifier-free first-order logic for the
BitVector theory. The language defines our search space and the theory
defines predicates and function symbols’ meanings.

2.5.2 Constraints

Constraints [101, 110] are used in constraint programming to model prob-
lems and reason about them. Constraints are written in a language made of
constant values (0-ary function symbols in first-order logic), functions (n-ary
function symbols with n > 0 in first-order logic), and constraint relations
(predicate symbols in first-order logic).

Constraint domain. A constraint C is defined by its domain, which specifies:

• Its syntax, that is the constant values, functions, and constraint relations
used. Moreover, it describes the number of arguments of the constraints
and how to place them. For example, consider the C(X,Y) : X+Y = 0
constraint. It has two arguments. The first (resp. second) one must
be placed on the left (resp. right) of the “+” function, which takes two
arguments. It also contains a constraint relation “=” and the constant
value “0”. Constraints can also take a non-fixed number of variables. In
such a case, they are called global constraints;

• The values the variables can take. For example, the C(X,Y) : X+Y = 0
constraint can have different meanings depending on whether X and Y
are integers or reals;

• The meaning of each symbol i.e., the result of applying the constraint
on its arguments. For example, to describe C(X,Y) : X + Y = 0 , it
must define the meaning (i.e., the semantics in first-order logic) of the
“+” function, the “=” constraint relation and the “0” constant value.

Standard restrictions. In general, constraint programming is used to solve
combinatorial problems and variables usually take a finite number of values.

2.5. LOGIC AND CONSTRAINTS TO SPECIFY CODE 33

Moreover, the constraint language includes no quantifiers and only the con-
junctive logical connector. Thus, a constraint is a conjunction of atomic con-
straints.

Solvers. Constraint programming solvers usually rely on domain and inter-
val consistency, and backtracking [111, 112] to solve combinatorial problems.
Also, a cost function can be added to solve optimization problems [110]. Links
between static analysis and constraint programming can also be highlighted.
Especially, Pelleau et al. [113] rely on abstract interpretation to devise a new
solver.

Constraints for program analysis. Constraints have been used to en-
code software semantics. It usually requires to translate code under analysis
to static single assignment (SSA) form. In such a form, each code state-
ment can be translated into a constraint over basic types (e.g., integers) or
more advanced ones (e.g., arrays). A basic block is then the conjunction
of each constraint associated with block statements. Some code statements
(e.g., variables assignment) are translated to atomic constraints, while oth-
ers (e.g., if then else, while loops) are translated to global constraints. From
such an encoding, constraint programming solvers can then be leveraged to
show functional properties, generate counter-examples, or generate test-cases
automatically [114, 115].

Link to the thesis

In Chapter 3, we create a new function contract inference method. It
relies on constraint acquisition, a learning framework enabling to infer
constraints to model a problem. As such, our method is limited to
infer conjunctions of atomic constraints. We show how to bypass this
limitation in Section 3.5.

Part II

Contributions

35

Chapter 3

Synthesizing function
contracts

Abstract

Program annotations under the form of function pre/postconditions
are crucial for many software engineering and program verification appli-
cations. Unfortunately, such annotations are rarely available and must
be retrofit by hand. In this paper, we explore how Constraint Acqui-
sition (CA), a learning framework from Constraint Programming, can
be leveraged to automatically infer program preconditions in a black-box
manner, from input-output observations. We propose PreCA, the first
ever framework based on active constraint acquisition dedicated to in-
fer memory-related preconditions. PreCA overpasses prior techniques
based on program analysis and formal methods, offering well-identified
guarantees and returning more precise results in practice.

3.1 Introduction

Program annotations under the form of function pre/postconditions [52, 54,
53] are crucial for the development of correct-by-construction systems [116,
117] or program refactoring [40]. They can benefit both a human or an auto-
mated program analyzer, typically in software verification where they enable
scalable (modular) analysis [108, 118]. Unfortunately, annotations are rarely
available and must be retrofit by hand into the code, limiting their interest –
especially for black-box third-party components.

Problem Efforts have been devoted to automatically infer preconditions
from the code, and contract inference is now a hot topic in Program Analysis
and Formal Methods [119, 40, 70, 120, 68]. Since this problem is undecidable
(as most program analysis problems), the goal is to design principled methods
with good practical results.

37

38 CHAPTER 3. SYNTHESIZING FUNCTION CONTRACTS

Yet, the state-of-the-art is still not satisfactory. While white-box ap-
proaches leveraging standard static analysis [52, 54, 53, 119] can be helpful,
they quickly suffer from precision or scalability issues, have a hard time dealing
with complex programming features (loops, recursion, dynamic memory) and
cannot cope with black-box components. On the other hand black-box meth-
ods, leveraging test cases to dynamically infer (likely) function contracts [40,
70, 68], overcome static analysis limitations on complex codes and have drawn
attention from the software engineering community [121]. Yet, they heavily
depend on the quality of the underlying test cases, which are often simply
generated at random, given by the users [40] (passive learning), or automati-
cally generated during the learning process – but without any clear coupling
between sampling and learning [70, 68] – and so, show no clear guarantee on
the inference process.

Constraint Acquisition. Constraint programming (CP) [101] has made
considerable progress over the last forty years, becoming a powerful paradigm
for modelling and solving combinatorial problems. However, modelling a prob-
lem as a constraint network still remains a challenging task that requires ex-
pertise in the field. Several constraint acquisition (CA) systems have been
introduced to support the uptake of constraint technology by non-experts.

Especially, rooted in version space learning, Conacq is presented in its
passive and active versions [122]. Based on solutions and non-solutions labelled
by the user (acting as an oracle), the system learns a set of constraints that
correctly classifies all examples given so far. This is an active field of research,
with many proposed extensions, for example allowing partial queries [123].

However, even though Conacq enjoys strong theoretical foundations, such
CA systems are hard to put in practice, as they require to submit thousands of
queries to a user. In automated program analysis, the huge number of queries
is not a problem as long as a program plays the oracle.

Goal and contributions. In this paper, we explore the potential of Con-
straint Acquisition for black-box precondition inference. To the best of our
knowledge, this is the first application of CA to program analysis and our
overall results show its potential there. Our main contributions are the fol-
lowing:

• We propose PreCA, the first ever (Conacq-like) framework based on
active constraint acquisition and dedicated to infer preconditions (Sec-
tion 3.4). We show in Section 3.4.3 that PreCA enjoys much better the-
oretical correctness properties than prior black-box approaches. Indeed,
if our learning language is expressive enough, PreCA is guaranteed to
infer the weakest precondition;

• We describe a specialization of PreCA to the important case of memory-
related preconditions (Section 3.5). Especially, we propose a dedicated
constraint language (including memory constraints) for the problem at

3.2. BACKGROUND 39

hand, as well as domain-based strategies to make the approach more
efficient in practice (Section 3.5.2);

• We experimentally evaluate the benefits of our technique on several
benchmark functions (Section 3.6.1). The results show that PreCA
significantly outperforms prior precondition learners, be it black-boxes
or white-boxes – which came as a surprise. For example, PreCA with
5s budget per sample performs better than prior approaches with 1h per
sample.

Overall, it turns out that seeing the precondition inference problem as a Con-
straint Acquisition task is beneficial, leading to good theoretical properties
and beating prior techniques.

3.2 Background

3.2.1 Preconditions and Weakest Preconditions

Notations

This contribution focuses on inferring function precondition. For clar-
ity, we add syntactic sugar over operational semantics (presented in
Section 2.1). Recall that operational semantics formalizes how code ex-
ecutes. Especially, it formalizes the possible execution behaviors (termi-
nate, diverge, and stuck). Here, we replace “commands” with “program
functions”. Such functions can be seen as a partial mapping from inputs
to outputs F : In → Out. Given an input x ∈ In, execution of F over
x can: (i) terminate and return y ∈ Out, noted F (x) = y; (ii) diverge
(i.e., never terminate) or raise a runtime error, in that case, F is not
defined over x.

Function specifications can be formalized through the Hoare logic [52]. It
specifies function behaviors through Hoare triples, noted {P}F{Q}. For total
correctness, triple validity intuitively means that for any input x verifying P ,
running F over x terminates and the result verifies Q. P and Q are then
respectively called pre and postcondition.

Definition 4 (Hoare triple). Let a function F , a predicate P over F inputs
and a predicate Q over F outputs. The Hoare triple, noted {P}F{Q}, is valid
iff, for all x s.t. x |= P , F (x) = y and y |= Q.

A function F can have several preconditions for a given postcondition Q.
Still, not all preconditions are useful, some being too restrictive. Thus, we
aim for the most generic one, called the weakest precondition (WP) [52].
Automatically computing the weakest precondition of F w.r.t. Q has been

40 CHAPTER 3. SYNTHESIZING FUNCTION CONTRACTS

a strong drive for program analysis since the 70’s. Yet, as the whole prob-
lem is undecidable, standard approaches must rely on manual annotations or
approximations.

Definition 5 (Weakest precondition). Let a function F and a postcondition
Q. The weakest precondition of F w.r.t. Q noted WP(F,Q) is the most
generic precondition, i.e., for all P s.t. {P}F{Q}, P ⇒WP(F,Q).

Example 2. Let uint div(uint a, uint b) {return b/a;} the function under
analysis. Here, In = Out = [0; 2n-1] with n the size of an uint. Note that it
is undefined when a = 0. Hence, for postcondition Q1 = true, a precondition
could be a = 5. However, it is too restrictive as other values of a can return
safely. The less restrictive one, i.e. WP(F,Q1), is a ̸= 0. Now, consider
Q2 = “the return value must equal 0”. Then WP(F,Q2) is a ̸= 0 ∧ b < a.

Weakest precondition calculus. Automatically computing weakest pre-
conditions has been a strong drive for program analysis since the 70’s. Given
an atomic command, weakest precondition calculus specifies how to compute
the weakest precondition through rules given in Table 3.1. Yet, as the whole
problem is undecidable, standard approaches must rely on manual annota-
tions, renouncing to full automation. Indeed, the rule handling loops in Ta-
ble 3.1 needs a loop invariant I to prove specification and a loop variant ν to
prove termination. Such annotations must be given by the user, which is a
hard task.

Example 3. Consider the postcondition Q : x = 10 for the command c:

x := a;
i := 0;
while i < 10 do

x := x+ 1;
i := i+ 1;

To handle the loop, WP calculus needs the user to give a loop invariant:

I : x = i ∧ i ≤ 10

and a variant:

ν : 10− i

Then, the WP calculus rule over loops infers that:

3.2. BACKGROUND 41

WP(while i < 10 do x := x+ 1; i := i+ 1, x = 10)

≡ x = i ∧ i ≤ 10 ∧ ∀x′, i′, ξ, [x′ = i′ ∧ i′ ≤ 10 ∧ i′ < 10 ∧ ν = ξ

⇒WP(x := x+ 1; i := i+ 1, x′ = i′ ∧ i′ ≤ 10 ∧ ν < ξ)]

∧ [x′ = i′ ∧ i′ ≤ 10 ∧ i′ ≥ 10⇒ x′ = 10]

≡ x = i ∧ i ≤ 10 ∧ ∀x′, i′, ξ,
(x′ = i′ ∧ i′ < 10 ∧ i′ − 10 = ξ ⇒ x′ + 1 = i′ + 1 ∧ i′ + 1 ≤ 10 ∧ 10− (i′ + 1) < ξ)

≡ x = i ∧ i ≤ 10

Then we can simply compute:

WP(i := 0, x = i ∧ i ≤ 10) ≡ (x = 0)

and finally:

WP(x := a, x = 0) ≡ (a = 0)

Finally, by using deduction rules of weakest precondition calculus and by
giving the loop annotations by hand, we show that WP(c,Q) = (a = 0).

Table 3.1: Weakest precondition calculus deduction rules

WP(skip,Q) ≡ Q

WP(x := e,Q) ≡ Q[x← e]

WP(assert(b), Q) ≡ Q ∧ b

WP(c1; c2, Q) ≡ WP(c1,WP(c2, Q))

WP(if b then c1 else c2, Q) ≡ (b⇒WP(c1, Q))
∧ (¬b⇒WP(c2, Q))

WP(while b invariant I variant ν,≺ do c,Q) ≡ I ∧ ∀x1, ..., xk, ξ,
(I ∧ b ∧ ξ = ν ⇒WP(e, I ∧ ξ ≺ ν))
∧ (I ∧ ¬b⇒ Q)

Where xj are references modified in the loop body.

3.2.2 Constraint Acquisition

The constraint acquisition (CA) process can be seen as an interplay between
the learner and the user. For that, the learner needs to share some common
vocabulary to communicate with the user. This vocabulary is a finite set of

42 CHAPTER 3. SYNTHESIZING FUNCTION CONTRACTS

variables X taking values in a finite domain D. A constraint c is defined on
a subset of variables and a relation specifying which values are allowed. A
constraint network is a set C of constraints. An example e ∈ D|X| satisfies
a constraint c if the projection of e on c variables is in c. An example e is a
solution of C if and only if it satisfies all constraint in C.

In addition to the vocabulary, the learner owns a language Γ of bounded
arity relations from which it can build constraints on specified sets of variables.
The constraint bias, denoted by B, is a set of constraints built from Γ on
(X,D), from which the learner builds a constraint network. A concept is a
Boolean function f over DX . A representation of a concept f is a constraint
network C for which f−1(true) equals the solutions set of C. A membership
query takes an example e and asks the user to classify it. The answer is yes
iff, e is a solution of the user concept. For any example e, κ(e) denotes the
set of all constraints in B rejecting e.

We now define convergence. Given a set E of examples labelled by the user
yes or no, we say that a network C agrees with E if C accepts all examples
labelled yes in E and does not accept those labelled no. The learning process
has converged on the network L ⊆ B if (i) L agrees with E and (ii) for every
other L′ ⊆ B agreeing with E, we have L′ ≡ L.

Conacq is a CA system that submits membership queries to a user.
Conacq uses a concise representation of the learner’s version space into a
clausal formula. Formally, any constraint c ∈ B is associated with a Boolean
atom a(c) stating if c must be in the learned network. Conacq starts with an
empty theory and iteratively expands it by generating and submitting to the
user an informative example. An informative example ensures to reduce the
learner’s version space independently from the user answer. If no informative
example remains, this means that we converged and Conacq returns the
theory encoding the learned network.

Example 4. Consider the set of variables X = {x, y} defined over {−10..10}.
We aim to infer a constraint network equivalent to CT = x > 0 ∧ y > 0.
Consider the bias B = {x > 0, x ≤ 0, y > 0, y ≤ 0, x = y, x ̸= y}. The
execution of Conacq is described in Table 3.2. Observe that only informative
queries are generated – e.g., after e1 no query where x > 0, y > 0 and x = y
will be generated as it would be redundant.

After four queries, there is no other informative query left and the version
space T is equal to: ¬a(x ≤ 0)∧¬a(y ≤ 0)∧¬a(x ̸= y)∧¬a(x = y)∧[a(x ≤ 0)∨
a(y > 0)∨a(x = y)]∧ [a(x > 0)∨a(y ≤ 0)∨a(x = y)]. By unit propagation, T
reduces to ¬a(x ≤ 0)∧¬a(y ≤ 0)∧¬a(x ̸= y)∧¬a(x = y)∧a(y > 0)∧a(x > 0).

Thus, Conacq converged to the network L = x > 0∧y > 0 which is indeed
equivalent to CT .

CA is PBE. Usually, constraint acquisition is not presented as programming
by example – presented in Section 2.4. Indeed, it comes from the constraint

3.3. MOTIVATION 43

Queries Answer Version space (T)

e1 = (x← 1, y ← 1) yes T1 = ¬a(x ≤ 0) ∧ ¬a(y ≤ 0) ∧ ¬a(x ̸= y)
e2 = (x← 2, y ← −1) no T2 = T1 ∧ (a(x ≤ 0) ∨ a(y > 0) ∨ a(x = y))
e3 = (x← 1, y ← 3) yes T3 = T2 ∧ ¬a(x = y)
e4 = (x← −1, y ← 3) no T4 = T3 ∧ (a(x > 0) ∨ a(y ≤ 0) ∨ a(x = y))

Table 3.2: Example of Conacq execution

programming community and not from the program synthesis one. Still, it
integrates well in the programming by example (PBE) framework. Indeed, it
can be seen as a special case of active PBE where the search space contains
only conjunctions of constraints taken in a finite set – no more context-free
grammar, nor infinite space hypothesis. Such limitations enable, as we will
see in Section 3.4.3, to enjoy clear correctness guarantees.

3.3 Motivation

We focus on memory-related preconditions – e.g., predicates stating on which
inputs a function can be executed without leading to a memory violation – in
a black-box manner. Let us consider the prototype of function find_first_of

in Listing 3.1 (from Frama-C [108] test suite). We aim to infer which values
of a, m, b and n are accepted without relying on the source code – still we can
execute the code over chosen input and observe results.

1 void f i n d f i r s t o f (int∗ a , int m, int ∗b , int n)

Listing 3.1: Function prototype

From white-box to black-box. White-box analysis (such as P-Gen [100])
uses the program source code to infer preconditions. Yet several practical sce-
narios are impractical for white-box methods. First, having the whole source
code is often unrealistic (many projects embed third-party components). Sec-
ond, in practice program analyzers focus on a single programming language,
but many projects use combinations of them (e.g., inline assembly in C code).
Third, despite huge progress in the past decades, white-box program analysis
still suffers on large or complex codes (unbounded loops, recursion, dynamic
allocation, etc.) possibly leading to serious scalability or precision issues.
Fourth, obfuscation is common in certain ecosystems to make reverse engi-
neering harder and thwart white-box analysis. In all these scenarios, black-
box methods are the sole option (cf. experiments on Section 3.6, RQ4). Yet,
as generalization is involved, black-box methods can compute incorrect pre-
conditions (i.e., formula actually being not preconditions).

Black-box passive learning is not enough. Black-box methods should
exercise the function under analysis on a representative set of test cases to infer
relevant preconditions. A solution is to assume that users can provide such

44 CHAPTER 3. SYNTHESIZING FUNCTION CONTRACTS

tests and leverage passive learning. Yet, this is often unrealistic – especially
when the source code is not available. Moreover, random testing is rarely
satisfactory, e.g., with 100 random test cases, both Daikon [40] and PIE [70]
infer here an incorrect precondition for find_first_of.

Active learning. Gehr et al. [68] performs active learning, generating test
cases automatically. Such approaches are more actionable and less sensitive to
user bias. Still, methods developed so far lack theoretical guarantees. Indeed,
they cannot ensure that all useful test cases have been considered. Gehr et al.
method infers in ≈ 700s an incorrect precondition for find_first_of, generating
177 test cases.

PreCA insights. Our method performs black-box precondition inference
through active constraint acquisition [122]. Unlike previous active approaches,
PreCA mixes the sampling and learning phases which enables to show good
theoretical properties. Indeed, when a test case is generated, PreCA di-
rectly observes how the function behaves on it and updates its search space
accordingly. As such, given a set of constraints B called the bias, PreCA will
generate all test cases to ensure convergence modulo B. Thus, if all queries
can be exactly classified and if B is expressive enough, PreCA returns the
weakest precondition. Regarding our example, it infers the (correct) weak-
est precondition (m > 0 ⇒ valid(a))∧ (m > 0 ∧ n > 0 ⇒ valid(b)) where
valid(p) ≡ (p ̸= NULL) in 172s, running 45 test cases. The implementation
of find_first_of is given in Listing 3.2, for readers to check the precondition.

1 int find(int* t, int n, int val)

2 {

3 for (int i = 0; i < n; i++)

4 {

5 if (t[i] == val)

6 return i;

7 }

8 return n;

9 }

10

11 int find_first_of(int* a, int m, int* b, int n)

12 {

13 for (int i = 0; i < m; i++)

14 {

15 if (find(b, n, a[i]) < n)

16 return i;

17 }

18 return m;

19 }

Listing 3.2: Implementation of find first of

3.4. PRECONDITION ACQUISITION 45

Table 3.3: find_first_of results, no source code

Alg. Active? Success. #Test cases Time

Daikon no no 100 0.6s
PIE no no 100 11s
Gehr et al. yes no 177 700s
P-Gen (white-box) (do not apply) - -

PreCA yes yes 45 172s

3.4 Precondition Acquisition

Given a function under analysis F , we aim to infer the weakest precondition
of F w.r.t. some postcondition Q through CA. Note that, as generalization
is involved, we are not sure a priori to compute a real precondition, hence
the wording ”likely-precondition” introduced in Daikon [40]. Guarantees are
studied in Section 3.4.3. To our knowledge, this is the first time CA is used
for program analysis.

3.4.1 Problem at Hand

We show here that precondition inference can be translated to a CA problem.
In our context the user is replaced by an oracle, which automatically answers
queries – implemented in practice by running the program on given inputs
– and the target concept is WP(F,Q). The set of variables X equals (M)
where M is the initial memory state to run F . M is a map from symbols
– like F arguments and global variables – to their values and the domain D
of M is the finite set of all its possible mappings – thus, DX equals In, the
definition domain of F . The constraint language Γ and the bias B are sets of
constraints over M . We describe precisely Γ and B in Section 3.5.1. Finally,
a membership query e is a complete assignment of M s.t. F can be executed
over e.

3.4.2 Description of PreCA

We detail here our approach, dubbed PreCA, composed of 1. the oracle; 2.
the acquisition module.

Oracle. Given a function F and a postcondition Q, PreCA queries an oracle
to classify membership queries. It takes F , Q and an input e ∈ In = DX and
answers in finite time. The oracle must comply to the following specification:

runOracle(F,Q, e) =

{
yes or ukn if e |=WP(F,Q)
no or ukn otherwise

Note that the oracle answers ukn when it cannot classify e, extending the
Conacq framework where the user must answer only by yes or no. In practice,

46 CHAPTER 3. SYNTHESIZING FUNCTION CONTRACTS

Algorithm 1: PreCA

In : A function F ; a postcondition Q; a bias B; variables X;
Out : A constraint network over F input encoded by Ω consistent

with oracle answers or collapse;
1 begin
2 Ω← ⊤
3 while true do
4 e← QueryGeneration(B,X,Ω)
5 if e = nil then
6 if Ω is SAT then
7 return network(Ω)

8 else return “collapse”

9 if runOracle(F,Q, e) ̸= yes then
10 Ω← Ω ∧ (

∨
c∈κ(e) a(c))

11 else Ω← Ω ∧ (
∧

c∈κ(e) ¬a(c))

such oracle runs F over e with a timeout. If the execution timeouts it returns
(i) ukn, otherwise it returns (ii) yes if F (e) = y and y |= Q; (iii) no if F (e) = y
and y ̸|= Q or if execution raises a runtime error.

Acquisition module. PreCA (see Algo.1) starts from an empty theory Ω
and iteratively expands it by processing examples generated at line 4. PreCA
submits these examples to the oracle for a classification (runOracle call at
line 9). If the oracle answers yes, we must discard all constraints of B in κ(e),
those rejecting e, by expanding Ω with negative unit clauses (line 11). How-
ever, if the oracle answers no or ukn, Ω is expanded with a clause consisting
of all literals a(c) s.t. c ∈ κ(e) (line 10). Bear in mind that QueryGeneration
function returns informative examples aiming to reduce Ω to a monomial (con-
junction of unit clauses). QueryGeneration is used exactly as it appears in
[122]. If there is no example to return, this means that Ω is monomial. Now
if Ω is not satisfiable, a ”collapse” message is returned (line 8). This happen
when the concept to learn is not representable by B. Otherwise, we return
the constraint network encoded by Ω through the network function (line 7).

3.4.3 Theoretical Analysis

We show that PreCA terminates and that learned preconditions are sound
when PreCA is fed with an expressive enough bias B. Then we show that if
runOracle never answers ukn, PreCA returns the weakest precondition.

3.4. PRECONDITION ACQUISITION 47

Proposition 1 (Consistency). Given a function F , a postcondition Q and a
bias B. If PreCA returns a network L, then L agrees with all positive and
negative queries.

Proof. Let e a positive query. When processing e, PreCA discards all con-
straints c ∈ κ(e). Thus, if PreCA returns a network L, L contains no con-
straint from κ(e). Thus, e |= L. Consider now that e is negative. When
processing e, PreCA will extend Ω with the clause

∨
c∈κ(e) a(c). If PreCA

returns L, this mean that at least one constraint from κ(e) has been integrated
to L. Thus, e ̸|= L.

Proposition 2 (Termination). Given a function F , a postcondition Q and a
bias B, PreCA terminates.

Proof. Termination of PreCA immediately follows the reduction of Ω to a
monomial with an atom for each constraint c ∈ B. Ω is expanded with negative
unit clauses of the form ¬a(c) or by non-unit clauses composed with positive
atoms a(c). An informative example is an example expanding Ω with new
atoms or reducing existing non-unit clauses size. As (i) Ω involves a finite
number of atoms (B being a finite set of constraints), (ii) QueryGeneration
terminates returning an informative example if it exists, nil otherwise, and
(iii) runOracle always responds, we have termination.

Proposition 3 (Soundness). Given a function F , a postcondition Q and a
bias B s.t. WP(F,Q) is representable by B. If PreCA returns a network L
then L is a precondition of F w.r.t. the postcondition Q.

Proof. L is a precondition means that L ⇒ WP(F,Q). Suppose that L ̸⇒
WP(F,Q) when PreCA do not collapse. This means that there exists e |= L
and e ̸|=WP(F,Q). AsWP(F,Q) is representable by B, it exists c∗ ∈ B that
rejects e. As PreCA terminates, this means that QueryGeneration is not
able to generate an example because Ω is reduced to a monomial. Knowing
that e |= L and e ̸|= c∗, it exists a unit clause of the form ¬a(c∗) in Ω learned
by processing a positive example e∗ s.t. e∗ ̸|= c∗. However, as c∗ ∈ WP(F,Q),
such e∗ does not exist. It proves that L⇒WP(F,Q).

Theorem 1 (Correctness). Given a function F , a postcondition Q and a bias
B s.t. WP(F,Q) is representable by B. If runOracle never returns ukn then
PreCA converges to a network L equivalent to the weakest precondition.

Proof. If WP(F,Q) ⊆ B and runOracle returns yes/no answers, PreCA is
equivalent to Conacq. Conacq is correct, terminates and always converges
when B is expressive enough [122], it follows that PreCA always converges
on to a constraint network L equivalent to WP(F,Q) under the assumptions
on B and runOracle.

48 CHAPTER 3. SYNTHESIZING FUNCTION CONTRACTS

Discussion. These guarantees, while not perfect, are still very pleasant for a
black-box approach. Prior black-box learners are much more limited: Daikon
[40] does not guarantee consistency (Proposition 1), while [70, 68] guaran-
tee consistency but not correctness (Theorem 1). Also, previous black-box
methods consider that functions always terminate i.e., no ukn answers.

3.5 PreCA for Memory-oriented Preconditions

We now setup PreCA to the case of memory-related preconditions, which are
of paramount importance for the safety and security of low-level languages
like C or binary code.

3.5.1 Constraint Acquisition Settings

Vocabulary (X, D).Given a function F , our variables setX = {p1, . . . , pk, i1, . . . , ik′}
represents the initial memory state of F . It is composed of all F argu-
ments and global variables in scope. Here, pj are pointers and ij are inte-
gers (signed or not). DX defines possible F inputs. It compactly represents
all cases induced by Γ. We note r1, ..., rm the address of each global vari-
ables in X and a1, ..., ak, k pairwise distinct new valid addresses. Then, D(pi)
is {NULL, r1, ..., rm, a1, ..., aj} and D(ij) is [0 , NU] if ij is unsigned and
[−NI , NI] otherwise – NI and NU are the number of signed and unsigned
integers in X.

Language Γ. PreCA considers the constraint language Γ described in Ta-
ble 3.4 including well-typed constraints only. Observe that: (i) it does not
include conjunctions of constraints as acquisition will infer them; (ii) Γ holds
Horn clauses of arbitrary size which is crucial to handle conditional precon-
ditions, e.g., find_first_of weakest precondition in Listing 3.1 contains the
constraint m > 0⇒ valid(a).

Bias B. The bias B is a finite set of constraints extracted from Γ. A balance
must be found here, as a large bias is more expressive but can slow down
inference. Given the function F , PreCA considers the following heuristic:
“Let i be the number of F integer inputs and k = max(i, 1). Then PreCA
bias includes all Horn clauses of size ≤ k + 1 from Γ”. Indeed, from our
experience, validity of a pointer is usually conditioned by constraints over
integer variables.

3.5.2 Speeding up PreCA

First, we describe PreCA background knowledge. Secondly, we present a
domain-based preprocessing heuristic.

3.5. PRECA FOR MEMORY-ORIENTED PRECONDITIONS 49

Table 3.4: Grammar of constraint language Γ

Grammar

P := C ⇒ A | A | ¬A
C := C ∧ C | A | ¬A
A := valid(pj) | alias(pj , pl) | deref(pj , g)

| ij = 0 | ij < 0 | ij ≤ 0 | ij = il | ij < il | ij ≤ il

Semantics of constraint over pointers

valid(pj) ≡ pj ̸= NULL

alias(pj , pl) ≡ pj = pl
deref(pj , g) ≡ pj = &g where &g is the address of g

pj (resp. ij) are pointers (resp. integers) and g is a global variable.

Background knowledge. A background knowledge K to speed up conver-
gence of CA contains known relations over the bias constraints to filter inco-
herent networks. Table 3.5 shows a subset of K. It contains usual boolean
properties, transitivity relations over integers and relations on memory – e.g.,
if p1 is valid and p1 aliases with p2 then p2 is valid.

a(c) −→ ¬a(c̄), ∀c ∈ B
a(c1) −→ a(c1 ∨ c2) , ∀c1, c2 ∈ B
a(i1 = 0) ∧ a(i1 = i2) −→ a(i2 = 0)
a(i1 = i2) ∧ a(i2 = i3) −→ a(i1 = i3)
a(¬valid(p1)) ∧ a(¬alias(p1, p2)) −→ a(valid(p2))
a(valid(p1)) ∧ a(alias(p1, p2)) −→ a(valid(p2))
a(alias(p1, p2)) ∧ a(alias(p2, p3)) −→ a(alias(p1, p3))

Where pj (resp. ij) are pointer (resp. integer) variables.

Table 3.5: Background knowledge K (a subset)

Preprocess. Functions rarely raise runtime errors or contradict postcondi-
tions over valid and non aliasing pointers (i.e., the easy case that programmers
usually handle well). Thus, given a function F , we call likely-positive queries
assignments of F inputs s.t. at most one pj is invalid or at most one pair
(pj , pl) aliases. Over likely-positive queries, the oracle will probably answer
yes which would be really helpful as it would discard all constraints from κ(e)
(unlike negative ones which introduce non-unit clause in Ω, see Algorithm 1).
Thus, PreCA starts by likely-positive queries in the hope to prune the search
space before launching the active phase.

50 CHAPTER 3. SYNTHESIZING FUNCTION CONTRACTS

3.6 Experimental Evaluation

We implemented PreCA1 in JAVA, and rely on the Choco constraint solver
and MiniSat SAT solver. We evaluate PreCA on the following Research
Questions:

RQ1 Can PreCA handle realistic functions? We launch PreCA against
our benchmark and check if it indeed infers weakest preconditions;

RQ2 How PreCA components influence results? We compare PreCA with
and without background knowledge, preprocess and active learning;

RQ3 Is PreCA competitive with black-box methods? We compare to black-
box state-of-the-art methods in terms of correctness and speed;

RQ4 Is PreCA competitive with white-box methods? We compare to the
white-box method P-Gen on clean C code, and consider also 3 ”hard”
scenarios: no source code, obfuscated code, presence of inline assembly.

3.6.1 Experimental Design

Benchmark. Our benchmark considers 50 real C functions. It contains all
functions from string.h, all functions from [100, 69] (except 2 functions from
an old Xen version), functions from the DSA benchmark (https://tinyurl.
com/tvzzpvmm), Frama-C WP test suite (https://tinyurl.com/ycxdbjf3),
Siemens suite [124] and the book Science of Programming [125]. Functions
range from 3 LoC to 250 (mean 59), have up to 9 loops (mean 2.8, 47/50
functions with loops) and 2/50 with recursive calls.

Postconditions. For each function, we study two scenarios: with the implicit
true postcondition (dubbed ”no postcondition”) and with explicit postcondi-
tion. In the latter case, we manually choose relevant ones, e.g. Q = valid(ret)
for pointers, and Q = ret ̸= 0 or Q = ret > 0 for integers. Finally, six func-
tions returns no output and are discarded. In total, our benchmark contains
94 inference tasks, 50 with the implicit postconditions and 44 with explicit
postconditions.

Setup. We run PreCA with different time budgets per function (from 1s to
1h) and an oracle timeout of 1min (leading to the ukn answers). Experiments
are done on a machine with 6 Intel Xeon E-2176M CPUs and 32 GB of RAM.

3.6.2 Experimental Results

Results are summarized in Table 3.6.

RQ1. With a time budget of 5min per example and without postcondition,
PreCA infers 46/50 weakest preconditions (29/50 for 1s, 38/50 for 5s). Two
examples timeout, and two others return a constraint network not equivalent

1https://github.com/binsec/preca

3.6. EXPERIMENTAL EVALUATION 51

to the weakest precondition – a manual inspection shows our bias is not ex-
pressive enough in these cases, still it returns a (correct) precondition for one
of them.

With postconditions, PreCA infers 18/44 weakest preconditions with < 5
min time budget each (11/44 for 1s, 16/44 for 5s) and never timeouts (in 7
additional cases it still returns a correct precondition). All these results are
far better than other state-of-the-art tools (RQ3, RQ4).

PreCA is able to handle real functions precisely (weakest precondition)
in a small amount of time. Especially, it is extremely accurate for implicit
postconditions.

RQ2. First, we consider PreCA in passive mode, with 100 random queries,
in order to see the impact of active learning (denoted

↰

Random in Table 3.6).
Results are averaged over 10 runs per function. We see a significant drop
in performance for time budgets ≥ 5min (for 5min: 30/50 vs 46/50, 18/44
vs 12/44). Second, we study how the background knowledge and the pre-
process impact PreCA results. We see a clear impact only for small time
budgets (e.g., 1s and no postcondition: 29 vs 15/19/13). Interestingly, both
the background knowledge and the preprocess are necessary to get speedup.

PreCA benefits strongly from its active mode. Background knowledge and
preprocess over complex preconditions are useful for small time budgets.

RQ3. We compare now against state-of-the art black-box precondition learn-
ers, namely Daikon [40], PIE [70] and Gehr et al. approach [68] – code being
unavailable, we reimplemented it. Daikon and PIE performing passive learn-
ing, we run them over 100 random queries. As Daikon, PIE and Gehr et al.
methods are randomized, we run them 10× and report their average results.
We first observe that PreCA performs significantly better than these three
competitors for all setups – for 1s and no postcondition: 29 vs 8.0 - 16.0 - 1.4;
for 1h and no postcondition: 46 vs 26.1 - 17.7 - 1.6. We tried feeding Daikon,
PIE and Gehr et al. with PreCA queries (lines

↰

PreCA and

↰

Both). All
methods except Daikon benefit from it, highlighting the quality of PreCA
sample generation mechanism.

PreCA significantly outperforms prior black-box methods. Especially, it
infers in 5s more weakest preconditions than Daikon, PIE and Gehr et al. in
1h. Moreover, it generates high quality queries that can benefit other methods.

RQ4. We compared to the white-box method P-Gen [100]. We also consid-
ered [126] and [127], but the former requires to manually translate C code
to Prolog (no front-end provided) and the latter is not available. First, we
consider a favourable setup where the source code of our 94 examples is avail-
able (Table 3.6). Surprisingly, PreCA infers slightly more WP with a 5s
time budget than P-Gen with 1h (both with and without postcondition). The
gap increases for a time budget of 1h and implicit postconditions (46 vs 37).
Second, we consider “hard” application scenarios: (i) no source code; (ii)

52 CHAPTER 3. SYNTHESIZING FUNCTION CONTRACTS

obfuscated code; (iii) inline assembly – our 94 samples are transformed ac-
cordingly. As expected for a white-box method, P-Gen infers no precondition
for these scenarios (0/94) while PreCA results remain the same.

As expected, PreCA significantly outperforms P-Gen on hard application
scenarios. Less expected, it performs also better in the case where the source
code is fully available.

Table 3.6: Results with and without postconditions depending on the time
budget

1s 5s 5 mins 1h

#WP⊤ #WPQ #WP⊤ #WPQ #WP⊤ #WPQ #WP⊤ #WPQ

Daikon 1.4/50 0.4/44 1.6/50 0.4/44 1.6/50 0.4/44 1.6/50 0.4/44↰

PreCA 2/50 1/44 2/50 1/44 2/50 1/44 2/50 1/44↰

Both 3.3/50 0/44 5.7/50 0/44 5.7/50 0/44 5.7/50 0/44

PIE 16.4/50 4.7/44 16.4/50 4.7/44 17.7/50 4.7/44 17.7/50 5.3/44↰

PreCA 5/50 3/44 5/50 3/44 5/50 3/44 5/50 3/44↰

Both 25.3/50 11.3/44 25.4/50 11.3/44 26.4/50 11.3/44 28.4/50 11.3/44

Gehr et al. 8.0/50 5.0/44 16.8/50 8.1/44 26.1/50 10.1/44 26.1/50 10.3/44↰

PreCA 37/50 15/44 43/50 17/44 46/50 18/44 46/50 18/44

PreCA 29/50 11/44 38/50 16/44 46/50 18/44 46/50 18/44↰

BK 15/50 8/44 38/50 16/44 45/50 18/44 46/50 18/44↰

Preproc. 19/50 9/44 36/50 16/44 45/50 18/44 46/50 18/44↰
∅ 13/50 7/44 35/50 15/44 45/50 18/44 46/50 18/44↰

Random 29.9/50 12.1/44 29.9/50 12.1/44 30.0/50 12.1/44 30.0/50 12.1/44

P-Gen 34/50 13/44 37/50 15/44 37/50 15/44 37/50 15/44

#WP⊤ (resp. #WPQ) is the number of inferred weakest precondition without (resp. with) a post-
condition. We study 3 variations of Daikon and PIE: (i) original one (highlighted) on 100 random
examples; (ii) on PreCA examples; (iii) on both random and PreCA examples. We study the origi-
nal active Gehr et al. method (highlighted) and we feed it with PreCA examples. Finally, we study
PreCA with its background knowledge and preprocess (highlited), with background knowledge only
(BK), with preprocessing only (Preproc.), without any of them (∅) and in passive mode with 100
random queries (Random). P-Gen being a static method, we consider only its original form.

3.6.3 Discussion

While PreCA shows overall good properties, it also comes with a few limita-
tions. First, handling constant values is problematic. Indeed, we should add
comparisons to them in the bias. However, in a black-box context, there is
no reason to choose one constant value from another and we cannot add all
of them as bias would explode. Second, PreCA uses Horn clauses to han-
dle disjunctive specifications. We consider a simple heuristic for size selection
(Section 3.5.1), yet a more principled approach is desirable. Finally, we re-
quire the function under analysis to be deterministic (a common assumption
in the field). Going further remains open.

3.7. RELATED WORK 53

3.7 Related Work

Black-box contracts inference. Daikon [40] dynamically infers precondi-
tions through predefined patterns over the evolution of variable values. The
technique is passive and lacks clear foundations. PIE [70] relies on program
synthesis for black-box precondition inference. Garg et al. [128] and Sankara-
narayanan et al. [69] infer invariants and preconditions through tree learning
algorithms. As invariant inference distinguishes from precondition inference,
we did not consider [128] in our evaluation. However, even if [69] method was
not available, we integrated their use-cases and show that we handle them
all (except one) while enjoying better theoretical properties. These methods
perform passive learning and heavily depend on test cases quality. Gehr et
al.’s method [68] relies on black-box active learning. Yet, it relies on program
synthesis and performs (type-aware) random sampling, preventing it to enjoy
PreCA correctness properties.

White-box dynamic contracts inference. While purely static white-box
approaches [119, 129, 127, 126] are considered imprecise (too conservative) and
hard to get right (loops, memory, etc.), some approaches combine dynamic
reasoning together with white-box information. Seghir et al. [100] method
must translate the analyzed function into transition constraints being thus
highly impacted by code complexity (Section 3.6.2 RQ4). On the other hand,
Astorga et al. [120, 96] relies on symbolic execution to retrieve a set of useful
inputs and language features, yet the technique is incomplete in the presence
of loops and cannot ensure that all interesting test cases were tested.

Constraint acquisition. CA has been applied to different contexts from
scheduling [36] to robotics [37]. However, this is the first time CA is applied
to program analysis and precondition inference. While we rely on Conacq,
other techniques exist [36, 130, 131] and could be explored.

Program synthesis. Program synthesis [132] aims at creating a function
meeting a given specification, given either formally, in natural language or
as input-output relations. This last case shows some similarities with precon-
dition inference and is used in some prior work on black-box inference [68,
70].

3.8 Conclusion

We propose the first application of Constraint Acquisition to the Precondition
Inference problem, a major issue in Program Analysis and Formal Methods.
We show how to instantiate the standard framework to the program analysis
case, yielding the first black-box active precondition inference method with
clear guarantees. Moreover, our experiments for memory-oriented precondi-
tions show that PreCA significantly outperforms prior works, demonstrating

54 CHAPTER 3. SYNTHESIZING FUNCTION CONTRACTS

the interest of Constraint Acquisition here. Thus, our new method fulfil all
the properties presented in Section 1.3: it is completely black-box, can work
at binary-level, is fast and enjoys clear correctness properties.

Chapter 4

Synthesizing code semantics

Abstract

Code obfuscation aims at protecting Intellectual Property and other
secrets embedded into software from being retrieved. Recent works lever-
age advances in artificial intelligence (AI) with the hope of getting black-
box deobfuscators completely immune to standard (white-box) protec-
tion mechanisms. While promising, this new field of AI-based, and more
specifically search-based black-box deobfuscation, is still in its infancy. In
this article we deepen the state of search-based black-box deobfuscation
in three key directions: understand the current state-of-the-art, improve
over it and design dedicated protection mechanisms. In particular, we
define a novel generic framework for search-based black-box deobfusca-
tion encompassing prior work and highlighting key components; we are
the first to point out that the search space underlying code deobfusca-
tion is too unstable for simulation-based methods (e.g., Monte Carlo Tree
Search used in prior work) and advocate the use of robust methods such
as S-metaheuristics; we propose the new optimized search-based black-
box deobfuscator Xyntia which significantly outperforms prior work in
terms of success rate (especially with small time budget) while being
completely immune to the most recent anti-analysis code obfuscation
methods; and finally we propose two novel protections against search-
based black-box deobfuscation, allowing to counter Xyntia powerful
attacks.

4.1 Introduction

Software contain valuable assets, such as secret algorithms, business logic or
cryptographic keys, that attackers may try to retrieve. The so-called Man-At-
The-End-Attacks scenario (MATE) considers the case where software users
themselves are adversarial and try to extract such information from the code.
Code obfuscation [77, 11] aims at protecting codes against such attacks, by
transforming a sensitive program P into a functionally equivalent program P ′

that is more “difficult” (more expensive, for example, in money or time) to

55

56 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

understand or modify. On the flip side, code deobfuscation aims to extract
information from obfuscated codes.

White-box deobfuscation techniques, based on advanced symbolic pro-
gram analysis, have proven extremely powerful against standard obfuscation
schemes [133, 134, 135, 136, 30, 137, 31] – especially in local attack scenarios
where the attacker analyzes pre-identified parts of the code (e.g., trigger con-
ditions). But they are inherently sensitive to the syntactic complexity of the
code under analysis, leading to recent and effective countermeasures [32, 33,
138, 77].

Search-based black-box deobfuscation. Despite being rarely complete
or sound, artificial intelligence (AI) techniques are flexible and often provide
good enough solutions to hard problems in reasonable time. They have been
therefore recently applied to binary-level code deobfuscation. The pioneering
work by Blazytko et al. [67] shows howMonte Carlo Tree Search (MCTS) [139]
can be leveraged to solve local deobfuscation tasks by learning the semantics
of pieces of protected codes in a black-box manner, in principle immune to the
syntactic complexity of these codes. Their method and prototype, Syntia,
have been successfully used to reverse state-of-the-art protectors like VM-
Protect [140], Themida [141] and Tigress [142], drawing attention from the
software security community [143].

Problem. While promising, search-based black-box (code) deobfuscation
techniques are still not well understood. Several key questions of practical
relevance (e.g., deobfuscation correctness and quality, sensitivity to time bud-
get) are not addressed in Blazytko et al.’s original paper, making it hard to
exactly assess the strengths and weaknesses of the approach. Moreover, as
Syntia comes with many hard-coded design and implementation choices, it
is legitimate to ask whether other choices lead to better performance, and to
get a broader view of search-based black-box deobfuscation methods. Finally,
it is unclear how these methods compare with recent proposals for greybox
deobfuscation [73] or general program synthesis [91, 10], and how to protect
from such black-box attacks.

Goal. We focus on advancing the current state of search-based black-box
deobfuscation in the following three key directions: (1) generalize the initial
Syntia proposal and refine the initial experiments by Blazytko et al. in or-
der to better understand search-based black-box methods, (2) improve the
current state-of-the-art (Syntia) through a careful formalization and explo-
ration of the design space and evaluate the approach against greybox and
program synthesis methods, and finally (3) study how to mitigate such black-
box attacks. Especially, we study the underlying search space, bringing new
insights for efficient black-box deobfuscation, and promote the application of
S-metaheuristics [144] instead of MCTS.

Contributions. Our main contributions are the following:

4.1. INTRODUCTION 57

• We refine Blazytko et al.’s experiments in a systematic way, highlighting
new strengths and new weaknesses of the initial Syntia proposal for
search-based black-box deobfuscation (Section 4.4). Especially, Syntia
(based on Monte Carlo Tree Search) is far less efficient than expected
for small time budgets (typical usage scenario) and lacks robustness;

• We propose a missing formalization of black-box deobfuscation (Sec-
tion 4.4) and dig into Syntia internals to rationalize our observations
(Section 4.4.4). It appears that the search space underlying black-box
code deobfuscation is too unstable to rely on MCTS – especially assigning
a score to a partial state through simulation leads to poor estimations.
As a result, Syntia is here almost enumerative;

• We propose to see black-box deobfuscation as an optimization problem
rather than a single player game (Section 4.5), allowing to reuse S-
metaheuristics [144], known to be more robust than MCTS on unstable
search spaces (especially, they do not need to score partial states). We
propose Xyntia (Section 4.5), a search-based black-box deobfuscator us-
ing Iterated Local Search (ILS) [145], known among S-metaheuristics for
its robustness. Experiments show that Xyntia keeps the benefits of
Syntia while correcting most of its flaws. Especially, Xyntia signifi-
cantly outperforms Syntia, synthesizing twice more expressions with a
budget of 1 s/expr than Syntia with 600 s/expr. Other S-metaheuristics
also clearly beat MCTS, even if they are less effective here than ILS;

• We evaluateXyntia against other state-of-the-art attackers (Section 4.6),
namely the QSynth greybox deobfuscator [73], program synthesizers
CVC4 [91] and STOKE [10], and pattern-matching-based simplifiers.
Xyntia outperforms all of them – it finds 2× more expressions and is
30× faster than QSynth on heavy protections;

• We evaluate Xyntia against state-of-the-art defenses (Section 4.7), es-
pecially recent anti-analysis proposals [138, 12, 32, 146, 83]. As ex-
pected, Xyntia is immune to them. In particular, it successfully by-
passes side-channels [83], path explosion [32] and MBA [138]. It also
synthesizes VM-handlers from state-of-the-art virtualizers [142, 140];

• Finally, we propose the two first protections against search-based black-
box deobfuscation (Section 4.8). We observe that all phases of black-box
techniques can be thwarted (hypothesis, sampling and learning), we pro-
pose two practical methods exploiting these limitations and we discuss
them in the context of virtualization-based obfuscation: (i) semanti-
cally complex handlers; (ii) merged handlers with branch-less conditions.
Experiments show that both protections are highly effective.

58 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

We hope that our results will help better understand search-based deobfusca-
tion, and lead to further progress in this promising field.

4.2 Background

4.2.1 Obfuscation

Program obfuscation [77, 11] is a family of methods designed to make reverse
engineering (understanding programs internals) hard. It is employed by man-
ufacturers to protect intellectual property and by malware authors to hinder
analysis. It transforms a program P in a functionally equivalent, more com-
plex program P ′ with an acceptable performance penalty. Obfuscation does
not ensure that a program cannot be understood – this is impossible in the
MATE context [81] – but aims to delay the analysis as much as possible in
order to make it unprofitable. Thus, it is especially important to protect from
automated deobfuscation analyses (anti-analysis obfuscation). We present here
two important obfuscation methods.

Mixed Boolean-Arithmetic (MBA) encoding [138] transforms an
arithmetic and/or Boolean expression into an equivalent one, combining arith-
metic and Boolean operations. It can be applied iteratively to increase the
syntactic complexity of the expression. Eyrolles et al. [147] show that SMT
solvers struggle to answer equivalence requests on MBA expressions, prevent-
ing the automated simplification of protected expressions by symbolic meth-
ods.

Virtualization [146] translates an initial code P into a bytecode B to-
gether with a custom virtual machine. Execution of the obfuscated code can
be divided in 3 steps (Fig. 4.1): (i) fetch the next bytecode instruction to
execute, (ii) decode the bytecode and find the corresponding handler, (iii)
and finally execute the handler. Virtualization hides the real control-flow-
graph (CFG) of P , and reversing the handlers is key for reversing the VM.
Virtualization is notably used in malware [148, 149].

Fetch

Bytecodes

Decode Execute

h1(x, y)
h2(x, y)
h3(x, y)

...
hn(x, y)

Handlers

Figure 4.1: Virtualization-based obfuscation

4.2. BACKGROUND 59

4.2.2 Deobfuscation

Deobfuscation aims at reverting an obfuscated program back to a form close
enough to the original one, or at least to a more understandable version.
Along the previous years, symbolic deobfuscation methods based on advanced
program analysis techniques have proven to be very efficient at breaking stan-
dard protections [133, 134, 135, 136, 30, 137, 31]. However, very effective
countermeasures start to emerge, based on deep limitations of the underlying
code-level reasoning mechanisms and potentially strongly limiting their usage
[32, 33, 83, 146, 31]. Especially, all such methods are ultimately sensitive to
the syntactic complexity of the code under analysis.

4.2.3 Search-based black-box deobfuscation

Search-based black-box deobfuscation has been recently proposed by Blazytko
et al. [67], implemented in the Syntia tool, to learn the semantics of well-
delimited code fragments, e.g. MBA expressions or VM handlers. The code
under analysis is seen as a black-box that can only be queried (i.e., executed
under chosen inputs to observe results). Syntia samples input-output (I/O)
relations, then uses a learning engine to find an expression mapping sampled
inputs to their observed outputs. Because it relies on a limited number of
samples, results are not guaranteed to be correct. However, being fully black-
box, it is in principle insensitive to syntactic complexity.

Scope. Syntia tries to infer a simple semantics of heavily obfuscated local
code fragments – e.g., trigger based conditions or VM handlers. Understanding
these fragments is critical to fulfill analysis.

Workflow. Syntia workflow is representative of search-based black-box de-
obfuscators. First, it needs (i) a reverse window i.e., a subset of code to
work on; (ii) the location of its inputs and outputs. Consider the code in
Listing 4.1 evaluating a condition at line 4. To understand this condition, a
reverser focuses on the code between lines 1 and 3. This code segment is our
reverse window. The reverser then needs to locate relevant inputs and out-
puts. The condition at line 4 is performed on t3. This is our output. The set
of inputs contains any variables (registers or memory locations at assembly
level) influencing the outputs. Here, inputs are x and y. Armed with these
information, Syntia samples inputs randomly and observes resulting outputs.
In our example, it might consider the samples (x 7→ 1, y 7→ 2), (x 7→ 0, y 7→ 1)
and (x 7→ 3, y 7→ 4) which respectively evaluate t3 to 3, 1 and 7. Syntia then
synthesizes an expression matching these observed behaviors, using Monte
Carlo Tree Search (MCTS) over the space of all possible (partial) expressions.
Here, it rightly infers that t3 ← x + y and the reverser concludes that the
condition is x+ y = 5, where a symbolic method will typically simply retrieve
that ((x ∨ 2y)× 2− (x⊕ 2y)− y) = 5.

60 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

1 int t1 = 2 * y;

2 int t2 = x | t1;

3 int t3 = t2 * 2 - (x ^ t1) - y;

4 if (t3 == 5) ...

Listing 4.1: Obfuscated condition

4.3 Motivation

4.3.1 Attacker model

In the MATE scenario, the attacker is the software user himself. He has only
access to the obfuscated version of the code under analysis and can read or
run it at will. We consider that the attacker is highly skilled in reverse engi-
neering but has limited resources in terms of time or money. We see reverse
engineering as a human-in-the-loop process where the attacker combines man-
ual analysis with automated state-of-the-art deobfuscation methods (slicing,
symbolic execution, etc.) on critical, heavily obfuscated code fragments like
VM handlers or trigger-based conditions. Thus, an effective defense strategy
is to thwart automated deobfuscation methods.

4.3.2 Syntactic and semantic complexity

We now intuitively motivate the use of black-box deobfuscation. Consider that
we reverse a piece of software protected through virtualization. We need to
extract the semantics of all handlers, which usually perform basic operations
like h(x, y) = x + y. Understanding h is trivial, but it can be protected to
hinder analysis. Eq. (4.1) shows how MBA encoding hides h semantics.

h(x, y) = x+ y
mba−→ (x ∨ 2y)× 2− (x⊕ 2y)− y (4.1)

Such encoding syntactically transforms the expression to make it incom-
prehensible while preserving its semantics. To highlight the difference be-
tween syntax and semantics, we distinguish:

1. The syntactic complexity of expression e is the size of e, i.e. the
number of operators used in it;

2. The semantic complexity of expression e is the smallest size of ex-
pressions e′ (in a given language) equivalent to e.

For example, in the MBA language, x + y is syntactically simpler than (x ∨
2y)×2− (x⊕2y)−y, yet they have the same semantic complexity as they are
equivalent. Conversely, x+ y is more semantically complex than (x+ y) ∧ 0,
which equals 0. We do not claim to give a definitive definition of semantic

4.3. MOTIVATION 61

and syntactic complexity – as smaller is not always simpler – but introduce
the idea that two kinds of complexity exist and are independent.

The encoding in Eq. (4.1) is simple, but it can be repeatedly applied to
create a more syntactically complex expression, leading the reverser to either
give up or try to simplify it automatically. White-box methods based on
symbolic execution (SE) [30, 135] and formula simplifications (in the vein
of compiler optimizations) can extract the semantics of an expression, yet
they are sensitive to syntactic complexity and will not return simple versions
of highly obfuscated expressions. Conversely, black-box deobfuscation treats
the code as a black-box, considering only sampled I/O behaviors. Thus
increasing syntactic complexity, as usual state-of-the-art protections do, has
simply no impact on black-box methods.

4.3.3 Black-box deobfuscation in practice

We now present how black-box methods integrate in a global deobfuscation
process and highlight crucial properties they must hold.

Global workflow. Reverse engineering can be fully automated, or handmade
by a reverser, leveraging tools to automate specific tasks. While the deobfus-
cation process operates on the whole obfuscated binary, black-box modules
can be used to analyze parts of the code like conditions or VM handlers.
Upon meeting a complex code fragment, the black-box deobfuscator is called
to retrieve a simple semantic expression. After synthesis succeeds, the inferred
expression is used to help continue the analysis.

Requirements. In virtualization-based obfuscation, the black-box module
is typically queried on all VM handlers [67]. As the number of handlers can
be arbitrarily high, black-box methods need to be fast. In addition, inferred
expressions should ideally be as simple as the original non-obfuscated expres-
sion and semantically equivalent to the obfuscated expression (i.e., correct).
Finally, robustness (i.e., the capacity to synthesize complex expressions) is
needed to be usable in various situations. Thus, speed, simplicity, correct-
ness and robustness, are required for efficient black-box deobfuscation.

Discussion. One may argue that local black-box deobfuscation can be easily
parallelized, limiting the need for fast synthesis. However, reverse engineering
is often performed incrementally (e.g., packing, self-modification), or/and with
a human in the loop and the need for quick feedback. In those scenarios,
parallelization cannot help that much while slow synthesis obstructs analysis.
Also, in some cases Syntia fails in 12h (Sections 4.5.3 and 4.8.2) – parallelism
cannot help there.

62 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

4.4 Understand Black-box deobfuscation

We propose a general view of search-based code deobfuscation fitting state-
of-the-art solutions [67, 73]. We also extend the evaluation of Syntia by
Blazytko et al. [67], highlighting both some previously unreported weaknesses
and strengths. From that we derive general lessons on the (in)adequacy of
MCTS for code deobfuscation, that will guide our new approach (Section 4.5).

4.4.1 Problem at hand

Search-based deobfuscation takes an obfuscated expression and tries to infer
an equivalent one with lower syntactic complexity. Such problem can be stated
as following:

Deobfuscation. Let e, obf be 2 equivalent expressions such that obf is
an obfuscated version of e – note that obf is possibly much larger than e.
Deobfuscation aims to infer an expression e′ equivalent to obf (and e), but with
size similar to e. Such problem can be approached in three ways depending
on the amount of information given to the analyzer:

Black-box We can only run obf . The search is thus driven by sampled
I/O behaviors. Syntia [67] is a black-box approach;

Greybox Here obf is executable and readable but the semantics of its
operators is mostly unknown. The search is driven by previously sampled I/O
behaviors which can be applied to subparts of obf . QSynth [73] is a greybox
solution;

White-box The analyzer has full access to obf (run, read) and the se-
mantics of its operators is precisely known. Thus, the search can profit from
advanced pattern matching and symbolic strategies. Standard static analysis
falls in this category.

Black-box methods. Search-based black-box deobfuscators follow the frame-
work given in Algorithm 2. In order to deobfuscate code, one must detail a
sampling strategy (i.e., how inputs are generated), a learning strategy (i.e.,
how to learn an expression mapping sampled inputs to observed outputs) and
a simplification postprocess. For example, Syntia samples inputs randomly,
uses Monte Carlo Tree Search (MCTS) [139] as learning strategy and
leverages the Z3 SMT solver [150] for simplification. The choice of the
sampling and learning strategies is critical. For example, too few samples
could lead to incorrect results while too many could impact the search effi-
ciency, and an inappropriate learning algorithm could impact robustness or
speed.

Let us now discuss Syntia learning strategy. We show that using MCTS
leads to disappointing performances and give insights to explain why.

4.4. UNDERSTAND BLACK-BOX DEOBFUSCATION 63

Algorithm 2: Search-based black-box deobfuscation framework

In : The code to analyze Code; sampling strategy Sample; a
learning strategy Learn; an expression simplifier Simplify;

Out : learned expression or Failure;
1 begin
2 Oracle← Sample(Code)
3 success, expr ← Learn(Oracle)
4 if success then
5 return Simplify(expr)

6 else
7 return Failure

4.4.2 Evaluation of Syntia

We extend Syntia evaluation and tackle the following questions left unad-
dressed by Blazytko et al. [67].

RQ1 Are results stable across different runs?
This is desirable due to the stochastic nature of MCTS;

RQ2 Is Syntia fast, robust and does it infer simple and correct results?
Syntia offers a priori no guarantee of correctness nor quality. Also,
we consider small time budget (1s), adapted to human-in-the-loop sce-
narios but absent from the initial evaluation;

RQ3 How is synthesis impacted by the set of operators size?
Syntia learns expressions over a search space fixed by predefined
grammars. Intuitively, the more operators in the grammar, the harder
it will be to converge to a solution. We use 3 sets of operators to assess
this impact.

4.4.2.1 Experimental setup

We distinguish the success rate (number of expressions inferred) from the
equivalence rate (number of expressions inferred and equivalent to the orig-
inal one). The equivalence rate relies on the Z3 SMT solver [150] with a
timeout of 10s. Since Z3 timeouts are inconclusive answers, we define a no-
tion of equivalence range: its lower bound is the proven equivalence
rate (number of expressions proven to be equivalent) while its upper bound
is the optimistic equivalence rate (expressions not proven different, i.e.,
optimistic = proven + #timeout). The equivalence rate is within the equiv-
alence range, while the success rate is higher than the optimistic equivalence
rate. Finally, we define the quality of an expression as the ratio between
the number of operators in recovered and target expressions. It estimates the
syntactic complexity of inferred expressions compared to the original ones. A

64 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

quality of 1 indicates a perfect result: the recovered expression has the same
size as the target expression.

Benchmarks. We consider two benchmark suites: B1 and B2. B11 comes
from Blazytko et al. [67] and was used to evaluate Syntia. It comprises 500
randomly generated expressions with up to 3 arguments, and simple seman-
tics. It aims at representing state-of-the-art VM-based obfuscators. However,
we found that B1 suffers from several significant issues: (1) it is not well dis-
tributed over the number of inputs and expression types, making it unsuitable
for fine-grained analysis; (2) only 216 expressions are unique modulo renam-
ing – the other 284 expressions are α-equivalent, like x+y and a+b. These
problems threaten the validity of the evaluation.

We thus propose a new benchmark B2 consisting of 1,110 randomly gen-
erated expressions, better distributed according to the number of inputs and
the nature of operators – see Table 4.1. We use three categories of expres-
sions: Boolean, Arithmetic and Mixed Boolean-Arithmetic, with 2 to 6 in-
puts. Especially, expressions are spread equally between categories to prevent
biased results. Each expression has an Abstract Syntax Tree (AST) of max-
imal height 3. As a result, B2 is more challenging than B1 and enables a
finer-grained evaluation. Considering such diverse and complex expressions
is crucial as black-box deobfuscation evolves in an adversarial context where
limitations can be exploited to thwart analysis.

Note that we also consider QSynth data-sets [73] in Section 4.6, devel-
oped by the Quarkslab R&D company.

Type # Inputs

Bool. Arith. MBA 2 3 4 5 6

#Expr. 370 370 370 150 600 180 90 90

Table 4.1: Distribution of samples in benchmark B2

Operator sets. Table 4.2 introduces three operator sets: Full, Expr and
Mba. We use these to evaluate sensitivity to the search space and answer
RQ3. Expr is as expressive as Full even if Expr ⊂ Full. Mba can only
express Mixed Boolean-Arithmetic expressions [138].

Table 4.2: Sets of operators

Full : {−1,¬,+,−,×,≫u,≫s,≪,∧,∨,⊕,÷s,÷u,%s,%u,++ }
Expr : {−1,¬,+,−,×,∧,∨,⊕,÷s,÷u,++ }
Mba : {−1,¬,+,−,×,∧,∨,⊕}

1https://github.com/RUB-SysSec/syntia/tree/master/samples/mba/tigress

4.4. UNDERSTAND BLACK-BOX DEOBFUSCATION 65

Configuration. We run all our experiments on a machine with 6 Intel Xeon
E-2176M CPUs and 32 GB of RAM. We evaluate Syntia in its original con-
figuration [67]: the SA-UCT parameter is 1.5, we use 50 I/O samples and a
maximum playout depth of 0. We also limit Syntia to 50,000 iterations per
sample, corresponding to a timeout of 60s per sample on our test machine.

4.4.2.2 Evaluation Results

Let us summarize here the outcome of our experiments.

RQ1. Over 15 runs, Syntia finds between 362 and 376 expressions of B1
i.e., 14 expressions of difference (2.8% of B1). Over B2, it finds between 349
and 383 expressions i.e., 34 expressions of difference (3.06% of B2). Hence,
Syntia is very stable across executions.

RQ2. Syntia cannot efficiently infer B2 (≈ 34% success rate). Moreover,
Table 4.3 shows Syntia to be highly sensitive to time budget. More pre-
cisely, with a time budget of 1 s/expr., Syntia only retrieves 16.3% of B2.
Still, even with a timeout of 600 s/expr., it tops at 42% of B2. In addition,
Syntia is unable to synthesize expressions with more than 3 inputs – success
rates for 4, 5 and 6 inputs respectively falls to 10%, 2.2% and 1.1%. It also
struggles over expressions using a mix of Boolean and arithmetic operators,
synthesizing only 21% (see Table 4.9). Still, Syntia performs well regarding
quality and correctness. On average, its quality is around 0.60 (for a timeout
of 60 s/expr.) i.e., resulting expressions are simpler than the original (non
obfuscated) ones, and it rarely returns non-equivalent expressions – between
0.5% and 0.8% of B2. We thus conclude that Syntia is stable and returns
correct and simple results. Yet, it is not efficient enough (solves only few ex-
pressions on B2, heavily impacted by time budget) and not robust (number of
inputs and expression type).

Table 4.3: Syntia depending on the timeout per expression (B2)

1s 10s 60s 600s

Succ. Rate 16.5% 25.6% 34.5% 42.3%
Equiv. Range 16.3% 25.1 - 25.3% 33.7 - 34.0% 41.4 - 41.6%
Mean Qual. 0.35 0.49 0.59 0.67

RQ3. Default Syntia synthesizes expressions over the Full set of operators.
To evaluate its sensitivity to the search space we run it over Full, Expr and
Mba. Smaller sets do exhibit higher success rates (42% on Mba) but results
remain disappointing. Syntia is sensitive to the size of the operator set but
is inefficient even with Mba.

66 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

Conclusion. Syntia is stable, correct and returns simple results. Yet, it is
heavily impacted by the time budget and lacks robustness. It thus fails to meet
the requirements given in Section 4.3.3.

4.4.3 Optimal Syntia

To ensure the conclusions given in Section 4.4.4 apply to MCTS and not only
to Syntia, we study Syntia extensively to find better set ups for the fol-
lowing parameters: simulation depth, SA-UCT value (configuring the balance
between exploitative and explorative behaviors), number of I/O samples and
distance.

Table 4.4: Syntia depending on max playout depth (Mba, B2, timeout=60s).

Max play. depth 0 3 5

Succ. Rate 42.6 % 31.8 % 28.6 %
Equiv. Range 42.3 - 42.6 % 31.4 - 31.8 % 28.1 - 28.6 %
Mean Qual. 0.66 1.03 1.06

Simulation depth. As presented in Section 4.4.4, MCTS simulates each
generated nodes. To do so, it applies rules of the grammar randomly to the
non terminal expression until it becomes terminal. An important parameter
is thus the maximum simulation depth i.e., the number of rules not leading to
terminal nodes (like U → U + U). By default, Syntia considers a maximum
simulation depth of 0, which mean that all non terminal symbols are directly
replaced by variables or constant values. Table 4.4 shows that increasing this
parameter is not beneficial.

Number of I/O samples. By defaults Syntia considers 50 samples. Ta-
ble 4.5 presents results for different number of samples. We observe little
improvement when the number of samples decreases. Still, it stays in the
same range of results.

Table 4.5: Syntia for different number of samples (B2, Mba, timeout=60s).

samples 10 20 50 100

Succ. Rate 45.6% 44.9% 42.6% 43.2%
Equiv. Range 45.1 - 45.4% 44.7 - 44.9% 42.3% - 42.6% 42.9 - 43.2%
Mean Qual. 0.69 0.71 0.66 0.69

Objective function. By default, Syntia evaluates if an expression is close
to the target one by computing the mean between different distances. To com-
plete our evaluation of Syntia we launched it with Xyntia Log-arithmetic

4.4. UNDERSTAND BLACK-BOX DEOBFUSCATION 67

distance. We observe that as Xyntia the log-arithmetic seems more appro-
priate to guide the search. Still, Syntia success rate stays bellow 50%.

Table 4.6: Syntia depending on the objective function (B2, Mba, time-
out=60s).

Syntia-dist Log-arith

Succ. Rate 42.6% 47.9%
Equiv. Range 42.3 - 42.6% 47.4 - 47.9%
Mean Qual. 0.66 0.70

Simulated annealing UCT (SA-UCT). From a high level, MCTS can be
divided in 2 behaviors: exploitation (where it focuses on promising nodes) and
exploration (where it checks rarely visited or at first glance non interesting
nodes). The SA-UCT constant value is a parameter to configure the balance
between these behaviors. The smaller is the constant value the more exploita-
tive MCTS is. On the contrary, the bigger it is, more explorative is MCTS.
By default Syntia sets the SA-UCT constant value to 1.5. Table 4.7 presents
results of Syntia for smaller and bigger values. For smaller values, Syntia is
less efficient. This is coherent with claims from Section 4.4.4. Indeed, as the
search space is highly unstable, simulations are misleading. Thus, focusing
too much on exploitation is unsuitable. However, it also appears that, bigger
values can be beneficial. This is also coherent with Section 4.4.4 as it shows
that the most important behavior is exploration. Still, even with SA-UCT
values > 1.5 success rate stays low (< 50%).

Table 4.7: Syntia depending on SA-UCT value (Mba, B2, timeout = 60 s).

SA-UCT 3 2 1.5 0.5 0.1

Succ. Rate 48.0% 48.2% 42.6 % 34.6 % 19.1 %
Equiv. Range 47.7 - 48.0% 48.1 - 48.2 % 42.3 - 42.6 % 34.6 % 19.1 %
Mean Qual. 0.71 0.72 0.66 0.62 0.44

Optimal Syntia. Our extensive study highlights a new optimal configu-
ration of Syntia (Mba set of operators, simulation depth=0, #samples=10,
objective function=log-arithmetic, SA-UCT=2). However, even with this con-
figuration, Syntia success rate stays around 50% (Table 4.8). While slightly
better, such results are still disappointing.

Conclusion. By default, Syntia is well configured. Changing its parameters
lead in the best scenario to marginal improvement, hence the pitfalls highlighted
seem to be inherent to the MCTS approach.

68 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

Table 4.8: Optimal Syntia (B2, timeout = 60 s).

Succ. Rate 52.7%
Equiv. Range 52.1 - 52.6%
Mean Qual. 0.76

4.4.4 MCTS for deobfuscation

Let us explore whether these issues are related to MCTS.

Monte Carlo Tree Search. MCTS creates here a search tree where each
node is an expression which can be terminal (e.g. a + 1, where a is a
variable) or partial (e.g. U +a, where U is a non-terminal symbol). The goal
of MCTS is to expand the search tree smartly, focusing on most pertinent
nodes first. Evaluating the pertinence of a terminal node is done by sampling
(computing here a distance between the evaluation of sampled inputs over the
node expression against their expected output values). For partial nodes,
MCTS relies on simulation: random rules of the grammar are applied to the
expression (e.g., U+a ; b+a) until it becomes terminal and is evaluated. As
an example, let {(a 7→ 1, b 7→ 0), (a 7→ 0, b 7→ 1)} be the sampled inputs. The
expression b+a (simulated from U+a) evaluates them to (1, 1). If the ground-
truth outputs are 1 and −1, the distance will equal δ(1, 1) + δ(1,−1) where δ
is a chosen distance function. We call the result the pertinence measure. The
closer it is to 0, the more pertinent the node U +a is considered and the more
the search will focus on it.

Analysis. This simulation-based pertinence estimation is not reliable in our
code deobfuscation setting.

• We present in Fig. 4.2, for different non-terminal nodes, the distance
values computed through simulations. We observe that from a starting
node, a random simulation can return drastically different results. It
shows that the search space is very unstable and that relying on sim-
ulation is misleading (especially in our context where time budget is
small);

• Moreover, our experiments show that in practice Syntia is not guided
by simulations and behaves almost as if it were an enumerative (BFS)
search – MCTS where simulations are non informative. As an example,
Fig. 4.3 compares how the distance evolves over time for Syntia and
a custom, fully enumerative, MCTS synthesizer: both are very similar.
Actually, Syntia and enumerative MCTS perform similarly over B2:
with a 60s (resp. 600s) timeout, enumerative MCTS reaches 41.4%
(resp. 51.6%) success rate vs. 42.6% (resp. 54.9%) for Syntia (Mba
operators set);

4.5. IMPROVE BLACK-BOX DEOBFUSCATION 69

• Finally, on B2 (resp. B1) with a timeout of 60s, only 34/341 (resp.
20/376) successfully synthesized expressions are the children of previ-
ously most promising nodes. It shows that Syntia successfully syn-
thesized expressions due to its exploratory (i.e., enumerative) behavior
rather than to the selection of nodes according to their pertinence.

0
200
400
600
800

1000
1200
1400
1600
1800

u −
u
¬uu×

u

u−
u

u
+
u

u ∨
u
u ∧

u
u⊕

u

u×
(u
+
u)

u×
(u×

u)

u×
(u−

u)

u×
(u ∧

u)

u×
(u ∨

u)

u×
(u⊕

u)

(u×
u)×

(u
+
u)

(u
+
u)×

(u
+
u)

(u−
u)×

(u
+
u)

(u ∧
u)×

(u
+
u)

(u ∨
u)×

(u
+
u)

(u⊕
u)×

(u
+
u)

0
200
400
600
800

1000
1200
1400
1600
1800

u −
u
¬uu×

u

u−
u

u
+
u

u ∨
u
u ∧

u
u⊕

u

u×
(u
+
u)

u×
(u×

u)

u×
(u−

u)

u×
(u ∧

u)

u×
(u ∨

u)

u×
(u⊕

u)

(u×
u)×

(u
+
u)

(u
+
u)×

(u
+
u)

(u−
u)×

(u
+
u)

(u ∧
u)×

(u
+
u)

(u ∨
u)×

(u
+
u)

(u⊕
u)×

(u
+
u)

L
og
ar
it
h
.
d
is
t.

fr
om

(a
∧
b)
×
(b

+
c)

Non terminal expressions

Mean distance

Each point represents the distance between (a ∧ b) × (b + c) and one simulation of a non
terminal expression (horizontal axis). A non terminal expression, can generate multiple
terminal ones through simulations, leading to completely different results.

Figure 4.2: Dispersion of the distance for different simulations

Conclusion. The search space from black-box code deobfuscation is too
unstable, making MCTS simulations unreliable. MCTS in that setting is then
almost enumerative and inefficient. That is why Syntia is slow and not
robust, but returns simple expressions.

4.4.5 Conclusion

While Syntia returns simple results, it only synthesizes semantically simple
expressions and is slow. These unsatisfactory results can be explained by the
fact that the search space is too unstable, making the use of MCTS unsuitable.
In the next section, we show that methods avoiding the manipulation of partial
expressions (and thus free from simulation) are better suited to deobfuscation.

4.5 Improve Black-box deobfuscation

We define a new search-based black-box deobfuscator, dubbed Xyntia, lever-
aging S-metaheuristics [144] and Iterated Local Search (ILS) [145] and com-

70 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

0
200
400
600
800

1000
1200
1400
1600

0 2000 4000 6000 8000 10000 12000

0
200
400
600
800

1000
1200
1400
1600

0 2000 4000 6000 8000 10000 12000

L
og
ar
it
h
m
ic

d
is
ta
n
ce

Iterations

Syntia

L
og
ar
it
h
m
ic

d
is
ta
n
ce

Iterations

Enumerative MCTS

Figure 4.3: Syntia and enumerative MCTS distance evolution (expression
successfully synthesized)

pare its design to rival deobfuscators. Unlike MCTS, S-metaheuristics only
manipulate terminal expressions and do not create tree searches, thus we ex-
pect them to be better suited than MCTS for code deobfuscation. Among
S-metaheuristics, ILS is particularly designed for unstable search spaces, with
the ability to remember the last best solution encountered and to restart the
search from that point. We show that these methods are well-guided by the
distance function and significantly outperform MCTS in the context of black-
box code deobfuscation.

4.5.1 Deobfuscation as optimization

As presented in Section 4.4, Syntia frames deobfuscation as a single player
game. We instead propose to frame it as an optimization problem using ILS
as learning strategy.

Black-box deobfuscation: an optimization problem. Black-box deob-
fuscation synthesizes an expression from input-output samples and can be
modeled as an optimization problem. The objective function, noted f , mea-
sures the similarity between current and ground truth behaviors by computing
the sum of the distances between found and objective outputs. The goal is to
infer an expression minimizing the objective function over the I/O samples. If
the underlying grammar is expressive enough, a minimum exists and matches
all sampled inputs to objective outputs, zeroing f . The reliability of the found

4.5. IMPROVE BLACK-BOX DEOBFUSCATION 71

solution depends on the number of I/O samples considered. Too few samples
would not restrain search enough and lead to flawed results.

Solving through search heuristics. S-metaheuristics [144] can be advanta-
geously used to solve such optimization problems. A wide range of heuristics
exists (Hill Climbing, Random Walk, Simulated Annealing, etc.). They all
iteratively improve a candidate solution by testing its “neighbors” and mov-
ing along the search space. Because solution improvement is evaluated by the
objective function, it is said to guide the search.

Iterated Local Search. Some S-metaheuristics are prone to be stuck in
local optimums so that the result depends on the initial input chosen. Iterated
Local Search (ILS) [145] tackles the problem through iteration of search and
the ability to restart from previously seen best solutions. Note that ILS is
parameterized by another search heuristics (for us: Hill Climbing). Once
a local optimum is found by this side search, ILS perturbs it and uses the
perturbed solution as initial state for the side search. At each iteration, ILS
also saves the best solution found. Unlike most other S-metaheuristics (Hill
Climbing, Random Walk, Metropolis Hasting and Simulated Annealing, etc.),
if the search follows a misleading path, ILS can restore the best seen solution
so far to restart from an healthy state.

4.5.2 Xyntia internals

Xyntia is built upon 3 components: the optimization problem we aim to
solve, the oracle which extracts the sampling information from the protected
code under analysis and the search heuristics.

Oracle. The oracle is defined by the sampling strategy which depicts how the
protected program must be sampled and how many samples are considered.
As default, we consider that our oracle samples 100 inputs over the range
[−50; 49]. Five are not randomly generated but equal interesting constant
vectors (⃗0, 1⃗, −⃗1, ⃗mins, ⃗maxs). These choices arise from a systematic study of
the different settings to find the best design (see Section 4.5.4).

Optimization problem. The optimization problem is defined as follow. The
search space is the set of expressions expressible using the Expr set of opera-
tors (see Table 4.2), and considers a unique constant value 1. This grammar
enables Xyntia to reach optimal results while being as expressive as Syntia
[67]. Besides, we consider the objective function:

fo⃗ ∗(o⃗) =
∑
i

log2(1 + |oi − o∗i |)

It computes the Log-arithmetic distance between synthesized expressions out-
puts (o⃗) and sampled ones (o⃗ ∗). The choice of the grammar and of the
objective function are respectively discussed in Sections 4.5.3 and 4.5.4.

72 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

Search. Xyntia leverages Iterated Local Search (ILS) to minimize our ob-
jective function and so to synthesize target expressions. We present now how
ILS is adapted to our context. ILS applies two steps starting from a random
terminal (constant value or variable):

• ILS reuses the best expression found so far to perturb it by randomly
selecting a node of the AST and replacing it by a random terminal node.
The resulting AST is kept even if the distance increases and passed to
the next step;

• Iterative Random Mutations: the side search (in our case Hill Climbing)
iteratively mutates the input expression until it cannot improve any-
more. We estimate that no more improvement can be done after 100
inconclusive mutations. A mutation consists in replacing a randomly
chosen node of the abstract syntax tree (AST) by a leaf or an AST of
depth one (only one operator) – e.g. 1 + (−a) ; (−b) + (−a). At
each mutation, it keeps the version of the AST minimizing the distance
function. During mutations, the best solution so far is updated to be
restored in the perturbation step. If a solution nullifies the objective
function, it is directly returned.

These two operations are iteratively performed until time is out (by de-
fault 60s) or an expression mapping all I/O samples is found. Furthermore,
as Syntia applies Z3 simplifier to ”clean up” recovered expressions, we add a
custom post-process expression simplifier, applying simple rewrite rules until
a fixpoint is reached. It significantly improves the quality of the expressions
while adding no significant overhead (+2.6ms on average). Xyntia is im-
plemented in OCaml [151], within the BINSEC framework for binary-level
program analysis [25]. It comprises ≈9k lines of code.

4.5.3 Xyntia evaluation

We now evaluateXyntia in depth and compare it to Syntia. As with Syntia
we answer the following questions:

RQ4 Are results stable across different runs?
RQ5 Is Xyntia robust, fast and does it infer simple and correct results?
RQ6 How is synthesis impacted by the set of operators size?

Configuration. For all our experiments, we default to locally optimal Xyn-
tia (XyntiaOpt) presented in Section 4.5.2. It learns expressions over Expr,
samples 100 inputs (95 randomly and 5 constant vectors) and uses the Log-
arithmetic distance as objective function.

Interestingly, all results reported here also hold (to a lesser extend regarding
efficiency) for other Xyntia configurations (Section 4.5.4), especially these
versions consistently beat Syntia.

4.5. IMPROVE BLACK-BOX DEOBFUSCATION 73

RQ4. Over 15 runs Xyntia always finds all 500 expressions in B1 and
between 1051 and 1061 in B2. Thus, Xyntia is very stable across executions.

RQ5. Unlike Syntia, Xyntia performs very well on both B1 and B2 with a
timeout of 60 s/expr. Fig. 4.4 reveals that it is still successful for a timeout of
1 s/expr. (78% proven equivalence rate), where it finds 2× more expressions
than Syntia with a timeout of 600 s/expr.

We also observe such tendency over B1 and BP1 (see Section 4.8.2) and
for 12h timeout. On B1, Syntia reaches 41%, 74%, 88.2% and 97.6% success
rate for respectively 1s, 60s, 600s and 12h timeout, against 100% success rate
for Xyntia in 1s. For BP1, Syntia finds only 1/15 expressions with a 12h
timeout against 12/15 for Xyntia in 60s. From evaluation on B1 and B2, it
appears that Syntia success rate increases logarithmically over time. Thus,
time budget needed for Syntia to catch Xyntia is expected to be unrealistic.

In addition, Xyntia handles well expressions using up to 5 arguments and
all expression types (Table 4.9). Its mean quality is around 0.93, which is very
good (objective is 1), and it rarely returns not equivalent expressions – only
between 1.3% and 4.9%. Thus, Xyntia reaches high success and equivalence
rate. It is fast, synthesizing most expressions in ≤ 1s, and it returns simple
and correct results.

0

10

20

30

40

50

60

70

80

90

100

1 10 60 600

E
q
u
iv
al
en
ce

R
at
e
(%

)

Timeout (s / expression)

Xyntia Proven
Xyntia Optimistic

Syntia Proven
Syntia Optimistic

Figure 4.4: Equivalence range of Syntia and Xyntia (XyntiaOpt) depend-
ing on timeout (B2)

RQ6. Xyntia by default synthesizes expressions over Expr while Syntia
infers expressions over Full. To compare their sensitivity to search space
and show that previous results are not due to search space inconsistency, we
run both tools over Full, Expr and Mba. Experiments show that Xyntia
reaches high equivalence rates for all operators sets while Syntia results stay

74 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

Bool. Arith. MBA

Syntia
Succ. Rate 53.8% 28.6% 21.1%

Equiv. Range 53.0% 27.8 - 28.1% 20.3 - 20.8%
Mean Qual. 0.53 0.61 0.71

Xyntia
Succ. Rate 98.4% 96.5% 91.6%

Equiv. Range 97.8% 88.9 - 94.9% 85.1 - 90.0%
Mean Qual. 0.73 1.0 1.05

Table 4.9: Syntia & Xyntia (XyntiaOpt): results according to expression
type (B2, timeout = 60 s)

low. Still, Xyntia seems more sensitive to the size of the set of operators
than Syntia. Its proven equivalence rate decreases from 90% (Expr) to 71%
(Full) while Syntia decreases only from 38.7% (Expr) to 33.7% (Full).
Conversely, as for Syntia, restricting to Mba benefits to Xyntia (proven
equiv. rate: 91%). Thus, like Syntia, Xyntia is sensitive to the size of the
operators set. Yet, Xyntia reaches high equivalence rates even on Full while
Syntia remains inefficient even on Mba.

Conclusion. Xyntia is a lot faster and more robust than Syntia. It is also
stable and returns simple expressions. Thus, Xyntia, unlike Syntia, meets
the requirements given in Section 4.3.3.

4.5.4 Optimal Xyntia and other S-Metaheuristics

Previous experiments consider the XyntiaOpt configuration of Xyntia. It
comes from a systematic evaluation of the design space. To do so, we con-
sidered (i) different S-metaheuristics: Hill Climbing (HC), Random Walk
(RW), Simulated Annealing (SA), Metropolis Hasting (MH) and Iterated Lo-
cal Search (ILS); (ii) different sampling strategies; (iii) different objective func-
tions. This evaluation confirms that XyntiaOpt is locally optimal and that
ILS, being able to restore best expression seen after a number of unsuccess-
ful mutations, outperforms other S-metaheuristics (Table 4.10). Moreover, all
S-metaheuristics – except Hill Climbing – outperforms Syntia.

Table 4.10: Synthesis Equivalence Rate for different S-metaheuristics (B2,
XyntiaOpt, timeout = 60 s)

RW HC ILS SA MH

Equiv. Range 62.3 - 63.4% 31.9 - 33.1% 90.6 - 94.2% 64.8 - 65.8% 57.7 - 58.5%

Conclusion. Principled and systematic evaluation of Xyntia design space
leads to the locally optimal XyntiaOpt configuration. It notably shows that

4.5. IMPROVE BLACK-BOX DEOBFUSCATION 75

ILS outperforms other tested S-metaheuristics. Moreover, all these S-metaheuristics
– except Hill Climbing – outperform MCTS, confirming that manipulating only
terminal expressions is beneficial.

4.5.5 On the effectiveness of ILS over MCTS

We present in Fig. 4.5 the typical distance evolution along the search process
when using Xyntia. We can see that the distance follows a step-wise progres-
sion, which is drastically different from the case of Syntia and enumerative
MCTS (Fig. 4.3). Hence, unlike them, Xyntia is indeed guided by the dis-
tance function. Moreover, note that Xyntia globally follows a positive trend
i.e., it does not unlearn previous work. Indeed, before each perturbation, the
best expression found from now is restored. Thus, if iterative mutations fol-
lows a misleading path, the resulting solution is not kept and the best solution
is reused to be perturbed. Keeping the current best solution is of first rele-
vance as the search space is highly unstable and enables Xyntia to be more
reliable and less dependant of randomness.

0
200
400
600
800
1000
1200
1400
1600

0 500 1000 1500 2000 2500 3000

L
og
ar
it
h
m
ic

d
is
ta
n
ce

Perturbations

Xyntia

Figure 4.5: Xyntia (XyntiaOpt) distance evolution (expression successfully
synthesized)

Conclusion. Unlike MCTS, which is almost enumerative in code deobfusca-
tion, ILS is well guided by the objective function and distance evolution follows
a positive trend. This is true as well for other S-metaheuristics.

4.5.6 Conclusion

We resume here obtained results and present limitations of black-box ap-
proaches.

76 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

4.5.6.1 Conclusion

Because of the high instability of the search space, Iterated Local Search is
much more appropriate than MCTS (and, to a lesser extent, than other S-
metaheuristics) for black-box code deobfuscation, as it manipulates terminal
expressions only and is able to restore the best solution seen so far in case
the search gets lost. These features enable Xyntia to keep the advantages
of Syntia (stability, output quality) while clearly improving over its weak-
nesses: especially Xyntia manages with 1s timeout to synthesize twice more
expressions than Syntia with 10min timeout.

Other S-metaheuristics also perform significantly better than MCTS here,
demonstrating that the problem itself is not well-suited for partial solution
exploration and simulation-guided search.

4.5.6.2 Limitations

Black-box approaches must consider limited languages to be efficient. This
restricts their use to local contexts – e.g., analyzing sets of code blocks rather
than full modules.

Moreover, synthesis relies on two main steps, sampling and learning, which
both show weaknesses. Indeed, Xyntia and Syntia randomly sample inputs
to approximate the semantics of an expression. It then assumes that samples
depict all behaviors of the code under analysis. If this assumption is invalid
then the learning phase will miss some behaviors, returning partial results.
As such, black-box deobfuscation is unsuitable to handle point functions.

Learning can itself be impacted by other factors. For instance, semantically
complex expressions are hard to infer. While they are rare in local code, we
show in Section 4.8 how to take advantage of them to protect against black-
box attacks. A related problem are expressions with unexpected constant
values. They are hard to handle as the grammar of Xyntia and Syntia only
considers the constant value 1. Thus, finding expressions with constant values
absent from the grammar requires to create them (e.g., encoding 3 as 1+1+1),
which may be unlikely. A naive solution is to add to the grammar additional
constant values but it significantly impacts efficiency. Indeed, for 100 values
[0; 99]), the equivalence rate is divided by 2 (resp., by 4 for 200 values).
Still, Section 4.7 shows that Xyntia handles usual interesting constant values
(unlike Syntia).

4.6 Comparison with other approaches

We now extend the comparison to other state-of-the-art tools: (i) a greybox
deobfuscator (QSynth [73]); (ii) white-box simplifiers (GCC, Z3 simplifier
and our custom simplifier); (iii) program synthesizers (CVC4 [91], winner of
the SyGus’19 syntax-guided synthesis competition [152] and STOKE [10], an

4.6. COMPARISON WITH OTHER APPROACHES 77

0

50

100

150

200

250

300

350

400

450

500

EA VR-EA EA-ED

#
E
n
h
an

ce
d

Xyntia-MBA
Syntia-MBA
QSynth

CVC4-MBA
STOKE-synth
STOKE-opti

(a) Enhancement rate

0

5

10

15

20

25

30

35

40

EA VR-EA EA-ED

T
im

e
(s
)

Xyntia-MBA
Syntia-MBA
QSynth
CVC4-MBA
STOKE-synth

(b) Mean synthesis time per expression – STOKE-opti not shown as it always
uses 60 s

Figure 4.6: Syntia, QSynth, Xyntia, CVC4 and STOKE on EA, VR-EA
and EA-ED data-sets (timeout = 60 s)

efficient superoptimizer). Unlike black-box approaches, greybox and white-
box methods should be evaluated on the enhancement rate, as otherwise they
can always succeed by returning the obfuscated expression. The enhancement
rate measures how often synthesized expressions are smaller than the original
ones (quality ≤ 1).

Benchmarks. We compare black-box program synthesizers on B2, and grey/white

78 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

box approaches on the three QSynth data-sets,2 each of them comprising 500
expressions obfuscated with Tigress [142]: EA (base data-set, obfuscated with
the EncodeArithmetic transformation), VR-EA (EA obfuscated with Virtu-
alize and EncodeArithmetic protections), and EA-ED (EA obfuscated with
EncodeArithmetic and EncodeData transformations).

White-box. We first compare Xyntia over the EA, VR-EA and EA-ED
data-sets with 3 white-box approaches: GCC, Z3 simplifier (v4.8.7) and our
custom simplifier. As expected, they are not efficient compared to Xyntia.
Regardless of the data-set, they simplify ≤ 68 expressions where Xyntia
simplifies 360 of them.

Greybox. We now compare Xyntia to QSynth published results [73] on
EA, VR-EA and EA-ED. Fig. 4.6a shows that while both tools reach com-
parable results (enhancement rate ≈ 350/500) for simple obfuscations (EA
and VR-EA), Xyntia keeps the same results for heavy obfuscations (EA-
ED) while QSynth drops to 133/500. Actually, unlike QSynth, Xyntia is
insensitive to syntactic complexity.

Program synthesizers. We finally compare Xyntia to state-of-the-art pro-
gram synthesizers, namely CVC4 [91] and STOKE [10]. CVC4 takes as input
a grammar and a specification and returns, through enumerative search, a
consistent expression. STOKE is a super-optimizer leveraging program syn-
thesis (based on Metropolis Hasting) to infer optimized code snippets. It does
not return an expression but optimized assembly code. STOKE addresses the
optimization problem in two ways: (i) STOKE-synth starts from a pre-de-
fined number of nops and mutates them; (ii) STOKE-opti starts from the
non-optimized code and mutates it to simplify it. While STOKE integrates
its own sampling strategy and grammar, CVC4 does not – thus, we consider
for CVC4 the same sampling strategy as Xyntia (100 I/O samples with 5
constant vectors) as well as the Expr and Mba grammars. More precisely,
CVC4-Expr is used over B2 to compare to Xyntia (XyntiaOpt) and CVC4-
Mba is evaluated on EA, VR-EA and EA-ED to compare against QSynth.

Our experiments show that CVC4-Expr and STOKE-synth synthesize less
than 40% of B2 (respectively 36.8% and 38.0%) while Xyntia reaches 90.6%
proven equivalence rate. Indeed enumerative search (CVC4) is less appropri-
ate when time is limited. Results of STOKE-synth are also expected as its
search space considers all assembly mnemonics. Moreover, Fig. 4.6a shows
that black-box and white-box (STOKE-opti) synthesizers do not efficiently
simplify obfuscated expressions. STOKE-opti finds only 1 / 500 expressions
over EA-ED and does not handle jump instructions, inserted by the VM,
failing to analyze VR-EA.

Conclusion. Xyntia rivals QSynth on light / mild protections and outper-
forms it on heavy protections, while pure white-box approaches are far behind,

2https://github.com/werew/qsynth-artifacts

4.7. DEOBFUSCATION WITH XYNTIA 79

showing the benefits of being independent from syntactic complexity. Also,
Xyntia outperforms state-of-the-art program synthesizers showing that it is
better suited to perform deobfuscation. These good results show that seeing
deobfuscation as an optimization problem is fruitful.

4.7 Deobfuscation with Xyntia

We now prove that Xyntia is insensitive to common protections (opaque
predicates) as well as to recent anti-analysis protections (MBA, covert chan-
nels, path explosion) and we confirm that black-box methods can help reverse
state-of-the-art virtualization [142, 140].

4.7.1 Effectiveness against usual protections

Xyntia is able to bypass many protections (see Table 4.11):
Mixed Boolean-Arithmetic [138] hides the original semantics of an

expression both to humans and SMT solvers. However, the encoded expression
remains equivalent to the original one. As such, the semantic complexity
stays unchanged, and Xyntia should not be impacted. Launching Xyntia
on B2 obfuscated with Tigress [142] Encode Arithmetic transformation (size
of expression: x800) confirms that it has no impact: equivalence range with
and without protection respectively equals 90.0 - 93.8% and 90.6 - 94.2%.

Opaque predicates [12] obfuscate control flow by creating artificial con-
ditions in programs. The conditions are traditionally tautologies and dynamic
runs of the code will follow a unique path. Thus, sampling is not affected and
synthesis not impacted. We show it by launching Xyntia over B2 obfuscated
with Tigress AddOpaque transformation (result: equiv. range is 89.9 - 93.0%).

Path-based obfuscation [146, 32] takes advantage of path explosion to
thwart symbolic execution, massively adding additional feasible paths. While
it is efficient against symbolic-based analysis, what about black-box ones? To
evaluate its impact, we encoded expressions as in Listing 4.2. This example
is inspired by the For primitive from [32]. It computes the sum of x and y

adding loops to increase the number of paths to explore (one path for each
value of x and y), effectively killing symbolic execution. However, black-box
deobfuscation sees input-output behaviors only and successfully bypass this
protection: equivalence range with and without protections respectively equals
90.6 - 94.2% and 89.5 - 93.7%.

1 int sum(int x, int y){

2 int x1 , y1;

3 for (int i = 0; i < x; i++) x1++;

4 for (int i = 0; i < y; i++) y1++;

5 return x1 + y1;

6 }

Listing 4.2: Sum function with path-oriented obfuscation

80 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

Covert channels [83] hide information flow to static analyzers by rerout-
ing data to invisible part of the states (usually OS related) before retrieving
it, for example taking advantage of timing difference between a slow thread
and a fast thread. Again, as black-box deobfuscation focuses only on input-
output relationships, covert channels should not disturb it. Note that the
probabilistic nature of such obfuscations (obfuscated behaviours can differ
from unobfuscated ones from time to time) could be a problem in case of high
fault probabilities, but in order for the technique to be useful, fault probabil-
ity must precisely remains low. We show it has no impact by obfuscating B2
with the InitEntropy and InitImplicitFlow (thread kind) transformations of
Tigress [142] (result: equiv. range equals 89.0 - 94.0%).

Conclusion. State-of-the-art protections are not effective against black-box
deobfuscation. They prevent efficient reading of the code and tracing of data
but black-box methods directly execute it.

Table 4.11: Xyntia (XyntiaOpt) against usual protections (B2, time-
out=60s)

∅ MBA Opaque Path oriented Covert channels

Succ. Rate 95.5% 95.4% 94.68% 95.4% 95.1%
Equiv. Range 90.6 - 94.2% 90.0 - 93.8% 89.9 - 93.0% 89.5- 93.7% 89.0 - 94.0%
Mean Qual. 0.92 0.95 0.90 0.94 0.89

4.7.2 Virtualization-based obfuscation

We now use Xyntia to reverse code obfuscated with state-of-the-art virtu-
alization. We obfuscate a program computing MBA operations with Tigress
[142] and VMProtect [140] and our goal is to reverse the VM handlers.3. Using
such a synthetic program enables to expose a wide variety of handlers.

Table 4.12: Xyntia and Syntia results over program obfuscated with Tigress
[142] and VMProtect [140]

Tigress (simple) Tigress (hard) VMProtect

Binary size 40KB 251KB 615KB
handlers 13 17 114
instructions per handlers 16 54 43

Xyntia
Completely retrieved 12/13 16/17 0/114
Partially retrieved 13/13 17/17 76/114

Syntia
Completely retrieved 0/13 0/17 0/114
Partially retrieved 13/13 17/17 76/114

3Note that, as Syntia, Xyntia does not consider memory operations

4.8. COUNTER BLACK-BOX DEOBFUSCATION 81

Tigress [142] is a source-to-source obfuscator. Our obfuscated program con-
tains 13 handlers. Since at assembly level each handler ends with an indirect
jump to the next handler to execute, we were able to extract the positions of
handlers using execution traces. We then used the scripts from [67] to sample
each handler. Xyntia synthesizes 12/13 handlers in less that 7 s each. We can
classify them in different categories: (i) arithmetic and Boolean (+, −, ×, ∧,
∨, ⊕); (ii) stack (store and load); (iii) control-flow (goto and return); (iv) call-
ing convention (retrieve obfuscated function arguments). These results show
that Xyntia can synthesize a wide variety of handlers. Interestingly, while
these handlers contain many constant values (typically, offsets for context up-
date), Xyntia can handle them as well. In particular, it infers the calling
convention related handler, synthesizing constant values up to 28 (to access
the 6th argument). Thus, even if Xyntia is inherently limited on constant
values (see Section 4.5.6.2) it still handles them to a limited extent. Repeating
the experiment by adding Encode Data and Encode Arithmetic to Virtualize
yields similar results. Xyntia synthesizes all 17 exposed handlers but one,
confirming that Xyntia handles combinations of protections. Finally, note
that Syntia fails to synthesize handlers completely (not handling constant
values). Still it infers arithmetic and Boolean handlers (without context up-
dates).

VMProtect [140] is an assembly-to-assembly obfuscator. We use the latest
premium version (v3.5.0). As each VM handler ends with a ret or an indi-
rect jump, we easily extracted each distinct handler from execution traces.
Our traces expose 114 distinct handlers containing on average 43 instructions
(Table 4.12). VMProtect VM is stack-based. To infer the semantics of each
handler, we again used Blazytko’s scripts [67] in “memory mode” (i.e., for-
bidding registers to be seen as inputs or outputs). Our experiments show
that each arithmetic and Boolean handlers (add, mul, nor, nand) are replicated
11 times to fake a large number of distinct handlers. Moreover, we are also
able to extract the semantics of some stack related handlers. In the end, we
successfully infer the semantics of 44 arithmetic or Boolean handlers and 32
stack related handlers. Synthesis took at most 0.3 s per handler. Syntia gets
equal results as Xyntia.

Conclusion. Xyntia synthesizes most Tigress VM handlers, (including in-
teresting constant values) and extracts the semantics of VMProtect arithmetic
and Boolean handlers. This shows that black-box deobfuscation can be highly
effective, making the need for efficient protections clear.

4.8 Counter Black-box deobfuscation

We now study defense mechanisms against black-box deobfuscation.

82 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

4.8.1 General methodology

We remind that black-box methods require the reverser to locate a suitable
reverse window delimiting the code of interest with its inputs and outputs.
This can be done manually or automatically [67], still this is mandatory and
not trivial. The defender could target this step, reusing standard obfuscation
techniques.

Still there is a risk that the attacker finds the good windows. Hence we are
looking for a more radical protection against black-box attacks. We suppose
that the reverse windows, inputs and outputs are correctly identified, and we
seek to protected a given piece of code.

Note that adding extra fake inputs (not influencing the result) is easily
circumvented in a black-box setting by dynamically testing different values
for each input and filtering inputs where no difference is observed.

Protection rationale. Even with correctly delimited windows, synthesis can
still be thwarted. Recall that black-box methods rely on 2 main steps (i) I/O
sampling; (ii) learning from samples, and both can be sabotaged.

• First, if the sampling phase is not performed properly, the learner could
miss important behaviors of the code, returning incomplete or even mis-
leading information;

• Second, if the expression under analysis is too complex, the learner will
fail to map inputs to their outputs.

In both cases, no information is retrieved. Hence, the key to impede
black-box deobfuscation is to migrate from syntactic complexity to semantic
complexity. We propose in Sections 4.8.2 and 4.8.3 two novel protections
impeding the sampling and learning phases.

4.8.2 Semantically complex handlers

Black-box approaches are sensitive to semantic complexity. As such, relying
on a set of complex handlers is an effective strategy to thwart synthesis. These
complex handlers can then be combined to recover standard operations. We
propose a method to generate arbitrary complex handlers in terms of size and
number of inputs.

Complex semantic handlers. Let S be a set of expressions and h, e1, ..., en−1

be n expressions in S. Suppose that (S, ⋆) is a group. Then h can be encoded

as h =
n−1
⋆

i=0
hi, where for all i, with 0 ≤ i < n,

hi =

h− e1 if i = 0
ei − ei+1 if 1 ≤ i < n− 1
en−1 if i = n− 1

4.8. COUNTER BLACK-BOX DEOBFUSCATION 83

Note that −ei is the inverse element of ei in (S, ⋆). Each hi is then a new
handler that can be combined with others to express common operations –
e.g. x + y = h0 + h1 + h2 where h0 = (x + y) + −((a − x2) − (xy)), h1 =
(a − x2) − xy + (−(y − (a ∧ x)) × (y ⊗ x)) and h2 = (y − (a ∧ x)) × (y ⊗ x).
Note that the choice of (e1, ..., en) is arbitrary. One can choose very complex
expressions with as many arguments as wanted.

Experimental design. To evaluate our new encoding, we created 3 data-
sets, BP1, BP2 and BP3, listed by increasing order of complexity. Each data-
set contains 15 handlers which can be combined to encode the +,−,×,∧ and
∨ operators. Within a data-set, all handlers have the same number of inputs.
Table 4.13 reports details on each data-set. The mean overhead column is an
estimation of the complexity added to the code by averaging the number of
operators needed to encode a single basic operator (+,−,×,∨,∧). Overheads
in BP1 (21x), BP2 (39x) and even BP3 (258x) are reasonable compared to
some syntactical obfuscations: encoding x+y with MBA three times in Tigress
yields a 800x overhead.

Table 4.13: Protected data-sets

#exprs min size max size mean size #inputs mean overhead

BP1 15 4 11 6.87 3 x21
BP2 15 8 21 12.87 6 x39
BP3 15 58 142 86.07 6 x258

Evaluation. Results (Fig. 4.7) show that Xyntia (with 1 h/expr.) manages
well low complexity handlers (BP1: 13/15), but performance degrades quickly

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

BP1 BP2 BP3

#
E
q
u
iv
al
en
t

1 h
10 min
1 min

Figure 4.7: Xyntia (XyntiaOpt) on BP1,2, 3 – varying timeouts

84 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

as complexity increases (BP2: 3/15, BP3: 1/15). Performances are similar
with 1 s/expr. Syntia, CVC4 and STOKE-synth find none with 1 h/expr.,
even on BP1. Actually, Syntia with 12 h/expr. gets only 1/15 success of
BP1.

Conclusion. Semantically complex handlers are efficient against black-box
deobfuscation. While high complexity handlers come with a cost similar to
strong MBA encodings, medium complexity handlers offer a strong protection
at a reasonable cost.

Discussion. Our protection can be bypassed if the attacker focuses on the
good combinations of handlers, rather than on the handlers themselves. To
prevent it, complex handlers can be duplicated (as in VMProtect, see Sec-
tion 4.7.2) to make patterns recognition more challenging.

4.8.3 Merged handlers

We now study another protection, based on conditional expressions and the
merging of existing handlers. While block merging is known for a long time
against human reversers, we show that it is extremely efficient against black-
box attacks. Note that while we write our merged handlers with explicit
if-then-else operators (ITE) for simplicity, these conditions are not necessarily
implemented with conditional branching (cf. Fig. 4.8) Hence, we consider that
the attacker sees merged handlers as a unique code fragment.

// if (c == cst) then h1(a,b,c) else h2(a,b,c);

int32_t res = c - cst;

res = (-((res ^ (res >> 31)) - (res >> 31)) >> 31) & 1;

return h1(a, b, c)*(1 - res) + res*h2(a, b, c);

Figure 4.8: Example of a branch-less condition

data-sets. We introduce 5 data-sets4 composed of 20 expressions. Expres-
sions in data-set 1 are built with 1 if-then-else (ITE) exposing 2 basic handlers
(among +,−,×,∧,∨,⊕); expressions in data-set 2 are built with 2 nested
ITEs exposing 3 basic handlers, etc. Conditions are equality checks against
consecutive constant values (0, 1, 2, etc.). For example, data-set 2 contains
the expression:

ITE(z = 0, x+ y, ITE(z = 1, x− y, x× y)) (4.2)

Scenarios. Adding conditionals brings extra challenges (i) the grammar must
be expressive enough to handle conditions; (ii) the sampling phase must be
efficient enough to cover all possible behaviors. Thus, we consider different
scenarios:

4Available at : https://github.com/binsec/xyntia

4.8. COUNTER BLACK-BOX DEOBFUSCATION 85

Utopian The synthesizer learns expressions over the Mba set of operators,
extended with an ITE(⋆ = 0, ⋆, ⋆) operator (Mba+ITE operator set).
Moreover, the sampling is done so that all branches are traversed the same
number of time. This situation, favoring the attacker, will show that merged
handlers are always efficient;

Mba + ITE This situation is more realistic: the attacker does not know
at first glance how to sample. However, its grammar fits perfectly the
expressions to reverse;

Mba + Shifts Here Xyntia does not sample inputs uniformly over the dif-
ferent behaviors, does not consider ITE operators, but allows shifts to rep-
resent branch-less conditions;

Default. This is the default version of the synthesizer.

In all these scenarios, appropriate constant values are added to the gram-
mar. For example, to synthesize Eq. (4.2), 0 and 1 are added.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1 2 3 4 5

#
E
q
u
iv
al
en
t

ITE depth

Xyntia Utopian
Xyntia MBA+ITE

Xyntia MBA+Shifts
Xyntia XyntiaOpt

Figure 4.9: Merged handlers: Xyntia (timeout=60s)

Evaluation. Fig. 4.9 presents Xyntia results on the 5 data-sets. As ex-
pected, the Utopian scenario is where Xyntia does best. Still, it cannot cope
with more than 3 nested ITEs. For realistic scenarios, Xyntia suffers even
more. Results for Syntia, CVC4 and STOKE-synth confirm this result (no
solution found for ≥ 2 nested ITEs). Note that overhead here is minimal, and
depends only on the number of merged handlers.

Conclusion. Merged handlers are extremely powerful against black-box syn-
thesis. Even in the ideal sampling scenario, black-box methods cannot retrieve
the semantics of expressions with more than 3 nested conditionals – while
runtime overhead is minimal.

86 CHAPTER 4. SYNTHESIZING CODE SEMANTICS

Discussion. Symbolic methods, like symbolic execution, are unhindered by
these protections, for they track the succession of handlers and know which
sub parts of merged handlers are executed. To handle this, our anti-black-
box protections can be combined with (lightweight) anti-symbolic protections
(e.g. [146, 32]).

4.9 Related Work

Black-box deobfuscation. Blazytko et al.’s work [67] has already been thor-
oughly discussed. We complete their experimental evaluation, generalize and
improve their approach: Xyntia with 1 s/expr. finds twice more expressions
than Syntia with 600 s/expr, some of which Syntia cannot find within 12h.

White- and greybox deobfuscation. Several recent works leverage white-
box symbolic methods for deobfuscation (“symbolic deobfuscation”) [133, 134,
135, 136, 30, 137]. Unfortunately, they are sensitive to code complexity as dis-
cussed in Section 4.7, and efficient countermeasures are now available [32, 33,
138, 77] – while Xyntia is immune to them (Section 4.7.1). David et al. [73]
recently proposed QSynth, a greybox deobfuscation method combining I/O
relationship caching (black-box) and incremental reasoning along the target
expression (white-box). Yet, QSynth is sensitive to massive syntactic obfus-
cation where Xyntia is not (cf. Section 4.6). Furthermore, QSynth works on
a simple grammar. It is unclear whether its caching technique would scale to
larger grammars like those of Xyntia and Syntia.

Program synthesis. Program synthesis aims at finding a function from a
specification which can be given either formally, in natural language or as I/O
relations – the case we are interested in here. There exist three main fami-
lies of program synthesis methods [132]: enumerative, constraint solving and
stochastic. Enumerative search does enumerate all programs starting from the
simpler one, pruning snippets incoherent with the specification and returning
the first code meeting the specification. We compare, in this paper, to one of
such method – CVC4 [91], winner of the SyGus ’19 syntax-guided synthesis
competition [152] – and showed that our approach is more appropriate to de-
obfuscation. Constraint solving methods [94] on the other hand encode the
skeleton of the target program as a first-order satisfiability problem and use
an off-the-shelf SMT solver to infer an implementation meeting specification.
However, it is less efficient than enumerative and stochastic methods [153].
Finally, stochastic methods [10] traverse the search space randomly in the
hope of finding a program consistent with a specification. Contrary to them,
we aim at solving the deobfuscation problem in a fully black-box way (not
relying on the obfuscated code, nor on an estimation of the result size).

4.10. CONCLUSION 87

4.10 Conclusion

Black-box deobfuscation is a promising recent research area. The field has
been barely explored yet and the pros and cons of such methods are still un-
clear. This article deepens the state of search-based black-box deobfuscation
in three different directions. First, we define a novel generic framework for
search-based black-box deobfuscation (encompassing prior works such as Syn-
tia), we identify that the search space underlying code deobfuscation is too un-
stable for simulation-based methods, and advocate the use of S-metaheuristics.
Second, we take advantage of our framework to carefully design Xyntia, a
new search-based black-box deobfuscator. Xyntia significantly outperforms
Syntia in terms of success rate, while keeping its good properties – espe-
cially, Xyntia is completely immune to the most recent anti-analysis code
obfuscation methods. Finally, we propose the two first protections tailored
against search-based black-box deobfuscation, completely preventing Xyntia
and Syntia attacks for reasonable cost. We hope that these results will help
better understand search-based deobfuscation, and lead to further progress in
the field.

Part III

Conclusion and Future Work

89

Chapter 5

Conclusion and Future Work

Software keeps becoming bigger and more complex, making crucial tasks like
code understanding, testing, and verification more and more difficult. To help
users perform such tasks, automated program analysis is now required. Es-
pecially, white-box methods, deducing code properties from the source code
syntax, are very powerful. They are notably used in large companies like
Facebook, Microsoft, Amazon and Airbus. However, they also show some
limitations. First, they need the source code and so, cannot be used on pro-
prietary software where only the binary is available. Second, the complexity
of the code and of the manipulated data structures impact their efficiency.
Third, they are very sensitive to syntactic code complexity, which can be
introduced by optimization and obfuscation passes.

In this thesis, we studied how black-box methods, based on artificial intel-
ligence – from optimization to symbolic machine learning – can be used for
program analysis.

5.1 Summary of our Contributions

Black-box analysis methods rely on code executions to infer useful code prop-
erties. They do not need the software under analysis source code and are not
impacted by syntactic code complexity. Thus, they are highly suitable to help
understand, test or verify complex code even if the source code is not available
(proprietary software, malware, legit code).

This thesis investigates how black-box methods can benefit two hot top-
ics from program analysis: (i) contract inference, which can help for reverse
engineering, verifying or refactoring code; (ii) deobfuscation to help malicious
code analysis and assess protections efficiency. Especially, we argued for the
use of distinct methods to better adapt to each scenario.

• First, we propose PreCA, the first black-box function contract inference
method based on constraint acquisition, a learning framework from con-
straint programming. It does not need the source code of the function

91

92 CHAPTER 5. CONCLUSION AND FUTURE WORK

under analysis but only its binary version. PreCA provides contri-
butions for both artificial intelligence and program analysis. From the
artificial intelligence side, we propose the first application of constraint
acquisition for program analysis. Furthermore, we extend constraint ac-
quisition and show how to specialize it for the important problem of
program analysis. We notably replace the human user with an auto-
mated oracle, solving the main constraint acquisition limitation. From
the program analysis side, we propose the first black-box method with
clear correctness guarantees. Being active, PreCA generates itself the
queries. As such, users do not have to give a representative set of test-
cases themselves, which is very hard especially if the source code is not
available. We believe that it will open new research directions for both
the artificial intelligence and program analysis communities;

• Second, we propose Xyntia, a new black-box deobfuscation algorithm.
Xyntia corrects the flaws of the previous state-of-the-art method, seeing
the deobfuscation problem as an optimization one. Especially, we advo-
cate for the use of S-metaheuristics in place of Monte-Carlo-Tree-Search,
which shows important limitations in this context. Xyntia is signifi-
cantly faster and more robust to semantic complexity than the previous
black-box approach. Moreover, it outperforms tested white-box meth-
ods based on rewriting rules and grey-box ones, which combine white-
and black-box views. Finally, we provide the two first anti-black-box
deobfuscation protections. They enable to efficiently impede black-box
methods by increasing semantic complexity instead of syntactic one.

Essentially, our work shows that black-box analysis can efficiently infer
useful code properties over complex, possibly obfuscated, code. Moreover, we
show that the choice of the inference algorithm enables to find a balance be-
tween efficiency and correctness. It highlights the importance of choosing a
design appropriate to the usage scenario. We believe it could open the way for
new research directions in program analysis and artificial intelligence commu-
nities. In the former community, new artificial intelligence algorithms could be
adapted to improve analyzers. In the later community, artificial intelligence
could benefit from the program analysis application scenario, which offers new
requirements, hence new algorithm trade-offs.

5.2 Perspectives

We now present some perspectives to extend the work presented in this thesis.
We start with possible direct improvements of PreCA and Xyntia. Then,
we propose more general and long-term research directions for black-box code
analysis.

5.2. PERSPECTIVES 93

Black-box precondition inference. In Chapter 3, we proposed PreCA to
infer preconditions in a black-box manner. We believe that the following im-
provements could be beneficial to PreCA both for speed and expressiveness:

• Extend the bias: PreCA takes as input a finite set of constraints, called
the bias and noted B, from which it tries to express the target concept.
The more expressive B is, the more confidence we can have in the re-
sult. We think that the bias could be extended in the following three
directions. First, new constraints over memory access rights (is memory
readable? writable? executable?) could be added. This could be very
useful for reverse engineering to know for example, that one string is
read but never written while another is only written. Second, it would
be beneficial to design methods to integrate useful constant values in
arithmetic constraints (e.g., x ≤ 100). This could be achieved naively
in the grey-box scenario, which combines black- and white-box analysis.
By parsing the code, grey-box methods could extract all constant values.
Still, more subtle approaches could be also considered relying on sym-
bolic execution for example. Finally, higher-level constraints like shape
[154] or complex data structures (lists, trees, graphs) could be added to
apply the method to higher-level languages;

• Handle disjunctions: As seen in Chapter 3, preconditions can be highly
disjunctive. For now, PreCA uses a simple and ad-hoc heuristic to de-
cide the maximum size of Horn clauses considered in the bias. While it
works well in our context, a more well-funded method would be benefi-
cial. On the other hand, in the grey-box scenario, other (possibly more
precise) heuristics could be used. Indeed, observe that disjunctions often
arise due to conditionals and loops. Thus, one could simply parse the
code or leverage symbolic methods to deduce the maximum size of Horn
clauses. Another interesting research line would be to devise a more
adaptive PreCA where the bias could be extended with new needed
disjunctions on the fly. It could enable (in the grey-box scenario) to
extract information from execution traces and add new disjunctions if,
for example, a loop has been traversed or not.

Black-box deobfuscation. In Chapter 4 we proposed Xyntia to deobfus-
cate highly protected code blocks. We believe that there is pace for improve-
ments:

• Extend the grammar: For now, Xyntia only considers expressions with
bit-wise and arithmetic operators over bit-vector inputs. It would be
beneficial to extend the grammar for example to synthesize loop pro-
grams, conditionals and diversify the input types (e.g., strings, arrays).
This would make black-box methods more general and usable for reverse

94 CHAPTER 5. CONCLUSION AND FUTURE WORK

engineering. Moreover, the grammar could be extended or modified dur-
ing synthesis depending on the I/O examples results. For example, if
running the code over inputs (x = 0, y = 1) does not raise a division
by zero error then expressions expr ÷ x and expr ÷ (1 − y) cannot be
a solution. Thus we could prune part of the search space accordingly.
On the other hand, if the code raises a division by zero error over input
(x = 5, y = 10), we could bias the search over expressions with a division
by x− 5 or y − 10;

• Reverse window detection: In Chapter 4, we consider that the reverse
engineer successfully found the reverse window. However, in practice, it
can be hard to find, especially when anti-black-box deobfuscation is used
Section 4.8. In such a scenario, it would be highly beneficial to devise
methods to detect automatically reverse windows. We believe that such
reverse window detection should also rely on black-box code analysis to
make the approach robust against obfuscation;

• New protections: In Section 4.8 we propose the first protections effi-
cient against black-box methods. However, the proposed methods are
vulnerable to symbolic-based deobfuscation. As such, in order to pro-
tect efficiently, it is necessary to combine protections. Still, this can
impact drastically code performance. We believe that studying new ef-
ficient protections against both white- and black-box deobfuscation is a
promising research line. It could enable to extend the state-of-the-art
of obfuscation with new efficient, stand-alone, and not too-costly pro-
tections. For example, implementing merged handlers through covert
channels could efficiently impede both white- and black-box analysis
with a limited cost.

General. Besides the proposed improvements, we believe that different re-
search directions could be followed:

• New applications: We believe that a broader range of other problems
could be attacked with our methods. For example, the literature pro-
poses methods to infer postconditions or loop invariants [40, 155]. Find-
ing black-box methods offering clear guarantees could be a great re-
search line. Moreover, neural-based methods arose to detect malware
[156, 157], infer types [78, 158], detect code similarity [80] or infer func-
tion names [79, 158, 159]. All these methods can be of great use for
analysts and reverse engineers. However, they only consider what could
be called “white-box features” (extracted from the code syntax). Thus,
such methods are highly impacted by obfuscation and other code trans-
formations. A promising research line could be to integrate “black-box
features” to make such methods more robust;

5.2. PERSPECTIVES 95

• Free synthesis from the user: Black-box methods rely on programming
by example (PBE). However, usual PBE considers that the number of
I/O examples are given by a user and will thus stay low. In our method,
the user is removed and generating examples is automated. Thus, the
number of I/O examples can be high. Such an observation could lead
to new approaches designed to be highly efficient when the number of
I/O examples is high. For example, we found out that considering a
big number of examples (100) enables to guide Xyntia more precisely.
Being able to handle a large number of queries also justifies the use of
PreCA-like methods;

• Grey-box approaches: PreCA and Xyntia only rely on observed input-
output behaviors. These can be easily extracted from the binary code
by running it over sampled inputs. Still, other kinds of information can
be extracted using usual program analysis methods like symbolic execu-
tion or abstract interpretation. Including such white-box information to
improve black-box methods could lead to more robust algorithms. For
example, PreCA could be extended to ask more general queries that
could be answered by static analysis. A balance should be found in order
to preserve efficiency on obfuscated code;

• Extend constraint acquisition: Constraint acquisition queries a human
user to infer the concept he has in mind. In some scenarios like program
analysis, this human user can be replaced by an oracle answering queries
automatically. In such contexts, constraint acquisition, whose current
focus is to generate few queries, could then focus on speed. To do so,
new query generation strategies and new kinds of queries relevant to the
application scenario could be employed. Furthermore, ranked sets of
constraints could be considered to infer incrementally target concepts.
Learning would start with simple constraints first and then increase their
complexity. This could help to prune known to be useless constraints
quickly, speeding up convergence.

Bibliography

[1] Nancy G Leveson. “Software safety: Why, what, and how”. In: ACM
Computing Surveys (CSUR) 18.2 (1986), pp. 125–163.

[2] Gary McGraw. “Software security”. In: IEEE Security & Privacy 2.2
(2004), pp. 80–83.

[3] Vijay D’silva, Daniel Kroening, and Georg Weissenbacher. “A survey
of automated techniques for formal software verification”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 27.7 (2008), pp. 1165–1178.

[4] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. “Malware analysis
and classification: A survey”. In: Journal of Information Security 2014
(2014).

[5] Robin Gandhi et al. “Dimensions of cyber-attacks: Cultural, social,
economic, and political”. In: IEEE Technology and Society Magazine
30.1 (2011), pp. 28–38.

[6] Ralph Langner. “Stuxnet: Dissecting a cyberwarfare weapon”. In: IEEE
Security & Privacy 9.3 (2011), pp. 49–51.

[7] Daniel Dvorak. “NASA study on flight software complexity”. In: AIAA
infotech@ aerospace conference and AIAA unmanned... unlimited con-
ference. 2009, p. 1882.

[8] Manuel Rigger et al. “An analysis of x86-64 inline assembly in c pro-
grams”. In: VEE. 2018.

[9] Arash Vahabzadeh, Amin Milani Fard, and Ali Mesbah. “An empirical
study of bugs in test code”. In: 2015 IEEE international conference on
software maintenance and evolution (ICSME). IEEE. 2015, pp. 101–
110.

[10] Eric Schkufza, Rahul Sharma, and Alex Aiken. “Stochastic superopti-
mization”. In: ACM SIGARCH Computer Architecture News (2013).

[11] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy
of obfuscating transformations. 1997.

97

98 BIBLIOGRAPHY

[12] Christian Collberg, Clark Thomborson, and Douglas Low. “Manufac-
turing cheap, resilient, and stealthy opaque constructs”. In: Proceedings
of the 25th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. 1998.

[13] Yongxin Zhou et al. “Information Hiding in Software with Mixed Boolean-
Arithmetic Transforms”. In: Information Security Applications, 8th In-
ternational Workshop, WISA 2007, Jeju Island, Korea, August 27-29,
2007, Revised Selected Papers. 2007.

[14] Dominik Wermke et al. “A large scale investigation of obfuscation use
in google play”. In: Proceedings of the 34th Annual Computer Security
Applications Conference. 2018, pp. 222–235.

[15] Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel. “Any-
thing to hide? studying minified and obfuscated code in the web”. In:
The world wide web conference. 2019, pp. 1735–1746.

[16] Patrick Cousot, Michel Riguidel, and Arnaud Venet. Device and pro-
cess for the signature, the marking and the authentication of computer
programs. US Patent App. 11/133,380. Jan. 2006.

[17] J Karthik, PP Amritha, and M Sethumadhavan. “Video Game DRM:
Analysis and Paradigm Solution”. In: 2020 11th International Con-
ference on Computing, Communication and Networking Technologies
(ICCCNT). IEEE. 2020, pp. 1–4.

[18] Patrick Cousot and Radhia Cousot. “Abstract interpretation frame-
works”. In: Journal of logic and computation 2.4 (1992), pp. 511–547.

[19] Patrick Cousot. Principles of Abstract Interpretation. MIT Press, 2021.

[20] Edmund M Clarke. “Model checking”. In: International Conference on
Foundations of Software Technology and Theoretical Computer Science.
Springer. 1997, pp. 54–56.

[21] Armin Biere et al. “Bounded model checking.” In: Handbook of satisfi-
ability 185.99 (2009), pp. 457–481.

[22] Cristian Cadar and Koushik Sen. “Symbolic execution for software test-
ing: three decades later”. In: Communications of the ACM 56.2 (2013),
pp. 82–90.

[23] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. “All
you ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask)”. In: 2010 IEEE
symposium on Security and privacy. IEEE. 2010, pp. 317–331.

[24] Roberto Baldoni et al. “A survey of symbolic execution techniques”.
In: ACM Computing Surveys (CSUR) 51.3 (2018), pp. 1–39.

BIBLIOGRAPHY 99

[25] Robin David et al. “BINSEC/SE: A dynamic symbolic execution toolkit
for binary-level analysis”. In: 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER). IEEE.
2016.

[26] Thomas Ball et al. “SLAM and Static Driver Verifier: Technology trans-
fer of formal methods inside Microsoft”. In: International Conference
on Integrated Formal Methods. Springer. 2004, pp. 1–20.

[27] Cristiano Calcagno and Dino Distefano. “Infer: An automatic program
verifier for memory safety of C programs”. In: NASA Formal Methods
Symposium. Springer. 2011, pp. 459–465.

[28] Chris Newcombe et al. “How Amazon web services uses formal meth-
ods”. In: Communications of the ACM 58.4 (2015), pp. 66–73.

[29] Jean Souyris et al. “Formal verification of avionics software products”.
In: International symposium on formal methods. Springer. 2009, pp. 532–
546.

[30] Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. “Sym-
bolic deobfuscation: from virtualized code back to the original”. In:
5th Conference on Detection of Intrusions and malware & Vulnerabil-
ity Assessment (DIMVA). 2018.

[31] Sebastian Banescu et al. “Code obfuscation against symbolic execution
attacks”. In: Annual Conference on Computer Security Applications,
ACSAC 2016. 2016.

[32] Mathilde Ollivier et al. “How to kill symbolic deobfuscation for free (or:
unleashing the potential of path-oriented protections)”. In: Proceedings
of the 35th Annual Computer Security Applications Conference. 2019.

[33] Mathilde Ollivier et al. “Obfuscation: where are we in anti-DSE pro-
tections?(a first attempt)”. In: Proceedings of the 9th Workshop on
Software Security, Protection, and Reverse Engineering. 2019.

[34] Dimosthenis C. Tsouros, Kostas Stergiou, and Christian Bessiere. “Omis-
sions in Constraint Acquisition”. In: CP. Ed. by Helmut Simonis. Springer,
2020.

[35] Rina Dechter, David Cohen, et al. Constraint processing. Morgan Kauf-
mann, 2003.

[36] Nicolas Beldiceanu and Helmut Simonis. “A Model Seeker: Extracting
global constraint models from positive examples”. In: CP’12.

[37] Mathias Paulin, Christian Bessiere, and Jean Sallantin. “Automatic
design of robot behaviors through constraint network acquisition”. In:
ICTAI. 2008.

[38] David Silver et al. “Mastering the game of Go with deep neural net-
works and tree search”. In: nature 529.7587 (2016), pp. 484–489.

100 BIBLIOGRAPHY

[39] Sumit Gulwani. “Automating string processing in spreadsheets using
input-output examples”. In: ACM Sigplan Notices 46.1 (2011), pp. 317–
330.

[40] Michael D Ernst et al. “Dynamically discovering likely program invari-
ants to support program evolution”. In: TSE (2001).

[41] Patrick Baudin et al. “The Dogged Pursuit of Bug-Free C Programs:
The Frama-C Software Analysis Platform”. In: Communications of the
ACM (Aug. 2021).

[42] David R Cok. “OpenJML: JML for Java 7 by extending OpenJDK”.
In: NASA formal methods symposium. Springer. 2011, pp. 472–479.

[43] Wolfgang Ahrendt et al. “The KeY platform for verification and anal-
ysis of Java programs”. In: Working Conference on Verified Software:
Theories, Tools, and Experiments. Springer. 2014, pp. 55–71.

[44] Jean-Christophe Filliâtre and Andrei Paskevich. “Why3—where pro-
grams meet provers”. In: European symposium on programming. Springer.
2013, pp. 125–128.

[45] Patrick Cousot et al. “The ASTRÉE analyzer”. In: European Sympo-
sium on Programming. Springer. 2005, pp. 21–30.

[46] David A Schmidt. Denotational semantics: a methodology for language
development. William C. Brown Publishers, 1986.

[47] Glynn Winskel. The formal semantics of programming languages: an
introduction. MIT press, 1993.

[48] Valery A Nepomniaschy, Igor S Anureev, and AV Promskii. “Towards
verification of C programs: Axiomatic semantics of the C-kernel lan-
guage”. In: Programming and Computer Software 29.6 (2003), pp. 338–
350.

[49] Peter J Landin. “The mechanical evaluation of expressions”. In: The
computer journal (1964).

[50] Henry Gordon Rice. “Classes of recursively enumerable sets and their
decision problems”. In: Transactions of the American Mathematical
society 74.2 (1953), pp. 358–366.

[51] Patrick Baudin et al. “The dogged pursuit of bug-free C programs: the
Frama-C software analysis platform”. In: Communications of the ACM
64.8 (2021), pp. 56–68.

[52] Charles Antony Richard Hoare. “An axiomatic basis for computer pro-
gramming”. In: CACM (1969).

[53] Edsger W Dijkstra. “A constructive approach to the problem of pro-
gram correctness”. In: BIT Numerical Mathematics (1968).

BIBLIOGRAPHY 101

[54] Robert W Floyd. “Assigning meanings to programs”. In: Program Ver-
ification. Springer, 1993.

[55] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. “Klee: unas-
sisted and automatic generation of high-coverage tests for complex sys-
tems programs.” In: OSDI. Vol. 8. 2008, pp. 209–224.

[56] Yan Shoshitaishvili et al. “SoK: (State of) The Art of War: Offensive
Techniques in Binary Analysis”. In: IEEE Symposium on Security and
Privacy. 2016.

[57] Peter W O’Hearn. “Incorrectness logic”. In: Proceedings of the ACM
on Programming Languages 4.POPL (2019), pp. 1–32.

[58] Babak Yadegari et al. “A generic approach to automatic deobfusca-
tion of executable code”. In: 2015 IEEE Symposium on Security and
Privacy. IEEE. 2015, pp. 674–691.

[59] Sébastien Bardin, Robin David, and Jean-Yves Marion. “Backward-
bounded DSE: targeting infeasibility questions on obfuscated codes”.
In: 2017 IEEE Symposium on Security and Privacy (SP). IEEE. 2017,
pp. 633–651.

[60] David Brumley et al. “Automatically identifying trigger-based behavior
in malware”. In: Botnet Detection. Springer, 2008, pp. 65–88.

[61] Johannes Kinder. “Towards static analysis of virtualization-obfuscated
binaries”. In: 2012 19th Working Conference on Reverse Engineering.
IEEE. 2012, pp. 61–70.

[62] Sebastian Schrittwieser et al. “Protecting software through obfuscation:
Can it keep pace with progress in code analysis?” In: ACM Computing
Surveys (CSUR) 49.1 (2016), pp. 1–37.

[63] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. “SMT-based
bounded model checking for embedded ANSI-C software”. In: IEEE
Transactions on Software Engineering 38.4 (2011), pp. 957–974.

[64] Jingxuan He et al. “Learning to Explore Paths for Symbolic Execu-
tion”. In: Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security. 2021, pp. 2526–2540.

[65] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. “Binsec/rel:
Efficient relational symbolic execution for constant-time at binary-
level”. In: 2020 IEEE Symposium on Security and Privacy (SP). IEEE.
2020, pp. 1021–1038.

[66] Patrice Godefroid. “Random testing for security: blackbox vs. whitebox
fuzzing”. In: Proceedings of the 2nd international workshop on Random
testing: co-located with the 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2007). 2007, pp. 1–1.

102 BIBLIOGRAPHY

[67] Tim Blazytko et al. “Syntia: Synthesizing the Semantics of Obfuscated
Code”. In: Usenix Security. 2017.

[68] Timon Gehr, Dimitar Dimitrov, and Martin Vechev. “Learning com-
mutativity specifications”. In: CAV’15.

[69] Sriram Sankaranarayanan et al. “Dynamic inference of likely data pre-
conditions over predicates by tree learning”. In: ISSTA. ACM, 2008.

[70] Saswat Padhi, Rahul Sharma, and Todd Millstein. “Data-driven pre-
condition inference with learned features”. In: ACM SIGPLAN Notices
(2016).

[71] Saumya Debray and Jay Patel. “Reverse engineering self-modifying
code: Unpacker extraction”. In: 2010 17th Working Conference on Re-
verse Engineering. IEEE. 2010, pp. 131–140.

[72] Minh Hai Nguyen et al. “A hybrid approach for control flow graph
construction from binary code”. In: 2013 20th Asia-Pacific Software
Engineering Conference (APSEC). Vol. 2. IEEE. 2013, pp. 159–164.

[73] Robin David, Luigi Coniglio, and Mariano Ceccato. “QSynth-A Pro-
gram Synthesis based Approach for Binary Code Deobfuscation”. In:
BAR 2020 Workshop. 2020.

[74] American Fuzzy Lop (AFL). https://lcamtuf.coredump.cx/afl/.

[75] Marcel Boehme, Cristian Cadar, and Abhik Roychoudhury. “Fuzzing:
Challenges and Reflections.” In: IEEE Softw. 38.3 (2021), pp. 79–86.

[76] Moritz Schloegel et al. “Loki: Hardening code obfuscation against au-
tomated attacks”. In: arXiv preprint arXiv:2106.08913 (2021).

[77] Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfus-
cation, Watermarking, and Tamperproofing for Software Protection.
2009.

[78] Daniel Lehmann and Michael Pradel. “Finding the dwarf: recovering
precise types from WebAssembly binaries”. In: Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation. 2022, pp. 410–425.

[79] James Patrick-Evans, Lorenzo Cavallaro, and Johannes Kinder. “Prob-
abilistic naming of functions in stripped binaries”. In: Annual Com-
puter Security Applications Conference. 2020, pp. 373–385.

[80] Tristan Benoit, Jean-Yves Marion, and Sébastien Bardin. “Binary level
toolchain provenance identification with graph neural networks”. In:
2021 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE. 2021, pp. 131–141.

[81] Boaz Barak et al. “On the (im) possibility of obfuscating programs”.
In: Journal of the ACM (JACM) (2012).

BIBLIOGRAPHY 103

[82] Pierre Graux et al. “Abusing Android Runtime for Application Obfus-
cation”. In: 2020 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). IEEE. 2020, pp. 616–624.

[83] Jon Stephens et al. “Probabilistic Obfuscation Through Covert Chan-
nels”. In: 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018. 2018.

[84] Zohar Manna and Richard Waldinger. “A deductive approach to pro-
gram synthesis”. In: ACM Transactions on Programming Languages
and Systems (TOPLAS) 2.1 (1980), pp. 90–121.

[85] Viktor Kuncak et al. “Complete functional synthesis”. In: ACM Sigplan
Notices 45.6 (2010), pp. 316–329.

[86] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. “Com-
positional program synthesis from natural language and examples”.
In: Twenty-Fourth International Joint Conference on Artificial Intelli-
gence. 2015.

[87] Navid Yaghmazadeh et al. “SQLizer: query synthesis from natural
language”. In: Proceedings of the ACM on Programming Languages
1.OOPSLA (2017), pp. 1–26.

[88] Aditya Desai et al. “Program synthesis using natural language”. In:
Proceedings of the 38th International Conference on Software Engi-
neering. 2016, pp. 345–356.

[89] Daniel Conrad Halbert. “Programming by example”. PhD thesis. Uni-
versity of California, Berkeley, 1984.

[90] Rajeev Alur et al. Syntax-guided synthesis. IEEE, 2013.

[91] Clark Barrett et al. “CVC4”. In: Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV ’11). Ed. by Ganesh
Gopalakrishnan and Shaz Qadeer. Springer, 2011. url: http://www.
cs.stanford.edu/~barrett/pubs/BCD+11.pdf.

[92] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. “Scaling enu-
merative program synthesis via divide and conquer”. In: International
conference on tools and algorithms for the construction and analysis of
systems. Springer. 2017, pp. 319–336.

[93] Andrew Reynolds et al. “Counterexample-guided quantifier instantia-
tion for synthesis in SMT”. In: International Conference on Computer
Aided Verification. Springer. 2015, pp. 198–216.

[94] Susmit Jha et al. “Oracle-guided component-based program synthe-
sis”. In: 2010 ACM/IEEE 32nd International Conference on Software
Engineering. IEEE. 2010.

104 BIBLIOGRAPHY

[95] Cormac Flanagan and K Rustan M Leino. “Houdini, an annotation as-
sistant for ESC/Java”. In: International Symposium of Formal Methods
Europe. Springer. 2001, pp. 500–517.

[96] Angello Astorga et al. “Learning stateful preconditions modulo a test
generator”. In: PLDI’19.

[97] Pranav Garg et al. “ICE: A robust framework for learning invariants”.
In: International Conference on Computer Aided Verification. Springer.
2014, pp. 69–87.

[98] P Ezudheen et al. “Horn-ICE learning for synthesizing invariants and
contracts”. In: Proceedings of the ACM on Programming Languages
2.OOPSLA (2018), pp. 1–25.

[99] Rahul Sharma et al. “A data driven approach for algebraic loop in-
variants”. In: European Symposium on Programming. Springer. 2013,
pp. 574–592.

[100] Mohamed Nassim Seghir and Daniel Kroening. “Counterexample-guided
precondition inference”. In: ESOP. Springer. 2013.

[101] Francesca Rossi, Peter Van Beek, and Toby Walsh. “Handbook of
Constraint Programming (Foundations of Artificial Intelligence)”. In:
(2006).

[102] Daniel Kroening and Ofer Strichman. Decision procedures. Springer,
2016.

[103] Armin Biere et al. “Conflict-driven clause learning sat solvers”. In:
Handbook of Satisfiability, Frontiers in Artificial Intelligence and Ap-
plications (2009), pp. 131–153.

[104] Harald Ganzinger et al. “DPLL (T): Fast decision procedures”. In:
International Conference on Computer Aided Verification. Springer.
2004, pp. 175–188.

[105] Nicky Williams et al. “Pathcrawler: Automatic generation of path tests
by combining static and dynamic analysis”. In: European Dependable
Computing Conference. Springer. 2005, pp. 281–292.

[106] Guillaume Girol, Benjamin Farinier, and Sébastien Bardin. “Not All
Bugs Are Created Equal, But Robust Reachability Can Tell the Differ-
ence”. In: International Conference on Computer Aided Verification.
Springer. 2021, pp. 669–693.

[107] Gilles Barthe, Pedro R D’argenio, and Tamara Rezk. “Secure informa-
tion flow by self-composition”. In: Mathematical Structures in Com-
puter Science 21.6 (2011), pp. 1207–1252.

[108] Florent Kirchner et al. “Frama-C: A software analysis perspective”. In:
Formal Aspects of Computing (2015).

BIBLIOGRAPHY 105

[109] Joseph A Goguen and José Meseguer. “Security policies and security
models”. In: 1982 IEEE Symposium on Security and Privacy. IEEE.
1982, pp. 11–11.

[110] Kim Marriott, Peter J Stuckey, and Peter J Stuckey. Programming with
constraints: an introduction. MIT press, 1998.

[111] Christian Schulte and Mats Carlsson. “Finite domain constraint pro-
gramming systems”. In: Foundations of Artificial Intelligence. Vol. 2.
Elsevier, 2006, pp. 495–526.

[112] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. “Design,
implementation, and evaluation of the constraint language cc (FD)”.
In: The Journal of Logic Programming 37.1-3 (1998), pp. 139–164.

[113] Marie Pelleau et al. “A Constraint Solver Based on Abstract Do-
mains”. In: Verification, Model Checking, and Abstract Interpretation,
14th International Conference, VMCAI 2013, Rome, Italy, January
20-22, 2013. Proceedings. Ed. by Roberto Giacobazzi, Josh Berdine,
and Isabella Mastroeni. Vol. 7737. Lecture Notes in Computer Science.
Springer, 2013, pp. 434–454. doi: 10.1007/978-3-642-35873-9_26.
url: https://doi.org/10.1007/978-3-642-35873-9%5C_26.

[114] Arnaud Gotlieb, Bernard Botella, and Michel Rueher. “Automatic test
data generation using constraint solving techniques”. In: ACM SIG-
SOFT Software Engineering Notes 23.2 (1998), pp. 53–62.

[115] Arnaud Gotlieb. “Euclide: A constraint-based testing framework for
critical c programs”. In: 2009 International Conference on Software
Testing Verification and Validation. IEEE. 2009, pp. 151–160.

[116] Bertrand Meyer. “Eiffel: A language and environment for software en-
gineering”. In: JSS (1988).

[117] Michael Howard. A brief introduction to the standard annotation lan-
guage (sal). 2006.

[118] Patrice Godefroid, Shuvendu K Lahiri, and Cindy Rubio-González.
“Statically validating must summaries for incremental compositional
dynamic test generation”. In: SAS. Springer. 2011.

[119] Patrick Cousot et al. “Automatic inference of necessary preconditions”.
In: VMCAI’13. Springer.

[120] Angello Astorga et al. “PreInfer: Automatic inference of preconditions
via symbolic analysis”. In: DSN. IEEE. 2018.

[121] Lingming Zhang et al. “Feedback-Driven Dynamic Invariant Discov-
ery”. In: ISSTA. ACM, 2014.

[122] Christian Bessiere et al. “Constraint acquisition”. In: Artificial Intelli-
gence (2017).

106 BIBLIOGRAPHY

[123] Christian Bessiere et al. “Constraint acquisition via partial queries”.
In: IJCAI. 2013.

[124] Monica Hutchins et al. “Experiments on the effectiveness of dataflow-
and control-flow-based test adequacy criteria”. In: ICSE. IEEE. 1994.

[125] David Gries. The science of programming. Springer Science & Business
Media, 2012.

[126] Bishoksan Kafle et al. “An iterative approach to precondition infer-
ence using constrained Horn clauses”. In: Theory and Practice of Logic
Programming (2018).

[127] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan.
“Program analysis as constraint solving”. In: PLDI. 2008.

[128] Pranav Garg et al. “Learning invariants using decision trees and im-
plication counterexamples”. In: ACM Sigplan Notices (2016).

[129] Cristiano Calcagno et al. “Compositional shape analysis by means of
bi-abduction”. In: POPL. ACM, 2009.

[130] Arnaud Lallouet et al. “On learning constraint problems”. In: ICTAI.
IEEE. 2010.

[131] Dimosthenis C Tsouros, Kostas Stergiou, and Christian Bessiere. “Omis-
sions in Constraint Acquisition”. In: CP. Springer. 2020.

[132] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. “Program
synthesis”. In: Foundations and Trends® in Programming Languages
(2017).

[133] Sebastian Schrittwieser et al. “Protecting Software Through Obfusca-
tion: Can It Keep Pace with Progress in Code Analysis?” In: ACM
Comput. Surv. (2016).

[134] Sébastien Bardin, Robin David, and Jean-Yves Marion. “Backward-
Bounded DSE: Targeting Infeasibility Questions on Obfuscated Codes”.
In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose,
CA, USA, May 22-26, 2017. IEEE Computer Society, 2017, pp. 633–
651. doi: 10.1109/SP.2017.36. url: https://doi.org/10.1109/
SP.2017.36.

[135] Babak Yadegari et al. “A Generic Approach to Automatic Deobfusca-
tion of Executable Code”. In: Symposium on Security and Privacy, SP.
2015.

[136] David Brumley et al. “Automatically Identifying Trigger-based Behav-
ior in Malware”. In: Botnet Detection: Countering the Largest Security
Threat. Springer, 2008.

[137] Johannes Kinder. “Towards Static Analysis of Virtualization-Obfuscated
Binaries”. In: 19th Working Conference on Reverse Engineering, WCRE.
2012.

BIBLIOGRAPHY 107

[138] Yongxin Zhou et al. “Information Hiding in Software with Mixed Boolean-
arithmetic Transforms”. In: Proceedings of the 8th International Con-
ference on Information Security Applications. WISA’07. Springer-Verlag,
2007.

[139] Cameron B Browne et al. “A survey of monte carlo tree search meth-
ods”. In: IEEE Transactions on Computational Intelligence and AI in
games (2012).

[140] VM Protect Software.VMProtect Software Protection. http://vmpsoft.
com. 2020.

[141] Oreans Technologies. Themida – Advanced Windows Software Protec-
tion System. http://oreans.com/themida.php. 2020.

[142] C. Collberg et al. The Tigress C Diversifier/Obfuscator. url: http:
//tigress.cs.arizona.edu/ (visited on 08/29/2019).

[143] Tim Blazytko et al. “Syntia: Breaking State-of-the-Art Binary Code
Obfuscation via Program Synthesis”. In: Black Hat Asia (2018).

[144] El-Ghazali Talbi. Metaheuristics: From Design to Implementation. Wi-
ley Publishing, 2009.

[145] Helena Ramalhinho Lourenço, Olivier C Martin, and Thomas Stützle.
“Iterated local search: Framework and applications”. In: Handbook of
metaheuristics. Springer, 2019.

[146] Babak Yadegari and Saumya Debray. “Symbolic Execution of Obfus-
cated Code”. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. Association for Computing
Machinery, 2015.

[147] Ninon Eyrolles, Louis Goubin, and Marion Videau. “Defeating MBA-
based Obfuscation”. In: Proceedings of the 2016 ACM Workshop on
Software PROtection, SPRO@CCS 2016, Vienna, Austria, October 24-
28, 2016. 2016.

[148] Nicolas Falliere, Patrick Fitzgerald, and Eric Chien. “Inside the jaws of
trojan. clampi”. In: Rapport technique, Symantec Corporation (2009).

[149] Tora. Devirtualizing FinSpy. url: %7Bhttp://linuxch.org/poc2012/
Tora,%20Devirtualizing%20FinSpy.pdf%7D.

[150] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver”.
In: International conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems. Springer. 2008.

[151] Xavier Leroy et al. The OCaml system release 4.10. 2020. url: https:
//caml.inria.fr/pub/docs/manual-ocaml/ (visited on 02/20/2020).

[152] Rajeev Alur et al. “SyGuS-Comp 2018: Results and Analysis”. In:
(2019). url: http://arxiv.org/abs/1904.07146.

108 BIBLIOGRAPHY

[153] Rajeev Alur et al. “Syntax-guided synthesis”. In: Formal Methods in
Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October
20-23, 2013. IEEE, 2013.

[154] Bor-Yuh Evan Chang and Xavier Rival. “Relational inductive shape
analysis”. In: ACM SIGPLAN Notices 43.1 (2008), pp. 247–260.

[155] Xujie Si et al. “Learning loop invariants for program verification”. In:
Advances in Neural Information Processing Systems 31 (2018).

[156] Ömer Aslan Aslan and Refik Samet. “A comprehensive review on mal-
ware detection approaches”. In: IEEE Access 8 (2020), pp. 6249–6271.

[157] Junyang Qiu et al. “A survey of android malware detection with deep
neural models”. In: ACM Computing Surveys (CSUR) 53.6 (2020),
pp. 1–36.

[158] Jingxuan He et al. “Debin: Predicting debug information in stripped
binaries”. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2018, pp. 1667–1680.

[159] Jeremy Lacomis et al. “Dire: A neural approach to decompiled identi-
fier naming”. In: 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE. 2019, pp. 628–639.

Titre : Analyse de code en boîte noire pour la rétro ingénierie via acquisition de contraintes etsynthèse de codeMots clés : Apprentissage, Acquisition de contraintes, Inférence de contrats, Compréhension decode, Synthèse de code
Résumé : Les logiciels sont de plus en plusgrands et complexes. Ainsi, certaines tâchescomme le test et la vérification de code, ou lacompréhension de code, sont de plus en plusdifficiles à réaliser pour un humain. D’où lanécessité de développer des méthodes d’ana-lyse automatique. Celles-ci sont usuellementen boîte blanche, utilisant la syntaxe du codepour déduire ses propriétés. Elles sont très effi-caces mais présentent certaines limitations : lecode source est nécessaire, la taille et la com-plexité syntaxique du code (accentuée par desoptimisations et de l’obfuscation) impactentleur efficacité. Cette thèse explore comment lesméthodes en boîte noire peuvent inférer despropriétés utiles pour la rétro-ingénierie. Nousétudions, tout d’abord, l’inférence de contrat de

fonction qui tente d’apprendre sur quelles en-trées une fonction peut être exécutée pour ob-tenir les sorties souhaitées. Nous adaptons l’ac-quisition de contraintes, en résolvant une deses principales limitations : la dépendance à unêtre humain. En ressort PreCA, la première ap-proche totalement boîte noire offrant des ga-ranties claires de correction. PreCA est ainsiparticulièrement approprié pour l’aide au déve-loppement. Nous étudions ensuite la déobfus-cation, qui vise à simplifier du code obfusqué.Nous proposons Xyntia qui synthétise, via desS-métaheuristiques, une version compréhen-sible de blocs de code. Xyntia est plus rapideet robuste que l’état de l’art. De plus, nous pro-posons les deux premières protections contrela déobfuscation en boîte noire.

Title : Black-box code analysis for reverse engineering through constraint acquisition and pro-gram synthesisKeywords : Contract inference, Code understanding, Constraint acquisition, Machine learning,Program synthesis
Abstract : Software always becomes largerand more complex, making crucial tasks likecode testing, verification, or code understan-ding highly difficult for humans. Hence theneed for methods to reason about code au-tomatically. These are usually white-box, anduse the code syntax to deduce its properties.While they have proven very powerful, they alsoshow limitations : they need the source code,the code size and the data structures’ com-plexity degrade their efficiency, they are highlyimpacted by syntactic code complexity ampli-fied by optimizations obfuscations. This thesisexplores how black-box code analysis can in-fer valuable properties for reverse engineeringthrough data-driven learning. First, we consi-der the function contracts inference problem,

which aims to infer over which inputs a codefunction can be executed to get good beha-viors only. We extend the constraint acquisi-tion learning framework, notably solving one ofits major flaws : the dependency on a humanuser. It leads to PreCA, the first black-box ap-proach enjoying clear theoretical guarantees.It makes PreCA especially suitable for develop-ment uses. Second, we consider the deobfus-cation problem, which aims to simplify obfus-cated code. Our proposal, Xyntia, synthesizescode block semantics through S-metaheuristicsto offer an understandable version of the code.Xyntia significantly improves the state-of-the-art in terms of robustness and speed. In addi-tion, we propose the two first protections effi-cient against black-box deobfuscation.

