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Les modèles de mélange permettent de représenter différentes sous-populations au sein d'un ensemble d'individus. Dans ces modèles, le paramètre des poids quantifie la proportion des différentes sous-populations au sein de la population générale représentée par le mélange. Dans cette thèse, nous développons des outils pour l'estimation de ce paramètre des poids. Les méthodes proposées dans ce document reposent sur le coût de transport optimal entre mesures de probabilités. Régulariser par l'entropie le problème de transport optimal permet d'en accélérer le calcul effectif. Les propriétés théoriques du coût de transport, et l'accélération algorithmique permise par le terme de régularisation font du coût de transport régularisé un outil potentiellement efficace en estimation statistique. Dans cette thèse, on étudie une famille d'estimateurs des poids, où chaque estimateur est défini par le minimum d'une fonction faisant intervenir un coût de transport régularisé. Les travaux présentés dans cette thèse sont organisés selon trois axes. Tout d'abord, on utilise ces nouveaux estimateurs des poids pour le traitement de mesures de cytométrie en flux. Dans ce cadre applicatif, le modèle de mélange représente un ensemble de cellules biologiques, et chaque composante du mélange représente une certaine sous-population. On aborde ensuite le développement d'algorithmes efficaces pour le calcul des estimateurs proposés. On étudiera particulièrement des algorithmes stochastiques afin de minimiser les coûts de transport régularisés définissant les estimateurs des poids. Enfin, on s'attache à étudier l'impact statistique du terme de régularisation entropique ajouté au problème de transport optimal. Cette étude se fait pour l'estimation du coût de transport, ainsi que pour l'estimation des poids dans un modèle de mélange. Notre analyse nous permet de proposer un choix du paramètre de régularisation dépendant du nombre d'observations et de leur dimension.

Chapter 1

Résumé substantiel en français

Ce résumé dit substantiel constitue la seule partie de ce document écrite en français. Une première section introduit brièvement le contexte scientifique. Dans un second temps, on détaille les travaux réalisés au cours des trois années de thèse. Ce chapitre présente certaines similitudes avec l'introduction en anglais qui constitue le chapitre 2. Cependant, la présentation des travaux de thèse est bien plus détaillée dans ce chapitre que dans l'introduction en anglais. De plus, on décrit les résultats obtenus en des termes plus quantitatifs que dans le chapitre 2. En revanche, la présentation de la cytométrie en flux et l'introduction au transport optimal sont plus développées dans le chapitre 2. 

Traitement automatique des données de cytométrie en flux

La cytométrie en flux est une technologie permettant de mesurer différents paramètres cellulaires au sein d'un échantillon biologique. Les paramètres étudiés sont par exemple le volume, la granularité, ou le type de protéines exprimées à la surface de la cellule analysée. La cytométrie permet de mesurer ces paramètres au niveau cellulaire. Autrement dit, les paramètres d'intérêt sont mesurés pour chaque cellule présente dans l'échantillon biologique. Dans cette thèse, les données de cytométrie traitées sont uniquement constituées de mesures d'expression de certaines protéines. On utilise le terme bio-marqueur pour désigner ces mesures d'expression des protéines. On parlera par exemple du bio-marqueur CD45RA. 1 Cette technologie est très utilisée pour des analyses cliniques, ainsi que pour la recherche médicale. La cytométrie en flux permet par exemple le contrôle du système immunitaire de patients atteints du VIH. Dans ce cadre applicatif, il est nécessaire de mesurer le nombre de lymphocytes T CD4+ présents dans le sang des patients. À partir d'un échantillon sanguin analysé par cytométrie en flux, l'objectif est de déterminer la proportion de lymphocytes CD4+, parmi les cellules de l'échantillon. Plus généralement, la cytométrie en flux est utilisée pour identifier les différents types de cellules présents dans un échantillon biologique. Pour cela, il faut ensuite analyser les mesures obtenues.

La méthode privilégiée pour l'analyse des données de cytométrie en flux est l'approche dite de "partitionnement manuel". Cette méthode repose sur des projections successives du nuage de points des mesures de cytométrie selon deux paramètres sélectionnés. Le biologiste en charge de l'analyse partitionne ensuite l'espace en fonction des deux paramètres sélectionnés en identifiant visuellement les régions à forte densité. Ce processus présente trois inconvénients majeurs. Cette procédure est lente, manque de reproductibilité, et est inadaptée lorsque le nombre de paramètres mesurés est grand [START_REF] Saeys | Computational flow cytometry: helping to make sense of high-dimensional immunology data[END_REF]. Récemment, de nombreux travaux de recherche à été proposés pour automatiser le traitement de ces données [START_REF] Cheung | Current trends in flow cytometry automated data analysis software[END_REF]. Les travaux présentés dans le chapitre 4 s'inscrivent dans cet axe de recherche.

Le transport optimal et sa version régularisée

En 1781, le mathématicien Gaspard Monge cherche une stratégie pour déplacer un tas de sable à moindre frais. Il découvre ainsi le problème du transport optimal, et expose ses recherches sur le sujet dans son Mémoire sur la théorie des déblais et des remblais. La plupart des interrogations de Gaspard Monge sont restées sans réponse jusqu'au début des années 1940, avec les travaux du mathématicien russe Leonid Kantorovich qui reformule le problème de transport optimal en des termes probabilistes. Ainsi, étant données µ et ν deux lois de probabilité définies sur R d , on note Π(µ, ν) l'ensemble des lois de probabilité sur R d × R d ayant pour marginales µ et ν. Le problème de transport est alors défini par T 0 (µ, ν) := min π∈Π(µ,ν) R d ×R d

x -y 2 dπ(x, y).

(1.1.1)

Une autre contribution de Kantorovich est d'établir que le problème (1.1.1) permet de définir une distance entre mesures de probabilité. Plus précisément, la distance associée au problème de transport (1.1.1) est définie par W 2 (µ, ν) := T 0 (µ, ν). On appelle souvent la distance W 2 (µ, ν) distance de Wasserstein. Pour la quantité T 0 (µ, ν), on utilise la dénomination coût de transport optimal. On termine la présentation du problème de transport optimal par la formulation duale associée à T 0 (µ, ν). Cette formulation duale permet d'exprimer le coût de transport optimal comme un problème de maximisation. En notant X et Y les supports respectifs de µ et ν, la formulation duale associée à T 0 (µ, ν) est donnée par l'égalité

T 0 (µ, ν) = max (ϕ,ψ)∈Φ X ϕ(x)dµ(x) + Y ψ(y)dν(y), (1.1.2) où Φ := {(ϕ, ψ) ∈ C (X ) × C (Y) | ∀(x, y) ∈ X × Y, ϕ(x) + ψ(y) ≤ x -y 2 }.
Les variables ϕ et ψ apparaissant dans le problème dual (1.1.2) sont appelées potentiels duaux ou potentiels de Kantorovich.

En raison des motivations statistiques de cette thèse, on manipule régulièrement des mesures de probabilité discrètes. Dans le cas où µ = n i=1 a i δ xi et ν = m j=1 ν j δ yj sont deux probabilités discrètes ayant un support fini, le problème de transport optimal (1.1.1) se reformule T 0 (µ, ν) = min π∈Π(a,b) i,j

x i -y j 2 π i,j .

(1.1.3) Dans ce cadre discret, l'espace des contraintes Π(a, b) est l'ensemble des matrices π ∈ R n×m + telles que π1 m = a et π T 1 n = b. Ce problème de transport optimal discret (1.1.3) est un problème de programmation linéaire en la matrice de transport π. L'algorithme du simplexe [START_REF] Dantzig | Application of the simplex method to a transportation problem[END_REF] est donc adapté à un tel problème d'optimisation. Dans le cas où les deux mesures ont des supports de cardinal n, une version de cet algorithme du simplexe permet de résoudre ce problème (1.1.3) en O(n 3 log(n)) opérations [START_REF] Orlin | A polynomial time primal network simplex algorithm for minimum cost flows[END_REF]. À notre connaissance, en conservant l'hypothèse que les mesures ont des cardinaux de taille n, il n'existe pas d'algorithme permettant la résolution du problème (1.1.3) en moins de O(n 3 log(n)) opérations [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF][START_REF] Pele | Fast and robust earth mover's distances[END_REF][START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF].

Pour accélérer la résolution du problème de transport optimal (1.1.3), une technique récente [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF], consiste à approcher T 0 (µ, ν) par une version régularisée, que l'on note T λ (µ, ν). Cette version régularisée est définie par l'ajout d'une pénalité entropique H(π) := i,j log(π i,j )π i,j au problème d'optimisation (1.1.3), qui définit le problème de transport standard. Ainsi, le transport optimal régularisé que l'on étudie dans cette thèse est défini par T λ (µ, ν) := min π∈Π(a,b) i,j

x i -y j 2 π i,j + λ H(π), (1.1.4) où λ ≥ 0 est le paramètre de régularisation. Ce nouveau problème (1.1.4) hérite de la forte convexité de la fonction entropie H. De plus, ce problème régularisé (1.1.4) peut être résolu par l'algorithme de Sinkhorn [START_REF] Sinkhorn | A relationship between arbitrary positive matrices and doubly stochastic matrices[END_REF] (qui est largement antérieur à l'article [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]). Dans le cas où les deux mesures discrètes µ et ν ont toutes deux un support de taille n, l'algorithme de Sinkhorn permet de calculer le coût de transport régularisé T λ (µ, ν) en O(n 2 log(n)) opérations [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF].

En plus de réduire le nombre d'opérations nécessaires pour calculer T λ (µ, ν), l'algorithme de Sinkhorn présente l'avantage d'être adapté aux calculs sur processeurs graphiques (GPU). Finalement, les propriétés théoriques du coût de transport optimal T 0 (µ, ν), et son approximation rapide par l'ajout d'un terme de régularisation entropique, font du coût de transport régularisé T λ (µ, ν) un outil potentiellement efficace pour le traitement statistique.

Remarque 1.1.1. On a introduit le problème de transport optimal régularisé (1.1.4) entre mesures de probabilité discrètes. Cependant, ce problème peut être étendu dans un cadre plus général. Pour cela, on introduit la divergence de Kullback-Leibler par rapport à la mesure µ ⊗ ν. Cette quantité est définie par KL(π|µ ⊗ ν) := log dπ dµ⊗ν dπ si π est absolument continue par rapport à µ ⊗ ν, sinon, KL(π|µ ⊗ ν) := +∞. Pour µ et ν deux mesures de probabilité à support compact, le coût de transport optimal régularisé est défini par

T λ (µ, ν) = min π∈Π(µ,ν) R d ×R d
x -y 2 dπ(x, y) + λ KL(π|µ ⊗ ν).

(1.1.5)

Comme le problème de transport classique (1.1.1), c'est à dire quand λ = 0, la version régularisée admet une formulation duale. Dans le cas λ > 0, on a l'égalité

T λ (µ, ν) = max (ϕ,ψ)∈C (X )×C (Y) X ϕ(x)dµ(x) + Y ψ(y)dν(y) -λ
X ×Y e ϕ(x)+ψ(y)-x-y 2 λ dµ(x)dν(y) + λ.

(1.1.6)

On présente maintenant quelques questions liées à l'utilisation du transport optimal régularisé en statistiques.

Estimation statistique avec des distances de transport

Une première question théorique est l'estimation du coût de transport T 0 (µ, ν) à partir d'observations des mesures de probabilité comparées. Supposons avoir accès à n observations X 1 , . . . , X n indépendantes et identiquement distribuées (i.i.d) selon µ. De même, supposons avoir accès à n observations Y 1 , . . . , Y n i.i.d selon la mesure ν. Une façon naturelle d'estimer le coût de transport consiste à remplacer µ et ν par leurs versions empiriques respectivement définies par μn = 1 n n i=1 δ Xi et νn = 1 n n j=1 δ Yj . Ainsi, la quantité T 0 (μ n , νn ) définit un estimateur du coût de transport T 0 (µ, ν). Cependant, la version régularisée du coût de transport présente des avantages algorithmiques. On pourrait donc être tenté de remplacer T 0 (μ n , νn ) par T λ (μ n , νn ). Ces deux estimateurs T 0 (μ n , νn ) et T λ (μ n , νn ) peuvent sembler raisonnables, mais lequel choisir en pratique ? De plus, si l'on préfère la version régularisée T λ (μ n , νn ), comment choisir le paramètre de régularisation λ ? Dans [START_REF] Genevay | Sample complexity of sinkhorn divergences[END_REF] et [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF], les auteurs étudient les propriétés statistiques du coût de transport régularisé de façon à proposer un choix de paramètre de régularisation λ. Les travaux présentés au chapitre 6 abordent ces questions.

Le transport optimal (régularisé ou non) peut être utilisé pour estimer les paramètres d'un modèle statistique. Soit {µ(θ) | θ ∈ Θ} un modèle paramétré par un ensemble Θ que l'on suppose inclus dans R D . Il s'agit alors de représenter une mesure de probabilité ν inconnue par le modèle donné. L'accès à la mesure ν se fait uniquement par l'intermédiaire de Y 1 , . . . , Y n , une suite de variables aléatoires i.i. (1.1.9)

On retrouve les interrogations déjà rencontrées lors de l'estimation du coût de transport T 0 (µ, ν). Faut-il préférer un coût de transport standard T 0 , ou sa version régularisée T λ avec λ > 0 ? Si l'on préfère un coût de transport régularisé T λ , est-il possible de concilier les propriétés théoriques de T 0 et les avantages algorithmiques de T λ ? Par ailleurs, le calcul d'un estimateur θλ tel que défini par le problème d'optimisation (1.1.9) nécessite de minimiser un coût de transport. Selon la nature du modèle {µ(θ) | θ ∈ Θ}, le calcul d'un estimateur θλ peut donc s'avérer délicat.

Travaux de thèse

En représentant des observations sous forme de mesures de probabilité, le transport optimal permet de développer des outils statistiques. Dans l'application au traitement des données de cytométrie, chaque observation X i ∈ R d correspond aux paramètres mesurés sur la ième cellule. Sur cette observation X i , chaque coordonnée X (l)

i ∈ R représente l'intensité du signal associé au bio-marqueur l. Nous signalons que tous les résultats théoriques établis dans ce travail supposent que les mesures de probabilité considérées sont à support compact.

Chapitre 4 : une application aux données de cytométrie en flux

Les motivations liées au traitement des données de cytométrie nous ont conduits à définir un estimateur des proportions de différentes populations de cellules présentes dans un échantillon biologique. En des termes statistiques, on cherche à estimer le paramètre des poids d'un modèle de mélange. On note Σ K := {θ ∈ R K + | K k=1 θ k = 1} l'ensemble des vecteurs de probabilités à K coordonnées, notre espace des paramètres.

Nos hypothèses de travail sont les suivantes. Nous supposons avoir accès à deux jeux de données de cytométrie composés d'un même nombre K de sous-populations cellulaires. Notre première série de mesures de cytométrie X 1 , . . . , X n est classifiée (par un praticien par exemple) en K sous-populations cellulaires. Pour les observations Y 1 , . . . , Y m qui composent le deuxième jeu de données, la classification est inconnue. En s'inspirant du travail [START_REF] Redko | Optimal transport for multi-source domain adaptation under target shift[END_REF], on propose un estimateur des proportions des différentes sous-populations dans le jeu de données Y 1 , . . . , Y m non-classifié.

Notons C 1 , . . . , C K , les K classes représentant les différentes populations cellulaires. La classification de X 1 , . . . , X n en K classes nous permet de définir un modèle de mélange. Pour toute classe C k , en notant n k le nombre d'observations dans C k , on peut définir la mesure empirique μk associée à cette classe de la façon suivante,

μk := 1 n k i:Xi∈C k δ Xi .
(1.2.1)

Les K mesures empiriques μ1 , . . . , μK vont définir les composantes d'un modèle empirique de mélange. Plus précisément, le modèle utilisé est donné par (1.2.3) où λ > 0 est un paramètre de régularisation fixé. L'estimateur θλ des proportions par classe dans Y 1 , . . . , Y m , est donc le paramètre des poids qui rapproche le plus (au sens de T λ ) le modèle M de νm . On montre dans le chapitre 4 que cet estimateur des proportions atteint l'état de l'art des méthodes de traitement automatique des données de cytométrie.

M := μn (θ) = K k=1 θ k μk θ ∈ Σ K , (1.2.2) où Σ K = {θ ∈ R K + | K k=1 θ k = 1}

Chapitre 5 : calcul numérique d'un estimateur des poids dans un mélange

Dans le travail sur la cytométrie, le coût de transport régularisé nous permet de comparer une mesure empirique à un modèle de mélange. L'approche classique pour calculer le coût de transport régularisé entre deux mesures discrètes est l'algorithme de Sinkhorn [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]. Plus récemment, des techniques reposant sur des algorithmes d'optimisation stochastique on été développées pour calculer le coût de transport régularisé [Genevay et al., 2016, Bercu and[START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF]. Un intérêt des techniques stochastiques est de permettre le calcul du transport optimal entre une mesure discrète et une mesure arbitraire. Ces méthodes reposent sur l'observation que dans le cas où µ = n i=1 a i δ xi est une mesure discrète, quelque soit la mesure ν, le problème dual associé à T λ (µ, ν) se reformule

T λ (µ, ν) = max ϕ∈R n E [g λ,µ (Y, ϕ)] ,
(1.2.4) où Y est une variable aléatoire de loi ν. Dans le cas où les deux mesures comparées sont discrètes, l'approche stochastique présente l'avantage concret de s'affranchir du stockage de la matrice de coût C ∈ R n×m dont les n × m coefficients sont donnés par la relation C i,j := x i -y j2 .

Dans les travaux présentés dans ce document, on ne cherche pas uniquement à évaluer un coût de transport régularisé. L'estimateur que l'on introduit pour traiter les données de cytométrie nécessite de minimiser un coût de transport régularisé entre une mesure empirique et un modèle de mélange. En conservant les notations précédentes, on désigne par μn (θ) = K k=1 θ k μk un éléments du modèle de mélange considéré, et on désigne par νm la mesure empirique associée aux observations non-classifiées Y 1 , . . . , Y m . Avec ces notations, on a défini un estimateur comme une solution du problème d'optimisation min θ∈Σ K T λ (μ n (θ), νn ).

(1.2.5)

Dans le chapitre 5, on étudie une version légèrement plus ambitieuse de ce problème d'optimisation (1.2.5). Cette variation est obtenue en remplaçant la mesure empirique νn par la mesure de probabilité sous-jacente ν dans le problème (1.2.5). Ainsi, le problème d'optimisation étudié au chapitre 5 est

min θ∈Σ K T λ (μ n (θ), ν), (1.2.6)
où ν est supposée absolument continue par rapport à la mesure de Lebesgue1 . On débute le chapitre 5 par l'étude de la fonction objectif θ → T λ (μ n (θ), ν) qui défini le problème d'optimisation. On propose des conditions permettant d'assurer qu'il existe bien un unique élément θ * λ solution du problème (1.2.6).

Puis, on propose des solutions numériques adaptées au délicat problème d'optimisation (1.2.6). Ces développements numériques exploitent des techniques d'optimisation stochastiques, et supposent donc de pouvoir générer des observations distribuées selon ν 2 . Pour comprendre la difficulté de produire des algorithmes rapides adaptés au problème d'optimisation (1.2.6), il faut se rappeler que la notation T λ (µ n (θ), ν) cache un problème d'optimisation. Par exemple, si on utilise la formulation (1.2.4), le coût de transport s'écrit comme le maximum d'une espérance. Ainsi, le problème d'optimisation (1.2.6) que l'on étudie se reformule min

θ∈Σ K max ϕ∈R n E [g λ (Y, ϕ, θ)]
T λ (μ n (θ), ν)

.

(1.2.7)

Une façon possible d'aborder le problème (1.2.7) est d'utiliser un algorithme de descente de gradient sur l'espace des paramètres Σ K . Dans ce cas, chaque itération de l'algorithme nécessite de résoudre le problème de maximisation max ϕ∈R n E [g λ (Y, ϕ, θ)]. Une approche par descente de gradient résulte de façon concrète en un algorithme constitué de deux boucles imbriquées. Un tel algorithme est coûteux en temps de calcul. Par ailleurs, l'analyse théorique d'un algorithme de descente de gradient appliqué au problème (1.2.7) nous semble ardue.

Nous présentons la principale originalité du chapitre 5 pour réduire le coût calculatoire nécessaire à la résolution du problème (1.2.6). En s'inspirant des travaux de Ballu et al. [2020], on propose de perturber le problème (1.2.6) par l'ajout d'un terme de pénalité entropique H(θ) = K k=1 θ k log(θ k ) sur l'espace des paramètres Σ K . On cherchera donc à calculer un paramètre θ * λ,τ défini de la façon suivante θ * λ,τ := arg min

θ∈Σ K T λ (μ n (θ), ν) + τ H(θ).
(1.2.8)

La solution θ * λ,τ du problème régularisé (1.2.8) n'est donc qu'une approximation de la solution θ * λ du problème initial (1.2.6). Cependant, le terme de régularisation H sur l'espace des paramètres permet une reformulation avantageuse pour la résolution numérique du problème (1.2.8). Cette reformulation est donnée par l'égalité

min θ∈Σ K T λ (μ n (θ), ν) + τ H(θ) = C λ,ν -inf ϕ∈R n E [h λ,τ (Y, ϕ)] ,
(1.2.9) où C λ,ν est une constante et h λ,τ une fonction calculable en pratique. De plus, une solution ϕ * du problème inf ϕ∈R n E [h λ,τ (Y, ϕ)] apparaissant dans le membre de droite de l'égalité (1.2.9), permet un calcul de θ * λ,τ solution du problème régularisé (1.2.8). Ainsi, la régularisation introduite sur l'espace des paramètres permet de se ramener à l'étude d'un problème plus simple. En effet, du problème 'min-max' (1.2.7), on passe au problème inf ϕ∈R n E [h λ,τ (Y, ϕ)] sur lequel on peut directement appliquer des techniques d'optimisation stochastique. On propose d'utiliser l'algorithme de Robbins-Monro [Robbins and Monro, 1951] pour approcher ϕ * , solution de inf ϕ∈R n E [h λ,τ (Y, ϕ)]. Partant de ϕ 0 = 0 n , cet algorithme est récursivement défini par (1.2.11)

ϕ N +1 = ϕ N -γ N +1 h λ,τ (Y N +1 , ϕ N ), ( 
Pour résumer, la régularisation introduite dans le problème (1.2.8) permet d'utiliser une version classique de l'algorithme de Robbins-Monro. C'est un algorithme constitué d'une seule boucle, ne nécessitant pas le stockage de la matrice de coût. De plus, l'analyse de la convergence de cet algorithme est plus accessible que pour un algorithme de type 'descente-montée' appliqué au problème initial (1.2.7).

1.2.3 Chapitre 6 : estimateurs régularisés pour l'estimation du coût de transport L'introduction du coût de transport optimal régularisé T λ a été motivée par son avantage algorithmique par rapport au coût de transport optimal standard T 0 . Dans cette thèse, on s'intéresse aux propriétés statistiques du coût de transport régularisé. L'exemple suivi tout au long de ce travail est l'estimation des poids dans un modèle de mélange. Dans ce cas, l'estimateur θλ est défini comme un minimiseur de la fonction θ → T λ (μ n (θ), νm ). Il apparait alors que l'estimateur calculé dépend de la valeur du paramètre de régularisation λ > 0. Le reste des travaux de ce manuscrit portent sur l'impact statistique du paramètre λ.

Avant d'étudier l'influence du paramètre de régularisation sur l'estimateur θλ , nous étudions un problème intermédiaire et classique : l'estimation du coût de transport T 0 (µ, ν) [Chizat et al., 2020, Manole and[START_REF] Manole | Sharp convergence rates for empirical optimal transport with smooth costs[END_REF]. Nous supposons les mesures comparées à support compact. Ces mesures notées µ et ν sont accessibles uniquement par l'intermédiaire d'observations. Soient X 1 , . . . , X n une suite de variables aléatoires i.i.d de loi µ, et Y 1 , . . . , Y n une suite de variables aléatoires i.i.d de loi ν. À partir de ces observations, nous pouvons calculer les mesures empiriques μn et νn respectivement associées à µ et ν. Ces mesures sont définies par (1.2.12)

Une façon naturelle et déjà étudiée d'estimer T 0 (µ, ν), est de remplacer µ et ν par leur versions empiriques [Chizat et al., 2020, Manole and[START_REF] Manole | Sharp convergence rates for empirical optimal transport with smooth costs[END_REF]. C'est à dire, de calculer T 0 (μ n , νn ). Dans le chapitre 6, nous avons un intérêt particulier pour des estimateurs reposant sur le transport régularisé. On définit des estimateur à partir du coût de transport régularisé T λ , ainsi qu'en utilisant une version régularisée et dé-biaisée, notée S λ . Cette version dé-biaisée est définie par la formule S λ (µ, ν) := T λ (µ, ν) -1 2 (T λ (µ, µ) + T λ (ν, ν)) .

(1.2.13)

Initialement introduite dans l'article [START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF], nous désignons la quantité S λ (µ, ν) par le terme 'divergence de Sinkhorn'. À partir du coût de transport régularisé T λ et de la divergence de Sinkhorn S λ , on définit les deux estimateurs T λ (μ n , νn ) et S λ (μ n , νn ).

(1.2.14)

Dans le chapitre 6, on étudie la convergence de ces deux estimateurs dits régularisés vers le coût de transport optimal T 0 (µ, ν). Pour expliquer la façon dont nous étudions ce problème, on concentre notre présentation sur l'estimateur T λ (μ n , νn ). On cherche à obtenir un contrôle sur la quantité (1.2.16)

Nous utilisons le contrôle de l'erreur d'approximation établi dans [START_REF] Genevay | Sample complexity of sinkhorn divergences[END_REF][Théorème 1] et nous nous concentrons sur l'erreur d'estimation |T λ (µ, ν) -T λ (μ n , νn )|. Un élément clé dans le contrôle de cette erreur est la classe de régularité des potentiels optimaux (ϕ * , ψ * ) associés au coût de transport régularisé. C'est à dire, la régularité des variables ϕ * et ψ * solutions du problème dual (1.1.6) associé à T λ (µ, ν). La régularité des variables duales est liée à la régularité du coût de déplacement unitaire c(x, y) = x -y 2 . En développant le coût euclidien quadratique, on peut se ramener à un autre coût unitaire que l'on note s, et défini par s(x, y) := -2 x, y . On s'intéresse alors au transport optimal régularisé T s λ défini par

T s λ (µ, ν) := min π∈Π(µ,ν) R d ×R d
-2 x, y dπ(x, y) + λ KL(π|µ ⊗ ν).

(1.2.17)

On étudie la régularité des potentiels duaux associés à ce coût de transport régularisé T s λ dans le lemme suivant.

Lemme 1.2.1. Soient µ et ν deux mesures de probabilité à support compact dont les supports sont inclus dans une boule centrée en 0 et de rayon R, que l'on note B(0, R). Alors, il existe (ϕ * , ψ * ) deux variables duales associées au coût de transport T s λ (µ, ν), introduit en équation (1.2.17), telles que ϕ * et ψ * soient concaves et R-Lipschitz sur B(0, R).

Du précédent lemme, on déduit ce que l'on pense être un nouveau contrôle de l'erreur d'estimation du transport régularisé T λ . Dans un soucis de concision, on présente le résultat uniquement dans le cas où la dimension d est strictement supérieure à 4.

Proposition 1.2.1. Soient µ et ν deux mesures de probabilité sur R d . Si la dimension d est telle que d > 4, et les supports de µ et ν sont inclus dans une certaine boule de rayon R, alors

E [|T λ (µ, ν) -T λ (μ n , νn )|] R 2 n -2/d .
(1.2.18)

La notation cache une constante qui dépend uniquement de d.

Le contrôle de l'erreur d'estimation de T λ (μ n , νn ) annoncé en Proposition 1.2.1 se dégrade en grande dimension. Cependant, la majoration (1.2.18) est indépendante du paramètre de régularisation λ. On peut donc proposer un choix de paramètre λ qui permet de faire décroitre l'erreur d'approximation |T 0 (µ, ν) -T λ (µ, ν)| sans dégrader l'erreur d'estimation. Dans le chapitre 6, on propose un choix de paramètre de régularisation λ n dépendant du nombre n d'observations disponibles. Notre choix λ n assure une décroissance de l'erreur d'approximation |T 0 (µ, ν) -T λn (µ, ν)| à la même vitesse que l'erreur d'estimation. Cette erreur d'estimation est majorée par un terme d'ordre n -2/d en Proposition 1.2.1. En appliquant cette stratégie, on obtient le résultat suivant.

Théorème 1.2.1. Soient µ et ν deux mesures de probabilité sur R d . Si la dimension d est telle que d > 4, et les supports de µ et ν sont inclus dans une certaine boule de rayon R, alors

E [|T 0 (µ, ν) -T λn (μ n , νn )|] R 2 log(n)n -2/d , avec λ n = n -2/d .
(1.2.19) D'un point de vue théorique, on a intérêt à choisir le paramètre de régularisation le plus petit possible. Cependant, choisir ce paramètre trop petit, ralentit la convergence de l'algorithme de Sinkhorn [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF][Proposition 2]. Pour estimer le coût de transport T 0 (µ, ν) avec des estimateurs régularisés, le Théorème 1.2.1 propose un compromis entre l'accélération algorithmique permise par la régularisation entropique, et le biais introduit par cette même régularisation.

Les résultats d'estimation obtenus pour le coût de transport régularisé T λ s'adaptent au cas de la divergence de Sinkhorn S λ introduite en équation (1.2.13). Ainsi, sous l'hypothèse que µ et ν ont des supports compacts, on montre que l'estimateur S λn (μ n , νn ) vérifie

E [|T 0 (µ, ν) -S λn (μ n , νn )|] R 2 n -2/d , avec λ n = n -1/d .
(1.2.20)

Dans le chapitre 6, on termine notre étude des estimateurs régularisés T λn (μ n , νn ) et S λn (μ n , νn ) en prenant en compte l'erreur algorithmique introduite par l'algorithme de Sinkhorn. Par exemple, en exploitant le résultat établi par [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF][Proposition 2], on propose un nombre limité d'itérations n qui permet de conserver la vitesse de convergence n -2/d tout en limitant le coût calculatoire.

1.2.4 Chapitre 7 : analyse de quelques estimateurs des poids dans un modèle de mélange

Les derniers travaux présentés dans cette thèse portent sur l'analyse théorique de quelques estimateurs des poids. En particulier, nous revenons sur l'estimateur θλ introduit au Chapitre 4 pour traiter les données de cytométrie. Nous rappelons notre cadre de travail et introduisons les mesures de probabilité sous-jacentes aux observations. L'objectif est d'estimer un paramètre de poids dans un modèle de mélange destiné à décrire un jeu de données non-classifié Y 1 , . . . , Y m . Pour cela, nous supposons avoir accès à n observations X 1 , . . . , X n classifiées en K classes notées C 1 , . . (1.2.21)

Nous faisons l'hypothèse que toutes les observations appartenant à la classe C k suivent la même loi µ k . Ainsi, la mesure μk = 1 n k i:Xi∈C k δ Xi est la version empirique de la mesure µ k . Nous avons donc K mesures de probabilité µ 1 , . . . , µ K , qui modélisent les observations appartenant aux classes C 1 , . . . , C K . Ces K mesures permettent de définir le modèle de mélange

M := µ(θ) = k k=1 θ k µ k θ ∈ Σ K .
(1.2.22)

Ainsi, le modèle M introduit en équation (1.2.21) peut être interprété comme une version empirique du modèle M introduit en équation (1.2.22). De façon plus classique, on introduit ν la mesure de probabilité sous-jacente aux observations Y 1 , . . . , Y m . L'introduction des K + 1 mesures µ 1 , . . . , µ K et ν nous permet de définir le paramètre des poids θ * que l'on cherche à estimer. On pose θ * := arg min θ∈Σ K T 0 (µ(θ), ν).

(1.2.23)

Ce vecteur de probabilité θ * peut s'interpréter comme le paramètre qui définit la meilleur représentation µ(θ * ) de ν par le modèle M au sens du transport optimal. Une première partie du travail consiste à montrer que la pondération θ * est bien définie. Dans cet objectif, on propose le lemme suivant.

Lemme 1.2.2. Supposons le modèle M identifiable, la mesure ν absolument continue par rapport à la mesure de Lebesgue. Alors, la fonction θ → T 0 (µ(θ), ν) est strictement convexe et continue sur Σ K .

Notons que le coût de transport optimal T 0 vérifie la propriété de séparation3 . Sous des hypothèses adaptées, et si ν appartient au modèle de mélange M * , le paramètre θ * permet bien de retrouver ν. Autrement dit, s'il existe un vecteur de probabilité ω ∈ Σ K tel que ν = K k=1 ω k µ k , alors θ * = ω.

Une deuxième partie du travail porte sur l'étude d'estimateurs de la pondération optimale θ * . Nous supposons avoir accès à des observations X 1 , . . . , X n ainsi qu'à leur classification en K classes permettant d'exploiter le modèle empirique M introduit en équation (1.2.21). Pour remplacer la mesure ν dans le problème (1.2.23) à partir des observations Y 1 , . . . , Y m , on utilise la mesure empirique associée νm = (1.2.24)

Rappelons que S λ désigne la divergence de Sinkhorn introduite en équation (1.2.13). Pour évaluer les performance d'un estimateur du poids optimal, on utilise dans ces travaux le risque par excès. Pour un estimateur quelconque θn de θ * , le risque par excès est noté r n ( θn , θ * ), et défini par 0 ≤ r n ( θn , θ * ) := T 0 (µ( θn ), ν) -T 0 (µ(θ * ), ν).

(1.2.25)

En prolongeant les résultats obtenus pour l'estimation du coût de transport T 0 (µ, ν), on va pouvoir proposer un contrôle du risque par excès. On établi par exemple le résultat de convergence nonasymptotique suivant. Dans un soucis de concision, on énonce le résultat uniquement dans le cas où la dimension est strictement supérieure à 4.

Theorem 1.2.1. Supposons que pour toutes les mesures µ 1 , . . . , µ K et ν le nombre d'observations disponibles est supérieur à n. Si toutes les mesures µ 1 , . . . , µ K ont leur support inclus dans B(0, R), alors l'estimateur θλn := arg min θ∈Σ K T λn (μ n (θ), νn ) vérifie 0 ≤ E T 0 (µ( θλn ), ν) -T 0 (µ(θ * ), ν) R 2 n -2/d log(n) pour λ n = n -2/d .

(1.2.26)

Et l'estimateur θS λn = arg min θ∈Σ K S λn (μ n (θ), νn ) vérifie 0 ≤ E T 0 (µ( θS λn ), ν) -T 0 (µ(θ * ), ν) R 2 n -2/d pour λ n = n -1/d .

(1.2.27)

Dans le chapitre 7, on illustre l'importance du choix du paramètre de régularisation λ par des expériences sur données synthétiques et données de cytométrie en flux.

Chapter 2

Introduction

The work presented in this document was initially motivated by the biostatistical application of flow cytometry. This application led to methodological developments based on tools from the optimal transport theory. To propose a smooth introduction to the subject, we start with historical elements on optimal transport. The next paragraph owes a lot to outreach documents such as [START_REF] Vershik | Long history of the monge-kantorovich transportation problem[END_REF], [START_REF] Bayart | Leçon intitulée "transport optimal" donnée en 2005 par cédric villani[END_REF], and [START_REF] Villani | Transport optimal de mesure: coup de neuf pour un tres vieux probleme[END_REF]. 

A brief history of optimal transport

The optimal transport theory provides a metric between probability distributions, but this theory emerged from very practical questions. In 1781, motivated by military applications and logistic problems, Gaspard Monge discovers in his Mémoire sur la Théorie des Déblais et des Remblais the optimal transport problem. Informally stated, the problem is to find the most efficient way to move a given amount of material from an area X toward an other area Y. With modern mathematical tools, Monge problem can be formulated as follows. Let us denote by µ and ν two probability measures on R d with respective supports X , Y ⊂ R d . For an application T : X → Y, we denote T # µ the push-forward measure of µ by T . This measure is defined for A a Borel set, by

T # µ(A) = µ(T -1 (A)) = µ({x ∈ X | T (x) ∈ A}).
(2.1.1)

To ensure the conservation of mass from µ to ν, an application T must satisfy T # µ = ν. Then, aiming for the least cost, Monge problem reads1 inf

T # µ=ν X x -T (x) 2 dµ(x). (2.1.2)
This problem has remained unsolved until progresses were made by Kantorovich and his collaborators at the end of the 1930's and in the 1940's. First unaware of Monge's work, Leonid Kantorovich also came to the study of optimal transport through applied questions. In its Mathematical Methods of Organizing and Planning of Production [START_REF] Kantorovich | Mathematical methods of organizing and planning production[END_REF] originally published in 1939, Kantorovich tried to solve allocation problems with limited material to optimize production. As this new optimal transport theory was suspected of being anti-Marxist [START_REF] Vershik | Long history of the monge-kantorovich transportation problem[END_REF], Kantorovich ideas were not very popular in the Soviet Russia of the 1940's. This accounts for Kantorovich ideas not reaching the West before the end of the 1950's. In spite of the chilling welcome to his work, Kantorovich proceeded his researches with the more theoretical paper On mass transfer [START_REF] Kantorovich | On the translocation of masses[END_REF] published in 1942. Among the many contributions of Kantorovich and his collaborators, we first point out a probabilistic point of view on the optimal transport problem (2.1.2). With this new standpoint, the transport of mass is not encoded with a function T : X → Y, but with a probability distribution π. In probabilistic terms, the conservation of mass is ensured by the condition π ∈ Π(µ, ν), where Π(µ, ν) is the set of probability distributions on X × Y with marginals µ and ν, i.e, for all Borel sets A, B ⊂ R,

π(A × Y) = µ(A) and π(X × B) = ν(B).
(2.1.3)

With this probabilistic point of view, the new formulation of the optimal transport problem is given by

T 0 (µ, ν) := inf π∈Π(µ,ν) X ×Y
x -y2 dπ(x, y).

(2.1.4)

As the set Π(µ, ν) is larger 2 than the set of constraints in Monge Problem (2.1.2), Kantorovich problem (2.1.4) is sometimes referred to as a relaxation of Monge Problem. Nevertheless, this larger set Π(µ, ν) has some valuable properties for applying optimization methods. It is a convex set, always non empty and the objective function I 0 : π → X ×Y x -y 2 dπ(x, y) is linear. A second contribution of Kantorovich was to propose a dual formulation of the optimal transport problem (2.1.4). This dual formulation allows to rewrite the optimal transport cost T 0 (µ, ν) as a maximization problem. Indeed, Kantorovich duality theorem states that the following equality holds true. (2.1.5) where

T 0 (µ, ν) = sup (ϕ,ψ)∈Φ X ϕ(x)dµ(x) + Y ψ(y)dν(y),
Φ := {(ϕ, ψ) ∈ C (X ) × C (Y) | ∀(x, y) ∈ X × Y, ϕ(x) + ψ(y) ≤ x -y 2 }.
We learned in [START_REF] Bayart | Leçon intitulée "transport optimal" donnée en 2005 par cédric villani[END_REF] that this formulation has an economic interpretation of high interest for Kantorovich practical motivations. This economic formulation can be stated as follows. A subcontractor proposes to handle the transport of the materials with a pricing method based on a price of load and a price of delivery. The price of load is encoded by a function ϕ and the price of delivery by a function ψ. With these notations, the price to collect a unit of material at the location x is ϕ(x) and the price to deliver one unit of material at the location y is ψ(y). Hence, the price to move one unit of material from x to y equals ϕ(x) + ψ(y). To propose an attractive price, the subcontractor ensures that his costs are lower than the initial price to move one unit of mass given by c(x, y) = x -y 2 . Hence the prices ϕ and ψ of the subcontractor are such that for each (x, y) ∈ X × Y, ϕ(x) + ψ(y) ≤ x -y 2 , which is precisely the constraint that appears in the dual problem (2.1.5). Hence, with the pricing policy (ϕ, ψ), collecting and delivering all the material amounts to X ϕ(x)dµ(x) + Y ψ(y)dν(y). In these economic terms, the input of Kantorovich duality theorem (2.1.5) is that an adequate choice of prices allows to reach the optimal transport cost T 0 .

Leaving practical questions aside, Kantorovich also showed in his theoretical work On mass transfer that the quantity W 2 (µ, ν) := T 0 (µ, ν) 1/2 , actually defines a metric on the space of probability distributions. This metric, currently named the Wasserstein distance, features very nice properties on a subset of the probability distributions. For instance, if a sequence (µ n ) n≥0 is such that W 2 (µ n , µ) → 0, then (µ n ) n≥0 converges weakly toward µ. We refer to the last paragraph of [START_REF] Vershik | Long history of the monge-kantorovich transportation problem[END_REF] for a very interesting discussion around the name of the distance W 2 (µ, ν). In short, A. Vershik explains that the Kantorovich distance would be a much more suitable denomination for the quantity W 2 (µ, ν) and that the mathematician Vasershtein (from where the term Wasserstein derives) is "absolutely not guilty of this distortion of terminology" (Quoted from [START_REF] Vershik | Long history of the monge-kantorovich transportation problem[END_REF]). In the same direction, in the bibliographical notes of [START_REF] Villani | Optimal transport: old and new[END_REF][Chapter 6], we could read that "the explicit definition of this distance is not so easy to find" (Quoted from [START_REF] Villani | Optimal transport: old and new[END_REF]) in Vasershtein's work. This being said, as Wasserstein distance is now the standard term in the literature related to our work, we will stick to this denomination.

From a mathematical point of view, Kantorovich problem (2.1.4) motivates several natural questions. Do minimizers to Kantorovich problem exist? Is there a unique solution to this problem? Can we characterize solution(s)? The question of existence is settled since Kantorovich works in the 1940's. Indeed, the structure of Kantorovich problem ensures the existence of an optimal transport plan π * . The uniqueness of a solution to the optimal transport problem is a more involved question and requires some assumptions. Results related to uniqueness appeared toward the end of 1980's when optimal transport turned into an object of interest for pure mathematicians. For instance, at the end of the 1980's, motivated by equations from fluid mechanics, Brenier gave in [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] sufficient conditions for the uniqueness and gave a characterization of the optimal transport plan. Since then, optimal transport is still a very active field of research in pure mathematics. A famous example is given in [START_REF] Mccann | A convexity principle for interacting gases[END_REF], where the author exploits the theory of optimal transport to define an alternative notion of convexity to study configurations of interacting gases. Although, far from these questions we mention that this theory has found numerous applications in other theoretical questions such as functional inequalities, isoperimetric inequalities... But these questions are far from our grasp and we are already too far away from our field of research.

Going back to the metric side of optimal transport, it is possible to find it applied as a measure of similarity between probability distributions as early as the 1970's. For example, the one dimension optimal transport cost is already studied in [START_REF] Vallender | Calculation of the wasserstein distance between probability distributions on the line[END_REF]. Later, the metric properties of optimal transport are investigated in [START_REF] Szulga | On minimal metrics in the space of random variables[END_REF]. For considerations closer to our field of research, we found some use of optimal transport in statistics at the end of the 1990's in [START_REF] Belili | Estimation basée sur la fonctionnelle de kantorovich et la distance de lévy[END_REF], and then in [START_REF] Bassetti | On minimum kantorovich distance estimators[END_REF]. First applications of optimal transport metrics can be found in image processing community for instance in [START_REF] Peleg | A unified approach to the change of resolution: Space and gray-level[END_REF]] and later in [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF] under the earth mover's distance denomination. Before reviewing more recent applications of optimal transport, we discuss some computational issues.

Optimal transport in practice

Computing the optimal transport cost

This work stands in an applied context. A particular case of interest is then to compare discrete probability distributions. We denote by µ

= n i=1 a i δ xi and ν = n j=1 b j δ yj where a, b ∈ Σ n = {c ∈ R n + | i c i = 1}
and the x i , y j ∈ R d , two discrete probability distributions. With these notations, when comparing µ and ν, the optimal transport cost (2.1.4) reads

T 0 (µ, ν) = inf π∈Π(a,b) 1≤i,j≤n π i,j x i -y j 2 . (2.2.1)
In this discrete framework, the set of constraint Π(µ, ν) of Problem (2.1.4) turns into Π(a, b), the set of coupling matrices between a and b, i.e. Π(a, b) = {π ∈ R n×n | π1 n = a and π T 1 n = b}. The interpretation of a transport plan π ∈ Π(a, b) might be easier in this discrete setting. Indeed, for π ∈ Π(a, b), the coefficient π i,j encodes the amount of material moved from x i to y j . We now discuss the resolution of the optimal transport problem (2.2.1).

In view of this problem (2.2.1), computing the Wasserstein distance requires to solve a linear optimization problem with constraints. When comparing two discrete distributions with supports of equal size n, regardless of the algorithm exploited (simplex method, Hungarian algorithm, auction algorithm), solving problem (2.2.1) requires O(n 3 log(n)) operations [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]. In order to speed up the computations, a recent and very popular technique, initially introduced in [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF], is to prefer a regularized version of the optimal transport cost. This regularized version of the transport cost is defined by the addition of an entropic term H(π) = i,j π i,j log(π i,j ) to the classic Kantorovich problem (2.2.1). Thus, the regularized optimal transport problem between two discrete distributions µ = n i=1 a i δ xi and ν = n j=1 b j δ yj is:

T λ (µ, ν) := inf π∈Π(a,b) 1≤i,j≤n π i,j x i -y j 2 + λ H(π). (2.2.2)
The strong convexity of the entropy function allows the use of other algorithms to solve regularized problem (2.2.2). Among these methods, Sinkhorn algorithm [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] is often the first choice. It computes an approximation of the Wasserstein distance in O(n 2 log(n)) operations and is well suited for GPU implementation. Hence, this algorithm requires less operations than linear programming methods, and GPU implementations make this algorithm particularly fast in practice. The computational advantages of the regularized optimal transport cost T λ make it a very popular tool in statistics. Understanding the impact of the regularization factor λ on statistical tasks is one of the points addressed in Chapters 6 and 7 of this work.

Recent applications of optimal transport

Optimal transport has recently gained interest in machine learning and statistics. Approximate solvers adapted to large dimension problems allow to move beyond the high computational cost of optimal transport. For example, in [Feydy et al., 2019a], the author exploit a multi-scale regularized OT solver for high-dimensional data. To alleviate the computational cost of optimal transport, other approaches rely on stochastic algorithms. These stochastic methods have been developed in [START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF] and further studied in [START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF]. As mentioned previously, the potential of the metric properties of optimal transport are understood since a long time. And we could track some attempt to apply optimal transport long before the 2010's [START_REF] Peleg | A unified approach to the change of resolution: Space and gray-level[END_REF][START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF]. However, the recent progresses in applied optimal transport have been fueled by the development of efficient, large-scale optimization algorithms. Thus, optimal transport has found various applications in machine learning for regression [START_REF] Janati | Wasserstein regularization for sparse multi-task regression[END_REF], and classification [START_REF] Flamary | Wasserstein discriminant analysis[END_REF]. Those computational progresses in optimal transport have also allowed its use in imaging sciences [START_REF] Solomon | Convolutional wasserstein distances: Efficient optimal transportation on geometric domains[END_REF]. A famous example of optimal transport application is generative modeling [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF]. In this example, minimizing a transport distance between a data set and a model parameterized by a neural network allows to generate remarkably realistic images.

Optimal transport is now applied on real-life problems. For instance, in [Huizing et al., 2022b] the authors exploit optimal transport based distances to improve statistical inference on single-cell omic data. In relationship with our field of research, and to make the point that optimal transport tools are now applied on real-life data, we mention two single cell algorithms based on optimal transport lately published. First [START_REF] Schiebinger | Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming[END_REF] model the development of cells in order to understand their differentiation process. And in [START_REF] Li | Optimal transport, mean partition, and uncertainty assessment in cluster analysis[END_REF], the authors propose a method that deals with the issue of cluster alignment with the purpose to discriminate between intrinsic clusters and spurious clusters. By using optimal transport tools to address a biostatistics problem, the work presented in Chapter 4 belongs to this area of research.

2.3 A statistical point of view on optimal transport 2.3.1 Estimation of the optimal transport cost T 0 (µ, ν)

In statistics, a probability distribution µ on R d is only accessible through its observations X 1 , . . . , X n ∼ µ. The purpose is then to derive properties of this distributions µ based on the available samples. As in optimal transport two distributions are compared, we assume to have at hand two series of observations X 1 , . . . , X n , and Y 1 , . . . , Y n , respectively sampled from µ and ν. One of the first questions a statistician interested in optimal transport could ask is, how to estimate the transport cost T 0 (µ, ν) with the available samples? A natural way to proceed is to substitute µ and ν by their empirical versions μn and νn . Next, computing

T 0 (μ n , νn ) (2.3.1)
yields a natural estimator of T 0 (µ, ν). Then, a statistician could wonder how this estimator behaves when the number n of observations from both distributions goes to infinity. For instance, if both distributions have compact supports, we have that

∀ε > 0, P (|T 0 (µ, ν) -T 0 (μ n , νn )| > ε) -→ n→∞ 0. (2.3.2)
As the number of observations is allowed to go to infinity, this reassuring result is an asymptotic result.

Recent developments in statistics, especially high dimension statistics, focus on non-asymptotic results.

That is when the number of observations n is fixed, and one has to deal with limited number of observations. In the context of non-asymptotic statistics applied to optimal transport, a typical result is given in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF][Theorem 2]. Under appropriate assumptions, given n independent samples from each distribution, this results formulates as

E [|T 0 (μ n , νn ) -T 0 (µ, ν)|] ≤ C d n -2/d , (2.3.3)
where C d is a constant that depends only on the dimension d of the observations. Note that the rate of convergence of the upper bound given in equation (2.3.3) is highly dependent on the dimension. As mentioned in the introduction of [START_REF] Wainwright | High-dimensional statistics: A non-asymptotic viewpoint[END_REF], understanding the impact of the dimension d is crucial in non-asymptotic statistics. Due to the computational advantages of its regularized version, a statistician under time constraints, or with limited computational resources could prefer to substitute the plug-in estimator T 0 (μ n , νn ) by its regularized version T λ (μ n , νn ) with λ > 0.

(2.3.4)

Both T 0 (μ n , νn ) and T λ (μ n , νn ) seem reasonable estimators of T 0 (µ, ν), but which one should be preferred? Moreover, the estimator T λ (μ n , νn ) depends on λ, then how to tune this parameter? Questions regarding the tuning of the regularizing parameter have become hot topics in the last years and is for instance investigated in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF]. This this work aims at contributing to the field, especially in Chapter 6 where we improve the rates of convergence given in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF] when relying on regularized estimators.

Parametric estimation with optimal transport

Assume given a collection of probability distributions, i. In this work, the focus is on losses that are based on the optimal transport cost (2.1.4) or its regularized counterpart (2.2.2). Thus, the closest distribution to ν inside M = {µ(θ) | θ ∈ Θ}, with respect to the optimal transport cost T 0 is defined by

µ(θ * ), with θ * := arg min θ∈Θ T 0 (µ(θ), ν). (2.3.6)
The parameter θ * defined in equation (2.3.6) is the quantity of interest. However ν is not accessible and we only have access to observations Y 1 , . . . , Y n ∼ ν. Then, the choice of optimal transport costs requires to move from observations to a probability distribution. For this purpose, a sample {Y 1 , . . . , Y n } is mapped to the probability space thanks to the associated empirical distribution defined by νn ({Y 1 , . . . , Y n }) = (2.3.7)

We refer to this framework (2.3.7) as parametric optimal transport estimation. In the sequel, we denote more casually by νn the empirical distribution. A typical example of such estimators is given by Wasserstein Generative Adversarial Network [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF]. With Wasserstein Generative Adversarial Network, also referred to as WGAN or Wasserstein GAN, the optimal transport loss is the 1-Wasserstein distance that corresponds to the ground cost c(x, y) = x -y instead of c(x, y) = x -y 2 in Kantorovich problem (2.1.4). In this example, the set of parameters Θ, to represent an unknown distribution ν, are the coefficients of a neural network g θ . The Wasserstein GAN's have been theoretically studied in [START_REF] Biau | Some theoretical insights into wasserstein gans[END_REF].

Our focus is on an other parametric estimation problem that falls in this broad framework of Wasserstein estimation. The problem of weights estimation in a mixture model. To be more precise, our set of parameters is

Σ K = {θ ∈ R K + | K k=1 θ k = 1}
the probability simplex that parameterizes the model (2.3.8) where µ 1 , . . . , µ K are the components of the mixture model. The transport losses we consider are the squared 2-Wasserstein distance and regularized versions of it. Somewhat imprecisely, we often refer to T 0 (µ, ν) = W 2 2 (µ, ν) as the Wasserstein distance3 . Thus, our weights estimation problem formulates

µ(θ) = K k=1 θ k µ k | θ ∈ Σ K ,
θλ := arg min θ∈Σ K T λ (µ(θ), νn ) where λ ≥ 0, and µ(θ) = K k=1 θ k µ k .
(2.3.9)

As when simply estimating the transport cost T 0 (µ, ν) the same questions arise: Should we prefer the regularized versions T λ (µ(θ), νn ) instead of T 0 (µ(θ), νn )? How does this regularization parameter λ impact the estimation error of θλ defined in equation (2.3.9)? These questions are thoroughly investigated in Chapter 7. We digress slightly to mention that these questions extend to non-parametric setting. For example, in [START_REF] Bigot | Data-driven regularization of wasserstein barycenters with an application to multivariate density registration[END_REF], the authors propose a data-driven choice of the regularizing parameter λ to perform Wasserstein barycenter estimation. Back to parametric estimation, one can notice in equations (2.3.7) and (2.3.9) that computing estimators like θn and θλ requires to minimize optimal transport costs (regularized or not). Computing an optimal transport cost is a difficult task, and so is minimizing an optimal transport cost. Therefore, the design of efficient algorithm to solve variational problems that involve optimal transport costs like (2.3.7) or (2.3.9) is one of the challenges of the field. Solving these optimization problems is for instance addressed in [START_REF] Houdard | On the existence of optimal transport gradient for learning generative models[END_REF], [START_REF] Sebbouh | Randomized stochastic gradient descent ascent[END_REF], or [START_REF] Ballu | Stochastic optimization for regularized wasserstein estimators[END_REF]. Our propositions to numerically solve our estimation problem (2.3.9) are gathered in Chapter 5. We now present the applied problem that led us to mixture models and to the use of optimal transport.

Weights estimation in mixture models

Several subpopulations of cells from a biological sample

Given a population of cells, a first question when studying this population is: can we gather these cells into subpopulations? Inside a subpopulation the cells would share some similarities and be closer to each other than with the rest of the population. Once this question answered, and knowing that the cells divide into different subgroups, a second question arises. How do the cells divide into the different categories? In other terms, what are the proportions of the different sub-populations of cells? In this work we investigate this question with a focus on cells found in human bloodstream. To be more precise, we study cells from the human immune system. Assume to have a population of n cells. Thanks to medical expertise, also assume to know that a classification of these cells into K different sub-populations would be relevant. Then, the question we study is the following one. What are the proportions of cells from Type 1, Type 2, ... , Type K in this blood sample? Before giving additional details, we remind that cells are classified into the same category because they share similarities with respect to certain characteristics.

In our context, the characteristics that allow to gather different cells into the same subgroup, are what we call biological markers or biomarkers. These biomarkers are proteins present at the surface of the cells, and they have names like CD4, CD8, CD45RA, CD38... Each name referring to a specific protein expressed at the surface of the cell. To give an example, a cell is categorized CD8 Effector because it features the sequence of biomarkers CD3+, CD8+, CD4-, CCR7-,CD45RA+ [START_REF] Finak | Standardizing flow cytometry immunophenotyping analysis from the human immunophenotyping consortium[END_REF][Table 2]. These biomarkers on the surface of the cells have different functions. Hence a group of cells with common markers share common functions. Therefore, sorting the cells based on the markers present or not at their surface, allows to sort the cells depending on their functions. This link between biomarkers and cell functions accounts for the interest in these biomarkers. To monitor the biomarkers present at the cellular level a widespread and powerful technique is flow cytometry. The presentation of flow cytometry given in the next section is mostly based on [START_REF] Saeys | Computational flow cytometry: helping to make sense of high-dimensional immunology data[END_REF].

Motivations from flow cytometry

Cytometry is a technology designed to monitor various parameters at the cell level such as the size, the granularity, or protein expression. In our work, we focus on biological markers present at the surface of cells, that correspond to protein expression.

Principle To monitor protein expression, the cells are stained with fluorochromes that are specific to the biological markers of interest at the surface of the cells. For each type of biological marker, fluorochromes are designed to hang on to this specific type of biological marker. Then, the fluorochromes will emit light in a certain range of wavelength under light excitation. For instance, if the CD4 markers are considered of interest for the application, a fluorochrome will be added in the biological sample to hang on the CD4 markers and to emit a certain color, for example blue, under light excitation. The presence or absence of the biomarker CD4 at the surface of each cell is then detected through the intensity of blue light emitted. Once all the biomarkers of interest have been stained, the cells are flown one by one through a laser beam to activate the fluorochromes that hanged to each cell. Thus, for each cell, light intensities at several ranges of wavelength are monitored. And each range of wavelength corresponds to a fluorochrome that is specific to a precise biomarker. Hence, each intensity of wavelength monitored is specific to a certain type of biomarker, and the higher the light intensity is at a given wavelength, the more there are of the corresponding marker. This is how flow cytometry measurements allow for precise a description of each individual cell. Since several decades, flow cytometry is considered an efficient tool for biological analyses.

The development of flow cytometry First flow cytometers were developed in the 1960's [START_REF] Fulwyler | Electronic separation of biological cells by volume[END_REF], and were already commercialized in the 1970's [START_REF] Picot | Flow cytometry: retrospective, fundamentals and recent instrumentation[END_REF]. The first generation of flow cytometers only monitored physical parameters, such as volume or granularity, through scattered light intensity and light absorption. To monitor other biological characteristics like protein expression, fluorescent antibodies were quickly used in flow cytometry [START_REF] Bonner | Fluorescence activated cell sorting[END_REF]. As noticed in [START_REF] Saeys | Computational flow cytometry: helping to make sense of high-dimensional immunology data[END_REF] the general design of flow cytometry hardware has surprisingly changed little since the early models. However, the number of monitored parameters has dramatically increased. State-of-the-art cytometers can measure up to 30 biological markers at once on a single cell [START_REF] Saeys | Computational flow cytometry: helping to make sense of high-dimensional immunology data[END_REF]. Flow cytometry has found a wide range of applications in biology. For instance, it is intensively exploited in immunology [START_REF] Saeys | Computational flow cytometry: helping to make sense of high-dimensional immunology data[END_REF] for clinical and research purposes. We also mention that this technology is used as oceanographic tool for studying phytoplankton populations [START_REF] Swalwell | Seaflow: A novel underway flow-cytometer for continuous observations of phytoplankton in the ocean[END_REF], and in livestock production for sex selection [START_REF] Robinson | Flow cytometry strikes gold[END_REF]. We propose two explanations for the development of this technology. First, by providing measurements at the cell level, flow cytometry allows for a better understanding of the biological phenomenon under study. Second, the speed of analysis makes flow cytometry a highly useful technique in practice. Indeed, current hardware enables the measurement of millions of cells in a matter of minutes.

Application to immunology Cytometry is now widely used both for clinical applications and medical researches. An example of clinical application is given by the monitoring of the immune system of HIV patients. In this example, the HIV attacks a crucial part of the immune system that are the T-helper cells. Before getting to our attempt to automate the analysis of flow cytometry measurements, we present the standard method to analyze these measurements.

Flow cytometry measurements analysis The analysis of flow cytometry measurements is usually done manually by a trained biologist. A sequence of two-dimensional projections is required to perform manual analysis. Figure 2.1 presents four successive two-dimensions projections. A two-dimensions projection corresponds to the choice of two biological markers considered selective. For each twodimensional projection, geometric shapes are drawn around high density areas in order to identify different sub-populations. The shapes drawn along the successive projections are called gates in flow cytometry. This method to partition the cells into sub-population is referred to as manual gating. This process caries the drawback of being time consuming and hard to reproduce. Moreover, manual gating is inadequate for exploring high-dimensional spaces when a large number of biomarkers are monitored.

Along with the use of manual gating in practice, recent years have witnessed the development of automatic methods to analyze these data. These methods divide into two approaches, the supervised methods and the unsupervised ones. The supervised approaches exploit manually gated flow cytometry Figure 2.1: An example of the manual gating process from [START_REF] Verschoor | An introduction to automated flow cytometry gating tools and their implementation[END_REF] data sets to propose a gating (i.e. a partition in statistical terms) of a new flow cytometry data set where each sub-population gets labeled (For instance CD8 Effector). Unsupervised approaches do not require a known gating, and focus on partitioning the observations into subcategories that feature similarities without necessarily labeling them. We refer to Section 4.1.2 of Chapter 4 and to [START_REF] Cheung | Current trends in flow cytometry automated data analysis software[END_REF] for an overview of popular tools in flow cytometry data analysis. In Chapter 4 we introduce CytOpT, an algorithm that estimates directly the class proportions without an intermediate clustering step. To the best of our knowledge, until we proposed CytOpT whose principle is described in Chapter 4, all the methods of flow cytometry data analysis had in common to propose a gating. In other terms, all the known methods partitioned a flow cytometry data set into several classes. Digressing slightly, we mention that methods that focus on the problem of predicting class distributions in a data set are gathered under the denomination Quantification learning. We refer to two recent papers [START_REF] González | A review on quantification learning[END_REF] and [START_REF] Schumacher | A comparative evaluation of quantification methods[END_REF] for a broader view on this topic. To go back to our topic of flow cytometry measurements analysis, we are far from criticizing the classification approaches. Classification brings the most precise description of a new flow cytometry data set. However, in a lot of applications the crucial information is the proportions of the different sub-populations. If a partition allows to recover this information of proportions, the partition itself is not always useful. For instance, when monitoring the immune system of a patient, it does not matter that the 47051 th cell belongs to the sub-population of CD8 Effector. The relevant information is that in the biological sample analyzed, the sub-population of CD8 Effector represents 21 percent of all the cells in the biological sample. Obviously, in a lot of situations, the proportions of the different sub-population is not informative enough. For instance, if a few cancer cells must be identified, the labeling of each individual in the biological sample is required. We now move toward a statistical description of the problem of flow cytometry measurements.

Statistical description

In our application, each observation X i ∈ R d corresponds to flow cytometry measurements on one cell. And each coordinate X (l) i ∈ R corresponds to the light intensity emitted by the biomarkers of type l attached to the i th cell. We assume to have at hand a gated data set of n observations X 1 , . . . , X n that divide into K cell subpopulations. Hence, each observation X i belongs to a class C k . We also assume that all the observations from class C k have distribution µ k , i.e. X i ∈ C k if and only if X i ∼ µ k . Thus, the samples X 1 , . . . , X n in the gated data set are assumed to have underlying distribution µ where µ is a mixture probability distribution that reads

µ = K k=1 ρ k µ k with ρ ∈ Σ K , (2.4.1)
where Σ K denotes the probability simplex defined by

Σ K = θ ∈ R K + | K k=1 θ k = 1 .
We also assume to have at hand a second data set of flow cytometry measurement composed of m observations Y 1 , . . . , Y m . For this second data set, no manual gating is available and we seek to estimate the relative proportions of the different subpopulations that compose this second data set.

The work presented in Chapter 4 falls between a supervised approach and mixture modeling. It can be introduced as a supervised approach as the methodology presented requires the knowledge of a labeled data set X 1 , . . . , X n to derive some information on an unclassified data set Y 1 , . . . , Y m . On the other hand, labeled data are assumed to be distributed from a mixture model where each component µ k represents a sub-type of cell. The only assumption required on the mixture model is its number of components denoted by K. Note that the number of components is the statistical quantity that describes the number of different sub-populations of cells in the biological sample. The new unlabeled data set Y 1 , . . . , Y m ∈ R d is supposed to be distributed from an other distribution ν. Then, the idea is to represent the unknown probability ν underlying the un-classified observations Y 1 , . . . , Y m by the same components µ 1 , . . . , µ K that compose the distribution µ defined in (2.4.1). Choosing a representation of ν built from the components µ 1 , . . . , µ K rephrases as seeking in the model

µ(θ) = K k=1 θ k µ k | θ ∈ Σ K (2.4.2) the closest distribution µ(θ * ) to ν. For θ ∈ Σ K , we call µ(θ) = K k=1 θ k µ k a re-weighted version of µ.
Choosing the closest distribution requires a notion of distance or discrepancy between probability distributions. Assume that we have a way to compare probability distributions thanks to an operator D : P × P → R where P denotes the space of probability distributions. Then, the problem of seeking for the closest distribution inside our model rephrases as the following minimization problem

min θ∈Σ K D(µ(θ), ν), where µ(θ) = K k=1 θ k µ k .
(2.4.3)

Denoting by θ * a minimizer of Problem (2.4.3), we like to think of µ(θ * ) as the best representation of ν, with respect to D, inside the mixture model {µ(θ) | θ ∈ Σ K }. The choice to represent ν as a mixture with components µ 1 , . . . , µ K is due to some implicit assumptions on ν. These assumptions can be justified by our application to flow cytometry measurements. The distribution µ that underlies the gated data set X 1 , . . . , X n writes as a mixture of K components. And this gated data set X 1 , . . . , X n is exploited to derive some information on an unclassified data set Y 1 , . . . , Y m that comes from an other distribution ν. In our framework, this other distribution ν represents the same biological phenomenon, i.e. the same sub-populations of cells. Without saying so, we assume that ν = K k=1 ω k ν k is also a mixture of K distributions. Moreover, each component ν k represents a sub-population of T-cells, and the corresponding distribution µ k represents the same population. Due to technical variability and biological variability among individuals, µ k and ν k are not exactly equal. However, µ k and ν k represent the same sub-population of cells, hence there should be some strong similarities between these two distributions. We thus implicitly assume that µ k ≈ ν k . In other words, we focus on situations where the biological variability of interest is really encapsulated into the weights vectors ρ ∈ Σ K and ω ∈ Σ K . To follow our example of monitoring the immune system, what will significantly differ between a healthy patient and a sick patient are the proportions of the different sub-populations of cells found in their respective immune system.

Looking for D The delicate question is the choice of the discrepancy measure D. In statistics, one does not have access to the distributions µ 1 , . . . , µ K and ν, but only on samples from these unknown distributions. A natural4 way to estimate D(µ(θ), ν) is to substitute µ(θ) and ν by their empirical distributions respectively defined by μn (θ) = (2.4.4)

Each distribution μk refers to the empirical distributions of the component µ k . That is, μk is defined by μk = 1 n k i:Xi∈C k δ Xi with n k the number of observations that belong to the class C k . Note that the structure of ν and νm is possibly very different. For instance, even if ν is absolutely continuous with highly regular density, its empirical version νm is discrete. A good candidate for D is thus expected to be flexible enough to compare distributions with very different structures. Moreover, to exploit the similarities of the components µ k and ν k that both correspond to the same biological phenomenon, the discrepancy must give a precise description of the distributions compared. In this work we focused on optimal transport distances to compare probability distributions. Thus, substituting D by T λ , and ν by its empirical distribution νn in equation (2.4.3) we recover the parametric optimal transport estimation problem (2.3.9).

Outline of the thesis

Chapter 3: Preliminaries This first chapter aims at setting the scene for the rest of the manuscript. We tried to introduce most of the definitions and results we exploit in more original chapters of this document. Writing this chapter was also the opportunity to discuss some differences between the classic optimal transport cost T 0 (µ, ν) and its regularized version T λ (µ, ν). We also reviewed some state-of-the-art results regarding optimal transport in statistics. Almost all the results for this part of the document are not original, and the only new result from this chapter will be extensively discussed in Chapters 6 and 7. However, in the section devoted to statistics we tried to flag where our modest contributions insert. We also like to believe that this chapter will give some understanding into the use of optimal transport in statistics.

Chapter 4: CytOpT

The methodological developments presented in this work have been motivated by a certain type of biological data named flow cytometry measurements. The automated analysis of flow cytometry measurements is an active research field. Yet, manual gating is still the benchmark method for practitioners. We propose in Chapter 4 an algorithm referred to as CytOpT, that directly estimates the relative proportions of different cell subpopulations from a biological sample characterized by flow cytometry measurements. This chapter is based on a recent paper titled 'CytOpT: Optimal transport with domain adaptation for interpreting flow cytometry data'. Most of the variations from the online preprint are notations. We have also moved the appendices of the original paper toward Chapter 5.

Chapter 5: Computing a weights estimator in practice

The estimation method proposed in Chapter 4 is based on the minimization of a regularized optimal transport distance. Computing optimal transport costs is known to be a difficult task, and so is minimizing optimal transport cost functions such as (2.3.9). We discuss some possibilities to tackle this problem with stochastic algorithms. Our main input in this chapter is to introduce an additional regularization on the parameter space. From this regularizing term results two advantages. First, what is originally a minimization-maximization problem turns into a simple minimization problem. Second, this new minimization problem admits an expectation formulation that enables the application of Robbins-Monro algorithm. Moreover, we think that the new formulation of this regularized problem comes with theoretical guaranty on the convergence of Robbins-Monro algorithm.

Chapter 6: Regularized estimators of the optimal transport cost T 0 (µ, ν)

Chapter 4 left theoretical questions unanswered. We consider Chapter 6 as an intermediate step toward answering some of these questions. We give new theoretical results related to estimation of the optimal transport cost T 0 (µ, ν) with regularized estimators. In short, we give what we think to be a new bound on the estimation error of T λ (μ n , νn ). Exploiting known result on the approximation error of T λ , we propose a regularization choice that enables regularized estimator T λ (μ n , νn ) to reach the near optimal rate of convergence n -2/d log(n). We also the study the potential benefits of the alternative regularized optimal transport cost S λ (µ, ν) for estimation tasks. We show that with a well chosen parameter λ, this second estimator S λ (μ n , νn ) reaches the rate of convergence n -2/d .

Chapter 7: Theoretical study of weights estimation in a mixture model

In this final chapter we extend results established in the previous Chapter 6 to the mixture estimation problem (2.3.9). It enables us to give theoretical explanations for the experimental results presented in Chapter 4. First, we define an optimal re-weighting distribution µ(θ * ) based on the distributions underlying the observations. We also give sufficient conditions for the quantity θ * to be well defined. We give non-asymptotic bounds on the convergence of the regularized estimators θλ towards the theoretical weights θ * . The theoretical results are discussed and illustrated with a focus on the practical considerations that initially motivated this work. For instance, we pursue the investigation of the delicate question of the choice of the regularization parameter λ. Along the same practical motivations, we discuss how to limit the number of Sinkhorn algorithm iterations without deteriorating the performances of our estimator θλ . 

Notations

R n×m

Set of matrices with n rows, m columns and real entries. We denote by R n×m + the set of matrices with n rows, m columns and non-negative real entries.

A T Transpose of the matrix A ∈ R n×m .

X , Y Closed subsets of R d , usually denote the support of µ and ν.

C (X ), C b (X )
Space of continuous functions, and space of continuous and bounded functions defined on X .

x, y Scalar product in R n , i.e. x, y

= n i=1 x i y i . x Euclidean norm, for x ∈ R n , x = n i=1 x 2 i . B(x, R)
Closed ball of center x and radius R. We mostly consider B(0, R).

1 n Vector of R n with all coordinates equal to 1.

n

Vector of R n with all coordinates equal to 0.

diag(x)

Diagonal matrix with diagonal coefficients given by x.

∇f (x) Gradient vector of the function f at the point x.

∇ 2 f (x) Hessian matrix of the function f at the point x.

J f (x) Jacobian matrix of the function f at the point x.

Measure Theory

dx or Leb Lebesgue measure.

dπ dξ

Radon-Nikodym derivative of π with respect to ξ.

dµdν Product measure of µ and ν, i.e. X ×Y f dµdν = X ×Y f dµ ⊗ ν.

f # µ Pushfoward measure of µ by f , i.e. f # µ(A) = µ(f -1 (A)). δ x Dirac distribution δ x (A) = 1 if x ∈ A, δ x (A) = 0 otherwise. n i=1 a i δ xi Discrete distribution with weights a ∈ Σ n and support {x 1 , . . . , x n } ⊂ R d . M Counting measure M = n i=1 δ xi on the subset {x 1 , . . . , x n } ⊂ R d . L 1 (X )
Space of µ-integrable functions quotiented by µ-almost equality.

L ∞ (X ) Space of µ-essentially bounded functions quotiented by µ-almost equality. i. i. d. Independent and identically distributed sequence of random variables.

Probability and Statistics

X 1 , . . . , X n ∼ µ Sequence of n random variables with distribution µ.

Σ K Probability simplex in R K , Σ K = {θ ∈ R K + | K k=1 θ k = 1}. μn Empirical distribution of µ defined by μn = 1 n n i=1 δ Xi . P(X )
Probability measures supported on X .

P 2 (X ) Probability measures with finite second order moment supported on X .

supp(µ)

Support of the distribution µ.

Optimal transport and its regularized version µ, ν Respectively source and target distributions.

X , Y

Respective supports of µ and ν, assumed compact in every original result.

c(x, y)

Squared euclidean cost, c(x, y) = x -y 2 .

Π(µ, ν)

Set of probability distributions with marginals µ and ν.

Π(a, b)

Set of coupling matrices between a, b ∈ Σ n .

T 0 (µ, ν) Optimal transport cost between µ and ν.

W 2 (µ, ν)

The 2-Wasserstein distance, defined by W 2 (µ, ν) = T 0 (µ, ν).

H

Entropy function. For π ∈ Π(a, b), H(π) = i,j log(π i,j )π i,j .

KL Kullback-Leibler divergence, KL(π|ξ) = X ×Y log dπ dξ (x, y) dπ(x, y). λ Regularization parameter.

T λ (µ, ν) Regularized optimal transport cost if λ > 0.

T m1⊗m2 λ (µ, ν)
Regularized optimal transport cost with regularizing term KL(•|m 1 ⊗ m 2 ). Notation mostly used in Chapter 5 when the regularizing term changes.

Otherwise we use the notation T λ (µ, ν).

S λ (µ, ν) Sinkhorn divergence, S λ (µ, ν) = T λ (µ, ν) -1 2 (T λ (µ, µ) + T λ (ν, ν)).
Chapter 3

Preliminaries

In this chapter, we introduce the mathematical tools and vocabulary that we use all along this document. It was written to facilitate the reading of the manuscript, and to precise some elements informally mentioned in the introduction. We claim no originality for the results presented in the chapter. Due to the statistical point of view often adopted in this document, especially in Chapters 6 and 7, we manipulate discrete distributions such as the empirical distribution μn = 1 n n i=1 δ Xi , but also the underlying distributions that are possibly continuous. To cover both the discrete and continuous cases, we give the optimal transport formulations in the general case. 

Mathematical framework

The optimal transport theory can be formulated in a very general manner. This is not the path we follow.

We restrict to the ambient space R d where d ≥ 1 endowed with the euclidean norm x = d i=1 x 2 i and its associated Borel σ-algebra denoted by B. Even in the specific case of R d , when using optimal transport, one has to choose a ground cost function c : R d × R d → R. The cost function c quantifies the cost of moving one unit of mass from one point to an other. This is often a delicate and crucial issue, and some recent methodological developments such as [START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF] or [Huizing et al., 2022a] are dedicated to this issue. We will not address this question in this document. Unless otherwise stated, the ground cost c is the squared euclidean distance c(x, y) = x -y2 . This choice is motivated by the properties of this specific cost function that almost always meet the requirements of theoretical results1 . We will also make use of the possibility to expand this cost function as it derives from an inner product. The optimal transport theory allows to compare two probability distributions. In our case we denote by µ and ν two such probability distributions with respective supports X and Y. Due to the initial motivation of the theory to move some material from one place to an other, we often refer to µ as the source distribution and to ν as the target distribution. To ensure that the optimal transport problem is well defined, we consider distributions with finite second moment. We denote by P 2 (X ) the space of probability distributions with finite second order moment and support subset of X . We often consider probability distributions with compact support. In this case, the second order moment condition automatically holds true and we simply use the notation P(X ).

The presentation of standard optimal transport theory owes a lot to classic references such as [START_REF] Villani | Topics in optimal transportation[END_REF] or [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]. For the regularized version of optimal transport, we relied greatly on the monograph [START_REF] Peyré | Computational optimal transport[END_REF]. As a lot of new results appeared since 2019 2 , we also helped ourselves in the broad scientific literature related to regularized optimal transport. When quoting a known result, we tried to give a reference that seemed the closest to our need, it should not be understood as an indication toward the first discovery of the quoted result. Moreover, the results given in this document are adapted to our specific framework of R d with its squared euclidean cost c(x, y) = x -y 2 . The referred result is often more general.

3.1 Some elements on optimal transport and Wasserstein distances

Primal and dual formulation of optimal transport

For µ ∈ P 2 (X ) and ν ∈ P 2 (Y) two probability distributions with finite second order moments, the primal optimal transport problem reads as the minimization of the following functional

I 0 : Π(µ, ν) → R ∪ {+∞} π → X ×Y
x -y 2 dπ(x, y).

(3.1.1)

The set Π(µ, ν) is the set of probability distributions with marginal µ and ν, defined by Π(µ, ν)

:= {π ∈ P(X × Y) | ∀A ∈ B, π(A × Y) = µ(A) and π(X × A) = ν(A)}. As µ ⊗ ν ∈ Π(µ, ν) and I 0 (µ ⊗ ν) < +∞,
the functional I 0 is proper. The next result establishes that the functional I 0 , to which we refer to as the primal functional, admits a minimum. Theorem 3.1.1 (Primal). [Villani, 2003, Proposition 2.1] Set µ ∈ P 2 (X ) and ν ∈ P 2 (Y), then the minimization problem

inf π∈Π(µ,ν) X ×Y x -y 2 dπ(x, y) (3.1.2) admits a minimizer π * ∈ Π(µ, ν).
This minimization problem is at the core of this document and we often refer to it as Kantorovich problem or as the primal problem. In the vocabulary of optimal transport an element π ∈ Π(µ, ν) is referred to as a transport plan and a minimizer π * of Kantorovich problem (3.1.2) as an optimal transport plan. Due to the existence of a solution to the primal problem (3.1.2) we substitute the infimum by a minimum. We then introduce the optimal transport cost. Definition 3.1.1 (Optimal transport cost). For (µ, ν) ∈ P 2 (X )×P 2 (Y) two probability distributions with finite second order moments, the optimal transport cost between between µ and ν is denoted by T 0 (µ, ν), and defined by

T 0 (µ, ν) := min π∈Π(µ,ν) X ×Y
x -y 2 dπ(x, y).

(3.1.3)

We can also give a probabilistic formulation of the optimal transport cost. Indeed, we can rewrite equation (3.1.3) as

T 0 (µ, ν) = min X∼µ,Y ∼ν E X -Y 2 , (3.1.4)
where the minimum is taken over all the couples of random variables (X, Y ) that admit µ and ν as respective marginal.

Definition 3.1.2 (Wasserstein distance). For µ and ν two probability distributions, we denote by W 2 (µ, ν) and call Wasserstein distance the quantity

W 2 (µ, ν) := min π∈Π(µ,ν) X ×Y
x -y 2 dπ(x, y)

1/2 . (3.1.5)
The Wasserstein distance is linked to the optimal transport cost T 0 (µ, ν) through the relation W 2 (µ, ν) = T 0 (µ, ν). Due to the name given to the quantity W 2 (µ, ν), not having the next proposition would have caused us a slight disappointment.

Proposition 3.1.1. [Villani, 2003][Theorem 7.3] The function W 2 :

P(X ) 2 → R + (µ, ν) → W 2 (µ, ν)
defines a distance on P 2 (X ). We sometimes call Wasserstein space the metric space (P 2 (X ), W 2 ).

Substituting the squared euclidean distance by c p (x, y) := x -y p with p ≥ 1, would lead to the definition of an other Wasserstein distance. In other terms, there is a whole collection of Wasserstein distances. We should thus refer to W 2 as the 2-Wasserstein distance. As mentioned previously, the ground cost is fixed to c(x, y) = x -y 2 , we thus indulge ourselves to refer to W 2 as the Wasserstein distance. From a statistical point a view, an interesting type of convergence between probability distributions is given by the weak convergence of measures.

Definition 3.1.3 (Weak convergence). A sequence (µ n ) n≥0 ⊂ P 2 (X ) of probability measures is said to converge weakly to µ

∈ P 2 (X ) if ∀ϕ ∈ C b (X ), X ϕ(x)dµ n (x) -→ n→+∞ X ϕ(x)dµ(x), (3.1.6)
where C b (X ) is the set of continuous bounded functions on X .

The following theorem ensures that convergence with respect to the Wasserstein distance implies weak convergence as defined above.

Theorem 3.1.2. [Villani, 2003][Theorem 7.12] Let (µ k ) n≥0 ⊂ P 2 (X ) be sequence of probability measures and let µ ∈ P 2 (X ). The two following statements are equivalent

• W 2 (µ n , µ) -→ n→+∞ 0.
• (µ n ) n≥0 converges weakly towards µ and X x 2 dµ n (x) -→ n→+∞ X x 2 dµ(x).

To address a minimization problem under constraints like Kantorovich problem (3.1.2), one can substitute the set of constraints by a maximization problem. Provided that the 'inf-sup' problem can be exchanged by a 'sup-inf' problem, one often reaches a new maximization problem called the dual problem. We now introduce the dual formulation associated to Kantorovich problem. Denoting by L 1 (X ) the space of µ-integrable function quotiented by µ-almost everywhere equality, the dual associated to Kantorovich problem (3.1.2) is given by the maximization over

Φ := {(ϕ, ψ) ∈ L 1 (X )×L 1 (Y) | ∀(x, y) ∈ X × Y, ϕ(x) + ψ(y) ≤ x -y 2 } of the functional J 0 defined by J 0 : Φ → R (ϕ, ψ) → X ϕ(x)dµ(x) + Y ψ(y)dν(y).
(3.1.7)

Thus, the dual problem associated to the optimal transport problem is the maximization problem

sup (ϕ,ψ)∈Φ X ϕ(x)dµ(x) + Y ψ(y)dν(y). (3.1.8)
When the supremum of the dual functional J 0 equals the infimum of the primal functional i.e. when the next equation holds, inf π∈Π(µ,ν)

I 0 (π) = sup (ϕ,ψ)∈Φ J 0 (ϕ, ψ), (3.1.9)
we say that strong duality holds. Within our framework, this result is always true as stated in the next theorem.

Theorem 3.1.3. [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF][Theorem 1.40] Let µ and ν be two measures respectively supported on X and Y with finite second order moments. Then, strong duality holds, and both the infimum and the supremum are reached. i.e.

T 0 (µ, ν) = min π∈Π(µ,ν) X ×Y x -y 2 dπ(x, y) = max (ϕ,ψ)∈Φ X ϕ(x)dµ(x) + Y ψ(y)dν(y).
(3.1.10)

And Φ = {(ϕ, ψ) ∈ L 1 (X ) × L 1 (Y) | for µ ⊗ ν-almost all (x, y) ∈ X × Y, ϕ(x) + ψ(y) ≤ x -y 2 }.
In accordance with the standard terminology of optimal transport, we refer to a pair of dual variables (ϕ, ψ) ∈ Φ as potentials and a pair of optimal variables for the dual problem (3.1.8) as Kantorovich potentials or optimal potentials. Optimal transport often exploits tools related to convex optimization. An omnipresent quantity in convex optimization is the Legendre transformation. We recall its definition bellow.

Definition 3.1.4. For ϕ : X → R ∪ {+∞} a proper function, its Legendre transform is defined by

∀y ∈ R d , ϕ * (y) = sup x∈X { x, y -ϕ(x)}.
(3.1.11)

In optimal transport, a close relative to the Legendre transform is very often used; it is the c-transform. The name c-transform is chosen to adapt to any cost function c. Even if we restrict our work to one cost that is c(x, y) = x -y 2 , we stick to the term c-transform. Definition 3.1.5 (c-transform). For ϕ ∈ L 1 (X ), its c-transform is denoted by ϕ c and defined by

∀y ∈ R d , ϕ c (y) = inf x∈X { x -y 2 -ϕ(x)}.
(3.1.12)

Given two dual admissible variables (ϕ, ψ) ∈ Φ, one can always increase the value of the dual function (3.1.7) by computing the c-transform of the dual variables. Starting from an admissible pair of variables (ϕ, ψ), one can replace it by (ϕ, ϕ c ), and then by ((ϕ c ) c , ϕ c ) to increase the dual functional J 0 as follows

J 0 (ϕ, ψ) ≤ J 0 (ϕ, ϕ c ) ≤ J 0 ((ϕ c ) c , ϕ c ).
(3.1.13) Therefore, if the dual problem admits a pair of maximizer (ϕ, ψ) it is always possible to choose them as c-transforms of an other function 3 . Note that the c-transform ϕ c that is given in equation (3.1.12) is intended to be integrated against ν. Therefore, formula (3.1.12) could have been stated only for ν-almost all y. However, for convenience when handling a c-transform, we define it for all y ∈ R d . An important property is that the c-transform inherits the regularity of the cost function that is c(x, y) = x -y 2 in our case. We refer to [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF] and to [START_REF] Houdard | On the existence of optimal transport gradient for learning generative models[END_REF] for a continuity argument based on the notion of modulus of continuity.

Remark 3.1.1. A direct consequence of the regularity of the c-transforms is that one can restrict the dual functional J 0 to the space of continuous functions C (X )×C (Y)∩Φ. With the additional assumption that µ and ν have compact supports, the dual functional can be restricted even further to the space of continuous and bounded functions

C b (X ) × C b (Y) ∩ Φ.
The notion of c-transform also allows for a variant of the dual-problem 3.1.8. Given a variable ϕ ∈ L 1 (X ), computing the c-transform of ϕ automatically yields a pair (ϕ, ϕ c ) of admissible variables for this dual problem (3.1.8). Hence, it is possible to turn the constrained optimization problem 3.1.8 into an unconstrained problem with respect to a single potential.

Proposition 3.1.2 (Semi-dual). For µ, ν ∈ P 2 (X )×P 2 (Y) the optimal transport cost admits the following formulation

T 0 (µ, ν) = sup ϕ∈L 1 (X ) X ϕ(x)dµ(x) + Y ϕ c (y)dν(y) (3.1.14)
where ϕ c is the c-transform of ϕ defined in 3.1.5. This formulation of the optimal transport cost is called the semi-dual formulation.

We finish this section by the fundamental result of Brenier that characterizes the optimal transport plan of Kantorovich problem (3.1.2) under some regularity conditions. Theorem 3.1.4 (Brenier's Theorem). [START_REF] Villani | Topics in optimal transportation[END_REF][Theorem 2.12] Let µ and ν be two probability distributions on R d with finite second order moments. Assume that µ is absolutely continuous with respect to the Lebesgue measure. Then, there is a unique optimal transport plan π * defined by

π * = (Id, ∇ϕ) # µ, (3.1.15)
where ∇ϕ is the unique (µ-almost everywhere) gradient of a convex function such that ∇ϕ # µ = ν.

Under the assumptions of Brenier's Theorem (3.1.4), the optimal transport cost between µ and ν writes (3.1.16) where ∇ϕ is the unique gradient of a convex function such that ∇ϕ # µ = ν. Hence, Brenier's theorem gives sufficient conditions for Monge transport problem (that we defined in equation (2.1.2) of the introductory Chapter 2) to correspond to Kantorovich problem (3.1.2).

T 0 (µ, ν) = X x -∇ϕ(x) 2 dµ(x),

Closed forms of the optimal transport cost

In most cases, the Wasserstein distance does not admit a closed form expression. But in rare cases, we can give an explicit formulation of the Wasserstein distance. We review the main cases.

Probability distributions on the real line R A first case where the Wasserstein distance admits a closed form is when considering measures defined on R. To give the expression of the Wasserstein distance in the one dimensional case, we introduce a few notations. For µ ∈ P(X ), a probability distribution with support subset of R, its cumulative distribution function is denoted by F µ and defined by ∀x ∈ R, F µ (x) = µ((-∞, x]).

(3.1.17)

We can now define the quantile function of F µ that we denote F -1 µ and whose expression is given by ∀y ∈ (0, 1),

F -1 µ (y) = inf{t ∈ R : F µ (t) ≥ y}. (3.1.18)
From the quantile functions of two probability distributions defined on the real line, we can express the Wasserstein distance between these distributions µ and ν.

Theorem 3.1.5. [Villani, 2003, Theorem 2.18] For µ ∈ P 2 (R) and ν ∈ P 2 (R), the Wasserstein distance between these two distributions is given by

T 0 (µ, ν) = 1 0 F -1 µ (t) -F -1 ν (t) 2 dt. (3.1.19)
In one dimension, the optimal transport cost is determined by the quantile functions of the distributions compared. Without further assumptions, quantile functions lie in infinite dimensional spaces. In statistical terms, the optimal transport is a non-parametric object. To the best our knowledge, there is no equivalent formula in higher dimension. However, for the specific case of Gaussian distributions, there exists an explicit formulation.

The Gaussian case For two Gaussian distributions on R d , it is established that the optimal transport problem admits a closed from expression.

Theorem 3.1.6. [Peyré and Cuturi, 2019, Remark 2.31] Set µ = N (m µ , σ µ ) and ν = N (m ν , σ ν ) two Gaussian distributions defined on R d with d ≥ 1. Then, the Wasserstein distance between µ and ν admits a closed form expression given by

T 0 (µ, ν) = ||m µ -m ν || 2 + B(σ µ , σ ν ), (3.1.20)
where B(σ µ , σ ν ) denotes the Bures metric. It is defined by

B(σ µ , σ ν ) = Tr σ µ + σ ν -2(σ 1/2 µ σ ν σ 1/2
µ ) 1/2 on the set of positive semi-definite matrices. Here σ 1/2 refers to the matrix square root. In the specific case of diagonal matrices σ µ = diag((σ µ ) i ) 1≤i≤d ) and σ ν = diag((σ ν ) i ) 1≤i≤d ), expression (3.1.20) turns into (3.1.21) due to the specific expression of the Bures metric in this case.

T 0 (µ, ν) = ||m µ -m ν || 2 + || √ σ µ - √ σ ν || 2 ,

Examples of Wasserstein distances

In order to get comfortable with the Wasserstein distance, we now give a few examples. A classic and meaningful example is the Wasserstein distance between two Dirac distributions. The Dirac distribution at x ∈ R d will be denoted δ x , and is defined for a Borel set A ∈ B by δ x (A) = 1 if x ∈ A and δ x (A) = 0 otherwise. For δ x and δ y two Dirac distributions on R d , the set of admissible coupling Π(δ x , δ y ) contains only the product measure δ x ⊗ δ y . From this, we deduce

T 0 (δ x , δ y ) = x -y 2 . (3.1.22)
Similarly as when comparing two Dirac distributions, set µ ∈ P 2 (X ) an arbitrary distribution with finite second order moment and denote by m µ = E[X] its mean. As long as the target measure ν = δ a is a Dirac distribution at a certain point a, the set Π(µ, δ a ) is a singleton. Indeed, Π(µ, δ a ) = {µ ⊗ δ a }, and from this we deduce

T 0 (µ, δ a ) = X x -a 2 dµ(x) = E X∼µ X -a 2 = E X∼µ X -m µ 2 + m µ -a 2 . (3.1.23)
Alternatively stated, the optimal transport cost between µ and δ a is the sum of the variance of µ, and the squared euclidean distance between its mean m µ and a. Our final example is the comparison of maybe the most famous distributions a statistician could think of; the standard normal distribution µ = N (0, 1) and the Bernoulli distribution ν = B(p) of parameter p ∈ (0, 1). Denoting by Φ -1 the quantile function of the standard normal distribution, using Theorem 3.1.5 we have

T 0 (N (0, 1), B(p)) = 1-p 0 (Φ -1 (x)) 2 dx + 1 1-p (Φ -1 (x) -1) 2 dx. (3.1.24)
The first term corresponds to the optimal cost to move an 1 -p amount of material from the Gaussian distribution to the point 0, and the second term to the optimal cost to move what remains of the Gaussian to the point 1.

Discrete optimal transport

A last case that is of high importance within this work is the Wasserstein distance between discrete distributions. We call discrete distribution a probability distribution on R d with countable support.

To be more specific, we will only consider the case of discrete distributions with finite support in this document. A discrete distribution

µ = n i=1 a i δ xi
is defined by a finite support {x 1 , . . . , x n } ⊂ R d and a weights vector a ∈ Σ n where Σ n is the probability simplex defined by | π1 m = a and π T 1 n = b} is the set of coupling matrices between the vectors a ∈ R n and b ∈ R m . In the discrete case, the supports of µ and ν are taken into account by the cost matrix C ∈ R n×m + defined by C i,j = x i -y j 2 . When comparing discrete distributions, the dual problem, generally given by (3.1.7), reads (3.1.27) where the discrete version of the set of admissible variables turns into

Σ n = a ∈ R n + n i=1 a i = 1 . ( 3 
T 0 (µ, ν) = max ϕ,ψ∈Φ n i=1 ϕ i a i + m j=1 ψ j b j = max ϕ,ψ∈Φ ϕ, a + ψ, b ,
Φ = (ϕ, ψ) ∈ R n × R m | ∀(i, j), ϕ i + ψ j ≤ x i -y j 2 .
Due to the statistical interests of this work, a special type of discrete distributions appear on a regular basis: the empirical distributions. So far, we have presented elements of the classic theory of optimal transport. We now introduce a regularized version of the optimal transport problem (3.1.2).

Regularized optimal transport

Initially introduced in the discrete setting in the article [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] to reduce the computational cost of optimal transport, regularized optimal transport is probably the central element of this document. This variation of the classic optimal transport problem is used as a tool for biostatistical purposes in Chapter 4, we propose and discuss some possibilities to minimize a regularized transport cost in Chapter 5. Finally, Chapters 6 and 7 attempt to understand statistical properties of this regularized cost.

Regularized primal problem and regularized dual problem

The regularized version of optimal transport is based on the addition of a penalizing term to Kantorovich problem (3.1.2) that is the Kullback-Leibler divergence. We have observed that the definition given may vary up to an additive term, depending on the authors. We precise our conventions in the next definition.

Definition 3.2.1 (Kullback-Leibler divergence). For π and ξ two probability distributions on X × Y, we define the Kullback-Leibler divergence from π to ξ and denote by KL the quantity

KL(π|ξ) = X ×Y log dπ dξ (x, y) dπ(x, y), (3.2.1)
if π is absolutely continuous with respect to ξ. Otherwise, the Kullback-Leibler divergence is defined by KL(π|ξ) = +∞. Here, dπ dξ (x, y) denotes the Radon-Nikodym derivative of π with respect to ξ.

The addition of the Kullback-Leibler to Kantorovich problem (3.1.2) allows to define a new quantity.

Definition 3.2.2 (Regularized primal). For any (µ, ν) ∈ P 2 (X ) × P 2 (Y), the primal formulation of the regularized optimal transport problem between µ and ν is the following convex minimization problem

T λ (µ, ν) := min π∈Π(µ,ν) X ×Y x -y 2 dπ(x, y) + λ KL(π|µ ⊗ ν), (3.2.2)
where λ ≥ 0 is a regularization parameter.

For λ = 0, the quantity T 0 (µ, ν) is the standard (un-regularized) optimal transport cost, or the squared Wasserstein distance. When λ > 0, we refer to T λ (µ, ν) as the regularized optimal transport cost between µ and ν. With I λ : π → X ×Y x -y 2 dπ(x, y) + λ KL(π|µ ⊗ ν), the regularized functional associated to the regularized problem (3.2.2), as µ and ν have finite second order moments, I λ (µ ⊗ ν) < +∞. Therefore, the regularized transport cost T λ (µ, ν) is finite for any value of λ ≥ 0.

As shown in the following lemma, the regularized problem (3.2.2) can be interpreted as a projection problem.

Lemma 3.2.1 (Projection interpretation). [START_REF] Marino | An optimal transport approach for the schrödinger bridge problem and convergence of sinkhorn algorithm[END_REF][Equation 1.5] For µ and ν two probability distributions with compact supports, we denote by K λ and call Gibbs kernel associate to µ and ν the measure defined by

K λ := e -x-y 2 λ µ ⊗ ν.
(3.2.3)

We have the following relation between the regularized optimal transport cost and the Gibbs kernel,

T λ (µ, ν) = λ min π∈Π(µ,ν) KL(π|K λ ). (3.2.4)
Proof. We denote by k λ the density function of the Gibbs kernel, i.e. k λ (x, y) = e -x-y 2 λ . Set π ∈ Π(µ, ν), absolutely continuous with respect to µ ⊗ ν with density denoted by dπ dµ⊗ν . Note that the probability π is then absolutely continuous with respect to K λ and admits dπ dµ⊗ν (x, y)k λ (x, y) -1 as density function. We thus have,

KL(π|K λ ) = X ×Y log dπ dK λ (x, y) dπ(x, y) (3.2.5) = X ×Y log dπ dµ ⊗ ν (x, y)k λ (x, y) -1 dπ(x, y) (3.2.6) = - X ×Y log (k λ (x, y)) dπ(x, y) + X ×Y log dπ dµ ⊗ ν (x, y) dπ(x, y) (3.2.7) = 1 λ X ×Y x -y 2 dπ(x, y) + λ KL(π|µ ⊗ ν) . (3.2.8)
Noticing the primal functional associated to the regularized optimal transport problem allows to conclude the proof.

As in the regularized case, there exists a dual formulation associated to (3.2.2) that turns problem (3.2.2) into a maximization problem. The regularized dual formulation can be stated for distributions with arbitrary supports X and Y. However, based on our current knowledge, it is not clear that we can exhibit optimal potentials (ϕ, ψ) without imposing compacity of the supports. Therefore, we prefer to play safe and assume from now on that all the distributions considered have compact supports. Note that this assumption implies that the probability distributions have finite second order moments. Moreover, the compacity assumption allows to substitute the space L 1 by L ∞ in the dual formulations.

Theorem 3.2.1 (Regularized dual). [START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF][Proposition 2.1] Set λ > 0. For µ ∈ P(X ) and ν ∈ P(Y) two probability distributions with compact supports, strong duality holds for the regularized primal problem (3.2.2) in the sense that

T λ (µ, ν) = max ϕ∈L ∞ (X ), ψ∈L ∞ (Y) X ϕdµ + Y ψdν -λ X ×Y exp ϕ(x) + ψ(y) -x -y 2 λ dµ(x)dν(y) + λ (3.2.9)
where L ∞ (X ) denotes the space of essentially bounded functions quotiented by a.e. equality.

As in the classic OT problem (3.1.10), a solution (ϕ, ψ) of the dual problem (3.2.9) is called a pair of Kantorovich potentials. Besides, since X and Y are compact, and the cost c(x, y) = x-y 2 is continuous, it follows that the dual problem admits a solution (ϕ, ψ) ∈ C b (X ) × C b (X ). Moreover, when λ > 0, there exist solutions ϕ, ψ to the dual problem (3.2.9) which are uniquely defined almost everywhere, up to an additive constant. These solutions have a specific form as they write as regularized c-transforms. These regularized c-transforms are for instance defined in [Feydy et al., 2019b]. Set λ > 0. For ϕ ∈ L ∞ (X ), its regularized c-transform ϕ c,λ µ is defined by

∀y ∈ R d , ϕ c,λ µ (y) = -λ log X exp ϕ(x) -x -y 2 λ dµ(x) . (3.2.10)
This is a regularized version of the quantity (3.1.12) defined previously. To conciliate the standard notion of c-transform (3.1.12) and this new definition (3.2.10), one can interpret the quantity ϕ c,λ ν as a smooth minimum weighted by the the distribution µ. To carry on the presentation of regularized optimal transport and its links with the classic theory, we introduce the regularized semi-dual problem. As in the standard setting, that is when λ = 0, the c-transform ϕ c,λ µ allows to rewrite the dual problem as a maximization problem with respect to a single potential ϕ ∈ L ∞ (X ).

Proposition 3.2.1. Set λ > 0, and µ, ν two probability distribution with compact supports respectively denoted by X and Y. Then,

T λ (µ, ν) = sup ϕ∈L ∞ (X ) X ϕ(x)dµ(x) + Y ϕ c,λ µ (y)dν(y), (3.2.11)
where ϕ c,λ µ is the smooth c-transform that is defined in equation (3.2.10). We refer to this formulation as the regularized semi-dual problem. This is the regularized version of problem (3.1.14) in the standard theory. We now present a result that characterizes optimal potentials in the regularized case. Proposition 3.2.2. [Feydy et al., 2019b][Proposition 1] Set λ > 0. Assume that µ ∈ P(X ) and ν ∈ P(Y) have compact supports. First, there exists a pair of Kantorovich potentials (ϕ, ψ) with respect to T λ (µ, ν) that are regularized c-transform. In other terms, there exists a pair of optimal potentials (ϕ, ψ) that satisfies the following relations

∀x ∈ R d , ϕ(x) = ψ c,λ ν (x) and ∀y ∈ R d , ψ(y) = ϕ c,λ µ (y), where ϕ c,λ µ (resp. ψ c,λ
ν ) denotes the c-transform of ϕ (resp. ψ) as defined in (3.2.10). On the other hand, up to an additive term i.e. (ϕ + ρ, ψ -ρ) with ρ ∈ R, these potentials are respectively µ-almost everywhere and ν-almost everywhere the unique solution of the regularized dual problem (3.2.9). Moreover, at optimality we recover the semi-dual formulation

T λ (µ, ν) = X ϕ(x)dµ(x) + Y ψ(y)dν(y).
(3.2.12)

When λ > 0, the regularizing term also ensures unicity of the primal solution.

Theorem 3.2.2. [START_REF] Mallasto | Entropy-regularized 2-wasserstein distance between gaussian measures[END_REF][Theorem 1] Set λ > 0 and assume that µ and ν have compact supports. Then, there exists a unique solution π λ of the primal problem (3.2.2). Moreover, denoting by (ϕ, ψ) a couple of optimal potentials for the dual regularized problem (3.2.9) we have the relation

π λ = exp ϕ ⊕ ψ -c λ µ ⊗ ν, (3.2.13)
where c(x, y) = x -y 2 .

Remark 3.2.1. When λ > 0, even if we sometimes refer imprecisely to T λ as the regularized Wasserstein distance, the regularized optimal transport cost T λ does not define a distance anymore.

Remark 3.2.2. As in the classic theory, that is when λ = 0, the regularized transport cost seldom admits a closed form expression. To the best of our knowledge, if λ > 0, there is no closed from expression of T λ (µ, ν) if µ and ν are both distributions on R.

We point out the recent work [START_REF] Mallasto | Entropy-regularized 2-wasserstein distance between gaussian measures[END_REF][Corollary 1], where a closed form expression of the regularized transport cost between Gaussian distributions is established. To avoid complicate formulae, we assume the variance matrices of both distributions µ and ν to be proportional to the identity matrix. For µ = N (m µ , σ µ Id) and ν = N (m ν , σ ν Id) two Gaussian distributions on R d , the regularized transport cost is given by

T λ (µ, ν) = m µ -m ν 2 + d(σ µ + σ ν ) (3.2.14) + λd 2 1 + log 1 2 1 + 16 λ 2 σ µ σ ν 1/2 + 1 2 -1 + 16 λ 2 σ µ σ ν 1/2 .
The regularized optimal transport between Gaussian distributions can be computed in full generality but we consider the previous expression complicated enough.

To proceed our presentation of regularized optimal transport, we mention a rescaling argument from [START_REF] Mena | Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem[END_REF]. We consider this remark to be instructive on the delicate question (at the center of this work) of the choice of the regularizing parameter λ. Denoting by f λ the application f λ : x → λ -1/2 x, we have the relation

T λ (µ, ν) = λT 1 (f λ# µ, f λ# ν), (3.2.15)
with f λ# µ the push-forward measure of µ by f λ , and T 1 the regularized transport cost with regularization factor λ = 1. If µ has support B(0, 1) the unitary ball in R d , then f λ# µ has support B(0, 1/ √ λ). This example illustrates that the regularizing term shrinks the supports of the distributions compared. Assuming that T 1 preserves a reasonable discriminating power compared to T 0 , choosing λ too high deteriorates the discriminating power of the optimal transport cost. We refer to Lemma 6.B.1 in Chapter 6 for a proof of this relation. Moreover, given a pair of optimal potentials with respect T 1 (f λ,# µ, f λ,# ν) we can automatically compute a pair of optimal potentials with respect to T λ (µ, ν).

Discrete regularized optimal transport

As in the classic theory, the repeating occurrences of empirical distributions lead us toward the regularized discrete optimal transport. Set µ = n i=1 a i δ xi and ν = m j=1 b j δ yj two discrete distributions on R d . The regularized optimal transport problem between µ and ν reads

T λ (µ, ν) = min π∈Π(a,b) i,j C i,j π i,j C, π +λ i,j log π i,j a i b j π i,j KL(π|µ ⊗ ν) , (3.2.16)
where

C i,j = x i -y j 2 , and Π(a, b) = {π ∈ R n×m + | π1 m = a and π T 1 n = b} is the set of coupling matrices between the vectors a ∈ Σ n and b ∈ Σ m . In this case the dual problem associated to (3.2.16) reads T λ (µ, ν) = max ϕ∈R n ,ψ∈R m ϕ, a + ψ, b -λ e ϕ⊕ψ-C λ , a ⊗ b + λ, (3.2.17) Where (ϕ ⊕ ψ) i,j = ϕ i + ψ j and (a ⊗ b) i,j = a i b j .
Note that these two problems (3.2.16) and (3.2.17) are the discrete versions of problem (3.2.2) and problem (3.2.9) respectively.

Remark 3.2.3. We have observed some variations on the regularizing term added to Kantorovich problem (3.1.2). For instance, in the discrete setting, the entropy is sometimes preferred to the Kullback-Leibler divergence. For π = i,j π i,j δ (xi,yj ) a discrete probability distribution on X × Y, the entropy H is defined by

H(π) = i,j log(π i,j )π i,j . (3.2.18)
And in this case, the regularized optimal transport cost is given by the following optimization problem

T M λ (µ, ν) = min π∈Π(a,b) C, π + λ H(π). (3.2.19)
We point out that the entropic penalty (3.2.18) is equivalent to chose the Kullback-Leibler divergence with respect to the counting measure on {x 1 , . . . , x n } × {y 1 , . . . , y m } that we denote by M. Indeed, for π ∈ Π(a, b), the following relation holds true

KL(π|M) = i,j log(π i,j )π i,j H(π) . (3.2.20)
Several questions arise from this remark 3.2.3. Can we choose other reference measures than µ ⊗ ν or the counting measure M in the Kullback-Leibler divergence? What is the impact of the reference measure on the transport problem? Can we choose other reference measures than the product measure µ ⊗ ν in the continuous setting? These questions have been addressed in [START_REF] Marino | An optimal transport approach for the schrödinger bridge problem and convergence of sinkhorn algorithm[END_REF], and their study is broad enough for our questions. Some elements of answer are given by the following Lemma.

Lemma 3.2.2. [START_REF] Marino | An optimal transport approach for the schrödinger bridge problem and convergence of sinkhorn algorithm[END_REF][Lemma 1.5] Set µ ∈ P(X ) and ν ∈ P(Y) two probability distributions with compact supports. Set m 1 and m 2 two measures respectively defined on X and Y such that µ is absolutely continuous with respect to m 1 and ν absolutely continuous with respect to m 2 . Then, one can define the regularized transport cost with penalty term KL(•|m 1 ⊗ m 2 ) as follows

T m1⊗m2 λ (µ, ν) := min π∈Π(µ,ν) X ×Y x -y 2 dπ(x, y) + λ KL(π|m 1 ⊗ m 2 ).
(3.2.21)

With notation (3.2.21) the regularized optimal transport introduced previously in (3.2.2) reads T µ⊗ν λ (µ, ν). We then have the following relation between the two regularized optimal transport T µ⊗ν λ (µ, ν) and T m1⊗m2 λ (µ, ν).

T m1⊗m2 λ (µ, ν) = T µ⊗ν λ (µ, ν) + λ KL(µ|m 1 ) + λ KL(ν|m 2 ). (3.2.22)
This relation (3.2.22) will allow us to exploit results establish for T µ⊗ν λ (µ, ν) on other regularized transport cost T m1⊗m2 λ (µ, ν). We mention that the entropy H, as defined in equation (3.2.18), was the regularization term chosen in the paper [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF][Equation 2] where regularized optimal transport was first introduced. The entropy was also favored in the monograph [START_REF] Peyré | Computational optimal transport[END_REF], as well as in the python optimal transport library [START_REF] Flamary | Pot: Python optimal transport[END_REF]. We followed this choice of regularizing the optimal transport cost with the entropy H as in equation (3.2.19) in Chapter 4. In Chapter 5, we studied an optimal transport problem that involves a discrete probability distribution µ and a target probability distribution ν which is absolutely continuous with respect to the Lebesgue measure. In this Chapter 5, denoting by M the counting measure on {x 1 , . . . , x n } the support of µ and Leb the Lebesgue measure on Y the support of µ, the regularizing term was KL(•|M ⊗ Leb). Thus, the regularized optimal transport problem in Chapter 5 reads

T M⊗Leb λ (µ, ν) = min π∈Π(µ,ν) X ×Y x -y 2 dπ(x, y) + λ KL(π|M ⊗ Leb). (3.2.23)
The choice of this penalty KL(π|M⊗Leb) allowed to remove some computational difficulties while allowing to compare a discrete probability distribution µ to a continuous one denoted by ν. We also mention that the differences between regularization terms impact the dual formulation (and thus, the definition of the c-transform) of the regularized optimal transport cost. We detail in part 9.3 of the Appendix some differences between the regularizing terms H and KL(•|µ ⊗ ν) in the discrete setting.

The choice of the reference measures in the Kullback-Leibler divergence may seem arbitrary. However, defining regularized problem (3.2.21) or (3.2.23) requires additional assumptions on the distributions µ and ν. On the contrary, as soon as µ and ν have finite second order moments, there exists π ∈ Π(µ, ν) such that KL(π|µ⊗ν) is finite. Hence, the reference measure µ⊗ν allows to move between the discrete and continuous setting naturally. Note that in statistics there are back and forths between possibly continuous distributions and their empirical versions (which are discrete). Therefore, in works with statistical flavors, the Kullback-Leibler divergence KL(π|µ ⊗ ν) is the favored choice to regularize Kantorovich problem. For example in [START_REF] Genevay | Sample complexity of sinkhorn divergences[END_REF], in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF], or in [START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF] the Kullback-Leibler divergence KL(π|µ ⊗ ν) is preferred. We also made the choice of the Kullback-Leibler divergence in the parts of this document that are closer to statistical issues. It corresponds to Chapter 6 and Chapter 7. This preliminary chapter introduces the optimal transport theory with statistical motivations in mind. The reader can therefore consider that we always refer to the regularized problem (3.2.2) (that is when regularizing the transport problem with KL(π|µ ⊗ ν)) in the present preliminary chapter.

An alternative transport problem

We now introduce an alternative dual formulation of regularized OT that is specific to the quadratic cost. This alternative dual problem will prove useful to derive some of the convergence rates given in Chapter 6 and in Chapter 7. The relation between those dual problems has already been disclosed for un-regularized OT for example in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF]), and our input is to extend it to the regularized case. Let λ ≥ 0 and µ ∈ P(X ) and ν ∈ P(Y) two probability distributions with compact supports. By expanding the squared Euclidean cost, we have for any π ∈ Π(µ, ν),

X ×Y x -y 2 dπ(x, y) + λKL(π|µ ⊗ ν) = X x 2 dµ(x) + Y y 2 dν(y) (3.2.24) -2 X ×Y
x, y dπ(x, y) + λKL(π|µ ⊗ ν).

(3.2.25)

The above decomposition leads us to consider the new regularized transport problem

T s λ (µ, ν) := min π∈Π(µ,ν) X ×Y s(x, y)dπ(x, y) + λKL(π|µ ⊗ ν), (3.2.26)
with s(x, y) = -2 x, y . First, we remark that the standard transport cost (regularized or not) T λ (µ, ν) and the alternative regularized Wasserstein distance T s λ (µ, ν) are related through the relation

T λ (µ, ν) = X x 2 dµ(x) + Y y 2 dν(y) + T s λ (µ, ν). (3.2.27)
We point out that relations (3.2.26) and (3.2.27) hold true for λ ≥ 0. A dual formulation associated to this alternative transport problem (3.2.26) is given by the next proposition.

Proposition 3.2.3. Let λ ≥ 0, and assume that µ ∈ P(X ) and ν ∈ P(Y) have compact supports. Then, the dual problem associated to (3.2.26) writes as

T s λ (µ, ν) = sup ϕ∈L ∞ (X ) ψ∈L ∞ (Y) X ϕ(x)dµ(x)+ Y ψ(y)dν(y)- X ×Y m λ (ϕ(x)+ψ(y)+2 x, y )dµ(x)dν(y), (3.2.28)
where m λ is defined as follows

m λ (t) =    +∞1 {t 0} if λ = 0, λ(e t λ -1) if λ > 0.
(3.2.29)

Proof. The key argument is to remark that (3.2.26) is a regularized optimal transport problem with cost function s(x, y) = -2 x, y . Hence, as X and Y are assumed to be compact and s is continuous, it follows that strong duality holds (see e.g. [Genevay et al., 2016, Bercu and[START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF]) in the sense of equation (3.2.28).

Fort the cost function s(x, y) = -2 x, y , we can also define a s-transform and a semi-dual problem as follows. For the cost s(x, y) = -2 x, y and for ϕ ∈ L ∞ (X ) the s-transform is defined as

∀y ∈ R d , ϕ s,λ µ (y) := -λ log X exp ϕ(x)+2 x,y λ dµ(x) , for λ > 0,
-max x∈X (ϕ(x) + 2 x, y ) for λ = 0.

(3.2.30) By the above s-transform in the dual problem (3.2.28) we obtain the following semi-dual formulation

T s λ (µ, ν) = sup ϕ∈L ∞ (X ) X ϕ(x)dµ(x) + Y ϕ s,λ µ (y)dν(y). (3.2.31)
The study of the regularity properties of the s-transform is postponed to Chapter 6.

Remark 3.2.4. We mention that Problem (3.2.26) is equivalent to the maximization problem

max π∈Π(µ,ν) 2 X ×Y x, y dπ(x, y) -λ KL(π|µ ⊗ ν). (3.2.32)
In the classic case, that is when λ = 0, we can rewrite this last problem (3.2.32) as

max (X,Y ) X∼µ,Y ∼ν E [ X, Y ] . (3.2.33)
With this formulation it appears as previously mentioned in [START_REF] Villani | Optimal transport: old and new[END_REF][Particular case 5.17], that with the squared euclidean cost c(x, y) = x -y 2 , the classic optimal transport problem rephrases as maximizing the correlation between µ and ν.

We end this section with the introduction of an other regularized optimal transport loss function. This loss function is often referred to as the Sinkhorn divergence in the literature, and we denote it by S λ (µ, ν). Definition 3.2.3 (Sinkhorn divergence). [Genevay et al., 2018, Theorem 1] For λ > 0, and µ ∈ P 2 (X ) and ν ∈ P 2 (Y), the Sinkhorn divergence between µ and ν is defined by

S λ (µ, ν) := T λ (µ, ν) - 1 2 (T λ (µ, µ) + T λ (ν, ν)) . (3.2.34)
Since we only consider the quadratic cost c(x, y) = x -y 2 , we will be able to use important properties of the Sinkhorn divergence S λ established in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF] in order to derive our results on the convergence of Wasserstein estimators in Chapter 6 and Chapter 7.

The quantity S λ (µ, ν) was introduced to remove the bias induced by the regularizing term in T λ (µ, ν). We sometimes refer to S λ (µ, ν) as the debiased version of the standard regularized optimal transport cost T λ (µ, ν)

Computing regularized optimal transport

In this section, we present two algorithms that we used to compute the regularized Wasserstein distance T λ (µ, ν). Some methods developed in [Genevay et al., 2016][Section 5] or in [START_REF] Mensch | Online sinkhorn: Optimal transport distances from sample streams[END_REF] tackle the problem of comparing two continuous distributions with regularized optimal transport. We prefer to restrict this presentation to the (easier) case where at least one of the two distributions is discrete.

Computing regularized optimal transport with Sinkhorn algorithm

Since the introduction of regularized optimal transport in [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF], Sinkhorn algorithm is often a first choice to compute regularized optimal transport costs. This algorithm can be applied only in the case both µ = n i=1 a i δ xi and ν = m j=1 b j δ yj are discrete measures. Due to its popularity, there has been some variations around the original Sinkhorn algorithm to improve it, for instance in [START_REF] Thibault | Overrelaxed sinkhorn-knopp algorithm for regularized optimal transport[END_REF][START_REF] Altschuler | Massively scalable sinkhorn distances via the nyström method[END_REF]. We present what we think to be the original version of Sinkhorn algorithm for regularized optimal transport. Starting from ψ (0) = 0 m ∈ R m , the Sinkhorn th iteration is defined by the following update of the dual variables.

ϕ ( ) i = -λ log m j=1 exp ψ ( -1) j -xi-yj 2 λ b j ψ ( ) j = -λ log n i=1 exp ϕ ( ) i -xi-yj 2 λ a i . (3.3.1)
With formulation (3.3.1), Sinkhorn algorithm can be described as the computation of a sequence of c-transforms. Then, one can compute the approximation of the regularized OT cost returned by the Sinkhorn algorithm after iterations. This approximation is denoted by T ( )

λ (µ, ν) and equals T ( ) λ (µ, ν) := n i=1 a i ϕ ( ) i + m j=1 b j ψ ( ) j , (3.3.2)
where the variables ϕ ( ) and ψ ( ) are the dual variables returned after iterations of the Sinkhorn algorithm.

Stochastic algorithm for regularized optimal transport

In this section, we present an algorithm that relies on a stochastic optimization method to solve the optimal transport problem. Our main sources for this presentation are the works [START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF] and [START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF]. This approach is more general than the classic Sinkhorn algorithm as it requires only one of the distributions to be discrete, we refer to this situation as the semi-discrete framework. For concision, we only present the case λ > 0, but a similar strategy can be applied for the standard optimal transport problem. The keystone of this approach is to notice that the semi dual problem (3.1.14) can be rephrased as an expectation maximization problem Proposition 3.3.1. Set λ > 0, assume the source distribution µ = n i=1 a i δ xi to be discrete, and that ν ∈ P(Y) is an arbitrary probability measure with compact support Y. Then,

T λ (µ, ν) = max ϕ∈R n E Y ∼ν [g λ,µ (Y, ϕ)], (3.3.3)
where Y is a random variable with distribution ν, and g λ,µ is defined as:

g λ,µ (y, ϕ) = n i=1 ϕ i a i + ϕ c,λ µ (y), (3.3.4) where ϕ c,λ µ (y) = -λ log n i=1 exp ϕi-xi-yj 2 λ a i is the c-transform of ϕ.
One can check that formulation (3.3.3) matches the semi dual formulation (3.2.11) when µ is discrete. This expectation formulation (3.3.3) and the fact that for all y ∈ R d , the function g λ,µ (y, .) is concave open the door to stochastic optimization techniques. Indeed, it has led our predecessors to estimate an optimal vector ϕ * by the Robbins-Monro algorithm introduced in [START_REF] Robbins | A stochastic approximation method[END_REF]. This algorithm is defined by the following iterative procedure. For ≥ 0,

ϕ +1 = ϕ + γ +1 ∇ ϕ g λ,µ (Y +1 , ϕ ), (3.3.5)
where the initial value ϕ 0 is an arbitrary vector that belongs to R n , Y 1 , ..., Y +1 is an independent and identically distributed (i.i.d.) sequence of random variables with distribution ν, and (γ ) ≥0 is a positive sequence of real numbers decreasing toward zero satisfying

∞ =1 γ = +∞ and ∞ =1 γ 2 < +∞. (3.3.6)
It follows from Proposition 3.2.2 that the maximizer ϕ * of (3.3.3) is unique up to a scalar translation of the form ϕ * -t1 n for any t ∈ R. We shall denote by ϕ * the unique maximizer of (3.3.3) satisfying ϕ * , 1 n = 0 which means that ϕ * belongs to 1 n ⊥ where 1 n is the one-dimensional subspace of R n spanned by 1 n . As shown in [START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF], if ϕ 0 belongs to 1 n ⊥ , the iterates of Robbins-Monro algorithm also belong to 1 n ⊥ and one obtains a consistent estimator of ϕ * . To approximate the regularized Wasserstein distance T λ (µ, ν), [START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF] proposed the recursive estimator

T N = 1 N N =1 g λ,µ (Y , ϕ -1 ). (3.3.7)
Beside broadening the scope of distributions compared to the semi-continuous setting, the stochastic approaches feature a very practical advantage: storing the cost matrix C where C i,j = x i -y j 2 is not required anymore. Neither the optimization procedure (3.3.5) nor the estimator (3.3.7) need the full cost matrix to be computed. This practical aspect will prove highly useful when comparing large data sets of flow cytometry measurements in Chapter 4. Without getting into details, we mention some statistical results that are now established regarding stochastic algorithm for regularized optimal transport. Theorem 3.3.1. [START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF]

[Theorem 3.1] The sequence of iterates ( ϕ ) ≥0 defined by equation (3.3.5) is such that lim →+∞ ϕ = ϕ * ν-almost surely. (3.3.8)
We also have some convergence guarantees for the recursive estimator T N defined in equation (3.3.7).

Theorem 3.3.2. [Bercu and Bigot, 2021][Theorem 3.5] Assume that for all x ∈ X , Y x -y 8 dν(y) < +∞. Denoting by T N the estimator of the regularized optimal transport cost defined in equation (3.3.7) we have lim

N →+∞ T N = T λ (µ, ν) ν-almost surely. (3.3.9)
And if the step-size sequence (γ ) ≥0 is set to γ = γ/ c with c ∈ (1/2, 1) and γ > 0, then

√ N T N -T λ (µ, ν) → N (0, σ 2 λ (µ, ν)) in distribution, (3.3.10)
where the asymptotic variance

σ 2 λ (µ, ν) = E[g 2 λ,µ (Y, ϕ * )] -E[g λ,µ (Y, ϕ * )
] 2 can also be estimated. We now introduce some statistical notions that will be used in Chapters 6 and 7

Some statistical elements

This work is motivated by the biostatistical problem of inferring the proportions of different cell subpopulations within a biological sample. A probabilistic tool designed to model different sub-populations are the mixture models. In our context, each component of the mixture model corresponds to a cell subpopulation. In this section, and all along this document, we denote by

Σ K = θ ∈ R K + | K k=1 θ k = 1 the probability simplex.

Mixture models

Definition 3.4.1 (Mixture distribution). We say that a probability distribution µ is a mixture distribution

of K components µ 1 , . . . , µ K with weights ρ ∈ Σ K if µ = K k=1 ρ k µ k . (3.4.1)
Denoting by X the support of µ a mixture distribution defined as in equation (3.4.1), for every integrable function

f ∈ L 1 (X ), X f dµ = K k=1 ρ k X f dµ k .
Given an unknown probability distribution ν ∈ P 2 (Y), a key question in this work is to represent this distribution as a mixture of K components µ 1 , . . . , µ K . As briefly mentioned in the introduction, the choice of the representation µ(θ * ) , i.e. of the weights θ * is governed by the optimal transport cost T 0 . To ensure that the optimal transport cost is well defined, we assume that all the components µ 1 , . . . , µ K have compact supports. Then, from a mixture model

M = {µ(θ) = K k=1 θ k µ k | θ ∈ Σ K },
looking for the best representation µ(θ * ) of ν (with respect to T 0 ) inside this model M boils down to define θ * as follows:

θ * := arg min

θ∈Σ K T 0 (µ(θ), ν). (3.4.2)
Thus, µ(θ * ) is the re-weighting of µ that is the closest to ν in the sense of T 0 . In Chapter 7, we provide some assumptions that guarantee that θ * is well defined. We work in a context where neither the distribution µ(θ) nor ν are tractable, and so is not θ * . We study several estimators θn of θ * . Given X 1 , . . . , X n and Y 1 , . . . , Y n two i. i. d. sequences respectively sampled from µ and ν, the strategies we follow always formulate as defining an estimator θn of θ * by θn = min

θ∈Σ K T n (θ), (3.4.3)
where T n (θ) is an estimator of T 0 (µ(θ), ν). For instance, we study in Chapter 7 the behavior of θ0 := arg min θ∈Σ K T 0 (μ n (θ), νn ). In this example the estimator of T 0 (µ(θ), ν) is the plug-in estimator T 0 (μ n (θ), νn ).
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Due to our procedures of estimation, analyzing estimate θn of θ * has led us to the study of estimators T n of the optimal transport cost T 0 (µ, ν). The study of regularized estimators such as T λ (μ n , νn ) of the transport cost is addressed in Chapter 6. In this Chapter 6, studying estimators of the transport T 0 (µ, ν) based on the dual formulation (3.1.8) or (3.2.9) has led us to the study of empirical processes.

Empirical processes and their suprema

We now introduce a bit of vocabulary on empirical processes that we will use in Chapters 6 and 7. Our principal reference is [START_REF] Van Handel | Probability in High Dimension[END_REF] for this section. We begin with a very general definition.

Definition 3.4.2 (Random process). A random process is a collection of random variable (X t ) t∈T on the same probability space which are indexed by elements t of some set T .

We narrow our study to a specific class of random processes that is the class of empirical processes. We take this opportunity to introduce the empirical distribution. Even if we have already manipulated empirical distributions in this document we give its definition below.

Definition 3.4.3 (Empirical distribution). For µ ∈ P 2 (X ), and n observations X 1 , . . . , X n independent and identically distributed (i.i.d.) from µ, we denote by μn and call empirical distribution of µ built from the samples X 1 , . . . , X n , the random distribution defined by

μn := 1 n n i=1 δ Xi . (3.4.4)
Then, for every continuous function f ∈ C (X ), we can define the random variable

X f dμ n = 1 n n i=1 f (X i ).
We now define the specific class of empirical processes we will study. Definition 3.4.4 (Empirical process). Let F be a class of µ-integrable functions and X 1 , . . . , X n a sequence of independent and identically distributed random variables, where each X i is sampled from µ. We call empirical process indexed by F the random process (X f ) f ∈F defined by

X f := X f (x)d(μ n -dµ)(x) = 1 n n i=1 f (X i ) - X f (x)dµ(x). (3.4.5)
where, μn is the empirical distribution of µ built from X 1 , . . . , X n .

In Chapters 6 and 7, we upper bound some quantities of interest by suprema of empirical processes. We thus applied techniques to control the supremum of a random process. In general terms we faced the following problem. Given a real valued random process (X t ) t∈T indexed by T , we sought a control over the random variable sup t∈T X t .

(3.4.6)

We quote van Handel [2016][Section 5] to explain a possible strategy to control this kind of random variable.

'If (X t ) t∈T is "sufficiently continuous," the magnitude of sup t∈T X t is controlled by the "complexity" of the index set T .'

A possibility to measure the complexity of the index set T is to rely on the notions of ε-net and covering number.

Definition 3.4.5 (ε-net). Let (T, d) be a metric space and consider K ⊂ T and ε > 0

. A subset N ⊂ K is an ε-net of K if ∀x ∈ K, ∃x 0 ∈ N s.t. d(x, x 0 ) ≤ ε. (3.4.7)
The next definition follows.

Definition 3.4.6 (Covering number). For ε > 0 and K ⊂ T , we call ε-covering number of K and denote by N (K, d, ε) the smallest possible cardinal of an ε-net of K, i.e.

N (K, d, ε) = inf{|N | : N is a ε-net of K}. (3.4.8)
The next definition gives a continuity property that can be used to control the supremum of a random process.

Definition 3.4.7 (Subgaussian process). A random process

(X t ) t∈T with (T, d) a metric space, is called subgaussian if for each t ∈ T , E[X t ] = 0 and ∀η ∈ R, ∀t, s ∈ T, E e η(Xt-Xs) ≤ e η 2 d(t,s) 2 2 . (3.4.9)
Alternatively stated, a zero mean random process (X t ) t∈T is subgaussian if for all t, s, the increment X t -X s is a subgaussian random variable with variance proxy d(t, s) 2 . Indeed, a subgaussian random variable is defined as follows.

Definition 3.4.8 (Subgaussian random variable). A random variable is σ 2 -subgaussian if for all η ∈ R, E e η(X-E[X]) ≤ e η 2 σ 2 2 . (3.4.10)
The constant σ 2 is called the variance proxy.

In the sequel, we call a random variable ξ a Rademacher variable if P(ξ = 1) = P(ξ = -1) = 1 2 . Random variables with such a distribution are tools to reveal the subgaussian behavior of a random process.

Theorem 3.4.1. [START_REF] Wainwright | High-dimensional statistics: A non-asymptotic viewpoint[END_REF][Theorem 4.11 applied with the identity function] Let F be a class of real valued ν-integrable functions defined on the support Y of the probability distribution ν. Let Y 1 , . . . , Y n be i.i.d. random variables sampled from ν. Then, we have

E sup f ∈F 1 n n i=1 f (Y i ) -E [f (Y )] ≤ 2E sup f ∈F 1 n n i=1 ξ i f (Y i ) , (3.4.11)
where ξ 1 , . . . , ξ n are i.i.d Rademacher variables independent of Y 1 , . . . , Y n .

A useful inequality to establish the subgaussian behavior of a random variable is Azuma-Hoeffding inequality.

Theorem 3.4.2. [Azuma-Hoeffding inequality][van Handel, 2016][Corollary 3.9] Let (F k ) 1≤k≤n be any filtration and let ∆ k , A k , B k three real random variables that satisfy the following properties for all k ∈ {1, . . . , n},

• The variable ∆ k is F k -measurable and E[∆ k |F k-1 ] = 0. • The variables A k , B k are F k-1 measurable and A k ≤ ∆ k ≤ B k almost surely. Then, n k=1 ∆ k is a subgaussian random variable with variance proxy 1 4 n k=1 (A k -B k ) 2 .
With the previous notions now introduced, we can state the theorem that we use in Chapter 6 to control a supremum of a random process. We refer to this result as Dudley's entropy integral inequality or simply entropy integral.

Theorem 3.4.3 (Entropy integral). [van Handel, 2016][Corollary 5.25] Let (X t ) t∈T be a separable subgaussian process on a metric space (T, d), then the following inequality holds true.

E sup t∈T X t ≤ 12 +∞ 0 log N (T, d, ε)dε, (3.4.12)
where N (T, d, ε) denotes the ε-covering number of T .

Note that the random processes we study are empirical processes (X f ) f ∈F as defined in 3.4.4. In this specific case, the index set T is a class of functions denoted by F. A critical issue to control sup f ∈F X f is to show that one can substitute F by a class of functions F with small covering number N (F , d, ε). Then, a small covering number enables an efficient use of Theorem 3.4.3.

The tools introduced in this section are designed to derive non-asymptotic rates of convergence for estimator θ of the optimal re-weighting θ * that we defined in equation (3.4.2). An intermediate step toward the estimation of θ * is the estimation of the optimal transport cost T 0 (µ, ν). For this purpose, in Chapter 6 we rely on regularized estimators T λ (μ n , νn ) and establish non asymptotic rate of convergence toward T 0 (µ, ν). We now review state-of-the-art results regarding the estimation of the optimal transport cost.

3.4.3 Estimating the optimal transport cost T 0 (µ, ν)

Given n observations X 1 , . . . , X n ∼ µ i.i.d. from µ and n observations Y 1 , . . . , Y n ∼ ν i.i.d from ν, a natural estimator of the optimal transport cost T 0 (µ, ν) is the plug-in estimator that simply consists in substituting µ and ν by their empirical versions. To assess the rate of convergence of an estimator T n toward T 0 (µ, ν), we rely on the sample complexity. For an estimator T n of the optimal transport cost T 0 (µ, ν) built from n i.i.d observations from µ and n i.i.d. observations from ν, the sample complexity is the quantity

E |T 0 (µ, ν) -T n | . (3.4.14)
Under appropriate assumptions, the sample complexity of the plug-in estimator T 0 (μ n , νn ) is now understood. For example, we have the following result that we state in a high dimension scenario.

Theorem 3.4.4. [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF][Theorem 2] Assume that µ, ν ∈ P 2 (X ) are supported on a set of diameter 1. Also assume that d > 4. Then, we have (3.4.15) where hides a constant that depends only on the dimension d.

E [|T 0 (µ, ν) -T 0 (μ n , νn )|] n -2/d ,
This last Theorem 3.4.4 suggests that the rate of convergence of this estimator deteriorates in high dimension. And thus, one could hope to do better with an alternative estimator. However, very recent results shows that without additional assumptions on the distributions µ and ν this rate of convergence will not be significantly improved. 

E µ,ν |T 0 (µ, ν) -T n | ≥ C(n log(n)) -2/d , (3.4.16)
Where the infimum is over all Borel-measurable function of X 1 , . . . , X n and Y 1 , . . . , Y n .

To derive a faster rate of convergence than n -2/d , in [Niles-Weed and Rigollet, 2022], the authors assume that the probability distributions lie in a subspace with lower dimension than the ambient space R d . In this same paper, the authors acknowledge the difficulty to compute in practice an estimator that reaches the improved theoretical rate of convergence. We end this discussion on the estimation of the transport cost between µ and ν in high dimension by an informal argument. Let µ be absolutely continuous with respect to the Lebesgue measure. In this case, we can apply Brenier's theorem (3.1.4). Denoting by T the optimal map between µ and ν, and by f µ the probability density function of µ, the optimal transports cost between µ and ν reads

T 0 (µ, ν) = X x -T (x) 2 f µ (x)dx.
(3.4.17)

This example shows that without additional assumptions on µ and ν, the optimal transport cost is controlled by two functions which are non-parametric objects. Rates of convergence that worsen in high dimension spaces are typical of non-parametric estimation scenarios. This abstract example may help to understand the slow rates of convergence when estimating T 0 (µ, ν) in high dimension.

Chapter 4

Domain adaptation with optimal transport for interpreting flow cytometry data

From a biological sample composed of hundreds of thousands of cells, flow cytometry allows by now to monitor more that 30 parameters on each cell. This technique is therefore routinely used in a wide range of fields to perform analysis at the cell level. We study the problem of estimating sub-populations relative proportions in a biological sample described by flow cytometry measurements. For medical applications like immunology this problem is of interest. We introduce a new supervised approach named CytOpT to address this question. We rely on regularized optimal transport and stochastic algorithms to directly estimate the proportions of the sub-populations in a biological sample. 

Introduction

Flow cytometry is a high-throughput biotechnology used to characterize a large amount of cells from a biological sample. Flow cytometry is paramount to many biological and immunological research with applications, for instance, in the monitoring of the immune system of HIV patients by counting the number of CD4 cells.

In this chapter, we introduce a new algorithm, referred to as CytOpT, using regularized optimal transport to directly estimate the different cell population proportions from a biological sample characterized with flow cytometry measurements. We rely on the regularized Wasserstein metric to compare cytometry measurements from different samples, thus accounting for possible mis-alignment of a given cell population across samples (due to technical variability from the technology of measurements). In this work, we rely on a supervised learning technique based on the Wasserstein metric that is used to estimate an optimal re-weighting of class proportions in a mixture model from a source distribution (with known segmentation into cell sub-populations) to fit a target distribution with unknown segmentation. Due to the high-dimensionality of flow cytometry data, we use stochastic algorithms to approximate the regularized Wasserstein metric to solve the optimization problem involved in the estimation of optimal weights representing the cell population proportions in the target distribution. Several flow cytometry data sets are used to illustrate the performances of CytOpT that are also compared to those of existing algorithms for automatic gating based on supervised learning.

From biomarkers to observations in R d with flow cytometry

The first step to characterize cells from a biological sample with flow cytometry is to stain those cells. Specifically, cells are stained with multiple fluorescently-conjugated monoclonal antibodies directed to the cellular markers of interest. Then, the cells flow one by one through the cytometer laser beam. The scattered light is characteristic to the biological markers of the cells [START_REF] Aghaeepour | Critical assessment of automated flow cytometry data analysis techniques[END_REF]. Thus, from a biological sample analysed by a flow cytometer, we get a data set X 1 , . . . , X n where each observation X i corresponds to a single cell crossing the laser beam. For an observation X i ∈ R d , the coordinate X (l) i corresponds to the light intensity emitted by the fluorescent antibody attached to the biological marker l. As mentioned previously, such a data set may also be considered as a discrete probability distribution 1 n n i=1 δ Xi with support in R d , that is the empirical distribution built from the observations X 1 , . . . , X n . This is the point of view taken in this Chapter to exploit the discriminatory power of optimal transport losses.

Analysis of flow cytometry data

The analysis of cytometry data is generally done manually, by drawing geometric shapes (referred to as "gates") around populations of interest in a sequence of two-dimensional data projections as displayed in Figure 2.1. Such manual analysis features several drawbacks: i) it is extremely time-consuming ; ii) manual gating lacks reproducibility across different operators [START_REF] Aghaeepour | Critical assessment of automated flow cytometry data analysis techniques[END_REF]. To overcome these shortcomings, several automated methods have been proposed [START_REF] Aghaeepour | Critical assessment of automated flow cytometry data analysis techniques[END_REF]. Those automated approaches aim at a clustering of the flow cytometry data to derive the proportions of the cell populations that are in the biological sample. Some methods follow an unsupervised approach. For instance, FlowMeans [START_REF] Aghaeepour | Rapid cell population identification in flow cytometry data[END_REF] is an automated method based on the K-means designed for flow cytometry data. We also mention Cytometree [START_REF] Commenges | cytometree: a binary tree algorithm for automatic gating in cytometry analysis[END_REF], an algorithm based on the construction of a binary tree. Methods which perform model based clustering have also been proposed, see e.g. [START_REF] Ge | flowpeaks: a fast unsupervised clustering for flow cytometry data via k-means and density peak finding[END_REF]Sealfon, 2012, Hejblum et al., 2019]. To improve the accuracy of the classification, supervised machine learning techniques have been applied to flow cytometry data analysis. Among those techniques, one may cite DeepCyTOF introduced in [START_REF] Li | Gating mass cytometry data by deep learning[END_REF] which is based on deep-learning algorithms to gate cytometry data. In [START_REF] Lux | flowLearn: fast and precise identification and quality checking of cell populations in flow cytometry[END_REF], the authors introduced flowlearn, a method that uses manually gated samples to predict gates on other samples. We also mention a new supervised approach named OptimalFlow developed by Optimalflow that relies on the Wasserstein distance to quantify discrepancies between cytometry data sets. In spite of numerous efforts to automate cytometry data analysis, manual gating remains the gold-standard for benchmarking. the fact that automated methods have not outdone manual gating can be explained, at least in part, by the significant variability of flow cytometry data. This variability is two fold; first, it is induced by biological heterogeneity across the samples analysed [START_REF] Hahne | Per-channel basis normalization methods for flow cytometry data[END_REF]. For instance, it is likely that subtypes proportions within the biological sample of a healthy patient will differ from the subtypes proportions within the biological sample of a sick patient. In addition to this variability of the biological phenomena of interest, technical variability appears during the process of flow cytometry analysis. For instance, differences in the staining procedure, in the data acquisition settings or cytometers performances are very likely to happen and to lead to undesirable variability between flow cytometry data [START_REF] Maecker | A model for harmonizing flow cytometry in clinical trials[END_REF].

Going straight to the class proportions

To tackle the challenge of Flow Cytometry data analysis, this work uses the regularized optimal transport metric and we develop a new supervised method to estimate the relative proportions of the different cell sub-types in a biological sample analyzed by a cytometer. Our approach aims at finding an optimal reweighting of class proportions in a mixture model between a source data set (with known segmentation into cell sub-populations) to fit a target data set with unknown segmentation. This estimation of the class proportions is done without any preliminary clustering of the target cytometry data. To the best of our knowledge, all the previous automated methods are based on the classification of the cells of the biological sample to deduce a class proportions estimation. However, from a clinical perspective, the relevant information is often the class proportions [START_REF] Maecker | A model for harmonizing flow cytometry in clinical trials[END_REF], while the clustering of individual cells is simply a means to an end to get there. Our method can nonetheless be extended in order to obtain a clustering of cytometry data.

We believe that going straight to the estimation of class proportions is an original approach to tackle the issue of flow cytometry data analysis. Hence, the result of our algorithm is not a clustering of the cells analyzed by the cytometer but a vector θ = ( θ1 , . . . , θK ), where each coefficient θk amounts to estimation of the percentage of the k th population cell among all the cells analyzed in the target sample. To do so, we rely on tools derived from optimal transport and regularized Wasserstein distance between probability measures.

In this work, we propose to estimate the proportions θ * = (θ * 1 , . . . , θ * K ) of sub-populations cell in a target data set (whose gating is unknown) by minimizing the regularized Wasserstein distance between the target distribution, and a re-weighted source distribution (from a source data set whose gating into K sub-populations cell of interest is known). Since the Wasserstein distance is able to capture the underlying geometry of the measurements, it has the ability to make meaningful comparisons between distributions whose supports do not overlap and to quantify potential spatial shifts. Our work demonstrates the benefits of using Wasserstein distance for the analysis of the cytometry data as it allows to handle the technical variability induced by different settings of measurements.

An illustrative data set

As an illustrative example, we shall analyze in this chapter the flow cytometry data from the T-cell panel of the Human Immunology Project Consortium (HIPC) -publicly available on ImmuneSpace [START_REF] Brusic | Computational resources for high-dimensional immune analysis from the human immunology project consortium[END_REF]. Seven laboratories stained three replicates (denoted A, B, and C) of three cryo-preserved biological samples denoted patient 1, 2, and 3 (e.g. cytometry measurements from the Stanford laboratory for replicate C from patient 1 will be denoted as the "Stanford1C" data set). After performing cytometry measurements in each center, the resulting FCS files were manually gated centrally for quantifying 10 cell populations: CD4 Effector (CD4 E), CD4 Naive (CD4 N), CD4 Central memory (CD4 CM), CD4

Effector memory (CD4 EM), CD4 Activated (CD4 A), CD8 Effector (CD8 E), CD8 Naive (CD8 N), CD8 Central memory (CD8 CM), CD8 Effector memory (CD8 EM) and CD8 Activated (CD8 A). Hence, for these data sets, a manual clustering is at our disposal to evaluate the performances of automatic gating methods. The flow cytometry data sets built from these 10 sub populations have a size that range from 15 554 observations for the smallest data set to 112 318 observations for the largest data set. For each cell, seven biological markers have been measured; it leads to cytometry observations X i that belong to R d with d = 7. A 3D projection using three markers is displayed in Figure 4.1 for the "Stanford1A" data set with the corresponding manual gating into 10 clusters. Additionally, we also benchmarked our method on the flow cytometry data sets used in [START_REF] Del Barrio | optimalflow: optimal transport approach to flow cytometry gating and population matching[END_REF]. Left: Manual clustering of the cytometry data. Existing automated methods target a clustering in order to derive the class proportions. Right: Class proportion derived from the manual gating. Our method CytOpT aims at going straight to the estimation of class proportions without clustering the cytometry data.
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Organization of the chapter

In Section 4.2 we present the regularized Wasserstein distance and the stochastic procedure that we leverage to compute it. Section 4.3 details our estimation method named CytOpT that yields an estimate of the class proportions in an unsegmented data set. Section 4.4 is devoted to a thorough simulation study of CytOpT where it is compared to classic classification methods and its robustness is assessed. Finally, in Section 4.5 we demonstrate the performance of CytOpT on the T-cell panel proposed by the Human Immunology Project Consortium (HIPC) described previously, and we compare the performance of CytOpT, with existing methods.

Mathematical modeling

Optimal transport allows the definition of a metric between two probability distributions µ and ν supported on R d . This metric is informally defined as the lowest cost to move the mass from one probability measure, the source measure µ, onto the other, the target measure ν. As optimal transport handles probability distributions, we must describe a cytometry data set X 1 , . . . , X n where each X i belongs to R d as a probability distribution in R d . A natural choice to move from observations to probability measure is to use the empirical measure. Therefore, for a data set X 1 , . . . , X n , we consider its empirical measure defined as 1 n n i=1 δ Xi .

Wasserstein distance and its regularized counterpart

In this work, we shall consider optimal transport between discrete measures on R d , and we denote by µ = n i=1 a i δ xi and ν = m j=1 b j δ yj two such measures. Note that a i , the probability associated to the point x i , is not necessarily equal to 1/n as a re-weighting of the source measure will be considered. The optimal transport problem is to find a plan that moves the probability measure µ to the probability measure ν with a minimum cost. The transport cost is encoded by a function c : R d × R d → R + where c(x, y) represents the cost to move one unit of mass from x to y. In the discrete setting the transport cost is encoded by a matrix C ∈ R n×m where C i,j = c(x i , y j ). Once set, the cost matrix C ensures that the transport is carried out between a source distribution with support x 1 , . . . , x n and a target distribution with support y 1 , . . . , y m . Then, to ensure the conservation of mass, i.e. the transport of a distribution with weights a 1 , . . . , a n toward a distribution with weights b 1 , . . . , b m , we introduce the set Π(a, b) = {π ∈ R n×m + : π1 m = a and π T 1 n = b} of all the coupling matrices between a and b. Thus, minimizing the transport cost from µ to ν boils down to the following optimization problem:

T 0 (µ, ν) = inf π∈Π(a,b) n i=1 m j=1 C i,j π i,j = inf π∈Π(a,b) C, π (4.2.1)
All along this work the coefficient C i,j of the cost matrix will be defined as the squared Euclidean distance between x i and y j , i.e. C i,j = x i -y j 2 , and we use the notation T 0 (µ, ν) = W 2 2 (µ, ν). In spite of appealing theoretical properties (see e.g. [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]), Wasserstein metrics drag a computational burden. Indeed, the cost to evaluate the Wasserstein distance between two discrete probability distributions with support of equal size n is generally of order O(n 3 log(n)) [START_REF] Peyré | Computational optimal transport[END_REF]. To allow the evaluation of the Wasserstein distance at a lower cost, [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] has proposed to add an entropic regularization term to the linear optimization problem (4.2.1) in order to reach an approximate solution with faster computations. This regularized optimal transport problem reads:

T λ (µ, ν) = inf π∈Π(a,b) C, π + λ H(π), (4.2.2)
where the entropy H : R n×m

+ → R is defined for π ∈ R n×m
+ by H(π) = i,j log(π i,j )π i,j , and λ > 0 is the regularization parameter. The entropic regularization of the Kantorovich problem (4.2.2) leads to an approximation of the Wasserstein distance which can be calculated in O(n 2 log(n)) operations if the two distributions have a support of size n [START_REF] Peyré | Computational optimal transport[END_REF]. In this work, the regularized Wasserstein distance is calculated with a statistical procedure based on the Robbins-Monro algorithm for stochastic optimization. This way to calculate the Wasserstein distance is investigated in [START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF] and [START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF]. The keystone of this approach is that the regularized Wasserstein problem can be written as the following stochastic optimization problem:

T λ (µ, ν) = max ϕ∈R n E Y ∼ν [h λ,µ (Y, ϕ)], (4.2.3)
where Y is a random variable with distribution ν, and h λ,µ is defined as:

h λ,µ (y, ϕ) = n i=1 ϕ i a i + ϕ c,ε µ (y), (4.2.4)
where for y j in the support of ν, ϕ c,λ µ (y

j ) = λ log(b j ) -log n i=1 exp ϕi-xi-yj 2 λ
is the ctransform of ϕ in the case the source distribution µ is discrete. This formulation of the regularized Wasserstein distance as the maximum of an expectation allows the application of stochastic optimization methods. We stress that the large number of observations in cytometry data sets makes those stochastic approaches particularly relevant. For a more detailed presentation of stochastic algorithms for optimal transport, we refer the reader to Section 3.3.2 of the preliminary chapter. Interestingly, from an optimal potential ϕ * ∈ R n for the semi-dual problem (4.2.3) one can recover the solution π λ of the primal problem (4.2.2) through the relation

(π λ ) i,j = exp ϕ i + ϕ c,λ µ (y j ) -x i -y j 2 λ . (4.2.5)

Statistical model

Let us consider X 1 , . . . , X n the cytometry measurements from a first biological sample that is referred to as the source sample or source observations. The distribution of the source sample is modeled by a mixture of K distributions: µ = K k=1 ρ k µ k , where each term of the mixture corresponds to the cytometry measurements of one type of cell. For instance, µ k represents the underlying distribution behind the cytometry measurements of the CD4 effector T cells that are in the biological sample. The weights ρ ∈ Σ K are coefficients lying in the probability simplex

Σ K = {θ ∈ R K + : K k=1 θ k = 1}
, and ρ k represents the proportion of one cell sub-type among all the cells found in the sample.

We also consider a second set of cytometry measurements Y 1 , . . . , Y m that is referred to as the target sample or target observations, and that corresponds to a second biological sample that may come from another patient or a cytometry analysis performed in a different laboratory. We assume that the underlying distribution of the the target observations is another mixture of K distributions:

ν = K k=1 θ * k ν k
, where θ * ∈ Σ K represents the unknown class proportions and ν k corresponds to the distribution of the k th cell population. Note that, in the framework of flow cytometry, we cannot make the assumption that ρ k = θ * k , and probably neither that µ k = ν k . Indeed, ρ could differ from θ * due to biological differences. For instance if the source sample comes from a healthy patient and the target sample comes from a sick patient, ρ may feature significant differences from θ * . Moreover, technical variability of cytometry measurements could induce differences (e.g. location shift) between each component µ k and ν k whereas these two distributions represent the same biological phenomenon. We assume that the biological variability of interest is mainly encapsulated into the weight vectors ρ and θ * . However, these potential differences between the distributions of two flow cytometry measurements make the development of supervised methods to infer the unknown proportions θ * in the target data from those of the source data a difficult task. In this work, we rely on the geometric properties of the Wasserstein distance to handle the differences between samples that are due to technical reasons or inter-variability between healthy and sick patients.

Class proportions estimation

We now detail a supervised algorithm that estimates the class proportions θ * in the target distribution. While state-of-the-art automated methods in cytometry data analysis attempt to classify the observations Y 1 , . . . , Y m , we go straight to the estimation of the class proportions in the unsegmented target data set. To do so, we borrow ideas from the domain adaptation technique proposed in [START_REF] Redko | Optimal transport for multi-source domain adaptation under target shift[END_REF] where it is proposed to re-weight the source observations by searching for weights minimizing the regularized Wasserstein distance between the re-weighted source measure and the target measure. Contrary to [START_REF] Redko | Optimal transport for multi-source domain adaptation under target shift[END_REF], we handle the regularized Wasserstein distance and the minimization problem by a stochastic approach. Indeed the large number of observations produced by flow cytometry makes stochastic techniques competitive to handle the high-dimensionality of such data sets.

A new estimator of the class proportions

We now specify the definition of the estimator of the class proportions in the target data set. For the target sample Y 1 , . . . , Y m , the segmentation into various cell sub-types is not available, hence we define the empirical target measure as νm = 1 m m j=1 δ Yj . From the source observations X 1 , . . . , X n , we define the empirical source measure as μn = 1 n n i=1 δ Xi . Then, the knowledge of the gating of the source data allows to re-write the measure μn as a mixture of probability measures where each component corresponds to a known sub-population of cells in the data

μn = K k=1 n k n i:Xi∈C k 1 n k δ Xi = K k=1 n k n μk , (4.3.1)
where

n k = #C k and μk = i:Xi∈C k 1 n k δ Xi .
Namely, the component μk is the empirical measure of the observations that belong to the sub-population C k (known class). Then, instead of only considering the true class proportions (n 1 /n, . . . , n K /n) in the source data set, we can re-weight the clusters C k in the empirical distribution as desired. Indeed, for a probability vector θ = (θ 1 , . . . , θ K ) ∈ Σ K we can define the measure μn (θ) that corresponds to the re-weighted measure μn such that for all k ∈ {1, . . . , K} the component μk amounts for θ k in the measure μn (θ). In mathematical terms, the measure μn (θ) is thus defined by:

μn (θ) = K k=1 θ k μk . (4.3.2)
Then, to derive the class proportions in the target data, we minimize the regularized Wasserstein distance (4.2.2) between the re-weighted source empirical distribution (4.3.2) and the target empirical distribution.

The main idea is that the source distribution will get closer to the target distribution as the class proportions in its re-weighted version get closer to the class proportions of the target distribution. Thus, we propose to estimate the weights θ * = (θ * 1 , . . . , θ * K ) ∈ Σ K of the underlying distribution ν behind the observations Y 1 , . . . , Y m of the unlabelled target data set by

θ ∈ arg min θ∈Σ K T λ (μ n (θ), νm ). (4.3.3)
The combination of the estimator θ and the algorithms described in Subsection 4.3.2 to solve the associated minimization problem (4.3.3) will be referred to as CytOpT.

A brief overview of the minimization procedure

The optimization problem (4.3.3) leading to the estimator θ of the class proportions does not have a solution in a closed form expression, and a numerical approximation is needed. We propose two methods to solve this optimization problem. In this section, we only give some insights of these two methods without focusing on the technical details. For a more thorough presentation, we refer the reader to Chapter 5. Our first strategy to tackle Problem (4.3.3) consists in using a descent-ascent algorithm where the inner loop yields a stochastic approximate of ∇ θ T λ (μ n (θ), νm ). For the second procedure, we borrowed ideas from [START_REF] Ballu | Stochastic optimization for regularized wasserstein estimators[END_REF]. In this second strategy, we add a regularizing term to Problem (4.3.3) that permits to swap the min and the max in order to rewrite this problem as a simple expectation maximization problem. Therefore, this regularized version of Problem (4.3.3) could be solved with a straightforward stochastic gradient ascent. From our numerical experiments we have found that the second strategy is ten times faster than the descent-ascent procedure. As in practice both procedures seem to provide close estimates, all the results reported where produced with the second strategy, referred to as the "min-max swapping" strategy. The minimization schemes used to solve the minimization problem that we study are discussed in Chapter 5.

Parameters chosen for the experimentation As mentioned previously, the minimization scheme used in the experiments is based on an additional regularizing term on the parameter space Σ K . This numerical scheme is further discussed in Section 5.4 of Chapter 5. This algorithm depends on several parameters. For the moment, we simply precise the values of the parameters. The regularizing term on the transport plan is set to λ = 5 × 10 -4 , the regularizing term on the space parameter is set to τ = 10 -4 , the number of iteration of the Robbins-Monro algorithm is set to N iter = 30000, and the step-size sequence (γ N ) N ≥0 is defined by γ N = 5N -0.99 .

Some computational considerations

The constant increase of the number of cellular markers used in cytometry analysis raises the question of the impact of such higher-dimensions, both for manual gating (dramatically increasing the resources necessary) and automated approaches (impacting the computational cost and efficiency). As mentioned earlier, Wasserstein metrics drag a computational burden. But regarding CytOpT, the increase in the number of markers does not extend the computational cost by much. Indeed, the dimension only impacts the initial computation of the distance matrix between the observations. Moreover, the random procedures allow a computational cost independent of the number of observations in the target data set. To be more specific, we study the evolution of the computational cost depending on the variables of interest that are; the number of markers measured d, the number of clusters K, and the number of observations n in the source and in the target m. For the descent ascent optimization strategy, which is a double loop algorithm, the computational cost is of order O(N out N in ndK 2 ) where N out denotes the number of iterations of the outer loop and N in the number of iterations of the inner loop. In the case where the second strategy is preferred, a single loop algorithm can be applied at a computational cost of order O(N iter mdK). Here, N iter denotes the number of iterations of the stochastic gradient algorithm.

Notice that in both cases, the random aspect of the optimization procedures provides a computational cost that is independent of the number of observations n in the target data set.

Extension of CytOpT to a soft assignment method

While our method aims at estimating the class proportions and not to classify the target observations, regularized optimal transport offers a natural soft assignment method which can be used to derive a soft classification of the target data set, as illustrated in Figure 4.8. Assuming that we have access to the optimal transport plan π λ with respect to the regularized problem (4.2.2), the coefficient (π λ ) i,j /b j can be interpreted as the probability that X i is assigned to Y j . Here, b j is the weight associated to the observation Y j . Thus, the probability γ

(k) j that Y j belongs to the class C k is γ (k) j = 1 bj n i=1 1 Xi∈C k (π λ ) i,j
By choosing the class with highest probability, we can derive a classification for the observation Y j . To compute an approximate π of π λ one can plug ϕ, the Robbins-Monro approximation of the optimal dual vector ϕ * , in formula (4.2.5) that links a dual potential to a solution of the primal problem. Thus, it is possible derive an automatic gating of the target data thanks to optimal transport. However, the transfer of the classification from the source data set toward the target data set requires to compute all the columns of the optimal transport plan. Therefore, obtaining a classification in the target data calls for additional calculations, while in clinical applications, the useful information is very often the relative proportions of the different cell sub-types. That is why this work focuses on the estimation of class proportions.

Measure of performance

To evaluate our approach on real flow cytometry data, the benchmark class proportions θ * = (θ * 1 , . . . , θ * K ) ∈ Σ K , will be defined thanks to the manual segmentation of the target observations. We recall that our algorithm does not make use of the segmentation of the target data set, and that it is only used to evaluate our method. In flow cytometry data analysis the F -measure is a popular tool to assess the performances of the clustering methods. As our method does not yield a clustering but an estimate θ of the class proportions θ * , we cannot rely on this measure. Indeed, CytOpT yields a probability vector θ ∈ Σ K that we wish to be the closest to the class proportions θ * ∈ Σ K of the target data set. Hence, a natural way to measure the discrepancy between θ and θ * , is the Kullback-Leilbler divergence. Thus, with an estimation θ = ( θ1 , . . . , θK ) and a benchmark θ * = (θ * 1 , . . . , θ * K ), to assess the quality of the estimator θ, we compute the Kullback-Leibler divergence KL defined as KL( θ|θ

* ) = K k=1 θk log θk θ * k .
We also relied on graphical diagnoses from Bland-Altman plots ( [START_REF] Bland | Statistical methods for assessing agreement between two methods of clinical measurement[END_REF]) to visually assess and compare the performance of CytOpT for class proportions estimation. Those diagnoses provide an overview of CytOpT behavior and performance on a collection of several cytometry data sets at once. For one target data set, a Bland-Altman plot compares the estimation θ = ( θ1 , . . . , θK ) with the benchmark θ * = (θ * 1 , . . . , θ * K ) by plotting the difference θ -θ * against the mean ( θ + θ * )/2. To simultaneously visualize the results from the analysis of two data sets, one just adds on to the graph the points defined by θ(2) -θ * (2) for the y-axis and ( θ(2) + θ * (2) )/2 for the x-axis (with θ(2) denoting the estimation on the second data set and θ * (2) the benchmark on that data set). This way, one can actually represent the results from the analysis of several data sets in a single plot. We also display on the Bland-Altman plots the mean of the difference with a solid horizontal line, and with dashed horizontal lines, ±1.96 times the standard deviation of the difference. As we aim for θ to be as close as possible to θ * , the closer to the x-axis the points are, the better the performance.

Simulation study

Comparison with classification methods when targeting the weights of a mixture

To evaluate the performance of our method we generate two data sets from two different mixtures of K = 10 components each. The first data set is drawn from a Gaussian mixture distribution in dimension d = 10 with a vector of proportions ρ ∈ Σ K . Thus, µ = 10 k=1 ρ k µ k where the µ k are Gaussian distributions. The second data set is drawn from the same Gaussian components µ k but with different mixture proportions θ * = ρ. Then, we add a non-linear mapping T : R d → R d mimicking domain-shift. Thus, ν = 10 k=1 θ * k ν k where ν k = T #µ k (that is the push-forward of the measure µ k by the mapping T ). In this simulation study, we apply the same pre-processing of the data as the one applied to the real flow cytometry data. That is, we threshold the negative values at zero and re-scale the observations such that every observation X belongs to [0, 1] 10 . See Figure 4.2 for an illustration of a generated data-set. We compare our method with three state-of-the-art classification methods: one unsupervised method -the k-means ; and two supervised methods -quadratic discriminant analysis (QDA), and random forest (RF). After a training step on the source data set, each supervised method yields a classification of the target data set. Hence, after this classification step by either QDA or RF, we can derive an estimation of the class proportions in the target data set. We indicate, that in this framework (namely with a single learning data set), the QDA algorithm corresponds to the OptimalFlow method [START_REF] Del Barrio | optimalflow: optimal transport approach to flow cytometry gating and population matching[END_REF], that is a state-of-the-art method designed to cluster flow cytometry data. As the k-means is an unsupervised method, we apply it straight to the target data set. Since the k-means does not yield a labelled classification, it is necessary to add an annotation step for each cluster C k returned by the k-means algorithm. To annotate a cluster C k , we retrieve the majority population according to the true labels and then we label all the observations that belong to C k with this label. Therefore, we provide a significant upper hand to this method with this additional information. To study the performance and the stability of these various methods, we sampled 100 source data sets with respect to the source model (with a fixed number n = 115, 783 of observations), and sampled 100 target data sets with respect to the target model (with a fixed number m = 68, 981 of observations). Then, for each pair of source and target data sets we apply the supervised methods, that is CytOpT, QDA and RF, and on each target data set, we apply the k-means algorithm followed by the annotation step described above. Hence, for each method we obtain 100 estimates of the class proportions. 

Robustness evaluation

This section is devoted to the robustness analysis of CytOpT. To do so, we disrupted the ideal situation where the source mixture µ = 10 k=1 ρ k N (µ k , σ Id) and the target mixture ν = 10 k=1 θ * k N (µ k , σ Id) share the same normal components but have different weights in three different ways. First, we added a uniform noise in [0, 1] d to the target data set, to mimic outliers observations that can often be observed in practice.

In our experiments, the noise amounted from 10% of the target data to 70% of the target data. This first scenario is displayed in the upper panels of Figure 4.4. Second, we added a K + 1 th class in the target data set that could not be found in the source data set. In this more involved situation, the additional class was also sampled from a Gaussian distribution with its center randomly chosen in [0, 1] d . This additional class represented up to 20% of the target data set in some envisioned scenarios. This second scenario is displayed in the lower panels of Figure 4.4. Third, we remove from 1 to 5 components in the target mixture. Hence, in this last scenario more classes were presented in the source data set than in the target data set. For each of these three cases, we sampled 10 couples (source data set, target data set) to get 10 estimates of the class proportions for a given framework. Figure 4.5 represent the performance of CytOpt in terms of Kullback-Leibler divergence in these three robustness trials. Unsurprisingly, the more we disrupt the initial setting, the less accurate the estimation. However, one can observe in Figure In this section, we illustrate our proposed method in the setting where the cytometry data from HIPC described in Section 4.1.4 are divided only among two broad classes: the CD4 cells and the CD8 cells. For ease of visualization, we use only two markers: the CD4 marker and the CD8 marker -that is d = 2. This basic case, where two-dimensional data are divided into two classes, is a first illustration of our method in a favorable situation. We aim to demonstrate that our approach may reach a good approximation of the CD4 proportion and the CD8 proportion in a target cytometry data set with unknown gating. We consider the two data sets from the HIPC T-cell panel that are displayed in Figure 4.6. The first data set is a series of cytometry measurements performed in a Stanford laboratory on a biological sample that comes from a patient identified as patient 1. This first data set is chosen as the segmented source data. The second data set is a series of cytometry measurements done in the same laboratory on a biological sample that comes from an other patient identified as patient 3. This second data set will be the target data set. The manual gating classification, and thus the class proportions are available for both samples. Nevertheless, we only use the classification available for the source (i.e. Stanford1A) data set in order to estimate the class proportions in the target (i.e. Stanford3A) data set. The manual gating classification for the target data set is only used as a benchmark to evaluate our method.

First, to assess the relevance of our method, we present in Figure 4.7 the evolution of the regularized Wasserstein distance as a function of the weights associated to each class in the source distribution. To this end, we evaluate the function F : h 1 → T λ (μ n (θ), νm ), where θ = (θ 1 , 1 -θ 1 ), on a finite grid H = {θ (1) , . . . , θ (l) }. For θ ∈ H we approximate T λ (μ n (θ), νm ) by the estimator T n defined in equation (3.3.7) of the preliminary chapter. It can be observed that the regularized Wasserstein distance decreases as the class proportions of the source data set get closer to the class proportions of the target data set.

Using the segmentation of a cytometry data set, CytOpT adequately retrieves the true class proportions of an unlabelled cytometry data set. Even if the two classes situation is somewhat an easy scenario, one can observe the significant gap in the class proportions between the source data set and the target data set. In the Stanford1A data set the CD4 cells constitute 45.1 % of the cells and the CD8 cells 54.9 % of the cells, whereas in the Stanford3A data set the CD4 cells constitute 73.9 % (estimated at 73.3 % by CytOpT) of the cells and the CD8 cells 26.1 % (estimated at 26.7 % by CytOpT).

The results presented in Figure 4.8 and Figure 4.9 represent the use of the soft-clustering and classification methods described in Section 4.3.4, and they outline the importance of re-weighting the source data. Without re-weighting, the classification obtained by optimal transport is really unlike the manual gating classification. However, one can re-weight the observations with the transformation a(θ) = Γθ in order to match the class proportions θ in the target data set. Here, Γ is the linear operator defined by

∀(i, k) ∈ {1, ..., n} × {1, ..., K}, Γ i,k =    1 n k if X i ∈ C k , 0 otherwise. (4.5.1)
And once the source data are re-weighted with the estimated class proportions θ, the classification by regularized transport is very similar to the manual gating classification.

Estimating 10 cell sub-type proportions from 7 cellular markers

We apply our method to the full T-cell panel of the HIPC flow cytometry data described in Section 4.1.4. Contrary to the illustrative results presented in Section 4.5.1, we now use all of the d = 7 markers at hand to estimate the proportions of K = 10 cell populations. This represents a more involved classification task than the one considered in Section 4.5.1 with K = 2. We arbitrarily chose the data set "Stanford1A" as the source measure to derive the class proportions in all the other data sets as targets. A comprehensive evaluation of CytOpT performance is provided in Figure 4.12, which features a Bland-Altman plot [START_REF] Bland | Statistical methods for assessing agreement between two methods of clinical measurement[END_REF]] displaying all the cell sub-types proportions estimations by CytOpT when targeting all available data sets across all the seven different centers available. In this example, we solely used the information from one reference classification from manual gating of one data set (namely Stanford1A) to estimate the class proportions in each of the 61 unsegmented data sets targeted. In more than 90% of the cases the absolute difference between the estimated proportion and the manual gating gold-standard proportion is below 5%. And in more than 99% of the cases the absolute error is no more than 10%. Due to the stochastic nature of our algorithm, a new call to CytOpT would lead to a slightly different estimate π compare to a former estimation. However, the results displayed in Figure 4.12 and Figure 4.14 are representative of the general quality of the estimation produced by CytOpT in such settings.

Note that when applying our method to estimate class proportions on real flow cytometry data, a simple pre-processing is required. First, the signal processing of the cytometer can induce some contrived negative values of light intensity [START_REF] Tung | Modern flow cytometry: a practical approach[END_REF]. To undo this effect, we merely threshold those few negative values at zero. Second, to set the parameters of our algorithms, in particular λ, we need to bound the displacement cost. To do so, we scale the data such that: ∀i ∈ {1, . . . , n}, X i ∈ [0, 1] 

Comparison with other methods

On the HIPC data, we compare CytOpT with 3 state-of-the-art automated-gating approaches specifically designed to analyze flow cytometry data. First, flowMeans [START_REF] Aghaeepour | Rapid cell population identification in flow cytometry data[END_REF] which is a variation of the k-Means algorithm designed to cluster flow cytometry data. As flowMeans is an unsupervised method, we will label every observation of a cluster retrieved by flowMeans with the major population according to the reference manual clustering (Note that this in theory should provide a substantial advantage over the other methods). We also apply Cytometree to cluster the HIPC data. This method offers an automated annotation of its estimated clustering. Therefore, with Cytometree, we can directly retrieve an estimation of the class proportions. Finally, we compare the performances of our method with OptimalFlow, recently developed by Del Barrio et al. [2020] and which performs supervised automatic gating. We mention that it is the first method to make use of the Wasserstein distance in the context of automatic-gating of flow cytometry data analysis. We stress that, even though both our method and OptimalFlow are supervised approaches relying on the Wasserstein distance, they greatly differ. First, they have different objectives: OptimalFlow aims at classifying the cells, while CytOpT directly aims at estimating the cellular sub-types proportions. Second, OptimalFlow uses the Wasserstein distance to cluster a compendium of pre-gated cytometry data sets and uses the notion of Wasserstein barycenter to produce a prototype data set for each cluster. Then, using the Wasserstein distance, OptimalFlow browses among the prototypes to extract the most relevant prototype to classify a test data set. But ultimately, the classification is performed with tools such as tclust [START_REF] Dost | Tclust: A fast method for clustering genome-scale expression data[END_REF], or Quadratic Discriminant Analysis [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF] that do not belong to the field of optimal transport. On the contrary, CytOpT only requires one pre-gated data set and the estimator of the class proportions is fully based on regularized optimal transport. In this comparison, OptimalFlow had a learning database composed of the nine Stanford cytometry data sets, and it was set to produce one prototype from the database (Note that OptimalFlow thus leverages the information from multiple source data sets, not just one). For the rest of the method, we applied OptimalFlow with the default settings proposed in the vignette1 . Figure 4.12 displays a Bland-Altman plot for each of the compared method. flowMeans and Cytometree clearly stand-out with less accurate class proportions estimation that cannot compete with the good performance of CytOpT and OptimalFlow. Although visually CytOpT and OptimalFlow seem to yield close results, one can notice that OptimalFlow estimations are systematically biased as it underestimates the rarest cell populations proportions while overestimating the most represented cell populations frequencies.

To get a more quantitative criterion to compare CytOpT and Optimalflow, we used the Kullback-Leibler divergence to assess the discrepancy between the gold-standard class proportions derived manually and the estimations of the two methods. Figure 4.13 shows that on almost every data set the quality of estimation is rather close. However when the target data set comes from Miami, the Kullback-Leibler divergence between the benchmark and CytOpT estimations is significantly lower than the Kullback-Leibler divergence between the benchmark and OptimalFlow estimations. This means that in theses cases CytOpT performs significantly better than OptimalFlow. We account for theses results by the spatial shift between the source and the target. To end this comparison, we present in Figure 4.14 a comparison of the class proportions estimation between CytOpT and OptimalFlow in two cases. The first case is the worst estimation for Optimalflow, namely, when the target data set is Miami3C. In this case, OptimalFlow overestimates very much the proportion of CD4 effector and the proportion of CD4 activated. The second case corresponds to the worst estimation for CytOpT, namely when the target data set is Cimr2A. We acknowledge that OptimalFlow performs slightly better in this case, but CytOpT still offers an acceptable and competitive estimation.

Application to the OptimalFlow data

A second evaluation of our method was performed on the cytometry data used in [START_REF] Del Barrio | optimalflow: optimal transport approach to flow cytometry gating and population matching[END_REF]. This second cytometry panel is available on GitHub2 , and we refer to this panel as the OptimalFlow data sets. First, in order to run a sensible comparison between CytOpT, OptimalFlow and FlowMeans we selected nine cell populations that were present in the first 21 data sets. As FlowMeans is an unsupervised method, it was directly applied to the 21 data sets. For OptimalFlow, it was set to use the 3 first data sets of the database, to build one template, and then to apply the classification step. Hence OptimalFlow yielded a class proportions estimation for the 18 remaining data sets. For CytOpT, we used the first data set as a source data set and we estimated the class proportions in the 20 remaining data sets. Figure 4.15 shows the Bland-Altman plots of the results for those three methods. One can notice that CytOpT is the method where the estimation of the class proportions θ is overall the closest to the manual gold-standard θ * .

Discussion

We have introduced CytOpT, a supervised method that differs from existing method as it directly estimates the cell population proportions, without a preliminary clustering or classification step. While obtaining a classification of the observation is often a mathematical tool for achieving automatic gating, we emphasize that from a clinical perspective, the proportions of the different cell populations is the quantity of interest [START_REF] Henel | Basic theory and clinical applications of flow cytometry[END_REF]. Thus, we have proposed efficient numerical schemes that rely on stochastic algorithms to address the delicate issue of computing and minimizing the regularized Wasserstein distance. We have demonstrated empirically, both on simulated data and on real flow cytometry data, the outstanding performance of CytOpT to tackle this question of cell population proportion estimation, especially in difficult situations where the technical variability of flow cytometry induces spatial shifts between samples. We also think that with higher-dimensional data, our method could perform even better as the Wasserstein distance would take advantage of all the dimensions available at once.

We present a few perspectives to further improve the performance of CytOpT. First, an additional preprocessing step to handle outliers could make CytOpT more robust to extreme cellular observations that have little biological meaning. Indeed, due to the needed scaling standardization of the data, one outlier observation can change the layout of the source data in comparison with the layout of the target data. A data driven strategy to choose the regularization parameter λ could also help to tackle this outlier issue. Following the supervised approach of Del [START_REF] Del Barrio | optimalflow: optimal transport approach to flow cytometry gating and population matching[END_REF], one could also propose an extension of CytOpT that would leverage the information from several labeled source data sets. A potential approach would be to select the most relevant labeled data set to estimate the class proportions in an unclassified target data set. To be more specific, let us assume that we have M classified data sets X 1 , . . . , X M . For each data set X l , we can define the re-weighted empirical measure μl (θ) such that the weight of the k th class equals h k for all k ∈ {1, . . . , K}, which would yield an optimal re-weighting θl that corresponds to an estimation of the class proportions θ * in the target data set. Finally, to select the most relevant estimator θl * , we choose the one leading to the smallest Wasserstein cost between the re-weighted empirical measure μl ( θl * ) and the empirical target distribution ν that is :

θl * = arg min θ1 ,..., θM {T λ (μ 1 ( θ1 ), ν), . . . , T λ (μ M ( θM ), ν)} (4.6.1)
Another extension of this work could also consider the Sinkhorn divergence S λ (µ, ν) = T λ (µ, ν) -1 2 (T λ (µ, µ) + T λ (ν, ν)), instead of T λ (µ, ν). Indeed, the authors of [Feydy et al., 2019b] showed that S λ has theoretical properties that make it a suitable loss for applications in machine learning.

Codes and data availability

The illustrative HIPC data sets described in Subsection 4. Chapter 5
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Stochastic algorithms for an optimal transport re-weighting problem

In this chapter, we present stochastic algorithms to solve the optimal transport re-weighting problem min θ∈Σ K T λ (µ(θ), ν) previously introduced in Chapter 4. We focus on the semidiscrete setting, that is when µ is discrete and ν is a continuous probability distribution. First, we present a classic gradient-based method where the gradient is approximated with a stochastic algorithm. Then, we present our main contribution of this chapter, which is based on the addition of a penalty term on the parameter space. This additional regularization allows for a convenient reformulation of our optimization problem. We then exploit the Robbins-Monro algorithm to solve this new problem. 

Introduction

Motivation and related work

Many statistical problems formulate thanks to an objective function that quantifies the quality of a model {µ(θ) | θ ∈ Θ} to represent an unknown probability distribution ν. In this context, one aims for a minimizer θ * of a function F which often formulates as

F : Θ → R θ → L(θ, ν), (5.1.1)
where Θ is a space of parameter, ν an unknown distribution and L depends on the task. Thus, for statistical applications, the main issue is not only to compute the value of the objective function F , but mainly to compute (or approximate) an element θ * ∈ Θ that minimizes it. Regularized optimal transport loss functions allow to compare probability distributions with very different structures. For instance, using the standard transport cost T 0 (µ, ν), it is possible to compare distributions with non overlapping supports, or to compare a discrete distribution to a continuous one. The flexibility of optimal transport losses, regularized or not, make them appealing for statistical inference. We refer to Section 2.2.2 in Chapter 2 for examples of optimal transport applications in statistics. Solving the optimal transport problem that defines the Wasserstein distance is known to be a challenge from a computational point of view. And as mentioned previously, applications in statistics require not only to compute the Wasserstein distance between two given distributions µ and ν, but also to solve minimization problems such as

min θ∈Θ T λ (µ(θ), ν), with λ ≥ 0. (5.1.2)
Here, {µ(θ) | θ ∈ Θ} defines a model with parameter space Θ, and ν a distribution to approximate.

If the model is composed of discrete distributions (as in this chapter), the parameter space can be the weights associated to each point of the supports. In [START_REF] Mérigot | Non-asymptotic convergence bounds for wasserstein approximation using point clouds[END_REF], the authors parameterize a discrete distribution by the positions of its supports. In the now famous example of Wasserstein GAN [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF], the distributions in the model are push-forwards distributions µ(θ) = g θ # µ where the function g θ is a neural network. Due to the complexity of variational optimal transport problems, some works are now fully dedicated to their study. For instance, in [START_REF] Sebbouh | Randomized stochastic gradient descent ascent[END_REF], the authors exploit the expectation formulation of optimal transport costs. In [START_REF] Ballu | Stochastic optimization for regularized wasserstein estimators[END_REF], it is proposed to add a regularizing term on the parameter space to facilitate the resolution of the problem. We also mention the work [START_REF] Houdard | On the existence of optimal transport gradient for learning generative models[END_REF] where the authors provide sufficient conditions for the existence of the gradient when learning generative models. The minimization problem at the center of the present chapter is motivated by the estimator of the weights in a mixture model defined in Chapter 4. It consists in minimizing a regularized transport cost T λ with λ > 0, between a mixture model and an other probability distributions ν. We now precise the formulation of this optimal transport variational problem.

Problem statement and notations

We assume to have a first series of n observations X 1 , . . . , X n classified into K classes denoted by C 1 , . . . , C K . Denoting by n k the number of observations in the class C k , we define

μk := 1 n k i:Xi∈C k δ Xi (5.1.3)
the empirical distribution associated to the observations that belong to the class C k . Thus, from the classified observations X 1 , . . . , X n we can build a family of K distributions μ1 , . . . , μK . Then, denoting by

Σ K := {θ ∈ R K + | K k=1 θ k = 1}
the probability simplex, we introduce the mixture model

M := μn (θ) = K k=1 θ k μk θ ∈ Σ K , (5.1.4)
A distribution μn (θ) in the model M can be interpreted as a re-weighting of the empirical distribution μn = 1 n n i=1 δ Xi under the constraint that inside each class C k all the observations have the same weight θ k /n k . Regarding the distribution ν that we wish to approximate by the model M, we assume it to have compact support and to be absolutely continuous with respect to the Lebesgue measure. We also assume to have the possibility to sample observations Y 1 , Y 2 , . . . from this distribution ν. Then, our purpose is to compute in the mixture model M the closest element to the probability distribution ν, with respect to a regularized transport cost. That is, solving the following minimization problem

min θ∈Σ K T λ (μ n (θ), ν), with λ > 0.
(5.1.5)

We then denote by F λ the objective function defined on Σ K , and θ * λ its minimizer provided that it is well defined, i.e.

F λ (θ) := T λ (μ n (θ), ν) and θ * λ := arg min

θ∈Σ K T λ (μ n (θ), ν).
(5.1.6)

Organization of the chapter

After stating our specific problem in Section 5.1, we precise our conventions for the regularized optimal transport cost in Section 5.2. We then make a few comments on the properties of the objective function in Section 5.3.1. Next, in Section 5.3.2 we discuss two possibilities for computing the gradient of the objective function. Our main contribution is in Section 5.4 where adding a regularizing term on the parameter space allows for a faster minimization scheme. We finally illustrate the different algorithms proposed with a series of numerical experiments in Section 5.5.

A regularized optimal transport cost in a semi-discrete scenario

As our model M is composed of discrete distributions and ν is assumed to be continuous, we study what is called a semi-discrete optimal transport problem. That is when at least one of the distributions compared is discrete. In our case it is the source measure µ = n i=1 a i δ xi that we assume to be discrete. The target measure ν is assumed to be absolutely continuous with respect to the Lebesgue measure and to have compact support. We would have liked ν to be arbitrary, but our assumptions on ν alleviate technical difficulties. Denoting by X = {x 1 , . . . , x n } and Y the respective supports of µ and ν, the standard optimal transport problem reads

T 0 (µ, ν) := min π∈Π(µ,ν) X ×Y
x -y 2 dπ(x, y),

(5.2.1) with Π(µ, ν), the set of probability distributions on X × Y with marginals µ and ν. In accordance with the rest of the document, we choose the quadratic cost c(x, y) = x -y 2 as a ground cost function.

To accelerate the computation of the optimal transport cost, a recent alternative [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] is based on the addition of regularizing term to problem (5.2.1). To regularize the standard optimal transport problem (5.2.1), a popular choice is the Kullback-Leibler with respect to µ ⊗ ν, that we denote by KL(•|µ ⊗ ν). In the case π ∈ Π(µ, ν) is absolutely continuous with respect to µ ⊗ ν, KL(π|µ ⊗ ν) = X ×Y log dπ dµ⊗ν (x, y) dπ(x, y), otherwise KL(π|µ ⊗ ν) = +∞. With KL(•|π ⊗ ν) as regularizing term, the optimal transport problem turns into

T µ⊗ν λ (µ, ν) := min π∈Π(µ,ν) X ×Y x -y 2 dπ(x, y) + λ KL(π|µ ⊗ ν).
Using the analysis of [START_REF] Marino | An optimal transport approach for the schrödinger bridge problem and convergence of sinkhorn algorithm[END_REF], we indulge ourselves to substitute µ ⊗ ν by M ⊗ Leb, where M denotes the counting measure on X = {x 1 , . . . , x n }, and Leb the Lebesgue measure on Y. In this chapter, we study a regularized version of the transport cost that is defined thanks to the Kullback-Leibler

KL(•|M ⊗ Leb), i.e. for π ∈ Π(µ, ν), KL(π|M ⊗ Leb) = X ×Y log dπ dM ⊗ Leb (x, y) dπ(x, y). (5.2.2)
Under the assumption that ν has compact support and is absolutely continuous with respect to the Lebesgue measure, we consider the regularized optimal transport cost between µ = n i=1 a i δ xi and ν defined by

T M⊗Leb λ (µ, ν) := min π∈Π(µ,ν) X ×Y
x -y 2 dπ(x, y) + λ KL(π|M ⊗ Leb).

(5.2.3)

As ν has compact support we have X ×Y x -y 2 dµdν(x, y) < +∞. And the absolute continuity of ν ensures that KL(µ ⊗ ν|M ⊗ Leb) < ∞. Therefore, under our assumptions on ν, the regularized transport cost T M⊗Leb λ (µ, ν) defined in equation (5.2.3) is finite.

This asymmetric regularization term may call for a few comments. While formulation (5.2.3) is designed for a semi-discrete scenario, it can be adapted to compare two discrete distributions by substituting M ⊗ Leb by the counting measure on X × Y (which is equivalent to the entropic penalty H(π) = i,j log(π i,j )π i,j ). Then, provided that both measures µ and ν are absolutely continuous with respect the Lebesgue measure, we can also extend problem (5.2.3) to compare two continuous distributions. In this case the classic transport problem (5.2.1) has regularizing term KL(•| Leb). x -y 2 dπ(x, y) + λ KL(π|m 1 ⊗ m 2 ).

The regularized cost T M⊗Leb

(5.2.4)

The following relation holds true

T m1⊗m2 λ (µ, ν) = T µ⊗ν λ (µ, ν) + λ KL(µ|m 1 ) + λ KL(ν|m 2 ).
(5.2.5) This last relation (5.2.5) will reveal valuable. In the literature, most results are proved for the regularized cost T µ⊗ν λ (µ, ν). For instance, approximation results [START_REF] Genevay | Sample complexity of sinkhorn divergences[END_REF] or regularity properties [Feydy et al., 2019b] are proved for T µ⊗ν λ (µ, ν). Provided that the terms KL(µ|m 1 ) and KL(ν|m 2 ) are not too complex, one can derive results on T m1⊗m2 λ (µ, ν) from results established for T µ⊗ν λ (µ, ν). In our particular case of the counting measure M and the Lebesgue measure, relation (5.2.5) reads (5.2.6) where f ν refers to the probability density function of ν. For what remains of this chapter, we will focus on the optimal transport problem with regularizing term KL(•|M ⊗ Leb). To ensure that both sides of equality (5.2.6) are finite we will work under the following assumption.

T M⊗Leb λ (µ, ν) = T µ⊗ν λ (µ, ν) + λ n i=1 log(a i )a i + λ Y log(f ν (y))f ν (y)dy,
Assumption 5.2.1. The probability distribution ν has compact support Y, and is absolutely continuous with respect to the Lebesgue measure. Moreover, its probability density function

f ν is such that log •f ν ∈ L ∞ (Y, ν).
For optimal transport problems with a Kullback-Leibler regularization as (5.2.4), it is possible to establish a dual formulation under appropriate conditions. In our case of regularizing term KL(•|M⊗Leb), we have the following dual formulation for the regularized transport cost.

Theorem 5.2.1. [Marino and Gerolin, 2020][Corollary 2.13]. Set λ > 0, µ = n i=1 a i δ xi a discrete distribution, and suppose that Assumption 5.2.1 holds true. Then, duality holds for the regularized cost T M⊗Leb λ and we have

T M⊗Leb λ (µ, ν) = max ϕ∈R n , ψ∈L ∞ (Y) n i=1 a i ϕ i + Y ψ(y)f ν (y)dy -λ n i=1 Y e ϕ i +ψ(y)-x i -y 2 λ dy + λ.
(5.2.7)

We denote by

J λ : R n × L ∞ (Y) → R the dual function associated T M⊗Leb λ (µ, ν) i.e. for ϕ ∈ R n and ψ ∈ L ∞ (Y), J λ (ϕ, ψ) = n i=1 a i ϕ i + Y ψ(y)f ν (y)dy -λ n i=1 Y e ϕ i +ψ(y)-x i -y 2 λ dy + λ. (5.2.8)
Given a pair of dual variable (ϕ, ψ) ∈ R n × L ∞ (Y), as in the classic case (when λ = 0), one can always improve the value of the dual objective function (5.2.7) by computing the c-transform of one dual variable. When regularizing the transport problem with the penalty term KL(•|M⊗Leb), the c-transform (see [START_REF] Marino | An optimal transport approach for the schrödinger bridge problem and convergence of sinkhorn algorithm[END_REF]][Remark 2.5]) of ϕ ∈ R n is denoted by ϕ c,λ and defined by

∀y ∈ Y, ϕ c,λ (y) = λ log(f ν (y)) -log n i=1 e ϕ i -x i -y 2 λ .
(5.2.9)

Similarly, for ψ ∈ L ∞ (Y) its c-transform ψ c,λ defines a vector of R n with entries given by ∀i ∈ {1, . . . , n}, ψ c,λ i = λ log(a i ) -log Y e ψ(y)-x i -y 2 λ dy .

(5.2.10)

The introduction of the c-transform allows to rephrase the dual formulation (5.2.7) as an optimization problem with respect to a single potential. For all (ϕ, ψ) ∈ R n × L ∞ (Y), the inequality J λ (ϕ, ψ) ≤ J λ (ϕ, ϕ c,λ ) holds true. Thus, under Assumption 5.2.1, the regularized transport cost can be formulated as follows:

T M⊗Leb λ (µ, ν) = max ϕ∈R n n i=1 ϕ i a i + Y ϕ c,λ (y)f ν (y)dy.
(5.2.11)

We refer to this last optimization problem (5.2.11) as the semi-dual formulation associated to T M⊗Leb λ . Note that it allows to move from the infinite-dimensional problem (5.2.7) to a finite-dimensional optimization problem.

The re-weighting problem in a semi-discrete scenario

With the regularized cost T M⊗Leb λ now introduced, we return to the re-weighting problem. This problem is to re-weight the empirical distribution associated to the observations X 1 , . . . , X n thanks to the classification into K classes C 1 , . . . , C K . The optimization problem under study reads

min θ∈Σ K T M⊗Leb λ (μ n (θ), ν).
(5.3.1)

The regularization parameter λ > 0 is fixed, and for θ ∈ Σ K , the element of the model with this parameter is μn (θ) = K k=1 θ k μk . We remind that μk is the empirical distribution associated to the observation that belong to C k , i.e. μk = 1 n k i:Xi∈C k δ Xi . Regarding ν, we assume it to be absolutely continuous with respect the Lebesgue measure on its compact support Y. Moreover, to exploit semi-dual formulation (5.2.11), we also assume the probability density function of ν, denoted by f ν , to be such that log

•f ν ∈ L ∞ (Y).
Note that the support of μn (θ) is not impacted by the value of the parameter θ. Indeed, writing μn (θ) = n i=1 a i (θ)δ Xi , it appears that the support X = {X 1 , . . . , X n } is left unchanged. And for θ ∈ Σ K , the observation weights a(θ) are defined by ∀i ∈ {1, . . . , n}, a i (θ) :=

θ k n k , (5.3.2)
where k is the only index in {1, . . . , K} such that the observation X i belongs to the class C k . Alternatively, we can introduce the linear operator Γ ∈ R n×K that maps the mixture weights θ to the observation weights a(θ). This linear operator Γ is defined by

∀(i, k) ∈ {1, ..., n} × {1, ..., K}, Γ i,k :=    1 n k if X i ∈ C k , 0 otherwise. 
(5.3.3)

Thanks to this transformation, the vector a(θ) = Γθ matches the expression given in equation (5.3.2). In the case of the re-weighting problem, the semi-dual formulation associated to regularized optimal transport cost between μn (θ) and ν reads

T M⊗Leb λ (μ n (θ), ν) = sup ϕ∈R n n i=1 ϕ i a i (θ) + Y ϕ c,λ (y)f ν (y)dy,
(5.3.4) with ϕ c,λ the c-transform of ϕ defined in equation (5.2.9).

Study of the objective function

We now propose a brief study of the objective function that is defined as follows

F λ : Σ K → R θ → F λ (θ) := T M⊗Leb λ (μ n (θ), ν).
(5.3.5)

Lemma 5.3.1. Set λ > 0, and suppose that Assumption 5.2.1 holds true. Then, the objective function F λ : θ → T M⊗Leb λ (μ n (θ), ν) satisfies the two following properties.

(i) The function F λ is continuous on Σ K , (ii) and F λ is strictly convex on Σ K .

The detailed proof of Lemma 5.3.1 is deferred to Section 5.C.1 of the appendix. This lemma follows from results establish for the regularized transport cost T µ⊗ν λ (µ, ν) and the link between T µ⊗ν λ (µ, ν) and T M⊗Leb λ (µ, ν) reminded in equation (5.2.5). This Lemma 5.3.1 shows that the objective function F λ has a unique minimizer denoted by θ * λ on the parameter space Σ K , i.e.

θ * λ := arg min

θ∈Σ K T M⊗Leb λ (μ n (θ), ν).
(5.3.6)

The following lemma ensures that the objective function under study is differentiable. This result is simply an adjustment to our situation of a now established result about the differentiability of a regularized optimal transport cost.

These straightforward gradient-descent algorithms present drawbacks. From the practical side, each iteration requires to approximate an optimal transport problem, making these algorithms time demanding. Furthermore, when relying on a stochastic algorithm to approximate the gradient, the returned approximation ω(z N ) is a biased version of the true gradient ∇F λ • χ(z N ). Therefore, providing convergence guarantees is a difficult task in this case. Due to the limitations of these direct gradient-descent algorithms, we borrow ideas from [START_REF] Ballu | Stochastic optimization for regularized wasserstein estimators[END_REF] and extend them to the semi-discrete setting.

5.4 Additional regularization, a min-max principle, and consequences

An additional regularization term

We now exploit ideas developed in [START_REF] Ballu | Stochastic optimization for regularized wasserstein estimators[END_REF] to propose an alternative minimizing scheme to tackle the re-weighting optimization problem. To this end, we slightly modify the original problem (5.3.1) by penalizing the loss function with the entropy function H(θ) = K k=1 θ k log(θ k ). Thus, our new problem is

min θ∈Σ K T M⊗Leb λ (μ n (θ), ν) + τ H(θ), (5.4.1)
where τ is a regularization parameter such that τ ≥ 0. In the case τ = 0, we recover our initial optimization problem min θ∈Σ K T M⊗Leb λ (μ n (θ), ν). As the entropy function H is strongly convex and continuous, it preserves the strict convexity and the continuity of θ → T M⊗Leb λ (μ n (θ), ν). Therefore, we can define

θ * λ,τ := arg min θ∈Σ K T M⊗Leb λ (μ n (θ), ν) + τ H(θ). (5.4.2)
The additional regularization on the parameter space Σ K allows us to derive a more amenable formulation of problem (5.4.2). Note that for the moment, we are still studying a minimization-maximization problem. Indeed, we can rewrite our regularized optimization problem

min θ∈Σ K T M⊗Leb λ (μ n (θ), ν) + τ H(θ) = min θ∈Σ K max ϕ∈R n L λ,τ (θ, ϕ), (5.4.3) with L λ,τ : Σ K × R n → R defined as follows, For (θ, ϕ) ∈ Σ K × R n , L λ,τ (θ, ϕ) := n i=1 ϕ i a i (θ) + Y ϕ c,λ (y)f ν (y)dy + τ H(θ).
(5.4.4)

The next lemma shows that this additional regularization term allows for a more gentle formulation of this problem thanks to a 'min-max' principle.

Lemma 5.4.1. Set λ, τ > 0, and suppose that Assumption 5.2.1 holds true. Then, regularized problem (5.4.1) reformulates as

min θ∈Σ K T M⊗Leb λ (μ n (θ), ν) + τ H(θ) = C λ,ν -inf ϕ∈R n H λ,τ (ϕ) (5.4.5)
where

H λ,τ (ϕ) := λ Y log n i=1 e ϕ i -X i -y 2 λ f ν (y)dy + τ log K k=1 e -μk ,ϕ τ
, and C λ,ν is a constant that depends only on λ and ν.

Formulation (5.4.5) is based on the swapping of the minimum and the maximum in problem (5.4.3). The detailed proof of Lemma 5.4.1 can be found in Section 5.C.3 of the Appendix. We then exploit Lemma 5.4.1 to propose an expectation formulation of problem (5.4.1).

An expectation formulation

In Lemma 5.4.1 we have reduced the 'min max' problem to the minimization problem inf ϕ∈R n H λ,τ (ϕ).

To link a solution of this new problem to the weight vector θ * λ,τ we will work under the following technical assumption. Under this assumption we can write min ϕ∈R n H λ,τ (ϕ) instead of inf ϕ∈R n H λ,τ (ϕ) in equation (5.4.5). To link a solution ϕ * of problem min ϕ∈R n H λ,τ (ϕ) to the optimal weight θ * λ,τ , we introduce the function χ τ : R n → Σ K defined as follows. For every ϕ ∈ R n , the entries of χ τ (ϕ) are given by ∀k ∈ {1, . . . , K}, χ τ (ϕ) k := e -μk ,ϕ τ K l=1 e -μl ,ϕ τ .

(5.4.6)

Lemma 5.4.2. Set λ, τ > 0, and suppose that Assumptions 5.2.1 and 5.4.1 hold true. Then, problem (5.4.1) rewrites min

θ∈Σ K T M⊗Leb λ (μ n (θ), ν) + τ H(θ) = C λ,ν -min ϕ∈R n E [h λ,τ (Y, ϕ)] (5.4.7)
where Y is a random variable with distribution ν. For (y, ϕ) ∈ R d × R n , the expression of h λ,τ (y, ϕ) is given by 

h λ,τ (y, ϕ) = λ log n i=1 e ϕ i -X i -y 2 λ + τ log

Solving the new problem with Robbins-Monro Algorithm

First, we point out that for each y ∈ R d , the function h λ,τ (y, •) is differentiable and that its gradient is given by ∇ ϕ h λ,τ (y, ϕ) = u(y, ϕ) -v(ϕ), (5.4.10)

where the ith components of the vector u(y, ϕ) ∈ R n and the vector v(ϕ) ∈ R n are respectively defined by

u(y, ϕ) i = exp ϕi-Xi-y 2 λ n j=1 exp ϕj -Xj -y 2 λ
, and v(ϕ (5.4.11) where Γ ∈ R n×K is defined in equation (5.3.3). We also have access to the Hessian matrix of h λ,τ , and therefore to the Hessian matrix of H λ,τ . Indeed, for each y ∈ R d and ϕ ∈ R n we have

) i = K k=1 Γ i,k exp -μk ,ϕ τ K l=1 exp -μl ,ϕ τ ,
∇ 2 ϕ h λ,τ (y, ϕ) = 1 λ diag(u(y, ϕ)) -u(y, ϕ)u(y, ϕ) T + 1 τ α(ϕ) -v(ϕ)v(ϕ) T ),
(5.4.12)

where the matrix α(ϕ) ∈ R n×n is defined by

α(ϕ) i,j = K k=1 Γ j,k Γ i,k exp -μk ,ϕ τ K l=1 exp -μl ,ϕ τ .
(5.4.13)

These computations lead us to the two following lemmas. These lemmas enable us to design an algorithm that remains in a subspace of R n where the objective function H λ,τ is strictly convex.

Lemma 5.4.4. Denoting e n = 1n √ n , for each y ∈ R d and each ϕ ∈ R n , the gradient vector ∇ ϕ h λ,τ (y, ϕ) belongs to the linear subspace e n ⊥ . Indeed, we have

n i=1 ∇ ϕ h λ,τ (y, ϕ) i = 0. Lemma 5.4.5. For any (y, ϕ) ∈ R d × R n , ∇ 2 ϕ h λ,τ (y, ϕ)1 n = 0.
Hence, the Hessian matrix of h λ,τ admits 0 as eigenvalue with associated eigenvector 1 n .

The proof of Lemma 5.4.5 and Lemma 5.4.4 can be found in Section 5.C.5 of the Appendix.

Starting from ϕ = 0 n , we approximate ϕ * solution of the previous minimization problem with the Robbins-Monro algorithm defined as follows. For N ≥ 0,

ϕ N +1 = ϕ N -γ N +1 ∇ ϕ h λ,τ (Y N +1 , ϕ N ),
(5.4.14)

where Y 1 , . . . , Y N +1 are i.i.d. random variables sampled from ν, and (γ N ) N ≥0 is a positive sequence of real numbers decreasing toward zero satisfying the following condition

∞ N =1 γ N = +∞ and ∞ N =1 γ 2 N < +∞.
The expression of the gradient of h λ,τ is given in equation (5.4.10). Once the algorithm has converged, and we get ϕ N , a satisfactory approximation of a solution of problem min ϕ∈R n E[h λ,τ (Y, ϕ)], we compute an approximation θ N λ,τ of the regularized optimal re-weighting θ * λ,τ as follows. (5.4.17)

θ N λ,τ = χ τ ( ϕ N ) where ∀k ∈ {1, . . . , K}, χ τ (ϕ) k = exp -μk ,ϕ τ K l=1 exp -μl ,ϕ τ . ( 5 
The arguments used in the proof are very inspired by those of [START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF]. Adapting these results was required as the transport plan is regularized by KL(π|µ ⊗ ν) in [START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF] instead of KL(π|M⊗Leb) in the present chapter. Moreover, the addition of a second regularizing term on the parameter space changes the objective function. The proof of Proposition 5.4.1 is deferred to Section 5.C.6 of the Appendix.

Algorithm 1: Solving min θ∈Σ K T M⊗Leb λ (μ n (θ), ν) + τ H(θ) with stochastic algorithm. ϕ ← 0 n for ← 1 to N do Y ∼ ν ϕ ← ϕ -γ ∇ ϕ h λ,τ (Y, ϕ) end /* approximation of the regularized optimal re-weighting θ * λ,τ . */ θ N λ,τ ← χ τ (ϕ) return θ N λ,τ

Numerical experiments

In this section, we present numerical experiments to illustrate the efficiency of the proposed algorithms. Moreover, we try to empirically study the potentially sensitive parameters. The study of the transport plan regularization and its associated parameter λ will be addressed in Chapter 6 and 7. For these experiments, we set this regularization factor to λ = 0.01. We faced two difficulties for numerical studies of the proposed algorithms First, computing the transport cost T λ between distributions with large supports is a complex task. Moreover, there is no closed form expression for the quantity of interest θ * λ = arg min θ∈Σ K T M⊗Leb λ (μ n (θ), ν). To overcome these difficulties we proposed a friendly framework where θ * λ the minimizer of θ → T M⊗Leb λ (μ n (θ), ν) is approximated by the theoretical weights θ * in the mixture model of the target distribution. To be more precise, we sample two series of observations X 1 , . . . , X n and Y 1 , . . . , Y m , from two mixtures of Gaussian distributions that share the same components N (ρ 1 , v 1 Id), . . . , N (ρ K , v K Id) but that have different weights ρ ∈ Σ K and θ * ∈ Σ K . To build the source distribution μn (θ) we proceed as follows. For each k ∈ {1, . . . , K}, we sample

X 1 , . . . , X n k ∼ N (ρ k , v k Id),
(5.5.1)

And gather these observations into a same class denoted by C k . For θ ∈ Σ K , we build the discrete distribution (5.5.3) Based on our current knowledge, even in simple scenario, there is no closed from expression for

μn (θ) = K k=1 θ k 1 n k i:Xi∈C k δ Xi μk , ( 5 
θ * λ = arg min θ∈Σ K T M⊗Leb λ (μ n (θ), ν).
Therefore, we approximate θ * λ with the theoretical weights θ * in the target mixture distribution defined in equation (5.5.3). The aims of this simulation study is not to demonstrate the efficiency of the estimator θ in complicated scenarios but to make sure that our minimization procedures actually minimize the objective functions. Therefore we consider a favorable scenario where the centers ρ k of the components are distant enough and the variance factors v k are sufficiently small to ensure that the different components N (ρ k , v k Id) are clearly distinguishable. We precise that the class proportions (n 1 /n, . . . , n K /n) in the source data set, are chosen to significantly differ from the theoretical weights θ * that partly govern the target distribution. For an output θ N λ of a minimization algorithm, we are confronted to the difficult access to T M⊗Leb λ (μ n (θ N λ ), ν) when comparing distribution with large supports. In the case the distributions µ and ν have large supports, we track the convergence of the proposed algorithm through the evolution of the quantity θ N λ -θ * 2 .

Sinkhorn-gradient descent algorithm

We propose to analyze the gradient-descent strategy based on a computation of the gradient with Sinkhorn algorithm. We sample n = 500 observations from the source Gaussian mixture where the n samples divide up into K = 5 classes of n k = 100 observations each.

For the target Gaussian mixture, we also sample m = 500 observations, but with different proportions as the weights vector θ * is set to θ * = (0.4, 0.1, 0.16, 0.14, 0.2) With this algorithm, a delicate parameter to choose is Sinkhorn algorithm number of iteration. We tried three different possibilities for this maximum number of iteration, that are sink ∈ {5, 10, 20}. On the left side of Figure 5.1, we display the evolution of the quantity θ N λ -θ * 2 along the iterations of the gradient descent algorithm on Σ K parameterized by the soft max function χ : R K → Σ K . On the right side of the same Figure 5.1, we display the evolution of the objective function θ → T M λ (μ n (θ), ν). Unsurprisingly, not allowing enough iterations of the Sinkhorn algorithm causes a poor approximation of the gradient and a slow convergence of the gradient-descent strategy.

Stochastic-gradient descent algorithm

We now study the convergence of the stochastic gradient descent algorithm, that is when the computation of the gradient relies on a stochastic algorithm. The first scenario for this numerical scheme is the same that when relying on Sinkhorn algorithm. We sample n = 500 observations from a Gaussian mixture in the source as well as n = 500 observations from a Gaussian mixture with different weights vector θ * . We test three maximum numbers of iterations for the Stochastic algorithm that outputs an approximate of the gradient. The maximum number of iterations stoc ranges in {10, 100, 1000}. The left side of Figure 5.2 displays the evolution of the quantity θ N λ -θ * 2 along the iterations of the gradient descent algorithm. The right side of this Figure 5.2, displays the evolution of the objective function θ → T M⊗Leb λ (μ n (θ), ν). Stochastic approaches allow not to store the full cost matrix ( X i -y j 2 ) 1≤i≤n,1≤j≤m , and thus to handle larger data sets. With the same two Gaussian mixture models as in the previous series of experiments, we sample n = 25000 observations in the source data set and m = 25000 in the target data set. The results reported in Figure 5.3 shows that these methods of optimization are sensitive to the number of iterations stoc allowed. For instance, when the number of iterations is chosen to stoc = 100, the gradient descent fails. The solid curve corresponds to the average over 10 runs and the shaded areas to the values between the 10th and 90th percentiles. Due to the large supports of the distributions, we track the convergence of the scheme through the quantity θ N λ -θ * 2 . Both distributions μn(θ) and ν have a support of size n = 25000.

Additional regularization on the parameter θ We finally try the optimization method based on the regularization of parameter θ with the entropy H. To compute the quantity arg min θ∈Σ K T M⊗Leb λ (μ n (θ), ν)+ τ H(θ) we begin by experimenting this optimization method, when both distributions µ and ν have a support of size n = 500. We report the results in Figure 5.4 for three values of the parameter τ that ranges in {0.0001, 0.001, 0.01}. The left side of Figure 5.4 displays the evolution of the quantity θ N λ,τ -θ * 2 along the iterations of the gradient descent algorithm. The right side of this Figure 5.4 displays the evolution of the new objective function θ → T M⊗Leb λ (μ n (θ), ν) + τ H(θ). We observe convergence both for the squared euclidean norm θ N λ,τ -θ * and the regularized optimal transport loss function

T M⊗Leb λ (μ n (θ N λ,τ ), ν) + τ H(θ N λ,τ
) Due to the stochastic optimization method used, we can tackle the re-weighting problem between large data sets. In the experiments reported in Figure 5.5, we sampled n = 25000 observations in the source data set, and m = 25000 observations in the target data set. Here, the delicate issue is the choice of the regularization parameter τ . In the three scenarios, that are τ ∈ {0.0001, 0.001, 0.01}, the algorithm converges. However, giving too much importance to the regularization term by choosing τ = 0.01 drives the estimator θτ towards 1 K 1 K which is not the targeted quantity θ * . We believe that the reason this behavior does not appear in the case n = 500 is that the quantity T M⊗Leb λ (μ n (θ), ν) remains large enough due the small number of observations n. And thus, even with a re-weighting the regularized transport cost T M⊗Leb λ (μ n (θ), ν) is the dominating term compared to τ H(θ). However, for a large number of observations the regularized transport cost T M⊗Leb λ (μ n (θ), ν) can decrease toward a small value compared to τ H(θ). It partially accounts for the need to choose a smaller regularization parameter τ when the number of observations increases. Based on theoretical arguments, we also discuss the choice of this parameter τ in section 7.3.3 of chapter 7. To lighten the computations, the regularized loss T λ (μn(θ N λ,τ ), ν) + τ H(θ N λ,τ ) was only computed every 100 iterations. The solid curve corresponds to the average over 10 runs and the shaded areas to the values between the 10th and 90th percentiles. Both distributions μn(θ) and ν have a support of size n = 500.

Conclusion and discussion

We have proposed three numerical schemes to solve our optimal transport problem. The two procedures based on the gradient descent algorithm are fairly classical. We have empirically identified the sensitive issue of the approximation of the gradient whether this approximation is based on Sinkhorn algorithm or on Robbins-Monro algorithm. Our main contribution is the last optimization method which is based on an additional regularization term on the parameter space. Several advantages result from this regularization. First, the new problem can be recast as simple minimization problem and thus solved with a single loop algorithm. Second, the new minimization problem reformulates as an expectation minimization problem which allows the use of stochastic methods on large data sets. From a theoretical point of view, a simple minimization problem is easier to study than a 'min max' optimization problem. We exploited this favorable formulation to provide a convergence guarantee. The solid curve corresponds to the average over 10 runs and the shaded areas to the values between the 10th and 90th percentiles. Due to the large supports of the distributions, we track the convergence of the scheme through the quantity θ N λ,τ -θ * . Both distributions μn(θ) and ν have a support of size n = 25000.

Appendices

5.A Stochastic algorithm to approximate an optimal dual variable

A possible strategy to approximate the gradient of the transport cost T M⊗Leb λ (μ n (χ(z N )), ν) relies on stochastic optimization techniques developed in [START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF] and in [START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF]. These methods are base on the observation that the semi-dual formulation of the optimal transport cost rewrites

T M⊗Leb λ (μ n (χ(z)), ν) = max ϕ∈R n E[g λ (Y, ϕ, z)], (5.A.1)
where Y is a random variable with distribution ν. For a point y ∈ Y, the expression of g λ is given by

g λ (y, ϕ, z) = n i=1 ϕ i a i (χ(z)) + λ log(f ν (y)) -log n i=1 exp ϕ i -X i -y 2 λ , (5.A.2)
where f ν denotes the probability density function of ν. The expectation formulation of the optimal transport problem has been exploited in [START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF] and [START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF] when using KL(•|µ ⊗ ν) as regularizing term. Equation (5.A.1) shows that an expectation formulation is still valid when substituting KL(•|µ⊗ν) by KL(•|M⊗Leb). As our predecessors, we estimate an optimal vector ϕ z N by the Robbins-Monro algorithm [START_REF] Robbins | A stochastic approximation method[END_REF]. This algorithm is defined by the following procedure. For ≥ 0, For (y, ϕ, z) ∈ Y × R n × R K , the explicit expression of ∇ ϕ g λ (y, ϕ, z) ∈ R n is given by

ϕ +1 = ϕ + γ +1 ∇ ϕ g λ (Y +1 , ϕ , z N ), (5. 
∇ ϕ g λ (y, ϕ, z) i = a i (χ(z)) - exp ϕi-Xi-y 2 λ n j=1 exp ϕj -Xj -y 2 λ .
(5.A.5)

We point out that regardless of (y, ϕ, z), the gradient vector ∇ ϕ g λ (y, ϕ, z) is such that n i=1 ∇ ϕ g λ (y, ϕ, z) i = 0.

(5.A.6)

A consequence, is that if we choose ϕ 0 = 0 n or a arbitrary initial vector ϕ 0 such that ϕ 0 ,

1 n = n i=1 ( ϕ 0 ) i = 0, each iterate ϕ is such that n i=1 ( ϕ ) i = 0.
We now have all the ingredients to approximate a gradient of our re-parameterized objective function F λ • χ. For N ≥ 0 and a current z N ∈ R K , we perform a stochastic ascent procedure for the semi-dual functional associated to T λ (µ(χ(z N )), ν). Therefore, at each iteration N we produce a random sequence ( ϕ ) ≥0 as in (5.A.3). That is, for ≥ 0

ϕ +1 = ϕ + γ +1 ∇ ϕ g λ (Y +1 , ϕ , z N ), (5.A.7)
where ϕ 0 ∈ R n is chosen such that ϕ 0 , 1 n = 0, and Y +1 is sampled from ν independently of Y 1 , . . . , Y .

Once the stochastic ascent procedure has converged, we plug ϕ z N := ϕ in formula (5.3.12) in place of ϕ z N to get an estimate of ∇ z F λ (χ(z N )) defined by (5.A.8) With this stochastic approximation ω(z N ) of ∇ z F (z N ), our algorithm can be described as a stochastic gradient estimation descent. Thus, the algorithm considered is given by the recursive procedure

ω(z N ) = (ΓJ χ (z N )) T ϕ N .
z N +1 = z N -η ω(z N ).
(5.A.9)

Once the minimization procedure is over and ẑN is close enough to z * a minimizer of z → T M⊗Leb λ (μ n (χ(z)), ν), we compute an estimate of the class proportions in the target observations. To do so, we set

θ N λ = χ(z N ).
(5.A.10) 

Algorithm 2: Solving min z∈R K T M⊗Leb λ (μ n (χ(z)), ν) with stochastic optimization technique. z ← 1 K for N ← 1 to N out do ϕ ← 0 n or an arbitrary vector in R n for ← 1 to stoc do Y ∼ ν ϕ ← ϕ + γ ∇ ϕ g λ (Y, ϕ, χ(z)) end /* Approximation of the gradient of z → T M⊗Leb λ (μ n (χ(z)), ν) */ ω(z) ← (ΓJ χ (z)) T ϕ z ← z -η ω(z) end /*

5.B Sinkhorn algorithm when both distributions are discrete

For two discrete distributions, a classical manner to compute a maximizer of the dual formulation associated to T M λ (µ, ν) is to rely on Sinkhorn algorithm. With our parameterization of the weights vector a(χ(z)), the dual problem reads

T M λ (μ n (χ(z))), ν) = sup ϕ∈R n ,ψ∈R m ϕ, a(χ(z)) + ψ, b -λ i,j exp ϕ i + ψ j -X i -y j 2 λ + λ. (5.B.1)
Thus, at a certain step N of the descent algorithm on the parameter space, we run iterations of Sinkhorn algorithm to get ϕ z N , an approximate of ϕ z N . With our choice of regularization (5.2.2) that is the usual entropy, we can formulate one iteration of Sinkhorn algorithm as updating each dual variable by computing the c-transform with respect to the other dual variable.

(ψ ) j = λ log(b j ) -log n i=1 e ϕ -1 -X i -y j 2 λ (5.B.2) (ϕ ) i = λ log(a(χ(z N ))) -log n i=1 e ψ -X i -y j 2 λ .
(5.B.3) Successive iterations of Sinkhorn algorithm allow to retrieve ϕ z N and approximate of ϕ z N . Hence, injecting ϕ z N in formula (5.3.12) in place of ϕ z N yields the estimate of ∇ z F λ (χ(z N )) defined by

ω(z N ) = (ΓJ χ (z N )) T ϕ z N . (5.B.4)
With this Sinkhorn approximation of ∇ z F (σ(z N )), compute z N +1 with an approximated gradient step

z N +1 = z N -η ω(z N ).
(5.B.5) Proof. We will make an intensive use of the following relation [START_REF] Marino | An optimal transport approach for the schrödinger bridge problem and convergence of sinkhorn algorithm[END_REF][Lemma 1.5],

Algorithm 3: Solving min z∈R K T M λ (μ n (χ(z)), ν) with Sinkhorn algorithm z ← 1 K for N ← 1 to N out do ϕ ← 0 n for ← 1 to N sink do /* One Sinkhorn iteration */ ψ ← ϕ c,λ ϕ ← ψ c,λ end /* Approximation of the gradient of z → T M λ (μ n (χ(z)), ν) */ ω(z) ← (ΓJ χ (z)) T ϕ z ← z -η ω(z) end /*
T M⊗Leb λ (µ, ν) = T µ⊗ν λ (µ, ν) + λ n i=1 log(a i )a i + λ Y log(f ν (y))f ν (y)dy. (5.C.1)
We begin by showing (i), the continuity of

F λ : θ → T M⊗Leb λ (μ n (θ), ν). Set θ ∈ Int(Σ K ) and (θ l ) l≥0 ⊂ Σ K a sequence such that θ l -→ l→∞ θ. The sequence of distributions μn (θ l ) = n i=1 a i (θ l )δ
Xi converges weakly toward μn (θ). As T µ⊗ν λ is weak continuous [Feydy et al., 2019b][Proposition 2], we have that

T µ(θ l )⊗ν λ (μ n (θ l ), ν) -→ l→∞ T µ(θ)⊗ν λ (μ n (θ), ν).
We also have that

n i=1 log(a i (θ l ))a i (θ l ) -→ l→∞ n i=1 log(a i (θ))a i (θ). Reminding relation (5.C.1), we deduce T M⊗Leb λ (μ n (θ l ), ν) -→ l→∞ T M⊗Leb λ (μ n (θ), ν). That is F λ (θ l ) -→ l→∞ F λ (θ).
Hence the continuity of F λ .

We are now going to show (ii), the strict convexity of F λ . Set θ 0 , θ 1 ∈ Σ K such that θ 0 = θ 1 . For t ∈ (0, 1), we denote by θ t the quantity θ t = (1 -t)θ 0 + tθ 1 . Notice that we have the following relation

μn (θ t ) = K k=1 (θ t ) k μk = (1 -t) K k=1 (θ 0 ) k μk + t K k=1 (θ 1 ) k μk = (1 -t)μ n (θ 0 ) + tμ n (θ 1 ).
(5.C.2)

From this we deduce,

F λ (θ t ) = T M⊗Leb λ (μ n (θ t ), ν) = T M⊗Leb λ ((1 -t)μ n (θ 0 ) + tμ n (θ 1 ), ν) .
We now exploit the convexity properties of the right hand side terms of equation ( 5.C.1). As θ 0 = θ 1 we have μn (θ 0 ) = μn (θ 1 ). The strict convexity of µ → T µ⊗ν λ (µ, ν) established in [START_REF] Mallasto | Entropy-regularized 2-wasserstein distance between gaussian measures[END_REF][Proposition 1] yields

T (1-t)µ(θ0)+tµ(θ1)⊗ν λ ((1 -t)μ n (θ 0 ) + tμ n (θ 1 ), ν) < (1 -t)T µ(θ0)⊗ν λ (μ n (θ 0 ), ν) + tT µ(θ1)⊗ν λ (μ n (θ 1 ), ν).
Then, the convexity of the entropy function yields

n i=1 log((Γθ t ) i )(Γθ t ) i ≤ (1 -t) n i=1 log((Γθ 0 ) i )(Γθ 0 ) i + t n i=1 log((Γθ 1 ) i )(Γθ 1 ) i .
(5.C.3)

From relation (5.C.1) we derive

T M⊗Leb λ ((1 -t)μ n (θ 0 ) + tμ n (θ 1 ), ν) < (1 -t)T M⊗Leb λ (μ n (θ 0 ), ν) + tT M⊗Leb λ (μ n (θ 1 ), ν).
In other terms

F λ ((1 -t)θ 0 + tθ 1 ) < (1 -t)F λ (θ 0 ) + tF λ (θ 1 ),
which proves the strict convexity of F λ .

5.C.2 Proof of Lemma 5.3.2

In order to prove Lemma 5.3.2 we need the following intermediate result.

Lemma 5.C.1. Set λ > 0 and assume that Y is compact. Let (θ l ) l≥0 ⊂ Σ K be a sequence that converges toward θ ∈ Σ K . For each l ≥ 0, denote by (ϕ l , ψ l ) ∈ R n × L ∞ (Y) the unique pair of optimal potentials associated to T M⊗Leb λ (μ n (θ l ), ν) such that n i=1 (ϕ l ) i = 0. Denoting by (ϕ, ψ) the unique optimal potentials associated to T M⊗Leb λ (μ n (θ), ν) such that n i=1 (ϕ) i = 0 we have that the sequence (ϕ l ) l≥0 ⊂ R n converges toward ϕ, and

(ψ l ) l≥0 ⊂ L ∞ (Y) converges uniformly toward ψ ∈ L ∞ (Y).
Proof. For µ = n i=1 a i δ xi a discrete distribution and ν, a.c. with respect to the Lebesgue distribution on Y, we will once again exploit the relation

T M⊗Leb λ (µ, ν) = T µ⊗ν λ (µ, ν) + λ n i=1 log(a i )a i + λ Y log(f ν (y))f ν (y)dy.
(5.C.4)

From the dual formulations associated to T M⊗Leb λ (µ, ν) and T µ⊗ν λ (µ, ν), as well as relation (5.C.4), we have the following fact. If ( ϕ, ψ) ∈ R n × L ∞ (Y) are two optimal potentials associated to T µ⊗ν λ (µ, ν), as noticed in [START_REF] Marino | An optimal transport approach for the schrödinger bridge problem and convergence of sinkhorn algorithm[END_REF][Proof of Corollary 2.9], (ϕ, ψ) := (λ log(a) + ϕ, λ log(f ν ) + ψ) are optimal potentials associated to T M⊗Leb λ (µ, ν).

Set an arbitrary i 0 ∈ {1, . . . , n}. For each l ≥ 0 we denote by ( ϕ l , ψ l ) the unique optimal potentials associated to T

µ(θ l )⊗ν λ (μ n (θ l ), ν) such that ( ϕ l ) i0 = 0. Set M l = 1 n n i=1 λ log(a(θ l ) i ) + ( ϕ l ) i .
Then, for each l ≥ 0 denote by (ϕ l , ψ l ) the dual potentials associated to T M⊗Leb λ (μ n (θ l ), ν) that are defined by

(ϕ l , ψ l ) := (λ log(a(θ l )) + ϕ l -M l , λ log(f ν ) + ψ l + M l ).
(5.C.5)

By uniqueness (up to an additive constant) of the optimal potentials associate to T M⊗Leb λ (μ n (θ l ), ν) [START_REF] Marino | An optimal transport approach for the schrödinger bridge problem and convergence of sinkhorn algorithm[END_REF][Corollary 2.9], (ϕ l , ψ l ) are the unique potentials such that n i=1 (ϕ l ) n = 0. In the same way, denote by ( ϕ, ψ) the unique optimal potentials associated to T

µ(θ)⊗ν λ (μ n (θ), ν) such that ( ϕ) i0 = 0. Set M = 1 n n i=1 λ log(a(θ) i ) + ( ϕ) i .
Then, denote by (ϕ, ψ) the dual potentials associated to

T M⊗Leb λ (μ n (θ), ν) that are defined by (ϕ, ψ) := (λ log(a(θ)) + ϕ -M, λ log(f ν ) + ψ + M ).
(5.C.6)

As (μ n (θ l )) l≥0 converges weakly toward μn (θ), [Feydy et al., 2019b][Proposition 13] ensures that ( ϕ) l≥0 converges toward ϕ and that ( ψ) l≥0 converges uniformly toward ψ. Then, from relation (5.C.5) and relation (5.C.6) we deduce that (ϕ l ) l≥0 ⊂ R n converges toward ϕ, and that

(ψ l ) l≥0 ⊂ L ∞ (Y) converges uniformly toward ψ ∈ L ∞ (Y).
We can now prove Lemma 5.3.2 with the same arguments as in [Feydy et al., 2019b][Proof of Proposition 2] once the necessary changes have been made.

Proof. We start by pointing out that if ϕ ∈ R n denotes a solution of the semi dual associated to

F λ (θ) = T M⊗Leb λ (μ n (θ), ν) we can rewrite F λ (θ) = n i=1 ϕ i a i (θ) + Y ϕ c,λ (y)dν(y) = ϕ, Γθ + Y ϕ c,λ (y)dν(y) = Γ T ϕ, θ + Y ϕ c,λ (y)dν(y),
where Γ ∈ R n×K is the linear operator defined in (5.3.3).

We now show that F λ is differentiable. Set θ ∈ Int(Σ K ) and ξ ∈ R K such that K k=1 ξ k = 0. For each t ∈ R we denote by ϕ t ∈ R n the unique solution of the semi dual problem (5.3.4) associated to

F λ (θ + tξ) = T M⊗Leb λ (μ n (θ + tξ), ν) such that n i=1 (ϕ t ) i = 0. Hence, for each t ∈ R * , (ϕ 0 , ϕ c,λ 0 ) is sub-optimal for T M⊗Leb λ (μ n (θ + tξ), ν) and optimal for T M⊗Leb λ (μ n (θ), ν). From this it follows F λ (θ + tξ) -F λ (θ) ≥ Γ T ϕ 0 , θ + tξ + Y ϕ c,λ 0 (y)dν(y) -Γ T ϕ 0 , θ - Y ϕ c,λ 0 (y)dν(y) = t Γ T ϕ 0 , ξ . Hence lim inf t→0 F λ (θ + tξ) -F λ (θ) t ≥ Γ T ϕ 0 , ξ .
Then, using that (ϕ t , ϕ c,λ t ) is sub-optimal with respect to T M⊗Leb λ (μ n (θ), ν) and optimal for T M⊗Leb λ (μ n (θ+ tξ), ν) yields

F λ (θ + tξ) -F λ (θ) ≤ Γ T ϕ t , θ + tξ + Y ϕ c,λ t (y)dν(y) -Γ T ϕ t , θ - Y ϕ c,λ t (y)dν(y) (5.C.7) = t Γ T ϕ t , ξ .
(5.C.8)

As (θ + tξ) t>0 converges towards θ when t goes to 0, Lemma 5.C.1 ensures that (ϕ t ) t>0 converges toward ϕ 0 . We thus have

lim sup t→0 F λ (θ + tξ) -F λ (θ) t ≤ Γ T ϕ 0 , ξ .
This ensures

lim t→0 F λ (θ + tξ) -F λ (θ) t = Γ T ϕ 0 , ξ ,
which concludes the proof.

5.C.3 Proof of Lemma 5.4.1

Proof. At the point (θ, ϕ) ∈ Σ K × R n , the function L λ,τ defined in equation ( 5.4.4) rewrites

L λ,τ (θ, ϕ) = n i=1 ϕ i (Γθ) i + Y ϕ c,λ (y)f ν (y)dy + τ K k=1 θ k log(θ k ) = λ Y log(f ν (y)) -log n i=1 e ϕ i -X i -y 2 λ f ν (y)dy Independent of θ + K k=1 (Γ T ϕ) k θ k + τ K k=1 θ k log(θ k ).
First, for each ϕ ∈ R n , the function L λ,τ (•, ϕ) is convex on Σ K . Second, the convexity of the LogSumExp function ensures that for each θ ∈ Σ K , the function L λ,τ (θ, •) is concave. Hence, L λ,τ is convex-concave like in the sense of definition 9.2.1 that can be found in section 9.2 of the Appendix. As Σ K is compact and for each ϕ ∈ R n , the function L(•, ϕ) is continuous on Σ K,ε , Theorem 9.2.1 holds true and a 'min-max' principle can be applied to problem (5.4.1) to establish the equality

min θ∈Σ K max ϕ∈R n L λ,τ (θ, ϕ) = sup ϕ∈R n min θ∈Σ K L λ,τ (θ, ϕ).
(5.C.9)

Before studying the right hand problem of equation (5.C.9), we remind that we have the equality (Γ T ϕ) k = μk , ϕ = 1 n k i:Xi∈C k ϕ i . We will use both formulations. The notation μk , ϕ is more understandable than (Γ T ϕ) k when referring to the kth entry. However, Γ T ϕ is a more compact formulation when considering the whole vector. Then, focusing on the minimization problem in the right hand side of equation (5.C.9) we set ϕ ∈ R n and write,

min θ∈Σ K L λ,τ (θ, ϕ) = Y ϕ c,λ (y)f ν (y)dy + min θ∈Σ K K k=1 θ k μk , ϕ + τ K k=1 θ k log(θ k ) V (θ)
.

(5.C.10)

Denote by V the function defined by V (θ) :

= K k=1 θ k μk , ϕ + τ K k=1 θ k log(θ k ).
To minimize the function V we adapt arguments exploited in [Boyer et al., 2014, Proposition 4.1] where a similar optimization problem was studied. As Σ K is convex and V is differentiable, the optimality condition given in [Boyd et al., 2004, Section 4.2.3] states that θ * ∈ Σ K is optimal if and only if

∀θ ∈ Σ K , ∇ θ V (θ * ), θ -θ * R K ≥ 0. (5.C.11)
Hence, a sufficient condition for the optimality of θ * on Σ K is,

∀θ ∈ Σ K , Γ T ϕ + τ (log(θ * ) + 1 K ), θ -θ * = 0.
(5.C.12)

Then, one can check that χ τ (ϕ) ∈ Σ K with entries defined as follows, ∀k ∈ {1, . . . , K}, χ τ (ϕ) k := e -μk ,ϕ τ K l=1 e -μl ,ϕ τ , (5.C.13) satisfies the sufficient optimality condition (5.C.12) stated previously. To evaluate the function V at its minimum, we simply plug formula (5.C.13) in V to get

min θ∈Σ K V (θ) = -τ log K k=1
e -μk ,ϕ τ .

(5.C.14)

Finally, reminding that equality (5.C.9) holds true, we derive

min θ∈Σ K max ϕ∈R n L λ,τ (θ, ϕ) = sup ϕ∈R n Y ϕ c,λ (y)f ν (y)dy -τ log K k=1 e -μk ,ϕ τ L λ,τ (χ τ (ϕ), ϕ)
.

(5.C.15)

What remain of the proof is a rewriting of the right hand side of the last equation. For ϕ ∈ R n , using the expression of the c-transform ϕ c,λ we derive Set ϕ * ∈ R n a solution to min ϕ∈R n H λ,τ (ϕ). Using equation (5.C.16), we deduce L λ,τ (χ τ (ϕ * ), ϕ * ) = sup ϕ∈R n L λ,τ (χ τ (ϕ), ϕ). Then, from equality (5.C.15), we derive

L λ,τ (χ τ (ϕ), ϕ) = λ Y log(f ν (y)) -log n i=1 e ϕ i -X i -y 2 λ f ν (y)dy -τ log K k=1 e -μk ,ϕ τ = C λ,ν -λ Y log n i=1 e ϕ i -X i -y 2 λ f ν (y)dy + τ log K k=1 e -μk ,ϕ τ , ( 5 
min θ∈Σ K max ϕ∈R n L λ,τ (θ, ϕ) = L λ,τ (χ τ (ϕ * ), ϕ * ).
(5.C.18)

The following inequality holds true.

L λ,τ (θ * λ,τ , ϕ * ) ≤ max ϕ∈R n L λ,τ (θ * λ,τ , ϕ). (5.C.19)
Then, by optimality of θ * λ,τ with respect to min θ∈Σ K max ϕ∈R n L λ,τ (θ, ϕ) we can write

max ϕ∈R n L λ,τ (θ * λ,τ , ϕ) = min θ∈Σ K max ϕ∈R n L λ,τ (θ, ϕ) = L λ,τ (χ τ (ϕ * ), ϕ * ).
(5.C.20)

And thus, L λ,τ (θ * λ,τ , ϕ * ) ≤ L λ,τ (χ τ (ϕ * ), ϕ * ).

(5.C.21)

Finally, note that the function θ → L λ,τ (θ, ϕ * ) is strictly convex and has minimizer χ τ (ϕ * ). By uniqueness of a minimizer of strictly convex function, we deduce

θ * λ,τ = χ τ (ϕ * ), (5.C.22)
as claimed in Lemma 5.4.2.

Proof of Lemma 5.4.3

Proof. The sum of two convex functions is a convex function and the LogSumExp function is convex.

From this we deduce that, for all y ∈ Y, the function

ϕ → h λ,τ (y, ϕ) = λ log n i=1 exp ϕ i -X i -y 2 λ + τ log K l=1 exp - (Γ T ϕ) l τ
is convex. Hence, the function H λ,τ is convex. Then, set an arbitrary potential ϕ ∈ R n and an arbitrary constant C ∈ R. Then for all y ∈ Y we have,

h λ,τ (y, ϕ + C) = λ log n i=1 exp ϕ i + C -X i -y 2 λ + τ log K l=1 exp - (Γ T (ϕ + C)) l τ = C + λ log n i=1 exp ϕ i -X i -y 2 λ -C + τ log K l=1 exp - (Γ T ϕ) l τ = h λ,τ (y, ϕ).
From this we deduce that there exists a global minimum of H λ,τ that belongs to e n ⊥ . In other terms, there exists ϕ * ∈ e n ⊥ such that for all ϕ ∈ R n , we have H λ,τ (ϕ) ≥ H λ,τ (ϕ * ). Moreover as ϕ * is a minimizer on R n , we have ∇H λ,τ (ϕ * ) = 0. Lemmas 5.4.4 and 5.4.5 Lemma 5.4.4 Proof.

5.C.5 Proof of

For (y, ϕ) ∈ R d × R n , ∇ ϕ h λ,τ (y, ϕ) i = exp ϕ i -X i -y 2 λ n j=1 exp ϕ j -X j -y 2 λ - K k=1 Γ i,k exp - (Γ T ϕ) k τ K k=1 exp - (Γ T ϕ) k τ . Hence, n i=1 ∇ ϕ h λ,τ (y, ϕ) i = 1 - K k=1 exp -(Γ T ϕ) k τ n i=1 Γ i,k K k=1 exp -(Γ T ϕ) k τ , where Γ i,k = 1 n k if X i ∈ C k , and Γ i,k = 0 otherwise. Here n k = #C k the number of observations that belong to C k , From this we deduce n i=1 Γ i,k = i:Xi∈C k 1 n k = 1.
And then, n i=1 ∇ ϕ h λ,τ (y, ϕ) i = 0 as stated in Lemma 5.4.4.

Lemma 5.4.5

Proof. For (y, ϕ) ∈ R d × R n , ∇ 2 ϕ h λ,τ (y, ϕ) = 1 λ diag(u(y, ϕ)) -u(y, ϕ)u(y, ϕ) T + 1 τ α(ϕ) -v(ϕ)v(ϕ) T ), with u(y, ϕ) i = exp ϕi-Xi-y 2 λ n j=1 exp ϕj -Xj -y 2 λ , v(ϕ) i = K k=1 Γ i,k exp -(Γ T ϕ) k τ K k=1 exp -(Γ T ϕ) k τ , and α(ϕ) i,j = K k=1 Γ j,k Γ i,k exp -(Γ T ϕ) k τ K k=1 exp -(Γ T ϕ) k τ . Hence, ∇ 2 ϕ h λ,τ (y, ϕ)1 n = 1 λ diag(u(y, ϕ)) -u(y, ϕ)u(y, ϕ) T 1 n + 1 τ α(ϕ) -v(ϕ)v(ϕ) T )1 n .
And the first term of the last equation equals

diag(u(y, ϕ)) -u(y, ϕ)u(y, ϕ) T 1 n i = u(y, ϕ) i - n j=1 u(y, ϕ) i u(y, ϕ) j = u(y, ϕ) i -u(y, ϕ) i n j=1 exp ϕj -Xj -y 2 λ n l=1 exp ϕ l -X l -y 2 λ = u(y, ϕ) i -u(y, ϕ) i = 0.
Regarding the second term, we have

α(ϕ) -v(ϕ)v(ϕ) T 1 n i = n j=1 α(ϕ) i,j -v(ϕ) i n j=1 v(ϕ) j = K k=1 Γ i,k exp -(Γ T ϕ) k τ n j=1 Γ j,k K k=1 exp -(Γ T ϕ) k τ -v(ϕ) i K k=1 exp -(Γ T ϕ) k τ n j=1 Γ j,k K k=1 exp -(Γ T ϕ) k τ . As Γ j,k = 1 n k if X j ∈ C k , and Γ j,k = 0 otherwise, n j=1 Γ j,k = j:Xj ∈C k 1 n k = 1. From this we deduce α(ϕ) -v(ϕ)v(ϕ) T 1 n i = K k=1 Γ i,k exp -(Γ T ϕ) k τ K k=1 exp -(Γ T ϕ) k τ -v(ϕ) i K k=1 exp -(Γ T ϕ) k τ K k=1 exp -(Γ T ϕ) k τ = v(ϕ) i -v(ϕ) i = 0.
We finally have ∇ 2 ϕ h λ,τ (y, ϕ)1 n = 0 as claimed in Lemma 5.4.5.

5.C.6 Proof of Proposition 5.4.1

To prove Proposition 5.4.1 we build upon several lemmas.

Lemma 5.C.2. Set λ > 0 and define the function

G λ : R n -→ R by G λ (ϕ) = E [g λ (Y, ϕ)] with Y ∼ ν and g λ (y, ϕ) = λ log n i=1 exp ϕ i -X i -y 2 λ . (5.C.23)
Then, for all ϕ ∈ R n the Hessian matrix of G λ denoted by ∇ 2 G λ (ϕ) is positive semi definite with rank n -1. Moreover, for all ϕ ∈ R n , the second smallest eigenvalue Λ n-1 (ϕ) is positive and with eigenvectors in e n ⊥ where e n = 1n √ n .

Proof. As ν the distribution of Y has compact support, we can write

∇ ϕ E [g λ (Y, ϕ)] = E [∇g λ (Y, ϕ)].
Using the notation u(y, ϕ) = ∇ ϕ g λ (y, ϕ) ∈ R n , the gradient of G λ at the point ϕ ∈ R n , is given by

∇G λ (ϕ) = E [u(Y, ϕ)] where ∀i ∈ {1, . . . , n}, u i (y, ϕ) = exp ϕi-Xi-y 2 λ n j=1 exp ϕj -Xj -y 2 λ .
(5.C.24)

The, the Hessian matrix of G λ is given by

∇ 2 G λ (ϕ) = 1 λ E diag(u(Y, ϕ)) -u(Y, ϕ)u(Y, ϕ) T .
(5.C.25)

For any ϕ ∈ R n , the matrix ∇ 2 G λ (ϕ) is positive semi-definite. More precisely, we are going to show that except the smallest eigenvalue Λ n (ϕ) = 0, all the remaining eigenvalues of G λ (ϕ) are positive.

Let ϕ ∈ R n be an arbitrary vector fixed. For all y ∈ R d , we denote by P (y, ϕ) ∈ R n×n , the matrix such that E[P (Y, ϕ)] = λ∇ 2 G λ (ϕ), i.e. P (y, ϕ) := diag(u(y, ϕ)) -u(y, ϕ)u(y, ϕ) T .

(5.C.26)

Then, applying Theorem 1 from [START_REF] Tanabe | An exact cholesky decomposition and the generalized inverse of the variancecovariance matrix of the multinomial distribution, with applications[END_REF] to the matrix P (y, ϕ) gives that rank(P (y, ϕ)) = n -1, and that all the positive eigenvalues Λ 1 (y, ϕ), . . . , Λ n-1 (y, ϕ) of P (y, ϕ) are given by ∀i ∈ {1, . . . , n -1}, Λ i (y, ϕ) = u i (y, ϕ)q i (y, ϕ) u i (y, ϕ) + q i (y, ϕ)

with q i (y, ϕ) = 1 - 

ρ λ (ϕ) ≥ 1 λ E min i∈{1,...,n-1} Λ i (Y, ϕ) > 0.
Moreover, as e n is an eigenvector associated with the eigenvalue 0, all the eigenvectors associated to the remaining eigenvalues belong to e n ⊥ .

Lemma 5.C.3. Set λ, τ > 0, and denote by H λ,τ the function

H λ,τ : ϕ → E Y ∼ν [h λ,τ (Y, ϕ)] ,
(5.C.28)

where h λ,τ is given in equation (5.4.8). Then, the function H λ,τ is convex on R n with a unique minimum ϕ * λ,τ on the linear subspace e n ⊥ with e n = 1n

√ n . Moreover, ϕ * λ,τ is a minimum of H λ,τ on R n .
Proof. Using expression (5.4.8) we write h λ,τ (y, ϕ) = g λ (y, ϕ) + B τ (ϕ) with

g λ (y, ϕ) = λ log n i=1 exp ϕ i -X i -y 2 λ and B τ (ϕ) = τ log K l=1 exp - (Γ T ϕ) l τ . (5.C.29)
Hence, our objective function rewrites

H λ,τ (ϕ) = G λ (ϕ) + B τ (ϕ) with G λ (ϕ) := E [g λ (Y, ϕ)] .
(5.C.30) Thanks to Lemma 5.4.3, set ϕ * λ,τ a minimum of H λ,τ on e n ⊥ . Hence, ∇ ϕ H λ,τ (ϕ * λ,τ ) = 0. Then, for x ∈ e n ⊥ \ {0} we have

x T ∇ 2 H λ,τ (ϕ * λ,τ )x = x T ∇ 2 G λ (ϕ * λ,τ ) + ∇ 2 B τ (ϕ * λ,τ ) x = x T ∇ 2 G λ (ϕ * λ,τ )x + x T ∇ 2 B τ (ϕ * λ,τ )x. As x ∈ e n ⊥ \ {0}, Lemma 5.C.2 ensures that x T ∇ 2 G λ (ϕ * λ,τ )x > 0.
From the convexity of B λ we deduce x T ∇ 2 B τ (ϕ * λ,τ )x ≥ 0. We finally have

x T ∇ 2 H λ,τ (ϕ * λ,τ )x > 0,
which ensures that H λ,τ has a unique minimum on e n ⊥ .

We can now prove Proposition 5.4.1.

Proof. In this proof, (Y N ) N ≥0 ⊂ R d is a sequence of independent random variables with distribution ν, and we denote by F N the σ-algebra

F N = σ(Y 1 , . . . , Y N ).
As noticed in Lemma 5.4.4, for all (y, ϕ) ∈ R d × R n , the gradient ∇ϕh λ,τ (y, ϕ) belongs to the linear subspace e n ⊥ . Therefore, if ϕ 0 belongs to this subspace, the whole sequence ( ϕ N ) N ≥0 recursively defined by

ϕ N +1 = ϕ N + γ N +1 Z N +1 , with Z N +1 := -∇ ϕ h λ,τ (Y N +1 , ϕ N )
remains on this subspace e n ⊥ . Given the definition of Z N +1 in the last equation, we have

E [Z N +1 |F N ] = - Y ∇ ϕ h λ,τ (y, ϕ N )dν(y) = -∇ ϕ H λ,τ ( ϕ N ) (5.C.31)
The opposite of the gradient -∇ ϕ H λ,τ defines a continuous function from e n ⊥ to e n ⊥ . Then, Lemma 5.C.3 ensures that H λ,τ reaches its minimum on the subspace e n ⊥ on a unique element denoted by ϕ * . We thus have ∇ ϕ H λ,τ (ϕ * ) = 0. From this and the convexity of H λ,τ , we deduce that for all ϕ ∈ e n ⊥ such that ϕ = ϕ * we have

-∇ ϕ H λ,τ (ϕ), ϕ -ϕ * < 0.
With the notations

ξ 2 ( ϕ N ) := E Z N +1 -∇H λ,τ ( ϕ N ) 2 |F N , and Ψ( ϕ N ) := E Z N +1 2 |F N , we have for all ϕ ∈ e n ⊥ ξ 2 (ϕ) = E ∇h λ,τ (Y N +1 , ϕ) -∇H λ,τ (ϕ) 2 |F N = Ψ(ϕ) -∇H λ,τ (ϕ) 2 . (5.C.32) In other terms, ξ 2 (ϕ) + ∇H λ,τ (ϕ) 2 = Ψ(ϕ), and 
Ψ(ϕ) = E ∇ ϕ h λ,τ (Y N +1 , ϕ) 2 |F N .
Then, going back to expression (5.4.10) of the gradient, we have (5.C.33) and equation (5.4.11) ensures u(Y N +1 , ϕ) ≤ 1 and v(ϕ) ≤ 1. From this we deduce that,

∇ ϕ h λ,τ (Y N +1 , ϕ) 2 ≤ ( u(Y N +1 , ϕ) + v(ϕ) ) 2 ,
∀ϕ ∈ R d , ξ 2 (ϕ) + ∇H λ,τ (ϕ) 2 = Ψ(ϕ) ≤ 4. (5.C.34)
All the assumptions of [Duflo, 2013][Theorem 1.4.26] hold, we thus have

ϕ N → ϕ * almost surely.
To conclude, remind that if ϕ * minimizes H λ,τ , the weights vector θ * λ,τ = χ τ (ϕ * ) with χ τ : R n → Σ K defined in equation (5.4.6), is the minimizer of the function F λ,τ : θ → T M⊗Leb λ (μ n (θ), ν) + τ H(θ). As ϕ N converges toward ϕ * almost surely, the continuity of χ τ and H λ,τ ensures that the sequence ( θN ) N ≥0 defined by θN = χ τ ( ϕ N ) is such that θN -→ N →∞ θ λ,τ almost surely.

(5.C.35)

Chapter 6

Near minimax rate with regularized transport cost estimators

To estimate the optimal transport cost T 0 (µ, ν) between two probability distributions µ and ν, a classic strategy is to substitute µ and ν by their empirical versions μn and νn , and to compute the plug-in estimator T 0 (μ n , νn ). When computing in practice an optimal transport cost, a regularized version T λ has shown computational benefits over the classic optimal transport cost T 0 . In this chapter, we study the use of regularized transport cost estimators such as T λ (μ n , νn ) to approximate the transport cost T 0 (µ, ν). We investigate the potential benefits on the approximation and estimation properties of regularized optimal transport cost estimators.

Our main contribution is to show that an adequate choice of regularization parameter λ enables regularized estimators to compete with the statistical performance of the classic plugin estimator. We also illustrate our theoretical results in a series of numerical experiments. 

Introduction

Despite the appealing geometric properties of Wasserstein distances for comparing probability distributions, the computational burden required to evaluate an optimal transport cost is an important limitation for practical applications. The innovative paper [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] has lightened the computational complexity of optimal transport thanks to the addition of an entropic regularizing term to Kantorovich problem. In the last years, this regularization has allowed the use of OT based methods in statistics and machine learning with a time complexity that scales quadratically in the number of data when using the Sinkhorn algorithm. This represents a significant improvement over the computational cost of un-regularized OT that scales cubically in the number of observations using linear programming. However, regularized OT has been mainly used so far as a fast numerical method to approximate un-regularized OT.

In this chapter, we investigate the statistical impact of regularized plug-in estimators, e.g. T λ (μ n , νn ), through the prism of the trade-off between approximation and estimation errors (which is reminiscent of the classical bias versus variance tradeoff in statistics). Our main contribution is to discuss how entropic regularization yields estimators that may reach, at a lowest computational cost, statistical performances that are comparable to the classic plug-in estimator. We present new theoretical results on the convergence of regularized Wasserstein estimators. We also study their numerical performances using simulated data.

Notations and assumptions

We first introduce the notations and some assumptions that we use all along the present chapter. We will work in the space R d equipped with the quadratic cost c(x, y) = x -y 2 , where x =

x 2 i is the Euclidean norm. Let X and Y be two subsets of R d that are assumed to be compact and included in B(0, R) = {x ∈ R d : x ≤ R} throughout the chapter. We denote by P(X ) and P(Y) the sets of probability measures on X and Y respectively. For Y 1 , . . . , Y n ∼ i.i.d. ν, we denote by νn the empirical counterpart of ν defined by νn = 1 n n i=1 δ Yi . The notation means inequality up to a multiplicative universal constant. For µ ∈ P(X ) and ν ∈ P(Y), we denote by Π(µ, ν) be the set of probability measures on X × Y with marginals µ and ν. We now introduce the problem of entropic optimal transporttion between µ ∈ P(X ) and ν ∈ P(Y). if π is absolutely continuous with respect to ξ. Otherwise, the Kullback-Leibler divergence is defined by KL(ρ|ξ) = +∞. Here, dπ dξ (x, y) denotes the Radon-Nikodym derivative of π with respect to ξ.

Some reminders on optimal transport and its regularized version

Definition 6.1.2 (Primal formulation). For any (µ, ν) ∈ P(X ) × P(Y), the Kantorovich formulation of the regularized optimal transport between µ and ν is the following convex minimization problem

T λ (µ, ν) = min π∈Π(µ,ν) X ×Y x -y 2 dπ(x, y) + λ KL(π|µ ⊗ ν), (6.1.2)
where λ ≥ 0 is the regularization parameter.

For λ = 0, the quantity T 0 (µ, ν) is the standard (un-regularized) OT cost, and when λ > 0, we refer to T λ (µ, ν) as the regularized OT cost between µ and ν. Note that the continuity of c : (x, y) → x-y 2 , and the compactness of X and Y imply that T λ (µ, ν) is finite for any value of λ ≥ 0. Let us now introduce the dual and semi-dual formulations (see e.g. [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF][START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF]) of the minimization problem (6.1.2). Theorem 6.1.1 (Dual formulation). As the supports of µ and ν are assumed to be compact, strong duality holds for the primal problem (6.1.2) in the sense that

T λ (µ, ν) = sup ϕ∈L ∞ (X ), ψ∈L ∞ (Y) X ϕ(x)dµ(x)+ Y ψ(y)dν(y)- X ×Y m λ (ϕ(x)+ψ(y)-x-y 2 )dµ(x)dν(y) (6.1.3)
where L ∞ (X ) denotes the space of essentially bounded functions quotiented by a.e. equality, and

m λ (t) =    +∞1 {t 0} if λ = 0, λ(e t λ -1) if λ > 0.
(6.1.4) A solution (ϕ, ψ) of the dual problem (6.1.3) is called a pair of Kantorovich potentials. Besides, since X , Y are compact and c is continuous, it follows that the dual problem admits a solution (ϕ, ψ) ∈ C b (X ) × C b (Y). Moreover, when λ > 0, there exists solutions ϕ, ψ to the dual problem (6.1.3) which are uniquely defined almost everywhere, up to an additive constant. The solutions of this regularized dual problem have the specific structure of c-transform functions. For the quadratic cost c(x, y) = x -y 2 , the regularized c-transform are defined as in [Feydy et al., 2019b]. For λ > 0, we set (6.1.5) and for λ = 0, the c-transform simply reads

∀x ∈ R d , ψ c,λ ν (x) = -λ log Y e ψ(y)-x-y 2 λ dν(y),
∀x ∈ R d , ψ c (x) = min y∈Y { x -y 2 -ψ(y)}. (6.1.6)
We also define the analogous operators for the y-variable (and for simplicity, we use the same notation for c-transforms of x-functions or y-functions). Notice that the operation used in (6.1.5) can be understood as a smoothed minimum that depends on ν. Therefore, when λ > 0 we will stick to the notation ψ c,λ ν to keep in mind the possible dependence on ν of the regularized c-transform. Notice also that, even if ψ c,λ ν will be integrated only on X , the formulae allow to extrapolate the c-transforms on the whole space R d . In the sequel of this chapter we extrapolate the c-transform on B(0, R) to manipulate functions defined on a convex subset of R d without imposing the convexity of X and Y. The c-transform allows to introduce the semi-dual formulation. Definition 6.1.3 (Semi-dual formulation). The dual problem (6.1.3) is equivalent to the following semidual problem in the sense that

T λ (µ, ν) = sup ψ∈L ∞ (Y) X ψ c,λ ν (x)dµ(x) + Y ψ(y)dν(y). (6.1.7)
A solution ψ of the semi-dual problem is called a Kantorovich potential. We point out that ψ is a Kantorovich potential for the semi-dual problem (6.1.7) if and only if (ψ c,λ ν , ψ) is a pair of Kantorovich potentials for dual problem (6.1.3). By symmetry, we can also formulate a semi-dual problem on the dual variable ϕ.

For discrete probability distributions, the iterative Sinkhorn algorithm, as defined below, (see e.g. [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]) allows to approximate the regularized OT cost T λ (µ, ν) as follows. 

λ (µ, ν) = n i=1 a i ϕ ( ) i + m j=1 b j ψ ( ) j .
(6.1.8)
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The variables ϕ ( ) and ψ ( ) being the dual variables returned after iterations of the Sinkhorn algorithm.

Starting from ψ 0 = 0 m ∈ R m , the Sinkhorn th iteration is defined by the update of the dual variables:

ϕ ( ) i = -λ log m j=1 exp ψ ( -1) j -xi-yj 2 λ b j ψ ( ) j = -λ log n i=1 exp ϕ ( ) i -xi-yj 2 λ a i .
(6.1.9)

Then, the de-biased version of the regularized OT cost, also known as the Sinkhorn divergence, is defined as follows.

Definition 6.1.5 (Sinkhorn divergence, from [Feydy et al., 2019b]). Let λ > 0. For any (µ, ν) ∈ P(X ) × P(Y), the Sinkhorn divergence between µ and ν is defined as

S λ (µ, ν) = T λ (µ, ν) - 1 2 (T λ (µ, µ) + T λ (ν, ν)) . (6.1.10)
Since we only consider here the quadratic cost c(x, y) = x -y 2 , we will be able to use important properties of the Sinkhorn divergence S λ established by [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF] in order to derive our results on the convergence of Wasserstein estimators.

An alternative dual problem

We now introduce an alternative dual formulation of regularized OT that is specific to the quadratic cost. This alternative dual problem allows to restrict the Kantorovich potentials to the class of concave and Lipschitz functions. This restriction will prove useful to derive some of the convergence rates given in Section 6.2. The relation between those dual problems has already been explicited for un-regularized OT (for example in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF]), and we extend it to the regularized case. Let λ ≥ 0. By expanding the squared Euclidean cost, we have for any π ∈ Π(µ, ν),

X ×Y x -y 2 dπ(x, y) + λ KL(π|µ ⊗ ν) = X x 2 dµ(x) + Y y 2 dν(y) (6.1.11) -2 X ×Y
x, y dπ(x, y) + λ KL(π|µ ⊗ ν). (6.1.12)

The above decomposition leads us to consider the new regularized transport problem

T s λ (µ, ν) = min π∈Π(µ,ν) X ×Y
s(x, y)dπ(x, y) + λ KL(π|µ ⊗ ν), (6.1.13) with s(x, y) = -2 x, y . First, we remark that the standard regularized Wasserstein distance T λ (µ, ν) and the alternative regularized Wasserstein distance T s λ (µ, ν) are related through the relation

T λ (µ, ν) = X x 2 dµ(x) + Y y 2 dν(y) + T s λ (µ, ν). (6.1.14)
A dual formulation associated to this alternative regularized problem (6.1.13) is given by the next proposition.

Proposition 6.1.1. The dual problem associated to (6.1.13) writes as

T s λ (µ, ν) = sup ϕ∈L ∞ (X ) ψ∈L ∞ (Y) X ϕ(x)dµ(x)+ Y ψ(y)dν(y)- X ×Y m λ (ϕ(x)+ψ(y)+2 x, y )dµ(x)dν(y), (6.1.15)
where m λ is defined in Theorem 6.1.1.

Proof. The key argument is to remark that (6.1.13) is a regularized optimal transport problem with cost function s(x, y) = -2 x, y . Hence, as X and Y are assumed to be compact and s is continuous, it follows that strong duality holds (see e.g. [Genevay et al., 2019, Bercu and[START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF]) in the sense of equation (6.1.15).

Fort the cost function s(x, y) = -2 x, y , we can also define a s-transform and a semi-dual problem as follows. For the cost s(x, y) = -2 x, y and for ϕ ∈ L ∞ (X ) the s-transform is defined as

∀y ∈ R d , ϕ s,λ µ (y) = -λ log X exp ϕ(x)+2 x,y λ dµ(x) , for λ > 0,
-max x∈X (ϕ(x) + 2 x, y ) for λ = 0. (6.1.16) By the above s-transform in the dual problem (6.1.15) we obtain the following semi-dual formulation

T s λ (µ, ν) = sup ϕ∈L ∞ (X ) X ϕ(x)dµ(x) + Y ϕ s,λ µ (y)dν(y).
(6.1.17)

We conclude this section by studying some properties of this s-transform.

Proposition 6.1.2. For λ ≥ 0 and ϕ ∈ L ∞ (X ), the s-transform ϕ s,λ µ is concave and R-Lipschitz on B(0, R).

Proof. We start with the concavity of ϕ s,λ µ . For λ = 0, it follows from the fact that a maximum of convex functions is convex. Now, for λ > 0, y 1 , y 2 ∈ B(0, R) and t ∈ (0, 1), we have

X exp ϕ(x) + x, ty 1 + (1 -t)y 2 λ dµ(x) = X exp t ϕ(x) + 2 x, y 1 λ exp (1 -t) ϕ(x) + 2 x, y 2 λ dµ(x) ≤ X exp ϕ(x) + 2 x, y 1 λ dµ(x) t X exp ϕ(x) + 2 x, y 2 λ dµ(x) 1-t
, thanks to Hölder inequality with exponents p = 1/t and p = 1/(1 -t). Applying -λ log on both sides gives directly ϕ s,λ µ (ty 1 + (1 -t)y 2 ) ≥ tϕ s,λ µ (y 1 ) + (1 -t)ϕ s,λ µ (y 2 ). (6.1.18)

Now, we will see as in [Feydy et al., 2019b] that the regularized s-transform inherits the Lipschitz constant of the cost. For y 1 , y 2 ∈ B(0, R) and x ∈ X , we have | x, y 1 -y 2 | ≤ R y 1 -y 2 thanks to Cauchy-Schwarz inequality, and thus

ϕ(x) + 2 x, y 1 ≤ R y 1 -y 2 + ϕ(x) + 2 x, y 2 .
Taking λ log X exp( • λ )dµ(x) for λ > 0 (resp. max x∈X for λ = 0) on both sides gives

ϕ s,λ µ (y 2 ) ≤ R y 1 -y 2 + ϕ s,λ µ (y 1 ) .
By symmetry, we get |ϕ s,λ µ (y 1 ) -ϕ s,λ µ (y 2 )| ≤ R y 1 -y 2 .

Estimation, decomposition of the error, and main results

Set µ ∈ P 2 (X ), and ν ∈ P 2 (Y) two probability distributions on R d . Given n observations X 1 , . . . , X n independently sampled from µ, as well as n observations Y 1 , . . . , Y n independently sampled from ν, we aim at estimating the transport cost T 0 (µ, ν) between these two distributions. From the available samples, we define the empirical distributions of µ and ν, respectively defined by

μn = 1 n n i=1 δ Xi and νn = 1 n n j=1 δ Yj . (6.2.1) 99 
In this chapter, we propose a study of three estimators of the transport cost T 0 (µ, ν) that are T 0 (μ n , νn ), T λ (μ n , νn ), and S λ (μ n , νn ), with λ > 0. (6.2.2)

This work places an emphasis on the regularized case, that is when λ > 0. In this case, we consider estimators that are output by Sinkhorn algorithm after iterations. These very concrete estimators are defined by T 

λ (μ n , νn ) = T ( ) λ (μ n , νn ) -1 2 T ( ) λ (μ n , μn ) + T ( )
λ (ν n , νn ) . For our two estimators output by Sinkhorn algorithm, we have the following decomposition of the error.

Lemma 6.2.1. Set λ > 0. Estimating T 0 (µ, ν) with T ( ) λ (μ n , νn ), we have |T 0 (µ, ν) -T ( ) λ (μ n , νn )| ≤ Approximation |T 0 (µ, ν) -T λ (µ, ν)| + Estimation |T λ (µ, ν) -T λ (μ n , νn )| + Algorithm |T λ (μ n , νn ) -T ( ) λ (μ n , νn ) |.
(6.2.4) Regarding the Sinkhorn divergence S ( ) λ (μ n , νn ), we have a similar decomposition given by |T 0 (µ, ν) -S ( )

λ (μ n , νn )| ≤ |T 0 (µ, ν) -S λ (µ, ν)| Approximation + |S λ (µ, ν) -S λ (μ n , νn )| Estimation + |S λ (μ n , νn ) -S ( ) λ (μ n , νn )| Algorithm . (6.2.5)
To prove our main result, we exploit a very recent bound on the approximation error of the Sinkhorn divergence S λ . Theorem 6.2.1. [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF], Theorem 1] Suppose that µ and ν have bounded densities and supports. Then, it holds that (6.2.6) where I(µ) refers to the standard Fisher information of µ, and I(µ, ν) is the Fisher information of the Wasserstein geodesic between µ and ν as defined in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF].

|S λ (µ, ν) -T 0 (µ, ν)| ≤ λ 2 4 max{I(µ, ν), (I(µ) + I(ν))/2},
As we make a repeated use of Theorem 6.2.1 in this chapter, we introduce the following assumption.

Assumption 6.2.1. Both probability distributions µ and ν have finite Fisher information I(µ) and I(ν). Moreover, the Fisher information of the Wasserstein geodesic I(µ, ν) between µ and ν is finite.

We now give our main result. This theorem ensures that appropriate choices for the parameters λ and enable regularized estimator to reach near minimax rate of convergence. For the purpose of concision, we state our main result only for the case d > 4, and refer the reader to Section 6.3 for a result that covers all possible cases. Theorem 6.2.2. Assume that d > 4. Also assume that µ and ν have compact supports respectively denoted by X and Y, both included in B(0, R). If n i.i.d samples are available from each probability µ and ν, the estimator T

( n ) λn (μ n , νn ) is such that, E |T 0 (µ, ν) -T ( n ) λn (μ n , νn )| n -2/d log(n) with    λ n = n -2/d d , n = dn 4/d + 1. (6.2.7)
Also suppose that Assumption 6.2.1 holds true. Then, the estimator S

( n ) λn (μ n , νn ) is such that, E |T 0 (µ, ν) -S ( n ) λn (μ n , νn )| n -2/d with    λ n = n -1/d , n = n 3/d + 1.
(6.2.8)

Proof of the main result

The originality of Theorem 6.2.2 relies on a new bound on the estimation error of regularized estimator that we establish in the next section.

A new bound on the estimation error of regularized transport cost

The key argument is to bound the estimation error by the supremum of an empirical process whose expectation is under control as stated in the next lemma.

Lemma 6.3.1. [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF], Lemma 4 and proof of Theorem 2] Assume that ν has compact support subset of B(0, R) and that n samples X 1 , . . . , X n ∼ i.i.d. ν are available. Then it holds that

E sup ϕ∈F R Y ϕ(y)d(ν -νn )(y)          R 2 n -1/2 if d < 4, R 2 n -1/2 log(n) if d = 4, R 2 n -2/d if d > 4, (6.3.1)
where hides a constant that depends only on d, and F R denotes the class of concave and R-Lipschitz functions on B(0, R). In the same paper, the authors established that

E Y y 2 d(ν -νn )(y) ≤ 4R 2 n -1/2 . (6.3.2)
From this result, we approximate the gap between T λ (µ, ν) and its empirical version T λ (μ n , νn ). Due to the repeated use of the upper bound of equation (9.1.3), we denote it by E(d, n) in this chapter. From now on

E(d, n) :=          R 2 n -1/2 if d < 4, R 2 n -1/2 log(n) if d = 4, R 2 n -2/d if d > 4. (6.3.3)
For completeness, we report the proof of Lemma 6.3.1 from the original paper [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF] in Section 9.1.2. Proposition 6.3.1. Assume that n i. i. d. samples are available from µ and ν. Then, the estimator

T λ (μ n , νn ) is such that E [|T λ (µ, ν) -T λ (μ n , νn )|] E(d, n). (6.3.4)
where the upper bound E(d, n) is defined in equation (6.3.3). This bound also holds for the Sinkhorn divergence estimator S λ (μ n , νn ) as we have

E [|S λ (µ, ν) -S λ (μ n , νn )|] E(d, n). (6.3.5)
Proof. We begin with the estimation error of T λ (μ n , νn ) that we break down as follows

|T λ (µ, ν) -T λ (μ n , νn )| ≤ |T λ (µ, ν) -T λ (µ, νn )| + |T λ (µ, νn ) -T λ (μ n , νn )|.
For the first term |T λ (µ, ν) -T λ (µ, νn )|, the key point is to exploit the alternative dual formulation of regularized OT that has been introduced in Section 6.1.3. Using relation (6.1.14), we remark that

T λ (µ, ν) -T λ (µ, νn ) = Y y 2 dν(y) - Y y 2 dν n (y) + T s λ (µ, ν) -T s λ (µ, νn ) = Y y 2 d(ν -νn )(y) + T s λ (µ, ν) -T s λ (µ, νn ). (6.3.6)
Now, let us denote by ϕ and φ two optimal dual potentials respectively associated to T s λ (µ, ν) and T s λ (µ, νn ) when exploiting the semi-dual formulation (6.1.17). We can thus write

T s λ (µ, ν) -T s λ (µ, νn ) = X ϕ(x)dµ(x) + Y ϕ s (y)dν(y) - X φ(x)dµ(x) + Y φs (y)dν n (y) = Y ϕ s (y)dν(y) - Y ϕ s (y)dν n (y) + X ϕ(x)dµ(x) + Y ϕ s (y)dν n (y) - X φ(x)dµ(x) + Y φs (y)dν n (y) ≤ 0 ≤ Y ϕ s (y)d(ν -νn )(y), (6.3.7)
where the last inequality derives from the optimality of φ for the semi-dual formulation of T s λ (µ, νn ). A similar reasoning yields

T s λ (µ, νn ) -T s λ (µ, ν) ≤ Y φs (y)d(ν n -ν)(y). (6.3.8)
As ϕ s and φs are both s-transform, Proposition 6.1.2 ensures that both ϕ s and φ are R-Lipschitz and concave on B(0, R). Next, the combination of equation ( 6.3.7) and equation(6.3.8) gives the upper bound

|T s λ (µ, ν) -T s λ (µ, νn )| ≤ sup ϕ∈F R Y ϕd(ν -νn ) , (6.3.9) 
where F R denotes the class of concave and R-Lipschitz functions on B(0, R). Reminding equation (6.3.6) we get

|T λ (µ, ν) -T λ (µ, νn )| ≤ Y y 2 d(ν -νn )(y) + sup ϕ∈F R Y
ϕ(y)d(ν -νn )(y) , (6.3.10) From Lemma 6.3.1 it follows that

E [|T λ (µ, ν) -T λ (µ, νn )|] E(d, n),
where E(d, n) is defined in equation (6.3.3). A similar line of argumentation gives

E [|T λ (µ, νn ) -T λ (μ n , νn )|] E(d, n),
which allows us to derive the inequality claimed in equation (6.3.4).

We now turn toward the study of S λ (μ n , νn ) estimation error. We have

|S λ (µ, ν) -S λ (μ n , νn )| ≤ |S λ (µ, ν) -S λ (µ, νn )| + |S λ (µ, νn ) -S λ (μ n , νn )|.
Simply using the definition of S λ , we rewrite the first term of the last equation as

S λ (µ, ν) -S λ (µ, νn ) = T λ (µ, ν) - 1 2 (T λ (µ, µ) + T λ (ν, ν)) -T λ (µ, νn ) + 1 2 (T λ (µ, µ) + T λ (ν n , νn )) .
Next, reordering the terms and using the triangle inequality we get

|S λ (µ, ν) -S λ (µ, νn )| ≤ |T λ (µ, ν) -T λ (µ, νn )| + 1 2 (|T λ (ν, ν) -T λ (ν, νn )| + |T λ (ν, νn ) -T λ (ν n , νn )|) . (6.3.11)
Each terms of the last equation can be bounded by the same empirical process that upper bounds equation (6.3.10). Hence (6.3.12) and the same reasoning yields E [|S λ (µ, νn ) -S λ (μ n , νn )|] E(d, n) which allows us to derive the nonasymptotic rate of convergence claimed in equation (6.3.5) and to conclude the proof of Proposition 6.3.1.

E [|S λ (µ, ν) -S λ (µ, νn )|] E(d, n).
Equipped with this estimation error for our regularized transport cost estimators, we prove our main result in the next section.

Gathering established results

We now collect established result on the approximation error of T λ , and the Sinkhorn algorithm error of T ( ) λ . First, the result [START_REF] Genevay | Sample complexity of sinkhorn divergences[END_REF][Theorem 1] adapted to the squared euclidean cost c(x, y) = ||x -y|| 2 , allows to control the impact of the regularizing term KL(π|µ ⊗ ν) on the approximation of the value of the un-regularized OT cost. Proposition 6.3.2. [START_REF] Genevay | Sample complexity of sinkhorn divergences[END_REF][Theorem 1] Assume that X , Y are compact subsets of B(0, R). Then, it holds that (6.3.14) that is the approximation of the regularized OT cost T λ (µ, ν) returned by the Sinkhorn algorithm after iterations. The variables ϕ ( ) and ψ ( ) denote the dual variables after iterations of the Sinkhorn algorithm. The computational complexity of Sinkhorn algorithm has been studied in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF] and we remind the error after iterations of the Sinkhorn algorithm with respect to the regularized OT cost. 

0 ≤ T λ (µ, ν) -T 0 (µ, ν) ≤ 2dλ log 8 exp(2)R 2 √ dλ , (6.3.13) 
Denoting B(λ) = 2dλ log 8 exp(2)R 2 √ dλ , notice that B(λ) goes to zero when λ → 0 such that B(λ) ∼ λ→0 2dλ log (1/λ) .
λ (µ, ν) = n i=1 a i ϕ ( ) i + n j=1 b j ψ ( ) j ,
( ) λ (µ, ν) -T λ (µ, ν)| ≤ ||c|| 2 ∞ λ , (6.3.15)
where ||c|| ∞ = max (i,j) ||x i -y j || 2 .

Remark 6.3.1. If the distributions µ and ν have their supports included in B(0, R), it implies that

max (i,j) ||X i -Y j || 2 ≤ 4R 2 . Hence, the random quantity ||c|| 2 ∞ can be upper bounded by ||c|| 2 ∞ ≤ 16R 4 .
We can now prove our main result.

Theorem 6.3.1. Assume that X , Y are compact subsets of B(0, R). If n samples are available from each probability distribution µ and ν, denoting T ( ) λ (μ n , νn ) Sinkhorn algorithm output as defined in equation (6.3.14), we have (6.3.16) where the estimation term E(d, n) is defined in equation (6.3.3). Next, using the previous inequality, we can propose a choice of regularization parameter λ n and a number of Sinkhorn iterations n in order to reach the rate of n -2/d log(n) in the case d > 4. Indeed, if d > 4, we have

E |T 0 (µ, ν) -T ( ) λ (μ n , νn )| 2dλ log 8 exp(2)R 2 √ dλ Approximation + E(d, n) Estimation + 16R 4 λ ,

Algorithm

E |T 0 (µ, ν) -T ( n ) λn (μ n , νn )| n -2/d log(n) with    λ n = n -2/d d , n = dn 4/d + 1.
(6.3.17)

Proof. We begin with the proof of upper bound (6.3.16). The triangle inequality gives (6.3.18) We are now going to control each term of the previous equation (6.3.18). The first term that corresponds to the approximation error induced by the regularization term is upper bounded by 2dλ log 8 exp(2)R 2 √ dλ thanks to Proposition 6.3.2. Next, exploiting Proposition 6.3.1 allows to control the expectation of the second term. Finally, Proposition 6.3.3 gives

|T 0 (µ, ν) -T ( ) λ (μ n , νn )| ≤ |T 0 (µ, ν) -T λ (µ, ν)| + |T λ (µ, ν) -T λ (μ n , νn )| + |T λ (μ n , νn ) -T ( ) λ (μ n , νn )|.
|T λ (μ n , νn ) -T ( ) λ (μ n , νn )| ≤ 16R 4 λ .
Thus, taking the expectation in equality (6.3.18) and bounding each term as discussed previously gives upper bound (6.3.16).

We now explain the second point of our Theorem and the choices for the regularization parameter λ n and for the number of Sinkhorn iterations n . As d > 4, we can write

E |T 0 (µ, ν) -T ( ) λ (μ n , νn )| 2dλ log 8 exp(2)R 2 √ dλ + 16R 4 λ + n -2/d . (6.3.19) If λ n = n -2/d d , the previous equation reads E |T 0 (µ, ν) -T ( ) λn (μ n , νn )| n -2/d log (n) + dn 2/d + n -2/d . (6.3.20)
Finally, we wish the algorithm error now valued to dn 2/d to decrease at rate n -2/d . To do so, we set n ≥ dn 4/d to have (6.3.21) which one can find written in a concise manner in equation (6.3.17).

E |T 0 (µ, ν) -T ( n ) λn (μ n , νn )| n -2/d log (n) + n -2/d + n -2/d ,
We now propose the same analysis for the Sinkhorn divergence estimator S ( ) λ (μ n , νn ) output by Sinkhorn algorithm after iterations. Theorem 6.3.2. Assume that X , Y are compact subsets of B(0, R) and that Assumption 6.2.1 on the Fisher information holds true. If n samples are available from each probability distribution µ and ν, denoting by S ( ) λ (μ n , νn ) the Sinkhorn divergence output by Sinkhorn algorithm, we have (6.3.22) Where M I = max{I(µ,ν),(I(µ)+I(ν))/2} 4 and the estimation error E(d, n) is defined in equation (6.3.3). Thanks to the previous inequality, we can propose a choice of regularization parameter λ n and a number of Sinkhorn iterations n in order to reach the rate of n -2/d in the case d > 4. Indeed, if d > 4, we have

E |T 0 (µ, ν) -S ( ) λ (μ n , νn )| M I λ 2 Approximation + E(d, n) Estimation + 16R 4 λ .

Algorithm

E |T 0 (µ, ν) -S ( n) λn (μ n , νn )| n -2/d log(n) with    λ n = n -1/d , n = n 3/d + 1. (6.3.23)
Proof. We begin with the proof of upper bound (6.3.22). The triangle inequality gives (6.3.24) We are now going to control each term of the previous equation (6.3.24). The first term that corresponds to the approximation error is upper bounded by M I λ 2 thanks to Theorem 6.2.1. Next, exploiting Proposition 6.3.1 allows to control the expectation of the second term. A slight adjustment of Proposition 6.3.3 gives

|T 0 (µ, ν) -S ( ) λ (μ n , νn )| ≤ |T 0 (µ, ν) -S λ (µ, ν)| + |S λ (µ, ν) -S λ (μ n , νn )| + |S λ (μ n , νn ) -S ( ) λ (μ n , νn )|.
|S λ (μ n , νn ) -S ( ) λ (μ n , νn )| ≤ 2 c 2 ∞ λ ≤ 32R 4 λ .
Thus, taking the expectation in equality (6.3.24) and bounding each term as discussed previously gives (6.3.22).

We now explain the second point of our theorem and the choices for the regularization parameter λ n and for the number of Sinkhorn iterations n . As d > 4, we can write

E |T 0 (µ, ν) -S ( ) λ (μ n , νn )| M I λ 2 + n -2/d + 32R 4 λ . (6.3.25) If λ n = n -1/d
, the previous equation reads

E |T 0 (µ, ν) -S ( ) λn (μ n , νn )| n -2/d + n -2/d + n 1/d . (6.3.26)
Finally, we wish the algorithm error now valued to n 1/d to decrease at rate n -2/d . To do so, we set (6.3.27) which one can find written in a concise manner in equation (6.3.23).

n ≥ n 3/d to have E |T 0 (µ, ν) -S ( n) λn (μ n , νn )| n -2/d + n -2/d + n -2/d ,

6.4

Discussion around an other bound on the estimation error of T λ (μ n , νn )

In this section we present an other bound on the estimation error. The arguments that we use are very much inspired by the works of [START_REF] Genevay | Sample complexity of sinkhorn divergences[END_REF] and [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF]. We try to sharpen their estimation bound in the specific case of the squared euclidean cost c(x, y) = x -y 2 . For a fixed value of λ > 0, we are going to obtain an upper bound decaying at the rate 1 √ n where n is the number of samples in the empirical measure νn . We will also see how the constants involved in this upper bound depend on the regularizing parameter λ and the dimension d of the observations. Proposition 6.4.1. Suppose that the supports of µ and ν are compact and subset of B(0, R). Then, we can bound the estimation error as follows

E [|T λ (µ, ν) -T λ (μ n , νn )|] M λ √ n , with M λ = M d max R 2 , R d/2 +1 λ d/2 , (6.4.1)
and M d is a constant that depends only on d.

The proof of Proposition 6.4.1 is deferred to Section 6.A of the Appendix of the current chapter.

Exploiting this Proposition 6.4.1 established for T λ to the Sinkhorn divergence, one can derive an estimation error of the same magnitude for S λ . Proposition 6.4.2. Suppose that the supports of µ and ν are compact and included in B(0, R). Then, we can bound the estimation error of the Sinkhorn divergence as follows

E [|S λ (µ, ν) -S λ (μ n , νn )|] M λ √ n , with M λ = M d max R 2 , R d/2 +1 λ d/2 , (6.4.2)
and M d is a constant that depends only on d.

The two estimation errors respectively proposed in Proposition 6.4.1 and Proposition 6.4.2 suggest that one could improve the rate of convergence of n -2/d that we propose in Theorem 6.2.2. However, the multiplicative constant M λ given in equation (6.4.2) severely impacts the estimation error. Indeed, when λ gets little to alleviate the approximation error, the quantity λ -d/2 increases dramatically. In the next result we give the rate of convergence that the estimators T λ (μ n , νn ) reach when one tries to balance the approximation errors and the estimation errors given in Proposition 6.4.1 and Proposition 6.4.2. We remind that under adequate assumptions, the approximation error for the regularized transport cost T λ is of magnitude λ log(1/λ) and that the approximation error for the transport S λ is of magnitude λ 2 . We do not take into account the algorithm error in the next result. We recover already known results proved in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF]. Theorem 6.4.1. Assume that µ and ν have their supports included in B(0, R) and that Assumption 6.2.1 holds in order to control the approximation error of S λ . Also assume that n samples are available for each distribution. Trying to balance the approximation errors of T λ and S λ with the estimation error of scale M λ n -1/2 by the use of a sample-size dependent regularization λ n leads to the following rates of convergence. For T

( n ) λn (μ n , νn ) we reach E |T 0 (µ, ν) -T ( n ) λn (μ n , νn )| n -1/(2 d/2 +2) log(n) with λ n = n -1/(2 d/2 +2) . (6.4.3)
And with the estimator S

( n)
λn (μ n , νn ) we reach,

E |T 0 (µ, ν) -S ( n ) λn (μ n , νn )| n -2/(2 d/2 +4) with λ n = n -1/(2 d/2 +4) . (6.4.4)
Both for the regularized transport cost estimator T

( n)
λn (μ n , νn ) and the Sinkhorn divergence estimator S ( n ) λn (μ n , νn ), the rates of convergence derived in Theorem 6.4.1 are slower than previously established in Theorem 6.2.2. For example, in the case the dimension d is even and such that d > 4, the rate of convergence of T ( n ) λn (μ n , νn ) is n -1/(d+2) log(n) in Theorem 6.4.1 while n -2/d log(n) using Theorem 6.2.2. Regarding the Sinkhorn divergence estimator S ( n ) λn (μ n , νn ) and maintaining the assumption that d is even and d > 4, the rate of convergence is n -2/(d+4) with Theorem 6.4.1 while n -2/d using Theorem 6.2.2.

We now report a series of numerical experiments.

Numerical experiments

To evaluate the concordance between our theoretical results and practical experimentation we estimate the transport cost in a scenario where the transport cost admits a closed-form expression; that is when comparing two Gaussian distributions. Our goal is to ascertain the interest of our choices for the regularization parameter λ n and for the number of iterations n . To do so, we compare to the estimators T 0 (μ n , νn ) and T λ (μ n , νn ) with a fixed regularization parameter set to λ = 0.1. The estimator T λ (μ n , νn ) is computed with a Sinkhorn algorithm that stops if the difference of two outputs is such that

|T (l+1) λ -T (l)
λ | < 10 -9 (as in the POT library) or if the number of iterations reaches = 1000. We precise that we used a naive homemade python implementation of Sinkhorn algorithm that corresponds to the iterations described in equation (6.1.9). For a certain number n of available samples that ranges from n = 10 to n = 1000, we repeat 50 times the following protocol. First, we sample n observations from two d = 6 dimensional Gaussian distributions,

X 1 , . . . , X n ∼ i.i.d. µ := N (ρ 1 , v 1 Id) and, Y 1 , . . . , Y n ∼ i.i.d. ν := N (ρ 2 , v 2 Id), (6.5.1)
and build the empirical distributions μn and νn . We then compute the three estimators

T 0 (μ n , νn ), T λ (μ n , νn ), and 
T ( n )
λn (μ n , νn ), (6.5.2)

where λ = 0.1 for the second estimator T λ (μ n , νn ), and λ n and n are chosen as in Theorem 6.2.2, i.e. λ n = n -2/d /d and n = dn 4/d + 1, for the last estimator T

( n )
λn (μ n , νn ). We then display the distances of these estimators to the theoretical transport cost T 0 (µ, ν) in Figure 6.5.1. We also report in Table 6.5.1 the chosen parameters in our experimental framework when exploiting Theorem 6.2.2. Figure 6.5.2 shows the required time to compute 50 estimators depending on the estimator chosen T λ (μ n , νn ) (in blue), or T ( n ) λn (μ n , νn ) (in red), and the number of available samples. It appears that our choices for λ n and n allows to outperform the classic regularized estimator T λ (μ n , νn ) with fixed regularization factor λ and to compete with the plug-in estimator T 0 (μ n , νn ). As λ n = n -2/d decreases when n increases, Sinkhorn algorithm requires more iterations to converge when the number of available samples increases. We can observe this trend in Figure 6.5.2 where our adaptive estimator requires more time for n ≥ 780 than when the regularization is fixed to λ = 0.1. λn (μn, νn) (in red) where λn and n depend on the sample size n. For every scenario, 50 estimators are computed and the dimension is set to d = 6.

0 ( n , n ) T ( n , n ) T ( n) n ( n , n )
We now repeat the protocol that we applied with the regularized transport estimators T λ (μ n , νn ) to the Sinkhorn divergence estimators S λ (μ n , νn ). Hence, for n varying between n = 10 and n = 1000, we λn (μ n , νn ), (6.5.3)

T ( n , n ) T ( n ) n ( n , n )
where λ = 0.1 for the second estimator S λ (μ n , νn ), and λ n and n are chosen as in Theorem 6.2.2, i.e. λ n = n -1/d and n = n 3/d + 1, for the last estimator S

( n ) λn (μ n , νn ). We display the distances of these estimators to the theoretical transport cost T 0 (µ, ν) in Figure 6.5.3. We also report in Table 6.5.2 the chosen parameters in our experimental framework when exploiting Theorem 6.2.2. Figure 6.5.2 shows the required time to compute 50 estimators depending on the estimator chosen S λ (μ n , νn ) (in blue), or S n λn (μ n , νn ) (in red), and the number of available samples. It appears that our choices for λ n and n allow to outperform both the Sinkhorn estimator S λ (μ n , νn ) with fixed regularization factor λ = 0.1 and the plug-in estimator T 0 (μ n , νn ). Moreover, Sinkhorn divergence S λ allows for a larger choice of regularization parameter λ n than when computing regularized transport cost T λ . As shown in Table 6.5.2 and in Figure 6.5.4, a larger λ n enables Sinkhorn algorithm to converge faster. It clearly appears in Figure 6.5.4 that the times required to compute S n λn (μ n , νn ) are significantly shorter than the times required to compute S λ (μ n , νn ) when λ = 0.1.

Conclusion and discussion

The use of regularized transport estimators had already been propose due to their computational advantages. In this work, we have shown that both the statistical and computational performances are highly dependent on the regularization factor λ. Moreover we propose some choices for the key parameters λn (μn, νn) (in red) where λn and n depend on the sample size n. For every scenario (i.e. every n), 50 estimators are computed and the dimension is set d = 6. λn (μ n , νn ) when the dimension is set to d = 6.

0 ( n , n ) S ( n , n ) S ( n) n ( n , n )

Number of samples

to achieve state of the art statistical performance at a reduce computational cost. Our choices for the regularization factor λ and the number of Sinkhorn iterations are driven by theoretical results and supported by our experimentation. A natural extension of this work could be to remove the compact support assumption, and to replace it by the assumption that the probability distributions µ and ν have sub-Gaussian behavior. For κ ∈ N d a vector of d integers, the notation D κ denotes the differential operator

S ( n , n ) S ( n ) n ( n , n )
D κ := ∂ |κ| ∂x κ1 1 . . . ∂x κ d d with |κ| = d i=1 κ i .
Hence, |κ| K denotes any multi-index κ of differentiation of length |κ| at most K . Then, for a bounded subset Z of R d , we shall denote by C K (Z) the set of C K functions on Z equipped with the norm

f K = max |κ| K D κ f ∞ . (6.A.1)
We will also have a special interest for the subset

C K M (Z) = {f ∈ C K (Z) | f K M }. (6.A.2)
The proof of Proposition 6.4.1 is built upon several lemmas. A first step is to study the regularity of the optimal potentials of the dual formulation (6.1.3). To this end, we adapt the analysis of [START_REF] Genevay | Sample complexity of sinkhorn divergences[END_REF] where an optimal potential is written as the c-transform of ϕ ∈ L ∞ (X ). The choice of the squared Euclidean cost allows for a very clear description of the regularity of an optimal potential. We recall below the definition of the c-transform of ϕ ∈ L ∞ (X ) that we denote by ϕ c,λ µ as λ > 0. With the aim of manipulating functions defined on a convex and bounded subset of R d , the c-transforms are defined on B(0, R). Hence, even if integrated only against µ or ν that have support X and Y respectively, the c-transform are defined on B(0, R). The expression of ϕ c,λ µ ∈ L ∞ (B(0, R)) in the case of a squared euclidean cost c(x, y) = x -y 2 is given by ∀y ∈ B(0, R), ϕ c,λ µ (y) = -λ log X e ϕ(x)-x-y 2 λ dµ(x). (6.A.3) Lemma 6.A.1. Suppose that the supports of µ and ν are subsets of B(0, R). Then, there exists a couple of dual potentials (ϕ, ψ) with respect to T λ (µ, ν), that satisfies ψ(0) = 0, and ψ = ϕ c,λ µ . Moreover, ψ belongs to C ∞ (B(0, R)), and for each K > 0, there exists a constant M K > 0 that depends only on K such that

ψ K M K max R 2 , R K λ K -1 . (6.A.4)
And the sup norm is taken over B(0, R).

This lemma will be proved in Section 6.B. An observation on this Lemma 6.A.1 will reveal useful.

Remark 6.A.1. If we denote by ϕ the dual potential of Lemma 6.A.1 such ψ = ϕ c,λ µ where ψ meets the requirements of Lemma 6.A.1, this variable ϕ is an optimal potential for the semi-dual formulation (6.1.7) of the regularized transport problem.

As we make a repeating use of the constant introduced in Lemma 6.A.1, we introduce the notation M λ,K to refer to the upper bound of equation (6.A.4) which is defined as

M λ,K := M K max R 2 , R K λ K -1 , (6.A.5)
and M K > 0 is a constant that depends only on K . The next proposition links the estimation error to the regularity of the c-transforms established in Lemma 6.A.1. This result is established using the semi-dual formulation of T λ (µ, ν) that one can find in equation (6.1.7).

Proposition 6.A.1. Suppose that both distributions have their supports included in B(0, R). Then, we have a collection of upper bounds given for each integer K > 0 by

|T λ (µ, ν) -T λ (µ, νn )| sup ψ∈C K M λ,K (B(0,R)) Y ψd(ν -νn ), (6.A.6)
with M λ,K > 0 the constant defined in equation (6.A.5).

Proof. Set K > 0 and introduce ϕ, ψ (resp. φ, ψ) two optimal potentials for the dual formulation of T λ (µ, ν) (resp. T λ (µ, νn )) chosen as in Lemma 6.A.1. In particular ψ and ψ are c-transforms and belong to

C K M λ,K (B(0, R)).
Moreover, the potentials ϕ and φ are respectively optimal potentials for the semi-dual formulation of T λ (µ, ν) and T λ (µ, νn ) as precised in Remark 6.A.1. We can thus write

T λ (µ, ν) -T λ (µ, νn ) = X ϕdµ + Y ψdν - X φdµ - Y ψdν n = Y ψdν - Y ψdν n + X ϕdµ + Y ψdν n - X φdµ - Y ψdν n ≤ 0 .
By optimality of φ for the semi dual formulation of T λ (µ, νn ), the last term in the above parenthesis is non-positive. Using a symmetric optimality argument for T λ (µ, ν) and its optimal potential ϕ for the semi-dual formulation, we get

Y ψd(ν -νn ) T λ (µ, ν) -T λ (µ, νn ) Y ψd(ν -νn ).
(6.A.7)

Due to Lemma 6.A.1, ψ and ψ belong to C K M λ,K (B(0, R)). We can thus write

|T λ (µ, ν) -T λ (µ, νn )| sup ψ∈C K M λ,K (B(0,R)) Y ψd(ν -νn ) = sup ψ∈C K M λ,K (B(0,R)) Y ψd(ν -νn ). (6.A.8)
We are led to the study of the following empirical process

sup ψ∈C K M λ,K (B(0,R)) Y ψ with Y ψ = Y ψd(ν n -ν) = 1 n n i=1 ψ(Y i ) - Y ψdν. (6.A.9)
In order to bound the empirical process (6.A.9), we will need several ingredients. First, we show that this empirical process has a sub-Gaussian behavior (see definition 3.4.7 for a reminder). Lemma 6.A.2. Assume that ν has its support included in

B(0, R), if Y = {Y 1 , . . . , Y n } where Y 1 , . . . , Y n are independent random samples from ν, the empirical process (Y ψ ) ψ∈C K M λ,K
(B(0,R)) defined in equation (6.A.9) has zero mean and is sub-Gaussian w.r. (6.A.11) We are going to show that Y ϕ -Y ψ subgaussian. Denote by ∆ i the variable defined by

t. 2n -1 2 • ∞ . In other terms, ∀ϕ, ψ ∈ C K M λ,K (B(0, R)), ∀s ∈ R, E[e s(Yϕ-Y ψ ) ] e 2s 2 n ϕ-ψ 2 ∞ = e s 2 2 (2n -1 2 ϕ-ψ ∞) 2 . (6.A.10) Proof. Let us set ϕ, ψ ∈ C K M λ,K (B(0, R)) and consider the increment Y ϕ -Y ψ defined by Y ϕ -Y ψ = 1 n n i=1 ϕ(Y i ) -ψ(Y i ) - Y ϕ(y) -ψ(y)dν(y).
∆ i = 1 n ϕ(Y i ) -ψ(Y i ) - Y ϕ(y) -ψ(y)dν(y) (6.A.12)
Denote by (F i ) 1≤i≤n the filtration defined by F i = σ(Y 1 , . . . , Y i ). The two following facts hold true.

First, E [∆ i |F i-1 ] = 0. Second, -2 ϕ -ψ ∞ n ≤ ∆ i ≤ 2 ϕ -ψ ∞ n . (6.A.13)
We can thus apply Azuma-Hoeffding inequality [van Handel, 2016][Corollary 3.9] to derive that Y ϕ -Y ψ is subgaussian with variance proxy

1 4 n i=1 4 ϕ -ψ ∞ n 2 = 4 ϕ -ψ 2 ∞ n . (6.A.14)
We thus have

∀s ∈ R, E[e s(Yϕ-Y ψ ) ] e s 2 4 2n ϕ-ψ 2 ∞ = e s 2 2 (2n -1 2 ϕ-ψ ∞) 2 ,
as claimed in Lemma 6.A.2.

We now use Dudley's entropy integral inequality that we recall below. A classical bound on the covering number for smooth functions (see e.g. [van der Vaart and Wellner, 1996, Theorem 2.7.1]) will prove highly valuable. Theorem 6.A.2. If Z is a bounded convex subset of R d with nonempty interior, then there exists a constant L(K , d) such that (6.A.15) where N (ε, C K 1 (Z), • ∞ ) denotes the covering number of C K 1 (Z) (by balls of radius ε) with respect to the ∞ norm, and where |Z + B(0, 1)| is the Lebesgue measure of Z + B(0, 1)

∀ε > 0, log N (ε, C K 1 (Z), • ∞ ) L(K , d)|Z + B(0, 1)| 1 ε d/K .
We now have all the ingredients to bound the expectation of the empirical process (6.A.9). Proposition 6.A.2. Under the assumption that the support of ν is a subset of B(0, R), we have the following upper bound, (6.A.16) and M d > 0 is a constant that depends only on d.

E   sup ψ∈C d/2 +1 M λ (B(0,R)) Y ψd(ν n -ν)   M λ √ n with M λ = M d max R 2 , R d/2 +1 λ d/2 ,
Proof. Set K > 0. We denote the empirical process under study by

(Y ψ ) ψ∈C K M λ,K (B(0,R)) with Y ψ = Y ψd(ν n -ν) = 1 n n i=1 ψ(Y i ) - Y ψdν,
and M λ,K > 0 the constant defined in equation (6.A.5). Dudley's inequality with the entropy integral (see e.g. [START_REF] Van Handel | Probability in High Dimension[END_REF]) gives (6.A.20) This integral is finite as soon as

E   sup ψ∈C K M λ,K (B(0,R)) Y ψ   12 ∞ 0 log N (C K M λ,K (B(0, R)), 2n -1 2 • ∞ , ε)dε (6.A.17) 12 ∞ 0 log N C K 1 (B(0, R)), • ∞ , 1 2 √ nM -1 λ,K ε dε (6.A.18) 24M λ,K √ n ∞ 0 log N (C K 1 (B(0, R)), • ∞ , ε)dε (6.A.19) M λ,K √ n 1/2 0 ε -d 2K dε.
K > d/2. As M λ,K = M K max R 2 , R K λ K -1
and λ will be chosen little in the sequel, we set K = d/2 + 1 in order to have the quantity M λ,K as small as possible. With this choice of K = d/2 + 1, we can substitute the constant M λ,K of Lemma 6.A.1 with a new constant M λ := M λ, d/2 +1 that reads

M λ = M d max R 2 , R d/2 +1 λ d/2 ,
where M d is a constant that depends only on d. Finally, we have the following bound for the empirical process under study Proof. By combining inequality (6.A.16) from Proposition 6.A.2 with upper bound (6.A.6), we derive

E   sup ψ∈C d/2 +1 M λ (B(0,R)) Y ψ   M λ √ n . ( 6 
E [|T λ (µ, ν) -T λ (µ, νn )|] M λ √ n . (6.A.22)
With the same arguments, under the assumption that both distributions have their supports included in B(0, R), we have

E [|T λ (µ, νn ) -T λ (μ n , νn )|] M λ √ n .
The proof of Proposition 6.4.1 is thus complete.

6.B Proof of Lemma 6.A.1

In this section we give a precise bound on the derivatives of a c-transform when considering a squared euclidean cost c(x, y) = x -y 2 . Some results of the same flavor had already been established, for instance in Genevay et al. [2019, Lemma 1, Lemma 2]. The specificity of our result is to exploit the particular cost function c(x, y) = x -y 2 to give a precise description of the bound. To prove Lemma 6.A.1, we first give a rescaling argument to reduce our study to the case λ = 1. Then, in Proposition 6.B.1 we give a clear description of the derivatives of a c-transform when λ = 1. Next, using this last proposition we give a uniform bound on the derivatives of the c-transform. And in section 6.B.3 we conclude the proof Lemma 6.A.1.

6.B.1 Rescaling argument to link the case λ = 1 to any positive value

We use a rescaling argument given in [START_REF] Mena | Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem[END_REF] to link the case λ = 1 to any value of the regularization parameter λ.

Lemma 6.B.1. Let us set λ > 0, and denote by f λ# µ and f λ# ν, the push-forward measures of µ and ν by the map f λ : x → λ -1/2 x. We have the following relation

T 1 (f λ# µ, f λ# ν) = 1 λ T λ (µ, ν). (6.B.1)
And, denoting η λ , ρ λ optimal potentials with respect to T 1 (f λ# µ, f λ# ν) the functions ϕ λ , ψ λ defined as

ϕ λ (x) = λη λ (λ -1/2 x) and ψ λ (x) = λρ λ (λ -1/2 x), (6.B.2)
are two optimal potentials with respect to T λ (µ, ν),

Note that T 1 (µ, ν) is not the 1-Wasserstein distance but the regularized optimal transport cost as defined in equation ( 6.1.2) with regularization parameter set to λ = 1.

Proof. Denote by f -1 λ : x → λ 1/2 x the inverse function of f λ , and by J µ,ν λ : L ∞ (X ) × L ∞ (Y) → R the objective function of the dual regularized problem associated to T λ (µ, ν). For (χ, ξ) ∈ L ∞ (X ) × L ∞ (Y) we write,

J µ,ν λ (χ, ξ) = X χdµ + Y ξdν -λ X ×Y exp χ(x) + ξ(y) -x -y 2 λ dµ(x)dν(y) + λ = X χ • f -1 λ • f λ dµ + Y ξ • f -1 λ • f λ dν -λ X ×Y exp χ • f -1 λ • f λ (x) + ξ • f -1 λ • f λ (y) -f -1 λ • f λ (x) -f -1 λ • f λ (y) 2 λ dµ(x)dν(y) + λ = X λ χ • f -1 λ df λ# µ + Y λ ξ • f -1 λ df λ# ν -λ X λ ×Y λ exp χ • f -1 λ (x) + ξ • f -1 λ (y) -f -1 λ (x) -f -1 λ (y) 2 λ df λ# µ(x)df λ# ν(y) + λ = λ X λ 1 λ χ • f -1 λ df λ# µ + Y λ 1 λ ξ • f -1 λ df λ# ν -λ X λ ×Y λ exp 1 λ χ • f -1 λ (x) + 1 λ ξ • f -1 λ (y) -x -y 2 df λ# µ(x)df λ# ν(y) + λ ≤ λ X λ η λ df λ# µ + Y λ ρ λ df λ# ν -λ X λ ×Y λ exp η λ (x) + ρ λ (y) -x -y 2 df λ# µ(x)df λ# ν(y) + 1 = λT 1 (f λ# µ, f λ# ν).
The last inequality comes from the optimality of η λ and ρ λ with respect to T 1 (f λ# µ, f λ# ν). So far, we have derived

sup χ∈L ∞ (X ) ξ∈L ∞ (Y) X χdµ + Y ξdν -λ X ×Y exp χ(x) + ξ(y) -x -y 2 λ dµ(x)dν(y) + λ ≤ λT 1 (f λ# µ, f λ# ν).
In other terms, we have the inequality T λ (µ, ν) ≤ λT 1 (f λ# µ, f λ# ν). Then, the optimality of (η λ , ρ λ ) with respect T 1 (f λ# µ, f λ# ν) allows to write

λT 1 (f λ# µ, f λ# ν) = λ X λ η λ (x)df λ# µ(x) + λ Y λ ρ λ (y)df λ# ν(y) -λ X λ ×Y λ exp η λ (x) + ρ λ (y) -x -y 2 df λ# µ(x)df λ# ν(y) = X λη λ (λ -1/2 x)dµ(x) + Y λρ λ (λ -1/2 y)dν(y) -λ X ×Y exp η λ (λ -1/2 x) + ρ λ (λ -1/2 y) -λ -1/2 x -λ -1/2 y 2 dµ(x)dν(y) + λ = X λη λ (λ -1/2 x)dµ(x) + Y λρ λ (λ -1/2 y)dν(y) -λ X ×Y exp λη λ (λ -1/2 x) + λρ λ (λ -1/2 y) -x -y 2 λ dµ(x)dν(y) + λ = X ϕ λ (x)dµ(x) + Y ψ λ (y)dν(y) -λ X ×Y exp ϕ λ (x) + ψ λ (y) -x -y 2 λ dµ(x)dν(y) + λ,
with ϕ λ (x) = λη λ (λ -1/2 x) and ψ λ (x) = λρ λ (λ -1/2 x). This last computation shows that

λT 1 (f λ# µ, f λ# ν) ≤ sup χ∈L ∞ (X ) ξ∈L ∞ (Y) X χdµ + Y ξdν -λ X ×Y exp f (x) + g(y) -x -y 2 λ dµ(x)dν(y) + λ.
Hence λT 1 (f λ# µ, f λ# ν) = T λ (µ, ν) and additionally it shows that ϕ λ and ψ λ are optimal potentials with respect to T λ (µ, ν).

6.B.2 Differentiation of a c-transform ψ = ϕ c,λ µ in the case λ = 1

We study the regularity of a c-transform with squared euclidean cost c(x, y) = x -y 2 in the specific case λ = 1. We remind the notations previously introduced in equation ( 6 We also denote by e i ∈ N d the multi index to refer to the partial derivative with respect to y i . In other terms (6.B.4) Where i is the only index such that κ i > 0. Equation (6.B.10) shows that (H 1 ) is true. In order to ease the understanding of Proposition 6.B.1, we also give the explicit computations in the case K = 2. For y ∈ B(0, R), differentiating once again on both sides of equation (6.B.11) with respect to arbitrary coordinate y j we reach:

(e i ) j =    1 if j = i, 0 otherwise. 
∂ 2 ψ ∂y j ∂y i (y) -∂ψ ∂y i (y) ∂ψ ∂y j (y) e -ψ(y) = X ∂ 2 c ∂y j ∂y i (x, y) -∂c ∂y i (x, y) ∂c ∂y j (x, y) e ϕ(x)-c(x,y) dµ(x).

(6.B.12) With the operator notation 6.B.3, we can rewrite the previous equation as follows. For y ∈ B(0, R),

(D σ1 ψ(y) -D σ2 ψ(y)D σ3 ψ(y)) e -ψ(y) = X (D σ1 c(x, y) -D σ2 c(x, y)D σ3 c(x, y
)) e ϕ(x)-c(x,y) dµ(x).

(6.B.13) Induction step: Set K ≥ 1 and assume that (H K ) holds true. First, we point out that the symmetry between the left side and the right side of equation (6.B.7). One can already observe this symmetry at equation (6.B.10) and at equation (6.B.12). We thus write the computation only for the left side G κ of equation (6.B.7). We mention that the theorem of differentiation under the integral enables us to differentiate the right hand side of equation (6.B.7) as the subset of integration is compact.

We then set a multi-index κ ∈ N d with |κ| = K . Due to (H K ) equation ( 6.B.7) holds with L κ (y) = D κ ψ(y) + P a K ,α K ,σ κ (ψ)(y) e -ψ(y) . Hence, differentiating the left side of equation (6.B.7) with respect to y i yields y) .

∂L κ ∂y i (y) = ∂D κ ψ ∂y i (y) + ∂P a K ,α K ,σ κ (ψ) ∂y i (y) e -ψ(y) (6.B.14) -D κ ψ(y) ∂ψ ∂y i (y) + P a K ,α K ,σ κ (ψ)(y) ∂ψ ∂y i (y) e -ψ(
During this induction step, for a multi index σ ∈ N d , we denote by σ the multi index defined by

σ = σ + e i ,
where e i is defined in equation (6.B.4). Notice that σ = |σ| + 1. With these notations, we can rewrite equation (6.B.14) as y) .

∂L κ ∂y i (y) = D κψ(y) + ∂P a K ,α K ,σ κ (ψ) ∂y i (y) e -ψ(y) -D κ ψ(y)D ei ψ(y) + P a K ,α K ,σ κ (ψ)(y)D ei ψ(y) e -ψ(
Using the formula to derive a product of multiple factors, we get that the second term of equation (6.B.14) equals

∂P a K ,α K ,σ κ (ψ) ∂y i (y) = N K l=1 a K l K n=1 α K l,n ∂D σ κ l,n ψ ∂y i (y)(D σ κ l,n ψ(y)(y)) α K l,n -1     K j=1, j =n (D σ κ l,j ψ(y)) α K l,j     = N K l=1 a K l K n=1 α K l,n D σκ l,n ψ(y)(D σ κ l,n ψ(y)(y)) α K l,n -1     K j=1, j =n (D σ κ l,j ψ(y)) α K l,j     = 1≤l≤N K , 1≤n≤K a K l α K l,n K +1 j=1 (D τ l,n,j ψ(y)) β l,n,j .
Let us set (l, n) ∈ {1, . . . , N κ }×{1, . . . , K }, and study the sequences (τ l,n,j ) 1≤j≤K +1 and (β l,n,j ) 1≤j≤K +1 that we have introduced in the last equality of the previous calculation. These sequences are defined by:

τ l,n,j =    σκ l,n = σ κ l,n + e i if j = K + 1, σ κ l,j
otherwise.

and

β l,n,j =          1 if j = K + 1, α K l,n -1 if j = n, α K l,j
otherwise.

After pointing out that for all (l, n) the sequence (β l,n,j ) 1≤j≤K +1 is independent of the multi index κ and y i , we check that the sequences (τ l,n ) and (β l,n ) satisfy conditions (6.B.8).

K +1 j=1 |τ l,n,j |β l,n,j = |σ κ l,n | × 1 + K j=1, j =n |σ κ l,j |α K l,j + |σ κ l,n |(α K l,n -1) = |σ κ l,n | + 1 + K j=1, j =n |σ κ l,j |α K l,j + |σ κ l,n |α K l,n -|σ κ l,n | = K j=1 |σ κ l,j |α K l,j + 1 ≤ K + 1 thanks to H K .
A similar computation shows that K +1

j=1 |β l,n,j | ≤ K . Hence, the sequences (τ l,n ) and (β l,n ) satisfy conditions (6.B.8). Then, the third term D κ (ψ)(y)D ei (ψ)(y) of equation (6.B.14) clearly reads

K +1 j=1 (D ηj ψ(y)) γj with K +1 j=1 |η j |γ j = 1 × 1 + K × 1 ≤ K + 1.
And the sequences (η) and (γ) also satisfy the other conditions of equation (6.B.8). The last term of equation (6.B.14) can be written as

N K l=1 a K l K +1 n=1 (D ξ l,n (ψ)(y)) δ l,n , with ξ l,n =    e i if n = K + 1, σ κ l,n otherwise. And δ l,n =    1 if n = K + 1, α K l,n otherwise. Hence, for l ∈ {1, . . . , N K }, K +1 n=1 |ξ l,n |δ l,n = K n=1 |σ κ l,n |α K l,n + |e i | × 1 = K n=1 |σ κ l,n |α K l,n + 1 ≤ K + 1 thanks to (H K ).
Similar computations shows that the others conditions (6.B.8) are also true. The choices of the multiindex κ such that |κ| = K , and the coordinate y i are arbitrary. Hence, the computations of the terms of equation (6.B.14) shows that there exist two finite sequences (a y) , with the sequences (α K +1 l,n ) 1≤l≤N K +1 ,1≤n≤K +1 ⊂ N and (σ κ l,n ) 1≤l≤N K +1 ,1≤n≤K +1 ⊂ N d that satisfy the conditions (6.B.8).

K +1 l ) 1≤l≤N K +1 ⊂ N and (α K +1 l,n ) 1≤l≤N K +1 ,1≤n≤K +1 ⊂ N such that for every multi-index κ ∈ N d such that |κ| = K + 1 there exists a sequence of multi-index (σ κ l,n ) 1≤l≤N K +1 ,1≤n≤K +1 ⊂ N d such that L κ(y) = (D κ(ψ)(y) + P a K +1 ,α K +1 ,σ κ (ψ)(y))e ψ(
With the exact same computations with c(x, .) instead of ψ, and differentiating with respect to y i under the integral (that is possible as X is compact), one can show that the derivative of the right hand side of equation (6.B.7) reads

R κ(y) = X D κ(c)(x, y) + P a K +1 ,α K +1 ,σ κ (c)(x, y) e ϕ(x)-c(x,y) dµ(x), which proves (H K +1 ).
In what follows, we denote by γ(x, y) = exp(ϕ(x) + ψ(y) -c(x, y)), (6.B.15

)
where c is still the squared euclidean cost, and ϕ, ψ are defined as in Proposition 6.B.1. In particular ψ = ϕ c µ is the c-transform of ϕ. In the next proposition, we show that we can uniformly bound ψ and its derivatives. Proposition 6.B.2. Assume that both distributions µ and ν have their supports included in B(0, R). Denote by ψ = ϕ c,λ µ the c-transform of a function ϕ ∈ L ∞ (X ) with regularization parameter λ = 1. Then, for K ≥ 1, there exists a constant M K that depends only on K , such that for every multi index κ ∈ N d with |κ| = K we have that

D κ ψ ∞ ≤ M K R K .
Proof. Set ψ = ϕ c,λ µ the c-transform of a certain function ϕ ∈ L ∞ (X ) with λ = 1. Let us show by induction that for K ≥ 1 there exists "M K that depends only on K such that for every multi index

κ ∈ N d with |κ| = K , we have D κ ψ ∞ ≤ M K R K " (H K ).
Base case: Set K = 1. Using equation (6.B.10), for i ∈ {1, . . . , d} we can write that for y ∈ Y,

D ei (ψ)(y) = X D ei (c)(x, y)γ(x, y)dµ(x),
where e i is defined in equation (6.B.4). As c is the squared euclidean cost, we have that

D ei (c) ∞ ≤ 4R. Thus |D ei (ψ)(y)| ≤ 4R X γ(x, y)dµ(x).
And using equation (6.B.9) we have that X γ(x, y)dµ(x) = 1. Thus D ei (ψ) ∞ ≤ 4R, which proves that (H 1 ) is true.

Induction step: set K ≥ 1 and assume (H 1 ), . . . , (H K ). Set a multi index κ ∈ N d with |κ| = K + 1. For y ∈ Y, Proposition 6.B.1 allows us to write

D κ ψ(y) = P a K +1 ,α K +1 ,σ κ (ψ)(y) + X D κ c(x, y) + P a K +1 ,α K +1 ,σ κ (c)(x, y)γ(x, y)dµ(x). 120 Thus, |D κ (ψ)(y)| ≤ |P a K +1 ,α K +1 ,σ κ (ψ)(y))| (6.B.16) + |D κ c(x, y) + P a K +1 ,α K +1 ,σ κ (c)(x, y)γ(x, y)|dµ(x).
For the first term of equation (6.B.16), using Proposition 6.B.1 we can write

|P a K +1 ,α K +1 ,σ κ (ψ)(y)| ≤ N K +1 l=1 a K +1 l K +1 n=1 |D σ κ l,n (ψ)(y)| α K +1 l,n ≤ N K +1 l=1 a K +1 l K +1 n=1 M |σ κ l,n | R |σ κ l,n | α K +1 l,n ≤ N K +1 l=1 a K +1 l K +1 n=1 (M K ) α K +1 l,n R K +1 n=1 |σ κ l,n |α K +1 l,n
.

The second inequality derives from (H 1 ), . . . , (H K ). Then, we exploited the conditions on the |σ κ l,n |'s and the α κ l,n 's from Proposition 6.B.1 that are |σ κ l,n | ≤ K , and

K +1 n=1 |σ κ l,n |α κ l,n ≤ K + 1.
Hence, there exists a constant M

(1) K +1 that depends only on K + 1 such that

|P a K +1 ,α K +1 (ψ (1) (y), . . . , ψ (K )) (y))| ≤ M (1) K +1 R K +1 .
(6.B.17)

Regarding the second term of equation (6.B.16), remind that for c(x, y) = x -y 2 , we have that ∀κ ∈ N d such that |κ| ≥ 1, D κ (c) ∞ ≤ 4R. Thus, for every x ∈ X , using Proposition 6.B.1, we have (6.B.20) using condition (6.B.8) from proposition 6.B.1 to get the last inequality. We can thus upper bound |D κ (ψ)(y)| as follows.

|D κ (c)(x, y) + P a K +1 ,α K +1 ,σ κ (c)(x, y)| ≤ 4R + N K +1 l=1 a K +1 l K +1 n=1 (4R) α K +1 l,n (6.B.18) ≤ M (2) K +1 R K +1 n=1 α K +1 l,n (6.B.19) ≤ M (2) K +1 R K +1 ,
|D κ (ψ)(y)| ≤ M

(1)

K +1 R K +1 + M (2) K +1 R K +1 X γ(x, y)dµ(x)
≤ M

(1)

K +1 R K +1 + M (2) K +1 R K +1 X γ(x, y)dµ(x) =1 ≤ M K +1 R K +1 . Hence D κ (ψ) ∞ ≤ M K +1 R K +1
, which proves (H K +1 ).

6.B.3 Conclusion of the proof of Lemma 6.A.1

Proof. Set λ > 0 and denote by f λ the function f λ : x → λ -1/2 x. Exploiting results in [Feydy et al., 2019b] that we reminded in Proposition 3.2.2 of Chapter 3, we have that there exists two optimal potentials (η, ρ) with respect to T 1 (f λ# µ, f λ# ν) such that ρ = η c,λ f λ # µ . Moreover, we can choose ρ(0) = 0 as the potentials are defined up to an additive constant. Next, using Lemma 6.B.1, we have that ψ(y) = λρ(λ -1/2 y) and ϕ(x) = λη(λ -1/2 x) define a pair of optimal potential with respect to T λ (µ, ν). Thanks to the relation between ψ and ρ, we can thus write

ψ(y) = λρ(λ -1/2 y) = -λ log X λ exp η(x) -x -λ -1/2 y 2 df λ# µ(x) = -λ log X exp η(λ -1/2 x) -λ -1/2 x -λ -1/2 y 2 dµ(x) = -λ log X exp η(λ -1/2 x) -λ -1/2 x -λ -1/2 y 2 dµ(x) = -λ log X exp ϕ(x) -x -y 2 λ dµ(x) = ϕ c,λ µ (y).
This last computation shows that ψ is a c-transform of ϕ. The application of Proposition 12 from [Feydy et al., 2019b] ensures that a c-transform inherits the Lipschitz constant of the cost function. The cost function being c(x, y) = ||x -y|| 2 with x, y ∈ B(0, R), we have that ψ is 4R-Lipschitz. And as ψ(0) = ρ(0) = 0, we can write, ∀y ∈ B(0, R), ψ(y) ≤ 4R||y||.

Hence ψ ∞ ≤ 4R 2 . We now study the derivatives of ψ. To do so, we set K ≥ 1 and an arbitrary multi index κ ∈ N d with |κ| = K , using relation ψ(y) = λρ(λ -1/2 y) we have

∀y ∈ Y, |D κ (ψ)(y)| = λ 1-K 2 |D κ (ρ)(λ -1/2 y)|. (6.B.21)
Next, using that ρ is a c-transform with regularization parameter λ = 1 and with respect to the distribution f λ# µ whose support is subset of B 0, R √ λ , we are under the assumptions of Proposition 6.B.2. We can thus write

D κ (ψ)(y) ≤ λ 1-K 2 M K R √ λ K .
Finally, we get that for every multi index κ ∈ N d with |κ| = K there exists a constant M K that depends only on K such that:

D κ (ψ) ∞ ≤ M K λ 1-K R K . (6.B.22)
Hence, we can finally write that

ψ K ≤ M K max R 2 , λ 1-K R K . (6.B.23)
As ψ(0) = 0 and (ϕ, ψ) are optimal potentials with respect to T λ (µ, ν), it concludes the proof of Lemma 6.A.1.

Chapter 7

Application to weights estimation in mixture models

In this last chapter, we exploit the results established in the previous Chapter 6 to propose theoretical justifications for the experimental results presented in Chapter 4. We study the statistical impact of entropic regularization on Wasserstein estimators through the prism of the classical tradeoff between approximation and estimation errors. Wasserstein estimators are defined as solutions of variational problems whose objective function involves the use of an optimal transport cost between probability measures. Such estimators can be regularized by replacing the optimal transport cost by its regularized version using an entropy penalty on the transport plan. Our main contribution is to discuss how entropic regularization may reach, at a lowest computational cost, statistical performances that are comparable to those of un-regularized Wasserstein estimators in statistical learning problems involving distributional data analysis. To this end, we present theoretical results on the convergence of regularized Wasserstein estimators. We also study their numerical performances using simulated and real data in the supervised learning problem of proportions estimation in mixture models. 

Introduction

Wasserstein estimators are defined as solutions of variational problems whose objective function involves the use of an optimal transport (OT) cost between probability measures. Such estimators typically arise in statistical problems involving the minimization of a Wasserstein distance (or more generally an OT cost) between the empirical measure of the data and a distribution belonging to a parametric model (see [START_REF] Bernton | On parameter estimation with the wasserstein distance[END_REF]), and this class of estimators has found important applications in generative adversarial models for image processing (see e.g. [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF]). Wasserstein estimators also represent an important class of inference methods in the field of statistical optimal transport for distributional data analysis where the observations at hand can be modeled as a set of histograms (see e.g. [START_REF] Bigot | Statistical data analysis in the wasserstein space[END_REF][START_REF] Panaretos | Statistical aspects of wasserstein distances[END_REF][START_REF] Petersen | Modeling probability density functions as data objects[END_REF] for recent reviews). Regularized Wasserstein estimators are obtained by replacing the standard OT cost in a variational problem by its entropy regularized version. The use of such a regularization has a beneficial smoothing effect on the resulting estimators as shown in [START_REF] Bigot | Data-driven regularization of wasserstein barycenters with an application to multivariate density registration[END_REF] for the specific problem of computing a smooth Wasserstein barycenter from a set of discrete probability measures. In this work, we discuss how entropic regularization yields estimators that may reach, at a lowest computational cost, statistical performances that are comparable to those of un-regularized Wasserstein estimators in statistical learning problems involving distributional data analysis.

Weights estimation

The motivation of this work comes from the active research field of automated analysis of flow cytometry measurements, see [START_REF] Aghaeepour | Critical assessment of automated flow cytometry data analysis techniques[END_REF]. Flow cytometry is a high-throughput biotechnology used to characterize a large amount of n cells from a biological sample (with n ≥ 10 5 ) that produces a data set X 1 , . . . , X n where each observation X i ∈ R d corresponds to a vector of d biomarkers of each single cell. Automated approaches in flow cytometry aim at a clustering of the data to derive the proportions of the cell populations that are in the biological sample. In Chapter 4, we have considered that such a data set can be represented as a discrete probability distribution 1 n n i=1 δ Xi with support in R d , and we have introduced a new supervised algorithm based on regularized OT to estimate the different cell population proportions from a biological sample characterized with flow cytometry measurements. This approach aims at finding an optimal re-weighting of class proportions in a mixture model between a source data set (with known segmentation into cell sub-populations) to fit a target data set with unknown segmentation.

To be more precise, let us denote by X 1 , . . . , X n , the observations from the source sample, and by Y 1 , ..., Y m the observations from the target biological sample. Thanks to the knowledge of a clustering of the source data set into K classes C 1 , . . . , C K , the empirical measure μn = 1 n n i=1 δ Xi can be decomposed as the following mixture of probability measures,

μn = K k=1 n k n i:Xi∈C k 1 n k δ Xi = K k=1
ρk μk , where ρk = n k n , (7.1.1) and each component μk = i:Xi∈C k 1 n k δ Xi corresponds to a known sub-population of cells with n k = #C k . Then, the method proposed in Chapter 4 aims at modifying the weights (ρ k ) 1≤k≤K in such a way that the re-weighted source measure minimizes a regularized OT cost with respect to the target measure 1 m m j=1 δ Yj . Then, the resulting weights yield an estimation of the proportions of sub-population of cells in the target sample. However, despite the efficiency of the method for the analysis of flow cytometry data, the work in Chapter 4 opens various questions of interest on the influence of the regularization. It is the purpose of this chapter to answer some of them.

Let us now give a description in more mathematical terms of the problem of proportions estimation in mixture models using regularized OT. To this end, we denote by µ = K k=1 ρ k µ k a probability measure that can be decomposed as a mixture of K probability measures µ 1 , . . . , µ K . For θ ∈ Σ K , where

Σ K = {(θ 1 , . . . , θ K ) ∈ R K + : K k=1 θ k = 1}
is the K-dimensional simplex, we define µ(θ) as the re-weighted version of µ that is defined as

µ(θ) = K k=1 θ k µ k . (7.1.2)
Let ν be another probability measure. Proportions estimation in mixture models using OT is defined as the problem of finding θ * ∈ Σ K that minimizes an OT cost between µ θ and ν. Denoting T 0 (µ, ν) the un-regularized OT cost between µ and ν (we shall focus on the squared Wasserstein metric associated to the quadratic cost), the optimal vector of class proportions that we are targeting is:

θ * ∈ arg min θ∈Σ K T 0 (µ(θ), ν).
In practice, one only has access to independent samples from µ and ν denoted by X 1 , ..., X n (with a know clustering) and Y 1 , ..., Y m respectively. Therefore, estimators of θ * will be obtained from the empirical versions of µ(θ) and ν denoted by

μn (θ) = K k=1 θ k μk and νm = 1 m m j=1 δ Yj .
It is well known that the computational cost to numerically evaluate T 0 (µ, ν) can be prohibitive, which led us to consider in Chapter 4 its regularized version denoted by T λ (µ, ν) where λ > 0 represents the amount of entropic penalty that is put on the transport plan in the primal formulation of OT. In this chapter, the regularized version of the OT cost is computed using the Sinkhorn algorithm, which is an iterative procedure whose convergence properties are now well understood, see [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF] for a recent overview. However, after iterations of the Sinkhorn algorithm, it should be noted that one only has an approximation of the regularized OT cost that we will denote by T towards the optimal vector of class proportions θ * . In this study, we take into account both the effect of entropic regularization and the influence of the number of iterations of the Sinkhorn algorithm. Our theoretical results thus shed some light on how the parameters λ and influence the performance of the estimator θ( ) λ . We demonstrate the practical efficiency of our method and the impact of the regularization parameter λ on simulated and real data (flow cytometry measurements). We also analyze the performance of a related estimator defined by replacing the regularized OT cost T λ (µ, ν) in (7.1.3) by the so-called Sinkhorn divergence

S λ (µ, ν) = T λ (µ, ν) - 1 2 (T λ (µ, µ) + T λ (ν, ν)) ,
introduced in [Feydy et al., 2019b] to remove a bias effect induced by the use of T λ (µ, ν) that has been empirically observed in statistical problems involving the use of OT.

Organization of the chapter

In Section 7.2 we recall the mathematical aspects of regularized OT needed to derive our results, and we detail the problem of optimal class proportions estimation in mixture models using OT. In Section 7.3, we introduce the various parametric Wasserstein estimators used to estimate the optimal class proportions.

We also give the main results of this chapter on a theoretical comparison of the convergence rates of regularized and un-regularized Wasserstein estimators. The influence of the number of iterations of the Sinkhorn algorithm on these convergence rates is also discussed. Section 7.4 is focused on numerical experiments that highlight the potential benefits of regularized Wasserstein estimators over un-regularized ones for appropriate choices of the entropic regularization parameter. Section 7.5 contains a conclusion and some perspectives. In Appendix 7.A, we detail the main arguments to obtain the convergence rates of regularized and un-regularized Wasserstein estimators.

7.2 Background on optimal transport and the problem of class proportions estimation

In this section, we first introduce the notion of entropy regularized OT, and we present some of its mathematical properties needed to derive our results. Then, we describe the main application of this work on class proportions estimation in mixture models using OT. Finally, we discuss some identifiability issues in such models.

The OT problem and its regularized counterpart

We first introduce the notations and some assumptions that we use all along the current chapter. We will work in the space R d equipped with the quadratic cost c(x, y) = x -y 2 , where x = x 2 i is the Euclidean norm. Let X and Y be two subsets of R d that are assumed to be compact and included in B(0, R) = {x ∈ R d : x ≤ R} throughout the chapter. We denote by P(X ) and P(Y) the sets of probability measures on X and Y respectively. For Y 1 , . . . , Y n ∼ ν, we denote by νn the empirical counterpart of ν defined as νn = 1 n n i=1 δ Yi . The notation means inequality up to a multiplicative universal constant. For µ ∈ P(X ) and ν ∈ P(Y), we let Π(µ, ν) be the set of probability measures on X × Y with marginals µ and ν. The problem of entropic optimal transport between µ ∈ P(X ) and ν ∈ P(Y) is then defined as follows.

Definition 7.2.1 (Primal formulation). For any (µ, ν) ∈ P(X ) × P(Y), the Kantorovich formulation of the regularized optimal transport between µ and ν is the following convex minimization problem

T λ (µ, ν) = min π∈Π(µ,ν) X ×Y
x -y 2 dπ(x, y) + λ KL(π|µ ⊗ ν), (7.2.1)

where λ ≥ 0 is the regularization parameter.

For λ = 0, the quantity T 0 (µ, ν) is the standard (un-regularized) OT cost, and when λ > 0, we refer to T λ (µ, ν) as the regularized OT cost between µ and ν. Note that the continuity of c : (x, y) → x -y 2 , and the compactness of X and Y imply that T λ (µ, ν) is finite for any value of λ ≥ 0.

For discrete probability distributions, the iterative Sinkhorn algorithm, as defined below, (see e.g. [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]) returns an approximation of the regularized transport cost T λ (µ, ν). (7.2.2)

The variables ϕ ( ) and ψ ( ) being the dual variables returned after iterations of the Sinkhorn algorithm.

To mitigate the bias induced by the Kullback-Leibler divergence in problem (7.2.1) when λ > 0, a de-biased version of the regularized OT cost, also known as the Sinkhorn divergence, was recently introduced.

Definition 7.2.3 (Sinkhorn divergence, from [Feydy et al., 2019b]). Let λ > 0. For any (µ, ν) ∈ P(X ) × P(Y), the Sinkhorn divergence between µ and ν is defined as

S λ (µ, ν) = T λ (µ, ν) - 1 2 (T λ (µ, µ) + T λ (ν, ν)) . (7.2.3)

An alternative transport problem

As in Chapter 6 we will exploit an alternative dual formulation of regularized OT that is specific to the quadratic cost. This alternative dual problem is restricted to a class of Kantorovich potentials that are concave and Lipschitz functions, which proves useful to derive some of the convergence rates given in Section 7.3.2. The relation between these dual problems has already been explicited for un-regularized OT (for example in [START_REF] Villani | Topics in optimal transportation[END_REF]), and we extend it to the regularized case. Let λ ≥ 0. By expanding the squared Euclidean cost, we have for any π ∈ Π(µ, ν),

X ×Y x -y 2 dπ(x, y) + λ KL(π|µ ⊗ ν) = X x 2 dµ(x) + Y y 2 dν(y) (7.2.4) -2 X ×Y
x, y dπ(x, y) + λ KL(π|µ ⊗ ν).

(7.2.5)

The above decomposition leads us to consider the new regularized transport problem

T s λ (µ, ν) = min π∈Π(µ,ν) X ×Y s(x, y)dπ(x, y) + λ KL(π|µ ⊗ ν), (7.2.6) 
with s(x, y) = -2 x, y . First, we remark that the standard regularized Wasserstein distance T λ (µ, ν) and the alternative regularized Wasserstein distance T s λ (µ, ν) are related through the relation

T λ (µ, ν) = X
x 2 dµ(x) + Y y 2 dν(y) + T s λ (µ, ν).

(7.2.7)

A dual formulation associated to the regularized problem with cost s(x, y) = -2 x, y , i.e. problem (7.2.6) is given by the next proposition.

Proposition 7.2.1. The dual problem associated to (7.2.6) writes as

T s λ (µ, ν) = sup ϕ∈L ∞ (X ) ψ∈L ∞ (Y) X ϕ(x)dµ(x) + Y ψ(y)dν(y) - X ×Y m λ (ϕ(x) + ψ(y) + 2 x, y )dµ(x)dν(y), (7.2.8)
where L ∞ (X ) denotes the space of essentially bounded functions quotiented by a.e. equality, and

m λ (t) =    +∞1 {t 0} if λ = 0, λ(e t λ -1) if λ > 0.
(7.2.9) Proposition 7.2.1 has already been proved in Chapter 6 juster after Proposition 6.1.1. The following facts about the s-transform have already been mentioned in the previous chapter. We remind them to facilitate the reading.

Fort the cost function s(x, y) = -2 x, y , we can also define a s-transform and a semi-dual problem as follows. For the cost s(x, y) = -2 x, y and for ϕ ∈ L ∞ (X ) the s-transform is defined as

∀y ∈ R d , ϕ s,λ µ (y) = -λ log X exp ϕ(x)+2 x,y λ dµ(x) , for λ > 0,
-max x∈X (ϕ(x) + 2 x, y ) for λ = 0. (7.2.10)

In the next Section 7.3.2, we introduce two additional assumptions in order to exploit the approximation result established in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF] between the Sinkhorn divergence S λ (µ, ν) and the Wasserstein distance T 0 (µ, ν). Indeed, Theorem 1 in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF], that we remind in Theorem 7.3.1 of this chapter, allows to bound |S λ (µ, ν) -T 0 (µ, ν)| with a constant that depends on λ, the standard Fisher information I(µ), I(ν) of µ, ν, and I(µ, ν) that is the Fisher information of the Wasserstein geodesic between µ and ν defined as in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF].

Fisher information and approximation error of the Sinkhorn divergence S λ (µ, ν)

We discuss conditions that ensure a control of the approximation error between the Sinkhorn divergence S λ (µ, ν) and T 0 (µ, ν). These conditions will prove to be useful when considering S λ as a loss function in Section 7.3.2, for instance in Theorem 7.3.2.

Theorem 7.3.1. [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF][Theorem 1] Suppose that µ and ν have bounded densities and supports. Then, it holds that (7.3.3) where I(µ) refers to the standard Fisher information of µ, and I(µ, ν) is the Fisher information of the Wasserstein geodesic between µ and ν as defined in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF].

|S λ (µ, ν) -T 0 (µ, ν)| ≤ λ 2 4 max{I(µ, ν), (I(µ) + I(ν))/2},
First, we introduce sufficient conditions to ensure that the Fisher Information of µ(θ) can be upper bounded without dependence on θ.

Assumption 7.3.2. The probability distributions µ 1 , . . . , µ K have finite Fisher information with respective densities f 1 , . . . , f K w.r.t. the Lebesgue measure, and all the components µ 1 , . . . , µ K have disjoint supports X 1 , . . . , X K . Proposition 7.3.1. Suppose that assumption 7.3.2 holds. Then, one has that ∀θ ∈ Σ K , I(µ(θ)) ≤ max k∈{1,...,K} I(µ k ).

(7.3.4)

Proof. For simplicity, we consider the case d = 1. Set θ ∈ Σ K . Using the assumption that the components µ k have disjoint supports, and denoting f θ the density function of µ(θ), we decompose the Fisher information of µ(θ) as follows

I(µ(θ)) = X f θ (x) f θ (x) 2 f θ (x)dx = K k=1 θ k X k f θ (x) f θ (x) 2 f k (x)dx = K k=1 θ k X k θ k f k (x) θ k f k (x) 2 f k (x)dx = K k=1 θ k I(µ k ) ≤ max k∈{1,...,K} I(µ k ),
which proves Inequality (7.3.4) for d = 1. The case d > 1 can be treated analogously.

Next, in order to bound the Fisher information of the Wasserstein geodesic between µ(θ) and ν with a constant independent of θ, we adapt the assumptions of Proposition 1 from [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF] to our needs.

Assumption 7.3.3. The probability distribution ν is absolutely continuous with respect to the Lebesgue measure. Moreover, there exist two constants m > 0 and L > 0 such that for all θ ∈ Σ K the Brenier potential ϕ θ between µ(θ) and ν has a L-Lipschitz continuous Hessian satisfying m Id ≤ ∇ 2 ϕ θ .

Proposition 7.3.2. Suppose that Assumptions 7.3.2 and 7.3.3 hold. Then, we have the following inequality

∀θ ∈ Σ K , I(µ(θ), ν) ≤ 2 m max k∈{1,...,K} I(µ k ) + L 2 3m 2 . (7.3.5)
Proof. A straight application of Proposition 1 from [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF] gives that

∀θ ∈ Σ K , I(µ(θ), ν) ≤ 2 m I(µ(θ)) + L 2 3m 2 .
Then, using I(µ(θ)) ≤ max k∈{1,...,K} I(µ k ) from Proposition 7.3.1 yields inequality (7.3.5).

As a consequence of Theorem 6.2.1, we have the following result.

Corollary 7.3.1. Suppose that Assumptions 7.3.2 and 7.3.3 hold. Then, we have that there exists a constant M I > 0 such that (7.3.6) where

∀θ ∈ Σ K , |S λ (µ(θ), ν) -T 0 (µ(θ), ν)| ≤ M I λ 2 ,
M I = 1 4 max 2 m max k∈{1,...,K} I(µ k ) + L 2 3m 2 , max k∈{1,...,K} I(µ k ) + I(ν) 2 . (7.3.7)
Proof. The combination of the upper bounds on I(µ(θ)) and I(µ(θ), ν) established in Proposition 7.3.1 and in Proposition 7.3.2 respectively, as well as the upper bound of Theorem 6.2.1 yields upper bound (7.3.6).

In the next section we present upper bounds on the expected excess risk defined in equation (7.3.2) for the proposed estimators. When the regularization parameter λ is involved, we also propose a decreasing choice (λ n ) n≥0 of its value to ensure that the resulting estimator has an expected excess risk that goes to zero when n → +∞.

Comparison between regularized and un-regularized Wasserstein estimators

We now give the main result of this chapter on a comparison of the convergence rates of the three estimators defined by (7.3.1). For the sake of clarity, we state this result under Assumptions 7.3.1, 7.3.2 and 7.3.3, but it should be noted that the convergence rates for θλ and θ0 hold under weaker assumptions as detailed later on in Section 7.A of the Appendix. In order to present a concise result, we also assume that the dimension is such that d > 4. We refer the reader to Sections 7.A.1 and 7.A.2 for precise convergence rates that hold for any d ≥ 1. The notation means inequality up to a multiplicative universal constant.

As classically done in nonparametric statistics, it is natural to decompose the excess risk of an estimator into an estimation error and an approximation error that need to be balanced to derive an optimal choice of the regularization parameter λ → 0 as the number of observations tends to infinity. For example, it follows from Lemma 7.A.1 that the excess risk of θλ is upper bounded as follows λn that are computed with the Sinkhorn algorithm.

T 0 (µ( θλ ), ν) -T 0 (µ(θ * ), ν) ≤ 2 sup θ∈Σ K |T λ (μ n (θ), νm ) -T λ (µ(θ), ν)| Estimation error +2 sup θ∈Σ K |T 0 (µ(θ), ν) -T λ (µ(θ), ν)|
(i)

E T 0 (µ( θ( n ) λn ), ν) -T 0 (µ(θ * ), ν) n -2 d log(n), with    λ n = n -2/d d , n ≥ dn 4/d . (ii) E T 0 (µ( θS( n ) λn ), ν) -T 0 (µ(θ * ), ν) n -2 d , with    λ n = n -1/d , n ≥ n 3/d .
The detailed proof of 7.3.3 is deferred to Section 7.A.3 of the Appendix. By indulging ourselves to exploit results from this Section 7.A.3 we can justify our choices for the parameter λ n and the number of iterations n .

Proof. For point (i), under our assumptions, using Corollary 7.A.1, we have that for λ small enough, the expected excess risk of θ( ) λ can be bounded as follows

E T 0 (µ( θ( ) λ ), ν) -T 0 (µ(θ * ), ν) n -2/d + dλ log(λ -1 ) + 1 λ .
As in Theorem 7.3.2 we choose λ n = n -2/d /d to bring the approximation error at the same level (up to a log factor) as the estimation error. With this choice of regularization λ n , the algorithm error is upper bounded by dn 2/d / . Now to maintain this algorithm error below the estimation and approximation errors, we choose n ≥ dn 4/d . With this choices for λ n and n , the three sources of error (estimation, approximation and algorithmic) are upper bounded by n -2/d log(n). We can conclude that

E T 0 (µ( θ( n ) λn ), ν) -T 0 (µ(θ * ), ν) n -2/d log(n) as announced in point (i) of Theorem 7.3.3.
For point (ii), using again Corollary 7.A.1 to θS( ) λ , we have under our assumptions that

E T 0 (µ( θS( ) λ ), ν) -T 0 (µ(θ * ), ν) n -2/d + λ 2 + 1 λ .
This time, choosing λ n = n -1/d and n = n 3/d maintains the three sources of error below (up to a multiplicative constant) n -2/d . In other terms, the choices for λ n and n give

E T 0 (µ( θS( n ) λn ), ν) -T 0 (µ(θ * ), ν) n -2/d ,
which concludes this explanation for the tuning of the parameters λ and .

More precise bounds on the expected excess risk are given in Corollary 7.A.1 in Section 7.A.3 of the Appendix. In this Corollary 7.A.1 we give bounds on the expected excess risks of θ( ) λ and θS( ) λ that hold for any regularization parameter λ > 0 and any number of Sinkhorn iterations .

A heuristic for the choice of the additional regularization parameter τ introduced in Chapter 5

In Chapter 5 we focused on the design of algorithms to compute θλ = min θ∈Σ K T λ (μ n (θ), μm ). One possibility was to add a regularization term on the parameter space Σ K to propose a faster computation of θλ . This new problem read θλ,τ := min 7.3.8) where θ * is an optimal vector of class proportions depending on the data that are considered. This protocol is repeated for each value of λ in the grid Λ and each loss function.

θ∈Σ K T λ (μ n (θ), νm ) + τ H(θ), ( 
Remark 7.4.1. In these numerical experiments, we have chosen to focus on the expected error E[ θ-θ * 2 ] rather than the expected excess risk r n (µ( θ), ν) as in flow cytometry the relevant quantity is an accurate estimation of class proportions in the target dataset. Also, notice that the risk r n (µ( θ), ν) cannot be computed exactly because it involves the quantity T 0 (µ( θ), ν) for which we have no closed-form formula.

Simulated data

We first simulated two Gaussian mixtures of dimension d = 6 with the same K = 5 components but with different class proportions. Thus, a source data set corresponds to random vectors X 1 , ..., X n sampled with respect to µ and a target data set corresponds to random vectors Y 1 , ..., Y n sampled with respect to the distribution ν, where µ and ν are defined below:

µ = 5 k=1 π k N (ρ k , σ 2 I d ), ν = 5 k=1 θ * k N (ρ k , σ 2 I d ). (7.4.3)
Again, the vector of proportions π and θ * are not assumed to be equal, and our hope is to exploit the known classes at the source in order to estimate the class proportions θ * at the target, based on empirical versions of µ 1 , . . . , µ K and ν.

We have same number of samples n k = n from each source components µ k than samples from the target distribution ν. This experimentation setting matches the presentation of our theoretical results given in Section 7.3.2. To ease the simulation study, we constrain the number of observations to n k = n = 50 observations for each class of the source data set. In the target data set, we also constrain the number of observations per class with m 1 = 20, m 2 = 5, m 3 = 8, m 4 = 7, m 5 = 10. We display in Figure 7.4.1 two-dimensional projections of one dataset from the source measure and one dataset from the target measure with their respective clustering. Note that the clustering of the target dataset is then assumed to be unknown. 

Unlimited number of Sinkhorn iterations

Through a first series of experiments, we compare the performances of the estimators computed with the losses T 0 , T λ and S λ . In Figure 7.4.2, using a boxplot we display the behavior of the error θλ -θ * 2 for each value of the regularization parameter λ ∈ Λ. In Figure 7.4.3, we also display the estimation of E[ θλ -θ 2 ] using the Monte-Carlo estimator (7.4.2). It appears that for small values of λ, the regularized losses T λ and S λ yield estimators that compete with the one obtained with T 0 . These numerical results are thus in agreement with the theoretical content from Section 7.3.2. Figure 7.4.2: Estimation results on simulated data without limitation on the number of iterations of the Sinkhorn algorithm. We display the error θλ -θ * 2 using either the loss T λ (left) or S λ (right). The black line is the median error of the un-regularized estimator θ0 using the standard optimal transport cost T 0 , while the dotted lines are the first and third quartiles of the errors of estimation θ0 -θ * 2 . We also point out that the computational complexity of the Sinkhorn algorithm is highly dependent on the regularization parameter λ as discussed in [START_REF] Dvurechensky | Computational optimal transport: Complexity by accelerated gradient descent is better than by sinkhorn's algorithm[END_REF], [START_REF] Altschuler | Near-linear time approximation algorithms for optimal transport via sinkhorn iteration[END_REF]. To illustrate this fact, we display in Figure 7.4.4 the time (in seconds) required to compute N = 50 samples of θλ depending on the value of λ. As ∇ θ S(μ n (θ), νm ) = ∇ θ T λ (μ n (θ), νm ) -1 2 ∇ θ T λ (μ n (θ), μn (θ)), computing the gradient of S λ (μ n (θ), ν), requires to solve the dual problem associated to T λ (µ(θ), µ(θ)) in addition to the dual problem associated to T λ (µ(θ), ν). But as noticed in [Feydy et al., 2019b] Sinkhorn algorithm converges much faster for the symmetric term T λ (µ, µ) than in the general case when computing T λ (µ, ν). We have observed in our experiment that the number of iterations before reaching convergence when computing T λ (µ, µ) does not seem to be a monotonic function with respect to the regularization parameter λ. This partially accounts for the slightly longer time of computation for λ = 0.02 in comparison to λ = 0.01 on the right side of Figure 7.4.4, that is when using S λ as loss function. λ (right). The black line is the median error of the un-regularized estimator θ0 using the standard optimal transport cost T 0 , while the dotted lines are the first and third quartiles of θ0 -θ * 2 . 

Flow cytometry data

We now apply our method of class proportions estimation on flow cytometry data. We demonstrate that the regularization parameter λ has also a significant impact on the estimation of class proportions on real data. As an illustrative example, we apply our technique to flow cytometry data sets from the T-cell panel of the Human Immunology Project Consortium (HIPC) -publicly available on ImmuneSpace [START_REF] Brusic | Computational resources for high-dimensional immune analysis from the human immunology project consortium[END_REF]. We arbitrarily chose two data sets that comes from cytometry measurements performed in a Stanford laboratory. One data set, that acts as the source measure, is built from observations measured from a biological sample of a certain patient. Another second data set, acting as the target measure, is built from the observations obtained from a biological sample that comes from another patient. After performing cytometry measurements the observations were manually gated into 10 cell populations: CD4 Effector (CD4 E), CD4 Naive (CD4 N), CD4 Central memory (CD4 CM), CD4 Effector memory (CD4 EM), CD4 Activated (CD4 A), CD8 Effector (CD8 E), CD8 Naive (CD8 N), CD8 Central memory (CD8 CM), CD8 Effector memory (CD8 EM) and CD8 Activated (CD8 A). Hence, for these data sets, a manual clustering is at our disposal to evaluate the performances of our method. In this context θ * is defined as the class proportions defined thanks to the manual gating. For each cell, seven biological markers have been measured, and it thus leads to observations X i and Y j that belong to R d with d = 7. A two-dimensional projection of these datasets is displayed in Figure 7.4.7 with the resulting manual clustering.

Unlimited Sinkhorn iterations

We reproduce the protocol that we have considered in the case of simulated data. To build an empirical distribution of the source distribution when analyzing flow cytometry data, we sub-sample 50 observations from each class of the source data set in order to construct the empirical measures μ1 , . . . , μK , and to define μn (θ) = K k=1 θ k μk for θ ∈ Σ K . Figure 7.4.8 shows two sub-samples from the source and target distributions displayed in Figure 7.4.7. We recall again that the clustering of the target dataset is not used in the estimation procedure.

The numerical performances of the estimators computed with the three loss functions T 0 , T λ and S λ are displayed on Figure 7.4.9 and Figure 7.4.10. In the context of flow cytometry data, the underlying distributions µ and ν are obviously unknown, and the quantity min θ∈Σ K T 0 (µ(θ), ν) is thus not accessible. Therefore, we define the optimal vector θ * of class proportions to be the one in the fully observed (not sub-sampled) target dataset that is displayed in Figure 7.4.7. Those results on real data are consistent with the results of simulated data. Indeed, one can observe that for small values of λ ∈ Λ the accuracy of the estimation obtained with the loss functions T λ and S λ is very similar to the one obtained using T 0 . We display the error θλ -θ * 2 using either the loss T λ (left) or S λ (right). The black line is the median error of the un-regularized estimator θ0 using the loss T 0 , while the dotted lines are the first and third quartiles of θ0 -θ * 2 . 

Limited Sinkhorn iterations

In order to reduce the computational cost of our estimation method, we limit the number of Sinkhorn iterations to = 10. Once again, the results displayed in Figure 7.4.11 and Figure 7.4.12 show that it is possible to propose a competitive alternative to T 0 at a lower computational cost.

Figure 7.4.11: Results on HIPC data when the number of Sinkhorn iterations is limited to = 10. We display boxplots of the error θλ -θ * 2 using either the loss T λ (left) or S λ (right). The black line is the median error of the un-regularized estimator θ0 using the loss T 0 , while the dotted lines are the first and third quartiles of θ0 -θ * 2 . 

Conclusion and discussion

In this work, we have presented a thorough study of Wasserstein estimators based on regularized OT with an emphasis on the influence of the regularization parameter λ. This study was carried out through the example of a mixture model and weights estimation. First, we investigated statistical properties of Wasserstein estimators. We derived upper bounds on the risk of Wasserstein estimators in terms of an estimation error and an approximation error. We assessed the influence of the chosen OT-based loss (among T λ , S λ and T 0 ) on the decay of the estimation and approximation terms. We have also proposed an optimal decay of the regularization parameter λ = λ n based on these upper bounds. Secondly, motivated by the crucial question of the computational cost of regularized OT, we have studied the algorithmic error induced by limiting the number of iterations in the Sinkhorn algorithm. This study resulted in a principled strategy to set the number of Sinkhorn iterations = n in order to maintain the algorithm error below the statistical error. We have also demonstrated with numerical experiments that an appropriate choice of λ and a limited number of Sinkhorn iterations allow to equal the performances of the un-regularized estimator at a reduced computational cost.

For the second difference of equation (7.A.7), we have T λ (μ n ( θλ ), νm ) -T λ (μ n (θ * ), νm ) ≤ 0 as θλ ∈ arg min θ∈Σ K T λ (μ n (θ), νm ). Next, we bound the first and last differences of the same equation (7.A.7) by sup θ∈Σ K |T λ (μ n (θ), νm ) -T λ (µ(θ), ν)|. Hence, we get

T λ (µ( θλ ), ν) -T λ (µ(θ * ), ν) ≤ 2 sup θ∈Σ K |T λ (μ n (θ), νm ) -T λ (µ(θ), ν)|.
Injecting this last inequality in equation (7.A.6) we finally derive

T 0 (µ( θλ ), ν) -T 0 (µ(θ * ), ν) ≤ 2 sup θ∈Σ K |T λ (μ n (θ), νm ) -T λ (µ(θ), ν)| + 2B(λ). (7.A.8)
which is the result claimed in Lemma 7.A.1.

As in the previous Chapter 6, we reduce the control of the estimation to the control of a known empirical process.

Lemma 7.A.2. [Chizat et al., 2020, Lemma 4 and proof of Theorem 2] Assume that ν has compact support subset of B(0, R) and that n independent samples X 1 , . . . , X n ∼ i.i.d. ν from ν are available. Then it holds that

E sup ϕ∈F R Y ϕ(y)d(ν -νn )(y)          R 2 n -1/2 if d < 4, R 2 n -1/2 log(n) if d = 4, R 2 n -2/d if d > 4, (7.A.9)
where hides a constant that depends only on d, and F R denotes the class of concave and R-Lipschitz functions on B(0, R). In the same paper, the authors established that

E Y y 2 d(ν -νn )(y) ≤ 4R 2 n -1/2 . (7.A.10)
From this result, we control the gap between T λ (µ, ν) and its empirical version T λ (μ n , νm ). Due to the repeating use of the upper bound of equation (7.A.9), we denote it by E(d, n) in this chapter. From now on

E(d, n) :=          R 2 n -1/2 if d < 4, R 2 n -1/2 log(n) if d = 4, R 2 n -2/d if d > 4. (7.A.11)
The next proposition gives a control of the estimation error.

Proposition 7.A.2. Let λ ≥ 0. Suppose that Assumption 7.3.1 holds.

(i) If m samples from ν are available, then it holds that

E sup θ∈Σ K |T λ (µ(θ), ν) -T λ (µ(θ), νm )| E(d, m) (7.A.12) (ii) If for each distribution µ k , n k samples are available, then E sup θ∈Σ K |T λ (µ(θ), νm ) -T λ (μ n (θ), νm )| E(d, n) (7.A.13)
where n = min(n 1 , . . . , n K ) and E(d, n) is defined in equation (7.A.11).

Proof. The key point is to exploit the alternative dual formulation of regularized OT that has been introduced in Section 7.2.2. We denote by T s λ the transport cost with ground cost s(x, y) = -2 x, y that is we introduced in equation 7.2.6. Using relation (7.2.7), we remark that for any θ ∈ Σ K ,

T λ (µ(θ), ν) -T λ (µ(θ), νm ) = Y y 2 dν(y) - Y y 2 dν m (y) + T s λ (µ(θ), ν) -T s λ (µ(θ), νm ) = Y y 2 d(ν -νm )(y) + T s λ (µ(θ), ν) -T s λ (µ(θ), νm ). (7.A.14)
Now, let us denote by ϕ and φ two optimal dual potentials respectively associated to T s λ (µ(θ), ν) and T s λ (µ(θ), νm ) when exploiting the semi-dual formulation (7.2.11). We can thus write

T s λ (µ(θ), ν) -T s λ (µ(θ), νm ) = X ϕ(x)dµ(θ)(x) + Y ϕ s (y)dν(y) - X φ(x)dµ(θ)(x) + Y φs (y)dν m (y) = Y ϕ s (y)dν(y) - Y ϕ s (y)dν m (y) + X ϕ(x)dµ(θ)(x) + Y ϕ s (y)dν m (y) - X φ(x)dµ(θ)(x) + Y φs (y)dν m (y) ≤ 0 ≤ Y ϕ s (y)d(ν -νm )(y),
where the last inequality derives from the optimality of φ for the semi-dual formulation of T s λ (µ(θ), νm ). A similar reasoning yields

T s λ (µ(θ), νm ) -T s λ (µ(θ), ν) ≤ Y φs (y)d(ν m -ν)(y)
As ϕ s and φs are both s-transform, Proposition 7.2.2 ensures that both ϕ s and φ belong to F R . Then, Lemma 7.A.2 gives the upper bound A.15) where F R denotes the class of concave and R-Lipschitz functions on B(0, R). The part (i) of Proposition 7.A.2 then follows from Lemma 7.A.2. The part (ii) of Proposition 7.A.2 can be obtained with a similar reasoning, by decomposing the mixtures µ(θ) and μn (θ), one can see that

|T s λ (µ(θ), ν) -T s λ (µ(θ), νm )| ≤ sup ϕ∈F R Y ϕ(y)d(ν -νm )(y) , (7. 
|T λ (µ(θ), νm ) -T λ (μ n (θ), νm )| ≤ sup ϕ∈F R X ϕd(µ(θ) -μn (θ)) + X x 2 d(µ(θ) -μn (θ)) ≤ K k=1 θ k sup ϕ∈F R X ϕd(µ k -μk ) + X x 2 d(µ k -μk ) .
Therefore, applying Lemma 7.A.2 to the probability distribution µ k , we obtain

E sup ϕ k ∈F R X ϕ k d(µ k -μk ) + E X x 2 d(µ k -μk ) E(d, n k )
It follows that for every θ ∈ Σ K , we have

E K k=1 θ k sup ϕ k ∈F R X ϕ k d(µ k -μk ) + X x 2 d(µ k -μk ) E(d, n)
where n = min(n 1 , . . . , n K ). We used the fact that K k=1 θ k = 1 to get the last inequality. We can now write

E sup θ∈Σ K |T λ (µ(θ), νm ) -T λ (μ n (θ), νm )| E(d, n)
which gives the last inequality of Proposition 7.A.2.

Proposition 7.A.3. Set λ ≥ 0 and suppose that Assumption 7.3.1 holds true. Also assume that m samples are drawn from ν and denote by n = min(n 1 , . . . , n K ) where n k is the number of samples from µ k . Then, the expected excess risk of the estimator θλ defined in equation (7.A.1) can be upper bounded by

E T 0 (µ( θλ ), ν) -T 0 (µ(θ * ), ν) E(d, min(n, m)) + B(λ) (7.A.16)
where E(d, n) is an upper bound on the estimation error whose definition is given in equation (7.A.11) and B(λ) is the control over the bias induced by the regularization term and whose expression can be found in equation (7.A.3).

Proof. Set λ ≥ 0. Using Lemma 7.A.1 we have

T 0 (µ( θλ ), ν) -T 0 (µ(θ * ), ν) ≤ 2 sup θ∈Σ K |T λ (µ(θ), ν) -T λ (μ n (θ), νm )| + 2B(λ). (7.A.17)
And breaking the first term into two parts gives

sup θ∈Σ K |T λ (µ(θ), ν)-T λ (μ n (θ), νm )| ≤ sup θ∈Σ K |T λ (µ(θ), ν)-T λ (µ(θ), νm )|+ sup θ∈Σ K |T λ (µ(θ), νm )-T λ (μ n (θ), νm )|.
The straight application of Proposition 7.A.2 to the last inequality allows us to control the estimation term of decomposition (7.A.17). We conclude by adding the bias term B(λ).

Remark 7.A.1. Note that this last result holds for λ ≥ 0. We can thus use it to prove point (i) and point (iii) of Theorem 7.3.2.

7.A.2 Proof of point (ii) of Theorem 7.3.2

In this sections, we investigate the behavior of the regularized estimator defined by A.18) where λ > 0. To analyze the excess risk of the above estimator, a first step is to use an upper bound that can be interpreted as a decomposition of the excess risk between an estimation error and an approximation error.

θS λ = arg min θ∈Σ K S λ (μ n (θ), νm ), (7. 
Lemma 7.A.3. Suppose that Assumptions 7.3.2 and 7.3.3 hold true. Then, the following inequality holds

T 0 (µ( θS λ ), ν) -T 0 (µ(θ * ), ν) ≤ 2 sup θ∈Σ K |S λ (µ(θ), ν) -S λ (μ n (θ), νm )| Estimation error + 2M I λ 2 , Approximation error (7.A.19)
where M I is a positive constant defined in equation (7.3.7).

Proof. We start with A.20) Thanks to the control between S λ and T 0 given in Corollary 7.3.1. We now study the remaining term S λ (µ( θS λ ), ν) -S λ (µ(θ * ), ν) thanks to the decomposition

T 0 (µ( θS λ ), ν) -T 0 (µ(θ * ), ν) = T 0 (µ( θS λ ), ν) -S λ (µ( θS λ ), ν) + S λ (µ( θS λ ), ν) -S λ (µ(θ * ), ν) + S λ (µ(θ * ), ν) -T 0 (µ(θ * ), ν) ≤ 2M I λ 2 + S λ (µ( θS λ ), ν) -S λ (µ(θ * ), ν), (7. 
S λ (µ( θS λ ), ν) -S λ (µ(θ * ), ν) = S λ (µ( θS λ ), ν) -S λ (μ n ( θS λ ), νm ) + S λ (μ n ( θS λ ), νm ) -S λ (μ n (θ * ), νm ) + S λ (μ n (θ * ), νm ) -S λ (µ(θ * ), ν) ≤ 2 sup θ∈Σ K |S λ (µ(θ), ν) -S λ (μ n (θ), νm )|. (7.A.21)
As θS λ ∈ arg min θ∈Σ K S λ (μ n (θ), νm ), we have upper bounded S λ (μ n ( θS λ ), νm ) -S λ (μ n (θ * ), νm ) ≤ 0 to derive inequality (7.A.21). Gathering inequality (7.A.20) and inequality (7.A.21) we get 

T 0 (µ( θS λ ), ν) -T 0 (µ(θ * ), ν) ≤ 2M I λ 2 + 2 sup θ∈Σ K |S λ (µ(θ), ν) -S λ (μ n (θ), νm )|, (7. 
E T 0 (µ( θS λ ), ν) -T 0 (µ(θ * ), ν) E(d, min(n, m)) + M I λ 2 . (7.A.23)
where E(d, n) is an upper bound on the estimation error defined in equation (7.A.11), and M I is a constant defined in equation (7.3.7).

Proof. For λ > 0 set, Lemma 7.A.3 gives

T 0 (µ( θS λ ), ν) -T 0 (µ(θ * ), ν) ≤ 2 sup θ∈Σ K |S λ (µ(θ), ν) -S λ (μ n (θ), νm )| + 2M I λ 2 . (7.A.24)
Next, we break down the estimation error as follows A.25) and focus on the first term of the upper bound sup θ∈Σ K |S λ (µ(θ), ν) -S λ (µ(θ), νm )|. And,

sup θ∈Σ K |S λ (µ(θ), ν)-S λ (μ n (θ), νm )| ≤ sup θ∈Σ K |S λ (µ(θ), ν)-S λ (µ(θ), νm )|+ sup θ∈Σ K |S λ (µ(θ), νm )-S λ (μ n (θ), νm )|, (7. 
sup θ∈Σ K |S λ (µ(θ), ν) -S λ (µ(θ), νm )| ≤ sup θ∈Σ K |T λ (µ(θ), ν) -T λ (µ(θ), νm )| + 1 2 (|T λ (ν, ν) -T λ (ν, νm )| + |T λ (ν, νm ) -T λ (ν m , νm )|).
The expectation of the first term is under control thanks to Proposition 7.A.2. Then, the second and third terms has already been studied in the proof of Proposition 6.3.1 in Chapter 6. Using the work already done we derive

E sup θ∈Σ K |S λ (µ(θ), ν) -S λ (µ(θ), νm )| E(d, m) (7.A.26)
where E(d, m) is defined in equation (7.A.11). We proceed by studying the second term of equation (7.A.25). It can be upper bounded as follows

sup θ∈Σ K |S λ (µ(θ), νm ) -S λ (μ n (θ), νm )| ≤ sup θ∈Σ K |T λ (µ(θ), νm ) -T λ (μ n (θ), νm )| + 1 2 sup θ∈Σ K |T λ (µ(θ), µ(θ)) -T λ (µ(θ), μn (θ))| + 1 2 sup θ∈Σ K |T λ (µ(θ), μn (θ)) -T λ (μ n (θ), μn (θ)|) . (7.A.27)
The expectation of the first term is under control thanks to Proposition 7.A.2. We now detail how to derive an upper bound for the second term and claim that the same reasoning applies to the third term.

Using relation (7.2.7) we have

T λ (µ(θ), µ(θ)) -T λ (µ(θ), μn (θ)) = X x 2 d(µ(θ) -μn (θ))(x) + T s λ (µ(θ), µ(θ)) -T s λ (µ(θ), μn (θ)) (7.A.28)
where T s λ is the alternative transport cost defined in equation (7.2.8). The first term of the right hand side of equation ( 7

.A.28) is upper bounded by ∀θ ∈ Σ K , X x 2 d(µ(θ) -μn (θ)) ≤ K k=1 X x 2 d(µ k -μk ).
(7.A.29)

Once again applying Lemma 7.A.2 to each term of the right hand side of the last inequality yields (7.A.30) where n = min(n 1 , . . . , n K ).

E sup θ∈Σ K X x 2 d(µ(θ) -μn (θ)) ≤ 4R 2 n -1/2 ,
To handle the second term of the right hand side of equation ( 7.A.28) we first set θ ∈ Σ K and denote ϕ (resp. ψ) an optimal potential for the semi-dual formulation of T s λ (µ(θ), µ(θ)) (resp. T s λ (µ(θ), μn (θ))). With this notation we can write,

T s λ (µ(θ), µ(θ)) -T s λ (µ(θ), μn (θ)) = X ϕdµ(θ) + X ϕ s,λ µ(θ) dµ(θ) - X ψdµ(θ) + X ψ s,λ µ(θ) dμ n (θ) = X ϕ s,λ µ(θ) dµ(θ) - X ϕ s,λ µ(θ) dμ n (θ) + X ϕdµ(θ) + X ϕ s,λ µ(θ) dμ n (θ) - X ψdµ(θ) + X ψ s,λ µ(θ) dμ n (θ) ≤ 0 ≤ X ϕ s,λ µ(θ) d(µ(θ) -μn (θ)),
as ψ is optimal with respect to T s λ (µ(θ), μn (θ)). Then, a similar reasoning yields

T s λ (µ(θ), µ(θ)) -T s λ (µ(θ), μn (θ)) ≥ X ψ s,λ µ(θ) d(µ(θ) -μn (θ)). (7.A.31)
Proposition 7.2.2 ensures that a s-transform is concave and R-Lipschitz. We thus have

|T s λ (µ(θ), µ(θ)) -T s λ (µ(θ), μn (θ))| ≤ sup ϕ∈F R X ϕd(µ(θ) -μn (θ)) . (7.A.32)
And then,

sup ϕ∈F R X ϕd(µ(θ) -μn (θ)) ≤ sup ϕ∈F R K k=1 θ k X ϕd(µ k -μk ) (7.A.33) ≤ K k=1 θ k sup ϕ k ∈F R X ϕ k d(µ k -μk ) (7.A.34) ≤ K k=1 sup ϕ k ∈F R X ϕ k d(µ k -μk ) . (7.A.35)
From this, we deduce In this section we give the proofs related to the regularized estimators computed with Sinkhorn algorithm. We remind that for λ > 0, these estimators are given by θ( ) λ ∈ Θ In this section we prove the result related to the estimator derived thanks to an additional regularization on the space of parameters Σ K . For λ, τ > 0 set, the estimator that we study is given by θλ,τ := arg min Chapter 8

sup θ∈Σ K |T s λ (µ(θ), µ(θ)) -T s λ (µ(θ), μn (θ))| ≤ K k=1 sup ϕ k ∈F R X ϕ k d(µ k -μk ) . Hence E sup θ∈Σ K |T s λ (µ(θ), µ(θ)) -T s λ (µ(θ), μn (θ))| ≤ K k=1 E sup ϕ k ∈F R X ϕ k d(µ k -μk ) ,

Conclusion and perspectives

This chapter is the last one of this document. Unsurprisingly, we summarize the work done and underline the original aspects of it. We then propose a few perspectives we would have attempted, had we more time available.

Summary of the contributions

This work started with the problem of automating the analysis of flow cytometry measurements. In Chapter 4, we represented each sub-population as a component of a mixture model. With this point of view we developed an estimator of the weights vector for mixture models. We demonstrated in Chapter 4 that the proposed estimator competes with state-of-the-art methods. Our comparison experiments have been run on synthetic data, and on real flow cytometry measurements.

The weights estimator introduced in Chapter 4 is defined as the minimum of a function that involves a regularized transport cost. Numerical computation of this estimator is a delicate issue in practice. We opened Chapter 5 by a study of the objective function and a discussion around stochastic scheme to approximate its gradient. We then gave our major contribution of this Chapter 5. In Section 5.4 we proposed an additional regularization term on the parameter space. The outcome of this additional regularization was a gentler optimization problem, allowing the use of a classic Robbins-Monro algorithm, and a facilitated theoretical analysis.

In estimation tasks with regularized optimal transport, a sensitive issue is the tuning of the regularized parameter λ. In Chapter 6 we investigated this problem through the case study of estimating the optimal transport cost T 0 (µ, ν). Our investigation leads us to an alternative formulation of the regularized optimal transport problem. We could then derive improved rates of convergence for regularized estimators provided λ is correctly chosen. Pushing our analysis to practical considerations we proposed a choice of regularizing parameter that depends on the number of available observations and their dimension. Along the same practical lines, we advised a limited number of Sinkhorn iterations to reduce the computational cost without deteriorating the estimation. To be more specific we reached the rate n -2/d which is near optimal regarding the minimax rates established in [START_REF] Manole | Sharp convergence rates for empirical optimal transport with smooth costs[END_REF]].

Chapter 7 is devoted to the analysis of our weights estimator through the prism of M -estimation. We defined an optimal weights vector θ * based on the distributions underlying the available observations. We provided sufficient conditions for the quantity θ * to be well defined. In some ways, we generalized the results established in the previous chapter. We analyzed the excess risk of the proposed regularized estimators and derived non-asymptotic rates of convergence. In accordance to the rates of convergence when estimating the optimal transport cost, we retrieved the rate of n -2/d when estimating the optimal weights vector θ * . We also propose some recommendations about the regularization parameter and the number of Sinkhorn algorithm iterations to reach the claimed rates of convergence.

A few perspectives for future research

CytOpT

Regarding the applied side of our work, we propose a few possibilities to pursue the work started with CytOpT. As we think that no automated method can handle the full process of flow cytometry measurements analyses, we wonder at which step of the process could the use CytOpT be most relevant. These reflections would obviously benefit from the dialogue with practitioners and would depend from the application considered. Our approach is particularly efficient in high dimension spaces, as the optimal transport cost takes into account all the dimensions at once. Moreover, high-dimension spaces are difficult to analyze manually, and the increase in the number of biomarkers monitored often leads to this scenario. To bring our work closer to a real life application, we acknowledge the necessity of adding an initial pre-processing step before estimating the class proportions. One of the weaknesses of CytOpT being its sensitivity to outlier, the addition of a robust pre-processing step could really improve the performance and reliability. CytOpT relies on the classification from a single manually gated data set, but in practice several manually gated data sets might be available. As in [START_REF] Redko | Optimal transport for multi-source domain adaptation under target shift[END_REF], exploiting the classification of several gated data sets could lead to further improvement of the performance of CytOpT. Along the same lines, building an average representation for each the cell populations of interest, is an other possibility. Due to our background, we are immediately driven toward the notion of Wasserstein barycenter. However, computing Wasserstein barycenter in high dimension is still an arduous task. Sampling strategies developed for instance in [START_REF] Daaloul | Sampling from the wasserstein barycenter[END_REF] could be suitable approaches for the approximation of Wasserstein barycenter of several manually gated data sets.

Further from the work presented in Chapter 4, but still in relation with flow cytometry measurements, we learned in [START_REF] Saeys | Computational flow cytometry: helping to make sense of high-dimensional immunology data[END_REF] that flow cytometry can be used for biomarkers identification. In this line of research, the following method could be developed to link biomarkers to clinical outcomes. Assume to have one series of flow cytometry measurements X 1 , . . . , X n of d markers from a healthy patient, and an other series of measurements Y 1 , . . . , Y n from a sick patient. We denote by X (1:l) i ∈ R l the l first coordinates of X i , i.e. the first l biomarkers measured on the ith cell. With these notations, we have X ) may bring some information on the biomarkers that impact the clinical status of patients.

Computational improvements

We now mention some ideas to pursue the work presented in Chapter 5. A natural extension is to study the same variational problem but regularizing the transport plan by KL(π|µ ⊗ ν) instead of KL(π|M ⊗ Leb). This choice would allow to remove the assumption that ν is absolutely continuous with respect to the Lebesgue measure. Note that we went through computational difficulties when trying to implement this idea in practice1 . However, our lack of success when regularizing the transport plan by KL(π|µ ⊗ ν) should not deter anyone from trying. For a more general framework, we could also propose an algorithm designed to minimize a larger class of optimal transport variational problem, and not only the re-weighting problem addressed in Chapter 5. We would also like to sharpen the convergence results of the algorithm described in Section 5.4 for solving the regularized problem min θ∈Σ K T λ (μ n (θ), ν) + τ H(θ). Exploiting the techniques of [START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF], we still have the hope to derive asymptotic normality of the regularized estimator of the class proportions. We also think that non asymptotic-rates of convergence would be very interesting results when targeting real life applications. As in [Bercu et al., To be published] we could rely on second order methods to solve the regularized re-weighting problem that appeared in this Chapter. Still focusing on the regularized problem min θ∈Σ K T λ (μ n (θ), ν) + τ H(θ) we remind that the regularizing term H is the entropy function. Alternatively stated, the regularizing term is the Kullback-Leibler divergence with respect to the uniform distribution. With immunological applications in mind, this regularization term may not be the most relevant choice. For instance, regularizing the class estimation problem with the Kullback-Leibler divergence with respect to the class proportions distribution of a sick patient may be a safer choice for medical applications. In the same line of ideas, this regularizing term could lead to a Bayesian interpretation of interest.

Estimation of the optimal transport cost T 0 (µ, ν)

Our numerical experiments (see Section 6.5) suggest that there is still room for theoretical improvement around the question of the estimation of the optimal transport T 0 (µ, ν). On the theoretical side we have shown that the two estimators T 0 (μ n , νn ) and S λn (μ n , νn ) share the same rate of convergence n -2/d , but in practice S λn (μ n , νn ) demonstrates better performance than T 0 (μ n , νn ). We think that the study the plug-in estimator bias i.e. |E[T 0 (μ n , νn )] -T 0 (μ n , νn )| might provide some elements of understanding. To extend our result, we could relax the assumption that µ and ν have compact supports with the assumption that these probability distributions have sub-Gaussian behavior. An other possibility to move beyond the compacity assumption would be to exploit the moment conditions and techniques developed in [START_REF] Manole | Sharp convergence rates for empirical optimal transport with smooth costs[END_REF]. With the same purpose of reaching for a more general result, we could substitute the squared euclidean cost c(x, y) = x -y 2 with a generic cost c satisfying some regularity assumptions. In Chapter 6, we took into account the computational error induced by Sinkhorn algorithm to mitigate the computational cost while preserving a near optimal rate of convergence. At first glance, we could substitute Sinkhorn output by the quantity returned by an other algorithm, provided non-asymptotic rates of convergence are established. We thus believe that we could extend our results to the output of the stochastic algorithms presented in [Bercu and Bigot, 2021, Bercu et al., To be published] where non-asymptotic rates are proofed. This reasoning could hold for other algorithms where limiting the computational cost is relevant.

Weights estimation in mixture models with optimal transport

As when targeting the optimal transport cost T 0 (µ, ν), we could try to relax our assumptions when estimating the optimal weights θ * = arg min θ∈Σ K T 0 (µ(θ), ν). For instance, substituting the squared euclidean cost by an other ground cost function, or extending our results to probability distributions with non compact supports are two possibilities for future research. Then, we must indicate an incomplete aspect of our theoretical results. So far, for an estimator θn of θ * , we have derived a control on the excess risk, that is T 0 (µ( θn ), ν) -T 0 (µ(θ * ), ν). But from an applied point of view, a direct control of the weights estimator, i.e. of the quantity θn -θ * , would be much more valuable. Once a control over θn -θ * established, we would be motivated by developing statistical tests. To do so, we should prove a central limit theorem on an estimator θn . Even better, concentration inequalities on θn around θ * could lead to non-asymptotic tests. While of high interest for practical applications, to speak the true, we do not really know how to proceed.

Proof of the Lemma

First we present a result given in [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF] where the empirical process under study is indexed by a class of Lipschitz and convex functions. We then propose a detailed proof of this Lemma.

Lemma 9.1.1. [Chizat et al., 2020, Lemma 4 and proof of Theorem 2] Assume that ν has compact support included in B(0, R) and that n samples Y 1 , . . . , Y n ∼ i.i.d. ν are available. Then it holds that (9.1.3) where hides a constant that depends only on d, and F R denotes the class of concave and R-Lipschitz functions on B(0, R).

E sup ϕ∈F R Y ϕ(y)d(ν -νn )(y)          R 2 n -1/2 if d < 4, R 2 n -1/2 log(n) if d = 4, R 2 n -2/d if d > 4,
Proof. Without loss of generality, we can assume that for all ϕ ∈ F R , ϕ(0) = 0, and as a consequence, for all ϕ in this class of functions, ϕ ∞ ≤ R 2 .

Step 1: symmetrization We begin by the application of Theorem 9.1.1 to get Step 2: Refined entropy integral To proceed our proof we will need an additional ingredient that is an alternative version of Dudley's entropy intregral bound.

E sup ϕ∈F R 1 n n i=1 ϕ(Y i ) - Y ϕ(y)dν(y) ≤ 2E sup ϕ∈F R 1 n n i=1 ξ i ϕ(Y i ) = 2 √ n E sup ϕ∈F R 1 √ n n i=1 ξ i ϕ(Y i ) ( 
Theorem 9.1.4. [START_REF] Wainwright | High-dimensional statistics: A non-asymptotic viewpoint[END_REF] with N (T, ρ, ε) the ε-covering number of T with respect to ρ.

Note that in [START_REF] Wainwright | High-dimensional statistics: A non-asymptotic viewpoint[END_REF] the right hand side of equation (9.1.6) is substituted by E sup t,t ∈T (Z t -Z t ) . However, the zero mean assumption on the Gaussian process (Z t ) t∈T implies E sup t∈T Z t = E sup t∈T (Z t -Z t0 ) ≤ sup t,t ∈T (Z t -Z t ) .

(9.1.7)

We are now going to apply Theorem 9.1.4 to the random process

(Y ϕ ) ϕ∈F R with Y ϕ = 1 √ n n i=1 ξ i ϕ(Y i ).
Step 3: Subgaussian behavior Before applying Theorem 9.1.4, we must show that this random process (Y ϕ ) ϕ∈F R is sub-Gaussian. To do so, set ϕ, ψ ∈ F R . Then, we have

Y ϕ -Y ψ = n i=1 ξ i √ n (ϕ(Y i ) -ψ(Y i )) .
Denote by ∆ i the quantity

∆ i = σi √ n (ϕ(Y i ) -ψ(Y i ))
and by (F i ) 1≤i≤n the filtration defined by F i = σ(Y 1 , ξ 1 , . . . , Y i , ξ i ). For all i ∈ {1, . . . , n}, ∆ i is F i measurable, and we have

- ϕ -ψ ∞ √ n ≤ ∆ i ≤ ϕ -ψ ∞ √ n .
(9.1.8)

Applying Azuma-Hoeffding inequality as defined is Theorem 9.1.2 gives that Y ϕ -Y ψ is subgaussian with variance proxy 1 4

n k=1 2 ϕ -ψ ∞ √ n 2 = ϕ -ψ 2 ∞ .
We thus finally have (δ/4) -(d-4)/4 -(3R 2 ε 0 ) -(d-4)/4 .

Step 5: Conclusion Remembering that equation (9.1.11) holds true for every δ ≥ 0 small enough, we have (9.1.16) as claimed in Lemma 9.1.1.

E sup ϕ∈F R (Y ϕ )          R 2 if d <
         R 2 n -1/2 if d < 4, R 2 n -1/2 log(n) if d = 4, R 2 n -2/d if d > 4,
In the same paper [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF], the authors established what we presume to be a less involved result.

Lemma 9.1.2. [START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF] Assume that ν has compact subset included in B(0, R). Also assume that we have n samples Y 1 , . . . , Y n i. i. d. with distribution ν. Then, the following inequality holds true, E Y y 2 d(ν -νn )(y) ≤ 4R 2 n -1/2 . (9.1.17)

Proof. First, we rewrite

Y y 2 d(ν -νn )(y) = E Y 2 - 1 n n i=1 Y i 2 ,
where Y is a random variable with distribution ν. Then, applying Chebyshev's inequality to the random variable (9.1.18) where V Y 2 is the variance of Y 2 . As Y has distribution ν whose support is included in B(0, R),

1 n n i=1 Y i 2 yields ∀t > 0, P E Y 2 - 1 n n i=1 Y i 2 > t ≤ V Y 2 nt 2 .
V Y 2 ≤ R 4 . We also have the naive bound (9.1.19) 9.3 Variations of regularized optimal transport in the discrete case

∀t ∈ [0, R 2 / √ n], P E Y 2 - 1 n n i=1 Y i 2 > t ≤ 1.
We have noticed minor variations when regularizing the optimal transport problem in the discrete setting.

In this section we discuss how the regularization term denoted by R impacts the formulations of the regularized transport cost T λ . To ease the analysis, we restrict our study to the case of comparing two discrete distributions. Let us say that we have two discrete probability distributions on where Π(a, b) is the set of coupling matrices between the vector of weights a, b, and R is a regularizing function.

Two different regularization terms and consequences

In the literature related to our work, we have found two regularizing functions for the optimal transport problem. In the python library POT [START_REF] Flamary | Pot: Python optimal transport[END_REF] or in the monograph [START_REF] Peyré | Computational optimal transport[END_REF], the regularization term is the entropy defined as

H(π) = i,j
log(π i,j )π i,j .

(9.3.2)

This entropy function defined in equation (9.3.2) does not adapt well to the continuous setting. Therefore, denoting by a ⊗ b the product matrix defined by (a ⊗ b) i,j = a i b j , the Kullback-Leibler divergence between the transport plan π and a ⊗ b is sometimes preferred [Feydy et al., 2019b]. And in this case, the regularizing term reads Remark 9.3.1. To be precise, in the monograph [START_REF] Peyré | Computational optimal transport[END_REF], the entropy term is set to H(π) = i,j (log(π i,j ) -1)π i,j . As this choice only differs from (9.3.2) to an additive term independent of π, the solution of the optimization problem (9.3.2) does not change.

Computations in the uniform case

We give a particular case where the regularized optimal transport plan π λ is the same for both regularizing terms H and KL. We assume µ and ν to be uniform distributions, i. π i,j log(π i,j ) + log(nm) = H(π) + log(nm).

(9.3.5)

Hence, in the uniform case, the optimal regularized transport plan π λ is the same whether the regularizing term chosen is H or KL1 . As a consequence, denoting where π λ is the solution of the POT regularized problem that we remind in equation (9.3.4). In practice, we often used this particular case to check the correctness of our computations by comparing to the POT library.

Dual Formulations and c-transforms

Dual formulations

The choice of the regularized term impacts the dual formulation. First, we remind the regularized Kantorovich problem:

T R λ (µ, ν) = min π∈Π(a,b) i,j C i,j π i,j + λR(π) (9.3.7)

where C i,j = ||x i -y j || 2 and R is the regularizing term that equals (9.3.2) or (9.3.3). Let us sketch a proof of demonstration for the dual problem with a regularizing term denoted by R(π). The following computations originate from the proof of Proposition 4.4 in [START_REF] Peyré | Computational optimal transport[END_REF] in the case of the usual entropy H as regularizing term. As claimed in equation (9.3.8). With the Kullback-Leibler divergence as regularizing term, the same change of variable ϕ = ϕ -λ allows to recover dual formulation (9.3.9).

The c-transforms

We now present the impact of the regularizing term on the regularized c-transforms. The notion of ctransform appears when setting one of the dual variable ϕ, and searching for the other potential ψ that maximizes the dual function. The interest of this manipulation is to reach an optimization problem that depends only on ϕ. Applying this transformation on each potential iteratively defines the celebrated Sinkhorn algorithm [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF].

Transport optimal régularisé pour l'estimation des poids dans des modèles de mélange, et application à la cytométrie en flux Résumé : Les modèles de mélange permettent de représenter différentes sous-populations au sein d'un ensemble d'individus. Dans ces modèles, le paramètre des poids quantifie la proportion des différentes souspopulations au sein de la population générale représentée par le mélange. Dans cette thèse, nous développons des outils pour l'estimation de ce paramètre des poids. Les méthodes proposées dans ce document reposent sur le coût de transport optimal entre mesures de probabilités. Régulariser par l'entropie le problème de transport optimal permet d'en accélérer le calcul effectif. Les propriétés théoriques du coût de transport, et l'accélération algorithmique permise par le terme de régularisation font du coût de transport régularisé un outil potentiellement efficace en estimation statistique. Dans cette thèse, on étudie une famille d'estimateurs des poids, où chaque estimateur est défini par le minimum d'une fonction faisant intervenir un coût de transport régularisé. Les travaux présentés dans cette thèse sont organisés selon trois axes. Tout d'abord, on utilise ces nouveaux estimateurs des poids pour le traitement de mesures de cytométrie en flux. Dans ce cadre applicatif, le modèle de mélange représente un ensemble de cellules biologiques, et chaque composante du mélange représente une certaine sous-population. On aborde ensuite le développement d'algorithmes efficaces pour le calcul des estimateurs proposés. On étudiera particulièrement des algorithmes stochastiques afin de minimiser les coûts de transport régularisés définissant les estimateurs des poids. Enfin, on s'attache à étudier l'impact statistique du terme de régularisation entropique ajouté au problème de transport optimal. Cette étude se fait pour l'estimation du coût de transport, ainsi que pour l'estimation des poids dans un modèle de mélange. Notre analyse nous permet de proposer un choix du paramètre de régularisation dépendant du nombre d'observations et de leur dimension.

Mots-clés : Transport optimal; régularisation entropique; modèles de mélange; estimation des poids; cytométrie en flux; algorithme stochastique; erreur d'estimation non-asymptotique.

Regularized optimal transport for weights estimation in mixture models, and application to flow cytometry Abstract: Mixture models are relevant to represent several sub-populations inside a global population. In these models, the weights parameter accounts for the proportions of the different sub-populations that compose the global population. In this thesis, we develop new tools for the estimation of the weights parameter. Our developments are based on the notion of optimal transport cost between probability distributions. Recently, a regularized version of the optimal transport cost has demonstrated its computational efficiency. The theoretical properties of the optimal transport cost, and the computational improvement due to the regularizing term, make the regularized optimal transport cost a potentially effective tool for statistical estimation. The weights estimators introduced in this thesis, are defined as solutions to minimization problems involving regularized optimal transport costs. The works presented in this document revolve around three axes. First, we apply a new weights estimator on flow cytometry measurements. In this context, we study a population of cells represented by a mixture model, where each component of the model corresponds to a specific sub-population of cells. Second, we endeavor to design efficient algorithms to compute the proposed estimators. We focus on stochastic approaches to minimize the regularized optimal transport costs that define the weights estimators studied. Finally, we study the statistical impact of the regularization term added to the optimal transport problem. We address this point through the cases of the optimal transport cost estimation problem, and the weights estimation problem in mixture models. Our study results in a choice of the regularization parameter that depends on the number of observations available and their dimension. Keywords: Optimal transport; entropic regularization; mixture models; weights estimation; flow cytometry; stochastic algorithm; sample complexity.
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  d selon ν. Une manière possible d'estimer ν en utilisant le modèle {µ(θ) | θ ∈ Θ} est de résoudre un problème d'optimisation de la forme min θ∈Θ L(µ(θ), {Y 1 , . . . , Y n }), (1.1.7) où L désigne une fonction adaptée au problème. Des exemples classiques de telles fonctions sont la divergence de Kullback-Leibler ou la distance euclidienne. Dans cette thèse, les fonctions utilisées pour comparer un modèle à des observations sont définies à partir d'un coût de transport optimal. Dans ce cadre, on commence par définir µ(θ * ) la meilleure approximation de ν dans le modèle {µ(θ) | θ ∈ Θ}. Le paramètre θ * définissant µ(θ * ) est formellement défini par θ * := arg min θ∈Θ T 0 (µ(θ), ν). (1.1.8) L'approximation µ(θ * ) de ν définie, il s'agit d'estimer θ * à partir de l'échantillon Y 1 , . . . , Y n i.i.d selon la mesure ν. Comparer un élément µ(θ) du modèle et l'échantillon Y 1 , . . . , Y n en utilisant le coût de transport T 0 nécessite de représenter l'échantillon comme une mesure de probabilité. Pour cela, on remplace ν dans le problème (1.1.8) par sa mesure empirique νn définie par νn = 1 n n j=1 δ Yj . Enfin, on introduit la famille d'estimateurs ( θλ ) λ≥0 de θ * définis par θλ := arg min θ∈Θ T λ (µ(θ), νn ) où λ ≥ 0.

  désigne les vecteurs de probabilités à K coordonnées. Pour estimer les proportions des différentes populations cellulaires dans le jeu de données non-classifié Y 1 , . . . , Y m , on défini la mesure empirique associée νm := 1 m m j=1 δ Yj . Puis, on minimise le coût de transport régularisé entre la mesure empirique νm et le modèle M défini en (1.2.2). On propose donc l'estimateur θλ := arg min θ∈Σ K T λ (μ n (θ), νm ),

  1.2.10) où (γ N ) N ≥0 ⊂ R * + est la suite des pas, et les Y 1 , . . . , Y N +1 une suite de variables aléatoires indépendantes et identiquement distribuées selon ν. Sous l'hypothèse qu'il existe ϕ * ∈ R n solution du problème d'optimisation inf ϕ∈R n E [h λ,τ (Y, ϕ)], on montre le résultat suivant. À partir de la suite ( ϕ N ) N ≥0 définie par la relation (1.2.10), on peut calculer une suite ( θN ) N ≥0 tel que

E

  [|T 0 (µ, ν) -T λ (μ n , νn )|] . (1.2.15) Nous abordons ce problème en majorant l'erreur (1.2.15) par un terme d'erreur d'approximation et par un terme d'erreur d'estimation. On obtient alorsE [|T 0 (µ, ν) -T λ (μ n , νn )|] ≤ |T 0 (µ, ν) -T λ (µ, ν)| approximation + E [|T λ (µ, ν) -T λ (μ n , νn )|] estimation .

  . , C K . En notant n k le nombre d'observations dans la classe C k , la mesure empirique associée à la classe C k est définie par μk = 1 n k i:Xi∈C k δ Xi . Les K mesures empirique μ1 , . . . , μK permettent d'introduire le modèle empirique M := μn (θ) = k k=1 θ k μk θ ∈ Σ K .

  Yj . On peut dès lors introduire les deux familles d'estimateurs ( θλ ) λ≥0 et ( θS λ ) λ>0 , respectivement définies par θλ := arg min θ∈Σ K T λ (μ n (θ), νm ) et θS λ := arg min θ∈Σ K S λ (μ n (θ), νm ).
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  e. a model M := {µ(θ) | θ ∈ Θ} where Θ ⊂ R D and observations Y 1 , . . . , Y n sampled from an unknown distribution ν. As Θ ⊂ R D , i.e. each element of the model M is described by a finite number of parameters, we are in a parametric framework. Parametric estimation often consists in searching in the model M a distribution µ(θ * ) as close as possible to ν. In our estimation problem, the quantity of interest is therefore θ * ∈ Θ. As ν is unknown, and only a sequence of samples Y 1 , . . . , Y n ∼ ν from this distribution is available, estimating θ * is often performed by solving problems like min θ∈Θ L(µ(θ), {Y 1 , . . . , Y n }), (2.3.5) where L depends on the problem under study. Negative log-likelihood, mean-squared error are classic examples of functions L to minimize. We often refer to L as the loss function or the objective function.

  Yi . With a loss function that involves an optimal transport distance, a model M := {µ(θ) | θ ∈ Θ} parameterized by Θ, and νn an empirical distribution built from Y 1 , . . . , Y n ∼ ν, an estimator θn of θ * is defined by θn := arg min θ∈Θ T 0 (µ(θ), νn ({Y 1 , . . . , Y n })).

  For a HIV patient under treatment, flow cytometry measurements allow to evaluate the response to the treatment by measuring the T-helper cells level in the patient's blood. The works presented in this document aim at contributing to the use of flow cytometry data to immunology. The precise type of cells that we have worked on is a specific type of white blood cells named the T-cells. Our work is based on a distribution of the T-cells into 10 cell sub-populations. Among the 10 cell sub-populations of T-cells are the T-helper cells. This division into 10 sub-populations is based on the different biomarkers found at the surfaces of the T-cells. We refer to Section 4.1.4 in Chapter 4 for a more precise description of the data we used. In the context of T-cells analysis with flow cytometry measurements our driving question rephrases as follows. Suppose that we are given flow cytometry measurements from a population of T-cells that divides into 10 sub-populations. What are the proportions of the 10 sub-populations of T-cells among all the T-cells that are in the biological sample analyzed? This question is precisely the one that we tried to answer in Chapter 4. It then motivated other developments in Chapters 5 and 7.

Calculation in R ddn

  Dimension of the observations. Number of biomarkers in flow cytometry measurements. Number of observations. Number of cells in flow cytometry measurements.

K

  Number of components in the mixture model. Number of sub-populations in flow cytometry measurements.

  .1.25) Let us denote by µ = n i=1 a i δ xi and ν = m j=1 b j δ yj two discrete distributions. In this situation, the Kantorovich problem (3.1.2) between µ and ν reads T 0 (µ, ν) = min π∈Π(a,b) i,j C i,j π i,j . (3.1.26) Where Π(a, b) = {π ∈ R n×m +

δ

  T 0 (μ n , νn ) where μn = 1 n n i=1 Xi and νn = 1 n n j=1 δ Yj .(3.4.13) 

  Theorem 3.4.5. [Manole and Niles-Weed, 2021][Theorem 21] Assume that both subsets X and Y are convex with non empty interior. Denoting Z = X -Y = {x -y | x ∈ X and y ∈ Y}, also assume there exists a convex open set Z 1 such that Z ⊂ Z 1 ⊂ B(0, 2). Then, there exists a constant C that depends on X , Y and d such that inf Tn sup µ∈P(X ) ν∈P(Y)
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 41 Figure 4.1: Example flow cytometry data set of a biological sample from Stanford patient 1 replicate A.

  Figure 4.2 displays an example of a pair of source and target data sets with their corresponding class proportions. Figure 4.3 displays the median class proportions retrieved with theses 100 estimates and the variability of these estimates. In this scenario, CytOpT is the method which offers the best trade-off between accuracy and stability.
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 42 Figure 4.2: Simulated source data set and Simulated target data set. Using the segmentation of the source data set (Left) CytOpt estimates the class proportions in a target data set (Right) without making use of the classification of the target data set.
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 43 Figure 4.3: Performances of the automated methods tested to estimate the class proportions. For each method, one boxplot displays the median and the variation of the estimation of the weight of one component.
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 44 Figure 4.4: Scenarios with additional observations in the target. Top: the additional class (in black) is uniformly distributed in [0, 1] d . Bottom: the additional class (in black) is distributed with respect to a Normal distribution.
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 45 Figure 4.5: Robustness assessment of CytOpt performance according to Kullback-Leibler divergence of the estimated proportion.

4. 5

 5 Application to real flow cytometry data analysis 4.5.1 Proof of concept with a two classes example
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 4647 Figure 4.6: Illustration of the CytOpT framework. CytOpt estimates the class proportions in an unclassified data set (Stanford3A, right) from one classified data set (Stanford1A, left) without clustering the observations of Stanford3A.
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 48 Figure 4.8: Optimal transport plan π λ between the source and target distribution. A green line between X iand Y j indicates that the optimal transport plan π λ moves some mass from X i to Y j . To facilitate readability, the target data set has been shifted, and only 500 coefficients of π λ have been represented. Without re-weighting, mass from the CD8 class in the source data set is sent toward the CD4 class in the target data set. With re-weighting, the mass from one class in the source data set is sent to the corresponding class in the target data set.
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 49 Figure 4.9: Results of the soft assignment method and comparison with the manual clustering on the data set Stanford3A. From left to right: Label transfer without reweighting -Label transfer with reweighting -Manual gating benchmark

  d and ∀j ∈ {1, . . . , m}, Y j ∈ [0, 1] d . Comparison with a straight application of one Manual Gating As previously stated, technical variability across samples can lead to misalignment of flow cytometry data. For instance, spatial shift is displayed on Figure 4.10 with only CD4 cells and the corresponding manual gating established on the basis of the Stanford1A measurements alone. While the four classes displayed on Figure 4.10 represent the same biological phenomenon, it appears that the boundaries differ among the different centers. To illustrate the interest of CytOpT when technical variability induces a shift between the source and the target data set we compare CytOpT with the mere application of the Stanford 1A manual gates to the ungated data set. This comparison is performed on the 61 remaining ungated data sets. The bland-Alman displayed on Figure 4.11 shows that CytOpT provides a significant improvement over the direct application of Stanford1A's gating. We will now compare CytOpT with state-of-the-art automated approaches designed to analyze flow cytometry data.

Figure 4 .

 4 Figure 4.10: 2D projection of three cytometry data sets. Left: CD4 cell measurements performed in Stanford. Middle: CD4 cell measurements performed in Nhlbi. Right: CD4 cell measurements performed in Miami.

Figure 4 .

 4 Figure 4.11: Bland-Altman of CytOpT and Stanford1A's gating compared to specific manual gating benchmark.
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 412 Figure 4.12: Comparison of the proportions θ estimated by four automated methods and the manual benchmark θ * on the HIPC database. By plotting the difference against the mean of the results of two different methods, the Bland-Altman plot allows to assess the agreement between an automated method and the manual benchmark.
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 413414 Figure 4.13: Comparison between our algorithm CytOpT and one of the state of the art automated method for cytometry data analysis: OptimalFlow. The comparison was performed on the data sets of the HIPC panel.

Figure 4 . 15 :

 415 Figure 4.15: Comparison of the proportions θ estimated with CytOpT and the manual benchmark θ * on the OptimalFlow database.
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λ

  can be linked to T µ⊗ν λ thanks to a more general result. As shown in[Marino and Gerolin, 2020][Lemma 1.6], for m 1 and m 2 two arbitrary measures respectively defined on X and Y, the Kullback-Leibler divergence with reference measure m 1 ⊗ m 2 can always be linked to the Kullback-Leibler divergence with reference measure µ ⊗ ν. A relation between the transport problem regularized by KL(•|µ ⊗ ν) and the transport problem regularized by KL(•|M ⊗ Leb) follows. Lemma 5.2.1. [Marino and Gerolin, 2020][Lemma 1.5] Set µ and ν two probability distributions on R d with compact supports respectively denoted by X and Y. For m 1 and m 2 two Borel measures on X and Y, we denote by T m1⊗m2 λ (µ, ν) the transport problem with regularizing term KL(•|m 1 ⊗ m 2 ) i.e. T m1⊗m2 λ (µ, ν) = min π∈Π(µ,ν) X ×Y

  Assumption 5.4.1. With notation H λ,τ (ϕ) = λ Y log the problem inf ϕ∈R n H λ,τ (ϕ) admits a solution ϕ * ∈ R n .

  solution θ * λ,τ of the left hand side problem of equation (5.4.7) is linked to a solution ϕ * of the right hand side problem through the relation θ * λ,τ = χ τ (ϕ * ) with χ τ defined in (5.4.6). The proof of Lemma 5.4.2 can be found in Section 5.C.4. Formulation (5.4.7) is just a rewriting of the function H λ,τ as H λ,τ (ϕ) = E [h λ,τ (Y, ϕ)]. The main point of this Lemma is to link a minimizer of H λ,τ to the quantity of interest θ * λ,τ . We study the properties of the new objective function H λ,τ and show that we can reduce the problem to a subspace of R n . Lemma 5.4.3. Set λ, τ > 0, and suppose that Assumption 5.2.1 holds true. The function H λ,τ : R n → R defined by H λ,τ (ϕ) = E [h λ,τ (Y, ϕ)] (5.4.9) with Y ∼ ν and h λ,τ defined in equation (5.4.8) is convex. Moreover, under Assumption 5.4.1, the function H λ,τ admits a global minimum on e n ⊥ where e n = 1 √ n 1 n . The proof of Lemma 5.4.3 can be found in Section 5.C.4 of the appendix. We now propose a numerical scheme to solve the minimization problem min ϕ∈R n E[h λ,ϕ (Y, ϕ)]. The expectation formulation (5.4.7) of our new objective function given in Lemma 5.4.2, and the fact that h λ,τ is a convex function lead us to the use of stochastic optimization techniques to solve this new problem.

  Suppose that Assumptions 5.2.1 and 5.4.1 hold true, and denote by ( ϕ N ) N ≥0 the random sequence defined by the Robbins-Monro algorithm in equation (5.4.14). If λ, τ > 0, the random sequence (θ N λ,τ ) N ≥0 defined by ∀N ≥ 0, θ N λ,τ = χ τ ( ϕ N ) (5.4.16) with χ τ defined in equation (5.4.15) is such that θ N λ,τ -→

  .5.2) as in Chapter 4. To build the target distribution, given an a priori unknown θ * ∈ Σ K , we sample m observations Y 1 , . . . , Y m ∼
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 51 Figure5.1: Monitoring of the gradient descent method with a Sinkhorn approximation of the gradient.Evolution of θ N λ -θ * 2 (Left). Evolution of T M⊗Leb λ (μn(θ N λ ), ν) (Right).The solid curve corresponds to the average over 10 runs and the shaded areas to the values between the 10th and 90th percentiles. Both distributions μn(θ) and ν have a support of size n = 500.
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 5253 Figure5.2: Monitoring of the gradient-descent method with a stochastic approximation of the gradient.Evolution of θ N λ -θ * 2 (Left). Evolution of T M⊗Leb λ (μn(θ N λ ), ν) (Right)The solid curve corresponds to the average over 10 runs and the shaded areas to the values between the 10th and 90th percentiles. Both distributions μn(θ) and ν have a support of size n = 500.
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 54 Figure 5.4: Monitoring of the stochastic gradient descent when minimizing θ → T M⊗Leb λ(μn(θ), ν) + H(θ). Evolution of θ N λ,τ -θ * (Left). Evolution of T M⊗Leb λ (μn(θ N λ,τ ), ν) + τ H(θ N λ,τ ) (Right).To lighten the computations, the regularized loss T λ (μn(θ N λ,τ ), ν) + τ H(θ N λ,τ ) was only computed every 100 iterations. The solid curve corresponds to the average over 10 runs and the shaded areas to the values between the 10th and 90th percentiles. Both distributions μn(θ) and ν have a support of size n = 500.
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 55 Figure 5.5: Monitoring of the stochastic gradient descent when minimizing θ → T M⊗Leb λ (μn(θ), ν) + H(θ).The solid curve corresponds to the average over 10 runs and the shaded areas to the values between the 10th and 90th percentiles. Due to the large supports of the distributions, we track the convergence of the scheme through the quantity θ N λ,τ -θ * . Both distributions μn(θ) and ν have a support of size n = 25000.

  A.3) where the initial value ϕ 0 = 0 n , Y 1 , ..., Y +1 is an i.i.d. sequence of random variables sampled from the distribution ν, and (γ N ) N ≥0 is a sequence of positive numbers decreasing toward zero satisfying

  Computation of the approximation of the optimal re-weighting θ * λ */ return θ N λ = χ(z)

  Computation of the approximation of the optimal re-weighting θ * λ

.

  .C.16) with C λ,ν := λ Y log(f ν )dν. From this we deduce the equality claimed in Proposition 5.4.1. That ismin θ∈Σ K max ϕ∈R n L λ,τ (θ, ϕ) = C λ,ν -inf ϕ∈R n H λ,τ(ϕ), (5.C.17) where H λ,τ (ϕ) := λ Y log The first part of the proof is only the observation that H λ,τ (ϕ) = E [h λ,τ (Y, ϕ)] with h λ,τ (y, ϕ) We now establish the claimed relation between θ * λ,τ = arg min θ∈Σ K T M⊗Leb λ (µ(θ), ν) + τ H(θ) and a solution of the new optimization problem min ϕ∈R n H λ,τ (ϕ).

  every y ∈ R d , we have P (y, ϕ)1 n = 0. Hence, for all y ∈ R d , e n = 1n √ n is an eigenvector of P (y, ϕ) associated to the eigenvalue Λ n (y, ϕ) = 0. It thus follows that e n = 1n √ n is an eigenvector of ∇ 2 G λ (ϕ) = 1 λ E[P (Y, ϕ)] associated to Λ n (ϕ) = 0. Then, exploiting relation (5.C.27), we derive that ∇ 2 G λ (ϕ) has its smallest eigenvalue ρ λ (ϕ) lower bounded as follows,
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  Definition 6.1.1. For π and ξ two probability distributions on X × Y, we define the Kullback-Leibler divergence from π to ξ and denote by KL the quantity KL(π|ξ) = X log dπ dξ (x, y) dπ(x, y), (6.1.1)

  Definition 6.1.4. For µ = n i=1 a i δ xi and ν = m j=1 ν j δ yj two discrete distributions on R d , the approximation of the regularized OT cost returned by the Sinkhorn algorithm after iterations equals T ( )

  n , νn ) is Sinkhorn's output after iterations and whose definition is given in equation (6.1.8). The computational version of the Sinkhorn divergence S λ is denoted by S ( ) λ and defined by S ( )

  Next, we propose to take into account the algorithmic error induced by Sinkhorn algorithm. For µ = n i=1 a i δ xi , and ν = m j=1 b j δ yj two discrete distributions, we denote by T

  Proposition 6.3.3.[START_REF] Chizat | Faster wasserstein distance estimation with the sinkhorn divergence[END_REF][Proposition 2].) Set λ > 0. For µ = n i=1 a i δ xi and ν = m j=1 b j δ yj two discrete distributions, the approximation of the regularized OT cost after iterations of the Sinkhorn algorithm satisfies:

|T
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 651 Figure 6.5.1: Estimation results of the plug-in estimator T 0 (μn, νn) (in orange), the classic regularized estimator T λ (μn, νn) with λ = 0.1 (in blue), and our estimator T

  n , νn ) when the dimension is set to d = 6.

Figure 6

 6 Figure 6.5.2: Time measured to compute 50 versions of the classic regularized estimator T λ (μn, νn) (in blue), and 50 versions of our estimator T ( n) λn (μn, νn) (in red) where λn and n depend on the sample size n. The dimension is d = 6.

Figure 6

 6 Figure 6.5.3: Estimation results of the plug-in estimator T 0 (μn, νn) (in orange), the Sinkhorn divergence estimator S λ (μn, νn) with fixed regularization λ = 0.1 (in blue), and our adaptive Sinkhorn estimator S ( n )

Figure 6

 6 Figure 6.5.4: Time measured to compute 50 versions of the Sinkhorn divergence estimator S λ (μn, νn) with fixed regularization λ = 0.1 (in blue), and 50 versions of our adaptive Sinkhorn divergence estimator S ( n ) λn (μn, νn) (in red) where λn and n depend on the sample size n. The dimension is set to d = 6.

  Theorem 6.A.1. (Dudley's entropy integral inequality) Let (Y ϕ ) ϕ∈Φ be a zero mean stochastic process which is sub-Gaussian with respect to the pseudodistance induced by a seminorm • on the indexing set Φ. Φ, • , ε))dε, where N (Φ, • , ε) is the covering number of Φ by balls of radius ε with respect to the seminorm • .

  .A.21) Proof of Proposition 6.4.1 Gathering the results established since Lemma 6.A.1, we are in a favorable position to prove Proposition 6.4.1.

  .A.2). For a multi-index κ = (κ 1 , . . . , κ d ) ∈ N d , we denote by |κ| = d i=1 κ i and D κ the differential operator defined as follows

  Definition 7.2.2. For µ = n i=1 a i δ xi and ν = m j=1 b j δ yj two discrete distributions on R d , the approximation of the regularized OT cost returned by the Sinkhorn approximation after iterations equals T

Figure 7

 7 Figure 7.4.1: 2D projections of a simulated source data set and a target data set with their clustering.

Figure 7

 7 Figure 7.4.3: Average error on simulated data of the estimators θλ (orange) and θS λ (blue) as a function of the regularization parameter λ. There is no limitation on the number of iterations, Sinkhorn algorithm runs until convergence is reached. The black dotted line is the average error of the un-regularized estimator θ0 .

Figure 7

 7 Figure 7.4.4: Time required to compute N = 50 estimators θλ (left) and θS λ (right) when the number of iterations is unlimited.

Figure 7

 7 Figure 7.4.5: Estimation results on simulated data when the number of iterations of the Sinkhorn algorithm is limited to = 5. We display the error θ( ) λ -θ * 2 using either the loss T ( ) λ (left) or

Figure

  Figure 7.4.6: Average error on simulated data of the estimators θ( ) λ (orange) and θS( ) λ (blue) as a function of the regularization parameter λ with a limitation on the number of iterations. For all values of λ, Sinkhorn algorithm is limited to = 5 iterations. The black dotted line is the average error of the un-regularized estimator θ0 .

Figure 7

 7 Figure 7.4.7: Two-dimensional projection of the flow cytometry datasets used in these numerical experiements with a clustering of the cells into 10 sub-populations.

Figure 7

 7 Figure 7.4.8: Sub-sample of the source and target flow cytometry data sets. In the source sub-sample, n k = n = 50 elements of each class have been sampled. In the target sub-sample, m = 100 observations have been randomly chosen.

Figure 7

 7 Figure 7.4.9: Results on HIPC data without imposing limitations on the number of Sinkhorn iterations.We display the error θλ -θ * 2 using either the loss T λ (left) or S λ (right). The black line is the median error of the un-regularized estimator θ0 using the loss T 0 , while the dotted lines are the first and third quartiles of θ0 -θ * 2 .

Figure 7

 7 Figure 7.4.10: Average error on HIPC data of the estimators θλ (orange) and θS λ (blue) as a function of the regularization parameter λ. There is no limitation on the number of iterations, Sinkhorn algorithm runs until convergence is reached. The black dotted line is the average error of the un-regularized estimator θ0 .

Figure 7

 7 Figure 7.4.12: Average error on HIPC data of the estimators θ( ) λ (orange) and θS( ) λ (blue) as a function of the regularization parameter λ with a limitation on the number of iterations. For all values of λ, Sinkhorn algorithm is limited to = 10 iterations. The black dotted line is the average error of the un-regularized estimator θ0 .

  and applying Lemma 7.A.2 to each term of the right hand side of the last inequality yieldsE sup θ∈Σ K |T s λ (µ(θ), µ(θ)) -T s λ (µ(θ), μn (θ))| ≤ K k=1 E(d, n k ) ≤ KE(d, n),(7.A.36) where E(d, n) is defined in equation (7.A.11) and n = min(n 1 , . . . , n K ). We thus have the two terms of equation (7.A.28) uniformly bounded in expectation. Therefore,E sup θ∈Σ K T λ (µ(θ), µ(θ)) -T λ (µ(θ), μn (θ)) ≤ KE(d, µ(θ), μn (θ)) -T λ (μ n (θ), μn (θ)) ≤ KE(d, n). (7.A.38)Going back to equation (7.A.27) and gathering the pieces we haveE sup θ∈Σ K |S λ (µ(θ), νm ) -S λ (μ n (θ), νm )| E(d, n),(7.A.39) which concludes the proof. 7.A.3 Proof of Theorem 7.3.3

  approximation error that gives ∀θ ∈ Σ K , |T 0 (µ(θ), ν) -T λ (µ(θ), ν)| ≤ B(λ), with B(λ) = 2dλ log 8 exp(2)R 2 √ dλ , we also exploit the control of the computational error induced by Sinkhorn algorithm as precised in the next result. Proposition 7.A.5. [Chizat et al., 2020][Proposition 2].) Set λ > 0. For µ = n i=1 a i δ xi and ν = m j=1 b j δ yj two discrete distributions, the approximation of the regularized OT cost after iterations of the Sinkhorn algorithm satisfies:where||c|| ∞ = max (i,j) ||x i -y j || 2 .As for all θ ∈ Σ K the distributions µ(θ) and ν have their supports included in B(0, R) we have that ∀θ ∈ Σ K , |T λ (μ n (θ), νm ) Suppose that Assumption 7.3.1 holds true. Denoting by θ( ) λ the estimator defined in (7.A.40), its excess risk can be upper bounded in the following manner:T 0 (µ( θ( ) λ ), ν) -T 0 (µ(θ * ), ν) ≤ 2 sup θ∈Σ K |T λ (μ n (θ), νm ) -T λ (µ(θ), ν)| + 2B(λ) + 2 c 2 ∞ λ ,(7.A.43) where B(λ) is defined in (7.A.3). Suppose that Assumptions 7.3.2 and 7.3.3 hold true. Then, the estimator θS( ) λ defined in equation (7.A.40) is such thatT 0 (µ( θS( ) λ ), ν) -T 0 (µ(θ * ), ν) ≤ 2 sup θ∈Σ K |S λ (μ n (θ), νm ) -S λ (µ(θ), ν)| + 2M I λ 2First, notice that for each θ ∈ Σ K , the following bound holds true|T 0 (µ(θ), ν) -T ( ) λ (μ n (θ), νm )| ≤ B(λ) + sup θ∈Σ K |T λ (µ(θ), ν) -T λ (μ n (θ), νm )ν) -T 0 (µ(θ * ), ν) = T 0 n (θ * ), νm ) -T 0 (µ(θ * ), ν). n (θ * ), νm ) ≤ 0 as θ( ) λ ∈ arg min θ∈Σ K T ( )λ (μ n (θ), νm ). Then, the first and last term fall under the framework of inequality (7.A.45). We finally haveT 0 (µ( θ( ) λ ), ν) -T 0 (µ(θ * ), ν) ≤ 2B(λ) + 2 sup θ∈Σ K |T λ (μ n (θ), νm ) -T λ (µ(θ), ν)| + c 2 (7.A.43). Repeating the computations with S λ instead of T λ yields upper bound (7.A.44). Corollary 7.A.1. Suppose that Assumption 7.3.1 holds true. Also assume that n k samples are available for each component µ k and that m samples are available for ν. Then E T 0 (µ( θ( ) λ ), ν) -T 0 (µ(θ * ), ν) E(d, min(n, m)) + 2B(λd, n) is defined in equation (7.A.11) and B(λ) is defined in (7.A.3). Suppose that Assumptions 7.3.2 and 7.3.3 also hold true. Then, the estimator θS( ) λ is such that E T 0 (µ( θS( ) λ ), ν) -T 0 (µ(θ * ), ν) E(d, min(n, m)) + 2M I λ 2 + 4 c 2 ∞ λ . (7.A.49) 7.A.4 Proof of Proposition 7.3.3

  For each θ ∈ Σ K , we have|T 0 (µ(θ), ν) -(T ( ) λ (μ n (θ), νm ) + τ H(θ))| ≤ B(λ) + sup θ∈Σ K |T λ (µ(θ), ν) -T λ (μ n (θ), νm )| + τ Ke -1 . (7.A.51)Then, we decompose the excess risk of θλ,τ as followsT 0 (µ( θλ,τ ), ν) -T 0 (µ(θ * ), ν) ≤ T 0 (µ( θλ,τ ), ν) -(T λ (μ n ( θλ,τ ), νm ) + τ H( θλ,τ )) + T λ (μ n ( θλ,τ ), νm ) + τ H( θλ,τ ) -(T λ (μ n (θ * ), νm ) + τ H(θ * )) + T λ (μ n (θ * ), νm ) + H(θ * ) -T 0 (μ n (θ * ), νm ) (7.A.52)The definition of θλ,τ implies thatT λ (μ n ( θλ,τ ), νm ) + τ H( θλ,τ ) -(T λ (μ n (θ * ), νm ) + τ H(θ * )) ≤ 0. Next,we can bound the first and last terms of equation (7.A.52) using inequality (7.A.51) to deriveT 0 (µ( θλ,τ ), ν) -T 0 (µ(θ * ), ν) ≤ B(λ) + sup θ∈Σ K |T λ (µ(θ), ν) -T λ (μ n (θ), νm )| + τ Ke -1 . (7.A.53) Taking the expectation on both sides of the previous equation and applying Proposition 7.A.2 gives E T 0 (µ( θλ,τ ), ν) -T 0 (µ(θ * ), ν) ≤ B(λ) + E(d, min(n, m)) + τ Ke -1 , (7.A.54) where E(d, n) is defined in (7.A.11) and n = min(n 1 , . . . , n K ). Assuming that d > 4, and that n samples from each component µ k are available as well as n samples from ν gives E T 0 (µ( θλ,τ ), ν) -T 0 (µ(θ * ), ν) B(λ) + n -2/d + τ K. (7.A.55) Then, choosing λ n = n -2/d d and τ n = n -2/d K gives the rate of convergence claimed in Proposition 7.3.3.

  patient. After a rescaling step to have all the observations belonging to [0, 1] d , the evolution of the transport cost sequence T 0 (μ

  9.1.4) with ξ 1 , . . . , ξ n a sequence of i. i. d. Rademacher variables independent from Y 1 , . . . Y n . Then, notice thatsup ϕ∈F R ϕ(Y i ) > A.As -ξ 1 , . . . , -ξ n are Rademacher random variables independent from Y 1 , . . . , Y n , both random variables sup ϕ∈F R i ϕ(Y i ) have the same distribution. From this we deduce the upper bound

  ∀ϕ, ψ ∈ F R , ∀η ∈ R, E[e η(Yϕ-Y ψ ) ] ≤ e random process (Y ϕ ) ϕ∈F R is subgaussian. As the Rademacher variables ξ 1 , . . . , ξ n are independent from Y 1 , . . . , Y n , the random process (Y ϕ ) ϕ∈F R has zero mean. Then, the application of Theorem 9.1.4 to (Y ϕ ) ϕ∈F R and the metric ρ(ϕ, ψ) = ϕ -ψ ∞ gives that for all δ ∈ [0, 2R 2 ], the following inequality holds true. N (F R , • ∞ , ε)dε.(9.1.10)We have Y ϕ -Y ψ ≤ ϕ -ψ ∞ , the first term of the previous upper bound can thus be upper bounded by δ N (F R , • ∞ , ε)dε.(9.1.11)Step 4: Controlling the covering number of F R Regarding the second term, we are going to apply Theorem 9.1.3 to the covering numberN (F R , • ∞ , ε). Remind that for all ϕ ∈ F R , ϕ ∞ ≤ R 2 , and B(0, R) ⊂ [-R, R] d .Hence, in our context, Theorem 9.1.3 gives that exist positive constants C and ε 0 that depend only on d such that for all ε ∈ (0, 3R 2 ε 0 ) log N (F R , • ∞ , ε) value of the last integral depends on the dimension d.

  R d respectively denoted by µ = n i=1 a i δ xi and ν = m j=1 b j δ yj . The ground cost is as usual the squared euclidean distance c(x, y) = x -y 2 . The costs of all the pairings are stored in the cost matrix C ∈ R n×m where C i,j = x i -y j 2 . In this case, the regularized transport problem readsT R λ (µ, ν) = min π∈Π(a,b) i,jC i,j π i,j + λR(π), (9.3.1)

  understanding, the value returned by the sinkhorn2 function of the POT library[START_REF] Flamary | Pot: Python optimal transport[END_REF] is given byT λ,pot (µ, ν) = C, π λ , where π λ = arg min π∈Π(a,b) C, π + λ H(π) (9.3.4)and the function sinkhorn of the same python library returns π λ .

  . For π ∈ Π(a, b), we have KL(π|a ⊗ b) = i,j π i,j log(π i,j nm)

  + λ KL(π|a ⊗ b),in the particular case of uniform distributions, we have the relation

  Proposition 9.3.1. Let µ = n i=1 a i δ xi and ν = m j=1 b j δ yj be two discrete distributions. If the regularizing term is the usual entropy H as defined in (9.3.2) the dual problem associated to (9.3.7) reads T M λ (µ, ν) = sup (ϕ,ψ)∈R n ×R m ϕ, a + ψ, b -λ In the case the Kullback-Leibler defined in equation (9.3.3) is regularizing term of Kantorovich problem, the dual problem associated to T a⊗b λ ψ)∈R n ×R m ϕ, a + ψ, b -λ i,j e ϕ i +ψ j -C i,j λ a i b j + λ.(9.3.9) 

Proof.

  Set µ = n i=1 a i δ xi and ν = m j=1 b j δ yj . The Lagrangian function associated to the constrained problem (9.3.7) readsL(π, ϕ, ψ) = C, π + λR(π) + ϕ, a -π1 m + ψ, b -π T 1 n ,(9.3.10) where the couple (ϕ, ψ) belongs to R n × R m , and π ∈ R n×m+ . Next, for (ϕ, ψ) ∈ R n × R m , the dual function reads, J λ (ϕ, ψ) = ϕ, a + ψ, b + min π∈R n×m + C, π + λR(π) -ϕ, π1 m -ψ, π T 1 n = ϕ, a + ψ, b + λ min n ψ T ), π + R(π) = -sup π∈R n×m + ϕ1 T m + 1 n ψ T -C λ , π -R(π) -R * ϕ1 T m + 1 n ψ T -C λ ,where R * is the Legendre transform of R. For p ∈ R n×m the expression of R * is given byR * (p) = sup x∈R n×m + p, x -R(x). (9.3.11)Thus, we can write the dual problem associated to (9.3.7) asT R λ (µ, ν) = sup (ϕ,ψ)∈R n ×R m ϕ, a + ψ, b -λR * ϕ1 T m + 1 n ψ T -C λ . (9.3.12)Depending on the regularizing term chosen, the Legendre transform of R reads: exp(y i,j -1) if R = H i,j exp(y i,j -1)a i b j if R = KL .(9.3.13)Hence, when the regularizing term is the entropy H, the dual problem associated to (9.3.7) reads.T M λ (µ, ν) = sup (ϕ,ψ)∈R n ×R m ϕ, a + ψ, b -λ the change of variable ϕ = ϕ -λ, one gets T M λ (µ, ν) = sup (ϕ,ψ)∈R n ×R m ϕ, a + ψ, b -λ
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  1.4, as well as Python Notebooks to reproduce the Figures presented in this chapter are available at https://github.com/Paul-Freulon/CytOpt. A user-friendly Python package is available from pypi with source code at https://pypi.org/project/ CytOpT/. A user-friendly R package, relying on the reticulate framework[START_REF] Ushey | reticulate: Interface to 'Python[END_REF] to encapsulate the above Python code, will be available from CRAN with source code at https://github.com/sistm/ CytOpt-R.

Table 6 .

 6 5.2: Parameter chosen in accordance with Theorem 6.2.2 for the Sinkhorn divergence estimator S

	n	10	120	230	340	450	560	670	780	890	1000
	Regularization λ n	0.681 0.450 0.404 0.379 0.361 0.348 0.338 0.330 0.322 0.316
	Iteration limit n	4	11	16	19	22	24	26	28	30	32
	( n )										
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  Theorem 7.3.3. Suppose that Assumptions 7.3.1, 7.3.2 and 7.3.3 hold and that d > 4. If for all component µ k as well as for ν, at least n observations are available, then the following non-asymptotic rates of convergence hold for the estimators θ( n ) λn and θS( n)

	Approximation error

  From this Lemma 7.A.3, and exploiting the estimation bounds of Proposition 7.A.2 on the regularized transport cost T λ , we deduce a control on the expected excess risk of the estimator θS λ .Proposition 7.A.4. Set λ > 0 and suppose that Assumptions 7.3.1, 7.3.2 and 7.3.3 hold true. Also assume that m samples are drawn from ν and denote by n = min(n 1 , . . . , n K ) where n k is the number of samples from µ k . Then, the expected excess risk of the estimator θS

	A.22)
	as claimed in Lemma 7.A.3.

λ defined in equation (7.A.18) can be upper bounded by

  [Theorem 5.22] Let (Z t ) t∈T be a zero mean sub-Gaussian process with respect to a pseudo metric ρ. Denote by D the diameter of T , i.e. D = sup t,t ∈T ρ(t, t ). Then, for any δ ∈ [0, D], the following inequality holds true

				D		
	E sup	Z t ≤ E	sup	(Z t -Z t ) + 32	log N (T, ρ, ε)dε,	(9.1.6)
	t∈T		t,t ∈T, ρ(t,t )≤δ	δ/4		

  4, and δ n = 0,R 2 log(n) if d = 4, and δ n = n -1/2 , R 2 n 1/2-2/d if d > 4, and δ n = n -2/d ,(9.1.15) where hides a constant that depends only on d. Finally, going back to equation (9.1.5) and the precious multiplicative factor 1/ √ n before E sup ϕ∈F R Y ϕ , we derive

	E sup	
	ϕ∈F R	Y

ϕ(y)d(ν -νn )(y)

C'est une hypothèse technique dont on aurait préféré se passer.

Pour l'application à la cytométrie, cela revient à supposer que les observations arrivent en ligne.

En notant E un ensemble, on dit qu'une application D : E × E → R + vérifie la propriété de séparation si ∀x, y ∈ E, D(x, y) = 0 ⇔ x = y.

In the original Monge problem, the cost function was c(x, y) = x -y (and not c(x, y) = x -y

as in this document) which makes the problem much harder to solve.2 From a map T such that T # µ = ν, we automatically get an element of Π(µ, ν) with the transport plan (Id, T ) # µ.

The quantity T 0 (µ, ν) is a distance.

Natural means that this estimator does not require any choice. For instance in kernel estimation, one must choose a kernel and a bandwidth parameter.

Especially when assuming the probability distributions to have compact supports

The year the PhD began.

A possibility we use in Chapters 6 and 7.

at https://github.com/HristoInouzhe/optimalFlow

at https://github.com/HristoInouzhe/optimalFlowData

More precisely, in the semi discrete setting of Chapter 5, the transport plan was regularized by KL(π|M ⊗ Leb). To adapt this penalty term to the discrete framework when comparing two empirical distributions, KL(π|M ⊗ Leb) must be substituted by the entropy H(π).

More precisely, we faced some difficulties to prove Lemma 5.4.1 when regularizing the transport plan by KL(π|µ ⊗ ν) instead of KL(π|M ⊗ Leb) like we finally did.

This fact is true in a more general context (see[Peyré and Cuturi, 

2019][Proposition 4.2] for more details).

Remerciements

Lemma 5.3.2. Set λ > 0, and suppose that Assumption 5.2.1 holds true. Then, the function F λ : θ → T M⊗Leb λ (μ n (θ), ν) is differentiable on the interior of Σ K . And for θ ∈ Int(Σ K ), denoting by ϕ the unique solution of the semi-dual problem (5.3.4) such that n i=1 ϕ i = 0, the gradient of F λ is given by ∇ θ F λ (θ) = Γ T ϕ,

(5.3.7)

where Γ ∈ R n×K is defined in (5.3.3).

The proof of Lemma 5.3.2 is deferred to Section 5.C.2 of the Appendix. Once again, we exploit results established for the regularized optimal transport cost T µ⊗ν λ (µ, ν) and relation (5.2.5).

Remark 5.3.1. We point out that the vector Γ T ϕ ∈ R K can be interpreted as the vector of the integrals of ϕ against the μk 's. Indeed, for all k ∈ {1, . . . , K}, (Γ T ϕ) k = 1 n k i:Xi∈C k ϕ i = μk , ϕ .

We now discuss a classic gradient-descent strategy to solve min θ∈Σ K T M⊗Leb λ (μ n (θ), ν).

A gradient descent algorithm

Our first strategy to address problem (5.3.1) relies on the workhorse of minimization problem in statistics: the gradient descent algorithm. Given an initial point θ 0 ∈ Σ K , this algorithm yields a sequence of parameters (θ N ) N ≥0 recursively defined by

(5.3.8) with γ N > 0 denoting the step size at iteration N . A first complication to the application of this strategy (5.3.8), is that θ N must belong to the subset Σ K . To avoid projecting θ N on the simplex Σ K at each step of the procedure, we re-parameterize our problem with a soft-max function. Our new optimization problem is now min

where χ : R K → Σ K is the soft-max function defined by χ(z) l = exp(z l ) K k=1 exp(z k ) .

(5.3.10)

The soft max function is not a one to one map from R K to Σ K , for instance, it only reaches vectors whose coordinates are all positive. We acknowledge that this new parameterization slightly disrupts the objective function and induces an implicit regularization. Denoting by z * a minimizer of (5.3.9), we will derive an approximation θ of θ * λ through the relation θ = χ(z * ) with χ the soft-max function introduced in equation (5.3.10). Thanks to Lemma 5.3.2 the gradient of ∇ θ F λ (θ N ) is given by (5.3.11) where ϕ ∈ R n is the unique solution of problem (5.3.4) such that n i=1 ϕ i = 0. Applying the chain rule of differentiation, we derive an explicit expression of the gradient of the re-parameterized objective function.

Lemma 5.3.3. The gradient of F λ • χ at the point z ∈ R K is given by (5.3.12) where ϕ z is the optimal potiental with respect to T λ (μ n (χ(z)), ν) such that n i=1 (ϕ z ) i = 0. And J χ (z) ∈ R K is the Jacobian matrix of χ at the point z and whose expression is

otherwise.

( 5.3.13) This Lemma is a straight application of the chain rule of differentiation to F λ • χ, where the gradient of F λ is given by Lemma 5.3.2. Then, our algorithm to minimize θ → T M⊗Leb λ (μ n (θ), ν) boils down to the iterative procedure (5.3.14) that ends with the computation of θλ = χ(z ). As ∇ z F λ (χ(z N )) = J χ (z N ) T Γ T ϕ z N , a step of the gradientdescent algorithm (5.3.14) requires to compute a maximizer ϕ z N of the dual functional associated to T M⊗Leb λ (μ n (χ(z N )), ν). We now discuss two known strategies to solve the dual problem associated to the regularized transport cost.

Stochastic approximation of the gradient

A possible strategy to approximate the gradient of the regularized transport cost T M⊗Leb λ (μ n (χ(z N )), ν) relies on the stochastic optimization technique developed in [START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF] and in [START_REF] Bercu | Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measures[END_REF]. This method is based on the observation that the semi-dual formulation of the optimal transport cost rewrites 5.3.15) where Y is a random variable with distribution ν, and g λ is calculable. Then, the Robbins-Monro algorithm returns ϕ z , an approximation of a maximizer to the semi-dual problem (5.3.15). Next, to approximate ∇ z F λ (χ(z)) = J χ (z) T Γ T ϕ z , we substitute ϕ z by ϕ z that and compute ω(z) := J χ (z) T Γ T ϕ z . Thus, substituting ∇ z F λ (χ(z N )) in the exact gradient-step (5.3.14) by its approximation ω(z N ), we apply the following iterative procedure

(5.3.16)

For the detail of the approximation of the gradient with a stochastic algorithm we refer to Section 5.A of the Appendix. We also test this procedure in our numerical experiments presented in Section 5.5.

In the case ν is also discrete, the stochastic aspect of this strategy allows to tackle the reweighing problem between empirical distributions built from large data sets. In the case both distributions µ and ν have small supports, a popular strategy to solve the dual problem and compute a Kantorovich potential is to rely on Sinkhorn algorithm.

Sinkhorn algorithm

In the case ν = m j=1 b j δ yj is also a discrete distribution, we substitute the regularizing term KL(π|M ⊗ Leb) by the entropy H(π) = i,j log(π i,j )π i,j (or equivalently the Kullback-Leibler divergence with respect to the counting measure M on {X 1 , . . . , X n } × {y 1 , . . . , y m }). In this case, the dual formulation associated to the regularized cost is

Sinkhorn algorithm returns ( ϕ z , ψ z ) an approximation of (ϕ z , ψ z ) the couple of optimal variables associated to the dual problem (5.3.17) such that n i=1 (ϕ z ) i = 0. As when relying on a stochastic algorithm, we approximate the gradient ∇ z F λ (χ(z)) = J χ (z) T Γ T ϕ z by substituting the optimal potential ϕ z by its approximation ϕ z returned by Sinkhorn algorithm. Thus, we derive an approximation of the gradient ω(z) defined by ω(z) := J χ (z) T Γ T ϕ z . Hence, our minimization algorithm is given by the procedure

(5.3.18)

We provide further details related to this Sinkhorn-based strategy in Section 5.B of the Appendix. We also test this procedure in our numerical experiments presented in Section 5.5.

For K ∈ N, we say that a function f : 

Proposition 6.B.1. Set λ = 1 and ϕ ∈ L ∞ (X ). Denote by ψ = ϕ c,λ µ the c-transform of ϕ. Then, ψ belongs to C ∞ (B(0, R)), and for K ≥ 1, there exist two finite sequences (a K l ) 1≤l≤N K ⊂ N and (α K l,n ) 1≤l≤N K , 1≤n≤K ⊂ N such that for every multi index κ ∈ N d with |κ| = K , there exists a sequence of multi-index (σ κ l,n ) 1≤l≤N K , 1≤n≤K ⊂ N d such that when we denote by y) , (6.B.5) and

the following equality holds ∀y ∈ B(0, R), L κ (y) = R κ (y). (6.B.7)

Additionally, the sequences

The last formulae may appear far-fetched. However, they are simply the higher derivatives of the relation

that is an alternative formulation of ψ = ϕ c,λ µ .

Proof. We proceed by induction with the following induction hypothesis:

Such that equations (6.B.7) and (6.B.8) hold. We refer to this induction assumption as (H K )

Base case: Let us show (H 1 ). As ψ = ϕ c,λ µ is the c-transform of ϕ we have

A consequence of this relation (see e.g. [Feydy et al., 2019b]), is that such a potential ψ inherits the regularity properties of the cost function c. The cost function being c(x, y) = x -y 2 and X being compact, the potential ψ is C ∞ (B(0, R)). Next, setting κ ∈ N d such that |κ| = 1 and applying the operator of differentiation D κ on both sides of equation (6.B.9) we get

In other words,

By the above s-transform in the dual problem (7.2.6) we obtain the following semi-dual formulation

We conclude this section by reminding two properties of this new s-transform already established in Chapter 6.

Proposition 7.2.2. For λ ≥ 0, the s-transform ϕ s,λ µ is concave and R-Lipschitz on B(0, R). The proof of Proposition 7.2.2 can be found just after Proposition 6.1.2 in Chapter 6.

Class proportions estimation in mixture models

Let µ = K k=1 ρ k µ k be a probability measure that can be decomposed as a mixture of K probability measures µ 1 , . . . , µ

(7.2.12)

Let ν be another probability measure in P(Y) referred to as the target distribution. The problem of class proportions estimation consists in estimating an optimal re-weighting vector

from empirical versions of the µ 1 , . . . , µ K and ν. In what follows, we discuss some properties of the optimization problem (7.2.13). First, this minimization problem is motivated by the implicit assumption that representing the target measure ν as a mixture of K probability measures is relevant. To illustrate this point, we first state a result showing that one can recover the true class proportions in the ideal setting where the target distribution ν is also a mixture of µ 1 , . . . , µ K .

Lemma 7.2.1. Suppose that µ(θ) and ν are mixtures of probability measures with the same components µ 1 , ..., µ K but with different class proportions, respectively denoted by θ ∈ Σ K and by ω

identifiable (in the sense that the mapping θ → µ(θ) is injective), then the solution of optimization problem (7.2.13) is unique and one has that θ * = ω.

Proof. The non-negativity property of the transport cost T 0 ensures that for all θ

where the last equivalence comes from the assumption that the model {µ

Notice that the injectivity of θ → µ(θ) relates to the affine independence of {µ 1 , . . . , µ K }. It is satisfied for example when the measures µ 1 , . . . , µ K have disjoint supports. If all the scenarios are not as friendly as the one considered in Lemma 7.2.1, in numerous applications (for instance when the data can be clustered into sub-populations), it is relevant to approximate the distribution ν as a mixture. The next result is about the smoothness of the minimization problem (7.2.13).

Lemma 7.2.2. Suppose that µ(θ) is defined as in (7.2.12). Then, the function F :

Proof. Let θ ∈ Σ K and (θ (n) ) a sequence in Σ K that converges to θ. Then, the probability sequence (µ(θ (n) )) converges weakly toward µ(θ). Indeed, for any bounded continuous function ϕ, one has that

Hence, (µ(θ (n) )) weakly converges towards µ(θ). Then, one can also verify that the sequence (θ (n) ) is such that for any x 0 ∈ X , X x 0 -x 2 dµ(θ (n) ) converges toward X x 0 -x 2 dµ(θ). Therefore, by Corollary 6.11 in [START_REF] Villani | Optimal transport: old and new[END_REF], it follows that

which shows the continuity of F : θ → T 0 (µ(θ), ν).

Since the set Σ K is compact, the existence of a minimizer of the optimization problem (7.2.13) follows from Lemma 7.2.2. We now give sufficient conditions that ensure the strict convexity of the objective function θ → T 0 (µ θ , ν).

Lemma 7.2.3. Assume that ν is absolutely continuous with respect to the Lebesgue measure. Then, if the model {µ(θ) | θ ∈ Σ K } is identifiable (in the sense that the mapping θ → µ(θ) is injective), the function

is strictly convex.

Proof. Thanks to the assumption that ν is absolutely continuous, Proposition 7.19 in [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF] ensures the strict convexity of the functional µ → T 0 (µ, ν). Let θ 0 , θ 1 ∈ Σ K with θ 0 = θ 1 and t ∈ (0, 1).

Then, we have that F (tθ 0 +(1-t)θ 1 ) = T 0 (µ(tθ 0 +(1-t)θ 1 ), ν), and µ(tθ 0 +(1-t)θ 1 ) = tµ(θ 0 )+(1-t)µ(θ 1 ).

Since θ 0 = θ 1 and the model {µ(θ) | θ ∈ Σ K } is supposed to be identifiable, we have that µ(θ 0 ) = µ(θ 1 ). Therefore, the strict convexity of µ → T 0 (µ, ν) yields

which proves the strict convexity of F : θ → T 0 (µ(θ), ν).

Parametric Wasserstein estimators

In this section, we present the regularized and un-regularized parametric Wasserstein estimators considered in this chapter. We aim to compare their convergence rates.

Definition of the estimators

We aim at estimating θ * when the distributions µ and ν are only observed through samples. Hence, we assume given the following empirical measures We can now define the Wasserstein estimators whose convergence properties are discussed in Section 7.3.2. Depending on the chosen loss function (either T λ , S λ or T 0 ) and using the empirical measures μn (θ) and νm , three estimators of the optimal vector of class proportions can be defined as follows: In this chapter, to assess the performance of a given estimator θn of θ * based on n samples, we shall consider the following expected excess risk defined as

Remark 7.3.1. In our context of parametric Wasserstein estimation, we can interpret the excess risk as the representation error of ν induced by the estimator. Indeed, µ(θ * ) defined in equation (7.2.13) is the best representation of ν in the model {µ

This equation shows that the excess risk is closely related to Wasserstein distance between the best representation of ν in the model that is µ(θ * ) and its estimated version µ( θn ).

Remark 7.3.2. In the case where the function θ → T 0 (µ(θ), ν) is strongly convex w.r.t. θ * , that is, when T 0 (µ(θ), ν) -T 0 (µ(θ * ), ν) ≥ ρ θ -θ * 2 , for some ρ > 0 and all θ ∈ Σ K , then controlling the expected excess risk allows to derive a convergence rate on the expected quadratic risk E θ -θ * 2 . Remark 7.3.3. We have chosen to derive rates of convergence for the excess risk (7.3.2) as our statistical analysis allows to treat general classes of parametric Wasserstein estimators that go beyond the setting of weights estimation in mixture models considered in this work. Indeed, our results can be applied to the study of regularized Wasserstein estimators within any parametric family F = {µ(θ), θ ∈ Θ} of probability measures with compact support in B(0, R) provided that the mapping θ → µ θ is continuous. In particular, our approach could be used to extend existing results from [START_REF] Biau | Some theoretical insights into wasserstein gans[END_REF] on the statistical analysis of un-regularized Wasserstein Generative Adversarial Networks (WGAN) to the case of entropy regularized WGAN considered in [START_REF] Sanjabi | On the convergence and robustness of training gans with regularized optimal transport[END_REF].

Convergence rates for the expected excess risk

We now compare the convergence rate of the various estimators introduced in Section 7.3.1. For every estimator θ considered in this work, to derive rate of convergence toward θ * , we need the probability distributions to have compact supports.

Assumption 7.3.1. The supports of µ and ν, respectively denoted by X and Y are compact subsets of B(0, R) = {x : x ≤ R} for some R > 0.

Theorem 7.3.2. Suppose that Assumptions 7.3.1, 7.3.2 and 7.3.3 hold and that d > 4. If for all component µ k as well as for ν, at least n observations are available, then the following non-asymptotic rates of convergence hold

The detailed proof of Theorem 7.3.2 is deferred to Sections 7.A.1 and 7.A.2 of the Appendix. We simply give below some ideas to explain our motivation for our choices of the regularization parameter λ n .

Proof. Let us explain our regularization choice λ n for point (i) of Theorem 7.3.2. Under our assumptions, using Proposition 7.A.3, we have that for λ small enough, the expected excess risk of θλ can be bounded as follows

The term n -2/d corresponds to a control over the estimation error, and λ log(λ -1 ) to a control over the approximation error of T λ towards T 0 . The idea is to get an approximation error dλ log(λ -1 ) of the same magnitude as the magnitude of the estimation error. By choosing λ n = n -2/d /d, we recover the rate of convergence announced in point (i) of Theorem 7.3.2. For point (ii) we proceed similarly. Using Proposition 7.A.4 under our assumptions, we obtain that

Therefore, by choosing λ n = n -1 d , we obtain the convergence rate claimed in Theorem 7.3.2 (ii). As point (iii) derives from the un-regularized case, there is no approximation error. Hence, this third point does not require any additional effort and is just the rewriting of Proposition 7.A.3 for d > 4 and λ = 0.

Hence, Theorem 7.3.2 shows that, for the choice λ n = n -1 d , the estimator θS λn (based on the Sinkhorn divergence) achieves the same convergence rate than the un-regularized estimator θ0 . Up to a log(n) factor, the estimator θλn also achieves the same convergence rate than θ0 but at the price of taking a much smaller value of λ n = n -2 d , which impacts the convergence of the Sinkhorn algorithm used to compute these regularized estimators as detailed in the following section.

Influence of the number of iterations in the Sinkhorn algorithm

We now discuss the convergence rate of entropy regularized estimators when taking into account the computational complexity of the Sinkhorn algorithm through its number of iterations. To this end, we recall that T ( ) λ (µ, ν) denotes the approximation of the regularized Wasserstein distance that is returned after iterations of the Sinkhorn algorithm. We also introduce the following approximation of the Sinkhorn divergence

we give our second main result that consists in a computational version of Theorem 7.3.2. Besides giving a regularization policy (λ n ) n≥0 , we also propose a limited number of Sinkhorn iterations to achieve the rates of convergence claimed in Theorem 7.3.2.

where H(θ) = K k=1 θ k log(θ k ) is the usual entropy, and τ > 0 is the regularization parameter associated. Note that we follow the convention 0 log(0) = 0. The details of the numerical scheme to solve (7.3.8) can be found in Section 5.4 of Chapter 5. Before proceeding, we must precise that in Chapter 5, the transport plan was regularized by the entropy 1 H(π), while in the present Chapter, the transport plan is regularized by the Kullback-Leibler divergence KL(π|µ ⊗ ν). Therefore, we do not know if problem (7.3.8) is really easier to solve in practice. Sweeping this incoherence under the rug, we propose in the next proposition a heuristic to choose this additional regularization parameter τ .

Proposition 7.3.3. Suppose that Assumptions 7.3.1, and that d > 4. If for all component µ k as well as for ν, at least n observations are available, then the following non-asymptotic rate of convergence hold for the estimator θλn,τn defined in (7.3.8)

This proposition comes from two simple facts. First, the unsurprising decomposition that holds for each θ ∈ Σ K ,

Second, the observation that the entropy is uniformly bounded by | H(θ)| ≤ Ke -1 . The detailed proof is deferred to Section 7.A.4 of the appendix.

Numerical experiments

In this section, using simulated and real data from flow cytometry, we analyze the numerical performances of the various estimators introduced in Section 7.3. These numerical experiments have been designed to highlight that a relevant choice of the regularization parameter λ may lead to regularized Wasserstein estimators (based either on T λ or S λ ) with performances similar to those of un-regularized Wasserstein estimators based on the standard OT cost T 0 at a lowest computational cost. For the results reported here, the parameter λ ranges in a finite grid Λ ⊂ R * + from 0.01 to 1. For a given loss function L ∈ {T λ , S λ , T ( ) λ , S ( ) λ , T 0 }, we follow the protocol described thereafter. Using either simulated or real data, a single estimator θ of the class proportions in the target dataset is obtained by solving the optimization problem:

based on the empirical distributions μ1 , . . . , μK and ν. In order to solve it, we apply a gradient descent algorithm to the function F : θ → L(μ n (θ), νm ), where the computation of the gradient ∇ θ L(μ n (θ), νm ) essentially boils down to the resolution of the dual problem stated in Theorem ?? between the measures μn (θ) and νm . We numerically solve this problem with the Sinkhorn algorithm in the regularized case, and with a linear programming algorithm in the un-regularized case. Repeating this protocol N = 50 times, we obtain N independent realizations θ[1] , . . . , θ[N] of a given estimator of the class proportions. Then, we choose to compare the estimators using the expected quadratic risk E[ θ -θ * 2 ] that is approximated by Monte-Carlo repetitions as classically done in statistical experiments:

Appendices

7.A Proof of the main results

We now proof the non-asymptotic rates claimed in this chapter.

7.

A.1 Proof of points (i) and (iii) of Theorem 7.3.2

In this sections, we investigate the behavior of the regularized estimator defined by θλ = arg min

with λ ≥ 0. We first detail how the excess risk of θλ can be upper bounded by the sum of two terms representing a tradeoff between an estimation error and an approximation error. Thanks to [Genevay et al., 2019, Theorem 1] adapted to the squared Euclidean cost c(x, y) = x -y 2 (which is R-Lipschitz on B(0, R) w.r.t. both its variables), we can control the impact of entropic regularization on the approximation of the value of the un-regularized OT cost is as follows.

Proposition 7.A.1. Assume that X , Y are compact subsets of B(0, R). Then, it holds that

and consequently

Notice that B(λ) goes to zero when λ → 0 at the speed B(λ) ∼ λ→0 2dλ log (1/λ) .

Next, a key result is the following decomposition of (an upper bound) of the excess risk into the sum of an estimation error and an approximation error.

Lemma 7.A.1. For λ ≥ 0, the excess risk of the estimator θλ defined by (7.A.1) is bounded as follows:

Approximation error , (7.A.4) with B(λ) defined in (7.A.3) (and by convention B(0) = 0).

Proof. We begin with the decomposition

The first and the last differences of equation (7.A.5) are controlled by the approximation error B(λ) of the regularized Wasserstein distance T λ with respect to T 0 . We thus have

And we can rewrite 

where ξ 1 , . . . , ξ n are i.i.d Rademacher variables independent of Y 1 , . . . , Y n .

A useful inequality to establish the subgaussian behavior of a random variable is Azuma-Hoeffding inequality.

Theorem 9.1.2 (Azuma-Hoeffding inequality). [van Handel, 2016][Corollary 3.9] Let (F k ) 1≤k≤n be any filtration, and let ∆ k , A k , B k be three real random variables that satisfy the following properties for all k ∈ {1, . . . , n},

A last result we exploit, is the covering number with respect to the norm • ∞ , of the class of functions C ([a, b], B, L) that are the uniformly bounded in absolute value by B, and uniformly Lipschitz with constant L. This result was initially proved in [START_REF] Bronshtein | ε-entropy of convex sets and functions[END_REF] but we give a more recent formulation from [START_REF] Guntuboyina | L1 covering numbers for uniformly bounded convex functions[END_REF]. We recall in this section a theorem that allows to substitute an "inf sup" by "sup inf" and vice-versa. The statement of the next Theorem comes from [START_REF] Borwein | On fan's minimax theorem[END_REF] and is referred to as Fan's Minimax Theorem.

Definition 9.2.1. A function f : X × Y → R is said to be convex-concave like on X × Y if for t ∈ [0, 1] the two following conditions are satisfied. First, for x 1 , x 2 ∈ X, we have that ∀y ∈ Y, f (tx 1 + (1 -t)x 2 , y) ≤ tf (x 1 , y) + (1 -t)f (x 2 , y). (9.2.1)

Second, for y 1 , y 2 ∈ Y we have that ∀x ∈ X , f (x, ty 1 + (1 -t)y 2 ) ≥ tf (x, y 1 ) + (1 -t)f (x, y 2 ). (9.2.2) Theorem 9.2.1. Suppose that X and Y are non empty subsets of R d and f : X × Y → R convex-concave like. Suppose that X is compact and that for each y ∈ Y, f (•, y) is lower semi-continuous on X . Then, the following equality holds, p := min (9.3.17)