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Abstract

Studying human learning is crucial: how can humans learn and what are their motivations to

keep building-up knowledge? Every human is permanently learning to adapt to his environment

and current generations now have to learn to use rapidly evolving technologies. As part of

emerging technologies, research on brain-computer interfaces (BCIs) has become more democratic

in recent decades, and experiments using electroencephalography (EEG)-based BCIs dramatically

increased. This technology enables direct transfer of information from the human brain to a

machine via brain signals, and can notably enable people with severe motor impairments to

send commands to a wheelchair, e.g., by imagining left or right hand movements to make the

wheelchair turn left or right. Such BCIs are called active BCIs since users are actively sending

commands to the system, here a wheelchair, by performing mental imagery. However, the lack

of robustness of BCIs limits the development of the technology outside of research laboratories,

and current BCIs do not enable 10 to 30% of persons to acquire the skills required to use BCIs. If

a lot of research has focused on the improvement of signal processing algorithms, the potential

role of user training in BCI performance seems to be mostly neglected, and training protocols

might not be suitable for all users. However, another type of BCIs recently proved particularly
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promising: passive BCIs. Such BCIs are not used to directly control an application, but to monitor

in real-time users’ psychological states, e.g., mental workload or attention, in order to adapt an

application accordingly. The goal of my PhD thesis is to to attempt to estimate learning-related

psychological states such as cognitive workload, curiosity, attention, fatigue or emotions, from

EEG and/or bio signals, using passive BCIs, in order to understand individual users’ capabilities

and motivations to learn, and therefore to adapt active BCIs training protocols accordingly.

In a first contribution, we explored recent machine learning algorithms that have shown to be

promising for oscillatory-based MI-BCIs, but that have never been tested on oscillatory psycholog-

ical states estimation, proposed new variants of them, and benchmarked them with classical meth-

ods to estimate both mental workload and affective states (Valence/Arousal) from oscillatory-

based EEG signals. We studied these approaches with both subject-specific and subject-independent

calibration, to go towards calibration-free systems. Our results suggested that a Convolutional

Neural Networks (CNN) obtained the highest mean accuracy, although not significantly so, in

both conditions for the mental workload study, followed by Riemannian Geometry Classifiers

(RGCs). However, this same CNN underperformed in both conditions for the affective states

study, when RGCs performed the best. As a second contribution, we implemented a Python

library (BioPyC) to easily compare and benchmark both Signal Processing algorithms and Ma-

chine Learning algorithms for offline EEG and bio signals decoding. Based on an intuitive and

well-guided graphical interface, four main modules allow the user to follow the standard steps of

the BCI process without any programming skills 1) reading different neurophysiological signal

data formats 2) filtering and representing EEG and biosignals 3) classifying them 4) visualizing

and performing statistical tests on the results. This toolbox has been used for our 3 contributions

detailed in this thesis. In a third contribution, we ran an experiment in which we used EEG, Heart

Rate (HR), breathing and Electrodermal Activity (EDA) signals to measure the neurophysiologi-
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cal activity of participants as they were induced into states of curiosity, using trivia question and

answer chains. So far, results from the within-participant study attempting to classify EEG sig-

nals with five-fold stratified cross-validation returned classification accuracies oscillating around

60% (63.09% classification accuracy for the Filter Bank Tangent Space Classifier (FBTSC), 60.93%

classification accuracy for the Filter Bank Common Spatial Pattern (FBCSP) + Linear Discrimi-

nant Analysis (LDA)). Moreover, analyses have been made concerning the classification of the

bio signals (ECG, EDA and breathing): results showed interesting results since we obtained a

classification accuracy of 58.45% for the classification of breathing signals by performing a LDA.

Finally, a fifth contribution is underway, in which we will run an experiment in order to assess

participants’ cognitive load during MT-BCI training using EEG signals, in order to go towards

adapting active BCI training to users cognitive workload capabilities.
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Résumé étendu

L’étude de l’apprentissage humain est cruciale : comment les humains peuvent-ils appren-

dre et quelles sont leurs motivations pour continuer à accumuler des connaissances ? Chaque

humain apprend en permanence à s’adapter à son environnement et les générations actuelles

doivent maintenant apprendre à utiliser des technologies qui évoluent rapidement. Concer-

nant les technologies émergentes, la recherche sur les interfaces cerveau-ordinateur (ICO) s’est

démocratisée au cours des dernières décennies, et les expériences utilisant des ICO basées sur

l’électroencéphalographie (EEG) ont considérablement augmenté. Cette technologie permet le

transfert direct d’informations du cerveau humain à une machine via des signaux cérébraux, et

peut notamment permettre aux personnes souffrant de graves handicaps moteurs d’envoyer des

commandes à un fauteuil roulant, par exemple en imaginant des mouvements de la main gauche

ou de la main droite de facon à faire tourner le fauteuil à gauche ou à droite. Ces ICO sont

appelés ICO actifs car les utilisateurs envoient activement des commandes au système, ici un

fauteuil roulant, en effectuant une imagerie mentale. Cependant, le manque de robustesse des

ICO limite le développement de la technologie en dehors des laboratoires de recherche, et les

ICO actuels ne permettent pas à environ 30 % des personnes d’acquérir les compétences requi-
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ses pour utiliser les ICO. Si de nombreuses recherches se sont concentrées sur l’amélioration des

algorithmes de traitement du signal, le rôle potentiel de l’entraînement des utilisateurs dans les

performances des ICO semble être largement négligé, et les protocoles d’entraînement pourraient

ne pas convenir à tous les utilisateurs. Cependant, un autre type de BCI s’est récemment révélé

particulièrement prometteur : les ICO passifs. Ces ICO ne sont pas utilisés pour contrôler directe-

ment une application, mais pour surveiller l’état psychologique des utilisateurs en temps réel, par

exemple la charge de travail mental ou l’attention, afin d’adapter une application en conséquence.

Le but de ma thèse de doctorat est d’essayer d’estimer les états psychologiques liés à l’apprentissage,

tels que la charge de travail cognitif, la curiosité, l’attention, la fatigue ou les émotions, à par-

tir de l’EEG et/ou de signaux physiologiques, en utilisant les ICO passifs, afin de compren-

dre les capacités et les motivations des utilisateurs à apprendre, et donc d’adapter les proto-

coles d’entraînement des ICO actifs en conséquence. En effet, cette thèse fait partie d’un projet

de 5 ans appelé "BrainConquest", qui vise à améliorer l’entraînement des utilisateurs lors de

l’apprentissage du contrôle des ICO de type "Mental-Task" (MT-ICO). Dans le cadre de cette

bourse du European Research Council (ERC), plusieurs approches sont explorées, telles que

l’amélioration du retour d’information qui permet aux utilisateurs d’avoir des informations sur

leurs performances lors de l’exécution d’une tâche ICO en temps réel, ou la modélisation de

la façon dont les utilisateurs apprennent à encoder les commandes ICO via l’EEG avec succès.

L’approche que nous suivons dans cette thèse vise d’abord à identifier les états des utilisateurs

qui devraient théoriquement être impliqués dans l’entraînement aux tâches ICO. Une fois que

les états des utilisateur qui sont liés à l’apprentissage sont identifiés, l’étape suivante consiste à

pouvoir les estimer en temps réel, afin que la tâche proposée puisse être adaptée à cet utilisa-

teur par la suite. Certains de ces états mentaux ont été étudiés dans diverses études, comme

la charge de travail cognitive, l’attention ou les émotions. Ces études ont été diverses, certaines
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utilisant des mesures subjectives telles que des questionnaires. D’autres études ont estimé ces

états mentaux par des mesures objectives, soit par l’activité cérébrale, par exemple les signaux

EEG ou l’IRMf, ou par l’activité physiologique, par exemple le rythme cardiaque, l’EDA ou la

respiration. Dans certains cas, l’utilisation d’ICO hybrides a été choisi pour combiner les signaux

EEG et physiologiques afin d’estimer ces états mentaux.

Dans une première contribution, nous avons exploré les récents algorithmes d’apprentissage

automatique qui se sont révélés prometteurs pour les MT-ICO basés sur l’oscillation, mais qui

n’ont jamais été testés sur l’estimation des états psychologiques oscillatoires, proposé de nou-

velles variantes de ceux-ci, et les avons comparés aux méthodes classiques pour estimer à la fois

la charge de travail mental et les états affectifs (Valence/Arousal) à partir de signaux EEG basés

sur l’oscillation. Nous avons étudié ces approches avec un calibrage à la fois spécifique au sujet

et indépendant du sujet, pour aller vers des systèmes sans calibrage. Concernant la charge de

travail cognitif, nos résultats suggèrent qu’un réseau de neurones convolutif (CNN) a obtenu la

précision moyenne la plus élevée, bien que de manière non significative, dans les deux conditions

de l’étude, suivi par les classifieurs utilisant la géométrie riemannienne (RGC). Cependant, ce

même réseau de neurones a obtenu des résultats inférieurs dans les deux conditions pour l’étude

sur les états affectifs, lorsque les RGC ont obtenu les meilleurs résultats. Comme deuxième contri-

bution, nous avons mis en œuvre une bibliothèque Python (BioPyC) pour comparer et étalonner

facilement les algorithmes de traitement du signal et les algorithmes d’apprentissage automa-

tique pour l’EEG hors ligne et le décodage des biosignaux. Basés sur une interface graphique

intuitive et bien guidée, quatre modules principaux permettent à l’utilisateur de suivre les étapes

standard du processus ICO sans aucune compétence en programmation 1) lire différents formats

de données de signaux neurophysiologiques 2) filtrer et représenter les signaux EEG et les biosig-

naux 3) les classer 4) visualiser et effectuer des tests statistiques sur les résultats. Cette boîte à
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outils a été utilisée pour les 3 contributions détaillées dans cette thèse. Dans une troisième con-

tribution, nous avons mené une expérience dans laquelle nous avons utilisé des signaux EEG,

de fréquence cardiaque (HR), de respiration et d’activité électrodermique (EDA) pour mesurer

l’activité neurophysiologique des participants lorsqu’ils sont induits dans des états de curiosité,

en utilisant des chaînes de questions et réponses triviales. Jusqu’à présent, les résultats de l’étude

sur les participants qui ont tenté de classer les signaux EEG avec une validation croisée strat-

ifiée au quintuple ont donné des précisions de classification oscillant autour de 60 % (63,09 %

de précision de classification pour le Filter Bank Tangent Space Classifier (FBTSC), 60,93 % de

précision de classification pour le Filter Bank Common Spatial Pattern (FBCSP) + Linear Discrim-

inant Analysis (LDA)). De plus, des analyses ont été effectuées concernant la classification des

signaux biologiques (ECG, EDA et respiration) : les résultats ont montré des résultats intéres-

sants puisque nous avons obtenu une précision de classification de 58,45 % pour la classification

des signaux respiratoires en effectuant une LDA. Enfin, une cinquième contribution est en cours,

dans laquelle nous allons mener une expérience afin d’évaluer la charge cognitive des partici-

pants pendant l’entraînement MT-ICO en utilisant les signaux EEG, afin d’aller vers l’adaptation

de l’entraînement ICO actif aux capacités de charge cognitive des utilisateurs.
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ter bank common spatial pattern (FBCSP); low (l.), high (h.). “clas-
sifier" acronyms: network (net.), support vector machine (SVM),
linear discriminant analysis (LDA). “calibration": subject-specific
(SS), subject-independent (SI). 49
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Introduction

1.1 Context & Motivations

1.1.1 Brain-Computer Interfaces (BCI)
Research on brain-computer interfaces (BCIs) started in 1973 with

Jacques Vidal and his concept of direct brain-computer communica-
tion (Vidal, 1973), enabling transfer of information from the human
brain to a machine via brain signals, usually measured using Elec-
troencephalography (EEG) (Clerc et al., 2016). Later, the BCIs will be
redefined as a hardware and software communication and control sys-
tems that allow humans to interact with their surroundings without
having to use their peripheral nerves and muscles, by using brain sig-
nals alone. This definition emerged from the reference paper entitled
“Brain-Computer Interfaces for Communication and Control" (Wol-
paw et al., 2002). In this case, the normal communication channels,
such as speech and movement, are not used, but instead the brain ac-
tivity is directly recorded and transformed into a control signal. To do
so, features are extracted from the signal by applying signal processing
algorithms, and are then used to feed machine learning algorithms in
order to classify the signals into control commands. BCI systems have
therefore two main components: (1) on the one hand, the user’s brain
is used to encode commands through clear and distinct signals, so that
they can be easily discriminated afterwards (2) on the other hand, the
signal processing and machine learning algorithms must be as suit-
able as possible to the BCI task, in order to decode these commands in
brain signals in an efficient way.
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Today, restoring communication and control in severely paralysed
patients is one of the major axes of BCI research (Ang and Guan, 2013;
Pfurtscheller et al., 2008), but applications are also made for healthy
individuals. Indeed, BCIs have also been developed for recreational
purposes, for example when combined to gaming and virtual reality
applications (Lecuyer et al., 2008; Lotte et al., 2012), or for more se-
rious purposes, e.g., for monitoring cognitive states such as alertness
(Zander and Kothe, 2011). Developing such BCI systems can be done
using four main non-invasive techniques (Pfurtscheller et al., 2004): (1)
functional Magnetic Resonance Imaging (fMRI), that relies on changes
in the cerebral blood flow to measure brain activity (2) functional
Near-Infrared Spectroscopy (fNIRS), that relies on near-infrared light
to measure cerebral hemodynamic responses, and therefore brain ac-
tivity (3) Electroencephalography (EEG), that relies on electrical activ-
ity recordings from the electrodes placed along the scalp to measure
brain activity and (4) Magneto Encephalography (MEG), that records
magnetic fields produced by electrical currents in order to map the
brain activity. All these techniques have their advantages, e.g., a good
spatial resolution for fMRI and fNIRS, and a good temporal resolu-
tion for EEG, but BCI systems are usually based on EEG signals (Clerc
et al., 2016): as a result we choose to only focus on EEG-based BCIs
in this thesis. Note that invasive BCI techniques such as Electrocor-
ticogram (ECoG) also exist, and require to implant electrodes under
the skull for extracting brain signals, and therefore imposes the user
to have a surgical intervention beforehand. If the signals reading is
more accurate than non-invasive systems, being a major benefit, many
downsides such as side effects from the surgery have also been re-
ported (Abdulkader et al., 2015).

Over the last forty years, BCIs have drastically evolved, and no-
table developments regarding the categorization of BCI systems have
emerged: we now distinguish 4 types of BCIs, i.e., active, reactive,
passive and hybrid. First, active BCIs allow users to send mental com-
mand to a system by using brain activity only. For example, this type
of system would enable people with severe motor impairments to send
commands to a wheelchair, e.g., by imagining left or right hand move-
ments to make the wheelchair turn left or right (Millán et al., 2010).
Such BCIs are called active BCIs since users are actively sending com-
mands to the system, here a wheelchair, by performing mental im-
agery tasks (Zander and Kothe, 2011).

Concerning the reactive BCIs, external stimuli are used to trigger
particular cerebral responses, called Event Related Potentials (ERPs),
in users’ brain activity. A concrete application of the use of these ERPs
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is the P300 speller 1.1, which has been first introduced by Farwell
and Donchin (Farwell, 1988). The P300 speller consists of a matrix of
symbols (e.g., letters) displayed on a screen, and either the rows and
columns of the matrix, either the symbols, light up in a random order.
A positive cortical potential is induced in the user when the letter he
is triggering flashes, and appears around 300ms after the occurrence,
allowing the BCI system to detect the letter. This method allows users
to communicate with brain activity only, but unlike active BCIs where
the users send commands to the system, users expect here the system
to react to their sensory inputs, e.g., through vision in the case of the
P300 speller.

Figure 1.1: This is an example of
a P300 speller interface.

Another type of BCIs proved particularly promising for Human-
Computer Interaction (HCI): passive BCIs (Zander and Kothe, 2011).
Such BCIs are not used to directly control some devices, but to adapt
an application/interface by monitoring users’ mental states, e.g., cog-
nitive workload, emotion, attention or curiosity, in real-time. In other
words, users do not voluntary interact with the BCI, i.e., they do not
send commands to the system, but the system still extracts informa-
tion from the users’ EEG signals. For example, being able to estimate
the level of a cognitive state such as the mental workload, when a
user is performing a task, would allow the system to adapt the task to
the user’s cognitive abilities. The same would apply for adapting the
task to the user’s conative states (e.g., curiosity or intrinsic motivation)
and/or affective states (e.g., frustration).

Finally, the concept of “hybrid BCIs" has been introduced by Pfurtscheller
and al. in (Pfurtscheller et al., 2010), and describes BCI systems that
combine information from different devices. Such hybrid BCI systems
can be of two types: (1) two BCIs systems are combined together, i.e.,
the hybrid BCI uses two different brain signals, e.g., electrical and
hemodynamic signals (2) one type of brain signals coupled with an-
other input such as physiological signals, e.g., heart rate (HR), Electro-
dermal Activity (EDA), breathing or signals from other external device
such as an eye tracking system. The goal of making such hybrid BCI
systems is to reach better performances than classic single BCI sys-
tems.

1.1.2 Passive BCI as a tool to adapt active BCI training to
the user
Although promising, non-invasive BCIs are still barely used out-

side laboratories due to their poor robustness with respect to noise and
environmental conditions. In other words, they are sensitive to noise,
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outliers and the non-stationarity of electroencephalographic (EEG) sig-
nals (Wolpaw and Wolpaw, 2012) (Erp et al., 2012). For example, based
on (Blankertz et al., 2010), the average classification accuracy for a two-
class MT-BCI experiment, with 80 users, is only 74.4%. In addition, it
is estimated that between 10% and 30% of BCI users, depending on
the type of BCI, cannot control the system at all. This phenomenon is
also called BCI illiteracy/deficiency (Allison and Neuper, 2010).

So far, an important part of BCI research focused on computer ma-
chinery to address the described issues, as many signal processing and
machine learning algorithms for brain signals classification have been
developed (Allison and Neuper, 2010; Lotte et al., 2018a). If this re-
search area has contributed to a slight increase in BCI performance, the
classification accuracy is still relatively low and the BCI illiteracy/BCI
deficiency is still high. BCI control is a skill that needs to be trained
(McFarland and Wolpaw, 2018), and another axis of improvement has
therefore been proposed (Jeunet et al., 2016; Lotte et al., 2013; Neu-
per and Pfurtscheller, 2010), consisting in focusing on the human side
of the BCI systems rather than the machine side only. The idea is to
ensure the user can produce clear, stable and distinct EEG signals, in
order to then feed the machine learning (ML) algorithms with quality
data. From this point of view, active BCI trainings take all their mean-
ings, and like any acquisition of knowledge or know-how by humans,
involves a learning phase that induces complex cognitive processes
such as cognitive workload or attention. Moreover, other mental pro-
cesses can also influence this learning, positively or negatively, such as
the emotions or motivation that users may have during this learning.

Changes in mental states have been proposed as a cause of varia-
tion in BCI performance (Curran and Stokes, 2003; Millán et al., 2010).
Myrden and Chau have been the first to formally test this hypothesis
(Myrden and Chau, 2015) by investigating the effects of user mental
states on BCI performance, and more particularly cognitive fatigue,
frustration and attention. In particular, authors showed that there is
a link between frustration and performance. They also showed that
moderate fatigue is the best way to concentrate effortlessly on control-
ling BCI, as well as frustration would be a potential motivating factor,
and attention a compensatory mechanism for growing frustration. If
this study was based on subjective questionnaires, other studies have
suggested that mental state fluctuations such as alertness or distrac-
tion can also influence BCI performances (Curran and Stokes, 2003;
Millán et al., 2010), and proposed to estimate them using objective
measures, i.e., passive BCIs. Other mental states that could influence
performance have been studied using passive BCI as well, e.g. engage-
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ment and cognitive workload (Berka et al., 2007; Gerjets et al., 2014),
fatigue (Shen et al., 2008), and emotions (Mühl et al., 2014). For exam-
ple, being able to estimate a mental state such as cognitive workload
is essential to make sure the cognitive load induced by the BCI train-
ing task is adapted to the learner, i.e., that his/her working memory
is never overloaded nor underloaded. Indeed, such an unsuitable cog-
nitive load would impact the quality of learning (Sweller et al., 1998).
Note that some variations in users’ mental states can also impact their
other mental states’ estimation. For instance, it has been showed that
changes in users’ affective states (and more precisely variations in the
stress level of the users) can impact workload estimation (Mühl et al.,
2014).

1.1.3 Passive BCIs for Human-Computer Interaction
The use of passive BCIs, including users’ mental states monitoring

in real time, is not only useful for upgrading BCI training protocols,
they can also be used as an evaluation method for Human-Computer
Interaction (HCI). As its name indicates, HCI is a field of research
that focuses on design, uses and therefore the interaction that users
can have with computer technologies (Hewett et al., 1992). As com-
puters complexity increases, it is important to analyze the impact of
such interactions on the users, in order to be able to keep the potential
of these technologies and adapt them to human capabilities, whether
cognitive or otherwise. In order to better understand these interac-
tions between humans and machines, numerous evaluation methods
have been used in recent decades. Indeed, these evaluation methods
have had to adapt as technologies have developed, and the same is
true today. The methods that are currently used include subjective
measures, e.g., questionnaires, as well as behavioural measures, e.g.,
reaction time, error rate.

More recently, new methods using physiological sensors have been
developed, keeping the idea of improving ergonomics of HCI in mind
(Fairclough, 2009). This field, known as “physiological computing"
aims at extracting real-time information about users’ states from phys-
iological data such as heart rate, electrodermal activity or breathing.
For example, emotions (Villon and Lisetti, 2006), or workload (Fair-
clough and Houston, 2004) are users’ mental states that have been
estimated through such physiological signals.

Passive BCIs can be used as an evaluation method for human-
computer interaction as well (Frey et al., 2014), but also in a more
global way for human factors issues in daily tasks, e.g. work per-
formance or operational safety, that does not necessarily requires to
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interact with a device. This field, examining the “brain at work", and
known as “neuroergonomics" (Ayaz and Dehais, 2018; Parasuraman
and Wilson, 2008), uses electroencephalography, or other neuroimag-
ing methods, to measure users’ states, possibly in real time. For ex-
ample, mental workload has been widely studied to assess how cogni-
tively difficult the manipulation of a given input device is (Frey et al.,
2016; Gerjets et al., 2014). This same cognitive workload has been as-
sessed during 3D objects manipulation tasks (Wobrock et al., 2015),
navigation tasks with different input devices (Frey et al., 2016), during
visualization tasks (Peck et al., 2013), during plane piloting (Gateau
et al., 2015) or during the execution of tasks requiring a lot of cog-
nitive resources by human operators in nuclear power plants (Choi
et al., 2018). Workload estimation was also used to design applications
that dynamically adapt to the users’ states, for instance to create video
games with adaptive difficulty (Fairclough, 2008), to provide an opti-
mal sequence of teaching exercises adapted to the cognitive capabilities
of each learner (Yuksel et al., 2016), or to enable users to visualize and
reflect on their own mental workload levels (Gervais et al., 2016).

1.2 Approach

1.2.1 Story
This thesis is part of a 5 years project called “BrainConquest", that

aims at improving users’ training when learning Mental-Task BCIs
(MT-BCIs) control. As part of this European Research Council (ERC)
grant, several approaches are explored, such as improving the feed-
back that allows the users to have information about their performance
when executing a BCI task in real time, or modeling how users learn to
successfully encode BCI commands in the EEG. The approach we fol-
low in this thesis aims at first identifying the users’ states that should
theoretically be involved in BCI tasks training (see 1.1.2). Once these
learning-related user states are identified, the next step is to be able to
estimate them in real time, so that the proposed task can be adapted
to the user afterwards. Some of these mental states have been studied
in various studies, such as cognitive workload, attention, or emotions.
These studies have been diverse, some using subjective measures such
as questionnaires. Other studies have estimated these mental states
through objective measures, either through brain activity (see intro-
duction - passive BCI), e.g. EEG signals, fMRI, or through physio-
logical activity, e.g. heart rate, EDA or breathing (see introduction -
physiological computing). In some cases, the use of hybrid BCIs (see



introduction 7

introduction - hybrid BCIs) have been used to combine EEG and phys-
iological signals to estimate these mental states.

1.2.2 In a nutshell
This thesis, entitled “Estimating learning-related mental states through

EEG and physiological signals", aims at estimating different types of
mental states, i.e., cognitive (process of coming to know and under-
stand), conative (personal, intentional and motivational drives to pro-
cess the information) and affective states (emotional interpretation of
perceptions, information, or knowledge), which are known to influ-
ence learning. To do so, both physiological and EEG data are pro-
cessed in order to decode such users’ states. Altogether, this PhD the-
sis contributes new tools and knowledge to estimate learning-related
mental states through EEG and physiological signals. In particular, it
contributes new software and machine learning tools, new protocols
and new neurophysiological knowledge to do so. We here present the
outline of this thesis step-by-step, following Figure 8.4.

Figure 1.2: PhD thesis roadmap.

Part 1 of this thesis, i.e., the Theoretical Background (see Part I), is
split into two chapters. The first chapter aims at first studying the his-
torical background (see chapter 2) of the field of Psychology in order
to identify which cognitive, conative and affective states are involved
in human learning. Still in this part 1, we then propose a state-of-
the-art (see chapter 3) of the works that have attempted to estimate
these mental states through EEG signals. We notably survey the pro-
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tocols that have been used to induce these mental states, e.g., N-back
task for the cognitive workload, before reviewing the signal processing
and machine learning algorithms that have been used, and that have
proven to be effective, to estimate such mental states.

Part 2 concerns the methods and tools used to classify learning-related
mental states through EEG signals, and is split into two chapters as well.
The chapter 3 presents our contribution #1, aiming at studying mod-
ern machine learning algorithms to classify cognitive and affective
states from electroencephalography signals. This study explores recent
machine learning algorithms, such as Riemannian geometry based
classifiers (RGC) or convolutional neural networks (CNN) that have
shown to be promising for other BCI systems, proposes new variants
of them, and benchmarks them with classical methods to estimate both
mental workload and affective states (Valence/Arousal) from EEG sig-
nals. Then, the fourth chapter of part 2 describes out BioPyC, our
contribution #2, a free, open-source and easy-to-use Python platform
that we designed and developed for offline EEG and biosignal pro-
cessing and classification. This toolbox has been developed for many
purposes, including studying the machine learning algorithms that
would perform the best to estimate users’ states, either through EEG
or physiological signals.

Part 3 (see III), aiming at estimating a conative state that has been
poorly explored through neurophysiological signals so far, but is very
relevant for learning, i.e., curiosity. We present three chapters explain-
ing our contribution #3 in depth. In the fifth chapter, we introduce the
protocol design that has been used to induce different levels of curios-
ity. Then, chapters 6 and 7 describe the methods that have been used
for decoding curiosity from EEG signals and physiological signals, re-
spectively.

Part 4 (see IV), corresponding to our contribution #4, consists of a
single chapter as it reflects the work that have been done so far on the
ongoing project aiming at estimating levels of cognitive workload from
EEG during MT-BCI user training, to which this thesis contributes.
This eighth chapter describes out the protocol design, i.e., both mate-
rials and methods, and the current status of the project at the time of
the PhD thesis submission.

Finally, a discussion and prospects are proposed in the last chapter.
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Part I

Theoretical Background



PhD Thesis Roadmap

Figure 1.3: PhD thesis roadmap.

Related Papers
Peer-reviewed Journals

- Appriou, A., Pillette, L. and Lotte, F. Estimating Cogni-
tive Workload, Attention and Affective States through EEG
signals: A Review. (Being written with the future aim to
submit to the journal IEEE Transactions on Affective Com-
puting)
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2
A survey of methods and

tools to decode
learning-related mental

states from EEG

As explained in the introduction, the goal of this thesis is to pro-
pose tools to estimate users’ states strongly related to learning through
neurophysiological signals. These states, such as cognitive workload
(Sweller et al., 1998) or curiosity (Kang et al., 2009), are regularly called
“mental states", “psychological states" or even “psychological factors"
in the literature. Moreover, the definition of “mental state" is quite
vague, and is linked to several psychological theories where this very
concept might sometimes differ. We therefore first attempt to study the
history of psychology in order to list the users’ states that are related
to learning. The second step focuses on defining the mental states we
decided to study in this thesis. Finally, in a third part of this chapter,
we study the different existing methods that have proven to be efficient
to induce such mental states.

2.1 Historical background

Psychology is a field that has been studied by many cultures over
the last millennia, as the Ancient Greeks already studied it, and the
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evidence of psychological thought dates back to the ancient Egypt
(Wickramasekera, 2014). Psychology remained a branch of the do-
main of philosophy until the 1870s. This field has naturally become
an independent discipline that studies human’s mind, behaviors and
mental processes. In 1879, Wilhelm Wundt founded the first laboratory
for experimental studies in Leipzig, Germany (Rieber and Robinson,
2001). Several other individuals also made important contributions to
found the field of psychology, such as Hermann Ebbinghaus (a pioneer
in the study of memory) (Roediger, 1985) and Ivan Pavlov (who de-
veloped the procedures associated with classical conditioning) (Clark,
2004). Then, for decades, the field of psychology has dramatically de-
veloped with the emergence of new kinds of applied psychology such
as the educational theory (John Dewey (Sikandar, 2016)), the behav-
iorism (Watson (Calkins, 1913) and then Skinner (Catania, 2003)), the
psychological clinic (Lightner Witmer (Mertin, 2012)) or the psycho-
analysis (Sigmund Freud (Frosh, 2012)).

Among those pioneers in the field of psychology, William James
defined psychology as "the science of mental life" (in his Principles of
Psychology (Cresswell et al., 2017)), thus classifying the field of psy-
chology as a science. The goal of this science is therefore to describe
and explain states of mind or, as more recently detailed, the mental
structures and processes underlying human experience, thought, and
action. The first explanations of what the mind could do were pro-
vided by the German philosopher Immanuel Kant in his book “Cri-
tique of Judgment" (Rothbart and Scherer, 1997), where he described
the mental states as the thoughts, feelings, and desires that pass through
our minds when we are conscious.

In the 1980th century, the psychologist Hilgard kept the idea that
the mind has three main “faculties" to create the “Trilogy of Mind"
(1980) (Hilgard, 1980), and described them as follow:

• cognition: refers to the process of coming to know and understand;
of encoding, perceiving, storing, processing, and retrieving infor-
mation. It is generally associated with the question of “what” (e.g.,
what happened, what is going on now, what is the meaning of that
information). These mental processes are sub-divided into cognitive
states such as cognitive workload or attention.

• affect: refers to the emotional interpretation of perceptions, infor-
mation, or knowledge. It is generally associated with one’s attach-
ment (positive or negative) to people, objects, ideas, etc. and is
associated with the question “How do I feel about this knowledge
or information?”
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• conation: refers to the connection between knowledge and behavior,
or between affect and behavior, and is associated with the “why.”
It is the personal, intentional, planful, deliberate, goal-oriented, or
striving component of motivation. The conation groups together
mental processes that relate to wanting, intending, or trying to do
something (Militello et al., 2006). Conation is often described as a
synonym of motivation.

The categorisation of mental states into three main faculties reveals
the broad scope of psychology, and the complexity of how human
minds work. A wide range of applications arise from this knowledge
of the tripartite psychology, such as psychotherapy (prevention and
treatment of mental illness), workplace (enhancing worker productiv-
ity and managerial effectiveness), but also education (enhancing teach-
ing and learning). For each of these applications, the three faculties,
i.e. cognition, affect and motivation, are involved, but also interact
with each other, e.g. emotional states can serve as filters on cogni-
tion or vice versa cognitive processes can be employed in emotional
self-regulation.

Many theories about learning have been developped in the his-
tory of psychology, and most of them remained assumptions until
the late 1950s. Following this period, the understanding of humans
and their environment became more and more complex, and a new
field emerged: the cognitive science. This new discipline quickly ap-
proached learning from a multidisciplinary perspective that included
anthropology, linguistics, philosophy, developmental psychology, com-
puter science, neuroscience, and several branches of psychology (Newell
and Simon, 1972; Norman, 1980). This new field has in particular made
it possible to test the theories instead of just speculating about thinking
and learning (Ericsson and Charness, 1994; Newell and Simon, 1972).

2.2 Cognitive, affective and conative states
& learning

As shown previously, the trilogy of mind is a theory that comprises
three main states, i.e., cognitive, conative and affective states. Early in
the history of psychology, and in a stream of thought deriving from
Kant’s one, most learning theories focused on the cognitive dimension
to learning while neglecting the emotional one. Only later, the affec-
tional dimension, and then the conative dimension, will also be taken
into account in some learning theories. The relationship between each
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of these three states and learning are about to be detailed in the fol-
lowing steps.

2.2.1 Cognitive states and learning
Cognitive states are processes that enable the recognition and ac-

quisition of information. In other words, the cognition is the accumu-
lation of information acquired through learning or experience. To do
so, information is received from different sources - i.e., perception, ex-
perience, beliefs, etc - and converted into knowledge. Among the cog-
nitive processes, we find attention, language use, memory, learning,
perception, problem solving (reasoning), and thinking (Newen, 2015).
These procedures, when used together, allow to integrate knowledge
and interpret the environment (Newen, 2015).

However, cognitive processes needs to be differentiated from cog-
nitive states, even if cognitive states are also related to the acquisition
of knowledge, i.e., learning, and the interpretation of the environment,
and might also be processes. For example, the Cognitive Load Theory
(CLT) perfectly illustrates the relationship between a cognitive state,
here the cognitive load, and learning (Sweller et al., 1998), as many
researchers have been using it to analyze the effect of cognitive load
on learning (Paas et al., 2010). Moreover, some of these researchers
developed tools to optimize the load level in various learning con-
texts (Paas et al., 2003). This cognitive load is thus considered to be
a cognitive state in (Lohani et al., 2019), as well as fatigue, attention,
distraction and stress. If three types of fatigue exists, i.e., sleep de-
privation, physical fatigue and mental fatigue (Gawron et al., 2001),
an increase of mental fatigue is associated to a decrease of learning
(Gonzalez et al., 2011). Attention (Stadler, 1995), and particularly se-
lective attention (Jiang and Chun, 2001), is a cognitive state that plays
an important role in learning as well. Indeed, an increase of attention
will be associated with learning. Indeed, “Attention” is a generic word
which encompasses a set of different states. The number and charac-
terisation of these different states differ between the different models
that were developed over the years (Knudsen, 2007). In our case, the
model states four types of attention, i.e., alertness, sustained attention,
selective attention (related to learning though) and divided attention.
An increase in distraction will have a negative impact on learning, and
is therefore a cognitive state that is opposed to attention (Craik, 2014).
Stress is a cognitive state that proved to enhance memory formation
and therefore feed long term memory, but conversely proved to impair
memory retrieval (Vogel, 2016). However, both these effects show an
association between stress and learning.
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Recently, in (Dirican and Göktürk, 2011), authors consider the fol-
lowing states to be cognitive states: attention, engagement, working
memory, stress and fatigue. If we previously showed that most of
these cognitive states are related to learning, the cognitive engage-
ment is also associated to learning in educational psychology (Richard-
son and Newby, 2006). Note that this state of cognitive engagement
might sometimes be defined as a motivational state as well, and would
therefore be classified as a conative sate (Blumenfeld et al., 2006). In
(O’Brien and Meister, 2002), the list is different but groups together
cognitive states as well: workload and fatigue.

In summary, cognition is a group of processes that are involved in
the recognition and acquisition of information, in other words, learn-
ing. Cognition encompasses several cognitive processes - attention,
language, memory, learning, perception, as well as thinking - but also
several cognitive states (some of which overlap with cognitive pro-
cesses) related to learning - workload, fatigue, stress, engagement, dis-
traction and attention.

2.2.2 Affective states and learning
In the late 20th, some theories recognized the importance of emo-

tions in learning processes, e.g., Bloom (Bloom, 1975) who proposed
two taxonomies for his theory: one for the cognitive domain and an-
other one for the affective domain. However, there is no link or interde-
pendence between cognition and emotion in Bloom’s theory. A couple
of years later, Goleman et al. developed their theory of emotional in-
telligence, this time drawing a parallel between cognition and emotion
(Faltas, 2016). It was then shown that emotions do influence learn-
ing, either positively (facilitating learning through the development
of emotional competence) or negatively (learning can be inhibited by
emotional incompetence) (Shelton, 2000).

Finally, Damasio’s work allowed to understand the neurological
bases of emotions as well as the strong link between emotions and
certain cognitive processes such as attention or memorization, that are
strongly involved in learning (Damasio, 1994). Several studies have
focused on the interaction between affective states and learning (Baker
et al., 2010; D’Mello et al., 2013; D’Mello et al., 2008; Kort et al., 2001).
Indeed, positive affective states, e.g. surprise, satisfaction, and neg-
ative affective states, e.g., frustration and disillusionment can respec-
tively contribute towards learning or undermine learning. Another
affective state, i.e., boredom, has been associated with poor learning
(Baker et al., 2010). Finally, the flow, first described by Csikszentmiha-
lyi (1990) (Csikszentmihalyi, 1990), has been proved to influence learn-
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ing as well, by heightening engagement. Altogether, the affective states
related to learning can be listed as follows: emotions, surprise, satis-
faction, frustration, disillusionment, boredom and the flow. Note that
emotions can be split into sub-states, positive or negative, e.g., va-
lence, arousal, anxiety, anger, etc. More complex affective states such
as mood or compassion could be added to the list.

2.2.3 Conative states and learning
Conation, often described as a synonym of motivation, is closely

associated with the concepts of intrinsic motivation, volition, agency,
self-direction, and self-regulation (Lemos, 2011; Mischel, 1996), all of
them being associated with learning. First, Bronson proposes the idea
that self-regulation corresponds to the individual learning to interact
with his or her environment (Bronson, 2000). Concerning motivation,
it was first defined as a psychological state or disposition that deter-
mines the initiation, vigor, or direction of cognitive behaviors or activi-
ties, and sets the value placed on various elements of the environment
(Le Ny, 1994). In particular, motivation plays an key role in academic
learning as well (Zimmerman and Risemberg, 1997), or in language
learning (Azarnoosh and Tabatabaee, 2008). For Tardif, the transfor-
mation of information into knowledge is particularly cognitively de-
manding and requires a high rate of investment by the individual, i.e.,
a high intrinsic motivation (Tardif, 1992). To summarize, the following
conative states are related to learning: the intrinsic motivation, voli-
tion, agency, self-direction, and self-regulation.

Once the mental states related to learning are identified, the next
step is to understand how these mental states may vary, and how to es-
timate them objectively, in real time, through neurophysiological mea-
surements.

2.3 Defining Cognitive Workload, Emotions
and Curiosity

As indicated previously, the history of psychology allowed the birth
of multiple theories, some of which have been examined more closely
by cognitive science. Among them, the trilogy of the mind has notably
proposed to divide the human mind into three parts, allocating three
types of states to humans: cognitive states, affective states and cona-
tive states. These states are themselves subdivided into different sub-
states, i.e., “mental states". Once again, in this thesis, we focus only
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on the mental states (and thus sub-states of cognitive, affective and
conative states) that are related to learning. As we have seen, many
mental states related to learning have been defined, e.g., workload,
fatigue, stress, engagement, distraction and attention with respect to
cognitive states. The affective states include emotions, surprise, satis-
faction, frustration, disillusionment, boredom and the flow, when the
conative states comprise the intrinsic motivation, volition, agency, self-
direction, and self-regulation.

Once again, we choose to focus on three of these mental states,
strongly related to learning, in this thesis. They represent the three
types of states from the trilogy of mind, i.e., cognitive, affective and
conative states, and that will be described in more details in the fol-
lowing steps. First, we choose to study the cognitive workload among
the cognitive states, as it has been widely studied through EEG signals
(Antonenko et al., 2010), the literature about the estimation of the cog-
nitive workload through EEG signals is consequent (a literature review
is presented in chapter 3) and recommendations about the materials to
use to continuously assess cognitive workload in real time have been
proposed by Gerjets et al. (Gerjets et al., 2014). Concerning the af-
fective states, we choose to focus on emotion as the literature about
the estimation of such a mental state is important as well (Muhl et al.,
2015), and is completed in chapter 3. Finally, no conative state has been
studied to any great extent with EEG, which is why we have decided
to focus on curiosity, a.k.a. intrinsic motivation, as it is a conative state
that is strongly related to learning, and particularly on epistemic cu-
riosity as Loewenstein described it as a desire to acquire knowledge,
i.e., to learn (Loewenstein, 1994).

Now that we explained the reasons why we choose to focus on the
estimation of these three mental states, i.e., cognitive workload, emo-
tions and curiosity, in this thesis, it is important to follow strict steps to
carry out these estimates successfully. The first step is to induce these
mental states correctly - in order to obtain a ground truth - and mul-
tiple ways to do it are possible: concerning our three mental states,
we will describe the existing methods to induce them in section 2.4.
Then, the way to measure them is also important, and is usually ei-
ther subjective measures (e.g., questionnaires), or objective measures
(e.g., EEG signals). The type of measurement is explained in section
2.5. Finally, the estimation of the state is made by classifying data in
order to discriminate between levels of this very state. The method to
do it may vary based on the type of data. In this thesis, we mainly use
EEG signals to estimate levels of such mental states, and both signal
processing methods & machine learning algorithms are necessary. We
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will detail these processes in section 2.6 and 2.7, respectively.

Before describing the steps aiming at estimating our three mental
states, we first define these three mental states in details in the next
section. Then comes the section that describes out the existing methods
to induce such states, the section focusing on their measurements, and
finally the section explaining the methods to estimate them through
EEG signals.

2.3.1 Cognitive Workload
The concept of cognitive workload has undergone several defini-

tions in recent decades, such as the Wickens’ one, that defined it as
a “relation between the (quantitative) demands for resources imposed
by a task, and the ability to supply those resources by the operator”
(Wickens, 2002). Other definitions have then been given, for exam-
ple by Rozado et al. (Rozado and Duenser, 2015), where cognitive
workload is identified as observed delays in information processing
capabilities when a considerable amount of mental effort is exerted
by an individual. For Haapalainen et al., the description of the cog-
nitive workload remains close but more specific than the Wickens’
one (Haapalainen et al., 2010), where cognitive workload also con-
cerns the learning, thinking and reasoning as indicators of pressure on
working memory, and mainly the associated efforts perceived by the
user during the execution of a task. The measure of mental workload
would therefore represent the interaction between task processing de-
mands and human capabilities or resources (Hancock and Chignell,
1986; Valdehita et al., 2012). In 2007, Cain made a literature review
about the mental workload, and gave the following definition: “a men-
tal construct that reflects the mental strain resulting from performing
a task under specific environmental and operational conditions, cou-
pled with the capability of the operator to respond to those demands”
(Cain, 2007).

In 2014, Durantin et al. brought a statement that docuses more on
the cognitive resources in (Durantin et al., 2014): “when a task is per-
formed, it would consume cognitive resources. According to this view,
performance and the quantity of cognitive resources invested follow
a linear relationship. When the quantity of cognitive resources con-
sumed reaches an individual’s maximum capacity, performance peaks
(or even declines)". Moreover, research has also shown that too high
levels of cognitive load condemns an individual to reach the limits
of his or her cognitive abilities, leading to suboptimal decisions and
human errors. Even if the cognitive demand remains reasonable for
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the individual, a prolonged mental activity also leads to depletion of
cognitive resources (Kamzanova et al., 2014). Low cognitive load can
also lead to boredom, and thus error and distraction from surrounding
factors.

In (Debie et al., 2019), authors pushed forward and defined this
mental state as “a multidimensional concept that consists of four com-
ponents: 1) task complexity; 2) mental workload; 3) performance; and
4) depletion factors". The first component, i.e., task complexity, refers
to the difficulty of the task to be performed by the user, and has prop-
erties inherent to the task independently of the user involved in the
task. Then, the mental workload component is the level of mental re-
sources that a user is capable of giving to maintain a high-performance
while performing the task. The performance component represents
the interaction between users’ mental workload and task complexity.
Finally, depletion factors are external factors affecting the users’ men-
tal capacity, such as stress, fatigue, motivation, task importance, and
attitude.

These definitions all overlap, but each of them brings more accu-
rate details about the way to define the cognitive workload. Theories
are also important to consider, particularly the on from Sweller et al.
called "Cognitive Load Theory" (CLT) (Sweller et al., 1998), which is
now unanimously considered as the theory to be put into practice
when studying cognitive workload (Sweller et al., 2019). Following
this theory, the cognitive load corresponds to the amount of cogni-
tive/working memory resources that are necessary to process the in-
formation, and is split into 3 categories, i.e., intrinsic load, extraneous
load and germane load. The intrinsic load is the resources necessary to
process the inherent complexity of the content in the task, and the ex-
traneous load the resources necessary to process the information of the
irrelevant information. The use of these resources can be considered
as a burden for learning. Finally, the germane load corresponds to the
“good amount of resources needed to learn". Germane load occurs
when information presentation is designed to encourage assimilation
or accommodation of new concepts and appropriately challenge the
learner. The goal of cognitive load theory is therefore to reach the ger-
mane load by playing with both the intrinsic load, i.e., by augmenting
the amount of resources to process the content, and the extraneous
load, i.e., by reducing the amount of resources needed to process ev-
ery other information than the content. In other words, the germane
load is the use of resources we wish to reach when we design train-
ing/learning material.

The CLT is therefore known to be strongly related to learning ma-
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terials because it presents different recommendations for the design of
instructions to facilitate humans’ learning (Wiebe et al., 2010). Indeed,
many studies on instruction design showed that, for similar complex-
ity, learning will be better if the instructions are adapted and adaptive
to the level of the learner (Lespiau and Tricot, 2018). Based on the
CLT, the user must therefore use the cognitive resources related to the
intrinsic activity, and use as few resources related to extrinsic informa-
tion as possible, in order to have an optimal learning (Sweller et al.,
2019).

As a result of all these statements, the cognitive workload is a very
useful mental state to study as soon as human works, human per-
formances or human interactions with devices are discussed. More-
over, it would be an important state to manipulate when we talk
about human learning (Antonenko et al., 2010). Typically, the cog-
nitive workload is measured using subjective measures (i.e., question-
naires) or behavioural measures (i.e., the actions of individuals) (An-
tonenko et al., 2010). However, more recent research focuses on mea-
surement of such as user state using peripheral physiological activity
(e.g., heart rate variability (Paas and Van Merrienboer, 1994), pupil
dilatation (Van Gerven et al., 2004)), and more importantly brain ac-
tivity (e.g., EEG) (Antonenko et al., 2010). Peripheral physiological
measures, however, present a problem: as we saw previously, cogni-
tive workload can be divided into several sub-components, and very
few physiological measures can accurately distinguish the influence of
each of these sub-components. These sub-components, such as mental
effort, stress or fatigue, may have different implications. Thus, in a
real work context, an excess of mental effort will not be regulated in
the same way as an excess of fatigue.

2.3.2 Affective States
As we explained in the introduction of this thesis, the affective

states that are related to learning include several mental states, such
as emotions, but also the surprise, satisfaction, frustration, disillusion-
ment, boredom and the flow. Defining and clusterizing each of these
affective states - and more precisely the emotions dimensions we will
study in more depth in this thesis (see chapter 4) - therefore remains
challenging (Muhl et al., 2015). There are 2 main approaches to define
emotion classes: discrete approaches, with ”emotion families” such
as happiness, anger or surprise (Ekman, 1992); and dimensional ap-
proaches, which group the different emotions along several dimen-
sions. The most popular model, and the one used in our study in
chapter 4, is the circumplex model of Russell (Russell, 1980), which
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assumes that any affective state can be localized on a two-dimensional
plane. The first axis of this plane is the valence, ranging from posi-
tive feelings to negative ones, and the second axis represents arousal,
ranging from calm to excited. Note that more discrete approaches are
existing, proposing different sets of emotions (Ekman, 1992), or the
eight basic emotion states (anger, fear, sadness, disgust, surprise, an-
ticipation, acceptance, and joy) proposed by Slama (Slama, 2005), as
well as more dimensional models, e.g., the one including dimensions
such as dominance and unpredictability (Russell and Barrett, 1999).

The fact that there is no consensus regarding the definition of emo-
tions, or even regarding the model that represents the way to concep-
tualize emotions, whether discrete or dimensional, makes it difficult
to measure them.

2.3.3 Epistemic curiosity
Philosophers and psychologists such as Cicero, Kant, and Freud

characterized curiosity respectively as “innate love of learning and
knowledge", “appetite for knowledge" and “thirst for knowledge", but
the first to propose a definition of curiosity was William James, who
said that “curiosity is an instinct that evolved to facilitate survival and
adaptation through active exploration of the environment" (Gruber
and Valji, 2019). Daniel Berlyne then introduced a multi-dimensional
model of curiosity, characterizing this psychological state in two di-
mensions, i.e., perceptual/epistemic curiosity, and specific/diversive
curiosity (Berlyne, 1954). Following this theory, perceptual curios-
ity refers to “a drive which is aroused by novel stimuli and reduced
by continued exposure to these stimuli", whereas epistemic curiosity
refers to “a desire to acquire knowledge, and applies mainly to hu-
mans" (Loewenstein, 1994). On the second dimension, specific cu-
riosity is defined by the desire for a particular piece of information,
whereas diversive curiosity is defined as a more general seeking for
stimulation that is related to boredom. In addition to Berlyne’s the-
ory, multiple other theories have emerged in the last half-century, e.g.,
incongruity and information gap theories (Loewenstein, 1994) and the
optimal arousal theory (Berlyne, 1967).

Although no scientific consensus has been reached concerning the
definition of curiosity, certain types of stimuli are known to trigger
it, i.e., those of surprising, novel, or intermediate complexity, as well
as activities that are characterized by a knowledge gap or errors in
prediction (Oudeyer et al., 2016). Such triggers can lead to different
momentary states of curiosity, including epistemic (Day, 1970; Litman,
2012; Litman et al., 2005; Macedo and Cardoso, 2012; Mussel, 2010) and
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perceptual curiosities (Gruber and Valji, 2019). Epistemic curiosity has
been particularly studied through psychological experiments in the
last decades (Brod and Breitwieser, 2019), and has more recently been
the object of neuroscientific experiments.

However, epistemic curiosity is an important mental state associ-
ated with spontaneous exploration, active learning, facilitated memo-
rization and sustained engagement (Oudeyer et al., 2016). Recent re-
search in psychology (Kidd and Hayden, 2015) and neuroscience (Got-
tlieb and Oudeyer, 2018) has shown its pervasive role across multiple
dimensions of human cognition and learning. Curiosity also has ap-
plications in multiple disciplines, including robotics, human-computer
interaction (HCI), and learning technologies. The design of robotic and
computer architectures can also be guided by our understanding and
conceptualizations of curiosity (Gordon et al., 2015; Oudeyer et al.,
2007). Human-computer interaction (HCI) researchers have investi-
gated how systems can elicit curiosity in order to inform the design of
persuasive, engaging, and playful interactions (Tieben et al., 2011), or
to motivate and incentivize crowd workers (Law et al., 2016). Finally,
as curiosity-driven learning has been argued to be a crucial feature for
efficient education (Freeman et al., 2014; Oudeyer et al., 2016), learn-
ing technologies are being developed to promote curiosity and moti-
vate curiosity-driven behaviours in students (Ceha et al., 2019; Lomas
et al., 2017).

2.4 Inducing learning-related mental states

In the literature, most of the mental states are mainly studied -
and therefore induced - in laboratory set-ups. More importantly, the
materials used to induce those mental states are often similar from
one study to another. Indeed, only a few number of these materials
are available to the experimenters, it therefore facilitates the compar-
ison between studies dealing with the same topic. In this section, we
present the materials that are commonly used in the literature to in-
duce the mental states that are studied in this thesis - i.e., cognitive
workload, emotions and curiosity - and limit them to the ones that
are used in studies attempting to estimate such states through neuro-
physiological signals. The goal will later be to estimate these induced
mental states, the materials therefore need to induce at least 2 levels of
a given mental state, e.g. low workload vs high workload concerning
the cognitive workload, in order to classify neurophysiological signals
using machine learning algorithms.
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2.4.1 Cognitive Workload
Multiple materials are used to induce different levels of cognitive

workload. Based on the literature, we can split these tasks into two
types, on the one hand the laboratory setups, e.g., N-back or Rspan
tasks, and on the other hand the real-world setups, e.g., real-world car
driving. In this sub-section, we only present the cognitive workload-
triggering tasks that are the most commonly used in laboratory setups.

N-back task: the N-back task can be used in multiple ways, e.g.,
with letters or numbers (visual N-back tasks), or shapes (visuospa-
tial N-back task), following the type of cognitive workload the experi-
menter wants to induce in participants (Gevins et al., 1997). The visual
N-back is considered to be very strongly related to the working mem-
ory (Berka et al., 2007). The method is built as follows: users see
a sequence of letters (or a single-digit number) on a screen, the let-
ters/numbers being displayed one by one, every 2 seconds. For each
letter the user has to indicate whether the displayed letter is the same
one as the letter displayed N letters/numbers before. The “N” can be
manipulated in order to obtain different levels of workload, usually
ranging from 0-back, i.e. the easier level where the user has to iden-
tify whether the current letter is the letter ’X’ (for instance), to 3-back,
i.e. the most difficult level we found in the literature, where the user
had to identify whether the current letter was the same letter as the
one displayed 3 letters before. Between these two levels, we can find
intermediate workload levels, i.e., 1 and 2-back tasks, with moderate
difficulties. For each displayed letter/number, a segment of 2 seconds
is usually used as a trial, and is labeled with its workload level, e.g.,
“low" workload for 0-back trials and “high" workload for 2-back trials.

For the visuospatial N-back task (Suchan, 2008), the same structure
is kept, but with a moving square location: it consists of remembering
and comparing the previous locations of a moving white square to its
current location. The white square appears at a random location on
the computer screen for 0.5 s then disappears, with a 2-second delay
between trials. For each trial, the participant is asked to compare the
box current location to its location several times before, this number
being N=0 (low difficulty) to 3 (high difficulty) as in the letters-based
N-back task. In other words, participants has to remember the box’s
last location in the 1-back condition, but they have to remember the
last three locations in the 3-back task.

Rspan task: first called the Reading span task (Unsworth et al.,
2005), the Rspan task is closely modeled after Unworth’s version of
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the task. The Rspan task is split into a primary and a secondary task,
and requires from the user simultaneous processings and storages. On
the one hand, participants have to process sentences by determining
if they were semantically correct or not, and on the other hand they
have to simultaneously maintain in memory a letter (out of nine con-
sonants: B, F, H, J, L, M, Q, R, X) that is presented at the end of each
sentence. As the whole, the task is organized by difficulty levels, then
by letter group, and lastly by individual trial. Participants have a lim-
ited amount of time to read each sentence, then they are asked if the
sentence makes sense or not, and then have to retain the letter that ap-
pears on the screen. The recall phase comes after a certain number N
of pairs of sentences/letters, and this number N defines the difficulty
level: the higher this number N, the higher the difficulty. The lower
level of workload is usually 2 sentences - meaning 2 letters to retain –
and the highest level of workload is usually 6 sentences/letters.

Sternberg task: the Sternberg task (Sternberg, 1969) is based on
the Sternberg Memory Scanning task (Sternberg, 1966), and consists
in presenting multiple series of single-digit numbers to the participant
(the single-digit numbers are displayed one after the other). After each
series, the participant sees a new single-digit number, i.e. the “probe”,
displayed on the screen, and has to determine if this new number
was in the series. The difficulty of workload levels is manipulated by
increasing and decreasing the length of the series, e.g. ranging from 1,
i.e., the lowest level, to 6, i.e., the highest level.

go/no-go: in the go/no-go task (Redick et al., 2011), letters are
stimuli, and series of stimuli are displayed one after the other to the
user. There are 3 difficulty conditions in this task, i.e. low workload,
medium workload and high workload. The low workload presents
two letters, N as Go and X as No-Go stimuli, when the medium one
has 15 letters as Go (B, C, D, F, G, H, J, K, L, M, N, P, R, S, T) and X
as No-Go stimuli. Finally, the highest difficulty level consists in the
same 15 Go stimuli, but X and Y as No-Go stimuli. After each letter,
the participant has a short time to solve the problem, i.e., to indicate if
the stimulus was Go or No-Go.

Forward Digit Span: in the Forward Digit Span (FDS) task (Kreutzer
et al., 2011b), single-digit numbers are displayed one after the other to
the participants, forming a series. Participants are asked to retain the
whole series and then have to input the numbers in the order they were
displayed. The cognitive workload difficulty levels are induce based
on the length of the sequence participants have to memorize. The low-
est workload level is a series of 20 sets of 3 single-digit numbers, and
the highest consists in a series of 4 sets of 8 single-digit numbers, and
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4 intermediate levels are defined in-between.

Backward Digit Span: the Backward Digit Span (BDS) task (Kreutzer
et al., 2011a) shares similarities with the FDS, since Participants have
to retain a series of single-digit numbers displayed on the screen. The
difference is made in the recall phase, where participants are asked to
input the single-digit numbers in the reverse order from the one dis-
played. The lowest difficulty level is here a series of 12 sets of 3 digits,
and the highest level is made of a series of 4 sets of 8 digits. Three
intermediate levels are found in-between those two levels.

Arithmetic Task: the Arithmetic Task consists in performing calcu-
lations on multiple-digit numbers. As detailed in (Zarjam et al., 2013)
and (So et al., 2017), participants are told to determine the correctness
of arithmetic equations displayed on a screen. The 3 difficulty levels of
workload are defined as follows: the lowest one is based on additions
with single-digit numbers, the medium one is based on double-digit
numbers additions, and the highest one is based on equations with
double-digit numbers and additions/subtractions. Note that in this
task, not only the working memory is involved, i.e., by storing interim
results/temporary information and doing calculation strategies, but
also the long term memory, i.e., by first retrieving an arithmetical fact
from it.

Other tasks: other tasks are used to induce different levels of cog-
nitive workload, but these are used very little, which is why we do not
detail them in this section. This is the case for example of the logical
task, used in (Chaouachi et al., 2011), the finger tapping task used in
(So et al., 2017), the mental rotation task (So et al., 2017), visuomotor
tracking task (van Beurden et al., 2020) or the lexical decision task (So
et al., 2017).

2.4.2 Affective states
Different methods for inducing affective states exist, including some

for eliciting emotions, and these techniques may vary depending on
the theory or model the experimenter chooses to follow. Moreover, the
choice of the method will also be based on the experimenter strategy to
combine the support to induce emotions and the material to measure
them. Moreover, unlike techniques for inducing different levels of cog-
nitive workload, methods for inducing emotions do not pre-calculate
the impact a stimulus would have on the user, e.g., the level of valence
that a video could elicit in an individual. Most often, they will be
combined to a subjective rating from the user, e.g., the level of valence
that the video elicited on the user from 1 to 7. In this section, we only
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present common stimuli, all well known to induce different types of
emotions. Note that these stimuli are considered to be mainly used in
laboratory setups.

International Affective Picture System (IAPS): the IAPS (Bradley
and Lang, 2017) is an image bank that makes it possible to have an
extensive affective rating of various images, and thus to have several
scales available. This allows the experimenters to choose the images
that correspond the most to the types of emotions they want to mea-
sure, and therefore to induce them by showing participants the cor-
responding images (the choice depends on the model that has been
chosen by the experimenter beforehand).

International Affective Digital Sounds (IADS): similar to IAPS,
IADS (Soares et al., 2013) is a bank of sounds that makes it possible
to have an extensive rating of various sounds, and therefore to induce
emotions by playing these sounds to subjects.

Music clips: music clips are a major method to induce emotions
as well: they mix two types of stimuli, i.e., auditory and visual, and
proved to be effective in elicitating powerful emotions (Westermann
et al., 1996). It is possible to make a bank of music clips quickly, by
using affective tagging applications in order to assign tags to the these
music clips.

Video clips: video clips have the same characteristics as music
clips, but focus on the visual aspect of the stimuli and do not have
the auditory dimension. This method is often based on extracts from
famous movies, but video clips other than movie clips have been used
for inducing emotions in the DEAP data set (Koelstra et al., 2011).

2.4.3 Epistemic Curiosity
So far, to the best of our knowledge, only Trivia questions-based

materials have been presented to participant in order to induce states
of epistemic curiosity. This is the case in three studies, two that have
measured such states through fMRI (Gruber et al., 2014; Kang et al.,
2009), and another one that has recorded EEG signals (Lima, 2019).

2.5 Measuring learning-related mental states

As shortly discussed in section 2.5, there are multiple existing meth-
ods for measuring the learning-related mental states that are studied
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in this thesis. On the one hand, the subjective measures, i.e., user
opinion, responses to questionnaires or interviews, have been used for
reporting the varying status of the mental states. This is done sub-
jectively either by the users themselves (e.g., questionnaire), or by the
experimenter. On another hand, we have the behavioral measures, i.e.,
the actions of individuals. More recently, studies have been using ob-
jective measures as well, i.e. measuring users’ mental states through
peripheral physiological activity, e.g., using sensors for cardiac activ-
ity, and more importantly brain activity, e.g., EEG. In this section, we
first describe out the subjective measures that are used for each of the
mental states that are studied in this thesis, and then we present the
objective measures that are commonly used for studying most of the
mental states.

2.5.1 Behavioral measures
Behavioural measures (Jacob-Dazarola et al., 2016), i.e., the actions

of individuals, include all actions that can be taken by observing an
individual’s actions. They can be physical movements, decisions, or
the performance of individuals on a task. This can be measured sub-
jectively, with what the experimenter observes and then reports, or
objectively, e.g., keyboard press, reaction time or mouse tracking.

2.5.2 Subjective measures
Subjective measures refer to questions that seek to understand the

mental state of individuals as they experience it (Annett, 2002). As
seen above, subjective measures can be very structured, as with a ques-
tionnaire, but can also be more informal, as with an interview. Unlike
behavioural measures, subjective measures can be taken even in the
absence of physical actions. In addition, it is possible to develop ques-
tionnaires that are not specific to a particular task, making it easy to
compare tasks with each other. We present the subjective measures
existing for our mental states, i.e., cognitive workload, emotions and
curiosity, as follows:

Cognitive Workload: cognitive workload is a mental state that
has been widely studied in psychology through questionnaires and
therefore subjective measures. We present here the most common sub-
jective measures, including the most widely used questionnaire of the
cognitive workload literature, i.e., the NASA-TLX (Hart, 2006):

• NASA-TLX: a popular method for the subjective assessment of users’s
mental workload is the NASA Task Load indeX (NASA-TLX) (Hart,
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2006). This scale consists of six dimensions: mental demand, phys-
ical demand, temporal demand, performance, frustration level, and
effort, each with 10- or 20-point scale. All components are then com-
bined into a single score that is the weighted average of the ratings
for each component. One of the limitations is that users have to wait
until the end of the task to rate their level of cognitive workload.

• Subjective Workload Assessment Technique: through this multi-
dimensional method, three factors are assessed, i.e., the time load,
the mental effort load and the stress load (Reid and Nygren, 1988).
The scoring is a subjective rating technique, and three levels are
used for each of three dimensions: low, medium or high, respec-
tively 1, 2 and 3. The three factors are then combined in order to
produce an interval scale of mental workload.

• Cooper-Harper scale: first used for aircraft pilots while performing
a handling task, this is a scale ranging from 1 to 10, with 1 being the
best handling characteristics and 10 the worst (Cooper and Harper,
1969). This scale was then used in various fields.

• ATWIT: The Air Traffic Workload Input Technique (ATWIT) (Stein,
1985), first used for Air traffic, but then applied to many fields (Loft
et al., 2014), where participants are asked to rate the level of cog-
nitive workload on a 1 (low workload) to 7 (high workload) lickert
scale. The advantage of this method is that users can report the
workload as it changes, and do not have to wait until the end of the
task to do so.

Affective states: to our knowledge, no widely-used questionnaires
- or subjective measurements other than likert scales - are existing.
Concerning the well-known likert scales, we find the self assessment
Manikin (SAM) scale, and the classic Valence - Arousal - Dominance
scale (Koelstra et al., 2011).

Curiosity: to our knowledge, no widely-used questionnaires - or
subjective measurements other than likert scales - are existing.

2.5.3 Neurophysiological measures
Objective measurements (Cowley et al., 2016) are mainly derived

from sensors that measure the electrical activity of some human body
areas, e.g., electrocardiography or electroencephalography to collect
information about the heart or the brain. Electrical signals are there-
fore recorded and then analyzed by signal processing algorithms. How-
ever, not all sensors are sensors of electrical activity, and other methods
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are then used to process the collected data. However, we describe a
large part of the sensors that can be found in the literature, for the ob-
jective measurement of mental states, without going into details. Here
is the list of these sensors:

• electroencephalography (EEG): electroencephalography measures
changes in the electric field caused by neuronal activity. To do this,
electrodes are placed on the scalp of individuals.

• functional near-infrared spectroscopy (fNIRS): this technique is
based on the examination of the levels of oxygenated (HbO) and
deoxygenated (HbR) hemoglobin concentration in the cerebral cor-
tex: the level of oxygenation in the brain changes the degree to
which near-infrared light is reflected.

• heart rate and heart rate variability (HRV): several techniques exist,
but the most common one is the electrocardiography (ECG). This
technique consists of placing electrodes on the individual (often at
the chest level) to measure the changes in electric fields caused by
the heart activity.

• ocular activity: ocular activities can be measures of pupil dilation,
blink frequency and blink duration or saccades, and is typically
measured by cameras. These cameras can be installed in different
ways (e.g. fixed to the workstation, fixed to the computer screen,
mounted on a bezel) and are used to record eye movements.

• breathing: breathing can be measured in several ways: one of the
simplest and most commonly used one is to place a band around
the individual’s chest and measure the stretch in that band caused
by breathing

• electrodermal activity(EDA) / galvanic skin response (GSR): EDA
uses electrodes, which are often placed on the hand or fingers of
individuals. Once installed, a weak electric current flows through
these electrodes and allows the measurement of electrical conduc-
tance, which varies with the level of sweating.

As seen above, in addition to these listed physiological measures
we also have behavioral measures that can be considered as objec-
tive measures: they include all actions that can be taken by observing
users’ actions. They can be physical movements, decisions, or the per-
formance of individuals on a task. For example, keystroke dynamics,
mouse tracking, and body positioning are metrics that can be studied.

In this thesis, we mainy focus on EEG as an objective measure of
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mental states, and we made a literature review of studies that have
attempted to estimate our three mental states, i.e., cognitive workload,
emotions and curiosity, through EEG signals only. To a smaller degree,
we are also interested in physiological signals, including heart rate,
breathing and EDA, as we consider them in our study on curiosity
(see part 8).

2.6 Extracting features from mental states
measurement

As we have just seen before, there are therefore 2 main types of
measures to identify the different levels of mental states, i.e., subjec-
tive and objective measures. Subjective measures have long been used
by researchers, particularly in the field of psychology, but have shown
limitations concerning the objectivity of the measure (and hence its
name): the level of a given mental state is either defined by the user
himself, or by the experimenter. This leaves human beings as only
judges of the variations of these mental states levels. However, more
recent methods, here referred to as objective measures, have emerged
with the development of new technologies, in order to obtain infor-
mation on the users’ neurophysiological responses. In this thesis, we
focus on neurophysiolgocal measures of mental states only, in order to
go towards estimation of mental states in real-time.

Among the objective measures, we find 2 subtypes, i.e. body sen-
sors that allow to measure the physiological responses of the user, and
neurotechnologies that allow to measure brain activity. While several
studies have shown that it is possible to decode mental states from
physiological signals alone (Debie et al., 2019), a combination of phys-
iological signals with neural signals (Debie et al., 2019), once again,
in this thesis we decided to focus on EEG only. Indeed, in the re-
mainder of this chapter, we study the literature by focusing on papers
dealing with the measurement of mental states through EEG signals
exclusively.

2.6.1 Features in the EEG
The measurement of the brain activity due to variations in the dif-

ferent mental states might be complex due the low spatial resolution
of the EEG. It is therefore important to focus on the strengths of EEG,
i.e., a good temporal resolution, and extract features that will bring
information based on both the time and frequency domains. However,
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features about the spaciality of the EEG signals can be extracted as
well, using spatial filters.

Time domain-based features: concerning the time domain in EEG,
the Event Related Potentials (ERPs) focuses on variations in the signal
over a time window of a few hundred milliseconds after a stimulus.
ERP waveforms consist of a series of positive and negative voltage
deflections, which are related to a set of underlying components (Kap-
penman and Luck, 2012). We can distinguish different types of ERPs
based on the components that are referred by a letter (N/P) indicating
polarity (negative/positive), followed by a number indicating either
the latency in milliseconds. For instance, a positive-going peak that
occurs about 300 milliseconds after a stimulus is presented is often
called the P300, indicating its latency is 300 ms after the stimulus and
that it is positive. The time of the trials used by the machine learn-
ing algorithms in this case is generally between 0.8 and 1.2 seconds
(Mühl et al., 2014; Roy et al., 2015b). The oscillatory activity, which is
the alternative to ERPs, has usually longer time windows, e.g. from
2-seconds time windows to 120-seconds time windows (Brouwer et al.,
2012; Grimes et al., 2008), and is based on variations in brain rhythms,
and therefore depends on the frequency domain.

Frequency domain-based features: typically, since more and more
evidence shows that the oscillatory rhythm have a functional signifi-
cance for the workings of the human mind, the EEG activities in hu-
man beings can be classified according to their frequency (from the
slowest to the fastest: delta, theta, alpha, beta, and gamma):

• Delta power (δ): frequencies from 0.5 to 4 Hz, normal in very young
children, they can then characterize certain brain lesions or deep
sleep (Steriade et al., 1993). This frequency range is also associated
with conative states, i.e., motivational states (Knyazev, 2012), and
affective states, i.e., emotions (Aftanas et al., 2002).

• Theta power (θ): theta comprises oscillations between 4 and 8 Hz,
and is an important oscillation to take into consideration when
studying mental states, for variations in cognitive states, e.g. cogni-
tive workload (Klimesch et al., 2008), or variations in affective states,
e.g. emotions (Sammler et al., 2007). It is thought to increase as the
cognitive demand of the task is important (Fernandez Rojas et al.,
2020). Theta also increases when the the concentration is sustained
(Gevins and Smith, 2003), or when the working memory increases
as well (Borghini et al., 2012).

• Alpha power (α): in general, alpha band increases in relaxed states
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with eyes closed and decreases when the eyes are open (Antonenko
et al., 2010). This brain wave is dominant in humans, and generally
consists of oscillations in the 8–13 Hz range (Andreassi, 2007). Al-
pha is probably the most important oscillation to consider when
mental states are studied, whether it is cognitive states (Gerjets
et al., 2014), affective states (Coan and Allen, 2004), or conative
states (Harmon-Jones, 2003).

• Beta power (β): corresponds to frequencies above 13 Hz (and gen-
erally below 45 Hz). They generally appear in a first case of calm
awakening, also called internal awakening, when the individual,
with eyes closed, is in a state of diffuse attention without a speci-
fied perceptual or mental task, and the alpha rhythm is then often
present with superimposed or alternating beta activities. The beta
power is also subject to variations of affective states, e.g., emotions
(Onton and Makeig, 2009) and cognitive states, e.g., attention (Cole
and Ray, 1985). This band power can be split into two sub-bands,
i.e., low beta (lβ) and high beta (hβ).

• Gamma power (γ): frequencies above 35 Hz, usually about 40 Hz,
up to 80 Hz. They are only very little studied when we are inter-
ested in mental states, even if some results showed they could be
interesting to study, i.e., cognitive states such as attention or mem-
ory (Jensen et al., 2007), or affective states (Müller et al., 1999).

Spatial filters: There are multiple spatial filter types, but a couple
of them are widely used in the EEG-based BCI literature. We quickly
present them in this section, but some of them, i.e., the Common Spa-
tial Pattern (CSP) and the Filter Bank CSP (FBCSP), that we used for
our contributions, will be described in more details in chapter 2.

• Common Spatial Pattern (CSP): this algorithm optimizes the EEG
signal-to-noise ratio: the variance of spatially filtered signals is max-
imized for one class and minimized for the other class (Blankertz
et al., 2008).

• Filter Bank Common Spatial Pattern (FBCSP): EEG signals are fil-
tered into multiple frequency bands, usually nine or ten 4Hz-wide
if we refer to (Ang et al., 2012), and then N filter pairs are optimized
for each frequency band using the CSP cited right above. Finally, a
subset of them is selected using feature selection.

• Principal Component Analysis (PCA): this algorithm is employed
to first obtain uncorrelated components by performing a linear and
orthogonal transformation (Roy et al., 2015b). Among these compo-
nents, some are then selected to finally be used as spatial filters.
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• xDAWN: this algorithm optimizes the ratio between the signal and
the signal plus noise ratio in order to obtain the spatial filters dedi-
cated to ERP classification (Rivet et al., 2009).

In addition to these listed algorithms, the Fisher Spatial Filter (FSF)
(Mühl et al., 2014) and the Canonical Correlation Analysis (CCA) (Hoff-
mann et al., 2006) are two other spatial filtering methods that can be
found in the literature.

2.6.2 Features in the physiological signals
Features can also be extracted from physiological signals such as

heart rate, breathing or electrodermal activity, and used to estimate
mental states such as cognitive workload (Brouwer et al., 2012). These
features are described in our contribution 3 - precisely in chapter 8 -
where we attempted to estimate states of curiosity through EEG, but
also physiological signals.

2.7 Estimating mental states through EEG
and physiological signals

As seen in the previous sections, there are different methods for
inducing mental states, measuring these mental states, and finally ex-
tracting features by processing the EEG signals that have been recorded
during variations of these mental states. These three steps are critical
in the process of estimating mental states through EEG signals, but
several additional steps are necessary to carry out such classifications
of mental states levels. Therefore, other decision-makings concerning
the choice of methods/parameters have to be done in order to eval-
uate classification performances for a given mental state. First, the
experimenters have to carefully define the trials they will use to feed
the machine learning algorithms, i.e., the type signals (ERP vs oscil-
latory), the number of trials and the time-window into which signals
are split. Second, the type of calibration, i.e. subject-specific or subject-
independent, might differ from a study to another, and are defined as
follows:

• subject-specific: the classifier needs to be built for each individual
subject (Blankertz et al., 2008). First, data specific to each subject
are split into two parts: the training and testing sets. Then, machine
learning algorithms are trained on the first set and evaluated on the
second one. These two parts can be of size relative to the number
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of available trials, e.g., 50%/50% or 30%/70%.

• subject-independent: one of the major steps for monitoring mental
states outside of the laboratories would be for users to be able to in-
stantaneously use the system without any calibration phase. To do
so, it is possible to evaluate machine learning algorithms through
online & offline subject-independent studies, i.e., with a classifier
built on multiple subjects and used as such on a new subject, with-
out the need for data from this new subject. For example, the com-
mon evaluation method for this type of calibration is a leave-one-
subject-out cross validation, i.e., the training phase uses all subjects
expect the target subject data to train the classifier, and the testing
phase applies this classifier on the target subject data only. This
process is repeated with each subject used once as the target (test)
subject.

Other decisions need to be made when designing the protocol, such
as the number of participants to include in the study, the number of
sessions per participant, or both the number and the type of sensors.
These choices are important and have a direct impact on the quality
of the study. For example, the number of participants must be large
enough to be able to conclude on the validity of the statistical tests
made on the study.

Finally, there are multiple types of algorithms to classify EEG sig-
nals, and thus mental states. The experimenters must therefore, here
again, make choices about the classifier they want to use in their exper-
iments. Among these classifiers, the linear classifiers are well known
from most of the experimenters, e.g. the Linear Discriminant Analysis
(LDA), the Support Vector Machine (SVM), the Gaussian Naïve Bayes
(GNB) and the Logistic Regression (LR). However, more complex ma-
chine learning algorithms exist, but might not be as common as linear
classifiers: this is the case of Artificial Neural Networks (ANN). Note
that all the existing machine learning algorithms for the classification
of EEG signals are listed and detailed in the literature review in (Lotte
et al., 2018a).
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3
A literature review of

EEG signals-based
estimation of cognitive

workload & emotions

As seen previously, we focus on the estimation of three mental
states in this thesis, i.e., cognitive workload, affective states and cu-
riosity. The first step of this thesis is therefore to review the literature
concerning the studies that have attempted to estimate these mental
states. Indeed, the ultimate goal would be to use passive BCIs to esti-
mate these three mental states through EEG signals.

This literature review is organized as follows: first of all, it is di-
vided into three sub-sections, each one corresponding to a specific
mental state, i.e., a sub-section is dedicated to the cognitive workload,
another one to the emotions, and so on. Then, for each of these mental
states, we describe out the methods that have been used in the litera-
ture to induce them, the methods for pre-processing the EEG signals,
the ones for processing as well as the choices that have been made
by the experimenters concerning the protocol designs (that we saw in
chapter 2), and mainly the method for classifying those EEG signals.

All the criteria that have been cited right before, and which make
it possible to define the methods used to estimate these mental states
in literature, are grouped together in the form of tables which make it
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possible to have a global overview of them.

3.1 Cognitive workload

Based on the density of the literature on this subject, the estimation
of cognitive workload through EEG signals has been extensively stud-
ied over the last 30 years. Among the studies that have been carried
out, the methods for estimating the cognitive workload through EEG
signals differ, and therefore bring interesting perspectives concerning
the step-by-step process to follow to estimate such a cognitive state,
i.e. inducing, measuring, and finally processing & classifying the sig-
nals. If multiple parameters have been tested by the experimenters in
the literature, only the more promising findings are reported on Ta-
ble 3.1. For example, we limit our literature review to studies that
sought to classify different levels of cognitive load, and do not con-
sider the ones that just focused on features used for evaluating cogni-
tive workload such as in (Zarjam et al., 2011). We also focus on studies
that have concentrated on healthy participants, although some stud-
ies have looked at non-healthy patients (Mathan et al., 2010; Mazher
et al., 2016) but we do not consider them in our literature review. We
also choose to exclude studies that used unsupervised methods such
as (Das et al., 2013). Finally, we limit the collected studies to those that
measure variations in cognitive workload with laboratory setups, ei-
ther with purely laboratory-based designs (e.g., n-back task on a screen
(Brouwer et al., 2012)), but also with tasks that seek to recreate real-life
situations in a simulator (Dijksterhuis et al., 2013). The data bases that
have been explored are IEEE Xplore, PsyArRTICLE, Scopus as well as
Google scholar, and the formulas we used were “workload + EEG" and
“workload + electroencephalography".

Participants, sessions and EEG channels: most of the studies of the
review have been run with at least 12 participants, going up to 35 for
the study by Brouwer et al. (Brouwer et al., 2012). However, this num-
ber of participants has remained low for some of them, i.e., 5 (Heger
and Schultz, 2010), 6 (Honal and Schultz, 2008) and 8 (Duraisingam
et al., 2017; Gevins et al., 1998; Grimes et al., 2008). Concerning the
number of sessions, all of the studies ran a single one except the study
by Gevins et al. (3 sessions (Gevins et al., 1998)) and the one by Di-
jksterhuis et al. (multiple sessions (Dijksterhuis et al., 2013)). Finally,
the number of channels on the EEG cap might differ from a study to
another as well, usually 16, 32 or 64 electrode caps. In the study by
So et al. (So et al., 2017), authors used a single-electrode cap, which is
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rather rare.

Inducing cognitive workload: in the literature, multiple methods
have been used to induce workload states at different levels, and most
of these methods are described in chapter 2. Among them, the N-
back task and the Sternberg task are the ones that has been studied
the most, with respectively 7 (Baldwin and Penaranda, 2012; Brouwer
et al., 2012; Grimes et al., 2008; Hogervorst et al., 2014; Mühl et al.,
2014; Walter et al., 2013; Wang et al., 2016) and 5 (Baldwin and Pe-
naranda, 2012; Bashivan et al., 2016; Roy et al., 2013,1,1) studies out of
the 20 studies that have been identified and analyzed in this review.
Otherwise, the only tasks that has been used multiple times are the
arithmetic task with 2 studies to its credit (So et al., 2017; Zarjam et al.,
2015), and the reading span task with 2 studies as well (Baldwin and
Penaranda, 2012; Walter et al., 2013). Note that 19 studies out of the
20 have been conducted under laboratory constraints, and only one
has been run in a real-world-based simulator, here a driving simula-
tor (Dijksterhuis et al., 2013). In (Duraisingam et al., 2017), authors
used an uncommon task, as participants were asked to solve nine Java
programs of different difficulty level.

Characterizing trials: three types of features are retained to char-
acterize the trials that are used in the different studies: the type of
trials (oscillatory vs ERP), the number of trials and the time-window.
Concerning the type of trials, the literature review allowed us to count
the oscillatory-based studies, i.e., 17 of them, versus the ERP-based
studies, i.e., 5 of them. Then, the higher the number of trials, the bet-
ter the machine learning algorithms will be trained, and therefore the
better the predictions and the classification performance scores will
be. In the literature, this number goes from 10 (Sinha et al., 2016) to
4727 (Duraisingam et al., 2017). Finally, the time windows vary from
0.6 to 1 second for the ERP-based trials, and from 1 (Chaouachi et al.,
2011; Heger and Schultz, 2010) to 120 seconds (Grimes et al., 2008) for
oscillatory-based trials. In (Roy et al., 2013), authors chose to use trials
of 0.8s to avoid any confounding effect with memory encoding. Note
that the tables indicate the time-windows that have been used to find
the best classification performance score, but not all values of parame-
ters are transcribed into them. For example, the Grimes et al. (Grimes
et al., 2008) and the Brouwer et al. (Brouwer et al., 2012) studies have
used several time windows, ranging from 2 to 120 seconds, but only
the results from the use of certain time windows, here 120 seconds and
2.5 seconds respectively, are presented in the tables.

Processing EEG signals: multiple methods are used to process the
EEG signals in the cognitive workload estimation literature, but the
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one that is used unanimously is the band-pass filtering. As seen in
chapter 2, some frequency bands are interesting when studying men-
tal states, i.e., delta (δ), thêta (θ), alpha (α), beta (β) and gamma (γ). The
frequency bands that are used the most for estimating cognitive work-
load levels are thêta and alpha, respectively in 17 and 19 out of 20 stud-
ies. Other common features have been extracted using well-known al-
gorithms, such as spatial filters like the CSP (Dijksterhuis et al., 2013;
Roy et al., 2013,1; Sinha et al., 2016), the FBCSP (Mühl et al., 2014), the
FSF (Mühl et al., 2014), the CCA (Roy et al., 2015b,1), the PCA (Heger
and Schultz, 2010; Roy et al., 2015b) and xDAWN (Roy et al., 2015b). In
(Roy et al., 2013), authors used a Riemannian Geometry-based method
in order to select the most relevant electrodes (Barachant and Bonnet,
2011). Duraisingam et al. used ratio of the different frequency bands
(alpha and theta), as features that have been input in the classifier (Du-
raisingam et al., 2017). However, this was not the only study that used
a ratio of different frequency bands as features. Note that we only in-
dicate the frequency bands that have been used in the table, without
precising the different ratio authors used.

Estimating cognitive workload from EEG signals: among the
20 studies, only 2 of them proposed a subject-independent (SI) cali-
bration method for the classification phase (Heger and Schultz, 2010;
Honal and Schultz, 2008). For the subject-specific (SS) studies, mul-
tiple machine learning algorithms have been used in the literature,
starting with SVM which has been the most widely used, with a num-
ber of uses of 9 (Bashivan et al., 2016; Brouwer et al., 2012; Heger
and Schultz, 2010; Hogervorst et al., 2014; Honal and Schultz, 2008;
Sinha et al., 2016; So et al., 2017; Walter et al., 2013; Wang et al., 2016).
Then, the LDA has been used for 5 studies, the artificial neural net-
works for 3 studies, and otherwise the authors have opted for Naive
Bayes classifiers or even an algorithm we did not describe in this the-
sis: the Gaussian Process Regression (GPR) (Chaouachi et al., 2011).
Unfortunately, the number of such methods, the parameters they have
been using (e.g., the architecture of ANN), the variety of computed
features, and differences in protocol designs from a study to another
make classification performances comparisons highly problematic. Fi-
nally, 3 studies propose to estimate workload using cross-task set ups
(Gerjets et al., 2014; Krol et al., 2016; Walter et al., 2013).

Take away: as we have just seen, the results are difficult to compare
from one study to another, but this review of the literature offers us
some perspectives. First of all, we can observe that ERPs have been
used very little, indicating a tendency to measure cognitive workload
over longer time intervals, i.e., using oscillatory-based passive BCIs.
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In (Brouwer et al., 2012), authors used the same data set to perform
both ERP-based and oscillatory-based studies, and obtained classifica-
tion performances of 80.0% and 90.0% respectively, confirming a bet-
ter algorithms’ recognition of cognitive workload levels. While only
2 studies have performed subject-independent studies, they have per-
formed studies with subject-specific calibration in parallel on the same
data set, and have therefore used the same machine learning method
for both SS and SI calibrations, and both obtained better classification
performances with the subject-specific one, i.e., 91.0% for SS study ver-
sus 72.0% for SI in (Heger and Schultz, 2010), and 92.2% for SS study
versus 80.0% for SI in (Honal and Schultz, 2008).

Concerning the EEG power, two oscillatory components have been
early recognized as being sensitive to task difficulty manipulations -
alpha and theta (Gevins and Smith, 2003; Klimesch et al., 2005). More-
over, based on the N-back task with time-windows of 2 seconds, it
has been proposed by Brouwer et al. that the best frequency band
for distinguishing between low (0-back) and high (2-back) cognitive
workload levels is the alpha band (8-12 Hz) (Brouwer et al., 2012). The
second best frequency band, even if less effective and less clear than
with Alpha, is the thêta band (4-8 Hz). Still based on the work by these
authors, the electrode which would be the most discriminating would
be the Pz one. Concerning (Baldwin and Penaranda, 2012), their re-
sults lead to the assumption that the different tasks they have been
using, i.e., reading span, Sternberg task, and spatial n-back task, in-
duce highly dissimilar features in the EEG-signal, relying on separate
neural structures or types of processing.

3.2 Affective states

The estimation of affective states has been widely studied in the
literature over the last 20 years, and studies using various methods
for inducing mental states, measuring them through EEG signals to
then processing these signals, have been chosen by the experimenters.
Moreover, algorithms and parameters for calibrating the experiments
and thus classifying multiple emotions & levels of affective states through
EEG signals have differed from one study to another. It is therefore
interesting to list these studies, as well as the choices that the experi-
menters made concerning their parameters, as we can observe in Table
3.2.

As for the cognitive workload literature review, we focus this re-
view on studies that attempted to discriminate at least 2 levels of affec-
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tive states or at least two emotions, e.g., discriminate low valence from
high valence, or joy from anger. The same holds true for the restriction
of studies to those based on healthy participants or within-class classi-
fication, i.e., no cross-task studies have been kept. Finally, the studies
that we collected have been limited to the ones that attempted to mea-
sure such affective states following laboratory setups: there are less
cofunding factors and are more controlled. Concerning the datasets,
Koelstra et al. proposed a “universal" dataset, called “DEAP" (Koelstra
et al., 2011), that could be used to test and compare many parameters
such as methods for feature extractions, for classification, or by playing
with the number of channels, the trials characteristics, etc. The data
bases that have been explored are IEEE Xplore, PsyArRTICLE, Scopus
as well as Google scholar, and the formulas we used were “affective
+ state + EEG" and “emotion + EEG", “affective + state + electroen-
cephalography" and “emotion + electroencephalography".

Participants, sessions and EEG channels: the number of partic-
ipants varied from study to study, with 18 studies over the 21 ones
having 10 or more participants, and the remainder having relatively
small numbers of participants, i.e., 4 (Chanel et al., 2006), 5 (Khalili
and Moradi, 2009), 7 (Choppin, 2000). The number 10 is arbitrary but
this reflects the importance of having a minimum number of partici-
pants in order to draw conclusions from a study. However, most of the
studies ran a single-session experiment, except for the ones by Zheng
et al., who chose to set up two sessions per participant (Zheng and
Lu, 2015), Finally the number of channels varied a lot between stud-
ies, i.e., going from 1 (Zhou et al., 2014) to 124 (Kothe et al., 2013).
Note that Abadi et al. used 306 channels, but this number is including
magnetoencephalography (MEG) ones (Abadi et al., 2013).

Inducing affective states: in the literature, multiple methods have
been used to induce affective states at different levels, and most of
these methods are described in chapter 2. Among them, the most fre-
quently used methods were the International Affective Picture System
(IAPS) and the video clips, with both 7 uses. Other methods are mostly
based on images and video clips as well, sometimes music video clips,
except for the materials used in the study by Chanel et al. (Chanel
et al., 2011), where authors used a game, or in the study by Daly et
al. (Daly et al., 2016), where they used musical excerpts, in order to to
elicite emotions in users.

Characterizing trials: concerning the type of trials authors used
in the different studies, only oscillatory-based methods have been pre-
sented in the papers we reviewed from the literature, indicating very
poor knowledge of ERP-based emotion estimations. The number of
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trials is not always present in the Table 3.2 because we relied on the
study by Muhl et al. to list the studies that aimed at estimating affec-
tive states from 2000 to 2014 (Muhl et al., 2015), and the authors did
not choose to indicate these values. However, we have reported these
number of trials in Table 3.2 for the studies we reviewed ourselves,
i.e., the studies that appeared between 2014 and 2017 (5 studies out
of 21). Concerning the “DEAP dataset", EEG signals from 40 videos
of 60s have been segmented into 6-seconds time windows, resulting
in 400 trials of 6s for the studies that used this dataset (Candra et al.,
2017; Lin et al., 2017). Otherwise, 20 trials have been used in (Soley-
mani et al., 2015) and 6600 trials (over 2 sessions) have been used in
(Zheng and Lu, 2015). Finally the time windows also vary a lot from
one study to another, i.e., going from 1 second in (Zheng and Lu, 2015)
to 300 seconds in (Chanel et al., 2011).

Processing the EEG signals: as for the EEG signals processing in
the cognitive workload studies, multiple methods are used, but the
one that is used unanimously is the band-pass filtering. Some fre-
quency bands are more interesting that others as well, i.e., thêta (θ)
and alpha (α), even if delta (δ), beta (β) and gamma (γ) are sometimes
used as well. Note that these power bands are detailed in chapter
2, and the use of such frequency bands are reported as “spectral fea-
tures" in Table 3.2. However, other methods are used, such as the Filter
Bank Common Spatial Pattern (FBCSP) (Kothe et al., 2013), differential
entropy-based features (Zheng and Lu, 2015), compressed Discrete Co-
sine Transform (DCT) features (Abadi et al., 2013), basic statistics such
as mean or standard deviation (Khalili and Moradi, 2009; Takahashi,
2004), hemispheric asymmetry (Koelstra et al., 2011; Lin et al., 2009;
Soleymani et al., 2012; Zhang and Lee, 2012) or mutual information-
based features (Candra et al., 2017).

Estimating affective states from EEG signals: among the 21 stud-
ies, and in comparison with the cognitive workload studies, eight
of them proposed a subject-independent (SI) calibration method for
the classification phase (Chanel et al., 2011; Choppin, 2000; Frantzidis
et al., 2010; Hidalgo-Muñoz et al., 2013; Khalili and Moradi, 2009; Pe-
trantonakis and Hadjileontiadis, 2010; Soleymani et al., 2012,1; Taka-
hashi, 2004). However, many machine learning algorithms have been
used, mainly the same ones as in the cogntive worklaod literature, ex-
cept the study by Zheng et al. (Zheng and Lu, 2015) that used Deep
Belief Networks in their study. As for the literature review of studies
that attempted to estimate levels of cognitive workload, the detailed
parameters used to fit the machine learning models are not presented
in Table 3.2 (e.g., the architecture of ANN). Moreover, the designs of
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the protocols run by the experimenters of the these studies highly dif-
fer, making very complicated to compare the results from one study
to another. Indeed, some studies, based on Russell’s theory (Russell,
1980), compared two levels of valence or arousal (i.e., low versus high),
others are based on Ekman’s theory (Ekman, 1992), compared 6 differ-
ent emotions (i.e., joy, anger, etc). The number of classes that have
been presented to the machine learning algorithms therefore differs -
sometimes two classes, sometimes 6 classes - and makes impossible
the comparison of classification performance scores.

Take away: the spectral features-based images used in (Lin et al.,
2017) is an original method that plots the signals that have been band-
passed into frequency bands, and transforms these plots into pictures
that will then be feed to a Convolutional Neural Network (CNN).
Based on the literature review, the methods that have been the mostly
used in order to induce affective states are the International Affective
Picture System (IAPS) and the video clips. Note that the video clips
is the method that is proposed in the open-source data set DEAP, pro-
posed by Koestra et al. (Koelstra et al., 2011), and that aims at inducing
different levels of valence, arousal, as well as dominance to users. Con-
cerning the machine learning algorithms, mostly the SVM has been
widely used by experimenters, as for the cognitive workload-based lit-
erature review. However, in contrast to the literature review on cogni-
tive workload, a lot of studied have been run with a user-independent
calibration, which is an important step to go towards calibration-free
systems.

Overall, classification results are not very convincing, regardless of
the methods used to induce, measure or classify EEG signals. How-
ever, as we just mentioned, Koelstra et al. proposed a data set that
could be useful for future studies on EEG-based emotions classifica-
tion, as all researchers could test multiple signal processing and ma-
chine learning approaches on the same material, i.e., EEG signals made
available in (Koelstra et al., 2011). This very data set is used multiple
time in this review, and is actually the one we chose to use for our con-
tribution #1, detailed in chapter 4, aiming at testing modern machine
learning algorithms in order to classify emotions.
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Part II

Methods & Tools for classifying

mental states
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4
Modern machine

learning algorithms to
classify workload and

emotions from EEG

4.1 Research question

As explained in the introduction, estimating cognitive, affective or
conative states from brain signals is a key but challenging step in the
creation of passive BCI applications. Indeed, this would allow appli-
cations to monitor the users’ states in real-time, and therefore adapt
the interactions to individuals cognitive capabilities, i.e., optimal lev-
els of a given cognitive state (workload, attention, etc), but also optimal
levels of emotions (e.g., valence or arousal) or motivation (e.g., motiva-
tional states, curiosity). Moreover, all cognitive, affective and conative
states have been shown to be involved in human learning, thus being
able to estimate such states in real-time would play a major role for
upgrading BCI training protocols, but this type of system could also
be used as an evaluation method for HCI.

However, reliably estimating mental workload from EEG signals,
over time, contexts and subjects is difficult (Mühl et al., 2014), and this
observation is also valid for classifying affective states (Muhl et al.,
2015) with good performance scores. Moreover, our study aiming at
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reviewing papers that attempted to estimate multiple levels of cogni-
tive workload through EEG signals (see chapter 3), and the one aim-
ing at reviewing articles that attempted to estimate affective states (see
chapter 3) - still through EEG signals - have confirmed the relatively
modest performances of such passive BCIs for the time being.

In other words, based on our literature review, the classification
accuracies obtained so far - mostly around 70% for workload, and
around 60-65% for emotions in oscillatory-based studies - revealed the
need for more robust and accurate EEG classification algorithms, in
order to obtain trustable EEG-based cognitive and affective states esti-
mators.

Therefore, the research question concerns the relevance of using
modern and promising machine learning algorithms that proved effi-
cient either in recent active BCI classification competitions (Ang et al.,
2012; Yger et al., 2016), notably Riemannian geometry classifiers, or
in other fields of artificial intelligence, such as Deep Learning (Lecun
et al., 2015; Schirrmeister et al., 2017), in order to classify learning
related mental states. Note that such algorithms have been mostly
explored for EEG classification of motor tasks, but not systematically
studied and compared for workload/affective states estimation. Here
we formally study and compare these various algorithms as well as
two new variants we propose here, for both workload, arousal and
valence classification from EEG signals. We also propose guidelines
about which algorithm to use in which context.

As baseline, we use two standard methods for studying workload
levels/affective states classification: 1) Common Spatial Pattern (CSP)
spatial filters with an LDA classifier and 2) the FBCSP (Ang et al.,
2012), which is a CSP extension that won numerous active BCI com-
petitions. Instead of using a unique specific pass-band defined by the
experimenter as with CSP, FBCSP enables to optimize subject-specific
frequency bands by working on a bank of band-pass filters.

Then, we study two Riemannian approaches: Minimum Distance to
the Mean with Fisher geodesic filtering classifier (FgMDM) and Tan-
gent Space Classifier (TSC). Such methods represent EEG signals as
covariance matrices and classify them according to their (Riemannian)
distances to prototypes of covariance matrices for each class. Note
that these methods have recently won six international brain signals
competitions (Yger et al., 2016).

We then propose to improve these Riemannian approaches by work-
ing on a bank of band-pass filters such as the ones used for FBCSP,
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instead of using a unique band-pass filter. We name these new ap-
proaches FBFgMDM and FBTSC. Finally, we used a Convolutional
Neural Network (CNN), i.e., a Deep Learning algorithm, which re-
cently obtained promising results for many machine learning prob-
lems (Lecun et al., 2015). The strength of the CNN used is to optimize
simultaneously the spatial filters, the temporal filters and the classi-
fier, which can lead to possibly better solutions. We studied the CNN
developed in (Schirrmeister et al., 2017), since it obtained promising
results for motor imagery-based BCIs.

In the detailed presentation of this contribution, we first present
the workload and emotion EEG data sets used, before describing each
machine learning algorithm. We perform two evaluation studies: 1)
a subject-specific study, with each algorithm trained on data specific
to each subject, and then tested on other data from the same sub-
ject. This is the standard way current BCIs are designed, given the
large between-subject variability (Blankertz et al., 2008); 2) a subject-
independent study, with each algorithm trained on all data recorded
from all subjects except that of the target subject, on which algorithms
are tested. This is much more challenging, but if successful, would en-
able BCI-based monitoring without requiring any calibration for new
subjects.

4.2 Methods

4.2.1 Data Sets
We propose to study two data sets, the first one focusing on cog-

nitive workload (Mühl et al., 2014), and the second one on affective
states (Koelstra et al., 2012). Both data sets are interesting for the use
and validation of different types of Machine Learning algorithms.

4.2.2 Mental workload EEG data set
The data set used comes from (Mühl et al., 2014). Signals from 28

EEG electrodes (active electrodes in a 10/20 system without T7, T8,
Fp1, and Fp2) were recorded from 22 users (Mühl et al., 2014). To in-
duce mental workload variations, N-back tasks were used (explained
in more details in chapter 2): in short, users had to indicate whether a
letter displayed on screen was the same one as the letter displayed N
letters before, in a stream of successively displayed letters. Here, 2-sec
trials from a 0-back task were labeled as "low" workload, while those
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from a 2-back were labelled as "high" workload. In total, 720 trials
were available for each workload level and user. See the supplemen-
tary material for more information.

As introduced previously, we studied both subject-specific and subject-
independent calibrations: both these methods are explained in details
in chapter 2. In our study, for subject-specific calibration, the first
half of each user’s trials was used for training and the second half for
testing. For the subject-independent calibration, the training set com-
prised all trials of all users except the current user used for testing,
i.e., around 21*1440 = 30240 training trials. To allow the comparisons
between calibration types, the testing set of each user was the same
testing set as with subject-specific calibration, i.e., the second half of
the trials (720 testing trials) from this user.

4.2.3 Emotion EEG data set
The data set used for studying emotions was the "DEAP" database

(Koelstra et al., 2012). It used music-video clips to influence two types
of emotion dimensions - valence and arousal, according to the circum-
plex model of Russell (Russell, 1980). The first step of their study
consisted in making a strict selection of 40 music video clips from the
Internet. The most emotional 1 min of each of these videos was auto-
matically selected with an algorithm using informative features such
as loudness, energy of the audio signals, etc.

The data set contains these 40 trials, thus corresponding to 40 mu-
sic video-clips, recorded on 32 participants. EEG were recorded using
32 electrodes (placed according to the international 10-20 system). Va-
lence and arousal levels were measured using Russell’s valence-arousal
scale directly after each videos, by clicking on a 1-9 continuous scale.
This self-assessment system on a continuous scale makes the classes
definition more complex: in DEAP (Koelstra et al., 2012) as well was
in our study, 5 was kept as a threshold to split trials into two classes -
low and high - for both "emotion-arousal" and "emotion-valence" data
sets, making classes unbalanced. We then balances these classes by
up-sampling data. Note that no artifact removal algorithm has been
used in this study.

All the classifiers used were able to deal with unbalanced classes,
except the CNN. We therefore up-sampled the minority class by ran-
domly duplicating trials from this class in order to obtain balanced
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classes. As with the workload data set, we study both subject-specific
and subject-independent calibrations. For the subject-specific study,
given the low number of trials, we performed a "leave-one-out" cross-
validation. Thus, we used 40 models for each subject, each model be-
ing trained on 39 trials and tested on 1 trial. For the subject-independent
study, we kept all trials of all subjects to compose the training set, ex-
cept the current subject used for testing (i.e., 31*40 = 1240 trials for the
training set). The testing set of each subject was composed of all trials
of this subject, i.e., 40 trials.

4.2.4 Machine learning algorithms explored
As explained in the theorical background of this thesis, plenty of

algorithms for brain signals classification are available (Lotte et al.,
2018b). We propose to study algorithms that recently obtained good
results for classifying motor related EEG signals, either in recent EEG
classification competitions (Ang et al., 2012; Yger et al., 2016), or in in-
dependent studies (Schirrmeister et al., 2017). The existing algorithms
we evaluate here were all studied on EEG-based motor imagery clas-
sification, a widely used BCI design, and obtained impressive results.
Since both motor imagery, workload and emotions lead to change in
EEG oscillatory activity, it is likely that methods that proved effective
for motor imagery can prove effective for workload or emotion classi-
fication as well. However, to the best of our knowledge, such methods
have never been tested and compared together neither on workload
nor on emotions data sets nor with subject-independent calibration.
We thus propose this evaluation in this chapter. We also propose some
new variants of some of these algorithms. We first describe the struc-
ture of each algorithm and how we used them.

Altogether, we studied 7 algorithms. First, CSP and LDA were
used as a baseline since they are widely used by the BCI community
(Blankertz et al., 2008). We then explored the FFBCSP and LDA (Ang
et al., 2012), a CNN (Schirrmeister et al., 2017), and four different meth-
ods based on Riemannian geometry: two existing ones, namely the
Fisher geodesic Minimum Distance to the Mean classifier (FgMDM)
and the Tangent Space Classifier (TSC) (Yger et al., 2016), and two new
extensions we propose here to better exploit the spectral information,
namely the Filter Bank FgMDM and Filter Bank TSC. For the workload
data set, we assess performances using classification accuracy, i.e., the
percentage of test trials correctly classified. For the emotion data set,
we used balanced accuracy, i.e. the average of recall obtained on each
class, since the classes were unbalanced.
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(1) Common Spatial Patterns (CSP)
CSP is a widely used algorithm for binary EEG classification, for os-
cillatory activity-based BCI. It has been shown that changes in both
workload (Brouwer et al., 2012) and emotions (Muhl et al., 2015) in-
duce changes in EEG oscillatory activity. The CSP algorithm optimizes
spatial filters, i.e., a linear combination of the original EEG signals in
order to improve the EEG signal-to-noise ratio. It is done such that
the variance of a spatially filtered signal, i.e. the band power of this
signal, is maximized for one class and minimized for the other class.
As such, CSP is particularly useful for BCI based on oscillatory activ-
ity since their most useful features are band-power features. Formally,
CSP optimizes spatial filter w by either maximizing or minimizing:

JCSP(w) =
wX1XT

1 wT

wX2XT
2 wT

=
wC1wT

wC2wT (4.1)

where T denotes transpose, Xi is the band-pass filtered training signal
matrix for class i (with the samples as columns and the channels as
rows) and Ci the spatial covariance matrix from class i. In practice,
the covariance matrix Ci is defined as the average covariance matrix
of each trial from class i (Blankertz et al., 2008).

The spatial filters w that maximize or minimize JCSP(w) are the
eigenvectors corresponding to the largest and lowest eigenvalues, re-
spectively, of the Generalized Eigen Value Decomposition of matri-
ces C1 and C2. In this study, we used six filters, corresponding to
the three largest and three lowest eigenvalues, as recommended in
(Blankertz et al., 2008). Once these filters are obtained, we use as CSP
features f = log(wXXTwT), i.e., the band power of the spatially fil-
tered signals. We used these features as input to an LDA classifier. The
CSP+LDA algorithm is one of the most popular approach since it has
been widely and successfully used for BCIs based on motor imagery
(Blankertz et al., 2008), as well as for workload classification, although
to a minor extent (Roy et al., 2016b). The CSP requires EEG signals
to be band-pass filtered in a specific narrow frequency band. The Al-
pha rhythm (8-12Hz) being known to vary according to both workload
(Mühl et al., 2014) and emotions (Koelstra et al., 2012), we applied CSP
after band-pass filtering in 8-12 Hz. We selected 3 pairs of CSP spatial
filters, as recommended in (Blankertz et al., 2008), to obtain 6 band-
power features used to train a Linear Discriminant Analysis (LDA)
classifier. This method was used as the baseline.

(2) Filter Bank Common Spatial Patterns (FBCSP)
The FBCSP is an algorithm that optimizes both spatial and spectral fil-
ters. To do so, FBCSP first filters EEG signals into multiple frequency
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bands using a filter bank. Here we used nine band-pass filters in 4Hz-
wide bands (in 4-8 Hz, 8-12 Hz, . . . , 36-40 Hz) as in (Ang et al., 2012).
Then, for each band-passed signals, CSP is used to optimize two spa-
tial filter pairs. From the resulting 36 features (9 bands× 4 CSP filters
per band), the four most relevant ones were selected using minimal Re-
dundancy Maximal Relevance (mRMR) (Peng et al., 2005a), and used
as input to an LDA. The FBCSP algorithm proved its efficiency when
winning the Fifth International BCI competition (Ang et al., 2012).

Figure 4.1: Principle of Fil-
ter Bank Common Spatial Pat-
terns (FBCSP): 1) band-pass fil-
tering the EEG signals in multi-
ple frequency bands using a fil-
ter bank; 2) optimizing CSP spa-
tial filter for each band; 3) se-
lecting the most relevant filters
(both spatial and spectral) using
feature selection.

(3) Riemannian Geometry
Riemannian approaches represent EEG trials as covariance matrices,
which are symmetric positive definite (SPD) matrices, and manipulate
them with an appropriate geometry, the Riemannian geometry (Con-
gedo et al., 2017; Yger et al., 2016). Classifiers based on such geometry
are called Riemannian Geometry Classifiers (RGC).

Figure 4.2: Schematic represen-
tation of a Riemannian manifold
with matrix G, the Riemannian
average of covariance matrices
C1 and C2. The tangent space
to the Riemannian manifold at
point G is represented in red.

First, in a Riemannian mani f old we can estimate intrinsic non-
Euclidean distances between two SPD matrices, i.e. two points (here
C1 and C2), using the Riemannian distance:

δ2(C1, C2) = ∑
n

log2λn(C−1
1 C2), (4.2)

where λn(M) is the nth eigenvalue of matrix M. The set of tangent
vectors to point G on the mani f old defines the manifold tangent
space at G. Figure 4.2 shows the tangent space at point G, which is
the centroid (mean) of C1 and C2. More generally, any SPD matrix Ci
can be projected onto the tangent space at point G using:

Si = LogG(Ci) = G1/2logm(G−1/2CiG−1/2)G1/2, (4.3)
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Si being the projection of Ci onto the tangent plane, and logm(·)
denotes the logarithm of a matrix.

Considering the principles we listed about Riemannian geometry,
multiple methods for classification are possible. In this chapter, we
studied two existing RGCs - the Mean classifier (FgMDM) and the
Tangent Space classifier (TSC) - and introduced two new ones - the
Filter Bank TSC (FBTSC) and the Filter Bank FgMDM (FBFgMDM).

Existing methods:

• FgMDM (Barachant et al., 2010): FgMDM projects training matri-
ces Ci onto the tangent space at point G (the mean of all training
data) using Eq. (4.3), to obtain matrices Si. Then, a Fisher geodesic
filter is obtained by optimizing an LDA classifier on Svec

i , the vector-
ized upper-triangular elements of Si, to discriminate classes using
such vectors. This results in a matrix of weights W = LDA(Svec

i ).
The projected SPD matrices Si from both the training & the testing
sets are then filtered with weights W, using Ŝi = W(WTW)−1WTSvec

i ,

where Ŝi denotes the geodesic filtered SPD matrices from Si. Then,
these filtered matrices Ŝi are projected back onto the manifold using
equation:

Ĉi = ExpC(Ŝi) = G1/2expm(G−1/2ŜiG−1/2)G1/2,
(4.4)

where Ĉi are the filtered SPD matrices projected onto the mani-
fold and expm(M) denotes the exponential of matrix M. Finally,
this approach uses a Minimum Distance to the Mean classifier to
classify testing geodesic filtered matrices Ĉi. To do so, during the
training step, the class centroids Gk of each class k are computed

by averaging the geodesic filtered covariance matrices Ĉk
i from each

class k. During testing, the Riemannian distances between the test-
ing geodesic filtered matrix Ĉj and each class centroid Gk are first

calculated, using Eq. (4.2). The matrix Ĉj is assigned class label k
for which the centroid Gk is the nearest. In our study, FgMDM was
applied on EEG band-pass filtered in 8-12Hz, as for the CSP.

• TSC: TSC first projects all training SPD matrices Ci onto the tan-
gent space at point G (the mean of all training matrices). Then, it
uses any classifier such as LDA, SVM or Logistic Regression (LR) on
the vectorized upper-triangular elements of the projected matrices
(Barachant et al., 2012a). We used LR with L2 regularization (with
the default C = 1.0 in scikit-learn (Pedregosa et al., 2011a)). As for
FgMDM, TSC used data filtered in 8-12Hz.
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New methods:

• Filter Bank FgMDM (FBFgMDM): Contrary to FgMDM which
exploits EEG signals in a single frequency band, this method ap-
plies FgMDM in multiple bands separately, and combines the re-
sulting distances to exploit additional spectral information. This
should possibly improve classification performances, as FBCSP did
to improve CSP. To do so, FBFgMDM first filters EEG signals in
multiple bands using a filter bank, as for FBCSP. Here we used
the same bands as the FBCSP, i.e., 4-8 Hz, 8-12 Hz, . . . , 36-40 Hz.
Then for the EEG signals in each frequency band j, this method
first uses a regular FgMDM, i.e., it computes the Riemannian dis-
tances δ2(Gkj, Ĉij) between a geodesic filtered SPD matrix Ĉij and
each class centroid Gkj. We thus obtain nine bands × Nk classes
such distances (here, Nk = 2). Then, from all nine bands j, the
four most useful ones for classification are selected with mRMR
feature selection (Peng et al., 2005a) on the Riemannian distances
δ2(Gkj, Ĉij) used as features, on the training set. For testing, we
compute the squared Riemannian distances for the four bands se-
lected using mRMR only and sum them:

γ2(Gk, Ĉi) = ∑
j∈Ω

δ2(Gkj, Ĉij), (4.5)

where Ω is the set of frequency bands selected with mRMR. We
thus obtain k new distances γ2(Gk, Ĉi) to each class k for each
trial i, in our case k ∈ {1,2}. Ĉi defines the SPD matrix filtered
using FGDA algorithm in the tangent space at point Gk associated
to a trial i. The classification prediction results in choosing the class
yi for which the summed squared distance to the centroid is the
smallest:

yi = argmin
k

(γ2(Gk, Ĉi)). (4.6)

where k denotes the class label, Gk is the centroid of the class k, Ĉi
is the filtered SPD matrix for trial i and yi the predicted class for
trial i (in our case, yi ∈ {1,2}).

• Filter Bank TSC (FBTSC): FBTSC also exploits more spectral
information than TSC, by using a filter bank. FBTSC indeed projects
matrices Cij, band-pass filtered in bands 4-8 Hz, 8-12 Hz, . . . , 36-40
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Hz, to the tangent space using Eq. (4.3). Then, the probabilities
that the vectorized upper-triangular elements of the projected SPD
matrix Sij belongs to class k is calculated using standard classifica-
tion algorithms with probabilistic outputs, such as LDA or LR. Here
we used LR that directly provides such probability with its softmax
function. Since we did so for nine frequency bands, in two classes
k, we ended up with nine pairs of probabilities. From these pairs
of probabilities, the four most relevant are selected using mRMR
on the training set. Finally, we multiplied the probabilities associ-
ated to each class k, for the selected bands only, to end up with two
probabilities:

Pki = ∏
j∈Ω
Pkij, (4.7)

where Pki is the probability of trial i to be part of class k, and Pkij
the probability of a projected SPD matrix Sij, band-pass filtered in
frequency band j, to be part of class k. The classification prediction
results in choosing the class yi for which Pki is the highest:

yi = argmax
k

(Pki). (4.8)

where k denotes the class label, and Pki the probability of a pro-
jected SPD matrix Si to be part of class k.

(4) Convolutional Neural Networks (CNN)
Deep Networks are artificial neural networks with multiple layers of
artificial neurons, which makes them able to approximate efficiently
any function (Lecun et al., 2015). There are different types of architec-
ture for neural networks, such as Recurrent Neural Networks (RNN)
or Convolutional Neural Networks (CNN). Here, we chose to study
Deep Learning with CNN, since it has already improved many fields
such as computer vision (Lecun et al., 2015), and was also proved ef-
fective for motor imagery-based BCIs (Schirrmeister et al., 2017).

Shortly, a CNN is a feedforward neural network with at least one
convolutional layer. This type of network flows information uni-directionally
from the input to the hidden layers and finally to the output. A recent
study presented a new type of CNN dedicated to motor task classifi-
cation in EEG: the Shallow ConvNet (Schirrmeister et al., 2017).

The shallow ConvNet architecture consists in a 3-layer CNN with
parameters that have been experimentally tested and validated by their
authors (Schirrmeister et al., 2017). The first layer is a convolutional
layer along the temporal dimension, while the subsequent one is a con-
volutional layer along the spatial dimension, i.e., over EEG electrodes.
If we compare this process to the FBCSP, the first temporal convolu-
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Figure 4.3: Example of the Shal-
low ConvNet architecture ap-
plied for the cognitive workload
classification (low vs high).

tion aims at optimizing band-pass filters, and the spatial convolution
aims at optimizing spatial filters. Then, signals are squared, a mean
pooling is performed (to compute signals band power) and the CNN
ends by a fully connected linear classification layer. Overall this CNN
thus processes EEG data similarly to the FBCSP and LDA. In contrast
to FBCSP, all these filters are optimized simultaneously though, which
made it outperform the FBCSP on motor EEG signals (Schirrmeister
et al., 2017). Here, we explored this CNN with the implementation
and hyper-parameters from (Schirrmeister et al., 2017) in order to clas-
sify mental workload, valence and arousal from EEG. Note that the
Shallow ConvNet uses minimally preprocessed EEG signals as input,
so we filtered them in 4-40 Hz.

4.3 Results

We present here the classification performances of each algorithm
with both subject-specific and subject-independent calibrations. Figure
4.4 summarizes the mean performance obtained on the workload data
set first, then on both the valence & arousal data sets.

As a reference, the statistical chance levels (Combrisson and Jerbi,
2015) were estimated at 50.47% for the mental workload study (1440

trials and 22 subjects) and 52.27% for the affective state study (40 trials
and 32 subjects). Note that for statistical tests (ANOVA), we checked
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Figure 4.4: Mean classifica-
tion accuracy for each algo-
rithm with both subject-specific
and subject-independent cali-
brations. The best performance
of each study is in green, the
worst in red.

the data sphericity, and used Greenhouse-Geisser (GG) correction in
ANOVA if differences were observed, with F if no difference was ob-
served.

4.3.1 Workload study
Performances obtained by each algorithm on this data set are re-

ported on Figure 4.5. We performed a 2-way ANOVA with repeated
measures to evaluate the performances of factor Algorithm according
to factor Calibration Type (subject-specific vs subject-independent).
The normality is respected for all conditions, and the sphericity has
been tested as well.

It revealed a main effect of Algorithm [GG(1,22)=0.517, p=0.001],
and Calibration Type [F(1,22)=33.308, p ≤ 0.0001], but not for Cal-
ibration Type*Algorithm [GG(1,22)=0.558, p=0.618].

Figure 4.5: Classification accu-
racy of each algorithm on the
workload data set.

Post-hocs analyses - Student t-test for paired samples - with Bon-
ferroni adjustments showed no significant differences between algo-
rithms in the subject-specific or subject-independent studies. However,
performances obtained suggested better (but non-significantly so) re-
sults with the CNN compared to other algorithms, in both subject-
specific and subject-independent studies. Riemannian geometry clas-
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sifiers (RGC), in particular the newly proposed ones (FBfgMDM and
FBTSC) provided the second best performances, just after the CNN.
On the other hand, the baseline CSP+LDA obtained the worst results.

4.3.2 Valence
The same algorithms have been evaluated on the emotion-valence

data set, and the balanced classification accuracies obtained are re-
ported on Figure 4.6. The normality is respected for all conditions,
and the sphericity has been tested as well.

We ran a 2-ways ANOVA for repeated measures to evaluate the
impact of Algorithm on the emotion-valence data set, regarding the
Calibration Type. The results showed significant differences in Al-
gorithm [GG(1,32)=6.918, p=0.002], Calibration Type [F(1,32)=21.732,
p<0.0001] and Calibration Type*Algorithm [GG(1,32)=5.374, p=0.003].

Figure 4.6: Balanced classifica-
tion accuracy on the emotion-
valence data set.

Post-hoc analyses - Student t-test for paired samples - with Bonfer-
roni corrections showed a significant difference between FBTSC and
CNN for subject-specific calibration [perfFBTSC = 61.09%, perfCNN
= 46.32%; p ≤ 0.05]. No algorithm showed better results than oth-
ers with the subject-independent calibration. Overall, FBFgMDM and
FBTSC obtained the best accuracy (both about 61%) for subject-specific
calibration, while FBCSP obtained the best performances for the subject-
independent one (55.2%).

4.3.3 Arousal
The balanced classification accuracies for the emotion-arousal data

set are reported on Fig. 4.7. The normality is respected for all con-
ditions, and the sphericity has been tested as well. We then per-
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Figure 4.7: Balanced classifica-
tion accuracies on the emotion-
arousal data set.

formed a 2-way ANOVA with repeated measures, with factor Al-
gorithms and Calibration Type. Results revealed significant effects
for Algorithms [GG(1,32)=9.177, p ≤ 0.0001], Calibration Type
[F(1,32)=4.262, p=0.048] and Algorithms*Calibration Type [GG(1,32)=3.894,
p=0.008].

Post-hoc analyses -Student t-test for paired samples- with Bonfer-
roni corrections showed significant differences with the subject-specific
calibration between CNN and all other classifiers (see results in the
supplementary material). No algorithm showed better results than
others with the subject-independent calibration. Overall the best re-
sults were all obtained by RGCs, FBFgMDM and FBTSC for the subject-
specific calibration, and FgMDM for the subject-independent one.

4.4 Discussion, Conclusion and Future Work

In this chapter, we explored promising classification algorithms,
both existing and new ones, to classify mental workload and emotions
(valence and arousal) from EEG signals, with both subject-specific and
subject-independent calibration. Altogether we studied CSP+LDA,
FBCSP+LDA, four RGCs (FgMDM, TSC and two new variants pro-
posed here: FBFgMDM and FBTSC), and CNN.

We chose two data sets 1) the first one from the paper (Mühl et al.,
2014), that induced two cognitive workload levels, i.e. classification
of trials labeled as high workload vs trials labeled as low workload,
with 2-seconds time windows 2) the second one from (Koelstra et al.,
2012) where affective states - valence and arousal - were both studied
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with unbalanced subjective labeling high/low valence and high/low
arousal, with 60-seconds time windows.

On the workload data set, the original authors used the FBCSP
and obtained a classification accuracy of 69,4% with subject-specific
calibration. This result is above the chance level (50.46%). With the
same calibration and same algorithm, we obtained 68,5% classification
accuracy: the difference can be explained by the use of different fre-
quency bands and feature selection methods. In (Mühl et al., 2014), no
subject-independent calibration was studied. Concerning the emotion
data sets (Koelstra et al., 2012), the original authors used a NBC and
obtained an accuracy of 57.6% for valence, and 62% for arousal with
subject-specific calibration (chance level of 52.27%). They did not run
a subject-independent calibration study.

The first results to highlight are the CNN classification performances
we obtained across the different conditions and data sets. Indeed, this
algorithm has a higher mean accuracy (although non-significantly so)
than the original authors’ results, the baseline CSP+LDA, and more
importantly than both FBCSP and Riemannian methods, with both
subject-specific and subject-independent calibrations on the workload
data set. Moreover, obtaining reasonable performances in a subject-
independent calibration from only two seconds of EEG data and only
21 users for calibration, makes the CNN particularly interesting to de-
sign calibration-free neuroadaptive technologies in the future. By con-
trast, this algorithm significantly under-performed with both subject-
specific and subject-independent calibrations on both the valence and
arousal data sets. All algorithms indeed outperformed this CNN in all
conditions on the emotion data sets.

Multiple factors could explain the observed algorithm performances.
First, the number of trials that are used for training models is impor-
tant. In (Schirrmeister et al., 2017), authors tested the Shallow Con-
vNet on multiple motor-imagery data sets (from 288 to 1168 trials),
and often obtained significantly better performances with the CNN
than with FBCSP. In our study, the workload data set contained 720

training trials whereas both valence and arousal data sets contained
39 training trials only (with cross validation calibration). This might
suggest that the CNN could be useful for mental state classification,
but only when large amount of training trials are available (around
700 in our study), which is not always possible. However, other fac-
tors also differ between both data sets studied and could also explain
differences in CNN performances, including the EEG epochs length
(2s epochs for workload and 60s epochs for emotions), and the nature



76 estimating mental states through neurophysiological signals

of the mental states studied (workload vs emotions). Indeed, emotions
are thought to originate from deep brain areas (Muhl et al., 2015) and
are thus known as being difficult to estimate from EEG. In the future,
deeper analyses would thus be needed to fully disentangle these fac-
tors, by systematically varying the types (e.g., motor-imagery, work-
load, emotions, curiosity, etc), time-windows (2sec, 5, 10, 30, 1min,
2min, 15, 30) and variations of the number of training trials (50, 100,
200, 500, 1000, etc).

Another relevant result is the promising classification performances
of the proposed RGCs. Indeed, FBTSC and FBFgMDM outperformed
the results from the data sets’ authors in most conditions/data sets.
Moreover, FBFgMDM with subject-specific calibration, and FBFgMDM
and FBTSC with subject-independent calibration, reached higher mean
accuracies than all other algorithms, except the CNN on the workload
data set. More interestingly, the low number of trials in the emotion
data sets did not seem to affect their performances since they also
reached the highest mean accuracies on both the emotion-valence and
emotion-arousal data set, both with subject-specific calibration. These
promising results compared to standard RGCs (TSC and FgMDM), are
probably due to the extra spectral information extracted with the filter
bank, and our study enabled us to quantify this gain. If it seems natu-
ral to observe higher mean accuracies by looking at multiple frequency
bands, it would be interesting to look at which frequency bands have
brought more information in deeper analyses.

Finally, FBCSP+LDA obtained a higher mean accuracy than CSP+LDA,
although not significantly so, in all conditions/data sets, and the higher
overall mean accuracy for valence classification with subject-independent
calibration. However, it did not obtain higher mean accuracies than
others in any other condition. It should be noted that such results re-
flect the performances obtained in offline evaluation. As such they are
likely to be similar to performances obtained in offline or open-loop
mental state monitoring, e.g., for noeuroergonomics (ex: mental work-
load monitoring) or neuromarketing (ex: emotion monitoring). The
performances are likely to change in closed-loop applications, with
neuroadaptive technologies, and will thus need to be evaluated in this
context as well.

Such results enable us to suggest guidelines about which algorithm
to use for mental states classification from EEG. First, the CNN is
recommended for mental workload classification with both subject-
specific and subject-independent calibration, but seems to need a large
amount of training trials (at least several hundreds). It should thus
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probably be avoided for data sets with little training data (i.e., a few
dozens). Second, Filter Bank RGCs (FBTSC and FBFgMFM) should
also be recommended to obtain good classification performances no-
tably with subject-specific calibration, for both workload and emotion
classification, whatever the amount of training data. However, such
methods do not seem suitable for subject-independent classification
with little training data and/or for emotion classification. They seem
suitable for subject-independent classification of workload with large
amount of training data though.

Our results also confirmed that passive BCIs with subject-independent
calibration is possible but very challenging and with much lower ac-
curacies. Similarly, affective state classification in EEG is possible but
much more challenging than workload estimation. However, those
suggestions imply computational costs that will differ from an algo-
rithm to another. Indeed, using the FB RGCs or the CNN will require
a long calibration time, when the testing phase might also be time
consuming and has to be considered before to go towards online uses.

For the emotion data set, we labelled trials as in the original pa-
per to allow comparisons, i.e., with a global – subject-independent –
partition between low/high valence/arousal trials, based on the SAM
ratings. Note that better methods for partitioning low/high trials in
a per-subject basis can also be used (Clerico et al., 2018) in the future,
to limit the class imbalance. Still in the future, other deep learning ar-
chitectures, notably Recurrent Neural Networks (RNN) (Lecun et al.,
2015) may prove promising for EEG classification and passive BCIs as
well. For example, Recurrent have obtained promising performances
in Natural Language Processing and videos classification (Yang et al.,
2017), and may thus prove useful for passive BCI as well. It would
also be interesting to study whether CNN and RGCs can be used to
estimate robustly other cognitive states such as fatigue, curiosity or
engagement, and how well the proposed RGCs perform on motor im-
agery data for active BCIs. Similarly, it would be interesting to study
the new RGCs (FBfgMDM and FBTSC) on Motor Imagery-based BCIs,
since TSC and FgMDM already performed well on such data (Yger
et al., 2016), as well as to estimate other mental states, e.g., attention
or fatigue. Later in this thesis (in chapter 5), we will see that we tested
both FBFgMFM and FBTSC on Motor Imagery-based BCIs, and ob-
tained good results. Altogether, our results suggested that CNN and
the proposed filter bank RGCs are valuable machine learning tools for
scientists aiming at decoding cognitive and affective states from EEG
signals.





79

5
BioPyC, a Python

platform for offline
neurophysiological

signals classification

5.1 Research question

As seen in the introduction, although promising, non-invasive BCIs
- and thus non-invasive passive BCIs - are still barely used outside
laboratories due to their poor robustness with respect to noise and
environmental conditions. In other words, they are sensitive to noise,
outliers and the non-stationarity of EEG signals (Wolpaw and Wolpaw,
2012) (Erp et al., 2012). As highlighted in the chapter 4 of this part, the
computing machinery considerably evolved in the last decades, and
numerous signal processing and machine learning algorithms for brain
signals classification have been developed (Lotte et al., 2018a). It is
therefore important to be able to test many promising new algorithms,
resulting from both signal processing and machine learning research,
on different data sets, related to different paradigms, in order to have
the most efficient tools possible for their future uses. Indeed, the chap-
ter 4 of this part, consisting at studying tools for estimating mental
states such as affective states or cognitive workload through EEG sig-
nals, showed it is essential to test such promising machine learning
algorithms on studies aiming at estimating users’ mental states.
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However, this type of study can be complicated to set up online,
because of the costs in terms of time, e.g., equipping a participant
with different sensors to measure the activity in order to analyze it
online, or in terms of calculation, given that some algorithms such as
Deep Learning may require a lot of computing resources and would
be difficult to run online. However, such studies are possible offline,
by applying recent and promising classification algorithms on exist-
ing data sets, and are actually widely used in the BCI community,
notably to compare various algorithms on the exact same data (Ja-
yaram and Barachant, 2018). While offline studies are simpler to set
up than online analyses, they still require specific tools and skills to
do them effectively and efficiently. Indeed, using such algorithms re-
quires expertise in programming (e.g., in MATLAB or Python), signal
processing, machine learning, as well as statistics for analyzing the re-
sulting performances of the different algorithms, whereas many BCI
researchers come from diverse backgrounds such as cognitive science,
neuroscience or psychology, and might not master all those skills.

If multiple BCI toolboxes are available, they all require skills such
as the ones listed above, and most of them are focused on EEG and
other brain signals, but usually do not include processing tools for
other bio signals. It therefore highlights the need for convenient tool-
boxes that would be free, open source and equipped with a graphical
interface that would allow users to process and classify EEG and other
biological signals offline without any programming skill. Therefore,
we propose here the design and implementation of such a toolbox,
which would answer all these requirements.

We propose BioPyC, an open-source and easy-to-use platform for
offline signal processing and classification. BioPyC is free of charge,
permissively licensed (AGPL - see https://choosealicense.com/licenses/agpl-
3.0/) and written in Python (Rossum, 1995), an open source program-
ming language that is not only backed by an extensive standard library,
but also by vast additional scientific computing libraries. This toolbox
allows users to make offline EEG and bio signals analyses, i.e., to ap-
ply signal processing and classification algorithms to neurophysiolog-
ical signals such as EEG, HR, EDA or respiratory system1. In order to

1 So far, on gitlab, the implementa-
tion of the toolbox includes more
modules for EEG analysis than for
physiological signals analysis, but
new modules will be integrated
soon, as they have been implemented
for our study in chapter 8. See
https://gitlab.inria.fr/potioc/BioPyC

facilitate those analyses, BioPyC offers a graphical user interface (GUI)
based on Jupyter (Pérez and Granger, 2007) that allows users to han-
dle the toolbox without any prior knowledge in computer science or
machine learning. Finally, with BioPyC, users can apply and study al-
gorithms for the main steps of bio signals analysis, i.e., pre-processing,
signal processing, classification, statistical analysis and data visualiza-
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tion, as Figure 5.1 summarizes.

Figure 5.1: BioPyC data flow:
the 4 main modules allow users
to follow the standard BCI pro-
cess for offline EEG and biosig-
nal processing and classification.

BioPyC enables users to work on two types of data sets, either
raw data sets which require the subsequent use of the pre-processing
module (described below), or pre-processed data sets which will allow
users to directly apply signal processing and machine learning algo-
rithms on them. The pre-processing module of BioPyC offers basic
features, i.e., band-pass filtering, cleaning and epoching raw EEG sig-
nals. Next, for the processing step, BioPyC offers two modules that
enable users to use signal processing tools such as spatial filters, but
also machine learning algorithms for the classification of neurophysio-
logical signals. Finally, another module enables users to automatically
apply appropriate statistical tests on the classification performances,
to compare algorithms, and obtain visualization plots describing those
performances.

While some of the existing toolboxes such as MOABB (Jayaram
and Barachant, 2018), pyRiemann (Barachant and King, 2015) or MNE
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(Gramfort et al., 2013), listed in the “state-of-the-art” section below,
have features in common with BioPyC, e.g., programming language or
supported operating system, as well as modules of the above-mentioned
BCI process, e.g. signal processing or data visualisation, none of them
allow users to apply and study the classification algorithms for both
EEG and physiological signals. BioPyC is indeed the first one which
allows to study and compare classification algorithms for neurophys-
iological signals (at the moment EEG, respiration and heart rate), of-
fering modules for all the steps of this offline BCI process. Moreover,
our platform enables users to run such studies by interacting with a
Jupyter-based GUI, and thus does not require any skills in program-
ming, when all other Python-based toolboxes require such skills. Con-
cerning the statistics, both tests and visualization for comparing clas-
sification algorithms performances are done automatically by BioPyC,
again facilitating users’ analyses: to the best of our knowledge, no
other toolbox enables automatic statistical testing.

In the detailed presentation of this contribution, we first present the
state-of-the-art of BCI platforms, the different features they offer, and
conclude on the distinctive features that make BioPyC unique. In Sec-
tion 3, we explain BioPyC modules and the data flow in more details,
including the different algorithms that have been implemented for the
classification of both EEG and bio signals, as well as the statistical
tests. Then, in Section 4, we present results of the multiple analyses
that have been made with BioPyC so far. On the one hand, BioPyC has
been applied to a widely used mental task dataset, i.e., the “BCI com-
petition IV dataset 2a” (Ang et al., 2012). On the other hand, we used
it for studying different users’ mental states, e.g., cognitive workload,
emotions and attention states. Finally, the discussion and conclusion
come in Section 5, followed by the future works and improvements
from which BioPyC could benefit in Section 6.

5.2 State-of-the-art BCIs platforms

So far, several platforms for online experiments - i.e., BioSig (Schölgl
et al., 2011), BCI2000 (Schalk et al., 2004), OpenViBE (Renard et al.,
2010b), TOBI (Müller-Putz et al., 2011), Timeflux (Clisson et al., 2019) or
BCI++ (Perego et al., 2009) - and also for offline studies - i.e., MOABB,
MNE, EEGLAB, PyEEG - have been developed for researchers in or-
der to build set ups that would best suit their needs. They all have
modules dedicated to the various BCI processing steps: data acquisi-
tion, signal processing, classification, statistical hypothesis testing and
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Figure 5.2: Comparison of main
features of existing toolboxes
having modules for EEG sig-
nal processing and classifica-
tion. BioPyC values for each fea-
ture are written in black; val-
ues of features that are similar
to BioPyC’s ones are written in
green; and finally values of fea-
tures that differ from BioPyC’s
ones are written in grey. “opt”
stands for “optional” in the fig-
ure.

visualization (Brunner et al., 2013). We synthesized in Figure 5.2 the
features of each of these existing platforms, i.e., online vs offline stud-
ies, the availability of a Graphical User Interface (GUI), the existence of
modules for statistical testing or data visualization, the programming
language, the supported systems as well as the type of license - in or-
der to list the strengths and weaknesses of each one. In the following,
we compare the different platforms based on each of these features.

5.2.1 Graphical User Interface (GUI)
As explained above, it is important to develop toolboxes with GUIs

for the BCIs community, when many of researchers do not come from
computer science backgrounds, especially cognitive scientists, neuro-
scientists or psychologists. On Figure 5.2, all Python-based toolboxes,
i.e., MOABB (Jayaram and Barachant, 2018), MNE (Gramfort et al.,
2013), PyEEG (Bao et al., 2011), pyRiemann (Barachant and King, 2015),
gumpy (Tayeb et al., 2018) and Wyrm (Venthur et al., 2015) - suffer from
the lack of such interfaces.



84 estimating mental states through neurophysiological signals

5.2.2 EEG signal processing
All platforms on Figure 5.2 naturally have an EEG signal process-

ing system for classification, more or less elaborated, based on three
classical steps, i.e., pre-processing, signal processing and classification.

Pre-processing: this step consists for example in band-pass fil-
tering raw data into specific frequency bands, epoching raw data into
trials or removing artifacts, among other. While all toolboxes propose
some forms of pre-processing, the ones with the most advanced pre-
processing tools, including plenty of methods, are MNE amd BCILAB.

Signal Processing: this step allows users to apply spatial or
temporal filters on the signals and in extracting features from them.
Most existing platforms offer such filters and basic features, e.g. the
Common Spatial Pattern (CSP) filter or band power features are widely
used for EEG signal analysis (Blankertz et al., 2008).

Classification: all platforms also offer machine learning al-
gorithms, from the simplest ones, such as Linear Discriminant Anal-
ysis (LDA) (Lotte et al., 2018a) for most of them, to more complex
ones, such as Riemannian geometry classifiers (Yger et al., 2016) for
pyRiemann (Barachant and King, 2015) and MOABB (Jayaram and
Barachant, 2018), Deep Learning for gumpy (Tayeb et al., 2018) and
various feature extraction methods in PyEEG (Bao et al., 2011).

5.2.3 Statistical Modeling and Data Visualization
The last step is divided between the statistical analysis and the vi-

sualization of performance results obtained by the machine learning
algorithms. First, the visualization allows users to obtain graphs in
order to have an overview of the classification results. Statistical mod-
elling, on the other hand, consists of using statistical tests to compare
the classification performances of the machine learning algorithms.
This step is of primary importance when comparing classification al-
gorithms since statistical tests allow to define, for a given study, which
algorithm is the most likely to recognize patterns in neurophysiolog-
ical signals. To the best of our knowledge, none of the platforms for
offline signals analysis listed in Figure 5.2 have such dedicated fea-
tures: they all require external toolboxes to do so when BioPyC does
not.

5.2.4 Programming Languages
Another important criteria for defining a platform is the program-

ming language that is used underneath, making easier/harder to de-
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velop new modules for it. Concerning the main BCI platforms, the
programming languages that are used are MATLAB (MATLAB, 2010),
C++ (ISO, 1998) and Python (Rossum, 1995). First, the proprietary pro-
gramming language MATLAB is well-known by the research commu-
nity and widely used in laboratories due to its popular rapid prototyp-
ing environment. However, the license is not free of charge nor always
distributed to universities and laboratories. Second, C++ is free, very
efficient, but difficult to use and, therefore, generally used by computer
scientists and engineers only. Finally, Python is free, simple and ex-
tendable by non-computer scientists, making the prototyping and im-
plementation of new modules for Python-based BCI platforms easier.
Moreover, Python is widely used by the scientist community, i.e., ma-
chine learning experts, engineers and neuroscientists, and many ma-
chine learning libraries have been implemented using this language,
e.g., Scikit-learn (Pedregosa et al., 2011b), TensorFlow (Dignam et al.,
1983) or PyTorch (Paszke et al., 2017).

5.2.5 Supported Systems
If BCI2000 (Schalk et al., 2004), OpenViBE (Renard et al., 2010b),

TOBI (Müller-Putz et al., 2011) and BCI++ (Perego et al., 2009) do not
support all operating systems, i.e., Windows, Mac OS X and Linux,
all other platforms, i.e., BCILAB (Kothe, 2013), pyRiemann (Barachant
and King, 2015), Wyrm (Venthur et al., 2015), gumpy (Tayeb et al.,
2018), pyEEG (Bao et al., 2011), BioSig (Schölgl et al., 2011), scikit-learn
(Pedregosa et al., 2011b), MNE (Gramfort et al., 2013) and MOABB
(Jayaram and Barachant, 2018) do.

Figure 5.3: Screenshot of the
Jupyter & voilà-based BioPyC’s
graphical user interface, allow-
ing rich-text documentation.

5.2.6 Licenses
In the case of the main platforms presented in Figure 5.2, all of

them are open-source and have adopted either General Public License
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(GPL), Lesser General Public License (LGPL), Berkeley Software Dis-
tribution (BSD) or MIT license as their license.

5.2.7 Distinctive Features of BioPyC
BioPyC differs from several existing BCI platforms due to the use

of Python as programming language. This difference should be high-
lighted, as Python is free of charge, compared to MATLAB that is not,
and simple & extendable by non-computer scientists when C++ re-
quires deep engineering skills. However, several BCI platforms such as
MOABB, MNE PyEEG, pyRiemann, gumpy and Wyrm are also imple-
mented in Python, but only MOABB follows the full offline EEG signal
classification process, i.e., pre-processing, signal processing and classi-
fication. This last feature makes MOABB closely resembling BioPyC.
However, those two platforms differ in three main ways: 1) BioPyC
comes with a GUI based on jupyter notebook (Pérez and Granger,
2007) which acts as a tutorial and allows users to interact with the tool-
box in a guided way and without requiring any programming skills,
when MOABB, and other Python-based platforms do not have any
GUI, and thus require programming skills for the user. Those exist-
ing platforms are thus most likely not usable by the many BCI re-
searchers coming from diverse backgrounds such as cognitive science,
neuroscience or psychology; 2) MOABB allows users to perform of-
fline analysis only after having shared their datasets in open source,
whereas BioPyC users can analyze their datasets on their own. It is
an important feature to point out because most BCI researchers would
want to analyze their own data before sharing them in open-source;
3) BioPyC offers modules for both statistical testing and visualization
for comparing classification algorithms performances, and enables for
convenient analysis since tests and plots are chosen and applied auto-
matically by the platform, based on the distribution of the data.

More generally, BioPyC allows its users to classify physiological
signals - i.e., HR, breathing, EDA - in addition to EEG signals, whereas,
with the exception of Biosig, no other platform allows the classification
of this type of physiological signals.

In conclusion, BioPyC distinguishes itself from other platforms through
features that make it easy to use and more versatile. Indeed, it is based
on Python and uses a Jupyter-based GUI. It also offers automatic sta-
tistical testing and visualization, as well as tools for classification of
physiological signals such as as HR, or breathing.
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5.3 Materials & Methods

BioPyC comprises four main modules, allowing users to follow the
standard BCI process for offline EEG and bio signals classification: 1)
reading multiple neurophysiological data formats 2) pre-processing,
filtering and representing EEG and bio signals 3) classifying those sig-
nals 4) performing visualization and statistical testing on the classi-
fication performance results. Users can follow these steps through a
GUI based on Jupyter (Pérez and Granger, 2007) and voilà that acts
as a tutorial, explaining in a detailed way the actions to make at each
step, highlighting the modularity of the platform. In this section, we
detail the functionality of the platform Jupyter-based GUI, i.e., which
tools we used to design it and how users are guided to interact with it.
Then, we describe the modularity of BioPyC, i.e., how users can add
any new module that may be necessary for their study. Finally, we
present the different modules offered by BioPyC, corresponding to the
major steps of the offline EEG and bio signals classification process.

5.3.1 Jupyter Notebook and Voilà as a GUI
Jupyter notebook is a scientific notebook application which allows

the user to write and execute code, as well as viewing and saving the
results. This tool also authorizes to write rich-text documentation us-
ing Markdown formatting, as we can see on Figure 5.3, and to display
different widgets such as textbox, checkbox or “select multiple" as we
can see on Figure 5.4, to make options selections easier to users. More-
over, all these features are available in a single file that is accessed via
a Web browser. We then use voilà that turns Jupyter notebooks into
standalone web applications in order to not have any visible code.

We designed this Jupyter interface in order to give users an intuitive
path through the BCI process. Each step requires a choice from the
user, and the options displayed in the following steps will be presented
according to past choices. For example, if a user chooses to work on
pre-processed data, only datasets where data have been previously
pre-processed will be displayed.

5.3.2 BioPyC modularity
A strength of BioPyC is its modularity. Whereas the platform al-

ready comes with multiple existing modules that users can select with
simple clicks, it is also possible to extend it by integrating new scripts
as new modules. The kernel of the platform is made in order to al-
low such modifications, and make them easy to do: 1) store the new
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Figure 5.4: Screenshot of
BioPyC’s widgets, i.e., “select
multiples" & buttons at the
step of selecting the type of
data/signals to work on. In
BioPyC, a blue button stands
for the action to make, when the
disabled orange ones stand for
future actions to make: orange
buttons turn blue when the
previous action is done.

script in the appropriate folder, e.g., “BioPyC/src/classifiers/” for a
new classifier or “eeg_contest/src/data_readers/” for a new data for-
mat reader, corresponding to a specific format (e.g., “.gdf” or “.mat”);
2) name the python script after the classifier/data reader name with
the “.py” extension; 3) follow the class and method formalism that has
been used for other files of these modules.

5.3.3 Reading data sets
BioPyC offers users various types of data they can work with: 1)

starting with raw data, directly obtained with a data acquisition soft-
ware such as GDF (Schlö, 2006): this will lead to the optional pre-
processing step. 2) starting with pre-processed data, where trials from
various runs and sessions have already been concatenated, where the
data may have been cleaned with artifact removal, band-pass filtered
and epoched. Users can also choose the type of signals they want to
work on, i.e., EEG signals, physiological signals or a combination of
EEG and physiological signals. This step is presented on Figure 5.4.

Raw data: the raw data are read and pre-processed using the
MNE python library (Gramfort et al., 2013). So far, the supported raw
data format is “.gdf” (GDF - General Data Format (Schlö, 2006)), a
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Figure 5.5: Screenshot of
BioPyC filter(s) and classfier(s)
selection.

standard format for EEG and biological signals. However, due to the
modularity of BioPyC, python users can easily add a new data reader
as explained in the Section 5.3.2 above.

Preprocessing: the pre-processing is an optional step, per-
formed using the MNE python library as well, with multiple parame-
ters that have to be defined through the Jupyter interface. First, users
have the freedom to choose runs and sessions they want to use for each
subject. Data can be cleaned from blink artifacts using ElectroOcu-
loGraphic (EOG) channels using MNE (Gramfort et al., 2013), then
band-pass filtered and finally epoched based on triggers users want to
study.

Pre-processed data: in this configuration, BioPyC uses data
that have been pre-processed and formatted, either coming from the
pre-processing module presented above, either by reading a pre-processed
data set using data readers. So far, our toolbox allows to read two
types of pre-processed data formats using the python library MNE:
MATLAB, i.e., “.mat” (MATLAB, 2010) and MNE, i.e., “.fiff” (Gram-
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fort et al., 2013). Those two formats have been chosen since they are
popular and widely use by the BCI community.

5.3.4 Applying spatial filters and machine learning algo-
rithms
So far, BioPyC offers algorithms that proved effective either in BCI

classification competitions, notably the Filter Bank Common Spatial
Pattern (FBCSP) (Ang et al., 2012), standard Linear Discriminant Anal-
ysis (LDA) and Riemannian geometry classifiers (Yger et al., 2016)
(Congedo et al., 2017)(Appriou et al., 2020), or in other rapidly in-
creasing independent fields such of artificial intelligence, such as Deep
Learning (Schirrmeister et al., 2017) (Lecun et al., 2015). We describe
them below. Users can select those algorithms through the Jupyter-
based GUI, as presented on Figure 5.5.

EEG spatial filters: BioPyC proposes two types of spatial fil-
ters: a) the Common Spatial Pattern (CSP) which is widely used for bi-
nary EEG classification in BCI studies, particularly for BCIs exploiting
changes in brain oscillations (a.k.a. frequency band power) (Lotte et al.,
2018a); b) the Filter Bank Common Spatial Pattern (FBCSP) which is
an improved variant of the CSP that won numerous active BCI com-
petitions (Ang et al., 2012). Instead of using a single frequency band,
the FBCSP will explore features based on spatial filters from numerous
frequency bands.

Physiological features: BioPyC offers to calculate multiple
features for each type of physiological signals, so far for Heart Rate
(HR) and Electrodermal activity (EDA), the HR and therefore for sig-
nals based on ElectroCardioGraphy (ECG). For each of them, statistics
such as the mean or the standard deviation of RR intervals, i.e. the
time elapsed between two peaks, can be calculated. Concerning the
EDA, features such as the amplitude of phase peaks or inter-peaks
time can be calculated using BioPyC. To see more details about the
features, please refer to chapter 8 where we described out all these
features.

Machine learning algorithms:

A user can select one or multiple classifier(s) in order to compare
classification performances on a single dataset. Concerning EEG and
physiological signals classification, we choose to integrate a Linear
Discriminant Algorithm (LDA), both classic and with shrinkage, into
BioPyC for classification since it is the most common used algorithms
in BCI studies (Blankertz et al., 2008) (Lotte et al., 2018a). Then, con-
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Figure 5.6: Screenshot of
BioPyC’s choice of both calibra-
tion and evaluation types.

cerning EEG signals only, we included four Riemannian classifiers,
i.e., Minimum Distance to Mean with geodesic filtering classifier (Fg-
MDM) and Tangent Space Classifier (TSC). Such methods represent
EEG signals as covariance matrices and classify them according to their
(Riemannian) distances to prototypes of covariance matrices for each
class. Such methods have recently won 6 international brain signals
competitions (Yger et al., 2016). In addition to those two Riemannian
approaches, two new ones - Filter Bank FgMDM (FBFgMDM) and Fil-
ter Bank TSC (FBTSC) - have been introduced in chapter 4, and are also
available in BioPyc. They use a bank of band-pass filters such as the
ones used for FBCSP, instead of using a unique band-pass filter, and
combine Riemannian classifiers from each band. Finally, BioPyC of-
fers to use Deep Learning which recently showed promising results for
many machine learning problems, with a method from (Schirrmeister
et al., 2017) called ShallowConvNet, using Convolutional Neural Net-
works (CNN) dedicated to EEG classification. Moreover, due to the
modularity of the toolbox, BioPyC users can easily add new classifiers
(see Section 5.3.2), e.g., Support Vector Machine (SVM) or Logistic Re-
gression (both available from scikit-learn (Pedregosa et al., 2011b)) to
classify data previously filtered with the CSP or FBCSP.

5.3.5 Calibration types
BioPyC offers users to run different types of calibration approaches

for studying their data, i.e., a subject-specific calibration or a subject-
independent one, as we can see on Figure 5.6, depending on the moti-
vation of their experiments.

subject-specific study: so far, due to the large between-subject
variability, most of the BCI studies are subject-specific, i.e., a classifier
needs to be built for each individual subject (Blankertz et al., 2008).
First, data specific to each subject are split into two parts: the training
and testing sets. Then, machine learning algorithms are trained on
the first set and evaluated on the second one. To do so with BioPyc,
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users have to set the “split ratio” (see Section 5.3.6) through a textbox
displayed on the Jupyter notebook GUI.

subject-independent study: one of the major steps for using
BCIs outside the laboratories would be for BCI users to be able to in-
stantaneously use the BCI without any calibration phase. To do so,
we can evaluate machine learning algorithms through offline subject-
independent studies, i.e., with a classifier built on multiple subjects
and used as such on a new subject, without the need for data from
this new subject. In BioPyC, the evaluation method for this type of
calibration is a leave-one-subject-out cross validation, i.e., the training
phase uses all subjects expect the target subject data to train the clas-
sifier, and the testing phase applies this classifier on the target subject
data only. This process is repeated with each subject used once as the
target (test) subject.

5.3.6 Evaluation
Split ratio: the split ratio method for evaluation is the classic

machine learning method for evaluating an algorithm. It consists in
separating the data set in 2 parts, the first one for the training of the
algorithm, and the second one for the evaluation of this algorithm. The
split ratio defines the ratio of data that has to be kept for the training
set. The rest of the data will be used for the evaluation.

Cross-validation: finally, due to the usually relatively small
number of trials recorded during BCIs experiments, BioPyC proposes
a “leave-one-out” cross-validation method based on scikit learn (Pe-
dregosa et al., 2011b) for the evaluation if the number of trials is rather
low. Each trial is used as testing set where algorithms are trained on
all other trials. The number of k-folds is equal to the number of trials.
The “k-fold” cross-validation method allows users to choose the num-
ber of equal segments into which data should be split. For each data
segment, trials composing this segment are used as testing set when
the rest of data is used as training set.

5.3.7 Statistics and Visualization
As explained in the introduction, BioPyC allows users to make ba-

sic statistics and visualization about classification performances ob-
tained through the classification.

Performances: once algorithms have been applied on pre-processed
data, classification performances scores - either the accuracy or the
F1-score, depending on whether the classes are balanced or not - are



biopyc, a python platform for offline neurophysiological signals classification 93

automatically calculated for each subject and for each algorithm that
have been selected for the study. The accuracy score is calculated with
scikit-learn “accuracy_score” method if the data set classes are bal-
anced, or with scikit-learn “f1_score” method if they are unbalanced.
Those classification performances are framed into a table using the
python library pandas (McKinney, 2010), and can be directly stored
into a directory that has been previously indicated by the user through
a Jupyter textbox, and/or used by the module “statistical analysis”, in
order to make statistical testing/plotting.

Statistics: for statistical testing, BioPyC enables users to choose
to make automatic appropriate tests for comparing classification per-
formances between machine learning algorithms with the python li-
braries pandas (McKinney, 2010) and pingouin (Vallat, 2018):

1. Test the data normality with the Shapiro-Wilk test from the python
library Scipy (Jones et al., oday)

2. Test the data sphericity with the Mauchly’s test from Scipy

3. Analyze and compare means of classification performances between
machine learning algorithms using, in the case data are normalized,
either

• t-test: comparing performances of two algorithms along all the
subjects; comparing performances of an algorithm depending
on the study type (subject-specific vs subject-independent) using
pingouin

• one-way ANOVA with repeated measures: comparing perfor-
mances of multiple algorithms (more than 2) or multiple study
types using pingouin

• two-ways ANOVA with repeated measures: comparing perfor-
mances with both factors (type of algorithms, type of study) us-
ing pingouin

Chance level: When measuring classification accuracy for a BCI
task, given the usually small number of samples, the actual chance
level should be carefully considered (Müller-Putz et al., 2008). For
example, the chance level for a 2-class paradigm will not be necessarily
50%, it will depend on the number of testing trials and the confidence
interval we want to work with. To solve this problem, BioPyC proposes
an option for the calculation of the chance level based on (Müller-Putz
et al., 2008). Moreover, users can test the difference between subjects
performances and the chance level with a one-sample t-test from (Jones
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et al., oday).

Figure 5.7: Classification accu-
racy of each algorithm, for each
participant, on the “BCI com-
petition IV dataset 2a”, in both
subject-specific and subject-
independent calibrations.

Visualization: the data visualization is important in BCI studies
since it allows to have an informative and explicit feedback about the
obtained classification performances. BioPyC proposes both boxplots
and barplots from seaborn (Hunter, 2007) and pairwise t-test visualiza-
tion using scikit-learn (Pedregosa et al., 2011b). For the boxplots, the
number of boxes on the plot will vary depending on the number of
algorithms and the number of calibration types that have been tested,
as we can see on Figure 5.8. The barplots can be used for visualizing
detailed performances results of each algorithm/calibration on each
participant (see Figure 5.7). BioPyC also proposes to display confu-
sion matrices using scikit-learn (Pedregosa et al., 2011b), as presented
on Figure 5.9.

5.3.8 Evaluating BioPyC
BioPyC has already been used to analyze 4 types of BCI data, for

Mental Task BCIs and mental state decoding through passive BCIs
such as Workload, Emotions and Attention. All data-sets were of dif-
ferent sizes (number of subjects and trials), collected in different lab-
oratories using different EEG devices, with data stored in different
formats: this led to a direct test of the robustness of BioPyC. In this
section, we present the 3 datasets we studied using BioPyC.

Mental Task: first, we used the modern machine learning al-
gorithms from BioPyC to classify mental tasks EEG signals using the
dataset coming from (Brunner et al., 2008) called “BCI competition IV
dataset 2a”. In this dataset, EEG signals have been recorded from 22
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electrodes, from 9 participants, when executing four different mental
tasks. We chose to keep only two classes, namely the imagination of
movement of the left hand (class 1) and right hand (class 2). Partici-
pants participated to two sessions of 6 runs, where a run consists of 24

trials (12 for each class), yielding a total of 144 trials per session.

After band-pass filtering the signals in both a single band (in 8-12

Hz) single band-based algorithms, and in 9 4Hz-wide bands for fil-
ter banks-based algorithms (in 4-8 Hz, 8-12 Hz, . . . , 36-40 Hz),
we used 6 methods for classifying those 2 mental tasks, i.e., the CSP
coupled with a LDA (Blankertz et al., 2008), FBCSP coupled with a
LDA (Ang et al., 2012) and 4 Riemannian approaches (FgMDM, TSC,
FBFgMDM and FBTSC) (Yger et al., 2016) (Appriou et al., 2020) - and
compared them across 2 types of calibration, i.e., subject-specific and
subject-independent. For the subject-specific calibration, classifiers
were trained on the data from the first session of a participant, and
testing set was the data from the second session, as it has been done
in the original study (Brunner et al., 2008). Regarding the subject-
independent calibration, the training set comprised all trials of all par-
ticipants except the current participant used for testing, and the testing
set the second session of the current participant.

Mental states: we then used the modern machine learning al-
gorithms from BioPyC to classify mental states through EEG signals.
First, we performed 7 algorithms, i.e., CSP coupled with a LDA, FBCSP
coupled with a LDA, 4 Riemannian approaches (FgMDM, TSC, FBFg-
MDM and FBTSC) and a CNN, on 1) a cognitive workload data set and
2) an emotions data set: both subject-specific and subject-independent
calibrations have been run on both data sets, following a 2-classes clas-
sification problem. We presented the methods used for these 2 studies
in chapter 4.

Second, we used a Riemannian Geometry-based method (TSC) for
classifying four attentional states, i.e., alertness and sustained atten-
tions, referring to the intensity of attention (i.e., its strength), as well
as selective and divided attentions, referring to its selectivity (i.e., the
amount of monitored information) (Zomeren and Brouwer, 1994). This
study aimed at developing a first comprehensive understanding of the
different attentional states described in the model of van Zomeren and
Brouwer using EEG data ((Pillette, 2019; Pillette et al., 2018)). The term
“Attention” encompasses several different attentional states. Given the
model of van Zomeren and Brouwer it encompasses four attentional
states, i.e., alertness and sustained attentions, referring to the inten-
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sity of attention (i.e., its strength), as well as selective and divided
attentions, referring to its selectivity (i.e., the amount of monitored in-
formation) ((Zomeren and Brouwer, 1994)). No study provided yet a
comprehensive comparison of these different attentional states.

Hence, we included 16 participants into an experiment during which
they were asked to perform different tasks. Each task assessed a type
of attentional state, while we recorded the participants’ EEG. During
each task, the participants had to react as fast as possible to the ap-
pearance of target stimuli by pressing a keyboard space bar as fast
as possible. In accordance with the literature, the tasks and types of
attention were differentiated by the type of sensory modality of the
stimuli, number of distractors, presence of warnings tone before the
stimuli and length of the task ((Francis, 2010; Schmidt, 1968; Sturm
and Willmes, 2001; Van Leeuwen and Lachmann, 2004)). For each task,
80 targets stimuli were presented. We used one second prior to target
presentation as the analysis window. Only data from targets that were
at least one second apart from a motor response were analysed to pre-
vent motor-related artefacts.

First, we used BioPyC to know if we could differentiate the dif-
ferent attentional states from one another. We used a Common Spatial
Pattern filtering in the alpha range (8-12Hz) and a Linear Discriminant
Analysis classifier, with 5-fold cross-validation.

Second, we used BioPyC to know if we could classify the five types
of attentional states at once using only EEG data. The participant-
specific discriminability (one classifier per participant) of the EEG pat-
terns between each of the five attention tasks was assessed using the
tangent-space classifier described in ((Yger et al., 2016)), with 5-fold
cross-validation. We used the method from ((Barachant et al., 2012b))
to classify EEG signals into 5 classes: a linear discriminant analysis
(LDA) has been performed between each pair of class, i.e., each pair of
attention task, then all the resulting classifiers are combined to obtain
the classification results. The 5-classes classification was performed
twice with EEG data either filtered in the Theta or Alpha band. The
confusion matrix, representing for each class the ratio of trials that
where accurately or wrongfully associated with it over the total num-
ber of trial were then computed.
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5.4 Results

In this section, we present the results obtained by the different sig-
nal processing and machine learning algorithms currently offered by
BioPyC.

5.4.1 Mental tasks

Figure 5.8: Classification ac-
curacy of each algorithm on
the “BCI competition IV dataset
2a”, in both subject-specific
and subject-independent cali-
brations.

The detailed results, i.e., classification accuracy scores obtained by
each algorithm, for each participant, with both subject-specific and
subject-independent calibrations, are represented on the Figure 5.7.
More general results, i.e., the classification accuracy of each algorithm,
with both calibrations as well, are plotted on Figure 5.8. They revealed
that FBTSC and FBFgMDM obtained the highest mean accuracy, al-
though not significantly so, with both subject-specific (mean accu-
racy FBTSC = 79.6%; mean accuracy FBFgMDM = 79.7%) and subject-
independent calibrations (mean accuracy FBTSC = 70.1%; mean accu-
racy FBFgMDM = 69.1%).

5.4.2 Mental states
Results of the study concerning the estimations of mental states,

i.e., cognitive workload, emotions are presented in chapter 4.

Results regarding the discrimination of attentional states from one
another are promising and range from 83% accuracy (SD=0.09) to dis-
criminate alertness (Tonic) from sustained attention to 74% accuracy
(SD=0.13) to discriminate selective and divided attention.
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We then classified the five types of attentional states at once. The
average confusion matrices over all participants for the classification
in Theta and Alpha bands are displayed in Figure 5.9.

Figure 5.9: Average confusion
matrices over all participants
for classification of attention in
Theta (4-8Hz) and Alpha (8-
12Hz) frequency bands of 5 at-
tentional states, i.e., alertness
(tonic), alertness (phasic), sus-
tained, selective, and divided.

Overall, these promising results tend to validate the model of van
Zomeren and Brouwer as the different attentional state that they de-
scribe seem to have distinct electroencephalographic patterns of ac-
tivation. We believe that future research assessing the learners’ states
during BCI user training might represent real opportunities to improve
such training.

5.5 Discussion

Our extensive experiments from the different analyses performed
for BioPyc reveal several positive aspects of the platform, i.e. the mod-
ularity, the comparison of classification algorithms, the statistical anal-
yses, as well as the data visualization. First, the modularity of the
platform is highlighted with the different data sets formats that have
been used for the offline analysis presented above. Data sets for work-
load, emotions and attention had a Matlab (“.mat”) format and con-
tained pre-processed data. The data set for the mental tasks analysis
had a GDF (“.gdf”) format and required a pre-processing step before
performing the signal processing & classification steps. Second, the
data sets with a 2-class paradigm, namely mental tasks, workload, and
emotions (both valence & arousal) have been used for comparing clas-
sification algorithms, which is one of the advantage of BioPyC. Those
results indicated interesting information about algorithms, such as the
ineffectiveness of the CNN on data-sets with a small number of trials,
e.g., emotions, when the same algorithms proved to be efficient on data
sets with a large number of trials, e.g., workload. Moreover, BioPyC
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also proved to have efficient machine learning algorithms for multi-
class classification. This is the case of the study on attention, where the
data was divided into 5 classes of attention (tonic, phasic, sustained,
selective and divided). Third, the statistical analyses have also multiple
aspects: 1) the 2-way ANOVA with repeated measures have been used
for analyzing performance results of the machine learning algorithms
(factor 1) with both subject-specific and subject-independent calibra-
tions (factor 2) in the mental tasks, workload and emotions studies; 2)
post-hoc t-tests have been performed to check significant differences
in performance results between algorithms. In fourth, concerning the
BioPyC data visualization module, all plots that have been showed in
Section 5.4 have been generated by BioPyC: 1) boxplots represented on
Figure 5.8, 2) barplots represented on Figure 5.7;

5.6 Current Status and Future Work

BioPyC is currently publicly available on github at https://gitlab
.inria.fr/biopyc/BioPyC/. Users have to clone the repository
and install all dependencies (jupyter, voilà, numpy, pandas, pingouin,
pyRiemann, scikit learn, scikit_posthocs, MNE==0.17 and braindecode)
using pip. Then, users have to find the file BioPyC.ipynb and run
“voila BioPyC.ipynb" in order to display the interface in a web browser
and initialize the application. All instructions will then be given by the
application that is made as an intuitive tutorial.

In its current stage, BioPyC offers the different modules that allow
users to follow the standard steps of the BCI process, i.e., reading dif-
ferent EEG data format, filtering and cleaning EEG signals, classifying
EEG signals and finally visualizing and performing statistical tests on
the classification performance results.

Regarding the reading of different EEG formats, two modules are
available in the current stage of the platform, namely GDF (“.gdf”) and
Matlab(“.mat”), and one is still in progress, i.e., MNE (“.fiff”). Future
versions on BioPyC will offer more modules for reading data, starting
with Python’s ones, i.e., “.pkl” and “.dat”.

BioPyC currently offers tools for pre-processing the signals as well,
all based on MNE (Gramfort et al., 2013): EOG-based artifacts removal,
band-pass filtering and epoching. More pre-processing features are
available in MNE, it would therefore be easy to add new modules for
pre-processing data in the future versions of BioPyC.

https://gitlab.inria.fr/biopyc/BioPyC/
https://gitlab.inria.fr/biopyc/BioPyC/
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Regarding the third step of the BCI process - i.e., signal process-
ing & machine learning for EEG signals classification - so far BioPyc
proposes several efficient algorithms for decoding oscillatory activity:
the CSP (Blankertz et al., 2008) & FBCSP (Ang et al., 2012) are the two
algorithms that allow spatial filtering, when the LDA, Riemannian Ge-
ometry methods (Yger et al., 2016) (Appriou et al., 2020), as well as
the CNN (Schirrmeister et al., 2017) are the machine learning algo-
rithms implemented in the platform. However, the ongoing works aim
to integrate new signal processing and machine learning algorithms
for the classification of Event Related Potentials (ERPs) into BioPyC.
Among them, xDAWN (Rivet et al., 2009), which is widely used for
spatial filtering and proved to be efficient for EEG-based classification
of workload levels (Roy et al., 2015a). It would also be interesting to
integrate other ERP spatial filtering methods into the future versions of
BioPyC, e.g., principal component analysis (PCA) or canonical correla-
tion approaches (CCA) (Noh and De Sa, 2013) that proved efficient for
EEG classification of mental workload levels as well (Roy et al., 2015a).
Moreover, the current works also aim at integrating machine learning
methods, e.g., EEGNet (Vernon et al., 2018), for the classification of
both ERPs and oscillatory activity with BioPyC. Finally, the ongoing
works are also focusing on the integration of methods for the classifi-
cation of bio signals on the one hand, and the integration of hybrid BCI
methods for the classification of the combination of EEG signals-based
and bio signals-based features on the other hand. Current work on
bio signals and hybrid classification concern HR, breathing and EDA:
users will soon be able to extract features such as the mean or the stan-
dard deviation of RR intervals from the ECG signals, or the amplitude
of phase peaks or inter-peaks time from the EDA2. Current works are

2 Features from physiological signals,
i.e., heart rate, breathing and EDA, are
already implemented, but not available
on gitlab yet.

focusing on extracting features from the breathing signals as well. The
fourth and last step of the BCI process, i.e., performing visualization
and statistical tests on classification performances results, also benefits
of current improvements: a new module for visualizing the percentage
of use of the different frequency bands selected by the filter bank-based
algorithms, i.e., FBCSP, FBFgMDM and FBTSC, is ready, and will be
soon pushed on the gitlab repository.

5.7 Conclusion

We presented BioPyC, an open-source and easy-to-use BCI Python
platform for offline EEG and biosignal analysis. This platform allows
BCI and physiological computing researchers to quickly analyze of-
fline their data by following the classical steps of pre-processing (op-
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tional), signal processing & classification, statistical analysis and data
visualization. It is important to note that users do not need any pro-
gramming skills to be able to process their data, since BioPyC is built
in the form of a jupyter notebook with a voilà GUI that acts as tuto-
rial: each step is described with instructions that guide users in their
analyses and choices for parameters and algorithms to use. BioPyC
already proved to be a comprehensive tool since it has been used for
3 extensive studies so far, with quite different aims and requirements.
Moreover, since Python is free of charge, any researcher can use it
for his/her experiments. Moreover, BioPyC is open-source and allows
users to build new modules. For example, new signal processing or
classification algorithms can be easily added to the platform, as well
as data readers for new data sets formats. So far, BioPyC has still a
modest number of tools, but can easily be extended in the future, and
is still growing. For example, currently, the toolbox can only support
one main BCI paradigm, i.e., oscillatory-based BCIs, but will soon be
extended to support the evoked potentials-based BCI paradigm.
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Part III

Towards measuring states of

epistemic curiosity through EEG
and physiological signals
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6
Research Question &

Protocol Design

6.1 Research question

As seen in the introduction, being able to estimate cognitive, af-
fective or conative states from neurophysiological signals would be
beneficial for the creation of passive BCI applications. Indeed, this
would allow applications to monitor the users’ states in real-time, and
therefore adapt the interactions to individuals capabilities, for instance
users’ motivation (e.g., motivational states, curiosity). Moreover, cona-
tive states have been shown to be involved in human learning, thus
being able to estimate such states in real-time would play a major
role for upgrading BCI training protocols. This type of system could
also be used as an evaluation method for HCI. In contrast to cognitive
states, e.g., cognitive workload or attention, and affective states, e.g.
emotions, conative states have been little studied through neurophys-
iological signals. Indeed, as we saw in the introduction, the literature
review concerning the estimation of curiosity levels through EEG or
physiological signals is very scarce. It would therefore be interest-
ing to study curiosity through EEG - but also physiological - signals
in more depth in order to obtain trustable neurophysiological-based
conative state estimators.

The goal of this part III is to use passive BCIs that can monitor,
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through neurophysiological signals, the level of curiosity of users. As
explained, it would be both a useful tool for understanding curiosity,
and beneficial to designers of interactive systems, who wish to adapt
the interaction paradigm or application content to users’ levels of cu-
riosity. To do so, our objective is to explore recognition systems based
on EEG signals, but also on physiological signals such as Heart Rate
(HR), breathing or Electrodermal activity (EDA) - that already proved
to be efficient for mental state estimations (Fairclough, 2009) - in order
to classify these curiosity levels.

However, several studies have been run to better understand the
neural mechanisms underlying states of curiosity. In (Kang et al.,
2009), the authors scanned participants with functional magnetic res-
onance imaging (fMRI) in order to study the brain areas activated
during the triggering of curiosity states with trivia questions. They
observed that the curiosity induced by the trivia questions was cor-
related to brain activity in the caudate region, an area shown to be
associated with anticipated rewards (Adcock et al., 2006). Moreover,
they also found a correlation between surprising new information and
activation of brain areas linked to memory. In (Gruber et al., 2014),
the question was raised as to whether curiosity enhances long-term
memory, similar to the way anticipated rewards do. They likewise
conducted a fMRI study with trivia question tasks, and found a cor-
relation between curiosity levels and variations of activation in the
right hippocampus and bilateral nucleus accubens, both involved in
long-term memory improvements (Gruber and Valji, 2019). Using
frontal EEG asymmetry—a common tool for measuring engagement
and motivation—(Lima, 2019) investigated the relation between curios-
ity and learning. Participants performed trivia question tasks, similar
to those used in (Gruber et al., 2014; Kang et al., 2009), while the EEG
signals from the frontal cortex were recorded. Here, researchers found
a correlation between frontal brain asymmetry (FBA) and memory re-
call; however they did not observe any correlation between FBA and
self-reported curiosity.

In summary, these neuroscientific studies, mainly based on fMRI,
support the existence of a correlation between epistemic curiosity and
memory/learning, as well as correlations between states of curiosity
and activation in specific brain regions. However, these prior works
did not perform continuous state monitoring. AS explained, in this
work, we propose to measure states of epistemic curiosity using EEG,
but also body sensors. Compared to fMRI, which can be expensive and
difficult to use outside of the lab, EEG provides a usable, portable and
affordable tool for measuring the temporal activation of brain states
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associated with curiosity, making it suitable for applications such as
BCIs.

In this chapter, we present an experiment we have conducted in
which subjects were given a trivia question-based task, designed to
elicit different levels of curiosity. We then show in chapter 7 that
we used signal processing tools to analyze the EEG signals collected
through this protocol, and assessed how well we can estimate curiosity
through EEG signals using Machine Learning (ML) classifiers. Finally,
in chapter 8, we present our work aiming at estimating levels of curios-
ity as well, but through physiological signals that have been collected
through the same protocol. To do so, we extracted features from HR,
breathing and EDA signals, and used ML classifiers in order to dis-
criminate curiosity levels.

In the detailed presentation of this part III, we first introduce the
protocol design, including the setup for recording both EEG and phys-
iological signals, before doing the same with the methods we used to
induce different curiosity levels. In chapter 7 we present the signal pro-
cessing methods we employed, and the machine learning algorithms
we used to classify two curiosity levels (low versus high) based on
EEG signals, as well as the results that came out of it and discussion
about them. Finally, chapter 8 presents the methods that have been
used to extract features from physiological signals, as well as ML clas-
sifiers, before showing results that have been found and discussions
around them. First, we thus describe in detail the experimental setup,
including the participants involved and the protocol.

6.2 Participants

Twenty-seven participants (N=27) were recruited through ads posted
on social media and the local university mailing lists (13F/14M; aged
28.7 ± 4.0). Levels of education varied between high school diploma
and Ph.D. To be included in the experiment, people had to be at least
18 years old, speak French, and consent to the study1. Non-inclusion

1 This study was approved by the ethics
committee of Inria Bordeaux Sud-Ouest
(COERLE approval number 2019-13).

criteria include bad vision, heart condition, neurological or psycho-
logical diseases, and emotion-related problems. Finally, as per typical
EEG studies protocol, we asked participants not to drink coffee or tea
within the 2 hours prior to the experiment.
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6.3 Protocol

Each participant participated in a single session that took place at
Inria Bordeaux Sud-Ouest, lasting approximately 2 hours. Participants
were asked to fill-in a pre-session questionnaire, assessing personal
characteristics (such as gender, age and education). Next, EEG and
ElectroOculoGram (EOG) electrodes were placed on the participants.
For recordings, we used a BrainProduct ActiCHamp amplifier (EEG,
61 active electrodes in a 10/20 system, and EOG, 3 active electrodes to
measure ocular artifacts). To our knowledge, except for (Lima, 2019)
where they attempted - but did not succeed - to measure curiosity
with electrodes placed onto the scalp recovering the frontal cortex,
there has been no study seeking to classify curiosity levels from EEG
signals. Due to the exploratory nature of our study, we covered the en-
tire scalp with a relatively high EEG spatial resolution (61 electrodes)
and took information from all brain areas. Note that we took Cz as the
EEG-reference electrode. Sensors for ElectroDermal Activity (EDA)
(i.e., the Galvanic Skin Response sensor), breathing (i.e., the breathing
belt) and heart rate (HR) (i.e., the ginger-photoplethysmogram sensor),
were also installed. All signals were recorded and visually inspected
using OpenViBE (Renard et al., 2010a).

Following the setup, a 3 minute baseline, consisting of measuring
EEG signals from participants at rest with opened eyes, was recorded.
Finally, participants were asked to perform 4 runs of curiosity tasks
(described below), around 10 minutes each, with 5 minute breaks be-
tween them. Each run consisted of a series of trivia questions and
answers, inducing different levels of curiosity. Before each question, a
fixation cross was presented on the screen for 3 seconds, in order to
get the participant ready. Figure 6.1 illustrates the experiment flow.

6.4 Materials

Prior work using trivia questions to elicit curiosity presented par-
ticipants with question/answer pairs that did not have any link to
previously viewed or future questions (Gruber et al., 2014; Kang et al.,
2009; Lima, 2019). In our study, we introduce a novel protocol consist-
ing of chains of trivia question/answer pairs—i.e., if participants were
curious about the answer to a certain question, the following question
would follow on the same topic. The assumption is that if participants
were curious about a certain question, it was likely they would be cu-
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Figure 6.1: Experiment flow: 1)
fixation cross 2) question pre-
sentation 3) choice to reveal the
answer 4) answer presentation
5) curiosity rating.

rious about this topic in general. This new method allowed us to: 1)
record a large enough amount of EEG signals from both curious and
non-curious states, to then be able to train the curiosity classifiers with
a balanced set of EEG examples, and 2) check the assumption that
curiosity could be a mental state that increases over time, in the same
way intrinsic motivation and self-directed learning increase when time
spent in flow state increases (Hektner and Csikszentmihalyi, 1996).

The trivia questions used to elicit curiosity in this study came from
an online trivia question dataset (https://www.randomtriviagenerator
.com). The questions were grouped following a two-level categoriza-
tion system. Questions from the website were already classified into
classical trivia categories (referred to as first-order categories), such as
Science, History, Geography, Arts, General Knowledge and Sports. We
further classified the questions in each first-order category into groups
of 4 to 20 questions based on 800 extracted keywords from the first-
order category questions. For example, in the Geography category,
we identified a sub-category based on the keyword “Nile”. All ques-
tions from the Geography category with the word “Nile” were then
grouped into a single chain of questions. Figures 6.1 and 6.2 show an-

https://www.randomtriviagenerator.com
https://www.randomtriviagenerator.com
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other example of a question chain based on the keyword “World War
One”.

Figure 6.2: The trivia ques-
tions/answers system. In the ex-
ample, a question about World
War One is presented: if they
choose to display the answer,
they will stay on the "World War
One" topic, but will continue
on another topic - here scientific
questions about ants - if they
skip the answer.

All chains containing less than 4 or more than 20 questions were
not used in this study. A minimum of 4 was chosen in order to have
enough questions to define a subcategory. Conversely, we chose 20 as
the maximum to ensure the subcategory was not too vague. Overall,
the dataset consisted of 2000 questions/answers divided between 250
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subcategories.

6.5 Curiosity Task

The curiosity task was presented on a computer screen using im-
ages - black background with white text. Each run was set up as
follows: a first question from a random chain from a random category
was displayed to the participant - for 7 to 9 seconds - right after a 3-
second fixation cross. The participant then had 2-3 seconds to choose
to display the answer or not, as presented in Figure 6.1. The display
time was determined based on the length of the question or answer
in terms of number of characters. The participant chooses to display
the answer by tapping on the keyboard space bar: this question was
then flagged as “curious", the concerned subcategory was considered
interesting for the participant, and the answer was directly displayed
on the screen for a few seconds. Participants were asked to rank their
level of curiosity for the question on a 1-7 scale using a number pad
right after the answer had been displayed. Following the rating, a new
question randomly selected from the same subcategory was displayed.

If the participant did not choose to display the answer (by tapping
on the keyboard) before the decision time elapsed, the question was
labeled as “non-curious", the subcategory was not considered to be
interesting to the participant. The curiosity rating scale was immedi-
ately administered without revealing the answer, followed by a fixation
cross and a new random question from the next subcategory. A run
ended only if at least 15 trials with questions marked as curious and
15 trials with questions marked as non-curious had been displayed.
Thus, for each participant, we obtained at least 30 trials per run, i.e., a
total of 120 trials in 4 runs: 60 trials per state of curiosity (curiosity &
no curiosity).
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7
Towards estimating
states of Epistemic

Curiosity through EEG
signals

This chapter aims at estimating states of Epistemic Curiosity through
EEG signals. In a first section, we present the signal processing and
machine learning methods we perform in order to classify such states
of epistemic curiosity. Then, results are presented in the next section,
followed by a last section reserved to the discussion, limits and future
works.

7.1 Signal Processing & Classification

Our system aims to discriminate curious from non-curious states
using EEG signals. To do so, we employed machine learning ap-
proaches based on state-of-the-art algorithms developed for BCIs (Ang
et al., 2012; Appriou et al., 2020; Lotte et al., 2018b) to classify EEG
signals. This section describes the EEG signal preprocessing steps
we used, i.e., trial epoching and labelling, the machine learning algo-
rithms used, and finally the method used for evaluating classification
performance.
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7.1.1 Pre-processing
We first pre-processed EEG signals into N-second windows, in or-

der to create 5 different data sets, with 1-, 2-, 3-, 4- and 5-second win-
dows. The EEG signals for each 10 minute run were divided into ap-
proximately 30 trials, i.e., one trial per trivia question displayed. More
precisely, an EEG trial was defined as ending at the time the question
disappeared from the screen, and starting N-seconds earlier, as repre-
sented by the blue arrows on Figure 7.1. Note that no artifact removal
algorithm has been used in this study.

Figure 7.1: Diagram represent-
ing the way we epoched the sig-
nals into 1, 2, 3, 4 and 5-seconds
time windows (TW).

7.1.2 Classification labels
Each trial was flagged as “answer" or “no-answer", based on the

participant’s choice to reveal the answer or not, respectively. Based on
the flags and participants’ self-reported curiosity ratings, we labeled
each trial as “curious" if the trial was flagged as “answer" and the
rating was higher than the mean of the participant’s ratings; otherwise
as “non-curious", if the trial was flagged as “no-answer" and the rating
was lower than the mean of the participant’s ratings. We obtained
around 50 trials per curiosity level per participant (mean number of
trials in class “non-curious" = 50.18±12.58; mean number of trials in
class “curious" = 46.85±12.11).

7.1.3 Processing & Machine Learning Algorithms
We used two ML algorithms that are exploring multiple frequency

bands: (1) a Filter Bank Common Spatial pattern (FBCSP) coupled
with a Linear Discriminant Analysis (LDA) (Ang et al., 2012), and (2)
a Filter Bank Tangent Space Classifier (FBTSC) (see chapter 4). Both
algorithms proved effective for mental state classification from EEG
(Appriou et al., 2020).

Prior work studying curiosity through EEG signals (Lima, 2019),
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only used two electrodes that were placed on the frontal cortex, and
the recorded signals were band-pass filtered in the alpha frequency
band (8-13Hz). They did not find any correlation between activity in
the frontal cortex and curiosity. It was therefore of interest to extract
information from multiple electrodes (here 61) and frequency bands
(here ten).

As a quick reminder, the FBCSP+LDA algorithm, works as follows:
first, the training phase consists of optimally identifying and extracting
both spatial and spectral features. For the spectral dimension, i.e., the
frequency bands, EEG signals are filtered into ten 4Hz-wide frequency
bands (in 1-4 Hz, 4-8 Hz, ..., 36-40 Hz) as in (Ang et al., 2012). Note
that we included the delta band here (1-4Hz), which was not used in
our contributions on cognitive workload, neither the one on emotions.
For each band, the band-pass filtered EEG trials are used. Then spatial
filters are built for each band using the Common Spatial Pattern (CSP)
algorithm (Blankertz et al., 2008), which optimizes the EEG signal-to-
noise ratio: the variance of spatially filtered signals is maximized for
one class and minimized for the other class. In our study, 4 CSP filters
(2 pairs) have been optimized for each frequency band, resulting in 40

features (4 CSP filters * 10 frequency bands). From those 40 features, 4

were selected using the maximum Relevance Minimum Redundancy
(mRMR) feature selection algorithm (Peng et al., 2005b) to train an
LDA classifier to discriminate curious from non-curious trials.

The second algorithm, FBTSC, (Appriou et al., 2020) represents EEG
signals as covariance matrices and manipulates them with Riemannian
geometry (Yger et al., 2016). Here, each trial is first band-pass filtered
in the same ten 4Hz-wide frequency bands we used with the FBCSP
(1-4Hz, 4-8Hz, ..., 36-40Hz). To design the classifier, the average spatial
covariance matrix for each class (curious and non-curious) is computed
for each frequency band, and all covariance matrices are then projected
in tangent space at the point defined as the matrices mean. We then
used the softmax function-based probabilistic output of a Logistic Re-
gression (LR) that has been trained in the tangent space, to determine
probabilities of belonging to each class. Since we have two classes and
a bank of ten frequency bands, 10 pairs of probabilities were com-
puted. From these pairs of probabilities, the four most discriminant
were selected using mRMR on the training set, and then multiplied to-
gether in order to obtain 2 final probabilities, i.e., one for the “curious"
class and one for the “non-curious" class. The class assigned to a test
EEG trial was decided according to the highest probability.
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Figure 7.2: F1 score, precision
and recall for the 4-seconds time
window length, for each subject
and for each algorithm.

7.1.4 Evaluation
We assessed the performances of both algorithms using a within-

participant study with five-fold stratified Cross-Validation. This means
the data from each participant was divided into five parts: four parts
were used for training the classifier and the fifth one for testing the
resulting curiosity classifier for that participant. This process was re-
peated five times, with each part used exactly once as the testing set.

7.2 Results

The F1-score, which is the weighted average of the precision and the
recall, for each classifier and each time window length are reported in
Figure 7.3. As a reference, the statistical chance levels using (Combris-
son and Jerbi, 2015) was estimated at 51.59% (100 trials per participants
on average, 27 participants).

Figure 7.3: Average classifi-
cation performances (F1-score)
across participants obtained by
each algorithm with the differ-
ent time window lengths.

The boxplot of the performances obtained by each algorithm with
the different time window lengths are reported in Figure 7.4. We
performed a 2-way ANOVA with repeated measures to evaluate the
performance of the factor Time Window according to the factor Al-
gorithm (FBCSP+LDA vs FBTSC). Note that we checked the data
sphericity, as well as the normality, and used Greenhouse-Geisser (GG)
correction in ANOVA if needed. The ANOVA revealed a main ef-
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Figure 7.4: F1-score for the dif-
ferent time window lengths, for
each algorithm.

fect of Time Window [GG(1,27)=0.825, p=0.00004], but not for Algo-
rithm [F(1,27)=1.588, p=0.218859] nor for Time Window*Algorithm
[GG(1,27)=0.643, p=0.285987].

Post-hoc analyses results using Student t-test with False Discovery
Rate (FDR) corrections showed significant differences between the 1-
second time window and 3, 4, 5-seconds time windows when using
the FBCSP+LDA [perf1−sec = 53.4%, perf3−secs = 59.86%; p ≤ 0.05,
perf4−secs = 60.93%; p ≤ 0.05, perf5−secs = 59.81%; p ≤ 0.05].
The same method showed significant differences between the 2-second
time window and 3, 4, 5-seconds time windows when using the FBTSC
[perf2−sec = 55.05%, perf3−secs = 59.86%; p ≤ 0.05, perf4−secs =
63.08%; p ≤ 0.05, perf5−secs = 62.91%; p ≤ 0.05]. The maxi-
mum performances for both FBCSP+LDA [perfFBCSP+LDA = 60.93%,
chance level = 51.59%; p ≤ 0.05] and FBTSC [perfFBTSC = 63.08%,
chance level = 51.59%; p ≤ 0.05] significantly outperformed the
chance level for the 4-seconds time window.

Figure 7.2 shows the F1-score, precision and recall for each par-
ticipant and algorithm, with the 4-seconds time window length, i.e.,
the time window with which both classification algorithms obtained
the best performances. Still using the 4-seconds time window length,
we also studied the percentage of time that each frequency band was
selected (by mRMR) by each algorithm, as reported in Figure 7.5.
Those results show that the ML algorithms mainly used 4 frequency
bands—i.e., delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz) and low beta
(12-16Hz)—to classify states of epistemic curiosity.
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Figure 7.5: Percentage of time
that each frequency band was
selected by each algorithm, with
the 4-seconds time window
length.

7.3 Discussion, Conclusion and Future Work

In this contribution, we conducted an experiment aiming at collect-
ing EEG signals during states of curiosity that were triggered using
chains of trivia questions, and using ML to distinguish curious vs non-
curious states. We used two ML algorithms, i.e., the FBCSP+LDA and
FBTSC, to classify EEG signals at five different time-window lengths.
The best results were obtained with the FBTSC, reaching about 62% of
F1-score for the 3, 4 and 5s time-windows (respectively 62.22, 63.09 and
62.90%), significantly outperforming the chance level (51.59%). Results
in those 3 time-window lengths also significantly outperformed the re-
sults in the 2s time window (55.05%), but not the ones in the 1s time
window (57.36%). The FBCSP+LDA reached an F1-score of 59% for the
3, 4 and 5s time windows, with respectively 59.90, 60.09 and 59.81%,
significantly outperforming both the chance level (51.59%) and the re-
sults in the 1s time window (53.39%), but not the ones in the 2s time
window (57.34%). Overall, results indicate that both algorithms ob-
tained better performances in the 3-to-5s time windows, suggesting a
minimum time of 3 seconds to go towards curiosity state estimation
based on EEG signals. Moreover, ML algorithms mostly used a range
of frequency bands from delta to low beta in order to classify states
of epistemic curiosity, suggesting variations of EEG activity in the low
frequencies during states of epistemic curiosity.

The results also suggest that curiosity could be a mental state that
increases over time, though further analysis is needed. However, these
results are based on a participant-specific study, which provides a
good overview of the potential of measuring states of curiosity through
EEG signals, but not if we want to go towards calibration-free systems;
it would be therefore interesting to run a participant-independent study
as well.

As future work, we will explore ways to measure curiosity states
through EEG without participant-dependent calibration. While trivia
questions were used as a trigger of curiosity, new tools (e.g., social
robots (Ceha et al., 2019), video games) or stimuli (e.g., videos of
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magic tricks) could be used in future experiments. We will also per-
form deeper neurophysiological analysis to identify the EEG sensors
and sources mostly modulated by curiosity levels. For example, so far,
results suggested that most of the information for discriminating cu-
riosity levels are found in theta, alpha and low beta. These frequency
bands are similar to the ones used to estimate levels of workload and
levels of engagement (Dehais et al., 2020). This is interesting given that
both states share some common characteristics with curiosity, such as
implications in long-term memory improvements. Their similarities
and differences would thus need to be further studied. Further anal-
yses can also be done to compare our results against those obtained
with fMRI (Gruber et al., 2014; Kang et al., 2009), in order to gain a
better understanding of the neurological markers underlying curiosity
states.
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8
Towards measuring
states of Epistemic

Curiosity through
physiological signals

The previous chapter studied the classification of curiosity levels
from EEG signals. To complete this first study, this chapter focuses on
estimating states of Epistemic Curiosity through physiological signals.
In a first section, we present the signal processing and machine learn-
ing methods we perform in order to classify such states of epistemic
curiosity through heart rate, breathing and EDA signals. Then, results
are presented in the next section, followed by a last section reserved to
the discussion, limits and future works.

8.1 Signal Processing & Classification

This chapter focuses on our work that aimed at attempting to dis-
criminate curious from non-curious states using physiological signals,
i.e., Heart Rate (HR), Breathing and Electrodermal Activity (EDA). To
do so, we first recorded these three types of signals using Brainprod-
uct physiological sensors, then we extracted features from these three
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types of signals using existing signal processing tools, i.e., using two
Python libraries - neurokit (https://neurokit.readthedocs.io/
en/latest/index.html) and biosspy (https://biosppy.readthedocs
.io/en/stable/) to then apply machine learning algorithms in or-
der to classify such physiological signals. This section describes the
pre-processing steps we used, i.e., trial epoching and labelling, the
machine learning algorithms performed, and finally the method used
for evaluating classification performance.

8.1.1 Pre-processing
We first pre-processed physiological signals into 16-seconds win-

dows. As explained in chapter 6, each 10 minutes run were divided
into approximately 30 trials, i.e., one trial per trivia question displayed.
More precisely, a physiological trial was defined as beginning at the
time the fixation cross before the question appeared, and ending either
when the willingness to present the answer or when the next fixation
cross disappeared.

8.1.2 Classification labels
The trial labelling is the same as for the EEG trials classification,

and is presented in the previous chapter in 7.1.2.

8.1.3 Processing & Machine Learning Algorithms
Features extraction: as explained in the introduction of this sec-
tion, we used three types of physiological signals in this study, i.e.,
heart rate, breathing and EDA. We present the different methods that
we used to extract features from each of these three types of signals.

For the heart rate signals, the entire electrocardiogram is first
reduced to the R-R intervals (RRI) signals, where RRI corresponds to
the interval between two successive heartbeats, or more precisely, the
interval between two R peaks in the ECG. Note that we use the same
methods, made for ECG, for heart rate in this thesis. We can describe
the features extracted from the heart rate signal as follows:

• sdRR: this feature represents the standard deviation of the RRIs
(Malik, 1996; Smith et al., 2013).

• meanRR: represents the mean of the RRI (Malik, 1996; Voss et al.,
2015).

• RMSSD: is the Root Mean Square of the RRIs (Malik, 1996; Smith

https://neurokit.readthedocs.io/en/latest/index.html
https://neurokit.readthedocs.io/en/latest/index.html
https://biosppy.readthedocs.io/en/stable/
https://biosppy.readthedocs.io/en/stable/
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et al., 2013; Voss et al., 2015).

• CVSD: is the Coefficient of Variation of Successive Differences.
This corresponds to the RMSSD divided by meanRR (Malik, 1996).

• cvRR: is the RR coefficient of variation. This corresponds to the
sdRR divided by the meanRR (Malik, 1996).

• medianRR: is the median of the absolute values of the RRIs’ suc-
cesssive differences (Voss et al., 2015).

• madRR: RRIs’ median abosolute deviation (MAD) (Malik, 1996).

• mcvRR: is the RRIs’ median-based coefficient of variation. This
corresponds to the ratio of madRR divided by medianRR (Voss
et al., 2015).

• RR50 or RR20: successive RRIs’ number of interval differences
greater than 50ms or 20 ms, respectively (Malik, 1996).

• pRR50 or pRR20: is the proportion derived by dividing RR50

(ou RR20) by the number of RRIs (Voss et al., 2015).

• triang: is the HRV triangular index measurement, i.e., plotting the
integral of the ratio of RRI density histogram by its height (Shaffer
and Ginsberg, 2017; Smith et al., 2013).

• Shannon_h: Shannon entropy calculated on the basis of the class
probabilities of the RRI density distribution (Voss et al., 2015).

• VLF: is the HRV variance in the Very Low Frequency (0.003 to 0.04

Hz) (Malik, 1996).

• LF: is the HRV variance in the Low Frequency (0.04 to 0.15 Hz)
(Malik, 1996; Voss et al., 2015).

• HF: is the HRV variance in the High Frequency (0.15 to 0.40 Hz)
(Malik, 1996; Voss et al., 2015).

• Total_Power: total power of the full density spectra (Voss et al.,
2015).

• LFHF: is the LF/HF ratio (Malik, 1996; Voss et al., 2015).

• LFn: is the normalized LF power. It can be calculated using the
equation “LFn = LF/(LF+HF)" (Malik, 1996).

• HFn: is the normalized HF power. It can be calculated using the
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equation “HFn = HF/(LF+HF)" (Malik, 1996).

• LFp: the LF/Total_Power ratio (Voss et al., 2015).

• HFp: the HF/Total_Power ratio (Voss et al., 2015).

• DFA: is the Detrended Fluctuation Analysis (DFA) (Peng et al.,
1995) of the heart rate raw signals.

• Shannon: is the RRIs’ Shannon entropy (Voss et al., 2015).

• sample_entropy: is the RRIs’ sample entropy (Tiwari et al., 2019).

• correlation_Dimension: represents the RRIs’ correlation dimen-
sion (Voss et al., 2015).

• entropy_Multiscale: is the RRIs’ entropy multiscale (Tiwari et al.,
2019).

• entropy_SVD: RRIs’ Singular Value Decomposition (SVD) en-
tropy (Voss et al., 2015).

• entropy_Spectral_VLF: represents the RRIs’ spectral entropy over
the VLF (Voss et al., 2015).

• entropy_Spectral_LF: is the RRIs’ spectral entropy over the LF
(Voss et al., 2015).

• entropy_Spectral_HF: is the RRIs’ spectral entropy over the HF
(Voss et al., 2015).

• Fisher_Info: is the RRIs’ Fisher information (de Geus et al., 2019).

• Lyapunov: if the RRIs’ Lyapunov exponent (Goshvarpour and
Goshvarpour, 2012).

• FD_Petrosian: is the RRIs’ Petrosian’s Fractal Dimension (Pet-
rosian, 1995).

• FD_Higushi: is the Higushi’s Fractal Dimension of RRIs (Gomes
et al., 2017).

The study of the breathing signals mainly focuses on R-R inter-
vals (RRI), as for the heart rate signals, and is known as the Breathing
Rate Variability (BRV). RRI corresponds to the interval between two
successive breathing, or more precisely, the interval between two R
peaks in the breathing signals. Based on these RRIs, multiple charac-
teristics can be extracted from the signals, and are listed as follows:
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• peak_length: is the interval of successive peaks in the breathing
pattern signal (Jaiswal et al., 2019).

• trough_length: is the interval of successive troughs in the breath-
ing pattern signal (Jaiswal et al., 2019).

• peak_amplitude: is the amplitude calculated for each peak of the
trial (Jaiswal et al., 2019).

• trough_amplitude: is the amplitude calculated for each trough
of the trial (Jaiswal et al., 2019).

• resp_rate: corresponds to the breathing rate, obtained from fre-
quency domain analysis of the breathing signals (Jaiswal et al., 2019).

Descriptive statistics are calculated on these characteristics, i.e., mean,
standard deviation, min, max, first quartile, median and the third
quartile, and used as features to feed machine learning algorithms.

Another type of features is also recommended when manipulating
breathing signals: the frequency domain-based features. To do so, we
also used as features the Power Spectral Density (PSD) calculated from
0.1 to 0.5 Hz, in 0.01 Hz steps.

The Electrodermal activity (EDA) can be described as the
superposition of two distinct skin conductance responses (SCRs): on
a one hand, we have the tonic activity, and on the other hand the
phasic activity (Fritz et al., 2014). In the time domain, features can
be extracted from these two components through descriptive statistics,
characteristics based on deeper information can be obtained from the
phasic component. These characteristics are described as follows:

• phasic_peak_amplitude: represents the amplitude of phasic peaks
(Schmidt and Walach, 2000).

• phasic_peak_longitude: is the rise time/duration of the peaks
(Schmidt and Walach, 2000).

• phasic_peak_slope: represents the slope of the peaks (Parent,
2019).

• ordinate_slope is the ordinate of the slope of the peaks, i.e., the
starting point (Parent, 2019).

• peak_peak_interval: corresponds to the inter-peaks time (Parent,
2019).

Descriptive statistics are then calculated on all these extracted char-



towards measuring states of epistemic curiosity through physiological signals 127

acteristics, as well as on both tonic and phasic components, in order
to define features representing the EDA signals. First, we have the ba-
sics statistics - i.e., mean, standard deviation, min, max, first quartile,
median and the third quartile - that are calculated for each of these
characteristics. Second, two statistics, i.e., skewness and kurotis, are
calculated for both the tonic and the phasic components (Braithwaite
et al., 2013). Finally, the “nb_peak_per_min" corresponds to the fre-
quency of phasic peaks (Parent, 2019), and can be defined as a feature
in itself (no descriptive statistics are needed).

Concerning the frequency domain, the EDA dynamics of the fre-
quency spectrum is largely contained in frequencies below 0.4 Hz (Shi-
momura et al., 2008). Two types of frequency information are calcu-
lated, i.e., the Power Spectral Density (PSD) from 0.0 to 0.1 Hz, in 0.01

Hz steps (Parent, 2019) and the PSD from 0.045 to 0.25 Hz (Posada-
Quintero et al., 2016).

Classification: we chose to run three studies - one for each type of
signals, i.e, heart rate, breathing and EDA - in order to obtain indica-
tions about which is the best signal to use to classify levels of curiosity.
Therefore, for each of our three signals, 10 features were selected using
the maximum Relevance Minimum Redundancy (mRMR) feature se-
lection algorithm (Peng et al., 2005b) in order to train an LDA classifier
to discriminate curious from non-curious trials. Finally three different
LDA models have been trained, one with features for heart rate sig-
nals only, a second one with breathing signals only and a last one with
EDA signals only.

8.1.4 Evaluation
We assessed the performances of ML algorithms on the three types

of signals using a within-participant study with five-fold stratified
Cross-Validation. This means the data from each participant was di-
vided into five parts: four parts were used for training the classifier
and the fifth one for testing the resulting curiosity classifier for that
participant. This process was repeated five times, with each part used
exactly once as the testing set.

8.2 Results

The F1-score, which is the weighted average of the precision and
the recall, for each type of signals, and for each participants, are re-
ported on Figure 8.1. As a reference, the overall statistical chance level
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Figure 8.1: F1 score, preci-
sion and recall for each sub-
ject and for each algorithm, i.e.,
HR+LDA, breathing+LDA and
EDA+LDA.

(across participants) using (Combrisson and Jerbi, 2015) was estimated
at 51.59% (100 trials per participant on average, 27 participants).

The boxplot of the performances obtained by each types of sig-
nals are reported in Figure 8.2. We performed a 1-way ANOVA to
evaluate the performance of the factor Algorithm where the three
“types" of algorithms are HR features coupled with LDA, breathing
features coupled with LDA and EDA features coupled with LDA.
Note that we checked the data sphericity, as well as the normality,
and used Greenhouse-Geisser (GG) correction in ANOVA if needed.
The ANOVA revealed a main effect of Algorithm [F(1,27)=10.878,
p=0.0001].

Figure 8.2: F1-score for each
type of physiological signals,
i.e., heart rate, breathing and
EDA.

Post-hoc analyses results using Student t-test with False Discov-
ery Rate (FDR) corrections showed significant differences between the
breathing+LDA algorithm and both the HR+LDA and the EDA+LDA
[perfbreathing+LDA = 58.4%, perfHR+LDA = 50.1%; p ≤ 0.05, perfEDA+LDA
= 54.8%; p ≤ 0.05]. Those results are presented on Figure 8.3. Note
that only the breathing+LDA algorithm [perfbreathing+LDA = 58.41%,
chance level = 51.59%; p ≤ 0.05] significantly outperformed the
chance level.
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Figure 8.3: Post-hoc tests for
each type of physiological sig-
nals, i.e., heart rate, breathing
and EDA.

8.3 Discussion, Conclusion & Future Work

In this contribution, we collected physiological signals, i.e., heart
rate, breathing and EDA, using the same experiment as in chapter
7, which is presented in chapter 6. In this experiment, states of cu-
riosity were triggered using chains of trivia questions, and we used
multiple signal processing methods, as well as a single ML algorithm,
i.e., the LDA, in order to distinguish curious from non-curious states.
We extracted between 40 and 60 features from each type of signals.
We ran three parallel studies, one for each type of signal, in order to
observe which type of signal could be interesting for discriminating
different levels of curiosity. For each of these studies, we first selected
10 features among the total number of features for this type of sig-
nal, using the mRMR feature selection algorithm, and then applied an
LDA. Results showed that only the breathing signals-based features
coupled with the LDA allowed us to obtain classification performances
(58.41%), significantly outperforming the chance level (51.59%). To a
lesser extent, results indicated that EDA signals-based features cou-
pled with the LDA obtained classification performances of 54.8% sig-
nificantly higher than the chance level as well (51.59%). Finally, the
heart rate signals coupled with the LDA only obtained 50.1% classifi-
cation accuracy.

These results highlight whether these three types of signals can be
used in short time windows, i.e., in 16-seconds time windows, in order
to classify levels of curiosity through physiological signals. However,
the experimental protocol was designed for the measurement of EEG
signals mainly, meaning the installation of physiological sensors was
made in addition, and only short time windows trials were thus avail-
able for classifying such states of curiosity through physiological sig-
nals. The fact that we did not have control over this factor makes our
study purely exploratory. However, the results concerning the study
of breathing signals are very encouraging since we obtained classifica-
tion performances that are already significantly better than the chance



130 estimating mental states through neurophysiological signals

level. If the time windows in this study may not be optimal (they are
typically too short for physiological signals analysis), they still allow us
to do the classification of these physiological signals on experimental
designs similar to the EEG ones, which is interesting because it means
that we could get information from these different types of sensors on
a common protocol design. So far, we did not have time to combine
one or more types of these physiological signals with EEG signals: we
therefore cannot conclude yet on the possible fruitfulness of such a
combination of signals in order to classify different levels of curiosity.
Therefore, as future work, it would be interesting to explore ways to
measure curiosity levels through physiological signals on longer time
windows. This would require to run another experiment, in order to
induce curiosity states on a longer duration. While Trivia questions
were used as a trigger of curiosity in our studies, new tools - e.g., so-
cial robots (Ceha et al., 2019) - or stimuli - videos of magic tricks -
could be used in future experiments. Based on the data set we ob-
tained by running the experiment described in chapter 6, and used for
this contribution, further analysis should be conducted. First, we will
explore ways to measure curiosity states through physiological signals
with a participant-independent calibration. Second, it would be inter-
esting to see if a combination of features from two or three types of
physiological signals would allow classifiers to better discriminate cu-
rious from non-curious trials. Finally, we will run an analysis aiming
at combining physiological features - at least from breathing signals,
and maybe from EDA and HR as well - to EEG features in order to feed
the classifiers with information from both brain and body activity.

In summary, we ran an experiment in which we used both elec-
troencephalography (EEG) and physiological signals, i.e., heart rate,
breathing and electrodermal activity (EDA), to measure the neuro-
physiological activity of participants as they were induced into states
of curiosity, using trivia question and answer chains. Concerning the
EEG signals anaylsis, we used two ML algorithms, i.e. Filter Bank
Common Spatial Pattern (FBCSP) coupled with a Linear Discriminant
Algorithm (LDA), as well as a Filter Bank Tangent Space Classifier
(FBTSC) (that we proposed in this thesis), to classify the curious EEG
signals from the non-curious ones. Concerning the physiological sig-
nals, we used multiple signal processing methods in order to extract
features from the physiolgical signals, as well as a single ML algo-
rithm, i.e., the LDA, to distinguish curious from non-curious states.
We ran three parallel studies, one for each type of signal, in order to
observe which type of signal could be interesting for discriminating
different levels of curiosity.
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To summary, global results showed that it was possible to discrim-
inate states of epistemic curiosity through both EEG and physiologi-
cal signals, with classification accuracies better than the chance level,
i.e., 63.09% from EEG signals, 58.41% for breathing signals, and 54.8%
for EDA signals. However, even if these differences are significant,
they remain low, and future work should be conducted in order to
improve these classification performances, e.g., new methods for in-
ducing states of curiosity, new time windows for trials, etc.
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Part IV

Towards measuring states of

Cognitive Workload through EEG
during a MT-BCI task
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9
Towards estimating
cognitive workload

during MI-BCI training

9.1 Research question

As explained in the introduction chapter, estimating cognitive, af-
fective or conative states from brain signals is a key but challenging
step in the creation of passive BCI applications. Indeed, this would
allow applications to monitor the users’ states in real-time, and there-
fore adapt the interactions to individuals cognitive capabilities, i.e.,
optimal levels of a given cognitive state (workload, attention, etc), but
also optimal levels of emotions (e.g., valence or arousal) or motivation
(e.g., motivational states, curiosity). Moreover, all cognitive, affective
and conative states have been shown to be involved in human learn-
ing, thus being able to estimate such states in real-time would play a
major role for upgrading BCI training protocols, although this type of
system could also be used as an evaluation method for HCI.

However, as seen in chapter 2, learning new skills requires informa-
tion processing laying on Working Memory resources (Sweller et al.,
2019). These resources are limited and distributed over the different
processes involved by the learning material. Learning material should
then be adapted to the learner’s resources. It is important to under-
stand how the cognitive state of the user evolves during the learning
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process in order to predict the optimal user-training interaction that
might result in an efficient learning. This should also be applied to
Mental Imagery (MI)-BCI control training, which is often suboptimal
because of a lack of understanding on the best way to train users, on
users’ states variabilities and on how to adapt it for better learning
(Jeunet et al., 2017).

Thus, we propose a study aiming at estimating cognitive workload
levels through EEG signals during a MI-BCI task. As indicated in the
introduction chapter, one of the longer term goal of this thesis is to
contribute to estimating learning-related mental states during MI-BCI
user training, to later adapt the training to such states. While this PhD
thesis work did not aim at completing all these objectives alone, it did
contribute to go in that direction. In particular, we contributed to the
design, implementation and conduction of a protocol to do so, that we
report in this chapter. The study is still ongoing, and will be completed
by another PhD student on the BrainConquest project. Thus no results
are presented in this thesis. However, several important advances have
been made in this project, i.e., the protocol has been designed, imple-
mented validated by the ethics committee from Inria Bordeaux Sud-
Ouest (COERLE) and the experiment has been run on several subjects,
the data collection is not finished and no analysis have been made so
far. However, the goal of this chapter is to present the work that has
been conducted so far. First, we present the different tasks that users
had to do in order to 1) estimate the working memory load capabilities
of the participant 2) induce and measure levels of cognitive workload
independently of the MI-BCI task, i.e., passive BCI tasks 3) performing
the MI-BCI task, i.e., active BCI task. Second, we present the different
questionnaires that have been proposed to participants in order to sub-
jectively measure both fatigue and cognitive workload1. In the future,

1 Note that for each step, we describe the
theoretical background behind any deci-
sion we took.

once the experiment will be fully completed, the ML tools developed
in this thesis (notably FBTSC) will be used to estimate workload levels
from EEG during the MI-BCI training tasks. This should enable us
to assess finely the relationship between workload levels and MI-BCI
performance and learning.

9.2 Methods

So far, we recruited 8 participants that participated to three MT-BCI
training sessions, each of them lasting 2 hours and taking place on a
different day. Figure 9.1 details the time of each step of the experiment.

Working memory abilities may vary for a participant to another,
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Figure 9.1: This figure summa-
rizes our protocol with the pre-
session part, the approximate
time allocated to each part of
the training, and details of each
task. One session lasted approx-
imately 2 hours.

this is why we first assessed participant’s working memory abilities
with the number span task from the Weschler Adult Intelligence Scale
(Wechsler, 1955). Also, users were asked to fill in different psychome-
tric tests, during the sessions, to assess their cognitive states. During
the session they were equipped with an EEG cap in order to control the
system with mental imagery (i.e. MI-BCI training). In order to later
be able to monitor a subject’s workload from EEG during the training,
participants first completed a passive BCI task. Our hypothesis is that
cognitive load will vary during the training and will be linked with
learning performances. We predict that the task design will have an
effect on the participant’s cognitive load and learning performances.

9.2.1 Working Memory assessment
Working Memory (WM) processing is involved in learning and its

resource limitations during a task can influence cognitive load and
then learning performance. As resource limitations can vary between
individuals, we assessed participants WM abilities. To do so, we used
a number span task from the Weschler Adult Intelligence Scale (Wech-
sler, 1955). First, participants were asked to perform the Forward Digit
Span task (Kreutzer et al., 2011b) (presented in chapter 2), and then
the Backward Digit span task (Kreutzer et al., 2011a) (also presented
in chapter 2).
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9.2.2 Passive BCI task
In order to estimate users’ cognitive load from their EEG signals

during the MI-BCI training, we needed to record a ground truth cor-
responding to low and high cognitive load periods. To do so, we used
a protocol with tasks already described in the literature as inducing
high or low cognitive load to participants. Multiple methods to induce
and record workload variations with EEG are available, as presented
in chapter 2, and based on our literature review in chapter 3, we chose
the two most used, i.e., the N-back task and the Rspan one. Note that
we already presented these two tasks in chapter 2.

As seen in chapter 2, EEG is an efficient non-intrusive measure of
the brain activity, yet it is overly sensitive to behaviours that might pro-
duce noise in the recording. Therefore, to record brain activity related
to the cognitive task only, we had to avoid any source of noise, like
movements (body, eyes, face etc.). The N-back task and the Rspan task
(around 10 minutes each) have already been used in EEG studies and
are then already adapted to this material. They have already been used
as passive BCI techniques to observe workload variations, and cross-
ing them will allow us to have a more general measure of workload
associated brain signals (Walter et al., 2013). At the end of each work-
load condition in the two tasks, we assessed the participant’s cognitive
state using subjective measures based on the Nasa-TLX (Cegarra and
Morgado, 2009). In total, the passive BCI tasks lasted approximately
20 minutes.

9.2.3 MI-BCI training
Once they have completed the passive BCI tasks, after a break, par-

ticipants practiced a MI-BCI task in which they were trained to imag-
ine a movement of the left or the right hand that could be recognized
by the system. The training session lasted approximately 110 minutes
(1 hour 50 min) in which participants completed 12 runs, lasting three
minutes each, of MI-BCI task. With the user’s instruction and self-
reported measures at the end of each run, the MI-BCI training lasted
approximately 45 minutes.

• the goal of the first 4 runs was to calibrate the system by providing
examples of EEG patterns associated with each mental imagery.

• the goal of other runs was to train the user to produce a clear
and stable mental imagery, in order to help the system to recog-
nize them, and helping the user by providing a feedback paradigm.
Each run included 15 trials of 9 seconds each. At the end of the run,
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the user were asked to assess its state with six self-reported scales.

Description of the trial

At the beginning of each trial, a white cross was displayed. After
2 s, an auditory cue (a beep) triggered the attention of the participant
towards the red arrow, which was displayed at t = 3 s for 1 s, and in-
dicated which task the participant had to perform (imagining right- or
left-hand movements upon appearance of a right or left arrow, respec-
tively). At 4.25 s, a blue feedback bar appeared and was updated at 16

Hz for 3.75 s. This feedback direction indicated if the imagined move-
ment was recognized by the classifier, and its length was proportional
to the classifier output 9.3.2.

9.2.4 Cognitive workload measures
EEG signals

In previous studies, cognitive load variations have been associated
with EEG oscillation changes, particularly in the theta and alpha bands
(Antonenko et al., 2010; Brouwer et al., 2012; Grimes et al., 2008; Paas
et al., 2003). While the MI-BCI training brain activity was already
recorded with EEG, we used these features to observe objective work-
load variations.

subjective assessment

We wanted to assess the subjective cognitive load for the partici-
pants during all the training, and not only at the end of the session
or between runs. Cognitive load is not an unidimensional measure, it
depends on the task demand perceived by the subject and the efforts
it takes him/her to process the task (Parent, 2019). Also, it can be in-
fluenced by other user’s state factors, such as their anxiety state, their
mental fatigue, or their frustration. To assess the evolution of the cog-
nitive states during the task we asked the participant to declare, on a
10-points scale going from “low” to “high”, his/her level of perceived
“mental demand”, “mental effort”, “frustration”, “anxiety” and “men-
tal fatigue”. Each participant reported his/her own state at the end of
each task, i.e., after both passive BCI tasks, as well as after the active
BCI task. They then reported it four times during the passive BCI task
and after each run during the MI-BCI task, so 12 times in total. These
scales are based on the French adaptation of the Nasa-TLX (Cegarra
and Morgado, 2009).

Reaction time
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Self-reported questionnaires inform us on the user’s experience
during the task but are not always representative of the real amount
of cognitive load engaged in the task. An important mental effort can
cause mental fatigue which can be characterized by increased reac-
tion/response times, yet it is not always correlated with a self-declared
feeling of fatigue. For this reason, we will estimate the reaction time
(i.e., the time between the “cue” apparition and the EEG changes) of
the participants. This measure will allow us to observe whether the
subjective mental effort and fatigue are correlated with differences in
reaction times.

Other subjective measures

While anxiety can modulate users mental states, and therefore have
an impact on the brain activity recorded as EEG signals, participants
had to fill-in the French version of the STAI (Spielberger et al., 1983) be-
fore MI-BCI training, in order to control anxiety state and propension
before the training. The STAI trait is composed of two questionnaires,
the first one assesses the anxiety trait of the participants as the second
assesses its anxiety state. Each is composed of 20 questions and indi-
viduals are asked to answer on a four levels scale going from “almost
never” to “almost always” for the “trait” questionnaire, and from “no”
to “yes” for the “state” questionnaire.

9.2.5 Participants’ declarations
At the end of the session, we asked participants to answer questions

during a conversation with the experimenter. The questions/answers
provided us qualitative information about users’ strategies during the
MI-BCI task and will help us to interpret and discuss the results. Be-
cause it was done at the end of the training, we did not want to add
too much effort for the subjects, this was like a conversation. We asked
the participants if they agree to be recorded so we can keep a trace of
the discussion.

9.3 Materials

9.3.1 Measure of the neurophysiological data
The EEG signals has been recorded with 48 scalp EEG electrodes

(according to the standard in 10-20 EEG system), referenced to the left
ear and grounded to AFz, using a g.tec g.USBAmp amplifier and active
electrodes. Such electrodes cover the whole cortex, where EEG vari-
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ations due to MI and mental workload could be measured. To those
electrodes, we added two EMG (ElectroMyoGraphy) electrodes (left
and right hand wrist) and three EOG (ElectroOculoGraphy) electrodes
to record eye artifacts (below, above and on the side of an eye).

9.3.2 Online EEG signal processing for MI-BCI control
To classify the two MI tasks online from EEG data, we used participant-

specific spectral and spatial filters. First, from the EEG signals recorded
during the calibration runs, we identified a participant-specific dis-
criminant frequency band using the heuristic algorithm proposed by
Blankertz et al. in (Blankertz et al., 2008) (Algorithm 1 in that paper).
Roughly, this algorithm selects the frequency band whose power in the
sensorimotor channels maximally correlates with the class labels. Here
we used channels C3 & C4 after spatial filtering with a Laplacian filter
as sensorimotor channels, as recommended in (Blankertz et al., 2008).
We selected a discriminant frequency band in the interval from 5 Hz to
35 Hz, with 0.5Hz large bins. Once this discriminant frequency band
identified, we filtered EEG signals in that band using a butterworth
filter of order 5.

Then, we used the CSP algorithm (Blankertz et al., 2008) to opti-
mize 3 pairs of spatial filters, still using the data from the two calibra-
tion runs. Such spatially filtered EEG signals should thus have a band
power which is maximally different between the two MI conditions.
We then computed the band power of these spatially filtered signals
by squaring the EEG signals, averaging them over a 1 second slid-
ing window (with 1/16th second between consecutive windows), and
log-transforming the results. This led to 6 different features per time
window, which were used as input to a LDA classifier (Lotte et al.,
2018b). This LDA was calibrated on the data from the four calibration
runs. These filters and classifier were then applied on the subsequent
runs to provide online feedback.

9.4 Discussion & Future work

As explained in the introduction of this chapter, and more generally
in the introduction of this PhD thesis, being able to estimate learning-
related mental states such as cognitive workload, from EEG signals
during a MI-BCI task, would be beneficial to the future of active BCI
training as it would allow us to adapt the training task to users’ capa-
bilities, e.g., to users’ cognitive capabilities. We thus took into account
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lessons we have learnt from other works & contributions of this PhD
thesis - i.e., from the literature review about studies aiming at esti-
mating levels of cognitive workload through EEG signals (see chapter
3), as well as from the study aiming at decoding levels of cognitive
workload using modern and promising machine learning algorithms
(see chapter 4) - in order to go towards the estimation of cognitive
workload during MI-BCI training. This chapter presented the proto-
col design that has been validated by the ethical committee of Inria,
as well as the current state of the project. At the time of writing, the
experiment is still running since it has been slowed down due to the
Covid19-pandemics, and 8 participants have already completed their
3 sessions. The next step will therefore be to analyze these data: we
will train models by using algorithms that proved to be the most ef-
ficient for cognitive workload levels classification, i.e., the algorithms
we presented in the chapter 4 (and notably the FBTSC), on EEG signals
recorded during the passive BCI tasks (both N-back and Rspan tasks).
We will then use these models in order to attempt to classify levels
of cognitive workload as well, but this time on EEG signals that have
been recorded during the active BCI task, i.e., the MI-BCI task. Fi-
nally, we will verify if this estimation is correlated to the active MI-BCI
performances, e.g., if a drop in users’ performances would be corre-
lated to users’ cognitive workload being too high, i.e.,“overloaded".
Another verification that will have to be done is the study of potential
correlations between the cognitive workload variations and the MI-BCI
learning.

If cross-task studies concerning the estimation of cognitive work-
load levels have been made (Gerjets et al., 2014; Krol et al., 2016; Walter
et al., 2013), these methods have never been applied to MI-BCI tasks,
making this study an important contribution in order to evaluate the
feasibility of such a system. If this experiment proves to be a success,
it would be a major step to go towards real-time adaptations of active
BCI training to users’ cognitive states. Moreover, this will encourage
research studies that attempt to estimate other learning-related mental
states such as affective or conative states, in order to adapt learning
systems to the mood or motivation of the users.
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Discussion & Prospects
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10
Discussion &
Perspectives

10.1 Estimating learning-related mental states
through EEG signals: where are we?

As we saw in the first chapter (see chapter 2), the history of psy-
chology includes several theories of learning. Among them, the theory
entitled "Trilogy of Mind", brought by Hilgard in 1980 (Hilgard, 1980),
proposes that the mind has three main faculties: cognition, affect and
conation. Users’ states can thus be split into three categories: cogni-
tive, affective and conative states. Among cognitive states, we saw that
the mental states such as cognitive workload, fatigue, stress, engage-
ment, distraction and attention are related to learning. Concerning the
affective states, learning-related mental states can be listed as follows:
emotions, surprise, satisfaction, frustration, disillusionment, boredom
and the flow. Finally, the conative states that are related to learning
are the intrinsic motivation, volition, agency, self-direction, and self-
regulation.

Among all the users’ mental states, we decided to focus on three
mental states in this PhD thesis. Among the cognitive states, we choose
to focus on the estimation of cognitive workload through EEG signals,
as it showed to be widely studied in the literature (see chapter 3) and
recommendations about the materials to use to continuously assess
cognitive workload in real time have been proposed by Gerjets et al.
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(Gerjets et al., 2014). More importantly, this mental state is thought to
be very relevant for learning (Sweller et al., 1998). Indeed, as recalled
in the introduction to this discussion, the longer term goal of this thesis
is to contribute tools to estimate levels of learning-related mental states
- in real time - during an active BCI task.

Concerning the affective states, we chose to focus on emotion as the
literature about the estimation of such a mental state is important as
well (see chapter 3). Moreover, a public data set containing EEG sig-
nals of different emotion levels on three scales (valence, arousal and
dominance), i.e., “DEAP" from Koelstra et al. (Koelstra et al., 2011),
is available online. This data set has been frequently used in the lit-
erature of studies aiming at estimating emotions through EEG signals
(see chapter 3), facilitating the comparisons between studies and the
development of machine learning tools with a view to improve emo-
tion level discrimination (see chapter 4). Finally, no conative state had
been studied to any great extent previously, which is why we have
decided to focus on curiosity as it is a conative state that is strongly re-
lated to learning, and particularly on epistemic curiosity as it has been
defined as a desire to acquire knowledge, i.e., to learn (Loewenstein,
1994).

We thus focused on these three mental states in the PhD thesis.
As mentioned right before, the estimations of both cognitive workload
and emotions through EEG signals have been widely studied in the lit-
erature. We thus first reviewed this literature, in order to understand
what has been done so far concerning the estimation of both cognitive
workload and emotions, and what remains to be done to go towards
real-time estimation of these two mental states. As only a very little
has been done for attempting to estimate states of epistemic curios-
ity, based on the literature, we decided to study more in depth this
conative state, as it revealed to be important for human learning (see
chapter 2). We therefore built a protocol design and ran an experiment
in order to go towards the estimation of epistemic curiosity through
neurophysiological signals (see part III).

10.2 Contributions of this PhD thesis

This manuscript enabled us to describe the contributions related
to the three challenges depicted in Figure. These contributions are
summarised in the following paragraphs.

First, proposed a detailed state-of-the-art, which synthesizes the
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protocols, measures and tools (ML) used to estimate both cognitive
workload and emotions through EEG signals (see chapter 3).

Based on this literature review concerning the cognitive workload
and emotions estimation from EEG (see chapter 3), the classification
accuracies obtained so far - mostly around 70% for cognitive workload,
and around 60-65% for emotions in oscillatory-based studies - revealed
the need for more robust and accurate EEG classification algorithms,
in order to obtain trustable EEG-based cognitive and affective states
estimators.

Our contribution #1 was therefore to study new and promising
algorithms that proved efficient either in recent active BCI classification
competitions (Ang et al., 2012; Yger et al., 2016), such as Riemannian
geometry classifiers, or in other fields of artificial intelligence, such as
Deep Learning (Lecun et al., 2015; Schirrmeister et al., 2017) (see chap-
ter 2). Indeed, they have shown to be promising for other BCI systems,
e.g., motor imagery-BCIs, but they have not been formally studied and
compared together for cognitive or affective states classification. We
thus explored such machine learning algorithms, proposed new vari-
ants of them (i.e., Filter Bank Tangent Space Classifier (FBTSC) and Fil-
ter Bank Minimum Distance to Mean with geodesic filtering classifier
(FBFgMDM)), and benchmarked them with classical methods to esti-
mate both cognitive workload and affective states (Valence/Arousal)
from EEG signals. We studied these approaches with both subject-
specific and subject-independent calibration, to go towards calibration-
free systems. Our results suggested that a CNN obtained the highest
mean accuracy, although not significantly so, in both conditions for the
mental workload study - 72.73% in the subject-specific study, 63.74% in
the subject-independent study - outperforming state-of-the-art meth-
ods on this data set, followed by RGCs. However, this same CNN
underperformed in both conditions for the emotion data set, a data
set with small training data. On the contrary, RGCs proved to have
the highest mean accuracy with the Filter Bank Tangent Space classi-
fier (FBTSC), for the subject-specific condition on the valence data-set
(61.09%) and for the subject-specific condition on the arousal data-set
(60.60%). Our results thus contributed to improve the reliability of
cognitive and affective states classification from EEG. They also pro-
vide guidelines about when to use which machine learning algorithm,
which will be interesting to go towards real-time estimation of these
cognitive workload and emotions states.

However, the two mental states, i.e., cognitive workload and emo-
tions, that we studied in this contribution #1, are far from being the
only mental states of interest for learning (see chapter 2). In addition,
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we studied them through two data sets only, i.e., one for cognitive
workload and the other for emotions, meaning one protocol design
for each of these mental states: as shown with through our literature
review in chapter 3, multiple other protocols and methods to induce,
measure and estimate these mental states exist. In a more general way,
experiments using (EEG)-based passive BCIs dramatically increased
in the last decade: the variety of protocol designs and the growing
interest for physiological computing require parallel improvements in
processing and classification of EEG signals, but also bio signals such
as electrodermal activity (EDA), heart rate (HR) or breathing. If some
EEG-based analysis tools are already available for online BCIs with
a number of online BCI platforms (e.g., BCI2000 or OpenViBE), it re-
mains crucial to perform offline analyses in order to design, select,
tune, validate and test algorithms before using them online. Moreover,
studying and comparing those algorithms usually requires expertise
in programming, signal processing and machine learning, whereas nu-
merous BCI researchers come from other backgrounds with limited or
no training in such skills. Finally, existing BCI toolboxes are focused
on EEG and other brain signals, but usually do not include process-
ing tools for other bio signals. Therefore, in our contribution #2,
we designed, developed, validated and shared BioPyC, a free, open-
source and easy-to-use Python platform for offline EEG and biosignal
processing and classification. Based on an intuitive and well-guided
graphical interface, four main modules allow the user to follow the
standard steps of the BCI process without any programming skill 1)
reading different neurophysiological signal data formats 2) filtering
and representing EEG and bio signals 3) classifying them 4) visual-
izing and performing statistical tests on the results. Such a tool will
allow researchers to estimate learning-related mental states with mul-
tiple methods for inducing and measuring these states, as well as mul-
tiple algorithms for processing the signals and classifying them.

While the estimation of both cognitive workload and emotions is
widely studied through EEG signals, only one study attempted to run
such an experiment on curiosity (Lima, 2019). However, understand-
ing the neurophysiological mechanisms underlying curiosity, and there-
fore being able to identify the curiosity level of a person, would pro-
vide useful information for researchers and designers in numerous
fields such as neuroscience, psychology, and computer science. More-
over, being able to estimate curiosity, which is one of the mental states
related to learning (Gottlieb and Oudeyer, 2018), would enable to mon-
itor the user’s curiosity levels in real time and adapt the interaction
accordingly. This would therefore be beneficial to designers of interac-
tive systems, who wish to adapt the interaction paradigm or applica-
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tion content to users’ levels of curiosity. In the context of active BCIs,
which are known to be notoriously difficult for novices to use (see
chapter 1.1), it would be beneficial to adapt the BCI training tasks to
the mental states of these users, e.g., their curiosity level, and adapt the
BCI tasks to users’ interests in order to prevent boredom and improve
learning. A first step to uncovering the neural correlates of curiosity
was to collect neurophysiological signals during states of curiosity, in
order to develop signal processing and machine learning (ML) tools to
recognize the curious states from the non-curious ones. Thus, in our
contribution #3, we ran an experiment in which we used both elec-
troencephalography (EEG) and physiological signals, i.e., heart rate,
breathing and electrodermal activity (EDA), to measure the neuro-
physiological activity of participants as they were induced into states
of curiosity, using trivia question and answer chains. Concerning the
EEG signals anaylsis, we used two ML algorithms, i.e. Filter Bank
Common Spatial Pattern (FBCSP) coupled with a Linear Discriminant
Algorithm (LDA), as well as a Filter Bank Tangent Space Classifier
(FBTSC) (that we proposed in this thesis), to classify the curious EEG
signals from the non-curious ones. Global results indicate that both
algorithms obtained better performances in the 3-to-5s time windows,
suggesting an optimal time window length of 4 seconds (63.09% clas-
sification accuracy for the FBTSC, 60.93% classification accuracy for
the FBCSP+LDA) to go towards curiosity states estimation based on
EEG signals. Concerning the physiological signals, we used multi-
ple signal processing methods in order to extract features from the
physiolgical signals, as well as a single ML algorithm, i.e., the LDA,
to distinguish curious from non-curious states. We ran three paral-
lel studies, one for each type of signal, in order to observe which
type of signal could be interesting for discriminating different levels
of curiosity. Results showed that breathing+LDA obtained classifica-
tion performances (58.41%) that significantly outperformed the chance
level (51.59%). Other results indicated that EDA signals obtained clas-
sification performances of 54.8%, when the HR signals only obtained
50.1%. To summary, global results showed that it was possible to dis-
criminate states of epistemic curiosity through both EEG and physi-
ological signals, with classification accuracies better than the chance
level, i.e., 63.09% from EEG signals, 58.41% for breathing signals, and
54.8% for EDA signals. However, even if these differences are signifi-
cant, they remain low, and future work should be conducted in order
to improve these classification performances, e.g., new methods for
inducing states of curiosity, new time windows for trials, etc.

In our contribution #4, we proposed a study aiming at estimat-
ing cognitive workload levels through EEG signals during a motor-
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imagery (MI)-BCI task. Indeed, being able to estimate learning-related
mental states such as cognitive workload, from EEG signals during a
MI-BCI task, would be beneficial to the future of active BCI training
protocols as it would allow us to adapt the training task to users’ ca-
pabilities, e.g., to users’ cognitive capabilities. If major advances have
been made in this project so far, i.e., the protocol has been designed
and validated by the ethics committee from Inria Bordeaux Sud-Ouest
(COERLE), and the experiment has been run, no analysis have been
made so far. However, the goal of this chapter 9 was to present the
work that has been conducted so far in this ongoing project. First,
we presented the different tasks that users had to do in order to 1)
estimate the working memory load capabilities of the participant 2)
induce and measure levels of cognitive workload independently to the
MI-BCI task, i.e., passive BCI tasks 3) performing the MI-BCI task, i.e.,
active BCI task. Second, we presented the different questionnaires that
have been proposed to participants in order to subjectively measure
both fatigue and cognitive workload.

10.3 Limits of this PhD thesis

This PhD thesis made four main contributions. The contribution
#1 is a study that proposed new algorithms and that aimed at com-
paring recent and promising machine learning algorithms in order to
classify EEG signals from two data sets representing two mental states,
i.e., cognitive workload and emotions. As a conclusion to this work,
we offered a guideline concerning the machine learning algorithms to
use for classifying levels of each of these mental states in the discussion
part (see chapter 4). A first limitation to this guideline is the lack of
flexibility on the conditions that need to be met in order for this guide-
line to be fully relevant. In other words, each of these data sets have
been obtained through protocol designs that applied only a single con-
ditions for each of the parameters - e.g, type of material to induce the
states, number of electrodes, number of sessions, etc. It is thus difficult
to fully generalize our results at this time. Moreover, our work aiming
at reviewing the literature of studies that focused on the estimation of
cognitive workload on the one hand, and the affective states on the
other one, showed that multiple parameters and conditions have been
tested so far, using many data sets (see chapter 3). To summarize, our
guideline providing suggestions on which machine learning algorithm
to use, and under which condition, is based on two studies only, and
should thus be considered accordingly.
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On more global point of view on this contribution #1 and the
guidelines we made out of it, there are some limitations regarding the
longer-term objectives of the thesis. Indeed, the goal of this PhD the-
sis is to go towards measuring such cognitive workload and emotions
states in real-time, when users are performing a task, e.g., MT-BCI, in
order to adapt the task to users’ mental states, here levels of cogni-
tive workload or emotions. This ultimate goal would suggest machine
learning algorithms would be run both in real-time and in a “real-
world" condition, when our guidelines are based on data sets that have
been collected in laboratory set ups conditions, and analysed with an
offline calibration. Finally, these guidelines are made for oscillatory
activity-based estimations of both cognitive workload and emotions
levels, but did not look at ERP activity.

Concerning the contribution #2, we developed BioPyC, a free,
open-source and easy-to-use Python platform for offline EEG and biosig-
nal processing and classification. Based on an intuitive and well-
guided graphical interface, four main modules allow the user to follow
the standard steps of the BCI process without any programming skill.
However, so far, signal processing and machine learning algorithms
that have been included in the toolbox are only made for oscillatory
EEG signals-based studies: no algorithm allow users to test promising
machine learning approaches on their ERP signals-based data sets yet.
Moreover, in the current github status, BioPyC does not propose tools
for classifying physiological signals such as heart rate (HR), breathing
or electrodermal activity (EDA) yet, despite the fact that we found in-
teresting results in our contribution #3 aiming at classifying states
of curiosity through physiological signals.

The contribution #3 aimed at estimating states of epistemic cu-
riosity through both EEG and physiological signals. Concerning the
EEG signals-based classification, results showed that long time win-
dows, i.e., 4 and 5-seconds time windows, obtained better classifica-
tion performances than short ones. This may suggest that curiosity
could be a mental state that increases over time. Thus a limitation
of our study may be that we did not plan longer time windows in
our protocol design. It was therefore not possible to verify that bet-
ter performances might have been found for longer time windows,
i.e., 7-seconds or even 10 or 15-seconds time windows. However, even
if results are encouraging for a first study on the topic, they remain
low and more studies should be done in order to better understand
this mental state, as well as for developing more robust tools in or-
der to discriminate 2 or more states. The second limit to this study
would be that we focused on a user-dependent calibration, but did
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not investigate the user-independent one, however essential to go to-
wards calibration-free systems. Concerning the physiological signals,
the finding concerning the size of the time windows is the same as for
the EEG signals study: we applied algorithms on short-time windows
only, i.e., 16-seconds times window for each trial. Finally, as men-
tioned in the discussion part of the chapter 8, we did not have time,
so far, to combine multiple body sensor signals all together, or one or
more types of physiological signals with EEG signals.

10.4 Perspectives

10.4.1 Short-term perspective
In order to answer to a main limitation of contribution #1 &

contribution #2, which is the lack of use of recent and promis-
ing machine learning algorithms for the classification of mental states
through ERP EEG signals, a new study is currently being carried out.
Indeed, our literature review in chapter 3 indicated that ERP-based
classifications of mental states such as cognitive workload and emo-
tions obtained promising results (Roy et al., 2015a). As explained
in our contribution #1, Deep learning methods are promising ap-
proaches to investigate for the estimation of mental states through EEG
signals, and therefore for ERP EEG signals classification. We therefore
started to study such algorithms and apply them to ERP EEG signals.
We started this study by using EEGNet for the classification of ERP-
based mental states, i.e., cognitive workload and curiosity1. Other al-

1 This work started during my three-
month scientific visit to Pr Virginia De
Sa at the University of California, San
Diego, this year.

gorithms could be studied on these two mental states as well: among
them, xDAWN (Rivet et al., 2009), which is widely used for ERP spa-
tial filtering and proved to be efficient for ERP-based classification of
workload levels (?). When these steps will be done, it will be inter-
esting to integrate these algorithms into BioPyC in order to be able to
widely test them on mental states data sets. It would also be inter-
esting to integrate other ERP spatial filtering methods into the future
versions of BioPyC, e.g., principal component analysis (PCA) or canon-
ical correlation approaches (CCA) (Noh and De Sa, 2013) that proved
efficient for EEG classification of mental workload levels as well (Roy
et al., 2015a).

There are ongoing works on BioPyC in addition to the ones that
have been presented right before, focusing on the integration of meth-
ods for the classification of bio signals on the one hand, and the in-
tegration of hybrid BCI methods for the classification of the combina-
tion of EEG signals-based and bio signals-based features on the other
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hand. As we saw in our contribution on curiosity, and particularly in
the chapter 8 aiming at classifying states of epistemic curiosity through
physiological signals, we developed tools for extracting features from
body signals such as heart rate (HR), breathing and electrodermal ac-
tivity (EDA). It would therefore be interesting to integrate such code
into BioPyC, in order to enable BioPyC users to make analysis based
on physiological signals only, or analysis based on both physiological
and EEG signals. BioPyC could also propose a data visualization tool
for presenting the frequency bands that have been used in the case
of filter bank-based methods for EEG signals, as well as features that
have been used by the classifiers in the case of HR, breathing or EDA
signals-based studies.

Future work should be done based on our results from our contri-
bution #3, aiming at estimating states of epistemic curiosity trough
both EEG and physiological signals. First, concerning the protocol des-
gin, while trivia questions were used as a trigger of curiosity, new tools
(e.g., social robots (Ceha et al., 2019), video games) or stimuli (e.g.,
videos of magic tricks) could be used in future experiments. Then,
longer time windows should be studied for both EEG signals-based
classification (e.g., 8 or 10-seconds time windows) and physiological
signals classification (e.g., 30-seconds or 1-minute time windows) since
epistemic curiosity could be a mental state that increases over time.
Still based on our results illustrating the classification of users’ curios-
ity states through EEG signals on the one hand, and through physio-
logical signals on the other hand, promising results were highlighted:
1) the classification performance through EEG signals (FBTSC+LDA,
63%) and 2) the classification performance through physiological sig-
nals (breathing+LDA, 58.4%). Combining both EEG signals and breath-
ing signals in order to potentially obtain better performances could
thus be a good direction to take. The combination of multiple types of
physiological signals all together, as well as EEG signals with multiple
types of physiological signals, would be an interesting study to make
as well. To finish with the neurophysiological signals classification,
concerning both types of signals, i.e., brain and physiological, studies
should be run with user-independent calibration, in order to go to-
wards calibration-free systems. Deeper neurophysiological analysis to
identify the EEG sensors and sources mostly modulated by curiosity
levels could be done as well. For example, so far, results suggested that
most of the information for discriminating curiosity levels are found
in theta, alpha and low beta. These frequency bands are similar to
the ones used to estimate levels of workload and levels of engagement
(Dehais et al., 2020). This is interesting given that both states share
some common characteristics with curiosity, such as implications in
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long-term memory improvements. Their similarities and differences
would thus need to be further studied. Further analyses can also be
done to compare our results against those obtained with fMRI (Gruber
et al., 2014; Kang et al., 2009), in order to gain a better understanding
of the neurological markers underlying curiosity states.

10.4.2 Long-term perspectives
As explained in the introduction of this chapter, and more generally

in the introduction of this PhD thesis, being able to estimate learning-
related mental states such as cognitive workload, emotions or curios-
ity, from EEG signals during a MI-BCI task, would be beneficial to the
future of active BCI training as it would allow us to adapt the train-
ing task to users’ states, e.g., to users’ cognitive, affective or conative
states. In this thesis, we focused the neurophysiological signal-based
estimation of three mental states, i.e., cognitive workload, emotions
and curiosity. This PhD thesis, with the literature review about the
estimation of both cognitive workload levels (see chapter 3), as well as
the study aiming at evaluating modern and promising machine learn-
ing algorithms in order to classify cognitive workload levels through
EEG signals (see chapter 4), brought us to the last chapter, aiming at
estimating cognitive workload during MI-BCI training. If no analysis
has been done in this contribution so far, results should be an interest-
ing contribution in order to evaluate the feasibility of a system aiming
at estimating users’ cognitive workload levels during a MI-BCI task.
If this experiment proves to be a success, it would be a major step to
go towards real-time adaptation of active BCI training to users’ cogni-
tive states. Moreover, this could also encourage more research work to
attempt estimate other learning-related mental states such as affective
or conative states, in order to adapt learning systems to the mood or
motivation of the users.

Altogether, we hope that this thesis contributed new tools (machine
learning algorithms, protocols and software) and knowledge to esti-
mate learning-mental states in EEG and physiological signals. We also
hope they open promising future research direction, notably about the
study of curiosity.
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