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Abstract

Since the invention of the Chirped Pulse Amplification technique in the 80s,
achievable laser intensities never stopped increasing. The upcoming facilities
are expected to deliver several PW peak power on a focal spot of a few microns
diameter. When particles interact with those extreme electromagnetic fields,
nonlinear effects of a quantum nature can be dominant. The theory describ-
ing the phenomena is called strong-field quantum electrodynamics (SFQED),
which evaluate in a non-perturbative way the interaction between particles
and the strong background field. Among all of the new phenomena SFQED
is predicting, two of them particularly attracted the interest of the commu-
nity over the last decade. The first one, the nonlinear Compton scattering
process, is the emission of a high energy gamma photon (from a hundred of
MeV to tens of GeV) by an electron or a positron interacting with a strong
background field. The second one, but not the least, is the nonlinear Breit-
Wheeler (NBW) process. It consists in the creation of an electron-positron
pair from the conversion of a high energy gamma photon interacting with the
strong electromagnetic field.

The new ultra high intensities reached by the modern laser facilities open
the way of prolific electron-positron pair production in the laboratory by the
NBW process. The ultimate goal, although not achievable in the near future,
would be the creation of an electron-positron pair plasma on earth. Indeed this
plasma is of interest on a fundamental point of view as it has exotic properties.
Moreover it is of interest fro astrophysical objects.

The red string guiding the present work is the optimisation of pair creation
in ultra intense lasers. In order to do so we studied two promising physical
configurations achievable in the future. The first one, called the shower, is
the head-on collision of a high intensity laser pulse with a flash of high energy
gamma photons. For this configuration, we built a semi-analytical model which
is able to predict the amount of produced pairs, by taking into account all of
the laser pulse spatio-temporal distribution. We confronted our prediction with
three dimensional Particle-in-cell (PIC) simulations performed with the code
SMILEI and found a very good agreement. In particular, to explore the general

i



Abstract ii

reach of our model, we studied Laguerre-Gauss (LG) beams. These vortex
beams recently attracted the attention of the high intensity community has
they have interesting properties. For example they have a ring shape transverse
intensity distribution, and they carry angular momentum. Even in those exotic
beams our model performed very well compared to simulations. In particular it
is shown that for this configuration in order to maximise pair production, one
should not always try to reach the maximum intensity achievable by focalising
the beam at the maximum. Furthermore general guidelines for the upcoming
experiments are provided.

The second configuration explored consists in two counter streaming laser
beams, with initial seeding electrons at the center. It was shown in the lit-
erature that under the right conditions, charges can be constantly reacceler-
ated, leading to constant emission of high energy photons, which are converted
into pairs. An exponential growing phase of the number of pairs, called the
avalanche, can then be reached. The present work extended the study of this
configuration to LG beams. It is shown in PIC simulations that at the same
peak intensity, LG beams can perform better than usual gaussian beams. The
dynamics of pairs being of main importance there, we used an existing model
on the dynamics of charges in strong field to qualitatively explain the difference
of performance between the different field configurations explored. Finally is
presented a newly built model which performs well at predicting the growth
rate of the avalanche on ideal cases, with opens the perspective of an extension
to the counter-streaming beams configuration.



Résumé

Depuis l’invention de la technique de Chirped Pulse Amplification, les inten-
sités lasers atteignables n’ont cessé d’augmenter. Les futures installations de-
vraient produire des puissances de plusieurs PW sur des tâches focales de
quelques microns. Quand des particules interagissent avec ces champs ex-
trêmes, des effets non-linéaires de nature quantique, décrits par l’électrodynamique
quantique en champs forts (SFQED), peuvent devenir dominants. Parmis
les prédictions de cette théorie, deux phénomènes on particulièrement attiré
l’attention de la communauté ces dernières années. Le premier, la diffusion
Compton non-linéaire, est l’émission d’un photon gamma de haute énergie
(d’une centaine de MeV à des dizaines de GeV) par une charge interagissant
avec le champ fort. Le second est le processus Breit-Wheeler non-linéaire
(NBW), qui est la conversion d’un photon gamma de haute énergie en une
paire électron positrons, lors de l’interaction avec un électromagnétique champ
fort.

Grâces à ces processus, les installations multi-PW ouvrent la voie vers une
production de paires électrons-positrons abondante en laboratoires. L’objectif
ultime, bien qu’inaccessible dans les installations actuelles, est la création d’un
plasma de paires électron-positron. Ce genre de plasma est intéressant fonda-
mentalement pour ces propriétés exotiques, mais aussi car il est présent dans
des environnements astrophysiques.

Le theme de cette thèse est l’optimisation de la production de paires dans
les lasers ultra intenses. Pour cela deux configurations physiques prometteuses
ont été étudiées. La première, appelée shower, est la collision frontale d’une im-
pulsion laser haute intensité avec un flash de photons gamma de haute énergie.
Un model semi-analytique a été développé pour cette configuration, prenant
en compte la structure spatio-temporelle de l’impulsion laser, et permettant de
prédire rapidement le nombre de paires produites. Ce modèle est en excellent
accord avec des simulations Particle-in-cell (PIC) en trois dimensions réalisées
avec le code SMILEI. Une étude systématique avec différentes configurations
d’impulsions a été réalisée, en fixant l’énergie totale de l’impulsion pour se
rapprocher des conditions expérimentales. Dans cette analyse, des faisceaux
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Résumé iv

Laguerre-Gauss (LG), ou faisceaux à vortex, ont été étudiés en raison de leurs
propriétés intéressantes, comme leur distribution d’identité en forme d’anneau
ou le fait qu’ils transportent un moment angulaire orbital. Cette étude a per-
mis d’identifier la focalisation optimale pour la création de paires, qui selon
l’énergie totale disponible n’est pas nécessairement la focalisation maximale.
Ce travail dispense aussi des conseils généraux pour les futures expériences.

La seconde configuration étudiée est formée de deux faisceaux laser contre-
propagatifs, avec des électrons placés initialement au plan focal. Dans ce
cas une croissance exponentielle du nombre de paires (avalanche) peut-être
obtenue, car les charges sont constamment réaccélérées et rayonnent des pho-
tons gamma, par la suite convertis en paires. Le présent travail réévalue les
conditions de démarrage de la cascade dans une géométrie 3D réaliste pour les
impulsions lasers, et étend l’étude aux faisceaux LG. Il est présenté une analyse
semi-analytique de la dynamiques des particules sur les temps courts (petits
comparés à la période laser) dans cette configurations de faisceaux contre-
propagatifs. Il est montré qu’il y a de grandes différences qualitatives dans le
déclenchement de l’avalanche suivant la configuration des champs. Le taux de
croissance des paires obtenu de simulations PIC 3D confirme ces différences.
De plus il est montré qu’à amplitudes maximum égales, les LG on un plus haut
taux de croissances que les faisceaux gaussiens. L’analyse de la dynamique aux
temps courts permet de proposer un nouveau modèle pour prédire le taux de
croissance dans un cas idéal, avec le potentiel d’être étendu à des cas plus
réalistes.
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Introduction

Context

Light does not usually interact with itself. The fact that this text can be
read properly, or that in our everyday life we are able to see distant objects,
is because photons, carrying electromagnetic waves, most of the time cross
each other without any consequences. This translates in classical electromag-
netism, in the Maxwell’s equations. In vacuum they are partial linear differen-
tial equations of the fields, from which the electromagnetic wave equation can
be extracted, which is linear in the electromagnetic fields. Therefore, a linear
combination of solutions of these equations can be added in order to obtain a
new one. Hence the everyday experience with electromagnetic waves, mainly
described by classical electromagnetism, results in the direct linear superpo-
sition of electromagnetic fields [Feynman et al., 2010], at the origin of some
counter-intuitive phenomena like interference. However this changes when we
need to take into account quantum electrodynamics (QED), describing the be-
haviour of charged particles and photons at the quantum level. In QED two
photons can scatter through virtual particles. This collision can convert the
two photons into an electron-positron pair, provided the total energy of the
two photons in their center of mass frame is greater than the mass energy of
the pair 2mc2, with m the mass of the electron or positron and c the speed
of light. This is called the (linear) Breit-Wheeler process [Breit and Wheeler,
1934]. Observing this phenomenon is still one of the great challenges of experi-
mental physics to date and some schemes have been proposed and investigated
in the last decade [Thomas, 2014,Pike et al., 2014,Ribeyre et al., 2016].

However, light by light scattering has already been observed in the labo-
ratory, through the nonlinear Breit-Wheeler (NBW) process. This was done
in the seminal E-144 SLAC experiment [Burke et al., 1997], in which about
a hundred pairs have been created by colliding over 22000 times a ≃ 45Gev
electron beam, from a conventional accelerator, head-on with a high intensity
laser (≃ 1018 W/cm2). The laser particle interaction resulted in the emission
of gamma photons, which in turn interacted with the laser. The NBW process
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Figure 1: Schematic representation of the achievable maximum laser intensity over
the last decades. The red dots are examples of the achieved or expected intensity
for the corresponding facilities.

is the nonlinear version of the Breit-Wheeler pair creation mentioned above:
instead of having two photons scattering, here one high energy gamma pho-
tons (with more than 2mc2) interacts with multiple usually optical photons of
an intense background field and it is converted into a pair. This process is at
the heart of the present work and is expected to open the way to abundant
pair creation in the laboratory. The NBW process is present together with
the nonlinear inverse Compton Scattering (NCS), the emission of a high en-
ergy gamma photon, from the interaction of an electron (or a positron) with
an intense background electromagnetic field. In particular, the NCS process
can be the source of gamma photons for the NBW process, as it was in the
above mentioned SLAC experiment. The theoretical framework describing
those processes is called Strong-field QED (SFQED), and contrary to usual
perturbative QED, it takes into account the interaction of particles with a
strong background electromagnetic field in a non-perturbative way. The refer-
ence field in this approach is the so-called Schwinger field ES = 1.3×1018V/m.
A constant electric field with this amplitude in vacuum will create electron-
positron pairs via the Schwinger-Sautter mechanism [Sauter, 1931,Schwinger,
1951].

Since the invention of the Chirped Pulses Amplification technique in the
80s [Strickland and Mourou, 1985] the achievable laser intensities have con-
stantly increased, as showed in fig. 1. The envisioned intensities for forthcom-
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ing facilities such as Apollon [Cros et al., 2014], CoReLS [Nam et al., 2018],
ELI1, OMEGA-EP OPAL [Bromage et al., 2019], XCELS2, and ZEUS3, are
1022−1023 W/cm2. Under these conditions much more prolific pair production
than in the SLAC experiment is expected, dominated by NBW processes. The
perspective of these high intensities renewed interest in SFQED in the last
decade, not only in order to produce pairs but also in order to test theoretical
and phenomenological predictions [Fedotov et al., 2022].

In parallel to the development of higher laser fields, laser plasma accelera-
tions techniques improved over the last decades. High energy electrons, up to
tens of GeV, play a crucial role in this scenario as they can be the source of
high energy gamma photons, by the NCS process, needed to trigger the NBW
effect. Since its conception [Tajima and Dawson, 1979] and demonstration,
laser wakefield acceleration [Mangles et al., 2004, Geddes et al., 2004, Faure
et al., 2004] has advanced to the point that electron beams of 8 GeV have been
obtained [Gonsalves et al., 2019] and electron energies of 10 GeV are expected
at Apollon [Cros et al., 2014] via this technique. Other promising methods
for electron acceleration by laser-plasma interaction are also under investiga-
tion, such as surface plasma wave acceleration [Marini et al., 2021]. These can
provide high-energy electron beams without the need to resort to standard ac-
celerators. Indeed, the progress in this kind of acceleration schemes allows to
envision the use of a fully optical scheme to produce pairs, by converting the
laser-accelerated electrons into high energy gamma photons and then collid-
ing them head-on with another high intensity laser beam. The laser required
to produce the high energy electrons can be obtained either by splitting an
intense laser beam or in facilities with multiple laser beams. Together with
strategies to produce high energy electrons beams, several sources of high en-
ergy gamma photons for pair production have been proposed [Phuoc et al.,
2012, Gong et al., 2017, Gonoskov et al., 2017, Capdessus et al., 2018, Black-
burn and Marklund, 2018,Vranic et al., 2019,Magnusson et al., 2019,Zhu et al.,
2020,Sampath et al., 2021].

In the last decade, various simulation campaigns have been conducted to
help designing future experiments aiming to efficient pair production, an effort
that was largely made possible and supported by Particle-in-Cell (PIC) sim-
ulations accounting for SFQED processes [Duclous et al., 2010a,Elkina et al.,
2011, Arber et al., 2015, Gonoskov et al., 2015, Grismayer et al., 2016, Lobet
et al., 2016]. The configuration discussed above, which is similar to the SLAC

1Extreme Light Infrastructure (ELI), https://eli-laser.eu.
2Exawatt Center for Extreme Light Studies (XCELS), http://www.xcels.iapras.ru.
3Zetawatt-Equivalent Ultrashort Pulse Laser System (ZEUS), https:

//zeus.engin.umich.edu.

https://eli-laser.eu
http://www.xcels.iapras.ru
https: //zeus.engin.umich.edu
https: //zeus.engin.umich.edu
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experiment and involves the head-on collision of high energy particles with
an ultra high intensity laser pulse, was studied extensively theoretically and
via PIC simulations in [Blackburn et al., 2017,Vranic et al., 2018,Chen et al.,
2018]. We will refer to the regime of pair production achievable within this
configuration in upcoming facilities as shower pair production. On top of this,
several other configurations have been considered. Electron-seeded electromag-
netic/QED self-sustained cascades (a scenario in which particles are constantly
re-accelerated by the field and an exponential growth of pairs can be reached)
in the collision of two counter-propagating laser pulses, a setup originally pro-
posed by Bell and Kirk [Bell and Kirk, 2008], have attracted particular atten-
tion [Elkina et al., 2011,Grismayer et al., 2016,Nerush et al., 2011b,Grismayer
et al., 2017, Tamburini et al., 2017, Jirka et al., 2017] as such cascades were
identified as a possible limitation on the attainable intensity of high power
lasers [Fedotov et al., 2010]. Variations of this setup have been proposed,
considering either the use of plasma channels [Zhu et al., 2019] or the colli-
sion of multiple laser pulses [Gelfer et al., 2015,Vranic et al., 2016,Gonoskov
et al., 2017]. All these works considered multiple laser beams. Alternative
schemes considered the direct irradiation of a solid target by a single, ex-
tremely intense laser pulse, a situation that leads to the production of dense
pair plasmas [Ridgers et al., 2012]. In these cases, the solid target, an over-
dense plasma, acts as a mirror and pair production is efficiently achieved in
the field of the incident and reflected laser light at the target front [Kostyukov
and Nerush, 2016].

The present work focus on the theoretical and numerical study with PIC
simulations (performed with the code Smilei [Derouillat et al., 2018]), of
the shower configuration, and the self-sustained cascade with two counter-
streaming laser beams mentioned above. In particular, special attention is
given to the impact on the efficiency of pair production of the laser parame-
ters, such as its spatio-temporal envelope, its maximum intensity and its field
configuration. Optimisation of pair production is obtained through the un-
derstanding of the impact of each of these quantities. We have performed
numerical studies for the two configurations, using vortex beams, more specif-
ically Laguerre-Gauss (LG) beams, that have non-trivial field configurations.
LG beams have recently attracted the interest of the ultra-high intensity laser-
plasma community [Chen et al., 2018,Mendonça and Vieira, 2014,Nuter et al.,
2020, Longman et al., 2020, Duff et al., 2020] for their ability to carry or-
bital angular momentum (OAM) [Allen, 1992]. These beams, that emerge as
eigen-modes of the paraxial equation, have unique properties, such as a ring-
shaped intensity distribution and the large OAM, that can influence the pairs
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generation. The present work provides a numerical investigation along with
simplified theoretical models to describe the the impact of using LG pulses on
pair production.

Outline

Part 1

The theoretical background necessary to understand this thesis is introduced
in the first part of this work. Rather than being an exhaustive and detailed
explanation of the physical background, it simply aims at presenting in a syn-
thetic way the physical concepts, tools and previous results needed for our
study. References for a deeper understanding are provided. The conventions
and notations used to describe the original results of parts two and three are
also introduced.

Chapter 1

In chapter 1, the paraxial wave equation is derived from Maxwell’s equations.
This equation gives the theoretical framework for the description of the prop-
agation of a laser beam, and allows to introduce the complex amplitude of
the Laguerre-Gauss (LG) beams, of particular importance for this work. The
properties of the LG beams are essential to understand the results presented
in part two and three, especially in chapters 5 and 7.

Chapter 2

Chapter 2 presents the aspects of electrodynamics relevant to this work. After
recalling the relativistic classical equations of motion of a charge in an electro-
magnetic field, the dynamics of a charge in a plane wave is briefly presented. To
conclude the classical approach, and to introduce briefly the historical problem
of charges interacting with self-emitted radiation, the Landau-Lifshitz [Landau
and Lifshitz, 1980] classical radiation reaction force is presented. Strong-field
quantum electrodynamics is then introduced. Some key concepts such as the
Schwinger field are presented. We focus on the two phenomena which are
of utmost importance for this work: Nonlinear Breit-Wheeler (NBW) and
Nonlinear inverse Compton scattering (NCS). The first is the creation of an
electron-positron pair by the interaction of a gamma photon with a strong
electromagnetic field, and the second corresponds to the emission of a high
energy gamma photon by the interaction of a charged particle with a strong
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background field. The differential rates of these two quantum processes are
presented, since they are at the basis of the results in part two and three.

Chapter 3

Chapter 3 presents the general structure and main concepts of the Particle-
In-Cell (PIC) method for simulating plasmas at kinetic level. In particular we
focus on the PIC code Smileiwhich has been used to perform all the simu-
lations of the present work. After presenting the basics of the PIC method,
a section is devoted to the algorithms used to include in the code quantum
processes such as nonlinear Breit-Wheeler and nonlinear inverse Compton scat-
tering considered in this study.

Part 2

In the second part, we present the first study performed during this thesis that
led to the publication [Mercuri-Baron et al., 2021]. We focus on the study of
nonlinear Breit-Wheeler pair production in the shower configuration, which
is the head-on collision of an extremely intense laser (intensities in the range
1021 − 1025W/cm2) with a burst of gamma photons (with energies ranging
from 100 MeV to few 10s of GeV). In contrast to previous works [Blackburn
and Marklund, 2018], where the authors focused on the optimization of the
photon source, we consider here the high-energy photon burst as given (only its
energy will vary), and do not discuss its origin (various sources of high-energy
photons have been proposed [Phuoc et al., 2012,Gong et al., 2017,Gonoskov
et al., 2017, Capdessus et al., 2018, Blackburn and Marklund, 2018, Vranic
et al., 2019, Magnusson et al., 2019, Zhu et al., 2020, Sampath et al., 2021]).
Rather, we aim at optimizing the conditions of interaction with the colliding
high-intensity laser. Motivated by experimental constraints, we investigate the
optimal conditions for pair production varying the laser polarization, focusing,
spatial or temporal profiles, always considering a fixed laser energy.

Chapter 4

In chapter 4, we describe a simple model for the prediction of pair production
during the interaction of a gamma flash with a high intensity laser. Starting
from the rate of the NBW process we develop a semi-analytical model based on
the probability of pair creation. We first solve the problem for a plane wave,
which is also used to benchmark the SFQED modules of Smilei . We then
describe how to extend the model to finite laser pulses with a time envelope
and a non trivial transverse intensity distribution. Along with a discussion
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about the necessary approximations made to extend the model to this more
realistic case, PIC simulations are performed to validate the model. This
work provides the reader with a tool for the prediction of the number of pairs
produced by the interaction of gamma photons with an intense laser pulse, for
a broad range of conditions relevant to forthcoming experiments.

Chapter 5

In chapter 5, special attention is paid to the use of Laguerre-Gauss beams
in the context of pair production. These beams have unique properties, that
could have an impact on pair production. It was for instance demonstrated
in [Chen et al., 2018] that the collision of an electron beam with a LG beam can
lead to efficient production of gamma rays carrying large OAM, to enhanced
secondary radiation emission and pair production. However, that study was
performed at constant maximum intensity, so it is hard to distinguish the im-
pact of the increased energy (up to 3× higher for the LG beam) from the role
of the laser spatial profile itself. In this chapter, we first compare 3D PIC
simulations (considering different laser beams with the same total pulse en-
ergy) to our model. We then compare two different regimes of intensities and
discuss the impact of the spatial extent of the laser pulses on the efficiency of
pair creation. From this study, we conclude that while using LG beams can
be in principle favorable for pair creation, in some conditions an experimen-
tally simpler but still effective alternative is the defocusing of a gaussian laser
pulse. This knowledge allows us to give general guidelines for experiments in
upcoming facilities.

Part 3

In part three we study a configuration of utmost importance for pair creation, a
standing wave obtained from two counter-propagating laser pulses, with initial
seeding electrons at focus. In this configuration, contrary to the shower config-
uration studied in part two, charged particles can be efficiently re-accelerated
by the laser pulse, allowing them to keep emitting gamma photons. These
gamma photons interact in turn with the strong laser field and can be con-
verted into pairs. A phase of exponential growth in the number of pairs can
thus be reached, called avalanche or (self-sustained) cascade.

Chapter 6

Chapter 6 presents the state of the art for the two beams configuration and the
self-sustained cascade. First the ideal case of the cascade in a pure rotating
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electric field is presented, along with PIC simulations to verify and discuss
the analytical results. Next, we present a short review of the main ideas
and results found in the literature for a more realistic configuration where a
standing wave is generated by two crossing laser beams. We then discuss the
role of the laser polarization, reminding that a rotating field can be obtained
by considering counter-propagating circularly polarised gaussian laser pulses
at their magnetic nodes. A presentation of a model of the short time dynamics
of charges in strong fields [Mironov et al., 2021] follows. This allows to explain
how the field structure can influence quantities relevant for the development of
the avalanche and to identify the conditions for the onset of the self-sustained
cascade. This model will be used extensively to discuss the results of chapter
7. Finally we summarize previous results about the dynamics of particles
in standing waves, taking into account classical radiation reaction. This is
important to understand the motion of the produced pairs from the location
where they are generated to other positions, that correspond to attractors, as
will be shown in chapter 7.

Chapter 7

In chapter 7 we present some original results obtained by investigating a con-
figuration with two counter-streaming beams leading to a cascade. The study
is based first on 3D PIC simulations of two colliding gaussian or LG beams.
Fixing the maximum amplitude, as it is one of the critical parameter of the cas-
cade growth rate, we explore different field configurations and combinations of
polarisation, and compare the growth in number of pairs and their properties.
Our results suggest that, at a given intensity, some LG beam configurations
are more efficient in maximising the cascade growth rate than the reference
case studied in the literature of two circularly polarised gaussian beams. To
interpret this result, we compare the results of the simulations to the model for
short time dynamics [Mironov et al., 2021] presented in the previous chapter
and show that the relative efficiency of pair production of the simulations for
the different cases is consistent with the model. Finally we derive quantita-
tive predictions for the growth rate, still based on the short time dynamics.
The estimated growth rate shows very good agreement with simulations for
the ideal rotating electric field case for a wide range of parameters, and opens
perspectives for the extension of the prediction to the more realistic case of
two counter-streaming LG beams.
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Modelling of electromagnetic fields
and pulses
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In this thesis we study the effect of arbitrary spatio-temporal configura-
tions of laser pulses in strong-field processes, with a special focus on the use
of Laguerre-Gauss (LG) beams. In this chapter their properties, their field
structure, and the convention used are introduced. The LG beam unusual
field structure and intensity distribution will be at the heart of this work, as
we will see in chapters 4 and 5 where we consider a single LG pulse inter-
acting with a photon flash, and in chapters 6 and 7 were we consider two
counter-propagating LG laser pulses.

1.1 The Helmholtz equations and the paraxial

equation

LG beams are a family of solution of the paraxial equation. As shown in the
following, this equation is obtained from Maxwell’s equations. Its derivation
allows to introduce the conventions used in this work for classical electromag-
netic fields.

11
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In the following chapters we use either the 4-vector notation, (we use the
(+,−,−,−) signature for the Minkowski metric), or the electric and magnetic
field vectors depending on which description is more suited. The electromag-
netic field strength tensor is given by

F µ
ν =


0 Ex/c Ey/c Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 ; (1.1)

and the 4-vector potential is

Aµ = (V/c,A) , (1.2)

with V the usual scalar potential and A the usual vector potential. Maxwell’s
equations in vacuum, in the absence of charges, are

∂µF
µ
ν = 0 (1.3)

∂µ ∗ F µ
ν = 0 , (1.4)

where
∗ F µν =

1

2
ϵµνδλFδλ , (1.5)

with ϵµνδλ being the Levi-Civita tensor components. Corresponding, in the
usual 3 vectors notations, to

∇ ·E = 0 (1.6)

∇×E = −∂B
∂t

(1.7)

∇ ·B = 0 (1.8)

∇×B =
1

c2
∂E

∂t
, (1.9)

with fields linked to the potentials by

E = −∇V − ∂A

∂t
(1.10)

B = ∇×A . (1.11)

Maxwell’s equations lead to the usual wave equation for the electric and
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magnetic field in vacuum

∇2E − 1

c2
∂2E

∂t2
= 0 , (1.12)

∇2B − 1

c2
∂2B

∂t2
= 0 . (1.13)

Since we study wave solutions we switch to the complex notation, with ω being
the angular frequency of the wave

E = ℜ
[
Eeiωt

]
, (1.14)

B = ℜ
[
Beiωt

]
, (1.15)

with E and B being the complex envelope of the fields, which are independent
of time. By inserting these into the wave equations, one obtains the vectorial
Helmholtz equations

∇2E + k2E = 0 , (1.16)

∇2B + k2B = 0 , (1.17)

with k (being ω/c for plane waves) the angular wavenumber. Moreover, ap-
plying Eqs. (1.6) and (1.8) to E and B leads to

k · E = 0 (1.18)

k ·B = 0 , (1.19)

which means that the vectors E and B are transverse. They can then be
written as

E = θEE (1.20)

B = θBB (1.21)

with θE and θB being transverse vectors. Finally inserting these expressions
into the vectorial Helmholtz equations results in the scalar Helmholtz equations

∇2E + k2E = 0 , (1.22)

∇2B + k2B = 0 . (1.23)
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In order to obtain the paraxial approximation, one first has to chose a
direction of propagation, let it be z here, and write E and B in the following
form

E = uEe
−ikz , (1.24)

B = uBe
−ikz . (1.25)

Inserting the two previous forms in the scalar Helmholtz Eqs. (1.22) and (1.23)
lead to the equations

∇2
⊥uE − 2ik

∂uE
∂z

+
∂2uE
∂z2

= 0 (1.26)

∇2
⊥uB − 2ik

∂uB
∂z

+
∂2uB
∂z2

= 0 (1.27)

where ∇2
⊥ is the transverse part of the Laplacian, in the (x, y) directions. The

heart of the paraxial approximation is then to assume that the longitudinal
variations of the field envelope are small compared to the transverse variation,
and happen on a typical length larger than the wavelength λ = 2π/k. This

allows to neglect the
∂2uE,B
∂z2

terms in the equations.

The most convenient way to solve this problem is not to solve the equation
for the fields, but the one for the vector potential [M. Lax, 1975,Davis, 1979,
Haus, 1984]. In the same way as the electric and magnetic fields, the scalar
and vector potentials follow the wave equation in the Lorenz gauge

∇ ·A+
1

c2
∂V

∂t
= 0 . (1.28)

One can use the complex notation for them too

V = ℜ
[
Veiωt

]
, (1.29)

A = ℜ
[
Aeiωt

]
. (1.30)

Using Eqs. (1.10) and (1.11) and going into the Lorenz gauge one can relate
the potentials to the complex field envelopes by

E = −iω
[
A+

1

k2
∇(∇ ·A)

]
, (1.31)

B = ∇×A . (1.32)

Going back to the potential, since they follow the wave equations in the Lorenz
gauge as the electromagnetic field, one can perform the same procedure to ob-
tain the Helmholtz equation on the vector potential, to write it in the following
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form

A = θAue
−ikz , (1.33)

with θA being a transverse vector and u being the complex amplitude. The
θA can be written θA = ax̂+ bŷ, with a and b two complex numbers such that
|a|2 + |b|2 = 1. Those two complex numbers are related to the polarisation of
the beam by the quantity

s = i(ab∗ − ba∗) , (1.34)

when s = ±1 the wave has a circular polarisation (CP) (left handed for +1, and
right handed for −1), and when s = 0 the wave has a linear polarisation (LP).
Furthermore, as it was done previously, by inserting this form of the potential
vector into the vectorial Helmholtz equation, one obtains the following relation

∇2
⊥u− 2ik

∂u

∂z
+
∂2u

∂z2
= 0 (1.35)

which, after applying the paraxial approximation, leads to the paraxial wave
equation

∇2
⊥u− 2ik

∂u

∂z
= 0 . (1.36)

Then once the equation on the complex amplitude u is solved, the complex
envelope of the fields in the paraxial approximation can be obtained back by
the following expressions

E = −iω
[
aux̂+ buŷ − i

k

(
a
∂u

∂x
+ b

∂u

∂y

)
ẑ

]
e−ikz , (1.37)

B = −ik
[
−bux̂+ auŷ +

i

k

(
b
∂u

∂x
− a

∂u

∂y

)
ẑ

]
e−ikz . (1.38)

1.2 Laguerre-Gauss beams

1.2.1 The gaussian beam

The most common and well known solution of the paraxial equation corre-
sponds to gaussian beams. Its complex amplitude in cylindrical coordinates is
given by [Siegman, 1986]

u (ρ, z) =
E0

ω

w0

w(z)
exp

[
− ρ2

w2(z)

]
exp

[
−i kρ2

2R(z)
+ iψ (z)

]
. (1.39)
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In the above expression ρ =
√
x2 + y2 and w(z) is the radius at which the

amplitude fall off by a factor 1/e at the position z on the axis of propagation,
w0 the so called waist being this radius at focus. Then zR = πw2

0/λ is the
Rayleigh length which characterises the divergence of the beam at z = zR one

has the radius of the beam w(z) =
√
2w0. The quantity R(z) = z

[
1 +

(zR
z

)2]
is the radius of curvature of the beam wavefront, ψ(z) = arctan(z/zR) is called
the Gouy phase, and finally E0/ω is the maximum amplitude of the vector
potential, with E0 being the amplitude of the corresponding electric field.

Before continuing and introducing more complex beams let us make a small
remark about notations. In this work strong fields will be discussed and used,
the meaning of strong being defined in chapter 2. Usually in the high intensity
laser community, one uses the normalised electric field amplitude

a0 =
eE0

mcω
, (1.40)

m being the electron mass and E0 the electric field amplitude. The quantity
a0 is sometimes referred to as the normalised vector potential. As one can see
from (1.39) it is related to the vector potential amplitude by the constant e/mc.
This parameter is especially used first when relativistic effects are important
(a0 > 1) and also when quantum processes are kicking in, as it is a Lorentz
invariant. In the following, we will use either a0 or E0 depending on what is
more convenient for the discussion.

1.2.2 Higher order solutions and LG beams

While solving the paraxial equation, one may want to look at solutions with
cylindrical symmetry. If one assumes an azimuthal dependence of the complex
amplitude in the form of exp(−iℓφ), φ being the azimuthal angle in cylin-
drical coordinates, then it can be shown that any solutions of this type can
be decomposed using a family of modes, which are called the Laguerre-Gauss
(LG) modes [Siegman, 1986,Allen, 1992,Vallone, 2015]. This family of modes
is indexed by two integers p ≥ 0 and ℓ ∈ Z. The complex amplitude of a
Laguerre-Gauss beam of order (p, ℓ) in cylindrical coordinates is given by

upℓ (ρ, φ, z) =
E0

ω
Cpℓ

w0

w(z)

(√
2ρ

w(z)

)|ℓ|

L|ℓ|
p

(
2ρ2

w2(z)

)
× exp

[
− ρ2

w2(z)

]
exp

[
+iψpl (z)− iℓφ− i

kρ2

2R(z)

]
,

=
E0

ω
Upℓ(ρ, z) exp [iΦpℓ(z)] , (1.41)
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Figure 1.1: Transverse electric field (arrows) and maximum amplitude distribution
(in colour) of a LP LG beam of order (p; ℓ) = (0; 1), at focus for two different times.
The laser period is τ and the laser reaches focus at t = 0. The waist is chosen to be
w0 = 3λ.

with Cp,ℓ =

√
p!

(p+ |ℓ|)! a normalizing factor, ψpl(z) = (2p+ℓ+1) arctan (z/zR)

the generalized Gouy phase and L
|ℓ|
p (x) the the generalized Laguerre polyno-

mials [M. Abramowitz, 1964]. The L|ℓ|
p are polynomials of degree p, the first

fews are given by

L
|ℓ|
0 (x) = 1 , (1.42)

L
|ℓ|
1 (x) = 1 + |ℓ| − x , (1.43)

L
|ℓ|
2 (x) =

x2

2
− (2 + |ℓ|)x+ 3

2
|ℓ|+ 1 , (1.44)

. . .

By looking at the complex amplitude (1.41), the two major differences with
the Gaussian beam is the azimuthal dependence in the phase, and then the
polynomial factor in the transverse amplitude distribution. Before seeing what
it will imply on the amplitude distribution and phase structure of the beam,
one should remark that u0,0 is simply the usual complex amplitude of the
gaussian beam, meaning that the gaussian beam is simply a special case of LG
beams.

Let us now discuss general properties of this family of beams. First one
can check that from (1.41) for all values of p and ℓ the beams have the same
energy since ∫ 2π

0

dφ
∫ +∞

0

ρdρ|upℓ(ρ, φ, z)|2 =
π

2

E2
0

ω2
. (1.45)

Next one can look at the field phase structure and the distribution of the
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Figure 1.2: Transverse electric field (arrows) and maximum amplitude distribution
(in colour) of a LP LG beam of order (p; ℓ) = (1; 0), at focus for two different times.
The laser period is τ and the laser reaches focus at t = 0. The waist is chosen to be
w0 = 3λ.

amplitude. The polynomial factor in (1.41) gives, for ℓ ̸= 0, a transverse
intensity distribution in the form of concentric rings. The number of rings
depends on the value of p (e.g. for p = 0, the field vanishes on the laser axis
and the intensity distribution is made of one ring). In order to visualise it,
let us take the example of a LP LG beam of order (p; ℓ) = (0; 1), the linear
polarisation corresponding to choosing a = 1 and b = 0 in (1.37). The obtained
amplitude distribution is represented in color in fig. 1.1, and one indeed obtains
a ring shape. The radius of the ring is increasing with ℓ, and one can show
that the position of the maximum of the amplitude distribution for p = 0 is
given by

ρmax(z) = w(z)
√

|ℓ|/2 . (1.46)

One can then understand the difference between the transverse size of an LG
beam and a gaussian one, as for (p; ℓ ≥ 2), the maximum of the fields is at a
radius larger than the gaussian beam waist.

For p > 0 and ℓ = 0, the amplitude distribution is composed of a disc
with its maximum value at the center, which is encircled by concentric rings.
Between each rings the amplitude goes to zero, and in fact for p > 0 ℓ = 0, p is
the number of rings or the number of zero between the center and the last ring.
Again to illustrate this, the LP case (p; ℓ) = (1; 1) is represented in fig. 1.2. In a
similar way, for p > 0 and ℓ ̸= 0 the amplitude distribution is compose of p+1

concentric ring, like it is represented in fig. 1.3. Last we would like to point
out the effect of p and ℓ on the value of the amplitude. Since all considered
LG modes have the same energy, but their transverse size increases with the
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Figure 1.3: Transverse electric field (arrows) and maximum amplitude distribution
(in colour) of a LP LG beam of order (p; ℓ) = (1; 1), at two different times. The laser
period is τ and the laser reaches focus at t = 0. The waist is chosen to be w0 = 3λ.
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Figure 1.4: Maximum value of the complex amplitude of LP LG beams, normalised
to the maximum value of the LP gaussian beam, as a function of the beam orders p
and ℓ. All orders carry the same total energy.



20 Chapter 1

order, the maximum amplitude has to decrease with the increase of the order.
To be more precise the maximum value is slowly decreasing with p, and it is
more influenced by ℓ. For p = 0 this value can be computed analytically and
is given by

|u0ℓ(ρmax, φ, z)|
E0/ω

=
1√

1 + z2/z2R

|ℓ||ℓ|/2 e−|ℓ|/2√
|ℓ|!

. (1.47)

For p > 0 however the value has to be computed numerically. The normalised
maximum value of the amplitude is represented in fig. 1.4 for different values
of |ℓ| and p. Finally one can show for p = 0 that

|u0ℓ(ρmax, φ, z)|
E0/ω

∼ 1√
1 + z2/z2R

|2πℓ|−1/4 , |ℓ| ≫ 1 . (1.48)

1.2.3 Phase structure and angular momentum

Let us look now in more details at the phase structure of the field. Since as
previously mentioned,the increase of p adds rings in the amplitude distribution,
we will look at the cases with p = 0 (only one ring) and and ℓ ̸= 0, the
the generalization for the cases with p > 0 being straightforward. In this
configuration, a LP LG beam has the following field structure. The transverse
fields at focus consist in 2ℓ lobes rotating with time around the laser axis, as
represented in fig. 1.1 for the ℓ = 1 case. If ℓ > 0 then the lobes are rotating
counter-clockwise around the axis of propagation, if ℓ < 0 then the rotation is
clockwise. This behavior can also be seen in the wavefronts of the beam. For
LG beams these are surfaces satisfying for a fixed time the equation

kρ2

2R(z)
+ kz + ℓφ = C (1.49)

with C a constant.

One should remark that contrary to the gaussian beam (corresponding to
ℓ = 0), here the wavefronts depend on ℓ. This equation describes wavefronts
with an helical shape, which are spiraling around the axis of propagation as it
is pictured near focus in fig. 1.5. This has a strong consequence as the electric
and magnetic fields lie into the surface of the wavefronts. It means that if
the wavefronts are not orthogonal to the direction of propagation then there
is a longitudinal component in the electromagnetic field as the projection of it
onto the axis of propagation is not zero. This strongly impacts the linear and
angular momentum of the field as it will be explained in the following.

In order to compute the field momentum one has to start from the well
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Figure 1.5: Wavefront of and LP LG beam with ℓ = 1 near focus. One can see it
is a spiral rotating around the axis of propagation z.
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known Poynting vector

Π =
E ×B

µ0

, (1.50)

where µ0 is the magnetic permeability of vacuum. From there one can write
the linear and angular momentum densities [Jackson, 1999]

p =
Π

c2
, (1.51)

j = r × Π

c2
= r × p , (1.52)

where r is the position. However one might be more interested in the average
density over a wave period, which is

⟨p⟩ =
ϵ0
2
(E∗ ×B + E ×B∗), (1.53)

⟨j⟩ = r × ⟨p⟩ , (1.54)

where ϵ0 is the vacuum dielectric permittivity. It can already be seen from these
relations that the component of the angular momentum along the direction of
propagation ⟨jz⟩ can only exist if pφ ̸= 0. In the paraxial approximation
the linear momentum average density is related to the complex amplitude
by [Allen, 1992]

⟨p⟩ = ϵ0
2

[
iω (u∗∇u− u∇u∗) + ωsẑ ×∇|u2|+ 2kω|u|2ẑ

]
, (1.55)

with s defined as in (1.34). The total average momenta can then be obtained
simply by using

⟨P ⟩ =

∫
d3x⟨p⟩ , (1.56)

⟨J⟩ =

∫
d3x⟨j⟩ . (1.57)

Now let us look at the particular case of LG beams for which the compu-
tation of their angular momentum was first presented by [Allen, 1992]. The
angular and linear momentum densities along the propagation direction are
given by

⟨pz⟩ = kε0ω|upℓ|2 , (1.58)

⟨jz⟩ = ϵ0ω

(
ℓ|upℓ|2 +

sρ

2ω

∂|upℓ|2
∂ρ

)
. (1.59)
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Figure 1.6: Transverse electric field (arrows) and maximum amplitude distribution
(in colour) of a left handed CP LG beam of order (p; ℓ) = (0; 1), at two different
times. The waist is chosen to be w0 = 3λ.

The angular momentum can then be split into two terms one proportional to
ℓ and another one proportional to s related to the polarisation. In order to
interpret the significance of those terms, one can compute the ratio between
the flux of angular momentum and the flux of linear momentum along the
propagation direction

∫ 2π

0
dφ
∫ +∞
0

ρdρ⟨jz⟩∫ 2π

0
dφ
∫ +∞
0

ρdρ⟨pz⟩
=

2πϵ0ω

(∫ +∞
0

dρ ρ2|upℓ|2 + s
∫ +∞
0

dρ
ρ2

2

∂|upℓ|2
∂ρ

)
2πkωϵ0

∫ +∞
0

ρdρ|upℓ|2
,

=
ℓ− s

k
= c

ℏ(ℓ− s)

ℏω
, (1.60)

where we used k = ω/c and multiply numerator and denominator by ℏ in
the last step. This can be interpreted as if each photon of energy ℏω has a total
angular momentum of ℓ − s. Then one can identify ℏℓ as an orbital angular
momentum, and −ℏs as the spin part, as it is related to the field polarisation.
To be clear, although the convention chosen here implies that −s and not
+s is appearing in the angular momentum, one should recall that s = −1 is
a right-handed circular polarisation, and so it is coherent to have a positive
contribution to momentum from the spin along z in this case. One can check
the rotation of the field on the figures of the two cases of CP LG in figs. 1.6
and 1.7. Although one is tempted to decompose total angular momentum
in spin and orbital part, one should remember that in practice those terms
are separately not gauge invariant and therefore not observable. However, it
appears that in the paraxial conditions, these can be treated separately. In
this work we will not discuss in details this subject. The interested reader
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Figure 1.7: Transverse electric field (arrows) and maximum amplitude distribution
(in colour) of a left handed CP LG beam of order (p; ℓ) = (0;−1), at two different
times. The laser period is τ and the laser reaches focus at t = 0. The waist is chosen
to be w0 = 3λ.

are encouraged to check the following references on this topic [Barnett and
Allen, 1994,Enk and Nienhuis, 1994,Barnett, 2010,Ornigotti and Aiello, 2014,
Fernandez-Corbaton et al., 2014, Leader and Lorcé, 2014,Bliokh et al., 2014,
Leader, 2018].

1.3 Conclusions

In this chapter we introduced the analytical framework to describe LG laser
beams, and we discussed their properties. LG beams are a family of solutions of
the paraxial wave equation, derived at the beginning of the chapter. The first
section should provide the readers with the necessary information to retrieve
the actual electromagnetic fields used in the next chapters starting from the
complex amplitude of the LG modes. LG modes are characterised by two
orders (p, ℓ). The order p is related to the number of rings in the transverse
intensity distribution, which increases with p. This ring shape intensity could
push particles toward the laser axis, where the field is zero, by ponderomotive
effects, which can be interesting to trap particles. It has also been shown that
LG beams carry orbital angular momentum, proportional to ℓ. In the rest
of this work we will consider only p = 0 beams. Moreover LG beams can
have different polarization, resulting in very diverse transverse electric field
structures, from the rotating lobes of LP LG to the vortices, saddles and more
complex structures of CP LG beams.
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In this chapter we will present the basics of classical electrodynamics (CED),
and strong-field quantum electrodynamics (SFQED). This will allow to intro-
duce the conventions and describe the classical radiation reaction approach.
The basics of the SFQED approach that are required to understand the results
of this thesis will be presented here, while the interested reader can find details
on the derivations and an introduction in [Niel, 2021], where a more extended
literature is also included. A modern review [Fedotov et al., 2022] is also cov-
ering all the recent work related to SFQED. The purpose of this chapter is to
provide the reader with the key concepts behind the investigated phenomena.
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2.1 Classical electrodynamics

2.1.1 Equations of motion for the fields and particles

Classical electrodynamics is a classical field theory which describes the classical
relativistic behaviour of the electromagnetic field and charges. The fundamen-
tal object of the theory is its Lagrangian density, given by [Landau and Lifshitz,
1980]

L = −1

2
ρmηµνu

µuν − 1

4µ0

F µνFµν + JµAµ , (2.1)

where ρm is the mass per unit volume, which is expressed in the case of a
single particle with a delta function such as ρm = mδ3(x − xparticle(t)) where
xparticle is the position of the particle, then uµ is the 4-velocity 4-vector such
that uµ = dxµ/dτ with τ the particle proper time, next µ0 is the magnetic
permeability of vacuum and F µν − ∂µAν = ∂νAµ, and is related to the usual
electromagnetic field by Eq. (1.1). Finally Jµ = (ρec, j

µ) is the 4-current
4-vector with ρe the charge per unit of volume and je the 3-vector current
density.

The first term on the right hand side of Eq. (2.1) describes the dynamics
of particles in vacuum, the second to electromagnetic field in vacuum and the
last one to charges interacting with the electromagnetic field. Applying the
Euler-Lagrange equations of motion (EOM) on Aµ on the second term alone
brings back the Maxwell’s equations of electromagnetism in vacuum (1.3) and
(1.4). By adding the interaction term one then recovers the usual Maxwell’s
equations in the presence of charged particles

∂µF
µν = Jν , (2.2)

∂µ ∗ F µν = 0 . (2.3)

Now on the side of particles, the EOM give for the case of a particle of 4-
momentum pµ of charge q

dpµ

dτ
=

q

m
F µ

νp
ν . (2.4)

When one separates the temporal and spatial components, using the elec-
tromagnetic fields and expressing the time in the laboratory frame, this gives

dγ
dt

=
q

γ

E · p
m2c2

, (2.5)

dp
dt

= q (E + v ×B) , (2.6)



Chapter 2 27

where p = γmv with γ the Lorentz factor of the particle. Now that we have
obtained these equations, let us apply them to the case of a charge in the
strong field of the plane wave, as it is relevant for the present work.

2.1.2 Trajectories of a charged particle in a plane wave

Let us consider a plane wave given by a transverse potential vector A such
that the electric and magnetic field are given by

E = −∂A
∂t

, (2.7)

B = ∇×A . (2.8)

Let us assume the wave propagates along the z axis, then one can show [Landau
and Lifshitz, 1980] for a particle initially at rest that

p⊥ = −qA , (2.9)
pz
mc

=
1

2

(p⊥

mc

)2
, (2.10)

γ = 1 +
pz
mc

= 1 +
1

2

(
qA

mc

)2

, (2.11)

where p⊥ is the momentum in the plane transverse to the direction of propa-
gation of the wave.

Linearly polarised plane wave

If one assumes that the monochromatic plane wave is linearly polarised

qA

mc
= a cos(ωt− kz)ŷ , (2.12)

then it can be shown [Landau and Lifshitz, 1980,Mora, 2021] that for a particle
initially at rest in z = 0

ky(t) = a sin(ωt) , (2.13)

kz(t) =
a2

8
[2ωt+ sin(2ωt)] , (2.14)

vdrift =
a2/4

1 + a2/4
c , (2.15)

γdrift = 1 + a2/2 , (2.16)
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Figure 2.1: Trajectory of a positive charge in a LP plane wave in the laboratory
frame (left) and the drifting frame (right). The particle is drifting in the propagation
direction of the wave z with a Lorentz factor of γdrift = 1 + a2/2.

where k = ω/c is the wave number, and vdrift is the drifting speed of the
particle along the propagation direction of the wave.

The trajectory of the particle is represented in fig. 2.1. Then one can move
to the frame drifting at constant velocity vdrift. In this frame one has

k′y′(t′) =
a√

1 + a2/2
sin(ω′t′) , (2.17)

k′z′(t′) =
a2

8(1 + a2/2)
sin(2(ω′t′) , (2.18)

ω′ =
ω√

1 + a2/2
. (2.19)

In this frame, the trajectory is an eight shape curve in the yz plane as repre-
sented in fig. 2.1.

Circularly polarised plane wave

Let us assume that the plane wave is circularly polarised, so that

qA

mc
= a [cos(ωt− kz)x̂+ sin(ωt− kz)ŷ] . (2.20)
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In this configuration, the trajectory is given by

kx(t) = −a cos(ωt) , (2.21)

ky(t) = a sin(ωt) , (2.22)

kz(t) =
a2

2
ωt , (2.23)

vdrift =
a2/2

1 + a2/2
c , (2.24)

γdrift = 1 + a2/2 . (2.25)

The trajectory in the laboratory frame is then an helix. As for the LP case,
one can go to the drifting frame, where the trajectory this time is a circle in
the transverse plane.

2.1.3 Classical radiation reaction

What is usually studied when first looking at CED is the trajectory of par-
ticles in a given imposed external field. However the moving charges might
be radiating, therefore modifying the surrounding electromagnetic field that
they are interacting with. Because of this, they experience experienced a back
reaction. This becomes particularly important as the external field amplitude
increases. In order to solve exactly the trajectory of a particle one should
solve consistently the equations of motion with F µν = F µν

ext + F µν
rad, where ext

designates the imposed electromagnetic field and rad the field emitted by the
moving charge. Of course the latter depends in a non trivial way on the
first. The problem of taking into account the back reaction of the radiation
on the particle, called radiation reaction, is an old and difficult problem of
CED [Dirac, 1938,Jackson, 1999,Rohrlich, 2008]. Several equations of motion
have been proposed to take into account this effect, starting from the Lorentz-
Abraham-Dirac equation, which can lead to nonphysical solutions, to more
recent developments [Di Piazza et al., 2011] including the fact that quantum
effects may became important, especially at high field intensities [Niel et al.,
2018a]. In this thesis, the RR approach will be used to understand some of the
results of chapter 6. We will here briefly present the classical Landau and Lif-
shitz (LL) radiation reaction force [Landau and Lifshitz, 1980]. The equation
of motion they derived for an electron reads

dpµ

dτ
= − e

mc
F µνpν + gµ , (2.26)
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where

gµ = −2

3
τe

[
e

m2c
∂ηF

µνpνp
η +

e2

m2c2
F µνFηνp

η − e2

m4c4
F νηpηFναp

αpµ
]
,

(2.27)
where τe is the time for light to cross the classical radius of the electron re =

e2

4πϵ0mc2
. In the 3-vector notation this is written as

mc2
dγ
dt

= −ecu ·E − 2

3
ecτeγ

dE
dt

· u

+
2

3

ec

Ecr

E · (E + u× cB)

− 2

3

ec

Ecr

γ2
[
(E + u× cB)2 − (u ·E)2

]
, (2.28)

dp
dt

= −e (E + u× cB)− 2

3
eτeγ

(
dE
dt

+ u× c
dB

dt

)
+

2

3

e

Ecr

[(u ·E)E − cB × (E + u× cB)]

− 2

3

e

Ecr

γ2
[
(E + u× cB)2 − (u ·E)2

]
u , (2.29)

where Ecr = 4πϵ0m
2c4/e3 and u =

p

γmc
. These equations, in the ultra-

relativistic case γ ≫ 1, reduce to

mc2
dγ
dt

= −ecu ·E − 2mc2

3τe

γ2

E2
cr

[
(E + u · cB)2 − (u ·E)2

]
, (2.30)

dp
dt

= −e(E + u× cB)

− 2mc2

3τe

γ2

E2
cr

[
(E + u · cB)2 − (u ·E)2

] u

cu2
. (2.31)

The first term in the right hand side of the momentum equation is the usual
Lorentz force, while the last term acts like a friction force parallel to −u. Please
note that this approach is not valid when quantum effects become important,
which is usually the case when the field amplitude a0 is above a few hundreds
as it will be in the studied configurations of the present work. Indeed in the
regime dominated by quantum effects the emission of radiation by a charge
becomes a stochastic process, and not a continuous one as given by the LL
description [Niel et al., 2018a]. In the next section we will describe briefly the
main aspects of quantum electrodynamics in strong fields, we will introduce
all quantities necessary to explain what is a strong field and when quantum
effects become important in most of the cases encountered in this work.
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2.2 Strong-field quantum electrodynamics (SFQED)

2.2.1 Relevant quantities and general context

Strong field quantum electrodynamics is a part of quantum electrodynamics
(QED), which describes QED processes with the addition of a strong electro-
magnetic background field. In order to understand what is meant by strong,
one should find a field of reference. This field is called the Schwinger field.
QED predicts that having a constant electromagnetic field of this amplitude
in vacuum creates electron-positron (e− - e+) pairs [Schwinger, 1951, Sauter,
1931]. The order of magnitude of this critical field can be obtained as follows.
In quantum field theory, due to Heisenberg uncertainty relation ∆ε∆t ∼ ℏ,
the quantum vacuum is boiling with fluctuations which are virtual pairs of
particles and anti particles [Schwartz, 2014]. These particles do not satisfy
the mass shell relation, which is the reason why they are called virtual, and
one can picture them as popping out of vacuum and annihilating on short
timescales given by Heisenberg relation. The typical length scale at which
these fluctuations occur is called the Compton wavelength

λC =
ℏ
mc

, (2.32)

where m is the mass of the particles. Here only electrons and positrons will be
considered. This is usually done in SFQED works, since they are the leptons
with the lightest mass and so they have the lowest critical field. Also, QED
alone only describes photons, electrons and positrons. Then to estimate the
Schwinger field, one should remark that, in order to get those pairs out of
vacuum, the electric field needs to bring them on-shell, with at least an energy
of mc2, in a Compton wavelength. Then one obtains the magnitude of the
electric Schwinger field

ES =
m2c3

eℏ
≃ 1.3× 1018 V/m . (2.33)

Even though high intensity laser technologies achieved major progress over the
last decades [Keller, 2003] this field is far from being reached in the laboratory
frame.

However, there is still intense research to demonstrate SFQED processes
in the laboratory, starting with the seminal SLAC experiment [Burke et al.,
1997] where around a hundred pairs were produced, in the 22000 head-on
collisions of a 46.6 GeV electrons beam with a high intensity laser beam of
1018W/cm2. To understand why, one needs to come back to basic properties
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of special relativity. Indeed the electromagnetic field amplitude is a frame
dependent quantity, as the fields are components of the electromagnetic field
strength tensor, they are changed following Lorentz transformations. Roughly,
if one imagines a head-on collision between a plane wave and an relativistic
electron, the field amplitude is boosted by a factor γe, the Lorentz factor of the
electron. For this reason SFQED processes are usually characterised by two
Lorentz invariant parameters. The first one is the normalised field amplitude
a0 defined in (1.40). The other one is called the quantum parameter, which is
given for an electron or a positron by [Ritus, 1979]

χe =
|F ν

µ pν |
ESmc

, (2.34)

where |Bµ| = BµBνηµν = (B0)2 − (B1)2 − (B2)2 − (B3)2. This parameter is
the norm of the contraction of the field strength tensor with the momentum
of the particle, normalised to the Schwinger field. One can immediately see
from its definition in Eq. (2.34) that this quantity is a Lorentz invariant.
For ultra-relativistic particles and field less intense than the critical Schwinger
field, which will be the main interest of this thesis, one has

χe ≃
γe≫1

γe
ES

∥E⊥ + ve ×B⊥∥ , (2.35)

where E⊥ and B⊥ designate the electric and magnetic fields transverse to the
particle momentum, and ve is its velocity. From this equation one can give a
simple interpretation of the quantum parameter as the ratio of the magnitude
of the electromagnetic field transverse to its motion and the Schwinger field.
Therefore one can now understand that the threshold for strong-field quantum
processes is achieved when the quantum parameter of a particle is close to one
or above, simply because in the charge rest frame, this field amplitude reaches
the critical Schwinger value.

A different form of χe can be obtained by using the equations of motion
(2.4) and plug them in (2.34)

χe =

√
− ℏ2

m4c6

(
dpµ

dτ

)2

(2.36)

which means that the quantum parameter of a charge can also be interpreted as
the ratio of the instantaneous proper acceleration compared to the acceleration
caused by the Schwinger field.

The SFQED phenomena that we are mainly interested in, and that will be
presented in the next sections, are the radiation of a high energy gamma photon
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by a charge interacting with a strong background field, and the conversion of a
high energy photon interacting with the background into an electron positron
pair. It turns out that, for gamma photons one can defined useful quantities
analogous to the lepton case, such as its normalised energy γγ and its quantum
parameter

γγ =
εγ
mc2

, (2.37)

χγ =
ℏ|F µνkν |
ESmc

, (2.38)

where εγ is the energy of the gamma photon and kν its 4 wave vector. In the
same way as for the electron, a quantum parameter of order one and above
characterises the threshold of SFQED effects for photons. Moreover for a
photon one has the exact expression

χγ =
γγ∥E⊥ + c×B⊥∥

ES

=
γγ
ES

√(
E+ c×B

)2 − (c · E)2/c2 (2.39)

which will be used extensively in part II.

Before moving to the two main processes that will be relevant to this work,
some general remarks on SFQED will be made. Usually in perturbative quan-
tum field theory and high energy physics, asymptotic states of particles after
interaction are considered free. It means that particles interaction is generally
studied within the interaction picture, where one supposes that initially and
at the end of the interaction, particles do not interact and are free in vac-
uum. Then one can compute the cross section of the desired process, via a
perturbative expansion. This is where the famous Feynman diagrams come
into play. They are terms of a perturbative expansion, used to compute ma-
trix elements, that can finally be translated into cross sections or decay rates
of particles. Contrarily to this approach, when considering SFQED particles
are not free after interaction. Instead of vacuum, one has this strong field,
which can also be a plane wave, or a coherent state [Glauber, 1963, Fradkin
et al., 1991,Harvey et al., 2009]. One possible scheme to investigate SFQED
effects relies on the use of ultra high intensity lasers with optical frequencies.
Those intense laser fields have a huge amount of soft photons, which have low
energies compared to the gamma photons (which have energies above 2mc2).
Because of this, the background field can be treated as a classical field on some
aspects [Berestetskii et al., 1982,Niel, 2021]. Then SFQED can be used to de-
scribe the interactions of particles with this strong field in a non-perturbative
way. To be precise, the interaction of charges together or with hard photons
(high energy photons) is still treated perturbatively as in usual QED, but in
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SFQED the interactions of particles with the background field are taken into
account non-perturbatively, which makes nonlinear processes appearing. All
of this procedure and theoretical framework is described in [Baier and Katkov,
1968,Ritus, 1979,Mitter, 1975,Baier et al., 1998,Di Piazza et al., 2012,Niel,
2021].

2.2.2 Nonlinear Breit-Wheeler process

The nonlinear Breit-Wheeler (NBW) process is the nonlinear version of the
QED linear Breit-Wheeler process [Breit and Wheeler, 1934], which corre-
sponds to the creation of an electron-positron pair from the collision of two
high energy photons. The NBW process is the creation of an electron-positron
pair by the conversion of a high energy gamma photon interacting with mul-
tiple photons of a strong field. It is represented by the diagram in fig. 2.2.
The double line notation appearing for electrons and positrons is specific to
SFQED. This double line represents the charge propagating in the strong field.
The contribution of this double line would translate in the usual perturbative
QED diagrams as the sum of all the diagrams of the charge interacting with
n photons of the background strong field. The double line corresponds then
to the sum of these diagrams from n = 0 to infinity. This means, as stated
before, that the interaction between the charge and the background field is
accounted for in a non-perturbative manner.

From this diagram, the differential probability of pair creation can be ob-
tained after non trivial computations [Baier and Katkov, 1968, Ritus, 1979],
using the Local Constant Field Approximation (LCFA) [Di Piazza, 2018,Ilder-
ton et al., 2018], which supposes the typical length and time scales of the
quantum process are small compared to the scales of variation of the back-
ground field. It is expressed as a function of the photon quantum parameter
χγ and the quantum parameter χe of one of the charges (either the electron or
the positron), from the Eqs. (2.38) and (2.34).

Figure 2.2: Strong field Feynman diagram of the nonlinear Breit-Wheeler process.
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d2NBW

dtdχe

=
2αmc2

3ℏ
TBW (χγ, χe)

χγγγ
≡ W0

TBW (χγ, χe)

χγγγ
(2.40)

TBW (χγ, χe) =

√
3

2π

[
−
∫ +∞

µ

dxK5/3(x) +
3

2
χγµK2/3(µ)

]
(2.41)

with µ =
2χγ

3(χγ − χe)χe

and Kn(x) the modified Bessel functions of second

kind. In Eq. (2.40)
d2NBW

dtdχe

is the differential probability of pair production.

The quantity W0 has the dimension of a rate and its numerical value is W0 ≃
3.78× 1018 s−1.

In order to obtain the rate of pair creation, it is first useful to express Eq.
(2.40) with laboratory frame quantities, i.e. using γe instead of χe, one obtains

d2NBW

dtdγe
(χγ, γγ, γe) = W0

ξTBW (χγ, ξ)

γγγe
(2.42)

using ξ = χe/χγ = γe/γγ and µ =
2

3χγξ(1− ξ)
.

To obtain the rate of pair creation, one should now integrate 2.42 over all
the possible values of γe, meaning from ξ = 0 to ξ = 1

dNBW

dt
≡ WBW(χγ, γγ) = W0

b0(χγ)

γγ
(2.43)

b0(χγ) =

√
3

2π

∫ 1

0

dξ

ξ (1− ξ)

[
2

3χγ

1− 2ξ

(1− ξ)
K5/3 (µ) + K2/3 (µ)

]
. (2.44)

The expression of b0 is obtained by integrating by part the first term in
2.41. One can see that the rate of pair production can be then separated into
a function of the quantum parameter χγ and another one depending on the
energy of the gamma photon. Moreover, as χγ behaves like the product of the
field amplitude and gamma photon energy εγ, one can see that WBW is not
affected in the same way by the field amplitude and the gamma photon energy,
owing to its γγ factor in the denominator. Hence changing χγ, by varying one
of these two parameters, does not influence the rate of the process in the same
way. This aspect will be discussed extensively in the next chapters.

Finally, the two asymptotic forms of the b0 function are

b0(χγ) ∼ c1 χγ e
−8/(3χγ) for χγ ≪ 1 , (2.45)

b0(χγ) ∼ c2 χ
2/3
γ for χγ ≫ 1 , (2.46)

with c1 = 9
√
6/64 ≃ 0.344 and c2 = 32/345 Γ4(2/3)/(56π2) ≃ 0.569 (Γ(x)
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Figure 2.3: (a) Dependence of b0(χγ) on the photon quantum parameter χγ as
defined by Eq. (2.44). (b) Zoom on the region where b0 > 0.01, the blue dashed lines
are representing its asymptotic behaviour given by Eqs. (2.45) and (2.46)

denoting the Euler gamma function). The function b0 is represented in fig. 2.3.
It goes exponentially to 0 when χγ ≪ 1, which corresponds to the classical
limit where indeed no pair creation takes place.

Finally, the b0 function can be well approximated, within less than 1% of
error for χγ ∈ [10−2, 103] by

b0(χγ) ≃ 0.242
K2

1/3

(
4/(3χγ)

)
1− 0.172/(1 + 0.295χ

2/3
γ )

. (2.47)

This equation gives the same behaviour at low and high χ as the two asymp-
totic limits of b0 of Eqs. (2.45) and (2.46).

2.2.3 Nonlinear inverse Compton scattering

The Nonlinear inverse Compton scattering process is the emission of a high
energy photon by a charge due to its interaction with several photons of a
strong field. We chose here the charge to be an electron, but the reasoning
would be the same for a positron. The strong field diagram representing the
process at the first order is given in fig. 2.4.

Here again, using the LCFA, implying that the spatio-temporal variation
of the field is much bigger than the emission time and length scale, one ob-
tains [Baier and Katkov, 1968,Ritus, 1979,Seipt, 2012,Mackenroth, 2014] the
differential probability of photon emission
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Figure 2.4: Strong field Feynman diagram of the nonlinear Compton scattering
process.

d2NCS

dτdχγ

=
2αmc2

3ℏ
G(χe, χγ)

χγ

= W0
G(χe, χγ)

χγ

(2.48)

G(χe, χγ) =

√
3

2π

χγ

χe

[∫ ∞

µ′
dxK5/3(x) +

3

2
χγµ

′K2/3(µ
′)

]
(2.49)

where τ is the proper time of the electron, µ′ =
2χγ

3χe(χe − χγ)
and G(χe, χγ)

the quantum emissivity. In Eq. (2.40)
d2NBW

dtdχe

is the differential probability

of photon emission by the NCS process. As we did in the previous section, it
is useful to express the differential probability with laboratory quantities by
making the change of variable τ → t and by using ξ′ = χγ/χe = γγ/γe;µ

′ =
2

3χeξ′(1− ξ′)
. One obtains

d2NCS

dtdγγ
(χe, γγ, γe) = W0

ξ′G(χe, ξ
′)

γeγγ
. (2.50)

One can obtain the rate of photon emission, by integrating Eq.(2.50) over
all the possible values of γγ meaning from ξ′ = 0 to 1

dNCS

dt
≡ WCS(γe, χe) = W0

c0(χe)

γe
(2.51)

c0(χe) =

√
3

2π

∫ 1

0

dξ′

1− ξ′
[
µ′K5/3(µ

′) + ξ′ 2K2/3(µ
′)
]
, (2.52)

where we obtain the expression of c0 by integrating by part the first term of
Eq. (2.49). The function c0 has the following asymptotic behaviours

c0(χe) ∼ 5
√
3

12
χe for χe ≪ 1 , (2.53)

c0(χe) ∼ 32/3
7 Γ(2/3)

9
χ2/3
e for χe ≫ 1 , (2.54)
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Figure 2.5: In black, the dependence of c0(χe) on the electron quantum parameter
χe as defined by Eq. (2.52). In dashed blue, the two asymptotes of c0 defined in Eqs.
(2.53) and (2.54).

with 32/3
7 Γ(2/3)

9
≃ 2.19. This function and its asymptotic behaviours are

represented in fig. 2.5.

2.3 Conclusions

In this chapter the fundamental equations and characteristic quantities of
classical and strong-field electrodynamics necessary to understand the present
work were summarised with particular attention to the Nonlinear Breit-Wheeler
process and the nonlinear inverse Compton scattering. In particular, it was
pointed out how, even though the critical Schwinger field is not reached in
the laboratory with current laser technologies, pair creation and other strong
field processes can still happen in current and upcoming laser facilities, by us-
ing ultra-relativistic seeding particles or photons. In the following we will use
the concepts introduced here to model pair creation in the so-called shower
configuration, where a beam of high gamma photons collides head-on with
an high intensity laser pulse, mainly based on the NBW rate of Eq.(2.43).
Intense photons production, based on nonlinear inverse Compton scattering
will be instead important when considering the possibility of pair creation in
the avalanche regime, discussed in Chaps. 6 and 7 for a configuration of two
counter-propagating lasers.
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The Particle-in-cell (PIC) method, which was initially developed in fluid
dynamics [Harlow, 1955], has become an essential tool in the simulation of
plasma physics. This method, which is well suited for the kinetic description
of collisionless plasmas, is used by the code Smilei [Derouillat et al., 2018],
which has been used to perform all the simulations in this work. The PIC code,
through the Maxwell-Vlasov model which will be detailed in the following,
solves self-consistently the classical (relativistic) equations for the dynamics
of the em fields and the charged particles composing the plasma. On top of
simulating classical plasma dynamics, several physics module can be added to
the PIC approach. In particular SFQED modules describing NBW and NCS
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are implemented in Smilei . In this chapter, we will present the basics of the
PIC algorithm, and in particular of the Smilei code.

3.1 The Maxwell-Vlasov model, normalised units

and macro-particles

The Maxwell-Vlasov model consists first in Maxwell’s equations

∇ ·E = ρ/ϵ0 , (3.1)

∇ ·B = 0 , (3.2)

∇×E = −∂tB , (3.3)

∇×B = µ0j + µ0ϵ0∂tE . (3.4)

Then in the kinetic description of collisionless plasmas the different species of
particles forming the plasma are characterised by a distribution function in
phase space fs(x,p, t), with s denoting each species having a charge qs and a
mass ms. The total charge and current densities are given by

ρ(t,x) =
∑
s

qs

∫
d3pfs(t,x,p) , (3.5)

j(t,x) =
∑
s

qs

∫
d3pufs(t,x,p) , (3.6)

with u =
p

msγs
. The distribution of each species follows the Vlasov equation

(
∂t +

p

msγs
·∇+ FL ·∇p

)
fs = 0 , (3.7)

where γs =
√

1 + (p/msc)2 is the Lorentz factor, ∇p is the gradient operator
in momentum space, and FL is the Lorentz force given by

FL = qs(E + u×B) . (3.8)

The equations from (3.1) to (3.8) form the Maxwell-Vlasov model, which
describes self-consistently the evolution of the electromagnetic field and the
plasma. The fields affect the particles dynamics, their current and charge dis-
tribution, by the Lorentz force, and in turn this modification of the currents
and charges distributions changes the electromagnetic fields.

The Smilei code uses dimensionless variables normalised to specific refer-
ence quantities. The electron mass m, the elementary charge e and the speed
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of light c provide the reference charge, mass and velocity. From them the
reference energy mc2 and momentum mc can be built. Now the main idea is
that the code does not know the scale of the physical problem, the user can
scale it back to the desired physical scale by providing the physical value of a
reference quantity. In our case, we provide the reference laser frequency ωr,
which is usually the laser frequency. Then the results from the simulations
can be put in the desired physical scale. Moreover this reference frequency can
have a different role, as it is also used for physics modules which need to have
the physical scale of the problem when the simulation is ran in order to work.
It is the case for example of the ionisation or SFQED modules. Having set
this reference frequency, now all needed referenced quantities can be built in
the following way

Tr = 1/ωr the reference time,

Lr = c/ωr the reference length,

Er = mcωr/e the reference electric field,

Br = mωr/e the reference magnetic field,

nr = ϵ0mω
2
r/e

2 ̸= L−3
r the reference particle density,

Jr = ceNr the reference current density.

One can see that if ωr is the laser frequency ω, as it is assumed from now on,
the electric field normalised to its reference E/Er is equal to the normalised
field a0 presented in (1.40) which is convenient. One should also note that Nr

the reference number of particle density is not L−3
r , in order to make the Vlasov

equation simpler and written as Eq. (3.7) in normalised quantities. Finally
the Maxwell’s equations can be written as follows in normalised quantities

∇ ·E = ρ , (3.9)

∇ ·B = 0 , (3.10)

∇×E = −∂tB , (3.11)

∇×B = j + ∂tE . (3.12)

Macro-particles

One of the main aspect of the PIC algorithm is the discretisation of the dis-
tribution function fs. The distribution function is decomposed in the sum of
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Ns macro-particles

fs(x,p, t) =
Ns∑
p=1

wp

Vc
S(x− xp(t))δ

3(p− pp(t)) , (3.13)

with pp and xp the momentum and position of the macro-particle and wp its
weight, which ponders the relative contribution of the particle to the distri-
bution function. The quantity Vc is the hyper-volume of a cell, given by the
spatial resolution of the simulation. The delta function is the usual Dirac’s
delta distribution. S is called the shape function and it describes how the
properties (charge and current density) associated to the macro-particle are
distributed around its position in space. The expression of the shape function
depends on the spatial resolution of the simulation, and on order of the inter-
polation of the electromagnetic field at the macro-particle position (which will
be discussed in the following). For instance at order one the shape function
has the form

S(x) =

{
1− | x

∆x
|)(1− | y

∆y
|)(1− | z

∆z
|) , if |x| < ∆x and |y| < ∆y and |z| < ∆z

0 otherwise

with ∆x ; ∆y ; ∆z being the resolution in the three spatial directions. To
understand why the shape function presented above is generally better than
Dirac’s delta function, it is worth noticing that one macro-particle in general
describes many physical particles of the plasma. The interested reader will
find more details in [Derouillat et al., 2018]

In PIC codes, the Vlasov equation (3.7) is integrated along the continuous
trajectories of the macro particles, whereas the Maxwell’s equations are solved
on a discrete spatial grid. The size of the grid steps in each spatial direction
is chosen by the user. Each element of this grid is called a cell, and the
evolution in time of the macro-particle dynamics is described on these cells,
giving the name Particle-in-cell to the method. It can be shown that the
macro-particles follow the equations of motions, by inserting Eq. (3.13) into
the Vlasov equation (3.7)

dup

dt
=

qs
ms

(Ep + up ×Bp) , (3.14)

with up = pp/(γpms), and where Ep and Bp are the interpolated (as described
in the following section) fields at the macro-particle position. One now has all
of the ingredients at hand needed to describe the core of the PIC algorithm,
the PIC loop which will be presented in the next section.
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Figure 3.1: The staggered Yee grid in Smilei as represented in [Derouillat et al.,
2018], defined by the spatial resolutions (∆x,∆y,∆z). The electric field as well as
charge and current densities are defined at integer steps of the grid (i, j, k), whereas
the magnetic field is defined at half integer steps.

3.2 The PIC loop

3.2.1 The field grid

In Smilei the Maxwell equations are solved on a discrete grid by a refined ver-
sion of the Finite Difference Time Domain method [Taflove et al., 2005,Nuter
et al., 2014]. In this kind of method, the electromagnetic field is discretised
onto a so-called staggered grid in space, like the Yee grid represented in fig. 3.1.
This kind of grid allows the spatial centering of the discrete version of the curl
operator used to solve Maxwell’s equations. As shown in fig. 3.1, the electric
field (as well the charge and current densities) is defined at integer steps i given
by the spatial resolutions, while the magnetic field is solved at half integer steps
i+1/2. The centering also needs to be done time-wise, and so the electric field
is defined at integer time-steps n while the magnetic field is defined at half
integer time-steps n + 1/2. This centering is needed for the computation of
the Lorentz force acting on particles, but also for the diagnostics.

A final remark about the grid and the discretisation in Smilei and PIC
codes in general is that the Yee grid may have one, two or three spatial di-
mensions. However the momentum space of macro particles, the fields and the
current always have three dimensions in Smilei . To denote it, sometimes we
refer to a simulation as being 1D3V, or 3D3V for example, where ND identifies
the number N of spatial dimension, and the 3V recalling that momentum space
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has always three dimensions.

3.2.2 The initialisation of the simulation

The initialisation of the simulation is a three step process. First the code has
to load the macro-particles. Especially the number of macro particles, speed,
density and temperature of each species are specified in every cell by the user.
Then the code creates uniformly or randomly spread macro-particles in each
cell where the density is not zero, with a momentum distribution according
to what the user has chosen, which can be a Maxwell-Jüttner distribution for
example, with potentially a chosen average velocity and temperature. Then
the weight of each particle, which was already introduced in Eq. (3.13), is
computed

wp = Vc
ns(xp, t = 0)

Ns(t = 0)
, (3.15)

with ns the user specified density of the specie in the cell and Ns the number
of macro-particles of the specie requested by the user in the cell.

The second step is the computation of the total charge and current densities
on the grid. This is done by projecting the charge pondered by the weight and
shape function of every macro-particle onto the grid

ρtotal(x, t = 0) =
∑
s

∑
p

qswp

Vc
S(x− xp(t = 0)) , (3.16)

where s runs over the species and p runs over the macro-particles of a given
species. Finally, the code has to compute the initial electromagnetic field from
the charge and current distribution. In Smilei it is done by the conjugate
gradient method [Press et al., 2007].

Since all of the initial conditions of the simulation are now known the algo-
rithm can enter the PIC loop and find the numerical solution of the evolution
in time of the Vlasov-Maxwell system of equations.

3.2.3 The loop

The heart of the PIC algorithm consists in a loop, which is performed for
each time-step ∆t. This loop can be decomposed in four tasks. First(i) the
interpolation of the electromagnetic field from the grid at the macro-particle
positions; (ii) the particle pusher, that computes their new velocities and posi-
tions due to the interaction with the electromagnetic fields; (iii) the projection
of the new charge and current distributions on the grid; (iv) the computation
of the new electromagnetic fields on the grid. After having performed these
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Collect fields at particles positions
Step 1:

Ep, Bp

Step 2: push the particles

For all particles

Project the current densities on the grid
Step 3:

xp, pp → ρ, J

Step 4: solve Maxwell’s equations

   

  

∂t E = −J +∇ × B
∂t B = − ∇ × E

The Particle-in-cell loop

Δt 

dup

dt
= qs

ms
FL

dxp

dt
= up

Figure 3.2: Schematic representation of the four steps of the PIC loop algorithm.

four steps the algorithm has gone from time-step n to time-step n+1 and the
loop can start again. These four steps are schematically represented in fig. 3.2
and performed at each time-step ∆t of the simulation. They will be described
in more details in the following.

Fields interpolation

At the time-step n the particles positions and momentum are known and the
fields E(n) and B(n+1/2) are known on the Yee grid. In order to see how the
particles are impacted by the field, on first need to interpolate the field at
the macro-particles position, since the fields are known on the grid and not
everywhere in the cells. The interpolated fields are given by

E(n)
p =

1

Vc

∫
d3xS(x− x(n)

p )E(n)(x) , (3.17)

B(n)
p =

1

Vc

∫
d3xS(x− x(n)

p )B(n)(x) , (3.18)

where B(n) =
1

2

(
B(n−1/2) +B(n+1/2)

)
is the time centered magnetic field at

time-step n, and x
(n)
p is the macro-particle position at time-step n.

Particles pusher

Having now the fields at particles’ positions, one can compute the new position
and momentum of each particle. It can be done using a second order leap-
frog integrator such as the well-known Boris pusher [Boris, 1970]. The new
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momentum and position are given by

p
(n+1/2)
p

ms

= v(n−1/2)
p +∆t

qs
ms

[
E(n)

p +
v
(n−1/2)
p + v

(n+1/2)
p

2
×B(n)

p

]
,(3.19)

x(n+1)
p = x(n)

p +∆t
p
(n+1/2)
p

msγp
. (3.20)

Note that other schemes are available in Smilei such as the Vay pusher [Vay,
2008].

Charged density and current deposition

The new charge and current distribution projection on the grid, is performed by
an algorithm proposed by [Esirkepov, 2001] which ensures charge conservation.
The current densities along the spatial dimensions of the grid are computed
from the charge flux crossing the cell border. The current on spatial dimensions
that are not on the grid like in 1D3V or 2D3V simulations are computed by a
projection.

As an example for a 2D3V simulations the contribution from a macro-
particle to the current along x and y at position i, j in the grid are given
by

(Jx)
(n+1/2)
i+1/2,j = (Jx)

(n+1/2)
i−1/2,j +

qswp

Vc

∆x

∆t
(Wx)

(n+1/2)
i+1/2,j , (3.21)

(Jy)
(n+1/2)
i,j+1/2 = (Jy)

(n+1/2)
i,j−1/2 +

qswp

Vc

∆y

∆t
(Wy)

(n+1/2)
i,j+1/2 , (3.22)

with (Wx) and (Wy) given by the algorithm [Esirkepov, 2001] and computed
with the particle present and past positions x(n+1)

p and x
(n+1)
p respectively.

Then the total current density along z and the total charge density, are given
by the projection technique detailed in [Derouillat et al., 2018]

(Jz)
(n+1/2)
i,j =

∑
s

∑
p

qswp

Vc
vpS(xi,j − xp) (3.23)

ρ
(n+1)
i,j =

∑
s

∑
p

qswp

Vc
S(xi,j − xp) . (3.24)

Advancing electromagnetic field

Having the current at time-step n + 1/2 on the grid, the algorithm can now
advance the electromagnetic field by solving the Maxwell equations. The code
solves the Maxwell-Ampère equation, to have the advanced electric field on
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the grid as

E(n+1) = E(n) +∆t
[
(∇×B)(n+1/2) − J (n+1/2)

]
. (3.25)

Next Maxwell-Faraday’s equation is solved to obtain the advanced magnetic
field.

B(n+3/2) = B(n+1/2) −∆t(∇×E)(n+1) . (3.26)

The reader interested in having more details about the computation of the
discretised curl operator is encouraged to read [Derouillat et al., 2018]. The
advanced field at the next time-step is completely determined by Eqs. (3.25)
and (3.26). Indeed, it can be shown that Poisson’s equation is verified at all
time-steps if it is verified initially. Also the non diverging property of the ini-
tial magnetic field is maintained if Gauss’s equation is verified initially.

This last step concludes the description of the PIC loop, which will be
repeated at each time-step of the simulation until the end, and eventually solves
self-consistently the Maxwell-Vlasov system. One part of the Smilei code is
still lacking in our presentation in order to understand the simulations in this
thesis, specifically the implementation of SFQED by complementary physics
modules. These algorithms will be presented in the next section.

3.3 How to include quantum stochastic processes?

Having the main PIC loop, that allows us to classically simulate plasmas, one
should now consider how to implement SFQED processes which are of interest
in this work, namely high energy gamma emission by NCS and pair creation by
NBW. Due to the stochastic nature of those processes, which are described by
rates as discussed in section 2.2, what will be used is a Monte-Carlo procedure,
as described in [Duclous et al., 2010b,Lobet, 2015,Lobet et al., 2016].

3.3.1 High energy photon emission

Let us first look at NCS. The emission of a high energy gamma photon through
this process by an electron or a positron can be decomposed in the following
steps.

A quantity called the optical depth δe is assigned to each macro-lepton and
is set to zero at the beginning of the simulation. In order to identify the time of
emission, we first draw random number r1 ∈]0; 1] is drawn. Indeed the optical
depth δe will evolve with time following the equation of the NCS (nonlinear
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Compton scattering) rate from Eq. (2.51)

dδe
dt

=
dNCS(χe, γe)

dt
, (3.27)

as the charge interacts with the field. When δe ≥ δf = − log(r1) emission
occurs. Note that for the sake of performance, the integral of Eq. (2.51) is not
computed every time, but it has been tabulated.

Third, at the time-step of emission one needs to compute the quantum
parameter of the emitted gamma photon χγ. To do this, one needs to invert
the cumulative distributive function

Pe(χe, χγ) =

∫ χγ

0
dχG(χe, χ/χe)/χ∫ χe

0
dχG(χe, χ/χe)/χ

. (3.28)

The determination of χγ is done by drawing a random number r2 ∈ [0; 1] and
finding numerically the χγ that satisfies r2 = P−1

e (χe, χγ). The energy of the
emitted gamma photon is then given by εγ = γγmc

2 = mc2γe
χγ

χe

.

Finally one has to take into account the back reaction onto the emitting
charge by updating its momentum. This is done using momentum conserva-
tion, and by assuming that the photon is emitted in the direction of the charge
momentum, which is a reasonable assumption for γe ≫ 1. The variation of
momentum of the charge is then

∆pe = −εγ
c

pe

∥pe∥
. (3.29)

The radiation recoil experienced by the charge from the emission of the gamma
photon is then taken into account discretely. This procedure does not conserve
exactly the energy, but the error tends to zero when the electron energy in-
creases [Lobet, 2015].

After this procedure, the algorithm might have to create or not a macro-
photon. This is determined in practice by an energy threshold above which the
code creates a macro-photon with the same statistical weight as the macro-
charge that emitted it. In this work the threshold is fixed to 2mc2 as we are
interested in gamma photons able to create pairs. These gamma photons do not
interact with the classical field or other particles, unless other physical modules
are added, like the NBW module which will be presented in the following
section.

As a final remark, in this work we consider field intensities at which the ra-
diation processes happen predominantly in the quantum regime. Hence a fully
stochastic treatment is well suited for our study. Nevertheless, the description
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of radiation emission with frequencies above the PIC grid resolution, is still an
active area of research, in particular the transition between the classical and
quantum treatment [Niel et al., 2018a].

3.3.2 Pair creation by nonlinear Breit-Wheeler

In this section, we use the same approach described in the previous one to
present the implementation of NBW module in SMILEI.

Each macro-photon has an optical depth δγ, and it is converted into a pair
when δγ = δf = − log(r3) with r3 ∈]0; 1] a random number. In this case the
time evolution of the optical depth is given by the NBW rate Eq. (2.43)

dδγ
dt

=
dNBW (χγ, γe)

dt
. (3.30)

As for NCS, the rate is tabulated to speed up the numerical computation.
Then, at the time of pair creation, one needs to compute the quantum param-
eter of the electron(analogously for the positron). This is done by inverting
the cumulative distribution function

Pγ(χγ, χe−) =

∫ χe−
0

dχTBW (χγ, χ/χγ)/χ∫ χγ

0
dχTBW (χγ, χ/χγ)/χ

, (3.31)

where χe− is the quantum parameter of the produced electron and TBW is
defined in Eq. (2.41). As it was explained before for NCS, χe− is found
by numerically solving P−1

γ (χγ, χe−) = r4 with r4 ∈ [0; 1] a random number.
Knowing the quantum parameter of the electron, the one of the positron can
be computed as χe+ = χγ − χe− .

Since the gamma photon is destroyed in the process, all the momentum
and energy are transferred to the pair into the pair. The energy of the electron
is given by

εe− = mc2
[
1 + (γγ − 2)

χe−

χγ

]
. (3.32)

The pair is then created at the position of the macro-photon with the same
total momentum. The same weight as the macro-photon is assigned to each
charge of pair and then the macro-photon is destroyed.

3.4 Conclusions

In this chapter we presented the basics of the PIC algorithm and the code
Smilei . We explained how the PIC loop self-consistently solves the equations
of the kinetic description of the plasma, i.e. the Maxwell-Vlasov model. We
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also presented how SFQED stochastic processes can be included in the classical
PIC code, by taking the example of NBW and NCS implementation which are
relevant to the present work. PIC simulations with the additional MC modules
for SFQED will be used extensively in parts two and three.



Part II

Theory and simulation of gamma
photon conversion into
electron-positron pairs
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Model of primary gamma photons
conversion into pairs
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In this chapter we present original results on the conversion of gamma
photons into electron-positron pairs by intense laser pulses. The final aim is
to study the complex interaction of an LG laser pulse with a flash of high
energy gamma photons in order to optimise electron positron pair production.
In order to do so one first needs to develop a model to study the impact of the
different parameters characterizing the laser beam on pair production. In this
chapter we will detail our approach for the development of such a model, by
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starting from the simple case of a single gamma photon in a plane wave, and
by including progressively more complex spatio-temporal time dependence for
the field. These results are published in [Mercuri-Baron et al., 2021].

4.1 Decay probability of a high energy gamma

photon: the building block of the model

In order to develop a model capable of predicting the amount of produced
pairs one should start from the most basic block of the problem, the rate of
the NBW process defined in Eq.(2.43)

WBW(χγ, γγ) = W0
b0(χγ)

γγ
, (4.1)

which depends on the normalised energy of the gamma photon γγ (2.37) and
its quantum parameter (2.39)

χγ =
γγ∥E⊥ + c×B⊥∥

ES

=
γγ
ES

√(
E+ c×B

)2 − (c · E)2/c2 . (4.2)

Since the electromagnetic field varies with time, χγ(t) is in general a function of
time and of the photon energy. If the electromagnetic field and the trajectory
of the gamma photon crossing the field are known, the decay rate is known.
However in order to predict the amount of pair created through this interaction,
we need the probability for a given gamma photon to be converted after a given
time t of interaction. To obtain this, one can consider a set of gamma photons,
all seeing the same electromagnetic field, and write the differential equation
ruling the evolution of their number

dNγ(t)

dt
= −WBW(t)Nγ(t) . (4.3)

This equation takes into account the production of primary pairs, i.e. the one
coming form the conversion of the initial gamma photons flash. It however
neglects the possibility of having secondary pairs. Indeed, when gamma pho-
tons are converted in pairs, the latter could be re-accelerated by the field and
emit more gamma photons. However in this chapter we will limit our study
to the soft shower regime, in which the soft shower is defined by the fact that
secondary pairs are negligible in number compared to the primary pairs. The
validity of this hypothesis will be verified by PIC simulations in chapter 5 for
the range of parameters of interest.
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Equation (4.3) describes how the number of gamma photons decreases with
time due to their conversion into pairs. Since the rate is time dependent, one
can write the general form of the number of gamma photons as a function of
time as

Nγ(t) = N0 exp

[
−
∫ t

t0

WBW(t′)dt′
]

(4.4)

where t0 is the initial time and N0 the number of gamma photons at t = t0.
Since this takes into account only the conversion of gamma photons, for a large
number of gamma photons the proportion of remaining photons, Nγ(t)/N0,
goes as the probability P (t0,∆t) of a gamma photon to not be converted into
a time interval ∆t

P (t0,∆t) = Nγ(t)/N0 = exp

[
−
∫ t0+∆t

t0

WBW(t′)dt′
]
. (4.5)

Then the probability of a photon to be converted in ∆t is

P (t0,∆t) = 1− P (t0,∆t) = 1− exp

[
−
∫ t0+∆t

t0

WBW(t′)dt′
]
, (4.6)

which is the probability of a pair to be formed by converting a gamma photon
during the time interval ∆t. Equation (4.6) allows to express the probability
to create a pair as a function of the integral of the rate over time. This inte-
gral cannot be computed analytically in general. This is possible in the special
case of the head-on collision of a gamma photon with a CP plane wave (PW)
with constant amplitude. In this case the rate of pair production is a constant
and Eq. (4.3) can be solved analytically. In a regime in which pair creation is
weak one can consider small rates and relatively short times and approximate
the integral of the rate by WBW∆t, i.e. a constant rate (given by asymptotic
developments) times the duration of the interaction. Considering this quantity
small and developing the exponential leads to P (t0,∆t) ∼ WBW∆t. However
this is valid only for short duration of the interaction and small rate of pair
production, and it fails when one has substantial pair production [Di Piazza
et al., 2010, Meuren et al., 2015, Tamburini and Meuren, 2021, Podszus and
Di Piazza, 2021], i.e. when one has P (t0,∆t) ∼ 1. In this small rate approxi-
mation the nonlinear growth and the saturation of probability with time will
be missed. In this work we look at physical situations with substantial pair
creation. We then need to consider the full probability of pair creation. In
order for the model to estimate pair creation in this situation, the evaluation
of the integral of the rate is needed. This will be discussed in the following
section.
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4.2 Probability of pair creation in a plane wave

4.2.1 Quantum parameter of a gamma photon in a plane

wave

In order to evaluate the integral of Eq.(4.6), and discuss in detail its time
dependence, let us consider the head-on collision of a high energy gamma
photon with a plane wave. In the following the collision will always be head-
on unless stated otherwise. In particular, the generalisation of the approach
to an arbitrary angle of collision will be discussed in Sec. 4.2.2. Let us take
the electric field of a plane wave propagating along z

E(z, t) =
E0√
1 + σ2

[sin (ωt− kz) x̂+ σ cos (ωt− kz) ŷ] , (4.7)

where σ is its polarisation, and the factor 1/
√
1 + σ2 is chosen so that waves

with every possible polarisation carry the same energy density. This choice
is motivated by the fact that when we consider more realistic configurations,
we will work at fixed total laser energy. Considering a gamma photon with
velocity −cẑ (head-on collision), and using Eq. (2.39) one can show that, the
quantum parameter of the gamma photon in is

χγ(t) = χ0Ψσ(2ωt) with Ψσ(φ) =

√
sin2φ+ σ2 cos2φ

1 + σ2
, (4.8)

with

χ0 = 2 γγ
E0

ES

≃ 0.801

(
ℏωγ

1GeV

) √
I0

1022 W/cm2
. (4.9)

Note that the quantum parameter takes the following simple forms for LP and
CP PW

χγ(t) =
χ0√
2

for σ = ±1 , (4.10)

χγ(t) = χ0| sin(2ωt)| for σ = 0 , (4.11)

where one can see that for the CP case the rate is constant over time.
Several remarks can be made here. First the quantum parameter is a

product of a constant and the function Ψ, whose time dependence is related
to the polarisation. The maximum value of χγ is

χm =
χ0√
1 + σ2

, (4.12)
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and only for the LP case (σ = 0) this coincides with χ0.

Secondly, the quantity Ψσ(2ωt) is a periodic function with period τ/4 (τ
being the period of the plane wave) for all polarisations. This is intuitively
understandable by looking at the LP case. The quantum parameter depends
on the absolute value of the field and, since the gamma photon and the PW
collide head-on, the time for a photon to cross a peak of the field is a quarter
of a period. This periodicity is a useful property of the quantum parameter,
since before conversion into a pair the energy of the gamma photon does not
vary with time, and the time dependence of the rate corresponds to the one of
the quantum parameter. Therefore, if the latter is periodic, the value of the
integral of the rate at any time equal to a multiple of quarter of periods, is
known once we have the value of the integral over τ/4.

4.2.2 Decay probability of a photon crossing half a period

of the field

Taking advantage of the properties discussed in the previous section we can
compute the probability Pm of the high-energy photon to decay into a pair dur-
ing the interval of time τ/4, that will become the basic element of our model.
Let us then consider a time tm at which the high-energy photon sees a local
maximum of the background electric field, and compute the probability Pm for
the high-energy photon to decay into an electron-positron pair in between the
times t0 = tm − τ/8 and t0 + τ/4 = tm + τ/8:

Pm = P (t0, τ/4) = 1− exp
(
−Rm

τ

4

)
(4.13)

Rm
τ

4
=

W0

2ωγγ

∫ π

0

b0
(
χ0Ψσ(φ)

)
dφ (4.14)

where Rmτ/4 is the time-integrate rate and Rm denotes the average rate. The
variable φ is the phase of the field, it goes from 0 to π as one local maximum
of the field amplitude is explored.

The dimensionless quantity W0/(2ωγγ) in Eq. (4.13) is of order 1 for optical
background fields (with micrometric wavelength λ) and GeV-level high-energy
photons:

W0

2ωγγ
=
α

3

mec
2

ℏω
mec

2

ℏωγ

≃ 0.512

(
λ

1µm

) (
1GeV

ℏωγ

)
. (4.15)

The probability Pm, that measures the contribution of a single field maxi-
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Figure 4.1: Dependence of Iσ(χ0) [Eq. (4.16)] on the maximum photon quantum
parameter χ0 [as defined by Eq. (4.9)], for a linearly polarized (LP) background field
(σ = 0, black line) and a circularly polarized (CP) background field (σ = ±1, blue
line). Dashed lines show the asymptotic behavior given by Eqs. (4.20) and (4.21) for
the LP case. The inset highlights the values of χ0 for which LP (χ0 < 2.52) or CP
(χ0 > 2.52) gives higher pair production probability and the relative difference of Iσ
(in absolute value) between the two cases.
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mum, depends on the integral quantity

Iσ(χ0) =

∫ π

0

b0
(
χ0Ψσ(φ)

)
dφ , (4.16)

which, for a given polarization σ, is a function of χ0 only as shown in fig. 4.1
for LP (black line) and CP (blue line).

This integral is the building block of our model and, as we will show, it can
be used to compute the pair creation probability in an arbitrary configuration.
It can be calculated analytically with very good approximation, as shown in
the following, or numerically in order to have the exact solution.

The details of the analytical approximated form that we derived for Iσ

are given in the Appendix A.1, where we generalize the approach proposed
in [Blackburn et al., 2017] to arbitrary σ and χ. With this approach we obtain:

Iσ(χ0) ≃ π b0(χm) min
{
F
(
sσ(χm)

)
, f(σ)

}
(4.17)

with

{
F (s) =

√
2/π s erf

(
π
√
2/(4s)

)
f(σ) = 1

π

∫ π

0

[
sin2 φ+ σ2 cos2 φ

]1/3
dφ

(4.18)

where χm is defined in Eq. (4.12) and erf(x) = 2√
π

∫ x

0
e−t2dt is the error func-

tion. The function F (s) emerges from the saddle point approximation used
to compute the integral when the main contribution over a half period comes
from the vicinity of the field maximum. The function varies slowly with s, as
F (s) ≃ 2√

π
s for s ≪ 1 and F (s) → 1 for s → +∞. In Eq. (4.17), F (s) takes

for argument sσ(χm), with

sσ(χ) =

√
3

2

c(χ)√
1− σ2

and c(χ) =

√
2 b0(χ)

3χ b′0(χ)
, (4.19)

where b′0(χ) denotes the derivative of b0(χ) and c(χ) is a slowly varying function
of χ, as c(χ) ≃ √

χ/2 for χ≪ 1 and c(χ) → 1 for χ→ +∞.

Equation (4.17) is exact for CP background fields (σ = ±1) for which
s±1(χm) → +∞, so that I±1(χ0) = π b0

(
χ0/

√
2
)
. Moreover it allows to recover

the asymptotic behavior of Eq. (4.16) in the limiting cases of small and large
quantum parameter χ0:

Iσ(χ0)
χ0≪1−−−→

 c3
χ
3/2
0

(1−σ2)1/2(1+σ2)1/4
exp

(
−8

√
1+σ2

3χ0

)
if χ0 ≪ 1− σ2

c4 χ0 exp(−8
√
2

3χ0
) otherwise

(4.20)

Iσ(χ0)
χ0≫1−−−→ c5

f(σ)

(1 + σ2)1/3
χ
2/3
0 , (4.21)
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Figure 4.2: Probability Pm for a high-energy photon to decay into an electron-
positron pair after crossing half-a-wavelength of a LP background field of wavelength
λ = 0.8 µm, as a function of the photon energy γγ = ℏωγ/(mec

2) and background
field amplitude a0: (a) integrating numerically Eq. (4.13), (b) computed using the
approximate expression Eq. (4.17), (c) extracted from one-dimensional PIC simu-
lations. In all three panels, the solid white lines report the isocontours of the first
panel. In panel b), the isocontours obtained from Eq. (4.17) are shown in red dot-
dashed lines. White dotted lines correspond to constant values of χ0 = 0.1, 1, 16.5
from bottom left to top right corners.

where we used Eqs. (2.45) and (2.46), and c3 = 27
√
π/2/64 ≃ 0.529, c4 =

9
√
3π/64 ≃ 0.765 and c5 = 32/345Γ4(2/3)/(56π) ≃ 1.789.

Dependence of Pm on the field amplitude and the gamma photon
energy

A consequence of the result shown in fig. 4.1 is that if we consider the interac-
tion of a gamma flash with a ultra-high intensity laser the use of CP does not
provide significant advantages, also given the experimental challenge of pro-
ducing circularly polarised high intensity beam. The role of the polarisation
will be discussed in more details in Sec. 4.3.2, while in this section we focus
on the LP case, as the CP case is easier and can be treated with the same
procedure

The impact of the gamma photon energy γγ and the background field am-
plitude a0 (or equivalently intensity I0) on pair production is summarized in
Fig. 4.2. We consider here a given background field wavelength λ = 0.8µm).
Figure 4.2 shows the probability Pm for a high-energy photon to decay in a
pair after crossing half a wavelength of a LP background field: (a) integrat-
ing numerically Eq. (4.13) which provides an exact value of Pm; (b) using the
approximate but fully analytical expression given by Eq. (4.17); (c) extracted
from 1D PIC simulations of the interaction of a flash of high-energy photons
colliding head-on with a plane wave (details are given in A.2).

Let us first discuss panel (a) where, in addition to the probability iso-
contours (solid white lines), the dotted white lines represent the contours of
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constant quantum parameter, for χ0 = 0.1, 1 and 16.5. As χ0 ∝ γγ a0, these
are straight lines with a −45◦ slope.

In the limit χ0 ≪ 1, i.e. the bottom-left of Fig. 4.2, Pm assumes very small
values. In this limit, the time-integrated rateRmτ/4 scales as γ−1

γ χ
3/2
0 exp[−8/(3χ0)]

[Eq. (4.20)] and the exponential term, depending only on χ0, gives the domi-
nant contribution to Pm. As a result, the isocontours of Pm (solid white lines)
behave as nearly straight lines, roughly parallel to the contours of constant χ0.
We wish to stress however that the dependence on γ−1

γ cannot be fully ignored:
the isocontours of Pm are less steep than the isocontours of χ0 which indicates
that Pm increases faster with a0 than with γγ. In this range of small χ0, for
which probability and time-integrated rate are equivalent, the importance of
increasing a0 to improve pair production was already pointed out in [Blackburn
et al., 2017]. However, the probability variation with both a0 and γγ needs to
be examined in more details at higher χ0.

Indeed, the dependence with γ−1
γ plays a more important role as χ0 in-

creases so that χ0 can not be considered as the only relevant parameter in
order to optimize the pair production rate. This is clearly seen by consider-
ing the isocontours of Pm in (a0,γγ)-plane, Fig. 4.2(a): the isocontour slope
becomes shallow and eventually changes sign. Thus, for any value of Pm, a
minimum field strength a0 is needed in order to obtain the desired level of
probability. A corollary is that, at constant a0, increasing γγ increases the
probability Pm up to a maximum value, beyond which a further increase of γγ
would only decrease Pm. The minimum of each isocontour can thus be found
by solving ∂Pm/∂γγ = 0, which one can recast in the form

dIσ

dχ0

− Iσ(χ0)

χ0

= 0 . (4.22)

Interestingly, this equation involves only χ0 so that the minima of the proba-
bility isocontours lie on a straight line of constant χ0. This a priori surprising
result can be better understood noting that both a0 and Pm are Lorentz in-
variants, the minimum value of a0 to reach a given probability Pm can depend
only on the Lorentz invariant involving the photon energy, i.e. χ0. Solving
numerically Eq. (4.22) for σ = 0 (LP case), we obtain1 χ0 ≃ 16.5, which is
reported by a dotted line in Fig. 4.2.

Let us now consider panels (b) and (c) of Fig. 4.2. The probability Pm com-
puted from Eq. (4.17) is plotted in panel (b) with the corresponding isocontours
(red dashed lines). The white lines are the isocontours of the probability cal-

1Solving Eq. (4.22) for arbitrary values of σ ∈ [−1, 1] leads to χ0 in between 16.5 and
17.2, and corresponding values of Iσ(χ0) in between 5.3 and 6.0.
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culated numerically (as in panel (a)) and show an excellent agreement between
the two approaches. This validates the approximate form, Eq. (4.17), which
has the advantage to be completely analytical and can now be used to get quick
yet precise estimates of the probability Pm. Finally, panel (c) reports the prob-
ability extracted from 1D PIC simulations of the head-on collision of a flash of
high-energy photons with a laser beam. The probability was extracted from
the depletion of high-energy photons after crossing half a laser wavelength.
Here again, a very good agreement is observed with the isocontours (white
lines) obtained from the exact integration shown in panel (a). This last panel
thus provides a cross-benchmark of our model and the Monte-Carlo module for
nonlinear Breit-Wheeler pair production implemented in our PIC code Smilei .

Gamma flash-laser interaction with an arbitrary collision angle

Before moving on to the generalisation of the model to pulses with a time
envelope, we briefly discuss how the angle between the gamma flash and the
laser pulse affects the probability of pair creation.

The first difference between head-on collision and the general case is the
time for a gamma photon to cross a period of the PW. Let us consider a gamma
photon with velocity c = cû with û a unit vector pointing in an arbitrary
direction. Let us denote θ the angle between the momentum of the gamma
photon and the direction of propagation of the PW such that û · ẑ = cos(θ).

The length of the PW crossed by the gamma photon is given by

∆z(t) = zγ(t)− zPW (t) = cû · ẑt− ct = c(1− cos(θ))t . (4.23)

Then the time tλ for a photon to cross a period of the wave is such that
∆z(t) = −λ and so

tλ =
λ

c(1− cos(θ))
=

τ

1− cos(θ)
. (4.24)

As expected, for θ = π (which corresponds to head-on collision) we retrieve the
time tλ = τ/2. Instead for θ → 0 the time tλ → +∞: the gamma photon is co-
propagating with the wave and is experiencing a constant field. The quantum
parameter of such a gamma photon propagating into the plane wave Eq. (4.7)
is given by using Eq. (2.39)

χγ(t) =
χ0

2
∥σ cos(ω′t)(ŷ− (û · ŷ)û− û× ŷ)+ sin(ω′t)(x̂− (û · x̂)û+ û× ŷ)∥ ,

(4.25)
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where
ω′ =

τ

tλ
ω . (4.26)

The frequency modification is related to the direction of propagation of the
photon. The frequency is double for head-on collision and tends to zero for the
co-propagation. Let us look in more detail at the expression of the quantum
parameter for the case of a LP PW (σ = 0)

χγ(t) = | sin(ω′t)|∥x̂− (û · x̂)û+ û× ŷ∥ . (4.27)

The quantum parameter is now tλ/2 periodic, as indeed tλ/2 is the time for
a photon to cross a peak of the field of the plane wave. Moreover there is
a geometric factor depending on the relative orientation of the propagation
direction of the gamma photon and the PW. This factor is equal to 2 for
û = −ẑ (head-on case), and 1 for û = ŷ (perpendicular propagation). More
generally this factor tends to zero when the gamma photon is co-propagating
with the wave, and is maximum for head-on collision. The derivation of the
probabilities and computation of the integral can be made in the same way
as for the head-on collision, using instead the Eq. (4.27) for the quantum
parameter time dependence . In the rest of this work we will focus on the head-
on case because it maximises the quantum parameter, but the generalisation
to arbitrary angles of collision can be easily performed.

4.3 Probability of pair creation in laser pulses

with a time envelope

4.3.1 Total decay probability in a finite pulse

Having computed the elementary probability Pm of conversion of gamma pho-
tons into pairs during one PW peak, we will show in this section how to use this
basic block to compute the total probability of pair creation after the head-on
interaction with a finite pulse. In particular, we will present the analytical
model to take into account the temporal envelop of the pulse.

As will be further discussed in the following, considering parameters typical
of the upcoming generation of laser facilities, the probability for a high-energy
photon to decay into a pair after crossing a single half-wavelength of the back-
ground field is in general small compared to 1. This is however not the case
when considering the cumulative effect of crossing several wavelengths.

Let us denote as t0 = 0 the time at which the photon starts to interact with
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Figure 4.3: Temporal evolution of the probability for a high-energy photon with
normalized energy γγ = ℏωγ/(mec

2) = 103 to decay into an electron-positron pair
while interacting with a plane wave background field in head-on collision. Consider-
ing a constant background field envelop with (a) a0 ≃ 82 corresponding to χ0 = 0.5
and (b) a0 ≃ 660 corresponding to χ0 = 4. Considering a background field with
sin2 temporal profile with maximum field amplitude (c) a0 ≃ 82 corresponding to
χ0 = 0.5, (d) a0 ≃ 660 corresponding to χ0 = 4. Solid lines correspond to the exact
probability obtained by integrating numerically Eq. (4.6), dashed lines and dots to
the theoretical prediction obtained from Eq. (4.29), for LP (σ = 0, black) and CP
(σ = ±1, blue) cases. The red dash-dotted lines correspond to the theoretical pre-
diction from Eq. (4.29) using the approximation of Eq. (4.17) for LP.
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the background field 2. The probability for a high-energy photon to decay into
a pair after t = nτ/4 of interaction with the background field (or, equivalently,
after crossing n local maxima of the field amplitude) Ptot(t = nτ/4), can be
derived from the number Nγ of photons surviving after a time t:

Nγ(t = nτ/4) = N0

n∏
m=1

Pm with Pm = 1− Pm = exp(−Rmτ/4) . (4.28)

Here we have used m as a running index for compactness, and Pm [given by
Eq. (4.13)] and Pm denote the probabilities for the photon to decay and not
to decay, respectively, during the mth interval. We can then write the total
probability of producing a pair as

Ptot(t = nτ/4) = 1−
n∏

m=1

Pm = 1− exp (−R t) with R =
1

n

n∑
m=1

Rm , (4.29)

R denoting the average pair production rate.

Let us note that this formula is exact at t = nτ/4 with n ∈ N, and –
as shown in figure 4.3 and discussed below – can also be used with good
approximation at all times t≫ τ/4. Moreover, in the case of a monochromatic
plane wave (no temporal envelop), the average pair production rate simply
reduces to R = Rm. When dealing with a pulse with a finite temporal envelop,
however, equation (4.29) needs to be computed combining the contribution
of successive (τ/4)-long intervals, using the local maximum of the background
field strength for each time interval. This approach gives very good results
even considering ultra-short, few cycles laser pulses. To confirm this, Figure 4.3
shows the temporal evolution of the decay probability for a high-energy photon
with γγ = 103 colliding head-on with different background fields. In panels
(a) and (b), the high-energy photon interacts with a background field with
constant amplitude a0 ≃ 82 [χ0 = 0.5, Fig. 4.3(a)] and a0 ≃ 660 [χ0 =

4, Fig. 4.3(b)]. The interaction lasts for a time τ , i.e. the photon explores
two wavelengths of the background field. In panels (c) and (d), the high-
energy photon interacts with a background field with a sin2 temporal profile
in intensity, a full-width-half-maximum (fwhm) of 5τ , and maximum field
strength a0 ≃ 82 and a0 ≃ 660, respectively.

In all panels, the solid lines denote the exact probability computed by
numerically integrating Eq. (4.6), considering either LP (black lines) or CP
(blue lines) background field. We can see that, for χ0 = 0.5, CP produces less

2Throughout this chapter and the next one, we consider background fields with a finite
(e.g. sin2) temporal profile so that this time t0 is uniquely defined.
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pairs than LP, while for χ0 = 4 CP is slightly more efficient [the difference
between the two polarisations will be discussed in details in the next section
4.3.2]. These probabilities are compared against the prediction of Eq. (4.29),
computed using either the numerically evaluated Iσ(χ0) [dashed lines in panels
(a) and (b), dots in panels (c) and (d)] or the approximation given by Eq. (4.17)
to compute Rm (red dot-dashed lines, only computed for LP as it is exact
for CP). Note that here and in the following, whenever Eq. (4.17) is used,
the approximation of Eq. (2.47), which is an improved version of the Erber
approximation, is exploited.

Panels (a) and (b) show an excellent agreement between the exact compu-
tations (solid lines) and Eq. (4.29) (dashed lines), both using the numerically
integrated values of Iσ(χ0). A remarkably good agreement is also found when
considering the fully analytical approximation of Eq. (4.17) for Iσ(χ0) (red
dot-dashed lines). The probability is slightly overestimated in this case, as
expected for χ0 ∼ 1 for which Eq. (4.17) shows the greatest departure from
the exact expression of Iσ(χ0).

Similarly, an excellent agreement between all three approaches is found in
panels (c) and (d) considering a short (5τ fwhm in intensity) background field.
In this case the value of Rm in each τ/4 interval is computed by taking the
value of Iσ given by the local maximum of the field, i.e. the time variation of
the envelope is considered slow during τ/4. The validity of this assumption is
confirmed by PIC simulations discussed in the following chapter. In particular,
Figure 4.3 shows that the approach leading to the derivation of Eq. (4.29),
which consists in treating the cumulative contributions of successive maxima
of the background field, remains a very good approach even for ultra-short,
few cycle, background fields.

Last, we note that the results of 1D PIC simulations performed with
Smilei (see A.2 for details) are not distinguishable from the exact computa-
tions (solid lines) for all reported cases, and are therefore not shown in Fig. 4.3.

4.3.2 Impact of the electromagnetic field polarisation

The asymptotic behavior provided by Eqs. (4.20) and (4.21) allows to obtain
some interesting insights into the importance of the electromagnetic field po-
larization on pair production.

We recall that, motivated by experimental constraints, we compare LP and
CP at fixed energy: this condition implies that the CP beam has a lower max-
imum amplitude. Because of this, for χ0 ≪ 1, equation (4.20) shows that
any departure from the LP case leads to a tremendous decrease of Iσ(χ0).
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Indeed the exponential cut-off of the pair production rate is strongly affected
by the decrease of χm with |σ| as shown in Eq. (4.12). In contrast, for χ0 ≫ 1,
f(σ)/(1+σ2)1/3 is an increasing function of |σ|: the reduction of the field peak
amplitude is compensated by the fact that the absolute value of the amplitude
is not time dependent [see Eq.(4.10)]. Hence, in this range, increasing the
background field ellipticity increases the pair production rate. However, the
rate increase from the LP to the CP case is small (less than 12%) so that con-
sidering CP for boosting pair production results in a marginal improvement3.

The differences between the LP and CP cases are evidenced in the inset
in Fig. 4.1(b), where I0(χ0) is found to be orders of magnitude larger than
I±1(χ0) for χ0 ≪ 1 while I±1(χ0) is only about 10% larger than I0(χ0) for
χ0 ≫ 1. Similar conclusions can be drawn from Fig. 4.3. For small values of
the photon parameter, χ0 = 0.5 (left panels), the pair production probability
is significantly larger considering a LP background field than a CP one. For
the higher value of χ0 = 4 (right panels), CP increases, but only marginally,
pair production.

4.3.3 Threshold for abundant probability of pair creation

Our model can be used to predict the efficiency of pair production for a given
set of laser and high-energy photon parameters. In the case of large secondary
pair production, our prediction will underestimate the number of pairs as our
analysis is limited to the soft-shower regime. Most of the photons crossing the
laser will be converted in pairs over a time ∆t if the quantity R∆t in Eq. (4.29)
becomes of order 1, for which4 Ptot(∆t) ≥ 0.63. In fig. 4.4, we highlight
in yellow the region in the (a0, γγ) plane where the probability for a high-
energy photon to decay into a pair after interacting with a single maximum
(half-wavelength) of the laser pulse Ptot(τ/4) is equal or larger than 0.63 (the
pulse duration is here τ/2, but the time required for the photon to explore
half the laser wavelength is ∆t = τ/4). The condition Ptot(∆t) = 0.63 is
also shown for pulses with a step-like time profile (solid lines) and duration
5 τ (green, ∆t = 2.5τ) or 100 τ (blue, ∆t = 50τ), and pulses with a sin2

intensity time profile with fwhm 5τ (green dashed line, ∆t = 5τ) and 100 τ

(blue dashed line, ∆t = 100τ). Note that both step-like and sin2 time profiles
correspond to laser pulses with the same energy and peak power, and lead
to similar requirements to reach Ptot ≃ 0.63. Comparing the blue and green

3Moreover, in practice, implementing CP on multi-petawatt facilities would lead to a
decrease of the delivered laser pulse energy.

4Note that in this limit, the probability cannot be assimilated to the time-integrated rate,
as in the case of very weak pair production.
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Figure 4.4: Position in the (γγ , a0)-plane [equivalently in the (Eγ , I0)-plane] at
which R∆t = 1 [Ptot(∆t) ≃ 0.63] for the interaction with a single maximum of
the incoming pulse (half-wavelength, i.e. pulse duration equal to τ/2) for which
the interaction lasts for ∆t = τ/4 (yellow line) and for the interaction with pulses
with a step-like time profile (solid lines) of duration 5τ (green) and 100τ (blue), and
pulses with a sin2 time envelope with fwhm of 5τ (green dashed line) and 100τ (blue
dashed line). The color-shaded areas above the plain lines correspond to R∆t > 1
(considering the step-like time profiles). The dotted black lines correspond to con-
stant χ0 = 0.1 , 1 , 4 , 16.5 . The symbols highlight the parameters of the simulations
discussed in chapter 5

lines, we see that at constant γγ a longer pulse satisfies the condition of efficient
conversion for a lower value of a0. Hence, even though the condition Rτ/4 = 1

(yellow solid line) is quite stringent and achieving a high probability level over
a time interval τ/4 can be difficult, the condition R∆t ≳ 1 is significantly
relaxed considering longer interaction time. Indeed, significant (order 1) pair
production probability is expected on forthcoming multi-PW laser facilities
(see Sec. 5.4 for details).

Let us also note that, when Rτ/4 ≥ 1 (yellow area), more than 63% of
conversion is achieved after crossing a single wavelength of the background
field, and more than 99% of the incident gamma photons are converted into
pairs in less than 3 periods. This gives a very robust condition for abundant
pair creation, and it determines a limit above which is not useful to further
increase the laser amplitude to increase the number of primary pairs. As we
will show in the following, this condition (Rτ/4 ≥ 1) can also be invoked to
find the optimal laser transverse shape and focal spot for a given laser energy.
The squares and crosses in Fig. 4.4 indicate the peak value of a0 and γγ used
in 3D PIC simulations discussed in detail in the next chapter for a sin2 pulse
of fixed duration (τFWHM = 5τ). The simulations are performed by varying
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the peak intensity at constant energy, starting form the largest value (squares)
and decreasing it (crosses). Indeed as we will see the two sets show a different
behaviour depending on whether the two reference simulations (squares) lie
in the yellow or green region of Fig. 4.4. The different sets of simulations
correspond to the same values of χ0, as visible explicitly for the squares, but
lie in different regions of equiprobability.

As a final remark, we point out that the probabilities considered so far
are computed considering a high energy gamma flash, with all photons having
the same energy value. Generalizing our results to a given photon energy
distributions is however straightforward as there is no coherence effects between
the high-energy photons. In practice, we expect the high-energy photon beam
to have a broad energy spectrum or at least a finite energy width (see e.g.
Refs. [Gonoskov et al., 2017,Niel et al., 2018b,Blackburn and Marklund, 2018,
Phuoc et al., 2012, Gong et al., 2017, Capdessus et al., 2018, Vranic et al.,
2019, Magnusson et al., 2019, Zhu et al., 2020, Sampath et al., 2021]). The
total probabilities can thus be computed independently for all relevant high-
energy photon energies with Ptot(γγ) a function of γγ. Then, to compute the
total number Npair of produced pairs, one only needs to integrate over the
whole high-energy photon spectrum: Npair =

∫
dγγ Ptot(γγ) dNγ/dγγ, where

dNγ/dγγ denotes the high-energy photon energy distribution.

4.4 Probabilitiy of pair creation in laser pulses

with transverse spatial profile

In this Section we generalize the model developed in Sec. 4.3 to accurately
describe pair production in complex, spatially structured laser beams. We
consider a high energy gamma photon flash with a transverse size larger than
the transverse spatial extension of the laser pulse. The interested reader could
also check [Óscar Amaro and Vranic, 2021] where different geometries of the
seeding particle beam are considered.

Since we deal with high-energy photons colliding head-on with a strong
background field, we can consider that the photon momentum is unchanged as
the photon crosses the background field, until it decays. Thus its trajectory is
a straight line and the field seen by the photon along its trajectory is known
and depends only on the photon initial position (x0, y0) in the plane transverse
to the direction of propagation of the laser beams. For analytical tractability,
we consider all photons to be propagating exactly in the z-direction. It follows
that the quantum parameter of any photon is known throughout the photon
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interaction with the background field, and for a given background field, is
determined uniquely by the photon initial position (x0, y0). As a result, the
total probability Ptot for any photon to decay into a pair after interacting with
the laser pulse is also determined by the photon initial position, and the total
number of produced pairs at the end of the interaction between the flash of
high-energy photons (with density nγ and longitudinal width Lγ) simply reads

Npair = nγLγ σtot with σtot =

∫
dx0 dy0 Ptot(x0, y0) . (4.30)

A key quantity to model pair production is thus the total cross-section σtot,
here defined as the integral of the total probability over the transverse plane.

Notice that, as discussed in the last paragraph of Sec. 4.3, for a given
gamma photon energy spectrum, σtot can be considered a function of γγ, and
the total number of produced pairs can be computed integrating over the
incident high-energy photon spectrum. Moreover, equation (4.30) can be
easily generalised to account for a transverse profile of the incident high-energy
photon beam. In particular, in the limit where this beam is much narrower
than the laser beam, equation (4.30) reduces to σtot ≃ Sγ Ptot, where Sγ is the
transverse area of the high-energy photon beam, and Ptot is computed at the
(transverse) location of the high-energy photon beam.

To compute the total probability at any position (x0, y0) we use Eq. (4.29)
and proceed as described in section 4.3, reconstructing the total probability
from successive time intervals of duration τ/4. Gamma photons at different
positions in the transverse plane explore different field peak amplitude, and
probe a different field structure both in time and space, in particular if we
consider arbitrary Laguerre-Gauss pulses described in Chapter 1.

For simplicity, we consider the field transverse distribution at focus, taking
the absolute value of the field complex amplitude at z = 0. This approach,
which neglects the effects of diffraction, is justified whenever the duration of
the interaction (∼ τFWHM) does not exceed the time zR/c for light to cross
the laser pulse Rayleigh length. As shown in the following, this approximation
proves satisfactory considering typical ultra-short (Ti:Sapphire) light pulses.
The validity and generalisation of this approach will be discussed in Sec.5.5.

The probability map for Ptot computed over the whole interaction time
in the transverse focal plane by considering the model above is shown in
Fig. 4.5(a) for the case of a LG beam with ℓ = 5, p = 0 and a0 = 2000 colliding
with a flash of photons with energy γγ = 400 (corresponding to χ0 = 4.85).
Note that the beam amplitude averaged over a period is the required quantity
to obtain the map presented in Fig. 4.5(a) , while the details of the phase
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Figure 4.5: Probability map for a photon with energy γγ = 400 to produce a
pair during the interaction with the LG05 beam with fwhm of 5τ and maximum
amplitude of the reference Gaussian beam equal to a0 = 2000, corresponding to
χ0 ≃ 4.85. a) Analytical prediction from Eq. (4.29). b) Numerical results from the
3D PIC simulation.

structure can be neglected. This will be discussed further in Chap.5
Integrating over the transverse plane the Ptot shown in Fig. 4.5(a) provides

the total cross-section σtot ≃ 91.4λ2. To verify the validity of the approx-
imations used in the model (that neglects phase dependence and diffraction
effects), we show in Fig. 4.5(b) the probability map extracted from a 3D PIC
simulation, where those effects are intrinsically taken into account. The prob-
ability is extracted at the end of the interaction and defined as the ratio of the
density of the remaining photon over the initial one. A thorough comparison
between the model and PIC simulations is presented in the next Chap.5. Here
we just point out that an excellent agreement is found with the theoretical
prediction of panel (a). The cross-section measured in the Pic simulation is
σtot ≃ 91.0λ2, confirming the predictive capability of our simple model for
the case of spatially structured beams. The parameters of the simulations are
detailed in the next chapter 5).

4.5 Conclusions

Let us summarize the results of this chapter. We considered a configuration in
which gamma photons are converted in pairs by colliding with an electromag-
netic wave n the soft shower limit, i.e. secondary gamma photons emitted by
pairs are neglected. We derived the general form of the probability for gamma
photon conversion into pairs in an arbitrary electromagnetic field (4.6). The
key element to compute the probability.

First we considered head-on collision of the photons with a plane wave
of arbitrary polarization and we evaluate this integral. We then provide an
analytical approximated form that compare well with the numerical results.
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For the specific case of a LP plane wave we also verified that in a broad range of
field intensity and photon energy, the elementary probability of pair production
after the interaction with a single peak of the PW (Pm) obtained by these
techniques are in excellent agreements among themselves and with the results
of a series of 1D PIC simulations. This allowed us to both validate the model
and benchmark the Monte-Carlo module of Smilei . We also showed that in
the soft-shower configuration considering CP does not increase significantly
pair production with respect to the use of LP pulses.

We then generalised the model using Pm to evaluate the probability of pair
creation in a finite pulse with a temporal envelope. The comparison of the
analytical or semi-analytical results and the 1D PIC simulations in the finite
pulse gives very good agreement.

Finally we further generalised our model to take into account the spatial
intensity distribution of the laser pulse in the transverse direction. We tested
for a given configuration that the model agrees well with the associated 3D
PIC simulation. In the next chapter we will extend this comparison to different
configurations, showing that the model predictions allow to give guidelines for
optimising pair production in forthcoming experimental facilities.
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In this chapter we further test the model discussed in Chap. 4 in a broad
range of laser and gamma photons parameters. In the following we will present
in detail the comparison of the model prediction and 3D PIC simulations
of LG and Gaussian beams interacting with a gamma flash, considering two
different intensity regimes. Our results confirm that the model introduced in
the previous chapter allows to take into account not only Gaussian beams but
also the complex LG beam structure. We then use these results to predict
what can be expected in near future experiments.
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Figure 5.1: Typical set-up of the 3D PIC simulations, with λ and τ the laser
wavelength and the optical cycle, respectively.

5.1 Setup of the simulations

The 3D PIC simulations are performed with the open-source code Smilei [Der-
ouillat et al., 2018], considering the setup schematically represented in Fig. 5.1.
For each simulation the volume is given by 40λ× 40λ× 14λ (in the x, y and z
directions, respectively) with spatial resolution λ/24 and temporal resolution
at 95% of the CFL condition [Nuter et al., 2014].

An intense laser pulse (with wavelength λ = 0.8µm) is injected from the left
boundary z = −5λ using the method presented in Ref. [Pérez and Grech, 2019]
that allows the Maxwell-consistent injection of an electromagnetic wave with
an arbitrary spatio-temporal profile. Here, this method is used to inject the
laser pulse by prescribing its spatio-temporal profile in its focal plane [i.e. the
(x, y)-plane at z = 0], as given by the complex amplitude Eq.(1.41) at z = 0,
multiplied by a temporal envelope so that the laser pulse has a sin2 temporal
profile in intensity with τFWHM = 5 τ , and total duration of 10 τ . The laser
beam collides head-on with a counter-propagating flash of high-energy photons
with a finite longitudinal extension Lγ = λ/6, transverse extension equal to the
simulation box, and a density nγ equal to the critical density nc = ϵ0meω

2/e2.
The duration of the simulation is longer than the overlapping time of the two
light beams, but short enough that none of the photons or secondary particles
escape from the simulation box. All results presented hereafter have been
extracted at the end of the simulations.

In Secs. 5.2, we discuss the results of the following two series of simulations:
the first one with a0 = 2000 and γγ = 400, the second with a0 = 400 and
γγ = 2000, both series corresponding to a reference quantum parameter χ0 ≃
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6×10−6 a0 γγ ∼ 4.85 (for λ = 0.8 µm). For each series, we varied the transverse
spatial profile of the high-intensity laser pulse at fixed energy, in order to
study the impact of the spatio-temporal field profile. Different LG beams are
considered (where we only vary ℓ, but keep p = 0) and extended gaussian (EG)
beams . For each LG beam (i.e. each value of |ℓ|), we define the associated EG
beam as the Gaussian beam that has the same maximum field amplitude and
carries the same total energy. As umax

pℓ decreases with |ℓ| [Eq. (1.47)] and the
energy is kept constant, the waist of the EG beams increases with respect to the
fundamental Gaussian (equivalent to LG00) as wℓ = w0

√
|ℓ|! e|ℓ|/2|ℓ|−|ℓ|/2 ≥ w0 .

Within each series, a0 refers to the maximum field amplitude of the refer-
ence Gaussian beam (for which we consider w0 = 3λ). Notice however that
the actual peak intensity decreases since the transverse surface increases and
we keep the same laser pulse energy (equal to ≃ 10 kJ for a0 = 2000 and
≃ 410 J for a0 = 400). The photon flash surface energy density mec

2 γγnγd is
≃ 5mJ/λ2 for the first series (with γγ = 400) and ≃ 25mJ/λ2 for the second
one (γγ = 2000).

As highlighted in fig. 4.4 where the reference Gaussian cases are indicated
by squares, the first series of simulations allows us to explore the physics in
the regime of high pair production probability after a single τ/4 interval (i.e.
for this case Rmτ/4 > 1 is in the yellow region). On the contrary, with the
second series we investigate a regime where efficient pair production is achieved
thanks to the cumulative effects of several wavelength (i.e. Rmτ/4 < 1, but
the reference Gaussian case is above the green line the figure).

5.2 Efficiency of pair creation for various peak

amplitude at constant pulse energy

In this section we analyse systematically the interaction of the gamma flash
with LG beams having the same energy and time duration, but different max-
imum amplitudes. The PIC simulations are compared with our model. In
fig. 5.2 we show the value of the quantum parameter experienced by the pho-
tons of energy γγ = 400 for four different LP LG beams of order l = 0, 1, 2, 3

at focus. Analogous to the field structure, the quantum parameter for l ̸= 0

consists in lobes, , rotating around the axis of propagation. As discussed in
Sec.4.4, in order to take into account in our model the spatial distribution,
we compute the probability over an interval of duration τ/4 and we consider
the field that corresponds to the average intensity distribution, that is without
the effect of the LG phase evolution. This gives an excellent approximation
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Figure 5.2: Photon quantum parameter χγ in the head-on collision of photons
of energy γγ = 400 with a LP LG beam at focus [i.e. z = 0 in Eq. (1.41)] with
a0 = 2000, p = 0 and a) ℓ = 0, b) ℓ = 1, c) ℓ = 2, d) ℓ = 3.

because each of these structures moves to the position of the consecutive one
in precisely half a period, and the photon crosses it in τ/4.

5.2.1 Simulations in the regime of high pair production

probability (Rmτ/4 > 1)

In order to investigate the dependence of the number of produced pairs on the
laser structure, we present first a study in the regime satisfying Rmτ/4 > 1

for the reference Gaussian beam, in which we expect efficient pair production.
We remind that we consider here photons with normalized energy γγ = 400

and a reference Gaussian beam with maximum amplitude a0 = 2000, leading
to χ0 ≃ 4.85 (all other parameters have been specified in Sec. 5.1).

To test the validity of our analytical predictions and model, that do not
include secondary pairs, we performed simulations (hereafter referred to as
frozen cases) in which the produced pairs are prevented to further radiate.
The same simulations are also performed including the full system dynamics
(hereafter referred to as full cases), that is the pairs produced by the gamma
flash laser interaction can at their turn interact with the laser fields and po-
tentially radiate and produce secondary pairs. This two sets of simulations
confirm that in all the cases considered we are in the soft-shower regime, and
the number of produced pairs predicted by the model is representative of the
expected realistic results, with a small discrepancy when the full dynamics are
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Figure 5.3: a) Number of produced pairs, and corresponding cross section σtot/λ
2

after the interaction of gamma photons with energy γγ = 400 and a counter-
propagating LG with p = 0, ℓ ∈ [[−1, 5]] and a0 = 2000 [CP (blue), LP (black)],
and the corresponding LP EG (green). Frozen simulations (dots), full simulations
(squares) and theoretical predictions from Eq. (4.30) (dashed lines). The insets show
the probability map for the LG00, LG05 and EG05 cases. b) Relative difference in
the number of produced pairs between the frozen and full simulation results.

included.

Figure 5.3(a) shows the number of produced pairs at the end of the interac-
tion for all the tested cases, LP LG (in black), CP LG (blue) and EG (green),
dots refer to the frozen simulations and squares to the full ones. Considering
a LP LG laser beam, pair production efficiency increases with ℓ. This means
that for the high value of a0 considered here, it is preferable to increase ℓ, even
if it decreases the maximum amplitude [as shown in fig. 1.4], as it increases the
characteristic transverse size of the beam, and so the interaction area where
the probability is high [see inset in fig. 5.3(a)]. The EG beams (which have
by construction the same maximum amplitude of the LG beams but Gaussian
profile) are more efficient than the corresponding LG, up to to ℓ = 4, as they
have a larger region with substantial probability in their probability maps.
However, a slightly greater number of pairs are produced in the simulation
with LG05 than EG05 beam. This because the maximum field amplitude has
dropped substantially and a large part of the interaction region in the EG case
has low probability of pair production [see inset in fig. 5.3(a)]. Predictions
form our model discussed in Sec. 4.4 and based on Eq. (4.30), shown in dashed
lines, are in very good agreement with both EG and LG simulations.
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Based on the prediction from fig. 4.1, for the considered χ0 ≃ 4.85 we would
expect at first look a higher efficiency in the CP case than with LP, contrary to
what is obtained from PIC simulations [blue symbols in fig. 5.3(a)]. However,
given the spatial structure of the laser field in the transverse plane, in a large
part of the interaction region the quantum number is χ < 2.5, i.e. the value
above which CP should be favoured based on the analysis shown in fig. 4.1(b)
obtained within the plane wave approximation. Hence, the slightly higher
number of pairs produced in the CP case with respect to LP in the region
where χ > 2.5, cannot compensate the higher efficiency of LP in the region
of χ < 2.5. Note that the results using a CP beam are independent from the
sign of ℓ (i.e from the total angular momentum). This suggests that the total
angular momentum of the laser has no effect on the number of pair produced.
Note however that we do not account for the spin polarization effects. Since
we are focusing on the soft shower regime where there are few secondary pairs,
the dynamics of the pairs affected by spin effects is expected to play a minor
role for pair production in our case. Nevertheless, in other configurations spin
effects can impact the created pairs and gamma photons dynamics as shown
in Refs. [Chen et al., 2019,Seipt and King, 2020].

For completeness, we compare the results of the frozen cases with simu-
lations reproducing the full dynamics of the system [squares in Fig. 5.3(a)].
As highlighted in Fig. 5.3(b), the difference in the produced number of pairs
is always below 25% of its value in the frozen case, and it decreases with |ℓ|.
This confirms that the majority of pairs comes from the conversion of primary
gamma photons and not from subsequent radiation, as expected for a soft-
shower. In this regime, our model, which accurately captures the physics of
pair production for the frozen simulations (dashed lines), can be therefore used
to predict pair production in realistic conditions.

5.2.2 Simulations in the regime of moderate pair produc-

tion probability (Rmτ/4 < 1)

In this second series of simulations we explore the regime of Rmτ/4 < 1,
maintaining the same maximum χ0 as in the previous section by exchanging
the values of field amplitude (now equal to a0 = 400) and photons energy (now
equal to γγ = 2000). Note that considering a laser duration (τFWHM = 5τ),
we still expect efficient pair production (the reference plane wave simulation
lies above the green dashed line in fig. 4.4). This can be seen in the inset
of fig. 5.4(a) for the Gaussian case LG00 where a significant region exhibits a
probability of order 1.
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Figure 5.4: a) Number of produced pairs and corresponding cross section σtot/λ
2,

after the interaction of gamma photons of energy γγ = 2000 with a counter-
propagating LG beam with p = 0, ℓ ∈ [[−1, 5]] and a0 = 400 [CP (blue) and LP
(black)], and the corresponding LP EG (green). Full simulations (squares) and the-
oretical predictions from Eq. (4.30) (dashed lines). The insets show the probability
map for the LG00, LG05 and EG05 cases. b) Relative difference in the number of
produced pairs between the frozen and full simulation results. The frozen cases are
not shown in panel (a) as the difference with the full ones is always below 15%.



Chapter 5 79

As fig. 5.4 shows, for the simulations with LG beams the number of pro-
duced pairs is optimized for ℓ = 3. The increase for |ℓ| ≤ 3 can be explained
as in the previous section by geometrical considerations, i.e. the area with
the field being large enough to reach Ptot of order one is getting wider with
|ℓ|. In the contrary for |ℓ| > 3, the laser field amplitude becomes too low and
having a laser beam with a larger transverse extension does not improve pair
production. This means that at low intensity the effect the effect of decreasing
Ptot on pair production is more important than (and hence is not compensated
by) the increase in transverse size of the laser beam.

Moreover, in this regime, all LG beams perform better than the correspond-
ing EG, given that the region with high probability (even though smaller than
in the previous section) is larger for the LG beams than EG ones, as shown in
the inset of fig. 5.4 for ℓ = 5. A similar behaviour as the one discussed in the
previous section is observed for the CP simulations and the same explanation
is valid here. Last but not least, our model reproduce with high accuracy the
observed number of pairs in this case as well.

5.3 Energy angular distribution and phase space

of the created pairs

The energy-angular distribution of the produced pairs in the z − x plane (i.e
the plane formed by the laser propagation direction ẑ and the polarization
direction x̂ for the LP case) recorded at the end of the interaction is shown
in fig. 5.5 considering the reference LP and CP Gaussian beams. The top row
gives the positron distribution in θ = arctan(px/pz) and in energy for the LP
beams and the bottom one for the CP beams. The insets show the energy
spectra of particles moving in the positive (same as the laser, black line) and
negative (same as the gamma flash, red line) z-direction.

At high a0 (panels a and c) the produced pairs, initially generated with
momentum in the negative z-direction, are predominantly moving in the same
direction as the laser (corresponding to θ = 0◦) within a cone of aperture 40◦,
meaning that they have been slowed down and then pushed by the laser. They
reach a maximum energy of ≃ 104mec

2 for the LP case and ≃ 8× 103mec
2 for

the CP case, consistent with the decrease of the peak field amplitude in CP
with respect to LP at constant laser energy.

The spatial distribution is drastically modified when considering a0 = 400.
Even if there still is a substantial amount of pairs propagating in the laser
direction, the majority of them keep their original direction, along the initial
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Figure 5.5: Positron distribution as a function of the Lorentz factor γ (equiv.
normalized energy) and the angle θ = arctan(px/pz) for the first simulation series
(left column) and for the second one (right column); LP (CP) in the top (bottom)
row. The insets show the energy spectra for positrons propagating in the positive
(black line) and in the negative (red line) directions.

gamma photons propagation axis and anti-parallel to the laser pulse one. For
these pairs the maximum energy is independent from the polarization, as shown
in fig. 5.5(b)-(d), contrarily to the pairs that are slowed down and pushed by
the laser (right side of the quadrants or black line in the insets).

We can complement these results with the positrons phase spaces, that give
more insights on the spatial distribution of the created pairs.

Let us consider first the phase space of the LP gaussian beam with a0 =

2000 and γγ = 400, shown in fig. 5.6, where the weight, proportional to the
number of particles, is given by the colour-scale. On the top left panel we have
the (z, pz) phase space, where the positive z-axis corresponds to the laser prop-
agation direction. At the end of the simulation the majority of the particles
have pz > 0, i.e. they are pushed by the laser and they co-propagate with it,
consistent with what was shown in the previous section. The vertical stripes
at fixed values of z are separated by λ/2. This is due to the fact that in a LP
plane wave pairs are predominantly created near the maxima of the field, and
this signature persists over time. These stripes are also visible on the bottom
left panel, in the (z, px) phase space, where they correspond to positive and
negative values of the transverse momentum, px > 0 and px < 0, x being the
direction of polarization of the electric field. This is due to the fact that Ex is



Chapter 5 81

0

2000

4000

6000

8000

10000

p z m
c

5 10
z/

3000

2000

1000

0

1000

2000

3000

p x m
c

0 10 20 30 40
x/

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Weight [code units]
1e 6

Figure 5.6: Phase space of the created positrons at the end of the simulation, for
a LP gaussian beam with a0 = 2000 and γγ = 400. The axis of propagation of the
beam is z and the beam is polarised along x.
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Figure 5.7: Phase space of the created positrons at the end of the simulation, for
a LP gaussian beam with a0 = 400 and γγ = 2000. The axis of propagation of the
beam is z and the beam is polarised along x. Please note that here the scale is
logarithmic contrary to other figures in order to see better the distribution.

changing sign over λ/2 and particles acquire opposite transverse momentum.
Considering the (x, pz) phase space shown in the top right panel, we can see
that the particles having the highest longitudinal momentum are the ones at
the center of the pulse. This is consistent with the fact that the pairs created
at the maximum of the laser intensity are produced at early times and are
therefore accelerated for a longer time by the laser.

Let us now consider the phase space of the LP Gaussian beam with the
same peak value of the quantum parameter, but reversed values of a0 and γγ

(a0 = 400 and γγ = 2000), shown in fig. 5.7. One can see that the laser has
a weak influence on the particles and the majority of them are propagating in
the direction of their initial momentum (negative z), as visible in the (z, pz)

top left panel.

We next consider the CP gaussian case a0 = 2000 and γγ = 400, reported
in fig. 5.8. Some differences are visible with respect to the LP case with the
same initial conditions (fig. 5.6) in the (z, pz) phase space. Since the total field
amplitude is constant in the CP case, the stripes seen with LP are not produced
here. The majority of pairs still propagate with the laser beam but the phase
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Figure 5.8: Phase space of the created positrons at the end of the simulation, for
a CP gaussian beam with a0 = 2000/

√
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Figure 5.9: Phase space of the created positrons at the end of the simulation, for
a LP LG beam with ℓ = 1, a0 = 2000 and γγ = 400. The axis of propagation of the
beam is z and the beam is polarised along x.

space is homogeneous, and the peak amplitude of the momentum is smaller
than in the LP case, since the laser peak amplitude is smaller by a factor

√
2.

In the (z, px) phase space now a continuous line appears, oscillating between
negative and positive values of px. In fact, since the particles are created
continuously along the propagation axis, the pairs phase space (z, px, py) is an
helix turning around z, as the particles follows the rotation of the field along
z. The structure in the (x, pz) space, is similar to the LP gaussian case, while
the (x, px) phase space consists in one homogeneous spot going from negative
to positive values of px, which is different the two spots of the bottom right
panel of fig. 5.6.

The phase space of the CP Gaussian beam with the same peak value of
the quantum parameter, but reversed values of a0 and γγ (a0 = 400 and γγ =

2000) is very similar to the LP Gaussian case, and does not bring additional
information. For this reason, it is not shown here.

Finally we show the results of the simulation performed with the LP LG
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beam with the highest amplitude, i.e. l = 1. The phase space reflects the phase
structure of the LP LG beam, for which the two lobes (fig. 1.1) have opposite
signs of the field components. This results in pairs co-propagating with the
laser that are divided into two groups with opposite sign of the transverse
momentum, as visible in the (z, px) space, bottom left panel. Vertical stripes
similar to the LP Gaussian case, but wider, are present around fixed values of
z. Looking at the phase spaces in the transverse x-direction both (x, pz) and
(x, px), the ring shape of the laser intensity can be retrieved, as the spots of
fig. 5.6 are in this case divided into conic shapes.

An important feature of this configuration, is that particles are present also
at the center of the transverse plane, where the field amplitude vanishes, with a
positive longitudinal momentum pz > 0. This suggests that the ponderomotive
push of the laser towards the center of the pulse can help confining pairs. This
should be however confirmed by simulations studying the evolution on longer
timescales, that are left for future research.

This study, supported by complementary simulations (not shown), suggests
that for a0 ≳ γγ most of the created particles propagates along the laser direc-
tion, while for smaller values of the laser maximum amplitude, a large fraction
of pairs keeps their original propagation direction. A complete characterisa-
tion of the pairs spectrum and directionality is beyond the scope of this work,
and will be investigated in more details in the future, as it can give important
information for the planning of upcoming experimental campaigns.

5.4 What can be expected from upcoming facil-

ities?

The model developed in this work allows to predict the pair production capa-
bility of upcoming facilities. In fig. 5.10, we discuss the pair production max-
imum probability and total cross-section as a function of the photon energy
and laser amplitude. The considered parameter range is relevant to ultra-
short Ti:Sapphire (λ = 0.8 µm) lasers, where studies of high-field physics
and QED are already planned [Lee et al., 2018, Meuren et al., 2020, Zhang
et al., 2020,Grech et al., 2021]. Two types of facilities can be distinguished.
First, the Apollon1, CoReLS2 and zeus3 facilities (shown in black in fig. 5.10)

1The Apollon, located on the Plateau de Saclay, south of Paris, France, started operating
at the PW-level [Cros et al., 2014,Papadopoulos et al., 2016]; see also the Apollon website.

2CoReLS, in Gwanju, South Korea, is operating at up to 4PW [Nam et al., 2018]; see
also the CoReLS website.

3A 3PW laser facility being built at the University of Michigan; see the zeus website.

https://apollonlaserfacility.cnrs.fr/en/home
https://corels.ibs.re.kr/html/corels_en
https://zeus.engin.umich.edu
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Figure 5.10: Model predictions considering a laser pulse with sin2 time-envelope in
intensity (τFWHM = 25 fs) and λ = 0.8µm. (a) Maximum pair production probability
from Eq. (4.29). (b) Total cross section normalised to w2

0 using the model discussed
in Sec. 4.4. In both panels (a) and (b) the red lines denote contours of constant
χ0 = 0.1 , 1 , 16.5. The regimes accessible with current and upcoming facilities are
also reported. c) Total cross section normalised to λ2 as a function of γγ computed
for the Apollon facility operating at 1 PW (solid lines), 3 PW (dashed lines) and
7.5 PW (dash-dotted line) and with focusing aperture f/3 (black lines) and f/1.5
(red lines). In this last panel, at a given power, the laser energy is the same for the
different focusing aperture f/N .
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are designed to deliver multiple light beams with duration in between 15 and
30 fs (fwhm) and peak power from 1 to 10 PW. Second, the facet-ii4 and
planned luxe5 experiments will couple conventional electron accelerators with
high-intensity (100 TW-class) ultra-short laser pulses (in white in fig. 5.10).

In fig. 5.10(a,b) the accessible a0 and typical γγ envisioned with these fa-
cilities (following the reference articles) are reported. For Apollon only, we
computed a0 considering a 20 fs light pulse delivering 20, 60 and 150 J on
target, corresponding to peak power of 1, 3 and 7.5 PW, respectively. The
reported value of a0 is then computed for a LP Gaussian beam with fo-
cusing aperture f/3 (where the beam waist for a focusing aperture f/N is
w0 ≃ 0.90Nλ ≃ 2.2 µm), using

a0 ≃ 151

N

√
Elaser
10J

√
25 fs

τFWHM
≃ 239

N

√
Plaser

1PW
. (5.1)

Note in addition that, as most of these facilities will operate in the χ0 ≳ 1

regime, we consider a photon energy equal to the one of the electrons of the
beam either expected from laser-driven wakefield acceleration (for Apollon,
CoReLS and zeus) or emerging from the linear accelerators (for facet-ii and
luxe). In the case of a broad (e.g. synchrotron-like) energy distribution for
the high-energy photon source, the expected number of produced pairs can be
computed integrating the reported values of Ptot or σtot, defined in Eq. (4.30),
over the full high-energy photon spectrum. As detailed below, this integration
can be carried out in two rough but straightforward ways depending on the
kind of facility (multi-PW or laser combined with a conventional accelerator)
that is considered.

Let us now focus on panel (a), which shows the maximum total decay
probability [from Eq. (4.29)] for a photon with energy γγ colliding head-on
with a LP Gaussian laser pulse with maximum field strength a0 and duration
τFWHM = 25 fs (typical for the facilities listed above). This panel suggests the
strategy to optimize pair production depending on the type of facility.

First, despite the extremely high electron beam energies, facilities such as
luxe and facet-ii (in white in fig. 5.10) offer the possibility to probe the
regime of moderate quantum parameter (χ0 ≲ 1) for which pair production
may be observed (Ptot ≃ 10−2) but will not be abundant. This limit might be
overcome by increasing the laser power up to few 100’s of TW (300 TW are

4facet-ii is planned at SLAC National Accelerator Facility [Yakimenko et al., 2019]; see
also the facet-ii website.

5luxe is an experiment proposed at the European XFEL [Abramowicz et al., 2019]
[Abramowicz et al., 2021]; see also the luxe experiment website.

https://facet.slac.stanford.edu/overview
https://luxe.desy.de
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envisioned at luxe), which allows to enter the quantum regime (χ0 > 1) and
increase Ptot to values exceeding 0.1. On these facilities however, because Ptot

will not assume large values, increasing a0 (e.g. by focusing the laser pulse
as much as technically possible) is one of the most promising path to achieve
abundant pair production.

In contrast, provided that multi-GeV electron beams can be obtained from
laser wakefield acceleration, abundant pair production (Ptot ≳ 0.63) is expected
on all multi-PW laser facilities with the focalisation technique already in place
(typically an aperture in between f/3 and f/4 was considered in fig. 5.10).

Similar conclusions can be drawn from panel (b) where we examine in more
details the influence of the laser pulse spatial profile, by looking at the total
cross-section6 σtot [as defined by Eq. (4.30)] normalized to w2

0, considering a
Gaussian laser beam with the same temporal properties as in panel (a).

For the facet-ii and luxe facilities, the total cross-section assumes very
small values but increases fast as a0 is increased: e.g. for luxe, σtot increases
by 3 orders of magnitude increasing a0 by a factor 10. Clearly, operating at
large field strength will be a bottleneck for achieving abundant pair production
on these facilities.

In contrast, in the range of parameters covered by multi-PW facilities, the
dependence of σtot with a0 is much weaker. As in addition, σtot ≃ w2

0 (consis-
tent with Ptot ≃ 1 at the center of the beam), it becomes interesting for these
facilities to increase the laser transverse size rather than opt for tight focusing.

Let us then discuss in more details the impact of focusing for the three
upgrades of the Apollon facility (at 1, 3 and 7.5 PW). In panel (c), we present
the total cross section (in units of λ−2) as a function of γγ, considering either
the standard f/3 aperture (black lines) or the more challenging f/1.5 aperture
(red lines). For each laser power, a tighter focusing reduces the beam waist
but increases the maximum a0.

In all cases, the cross section is rapidly increasing with the photon energy for
γγ ≲ 2×103 (≃ 1 GeV). It is almost flat as γγ reaches 5×103 (≃ 2.5 GeV), which
suggests that it is not worth increasing the photon energy above this value in
forthcoming experiments to optimize pair production in the soft-shower regime.

As shown in panel (c), for a given laser power the cross section for f/1.5
is larger than for f/3 only for small values of γγ, while the opposite behaviour
is observed at large γγ (of the order of a few GeV). This means that such
tight focus, which is technologically very challenging, is not necessary for pair

6Since the Gaussian field profiles depend on the transverse coordinate through the ratio
ρ/w0 [Eq. (1.41)], σtot/w

2
0 is independent of w0.
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creation in forthcoming experiments on Apollon.
As a last remark, for the facility LUXE at the right bottom corner of

fig. 5.10, the LCFA approximation, mentioned in 2.2 does not hold [Lv et al.,
2021] due to the lower laser intensity of the facility. It first means that the
number of produced pairs will vary from the model prediction, although it is
still expected that the probability of pair creation will be low compared to
other experiments. Secondly, the spectra of gamma photons and pairs will
differ from what is given in 2.2. Experiments which aims at studying these
aspects should go beyond the LCFA approximation, as it is studied in recent
work such as [Ilderton et al., 2019,Gelfer et al., 2022].

5.5 Generalisations and limits of the model

To test the final predictions of the previous section summarized in fig. 5.10c)
fot the Apollon facility, the Apollon facility, we have performed complementary
3D PIC simulations of the 3 PW case with f/3 and f/1.5 (a0 = 138.8 and
276.7, respectively) interacting with a gamma flash with energy γγ = 104.
These simulations give σtot ≃ 26.8λ2 for f/3, which is indeed larger than
the value σtot ≃ 19.5λ2 obtained for the tight-focusing f/1.5 case. This is
consistent with our reduced model predictions, but the values are noticeably
above its predictions, which are σtot ≃ 16.2λ2 for f/3 and σtot ≃ 6.5λ2 for
f/1.5 [as given by Fig. 5.10(c)].

One of the reason of the discrepancy is that our calculations are performed
at focus, neglecting diffraction effects. While this was a good approximation
for the parameters considered earlier (see Sec. 5.1), it is not correct when
considering tightly focused intense background fields, or very long laser pulses,
with an interaction region larger than the Rayleigh length. The model can be
easily generalized to include diffraction. The probability is computed, following
the model presented in Sec. 4.4, by adding the contribution of each peak of
the field, taking into account temporal envelope as explained in Sec. 4.3, and
considering the transverse distribution of the focus as explained in Sec. 4.4.
To take into account diffraction, we evaluate the contribution of each peak of
the field, by taking into account that the size of the transverse distribution
of the laser changes with time. This is done by producing a probability map
like the one in fig. 4.5 for each peak contribution, instead of doing that for the
whole interaction, in order to take into account the change of the transverse
field distribution over the pulse propagation axis. Then one should combine
the contribution of each peak as it was discussed before.

This improves our predictions to σtot ≃ 22.2λ2 for f/3 and σtot ≃ 9.8λ2
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for f/1.5. These values are now significantly closer to our 3D PIC simulation
results, and are also in excellent agreement (within 1%) with additional 3D
PIC simulations in which secondary pair production is not accounted (frozen
case). Secondary pairs, responsible for a further increase of about 20% for the
f/3 case and by a factor ×2 for the tightly-focused f/1.5 case, are not included
in the model and are the source of the remaining discrepancy. This suggests
that for the highest peak intensity considered here we are at the limit of the
soft-shower regime and the model should be considered as providing a lower
bound estimate for pair production.

Let us briefly comment on how the effect of a broad energy spectrum and
transverse extension of the high-energy photon beam can be accounted for
depending on the type of facility considered.

In the case of facet-ii and luxe facilities, both Ptot and σtot are steep
functions of γγ, e.g. increasing by several (more than 4) orders of magnitude
for the facet-ii configuration as γγ is increased from 5× 103 to 3× 104. One
can thus expect that, for these facilities, only the photons with the highest
energy contribute to pair production. The total number of produced pairs
can then be estimated considering only the photons with the highest energy
[maximum γγ as reported on panels (a) and (b)]. If the high-energy photon
beam is much narrower that the laser beam, the total number of produced
pair can be computed from the number of photons and Ptot evaluated at the
maximum γγ. If instead the high-energy photon beam has a large transverse
distribution, the final number of pairs can be calculated by taking the high-
energy photon surface density and σtot computed at the maximum γγ.

For the multi-PW laser facilities, and large background field strength a0,
we have seen that both Ptot and σtot [for the latest, see e.g. panel (c) for
the Apollon facility] reach a plateau above a minimum value of the photon
energy [e.g. γγ ≃ 5× 103 in the case of panel (c) discussed above]. Hence, pair
production will follow primarily from the decay of the high-energy photons in
this plateau. A simple estimate of the number of produced pairs will then be
obtained from either the number of all photons in the plateau region and a
typical value of Ptot (if the photon beam transverse size is small with respect
to the laser beam waist) or from their surface density and σtot obtained for
this energy range (if the photon beam transverse size is large).

Finally let us summarise how the model can be adapted to many situa-
tions, as long as the soft shower hypothesis is valid. The important aspect
is the knowledge of the field amplitude that the gamma photons experience
during the interaction. Then one can simplify the problem by considering the
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consecutive contribution of each peak of the field amplitude (intervals of du-
ration tau/4). We can finally combine those contribution to obtain the value
of the cross section. The various changes, in the gamma flash distributions,
laser transverse profile and time envelope should be taken into account in the
computation of the probability for each laser peak. This is simple if one as-
sumes that locally the laser fields looks like a plane wave, e.g. for finite laser
pulse the field amplitude would correspond to the value given by the temporal
envelop. The model can then be adapted to various situations, narrow gamma
flash, or long gamma beams and non uniform transverse distribution of the
gamma flash for example. The procedure would essentially be the same.

5.6 Conclusions

Let us now conclude on the work presented in this chapter. In summary, we
have presented a systematic study of nonlinear Breit-Wheeler pair produc-
tion in the head-on collision of high-energy gamma photons with an ultra-high
intensity laser beam. Combining analytical modeling and PIC simulations
embarking the relevant QED modules, we have evaluated the impact on the
efficiency of pair production of the laser spatio-temporal profile [comparing
e.g. Gaussian with different focal spots and Laguerre-Gaussian (LG) pulses]
and parameters such as polarization, intensity and duration. Motivated by ex-
perimental constraints, we have considered fixed laser energies while changing
these parameters.

We have explored laser field strength and photon energy parameter ranges
relevant to currently and/or upcoming high-power laser facilities, focusing in
particular on ultra-short Ti:Sapphire laser facilities. A reduced model was
proposed that allows to describe pair production in the regime of soft-shower,
where secondary pair production can be neglected. This model, that would in
principle allow to predict a minimum number of produced pairs, is found to
agree remarkably well with 3D PIC simulations over a broad range of parame-
ters, highlighting the importance of the soft-shower regime for experiments on
the forthcoming laser facilities.

The model also allows to distinguish two regimes of interaction depending
on whether the probability for a photon to decay into a pair as it crosses a
single half-wavelength of the laser pulse is large (of order 1) or not. The two
regimes are not however fully determined by the photon maximum quantum
parameter χ0, so that the laser field strength parameter a0 and photon energy
γγ do not play a symmetric role in the system dynamics. This was confirmed
in 3D PIC simulations where the two regimes were investigated at χ0 = 4.85
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considering laser beams with complex spatio-temporal profiles, LG beams in
particular, and different polarizations. It was found that, for a fixed laser
energy, using circular polarization or LG does not improve significantly pair
production. As they are also quite difficult to produce experimentally, their
effect on pair production is too marginal to be interesting for applications. It
was found however that, in the regime of high pair production probability, it
can be preferable not to focus much the laser beam (keeping the same total
energy with lower peak intensity) and maintain a Gaussian shape in order to
maximise the area with high-enough fields for efficient pair production.

These findings help to draw guidelines for future experiments on ultra-high
intensity facilities. We show in particular that the path to abundant pair pro-
duction is different whether one considers 100TW-class or multi-PW laser sys-
tems. In particular, for facilities such as facet-ii or luxe, 10 to 100TW-class
lasers will be coupled to ultra-relativistic 10-20 GeV electron beams emerging
from conventional electron accelerators. On these facilities, pair production
will develop in the low probability regime and operating in a tightly-focused
configuration to access the highest possible laser field strength will be a major
experimental challenge. In contrast, using multiple laser beam multi-PW fa-
cilities will operate in the regime of high pair production probability. In this
regime, the pair production efficiency (measured in our work in terms of a
total cross section) depends more strongly on the laser pulse transverse size
than on its maximal field strength so that operating with standard (not too
tight) focusing aperture increases the number of produced pairs. Interestingly,
producing high-energy photons (or electrons, e.g. through laser wakefield ac-
celeration) of a few (∼ 5) GeV shall be enough for these facilities as higher
energies do no help increase significantly the pair production efficiency in this
high probability regime.

To conclude, this work provides a deeper understanding of the optimal
conditions for pair production in upcoming experimental campaigns exploring
nonlinear Breit-Wheeler pair production. We focused here on pair production
seeded by high-energy photons, but it will be interesting for future works to
investigate the differences with the case in which ultra-relativistic electrons are
used to seed the pair production process.
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State of the art of numerical and
theoretical studies of QED
cascades
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In this work we focused so far on physical configurations in which one
can neglect the production of secondary pairs. This is especially true in the
conditions envisioned in upcoming facilities, and in the configuration studied
in the previous Chap. 5. Indeed, after the conversion of photons into pairs,
the latter either cross the short pulses or co-propagate with it without further
major production of gamma photons, as shown in the previous Chap. 5. Since
one of the ultimate purpose of pair creation in a laboratory is the production
of a pair plasma, one would like to maximise the number of produced pairs.
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In this chapter we introduce a regime of pair creation called QED avalanche,
or self-sustained cascade, in which secondary pairs are of major importance.
Indeed as suggested initially by [Bell and Kirk, 2008], in certain fields config-
urations, pairs are constantly being re-accelerated between each emission of
hard gamma photons. In this situation the initial seeding particles first emit
hard gamma photons by the NCS process and the emitted gamma ray is then
converted by the NBW process. The newly generated particles are in turn
accelerated and emit hard gamma photons, repeating the cycle. As a result,
this constant re-acceleration, coupled with the conversion of gamma photons
into pairs by the strong field, leads to a phase of exponential growth of the
number of pairs, called the self-sustained cascade or avalanche. If the right
conditions are met, this regime can therefore be more suitable for efficient pair
creation than the previously presented shower regime.

However understanding and modeling this regime is more difficult than the
previously discussed shower regime. Indeed one has now to take into account
the dynamics of the particles in the strong field, which is a complex task in
the quantum-dominated regime. A first approach (discussed in 6.3) considers
that the field is high enough that particles become ultra-relativistic on time
scales shorter than the temporal variation of the field. If one also assumes
that the field is slowly varying compared to the timescale of quantum process,
then the dynamics of ultra-relativistic particles is determined by the classical
trajectory, punctuated by strong gamma photon emission events.

In the following we present the state of the art of some previously studied
configurations and we introduce the relevant quantities and aspects important
for the study of the cascade. This gives us the foundation to understand
the results of the next chapter, in which we discuss simulation results and
theoretical models of the avalanche in configurations considering two counter-
streaming LG pulses.

6.1 Cascade generation in a purely electric ro-

tating field

When trying to induced a QED avalanche, one ideal case is the configuration
with a pure rotating electric field. As it is shown in the following, one can
easily compute the classical trajectories (without radiation reaction) in this
configuration. A charged particle interacting with this field performs circular
motion, coupled with a drift, the latter depending on the initial momentum.
The drift, for a particle initially at rest, is along the direction orthogonal
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to the initial direction of the electric field. This trajectory is precisely the
reason making this configuration interesting. Indeed, as shown in chapter 4,
the quantum parameter of a gamma photon is larger if the angle between
its momentum and the field is large, and χγ when the two vectors are co-
linear. This is true also for electrons and positrons. In the pure rotating field,
studied in [Nerush et al., 2011a,Elkina et al., 2011], particles following classical
trajectories have a substantial angle between their momentum and the electric
field. Moreover particles initially at rest accelerate during their interaction
with this field and their quantum parameter increases, so that cascades could
be triggered. We now recall some of the established results obtained in this
configuration, and verify them with our own PIC simulations.

6.1.1 Particles dynamics

Let us assume a given rotating electric field

E = E0 cos (ωt)x̂+ E0 sin (ωt)ŷ . (6.1)

In the case of strong field, one can assume that the particle dynamics is classical
and governed by the Lorentz force only between two quantum emissions of
hard photons. In the field given above, the classical (relativistic) equations
of motion give the following momentum for an electron or positron of charge
q = ±e

px(t) = px(0) +
qE0

ω
sin (ωt) (6.2)

py(t) = py(0) +
qE0

ω
(1− cos (ωt)) . (6.3)

We can see that there is a drift orthogonal to the initial electric field direction,
the y direction in our case, unless it is compensated by the initial momentum.
The drift momentum has an amplitude

pdrift

mc
= a0 for a particle initially at

rest. The two components of the momentum and the drift are represented in
figure 6.1.

Assuming the charge initially at rest p(0) = 0, using the mass shell relation
ε2e = m2c4+p2c2 and Eq. (2.39), one obtains the energy and quantum parameter
of the charge [Elkina et al., 2011]

εe(t) = mc2
√

1 + 4a20 sin
2(ωt/2) , (6.4)

χe(t) =
E0

ES

√
1 + 4a20 sin

4(ωt/2) . (6.5)
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Figure 6.1: Representation of the classical components of the momentum as a
function of time, for a positron initially at rest in a rotating electric field. The drift
momentum, orthogonal to the initial direction of the electric field, is represented in
dashed black. The field amplitude is a0 = 500.

The evolution in time of the Lorentz factor and quantum parameter of an
electron (or positron) following the equations above are represented in Fig.
6.2. The quantum parameter is strictly positive, meaning that a charge at
rest in this field has a non zero quantum parameter at all times. This is due
to the time component of the four momentum of the particle in Eq. (2.34)
which is larger than mc > 0. The minimum value of the quantum parameter
is E0/ES, the ratio of the electric field amplitude to the Schwinger field. This
ratio, is small compared to 1 in the regime we are interested in. The dominant
contribution to χe comes from the term with the factor a20 in the square root
of Eq. (6.5), that becomes important for a0 ≫ 1 and allows to reach χe values
of order 1 and above. Indeed, from Eq. (6.5), χe ≥ 1 gives

a0 ≥
√

eES

2mcω
. (6.6)

This corresponds to a0 ≥ 400 for a rotating frequency ω corresponding for a
laser to a wavelength λ = 0.8µm.
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Figure 6.2: Representation of the Lorentz factor γe and quantum parameter χe of
a positron initially at rest in a rotating electric field, following a classical trajectory.
The field amplitude is a0 = 500.

6.1.2 Pair creation in the quasi steady state regime

Let us now look at pair creation in this rotating electric field. The number of
gamma photons and pairs follow the differential equations

dNγ

dt
= −WpNγ + 2WγNp , (6.7)

dNp

dt
= WpNγ . (6.8)

Within the assumption of a quasi steady state, meaning that the shape
of the pair and gamma photon distribution functions does not change with
time, the gamma photons and pairs are created at constant rates Wγ and Wp,
respectively. The equations can then be solved in a matrix form

dN
dt

= MN (6.9)

N =

(
Nγ

Np

)
; M =

(
−Wp 2Wγ

Wp 0

)
. (6.10)

This system of differential equations can be solved by diagonalising the matrix
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M , whose eigenvalues are

λ± =
Wp

2

(
−1±

√
1 +

8Wγ

Wp

)
, (6.11)

with the corresponding eigenvectors

v± =

 λ±
Wp

≡ Λ±

1

 . (6.12)

The matrix M can be written in the form QDQ−1 with D a diagonal matrix,
and the solution of the differential equation is

N (t) = Q exp (tD)Q−1N0 (6.13)

with

D =

(
λ+ 0

0 λ−

)
; N0 =

(
Nγ0

Np0

)
(6.14)

Q =

(
Λ+ Λ−

1 1

)
; Q−1 =

2√
1 +

8Wγ

Wp

(
1 −Λ−

−1 Λ+

)
(6.15)

where N0 represents the initial conditions. Here the initial conditions should
already satisfy the hypothesis of a steady state since we used it to solve the
equations. From Eqs. (6.13),(6.14) and (6.15) we can deduce the growth rate
of the number of pair. Using Eq. (6.13), we can express the number of pairs
as

Np(t) =
2√

1 +
8Wγ

Wp

[
etλ+(Nγ0 −Np0Λ−) + etλ−(Np0Λ+ −Nγ0)

]
. (6.16)

Since λ+ > 0 and λ− < 0, the growth rate, is equal to λ+. Note that the
growth rate depends only on the rate of pair production and not on the initial
number of particles, consistent with the hypothesis of a steady state. This
value is in agreement with what was obtained in [Grismayer et al., 2017].
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Figure 6.3: Growth rate Γ, normalised to the rotating frequency of the field 1/τ ,
of the cascade obtained from 1D3V PIC simulations of pure rotating electric field as
a function of a0 (black dots). These values are directly extracted from the number
of particles as a function of time. Theoretically predicted λ+ (blue line) given by
equation (6.11), using the rates extracted from the particle distributions in the PIC
simulations.
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6.1.3 Validation of theoretical growth rate via PIC sim-

ulations

We compare the growth rate calculated in the previous section with the val-
ues extracted from 1D3V PIC simulations including the relevant Monte-Carlo
modules. This is shown in fig. 6.3 as a function of the field strength a0. In
the simulations, we place the test particles, meaning that they do not depose
current and charge densities and do not affect the external field, initially at
rest in the rotating electric field of Eq. (6.1). When a steady state is reached
we extract the corresponding growth rate from a fit of the evolution in time
of the number of particles (black dots). We compare this value to the rate
obtained from λ+ (Eq. (6.11)), computed by extracting from the simulations
the rates Wγ and Wp from the particles distributions in χ and γ (blue line).
The two approaches are in good agreement, although the theoretical calcula-
tion slightly overestimates the growth rate, especially at low intensities. This
is due to the fact that we use Eq. (2.51) for the rate of emission of gamma
photons, which includes the emission of photons with energies smaller than
2mc2. These photons weakly contribute to pair production due to the strong
cut off at low photon quantum parameter of the NBW rate (Eq. (2.45)). As
a result the growth rate is overestimated by considering photons that do not
participate to the process. To correct this we could integrate Eq. (2.52) from
γγ = 2 to γγ = γe instead of integrating from ξ′ = 0 to ξ′ = 1. However,
having an integration range dependent on γe would be computationally more
expensive as the intergral will be over (χe, γe). Hence, for the purpose of this
chapter, the expression obtained in Eq. (2.51) will be sufficient.

Another important point is to verify that a quasi steady state is reached in
the PIC simulations. To do that, we show in Figs. 6.4 and 6.5 the evolution in
time of the χ and γ of positrons and gamma photons, averaged over the particle
distributions. After an initial transient, which shorten as a0 increases, the
average values of the particles and photons Lorentz factor and their quantum
parameter become constant.

In Figs. 6.6 and 6.7, we show the evolution in time of the standard devia-
tions for these quantities, which are given by

σχe =

√∫
dχe(χe − ⟨χe⟩)2w(χe)∫

dχew(χe)
, (6.17)

with w(χe) the sum of the weights of all pairs having the quantum parameter
χe. The standard deviations rapidly reach a constant value, confirming that a
quasi steady state regime is indeed reached.
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Figure 6.4: Average quantum parameter of particles as a function of time in a
rotating electric field, for different field amplitudes.
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Figure 6.5: Average γ factor of particles as a function of time in a rotating electric
field, for different field amplitudes.
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Figure 6.6: Standard deviation of the quantum parameter of particles as a function
of time in a rotating electric field, for different field amplitudes.

0 1 2 3 4 5
t/

102

e(a0 = 1000)
(a0 = 1000)

e(a0 = 2000)
(a0 = 2000)

e(a0 = 3000)
(a0 = 3000)

Figure 6.7: Standard deviation of the γ factor of particles as a function of time in
a rotating electric field, for different field amplitudes.
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As expected the average value and standard deviation of the quantum
parameter of the particles and photons increase with the field amplitude a0,
see figures 6.4 and 6.6. This is also true for the particles Lorentz factor and
the energy standard deviation. On contrary, the average value of the photon
energy and its standard deviation decrease with a0, see figures 6.5 and 6.7.
Overall however the rate of pair production increases, since we see in Eq.
(2.43) that increasing χγ and decreasing γγ results in a higher rate.

6.2 Avalanches in the two counter-streaming lasers

configuration

As it was shown in the previous section, the ideal configuration of a pure
rotating electric field can in theory leads to a self-sustained cascade and po-
tentially to abundant pair creation. This prediction, together with the recent
increase of attainable laser intensities, led Kirk and Bell to first investigate pair
creation in two counter-streaming laser pulses [Bell and Kirk, 2008]. On can
in principle create a pure rotating electric field configuration with two waves
of opposite circular polarisations. Indeed, considering two counter-streaming
PW of opposite circular polarisations, the electromagnetic field corresponds to
a pure rotating electric field at the magnetic field nodes. In a more realistic
scenario, we can envision the use of two gaussian pulses of opposite CP laser
pulses, to produce a standing wave (this will be discussed further in Sec. 7.1.1).
Contrary to the ideal PW case, the rotating electric field created by the two
gaussian pulses has a finite extent in the transverse plane. Moreover, for re-
alistic and focused laser pulses, longitudinal electromagnetic field components
may exist on the magnetic field nodes. We stress here that even for the two
plane waves, the electric field is purely rotating only at the magnetic nodes,
which means that in practice particles will never experienced the fields of the
ideal case presented in the previous Sec. 6.1.

However, this setup is the closest one to the ideal rotating case that has been
proposed to date, and as therefore attracted much interest of the strong-field
community over the last decade as testified by several publications [Kirk et al.,
2009,Elkina et al., 2011,Nerush et al., 2011a,Bashmakov et al., 2014,Grismayer
et al., 2016,Jirka et al., 2016,Grismayer et al., 2017,Tamburini et al., 2017,Jirka
et al., 2017,Slade-Lowther et al., 2019]. After showing by numerical simulations
the feasibility of the avalanche in the two lasers configuration, the efficiency of
the cascade became the main focus. Depending if one measures efficiency of
the avalanche in terms of pair density, total number of particles or the growth
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rate, one may pursue different strategies to optimize the process. Indeed,
several parameters can play a role in the cascade development, e.g. the wave
polarisation, or the characteristics of the seeding particles. In this thesis,
and especially in the following sections and chapters, we refer to the efficiency
considering it proportional to the growth rate or the number of produced pairs.

In order to study the impact of laser polarisations, a first work comparing
numerically and theoretically configurations with CP and LP at fixed total
pulse energy has been performed by [Nerush et al., 2011a]. This suggests that,
for the parameters explored, CP is the optimal choice, as it has been confirmed,
in more recent works, such as [Grismayer et al., 2017], focusing on the study of
the cascade growth rate. However, the latter work highlight a potential issue
with the seeding particles in the CP configuration, as they can be pushed away
from the interaction region of strong fields before the onset of the cascade. This
is shown to be more problematic for the CP configuration than in the LP case.
The LP configuration has been investigated in a work by [Jirka et al., 2017]
which considers intensities below 1024W/cm2, and suggests that in this regime,
LP produces higher number of particles than CP. This is believed to be owing
to two reasons: first, at the same energy the LP case has higher field amplitude
and so particles can more easily reach a value of the quantum parameter close
to 1. We showed Sec. 2.2 that this argument is consistent with the fact that
the rate of pair creation increases strongly with the quantum parameter in the
range of χ ≪ 1, and so a difference in the field amplitude, even of a factor
1/
√
2, could play a big role. The second reason is the presence of the so-called

attractors in the phase space of particles. As it will be detailed in section 6.4,
in a standing wave configuration particles are pushed away from the magnetic
field nodes, where the electric field is at its maximum, towards the electric field
nodes. In the CP case, particles get trapped in these attractors, i.e. at the
electric field nodes, after one or a few laser periods. Hence, the particles are
not efficiently re-accelerated since they do not experience strong electric fields.
Then, the advantage of the LP configuration is that due to the field strength
vanishing regularly, particles spread more in the phase space and can be re-
injected into regions where their quantum parameter increases again. They can
then contribute to the avalanche development. However, at intensity higher
than 1024W/cm2, the attractors do not impact the dynamics of the particles
enough to make the cascade in the LP configuration growing faster than in the
CP case, as shown numerically by [Grismayer et al., 2017].

Another aspect that deserved discussions, is the impact of the transverse
size of the laser beams, which was investigated in [Jirka et al., 2016]. Indeed to
reach QED-relevant regime in near future facilities, one may want to increase
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the field intensity as much as possible by focusing the laser. However the work
of [Jirka et al., 2016] showed that the strong ponderomotive force of a tightly
focused gaussian beam might push transversally the charged particles out of
the interaction region. In these conditions, a cascade cannot be self sustained,
or produces at best a drastically reduced number of pairs.

Finally a point that can be important in the case of an avalanche sustained
for long times, is the effect of the produced pairs (potentially a pair plasma) on
the laser field. This aspect has not been not explored in this thesis, however
several studies are reported in [Fedotov et al., 2010, Grismayer et al., 2016,
Slade-Lowther et al., 2019]. Since this effect can be responsible for a decrease
of the growth rate of the cascade with time.

In this work we will study the cascades induced in two counter stream-
ing gaussian and LG pulses. As shown by the short review of this section,
many field characteristics, other than the laser amplitude, can be of strong
relevance, e.g. the laser polarisation. To the author knowledge, no work has
been performed at this time in the configuration using two counter-streaming
LG beams, whose properties can be investigated to identify which field topol-
ogy is more efficient to trigger a cascade. The interest toward these particular
beams is motivated by the ring shape of their intensity distribution in the
transverse plane, which could in principle help trapping pairs close to the laser
propagation axis and enhance the cascade growth rate. This idea has to be
numerically tested and the results of a series of 3D3V PIC simulations will be
presented in the last chapter of this manuscript.

Before moving to it, in the next section we present some recent works,
detailing a model to describe how the quantum parameter and the energy of
charges grow in the presence of strong fields on short timescales. These results
will be used in Chap. 7 to interpret the numerical results and compare the
efficiency different field configurations, so as infer the parameters determining
the efficiency of the avalanche.

6.3 Field invariants and particle dynamics in a

strong field

6.3.1 Model for short time dynamics

We here present some aspects of the dynamics of a charged particle in a strong
field following the discussion of [Mironov et al., 2021]. The focus is on the con-
dition to have efficient particle acceleration in order for the charged particle
keep emitting hard gamma photons. This study allows to understand which
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field configuration is suitable for a renewal of the particle energy and its quan-
tum parameter between hard photon emissions, beyond the purely rotating
field case.

Let us consider a strong field with electromagnetic field tensor F µν , and
characteristic frequency ω. The motion of a charged particle in a strong field,
in the quantum dominated regime, is complex. A first approach to describe
the particle dynamics would be to consider that field is high enough so that
particles become ultra-relativistic on time-scales shorter than the one of the
field variation. If one assumes that the field is slowly varying compared to the
timescale of quantum process for ultra-relativistic particles, then the dynamics
is given by the classical trajectory, interrupted by gamma photon emissions.
Let us consider a strong field with characteristic frequency ω, described by
the electromagnetic field tensor F µν . The classical equation of motion for a
particle with charge q in this field is,

dpµ

dτ
=

q

m
F µ

ν(x(τ))p
ν . (6.18)

One way to ensure a cascade is to have strong gamma emission on timescales
shorter than the field period, and consider the dynamics of the charged particles
for ωt ≪ 1. In order to do so we can expand the momentum, position and
field tensor in powers of the normalised time ωt,

p(τ) = p(1) + p(2) + ... , with p(n) = O((ωt)n) , (6.19)

x(τ) = x(1) + x(2) + ... , with x(n) = O((ωt)n) . (6.20)

We chose the initial conditions x(i)(0) = 0, p(i>1)(0) = 0 such that p(0) =

p(1)(0) is the particle initial momentum. The mass shell relation p2 = m2c2

then implies (by squaring Eq. (6.19) and evaluating order by order) that

(p(1))
2 = m2c2 , (6.21)

p(1)p(2) = 0 , (6.22)

(p(2))
2 + 2p(1)p(3) = 0 ... (6.23)

Similarly the field tensor can be expanded to give

F µ
ν = F µ

ν(0) + F µ
ν(1) + ... , with F µ

ν(n) = O((ωt)n) . (6.24)

The first non zero contribution of the field is the value at the origin given by
F µ

ν(0) = F µ
ν(x(0) = 0) which is a constant term. The following orders in the
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field tensor are given by

F µ
ν(1) = F µ

ν,σ(0)x
σ
(1) (6.25)

F µ
ν(2) =

1

2
F µ

ν,σρ(1)x
σ
(1)x

ρ
(1) + F µ

ν,σ(0)x
σ
(2) , (6.26)

where the indexes after the comma indicate a derivative, such as

F µ
ν,σ =

∂F µ
ν

∂xσ
= ∂σF

µ
ν . (6.27)

From now on and until the end of this chapter we will use the matrix
notation F for the field tensor, and x and p will designate 4-vectors unless
specified otherwise. At first order, the equation of motion of a charge q = ±e
is

dp(1)
dτ

=
q

m
F(0)p(1) . (6.28)

This is the equation of motion of a particle in a constant electromagnetic field.
An elegant approach to solve this equation in the general case is given by [Taub,
1948]. Since F(0) can be viewed as a matrix, the equation above can be solved
using its eigenvectors uk and eigenvalues αk satisfying F(0)uk =

αk

c
uk. The

momentum on short timescales is then given by

p(1)(τ) ≃
ωt≪1

exp

(
qF(0)τ

m

)
p(0) =

3∑
k=0

Ck exp
(qαkτ

mc

)
uk , (6.29)

where the Ck are defined by the initial conditions, such that
∑3

k=0Ckuk = p(0).
The eigenvalues of F(0) will be expressed using the following Lorentz invariants

F = −c
2

4
F µνFµν = (E2 − c2B2)/2 , (6.30)

G = − c
4
∗ F µνFµν = cB ·E . (6.31)

The eigenvalues are then given by

αk=1,...,4 = (ϵ,−ϵ, iη,−iη) (6.32)

with

ϵ =

√√
F2 + G2 + F (6.33)

η =

√√
F2 + G2 −F . (6.34)

Since ϵ > 0 , the main contribution to p(1) for τ ≫ mc

eϵ
(i.e. after a particle
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initially at rest becomes ultra-relativistic) comes from the eigenvalue ϵ due to
the exponential factor Eq. (6.29). So on short timescales one has

p(1)(τ) ≃
ωt≪1

C1 exp
(qϵτ
mc

)
u1 , (6.35)

which can be integrated to obtain the position

x(1)(τ) ≃
ωt≪1

C1
c

eϵ
exp

(qϵτ
mc

)
u1 . (6.36)

By choosing the normalisation of the time component u01 = 1 (see [Mironov
et al., 2021]) we see that, since by construction x0 = ct, we have

ct = x0 ≃ x0(1) ≃ C1
c

eϵ
exp

(qϵτ
mc

)
, (6.37)

such that
exp

(qϵτ
mc

)
≃ eϵt/C1 . (6.38)

After injecting this relation in Eq. (6.29), one finally obtains the energy grows

ε(t)

mc2
=
p0(t)

mc
≃

ωt≪1

eϵt

mc
. (6.39)

To derive the expression of the quantum parameter, one needs to go to the
next two orders, balancing those terms in a matrix form gives

dp(2)
dτ

− q

m
F(0)p(2) =

q

m
F(1)p(1) , (6.40)

dp(3)
dτ

− q

m
F(0)p(3) =

q

m

(
F(1)p(2) + F(2)p(1)

)
(6.41)

Let us look at the second order in Eq. (6.40) first. One can simplify the
differential equation by making the following approximation. Since F(1)p(1)

and F(0)p(2) are of order ω2t2 and so they are proportional to exp
(
2qϵτ
mc

)
since,

as we showed above one has approximately t ∝ exp
(
2qϵτ
mc

)
. This leads to

p(2) ∝ exp
(
2qϵτ
mc

)
and so

dp(2)
dτ

≃ 2eϵ

mc
p(2) . (6.42)

This approximation is valid as long as the expression p(1) is valid, meaning that
we are in the ultra-relativistic regime and we consider only short timescales
ωt≪ 1. Then plugging back this result into Eq. (6.40), we can express p(2) as

p(2) ≃
(
2
ϵ

c
I− F(0)

)−1

F (1)p(1) , (6.43)

with I the 4× 4 identity matrix.
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Now to derive the expression of χe, one should first write it in the following
form

χ2
e = − ℏ2

m2c6

(
dp
dτ

)2

. (6.44)

Then we have up to order (ωt)4

χ2
e ≃− ℏ2

m2c6

[(
dp(1)
dτ

)2

+ 2
dp(1)
dτ

dp(2)
dτ

]

− ℏ2

m2c6

[(
dp(2)
dτ

)2

+ 2
dp(1)
dτ

dp(3)
dτ

]
.

(6.45)

In order to evaluate this expression, we need to express it in terms of F(0) ;F(1) ; p(1)

and x(1), all known quantities. Here we simplify the expression, within the same
approximation as in (6.42), and so we have for p(n)

dp(n)
dτ

≃ n
eϵ

mc
p(n) , (6.46)

which allows to replace the derivatives with functions proportional to the mo-
mentum in Eq. (6.45). Note that the p(1)p(2) term cancels due to Eq. (6.22).
Now we can evaluate the last term of Eq. (6.45). his can be expressed as a
function of p(2) using the relations in Eq. (6.46) and Eq.(6.23). We then we
use the expression in Eq. (6.43) to obtain

− e2ϵ2

m6c8
(p(2))

2 ≃ − ℏ2

m2c6

[(
dp(2)
dτ

)2

+ 2
dp(1)
dτ

dp(3)
dτ

]
(6.47)

− e2ϵ2

m6c8
(p(2))

2 =
e2ϵ2

m6c8
p(1)F(1)(4ϵ

2I− (F(0))
2)−1F(1)p(1) . (6.48)

Finally, as F(1) is determined by F(0) and x(1) one obtains that the quantum
parameter behaves as

χ2
e(t) ≃

ωt≪1
χ2
e(0) +

(
e2ℏϵ2ωeff

m3c4

)2

t4 (6.49)

with

ω2
eff = Fµν,σ(0)u

µ
1u

σ
1 (J

−1)νλF
λ
κ,ρ(0)u

ρ
1u

κ
1 (6.50)

J =
(
2
ϵ

c
I− F(0)

)2
. (6.51)

As we will see in further examples, ωeff is an effective frequency that depends
on the field and its derivatives, but not on its global amplitude. It therefore
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encodes the contribution of the geometry of the fields that the charge expe-
riences along its trajectory. in which the charge is evolving. Equation (6.49)
shows that χe grows with ϵ2 the invariant defined in Eq. (6.33). It is therefore
needed to use electric type fields F > 0, since on the contrary ϵ vanishes for
magnetic type F < 0 configurations. This needed condition can be reached in
a purely rotating field, or near the nodes of the magnetic field in a standing
wave.

6.3.2 Example of a purely rotating electric field

We want here to compare the exact solution find in Sec.6.1 for the case of a
rotating electric field with the model presented in the previous section. Con-
sidering the expression for the χe derived in Eq.(6.5), and expanding it for
ωt≪ 1, one gets

χ2
e ≃

e2ℏ2E2
0

m4c6
+

1

4

e4ℏ2E4
0

m6c8
ω2t4 +O((ωt)5) . (6.52)

If we use Eq. (6.49), we obtain the same results since in this case ωeff = ω/2

and ϵ = E0 for the rotating field case (see Eq. (6.1)). We conclude that in
this case the approach derived in [Mironov et al., 2021] is consistent with
the development of the exact expression of the quantum parameter χe. This
means that the approximation made in the model detailled in Sec.6.3 are well
justified and the leading behaviour of the short time dynamics is properly
captured. We will then use this model in configurations with more complex
fields, i.e. considering LG laser pulses, in the following chapter.

6.4 Attractors in a standing wave

As mentioned before, one of the most promising configuration for an avalanche
is the setup with two counter-streaming beams. This allows to create a stand-
ing wave where we can identify regions with two different types of field. Close
to the magnetic field nodes, the electric field is large, and one expect pairs to
be efficiently re-accelerated. If instead we consider the region near the nodes
of the electric field, the magnetic field is dominant and it does not provide
contribution to the energy increase of the pairs.. By studying the dynamics
of the charges in those two regions we can understand how particles can move
from one region to another and the conditions required for the onset of the cas-
cade. In particular for certain field configurations, attractors can be present
in phase space as shown numerically and theoretically by [Esirkepov et al.,
2014, Lehmann and Spatschek, 2012, Gong et al., 2016, Kirk, 2016, King and
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Hu, 2016]. In these cases the understanding of their impact on the particle dy-
namics is essential. The derivation we are going to present is detailed in [Gong
et al., 2016].

Considering two counter-streaming beams with circular polarization with
opposite helicity, a transverse rotating electric field is produced at the magnetic
nodes of the resulting standing wave. This allows us to use the analytical
results presented in Sec. 6.1. For two counter-propagating circularly polarised
plane waves, the respective electromagnetic fields are given by

E1 =
E0

2
[sin(ωt− kz)x̂+ σ1 cos(ωt− kz)ŷ] (6.53)

E2 =
E0

2
[− sin(ωt+ kz +∆ϕ)x̂+ σ2 cos(ωt+ kz +∆ϕ)ŷ] (6.54)

B1 =
E0

2c
[−σ1 cos(ωt− kz)x̂+ sin(ωt− kz)ŷ] (6.55)

B2 =
E0

2c
[σ2 cos(ωt+ kz +∆ϕ)x̂+ sin(ωt+ kz +∆ϕ)ŷ] , (6.56)

where ∆ϕ is the dephasing between the two waves. If we assume opposite
circular polarisation σ2 = −σ1 the total field is given by

E = E0

[
− sin

(
kz +

∆ϕ

2

)
cos

(
ωt+

∆ϕ

2

)
x̂

+ σ1 sin

(
kz +

∆ϕ

2

)
sin

(
ωt+

∆ϕ

2

)
ŷ

]
, (6.57)

B =
E0

c

[
−σ1 cos

(
kz +

∆ϕ

2

)
cos

(
ωt+

∆ϕ

2

)
x̂

+ cos

(
kz +

∆ϕ

2

)
sin

(
ωt+

∆ϕ

2

)
ŷ

]
. (6.58)

If we choose σ1 = 1 for simplicity and ∆ϕ = π to have a maximum of the
electric field at z = 0 the field reads

E = E0 [cos(kz) sin(ωt)x̂+ cos(kz) cos(ωt)ŷ] (6.59)

B = −E0

c
[sin(kz) sin(ωt)x̂+ sin(kz) cos(ωt)ŷ] . (6.60)

This field derives from the vector potential

A =
E0

ω
[− cos(kz) cos(ωt)x̂+ cos(kz) sin(ωt)ŷ] . (6.61)
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The transverse components of the momentum can be easily solved

px =
qE0

ω
cos(kz) sin(ωt) + px(0)−

qE0

ω
(6.62)

py = −qE0

ω
cos(kz) sin(ωt) + py(0) . (6.63)

Let us choose for simplicity py(0) = 0 and px(0) =
qE0

ω
, so that there is no

drift. Then the energy of the particle is given by

γ =
ε

mc2
=

√
1 +

( p

mc

)2
(6.64)

and from above one obtains

γ =

√
1 +

( pz
mc

)2
+ a20 cos

2(kz) . (6.65)

We now want to look at the (z, pz) phase space. We are interested in
possible fixed points in the (z, pz) phase space. In order to do so we should
look at the derivatives of z and pz with respect to time, which are given by
Hamilton equations

dz
dt

= mc2
∂γ

∂pz
;

dpz
dt

= −mc2∂γ
∂z

. (6.66)

We then look for z∗ and p∗zwhere both the derivatives above are equal to
zero. First we have that (∂γ/∂pz)|(z∗,p∗z) = 0 only if p∗z = 0. Then one has

∂γ

∂z
=
a20k sin(kz) cos(kz)

γ
, (6.67)

which means that kz∗ ≡ 0 [π/2]. Since the problem is periodic, we can restrain
ourselves to the analysis of one wavelength. Note that kz∗ = 0 ; π correspond
to the nodes of the magnetic field and kz∗ = π/2 ; 3π/2 to the nodes of the
electric field. To study the behaviour of particles around those points, to infer
the stability of the fixed points in the phase space, one should consider small
perturbations around the fixed points following the discussion of [Jordan and
Smith, 2007,Hirsch et al., 2012]. In order to do so, one should compute the
following Jacobian matrix

J =


∂

∂z

dz
dt

∂

∂pz

dz
dt

∂

∂z

dpz
dt

∂

∂pz

dpz
dt


|(z∗,p∗z)

= mc2

 0
1

m2c2γ
a20k

2 cos(2kz)

γ
0


|(z∗,p∗z)

.

(6.68)
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Figure 6.8: Map of the Lorentz factor gamma in the phase space (kz,
pz
mc

) for
a0 = 500. of electrons experiencing the fields of counter-streaming CP PW with
opposite helicity. Radiation reaction is not taken into account here.

On the one hand for magnetic nodes kz∗ = 0;π, one has Tr(J) = 0 , det(J) < 0

which shows that these are unstable saddle-points. On the other hand for
kz∗ = π/2; 3π/2, Tr(J) = 0 , det(J) > 0 which corresponds to centers. The
phase space (z, pz) is represented in fig. 6.8, where the colour map corresponds
to the Lorentz factor. As expected, at the centers, i.e. the nodes of the electric
field, particles have the lowest energy. On the other side, unstable saddle
points on the magnetic nodes correspond to maxima of the particles energy.

In the following, we discuss what happens when radiation reaction is taken
into account through the Landau-Lifshitz radiation friction force [Landau and
Lifshitz, 1980] as shown in [Gong et al., 2016]. In the present case, only the
terms proportional to γ2 are considered in the radiation friction, since we
consider relativistic particles. The force is then approximated by Eq. (2.31)

FLL = −2ree
2

3mc2
γ2

[
(E + v ×B)2 −

(
v.E

c

)2
]
v

c
. (6.69)

In this case, following the same approach presented above, the Jacobian matrix
with radiation reaction reads

J = mc2

 0
1

m2c2γ
a20k

2 cos(2kz)

γ
− ree

2

6m3c5
E2

0γ


|(z∗,p∗z)

(6.70)
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With this new expression of the Jacobian taking into account radiation
reaction, one can compute the trace and the determinant at the fixed points,

i.e. the electric field nodes kz∗ =
π

2
;
3π

2
and p∗z = 0. In those phase-space

positions γ =
√
1 + a20 and Tr(J) = − ree

2

6m2c3
E2

0γ = −reω
2

6c
a20
√

1 + a20 which
is negative and the determinant is takes positive values. This means that the
fixed points at electric nodes are spiral sink attractors [Jordan and Smith,
2007,Hirsch et al., 2012]. So particles initially near them in the phase space
start to spiral around them and lose momentum due too the radiation reaction.
On the contrary, for the fixed points at the magnetic nodes kz∗ = 0 ;π, the
determinant is det(J) < 0. So these fixed points are saddle points, which
push away particles from them. In conclusion we have found that particles are
pushed away from the magnetic nodes and spiral around the electric nodes.

Before concluding, note that it has been shown numerically by [Gonoskov
et al., 2014], that at very high a0 (above 104), particles can be trapped at the
magnetic field nodes, through a process called anomalous radiative trapping.
As we will not go to such high intensities in the following chapter, it will not
be discussed here.

6.5 Conclusions

The main notions and the state of the art of the strong field community under-
standing of the avalanche regime have been presented in this Chapter. In the
next one we will use and generalize these notions to present original results
in this regime. The well known model for the purely rotating electric field
configuration have been introduced in this chapter. The growth rate of the
avalanche in the quasi steady state has been re-derived, and compared with
PIC simulations for this idealised rotating field configuration. More specifically
we verified that the growth depends on the field intensity, as predicted by ana-
lytical models. This motivates our choice to compare simulations at same peak
laser intensity, contrarily to the comparison at fixed laser energy of Chap.5.
The rotating field model has proved useful since a number of analytical results
can be obtained, to infer the conditions leading to an avalanche. This field
configuration can be locally produced at the magnetic nodes of the standing
wave produced by two counter-streaming waves with opposite circular polari-
sation. A brief presentation of previous results obtained in this condition has
been provided. Several numerical studies focused on the less idealized 3D con-
figurations in which for instance ponderomotive effects can not be neglected
and depend on the polarization.
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In the last section of this chapter, an analysis of the so-called attractors has
been presented. In specific configuration such as the standing wave presented
here, these attractors make particles migrate to electric field nodes. In this
analysis (classical) radiation reaction is taken into account, and we showed
that this could have an important impact on the cascade development and its
growth rate.

All the concepts introduced up to here are used to understand the particle
dynamics and cascade development in the configuration investigated int the
next chapter.
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As mentioned in the previous chapter, one of the promising configurations
to produce a self-sustained cascade relies on the use of two counter-streaming
beams. Indeed by producing a standing wave, choosing accurately the beam
polarisation, one can locally create a rotating electric field, which is one of
the simplest configurations to induce an avalanche. This physical setup is
schematically represented in fig. 7.1. In this chapter using two LG beams,

117



118 Chapter 7

Laser Laser

Seeding
electrons

Focal plane

<latexit sha1_base64="andWxZbxAHxz7eBJyjqQs/d7E7E=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmKqBuh6MaFiwr2AW0Ik8m0HTp5MDMRQ6i/4saFIm79EHf+jZM2C209MHA45x7unePFnEllWd9GaWV1bX2jvFnZ2t7Z3TP3DzoySgShbRLxSPQ8LClnIW0rpjjtxYLiwOO0602uc7/7QIVkUXiv0pg6AR6FbMgIVlpyzeqtmz1O0SVqWGjAdc7HFdesWXVrBrRM7ILUoEDLNb8GfkSSgIaKcCxl37Zi5WRYKEY4nVYGiaQxJhM8on1NQxxQ6WSz46foWCs+GkZCv1Chmfo7keFAyjTw9GSA1Vguern4n9dP1PDCyVgYJ4qGZL5omHCkIpQ3gXwmKFE81QQTwfStiIyxwETpvvIS7MUvL5NOo26f1Rt3p7XmVVFHGQ7hCE7AhnNowg20oA0EUniGV3gznowX4934mI+WjCJThT8wPn8AZG+TUQ==</latexit>

Lx = 20�

<latexit sha1_base64="mE6Ko6FBy5+Mtahye8zOE9nNlSA=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmqqBuh6MaFiwr2AW0Ik8m0HTp5MDMRQqi/4saFIm79EHf+jZM2C209MHA45x7unePFnEllWd9GaWV1bX2jvFnZ2t7Z3TP3DzoySgShbRLxSPQ8LClnIW0rpjjtxYLiwOO0601ucr/7SIVkUfig0pg6AR6FbMgIVlpyzeqdm6VTdIVOG2jAdc7HFdesWXVrBrRM7ILUoEDLNb8GfkSSgIaKcCxl37Zi5WRYKEY4nVYGiaQxJhM8on1NQxxQ6WSz46foWCs+GkZCv1Chmfo7keFAyjTw9GSA1Vguern4n9dP1PDSyVgYJ4qGZL5omHCkIpQ3gXwmKFE81QQTwfStiIyxwETpvvIS7MUvL5NOo26f1xv3Z7XmdVFHGQ7hCE7Ahgtowi20oA0EUniGV3gznowX4934mI+WjCJThT8wPn8AaqqTVQ==</latexit>

L
y
=

32�

<latexit sha1_base64="mE6Ko6FBy5+Mtahye8zOE9nNlSA=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmqqBuh6MaFiwr2AW0Ik8m0HTp5MDMRQqi/4saFIm79EHf+jZM2C209MHA45x7unePFnEllWd9GaWV1bX2jvFnZ2t7Z3TP3DzoySgShbRLxSPQ8LClnIW0rpjjtxYLiwOO0601ucr/7SIVkUfig0pg6AR6FbMgIVlpyzeqdm6VTdIVOG2jAdc7HFdesWXVrBrRM7ILUoEDLNb8GfkSSgIaKcCxl37Zi5WRYKEY4nVYGiaQxJhM8on1NQxxQ6WSz46foWCs+GkZCv1Chmfo7keFAyjTw9GSA1Vguern4n9dP1PDSyVgYJ4qGZL5omHCkIpQ3gXwmKFE81QQTwfStiIyxwETpvvIS7MUvL5NOo26f1xv3Z7XmdVFHGQ7hCE7Ahgtowi20oA0EUniGV3gznowX4934mI+WjCJThT8wPn8AaqqTVQ==</latexit>

Ly = 32�

<latexit sha1_base64="5UCoBcFZHFFsgndh4S9SliWRC/Q=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSK4KkkVdSMU3bhwUcE+oA1hMpm0QycPZiZCDPVX3LhQxK0f4s6/cdJ2oa0HBg7n3MO9c7yEM6ks69tYWl5ZXVsvbZQ3t7Z3ds29/baMU0Foi8Q8Fl0PS8pZRFuKKU67iaA49DjteKPrwu88UCFZHN2rLKFOiAcRCxjBSkuuWbl188cxukQnddTnOufjsmtWrZo1AVok9oxUYYama371/ZikIY0U4VjKnm0lysmxUIxwOi73U0kTTEZ4QHuaRjik0sknx4/RkVZ8FMRCv0ihifo7keNQyiz09GSI1VDOe4X4n9dLVXDh5CxKUkUjMl0UpBypGBVNIJ8JShTPNMFEMH0rIkMsMFG6r6IEe/7Li6Rdr9lntfrdabVxNaujBAdwCMdgwzk04Aaa0AICGTzDK7wZT8aL8W58TEeXjFmmAn9gfP4AbD2TVg==</latexit>

L
z
=

32�

<latexit sha1_base64="weX3IQkzybFr9xObMtmxkoIhKkY=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KkkVdSMU3bisYB/QhjCZTNqhkwczE0uJ/RQ3LhRx65e482+ctFlo64GBwzn3cO8cL+FMKsv6NlZW19Y3Nktb5e2d3b19s3LQlnEqCG2RmMei62FJOYtoSzHFaTcRFIcepx1vdJv7nUcqJIujBzVJqBPiQcQCRrDSkmtWxm5mTdE1OutznfJx2TWrVs2aAS0TuyBVKNB0za++H5M0pJEiHEvZs61EORkWihFOp+V+KmmCyQgPaE/TCIdUOtns9Ck60YqPgljoFyk0U38nMhxKOQk9PRliNZSLXi7+5/VSFVw5GYuSVNGIzBcFKUcqRnkPyGeCEsUnmmAimL4VkSEWmCjdVl6CvfjlZdKu1+yLWv3+vNq4KeoowREcwynYcAkNuIMmtIDAGJ7hFd6MJ+PFeDc+5qMrRpE5hD8wPn8AbTSS0Q==</latexit>

w0 = 3�<latexit sha1_base64="mLWHNKmxNZ/x2TBVPWV1gPD+v6M=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclaT42ghFQboRKvQFbQiT6bQdOpmEmRuxhPyKGxeKuPVH3Pk3Jm0W2nrgwuGce7n3Hi8UXINlfRsrq2vrG5uFreL2zu7evnlQausgUpS1aCAC1fWIZoJL1gIOgnVDxYjvCdbxJreZ33lkSvNANmEaMscnI8mHnBJIJdcsNd34rlO/T/A1Psd9IFHRNctWxZoBLxM7J2WUo+GaX/1BQCOfSaCCaN2zrRCcmCjgVLCk2I80CwmdkBHrpVQSn2knnt2e4JNUGeBhoNKSgGfq74mY+FpPfS/t9AmM9aKXif95vQiGV07MZRgBk3S+aBgJDAHOgsADrhgFMU0JoYqnt2I6JopQSOPKQrAXX14m7WrFvqhUH87KtZs8jgI6QsfoFNnoEtVQHTVQC1H0hJ7RK3ozEuPFeDc+5q0rRj5ziP7A+PwBc9ySxQ==</latexit>

TFWHM = 5⌧
<latexit sha1_base64="mLWHNKmxNZ/x2TBVPWV1gPD+v6M=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclaT42ghFQboRKvQFbQiT6bQdOpmEmRuxhPyKGxeKuPVH3Pk3Jm0W2nrgwuGce7n3Hi8UXINlfRsrq2vrG5uFreL2zu7evnlQausgUpS1aCAC1fWIZoJL1gIOgnVDxYjvCdbxJreZ33lkSvNANmEaMscnI8mHnBJIJdcsNd34rlO/T/A1Psd9IFHRNctWxZoBLxM7J2WUo+GaX/1BQCOfSaCCaN2zrRCcmCjgVLCk2I80CwmdkBHrpVQSn2knnt2e4JNUGeBhoNKSgGfq74mY+FpPfS/t9AmM9aKXif95vQiGV07MZRgBk3S+aBgJDAHOgsADrhgFMU0JoYqnt2I6JopQSOPKQrAXX14m7WrFvqhUH87KtZs8jgI6QsfoFNnoEtVQHTVQC1H0hJ7RK3ozEuPFeDc+5q0rRj5ziP7A+PwBc9ySxQ==</latexit>

TFWHM = 5⌧

<latexit sha1_base64="O9FDo75AasW/YcGDcte71hPANBI=">AAAB+3icbVDLSgMxFM34rPU11qWbYBFclZki6rLoRncV7AM6Y8mkmTY0k4QkI5ahv+LGhSJu/RF3/o2ZdhbaeuDC4Zx7ufeeSDKqjed9Oyura+sbm6Wt8vbO7t6+e1Bpa5EqTFpYMKG6EdKEUU5ahhpGulIRlESMdKLxde53HonSVPB7M5EkTNCQ05hiZKzUdyu3MJBKSCNgoCmHD/Vy3616NW8GuEz8glRBgWbf/QoGAqcJ4QYzpHXP96QJM6QMxYxMy0GqiUR4jIakZylHCdFhNrt9Ck+sMoCxULa4gTP190SGEq0nSWQ7E2RGetHLxf+8XmriyzCjXKaGcDxfFKcM2k/zIOCAKoINm1iCsKL2VohHSCFsbFx5CP7iy8ukXa/557X63Vm1cVXEUQJH4BicAh9cgAa4AU3QAhg8gWfwCt6cqfPivDsf89YVp5g5BH/gfP4ASqSTTw==</latexit>

I / sin2
<latexit sha1_base64="O9FDo75AasW/YcGDcte71hPANBI=">AAAB+3icbVDLSgMxFM34rPU11qWbYBFclZki6rLoRncV7AM6Y8mkmTY0k4QkI5ahv+LGhSJu/RF3/o2ZdhbaeuDC4Zx7ufeeSDKqjed9Oyura+sbm6Wt8vbO7t6+e1Bpa5EqTFpYMKG6EdKEUU5ahhpGulIRlESMdKLxde53HonSVPB7M5EkTNCQ05hiZKzUdyu3MJBKSCNgoCmHD/Vy3616NW8GuEz8glRBgWbf/QoGAqcJ4QYzpHXP96QJM6QMxYxMy0GqiUR4jIakZylHCdFhNrt9Ck+sMoCxULa4gTP190SGEq0nSWQ7E2RGetHLxf+8XmriyzCjXKaGcDxfFKcM2k/zIOCAKoINm1iCsKL2VohHSCFsbFx5CP7iy8ukXa/557X63Vm1cVXEUQJH4BicAh9cgAa4AU3QAhg8gWfwCt6cqfPivDsf89YVp5g5BH/gfP4ASqSTTw==</latexit>

I / sin2

Figure 7.1: Physical setup and parameters of the 3D PIC simulations with two
counter-streaming laser beams. The cascade is seeded with electrons initially at rest
in the focal plane. The left panel shows the geometry in the x (longitudinal) direction
and along y (transverse direction), whereas the right panel shows the schematically
the properties of the set-up in the focal plane.

we first describe the variety of field configurations that can be obtained at a
magnetic node. We then explore how the field configuration affects the onset
of the avalanche and its growth rate. In order to do so, first we present 3D
PIC simulations comparing the different configurations at the same total peak
intensity. We then discuss the growth rates and the created pairs properties,
such as their distribution in space, their quantum parameter and energy. Fi-
nally we present how the short time dynamics model presented in Sec. 6.3
can be used to obtain insights for the interpretation of the simulations results,
since it allows to estimate the evolution of the quantum parameter and of the
Lorentz factor of charges with time in an intense field. First we use the model
to verify that the efficiency of different field configurations is consistent with
the particles short time dynamics. Then, we exploit this model to derive an
expression for the growth rate of the cascade for the pure rotating field config-
urations. This is in very good agreement with the numerical results and hence
opens encouraging perspectives for future predictions of the growth rate in the
two counter-streaming beams in more general configurations.

7.1 Physical setup and field structure of two counter-

streaming beams

7.1.1 Field of two counter-steaming LG beams

In chapter 1 we have presented the properties of LG beams. In this section
we detail the field structures that can be produced by two counter-streaming
LG beams, creating a standing wave. The diversity of structures that can be
obtained is wider than the one with a single beam. We focus in this chapter
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on cases with p = 0.

Let us first look at the field of a standing wave produced by the super-
position of two plane waves, in order to present the conventions that will be
used

E1 =
E0√
1 + σ2

1

[sin(ωt− kz)x̂+ σ1 cos(ωt− kz)ŷ] (7.1)

E2 =
E0√
1 + σ2

2

[− sin(ωt+ kz +∆ϕ)x̂+ σ2 cos(ωt+ kz +∆ϕ)ŷ] (7.2)

B1 =
E0√

1 + σ2
1 c

[−σ1 cos(ωt− kz)x̂+ sin(ωt− kz)ŷ] (7.3)

B2 =
E0√

1 + σ2
2 c

[σ2 cos(ωt+ kz +∆ϕ)x̂+ sin(ωt+ kz +∆ϕ)ŷ] , (7.4)

where σ1,2 are the beam polarisations and ∆ϕ is the dephasing between the
two waves. We define the polarization with respect to the corresponding laser
propagation direction. In practise, this means that for σ1 = +1 the field is left-
handed around the z axis, and for σ2 = +1 the field is left-handed around the
−z axis, so it is right-handed around the positive z direction. If one considers
opposite circular polarisations, σ = (σ1;σ2) = (±1;∓1), then the field can be
rewritten as

E =
2E0√
2

[
− sin

(
kz +

∆ϕ

2

)
cos

(
ωt+

∆ϕ

2

)
x̂

+ σ1 sin

(
kz +

∆ϕ

2

)
sin

(
ωt+

∆ϕ

2

)
ŷ

]
, (7.5)

B = 2
E0√
2 c

[
−σ1 cos

(
kz +

∆ϕ

2

)
cos

(
ωt+

∆ϕ

2

)
x̂

+ cos

(
kz +

∆ϕ

2

)
sin

(
ωt+

∆ϕ

2

)
ŷ

]
. (7.6)

With this convention, ∆ϕ = π creates at z = 0 a magnetic node, with a
rotating transverse electric field. We hence choose this value of the phase ∆ϕ =

π in the following discussion, to have a rotating electric field at the magnetic
nodes. The same conventions are used for the standing wave produced by the
interaction of two LG beams. The main difference with respect to the PW
case of Eqs.(7.5) and (7.6) corresponds to the field structure in the transverse
plane
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E1 =
E0√
1 + σ2

1

U0ℓ1(ρ, z) [sin(Φ0ℓ1(z) + ωt− kz)x̂

+ σ1 cos(Φ0ℓ1(z) + ωt− kz)ŷ] , (7.7)

E2 =
E0√
1 + σ2

2

U0ℓ2(ρ, z) [− sin(−Φ0ℓ2(z) + ωt+ kz + π)x̂

+ σ2 cos(−Φ0ℓ2(z) + ωt+ kz + π)ŷ] , (7.8)

B1 =
E0√

1 + σ2
1 c
U0ℓ1(ρ, z) [−σ1 cos(Φ0ℓ1(z) + ωt− kz)x̂

+ sin(Φ0ℓ1(z) + ωt− kz)ŷ] , (7.9)

B2 =
E0√

1 + σ2
2 c
U0ℓ2(ρ, z) [σ2 cos(−Φ0ℓ2(z) + ωt+ kz + π)x̂

+ sin(−Φ0ℓ2(z) + ωt+ kz + π)ŷ] , (7.10)

where ℓ1,2 are the LG beam orders.
Using the above mentionned convention, with σ = (1;−1) and ℓ = (0; 0)

we describe two colliding gaussian beams, which produce a rotating transverse
electric field at the magnetic nodes. The only difference with the plane wave
case is the amplitude distribution in the transverse plane. Note that for the
LG beam order ℓ we choose a convention analogous to the one for sigma, i.e.
ℓ is positive along the the axis of propagation of the beam. This means that
ℓ1 = 1 gives positive orbital angular momentum along z and ℓ2 = 1 gives
positive angular momentum along −z, so negative momentum along z.

The configurations discussed in the following are sorted into two groups.
First what we call the rotating cases, for which σ = (±1;∓1), i.e. the beams
have opposite circular polarisations. In this kind of configurations, at every
given point in the focal plane, the transverse electric field is rotating with
time. We refer to this as locally rotating field. The other group s referred to
as oscillating cases. In these configurations σ1 = σ2 and, at every point of
the focal plane, the transverse electric field oscillates, similar to what would
happen in a linearly polarised wave.

Rotating cases

Here we discuss the rotating cases with σ = (±1;∓1). We actually present
only the case with σ = (1;−1) since the only difference with σ = (−1; 1) is
the direction of the field rotation, and the sign of the spin component of the
field angular momentum. Neither of these changes impact the physical results
discussed in the following.

We first consider the cases with σ = (1;−1) and ℓ = (±1;∓1). Let us



Chapter 7 121

5 0 5
x/

6

4

2

0

2

4

6
y/

t/ = 0

5 0 5
x/

t/ = 0.25

Figure 7.2: Transverse electric field at focus of two counter-streaming LG beams,
with σ = (1;−1) and ℓ = (1;−1). The two panels show the field at different times.
The waist of the beams is w0 = 3λ. The arrows are proportional to the electric field
magnitude and are red when Ex > 0 and blue when Ex ≤ 0. This configuration is
called LG+1(Rot) in table 7.1.
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Figure 7.3: Transverse electric field at focus of two counter-streaming LG beams,
with σ = (1;−1) and ℓ = (−1; 1). The two panels show the field at different times.
The waist of the beams is w0 = 3λ. The arrows are proportional to the electric field
magnitude and are red when Ex > 0 and blue when Ex ≤ 0.This configuration is
called LG−1(Rot) in table 7.1.
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Figure 7.4: Transverse electric field at focus of two counter-streaming LG beams,
with σ = (1;−1) and ℓ = (2;−2). The two panels show the field at different times.
The waist of the beams is w0 = 3λ. The arrows are proportional to the electric field
magnitude and are red when Ex > 0 and blue when Ex ≤ 0.

look at the transverse electric field at focus for ℓ = (1;−1). In fig. 7.2 the
field is displayed at two different times. A vortex-like structure, similar to
the one beam case with σ = 1 ; ℓ = 1 shown infig. 1.6 is present. Differently
from the single beam configuration, there is no transverse magnetic field in
fig. 7.2. As discussed in Chap. 1 regarding the single beam configuration, the
LG beam phase structure leads to a rotation with time identified by the border
between the red and blue arrows in fig. 7.2. This means that the beam carries
a finite orbital angular momentum. This is consistent with the fact that the
first beam has orbital momentum proportional to ℓ1 = +1 along the z axis
and the second has ℓ2 = −1 along −z, which means a +1 contribution to the
angular momentum along the z axis. So both beams have a positive orbital
angular momentum along z.

The second case we would like to discuss is the one having (ℓ1; ℓ2) = (−1; 1),
where the sign of the LG beams orders have been swapped compared to the
previous case. The field at focus in this case, shown in fig. 7.3, looks similar
to the case of a single beam with σ = 1 ; ℓ = −1 shown in fig. 1.7. The field
has a saddle point structure which is rotating with time with the electric field
coming parallel to the x and y axis. Here as well the phase structure rotates,
but in the opposite direction with respect to the case shown in fig. 7.2, which
indicates that the orbital angular momentum has the opposite sign.

If one wants to look at a more general situation, the absolute values of the
LG beam orders can be increased. This is what is shown in figs. 7.4 and 7.5
for LG beams order (2;−2) and (−2; 2). The vortex case (fig. 7.4) is composed



Chapter 7 123

5 0 5
x/

6

4

2

0

2

4

6

y/

t/ = 0

5 0 5
x/

t/ = 0.25

Figure 7.5: Transverse electric field at focus of two counter-streaming LG beams,
with σ = (1;−1) and ℓ = (−2; 2). The two panels show the field at different times.
The waist of the beams is w0 = 3λ. The arrows are proportional to the electric field
magnitude and are red when Ex > 0 and blue when Ex ≤ 0.

of two adjacent vortices. The saddle point case (fig. 7.5)has one more axis to
which the field lines get parallel with respect to the case shown in fig. 7.3.

The previous cases considered LG beams having opposite ℓ orders. In
the same way that opposite circular polarisations are needed to have locally
rotating field, we can show that ℓ1 − ℓ2 ̸= 0 is required to have a rotating
phase structures. In the case of beam with the same absolute value of ℓ, this
condition corresponds to having opposite sign for ℓ. Indeed, if we consider a
configuration with the same ℓ for the two beams, for instance for ℓ = (1; 1), we
obtain the field structure displayed in fig. 7.6. One can see that this has two
lobes as a linearly polarised LG beam, and that they are not moving. However
the electric field locally rotates as expected, given the choice of σ = (1;−1)

. In general the configurations with σ = (±1;∓1) and ℓ = (ℓ1; ℓ1) have the
number of lobes of a LP LG beam of order ℓ1, but with the phase structure
which does not rotate with time.
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Figure 7.6: Transverse electric field at focus of two counter-streaming LG beams,
with σ = (1;−1) and ℓ = (1; 1). The two panels show the field at different times.
The waist of the beams is w0 = 3λ. The arrows are proportional to the electric field
magnitude and are red when Ex > 0 and blue when Ex ≤ 0.

Oscillating configurations

The oscillating configurations are obtained from the superposition of two counter-
streaming beams, both with circular polarisation and same helicity.. Here we
choose σ = (1; 1) for simplicity and without loss of generality. It should be
noted that for the oscillating configurations, there is a transverse magnetic
field even in the focal plane. Since the electric field oscillates with time, the
magnetic field reaches its maximum when the electric field vanishes and it has
the same spatial structure as the electric one. Let us first start with cases with
opposite ℓ. The configuration with ℓ = (1;−1), represented in fig. 7.7, has the
same structure as the LP LG beams with ℓ = 1 shown in fig. 1.1, composed of
two rotating lobes and with the field locally oscillating. Moreover all the cases
with σ±1;±1 and ℓ = (ℓ1;−ℓ1) have the structure of the LP LG of order ℓ = ℓ1.

More interesting configurations can be obtained with LG beams having the
same order. In figs. 7.8 and 7.9 are represented the cases with ℓ = (1; 1) and
ℓ = (−1;−1), respectively. The first one has a radially oscillating electric field,
the second one has a saddle point phase structure. Both these structures differ
from the corresponding rotating cases (figs. 7.2 and 7.3) as the field locally
oscillates.

More general configurations than the ones presented here can be produced,
for example by colliding LG beams of different order, using a gaussian and
an LG beams, or LG beams with p ̸= 0. However due to their complexity,
these configurations have not been explored in this work, in particular with
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Figure 7.7: Transverse electric field at focus of two counter-streaming LG beams,
with σ = (1; 1) and ℓ = (1;−1). The two panels show the field at different times.
The waist of the beams is w0 = 3λ. The arrows are proportional to the electric field
magnitude and are red when Ex > 0 and blue when Ex ≤ 0.
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Figure 7.8: Transverse electric field at focus of two counter-streaming LG beams,
with σ = (1; 1) and ℓ = (1; 1). The two panels show the field at different times.
The waist of the beams is w0 = 3λ. The arrows are proportional to the electric field
magnitude and are red when Ex > 0 and blue when Ex ≤ 0. This configuration is
called LG+1(Osc) in table 7.1.
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Figure 7.9: Transverse electric field at focus of two counter-streaming LG beams,
with σ = (1; 1) and ℓ = (−1;−1). The two panels show the field at different times.
The waist of the beams is w0 = 3λ. The arrows are proportional to the electric field
magnitude and are red when Ex > 0 and blue when Ex ≤ 0. This configuration is
called LG−1(Osc) in table 7.1.

the perspectives of future experiments in which the generation of such beams
is still challenging at the high intensity required to produce electron-positron
pairs.

Summary of the possible configurations

Summarizing the discussion about the different field configurations discussed
in this section, we can classify the different configurations into categories that
provide general guidance for the application of these configurations to pair
production studies. This is the purpose of table 7.1, in which the first quantity
is Σ = σ1 − σ2. One should remember that our convention is that σ2 gives the
polarisation along the axis of propagation of the second wave, i.e. −z. This
is why Σ is defined as the difference and not the sum of the two components.
As we have shown in figs. 7.7 to 7.9, if Σ = 0 the effects of each polarisation
cancels with the other, and the field locally oscillates, meaning that at a fixed
point in space the field arrow oscillates back and forth along a given direction.
These are called the oscillating configurations in the Field type column of table
7.1. On the contrary, if Σ ̸= 0 the field locally rotates, in a left handed way
around z if Σ > 0 and the other way around if Σ < 0. Those cases belong to
the rotating field type.

Analogously, another quantity of interest is the difference of the LG beams
order Λ = ℓ1 − ℓ2. As we have seen, the quantities ℓ1 and ℓ2 are related to
the orbital angular momentum of the respective beams. If ℓ1 > 0 the phase
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structure of the first beam rotate in a right handed way around the z and the
opposite for ℓ2. The quantity Λ tells us if the phase structure is stationary (for
Λ = 0), or rotating (Λ ̸= 0), where the sign gives the rotation direction.

Note that not all the possible combinations are reported in table 7.1,
as some are equivalent to already shown configurations. This is the case
for configurations in which both polarisations change sign. For example the
(σ1;σ2) = (1; 1) case with two gaussians is equivalent to the (−1;−1) case, put
aside the sign of Σ and so the orientation of the local rotation of the field with
time.

We named six different field configurations,(see the last column in table
7.1) distinguished by the rotating or oscillating nature of the beam, the beam
type and in case the value of the first LG beam order. These six configura-
tions will be the one explored with 3D PIC simulations and discussed in the
following sections. One should notice that we will not discuss the configuration
consisting of two gaussian beams with the same circular polarisations, because
its field structure is similar to the two LP gaussian beams, which belong to the
six different configurations we are going to study. Furthermore we will study
two configurations of LG beams with the same circular polarisations, but none
of the the two LG LP configurations. This is because the latter have field
structures similar to a signle LP LG beam and are therefore of less interest.
Finally, in the explored regime, the order of LG beams l = ±1 and p = 0

already allows to identify the effect of using configurations different from the
standard Gaussian. We hence focus on these cases, as we do not expect a
qualitative change on the results for higher LG beam orders.
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7.1.2 Physical simulations setup

Here we detail the simulations set-up. Which is schematically reproduced in
fig. 7.1: two counter-streaming laser pulses collide and create a standing wave.
Near the magnetic nodes, an electric type field is generated. As discussed
in section 6.3 this corresponds to a region that can re-accelerate particles and
hence regrow both their energy and their quantum parameter. This can happen
in the interval of time between two emissions of hard gamma photons, leading
to a self-sustained cascade.

Since the theoretical growth rate calculated in chapter 6, for the pure ro-
tating electric field case, depends on the local field amplitude, we performed
a study of the cascade by comparing different field configurations at the same
maximum amplitude of the laser field. Please note that this contrasts with
with the convention used in previous chapters, especially 4 5, where we con-
sidered pulses with the same energy. The choice for this chapter is made to
isolate the influence of geometry of the field configuration from its amplitude.

In the simulations two counter-streaming gaussian or LG pulses collide in
the presence of seeding electrons at their focus. Each pulse has a waist of 3λ
(with λ the laser wavelength) and a sin2 temporal envelope in intensity with a
full width at half maximum of 5τ (with τ the laser period). The total duration
of a single pulse which also corresponds to the overlapping time between the
two beams, is ten periods. The spatial resolution is λ/24 in the three directions
and the temporal resolution is τ/1000, that guarantees convergence of the
numerical results. Since the LG beams have zero intensity on the laser axis,
the seeding electrons are distributed along a diameter crossing the focal spot
as represented on the right panel of fig. 7.1.

The maximum amplitude of a single beam is called here a0, so that the
peak of the field when the pulses cross is a0,tot = 2a0, that is our reference
parameter. In an analogous way, the total electric field maximum amplitude,
produced by the two beams is referred to in the following as E0,tot, while the
maximum amplitude of the single beam is E1B. It can be useful to remind
that if we were working at constant energy the amplitude of the maximum
ℓ = 1 LG circularly polarised beam a0 would be reduced with respect to the
maximum of the corresponding gaussian linear pulse a by the following factor
a0 = e−1/2a/

√
2 ∼ 0.4a.
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7.2 Cascade growth rate and spatial distribu-

tion of the resulting pairs

In this section we first discuss the growth rates obtained for different configu-
rations and then look at the spatial distribution of the produced pairs.

7.2.1 Number of produced pairs and growth rates

In the case of two counter-streaming beams, as shown in section 7.1.1, we
can sort our results depending on the value and local behaviour (rotating or
oscillating) of the transverse electric field at focus. A first set of cases includes
all the configurations in which the standing wave results in an electric field
at the magnetic node that is very similar to the purely rotating electric field.
Intuitively we expect this configuration to be more efficient. Indeed, in an
analogous way to what has been shown for the quantum parameter of the
gamma photon in chapter 4, a wider angle between the charges momenta and
the electromagnetic field leads to a greater quantum parameter. The other
set of configurations corresponds to a field that locally behaves like a linearly
polarised wave. As most of the time the charges in this configuration have
momentum parallel to the electric field, intuitively we expect this configuration
to be less efficient. As mentioned in chapter 6, and pointed out by [Jirka
et al., 2016], this intuition could be wrong, since the trajectory of the particles
is not necessarily limited to the 2D plane at the magnetic nodes, because
of three dimensional effects due to the presence of attractors (see Sec.6.4).
Indeed, even if the seeding happens initially at a magnetic field node, where
a rotating electric field can exist, the particles only stay for a finite time close
to the magnetic node due to the effect of these attractors, and after roughly
one period migrate towards electric nodes. This will impose an additional
constraint on the efficiency of the avalanche generation. However, as we show
in the following, we find for the values of the field intensity considered in our
simulations that the cases close to a rotating field configuration are consistently
more efficient. Another limiting factor could be due to the ponderomotive
effects. However for the pulse duration and ultra-high fields considered in the
simulations, the particle dynamics is governed at the lowest order by the local
values of the field while ponderomotive effects seems to appear only towards
the end of the simulation as it will be shown by the density distributions of
the particles.

Let us now move to the results of the simulations. In a first set of reference
simulations we consider a0 ≃ 643 for one beam, that is a0,tot ≃ 1286 when the
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Figure 7.10: Number of positrons as a function of time in the simulations for the
different field configurations with two LG beams, for two different total intensities
at focus a0,tot ≃ 1280 (left) and a0,tot ≃ 1540 (right).

Case name Growth rate (a0,tot = 1280) Growth rate (a0,tot = 1540)
LG−1(Rot) 1.26τ−1 2.57τ−1

LG+1(Rot) 1.34τ−1 2.73τ−1

G(Rot) 0.92τ−1 2.18τ−1

G(Osc) x 1.19τ−1

LG−1(Osc) x 1.13τ−1

LG+1(Osc) x 1.06τ−1

Table 7.2: Table of the growth rates extracted from the curves of the number of
particles from figure 7.10. Due to the curve not being stable because the quasi steady
state is not reached for the (Osc) cases with a0,tot = 1280, no value is provided. For
a0,tot = 1540, the curves of the (Osc) cases being much more stable a value can be
provided. It is given by the average slope of the number of the curve of the number
of particles from t/τ = 5 and t/τ = 5.5, giving an average growth rate for the G(Osc)
case.

two beams superimpose. This value is chosen based on existing literature [Jirka
et al., 2016,Grismayer et al., 2016] where it was shown that one should expect
a clear avalanche to develop, allowing to clearly identify the growth rate in the
simulations.

The number of macro-positrons as a function of time for all the named
configurations of table 7.1 with a0,tot = 1280 is represented on the left panel
of figure 7.10. The time t = 0 corresponds to the time at which the laser
pulses start to overlap, and t/τ = 5 corresponds to the time when the two
pulses perfectly overlap. It is worth noticing that in figure 7.10 the relevant
quantity is not the total number of particles that depends on the seeding and
is affected by the spot size, but the growth rate, which can be deduced from
the slope of the curves representing the number of pairs in logarithmic scale.
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When an avalanche is triggered, the number of particles grows exponentially
with time, resulting in straight line in figure 7.10. The saturation of this line
corresponds to the finite laser time duration. As clearly visible in the figure,
for this value of a0,tot, the only cases which reach an avalanche are the locally
rotating field cases, i.e. the two gaussians with opposite circular polarisation,
and the two rotating LG cases with opposite circular polarisation and LG order.
The respective values of the growth rate, reported in table 7.2 are Γτ ≃ 0.9

for the rotating gaussian and Γτ ≃ 1.3 for the LG ±1(Rot) configuration: the
latter performs better at the same maximum amplitude. Next, one has the
two linearly polarised gaussians and the more exotic LG beams with locally
oscillating field. We also notice that if we compare the Linear G case with
respect to the Rotating G case the number of pairs created in the linearly
polarised cases is larger in some intermediate time interval. However as we can
see from the slope a quasi-steady state with exponential growth is not reached.
This is why a value for the growth rate is not provided. The LG±1(Osc) cases
result systematically in worst performances than the rotating ones.

In the second set of reference simulations we consider a0 ≃ 772 for each
beam, that is a0,tot ≃ 1544 when the two beams superimpose. The resulting
number of pairs is displayed on the right panel of fig. 7.10, and shows that the
relative efficiency of the different configurations in term of pair production and
growth rate is analogous to what found in the previous discussion of the cases
with a0,tot = 1280. The growth rates, reported in table 7.2 are larger than the
values shown in the second column, Γτ ≃ 2.2 for the G(Rot) case and Γτ ≃ 2.6

and 2.7 for the LG±1(Rot), and result in a higher number of pairs. Contrary
to the previous cases, the (Osc) cases have a more stable behaviour, which
allows us to extract a value for the corresponding growth rate. We obtain it
by taking the average slope between the maximum at t/τ = 5 and the time
t/τ . For the G(Osc) where the curve consists in steps, this provides an average
growth rate. One can see that all of these oscillatory cases have comparable
growth rates with Γτ between 1 and 1.2.

7.2.2 Spatial density distributions of the pairs

As discussed earlier, the possibility of producing an avalanche can be affected
by ponderomotive effects. In this respect LG beams have a very different
behaviour form standard gaussians, since their intensity distribution results in
a ponderomotive push of the particles both outside the pulse and toward its
propagation axis where the intensity is zero. This feature can be interesting
to trap the produced pairs, but it seems to play a role on time scales larger
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Figure 7.11: Density of the positrons at two different times in the focal plane, for
the G(Rot) and LG−1(Rot) cases, with a0,tot = 1540.

than those considered here, as it will be shown by looking at the density
distribution. In the following we thus present some preliminary results on the
particle dynamics, even though a clear identification of the conditions for pair
trapping deserves further studies. We here use the results of the a0,tot = 1540

cases, since their higher number of pairs makes the visualisation of the density
distribution easier.

The positron density in the focal plane is displayed for two different times,
for the G(Rot) case on top of fig. 7.11, and for the LG−1(Rot) case at the
bottom of the same figure. Let us first consider the Gaussian case. The
overlapping time where the fields reaches its peak value is t = 5τ . On the top
row of figure fig. 7.11, we reproduce the density of the pairs in the focal plane
one period after the peak time, t = 6τ , and at time t = 8τ just before the
number of created pairs stops increasing exponentially. As we can see even
for the later times only a few particles are outside the focal spot (3λ around
the center here). As anticipated the ponderomotive push is weak, and only for
pulses of longer duration or smaller transverse extension [Jirka et al., 2017] the
growth rate of the cascade would be affected by particles that are leaving the
focal spot in the transverse direction. At the same time, longer pulse duration
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Figure 7.13: Zoom on the density of the positrons at t/τ = 8 in the longitudinal
and transverse directions, for the LG−1(Rot) case a0,tot = 1540.
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likely results in more particles, due to a longer phase of exponential growth
exponential growth, and so the collective back reaction of the pairs on the laser
field can become important.

We next consider the rotating LG−1(Rot) cases, in which a ring like dis-
tribution appears, where the density is also increasing with time up to the
saturation of the pair production. Some particles are as expected going into
the center, where the laser intensity vanishes, but at t/τ = 8 the positron den-
sity at the center is one to two orders of magnitude lower than the maximum
on the ring-like structure.

The same feature is observed by considering the particle distribution as a
function of the laser propagation direction, represented in fig. 7.12. The stripes
of higher and lower densities, correspond to the different region of the standing
wave. A zoom of the density on those stripes is shown in figure fig. 7.13. We
observe that the two stripes with the high densities lie at the electric field
nodes (z = 9.75λ and z = 10.25λ) before and after the focus (corresponding
to z = 10). They both have slightly higher density than, but of the same
order as, the stripe at the magnetic field node in the focal plane. This is
the position where the cascade is predominantly developing. This analysis
allows to say that the cascade develops fast enough to be self-sustained, but
eventually particles migrate towards the attractors at the electric field nodes,
as discussed in section 6.4.

7.3 Seeding particles and produced pairs distri-

bution and moments

7.3.1 Seeding particles evolution

The trajectories of a selection of the initial seeding particles allow to visualize
and interpret the particle dynamics. This is shown in the left panel of fig. 7.14
for the LG−1(Rot) case. Most of the seeding particles, move to the spiral
attractors on a one-to-two-periods timescale. Once they are around the electric
nodes, they are trapped and keep spiraling in that region. We also notice that
some particles are pushed towards the center of the LG beam, at x/λ = 16. To
understand if the seeding particles are still participating to the cascade, one
can draw the evolution in time of the average value of their quantum parameter
and its dispersion, which are represented in fig. 7.15. The dispersion is defined
as the ratio between the average value and the standard deviation σχ, which
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is given by

σχseed
=

√√√√Nseed∑
k=1

(χseed − ⟨χk⟩)2
Nseed

, (7.11)

with Nseed being the number of seeding particles. It can bee seen that after the
first peak in χseed at time∼ 1.5t/τ , corresponding to the first acceleration and
emission, the average quantum parameter decays slowly below 0.2. Neverthe-
less, its dispersion grows for most of the interaction time up to values around
2 at t/τ = 6, and only after this time it decreases. This means that some of
the seeding particles can still participate to the cascade for the majority of the
interaction.

We now consider the rotating Gaussian case. The trajectories of a repre-
sentative selection of the seeding particles, their average χseed and standard
deviation are represented on the right panel of figs. 7.14 and 7.15. While the
particles orbits appear similar to the LG case that we have just discussed, the
average χ parameter and its dispersion have overall lower values. The average
χ decreases faster, in particular the dispersion in χ is stagnating as opposed to
the LG configuration, where it keeps a substantial value for much longer times.
Understanding the reason of this different behaviour between the Gaussian and
LG cases requires further studies.

7.3.2 Produced pairs moments

To have a better understanding of the physics at play and explain the relative
efficiency of the different cases, we analyze the distribution of the quantum
parameter and energy of the particles in the different configurations. The
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average values and the dispersion of the quantum parameter and energy of
positrons as a function of time are reproduced in figs. 7.16 and 7.17. The
dispersion is, as for the seeding particles given by the ration of the average
and of the standard deviation. The average and standard deviation are given
here by

⟨χe⟩ =

∫
dχew(χe)χe∫
dχew(χe)

, (7.12)

σχe =

√∫
dχe(χe − ⟨χe⟩)2w(χe)∫

dχew(χe)
, (7.13)

where w(χe) is the sum of the weights of positrons having the quantum parame-
ter χe. Let us first look at the moments of the quantum parameter distribution.
As expected, the rotating cases have the highest value of the average quantum
parameter, that is almost one. The time evolution is smoother if compared
to the oscillating cases, and a quasi steady state is reached. In the oscillating
cases the average value of χ is lower than in the rotating ones and we can
clearly see an oscillatory behaviour in time. All the rotating cases have an
average quantum parameter that is of the same order, but the Gaussian case
is the lowest, consistently with the growth rate results. The slow decrease after
time t/τ = 5 − 6 is due to the envelope of the pulses and the finite duration
of the overlap. The abrupt increase at the beginning is due to the fact that
only seeding particle exist at early time. The quasi steady state, for the (Rot)
cases is manifested here in the fact that the average of the quantum parameter
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around the pulses maximum is approximately flat. This suggests that for the
current parameters the pulse duration is the main responsible for quenching
of the regime of self-sustained cascade. However, to extrapolate this result to
longer interaction, we have to carefully take into account competing effects,
such as the ponderomotive force, that can play a more important role at longer
times, and the back reaction on the laser from the pairs. This is left for further
studies.

We now consider the dispersion of the quantum parameter, in fig. 7.17.
The information provided by this quantity is consistent with the results on
the average χ in the following way. In all cases the spread of χ is large,
and comparable to the average value (the lowest value being around 0.6 for
the LG(Osc) cases). However the (Rot) cases dispersions are higher and the
rotating configurations reach a steady state, with a slowly varying dispersion,
while the (Osc) cases do not. Moreover, taking into account that the oscillating
setups have a lower average χ, we can also deduce from these curves that they
have a lower number of positrons with high values of χ positrons, which are
the key element for sustaining the cascade since they are responsible for the
emission of hard photons.

The average value of the gamma factor, reproduced on the left panel of
fig. 7.16, allows to highlight some important points. The configurations corre-
sponding to most efficient pair production have smaller values of the average
Lorentz factor than the less efficient ones, but still high, i.e. of the order of the
order of 300−400 in the rotating configurations. However, since the dispersions
shown in fig. 7.17 are roughly the same for the different cases, we can conclude
that the oscillating configurations have more positrons with higher energies.
Moreover the probability of emission, according to Eq. (2.51), decreases for
when the γe value increases at fixed χe since the emission rate decreases, which
is consistent with the fact that the less efficient cases have a larger value of
the average γe.

The χe factor, depending on γe, depends also on the angle that the particle
momentum has with respect to the field, which is very different in the oscillat-
ing and rotating cases. This again favors the rotating cases, as the particles
momentum may have a bigger angle with the field compared to the oscillating
cases, where they oscillate along the electric field direction.

To summarize, the moments of the quantum parameter and Lorentz factor
distributions of the positrons are consistent with the efficiency of the different
setups and allow to understand why pair production is improved in the rotating
cases.
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Figure 7.18: Value of
ϵ2ωeff

E2
1Bω

in the focal plane, at two different times for the

LG−1(Rot) case (top row) and the LG+1(Rot) case (bottom row).

7.4 Reduced model for cascade

In this section we describe a simple analytical approach that allows to can
predict that the relative efficiency of different field configurations, even if their
maximum field amplitude is the same. We then verify that our predictions are
consistent with the numerical simulations of the previous Secs. 7.2 and 7.3.
Since particles migrate, the short time dynamics and the fact that the cascade
can develop quickly is an essential ingredient. We can then use the model for
the short time dynamics of a particle in a strong field presented in the previous
chapter 6. This allows to calculate χe(t) for an electron or positron initially at
rest, on timescales smaller than the laser frequency as given by Eq.(6.49)

χe(t) ≃
(
e2ℏϵ2ωeff

m3c4

)
t2 . (7.14)
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The ωeff quantity is given by (6.50)

ωeff =
√
Fµν,σ(0)u

µ
1u

σ
1 (J

−1)νλF
λ
κ,ρ(0)u

ρ
1u

κ
1 . (7.15)

The algorithm used to compute ωeff from the given fields of the 3D PIC simu-
lations is detailed in appendix B.1. Equation (6.49) suggests that the quantity
ϵ2ωeff is a key ingredient. In what follows we therefore discuss it in more details
and us it to interpret our simulations results.

7.4.1 Model predictions for the different configurations

In the following we show the quantity ϵ2ωeff extracted from 3D PIC simulations
considering different cases. To have a proper picture of the field configuration,
it is useful to represent this quantity at the focal plane, and for different times.
Higher values of ϵ2ωeff and a weaker time dependence correspond to the optimal
configuration for pair creation. Its spatial extension in the focal plane plays
also a role, since it takes large values only in a small region of space, particles
may escape from the re-accelerating region limiting the pair production rate.

We first consider the most efficient cases LG±1(Rot). The value of ϵ2ωeff in
the focal plane for the LG−1(Rot) is shown in the top row of fig. 7.18 at two
different times: 5τ (that corresponds to the peak of the pulses crossing) and
roughly a quarter period later. We clearly see a ring-like shape rotating in time.
The rotation can be identified that to the presence of two regions of higher
amplitude where ϵ2ωeff ≃ 2.30E2

1Bω, which is the highest maximum value of all
cases, and two regions of lower amplitude with ϵ2ωeff ≃ 1.7E2

1Bω. Moreover we
observe that these values are constant in time (up to the slow variation of the
envelope). Hence in this configuration there is always a region where particles
renew their quantum parameter and keep emitting gamma photons.

The distribution of ϵ2ωeff for the LG+1(Rot) case is shown in the bottom
row of fig. 7.18 and results as well in a ring. This case reaches one of the
highest maximum value ϵ2ωeff ≃ 2.25E2

1Bω of all the simulations that we have
performed, but its peak in the focal plane oscillates in time once in a laser
period from a non-zero minimal value, equal to ϵ2ωeff ≃ 1.7E2

1Bω, to its maxi-
mum. Despite the oscillation in time, this is one of the most favourable cases,
thanks to the high value of ϵ2ωeff and the fact that even the minimum is not
zero, allowing to increase multiple times the quantum parameter of pairs.

The G(Rot) case distribution is shown in figure 7.19 and it consists in a
single spot. Its maximum value at the center of the focal spot ϵ2ωeff = 2E2

1Bω

is constant in time (up to the slow variation of the envelope) but is lower than
the previous LG cases. This was expected since at the center the field looks like



142 Chapter 7

-6 -3 0 3 6
x/λ

-6

-3

0

3

6

y/
λ

t/τ= 5

-6 -3 0 3 6
x/λ

t/τ= 5.27

0.0

0.5

1.0

1.5

2.0

ε2ωeff

E 2
1Bω

Figure 7.19: Value of
ϵ2ωeff
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in the focal plane, at two different times for the G(Rot)
case.

a rotating electric field at a megntic node of two PW, with ϵ = 2E1B = E0,tot

and ωeff = 0.5ω. Moreover the maximum value of ϵ2ωeff this case is consistent
with the fact that this case is less efficient than the rotating LG configurations.

The distribution of the G(Osc) case on the left panel of 7.20 has a particular
structure, composed of two lobes separated by a zero value axis. This line is
at the center of the focal spot and is parallel to the polarisation direction
of the electric field. The peak value of these lobes oscillates in time, with a

maximum value
ϵ2ωeff

E2
1Bω

≃ 0.064 lower than the previous case (Rot) cases. Since

the electric field goes periodically to zero, there are times in which ϵ2 vanishes
everywhere. This happens in our configuration at the time t = 5τ , reason
why we do not show that figure. This is also true for all the other oscillating
configurations.

Finally we consider the distribution of ϵ2ωeff for the oscillating configu-
rations LG±1(Osc), shown on the right panel of 7.20 for LG−1(Osc). The
LG−1(Osc) case shows a four-leaf clover-like pattern, which does not rotate
and oscillates in time, going to zero at time 5τ (not shown here). This case
has a higher maximum value than the previous G(Osc) configuration, with
ϵ2ωeff ≃ 0.126E2

1Bω. However in this case this quantity does not only oscillate
from zero to its maximum value, but ϵ2ωeff is zero for half of the laser peri-
ods. This oscillating configuration has a non zero transverse magnetic field at
focus at times when ϵ2ωeff is close to its maximum. Since during half of the
laser period, the field is of magnetic type, with ϵ = 0, the particles quantum
parameter cannot increase in this interval of time. This explains why this case
is one with the lowest efficiency of pair production..
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The last case hat we have investigate, is the LG+1(Osc) configuration which
has a very low maximum value ϵ2ωeff ≃ 0.002E2

1Bω. Moreover the maximum
of this quantity in the focal plane oscillates with time and is zero for half
of the laser period, which is similar to the previous case. This means that
the quantum parameter of the particles does not increase efficiently enough in
comparison to the other cases and to drive a self-sustained cascade.

After putting together he analysis for all these cases, we can conclude
that the insights given by the short time dynamics model are qualitatively
coherent with the results of 3D PIC simulations. Indeed the rotating cases
seem to be advantageous with respect to oscillating configurations with the
same same amplitude. This can be understood because either the rotating
cases have always a region with a substantial value of ϵ2ωeff to regrow the
produced particle quantum parameter, as the LG−1(Rot) and G(Rot) cases,
or because they have a high maximum value of ϵ2ωeff quantity on a large portion
of the focal plane, even though it is not constant with time, as the LG+1(Rot)
case. This qualitative agreement suggests a good direction to try to make a
more quantitative estimation of the growth rate from the short time dynamics
model.
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7.4.2 Growth rate estimates

The numerical simulations presented in the previous sections together with
theoretical insights gained from the model in [Mironov et al., 2021] (see also
Sec. 6.3) lead us to propose a new model for predicting the growth rate of
an electron-positron pair cascade. Indeed, our simulations clearly indicate
that, in a realistic electromagnetic field configuration, particle migration out
of the regions of strong field (where pair production is important) happens on
a short timescale, at most of the order of the laser optical cycle. Hence, the
cascade needs to develop on shorter timescales. One can thus consider the
electron/positron dynamics over very short timescales as decribed by Mironov
and collaborators. As it will be shown, this model allows to recover the correct
cascade growth rate (within 40% from the value extracted from simulations)
over a broad range of laser field strength (for a0,tot from 200 to 104), and for
various field configurations.

The starting point of our model is the probability for an electron subject
to a strong electromagnetic field to emit at least one photon during a time
interval t (see, e.g. Sec. IV.C of [Niel et al., 2018a]):

P (t) = 1− exp

(
−
∫ t

0

Wγ(t
′)dt′

)
, (7.16)

where the integral term s(t) ≡
∫ t

0
Wγ(t

′)dt′ is the optical depth at the basis of
the Monte-Carlo procedure for inverse Compton scattering introduced in Sec.
3.3 and Wγ is the rate of high-energy photon emission given by Eq. (2.51).
This depends on time through the emitting electron/positron Lorentz factor
γ(t) and quantum parameter χ(t) only

Wγ(t) =
2α2

3τe

c0
(
χ(t)

)
γ(t)

. (7.17)

As one focuses on short time scales, the model by Mironov et al. provides us
with the time evolution of both quantities, γ(t) and χ(t), as given by Eqs. (6.39)
and (6.49), which we rewrite in the form

γ(t) ≃ ϵ̂ ωt , (7.18)

χ(t) ≃ ℏωeff

mc2
ϵ̂2 (ωt)2 =

ℏωeff

mc2
γ2(t) , (7.19)

where times have been expressed in units of the inverse of the laser field fre-
quency ω and ϵ̂ = eϵ/(mcω). From Eq. (7.16) one can define a characteristic
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time tem for high-energy photon emission in the form:∫ tem

0

Wγ(t
′)dt′ = 1 . (7.20)

Noting the bijection between time, energy and quantum parameter [Eqs. (7.18)-
(7.19)], this integral can be rewritten in the form∫ χem

0

c0(u)

u
du =

3τeω

α2
ϵ̂ =

ω

2W0

ϵ̂ . (7.21)

This equation uniquely defines, for a given field invariant (ϵ, equivalently ϵ̂), the
characteristic quantum parameter χem that an electron/positron has reached
when it emits a photon. Note that this characteristic quantum parameter is
found to depend on ϵ only. Note also that the right hand side term ∝ ω ϵ̂ does
not depend on ω as ϵ̂ ∝ ϵ/ω.

Once χem is known for a given field invariant ϵ (equivalently ϵ̂), the char-
acteristic photon energy at the moment of emission γem and the characteristic
time of emission tem can be computed as

γem =

√
mc2

ℏωeff

χem , (7.22)

ωtem =
γem
ϵ̂
. (7.23)

All three quantities, χem, γem and tem, are shown in Fig. 7.21 as a function
of ϵ̂ considering ωeff = ω/2 and ω ≃ 2.35 × 1015 s−1 (λ = 0.8µm). We have
considered here the particular case ωeff = ω/2 as it corresponds to what is
expected for a purely rotating field, for which one also has ϵ̂ = a0,tot.

For moderate values of ϵ̂ ≲ 103, the characteristic quantum parameter
χem < 1, c0(χ) ≃ (5/4)

√
3χ, and all quantities can be fairly well approximated

using

χem → 4

5
√
3

3τeω

α2
ϵ̂ ≃ 0.461

(
1 µm

λ

) (
ϵ̂

1000

)
, (7.24)

leading to γem ∝
√
ϵ̂ and ωtem ∝ 1/

√
ϵ̂. For larger ϵ̂ < 103, the characteristic

quantum parameter χem increases faster. Yet, even for very large values ϵ̂ ∼
104, χem does not reach very large values (χem ∼ 10 for ϵ̂ ∼ 10). Taking the
limit c0(χ) ≃ (7/9) 32/3Γ(2/3)χ2/3 thus gives only a rough estimate for χem in
this range of large ϵ̂

χem → 2
√
42

49 Γ(2/3)3/2

(
3τeω

α2
ϵ̂

)3/2

≃ 0.167

(
1µm

λ

)3/2 (
ϵ̂

1000

)3/2

. (7.25)
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malized Lorentz invariant ϵ̂ = eϵ/(mcω). Dotted lines show asymptotic behavior for
which simple analytical expressions are obtained.



Chapter 7 147

102 103 104
10 2

10 1

100

101

102

W
,

W
p

102 103 104
10 2

10 1

100

101

102

Figure 7.22: Cascade model predictions for (top) the high-energy photon emission
rate Wγ and electron-positron pair production rate Wp, (bottom) the predicted cas-
cade growth rate (in units of the inverse of the laser optical cycle τ = 2π/ω). All
quantities are plotted as a function of the normalized Lorentz invariant ϵ̂ = eϵ/(mcω).
Dashed lines show the inverse of the characteristic time of photon emission τ/tem.
The blue squares and red triangles in the bottom panel are the numerical growth
rates for the G(Rot) and LG+1(Rot) cases respectively.

To compute the growth rate Γ of the cascade, one then uses Eq. (6.11)

Γ =
Wp

2

(
−1 +

√
1 +

8Wγ

Wp

)
, (7.26)

whereWγ (Eq. (2.51) in Sec. 2.2.3) andWp (the pair production rate, Eq. (2.43)
in Sec. 2.2.2) are both evaluated using χem and γem. The corresponding pre-
dictions for Wγ, Wp and Γ are given in Fig. 7.22. The predicted growth rate for
the purely rotating field (ωeff = ω/2, solid line in the bottom panel of Fig. 7.22)
is found to be in very good agreement with the 1D3V Smilei simulation results
presented in fig. 6.3 considering a purely rotating electric field. In that case
indeed the discrepancy between our theoretical model and simulation does not
exceed 40%.

We have also reported in the bottom panel of Fig. 7.22 the growth rates
obtained for the case G(Rot) (blue squares) and LG+1(Rot) (red triangles).
We did not report the case LG−1(Rot) as the corresponding growth rate is
very close to (about 5% less than) the one obtained for LG+1(Rot), while the
growth rate for G(Rot) is about 30% lower. These values have however not
been obtained extracting the maximum (local) growth rate of the simulations,
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but examining the growth of the total number of electron-positron pairs. The
resulting measure of the global growth rate cannot thus be directly compared to
the predictions of our model. Yet, we want to point out that for the LG±1(Rot)
cases, the measured effective frequency ωeff ∼ 0.58ω is larger by about 16%
with respect to ωeff ∼ 0.5ω obtained for the G(Rot) case. We believe this
explains why the growth rate for the two LG beam cases is larger than that
obtained with the Gaussian beam.

7.5 Conclusions

Let us summarize the results presented in this chapter. The rich variety of
field configurations, which can be obtained from two counter-streaming LG
beams, was presented. The different field structures allowed to discuss the main
characteristics of the transverse electric field at focus. For a given polarisation
and LG beam order, one can deduce if the transverse field is locally rotating
(Rot) or oscillating (Osc) and if the phase structure is rotating or stationary,
as summarised in table 7.1.

A set of 3D PIC simulations showing the development of pair avalanches
were then performed for different field configurations. In all simulations the
maximum intensity achieved at the crossing of the pulses in the focal spot was
kept the same. Two different values of the total peak field were investigated,
a0,tot ≃ 1280 and a0,tot ≃ 1540. The first value is not so far from the lower limit
to induce an avalanche according to the pure rotating electric field case and the
literature [Grismayer et al., 2016]. For these two values of the peak intensity, we
showed that only the cases labelled as rotating (Rot) showed a clear slope with
a well defined growth rate and in general a more efficient pair production than
the cases labelled as oscillating (Osc), the difference being more pronounced
for the highest intensity. This result is consistent with the values of the average
pair quantum parameter, their Lorentz factor and their dispersion, as discussed
in 7.3.2. Moreover the simulations showed that LG±1(Rot) cases have larger
growth rate than the G(Rot) case. This is coherent with the analysis performed
by examining the seeding particle trajectories, and their quantum parameter
average and dispersion. A different behaviour was observed in the gaussian
and LG (Rot) cases. Indeed for the LG(Rot) cases pairs after being created
participate more effectively and for a longer time to the growth of the avalanche
than in the gaussian case.

We looked at the time evolution of the particles densities for the (Rot)
cases to get some insights in the pair distribution. First of all an analysis
of the trajectory of the seeding particles allowed to verify that the attractors
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discussed in section 6.4 induce particles to migrate toward them over one or two
periods. We also showed that even if the electric nodes behave as attractors,
the magnetic node at focus corresponds to a region of high density. This
means that even if particles migrate, pair production in this region is still fast
enough to make the density grow substantially. In the parameter range and in
particular for the pulse duration that we considered, the ponderomotive push
of the pairs in the transverse direction was weak, and we can conclude that
the main limiting effect for pair creation is the finite pulse duration.

In the last part of this chapter, we used the results for the short time
dynamics developed in [Mironov et al., 2021] and we computed ϵ and ωeff for
the various configurations to explain the improvement in pair production for
the rotating set-up with respect to the oscillatory one. We also showed that
LG±1(Rot) cases have a higher maximum value of the product ϵ2ωeff than the
gaussian case, which is consistent with their higher growth rate. Finally we
derived a simple analytical model to predict the growth rate based on the
short time dynamics. The estimated growth rate showed very good agreement
with simulations for the ideal rotating electric field case for a wide range of
parameters.

Future perspectives include the extension of this model to obtain the growth
rate for more realistic configurations such as two counter-streaming LG beams.



Conclusion

In order to conclude the present work, let us summarise all the results which
have been presented, and discuss the perspectives and upcoming studies.

The main purpose of this work was to study nonlinear Breit-Wheeler pair
creation driven by intense lasers with a focus on how the various laser param-
eters affect the pair creation process. In order to extend the already exist-
ing work, and due to the recent interest of the community in Laguerre-Gauss
beams which have a vortex structure and other interesting properties, our work
focused on this type of laser pulses. The common thread was to see how to im-
prove pair production, as one of the ultimate goal of future ultra intense laser
facilities is to create enough pairs to produce a pair plasma. In this quest for
creating more pairs we looked at two different types of configurations, which
are either promising or might be available in a near future.

Soft shower regime

The first configuration was the soft-shower discussed in part two. It is one of
the simplest configuration, involving the head-on collision of the laser pulses
with seeding particles (gamma photons in this study) and will likely be the first
configuration in future facilities. In order to generalise previous work, we per-
formed a study at fixed laser pulse energy, looking at how the spatio-temporal
profile of the laser pulse influences pair production. However this work was
not only comparisons of the results of simulations with different parameters for
laser pulses. To do this study we have built our own reduced semi-analytical
model from scratch. Starting from the SFQED probability rates of a gamma
photons interacting with a strong field, we could derive the probability for the
photon to be converted into a pair when interacting with a plane wave. Tak-
ing the plane wave case as an elementary block we were able to generalise our
model to arbitrary laser pulses with non-trivial phase structures such as LG
beams, and with spatio-temporal envelope. Applying the model to regimes of
high probabilities of conversion, we insisted on some counter intuitive results,
such as the fact that in some cases increasing the seeding particles energy
is lowering the probability of pair creation, or that tight focusing, while in-
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creasing the laser peak intensity does not necessarily allows to produce more
pairs. The soft-shower model is successful as it is predicting with a very good
precision the number of pairs obtained from 3D PIC simulations. Equipped
with this new model, we performed 3D PIC simulations at constant laser pulse
energy and verified how the transverse and temporal shape of laser pulses was
influencing the pair creation in different intensity regimes. We arrived at one
of the main results of this work which is that in the shower configuration, fo-
cusing the laser to the maximum is not always the best option to maximise pair
creation. After the publication of this study [Mercuri-Baron et al., 2021], this
result was confirmed by other teams arriving at the same conclusions indepen-
dently [Salgado et al., 2021,Óscar Amaro and Vranic, 2021], which confirms
the relevance and validity of the present work for the community.

In the same work we derived guidelines for future experiments based on
their expected specifications. In particular facilities like Apollon, ELI or
CORELS should not focus too much the laser in order to maximise pair pro-
duction, whereas other facilities with lower intensities should do the opposite.
Looking in particular at the Apollon facility case, since it is developed in the
laboratory this thesis was made, we showed the counter-intuitive result that
it is not worth it to increase too much the seeding particles energy after a
few GeV for the field intensities that will be achieved, in order to maximise
pair production. Finally we tried to describe how our model could be adapted
to various situations, with longer laser-pulses, or with seeding particles which
have more general spatial distribution and a wide energy spectrum.

Perspectives of this first configuration are diverse. First we should note that
some current facilities are planning to realise the head-on collision experiment
with gamma photons, like in [Salgado et al., 2021]. Another point is that the
present work used gamma photons as seeding for the shower configuration.
For a seeding high energy electron beam instead of a gamma flash, the pair
production may be different in some laser configurations. In particular, it could
happen that high energy electrons never see the maximum amplitude of the
pulse, leading to different results in term of pair production. As we presented in
part two, some previous works like [Blackburn et al., 2014] considered electrons,
but not in LG beams, however recently [Óscar Amaro and Vranic, 2021] studied
the effect of the laser and electron beam shapes on pair production in the soft-
shower configuration.

Another point is the long term dynamics of the produced particles, and
their evolution in the laser pulse. Indeed our study and simulations stopped
relatively soon, right after pair creation has stopped. However as it was shown
in the phase space of the pairs presented in Sec. 5.3, even for LG beams, some
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pairs remain in the middle of the pulse, with positive momentum along the
propagation direction of the pulse. It would be interesting to study if this
could be used to trap and guide pairs or to produce a quasi neutral beam of
pairs using LG beams.

Finally, our work was focusing on the soft regime of the shower configu-
ration, neglecting secondary pairs. As laser intensities and seeding particles
energy are increasing, the study of the hard shower regime, where the num-
ber of secondary pairs is greater than the number of primary could become
relevant. In the context the hard shower, a key aspect which needs to be un-
derstood is how many steps can exist in the shower, before pair production
stops. This should depend on seeding particles energy and laser intensities off
course, but maybe also on the field configuration.

Avalanche study

The second configuration studied in this work was the avalanche driven by two
counter-streaming laser pulses, and was the main topic of part three. In this
part, we studied how, at a fixed maximum field amplitude, the electromagnetic
field configuration could influence the onset of the avalanche. The LG beams
are a very good tool to probe many different configurations, and we tried
several LG beams order combined with different polarisations. In the begening
of chapter 7 we presented the diversity of field configurations which can be
obtained by combining two counter-streaming LG beams. We discussed the
transverse electric field configurations of the main combinations of LG beams
order and polarisation. Finally practical rules to infer local field behaviour and
dynamics of the phase structures were given. They simply rely on the sign of
the differences LG beam order and polarisation numbers.

The results of the study, done with 3D PIC simulations at the same peak
intensity, show that configurations with locally rotating transverse field are
better than oscillating configurations. Moreover rotating LG beams configu-
rations are the best configurations at fixed peak intensity, as they allow to
reach the largest cascade growth rates. In particular they are better better
than the usual configurations with two circularly polarised gaussian beams
with opposite polarisations. Checking the average value and dispersion of the
quantum parameter and Lorentz factor of pairs for the different cases confirms
that the relative difference of efficiency from rotating cases compared to the
oscillating configurations is consistent. As a final aspect on the simulations
results, we discussed the pairs distribution in space, showing the existence of
the expected attractors presented in 6.4. We also discussed briefly the trans-
verse ponderomotive push of the particles, which is not dominant in our case.
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The simulations shows that in the studied cases, what stops the cascade is the
separation of the pulses over time, and is not the back reaction of the produced
pairs on the laser field or the ponderomotive effects. This results off course is
expected to change for longer pulses or tinier focal spots.

In the last part of chapter 7 is presented a semi analytical model regarding
the avalanche. First we compare the relative efficiencies obtained from the
simulation, to the qualitative predictions provided by a model of the literature
presented in Sec. 6.3 which describes the short time dynamics of particles in
strong field. This model provides the quantum parameter and energy evolu-
tion of charges with time for an arbitrary configuration. By comparing the
quantities ϵωeff and ϵ, driving the evolution of the quantum parameter over the
different cases, we see that the model qualitatively agrees with the simulations.
This suggests that even without making a quantitative prediction, this could
be used in order to make an educated guess about the ability of a configuration
to start a cascade.

In the end of chapter 7 we finally present a model which predicts the growth
rate of a cascade for the ideal rotating electric field case. In order to do so,
we use the short time dynamics results mentioned previously to compute the
time tem after which the probability of emission of a charge in a strong field is
of order one. We used this time to estimate the rate of emission of radiation
by charges. This time depends on the ωeff quantity (6.50) and the ϵ invariant
(6.33) described in Sec. 6.3 and can be computed numerically. Still using the
short time dynamics model, the quantum parameter of the charge at this time
χem can be estimated, and is shown to depend only on the ϵ Lorentz invariant.
Knowing χem, we can then compute the Lorentz factor of the charge at the
time of emission as well as the characteristic time tem of emission. Having
these quantities, one can estimate the gamma emission rate Wγ as the NCS
rate (2.51) evaluated at the time tem. In the same way, the pair production rate
Wp is estimated as the NBW rate (2.43) evaluated at χem and γem. These two
rates are then plugged into the steady state avalanche growth rate expression
(6.11). This allows us to compute the growth rate for the ideal rotating electric
field case, which is in good agreement with the 1D3V PIC simulations presented
in fig. 6.3.

These results open new perspectives in the possibility of estimating the
growth rate of avalanches in more realistic 3D counter-streaming configura-
tion. Indeed, to the knowledge of the author, no model performed this well
on the estimate of the growth rate of the pure rotating electric field case, for
the range of parameter probed here between the high intensity and low inten-
sity limits, from a0 of a few hundred to 104. However due to the non-trivial
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field configuration of the counter-streaming configuration, the extension of the
estimate to more realistic field configuration should be made carefully.

Finally as for the shower case, the possibility to trap the produced pairs
with LG beams should be investigated further. The study of the density of
the particles in space showed that some particles are indeed in the center of
LG beams where the field is low, but the behaviour of those particles after
the pulses separation was not the main concern of this work and should be
addressed into more details.

Due to all the results and perspectives presented above, the present work
allowed the make a step forward in the optimisation of pair production in
ultra intense laser and in the understanding of the behaviour of two promising
configuration to achieve this goal. Moreover multi-PW laser facilities like the
Apollon Research Infrastructure, will give the possibility to either test the
predictions made here or to use them to perform experiments.
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Appendix A

Gamma photon conversion

A.1 Approximation of the pair production rate

integral

In this Appendix, we detail how the integral Iε(χ0) =
∫ π

0
b0(χ0Ψε(φ)) dφ

[Eq. (4.16)] can be efficiently approximated by Eq. (4.17). To do so, let us
start by stressing that, in general, and in particular at small χ, b0(χ) is a steep
function of χ. One thus expects the principal contribution to the integral to
come from the phase φ around φm = π/2, for which χ0Ψε(φ) ≃ χm with
χm = χ0/

√
1 + ε2. To compute the contribution of this maximum analytically,

we approximate the integrand in Eq. (4.16) around ϕm as

b0(χ0Ψε(φ)) ≃ b0(χm) exp

(
−(φ− φm)

2

2s2ε(χm)

)
, (A.1)

where sε(χm) is chosen so that the exact and approximated integrand have the
same second derivative at φ = φm, which gives

sε(χm) =

√
3

2

c(χm)√
1− ε2

with c(χ) =

√
2b0(χ)

3χb′0(χ)
. (A.2)

With the ansatz Eq. (A.1), the integral can be performed analytically, leading
to

Iε(χ0) ≃ π b0 (χm) F (sε(χm)) with F (s) =
√
2/π s erf

(
π
√
2/(4s)

)
. (A.3)

The ansatz Eq. (A.1) gives a good approximation of the integrand for arbitrary
values of ε as long as χm is small enough. It is also exact (for all χ0) in the
cases ε = ±1 for which s±1(χm) → +∞. Hence, Eq. (A.3) provides a very
good, fully analytical approximation of Eq. (4.16) for a wide range of ε and
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χ0.
The approximation however needs to be corrected for χ0 ≫ 1 and |ε| < 1.

In this limit, the integrand in Eq. (4.16) can be approximated using Eq. (2.45)
leading to

Iε(χ0) ≃ π b0 (χm) f(ε) with f(ε) =
1

π

∫ π

0

[
sin2 φ+ ε2 cos2 φ

]1/3
dφ . (A.4)

Equations (A.3) and (A.4) can be combined in Eq. (4.17). This form en-
sures the correct asymptotic behaviour of the integral Eq. (4.16) in both small
and large χ0 limits. It departs from the exact expression (integrated numeri-
cally) by less than 20%, the error being maximum for intermediate values of
χ0 ∼ 1. This was tested over a broad range of χ0 ∈ [0.1 , 1000] for various
polarization parameter ε ∈ {0, 0.25, 0.5, 0.75, 1}.

A.2 1D Pic simulations parameters

Here are described the simulations parameters leading to panel (c) of fig. 4.2.
A series of 1D3V (1 dimensional in space and 3 dimensional in velocity) PIC
simulations, considering a plane wave colliding head-on with a flash of gamma
photons, have been performed to produce Fig. 4.2c. We simulated a box of
length 2.5λ with spatial resolution λ/256, for a simulation time of 1.75 τ ,
with temporal resolution τ/512. This is a long enough time to study the full
interaction of the plane wave with a flash of gamma photons of extension
λ/2 and extract the probability from the number of surviving photons. The
probability map in Fig. 4.2c is obtained from the results of 4096 (64 × 64)
simulations performed over a the logarithmically spaced range of a0 ∈ [10, 4000]

and γγ ∈ [100, 40000].
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Short times dynamics of charges

B.1 Algorithm for the computation of ωeff

Here is detailed how the ωeff quantity from equation (6.50) computed from
the fields of 3D PIC simulations.

First of all we ran simulations with only the laser beams, and with the same
parameters as the cascade simulations presented in chapter 7, with a spatial
resolution ∆x = λ/32 (the convergence of the computation was checked by
increasing the spatial resolution). Then the field components are extracted
from simulations to build the electromagnetic field strength tensor

F µ
ν =


0 Ex/c Ey/c Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 . (B.1)

Then we use it to compute the value of the following Lorentz invariants

F = −c
2

4
F µνFµν = (E2 − c2B2)/2 (B.2)

G = − c
4
F ∗µνFµν = cB.E , (B.3)

in order to compute ϵ

ϵ =

√√
F2 + G2 + F . (B.4)

We will then in following compute ωeff for all the points where ϵ > 0, as it has
one of the hypothesis of the derivation presented in 6.3.

The second step is to compute the fields time and space derivatives of the
field components. The spatial derivative of the components of the fields are
computed as follows. For example, the derivative along x of the components i
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of the electric field Ei is given by

∂Ei

∂x
(x, y, z, t) ≃ Ei(x+∆x, y, z, t)− Ei(x−∆x, y, z, t)

∆x
, (B.5)

with ∆x being the spatial resolution of the simulation along x. In an analogous
way the derivatives are computed along the other spatial directions. Regarding
time derivatives, we get them from spatial derivatives using the Maxwell’s
equations

∇×E = −∂B
∂t

(B.6)

,∇×B =
∂E

∂t
. (B.7)

Then the ωeff quantity can be compute using the relation (6.50)

ω2
eff = Fµν,σ(0)u

µ
1u

σ
1 (J

−1)νλF
λ
κ,ρ(0)u

ρ
1u

κ
1 . (B.8)

Where the J matrix is given by

J =
(
2
ϵ

c
I− F(0)

)2
, (B.9)

and the u1 vector is the eigen vector of F(0) associated to the eigen value ϵ/c.
Its expression is given by

u1 =



1
B2

xEx+Bx(ByEy+BzEz)+ϵ(−ByEz+BzEy+Exϵ)

ϵ(B2
x+B2

y+B2
z+ϵ2)

BxByEx+BxEzϵ+B2
yEy+ByBzEz−BzExϵ+Eyϵ2

ϵ(B2
x+B2

y+B2
z+ϵ2)

BxBzEx−BxEyϵ+ByBzEy+ByExϵ+B2
zEz+Ezϵ2

ϵ(B2
x+B2

y+B2
z+ϵ2)


. (B.10)
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