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Abstract

Artificial intelligence (AI) is widely viewed as a key enabler of sixth generation (6G)
wireless systems. The main drivers of its adoption are the increasing complexity and
specialization of the services offered by wireless networks to end users. The original
premise towards the incorporation of AI in 6G networks is the possibility of establishing
a mutually gainful synergy between wireless communication systems, and the tools
belonging to the machine learning (ML) literature. Specifically, the edge of wireless
networks caters an unprecedented data availability and computational power that ML
algorithms can potentially tap into. At the same time, a plethora of wireless networking
problems lacking analytical solutions can benefit from data-driven techniques belonging to
the image and audio signals processing domain. This thesis targets fundamental problems
arising in this domain, with the end goal of paving the way towards the adoption of
reliable AI in future wireless networks.

The first part of this thesis is devoted to wireless communication for ML. It focuses
on the development of distributed training algorithms that can be deployed at the
edge of wireless networks to fully harness its potential. Future wireless networks are
envisioned to be heavily reliant on device-to-device (D2D) communication. For that
reason, we first investigate the implication of performing distributed optimization of ML
models over wireless communication systems comprising unreliable computing devices
restrained to intermittent peer-to-peer connectivity. We propose and formally analyze an
implementation of distributed stochastic gradient descent that leverages asynchronous
model updates and a time-varying consensus strategy to mitigate the detrimental effect of
computational and communication impairments. While being in principle a challenge, we
demonstrate that D2D communication brings a new degree of flexibility to the network
infrastructure that can be exploited to speed up the training of ML models at the
network edge. Specifically, given the increasingly important role of unmanned aerial
vehicles (UAVs) in infrastructureless wireless networks, we introduce a UAV-aided training
procedure in which the UAV trajectory is designed to promote the diffusion of locally
optimized models across devices.

In the second part of this thesis, we switch focus to learning aspects associated with
the distributed nature of the data generation processes, in particular data heterogeneity.
Data heterogeneity entails the problem of producing ML models capable of generalizing
to multiple and different data sources. We consider two different approaches to attain
this desideratum. Our first solution is a user-centric federated learning protocol that
sidesteps the issue of finding a universal ML solution by outputting tailored models
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Abstract

for different groups of devices that have similar learning goals.We then recommend an
alternative approach, based on a distributionally robust reformulation of the learning
problem, that has the goal of producing a unique and fair ML model with satisfactory
worst-case performance. To achieve this, we develop an agnostic decentralized gradient
descent-ascent algorithm that solves the underlying minimax optimization problem in a
communication-efficient manner by employing a compressed consensus scheme.

In the third and final part of this thesis, we turn to the paradigm of ML for wireless
communication. We take a critical look at frequentist learning and its applications
to wireless communication problems. This stance is motivated by the unreliability of
the frequentist framework under the challenging learning conditions that characterize
wireless communication problems. The main contribution of this section is a novel robust
Bayesian learning paradigm, that concurrently counteracts three prominent challenges
arising in wireless communication learning: data scarcity, the presence of outliers and
model misspecification. Finally, after over-viewing its main theoretical underpinnings
and formally investigating its properties, we showcase the merits of the proposed robust
Bayesian learning over a range of prototypical wireless communication problems.
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Résumé

L’intelligence artificielle (IA) est largement considérée comme un élément fondamental
des technologies de communication sans fil de sixième génération (6G). La hausse de la
complexité et de la spécialisation des services offerts par les réseaux sans fil aux utilisateurs
ont été des facteurs déterminants derrière son utilisation répandue. L’intégration de l’IA
dans les réseaux 6G est motivée par la possibilité d’établir une relation mutuellement
bénéfique entre les systèmes de communication sans fil et les outils appartenant à la
littérature sur l’apprentissage automatique (AA). Plus précisément, la périphérie des
réseaux sans fil offre une disponibilité de données et une puissance de calcul sans précédent
que les algorithmes d’AA peuvent exploiter. En parallèle, une multitude de problèmes
liés aux réseaux sans fil, pour lesquels il n’existe pas de solution analytique, peuvent
bénéficier des techniques d’AA appartenant au domaine du traitement des images et des
signaux audio. Cette thèse vise à résoudre les problèmes fondamentaux liés à ce domaine,
afin de faciliter l’adoption d’une IA fiable dans les futurs réseaux sans fil.

La première partie de cette thèse est consacrée à la communication sans fil pour
l’AA. Elle se concentre sur le développement d’algorithmes d’apprentissage distribués qui
peuvent être déployés à la périphérie des réseaux sans fil afin d’en exploiter pleinement le
potentiel. En effet, il est prévu que les futurs réseaux sans fil soient fortement tributaires
de la communication de dispositif à dispositif (D2D) dans un futur proche. Pour cette
raison, nous étudions l’optimisation distribuée des modèles d’AA sur les systèmes de
communication sans fil comprenant des dispositifs informatiques non fiables limités à
un système pair-à-pair intermittent. Nous proposons et analysons un algorithme de la
descente de gradient stochastique distribuée qui exploite les mises à jour asynchrones
des modèles et une stratégie de consensus variable dans le temps afin d’atténuer l’effet
indésirable des dysfonctionnements en matière de calcul et de communication. Nous
montrons ensuite que, même si la communication D2D est en principe un obstacle,
elle apporte un nouveau degré de flexibilité à l’infrastructure du réseau qui peut être
exploitée pour accélérer l’entrâınement des modèles d’AA à la périphérie du réseau. Plus
précisément, compte tenu du rôle de plus en plus important que tiennent les drones dans
les réseaux sans fil ad hoc, nous proposons une procédure d’apprentissage assistée par
drone dans laquelle la trajectoire de ce dernier est conçue pour favoriser la diffusion de
modèles optimisés localement dans le réseau.

Dans la deuxième partie de cette thèse, nous nous concentrons sur les aspects
d’apprentissage associés à la nature distribuée des processus de génération des don-
nées, et en particulier à l’hétérogénéité des données. L’hétérogénéité des données pose le
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Résumé

problème de la production de modèles d’AA avec une bonne capacité de généralisation sur
des sources de données multiples et différentes. Nous proposons deux approches différentes
pour atteindre ce desideratum. Notre première solution est une méthode d’apprentissage
fédéré centrée sur l’utilisateur. Celle-ci contourne le problème de la recherche d’une
solution d’AA universelle en produisant des modèles sur mesure pour différents groupes
de dispositifs ayant des objectifs d’apprentissage similaires. Nous suggérons par la suite
une approche alternative, basée sur une reformulation distributionnellement robuste du
problème d’apprentissage, qui a pour but de produire un modèle d’AA unique et éthique
avec une performance satisfaisante dans le pire des cas pour tous les dispositifs collaborat-
ifs. Pour y parvenir, nous développons un algorithme de descente de gradient décentralisé
agnostique qui résout le problème d’optimisation minimax sous-jacent d’une manière
efficace en termes de communication en utilisant un schéma de consensus compressé.

Dans la troisième et dernière partie de cette thèse, nous nous tournons vers le
paradigme de l’AA pour les communications sans fil. Nous jetons un regard critique
sur l’apprentissage fréquentiste et son utilisation sur les problèmes de communication
sans fil. Cette prise de position est motivée par le manque de fiabilité que le paradigme
fréquentiste démontre lors de conditions d’apprentissage difficiles caractérisant les prob-
lèmes de communication sans fil. La principale contribution de cette section est un
nouveau paradigme d’apprentissage bayésien robuste qui relève simultanément trois défis
proéminents dans l’apprentissage des communications sans fil : la rareté des données, la
présence de données aberrantes et la mauvaise spécification du modèle.Enfin, après avoir
passé en revue les principaux fondements théoriques de l’apprentissage bayésien robuste
et avoir étudié formellement ses propriétés, nous démontrons ses mérites sur une série de
problèmes prototypiques de communication sans fil.
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Chapter 1

Introduction

As the fifth generation (5G) network roll out is ramping up around the world, research
on sixth generation (6G) mobile systems is expected to deliver technological advance-
ments that are able to sustain increasing demands for massive connectivity, increased
reliability, reduced latency, while at the same time satisfying imperative energy-efficiency
requirements [7, 8].

These, apparently contrasting, needs bring about complex engineering problems that
frequently lack models that are concurrently well-descriptive and analytically tractable.
Researchers have then considered complementing the classical model-based design with
the data-driven one [9,10]. The major underpinning for this paradigm shift is the adoption
of machine learning (ML) solutions. ML allows to sidestep the challenges of modelling and
solving complex wireless communication problems by relying upon data-driven solutions
obtained from the optimization of parametric models, i.e. neural networks, based on
large amounts of data. This technology is expected to be sustained by the enormous data
availability and computational power provided by 6G networks, and to penetrate at all
the levels of the protocol stack [11].

The interaction between ML and wireless communication is not limited to an ap-
plication of the tools of the former field to the problems arising in the latter. In fact,
6G networks also bears an opportunity to scale machine learning technologies up to
an unprecedented level. Massive connectivity, combined with the advent of Internet of
Things (IoT), will provide a new sheer amount of data and it will contribute to produce
one of the largest and most powerful distributed computing platforms available [12,13].
This opportunity calls for a novel network design that, instead of serving as a simple
pipeline for data, can support distributed ML at the edge of the network.

Overall, form the intersection between ML and wireless communication stem two
different and complementary research fields: wireless communication for machine learning,
focusing on repurposing wireless communication systems for distributed training of ML
models, and machine learning for wireless communication, mapping the tools from the
ML literature to the problems emerging from the development of 6G networks.
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1.1 Wireless Communication for Machine Learning

The current spring of AI has been fueled by the availability of powerful computing
frameworks and the big data revolution [14]. These two ingredients are traditionally
leveraged following the centralized machine learning (CML) paradigm. Accordingly, the
training data is collected at a single processing unit, or a cluster of processing units
interconnected by wired links, and the optimization process is run locally. However, as
the amount of smartphones and IoT devices soar, data has started being generated in
a distributed fashion at the edge of the network by increasingly powerful devices. In
principle any distributed data sets can be collected at a central node and processed
according to the CML framework; however, the volume of the data generated at the
network edge, the unreliability of its wireless link and the privacy concerns associated to
off-loading personal data, poses an insurmountable obstacle to the application of CML
in 6G networks. This limitation of the CML approach motivates the search for novel
communication protocols and physical layer technologies to enable efficient distributed
machine learning (DML) at the wireless network edge [15].

1.1.1 Distributed Machine Learning

DML is a training technique that allows to scale out the training of ML models. Differently
from the scale-up approach, which works by increasing the computational power and
storage at a single device, DML parallelizes the optimization of a ML model by leveraging
a group of computing nodes while keeping the training data distributed. The practical
upshot is that devices with limited data and computing capabilities can aggregate their
resources without off-loading sensitive data [16].

The archetypical DML protocol consists in an iterative and coordinated optimization
scheme that encompasses multiple rounds, each comprising a computation and communi-
cation phase. During the former, a portion of the collaborating devices locally optimize
the ML model based on the in-situ data and computing resources. It then follows a
communication phase, during which devices share the result of the optimization and a
new model is created through the aggregation of the received parameters. This procedure
repeats until the validation performance of the ML model stabilizes.

There exists different types of distributed learning frameworks that differentiate
depending on the number and reliability of their computing nodes, the way data is
distributed, the speed of the communication links and the type of communication
topology that interconnects the devices. In Table 1.1 we provide a taxonomy of the
most popular DML schemes. The 6G network constitutes the ideal environment for the
deployment of DML, in particular of the federated and decentralized strategies which are
expected to be able to cope with the massive population of heterogeneous workers [17]
(see Table 1.1).

1.1.2 Massive Device to Device Connectivity

According to the report of IoT Analytics of May 2022, the number of IoT devices in 2021
has reached a total of almost 12.2 billions, and this figure is expected to double by the
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(a) Vehicle platoon federated learning (b) Vehicle platoon decentralized learning

Figure 1.1: Comparison between the communication topology induced over a platoon of
smart vehicles by the federated (left) and the decentralized learning protocols (right).
Federated Learning cannot harness the full platoon resources when constrained to one-hop
communication with the orchestrator. Decentralized learning allows to connect the entire
platoon exploiting short range device-to-device links.

end of 2025 [18]. Similarly, the number of smartphones is steadily increasing since their
advent [19].

Connectivity for this vast amount of devices has been traditionally provided using
the cellular networks paradigm, with the base station (BS) serving all the devices within
its coverage area. While this network design is compatible with the federated learning
(FL) and the multi-stage federated learning (MS-FL) protocols, the star communication
topology is affected by an inherent communication bottleneck hindering massive connec-
tivity [20,21]. To cope with this enormous amount of connected devices, the standard
cellular design is then expected to be complemented by more flexible communication
topologies based on device-to-device (D2D) communication [22,23]. For this new commu-
nication paradigm, decentralized learning protocols are envisioned to play a crucial role
in virtue of the absence of parameter servers (PS) and their flexibility with respect to the
underlying communication topology. In fact, the communication phase of decentralized
learning protocols requires nodes to communicate in a P2P fashion with other devices
that are within range, and to perform aggregation locally [24,25].

To illustrate the advantages of decentralized learning in D2D network deployments,
consider the scenario in Figure 1.1. A platoon of autonomous intelligent vehicles (AIV)
wish to collaboratively train a ML model relying upon the short-range D2D links.
Federated learning can be applied, by either resorting to a BS at the side of the road or
by defining a vehicle as a PS. The first solution is often infeasible due to the mobility
of the platoon, the second limits the number of collaborative devices to the AIVs that
are within range of the PS, unless one allows multi-hop links. In contrast, decentralized
learning enables the platoon to organize in a line topology and to harness the entirety of
the resource using only the available D2D links.

1.1.3 Challenges

From the above discussion it is clear the essential nature of decentralized learning protocols
for the future smart edge. However, the application of DML to 6G communication systems
brings about fundamental challenges that have to be addressed in order to scale out
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ML and unleash the full potential of future IoT networks. The first challenge is the
communication bottleneck introduced by unreliable wireless communication links. As the
computing hardware develops, the communication phase of DML protocols becomes the
most time-consuming step [26]. Devices can also become unavailable for long periods, e.g.
to perform additional tasks other than training, causing delays or biases in the training
results [27]. Furthermore, being an iterative procedure, the training of ML models can
require numerous rounds of communication and large energy expenditures that are not
always affordable by edge IoT devices [28]. These aspects related to the application of
DML to unreliable wireless networks will be the focus of the first part of this thesis.

Another fundamental challenge derives from the collaboration among network devices
that are heterogeneous. In fact, the 6G smart edge is expected to comprise devices
with different sensing capabilities that sample processes influenced by geographical or
user dependent factors [29]. Learning theory states that the aggregation of different
data sources can heavily hinder the quality of the final model at testing time [30].
Therefore, decentralized learning procedures have to be carefully designed in order to make
collaboration fruitful rather than detrimental. The development of such decentralized
learning algorithms will constitute the content of the second part of this thesis.

1.2 Machine Learning for Wireless Communications

The design of 5G and previous generations networks has been reliant on mathematical
models of communication systems, with the role of real-world data being integrative and
limited to the fine-tuning of their parameters. However, the increased level of complexity
and flexibility of 6G communication systems have rendered the model-based design
ineffective [10]. The extent to which 6G networks will leverage complex physical layer
technologies and adapt communication protocols based on user-centric and contextual
information makes the mathematical description of communication models challenging [31].
As such, the role of data and ML algorithms has become prominent in the design of future
wireless networks as it allows to bypass explicit problem formulations. This paradigm
shift allows us to obtain solutions to wireless communication problems in a model-free
fashion, leveraging large collections of network measurements and by optimizing expressive
parametric models.

1.2.1 Complexity of Future Network Services

In virtue of its versatility, ML is envisioned to be employed at all layers of the wireless
protocol stack.

Specifically, data-driven algorithms can reproduce the output of complex iterative
optimization procedures at a smaller computational cost. For example, new physical layer
technologies, such as intelligent reflecting surface (IRS) and millimeter wave communica-
tion, lead to complex optimization problems [32–35]. In these cases, classical solvers bear
a large computational cost which is incompatible with 6G low-latency requirements. On
the other hand, ML techniques such as deep unfolding are capable of efficiently providing
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solutions to many high-dimensional signal processing problems by the means of a single
forward pass [36,37].

Similarly, the cross-layer design of communication protocols gives rise to compli-
cated resource allocation problems. In this context, reinforcement learning (RL) has
demonstrated its ability to cope with the large action space characterizing these se-
quential decision-making processes, and to cut down the delays of block-wise optimized
solutions [38,39].

At the same time, data-driven methods can also help tackle in a novel way problems
that were out-of-reach or that were solved using costly iterative search procedures.
Considering for example the case of millimeter wave beam alignment, ML can take
advantage of high-dimensional contextual information to greatly reduce the search space
compared to classical solutions [40,41]. The data-driven design can also enable accurate
localization and sensing with massive antenna arrays by extracting spatial information
from high-dimensional channel fingerprints [42, 43]. These are key building blocks for
context-aware networking protocols for which the model-based paradigm cannot provide
general, yet adaptable, solutions. At the higher layer of the protocol stack, ML can be
used to extract user-centric features from the application data and provide personalized
services [44,45].

1.2.2 Uncertainty Quantification and Robustness in Wireless Systems

As we have seen, ML naturally finds application in many wireless communication problems;
however, in these scenarios, standard figures of merit such as the prediction accuracy have
to be weighted against other performance indicators that are specific to communication
systems.

The first is uncertainty quantification; namely, the ability of an ML model to faithfully
quantify the uncertainty of its outputs [46]. This capability is essential in safety-critical
decision-making processes, e.g. real-time control via the tactile internet [47], and it can be
used to enhance the network performance, e.g. in the context of cognitive radio to adopt
conservative behaviour upon uncertain spectrum sensing outcomes [48]. Uncertainty
quantification also lays the foundation of network self-monitoring [49]. ML communication
systems with good uncertainty quantification capabilities can detect the deterioration
of their performance (low confidence) and trigger timely retraining of its modules, for
example when the operating condition mutates.

A second important prerequisite for ML to be applied to wireless communication
systems is the robustness against mismatches between the design assumptions and the
real-world operating conditions [50–52]. When deployed in wireless communication
systems, ML models need to be operational with little to no human intervention over
a variety of application scenarios that are often outside the designer’s control. As a
result, data-driven solutions to communication problems are obtained based on model
assumptions that frequently do not entail the testing condition, and therefore learning
usually happens based on model classes that poorly approximate the phenomenon of
interest. This learning condition, termed model misspecification, is known to greatly
hamper the performance of ML solutions, and it renders the search for robust ML
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algorithms extremely important in wireless communication problems [3].

1.2.3 Challenges

The major major obstacle to the application of ML solutions in 6G networks are the strict
ML reliability requirements and the adverse learning conditions characterizing wireless
communication problems.

In wireless systems, data generation processes often have short stationary intervals
that impose strict upper bounds on the length of data acquisition procedures and the
size of training data sets. In the limited data regime, the frequentist learning approach is
known to perform poorly and lead to over-confident predictors [1]. Therefore, in spite
of its popularity, the application of frequentist ML solutions in wireless communication
systems is incompatible with most of the ML requirements.

On the other hand, the Bayesian learning approach provides a mathematically
grounded framework to reason about epistemic uncertainty, the uncertainty due to
the limited amount of data [53,54]. This merit of the Bayesian framework is promising
for the application of ML in 6G. However, the uncertainty quantification properties
of Bayesian learning are reliant on two fundamental assumptions: the model class is
well specified and the training data distribution matches the testing one. These two
conditions are often violated in wireless communication systems. Strict energy efficiency
and computation complexity requirements require the usage of simple models that are
often rough approximations of the complex real-world phenomena the designer wishes to
model. In this condition, the Bayesian learning rule does not retain good uncertainty
quantification capabilities and is incapable of delivering calibrated models [3, 52,55].

Additionally, the data collection procedures in realistic wireless systems are au-
tonomous with little or no human interventions. Therefore, in stark contrast with the
computer science domain, learning in wireless systems happens by the means of data sets
that are small and frequently corrupted by outliers introduced by exogenous noise sources,
and by malicious or inaccurate reporting [56,57]. This mismatch between training and
testing conditions is known to greatly degrade the performance of ML models.

The above limitations of the frequentist and standard Bayesian framework motivate
the last part of this thesis and the development of a robust Bayesian framework able to
concurrently counteract model misspecification and outliers.

1.3 Contributions and Thesis Outline

This thesis work comprises three separate parts, each focusing on particular challenges
resulting from the integration of machine learning algorithms and wireless communication.

In Part I, we consider the challenges and opportunities deriving from the application
of decentralized learning in D2D networks. In particular, in Chapter 2 we propose an
implementation of the distributed stochastic gradient descent (DSGD) algorithm that
is designed to cope with the inherent communication and computation impairments
characterizing the edge of the wireless networks. The proposed algorithm leverages
asynchronous updates and time-varying consensus strategies that allow it to tackle both
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the presence of straggling computing nodes and unreliable communication links. For
the proposed algorithm, we derive a convergence guarantee for non-convex objectives,
which allows us to quantify the impact of key network performance indicators on the
convergence properties of the algorithm. The main takeaway of this section is that
asynchronicity can speed-up training in spite of the aforementioned network impairments.
In Chapter 3 we consider the bright side of D2D connectivity, and we explore the role
of UAVs as potential promoters of edge intelligence. We show that the sparse and local
connectivity of IoT networks, which potentially hinder decentralized learning, can be
mitigated by a UAV relay. We derive an optimized trajectory for the UAV that speeds
up training by promoting the diffusion of the locally optimized model across the network.

This first part is based on the papers:

• E. Jeong†, M. Zecchin†, and M. Kountouris, “Asynchronous Decentralized Learning
over Unreliable Wireless Networks,” ICC 2022 - IEEE International Conference on
Communications, 2022.

• M .Zecchin, D. Gesbert, and M. Kountouris, “UAV-Aided Decentralized Learning
over Mesh Networks.” EUSIPCO 2022 - European Signal Processing Conference,
2022.

In Part II, we focus on critical learning aspects deriving from the heterogeneity
of the data generated at the edge. Specifically, in Chapter 4 we consider a D2D IoT
network with devices sampling data from different processes, in turn leading to differently
distributed local training data sets. In this scenario, we consider the task of producing
a ML model that guarantees satisfactory performance for all devices. To this end, we
formulate a decentralized distributionally robust problem and we propose AD-DGA, a
decentralized learning algorithm to solve the associated minimax optimization problem in
a communication-efficient manner. We establish non-asymptotic convergence guarantees
both in the case of convex and non-convex objectives. The theoretical results are
corroborated by experimental results highlighting the merits of the distributionally robust
learning procedure.

In Chapter 5 we address statistical heterogeneity by adopting a different approach
based on personalization. Starting from theoretical results derived from the domain
adaptation literature, we replace the standard federated learning aggregation rule with
a set of user-centric ones that serve groups of statistically homogeneous users. Each
user-centric aggregation rule produces a model that is tailored for the target distribution
associated with the group of users. Tuning the number of personalized rules allows
trading personalization for communication resources. We show that the optimal number
of user-centric rules can be obtained using clustering techniques. Our algorithm is shown
to outperform state-of-the-art solutions both in terms of personalization capabilities and
communication-efficiency.

This part is based on the works:

• M. Zecchin, M. Kountouris and D. Gesbert, “Communication-Efficient Distribu-
tionally Robust Decentralized Learning”, submitted to Transactions on Machine
Learning Research.
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• M. Mestoukirdi†, M. Zecchin†, D. Gesbert, Q. Li, and N. Gresset. “User-Centric
Federated Learning.” 2021 IEEE Globecom Workshops (GC Wkshps), 2021.

Finally in Part III, we focus on the application of machine learning to wireless com-
munications problems. We first highlight the fundamental challenges characterizing this
application domain; namely, small training data sets affected by outliers and misspecified
model classes. These learning conditions render the frequentist learning rule inadequate
to deliver reliable models with good uncertainty quantification capabilities in 6G systems.
Therefore, the main contribution of this part is the development of the (m, t)-Bayesian
learning framework, an extension of the generalized Bayesian inference that is robust to
outliers and misspecified model classes. The proposed learning rule is shown to enjoy
advantageous theoretical properties and to provide better ML models on a range of
supervised and unsupervised wireless communication problems.

This final part of the thesis is based on the papers:

• M. Zecchin, S. Park, O. Simeone, M. Kountouris and D. Gesbert, “Robust PACm :
Training Ensemble Models Under Model Misspecification and Outliers”, submitted
to IEEE Transactions on Neural Networks and Learning Systems.

• M. Zecchin, S.Park, O. Simeone, M. Kountouris and D. Gesbert, “Robust Bayesian
Learning for Reliable Wireless AI: Framework and Applications”, submitted to
IEEE Transactions on Cognitive Communications and Networking.

† indicates equal contribution
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Part I

Decentralized Learning over the Edge
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Chapter 2

Asynchronous Decentralized Learning
over Unreliable Wireless Networks

Decentralized learning enables edge users to collaboratively train models by exchanging
information via device-to-device (D2D) communication. Prior works have been limited
to the analysis of the performance of these algorithms over wireless networks with fixed
topologies and reliable workers, which do not resemble realistic sixth generation (6G) net-
work deployments. In this Chapter, we propose an asynchronous decentralized stochastic
gradient descent (DSGD) algorithm, which is robust to the inherent computation and
communication failures occurring at the wireless network edge. We theoretically analyze
its performance and establish a non-asymptotic convergence guarantee. Experimental re-
sults corroborate our analysis, demonstrating the benefits of asynchronicity and outdated
gradient information reuse in decentralized learning over unreliable wireless networks.

2.1 Introduction

Distributed learning algorithms empower devices in wireless networks to collaboratively
optimize the model parameters by alternating between local optimization and communi-
cation phases. Leveraging the aggregated computational power available at the wireless
network edge in a communication efficient [58] and privacy preserving manner [59],
distributed learning is considered to be a key technology enabler for future intelligent net-
works. A promising paradigm, which enables collaborative learning among edge devices
communicating in a peer-to-peer (P2P) manner, is decentralized learning [60]. Differently
from federated learning, decentralized algorithms do not require a star topology with a
central parameter server (PS), thus being more flexible with respect to the underlying
connectivity [61]. This feature renders decentralized learning particularly appealing
for future wireless networks with D2D communication. Several decentralized learning
schemes over wireless networks have been proposed and analyzed [24, 25, 62, 63], high-
lighting the key role of over-the-air computation (AirComp) [64] for low-latency training
at the edge. Prior works have mainly considered wireless networks of reliable workers
communicating in a fixed topology throughout the entire training procedure. Nevertheless,
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these assumptions are hardly met in practical systems, in which communication links
can be intermittent or blocked, and devices may become temporarily unavailable due to
computation impairments or energy saving reasons. Asynchronous distributed training
has been shown to mitigate the effect of stragglers (slow workers) [65–67]. However,
harnessing the potential benefits of asynchronism in decentralized learning over unreliable
wireless networks remains elusive.

In this chapter, we propose an asynchronous implementation of decentralized stochas-
tic gradient descent (DSGD) as a means to address the inherent communication and
computation impairments of heterogeneous wireless networks. In particular, we study
decentralized learning over a wireless network with a random time-varying communication
topology, comprising unreliable devices that can become stragglers at any point of the
learning process. To account for communication impairments, we propose a consensus
strategy based on time-varying mixing matrices determined by the instantaneous network
state. At the same time, we design the learning rates at the edge devices in such a way
so as to preserve the stationary point of the original network objective in spite of the
devices’ heterogeneous computational capabilities. Finally, we provide a non-asymptotic
convergence guarantee for the proposed algorithm, demonstrating that decentralized
learning is possible even when outdated information from slow devices is used to locally
train the models. Experimental results confirm our analysis and show that reusing stale
gradient information can speed up convergence of asynchronous DSGD.

2.2 System Model

We consider a network consisting of m wireless edge devices, in which each node i is
endowed with a local loss function fi : Rd → R and local parameter estimate θi ∈ Rd.
The network objective consists in minimizing the aggregate network loss subject to a
consensus constraint

minimize
θ1,...,θm

f(θ1, . . . , θm) :=
1

m

m∑
i=1

fi(θi) (2.1)

s.t. θ1 = θ2 = · · · = θm.

This corresponds to the distributed empirical risk minimization problem whenever fi
is a loss term over a local dataset. In the following, we denote the network objective
evaluated at a common parameter vector θ as

f(θ) := f(θ1, . . . , θm)
∣∣
θ1=···=θm=θ

, (2.2)

and the mean parameter vector as

θ̄ = 1/m

m∑
i=1

θi. (2.3)

To solve (2.1), we consider a DSGD algorithm according to which devices alternate
between a local optimization based on gradient information (computation phase) and a
communication phase.
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2.2.1 Computation model

To locally optimize the model estimate θi, we assume that each device can query a
stochastic oracle satisfying the following properties.

Assumption 1. At each node i, the gradient oracle gi(θ) satisfies the following properties
for all θ ∈ Rd

E[gi(θ)] = ∇θfi(θ) (unbiasedness) (2.4)

E∥gi(θ)−∇θfi(θ)∥2 ≤ σ2 (bounded variance) (2.5)

E∥gi(θ)∥ ≤ G2. (bounded magnitude) (2.6)

We admit the existence of straggling nodes and that a random subset of devices can
become inactive or postpone local optimization procedures, e.g., due to computation
impairments or energy constraints. As a result, devices may join the communication phase
and disseminate a model that has been updated using gradient information computed
using previous model estimates, or a model that has not been updated at all from the
previous iteration(s). Formally, at every optimization round t, the local update rule is

θ
(t+ 1

2
)

i =

{
θ
(t)
i , if device i is straggler at round t

θ
(t)
i − ηtigi(θ(t−τi)), otherwise

(2.7)

where ηti is a local learning rate and the delay τi ≥ 0 accounts for the staleness of the
gradient information at device i.

2.2.2 Communication model

The channel between any pair of device i and j follows a Rayleigh fading model. At every
communication iteration t, devices can exchange information according to a connectivity
graph G(t) = (V, E(t)), where V = {1, 2, . . . ,m} indices the network nodes and (i, j) ∈ E(t)
if devices i and j can communicate during round t. We consider symmetric communication
links; therefore the communication graph is undirected. While the connectivity graph is
assumed to remain fixed within the optimization iteration, it may vary across optimization
iterations due to deep fading, blockage, and/or synchronization failures.

2.3 Asynchronous Decentralized SGD

The proposed asynchronous DSGD procedure, which takes into account both computation
and communication failures, is detailed in Algorithm 1.

At the beginning of each training iteration t, non straggling devices update the

local estimate θ
(t)
i according to (2.7) using a potentially outdated gradient information.

Subsequently, based on the current connectivity graph G(t) = (V, E(t)), devices agree
on a symmetric and doubly stochastic mixing matrix W (t) using a Metropolis-Hastings

15



Chapter 2. Asynchronous Decentralized Learning over Unreliable Wireless Networks

Algorithm 1: Asynchronous Decentralized SGD

Input :Number of devices m, number of iterations T , learning rates ηθ and θ
(0)
i ∈ Rd.

Output : θ̄(T ) = 1
T

∑T−1
t=0 θ̄t

for t in 0, . . . T − 1 do
for each non straggling devices do

update local model as (2.7)
end

Determine matrix W (t) based on G(t)
for s in [1, St] do

if s ≡ 0 (mod 2) then
// Broadcast phase

for each device i scheduled in slot s do
Device i transmits (2.12)

Each device j ∈ N (t)
i receives (2.13)

Each device j ∈ N (t)
i estimates (2.14)

end

else
// AirComp phase

for each star center i scheduled in slot s do

Each device j ∈ N (t)
i transmits (2.12)

Device i receives (2.10)
Device i estimates (2.11)

end

end

end
for each device do

model consensus as in (2.15)
end

end
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Figure 2.1: An example of the timeline for one training iteration composed of alternate
Broadcast and AirComp slots.

weighting scheme [68]. In particular, the (i, j) entry of the mixing matrixW (t) is obtained
as

w
(t)
i,j =


1

1+max
{
d
(t)
i ,d

(t)
j

} , if (i, j) ∈ E(t) and i ̸= j

1−∑j w
(t)
i,j , if i = j

0, otherwise.

(2.8)

where d
(t)
i is the degree on node i at the communication round t. These weights are very

simple to compute and are amenable for distributed implementation. In particular, each
device requires only knowledge of the degrees of its neighbors to determine the weights
on its adjacent edges.

After that, it follows a communication phase in which devices exchange the updated
estimates and employ a gossip scheme based on W (t). To leverage AirComp capabilities,
devices employ analog transmission together with the scheduling scheme proposed in [63].
Accordingly, the communication phase is divided into multiple pairs of communication
slots. Each pair consists of an AirComp slot and a broadcast slot as illustrated in Fig. 2.1.
During the AirComp slot s, the star center i receives the superposition of the signals
transmitted by its neighboring devices N (t)(i) = {j ∈ V : (i, j) ∈ E(t)}. In particular,
each scheduled node j ∈ N (t)(i) transmits to the star center i

x
(s,t)
j =

√
γ
(s,t)
i

h
(s,t)
i,j

w
(t)
i,j θ

(t+ 1
2
)

j (2.9)

where h
(s,t)
i,j ∈ Cd is the channel coefficient between user i and j during slot s, γ

(s,t)
i ∈ R

is a power alignment coefficient, and w
(t)
i,j is the (i, j) entry of the mixing matrix W (t).
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The star center i receives the aggregated signal

y
(s,t)
i =

∑
j∈N (i)

h
(s,t)
i,j x

(s,t)
j + z

(s,t)
i (2.10)

where z
(s,t)
i ∼ N (0, σw1d) is a noise vector, and estimates the aggregated model as

ŷ
(s,t)
i =

y
(s,t)
i√
γ
(s,t)
i

=
∑

j∈N (i)

w
(t)
i,j θ

(t+ 1
2
)

j +
z
(s,t)
i√
γ
(s,t)
i

. (2.11)

On the other hand, during a broadcast slot s, scheduled node i transmits using a power

scaling factor α
(s,t)
i the signal

x
(s,t)
i =

√
α
(s,t)
i θ

(t+ 1
2
)

i (2.12)

and all neighboring devices j ∈ N (t)(i) receive

y
(s,t)
j = h

(s,t)
j,i x

(s,t)
i + z

(s,t)
j (2.13)

and estimate the updated model as

ŷ
(s,t)
j = w

(t)
j,i

y
(s,t)
j√

α
(s,t)
i h

(s,t)
j,i

= w
(t)
j,i

(
θ
(t+ 1

2
)

i +
z
(s,t)
j√
αihj,i

)
. (2.14)

At the end of the communication phase, each node i obtains the new estimate θ
(t+1)
i

combining all received signals and using a consensus with step size ζ ∈ (0, 1]

θ
(t+1)
i = (1− ζ)θ(t+

1
2
)

i + ζ


m∑
j=1

w
(t)
i,j θ

(t+ 1
2
)

j + ñi
(t)

 (2.15)

where ñ
(t)
i ∼ N (0, σ̃

(t)
w,i1d) is a noise vector term that accounts for the aggregation

of noise components during AirComp and broadcast transmissions at device i during
communication phase t.

2.4 Convergence Analysis

In this section, we study the effect of communication and computation failures on the
asynchronous DGSD procedure and prove its convergence.
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2.4.1 Effect of Communication Failures

Communication impairments amount for a random connectivity graph with an edge set
that differs at each different optimization iteration. From an algorithmic perspective,
random communication impairments result in DSGD with stochastic mixing matrices. A
particular class of stochastic mixing matrices are those that satisfy the expected consensus
property.

Definition 1 (Expected Consensus Rate [61]). A random matrix W ∈ Rm×m is said to
satisfy the expected consensus with rate p if for any X ∈ Rd×m

EW

[∥∥WX − X̄
∥∥2
F

]
≤ (1− p)

∥∥X − X̄∥∥2
F

(2.16)

where X̄ = X 11T

m and the expectation is w.r.t. the random matrix W .

Lemma 1. If the event that the connectivity graph G(t) is connected at round t has a
probability q > 0 and the Metropolis-Hastings weighting is used to generated the mixing
W (t), the expected consensus rate is satisfied with rate p = qδ > 0, with δ being the
expected consensus rate in case of a connected topology.

Proof. See Appendix A.1.

If the expected consensus is satisfied, it is then possible to establish a convergent
behavior for the estimates generated by the proposed algorithm.

Lemma 2 (Consensus inequality). Under Assumption 1, after T iterations, decentralized
SGD with a constant learning rate η and consensus step size ζ satisfies

m∑
i=1

∥∥∥θ(T )
i − θ̄(T )

∥∥∥
2
≤η2 12mG

2

(pζ)2
+ ζ

2

p

m∑
i=1

σ2w,i (2.17)

where σ2w,i = maxTt=0 E
∥∥∥ñ(t)i

∥∥∥2.
Proof. See Appendix A.2.

Overall, communication failures amount to a reduced expected consensus rate com-
pared to the scenario with perfect communication. At the same time, dropping users
that are delayed and are unable to synchronize and perform AirComp, renders the
communication protocol more flexible. For instance, in Fig. 2.2, we consider a network
of nine nodes organized according to different topologies and show the evolution of the
average spectral gap of the mixing matrix with Metropolis-Hastings weights, whenever
devices not satisfying a certain delay constraint are dropped. As expected, stricter delay
requirements result in sparser effective communication graphs and mixing matrices with
smaller spectral gaps.
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Figure 2.2: Average spectral gap under different delay constraints for mesh, ring, and
two-dimensional torus topologies with 9 nodes. Each link is associated to a completion
time ∼ Exp(1) and is dropped if it exceeds the delay tolerance value.

2.4.2 Effect of Computation Failures

Random computation impairments make the group of devices that effectively update
the model parameter vary over time. To account for this in the analysis, we introduce a
virtual learning rate that is zero in case of failed computation. Namely, the learning rate
at device i during computation round t becomes

η̃
(t)
i =

{
0, if i is straggler at round t

η
(t)
i , otherwise

(2.18)

where η
(t)
i is a specified learning rate value in case of successful computation. Furthermore,

to ensure that the procedure converges to stationary points of the network objective
even when edge devices have different computing capabilities, the expected learning rates

have to be equalized. In particular, if E[η(t)i ] = η, ∀i, we have that stationary points are
maintained in expectation, namely

m∑
i=1

E[η̃(t)i ]∇fi(θ) = 0 =⇒ ∇f(θ) = 0. (2.19)

Finally, the existence of straggling devices introduces asynchronicity in the decentralized
optimization procedure. In particular, a device i that fails at completing the gradient
computation at a given optimization iteration is allowed to apply the result in a later
one, without discarding the computation results. While we do not specify the delay
distribution, we rather introduce the following assumption regarding the staleness of
gradients.
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Assumption 2. For all iteration t, there exists a constant γ ≤ 1 such that

E

∥∥∥∥∥∇f(θ̄(t))−
∑m

i=1∇fi(θ
(t−τi)
i )

m

∥∥∥∥∥
2

≤ γE
∥∥∥∇f(θ̄(t))∥∥∥2 + L2

∑m
i=1 E

∥∥∥θ(t)i − θ̄(t)
∥∥∥2

m
. (2.20)

The above assumption is similar to the one in [65] with an additional consensus error
term. Note that the value of γ is proportional to the staleness of the gradients and in
case of perfect synchronization (γ = 0) the bound amounts to a standard consensus error
term.

2.4.3 Convergence Guarantee

In this subsection, we demonstrate the convergence of the decentralized optimization
procedure to a stationary point of the problem (2.1).

Theorem 1. Consider a network of unreliable communicating devices in which the expected
consensus rate is satisfied with constant p and each device can be a straggler with probability
ρi < 1. If Assumptions 1 and 2 are satisfied, asynchronous DSGD with constant learning
rate ηi = minj(1 − ρj)/(

√
4LT (1 − ρi)) and consensus rate ζ = 1/T 3/8 satisfies the

following stationary condition

1

T

T∑
t=1

∥∥∥∇f(θ̄(t))∥∥∥2 ≤8
√
L(f(θ̄(T ))− f∗)
γ′ρmin

√
T

+
3G2L

T 1/4p2γ′
+

√
L

4T

σ2

mγ′minj(1− ρj)

+
m∑
i=1

σ2w,i

mγ′

(
2L2γ

pT 3/8
+

4L
√
L

mT 1/4ρmin

)
(2.21)

where γ′ = 1− γ, ρmin = minj(1− ρj) and f∗ = minθ∈Rd f(θ).

Proof. See Appendix A.3.

The above theorem establishes a vanishing bound on the stationarity of the returned
solution, which involves quantities related to both communication and computation
impairments. In particular, the constant of the slowest vanishing terms T−1/4 contains
the term p related to random connectivity, as well as γ′ and ρmin due to stragglers.

2.5 Numerical Results

The effectiveness of the proposed asynchronous DSGD scheme is assessed using a network
of m = 15 devices that collaboratively optimize the parameters of a convolutional neural
network (CNN) for image classification with Fashion-MNIST. Gradients are calculated
using batches of 16 data samples and the performance is evaluated using a test set of 500
images. We model the channel gain between each device pair as Rayleigh fading and we
assume a shifted exponential computation time at each device, i.e., Tcomp = Tmin+Exp(µ)
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Figure 2.3: Test accuracy versus time under different channel gain thresholds. Smaller
thresholds result in larger average consensus rates and therefore in faster convergence.

with Tmin = 0.25s and µ = 1. In Fig. 2.3, nodes communicate only when the channel is
in favorable conditions, i.e., when the channel gain exceeds a certain minimum threshold
hmin. This allows to save energy; however, while higher threshold values result into lower
average energy consumption, they also produce mixing matrices with smaller consensus
rate, thus increasing the convergence time.

To study the effect of computation impairments, our proposed asynchronous learning
algorithm is compared with: (i) synchronous DSGD, which waits for all devices to
finish their computations; and (ii) synchronous DSGD with a delay barrier Tmax, which
discards computation from users that violate the maximum computing time. Compared
to the latter, our asynchronous procedure allows for slow devices to reuse stale gradient
computations during later iterations. In Fig.2.4, we plot the evolution of the test accuracy
of the aforementioned algorithms under two different values of Tmax. For a moderate
delay constraint Tmax = E[Tcomp], asynchronous DSGD and synchronous DSGD with
delay barrier perform similarly as the fraction of slow users is modest. Nonetheless,
imposing a delay constraint and discarding slow devices greatly reduces the training
time compared to the synchronous DSGD case. On the other hand, for a stringent
delay requirement, Tmax = 4

5E[Tcomp], reusing stale gradients turns out to be beneficial
and the proposed asynchronous DSGD attains higher accuracy faster compared to the
synchronous DSGD with a delay barrier.

2.6 Conclusion

In this chapter, we have proposed and analyzed an asynchronous implementation of
DSGD, which enables decentralized optimization over realistic wireless networks with
unreliable communication and heterogeneous devices in terms of computation capabilities.
We have studied the effect of both communication and computation failures on the
training performance and proved non-asymptotic convergence guarantees for the proposed
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Figure 2.4: Test accuracy for the asynchronous, synchronous with delay barrier, and
synchronous schemes under two different values of Tmax.

algorithm. The main takeaway is that reusing outdated gradient information from slow
devices is beneficial in asynchronous decentralized learning.
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Chapter 3

UAV-Aided Decentralized Learning
over Mesh Networks

In Chapter 2 we have shown that decentralized learning algorithm can be used to col-
laboratively train a machine learning (ML) over realistic wireless network affected by
computation and communication impairments. As shown in Theorem 1 the convergence
speed of the decentralized optimization algorithm severely depends on the degree of the
network connectivity, with denser network topologies leading to shorter convergence
time. Consequently, the local connectivity of real world mesh networks, due to the
limited communication range of its wireless nodes, undermines the efficiency of decen-
tralized learning protocols, rendering them potentially impracticable. In this chapter
we investigate the role of an unmanned aerial vehicle (UAV), used as flying relay, in
facilitating decentralized learning procedures in such challenging conditions. We propose
an optimized UAV trajectory, that is defined as a sequence of waypoints that the UAV
visits sequentially in order to transfer intelligence across sparsely connected group of
users. We then provide a series of experiments highlighting the essential role of UAVs in
the context of decentralized learning over mesh networks.

3.1 Introduction

Most of the decentralized learning schemes over wireless networks have been proposed
and analyzed under the assumption that the network topology is strongly connected
on average. [24,25,62,63,69]. However, real world mesh networks are characterized by
local, rather than global connectivity, and groups of nodes are often isolated or sparsely
connected to the rest of the network due to their limited communication range. In these
scenarios, decentralized learning is either not possible or its performance is severely
hampered.

At the same time, unmanned aerial vehicles (UAVs) represent an appealing solution
to mitigate limited ground connectivity. UAVs have been used as smart flying relays to
improve multi-hop routing capabilities [70], to self-organize in flying mesh networks [71]
and to improve coverage to ground users [72]. In this chapter, we investigate the role of
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UAVs in aiding decentralized learning protocols over ground mesh wireless networks.
The combination of FL and UAV assisted communication has recently been explored;

however, these studies have been limited to scenarios in which the UAV has the role of a
parameter server (PS), i.e., aggregating model estimates received from ground nodes and
subsequently broadcasting the aggregated model back to the ground [73,74].

The results presented in this chapter differ from these previous works as it considers
the UAV serving as a relay and it assumes that ground nodes are able to carry out
learning even in the absence of a UAV, by exploiting the already existing ground D2D
links. This feature dramatically improves the convergence speed, versatility and fault
tolerance of the proposed solution. We propose an optimized trajectory, given as a
sequence of waypoints visited by the UAV, which is designed to intelligently provide
relaying opportunities to ground nodes and to diffuse locally optimized model across
subsets of users with limited connectivity. We provide experiments showing that with the
aid of a UAV following the proposed trajectory, it is possible to harness the full potential
of the mesh network in spite of sparse and local connectivity, and to accelerate learning
compared to UAV-aided federated learning algorithms.

3.2 System Model

We consider a network of m+ 1 devices comprising m ground users plus a UAV serving
as a flying relay. We index the ground user by 1, . . . ,m and we denote the location of the
i-th ground device by pi = [xi, yi, zi] ∈ R3, where xi and yi are the horizontal coordinates
while zi denotes the elevation. We assume that ground devices are static, namely their
position is not a function of time. On the other hand, the UAV location is denoted
puav = [x, y, z] ∈ R3 and is assumed to be time-varying in the horizontal coordinates x
and y, but not in the vertical one z. Furthermore, the UAV elevation z is set to be larger
than a safety altitude zmin.

3.2.1 Communication Model

Communication among network nodes takes place in rounds. At every communication

round t ∈ {τ, 2τ, . . . }, the channel gain coefficient g
(t)
i,j ∈ R, expressed in dB, between

each pair of distinct user (i, j) ∈ [1 : m]2 is given by

g
(t)
i,j = g

(t)
j,i = βg − αg10 log10 di,j + η(t)g (3.1)

where αg is the path loss exponent, βg is the average channel gain in dB at a reference
distance d = 1, di,j = ∥pi − pj∥2 is the distance between nodes i and j, and ηg ∼ N (0, σ2g)
models the shadowing effects. For simplicity, we assume that the link parameters αg, βg
and σg are homogeneous across pairs of ground users; however, the proposed solution
can easily accommodate heterogeneous channel parameters. At communication round t,
the channel gain link between the UAV and a ground node i under Line-of-Sight (LoS)
conditions is modeled as

g
(t)
i,L = βL − αL10 log10 d

(t)
i + η

(t)
L , (3.2)
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while under Non-Line-of-Sight (NLoS) propagation it follows

g
(t)
i,N = βN − αN10 log10 d

(t)
i + η

(t)
N (3.3)

where d
(t)
i =

∥∥∥pi − p
(t)
uav

∥∥∥
2
denotes the time-dependent distance between the UAV and

user i, αL, βL and η
(t)
L ∼ N (0, σ2L) are the channel parameters under LoS, while αN , βN

and η
(t)
N ∼ N (0, σ2N ) describe the channel under NLoS propagation. These parameters

are assumed to be homogeneous across users for simplicity.

The LoS probability between the UAV at a position p
(t)
uav and user i is modeled using

the s-model [75]

ρ
(t)
i =

1

1 + e−aiθ
(t)
i +bi

(3.4)

where ai and bi are model coefficients related to the propagation environment, and θ
(t)
i is

the elevation angle between the UAV and ground user i. At every communication round t,
a link between network nodes is modeled using a simple, yet classical, on-off channel model.
Accordingly two nodes communicate if and only if the associated channel gain exceeds a

threshold gth. Therefore, the resulting ground connectivity matrix A
(t)
gr ∈ [0, 1]m×m, is

symmetric, has diagonal elements being equal to 1 and Bernoulli distributed off-diagonal
entries

[A(t)
gr ]j,i = [A(t)

gr ]i,j ∼ Bern
(
1− Φ

(
gth − ḡ(t)i,j√

σg

))
(3.5)

where Φ(·) denotes standard Gaussian cumulative distribution function and ḡ
(t)
i,j = E[g(t)i,j ].

Similarly, the connectivity between the UAV and ground users is described by a vector

a
(t)
uav ∈ [0, 1]1×m with entries

[a(t)uav]i∼Bern

1−ρ̄iΦ
gth − ḡ(t)i,N√

σN

−ρiΦ
gth − ḡ(t)i,L√

σL

 (3.6)

where ρ̄i = 1− ρi, ḡ(t)i,L = E[g(t)i,L] and ḡ
(t)
i,N = E[g(t)i,N ].

Based on the instantaneous connectivity status, determined by the realization of

a
(t)
uav, the UAV serves as a one-hop relay for the communication among grounds users.

The connectivity matrix resulting from the relaying opportunities offered by the UAV to
ground users is obtained as

A(t)
uav = (a(t)uav)

Ta(t)uav. (3.7)

If follows that A
(t)
uav is a symmetric random binary matrix whose entry (i, j) is 1 if an

only if there exists a relaying opportunity between ground user i and j, and 0 otherwise.
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Overall, the aggregated connectivity matrix, accounting for link existence either by
D2D ground communication or thanks to UAV relaying, is given by

A(t) = Jm − (Jm −A(t)
uav)⊙ (Jm −A(t)

gr ) (3.8)

where Jm is the m×m all-one matrix and ⊙ denotes the Hadamard product.
For every realization of the connectivity matrix A(t), the set of devices connected to

node i is

N (t)(i) := {j : [A(t)]i,j = 1}. (3.9)

Note that every ground user is connected to itself.

3.2.2 Learning procedure

We assume that the goal of ground devices is to collaboratively train a machine learning
model in order to benefit from the aggregation of local computational resources and
in-situ data. In particular, we assume that each ground device is endowed with a local
loss function fi : Rd → R and local parameter estimate θi ∈ Rd. This corresponds to
the distributed empirical risk minimization problem, which entails most decentralized
learning problems, whenever {fi}mi=1 are loss terms defined over local datasets {Di}mi=1

and {θi}mi=1 are local model estimates.
The network objective consists in the minimization of the aggregate network loss

subject to a consensus constraint

minimize
θ1,...,θm

f(θ1, . . . , θm) :=
1

m

m∑
i=1

fi(θi) (3.10)

s.t. θ1 = θ2 = · · · = θm.

In the following, we denote the average network estimate as θ̄ = 1/m
∑m

i=1 θi.
To solve (3.10), we consider the asynchronous decentralized stochastic gradient descent

(DSGD) algorithm proposed in [69]. According to this optimization scheme, ground
devices alternate between a local optimization phase based on gradient information
(computation phase) and a communication phase to exchange the updated local estimates
with one-hop neighbours. To locally optimize the model estimate θi, we assume that each
device i can query a stochastic oracle that is unbiased,

E[gi(θi)] = ∇θfi(θi), (3.11)

and has bounded variance and magnitude

E∥gi(θi)−∇θfi(θi)∥2 ≤ σ2, (3.12)

E∥gi(θi)∥ ≤ G2. (3.13)

Furthermore, to account for computation impairments and energy constraints, we admit
the existence of straggling ground users that can become inactive or postpone the local
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optimization computation. At each communication round t, the local update rule at
device i becomes

θ
(t+ 1

2
)

i =

{
θ
(t)
i , if device i is straggler at round t

θ
(t)
i − η

(t)
i gi(θ

(t−τi)) otherwise
(3.14)

where η
(t)
i is a local learning rate and the delay τi ≥ 0 accounts for the staleness of the

gradient information at device i. Subsequently, each device i shares its updated local

estimate θ
(t+ 1

2
)

i with its neighbours N (t)(i) using either a digital or analog communication
protocol [62, 63]. The received estimates are then averaged to obtain the new local
estimate

θ
(t+1)
i =

∑
j∈N (i)

wi,jθ
(t+ 1

2
)

j (3.15)

where wi,j are the entries of the mixing matrix W (t) obtained using a Metropolis-Hastings
weighting scheme [68] given in (2.8).

In [69], it has been shown that the performance of the asynchronous DSGD opti-
mization procedure depends both on the activity of users and on the degree of wireless
network connectivity. In particular, with more connected network topologies converging
faster than sparser ones. This motivates the use of a UAV to facilitate the diffusion of
locally optimized models, and to render the decentralized learning protocol more efficient
in spite of sparse and local ground connectivity.

3.3 Trajectory Optimization

At every optimization round t, the connectivity matrix A(t) associated to the network of

ground users depends on the UAV location p
(t)
uav and it can be enhanced thanks to the

the relaying opportunities it provides to ground devices. In the following, we propose
to optimize the UAV trajectory during the optimization process so that the distributed
learning procedure is facilitated.

A key quantity that is used to measure the information diffusion capabilities of a
network is the expected consensus rate [61]. While this quantity can be used to characterize
the rate of convergence of DSGD procedure, it does not provide a tractable optimization
objective to derive the UAV trajectory. For this reason we define a more tractable
surrogate objective that yields the optimized trajectory as a sequence of waypoints
{wi}ni=1. In particular, we assume that the initial way point w0 is equal to the initial

UAV location p
(0)
uav, and that the sequence of waypoints is determined on-the-fly, with

the waypoint wi+1 being computed when the UAV reaches the location specified by the
previous waypoint wi. The waypoints are designed so as to hover the UAV on a position
that maximizes the probability of creating a relaying opportunities between users that,
up to communication round t, have not been able to communicate. To this end, we
recursively define an link activity rate matrix R(t) as

R(0) = 0 (3.16)
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R(t+1) = γR(t) + (1− γ)E[A(t)], (3.17)

for γ ∈ (0, 1). Denoting by ti the communication round in which the UAV reaches the
waypoint wi, the subsequent waypoint is obtained solving the following optimization
problem

maximize
pt

∥∥∥(1−R(ti))⊙ E[Auav]
∥∥∥
1

(3.18)

where ∥·∥1 denotes the entry-wise 1-norm; namely, the sum of absolute values of the
matrix entries.

The optimization problem (3.18) determines the next waypoint so as to maximize
the relaying opportunities between pair of users associated to links with a low activity
rate. The main challenges in solving (3.18) are the lack of a close form expression for
Φ(·) and the non-convexity of the objective. In order to make the objective differentiable,
we approximate Φ(·) using the sigmoid function

S(x) :=
1

1 + e−αx
(3.19)

where α is a fitting parameter set to α = −1.702 as proposed in [76]. This approximation
of the objective allows us to employ efficient gradient based solvers to generate the
sequence of waypoints.

Nonetheless, the optimization objective (3.18) remains non-convex. In order to reduce
the probability of obtaining a waypoint associated to poor local maxima, we employ
gradient descent with restarts. The number of restart points is chosen to meet the UAV
computation constraints and the restart points are sampled uniformly at random inside
the convex hull determined by ground user locations.

3.4 Simulations

To test the proposed solution, we consider a network deployment of 30× 60m2 with 23
ground devices deployed at the ground level (z = 0m) as depicted in Figure 3.1. The
propagation parameters describing the ground links channel gain are set to αg = 3, βg =
−30 dB and σ2g = 1, and the channel gain threshold determining active/inactive links is
fixed to gth = −60 dB. In the considered deployment, ground users are naturally clustered
together in 3 distinct groups and the path exponent is such that communication within
each cluster is possible, but links between users belonging to different clusters are active
with negligible probability. Furthermore, we consider an obstruction (gray vertical line)
that amounts to a 35 dB attenuation for the links between users residing on opposite
side of the line. A UAV flying at a fixed altitude of 10m serves as a relay to enhance
ground connectivity. The channel gain parameters describing the link between ground
users and the UAV under LoS propagation are αL = 2.5, βL = −30 dB and σ2L = 1, while
under NLoS are αN = 3, βN = −30 dB and σ2N = 1.

We assume that the devices store only 10 data samples from the FashionMNIST
dataset, which alone would not guarantee good inference capabilities. Therefore, they
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Figure 3.1: Different UAV trajectory and placements. Black dots represent ground
users and the gray vertical line is a propagation obstacle that corresponds to a 35 dB
attenuation.

wish to harness the distributed dataset to jointly train a machine learning model. In
the following experiments we consider a fully connected neural network with one hidden
layers comprising 25 neurons. Ground devices update the model employing a gradient

descent optimizer and a geometrically decaying learning rate η
(t)
i = 0.1 · (0.995)t.

In this setting, the role of the UAV is to intelligently create relaying opportunities so
to promote collaborative learning, and to facilitate the ground users to harness the entire
distributed dataset by global diffusion of the locally optimized models, in spite of sparse
and local connectivity.

We benchmark the proposed solution, corresponding to a UAV visiting the sequence
of waypoints returned by (3.18) and serving users for 20 optimization rounds each time a
waypoint is reached, and compare it with alternative trajectory optimization schemes.

In particular, we consider the cluster mid-points traversal trajectory according to
which the UAV first runs a k-means clustering algorithm to detect natural clusters of the
ground devices positions, and then visits sequentially the mid-points between each pair
of cluster centers. Once the mid-point is reached, the UAV serves ground users for 20
optimization rounds and then it flies to the next location.

We consider the barycenter placement, in which the UAV hovers at a fixed location
pbar
uav determined by the mean ground user location.
Finally, we consider the maximum connectivity placement in which the UAV location

is fixed and set equal to the coordinate that maximizes the probability of creating a relay
links. This is obtained solving the following maximization problem

maximize
p

∥(1−Agr)⊙ E[Auav]∥1. (3.20)
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Figure 3.2: Testing accuracy averaged over 5 runs, obtained by the mean network estimate,
using different UAV-Aided decentralized learning protocols. Evolution of the average
consensus error (3.21) attained by the benchmarked trajectories. Smaller consensus error
corresponds to disagreement between network nodes.

For both the barycenter and the maximum connectivity placements, the UAV serves
ground users at every communication round as it hovers at a fixed location for the entire
learning procedure. We consider the centralized learning solution, corresponding to a
fully connected topology, as a performance upper bound. For all listed approaches we run
the distributed optimization protocol for 500 rounds and we track the testing accuracy of
the mean network estimate θ̄. We also consider the network consensus error metric

ε(θ1, . . . , θm) =
1

dm

√√√√ m∑
i=1

∥∥θi − θ̄∥∥22, (3.21)

which measures the degree of disagreement among ground nodes estimates and it is a
proxy to assess how effective is the UAV trajectory in satisfying the consensus constraint
in (3.18).

In Figure 3.1 we plot the ground user locations (black dots) and we overlay the UAV
trajectories during the training process. Specifically, in the top left corner, we report
in green the UAV trajectory returned by the proposed scheme. The UAV frequently
hovers between the disconnected components in order to relay information between the
clusters and to diffuse model estimates between groups of interconnected ground nodes
that rarely communicate using D2D ground links. In the top right corner, we provide
the trajectory of the cluster mid-points traversal solution (gray). The UAV successfully
identifies the clusters and it sequentially visits the mid-points. This strategy enhances the
ground connectivity, but it fails at providing relaying opportunities across the two bottom
components that are disconnected due to the propagation obstacle. In the bottom row,
we plot the barycenter (left plot) and maximum connectivity (right plot) placementes.
Both solutions yields a static UAV placement that is fixed throughout the entire training
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phase.

In Figure 3.2a we report the testing accuracy attained by the mean network estimate
θ̄ when decentralized learning is assisted by a UAV flying according to the different
trajectories. The testing accuracy allows us to quantify the extent to which the UAV
is beneficial to the collaborative learning process. The proposed solution (in green)
is able to take full advantage of the distributed dataset, and it successfully enables
fast distributed training with a final accuracy level that matches the accuracy of the
centralized solution (in black). The barycenter solution (in red) converges slowly to a
lower accuracy level, highlighting the necessity of a dynamic UAV placement to take full
advantage of the network resources. The cluster mid-points traversal solution, despite
enhancing ground connectivity, it is not able to connect all the disjoint components
and therefore it converges to suboptimal solution. Similarly, the maximum connectivity
placement is not able to connect all the disjoint network components and to transfer
intelligence across different clusters.

In Figure 3.2b we report the network consensus error evolution attained by the
different UAV trajectories. While the proposed trajectory is able to reduce the consensus
error during training and it eventually ensures that the edge devices reach a common
learning goal, the other baselines are not able to drive network nodes to a globally shared
model estimate.
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Figure 3.3: Testing accuracy, averaged over 5 experiments, obtained by the mean network
estimate when training is aided by a UAV serving as a relay to assist the decentralized
learning protocol (green), or as an orchestrator to perform federated learning (gray
dashed).

Finally, we propose a comparison between the proposed decentralized learning scheme
and a UAV-aided federated learning protocol, as in [73]. In particular, for the federated
learning algorithm, we assume that the UAV serves as a PS, and it orchestrates the
learning procedure by collecting locally optimized models by the network devices and
broadcasting aggregated estimates back to the ground users. On the other hand, in case of
decentralized learning, the UAV serves as a relay and the ground devices can also exploit
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the available D2D ground links to exchange model estimates, in principle being able to
perform learning without the presence of a UAV. As a result, the proposed protocol is
more flexible with respect to the communication topology, it can easily accommodate
multiple assisting UAVs, and converges faster. To compare these two approaches we
study the same deployment as in Figure 3.1. We assume that the relaying UAV follows
the proposed trajectory, while the UAV serving as orchestrator follows the trajectory

obtained solving (3.18) setting A
(t)
gr = 0, trying to serve large groups of users prioritizing

stale ones, akin to [73]. In Figure 3.3 we report the testing accuracies attained by the
protocols. The proposed approach drastically reduces the training time, halving the
number of iterations required to reach the final performance obtained by the federated
learning protocol.

3.5 Conclusion

In this chapter, we have studied the benefits that a flying relay can bring to a network of
wireless devices that are jointly training a machine learning model. We have proposed a
trajectory optimization scheme that enhances the ground connectivity so as to facilitate
the diffusion of locally optimized model estimates, and that enables ground users to take
full advantage of network computational and data resources. We have also provided a
series of experiments highlighting how a properly designed UAV trajectory can greatly
promote decentralized training and outperform UAV-aided federated learning protocols.
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Part II

Robust Learning for Heterogeneous
Data
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Chapter 4

Communication-Efficient
Distributionally Robust Decentralized
Learning

As shown in Chapter 2 and 3, decentralized learning algorithms empower interconnected
edge devices to share data and computational resources to collaboratively train a machine
learning model without the aid of a central coordinator (e.g. an orchestrating basestation).
In the case of heterogeneous data distributions at the network devices, collaboration can
yield predictors with unsatisfactory performance for a subset of the devices. For this reason,
in this chapter we consider the formulation of a distributionally robust decentralized
learning task and we propose a decentralized single loop gradient descent/ascent algorithm
(AD-GDA) to solve the underlying minimax optimization problem. We render our
algorithm communication efficient by employing a compressed consensus scheme and
we provide convergence guarantees for smooth convex and non-convex loss functions.
Finally, we corroborate the theoretical findings with empirical evidence of the ability of
the proposed algorithm in providing unbiased predictors over a network of collaborating
devices with highly heterogeneous data distributions.

4.1 Introduction

Decentralized learning algorithms have gained an increasing level of attention, mainly
due to their ability to harness, in a fault tolerant and privacy preserving manner, the
large computational power and data availability at the network edge exploiting device-
to-device (D2D) communication [62, 63, 69]. According to this framework, a set of
interconnected devices (e.g., smartphones, IoT devices, health monitors, research labs,
etc.) collaboratively train a machine learning model alternating between local model
updates, based on in situ data, and D2D type of communication to exchange model-
related information. Compared to federated learning in which a swarm of edge devices
communicates with a central parameter server (e.g., a shared access point) at each
communication round, fully decentralized learning has the benefits of removing the single
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Figure 4.1: Validation accuracy of a mouse cell image classifier trained on the COOS7
dataset [2]. We consider a network of 5 devices with one device sampling images using
a different microscope from the rest of the collaborating devices. CHOCO-SGD (solid
lines), a not robust decentralized learning scheme, yields a model with highly imbalanced
performance between the two type of instruments, while AD-GDA (dashed curves), the
proposed distributionally robust algorithm, drastically reduces the accuracy gap and
improve fairness among the collaborating devices.

point of failure and of alleviating the communication bottleneck inherent to the star
topology.

The heterogeneity of distributedly generated data by the Internet-of-Things (IoT)
entails a major challenge, represented by the notions of fairness [77] and robustness [78].
In the distributed setup, the customary global loss function is the weighted sum of
the local empirical losses, with each term weighted by the fraction of samples that the
associated device stores. However, in the case of data heterogeneity across participating
parties, a model minimizing such definition of risk can lead to unsatisfactory and unfair 1

inference capabilities for certain subpopulations. Consider the example given in Fig.4.1 in
which a network of IoT devices with different sensing capabilities (e.g., IoT devices with
heterogeneous measuring instruments) wishes to collaboratively train a machine learning
model. In this setting, a model obtained by myopically minimizing the standard notion of
risk defined over the aggregated data can be severely biased towards some devices at the
expense of others, leading to potentially dangerous or unfair decision making processes.

To tackle this issue, distributionally robust learning (DRL) aims at maximizing the
worst-case performance over a set of distributions, termed as uncertainty set, which
possibly contains the testing distribution of interest. Typical choices of the uncertainty
sets are perturbed version of the training distribution [80] or, whenever the training

1In the machine learning community, the notion of fairness has many facets. In this chapter, we will
use the term “fair” in accordance with the notion of good-intent fairness as introduced in [79].
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samples come from a mixture of distributions, the set of potential subpopulations resulting
from such mixture [81,82]. Robust distributed learning with heterogeneous data in which
different distributions exist at the various devices falls in the latter category, as the
natural ambiguity set is the one represented by the convex combination of the local
data distributions. In this case, minimizing the worst-case risk is equivalent to trying
to ensure a minimum level of performance for each participating device. Specifically for
the federated case, Mohri et al. [79] introduced agnostic federated learning (AFL) as a
means to ensure fairness and proposed a gradient based algorithm to solve the underlying
minimax optimization problem. Later, in [83], a communication-efficient version of the
optimization algorithm, which avoids frequent retransmission of the dual variables, was
proposed.

In virtue of the advantages of the fully decentralized setup and advocating the ne-
cessity for robust and fair predictors in future generation networks, in this chapter we
propose and analyze a distributionally robust learning procedure for D2D communication
networks. In contrast to previous works on collaborative distributional robust learning,
our algorithm operates in the absence of a central aggregator and with devices limited
to local and possibly sparse communication; therefore, it exhibits increased scalability,
adaptability and tolerance against network failures. Despite the additional complexity
stemming from the minimax nature of the distributionally robust decentralized optimiza-
tion problem, our solution is computationally lightweight and communication-efficient as
it alternates between local single-loop stochastic gradient descent/ascent model updates
and compressed consensus steps in order to cope with local connectivity.

We establish convergence guarantees for the proposed algorithm both in the case
of smooth convex and smooth non-convex local loss functions. In the former case, the
algorithm returns an ϵ-optimal solution after O(1/ϵ2) iterations. In the latter, the
output is guaranteed to be an ϵ-stationary solution after O(1/ϵ2) iterations whenever the
stochastic gradient variance is also bounded by ϵ, otherwise the same guarantee can be
obtained by increasing the number of calls to the stochastic gradient oracle. Furthermore,
we demonstrate the effectiveness of the proposed algorithm in finding a robust predictor
under different compression schemes, network topologies, and models architectures. We
also compare the proposed approach against the distributionally robust federated learning
counterpart and we the proposed solution attains higher worst-case distribution accuracy
for the same number of transmitted bits, effectively reducing the communication burden
of the distributionally robust learning procedure on the edge of the network.

4.2 Related work

Initiated in the 80s by the work of Tsitsiklis [60,84], the study of decentralized optimization
algorithms was spurred by their adaptability to various network topologies, reliability
to link failures, privacy-preserving capabilities, and potentially superior convergence
properties compared to the centralized counterpart [59,85–88]. This growing interest and
the advent of large-scale machine learning brought forth an abundance of optimization
algorithms both in the deterministic and stochastic settings [89–93]. With the intent
of extending its applicability, a concurrent effort has been made to devise techniques
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able to reduce the delay due to inter-device communication. Notable results in this
direction are the introduction of message compression techniques, such as sparsification
and quantization [94–99], and event-triggered communication to allow multiple local
updates between communication rounds [100, 101]. Decentralized learning algorithms
have also been studied in the context of wireless communication as an enabler of edge
intelligence for beyond 5G (B5G) networks. [62, 63,69].

Distributional robustness copes with the frequent mismatch between training and
testing distributions by posing the training process as a game between a learner and an
adversary, which has the ability to choose the testing distribution within an uncertainty
set [102]. Restraining the decisional power of the adversary is crucial to obtain meaningful
and tractable problems and a large body of the literature deals with uncertainty sets,
represented by balls centered around the training distribution and whose radius are
determined by f -divergences [103,104] or Wasserstein distance [80,105,106]. Distributional
robustness is deeply linked with the notion of fairness as particular choices of uncertainty
sets allows to guarantee uniform performance across the latent subpopulations in the
data [81, 82]. In the case of federated learning, robust optimization ideas have been
explored to ensure uniform performance across all participating devices [79] but, to the
best of our knowledge, not in the context of fully decentralized learning.

Distributionally robust learning typically entails saddle point optimization problems.
The convergence properties of saddle point optimization algorithms have also been studied
in the decentralized scenario for the convex-concave setting [107, 108]. More recently,
the assumptions on the convexity and concavity of the objective function have been
relaxed. In [109] an algorithm for non-convex strongly-concave objective functions has
been proposed; however, the double-loop nature of the solution requires to solve the inner
maximization problem with increasing level of accuracy rendering it potentially slow. On
the other hand, our algorithm is based on a single loop optimization scheme - with dual
and primal variables being updated at each iteration in parallel - and, consequently, has
a lower computational complexity. For the non-convex - non-concave case, [110] provides
a proximal point algorithm, while a simpler gradient based algorithm is provided in [111]
to train generative adversarial networks in a decentralized fashion. None of these works
take into consideration communication efficiency in their algorithms.

4.3 System Model

We consider a network of m edge devices in which each device i is endowed with a
local objective function fi : Rd → R given by Ez∼Piℓ(θ, z), with Pi denoting the local
distribution at device i and θ ∈ Rd being the model parameter to be optimized. Whenever
Pi is replaced by an empirical measure P̂i,ni , the local objective function coincides with
the empirical risk computed over ni samples. Network devices are assumed to be
interconnected according to a communication topology specified by a connected graph
G := (V, E) in which V = {1, . . . ,m} indexes the devices and (i, j) ∈ E if and only if
devices i and j can communicate. For each device i ∈ V , we define its set of neighbors by
N (i) := {j : (i, j) ∈ E} and since we assume self-communication we have (i, i) ∈ N (i)
for all i in V. At each communication round, the network devices exchange messages
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Figure 4.2: IoT network comprising edge devices with different sampling capabilities
and operating in different conditions. The network goal consists in exploiting the
heterogeneous distributed dataset and the D2D links to collaboratively train a robust
and fair machine learning model.

with their neighbors and average the received messages according to a mixing matrix
W ∈ Rm×m.

Assumption 3. The mixing matrix W ∈ Rm×m is symmetric and doubly-stochastic; we
denote its eigengap by ρ ∈ (0, 1] and define β = ∥I −W∥2 ∈ [0, 2].

Being the communication phase the major bottleneck of decentralized training, we
assume that devices transmit only compressed messages instead of sharing uncompressed
model updates. To this end, we define a, possibly randomized, compression operator
Q : Rd → Rd that satisfies the following assumption.

Assumption 4. For any x ∈ Rn and for some δ ∈ [0, 1],

EQ
[
∥Q(x)− x∥2

]
≤ (1− δ)∥x∥2. (4.1)

The above definition is quite general as it entails both biased and unbiased compression
operators. For instance, random quantization [97] falls into the former class and satisfies
(4.1) with δ = 1

τ . For a given vector x ∈ Rd and quantization levels 2b, it yields a
compressed message

xb =
sign(x)∥x∥

2bτ

⌊
2b
|x|
∥x∥ + ξ

⌋
(4.2)

with τ = 1 + min
{
d/22b,

√
d/2b

}
and ξ ∼ U [0, 1]⊗d. A notable representative of the

biased category is the top-K sparsification [94], which for a given vector x ∈ Rd returns
the K largest magnitude components and satisfies (4.1) with δ = K

d . Operators of that
type have been previously considered in the context of decentralized learning and the
effect of compressed communication in decentralized stochastic optimization has been
previously investigated [94, 99, 112]. The resulting communication cost savings have been
showcased in the context of decentralized training of deep neural networks [112]. However,
to the best of our knowledge, there are no applications of compressed communication to
distributional robust training in the decentralized setup.
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Algorithm 2: Agnostic Decentralized GDA with Compressed Communication
(AD-GDA)

Input :Number of devices m, number of iterations T , learning rates ηθ and ηλ, mixing
matrix W , initial values θ0 ∈ Rd and λ0 ∈ ∆m−1.

Output : θo = 1
T

∑T−1
t=0 θ̄t, λo = 1

T

∑T−1
t=0 λ̄t

initialize θ0i = θ0, λ0i = λ0 and s0i = 0 for i = 1, . . . ,m
for t in 0, . . . T − 1 do

// In parallel at each device i

θ
t+ 1

2
i ← θti − ηθ∇θgi(θ

t
i , λ

t
i, ξ

t
i) // Descent Step

λ
t+ 1

2
i ← PΛ (λti + ηλ∇λgi(θ

t
i , λ

t
i, ξ

t
i)) // Projected Ascent Step

θt+1
i ← θ

t+ 1
2

i + γ
(
st+1
i − θ̂t+1

i

)
// Gossip

qti ← Q
(
θt+1
i − θ̂ti

)
// Compression

send (qti , λ
t+ 1

2
i ) to j ∈ N (i) and receive (qtj , λ

t+ 1
2

j ) from j ∈ N (i) // Msgs exchange

θ̂t+1
i ← qti + θ̂ti // Public variables update

st+1
i ← sti +

∑m
j=1 wi,jqj

λt+1
i ←∑m

j=1 wi,jλ
t+ 1

2
j // Dual variable averaging

end

In order to obtain a final predictor with satisfactory performance for all local distri-
butions {Pi}mi=1, the common objective is to learn global model which is distributionally
robust with respect to the ambiguity set P :=

{∑m
i=1 λiPi : λi ∈ ∆m−1

}
where ∆m−1

denotes the m− 1 probability simplex. As shown in [79], a network objective function
that effectively works as proxy for this scope is given by

min
θ∈Rd

max
λ∈∆m−1

g(θ, λ) := 1

m

m∑
i=1

(λifi(θ) + αr(λ))︸ ︷︷ ︸
:=gi(θ,λ)

 (4.3)

in which r : ∆m−1 → R is a strongly-concave regularizer and α ∈ R+. For instance, in the
empirical risk minimization framework in which each device i is endowed with a training
set Di ∼ P⊗ni

i and the overall number of training points is n =
∑

i ni, a common choice

of r(λ) is χ2(λ) :=
∑

i
(λi−ni/n)

2

ni/n
. In what follows, we refer to θ and λ as the primal and

dual variables, respectively, and make the following fairly standard assumptions on the
local functions gi and the stochastic oracles available at the network devices.

Assumption 5. Each function gi(θ, λ) is differentiable in Rd × ∆m−1, L-smooth and
µ-strongly concave in λ.

Assumption 6. Each device i has access to the stochastic gradient oracles ∇θgi(θ, λ, ξi)
and ∇λgi(θ, λ, ξi), with randomness w.r.t. ξi, which satisfy the following assumptions:

• Unbiasedness

Eξi [∇θgi(θ, λ, ξi)] = ∇θgi(θ, λ) (4.4)
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Eξi [∇λgi(θ, λ, ξi)] = ∇λgi(θ, λ). (4.5)

• Bounded variance

Eξi

[
∥∇θgi(θ, λ, ξi)−∇θgi(θ, λ)∥2

]
≤ σ2θ (4.6)

Eξi

[
∥∇λgi(θ, λ, ξi)−∇λgi(θ, λ)∥2

]
≤ σ2λ. (4.7)

• Bounded magnitude

Eξi

[
∥∇θgi(θ, λ, ξi)∥2

]
≤ G2

θ (4.8)

Eξi

[
∥∇λgi(θ, λ, ξi)∥2

]
≤ G2

λ. (4.9)

The above assumption implies that each network device can query stochastic gradients
that are unbiased, have finite variance, and have bounded second moment. The last
assumption is rather strong but it is often made in distributed stochastic optimization
[83,94,112].

4.4 Distributionally Robust Decentralized Learning Algorithm

Problem (4.3) entails solving a distributed minimax optimization problem in which, at
every round, collaborating devices store a private value of the model parameters and
the dual variable, which are potentially different from device to device. We denote the
estimate of the primal and dual variables of device i at time t by θti and λti and the
network estimates at time t as θ̄t = 1

m

∑m
i=1 θ

t
i and λ̄

t = 1
m

∑m
i=1 λ

t
i, respectively. The

main challenge resulting from the decentralized implementation of the stochastic gradient
descent/ascent algorithm consists in approaching a minimax solution or a stationary point
(depending on the convexity assumption on the loss function) while concurrently ensuring
convergence to a common global solution. To this end, the proposed procedure, given in
Algorithm 2, alternates between a local update step and a consensus step. At each round,
every device i queries the local stochastic gradient oracle and, in parallel, updates the
model parameter θi by a gradient descent step with learning rate ηθ > 0 and the dual
variable λi by a projected gradient ascent one with learning rate ηλ > 0. Subsequently, a
gossip strategy is used to share and average information between neighbors. In order
to alleviate the communication burden of transmitting the vector of model parameters,
which is typically high dimensional and contributes to the largest share of communication
load, a compressed gossip step is employed. To implement the compressed communication,
we consider the memory efficient version of CHOCO-GOSSIP [99] in which each device
needs to store only two additional variables θ̂i and si, each of the same size as θi. The
first one is a public version of θi, while the second is used to track the evolution of the
weighted average, according to matrix W, of the public variables at the neighboring
devices. Instead of transmitting θi, each device first computes an averaging step to
update the value of the private value using the information about the public variables
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encoded in θ̂i and si. It then computes qi, a compressed representation of the difference
between θ̂i and θi, and shares it with the neighboring devices to update the value of θ̂i
and si used in the averaging step in the next round. As the number of participating
devices is usually much smaller than the size of the model (m≪ d), the dual variable λi
is updated sending uncompressed messages and then averaged according to matrix W .
Note that AD-GDA implicitly assumes that collaborating parties are honest and for this
reason it does not employ any countermeasure against malicious devices providing false
dual variable information in order to steer the distributional robust network objective at
their whim.

4.4.1 Convex loss function

We provide now a convergence guarantee for the solution output by Algorithm 2 for the
case the loss function ℓ(·) is convex in the model parameter θ. The result is given in the
form of a sub-optimality gap bound for the function

Φ(θ) = g (θ, λ∗(θ)) , λ∗(·) := argmax
λ∈∆m−1

g(·, λ) (4.10)

and it can be promptly derived from a primal-dual gap type of bound provided in the
Appendix. In the bound we also refer to θ∗(·) ∈ argmaxθ∈Rd g(θ, ·).

Theorem 2. Under Assumptions 5, 6, we have that for any θ∗ ∈ argminθ Φ(θ) the solution
θo returned by Algorithm 2 with learning rates ηθ = ηλ = 1√

T
and consensus step size

γ = ρ2δ
16ρ+ρ2+4β2+2ρβ2−8ρδ

satisfies

E [Φ(θo)− Φ(θ∗)] ≤O
(
Dθ +Dλ +G2

θ +G2
λ√

T

)
+O

(
LDλGθ

c
√
T

+
LDθGλ

ρ
√
T

)
+O

(
LG2

λ

ρ2T
+
LG2

θ

c2T

)
(4.11)

where Dλ := maxt E
∥∥λ̄t − λ∗(θo)∥∥ , Dθ := maxt E

∥∥θ̄t − θ∗(λo)∥∥ and c = ρ2δ
82 .

The bound establishes a O(1/
√
T ) non-asymptotic optimality gap guarantee for

the output solution. Compared to decentralized stochastic gradient descent (SGD) in
the convex scenario, we obtain the same rate but with a dependency on the network
topology and compression also in the lower order terms. Moreover, whenever θ and λ are
constrained in convex sets, the diameter of the two can be used to explicitly bound Dθ

and Dλ.

4.4.2 Non-convex loss function

We now focus on the case where the relation between the model parameters θ and the
value of the loss function is non-convex. In this setting we provide a bound on the
stationarity of the randomized solution, picked uniformly over time. In this setting,
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carefully tuning the relation between primal and dual learning rates is key to establish a
convergent recursion (see B.2). This technical condition allows us to derive the following
result.

Theorem 3. Under Assumptions 5, 6, we have that the solution θo returned by Al-
gorithm 2 with learning rates ηθ = ηλ

16(κ+1)2
and ηλ = 1

2L
√
T

and consensus step size

γ = ρ2δ
16ρ+ρ2+4β2+2ρβ2−8ρδ

satisfies

∑T
t=1 E

[∥∥∇Φ(θ̄t−1)
∥∥2]

T
≤O

(
L
∆ΦT

√
T

+
L2κ2D0

λ

2
√
T

)
+O

(
DλLGθ

c
√
T

+
σ2θ + κσ2λ
m
√
T

)
+O

(
G2

θ

c2T
+
κG2

λ

ρ2T

)
+
σ2θ
m

(4.12)

where ∆ΦT = E[Φ(θ̄0)]− E[Φ(θ̄T )] and c = ρ2δ
82 .

We note that the bound decreases at a rate O(1/
√
T ), except the last variance term

which is non-vanishing. Nonetheless, whenever the variance of the stochastic gradient
oracle for the primal variable is small or the number of participating devices is large,
this term becomes negligible. Otherwise, at a cost of increased gradient complexity, each
device can query the oracle O(1/ϵ2) times every round, average the results and make
the stochastic gradient variance O(1/ϵ2). This procedure make the bound vanishing and
leads to a gradient complexity matching the one of [113] given for the federated learning
scenario.
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Figure 4.3: Average and worst-case accuracies of a fully connected neural network vs.
number of transmitted bits using the random quantization compression scheme.
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4.5 Experiments

In this section, we empirically evaluate the capabilities of AD-GDA in producing a
robust predictor for different learning models, communication network topologies, and
message compression schemes. Lacking of a baseline for the distributionally robust fully
decentralized setup, we compare the effectiveness of the proposed solution against the
distributionally robust federated baseline (DRFA) [83] under similar communication
constraints.

4.5.1 Setup

We perform our experiments using the Fashion-MNIST dataset [114] 2, a popular dataset
made of images of 10 different clothing items, which is commonly used to test distribu-
tionally robust learners [79, 83]. In order to introduce data heterogeneity, samples are
partitioned across the network devices using a class-wise split. Namely, we simulate a
network of 10 devices, each storing data points coming from one of the 10 classes. In
this setting, we train a logistic regression model and a two layer fully connected neural
network with 25 hidden units in order to investigate both the convex and the non-convex
case. In both cases, we use the SGD optimizer and, in order to ensure consensus at the
end of the optimization process, we consider a geometrically decreasing learning rate
ηtθ = r−tη0θ with ratio r = 0.995 and initial value η0θ = 1. The metrics that we track are
the final worst-device distribution accuracy and the average accuracy over the aggregated
data samples of the network estimate θ̄t.

4.5.2 Effect of compression

We assess the effect of compression with a fixed budget in terms of communication rounds
by organizing devices in a ring topology and training the logistic model and the fully
connected network for T = 2000 iterations. As representative of the unbiased compression
operators, we consider the b-bit random quantization scheme for b = {16, 8, 4} bit levels,
while for the biased category we implement the top-K sparsification scheme saving
K = {50%, 25%, 10%} of the original message components. For each compression scheme
and compression level, we tune the consensus step size γ performing a grid search. We
train the different model for 20 different random placements of the data shards across the
devices using the distributionally robust and standard learning paradigms. In Table 4.1 we
report the average worst-case accuracy attained by the final averaged model θ̄T . AD-GDA
almost doubles the worst-case accuracy compared to the not-robust baseline CHOCO-
SGD [99]. This gain holds for both compression schemes and across different compression
levels. For increased compression ratios, the worst-case accuracy degrades; however, for
a comparable saving in communication bandwidth the unbiased quantization scheme
results in superior performance than the biased sparsification compression operator. For a
fixed optimization horizon compression degrades performance. Nonetheless, compression
allows to obtain the same accuracy level with fewer transmitted bits as shown in Fig.

2The Fashion-MNIST dataset is released under the MIT License

47



Chapter 4. Communication-Efficient Distributionally Robust Decentralized Learning

Table 4.2: Worst-case distribution accuracy attained by AD-GDA and CHOCO-SGD for
different network topologies.

Top-10% Sparsification 4-bit Quantization

2D Torus Mesh 2D Torus Mesh

Log. AD-GDA 54.00± 0.61 54.07± 0.03 56.94± 0.38 57.11± 0.03
Log. CHOCO-SGD 26.82± 0.41 29.00± 0.02 30.82± 0.24 30.97± 0.03
F.C. AD-GDA 44.31± 2.47 45.21± 2.22 50.16± 1.85 50.80± 1.83
F.C. CHOCO-SGD 26.02± 2.29 26.38± 2.65 28.79± 2.22 28.96± 1.87

4.3a where we plot the average worst-case accuracy of the fully connected model as a
function of the transmitted bits using the random quantization scheme. Furthermore, in
Fig. 4.3b we compare the average accuracy of the robust predictor against the standard
one. The price to pay in terms of average performance in order to ensure robustness of
the predictor is modest and in the range of 2.5%.
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Figure 4.4: Comparison between distributionally robust federated averaging (DRFA),
federated averaging (FedAvg) and the proposed algorithm (AD-GDA) for different
compression techniques.

4.5.3 Effect of topology

We now turn to investigate the effect of device connectivity. Sparser communication
topologies slow down the consensus process and therefore hamper the convergence of the
algorithm. In the previous batch of experiments we considered a sparse ring topology,
in which each device is connected to only two other devices. Here, we explore two
other network configurations with a more favorable spectral gap. The communication
topology with each device connected to other 4 devices and the mesh case, in which all
devices communicate with each other. For these configurations we consider the 4-bit
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Table 4.3: Testing accuracy attained at convergence for different regularization values
α. The first two columns represent the accuracy when the model is tested on images
produced by microscope 1 and microscope 2. The last column is the average accuracy
when tested on a 50/50 test dataset.

Microscope 1 Microscope 2 Mean

α =∞ 65.86± 1.26 91.11± 0.63 78.48± 0.96
α = 1 70.73± 1.33 84.30± 1.6 77.51± 1.51
α = 0.1 73.30± 2.20 79.78± 2.30 76.54± 2.25
α = 0.01 76.03± 1.45 79.02± 1.40 77.52± 1.43

quantization and top-10% sparsification compression schemes. In Table 4.2 we report
the final worst-case performance for the different network configurations. As expected,
network configurations with larger device degree lead to higher worst-case accuracy owing
to smaller spectral gap which leads to the faster convergence rates.

4.5.4 Effect of regularization

Following a two-player game interpretation of the minimax optimization problem (4.3),
the regularizer parameter r(λ) reduces the freedom that an adversary has in choosing the
weighting vector λ so as to maximize the training loss at every iteration t. As a result, the
less constrained the adversary, the larger the emphasis on the worse performing devices.

In the following we consider a regularizer of the form χ2(λ) :=
∑

i
(λi−ni/n)

2

ni/n
and study

the effect of the regularization parameter α on the robustness of the yielded solution.
For this specific experiment, we consider the biological dataset COOS7 [2] that contains
images of mouse cells captured using two different microscopes. We consider a network
of 5 collaborating parties (e.g. research labs) connected according to a ring topology.
We endow 4 of these parties with images sampled using microscope 1, while we give to
the remaining one images taken from microscope 2. We train the model using AD-GDA
for α = {∞, 1, 0.1, 0.01} and report the average accuracy along with the 95% confidence
intervals in Table 4.3. For the case α → ∞, which corresponds to CHOCO-SGD, we
observe a large test accuracy gap between images taken from microscope 1 and microscope
2, with the classifier attaining 25% higher accuracy on the latter. This accuracy mismatch
showcases how standard decentralized optimization schemes are unable to guarantee
uniform performance across participating parties. On the other hand, using AD-DGA
and smaller regularization parameters, the gap between the two instruments is effectively
reduced, eventually hitting a 3% performance mismatch for α = 0.01. At the same time,
the improved fairness brought by AD-GDA does not significantly hamper the average
performance of the model when tested on both instruments.
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4.5.5 Comparison with the federated baseline

Lacking of a term of comparison for the distributionally robust fully decentralized setting,
we consider the communication-efficient distributionally robust federated learning scheme
(DRFA) [83] and the standard federated averaging (FedAvg) [58]. In the federated
scenario, network devices are connected according to a star topology, with the star center
representing the central aggregator. Communication efficiency is obtained allowing net-
work devices to perform multiple local updates of the primal variable between subsequent
synchronization rounds at the central aggregator. We run DRFA allowing devices to
perform 10 local gradient step before sending its local models for the distributionally
robust averaging steps and we consider half user participation at each round. To have
the same per round communication cost, we run FedAvg allowing 10 local gradient step
between aggregations, but considering full user participation. Recall that the random
sketching technique employed by DRFA requires devices to send two model updates
to the central aggregator at each round therefore doubling the communication cost.
To match this setting from a communication standpoint, we consider AD-GDA with a
mesh network topology. Moreover, in order to have comparable communication cost per
device, we consider the quantization compression operator with b = 4 in combination
with the sparsification scheme saving K = {25%, 50%} components. In Fig. 4.4a we
compare the worst-case distribution accuracy attained by the different algorithms on the
Fashion-MNIST dataset (with data split as in Sec.4.5.1) as a function of the number of
stochastic gradients that each device needs to query. DRFA and AD-GDA have similar
gradient complexity while FedAvg needs considerably more gradient calls to obtain the
same worst-case performance. In Fig. 4.4b we compare the communication efficiency of
the algorithms and we report the worst-case accuracy versus the average number of bits
transmitted by each device. For the same communication budget, AD-GDA can attain
higher worst-case distribution accuracy compared to DRFA transmitting only a fraction
of bits compared to the federated counterparts.

4.6 Conclusion

We provided a provably convergent decentralized single-loop gradient descent/ascent
algorithm to tackle the distributionally robust learning problem over a network of collab-
orating devices with heterogeneous local data distributions. Differently from previously
proposed solutions, which are limited to the federated scenario with a central coordina-
tor, our algorithm restrains devices to D2D communication and attains communication
efficiency by employing compressed communication techniques. Experiments showed that
the proposed solution produces distributionally robust predictors with higher worst-case
accuracy, while it attains superior communication efficiency compared to the previously
proposed algorithms that reduce the communication load allowing multiple local updates
at participating devices. The proposed framework is a promising decentralized learning
solution over edge devices in B5G IoT networks.
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Chapter 5

User-Centric Federated Learning

Data heterogeneity across participating devices poses one of the main challenges in
federated learning as it has been shown to greatly hamper its convergence time and
generalization capabilities. In this chapter we address this limitation by enabling per-
sonalization using multiple user-centric aggregation rules at the parameter server. Our
approach potentially produces a personalized model for each user at the cost of some
extra downlink communication overhead. To strike a trade-off between personalization
and communication efficiency, we propose a broadcast protocol that limits the number
of personalized streams while retaining the essential advantages of our learning scheme.
Through simulation results, our approach is shown to enjoy higher personalization ca-
pabilities, faster convergence, and better communication efficiency compared to other
competing baseline solutions.

5.1 Introduction

Federated learning [58] has seen great success, being able to solve distributed learning
problems in a communication-efficient and privacy-preserving manner. Specifically,
federated learning provides to clients (e.g. smartphones, IoT devices, and organizations)
the possibility of collaboratively train a model under the orchestration of a parameter
server (PS) by iteratively aggregating locally optimized models and without off-loading
local data [115]. The original aggregation policy was implemented by Federated Averaging
(FedAvg) [58], has been devised under the assumption that clients’ local datasets are
statistically identical, an assumption that is hardly met in practice. In fact, clients
typically store datasets that are statistically heterogeneous and different in size [116],
and are mainly interested in learning models that generalize well over their local data
distribution through collaboration. Generally speaking, FedAvg exhibits slow convergence
and poor generalization capabilities in such non-IID setting [117]. To address these
limitations, a large body of literature deals with personalization as a technique to reduce
the detrimental effect of non-IID data. A straightforward solution consists in producing
adapted models at a device scale by local fine-tuning procedures. Borrowing ideas
from Model Agnostic Meta-Learning (MAML) [118], federated learning can be exploited
in order to find a launch model that can be later personalized at each device using
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few gradient iterations [119, 120]. Alternatively, local adaptation can be obtained by
tuning only the last layer of a globally trained model [121] or by interpolating between
a global model and locally trained ones [122, 123]. However, these methods can fail
at producing models with an acceptable generalization performance even for synthetic
datasets [124]. Adaptation can also be obtained leveraging user data similarity to
personalize the training procedure. For instance, a Mixture of Experts formulation has
been considered to learn a personalized mixing of the outputs of a commonly trained
set of models [125]. Similarly, [126] proposed a distributed Expectation-Maximization
(EM) algorithm concurrently converges to a set of shared hypotheses and a personalized
linear combination of them at each device. Furthermore, [127] proposed a personalized
aggregation rule at the user side based on the validation accuracy of the locally trained
models at the different devices. In order to be applicable, these techniques need to strike
a good balance between communication overhead and the amount of personalization in
the system. In fact, if on one hand, the expressiveness of the mixture is proportional to
the number of mixed components; on the other, the communication load is linear in this
quantity. Clustered Federated Learning (CFL) measures the similarity among the model
updates during the optimization process in order to lump together users in homogeneous
groups. For example, [116, 128] proposed a hierarchical strategy in which the original
set of users is gradually divided into smaller groups and, for each group, the federated
learning algorithm is branched in a new decoupled optimization problem.

In this chapter, we propose a different approach to achieve personalization by allowing
multiple user-centric aggregation strategies at the PS. The mixing strategies account
for the existence of heterogeneous clients in the system and exploit estimates of the
statistical similarity among clients that are obtained at the beginning of the federated
learning procedure. Furthermore, the number of distinct aggregation rules — also termed
personalized streams — can be fixed in order to strike a good trade-off between communi-
cation and learning efficiency. Finally, we provide simulation results for different scenarios
and demonstrate that our approach exhibits faster convergence, higher personalization
capabilities, and communication efficiency compared to other popular baseline algorithms.

5.2 Learning with heterogeneous data sources

In this section, we provide theoretical guarantees for learners that combine data from
heterogeneous data distributions. The set-up mirrors the one of personalized federated
learning and the results are instrumental to derive our user-centric aggregation rule. In
the following, we limit our analysis to the discrepancy distance (5.4) but it can be readily
extended to other divergences [129].

In the federated learning setting, the weighted combination of the empirical loss terms
of the collaborating devices represents the customary training objective. Namely, in a
distributed system with m nodes, each endowed with a dataset Di of ni IID samples
from a local distribution Pi, the goal is to find a predictor f : X → Ŷ from a hypothesis
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class F that minimizes

L(f, w⃗) =
m∑
i=1

wi

ni

∑
(x,y)∈Di

ℓ(f(x), y) (5.1)

where ℓ : Ŷ × Y → R+ is a loss function and w⃗ = (w1, . . . , wm) is a weighting scheme.
In case of identically distributed local datasets, the typical weighting vector is w⃗ =

1∑
i ni

(n1, . . . , nm), the relative fraction of data points stored at each device. This

particular choice minimizes the variance of the aggregated empirical risk, which is also an
unbiased estimate of the local risk at each node in this scenario. However, in the case of
heterogeneous local distributions, the minimizer of w⃗-weighted risk may transfer poorly
to certain devices whose target distribution differs from the mixture Pw⃗ =

∑m
i=1wiPi.

Furthermore, it may not exists a single weighting strategy that yields a universal predictor
with satisfactory performance for all participating devices. To address the above limitation
of a universal model, personalized federated learning allows adapting the learned solution
at each device. In order to better understand the potential benefits and drawbacks
coming from the collaboration with statistically similar but not identical devices, let us
consider the point of view of a generic node i that has the freedom of choosing the degree
of collaboration with the other devices in the distributed system. Namely, identifying
the degree of collaboration between node i and the rest of users by the weighting vector
w⃗i = (wi,1, . . . , wi,m) (where wi,j defines how much node i relies on data from user j), we
define the personalized objective for user i

L(f, w⃗i) =
m∑
j=1

wi,j

nj

∑
(x,y)∈Dj

ℓ(f(x), y) (5.2)

and the resulting personalized model

f̂w⃗i
= argmin

f∈F
L(f, w⃗i). (5.3)

We now seek an answer to: “What’s the proper choice of w⃗i in order to obtain a personalized
model f̂w⃗i

that performs well on the target distribution Pi?”. This question is deeply tied to
the problem of domain adaptation, in which the goal is to successfully aggregate multiple
data sources in order to produce a model that transfers positively to a different and
possibly unknown target domain. In our context, the dataset Di is made of data points
drawn from the target distribution Pi and the other devices’ datasets provide samples
from the sources {Pj}j ̸=i. Leveraging results from domain adaptation theory [130], we

provide learning guarantees on the performance of the personalized model f̂w⃗i
to gauge

the effect of collaboration that we later use to devise the weights for the user-centric
aggregation rules.

In order to avoid negative transfer, it is crucial to upper bound the performance
of the predictor w.r.t. to the target task. The discrepancy distance introduced in [30]
provides a measure of similarity between learning tasks that can be used to this end. For
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a hypothesis set of functions F : X → Ŷ and two distributions P,Q on X , the discrepancy
distance is defined as

dF (P,Q) = sup
f,f ′∈F

∣∣Ex∼P

[
ℓ(f, f ′)

]
− Ex∼Q

[
ℓ(f, f ′)

]∣∣ (5.4)

where we streamlined notation denoting f(x) by f . For bounded and symmetric loss
functions that satisfy the triangular inequality, the previous quantity allows to obtain
the following inequality

E(x,y)∼P [ℓ(f, y)] ≤ E(x,y)∼Q[ℓ(f, y)] + dF (P,Q) + γ (5.5)

where γ = inff∈F
(
E(x,y)∼P [ℓ(f, y)] + E(x,y)∼Q[ℓ(f, y)]

)
. We can exploit the inequality to

obtain the following risk guarantee for f̂w⃗i
w.r.t the true minimizer f∗ of the risk for the

distribution Pi.

Theorem 4. For a loss function ℓ B-bounded range, symmetric and satisfying the triangular
inequality, with probability 1− δ the function fw⃗i

satisfies

Ez∼Pi [ℓ(f̂w⃗i
, z)]− Ez∼Pi [ℓ(f

∗, z)] ≤

√√√√ m∑
j=1

w2
i,j

nj

(√
2d∑
i ni

log

(
e
∑

i ni
d

)
+

√
log

(
2

δ

))

+ 2

m∑
j=1

wi,jdF (Pi, Pj) + 2γ (5.6)

where γ = minf∈F
(
Ez∼Pi [ℓ(f, z)] + Ez∼Pw⃗i

[ℓ(f, z)]
)
and d is the VC-dimension of the

function space resulting from the composition of F and ℓ.

Recently, an alternative bound based on an information theoretic notion of dissim-
ilarity, the Jensen-Shannon divergence, has been proposed [131]. It is based on less
restrictive constraints, as it only requires the loss function ℓ(f, Z) to be sub-Gaussian of
some parameter σ for all f ∈ F , and therefore whenever ℓ(·) is bounded, the requirement
is automatically satisfied. Measuring similarity by the Jensens-Shannon divergence the
following inequality is available

EX∼P [X] ≤ EX∼Q[X] + βσ2 +
DJS(P ||Q)

β
for β > 0 (5.7)

where DJS(P∥Q) = KL
(
P
∥∥∥P+Q

2

)
+KL

(
Q
∥∥∥P+Q

2

)
. Exploiting the above inequality we

obtain the following estimation error bound.

Theorem 5. For a loss function ℓ B-bounded range, the function fw⃗i
satisfies

Ez∼Pi [ℓ(f̂w⃗i
, z)]− Ez∼Pi [ℓ(f

∗, z)] ≤B

√√√√ m∑
j=1

w2
i,j

nj

(√
2d∑
i ni

log

(
e
∑

i ni
d

)
+

√
log

(
2

δ

))

+B

√√√√2

m∑
j=1

wi,jDJS(Pi||Pj) (5.8)
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Figure 5.1: Personalized Federated Learning with user-centric aggregates at round t.

Proof of Theorem 4 and 5: In the Appendix C.1.
The theorems highlights that a fruitful collaboration should strike a balance between the
bias terms due to dissimilarity between local distribution and the risk estimation gains
provided by the data points of other nodes. Minimizing the upper bound in Th. 4,5 with
respect to the user-specific weights, and using the optimal weights in our aggregation rule
seems an appealing solution to tackle the data heterogeneity during training; however, the
distance terms (dF (Pi, Pk) and DJS(Pi||Pj)) are difficult to compute, especially under
the privacy constraints that federated learning imposes. For this reason, in the following
we consider a heuristic method based on the similarity of the readily available users’
model updates to estimate the collaboration coefficients.

5.3 User-centric aggregation

For a suitable hypothesis class parametrized by θ ∈ Rd, federated learning approaches use
an iterative procedure to minimize the aggregate loss (5.1) with w⃗ = 1∑

i ni
(n1, . . . , nm).

At each round t, the PS broadcasts the parameter vector θt−1 and then combines the
locally optimized models by the clients {θt−1

i }mi=1 according to the following aggregation
rule

θt ←
m∑
i=1

ni∑m
j=1 nj

θt−1
i .

As mentioned in Sec. 5.2, this aggregation rule has two shortcomings: it does not take
into account the data heterogeneity across users, and it is bounded to produce a single
solution. For this reason, we propose a user-centric model aggregation scheme that takes
into account the data heterogeneity across the different nodes participating in training
and aims at neutralizing the bias induced by a universal model. Our proposal generalizes
the näıve aggregation of FedAvg, by assigning a unique set of mixing coefficients w⃗i to
each user i, and consequently, a user-specific model aggregation at the PS side. Namely,
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at the PS side, the following set of user-centric aggregation steps are performed

θti ←
m∑
j=1

wi,jθ
t−1/2
j for i = 1, . . . ,m (5.9)

where now, θ
t−1/2
j is the locally optimized model at node j starting from θt−1

j , and θti is
the user-centric aggregated model for user i at communication round t.

As we elaborate next, the mixing coefficients are heuristically defined based on a
distribution similarity metric and the dataset size ratios. These coefficients are calculated
before the start of federated training. The similarity score we propose is designed to favor
collaboration among similar users and takes into account the relative dataset sizes, as
more intelligence can be harvested from clients with larger data availability. Using these
user-centric aggregation rules, each node ends up with its own personalized model that
yields better generalization for the local data distribution. It is worth noting that the
user-centric aggregation rule does not produce a minimizer of the user-centric aggregate
loss given by (5.2). At each round, the PS aggregates model updates computed starting
from a different set of parameters. Nonetheless, we find it to be a good approximation of
the true update since personalized models for similar data sources tend to propagate in a
close neighborhood. The aggregation in [127] capitalizes on the same intuition.

5.3.1 Computing the collaboration coefficients

Computing the discrepancy distance (5.4) can be challenging in high-dimension, especially
under the communication and privacy constraints imposed by federated learning. For
this reason, we propose to compute the mixing coefficient based on the relative dataset
sizes and the distribution similarity metric given by

∆i,j(θ̂) =

∥∥∥∥∥∥ 1

ni

∑
(x,y)∈Di

∇ℓ(fθ̂, y)−
1

nj

∑
(x,y)∈Dj

∇ℓ(fθ̂, y)

∥∥∥∥∥∥
2

≈
∥∥Ez∼Pi∇ℓ(fθ̂, y)− Ez∼Pj∇ℓ(fθ̂, y)

∥∥2
where the quality of the approximation depends on the number of samples ni and nj .
The mixing coefficients for user i are then set to the following normalized exponential
function

wi,j =

nj

ni
e
− 1

2σiσj
∆i,j(θ̂)

∑m
j′=1

nj′
ni
e
− 1

2σiσj′
∆i,j′ (θ̂)

for j = 1, . . . ,m. (5.10)

The mixture coefficients are calculated at the PS during a special round prior to federated
training. During this round, the PS broadcasts a common model denoted θ̂ to the users,
which compute the full gradient on their local datasets. At the same time, each node i
locally estimates the value σ2i partitioning the local data in K batches {Dk

i }Kk=1 of size
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nk and computing

σ2i =
1

K

K∑
k=1

∥∥∥∥∥∥ 1

nk

∑
(x,y)∈Dk

i

∇ℓ(fθ̂, y)−
1

ni

∑
(x,y)∈Di

∇ℓ(fθ̂, y)

∥∥∥∥∥∥
2

(5.11)

where σ2i is an estimate of the gradient variance computed over local datasets Dk
i sampled

from the same target distribution. Once all the necessary quantities are computed, they
are uploaded to the PS, which proceeds to calculate the mixture coefficients and initiates
the federated training using the custom aggregation scheme given by (5.9). Note that
the proposed heuristic embodies the intuition provided by Th. 2. In fact, in the case of
homogeneous users, it falls back to the standard FedAvg aggregation rule, while in the
case of node i has an infinite amount of data it degenerates to the local learning rule
which is optimal in that case.

5.3.2 Reducing the communication load

A full-fledged personalization by the means of the user-centric aggregation rule (5.9)
would introduce a m-fold increase in communication load during the downlink phase as
the original broadcast transmission is replaced by unicast ones. Although from a learning
perspective the user-centric learning scheme is beneficial, it is also possible to consider
overall system performance from a learning-communication trade-off point of view. The
intuition is that, for small discrepancies between the user data distributions, the same
model transfer positively to statistically similar devices. In order to strike a suitable
trade-off between learning accuracy and communication overhead we hereby propose
to adaptively limit the number of personalized downlink streams. In particular, for a
number of personalized models mt, we run a k-means clustering scheme with k = mt over
the set of collaboration vectors {wi}mi=1 and we select the centroids {ŵi}mt

i=1 to implement
the mt personalized streams. We then proceed to replace the unicast transmission with
group broadcast ones, in which all users belonging to the same cluster c receive the
same personalized model ŵc. Choosing the right value for the number of personalized
streams is critical in order to save communication bandwidth but at the same time obtain
satisfactory personalization capabilities. It can be experimentally shown that clustering
quality indicators such as the Silhouette score over the user-centric weights can be used
to guide the search for the suitable number of streams mt.

5.3.3 Choosing the number of personalized streams

Choosing an insufficient number of personalized streams can yield unsatisfactory per-
formance, while concurrently learning many models can prohibitively increase the com-
munication load of personalized federated learning. Therefore, properly tuning this free
parameter is essential in order to obtain a well-performing but still practical algorithm.
Being agnostic w.r.t. the underlying data generating distributions at the devices, it does
not exist a universal number of personalized streams that fits all problems. However, we
now illustrate that the silhouette coefficient, a quality measure of the clustering, provides
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Algorithm 3: Silhouette based scoring

Input : Collab. vectors {w⃗i}mi=1 from (5.10) and trade-off function c(k, sk).
Output : Number of clusters mt and personalized streams
for k = 1, 2, . . . ,m do
Ck ← K-means clustering of {w⃗i}mi=1

sk ← the silhouette score of s(C)
end
return mt = argmaxk=1,...,m c(k, sk) and cluster centers of Cmt

a rule of thumb to choose the number of personalized streams. In order to compute the
silhouette score of a clustering C1, . . . , Cmt of the clustering we define the intra-cluster
similarity of the collaboration vector w⃗i ∈ Ck as

a(w⃗i) =
1

|Cj | − 1

∑
w⃗j∈Ck,w⃗j ̸=w⃗i

∥w⃗j − w⃗i∥ (5.12)

and the smallest mean distance between the collaboration vector w⃗i ∈ Ck and the
closest cluster

b(w⃗i) = min
Cj ̸=Ck

1

|Cj |
∑

w⃗j∈Cj
∥w⃗j − w⃗i∥. (5.13)

The average silhouette score s is then defined as

s(C) = 1

m

m∑
i=1

b(i)− a(i)
max{a(i), b(i)} (5.14)

and it is a number in the range [−1, 1], directly proportional to the quality of the clustering.
In turn, a good clustering of the collaboration vectors {w⃗i}mi=1 implies that users belonging
to the same clusters are similar, and that the centroid c⃗j is a good approximation of the
collaboration coefficient of users in Cj . Consequently, whenever the silhouette score is
large, the loss in terms of personalization performance resulting from the reduced number
of aggregation rules compared to the full-fledged personalization system is modest. For
this reason, the silhouette score provides a proxy to the inference performance and at
the same time it allows to trade-off communication load and personalization capabilities
in a principled way. In Algorithm 3 we provide the pseudocode of the procedure
that autonomously chooses the optimal number of personalized streams mt based on a
communication-personalization trade-off function c(k, s) : N× [−1, 1]→ R+ scoring the
utility of pairs of the systems based on the number of user-centric rules and the resulting
silhouette scores. The function c(k, s) is a system dependent function typically decreasing
in k and increasing in sk.

5.4 Experiments

We now provide a series of experiments to showcase the personalization capabilities and
communication efficiency of the proposed algorithm.
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(a) EMNIST + label shift
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(b) EMNIST + label and covari-
ate shift

0 25 50 75 100 125 150 175 200

Communication Round

0.1

0.2

0.3

0.4

0.5

Va
lid

at
io

n
A

cc
ur

ac
y

FedAvg
Proposed w/ 2 models
Proposed w/ 4 models
Proposed w/ 8 models
Oracle
Local
FedFOMO
Clustered FL

(c) CIFAR10 + concept shift

Figure 5.2: Evolution of the average validation accuracy in the three simulation scenarios.

5.4.1 Set-up

In our simulation we consider a handwritten character/digit recognition task using the
EMNIST dataset [132] and an image classification task using the CIFAR-10 dataset [133].
Data heterogeneity is induced by splitting and transforming the dataset in a different
fashion across the group of devices. In particular, we analyze three different scenarios:

• Character/digit recognition with user-dependent label shift in which 10k EMNIST
data points are split across 20 users according to their labels. The label distribution
follows a Dirichlet distribution with parameter 0.4, as in [126,134].

• Character/digit recognition with user-dependent label shift and covariate shift in
which 100k samples from the EMNIST dataset are partitioned across 100 users each
with a different label distribution, as in the previous scenario. Additionally, users
are clustered in 4 group and at each group images are rotated of {0◦, 90◦, 180◦, 270◦}
respectively.

• Image classification with user-dependent concept shift in which the CIFAR-10
dataset is distributed across 20 users which are grouped in 4 clusters, for each group
we apply a different random label permutation.

For each scenario, we aim at solving the task at hand by leveraging the distributed
and heterogeneous datasets. We compare our algorithm against four different baselines:
FedAvg, local learning, CFL [116] and FedFomo [127]. In all scenarios and for all
algorithms, we train a LeNet-5 convolutional neural network [135] using a stochastic
gradient descent optimizer with a fixed learning rate η = 0.1 and momentum β = 0.9.

5.4.2 Personalization performance

We now report the average accuracy over 5 trials attained by the different approaches.
We also study the personalization performance of our algorithm when we restrain the
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Table 5.1: Worst user performance averaged over 5 experiments in the three simulation
scenarios.

Local FedAvg Oracle CFL FedFOMO Proposed

EMNIST + label shift 58.8 68.9 - 70.3 70.0 73.2 (k = 20)
EMNIST + cov. & label shift 56.0 67.5 77.4 76.1 73.6 76.4 (k = 4)
CIFAR10 + concept shift 35.7 19.6 49.1 48.6 45.5 48.8 (k = 4)

overall number of personalized streams, namely the number of personalized models
that are concurrently learned. In Fig.5.2a we report the average validation accuracy
in the EMNIST label shift scenario. We first notice that in the case of label shift,
harvesting intelligence from the datasets of other users amounts to a large performance
gain compared to the localized learning strategy. This indicates that data heterogeneity
is moderate and collaboration is fruitful. Nonetheless, personalization can still provide
gains compared to FedAvg. Our solution yields a validation accuracy which is increasing
in the number of personalized streams. Allowing maximum personalization, namely a
different model at each user, we obtain a 3% gain in the average accuracy compared to
FedAvg. CFL is not able to transfer intelligence among different groups of users and
attains performance similar to the FedAvg. This behavior showcases the importance of
soft clustering compared to the hard one for the task at hand. We find that FedFOMO,
despite excelling in the case of strong statistical heterogeneity, fails to harvest intelligence
in the label shift scenario. In Fig.5.2b we report the personalization performance for the
second scenario. In this case, we also consider the oracle baseline, which corresponds to
running 4 different FedAvg instances, one for each cluster of users, as if the 4 groups of
users were known beforehand. Different from the previous scenario, the additional shift
in the covariate space renders personalization necessary in order to attain satisfactory
performance. In fact, the oracle training largely outperforms FedAvg. Furthermore,
as expected, our algorithm matches the oracle final performance when the number of
personalized streams is 4 or more. Also, CLF and FedFOMO are able to correctly
identify the 4 clusters. However, the former exhibits slower convergence due to the
hierarchical clustering over time while the latter plateaus to a lower average accuracy
level. We turn now to the more challenging CIFAR-10 image classification task. In
Fig.5.2c we report the average accuracy of the proposed solution for a varying number
of personalized streams, the baselines, and the oracle solution. As expected, the label
permutation renders collaboration extremely detrimental as the different learning tasks
are conflicting. As a result, local learning provides better accuracy than FedAvg. On
the other hand, personalization can still leverage data among clusters and provide gains
also in this case. Our algorithm matches the oracle performance for a suitable number of
personalized streams. This scenario is particularly suitable for hard clustering, which
isolates conflicting data distributions. As a result, CFL matches the proposed solution.
FedFOMO promptly detects clusters and therefore quickly converges, but it attains lower
average accuracy compared to the proposed solution.
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(a) ρ = 4, Tmin = Tdl =
1
µ
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(b) ρ = 2, Tmin = Tdl,
1
µ = 0
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(c) ρ = 1, Tmin = Tdl,
1
µ = 0

Figure 5.3: Evolution of the average validation accuracy against time normalized w.r.t.
Tdl for the three different systems.

The performance reported so far is averaged over users and therefore fails to capture
the existence of outliers performing worse than average. In order to assess the fairness of
the training procedure, in Table 5.1 we report the worst user performance in the federated
system. The proposed approach produces models with the highest worst case in all three
scenarios.

5.4.3 Silhouette score

In Fig. 5.4 we plot the average silhouette score obtained by the k-means algorithm when
clustering the federated users based on the procedure proposed in Sec. 5.3.3. In the labels
shift scenario, for which we have seen that a universal model performs almost as good as
the personalized ones, the silhouette scores monotonically decreases with k. In fact, in
this simulation setting, a natural cluster-like structure among clients tasks does not exist.
On the other hand, in the covariate shift and the concept shift scenarios, the silhouette
score peaks around k = 4. In Sec. 5.4.2 this has has shown to be the minimum number of
personalized models necessary to obtain satisfactory personalization performance in the
system. This behaviour of the silhouette score is expected and desired, in this case the
number of clusters matches exactly the number of underlying different tasks among the
participants in FL that was induced by the rotation of the covariates and the permutation
of the labels. We then conclude that the silhouette score provides meaningful information
to tune the number of user-centric aggregation rules prior to training.

5.4.4 Communication Efficiency

Personalization comes at the cost of increased communication load in the downlink
transmission from the PS to the federated user. In order to compare the algorithm
convergence time, we parametrize the distributed system using two parameters. We
define by ρ = Tul

Tdl
the ratio between model transmission time in uplink (UL) and downlink

(DL). Typical values of ρ in wireless communication systems are in the [2, 4] range
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Figure 5.4: Average silhouette scores of the k-means clustering in the three scenarios. In
the last two scenarios, in which user inherently belongs to 4 different cluster, the scores

indicates the necessity of at least 4 personalized streams.

because of the larger transmitting power of the base station compared to the edge
devices. Furthermore, to account for unreliable computing devices, we model the random
computing time Ti at each user i by a shifted exponential r.v. with a cumulative
distribution function

P [Ti > t] = 1− 1(t ≥ Tmin)
[
1− e−µ(t−Tmin)

]
where Tmin representing the minimum possible computing time and 1/µ being the average
additional delay due to random computation impairments. Therefore, for a population of
m devices, we then have

Tcomp = E [max{T1, . . . , Tm}] = Tmin +
Hm

µ

where Hm is the m-th harmonic number. To study the communication efficiency we
consider the simulation scenario with the EMNIST dataset with label and covariate shift.
In Fig. 5.3 we report the time evolution of the validation accuracy in 3 different systems.
A wireless systems with slow UL ρ = 4 and unreliable nodes Tmin = Tdl =

1
µ , a wireless

system with fast uplink ρ = 2 and reliable nodes Tmin = Tdl,
1
µ = 0 and a wired system

ρ = 1 (symmetric UL and DL) with reliable nodes Tmin = Tdl,
1
µ = 0. The increased

DL cost is negligible for wireless systems with strongly asymmetric UL/DL rates and in
these cases, the proposed approach largely outperforms the baselines. In the case of more
balanced UL and DL transmission times ρ = [1, 2] and reliable nodes, it becomes instead
necessary to properly choose the number of personalized streams in order to render the
solution practical. Nonetheless, the proposed approach remains the best even in this
case for k = 4. Note that FedFOMO incurs a large communication cost as personalized
aggregation is performed at the client-side.
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5.5 Conclusion

In this chapter, we presented a novel federated learning algorithm that exploits multiple
user-centric aggregation rules to produce personalized models. The aggregation rules are
based on user-specific mixture coefficients that can be computed during one communica-
tion round prior to federated training. Additionally, in order to limit the communication
burden of personalization, we propose a simple strategy to effectively limit the number of
personalized streams. We experimentally study the performance of the proposed solution
across different tasks. Overall, our solution yields personalized models with higher testing
accuracy while at the same time being more communication-efficient compared to the
competing baselines.
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Chapter 6

Robust Bayesian Learning

Bayesian learning provides a principled framework to account for uncertainty quantifica-
tion, an essential enabler for reliable AI. However, standard Bayesian learning is known to
have suboptimal generalization capabilities under model misspecification and in the pres-
ence of outliers. PAC-Bayes theory demonstrates that the free energy criterion minimized
by Bayesian learning is a bound on the generalization error for Gibbs predictors (i.e., for
single models drawn at random from the posterior) under the assumption of sampling
distributions uncontaminated by outliers. This viewpoint provides a justification for the
limitations of Bayesian learning when the model is misspecified, requiring ensembling,
and when data is affected by outliers. In recent work, PAC-Bayes bounds – referred to as
PACm – were derived to introduce free energy metrics that account for the performance
of ensemble predictors, obtaining enhanced performance under misspecification. This
chapter introduces a novel robust free energy criterion that combines the generalized
logarithm score function with PACm ensemble bounds. The proposed free energy training
criterion produces predictive distributions that are able to concurrently counteract the
detrimental effects of model misspecification and outliers.

6.1 Introduction

Key assumptions underlying Bayesian inference and learning are that the adopted
probabilistic model is well specified and that the training data set does not include
outliers, so that training and testing distributions are matched [53]. Under these favorable
conditions, the Bayesian posterior distribution provides an optimal solution to the
inference and learning problems. In contrast, optimality does not extend to scenarios
characterized by misspecification [136,137] or outliers [51]. The framework developed
in this chapter aims at addressing both problems by integrating the use of ensemble
predictors [54] with generalized logarithm score functions [138] in Bayesian learning.

The proposed learning framework – termed (m, t)-robust Bayesian learning – is
underpinned by a novel free energy learning criterion parameterized by integer m ≥ 1 and
scalar t ∈ [0, 1]. The parameter m controls robustness to misspecification by determining
the size of the ensemble used for prediction. In contrast, parameter t controls robustness
to outliers by dictating the degree to which the loss function penalizes low predictive
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probabilities. The proposed learning criterion generalizes the standard free energy
criterion underlying generalized Bayesian learning, which is obtained for m = 1 and
t = 1 [139, 140]; as well as the m-free energy criterion, obtained for t = 1, which was
recently introduced in [3].

6.1.1 Related Work

Recent work has addressed the problem of model misspecification for Bayesian learning.
In particular, references [3, 52] have argued that the minimization of the standard free
energy criterion – which defines generalized Bayesian learning [139,140] – yields predictive
distributions that do not take advantage of ensembling, and thus have poor generalization
capabilities for misspecified models.

To mitigate this problem, references [3, 52] introduced alternative free energy criteria
that account for misspecification. The author of [52] leveraged a second-order Jensen’s
inequality to obtain a tighter bound on the cross entropy loss; while the work [3] proposed
an m-free energy criterion that accounts for the performance of an ensemble predictor
with m constituent models. Both optimization criteria were shown to be effective in
overcoming the shortcomings of Bayesian learning under misspecification, by yielding
posteriors that make better use of ensembling.

The free energy metrics introduced in [3,52] are defined by using the standard log-loss,
which is known to be sensitive to outliers. This is because the log-loss grows unboundedly
on data points that are unlikely under the model [141]. Free energy criteria metrics
based on the log-loss amount to Kullback–Leibler (KL) divergence measures between
data and model distributions. A number of papers have proposed to mitigate the effect
of outliers by replacing the classical criteria based on the KL divergence in favor of more
robust divergences, such as the β-divergences [142,143] and the γ-divergence [144,145].
These criteria can be interpreted as substituting the log-loss with generalized logarithmic
scoring rules. To optimize such criteria, variational methods have been proposed that
were shown to be robust to outliers, while not addressing model misspecification [146].

This chapter extends (generalized) Bayesian learning by tackling both model mis-
specification and the presence of outliers. Specifically, we propose the (m, t)-robust
Bayesian learning framework, which is underpinned by a novel free energy criterion based
on generalized logarithmic scoring rules and multi-sample objectives. The predictive
distribution resulting from the minimization of the proposed objective takes full advantage
of ensembling, while at the same time reducing the effect of outliers. The proposed robust
m-free energy criterion is justified by following a PAC-Bayes approach, and its enhanced
robustness is also proved through the lens of its influence function [147]. The theoretical
findings are corroborated by experiments that highlight the enhanced generalization
capabilities and calibration performance of the proposed learning criterion under model
misspecification and with data sets corrupted by outliers.

6.1.2 Chapter Organization

The rest of chapter the is organized as follows. In Section 6.2, we review the generalized
logarithm function, the associated entropy and divergence measures. In Section 6.3, we
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define the learning setup and we provide a tutorial-style comparison between frequentist
and Bayesian learning frameworks. In Section 6.4.1, we introduce the concept of model
misspecification and we review the m-free energy criterion [3] as a tool to mitigate the
effect of misspecified model classes. In Section 6.4.2, we define outliers and illustrate
the role of robust losses to reduce the influence of outlying data samples. In Section 6.5,
we introduce the (m, t)-robust Bayesian learning framework that tackles both model
misspecification and the presence of outliers, and that overcomes the limitations of
the standard Bayesian learning rule. We theoretically analyze the proposed learning
criterion, providing PAC-Bayesian guarantees for the ensemble model with respect to
the contaminated and the in-distribution measures. Finally, in Section 6.6, we provide
regression and classification experiments to quantitatively and qualitatively measure the
performance of the proposed learning criterion.

6.2 Preliminaries

6.2.1 Generalized Logarithms

The t-logarithm function, also referred to as generalized or tempered logarithm is defined
as

logt(x) :=
1

1− t
(
x1−t − 1

)
for x > 0, (6.1)

for t ∈ [0, 1) ∪ (1,∞), and

log1(x) := log(x) for x > 0 (6.2)

where the standard logarithm (6.2) is recovered from (6.1) in the limit limt→1 logt(x) =
log(x). As shown in Figure 6.1, for t ∈ [0, 1), the t-logarithms is a concave function, and
for t < 1 is lower bounded as logt(x) ≥ −(1− t)−1.

Largely employed in classical and quantum physics, the t-logarithm has also been
applied to machine learning problems. Specifically, t-logarithms have been used to define
alternatives to the log-loss as a score function for probabilistic predictors with the aim
of enhancing robustness to outliers [5, 138, 148]. Accordingly, the loss associated to
a probabilistic model q(x) is measured as − logt q(x) instead of the standard log-loss
− log q(x). Note that we have the upper bound − logt q(x) ≤ (1− t)−1 for t < 1.

In information theory, the t-logarithm was used by [149] to define the t-Tsallis entropy

Ht(p(x)) := −
∫
p(x)t logt p(x)dx, (6.3)

and the t-Tsallis divergence

Dt(p(x)||q(x)) := −
∫
p(x)t[logt p(x)− logt q(x)]dx. (6.4)

For t = 1, the t-Tsallis entropy and the t-Tsallis divergence coincide respectively with
the Shannon (differential) entropy and with the Kullback–Leibler (KL) divergence.
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Figure 6.1: t-logarithm loss, or logt-loss, of a predictive distribution p(x) for different
values of t. For t = 1, the samples x corresponding to low predictive probability p(x)→ 0
have a potentially unbounded loss value. On the contrary, for t < 1, the t-logarithm loss
is bounded by (1− t)−1 and it limits their influence.

When using (6.4) as an optimization criterion in machine learning, the concept of
escort distribution is often useful [150]. Given a probability density p(x), the associated
t-escort distribution is defined as

Et(p(x)) =
p(x)t∫
p(x)tdx

. (6.5)

We finally note that t-logarithm does not satisfy the distributive property of the logarithm,
i.e., log(xy) = log(x) + log(y). Instead, we have the equalities [151]

logt(xy) = logt x+ logt y + (1− t) logt x logt y (6.6)

and

logt

(
x

y

)
= yt−1 (logt x− logt y) . (6.7)

6.3 Frequentist vs. Bayesian Learning

Throughout this chapter we consider a standard learning set-up in which the learner has
access to a data set D of n data points {zi}ni=1 sampled in an independent and identically
distributed (IID) fashion from a sampling distribution νs(z). As we will see, owing to
the presence of outliers, the sampling distribution may differ from the target distribution
ν(z). The general goal of learning is that of optimizing models that perform well on
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Figure 6.2: Estimated distribution over a scalar channel gain (left panel) and correspond-
ing posterior distribution q(θ) over the model parameter θ (right panel) for frequentist
learning, Bayesian learning with β ∈ {1, 0.1} and (m, 1)-robust Bayesian learning with
m = 10. The training data set, represented as crosses, is sampled from the target
distribution ν(x).

average with respect to the target distribution ν(z). In this section, we assume that the
sampling distribution νs(z) equals the target distribution ν(z), and we will address the
problem of outliers – which arises when νs(z) ̸= ν(z) – in the next section.

We will consider both supervised learning problems and the unsupervised learning
problem of density estimation, which, as we will see in Chapter 7, have many applications
to wireless communications. In supervised learning, a data sample z ∈ Z corresponds to
a pair z = (x, y) that comprises a feature vector x ∈ X and a label y ∈ Y. In contrast,
for density estimation, each data point z ∈ Z corresponds to a feature vector z = x ∈ X .

Supervised learning is formulated as an optimization over a family of discriminative
models defined by a parameterized conditional distribution p(y|x, θ) of target y given
input x. The conditional distribution, or model, p(y|x, θ) is parameterized by vector
θ ∈ Θ in some domain Θ. In contrast, density estimation amounts to an optimization
over a model defined by parameterized densities p(x|θ). In both cases, optimization
targets a real-valued loss function, which is used to score the model θ when tested on a
data point z.

6.3.1 Frequentist Learning

The goal of frequentist learning consists in finding the model parameter vector θ that
minimizes the training loss evaluated on the data set D, i.e.,

L̂(θ,D) =
∑
z∈D

ℓ(θ, z). (6.8)

This optimization follows the empirical risk minimization (ERM) principle. Accordingly,
the frequentist solution is a single model parameter θfreq ∈ Θ that minimizes the training
loss, i.e.,

θfreq = argmin
θ∈Θ

L̂(θ,D). (6.9)
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To simplify the discussion, we assume that the solution to the ERM problem is unique,
although this does not affect the generality of the presentation.

ERM is motivated by the fact that the training loss (6.8) is a finite-sample approxi-
mation of the true, unknown, population loss

L(θ) = Eν(z)[ℓ(θ, z)], (6.10)

which averages the loss over the target, and here also sampling, distribution ν(z). The
discrepancy between the population loss and its approximation given by the training loss
introduces uncertainty regarding the optimal model parameter

θ∗ = argmin
θ∈Θ

L(θ), (6.11)

which is also assumed to be unique to simplify the discussion. The error between the
optimal solution θ∗ and the frequentist solution θfreq is a form of epistemic uncertainty,
which can be reduced by increasing the size of the data set D.

In practice, the short stationarity intervals of the data-generating distributions
associated with wireless communications often limit the size of training data sets. In this
scarce data regime, epistemic uncertainty may be significant. By selecting a single model,
frequentist learning neglects epistemic uncertainty as it discards information about other
plausible models that fit training data almost as well as the ERM solution (6.9). As a
result, frequentist learning is known to lead to poorly calibrated decision [1,152], resulting
in over- or under-confident outputs that may cause important reliability issues.

6.3.2 Bayesian Learning

Bayesian learning adopts a probabilistic reasoning framework by scoring all members
in the model class by means of a distribution q(θ) over the model parameter space Θ.
Through this distribution, Bayesian learning summarizes information obtained from data
D, as well as prior knowledge about the problem, e.g., about the scale of the optimal
model parameter vector θ∗ or about sparsity patterns in θ∗.

Mathematically, given a prior distribution p(θ) on the model parameter space, Bayesian
learning can be formulated as the minimization of the free energy criterion

Ĵ (q) = Eq(θ)[L̂(θ,D)] +
1

β
KL(q(θ)||p(θ)), (6.12)

where KL(q(θ)||p(θ)) denotes the Kullback–Leibler (KL) divergence between the posterior
distribution q(θ) and a prior distribution p(θ), i.e.

KL(q(θ)||p(θ)) = Eq(θ)

[
log

(
q(θ)

p(θ)

)]
, (6.13)

while β > 0 is a constant, also known as inverse temperature. Accordingly, through
problem

minimize
q

Ĵ (q), (6.14)
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Bayesian learning minimizes a weighted sum of the average training loss and of the
discrepancy with respect to the prior distribution p(θ).

The KL term in the free energy (6.12) plays an essential role in differentiating between
Bayesian learning and frequentist learning for small data set sizes. In fact, the KL
divergence term acts as a regularizer, whose influence on the solution of problem (6.14) is
inversely proportional to the data set size n. When the regularizer is removed, i.e., when
we set β → ∞, the solution of the problem (6.14) reduces to the frequentist solution
(6.9). More precisely, the distribution q(θ) that solves problem (6.14) reduces to a point
distribution concentrated at θfreq.

The optimization (6.14) of the free energy criterion (6.12) can be theoretically justified
through the PAC Bayes generalization framework. In it, the KL term is proved to quantify
an upper bound on the discrepancy between training loss and population loss on average
with respect to the random draws of the model parameter vector θ ∼ q(θ). Mathematically,
the free energy provides an upper bound on the average population loss (when neglecting
constants that are inessential for optimization), i.e.,

Eq(θ) [L(θ)] ≤ Ĵ (q) + const. (6.15)

As we have discussed in the previous subsection, epistemic uncertainty is caused by the
difference between training and population losses, and hence between the corresponding
minimizers (6.11) and (6.9). By incorporating a bound on this error, the free energy
criterion (6.12) unlike the frequentist training loss (6.8), provides a way to account for
epistemic uncertainty.

Specializing the problem (6.14) to the log-loss

ℓ(x, y, θ) = − log p(y|x, θ) (6.16)

for supervised learning, and
ℓ(x, θ) = − log p(x|θ) (6.17)

for density estimation, the minimization of the free energy in (6.14) leads to the β-tempered
posterior distribution

qBayes(θ|D) ∝
∏

(x,y)∈D
p(θ)p(y|x, θ)β (6.18)

for supervised learning, and a similar expression applies to unsupervised learning for
density estimation. The distribution (6.18) reduces to the standard posterior distribution
when β = 1. In practice, computing the posterior distribution, or more generally solving
problem (6.14), are computationally prohibitive tasks. A common approach to address this
issue is through variational inference (VI) [153]. VI limits the scope of the optimization
over a tractable set of distributions q(θ), such as jointly Gaussian variables with free
mean and covariance parameters.

Let us now assume that we have obtained a distribution q(θ) as a, generally approx-
imate, solution of problem (6.14). We focus first on supervised learning. Given a test
input x, the ensemble predictor obtained from distribution q(θ) is given by

p(y|x, q) = Eq(θ)[p(y|x, θ)]. (6.19)
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The average in (6.19) is in practice approximated by drawing multiple, say m, samples
θ ∼ q(θ) from distribution q(θ), obtaining the m-sample predictor

p(y|x, θ1, ..., θm) =
1

m

m∑
i=1

p(y|x, θi), (6.20)

where samples θi are generated from distribution q(θ) for i = 1, ...,m, which we write as
θ1, ..., θm ∼ q(θ)⊗m.

In the case of density estimation, the ensemble density p(x|q) is similarly defined as

p(x|q) = Eq(θ)[p(x|θ)], (6.21)

which can be approximated as

p(x|θ1, . . . , θm) =
1

m

m∑
i=1

p(x|θi), (6.22)

with θ1, . . . , θm ∼ q(θ)⊗m. Henceforth, when detailing expressions for supervised learning,
it will be implied that the corresponding formulas for density estimation apply by replacing
p(y|x, θ) with p(x|θ) as done above to define ensemble predictors.

Given a distribution q(θ), we define the log-loss of the ensemble model (6.21) as

R(q, x, y) := − log p(y|x, q) = − logEq(θ)[p(y|x, θ)], (6.23)

and the m-sample log-loss as

R̂m(q, x, y) := Eq(θ)⊗m [− log(p(y|x, θ1, ..., θm))] = Eq(θ)⊗m

[
− log

(
1

m

m∑
i=1

p(x|θi)
)]

,

(6.24)

which measures the log-loss of the m-sample predictor (6.20). Note that for m = 1 in
(6.24), we obtain the log loss of the Gibbs predictor

R̂1(q, x, y) = R̂(q, x, y) := Eq(θ)[− log p(y|x, θ)]. (6.25)

Example 1: To illustrate the difference between the frequentist and Bayesian learning
paradigms, let us consider the problem of estimating the probability distribution of
the channel gain of a scalar wireless channel. This is an example of unsupervised
learning for density estimation. Let us assume that the channel gain density follows
a true, unknown, target distribution given by the mixture of two Gaussians ν(x) =
0.7N (x|0.5, 0.05) + 0.3N (x|0.8, 0.02). This is shown in the left part of Fig. 6.2 as a
dashed green line. The two components may correspond to line-of-sight (LOS) and
non-line-of-sight (NLOS) propagation conditions [154]. We fix a Gaussian model class
p(x|θ) = N (x|θ, 0.25) and a prior distribution p(θ) = N (θ| − 5, 5). Given the data points
represented as crosses in the left part of Figure 6.2, the estimated distribution obtained
by frequentist learning is reported as a dash-dotted black curve in the left panel. In
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contrast, Bayesian learning returns the posterior distribution (6.18), which in turn yields
the ensemble density (6.19). The distributions are shown in the left and right parts of the
Figure 6.2, respectively for inverse temperature parameters β = {1, 0.1}. The Bayesian
predictive distribution is still unimodal but it has a larger variance, which results from
the combination of multiple Gaussian models according to the Bayesian posterior that
does not collapse to a point distribution in virtue of the KL regularization term whose
influence is controlled by β. ■

6.4 Robust Bayesian Learning

As we have seen in the previous section, Bayesian learning optimizes the free energy by
tackling problem (6.14). By (6.15), the free energy provides a bound on the population
loss as a function of the training loss when averaging over the distribution q(θ) in the
model parameter space [155]. This approach has two important limitations:

• Model misspecification: The bound (6.15) provided by the free energy is known to
be loose in the presence of model misspecification. Model misspecification occurs
when the assumed probabilistic model p(y|x, θ) cannot express the conditional
target distribution ν(y|x) = ν(x, y)/ν(x), where ν(x) =

∫
ν(x, y)dy [3, 156]. This

causes the β-tempered posterior distribution to be generally suboptimal when the
model is misspecified [139].

• Discrepancy between sampling and target distributions: The sampling distribution
νs(z) that underlies the generation of the training data set D may not match the
target distribution ν(x) used to test the trained model due to the presence of
outliers in the training data. This discrepancy is not accounted for in the derivation
of the free energy criterion, causing Bayesian learning to be suboptimal in the
presence of outliers [139].

We observe that the two causes of suboptimality outlined in the previous paragraph are
distinct. In fact, model misspecification may reflect the ignorance of the learner concerning
the data generation process, or it may be caused by constraint on the computational
resources of the device implementing the model. In contrast, the presence of outliers
amounts to an inherent source of distortion in the data, which cannot be removed even
if the learner acquired more information about the data generation process or more
computing power. In this section, we review robust Bayesian learning solutions that
address these two issues.

6.4.1 (m, 1)-Robust Bayesian Learning Against Model Misspecification

In this subsection, we describe a recently proposed method that robustifies Bayesian
learning against model misspecification. We start by providing a formal definition of
misspecification. Recall that we are focusing on supervised learning, but the presentation
also applies to density estimation by replacing the discriminative model p(x|y, θ) with
the density model p(x|θ).
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Definition 2 (Misspecification). A model class F = {p(y|x, θ) : θ ∈ Θ} is said to be
misspecified with respect to the target distribution ν(x, y) whenever there is no model
parameter vector θ ∈ Θ such that ν(y|x) = p(y|x, θ), where ν(y|x) is the conditional
target distribution obtained from the joint target distribution ν(x, y).

Under model misspecification, the free energy criterion has been shown to yield a
loose bound (6.15) on the population loss obtained by the ensemble predictor (6.19) [3].

To address this problem, the m-sample free energy criterion was introduced in [3],
whose minimization yields (m, 1)-robust learning. The reason for the notation “(m, 1)”
will be made clear in the next two subsections. The key observation underlying this
approach is that the training loss L̂(θ,D) in the standard free energy (6.12) does not
properly account for the performance of ensemble predictors. In fact, the log-loss of an
m-sample ensemble predictor is given by R̂m(q, x, y) in (6.24), and not by the Gibbs
log-loss R̂(q, x, y) in (6.25). By leveraging the results of [157] and [158], the multi-sample
criterion R̂m(q, x, y) can be shown to provide a sharper bound to the ensemble risk
R(q, x, y) in (6.23) as compared to the Gibbs risk R̂(q, x, y) in (6.25), i.e.,

R(q, x, y) ≤ R̂m(q, x, y) ≤ R̂(q, x, y) (6.26)

Furthermore, the first inequality in (6.26) becomes asymptotically tight as m→∞, i.e.,

lim
m→∞

R̂m(q, x, y) = R(q, x, y). (6.27)

Using PAC-Bayes arguments, the m-sample free energy is obtained by replacing the
training loss Eq(θ)[L̂(θ,D)] in the free energy (6.12) with the m-sample training loss

L̂(θ1, . . . , θm,D) =
∑

(x,y)∈D
R̂m(q, x, y)

=
∑

(x,y)∈D
Eq(θ)⊗m [− log(p(y|x, θ1, ..., θm))] . (6.28)

Furthermore, the m-sample free energy is defined as

Ĵm(q) = L̂(θ1, . . . , θm,D) +
m

β
KL(q(θ)||p(θ)), (6.29)

in which the m-sample training loss is averaged over the distribution of the m samples
θ1, ..., θm ∼ q(θ)⊗m used in the ensemble predictor (6.20). We note that the m-sample
free energy coincides with the standard free energy (6.12) for m = 1.

Finally, the (m, 1)-robust Bayesian learning problem is defined by the optimization

minimize
q

Ĵm(q). (6.30)

Example 1 (continued): Let us return to Example 1. The problem is characterized by
model misspecification since the target distribution ν(x) is a mixture of two Gaussian
components, while the model class comprises only unimodal Gaussian models p(x|θ). In
contrast to standard Bayesian learning, the ensemble density (6.20) obtained with the
distribution q(θ) returned by (m, 1)-robust Bayesian learning for m = 10 (red curve in
the right panel) is able to take advantage of ensembling to approximate both the NLoS
and LoS components of the target distribution. ■
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6.4.2 (1, t)-Robust Bayesian Learning Against Outliers

We now turn to methods that robustify Bayesian learning against the presence of outliers
in the training set. As in [159], we model the presence of outliers by assuming that
the training data is generated from a sampling distribution νs(x, y) that is given by the
contamination of the in-distribution(ID) distribution ν(x, y) by an out-of-distribution
(OOD) distribution ξ(x, y). A formal definition follows.

Assumption 7 (Outliers). The sampling distribution is given by

νs(x, y) = (1− ϵ)ν(x, y) + ϵξ(x, y) (6.31)

where ν(x, y) is the target distribution; ξ(x, y) is the OOD distribution accounting for the
presence of outliers; and ϵ ∈ [0, 1] denotes the contamination ratio.

In order for model (6.31) to be meaningful, one typically assumes that the OOD
measure ξ(x, y) is large for pairs of (x, y) at which the target measure ν(x, y) is small.
This ensures that outlying data points (x, y) ∼ ξ(x, y) tend to be in part of the domain
that is not covered by the target distribution.

The performance of both frequentist and Bayesian learning is known to be sensitive
to outliers when the log-loss is adopted to evaluate the training loss. This sensitivity
is caused by the unbounded value of the log-loss (6.16) when evaluated on anomalous
data points to which the model assigns low probabilities p(y|x, θ). This is illustrated
in Figure 6.1 for a general conditional distribution p(y|x). A number of papers have
proposed to mitigate the effect of outliers by replacing the log-loss in favor of more robust
losses [141–145].

A well-explored solution is to adopt the t-log-loss introduced in Section 6.2. Using
the t-log-loss in lieu of the standard log-loss in the loss definitions (6.23) and (6.25), we
obtain the logt-loss of the ensemble model (6.21) as

Rt(q, x, y) := − logt p(y|x, q) = − logt Eq(θ)[p(y|x, θ)], (6.32)

and the logt loss of the Gibbs predictor

R̂t(q, x, y) := Eq(θ)[− logt p(y|x, θ)]. (6.33)

By (6.2), the above definitions generalize the ones based on the standard log-loss as these
are obtained with t = 1. On the other hand, for t < 1 the associated loss function is
bounded by (1− t)−1, as shown in Figure 6.1.

Based on (6.33), we obtain the t-training loss as

L̂t(θ,D) = −
∑

(x,y)∈D
R̂t(q, x, y), (6.34)

which leads to the corresponding t-free energy

Ĵt(q) = L̂t(θ,D) +
1

β
KL(q(θ)||p(θ)). (6.35)
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Figure 6.3: Estimated distribution over channel gains (left panel) and posterior distri-
bution over the model parameter θ (right panel) of a density model trained following
(m, 1)-robust Bayesian learning, the (1, t)-robust Bayesian learning and the (m, t)-robust
Bayesian learning. The training data set, represented as crosses, comprises samples from
the sampling distribution ν(x) (black) and an outlier (red).

Accordingly, (1, t)-robust Bayesian learning is defined by the minimization [3]

minimize
q

Ĵt(q). (6.36)

Example 2: To highlight the effect of outliers, we consider the same channel gain
estimation problem described in Example 1, but we now assume that the original training
data set (black crosses) is contaminated by an outlying data point (red cross). The
(m, 1)-robust Bayesian learning solution (red curve with m = 10) is based on the standard
log-loss and is observed to be significantly affected by the presence of the outliers. As a
result, the estimated distribution for the (m, 1)-robust Bayesian learning concentrates a
relevant fraction of its mass around the outlier. In contrast, the (1, t)-robust Bayesian
solution (gray curve) with t = 0.4 is less influenced by the outlying data point. However,
like Bayesian learning, it is not able to take advantage of ensembling and to approximate
both LoS and NLoS components. This observation justifies the (m, t)-robust Bayesian
learning approach described next. ■

6.5 (m, t)-Robust Bayesian Learning

In the previous section, we reviewed the m-free energy criterion introduced by [3], which
was argued to produce predictive distributions that are more expressive, providing a
closer match to the underlying sampling distribution ν(x). However, the approach is not
robust to the presence of outliers. In this section, we introduce (m, t)-robust Bayesian
learning and the associated novel free energy criterion that addresses both expressivity
in the presence of misspecification and robustness in setting with outliers. To this end,
we study the general setting described in Section 6.4 in which the sampling distribution
ν̃(x) satisfies both Assumption 2 and Assumption 7, and we investigate the use of the
logt-loss with t ∈ [0, 1) as opposed to the standard log-loss as assumed in [3].
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6.5.1 Robust m-free Energy

For a proposal posterior q(θ), generalizing (6.24), we define the multi-sample empirical
logt-loss evaluated at a data point x as

R̂m
t (q, x, y) := Eq(θ)⊗m [− logt(p(y|x, θ1, ..., θm))] = Eq(θ)⊗m

[
− logt(

1

m

m∑
i=1

p(x|θi))
]
,

(6.37)

From the concavity of the t-logarithm with t ∈ [0, 1), in a manner similar to (6.26), the
loss (6.37) provides an upper bound on the original logt-loss Rt(q, x, y) in (6.23)

Rt(q, x, y) ≤ R̂m
t (q, x, y). (6.38)

Furthermore, the bound becomes increasingly tighter as m increases, and we have the
limit

lim
m→∞

R̂m
t (q, x, y) = Rt(q, x, y) (6.39)

for t ∈ [0, 1).

The m-sample logt-loss (6.37) is used to define the (m, t) training loss

L̂t(θ1, . . . , θm,D) =
∑

(x,y)∈D
R̂m

t (q, x, y), (6.40)

based on which, for β > 0, is possible to derive the robust m-free energy as

Jm
t (q) := L̂t(θ1, . . . , θm,D) +

m

β
KL(q(θ)||p(θ)). (6.41)

The proposed free energy generalizes the standard free-energy criterion (6.12), which
corresponds to the training criterion of (m, t)-robust Bayesian learning for m = 1 and
t = 1, and the m-free energy criterion (6.29), which corresponds to the training criterion
of (m, t)-robust Bayesian learning for t = 1.

In the following we provide theoretical results for the proposed learning framework.
The analysis is specialized for the unsupervised setting in order to simplify the notation.
Nonetheless, the results can be readly extended to the supervised setting by replacing
p(x|θ) with p(y|x, θ).

Following similar steps as in [3], the robust m-free energy can be proved to provide
an upper bound on the population logt-risk as detailed in the following lemma.

Lemma 3. With probability 1− σ, with σ ∈ (0, 1), with respect to the random sampling of
the data set D, for all distributions q(θ) that are absolutely continuous with respect the
prior p(θ), the following bound on the population risk of the ensemble model holds

Eν̃(x)[Rt(q, x)] ≤Jm
t (q) + ψ(ν̃, n,m, β, p, σ) (6.42)
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where

ψ(ν̃, n,m, β, p, σ) :=
1

β

(
logED,p(θ)

[
eβ∆m,n

]
− log σ

)
(6.43)

and

∆m,n :=
1

n

∑
x∈D

logtEj∼U [1:m]p(x|θj)

− Eν̃(x)

[
logtEj∼U [1:m]p(x|θj)

]
. (6.44)

Furthermore, the risk with respect to the ID measure ν(x) can be bounded as

Eν(x)[Rt(q, x)] ≤
1

1− ϵ (J
m
t (q) + ψ(ν̃, n,m, β, p, σ))

+
ϵ(C1−t − 1)

(1− ϵ)(1− t) , (6.45)

if the contamination ratio satisfies the inequality ϵ < 1.

Lemma 3 provides an upper bound on the logt-risk (6.32), which is defined with
respect to the sampling distribution ν̃(x) corrupted by outliers, as well as on the ensemble
logt-risk (6.23) evaluated with respect to the ID measure ν(x). Reflecting that the data
set D contains samples from the corrupted measure ν̃(x), while the bound (6.42) vanishes
as n→∞, a non-vanishing term appears in the bound (6.45).

6.5.2 Minimizing the Robust m-free Energy

Using standard tools from calculus of variations, it is possible to express the minimizer
of the robust m-free energy

qmt (θ) := argmin
q
Jm
t (q) (6.46)

as fixed-point solution of an operator acting on the ensembling distribution q(θ).

Theorem 6. The minimizer (6.46) of the robust m-free energy objective (6.41) is the fixed
point of the operator

T (q):=p(θj) exp

(
β
∑
x∈D

E{θi}i̸=j

[
logt

(∑m
i=1 p(x|θi)
m

)])
(6.47)

where the average in (6.47) is taken with respect to the IID random vectors {θi}i ̸=j ∼
q(θ)⊗m−1.

Theorem 6 is useful to develop numerical solutions to problem (6.46) for non-
parametric posteriors, and it resembles standard mean-field variational inference it-
erations [160].
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Alternatively, we can tackle the problem (6.46) over a parametric family of distribution
using standard tools from variational inference [153].

To further characterize the posterior minimizing the robust m-free energy criterion,
and to showcase the beneficial effect of the generalized logarithm, we now consider the
asymptotic regime in which m→∞ and then n→∞. In this limit, the robust m-free
energy (6.41) coincides with the logt-risk Rt(q). From the definition of t-Tsallis divergence
(6.4), the logt-risk can be shown in turn to be equivalent to the minimization of the
divergence

Dt (Et(ν̃(x))||p(x|q)) (6.48)

between the t-escort distribution (6.5) associated to the sampling distribution ν̃(x) and
the ensemble predictive distribution p(x|q). Therefore, unlike the standard Bayesian
setup with t = 1, the minimizer of the robust m-free energy does not seek to approximate
the sampling distribution ν̃(x). Instead, the minimizing ensembling posterior q(θ) aims at
matching the t-escort version of the sampling distribution ν̃(x). In the case of corrupted
data generation procedures, i.e., when ν(x) ̸= ν̃(x), recovering the sampling distribution
ν̃(x) is not always the end goal, and, as shown by [138], escort distributions are particularly
effective at reducing the contribution of OOD measures.

Example 2 (continued): Returning to Example 2, we now consider the performance
of (m, t)-robust Bayesian learning for m = 10 and t = 0.4. The resulting distribution
(blue line) with m = 10 and t = 0.4 seems to be able to better approximate the
target distribution by reducing the effect of the outliers, while also taking advantage of
ensembling to combat misspecification.

6.5.3 Influence Function Analysis

In this section, we study the robustness of the proposed free energy criterion by using
tools from classical statistics. The robustness of an estimator is typically measured by
the means of its influence function [147]. The influence function quantifies the extent
to which an estimator derived from a data set D changes when a data point z is added
to D. We are specifically interested in quantifying the effect of data contamination,
via the addition of a point z, on the ensembling distribution qmt (θ) that minimizes the
proposed robust m-free energy objective (6.41). To this end, given a set D of n data
points {x1, . . . , xn} ∈ X n, we define the empirical measure

Pn(x) =
1

n

n∑
i=1

δ(x− xi) (6.49)

where δ(·) denotes the Dirac function, and we introduce its γ-contaminated version for
an additional data point z ∈ X as

Pn
γ,z(x) =

(1− γ)
n

n∑
i=1

δ(x− xi) + γδ(x− z) (6.50)

with γ ∈ [0, 1].
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The following analysis is inspired by [146], which considered Gibbs models trained
using generalized free energy criteria based on the β-divergence and γ-divergence.

To compute the influence function we consider parametric ensembling distributions
qϕ(θ) defined by the parameter vector ϕ ∈ Φ ⊆ Rd. We denote the robust m-free energy
(6.41) evaluated using the empirical distribution (6.50) as

Jm
t (γ, ϕ)=EPn

γ,z(x)

[
R̂m

t (qϕ, x)
]
+
m

β
D1(qϕ(θ)||p(θ)), (6.51)

and its minimizer as

ϕm∗
t (γ) = argmin

ϕ∈Φ
Jm
t (γ, ϕ). (6.52)

The influence function is then defined as the derivative

IFm
t (z, ϕ, Pn) =

dϕm∗
t (γ)

dγ

∣∣∣∣∣
γ=0

(6.53)

= lim
γ→0

ϕm∗
t (γ)− ϕm∗

t (0)

γ
. (6.54)

Accordingly, the influence function measures the extent to which the minimizer ϕm∗
t (γ)

changes for an infinitesimal perturbation of the data set.

Theorem 7. The influence function of the robust m-free energy objective (6.51) is

IFm
t (z, ϕ, Pn)=−

[
∂2Jm

t (γ, ϕ)

∂ϕ2

]−1

×∂
2Jm

t (γ, ϕ)

∂γ∂ϕ

∣∣∣∣∣γ=0
ϕ=ϕm∗

t (0)

, (6.55)

82



Chapter 6. Robust Bayesian Learning

Table 6.1: Total variation (TV) distance between the ID measure ν(x) and the predictive
distribution pq(x) obtained from the optimization of the different free energy criteria for
the setting in Figure 6.5 (the TV values are scaled by 104).

t = 1
ϵ = 0

t = 1
ϵ = 0.1

t = 0.9
ϵ = 0.1

t = 0.8
ϵ = 0.1

TV(ν(x)||pq(x)) 1.38 2.15 1.88 1.79

where

∂2Jm
t (γ, ϕ)

∂ϕ2
=EPn

γ,z(x)
∂2

∂ϕ2

[
R̂m

t (qϕ, x)
]

(6.56)

+
∂2

∂ϕ2

[
m

β
KL(qϕ(θ)||p(θ))

]
(6.57)

and

∂2Jm
t (γ, ϕ)

∂γ∂ϕ
=
∂

∂ϕ

[
EPn(x)

[
R̂m

t (qϕ, x)
]
−R̂m

t (qϕ, z)
]
. (6.58)

Theorem 7 quantifies the impact of the data point z through the contamination
dependent term ∂

∂ϕR̂m
t (qϕ, z). We study the magnitude of this term to illustrate the

enhanced robustness deriving from the proposed robust m-free energy objective. For ease
of tractability, we consider the limit m→∞. In this case, the contamination dependent
term can be expressed as

∂

∂ϕ
lim

m→∞
R̂m

t (qϕ, z)=
∂

∂ϕ
logt Eqϕ(θ)[p(z|θ)] (6.59)

=
[
Eqϕ(θ)[p(z|θ)]

]−t ∂Eqϕ(θ)[p(z|θ)]
∂ϕ

. (6.60)

The effect of the t-logarithm function thus appears in the first multiplicative term, and
it is the one of reducing the influence of anomalous data points to which the ensemble
predictive distribution pq(x) assigns low probability.

Example: To illustrate how the t-logarithm improves the robustness to outlying data
points, we consider again the example of Figure 6.3 and we assume a parametrized
ensembling posterior qϕ(θ) = N (θ|ϕ, 1). In Figure 6.4, we plot the magnitude of the
contamination dependent term evaluated at the parameter ϕm∗

t (0) that minimizes the
robust m-free energy Jm

t (0, ϕ) for m = ∞ and different values of t. For all values of
t, the optimized predictive distribution concentrates around 0, where most of sampled
data points lie. However, as the value of the contaminated data point z becomes smaller
and moves towards regions where the ensemble assign low probability, the contamination
dependent term grows linearly for t = 1, while it flattens for t ∈ (0, 1). This showcases the
role of the robust m-free energy criterion as a tool to mitigate the influence of outlying
data points by setting t < 1.
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Figure 6.5: Ensemble predictive distribution obtained minimizing different free energy
criteria. The samples from the ID measure are represented as green dots, while data points
sampled from the OOD component are in red. The optimized predictive distributions
are displayed in shades of gray. In (a), we plot the predictive distribution associated
to (m, 1)-robust Bayesian learning obtained minimizing the m-free energy criterion Jm

of [3] with m = 20 by using only samples from the ID measure (i.e., there are no outliers).
In (b), we show the predictive distribution obtained by minimizing the same criterion
when using samples from the ID measure and OOD measure with a contamination ratio
ϵ = 0.1. In (c) and (d) we consider the same scenario as in (b), but we consider the
proposed (m, t)-robust Bayesian based on the robust m-free energy criterion Jm

t with
m = 20, when setting t = 0.9 and t = 0.8, respectively.
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6.6 Experiments

In this section, we first describe a simple regression task with an unimodal likelihood, and
then we present results for larger-scale classification and regression tasks. The main aim of
these experiments is to provide qualitative and quantitative insights into the performance
of (m, 1)-robust Bayesian learning of [3] and the proposed robust (m, t)-robust Bayesian
learning. Both examples are characterized by model misspecification and outliers.

6.6.1 Multimodal Regression

For the first experiment, we modify the regression task studied by [52] and [3] in order
to capture not only model misspecification but also the presence of outliers as in the
contamination model (6.31). To this end, we assume that the ID distribution ν(x),
with x = (a, b), is given by ν(a, b) = p(a)ν(b|a), where the covariate a is uniformly
distributed in the interval [−10.5, 10.5] – i.e., p(a) = 1/21 in this interval and p(a) = 0
otherwise – and by a response variable b that is conditionally distributed according to
the two-component mixture

ν(b|a) = N (b|αµa, 1), (6.61)

α ∼ Rademacher, (6.62)

µa = 7 sin

(
3a

4

)
+
a

2
. (6.63)

The OOD component ξ(x) = ξ(a, b) = p(a)ξ(b) also has a uniformly distributed covariate
a in the interval [−10.5, 10.5], but, unlike the ID measure, the response variable b is
independent of a, with a distribution concentrated around b = 0 as

ξ(b) = N (b|0, 0.1). (6.64)

The parametric model is given by p(x|θ) = p(a, b|θ) = p(a)N (b|fθ(a), 1), where fθ(a) is
the output of a three-layer fully connected Bayesian neural network with 50 neurons
and Exponential Linear Unit (ELU) activation functions [161] in the two hidden layers.
We consider a Gaussian prior p(θ) = N (0, I) over the neural network weights and use
a Monte Carlo estimator of the gradient based on the reparametrization trick [162] as
in [163].

Consider first only the effect of misspecification. The parametric model assumes
a unimodal likelihood N (b|fθ(a), 1) for the response variable, and is consequently mis-
specified with respect to the ID measure (6.61). As a result, the standard Bayesian
learning leads to a unimodal predictive distribution that approximates the mean value
of the response variable, while (m, 1)-robust Bayesian learning can closely reproduce
the data distribution [3,52]. This is shown in Figure 6.5a, which depicts the predictive
distribution obtained by minimizing the m-free energy criterion Jm with m = 20 when
using exclusively samples from the ID measure (green dots). In virtue of ensembling, the
resulting predictive distribution becomes multimodal, and it is seen to provide a good fit
to the data from the ID measure.
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Let us evaluate also the effect of outliers. To this end, in Figure 6.5b we consider
(m, 1)-robust Bayesian learning and minimize again the m-free energy criterion, but this
time using a data set contaminated with samples from the OOD component (red points)
and with a contamination ratio ϵ = 0.1. The predictive distribution is seen to cover not
only the ID samples but also the outlying data points. In Figure 6.5c and 6.5d, we finally
plot the predictive distributions obtained by (m, t)-robust Bayesian learning with m = 20,
when setting t = {0.9, 0.8}, respectively. The proposed approach is able to mitigate
the effect of the outlying component for t = 0.9, and, for t = 0.8, it almost completely
suppresses it. As a result, the proposed energy criterion produces predictive distributions
that match more closely the ID measure. This qualitative behavior is quantified in Table
6.1, where we report the total variation distance from the ID measure for the setting and
predictors considered in Figure 4.

6.6.2 MNIST and CIFAR-10 Classification Tasks

We now address the problem of training Bayesian neural network classifiers in the presence
of misspecification and outliers. We consider three different experimental setups entailing
distinct data sets and model architectures:

• Classification of MNIST digits [164] based on a fully connected neural network
comprising a single hidden layer with 25 neurons.

• Classification of Extended MNIST characters and digits [132] based on a fully
connected neural network with two hidden layers with 25 neurons each.

• Classification of CIFAR-10 [133] images using a convolutional neural network (CNN)
with two convolutional layers, the first with 8 filters of size 3× 3 and the second
with 4 filters of size 2× 2, followed by a hidden layer with 25 neurons each.

All hidden units use ELU activations [161] except the last, classifying, layer that imple-
ments the standard softmax function. Model misspecification is enforced by adopting
neural network architectures with small capacity. As in [5], outliers are obtained by ran-
domly modifying the labels for fraction ϵ of the data points in the training set. Additional
details for the experiments can be found in the supplementary material.

We measure the accuracy of the trained models, as well as their calibration performance.
Calibration refers to the capacity of a model to quantify uncertainty (see, e.g., [4]). We
specifically adopt the expected calibration error (ECE) [1], a standard metric that
compares model confidence to actual test accuracy (see supplementary material for the
exact definition). We train the classifiers using corrupted data sets with a contamination
ratio ϵ = 0.3, and then we evaluate their accuracy and ECE as a function of t ∈ [0, 1]
based on a clean (ϵ = 0) holdout data set. We compare the performance of (m, t)-robust
Bayesian learning based on the minimization of the robust m-free energy Jm

t , with
m = 10, to: (i) deep ensembles [4], also with 10 models in the ensembles; and (ii) the
robust Gibbs predictor of [5], which optimizes over a single predictor (not an ensemble)
by minimizing the free energy metric J 1

t . The inverse temperature parameter β is set to
0.1 in the (m, t)-robust Bayesian and the Gibbs predictor objectives.
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Figure 6.6: Test accuracy (top) and expected calibration error (ECE) (bottom) as a
function of t under the contamination ratio ϵ = 0.3 for: (i) deep ensembles [4]; (ii) robust
Gibbs predictor, which minimizes the free energy criterion J 1

t [5]; and (iii) (m, t)-robust
Bayesian learning, which minimizes the free energy criterion J 10

t .
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1 ,
and (on the right) the proposed robust objective J 10

0.7 based on the logt-loss with t = 0.7.

In Figure 6.6 we report the performance metrics attained by the trained models in
the three different setups listed above. From the top panels we conclude that (m, t)-
robust Bayesian learning is able to mitigate model misspecification by improving the
final accuracy as compared to the robust Gibbs predictor and the deep ensemble models.
Furthermore, the use of the robust loss for a properly chosen value of t leads to a
reduction of the detrimental effect of outliers and to an increase in the model accuracy
performance as compared to the standard log-loss (t = 1). In terms of calibration
performance, the lower panels demonstrate the capacity of robust ensemble predictors
with t < 1 to drastically reduce the ECE as compared to deep ensembles. In this regard,
it is also observed that the accuracy and ECE performance levels depend on the choice
of parameter t. In practice, the selection of t may be addressed using validation or
meta-learning methods in a manner akin to [165]. Additional results on calibration in
the form of reliability diagrams [166] can be found in supplementary material.

As shown shown theoretically in Section 6.5.3, the effect of the logt-loss is to reduce
the influence of outliers during training for t < 1. We empirically investigate the effect
of the robust loss in Figure 6.7, in which we compare the distribution of the negative
log-likelihood for ID and OOD training data samples. We focus on the CIFAR-10 data
set, and we compare the histogram of the negative log-likelihood under a CNN model
trained based on the m-free energy Jm

1 , with m = 10 and standard logarithmic loss, and
a CNN minimizing the proposed robust m-free energy Jm

t , with m = 10 and t = 0.7.
The (m, 1)-robust Bayesian based on the standard log-loss tries to fit both ID and OOD
samples and, as a result, the two components have similar likelihoods. In contrast,
(m, t)-robust Bayesian learning is able to downweight the influence of outliers and to
better fit the ID component.
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Figure 6.8: Negative log-likelihood computed on a uncorrupted data set for: (i) deep
ensembles [4]; (ii) robust Gibbs predictor, which minimizes J 1

t [5]; and (iii) the (m, t)-
robust Bayesian learning, which minimizes J 10

t . The models are trained on ϵ-contaminated
data set for ϵ ∈ {0, 0.1, 0.2, 0.3}

6.6.3 California Housing Regression Task

Finally, we consider the problem of training a robust regressor based on training data
sets corrupted by outliers and in the presence of model misspecification. We consider
the California housing dataset, which is characterized by response variables y normalized
in the [0, 1] interval, and we fix a unimodal likelihood p(y|x, θ) = N (y|fθ(x), 0.1), where
fθ(x) is the output of a three-layer neural network with hidden layers comprising 10
units with ELU activation functions [161]. The model class is misspecified since the
response variable is bounded and hence not Gaussian. Outliers are modeled by replacing
the label of fraction ϵ of the training sample with random labels picked uniformly at
random within the [0, 1] interval.

We consider training based on data sets with different contamination ratios ϵ ∈
{0, 0.1, 0.2, 0.3}, and measure the trained model ability to approximate the ID data by
computing the negative log-likelihood on a clean holdout data set (ϵ = 0). As in the
previous subsection, we compare models trained using (m, t)-robust Bayesian learning,
with m = 5, to: (i) deep ensembles [4], also with 5 models in the ensembles; and (ii)
the robust Gibbs predictor of [5] minimizing the free energy metric J 1

t . The inverse
temperature parameter β is set to 0.1 in the (m, t)-robust Bayesian and the Gibbs
predictor objectives.

In Figure 6.8 we report the negative log-likelihood of an uncontaminated data set for
models trained according to the different learning criteria. The leftmost panel (ϵ = 0)
corresponds to training based on an uncontaminated data set. For this case, the best
performance is obtained for t = 1 – an expected result due to the absence of outliers – and
the proposed criterion outperforms both the Gibbs predictor and deep ensembles, as it is
capable of counteracting misspecification by the means of ensembling. In the remaining
panels, training is performed based on ϵ-contaminated data sets, with the contamination
ϵ increasing from left to right. In these cases, learning criteria based on robust losses
are able to retain similar performance to the uncontaminated case for suitable chosen
values of t. Furthermore, the optimal value of t is observed to increase with the fraction
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of outliers in the training data set.

6.7 Conclusion

In this work, we addressed the problem of training ensemble models under model
misspecification and in the presence of outliers. We proposed the (m, t)-robust Bayesian
learning framework that leverages generalized logarithm score functions in combination
with multi-sample bounds, with the goal of deriving posteriors that are able to take
advantage of ensembling, while at the same time being robust with respect to outliers.
The proposed learning framework is shown to lead to predictive distributions characterized
by better generalization capabilities and calibration performance in scenarios in which
the standard Bayesian posterior fails.

The proposed robust Bayesian learning framework can find application to learning
scenarios that can benefit from uncertainty quantification in their decision making
processes and are characterized by the presence of outliers and model misspecification.
Examples include inference in wireless communication systems [167], medical imaging [168]
and text sentiment analysis [169,170].

We conclude by suggesting a number of directions for future research. The (m, t)-
robust Bayesian learning has been shown to lead to the largest performance gains for
properly chosen values of t. The optimal values of t depend on the particular task at hand,
and deriving rules to automate the tuning of these parameters represents a practical
and important research question. Furthermore, (m, t)-robust Bayesian learning can be
extended to reinforcement learning, as well as to meta-learning, for which Bayesian
methods have recently been investigated (see, e.g., [171,172] and references therein).
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Chapter 7

Robust Bayesian Learning
Applications to Wireless
Communication

This chapter takes a critical look at the application of conventional machine learning
methods to wireless communication problems through the lens of reliability and robustness.
Deep learning techniques adopt a frequentist framework, and are known to provide poorly
calibrated decisions that do not reproduce the true uncertainty caused by limitations in
the size of the training data. Bayesian learning, while in principle capable of addressing
this shortcoming, is in practice impaired by model misspecification and by the presence
of outliers. Both problems are pervasive in wireless communication settings, in which the
capacity of machine learning models is subject to resource constraints and training data
is affected by noise and interference. In this context, we explore the application of the
framework of robust Bayesian learning developed in Chapter 6. We showcase the merits
of robust Bayesian learning on several important wireless communication problems in
terms of accuracy, calibration, and robustness to outliers and misspecification.

7.1 Introduction

Artificial intelligence (AI) is widely viewed as a key enabler of 6G wireless systems.
Research on this topic has mostly focused on identifying use cases and on mapping
techniques from the vast literature on machine learning to given problems [173–175].
At a more fundamental level, there have been efforts to integrate well-established com-
munication modules, e.g., for channel encoding and decoding, with data-driven designs,
notably via tools such as model unrolling [176,177]. All these efforts have largely relied
on deep learning libraries and tools. The present paper takes a critical look at the use
of this conventional methodology through the lens of reliability and robustness . To
this end, we explore the potential benefits of the alternative design framework of robust
Bayesian learning by focusing on several key wireless communication applications, namely
modulation classification, indoor and outdoor localization, and channel modeling and
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simulation.

7.1.1 Frequentist vs. Bayesian Learning

In frequentist learning, the output of the training process is a single model – typically,
a single vector of weights for a neural network – obtained by minimizing the training
loss. This approach is justified by the use of the training loss as an estimate of the
population loss, whose computation would require averaging over the true, unknown
distribution of the data. This estimate is only accurate in the presence of sufficiently
large data sets. While abundant data is common in the benchmark tasks studied in the
computers science literature, the reality of many engineering applications is that data
are often scarce. In wireless communications, the problem is particularly pronounced at
the physical layer, in which fading dynamics imply short stationary intervals for data
collection and training [178–181].

The practical upshot of the reliance on frequentist learning is that, in the presence
of limited data, decisions made by AI models tend to be poorly calibrated, providing
confidence levels that do not match their true accuracy [1,152]. As a result, an AI model
may output a decision with some level of confidence, say 95%, while the accuracy of the
decision is significantly lower. This is an issue problem in many engineering applications,
including emerging communication networks (e.g., 5G and beyond), in which a more or
less confident decision should be treated differently by the end user [182].

The framework of Bayesian learning addresses the outlined shortcomings of frequentist
learning [183,184]. At its core, Bayesian learning optimizes over a distribution over the
model parameter space, which enables it to quantify uncertainty arising from limited
data. In fact, if several models fit the data almost equally well, Bayesian learning
does not merely select one of the models, disregarding uncertainty; rather it assigns
similar distribution values to all such models [185]. This way, decisions produced by AI
modules trained via Bayesian learning can account for the “opinions” of multiple models
by averaging their outputs using the optimized distribution [54,186]. Bayesian learning
has recently been applied in [152] by focusing on the problem of demodulation over fading
channels; as well as in [187] for detection over multiple-antenna channels.

7.1.2 Robust Bayesian Learning

Like frequentist learning, Bayesian learning assumes that the distribution underlying
training data generation is the same as that producing test data. Furthermore, Bayesian
learning implicitly assumes that the posited model – namely likelihood and prior distri-
bution – is sufficiently close to the true, unknown data-generating distribution to justify
the use of the posterior distribution as the optimized distribution in the model parameter
space. As a result, the benefit of Bayesian learning is degraded when data is affected by
outliers and/or when the model is misspecified.

In Chapter 6 we have addressed both of these limitations, introducing a generalized
framework that we will refer to as robust Bayesian learning. Robust Bayesian learning
aims at providing well-calibrated, and hence reliable, decisions even in the presence of
model misspecification and of discrepancies between training and testing conditions.
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Model misspecification has been addressed in [3,156]. These papers start from two
observations. The first is that Bayesian learning can be formulated as the minimization of a
free energy metric, which involves the average of the training loss, as well as an information-
theoretic regularizing term dependent on a prior distribution. The conventional free
energy metric can be formally derived as an upper bound on the population loss within
the theoretical framework of PAC Bayes theory [188–190]. The second observation is that,
in the presence of model misspecification, model ensembling can be useful in combining
the decisions of different models that may be specialized to distinct parts of the problem
space. Using these two observations, references [3, 156] introduced alternative free energy
criteria that are based on a tighter bound of the population loss for ensemble predictors.

To address the problem of outliers (see e.g. [139]), different free energy criteria have
been introduced, which are less sensitive to the presence of outliers. These metrics are
based on divergences, such as β-divergences [142,143] and γ-divergence [144,145], which
generalize the Kullback-Liebler divergence underlying the standard free energy metric.
Finally, a unified framework has been introduced in [167] that generalizes the free energy
metrics introduced in [3, 156]. The approach is robust to misspecification, while also
addressing the presence of outliers.

7.1.3 Main Contributions

In the following, we explore the application of robust Bayesian learning to wireless
communication systems. We detail applications of robust Bayesian learning to communi-
cation systems, focusing on automated modulation classification (AMC), received signal
strength indicator (RSSI)-based localization, as well as channel modeling and simulation.
These applications have been selected in order to highlight the importance of considering
uncertainty quantification, in addition to accuracy, while also emphasizing the problems
of model misspecification and outliers in wireless communications [55–57].

Our specific contributions are as follows.

• As a first application, we focus on the AMC problem for intelligent spectrum
sensing [191]. In this setting, the necessity of deploying lightweight models that
satisfy the strict computational requirements of network edge devices can give rise
to model misspecification. At the same time, the training data sets often contain
non-informative outliers due to interfering transmissions from other devices. We
demonstrate that robust Bayesian learning yields classifiers with good calibration
performance despite model misspecification and the presence of outliers.

• As a second application, we study node localization based on crowdsourced RSSI
data sets [192]. Such data sets typically contain inaccurately reported location
measurements due to imprecise or malicious devices. Furthermore, owing to the
complex relation between RSSI measurements and device locations, learning of-
ten happens using misspecified model classes. In this context, we demonstrate
that robust Bayesian is able to properly estimate residual uncertainty about the
transmitters’ locations in spite of the presence of outliers and misspecified model
classes.
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• Finally, we apply robust Bayesian learning to the problem of channel modeling
and simulation. We show via experiments that robust Bayesian learning produces
accurate and well-calibrated generative models even in the presence of outlying
data points.

7.2 Robust and Calibrated Automatic Modulation Classification

As a first application of robust Bayesian learning we consider the AMC problem. This
is the task of classifying received baseband signals in terms of the modulation scheme
underlying their generation. The relation between the received signal and the chosen
modulation scheme is often mediated by complex propagation phenomena, as well as
hardware non-idealities at both the receiver and the transmitter side. As a result, model-
based AMC methods often turn out to be inaccurate because of the overly simplistic
nature of the assumed models [193]. In contrast, machine learning based AMC has been
shown to be extremely effective in correctly classifying received signals based on signal
features autonomously extracted from data [6]. We refer to [194] and references therein
for a comprehensive overview.

All prior works on learning-based AMC, reviewed in [194], have adopted frequentist
learning. In this section, we consider the practical setting in which AMC must be
implemented on resource-constrained devices, entailing the use of small, and hence
mismatched, models; and the training data sets are characterized by the presence of
outliers due to interference.

7.2.1 Problem Definition and Performance Metrics

The AMC problem can be framed as an instance of supervised classification, with the
training data set D comprising pairs (x, y) of discrete-time received baseband signal x and
modulation label y, with Y being the set of possible modulation schemes. Each training
data point (x, y) ∈ D is obtained by transmitting a signal with a known modulation
y ∈ Y over the wireless channel, and then recording the received discrete-time vector x at
the receiver end. The outlined procedure determines the unknown sampling distribution
νs(x, y).

We evaluate the performance of AMC on a testing data set Dte in terms of accuracy
and calibration. To describe calibration performance metrics, let us consider a predictive
distribution p(y|x), which may be the frequentist distribution p(y|x, θfreq), or the ensemble
distribution (6.20) in the cases of Bayesian learning and robust Bayesian learning. A
hard prediction ŷ is obtained as the maximum-probability solution

ŷ = argmax
y∈Y

p(y|x). (7.1)

The corresponding confidence score assigned by the predictor p(y|x) is the probability
p(ŷ|x) ∈ [0, 1]. The calibration of a classifier measures the degree to which the confidence
score p(ŷ|x) ∈ [0, 1] reflects the true probability of correct classification P [ŷ = y|x]
conditioned on the input x.

94



Chapter 7. Robust Bayesian Learning Applications to Wireless Communication

We adopt the standard reliability diagrams [166] and the expected calibration error
as diagnostic tools for the calibration performance [1]. Both metrics require binning
the output of the classifier confidence score p(ŷ|x) into M intervals of equal size, and
then grouping the testing data points (x, y) ∈ Dte based on the index of the bin for the
confidence score p(ŷ|x). For each bin Bm, the within-bin accuracy is defined as

Acc(Bm) =
1

|Bm|
∑

(x,y)∈Bm

1{ŷ = y}, (7.2)

which measures the fraction of test samples within the bin that are correctly classified;
and the within-bin confidence as

Conf(Bm) =
1

|Bm|
∑

(x,y)∈Bm

p(ŷ|x), (7.3)

which is the average confidence level for the test samples within the bin.
The reliability diagram plots within-bin accuracy and within-bin confidence as a

function of the bin index m. As a result, a reliability diagram visualizes the relation
between confidence and accuracy of a predictor, establishing whether a classifier is
over-confident (Conf(Bm) > Acc(Bm)), under-confident (Conf(Bm) < Acc(Bm)) or well-
calibrated (Conf(Bm) ≈ Acc(Bm)).

The expected calibration error (ECE) summarizes the calibration performance of a
classifier as a single number obtained as the weighted sum of the absolute difference
between within-bin accuracy and within-bin confidence, namely

ECE =

M∑
m=1

|Bm|∑M
m=1 |Bm|

|Conf(Bm)−Acc(Bm)| . (7.4)

By this definition, one can generally conclude that a lower ECE indicates a better
calibrated predictor.

7.2.2 Data Set

We adopt the DeepSIG: RadioML 2016.10A data set [6]. This is a synthetic data set that
contains 220K vectors of I/Q samples of signals comprising 8 digital modulation schemes
(BPSK, QPSK, 8PSK, 16QAM, 64QAM, BFSK, CPFSK) and 3 analog modulations
(WB-FM, AM-SSB, AM-DSB). We focus on the problem of classifying the 8 digital
modulation schemes using received signals recorded at different SNR levels ranging from
0 dB to 18 dB. Furthermore, we model the presence of interference during training by
generating an ϵ-contaminated version of the original data set. In it, with probability
ϵ ∈ [0, 1), the original training sample x is summed to an interfering signal x′ picked
uniformly at random from the data set. Note that the interfering signal can be possibly
generated from a different modulation scheme. Using Definition 2, the samples affected
by interference represent outliers, since no interference is assumed during testing. We
consider 30% of the available samples for training; 20% of the samples for validation; and
the remaining 50% for testing. The use of a small training data set is intentional, as we
wish to focus on a regime characterized by data scarcity.
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Figure 7.1: Average test accuracy and ECE for AMC over the DeepSIG: RadioML
2016.10A data set [6] for frequentist and (m, t)-robust Bayesian learning as a function of
the parameter t. The test set is free from interference, while the training set is subject to
interference (ϵ = 0.5).

7.2.3 Implementation

We implement a lightweight convolutional neural network (CNN) architecture comprising
of two convolutional layers followed by two linear layers with 30 neurons each. The first
convolutional layer has 16 filters of size 2× 3, and the second layer has 4 filters of size
1× 2. We adopt the Exponential Linear Unit (ELU) activation with parameter α = 1.
The lightweight nature of the architecture is motivated by the strict computational and
memory requirements at network edge devices. As a result, the CNN model is generally
misspecified, in the sense that, following Definition 1, the complex relation between
received signal and chosen modulation scheme cannot be exactly represented using the
model.

In the training data set, half of the samples are affected by interference, i.e., ϵ = 0.5.
For Bayesian learning, we adopt a Gaussian variational distribution q(θ) = N (θ|µ,Σ) over
the CNN model parameter vector θ. Accordingly, the mean µ and diagonal covariance
matrix Σ are optimized, while we fix the prior p(θ) = N (θ|0, I). Optimization for both
frequentist and Bayesian methods is carried out via Adam with a learning rate η = 0.001,
and the reparametrization trick is implemented for Bayesian learning [162]. In our
experiments we set β = 0.01. The number of samples used to evaluate the ensemble
prediction (6.20) is m = 10. Note that this may differ from the value of m used to define
the training criterion.

7.2.4 Results

In Figure 7.1 we report the average test accuracy and ECE for frequentist and (m, t)-
robust Bayesian with different values of m as a function of t. The main observation is
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Figure 7.2: Reliability diagrams for frequentist (left) and (m, t)-robust Bayesian learning
for m = 4 and t = 0.7 (right) for AMC over the DeepSIG: RadioML 2016.10A data
set [6].

that, with suitably chosen parameters (m, t), robust Bayesian learning can outperform
standard frequentist learning both in terms of accuracy and calibration for t < 1. The
smallest ECE is obtained by robust Bayesian learning for t = 0.7, and it is five times
smaller compared to the one obtained using conventional Bayesian learning (t = 1).
Overall, (m, t)-robust Bayesian paradigm is able to improve the final accuracy by 5% and
to reduce the ECE by five times via suitable choice of parameters (m, t).

To further elaborate on the calibration performance, in Figure 7.2 we compare the
reliability diagrams obtained via frequentist and (m, t)-robust Bayesian learning for
m = 4 and t = 0.7. While frequentist learning provides under-confident predictions,
robust Bayesian learning offers well-calibrated predictions that consistently offer a small
discrepancy between accuracy and confidence levels.

7.3 Robust and Calibrated RSSI-Based Localization

Table 7.1: Test negative log-likelihood for RSSI localization (7.6) with t = 1 and no
outliers (ϵ = 0). The case m = 1 corresponds to conventional Bayesian learning.

m = 1 m = 2 m = 10

SigfoxRural 1.70± 1.03 −0.43± 0.61 −1.59± 0.36
UTSIndoor 4.33± 2.32 2.25± 1.69 2.17± 1.76
UJIIndoor 4.86± 1.02 2.74± 0.46 1.44± 0.33
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(a) Bayesian Learning (b) Robust Bayesian Learning

Figure 7.3: Predictive distribution p(y|x) as a function of the estimated position of the
transmitter y, where x is the RSSI vector associated to the true location shown as a
green cross. The black dots correspond to the locations recorded in the SigfoxRural data
set. The left panel shows the predictive distribution for Bayesian learning, while the right
panel depicts the predictive distribution for (m, t)-robust Bayesian learning with m = 10
and t = 1. No outliers are considered in the training set, i.e., ϵ = 0.

In this section, we turn to the problem of localization. In outdoor environments,
accurate localization information of a wireless device can be obtained leveraging the
global navigation satellite system (GNSS). However, the performance of satellite-based
positioning is severely degraded in indoor environments [195], and its power requirements
are not compatible with IoT application characterized by ultra-low power consumption
[196]. For this reason, alternative techniques have been investigated that rely on so-called
channel fingerprints, i.e., feature extracted from the received wireless signals [197].

Among such methods, the use of received signal strength indicators (RSSI) measured
at multiple wireless access points has been shown to provide an accessible, yet informative,
vector of features. Owing to the complexity of defining explicit models relating the device
location y ∈ Y with the RSSI-measurements vector x ∈ X , data-driven RSSI-based
localization techniques have been recently explored [198,199]. The outlined prior work
in this area has focused on machine learning models trained using the conventional
frequentist approach.

In this section, we study a setting in which the training data set is collected using noisy,
e.g., crowd-sourced, fingerprints. As such, the training set contains outliers. Furthermore,
we aim at developing strategies, based on robust Bayesian learning, which can offer
accurate localization, while also properly quantifying residual uncertainty.
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7.3.1 Problem Definition and Performance Metrics

The RSSI-based localization problem is a supervised regression task. In it, a training
sample (x, y) is obtained by measuring the RSSI fingerprint y corresponding to the
transmission of a reference signal at a device located at a known position x. The general
goal is to train a machine learning model p(y|x) to predict the location y associated to a
RSSI vector x so as to optimize accuracy and uncertainty quantification.

Given a test data set Dte and assuming that the predictive location is the mean of
the predictive distribution, i.e. ȳ = Ep(y|x)[y], we adopt the mean squared error (MSE)
metric

MSE(Dte, p) =
1

|Dte|
∑

(x,y)∈Dte

∥y − ȳ∥2 (7.5)

as a measure of accuracy. Furthermore, in order to estimate the residual uncertainty
about y predicted by the model, we adopt the negative test log-likelihood [200]

NLL(Dte, p) = −
1

|Dte|
∑

(x,y)∈Dte

log(p(y|x)). (7.6)

Note that the negative log-likelihood is large if the model assigns a small probability
density p(y|x) to the correct output y.

7.3.2 Data Sets

We experiment on different publicly available RSSI fingerprint data sets, encompassing
both outdoor and indoor conditions:

• The SigfoxRural data set [196] comprises 25, 638 Sigfox messages measured at
137 base stations and emitted from vehicles roaming around a large rural area
(1068 km2) between Antwerp and Gent.

• The UTSIndoorLoc data set [201] contains 9494 WiFi fingerprints sampled from 589
access points inside the FEIT Building at the University of Technology of Sydney,
covering an area of 44, 000 m2.

• The UJIIndoorLoc data set [202] contains 21, 049 WiFi fingerprints measured at
520 access points and collected from 3 building of the Jaume I University, spanning
a total area of 108, 703 m2.

To model the presence of outliers, we modify the training data sets described above,
producing ϵ-contaminated data sets D as per Definition 2. This is done by replacing the
target variable y for a fraction ϵ of the data points (x, y) ∈ D with a uniformly random
location y within the deployment area.

7.3.3 Implementation

We consider a model class specified by a Gaussian likelihood p(y|x, θ) = N (y|fθ(x), 0.01),
where the mean fθ(x) is the output of a neural network with two hidden layers, each with

99



Chapter 7. Robust Bayesian Learning Applications to Wireless Communication

50 neurons with ELU activations. Despite the expressive power of the neural network
model, each model p(y|x, θ) in this class can only account for unimodal, Gaussian dis-
tributed, residual uncertainties around the estimated position fθ(x). Therefore, whenever
the residual uncertainty about the receiver location is multimodal, the model class is
misspecified by Definition 1. As we will see, given the complex relation between RSSI
vector and location, particularly when the number of RSSI measurements is sufficiently
small, residual uncertainty tends to be multimodal, making this an important problem.
Training for frequentist and Bayesian learning is carried out as described in the previous
section, and ensembling uses m = 50 samples during testing time.

7.3.4 Results

We start by considering the case in which there are no outliers, i.e., ϵ = 0, thus focusing
solely on the problem of misspecification. In Figure 7.3, we plot the predictive distribution
obtained via Bayesian learning (m = 1, left panel) and robust Bayesian learning with
m = 10 and t = 1 (right panel) for a testing sample x corresponding to the position shown
as a green cross. The black dots correspond to the positions covered by the training set in
the SigfoxRural data set. The resulting predictive distribution for conventional Bayesian
learning provides a poor estimation of the true device position, and is unable to properly
quantify uncertainty. In contrast, robust Bayesian learning is able to counteract model
misspecification, producing a more informative predictive distribution. The distribution
correctly suggests that the receiver can be in two possible areas, one of which indeed
containing the true node location.

To further elaborate on the capacity of robust Bayesian learning for uncertainty
quantification, in Table 7.1 we report the negative log-likelihood (7.6) attained by
Bayesian learning (m = 1), as well as by robust Bayesian learning with t = 1 and m = 2
or m = 10 on the three data sets. Increasing the value of m is seen to yield lower negative
log-likelihood scores, confirming that robust Bayesian learning provides a more precise
quantification of uncertainty.

We now introduce outliers by carrying out training on contaminated data sets with
different levels of contamination ϵ. Recall that the trained models are tested on a clean
(ϵ = 0) test data set Dte. In Figure 7.4, we plot the test MSE (7.5) for frequentist and
the (m, t)-robust Bayesian learning with m = 10 and t ∈ {1, 0.96} as a function of ϵ. The
MSE of frequentist learning and (10, 1)-robust Bayesian learning are seen to degrade
significantly for increasing values of ϵ. The performance loss is particularly severe for
(m, 1)-robust Bayesian learning. This is due to the mass-covering behavior entailed by the
use of m-sample training loss, which in this case becomes detrimental due to the presence
of outliers. In contrast, robust Bayesian learning with t = 0.96 is able to counteract the
effect of outliers, retaining good predictive performance even in case of largely corrupted
data sets.
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Figure 7.4: Test mean squared error (7.5) for frequentist and the (m, t)-robust Bayesian
learning with m = 10 and t = {1, 0.96} as a function of the corruption level ϵ for
RSSI-based localization. As ϵ increases, the training data sets are increasingly affected
by outliers.

7.4 Robust and Calibrated Channel Simulation

The design of communication systems has traditionally relied on analytical channel models
obtained via measurements campaigns. Due to the complexity of multipath propagation
scenarios, in recent years generative machine learning models have introduced as an
alternative to analytical models. Generative models can be trained to produce samples
that mimic hard-to-model channel conditions. Applications of deep generative models in
the form of variational autoencoders (VAEs) [162] and generative adversarial networks
(GANs) [203] were specifically reported in the context of end-to-end simulation of wireless
systems in [204, 205] and for channel modeling in [206–209] for earlier applications to
satellite communications.

The outlined prior work has focused on frequentist methods and has assumed the
availability of clean data sets that are free from outliers. In this section, we explore the
use of robust Bayesian learning to account for both outliers and model misspecification.

7.4.1 Problem Definition and Performance Metrics

Generative models are trained in an unsupervised manner by assuming the availability of
a training set D of examples x corresponding to channel impulse responses. We focus on
VAEs, i.e., on generative models with latent variables. VAEs comprise a parameterized
encoder q(h|x, θe), mapping an input x ∈ X into a lower-dimensional latent vector
h ∈ H; as well as a parameterized decoder p(x|h, θd) that reconstructs the input sample
x ∈ X from the latent representation h ∈ H. Note that the vector of model parameters
encompasses both encoding and decoding parameters as θ = (θe, θd).

Let us define as p(h) a fixed prior distribution on the latent variables h. Once training
is complete, samples x of channel responses can be generated from the model as follows.
For frequentist learning, given the trained model θfreq, one generates a sample h ∼ p(h)
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for the latent vector, and then produces a channel sample x ∼ p(x|h, θfreq). For Bayesian
learning, given the optimized distribution q(θ), we produce a random sample θ ∼ q(θ)
and then generate channel sample x ∼ p(x|h, θd). The role of the encoder q(h|x, θe) will
be made clear in Section 7.4.3 when discussing the training method.

According to the discussion in the previous paragraph, the channel distribution
implemented by the model is given by

p(x) = Ep(h)[p(x|h, θfreqd )] (7.7)

for frequentist learning; and by

p(x) = Ep(h)q(θd)[p(x|h, θd)] (7.8)

for Bayesian learning. Note that the average is taken only over the latent vector h ∼ p(h)
for frequentist learning; while in Bayesian learning the expectation is also taken over the
optimized distribution q(θd) for the decoder’s parameters θd.

To evaluate the performance of the generative model, we consider two different metrics
accounting for accuracy and uncertainty quantification. Accuracy is measured by the
“distance” between the target distribution ν(x) and the distribution p(x) produced by
the model. We measure the “distance” between ν(x) and p(x) via the maximum-mean
discrepancy (MMD) [210], which is defined as

MMD(p, ν) =Ex,x′∼p(x)[k(x, x
′)] + Ex,x′∼ν(x)[k(x, x

′)]

− 2Ex∼ν(x),x′∼p(x)[k(x, x
′)] (7.9)

where k(x, x′) is a positive definite kernel function. In the experiments reported below,
we have approximated the MMD based on empirical averages. These are evaluated
using samples from distribution p(x), which are generated as explained above, as well
as samples from the sampling distribution ν(x), i.e., examples from the training set D.
Moreover, we use the Gaussian kernel k(x, x′) = N (∥x− x′∥|0, 1).

To evaluate the performance in terms of uncertainty quantification, we focus on the
problem of out-of-distribution (OOD) detection (see, e.g., [211]). A well-calibrated model
p(x), when fed with an input x, should return a small value if x is an OOD sample,
that is, if it has a low target distribution ν(x). To obtain a quantitative measure, we
consider the task of distinguishing between samples drawn from the target distribution
ν(x) and from the OOD distribution ξ(x). Specifically, we adopt the model probability
distribution p(x) as the test statistic, classifying x as in-distribution (ID) if p(x) is larger
than some threshold γ and as OOD otherwise. As in ( [212]), we take the area under the
receiver operating characteristic curve (AUROC) score for this test as a measure of how
distinguishable the two samples are. The AUROC metric is obtained by integrating the
ROC traced by probability of detection versus probability of false alarm as the threshold
γ is varied. A larger AUROC indicates that the model provides a better quantification of
uncertainty, as reflected in its capacity to detect OOD samples against ID samples.
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Figure 7.5: The top row shows a sample of the magnitude for the TDL-A channel response
given a delay spread τ = 100ns in panel (a), while an outlier sample corresponding to
the larger delay spread τ = 300 ns is depicted in panel (b). The bottom row reports a
sample from the trained model for frequentist learning in panel (c) and for (4, 0.7)-robust
Bayesian learning in panel (d).
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7.4.2 Data Set

We consider the simulation of the magnitudes of a frequency-selective channel response
x ∈ R128 that mimics the target distribution ν(x) defined by the 3GPP TDL-A channel
model distribution [213] with a delay spread of τ = 100 ns. Outliers are accounted for by
constructing an ϵ-contaminated training set D that contains a fraction ϵ = 0.2 of samples
distributed according to the same channel model but with a larger delay spread τ = 300
ns (see the top row in Fig. 7.5).

7.4.3 Implementation

For models with latent variables, the direct adoption of the log-loss generally yields
intractable optimization problems (see, e.g., [186]). To address this problem, training of
VAEs replaces the training loss (6.8) with the variational lower bound

L̂V AE(θ,D) =
∑
x∈D

Ep(h|x,θe)[log p(x|h, θd)] = −
∑
x∈D

KL(p(h|x, θd)||p(h)), (7.10)

which involves the use of the encoder model p(h|x, θe). Accordingly, the frequentist
training objective is modified as

minimize
θ

L̂V AE(θ,D), (7.11)

while Bayesian learning addresses the problem

minimize
q(θ)

Eq(θ)

[
L̂V AE(θe, θd,D)

]
+

1

β
KL(q(θ)||p(θ)). (7.12)

The robust free energy metrics are obtained in a similar manner, yielding the following
formulation for (m, t)-robust Bayesian learning

L̂V AE
t (θ1, . . . , θm,D)=

∑
x∈D

Ep(h|x,θe) logt

(
m∑
i=1

p(x|h, θd,i)
m

)
−
∑
x∈D

KL(p(h|x, θd)||p(h)).

(7.13)

The prior latent variable distribution is p(h) = N (h|0, I5). We implement both the
encoder and the decoder by using fully connected neural networks with a single hidden
layer with 10 units. Specifically, the encoder distribution p(h|x, θe) = N (h|µθe(x),Σθe(x))
has mean vector µθe(x) ∈ R5 and diagonal covariance matrix Σθe(x) ∈ R5×5 obtained from
the output of the neural network. The decoder p(x|h, θd) = N (x̂|µθd(h), σI128) has mean
vector µθd(h) obtained as the output of the neural network with a fixed variance value
σ = 0.1. For Bayesian learning, we optimize distribution q(θd) as in the previous sections,
while we consider a distribution q(θe) concentrated at a single vector θe. Ensembling
during testing time is carried out with m = 50 samples.
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Figure 7.6: Maximum mean discrepancy (MMD) and area under receiving operating
curve (AUROC) for frequentist learning and (4, t)-robust Bayesian learning. Both models
are trained on a corrupted data set with (ϵ = 0.2).

7.4.4 Results

To start, in Figure 7.5 we illustrate a sample of the magnitude for the TDL-A channel
response given a delay spread τ = 100 ns in panel (a), while an outlier sample corre-
sponding to the larger delay spread τ = 300 ns is depicted in panel (b). The bottom row
of Figure 7.5 reports a sample from the trained model for frequentist learning in panel (c)
and for (4, 0.7)-robust Bayesian learning in panel (d). Visual inspection of the last two
panels confirms that (m, t)-robust Bayesian learning can mitigate the effect of outliers as
it reduces the spurious multipath components associated with larger delays.

For a numerical comparison, Figure 7.6 compares frequentist and (4, t)-robust Bayesian
learning in terms of both accuracy – as measured by the MMD – and uncertainty
quantification – as evaluated via the AUROC. For t < 0.85 robust Bayesian learning
is confirmed to have the capacity to mitigate the effect of the outlying component,
almost halving the MMD obtained by frequentist learning. Furthermore, robust Bayesian
learning has a superior uncertainty quantification performance, with gain increasing for
decreasing values of t.

7.5 Conclusion

This chapter has focused on the problem of ensuring that AI models trained for wireless
communications satisfy reliability and robustness requirements. We have specifically
addressed two important problems: model misspecification, arising from limitations on
the available knowledge about the problem and on the complexity of the AI models
that can be implemented on network devices; and outliers, which cause a mismatch
between training and testing conditions. We have argued that standard frequentist
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learning, as well as Bayesian learning, are not designed to address these requirements,
and we have explored the application of robust Bayesian learning to achieve robustness
to model misspecification and to the presence of outliers in the training data set. Robust
Bayesian learning has been shown to consistently provide better accuracy and uncertainty
estimation capabilities in a range of important wireless communication problems. These
results motivate a range of extension of robust Bayesian learning and applications. For
instance, the integration of robust Bayesian learning to the meta-learning framework,
in order to enable robust and sample effective learning, or the application of robust
Bayesian learning to higher layers of the protocol stack as a tool to empower semantic
communication.
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Conclusion

The content of this thesis illustrates how vast and heterogeneous the range of problems
arising from the application of machine learning in wireless communication networks
is. For some of these challenges, we provided solutions that we hope will contribute to
the adoption of reliable machine learning solutions in 6G networks. In the following, we
summarize the contributions and potential directions for future work.

In Part I of this manuscript, we focused on decentralized training of machine learning
models over device-to-device 6G networks. In Chapter 2, we proved that wireless
networks, even when characterized by straggling nodes and unreliable communication
links, are a suitable infrastructure for the training of machine learning models in a
decentralized manner. In particular, we showed how asynchronous updates can greatly
reduce the convergence time of optimization procedures without hampering the quality
of the final model. As shown by our analysis, the training procedure converges despite
the dissemination of outdated updates and sparse communication between workers.
This achievability result provides us with the flexibility of designing energy-efficiency
optimization procedures in which devices communicate only in opportune slots; for
example, when the wireless channel is in favourable conditions or when the model updates
are relevant. Studying the trade-off between energy-efficiency performance indicators
and the convergence properties of decentralized optimization represents an interesting
research direction. In Chapter 3, we have investigated the potential role of UAVs in
decentralized learning procedures. While the literature on UAV-aided communication
is vast, the applications of UAVs in the context of edge learning are mostly unexplored.
Our results are presented for a single drone and its optimized trajectory is obtained
accordingly. Analyses of multi-drone scenarios and the derivations of a jointly optimized
trajectory are natural extensions of the results presented in this chapter.

Part II has been devoted to addressing one of the fundamental limitations of collab-
orative learning procedures: data heterogeneity. We provided two possible algorithms
to mitigate the detrimental effects due to the aggregation of heterogeneous data. In
Chapter 4 we formulated the learning problem as a distributionally robust optimization
problem and provided a communication-efficient algorithm to solve it. The outcome of
this procedure is a single machine learning model that is fair, i.e. it has satisfactory
performance on all devices. The concept of fairness is fundamental in wireless commu-
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nication protocols, therefore we expect that the tools derived in this chapter can find
application in many networking problems. In Chapter 5 we tackled data heterogeneity
by proposing a training procedure that outputs personalized models to serve groups of
users with different needs. The main underpinning of the algorithm is the estimation of
the similarity between users’ learning tasks. Evaluating similarity scores between users
poses a threat to the privacy guarantees of federated algorithms, therefore investigating
the trade-off between personalization and privacy may shed light on the fundamental
limitations of this approach.

In Part III, motivated by the necessity of quantifying uncertainty in wireless commu-
nication learning problems, we proposed the (m, t)-robust Bayesian learning framework,
a Bayesian learning procedure capable of addressing both model misspecification and
the presence of outliers. The proposed methodology produced well-calibrated and robust
predictive posteriors over a range of wireless communication problems. In Chapter 7,
we showed that (m, t)-robust Bayesian learning greatly outperforms the frequentist and
standard Bayesian learning approaches. Despite the superior uncertainty quantification
capabilities, the (m, t)-robust Bayesian learning relies on ensembling, which comes with
a potentially large computational cost. This is due to the necessity of sampling and
aggregating the output of multiple components to perform inference. Therefore, it become
essential to validate the merits of the (m, t)-robust Bayesian learning when applied to more
computationally efficient ensembling approaches. Furthermore, (m, t)-robust Bayesian
learning can be directly applied to reinforcement learning, as well as to meta-learning,
for which Bayesian methods have recently been investigated.
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Appendix of Chapter 2

A.1 Proof of Lemma 1

Define the event E(t) := {G(t) is connected} and its complementary event Ē(t). Whenever
the Metropolis-Hasting weights are obtained from a connected graph, the resulting mixing
matrix W (t) has a consensus rate greater than zero. Therefore, there exists δ > 0 such
that

EW (t)|E(t)

∥∥∥W (t)X − X̄
∥∥∥2
F
≤ (1− δ)

∥∥∥W (t)X − X̄
∥∥∥2
F

It follows that, for any X ∈ Rd×m

EW (t)

∥∥∥W (t)X − X̄
∥∥∥2
F
=qEW (t)|E(t)

∥∥∥W (t)X − X̄
∥∥∥2
F

+ (1− q)EW (t)|Ē(t)

∥∥X − X̄∥∥2
F

≤q(1− δ)
∥∥∥W (t)X − X̄

∥∥∥2
F

+ (1− q)
∥∥X − X̄∥∥2

F

where we have lower bounded the consensus rate by zero in case of disconnected topologies.
Grouping terms and having assumed q > 0, we obtain that the expected consensus is
satisfied with rate (1− qδ) > 0.

A.2 Proof of Lemma 2

Similarly to [63,99] we establish the following recursive inequality

m∑
i=1

E
∥∥∥θ(t) − θ̄(t)∥∥∥2 ≤(1− pζ

2

) m∑
i=1

E
∥∥∥θ(t−1) − θ̄(t−1)

∥∥∥2
+
η2

pζ

(
6mG2

)
+ ζ2

m∑
i=1

E
∥∥∥ñ(t)i

∥∥∥2.
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Defining σ2w,i = maxTt=0 E
∥∥∥ñ(t)i

∥∥∥2 and then solving the recursion we obtain the final

expression.

A.3 Proof of Theorem 1

We denote stale gradients by gi(θ̃
(t)
i ) = gi(θ

(t−τi)
i ). According to the update rule, at each

iteration t+ 1, we have

E[f(θ̄t+1)] = E

[
f

(
θ̄t − 1

m

m∑
i=1

(
η̃
(t)
i gi(θ̃

(t)
i ) + ζñ

(t)
i

))]

where the expectation is w.r.t. the stochastic gradients, the communication noise Ξ(t),
and the computation and communication failures at iteration t+ 1. For an L-smooth
objective function, we have

E[f(θ̄(t+1))] ≤ f(θ̄(t))− 1

m

m∑
i=1

〈
∇f(θ̄(t)),E[η̃(t)i gi(θ̃

(t)
i ))]

〉
︸ ︷︷ ︸

:=T1

+
L

2m2
E

∥∥∥∥∥
m∑
i=1

η̃
(t)
i gi(θ̃

(t)
i ))

∥∥∥∥∥
2

︸ ︷︷ ︸
:=T2

+
L

2m2
ζ2

m∑
i=1

E
∥∥∥ñ(t)i

∥∥∥2

where we used the fact that the communication noise has zero mean and is independent
across users.

Adding and subtracting ∇fi(θ̄(t)) to each summand of T1 and since E[η̃(t)i gi(θ̃
(t)
i )] =

η∇fi(θ̃(t)i ), with η = minj(1− ρj)/(
√
4LT ), we obtain

T1 =− η
〈
∇f(θ̄(t)), 1

m

m∑
i=1

∇fi(θ̃(t)i )

〉

=
η

2

∥∥∥∥∥∇f(θ̄(t))− 1

m

m∑
i=1

∇fi(θ̃(t)i )

∥∥∥∥∥
2

− η

2

∥∥∥∇f(θ̄(t))∥∥∥2 − η

2m2

∥∥∥∥∥
m∑
i=1

∇fi(θ̃(t)i )

∥∥∥∥∥
2

≤ηγ
2

∥∥∥∇f(θ̄(t))∥∥∥2 + ηL2

2m

m∑
i=1

∥∥∥θ(t)i − θ̄(t)
∥∥∥2

− η

2

∥∥∥∇f(θ̄(t))∥∥∥2 − η

2m2

∥∥∥∥∥
m∑
i=1

∇fi(θ̃(t)i )

∥∥∥∥∥
2
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where we have used the staleness assumption. The last term can be bounded using the

property of the stochastic gradient and the fact that η̃
(t)
i ≤ 1/(

√
4LT ) ≤ 1/(

√
4L) as

T2 ≤
L

2m2
E

∥∥∥∥∥
m∑
i=1

η̃
(t)
i [gi(θ̃

(t)
i )−∇fi(θ̃(t)i )]

∥∥∥∥∥
2

+
L

2m2
E

∥∥∥∥∥
m∑
i=1

η̃
(t)
i ∇fi(θ̃

(t)
i )

∥∥∥∥∥
2

≤ σ2

8mT
+

η

8m2
E

∥∥∥∥∥
m∑
i=1

∇fi(θ̃(t)i )

∥∥∥∥∥
2

.

Summing T1 and T2 we obtain

T1 + T2 ≤−
η

2
(1− γ)

∥∥∥∇f(θ̄(t))∥∥∥2 + σ2

8mT

+
ηL2

2m

m∑
i=1

∥∥∥θ(t)i − θ̄(t)
∥∥∥2

− η

4m2

∥∥∥∥∥
m∑
i=1

∇fi(θ̃(t)i )

∥∥∥∥∥
2

.

Defining γ′ = (1− γ), telescoping and taking expectations we obtain

1

T

T∑
t=1

∥∥∥∇f(θ̄(t))∥∥∥2 ≤2f(θ̄0)− f(θ̄T )
ηTγ′

+
σ2

4ηγ′mT

+
1

T

T∑
t=1

L2

mγ′

m∑
i=1

E
∥∥∥θ(t)i − θ̄(t)

∥∥∥2
+

1

T

T∑
t=1

Lζ2

ηm2γ′

m∑
i=1

E
∥∥∥ñ(t)i

∥∥∥2.
Defining σ2w,i = maxTt=0 E

∥∥∥ñ(t)i

∥∥∥2 and bounding the consensus term by Lemma 2, we

obtain

1

T

T∑
t=1

∥∥∥∇f(θ̄(t))∥∥∥2 ≤2f(θ̄0)− f(θ̄T )
ηTγ′

+
L2

mγ′

(
η2

12mG2

(pζ)2
+ ζ

2

p

m∑
i=1

σ2w,i

)

+
σ2

4ηγ′mT
+

Lζ2

ηm2γ′

m∑
i=1

σ2w,i.

The final result is obtained setting η = 1√
4LT

and ζ = 1
T 3/8 .
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Appendix of Chapter 4

B.1 Useful inequalities

This section contains a collection of ancillary results that are useful for the subsequent
proofs.

Proposition 1. A differentiable and L-smooth function f(x) satisfies∥∥∇f(x)−∇f(x′)∥∥ ≤ L∥∥x− x′∥∥. (B.1)

Furthermore, if f(x) is convex

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2 (B.2)

and if x∗ is a minimizer

1

2L
∥∇f(x)∥2 ≤ f(x)− f(x∗). (B.3)

Otherwise, if f(x) concave

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ − L

2
∥y − x∥2 (B.4)

and if x∗ is a maximizer

1

2L
∥∇f(x)∥2 ≤ f(x∗)− f(x). (B.5)

Proposition 2. A differentiable and µ-strongly convex function f(x) satisfies

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2 (B.6)

and a differentiable and µ-strongly concave function g(x) satisfies

g(y) ≤ g(x) + ⟨∇g(x), y − x⟩ − µ

2
∥y − x∥2. (B.7)
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Proposition 3. Given two vectors a, b ∈ Rd, for β > 0 we have

2⟨a, b⟩ ≤ β−1∥a∥2 + β∥b∥2 (B.8)

and

∥a+ b∥ ≤ (1 + β−1)∥a∥2 + (1 + β)∥b∥2. (B.9)

Proposition 4. Given two matrices A ∈ Rp×q, B ∈ Rq×r, we have

∥AB∥F ≤ ∥A∥F ∥B∥2 (B.10)

where ∥·∥F denotes the Frobenius norm.

Proposition 5. Given a set of vectors {ai}ni=1 we have∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
2

≤ n
n∑

i=1

∥ai∥2. (B.11)

Consensus inequalities

To streamline the notation we define ∇̃gi(θti , λti) = ∇gi(θti , λti, ξti) and introduce the
following matrices

Θt =
[
θt1, . . . , θ

t
m

]
∈ Rd×m, (B.12)

Θ̂t =
[
θ̂t1, . . . , θ̂

t
m

]
∈ Rd×m, (B.13)

Λt =
[
λt1, . . . , λ

t
m

]
∈ Rm×m, (B.14)

∇̃θG(Θ
t,Λt) =

[
∇̃θg1(θ

t
1, λ

t
1), . . . , ∇̃θgm(θtm, λ

t
m)
]
∈ Rd×m (B.15)

∇̃λG(Θ
t,Λt) =

[
∇̃λg1(θ

t
1, λ

t
1), . . . , ∇̃λgm(θtm, λ

t
m)
]
∈ Rm×m (B.16)

and for a matrix X we define X̄ = X 11T

m .
The local update rule of Algorithm 2 can be rewritten as

Θt+ 1
2 = Θt − ηθ∇̃θG(Θ

t,Λt) (B.17)

Λt+ 1
2 = PΛ

(
Λt + ηλ∇̃λG(Θ

t,Λt)
)

(B.18)

where PΛ is applied column-wise. The compressed gossip algorithm CHOCO-GOSSIP [99]
used to share model parameters preserves averages and satisfies the following recursive

inequality with c = ρ2δ
82

E
[∥∥Θt+1 − Θ̄t+1

∥∥2
F
+
∥∥∥Θt+1 − Θ̂t+1

∥∥∥2
F

]
≤(1− c)E

[∥∥∥Θt+ 1
2 − Θ̄t+ 1

2

∥∥∥2
F
+
∥∥∥Θt+ 1

2 − Θ̂t
∥∥∥2
F

]
.

(B.19)

The uncompressed gossip scheme used to communicate Λ satisfies

E
[∥∥Λt+1 − Λ̄t+1

∥∥2
F

]
≤(1− ρ)E

[∥∥∥Λt+ 1
2 − Λ̄t+ 1

2

∥∥∥2
F

]
. (B.20)
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Lemma 4. (Consensus inequality for compressed communication [112]) For a fixed ηθ > 0

and γ = ρ2δ
16ρ+ρ2+4β2+2ρβ2−8ρδ

the iterates of Algorithm 2 satisfy

E
[
Ξt
θ

]
= E

[
m∑
i=1

∥∥θti − θ̄t∥∥2
]
≤ 12η2θ

mG2
θ

c2
(B.21)

Lemma 5. (Consensus Inequality for uncompressed communication [99]) For a fixed
ηλ > 0 the iterates of Algorithm 2 satisfy

E
[
Ξt
λ

]
= E

[
m∑
i=1

∥∥λti − λ̄t∥∥2
]
≤ 4η2λ

mG2
λ

ρ2
(B.22)

B.2 Proof of Theorem 2: Convex case

Define
Φ(·) = max

λ∈∆m−1
g(·, λ);

under assumptions 5, 6 and if the local objective functions {fi(θ)}mi=1 are convex, Theorem
2 guarantees that the output solution (θo, λo) satisfies

E
[
Φ(θo)−min

θ∈Θ
Φ(θ)

]
≤ 4

T

(
LG2

λ

ρ2
+ 3

LG2
θ

c2

)
+

1√
T

(√
12
DλLGθ

c
+ 2

DθLGλ

ρ

)
+

1√
T

(
Dθ +Dλ

2
+
G2

θ +G2
λ

2

)
. (B.23)

The proof starts from the following decomposition of the sub-optimality gap

E
[
max
λ

g(θo, λ)−min
θ

max
λ

g(θ, λ)

]
≤E

[
max
λ

g(θo, λ)−max
λ

min
θ
g(θ, λ))

]
(B.24)

≤E
[
max
λ

g(θo, λ)−min
θ
g(θ, λo))

]
(B.25)

≤E
[
max
λ,θ

g(θo, λ)− g(θ, λo))
]

(B.26)

≤E
[
max
λ,θ

1

T

T−1∑
t=0

g(θ̄t, λ)− g(θ, λ̄t))
]

(B.27)

≤E
[
max
λ

1

T

T−1∑
t=0

g(θ̄t, λ)− g(θ̄t, λ̄t)
]

+ E

[
max

θ

1

T

T−1∑
t=0

g(θ̄t, λ̄t)− g(θ, λ̄t)
]
. (B.28)

Thanks to Lemmas (6) and (7) proved below, the two summands can be bounded to
obtain

E
[
Φ(θo)−min

θ∈Θ
Φ(θ)

]
≤ Dθ

2ηθT
+
ηθ
2

(
G2

θ +
√
48
DλLGθ

c

)
+ 12η2θ

LG2
θ

c2
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+
Dλ

2ηλT
+
ηλ
2

(
G2

λ + 4
DθLGλ

δ

)
+ 4η2λ

LG2
λ

ρ2
. (B.29)

Setting ηλ = ηθ =
1√
T
, the final result is obtained. □

Lemma 6. For T > 0 and any θ, the sequence {θ̄t, λ̄t}Tt=0 generated by Algorithm 2
satisfies

E

[
1

T

T−1∑
t=0

g(θ̄t, λ̄t)− g(θ, λ̄t)
]
≤ Dθ

2ηθT
+
ηθ
2
G2

θ + 12η2θ
LG2

θ

c2
+ 2ηλ

DθLGλ

ρ
(B.30)

where Dθ = maxt=0...,T E
∥∥θ̄t − θ∥∥.

Proof: From the update rule of the primal variable and the assumptions 6 on the
stochastic gradient we have, that for any θ

Eξt
∥∥θ̄t+1 − θ

∥∥2 =Eξt

∥∥∥∥∥θ̄t − θ − ηθ
m

m∑
i=1

∇̃θgi(θ
t
i , λ

t
i)

∥∥∥∥∥
2

(B.31)

=
∥∥θ̄t − θ∥∥2 − 2

ηθ
m

m∑
i=1

⟨θ̄t − θ;Eξt

[
∇̃θgi(θ

t
i , λ

t
i)
]
⟩

+ Eξt

∥∥∥∥∥ηθm
m∑
i=1

∇̃θgi(θ
t
i , λ

t
i)

∥∥∥∥∥
2

(B.32)

≤
∥∥θ̄t − θ∥∥2−2ηθ

m

m∑
i=1

⟨θ̄t − θ;∇θgi(θ
t
i , λ

t
i)⟩︸ ︷︷ ︸

:=T2

+η2θG
2
θ. (B.33)

Denoting with Dt
θ =

∥∥θ̄t − θ∥∥ we have that for T2 the following holds

T2 = −2
ηθ
m

(
m∑
i=1

⟨θ̄t − θ;∇θgi(θ
t
i , λ̄

t)⟩+
m∑
i=1

⟨θ̄t − θ;∇θgi(θ
t
i , λ

t
i)−∇θgi(θ

t
i , λ̄

t)⟩
)

(B.34)

≤ −2ηθ
m

m∑
i=1

⟨θ̄t − θ;∇θgi(θ
t
i , λ̄

t)⟩+ 2ηθLD
t
θ

√
Ξt
λ

m
(B.35)

≤ −2ηθ
m

m∑
i=1

(
⟨θ̄t − θti ;∇θgi(θ

t
i , λ̄

t)⟩+ ⟨θti − θ;∇θgi(θ
t
i , λ̄

t)⟩
)
+ 2ηθLD

t
θ

√
Ξt
λ

m
(B.36)

(B.4)

≤ −2ηθ
m

m∑
i=1

(
gi(θ̄

t, λ̄t)− gi(θ, λ̄t)−
L

2

∥∥θ̄t − θti∥∥2)+ 2ηθLD
t
θ

√
Ξt
λ

m
(B.37)

= −2ηθ
m

m∑
i=1

(
gi(θ̄

t, λ̄t)− gi(θ, λ̄t)
)
+

2ηθL

m
Ξt
θ + 2ηθLD

t
θ

√
Ξt
λ

m
. (B.38)
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Plugging it back in (B.33), rearranging the terms and taking the expectation over the
previous iterate we get

E
[
g(θ̄t, λ̄t)− g(θ, λ̄t)

]
=

1

m
E

[
m∑
i=1

gi(θ̄
t, λ̄t)− gi(θ, λ̄t)

]
(B.39)

≤E∥θ̄t − θ∥2 − E∥θ̄t+1 − θ∥2
2ηθ

+
ηθ
2
G2

θ +
L

m
E
[
Ξt
θ

]
+ LE

[
Dt

θ

]√E
[
Ξt
λ

]
m

. (B.40)

Telescoping from t = 0 to t = T − 1 and plugging the consensus inequalities (B.21) and
(B.22), we get

1

T
E

[
T−1∑
t=0

g(θ̄t, λ̄t)− g(θ, λ̄t)
]
≤ Dθ

2ηθT
+
ηθ
2
G2

θ + 12η2θ
LG2

θ

c2
+ 2ηλ

DθLGλ

ρ
(B.41)

where Dθ = maxt=0...,T E[Dt
θ] = maxt=0...,T E

∥∥θ̄t − θ∥∥. □

Lemma 7. For T > 0 and any λ, the sequence {θ̄t, λ̄t}Tt=0 generated by Algorithm 2
satisfies

E

[
1

T

T−1∑
t=0

g(θ̄t, λ)− g(θ̄t, λ̄t)
]
≤ Dλ

2ηλT
+
ηλ
2
G2

λ + 4η2λ
LG2

λ

ρ2
+
√
12ηθ

DλLGθ

c
(B.42)

where Dλ = maxt=0...,T E
∥∥λ̄t − λ∥∥.

Proof The proof follows similarly as in Lemma (6)

Eξt
∥∥λ̄t+1 − λ

∥∥2 =Eξt

∥∥∥∥∥λ− λ̄t + ηλ
m

m∑
i=1

∇̃λgi(θ
t
i , λ

t
i)

∥∥∥∥∥
2

(B.43)

=
∥∥λ̄t − λ∥∥2 − 2

ηλ
m

m∑
i=1

⟨λ− λ̄t;Eξt

[
∇̃λgi(θ

t
i , λ

t
i)
]
⟩

+ Eξt

∥∥∥∥∥ηλm
m∑
i=1

∇̃λgi(θ
t
i , λ

t
i)

∥∥∥∥∥
2

(B.44)

=E
∥∥λ̄t − λ∥∥2−2ηλ

m

m∑
i=1

⟨λ− λ̄t;∇λgi(θ
t
i , λ

t
i)⟩︸ ︷︷ ︸

:=T3

+η2λG
2
λ. (B.45)

Denoting with Dt
λ =

∥∥λ̄t − λ∥∥ we have that for T3 the following holds

T3 = −2
ηλ
m

(
m∑
i=1

⟨λ− λ̄t;∇λgi(θ̄
t, λti)⟩+

m∑
i=1

⟨λ− λ̄t;∇λgi(θ
t
i , λ

t
i)−∇λgi(θ̄

t, λti)⟩
)
(B.46)
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≤ −2ηλ
m

m∑
i=1

(
⟨λ− λ̄t;∇λgi(θ̄

t, λti)⟩
)
+ 2ηλLD

t
λ

√
Ξt
θ

m
(B.47)

≤ −2ηλ
m

m∑
i=1

(
⟨λ− λti;∇λgi(θ̄

t, λti)⟩+ ⟨λti − λ̄t;∇λgi(θ̄
t, λti)⟩

)
+ 2ηλLD

t
λ

√
Ξt
θ

m
(B.48)

(B.4)

≤ −2ηλ
m

m∑
i=1

(
gi(θ̄

t, λ)− gi(θ̄t, λ̄t)−
L

2

∥∥λ̄t − λti∥∥2)+ 2ηλLD
t
λ

√
Ξt
θ

m
(B.49)

= −2ηλ
m

m∑
i=1

(
gi(θ̄

t, λ)− gi(θ̄t, λ̄t)
)
+

2ηλL

m
Ξt
λ + 2ηλLD

t
λ

√
Ξt
θ

m
. (B.50)

Plugging it back in (B.45), rearranging the terms and taking the expectation over the
previous iterate we get

E
[
g(θ̄t, λ)− g(θ̄t, λ̄t)

]
=

1

m
E

[
m∑
i=1

gi(θ̄
t, λ)− gi(θ̄t, λ̄t)

]
(B.51)

≤E∥λ̄t − λ∥2 − E∥λ̄t+1 − λ∥2
2ηλ

+
ηλ
2
G2

λ +
L

m
E
[
Ξt
λ

]
+ LE

[
Dt

λ

]√E
[
Ξt
θ

]
m

. (B.52)

Telescoping from t = 0 to t = T − 1 and plugging the consensus inequalities (B.21) and
(B.22) we get

1

T
E

[
T−1∑
t=0

g(θ̄t, λ)− g(θ̄t, λ̄t)
]
≤ Dλ

2ηλT
+
ηλ
2
G2

λ + 4η2λ
LG2

λ

ρ2
+
√
12ηθ

DλLGθ

c
. (B.53)

where Dλ = maxt=0...,T E[Dt
λ] = maxt=0...,T E

∥∥λ̄t − λ∥∥. □

B.3 Proof of Theorem 3: Non-convex case

In the case of non-convex functions {fi}mi=1, Theorem 3 provides the following ϵ-stationarity
guarantee on the randomized solution of Algorithm 2 :

1

T

T∑
t=1

E
[∥∥∇Φ(θ̄t−1)

∥∥2] ≤ 2L√
T

(
256

(
E[Φ(θ̄0)]− E[Φ(θ̄T )]

)
+

45Lκ2D0
λ

2

)
+

1√
T

(
5DλL

Gθ

c
+
σ2θ
2m

+
45κσ2λ
4m

)
+

1

T

(
G2

θ

4c2
+ 171

κG2
λ

ρ2

)
+
σ2θ
m
. (B.54)
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The proof is inspired from recent results in [214]. Specifically, Lemma 8, stated and
proved below, provides a descent inequality of the type

E[Φ(θ̄t)] ≤E[Φ(θ̄t−1)] +
η2θκLσ

2
θ

m
−
(ηθ
2
− 2η2θκL

)
E
[
∇∥Φ(θ̄t−1)∥2

]
+ L2

(ηθ
2

+ 2η2θκL
)(E[Ξt

θ]

m
+

2E[Ξt
λ]

m
+ 2E[δtλ]

)
. (B.55)

Setting ηθ = ηλ
16(κ+1)2

and ηλ ≤ 1
2L expression (B.55) can be simplified thanks to the

following chain of inequalities

7ηθ
16
≤ ηθ(

1

2
− 2ηθκL) ≤ ηθ(

1

2
+ 2ηθκL) ≤

9ηθ
16

. (B.56)

Telescoping the simplified expression from t = 1 to T we obtain

E[Φ(θ̄T )] ≤E[Φ(θ̄0)] + T
η2θκLσ

2
θ

m
− 7ηθ

16

T∑
t=1

E
[
∇∥Φ(θ̄t−1)∥2

]
+ L2 9ηθ

16

T∑
t=1

(
E[Ξt

θ]

m
+

2E[Ξt
λ]

m

)
+

9ηθL
2

8
E

[
T∑
t=1

δtλ

]
(B.57)

where δtλ :=
∥∥λ∗(θ̄t)− λ̄t∥∥2 represents the squared distance between the optimal value of

the dual variable for the current averaged network belief and the current averaged value
of the dual variable.

Lemma 9, reported below, provides a bound on
∑T

t=1 δ
t
λ that plugged in (B.57) yields

E[Φ(θ̄T )] ≤E[Φ(θ̄0)] + ηθ
45Lκ2δ0λ

8ηλ
+ ηθ

(
45κ4η2θ
η2λ

− 7

16

) T∑
t=1

E
[
∇
∥∥Φ(θ̄t−1)

∥∥2]
+ Tηθ

(
ηθκLσ

2
θ

m
+

45κLηλσ
2
λ

4m
+

45σ2θ
2 · 162m

)
+ L2 9ηθ

16

T∑
t=1

(
E[Ξt

θ]

m
+

2E[Ξt]λ
m

+
30κE[Ξt−1

θ ]

m
+

70κE[Ξt−1
λ ]

m

)

+ L2 9ηθ
16

T∑
t=1

(
40κDt−1

λ

√
1

m
E[Ξt−1

θ ]

)
. (B.58)

Moreover, the relation between the two step-sizes established above ensures that(
45κ4η2θ
η2λ

− 7

16

)
≤ −1

4
(B.59)

and therefore rearranging terms, dividing by 4
Tηθ

and recalling that κ ≥ 1

1

T

T∑
t=1

E
[
∇
∥∥Φ(θ̄t−1)

∥∥2] ≤ 4

ηθT

(
E[Φ(θ̄0)]− E[Φ(θ̄T )]

)
+

45Lκ2δ0λ
2Tηλ
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+ 4

(
ηθκLσ

2
θ

m
+

45κLηλσ
2
λ

4m
+

45σ2θ
2 · 162m

)
+

9L2

4T

T∑
t=1

(
31κE[Ξt−1

θ ]

m
+

72E[κΞt−1
λ ]

m

)

+
9L2

4T

T∑
t=1

(
40κDt−1

λ

√
1

m
E[Ξt−1

θ ]

)
. (B.60)

Exploiting consensus inequalities (B.21), (B.22) and the fact that κ ≥ 1 and ηθ =
ηλ

16(κ+1)2
≤ 1/2L we can simplify and obtain

1

T

T∑
t=1

E
[
∇
∥∥Φ(θ̄t−1)

∥∥2]≤64(κ+ 1)2

ηλT

(
E[Φ(θ̄0)]− E[Φ(θ̄T )]

)
+

45Lκ2δ0λ
2Tηλ

+ 2

(
ηλ
Lσ2θ
m

+ ηλ
45κLσ2λ
2m

+
45σ2θ
162m

)
+ L2 9

4T

T∑
t=1

(
40κDt−1

λ

√
12ηθ

Gθ

c
+ 372η2θ

κG2
θ

c2
+ 288η2λ

κG2
λ

ρ2

)
.

(B.61)

Simplifying and defining Dλ = maxt=0,...,T D
t
λ

1

T

T∑
t=1

E
[
∇
∥∥Φ(θ̄t−1)

∥∥2] ≤64(κ+ 1)2

ηλT

(
E[Φ(θ̄0)]− E[Φ(θ̄T )]

)
+

45Lκ2δ0λ
2Tηλ

+ 2

(
ηλ
Lσ2θ
m

+ ηλ
45κLσ2λ
2m

+
45σ2θ
162m

)
+ L2

(
10Dληλ

Gθ

c
+ η2λ

G2
θ

c2
+ 684η2λ

κG2
λ

ρ2

)
. (B.62)

Grouping

1

T

T∑
t=1

E
[
∇
∥∥Φ(θ̄t−1)

∥∥2] ≤ 1

ηλT

(
256

(
E[Φ(θ̄0)]− E[Φ(θ̄T )]

)
+

45Lκ2δ0λ
2

)
+ ηλ

(
10DλL

2Gθ

c
+
Lσ2θ
m

+
45κLσ2λ
2m

)
+ η2λ

(
L2G2

θ

c2
+ 684

L2κG2
λ

ρ2

)
+
σ2θ
m
. (B.63)

Setting ηλ = 1
2L

√
T

we get

1

T

T∑
t=1

E
[
∇
∥∥Φ(θ̄t−1)

∥∥2] ≤ 2L√
T

(
256

(
E[Φ(θ̄0)]− E[Φ(θ̄T )]

)
+

45Lκ2δ0λ
2

)
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+
1√
T

(
5DλL

Gθ

c
+
σ2θ
2m

+
45κσ2λ
4m

)
+

1

T

(
G2

θ

4c2
+ 171

κG2
λ

ρ2

)
+
σ2θ
m
. (B.64)

Lemma 8. For each t = 1, . . . , T the iterates generated by Algorithm 2 satisfies

E[Φ(θ̄t)] ≤E[Φ(θ̄t−1)] +
η2θκLσ

2
θ

m
−
(ηθ
2
− 2η2θκL

)
E
[
∇∥Φ(θ̄t−1)∥2

]
+ L2

(ηθ
2

+ 2η2θκL
)(E[Ξt

θ]

m
+

2E[Ξt
λ]

m
+ 2E[δtλ]

)
. (B.65)

Proof: From the 2κL-smoothness of Φ(·) (Lemma 4.3 of [214]) and the update rule
we have:

Eξt−1

[
Φ(θ̄t)

]
≤Φ(θ̄t−1) + Eξt−1

[
⟨∇θΦ(θ̄

t−1), θ̄t − θ̄t−1⟩
]
+ κLEξt−1

∥∥θ̄t − θ̄t−1
∥∥2 (B.66)

≤Φ(θ̄t−1)− ηθ⟨∇θΦ(θ̄
t−1),

1

m

m∑
i=1

Eξt−1

[
∇̃θgi(θ

t−1
i , λt−1

i )
]
⟩

+
η2θκL

m2
Eξt−1

∥∥∥∥∥
m∑
i=1

∇̃θgi(θ
t−1
i , λt−1

i )

∥∥∥∥∥
2

(B.67)

≤Φ(θ̄t−1) + ηθ⟨∇Φ(θ̄t−1),∇Φ(θ̄t−1)− 1

m

m∑
i=1

∇θgi(θ
t−1
i , λt−1

i )⟩︸ ︷︷ ︸
:=T4

− ηθ∇∥Φ(θ̄t−1)∥2 + η2θκL

m2
Eξt

∥∥∥∥∥
m∑
i=1

∇̃θgi(θ
t−1
i , λt−1

i )

∥∥∥∥∥
2

︸ ︷︷ ︸
:=T5

. (B.68)

We now turn bounding term T4

T4 = ηθ⟨∇Φ(θ̄t−1),∇Φ(θ̄t−1)− 1

m

m∑
i=1

∇θgi(θ
t−1
i , λt−1

i )⟩ (B.69)

(B.8)

≤ ηθ
2

∥∥∇Φ(θ̄t−1)
∥∥2 + ∥∥∥∥∥∇Φ(θ̄t−1)− 1

m

m∑
i=1

∇θgi(θ
t−1
i , λt−1

i )

∥∥∥∥∥
2
 (B.70)

≤ ηθ
2

∥∥∇Φ(θ̄t−1)
∥∥2 + ∥∥∥∥∥ 1

m

m∑
i=1

∇θgi(θ̄
t−1, λ∗(θ̄t−1))−∇θgi(θ

t−1
i , λt−1

i )

∥∥∥∥∥
2
 (B.71)

(B.1)

≤ ηθ
2

(∥∥∇Φ(θ̄t−1)
∥∥2 + L2

m

m∑
i=1

∥∥θ̄t−1 − θt−1
i

∥∥2 + L2

m

m∑
i=1

∥∥λ∗(θ̄t−1)− λt−1
i )

∥∥2)
(B.72)
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(B.9)

≤ ηθ
2

∥∥∇Φ(θ̄t−1)
∥∥2 + L2Ξt−1

θ

m
+

2L2Ξt−1
λ

m
+

2L2

m

m∑
i=1

∥∥λ∗(θ̄t−1)− λ̄t−1
∥∥2︸ ︷︷ ︸

=δt−1
λ

 (B.73)

(B.74)

and from stochastic gradient assumptions 6 we can bound T5 as follows

T5 =Eξt−1

∥∥∥∥∥
m∑
i=1

∇̃θgi(θ
t−1
i , λt−1

i )

∥∥∥∥∥
2

(B.75)

=Eξt−1

∥∥∥∥∥
m∑
i=1

(
∇̃θgi(θ

t−1
i , λt−1

i )−∇θgi(θ
t−1
i , λt−1

i )
)∥∥∥∥∥

2
+

∥∥∥∥∥
m∑
i=1

∇θgi(θ
t−1
i , λt−1

i )

∥∥∥∥∥
2

(B.76)

(B.9)

≤ mσ2θ + 2

∥∥∥∥∥
m∑
i=1

∇θgi(θ
t−1
i , λt−1

i )−∇θgi(θ̄
t−1, λ∗(θ̄t−1))

∥∥∥∥∥
2

+ 2
∥∥m∇Φ(θ̄t−1)

∥∥2 (B.77)

(B.1)

≤ mσ2θ + 2L2m
m∑
i=1

∥∥θ̄t−1 − θt−1
i

∥∥2 + 2L2m
m∑
i=1

∥∥λ∗(θ̄t−1)− λt−1
i

∥∥2
+ 2m2

∥∥∇Φ(θ̄t−1)
∥∥2 (B.78)

≤mσ2θ + 2L2mΞt−1
θ + 4L2mΞt−1

λ + 4L2m
m∑
i=1

∥∥λ∗(θ̄t−1)− λ̄t−1
∥∥2︸ ︷︷ ︸

=δt−1
λ

+2m2
∥∥∇Φ(θ̄t−1)

∥∥2.
(B.79)

Recombining, grouping, and taking the expectation over the previous iterates we get the
desired result. □

Lemma 9. The sequence of {δtλ}Tt=1 generated by Algorithm 2 satisfies

T∑
t=1

E
[
δtλ
]
≤5δ0λκ

ηλµ
+

T∑
t=1

5κ

(
4Dt−1

λ

√
1

m
E
[
Ξt−1
θ

]
+

3E
[
Ξt−1
θ

]
m

+
7E
[
Ξt−1
λ

]
m

)

+
T∑
t=1

5

(
8κ2η2θ
η2λµ

2
E
[∥∥∇Φ(θ̄t−1)

∥∥2])
+ 5T

(
2ηλσ

2
λ

mµ
+

4σ2θ
162m(κ+ 1)2µ2

)
(B.80)

where Dt−1
λ =

∥∥λ̄t−1 − λ
∥∥.

Proof: From (B.9), for b > 0, we have

Eξt−1 [δtλ] ≤
(
1 +

1

b

)
Eξt−1

∥∥λ∗(θ̄t−1)− λ̄t
∥∥2︸ ︷︷ ︸

:=T6

+(1 + b)Eξt−1

∥∥λ∗(θ̄t)− λ∗(θ̄t−1)
∥∥2︸ ︷︷ ︸

:=T7

. (B.81)
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Bounding T6 similarly

T6 =Eξt−1

∥∥λ∗(θ̄t−1)− λ̄t
∥∥2 (B.82)

=Eξt−1

∥∥∥∥∥λ∗(θ̄t−1)− λ̄t−1 − ηλ
m

m∑
i=1

(
∇̃λgi(θ

t−1
i , λt−1

i )±∇λgi(θ
t−1
i , λt−1

i )
)∥∥∥∥∥

2

(B.83)

≤
∥∥∥∥∥λ∗(θ̄t−1)− λ̄t−1 − ηλ

m

m∑
i=1

∇λgi(θ
t−1
i , λt−1

i )

∥∥∥∥∥
2

+
η2λσ

2
λ

m
(B.84)

=
∥∥λ∗(θ̄t−1)− λ̄t−1

∥∥2 + ∥∥∥∥∥ηλm
m∑
i=1

∇λgi(θ
t−1
i , λt−1

i )

∥∥∥∥∥
2

︸ ︷︷ ︸
T6,1

+
η2λσ

2
λ

m

−2⟨λ∗(θ̄t−1)− λ̄t−1;
ηλ
m

m∑
i=1

∇λgi(θ
t−1
i , λt−1

i )⟩︸ ︷︷ ︸
T6,2

. (B.85)

Estimating T6,1

T6,1 =2η2λ

∥∥∥∥∥ 1

m

m∑
i=1

∇λgi(θ
t−1
i , λt−1

i )±∇λgi(θ̄
t−1, λ̄t−1)−∇λgi(θ̄

t−1, λ∗(θ̄t−1))

∥∥∥∥∥
2

(B.86)

≤2η2λ
m

m∑
i=1

∥∥∇λgi(θ
t−1
i , λt−1

i )−∇λgi(θ̄
t−1, λ̄t−1)

∥∥2
+ 2η2λ

∥∥∥∥∥ 1

m

m∑
i=1

∇λgi(θ̄
t−1, λ̄t−1)−∇λgi(θ̄

t−1, λ∗(θ̄t−1))

∥∥∥∥∥
2

(B.87)

(B.1,B.5)

≤ 2η2λ
m

m∑
i=1

L2
∥∥λt−1

i − λ̄t−1
∥∥2 + L2

∥∥θt−1
i − θ̄t−1

∥∥2
+

4η2λL

m

m∑
i=1

[
gi(θ̄

t−1, λ∗(θ̄t−1))− gi(θ̄t−1, λ̄t−1)
]

(B.88)

=
2η2λL

2

m
Ξt−1
λ +

2η2λL
2

m
Ξt−1
θ +

4η2λL

m

m∑
i=1

[
gi(θ̄

t−1, λ∗(θt−1
i ))− gi(θ̄t−1, λ̄t−1)

]
.

(B.89)

Estimating T6,2

T6,2 =− 2
ηλ
m

m∑
i=1

⟨λ∗(θ̄t−1)− λ̄t−1;∇λgi(θ
t−1
i , λt−1

i )⟩ (B.90)

=− 2
ηλ
m

m∑
i=1

⟨λ∗(θ̄t−1)− λ̄t−1;∇λgi(θ
t−1
i , λt−1

i )±∇λgi(θ̄
t−1, λt−1

i )⟩ (B.91)
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=− 2
ηλ
m

m∑
i=1

⟨λ∗(θ̄t−1)− λ̄t−1;∇λgi(θ̄
t−1, λt−1

i ⟩

+ 2
ηλ
m

m∑
i=1

⟨λ̄t−1 − λ∗(θ̄t−1);∇λgi(θ
t−1
i , λt−1

i )−∇λgi(θ̄
t−1, λt−1

i )⟩ (B.92)

≤− 2
ηλ
m

m∑
i=1

⟨λ∗(θ̄t−1)− λ̄t−1;∇λgi(x̄
t−1, λt−1

i ⟩+ 2ηλLD
t−1
λ

√
1

m
Ξt−1
θ (B.93)

=− 2
ηλ
m

m∑
i=1

⟨λ∗(θ̄t−1)− λt−1
i ;∇λgi(θ̄

t−1, λt−1
i )⟩+ ⟨λt−1

i − λ̄t−1);∇λgi(θ̄
t−1, λt−1

i )⟩

+ 2ηλLD
t−1
λ

√
1

m
Ξt−1
θ (B.94)

(B.4,B.7)

≤ 2
ηλ
m

m∑
i=1

(
gi(θ̄

t−1, λ̄t−1)− gi(θt−1
i , λ∗(θ̄t−1))

)
+ 2ηλLD

t−1
λ

√
1

m
Ξt−1
θ

− 2
ηλ
m

m∑
i=1

(
µ

2

∥∥λ∗(θ̄t−1)− λt−1
i

∥∥2 + L

2

∥∥λ̄t−1 − λt−1
i

∥∥2) (B.95)

(B.9)

≤ 2
ηλ
m

m∑
i=1

(
gi(θ̄

t−1, λ̄t−1)− gi(θ̄t−1, λ∗(θ̄t−1))
)
+ 2ηλLD

t−1
λ

√
1

m
Ξt−1
θ

− 2
ηλ
m

m∑
i=1

(
µ

4

∥∥λ∗(θ̄t−1)− λ̄t−1
∥∥2 − L+ µ

2

∥∥λ̄t−1 − λt−1
i

∥∥2) (B.96)

=− µηλ
2

∥∥λ∗(θ̄t−1)− λ̄t−1
∥∥2 − 2

ηλ
m

m∑
i=1

gi(θ̄
t−1, λ∗(θ̄t−1))− gi(θ̄t−1, λ̄t−1)

+
2Lηλ
m

Ξt−1
λ + 2ηλLD

t−1
λ

√
1

m
Ξt−1
θ (B.97)

where the last inequality follows from choosing ηλ ≤ 1/(2L). Substituting the expressions
we get

T6 =
(
1− µηλ

2

)∥∥λ∗(θ̄t−1)− λ̄t−1
∥∥2 + η2λσ

2
λ

m
+
Lηλ
m

Ξt−1
θ

+
3Lηλ
m

Ξt−1
λ + 2ηλLD

t−1
λ

√
1

m
Ξt−1
θ . (B.98)

Being λ∗(·) is κ-smooth (Lemma 4.3 [214]) we can bound T7 as follows

T7 =Eξt−1

∥∥λ∗(θ̄t)− λ∗(θ̄t−1)
∥∥2 (B.99)

≤κ2Eξt−1

∥∥θ̄t − θ̄t−1
∥∥2 (B.100)

=
κ2η2θ
m2

Eξt−1

∥∥∥∥∥
m∑
i=1

∇̃θgi(θ
t−1
i , λt−1

i )

∥∥∥∥∥
2

(B.101)
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=
κ2η2θ
m2

mσ2θ +
∥∥∥∥∥

m∑
i=1

∇θgi(θ
t−1
i , λt−1

i )±m∇Φ(θ̄t−1)

∥∥∥∥∥
2
 (B.102)

(B.9)

≤ κ2η2θ
m2

(
mσ2θ + 2

∥∥m∇Φ(θ̄t−1)
∥∥2 + 2L2m

m∑
i=1

∥∥θ̄t−1 − θt−1
i

∥∥2
+ 2L2m

m∑
i=1

∥∥λ∗(θ̄t−1)− λt−1
i

∥∥2) (B.103)

=
κ2η2θ
m2

(
mσ2θ + 2m2

∥∥∇Φ(θ̄t−1)
∥∥2 + 2L2mΞt−1

θ

+ 2L2m
m∑
i=1

∥∥λ∗(θ̄t−1)− λ̄t−1 + λ̄t−1 − λt−1
i

∥∥2) (B.104)

(B.9)

≤ κη2θ

(
σ2θ
m

+ 2
∥∥∇Φ(θ̄t−1)

∥∥2 + 2L2Ξt−1
θ

m
+

4L2Ξt−1
λ

m
+ 4L2

∥∥λ∗(θ̄t−1)− λ̄t−1
∥∥2)
(B.105)

=κ2η2θ

(
σ2θ
m

+ 2
∥∥∇Φ(θ̄t−1)

∥∥2 + 2L2Ξt−1
θ

m
+

4L2Ξt−1
λ

m
+ 4L2δt−1

λ

)
. (B.106)

Recombining and grouping we get

δtλ ≤
((

1 +
1

b

)(
1− µηλ

2

)
+ 4(1 + b)κ2η2θL

2

)
δt−1
λ + 2

(
1 +

1

b

)
ηλLD

t−1
λ

√
1

m
Ξt−1
θ

+

((
1 +

1

b

)
Lηλ + 2(1 + b)κ2η2θL

2

)
Ξt−1
θ

m
+

(
1 +

1

b

)
η2λσ

2
λ

m
+ (1 + b)κ2η2θ

σ2θ
m

+

((
1 +

1

b

)
3Lηλ + 4(1 + b)κ2η2θL

2

)
Ξt−1
λ

m
+ 2κ2η2θ(1 + b)

∥∥∇Φ(θ̄t−1)
∥∥2. (B.107)

Setting b = 2
(

2
ηλµ
− 1
)
> 0 we get the following inequalities(
1 +

1

b

)(
1− ηλµ

2

)
≤
(
1− ηλµ

4

)
, (B.108)

(1 + b) ≤ 4

ηλµ
, (B.109)(

1 +
1

b

)
≤ 2. (B.110)

that allows to simplify (B.107) as follows

δtλ ≤
(
1− ηλµ

4
+

16κ2η2θL
2

ηλµ

)
δt−1
λ + 4ηλLD

t−1
λ

√
1

m
Ξt−1
θ

+

(
2Lηλ +

8κ2η2θL
2

ηλµ

)
Ξt−1
θ

m
+ 2

η2λσ
2
λ

m
+

4κ2η2θσ
2
θ

mηλµ
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+

(
6Lηλ +

16κ2η2θL
2

ηλµ

)
Ξt−1
λ

m
+

8κ2η2θ
ηλµ

∥∥∇Φ(x̄t−1)
∥∥2. (B.111)

Fixing ηx = ηλ
16(κ+1)2

we get that

ν = 1− ηλµ

4
+

16κ2η2xL
2

ηλµ
≤
(
1− ηλµ

5

)
. (B.112)

Taking the expectation over the current iterate and applying recursively the inequality
we obtain

Eξt−1 [δtλ] ≤νtδ0λ +
t−1∑
i=0

νt−1−i

(
8κ2η2θ
ηλµ

Eξt−1 [
∥∥∇Φ(θ̄t−1)

∥∥2] + 2
η2λσ

2
λ

m
+

4κ2η2θ
ηλµ

σ2θ
m

)

+
t−1∑
i=0

νt−1−i

(
4ηλLD

t−1
λ

√
1

m
Eξt−1 [Ξt−1

θ ]

)

+

t−1∑
i=0

νt−1−i

(
3LηλEξt−1 [Ξt−1

θ ]

m
+

7LηλEξt−1 [Ξt−1
λ ]

m

)
. (B.113)

Summing from t = 1 to T and from (B.112) we get

T∑
t=1

Eξt−1 [δtλ] ≤
5δ0λ
ηλµ

+
T∑
t=1

5

ηλµ

(
8κ2η2θ
ηλµ

Eξt−1 [
∥∥∇Φ(θ̄t−1)

∥∥2)+
5T

ηλµ

(
2
η2λσ

2
λ

m
+

4κ2η2θ
ηλµ

σ2θ
m

)

+
T∑
t=1

5

ηλµ

(
4ηλLD

t−1
λ

√
1

m
Eξt−1 [Ξt−1

θ ]

)

+
T∑
t=1

5

ηλµ

(
3LηλEξt−1 [Ξt−1

θ ]

m
+

7LηλEξt−1 [Ξt−1
λ ]

m

)
. (B.114)

□
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Appendix of Chapter 5

C.1 Proof of Theorem 4

Denote by f∗ the argminf∈F Ez∼Pi [ℓ(f, z)] and bound the estimation error of f̂w⃗i
as

Exc(f̂w⃗i
, Pi) = Ez∼Pi [ℓ(f̂w⃗i

, z)]− Ez∼Pi [ℓ(f
∗, z)]

≤ Ez∼Pw⃗i
[ℓ(f̂w⃗i

, z)]− Ez∼Pw⃗i
[ℓ(f∗, z)] + 2dF (Pi, Pw⃗i

) + 2λ

≤ Ez∼Pw⃗i
[ℓ(f̂w⃗i

, z)]− inf
f∈F

Ez∼Pw⃗i
[ℓ(f, z)]

+ 2
m∑
j=1

wi,jdF (Pi, Pj) + 2λ

where λ = argminf∈F
(
Ez∼Pi [ℓ(f, z)] + Ez∼Pw⃗i

[ℓ(f, z)]
)
. We recognize the estimation

error of f̂w⃗i
w.r.t to the measure Pw⃗i

that can be bounded following fairly standard
approaches. In particular,

Ez∼Pw⃗i
[ℓ(f̂w⃗i

, z)]− inf
f∈F

Ez∼Pw⃗i
[ℓ(f, z)] ≤ 2∆(G, Z)

where

∆(G, Z) = sup
g∈G

∣∣∣∣∣∣EPw⃗i
[g(Z)]−

m∑
j=1

wi,j

ni

∑
z∈Di

g(z)

∣∣∣∣∣∣ .
is the uniform deviation term and

G = {Z −→ ℓ(f, Z) : f ∈ F} .

is the class resulting from the composition of the loss function ℓ(·) and F . The uniform
deviation bound can be bounded in different ways, depending on the type of knowledge
about the random variable g(Z), in the following we assume that the loss function is
bounded with range B and we exploit Azuma’s inequality. In particular, the Doob’s
Martingale associated to the weighted loss will still have increments bounded by

wi,j

ni
B
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depending to which loss term the increment is associated. Recognizing this, we can then
directly apply Azuma’s concentration bound and state that w.p. 1− δ the following holds

∆(G, Z) ≤ EP [∆(G, Z)] +B

√√√√ m∑
j=1

w2
i,j

nj
log

(
2

δ

)
Finally, the expected uniform deviation can be bounded by the Rademacher complexity
as follows

EP [∆(G, Z)] ≤ 2Rad(G)
where

Rad(G) = Eσ⃗,D1,...,Dj

sup
g∈G

m∑
j=1

wi,j

ni

ni∑
i=1

σi,jg(Zi,j)


By a direct application of Massart’s and Sauer’s Lemma we obtain

Rad(G) ≤

√√√√ m∑
j=1

w2
i,j

nj

×

√√√√2VCdim(G)
(
log
(
e
∑

j nj

)
+ log(VCdim(G))

)
∑

j nj

combining everything together, we get the final result.

C.2 Proof of Theorem 5

Thanks to the upper bound on the target domain risk and the fact that the sum of two
sub-Gaussian random variables of parameter σ is also sub-Gaussian with parameter 2σ,
we can decompose the excess risk as

Exc(f̂w⃗i
, Pi) = Ez∼Pi [ℓ(f̂w⃗i

, z)]− inf
f∈F

Ez∼Pi [ℓ(f, z)]

= Ez∼Pi [ℓ(f̂w⃗i
, z)− ℓ(f∗, z)]

≤ Ez∼Pw⃗i
[ℓ(f̂w⃗i

, z)− ℓ(f∗, z)] + 2βσ2 +
DJS(Pi||Pw⃗i

)

β

From the convexity of the KL-divergence we can bound the Jensen-Shannon divergence
as follows

DJS(Pi||Pw⃗i
) =

1

2
KL

(
Pi||

Pi + Pw⃗i

2

)
+

1

2
KL

(
Pw⃗i
||Pi + Pw⃗i

2

)
=

1

2
KL

(
Pi||

∑
j wi,j(Pi + Pj)

2

)

+
1

2
KL

∑
j

wi,jPj ||
∑

j wi,j(Pi + Pj)

2
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≤ 1

2

∑
j

wi,j

(
KL

(
Pi||

(Pi + Pj)

2

)
+KL

(
Pj ||

(Pi + Pj)

2

))
=
∑
j

wi,jDJS(Pi||Pj)

Plugging it back into the previous expression and minimizing with respect to β we obtain

Exc(f̂w⃗i
, Pi) ≤ Ez∼Pw⃗i

[ℓ(f̂w⃗i
, z)]− inf

f∈F
Ez∼Pw⃗i

[ℓ(f, z)]

+ 2βσ2 +

∑
j w⃗i,jDJS(Pi||Pj)

β

≤ Ez∼Pw⃗i
[ℓ(f̂w⃗i

, z)]− inf
f∈F

Ez∼Pw⃗i
[ℓ(f, z)]

+ 2σ

√√√√2

m∑
j=1

DJS(Pi||Pj)

We identify the estimation error and we bound as previously done for Theorem 4 to
obtain the final result. Moreover, for B-bounded random variables, σ = B/2
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Appendix of Chapter 6

D.1 Proof of Lemma 3

Lemma. With probability 1− σ, with σ ∈ (0, 1), with respect to the random sampling of
the data set D, for all distributions q(θ) that are absolutely continuous with respect the
prior p(θ), the following bound on the population risk of the ensemble model holds

Eν̃(x)[Rt(q, x)] ≤Jm
t (q) + ψ(ν̃, n,m, β, p, σ), (D.1)

where

ψ(ν̃, n,m, β, p, σ) :=
1

β

(
logED,p(θ)

[
eβ∆m,n

]
− log σ

)
(D.2)

and

∆m,n :=
1

n

∑
x∈D

logtEj∼U [1:m]p(x|θj)− Eν̃(x)

[
logtEj∼U [1:m]p(x|θj)

]
. (D.3)

Furthermore, the risk with respect to the ID measure ν(x) can be bounded as

Eν(x)[Rt(q, x)] ≤
1

1− ϵ (J
m
t (q) + ψ(ν̃, n,m, β, p, σ)) +

ϵ(C1−t − 1)

(1− ϵ)(1− t) , (D.4)

if the contamination ratio satisfies the inequality ϵ < 1.

Proof: The proof follows in a manner similar to [3]. For a data set size n, and for an
ensemble of models Θ = {θ}mi=1, we define the quantity

∆m,n(Θ,D) :=
1

n

∑
x∈D

logtEj∼U [1:m]p(x|θj)−
1

n

∑
x∈D

Eν̃(x)

[
logtEj∼U [1:m]p(x|θj)

]
. (D.5)

From the compression lemma [215], we have that for any distribution q(θ) which is
absolutely continuous with respect to the prior p(θ), and for any β < 0, the following
holds

Eq(θ)⊗m [β∆m,n] ≤D1(q(θ)
⊗m||p(θ)⊗m) + logEp(θ)⊗m

[
eβ∆m,n

]
(D.6)
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=mD1(q(θ)||p(θ)) + logEp(θ)⊗m

[
eβ∆m,n

]
, (D.7)

where we have used the simplified notation ∆m,n = ∆m,n(Θ,D), and the equality follows
from the basic properties of the KL divergence.

A direct application of Markov’s inequality is then used to bound the last term of
(D.7) with high probability. Namely, with probability greater then 1− σ with respect to
the random drawn of the data set D ∼ ν̃(x)⊗n, the following holds

Ep(θ)⊗m

[
e∆m,n

]
≤

Eν̃(x)⊗n,p(θ)⊗m

[
e∆m,n

]
σ

, (D.8)

or, equivalently,

logEp(θ)⊗m

[
e∆m,n

]
≤ logEν̃(x)⊗n,p(θ)⊗m

[
e∆m,n

]
− log σ. (D.9)

Combining (D.7) with (D.9), the following upper bound on the predictive risk holds with
probability 1− σ

Rt(q) ≤Eν̃(x),q(θ)⊗m

[
− logtEj∼U [1:m]p(x|θj)

]
(D.10)

≤Eq(θ)⊗m

[
1

n

∑
x∈D

logtEj∼U [1:m]p(x|θj)
]
+
m

β
D1(q(θ)||p(θ))

+
logEν̃(x)⊗nEp(θ)⊗m

[
e∆m,n

]
− log σ

β
. (D.11)

Finally, the result above can be translated to a guarantee with respect to the ID measure
ν(x) = ν̃(x)

1−ϵ − ϵ
1−ϵξ(x) via the sequence of inequalities

Eν(x),q(θ)⊗m

[
− logtEj∼U [1:m]p(x|θj)

]
=
Eν̃(x),q(θ)⊗m

[
− logtEj∼U [1:m]p(x|θj)

]
1− ϵ

+ ϵ
Eϵ(x),q(θ)⊗m

[
− logtEj∼U [1:m]p(x|θj)

]
1− ϵ (D.12)

≤
Eν̃(x),q(θ)⊗m

[
− logtEj∼U [1:m]p(x|θj)

]
1− ϵ

+ ϵ

(
C1−t − 1

)
(1− ϵ)(1− t) , (D.13)

where the last inequality follows by having assumed the probabilistic model being
uniformly upper bounded by C (Assumption 2).

■
Finally, with regard to the comparison between the PACm bound in Theorem 1

in [3] and the guarantee with respect to the ID measure, we observe that it is not in
general possible to translate a guarantee on the logt-risk to one on the log-risk. This can
be illustrated by the following counter-example. Consider the following discrete target
distribution parametrized by integer k, which defines the size of its support, as

νk(x) =

{
1− 1

k , for x = 0
1
k2

−k2 , for x = 1, . . . , 2k
2
,

(D.14)
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and the optimization of the logt-loss over a predictive distribution p(x). The following
limit holds

lim
k→∞

min
p

Eνk(x)[logt p(x)] =

{
0, for t ∈ [0, 1)

∞, for t = 1
, (D.15)

and therefore that an ensemble optimized for a value of t in the range [0, 1) can incur in
an unboundedly large loss when scored using the log-loss.

D.2 Proof of Theorem 6

Theorem. The minimizer of the robust m-free energy objective

Jm
t (q) := L̂mt (θ,D) + m

β
D1(q(θ)||p(θ)). (D.16)

is the fixed point of the operator

T (q):=p(θj) exp

(
β
∑
x∈D

E{θi}i ̸=j

[
logt

(∑m
i=1 p(x|θi)
m

)])
(D.17)

where the average in (6.47) is taken with respect to the i.i.d. random vectors {θi}i ̸=j ∼
q(θ)⊗m−1.

Proof: The functional derivative of the multi-sample risk is instrumental to com-
putation of the minimizer of the robust m-free energy objective (6.41). This is given
as

dR̂m
t (q, x)

dq
=

d

dq
Eθ1,...,θm∼q(θ)⊗m

[
− logtEj∼U [1:m]p(x|θj)

]
(D.18)

= − d

dq

∫
Θm

logtEj∼U [1:m]p(x|θj)
m∏
i=1

q(θi)dθi (D.19)

(a)
= −

m∑
k=1

∫
Θm−1

logtEj∼U [1:m]p(x|θj)
∏
i ̸=k

q(θi)dθi (D.20)

(b)
= −m

∫
Θm−1

logtEj∼U [1:m]p(x|θj)
m−1∏
i=1

q(θi)dθi, (D.21)

= −mEθ1,...,θm−1∼q(θ)⊗m−1

[
logtEj∼U [1:m]p(x|θj)

]
, (D.22)

where (a) follows from the derivative of a nonlocal functional of m functions, and (b)
holds since the integrand is invariant under the permutation of {θi}i ̸=k.

The functional derivative of the robust m-free energy then follows as

dJm
t (q)

dq
=
dR̂m

t (q, x)

dq
+
m

β

dD1(q(θ)||p(θ)
dq

(D.23)
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=−mEθ1,...,θm−1∼q(θ)⊗m−1

[
logtEj∼U [1:m]p(x|θj)

]
+
m

β
(1 + log(q(θ))− log(p(θ))).

(D.24)

Imposing the functional derivative equals to zero function it follows that the optimized
posterior must satisfy

q(θm) =p(θm) · exp
{
βEθ1,...,θm−1∼q(θ)⊗m−1

[
logtEj∼U [1:m]p(x|θj)

]}
. (D.25)

■

D.3 Proof of Theorem 7

Theorem. The influence function of the robust m-free energy objective (6.51) is

IFm
t (z, ϕ, Pn)=−

[
∂2Jm

t (γ, ϕ)

∂ϕ2

]−1

×∂
2Jm

t (γ, ϕ)

∂γ∂ϕ

∣∣∣∣∣γ=0
ϕ=ϕm∗

t (0)

, (D.26)

where

∂2Jm
t (γ, ϕ)

∂ϕ2
=EPn

γ,z(x)
∂2

∂ϕ2

[
R̂m

t (qϕ, x)
]
+

∂2

∂ϕ2

[
m

β
KL(qϕ(θ)||p(θ))

]
(D.27)

and

∂2Jm
t (γ, ϕ)

∂γ∂ϕ
=
∂

∂ϕ

[
EPn(x)

[
R̂m

t (qϕ, x)
]
−R̂m

t (qϕ, z)
]
. (D.28)

The proof of Theorem 7 directly follows from the Cauchy implicit function theorem
stated below.

Theorem 8 (Cauchy implicit function theorem). Given a continuously differentiable
function F : Rn × Rm → Rm, with domain coordinates (x, y), and a point (x∗, y∗) ∈
Rn×Rm such that F (x∗, y∗) = 0, if the Jacobian JF,y(x

∗, y∗) =
[
∂F1(x∗,y∗)

∂y1
, . . . , ∂Fm(x∗,y∗)

∂ym

]
is invertible, then there exists an open set U that contains x∗ and a function g : U → Y
such that g(x∗) = y∗ and F (x, g(x)) = 0, ∀x ∈ U . Moreover the partial derivative of g(x)
in U are given by

∂g

∂xi
(x) = − [JF,y(x, g(x))]

−1

[
∂F

∂xi
(x, g(x))

]
(D.29)

Proof: Replacing F (x, y) with
∂Jm

t (γ,ϕ)
∂ϕ and g(x) with ϕm∗

t (γ) and accordingly rewrit-
ing (D.29), we obtain

dϕm∗
t (γ)

dγ
=−
[
∂2Jm

t (γ, ϕm∗
t (γ))

∂ϕ2

]−1

×∂
2Jm

t (γ, ϕm∗
t (γ))

∂γ∂ϕ
. (D.30)

The influence function (D.26) is then obtained evaluating (D.30) at γ = 0.
■
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Figure D.1: Ensemble predictive distribution obtained minimizing different free energy
criteria and different values of m. The samples from the ID measure are represented
as green dots, while data points sampled from the OOD component are in red. The
optimized predictive distributions. The predictive distribution obtained minimizing the
standard m-free energy is denoted by Jm, while the predictive distribution yielded by
the minimization of the robust m-free energy are denoted by Jm

0.9,Jm
0.7,Jm

0.5,Jm
0.3 and Jm

0.1

for t = {1, 0.9, 0.7, 0.5, 0.3, 0.1} respectively.

Table D.1: Total variation (TV) distance between the ID measure ν(x) and the predictive
distribution pq(x) obtained from the optimization of the different free energy criteria.

t = 1 t = 0.9 t = 0.7 t = 0.5 t = 0.3 t = 0.1

m = 1 0.59 0.42 0.27 0.18 0.16 0.18
m = 2 0.44 0.32 0.22 0.17 0.15 0.15
m = 5 0.34 0.32 0.23 0.18 0.15 0.14
m = 10 0.34 0.30 0.24 0.19 0.15 0.16
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D.4 Simulation Details

D.5 Details on the Toy Example of Figure D.1

In the toy example of Figure D.1, the ID distribution ν(x) is a two component Gaussian
mixture with means {−2, 2}, variance equal to 2, and mixing coefficients {0.3, 0.7},
respectively. The OOD distribution ξ(x) is modelled using a Gaussian distribution with
mean -8 and variance equal to 1.

The probabilistic model is a Gaussian unit variance p(x|θ) = N (x|θ, 1), the ensembling
distribution q(θ) is represented by a discrete probability supported on 500 evenly spaced
values in the interval [−30, 30], and the prior is p(θ) = N (θ|0, 9). For a given m, β and t,
the optimized ensembling distribution is obtained applying the fixed-point iteration in
Theorem 6, i.e.,

q+(θ) = p(θ) exp

{
β

∑
θ1,...,θm−1

m−1∏
i=1

qt(θi) logt

(∑m−1
j=1 p(x|θj) + p(x|θ)

m

)}
, (D.31)

qt+1(θ) = (1− α)qt(θ) + α
q+(θ)∑
θ q

+(θ)
, (D.32)

for α ∈ (0, 1).
In Figure D.1 we report the optimized predictive distributions produced by the above

procedure for β = 1, m = {1, 2, 5, 20} and t = {1, 0.9, 0.7, 0.5, 0.3, 0.1}. As m grows
larger, the multi-sample bound on the predictive risk becomes tighter. As a result, the
predictive distribution becomes more expressive, and it covers all the data points. The
use of generalized logarithms offers increased robustness against the outlier data point,
and leads to predictive distributions that are more concentrated around the ID measure.
In Table D.1 we report the total variation distance between the ID measure and the
predictive distribution pq(x). The proposed robust m-free energy criterion consistently
outperforms the standard criterion by halving the total variation distance form the ID
measure for t = 0.3.

D.6 Details and Further Results for the Classification Example in
Sec. 6.6.2

In Figure 6.6, we used expected calibration error (ECE) [1] to assess the quality of
uncertainty quantification of the classifier. In this section, we formally define the ECE,
along with the related visual tool of reliability diagrams [166], and present additional
results using reliability diagrams.

Consider a probabilistic parametric classifier p(b|a, θ), where b ∈ {1, . . . , C} represents
the label and a the covariate. The confidence level assigned by the model to the predicted
label

b̂(a) = argmax
b

p(b|a, θ) (D.33)
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Figure D.2: Reliability diagram of deep ensembles [4].

given the covariate a is given as [1]

p̂(a) = max
b
p(b|a, θ). (D.34)

Perfect calibration corresponds to the equality [1]

P(b̂(a) = b|p̂(a) = p) = p, ∀p ∈ [0, 1], (D.35)

where the probability is taken over the ID sampling distribution ν(a, b). This equality
expresses the condition that the probability of a correct decision for inputs with confidence
level p equals p for all p ∈ [0, 1]. In words, confidence equals accuracy.

The ECE and reliability diagram provide means to quantify the extent to which the
perfect calibration condition (D.35) is satisfied. To start, the probability interval [0, 1]
is divided into K bins, with the k-th bin being interval (k−1

K , k
K ]. Assume that we have

access to test data from the ID distribution. Denote as Bk the set of data points (a, b) in
such test set for which the confidence p̂(a) lies within the k-th bin, i.e., p̂(a) ∈ (k−1

K , k
K ].

The average accuracy of the predictions for data points in Bk is defined as

acc(Bk) =
1

|Bk|
∑
a∈Bk

1(b̂(a) = b), (D.36)

with 1(·) being indicator function, b being the label corresponding to a in the given data
point (a, b), and |Bk| denoting the number of total samples in the k-th bin Bk. Similarly,
the average confidence of the predictions for covariates in Bk can be written as

conf(Bk) =
1

|Bk|
∑
a∈Bk

p̂(a). (D.37)

Note that perfectly calibrated model p(b|a, θ) would have acc(Bk) = conf(Bk) for all
k ∈ {1, . . . ,K} in the limit of a sufficiently large data set.
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Figure D.3: Reliability diagrams of robust Gibbs predictor that optimizes J 1
t (top); and

proposed robust ensemble predictor that optimizes J 10
t (bottom) under contamination

ratio ϵ = 0.3 for different t = 0, 0.5, 1.

D.6.1 Expected Calibration Error (ECE) [1]

ECE quantifies the amount of miscalibration by computing the weighted average of the
differences between accuracy and confidence levels across the bins, i.e.,

ECE =

K∑
k=1

|Bk|∑K
k=1 |Bk|

∣∣∣acc(Bk)− conf(Bk)
∣∣∣. (D.38)

D.6.2 Reliability Diagrams

Since the ECE quantifies uncertainty by taking an average over the bins, it cannot
provide insights into the individual calibration performance per bin. In contrast, reliability
diagrams plot the accuracy acc(Bk) versus the confidence conf(Bk) as a function of the bin
index k, hence offering a finer-grained understanding of the calibration of the predictor.

D.6.3 Additional Results

For the MNIST image classification problem considered in Section 6.6.2, Figure D.2 plots
for reference the reliability diagrams for deep ensembles [4], while Figure D.3 reports
reliability diagrams for the proposed classifiers with different values ofm and t. The figures
illustrate that using the standard log-loss (t = 1) tends to yield poorly calibrated decisions
(Figure D.2 and Figure D.3 (right)), while the proposed robust ensemble predictor can
accurately quantify uncertainty using t = 0.5 (Figure D.3 (bottom, middle)). It is also
noted that setting t = 1 is seen to yield underconfident predictions due to the presence
of outliers, while a decrease in t leads to overconfident decision due to the reduced
expressiveness of t-logarithms. A proper choice of t leads to well-calibrated, robust
prediction.
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[64] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge: Distributed
stochastic gradient descent over-the-air,” IEEE Trans. on Signal Processing, vol. 68,
pp. 2155–2169, 2020.

[65] S. Dutta, J. Wang, and G. Joshi, “Slow and stale gradients can win the race,” IEEE
Journal on Selected Areas in Information Theory, vol. 2, no. 3, pp. 1012–1024, 2021.

[66] G. Nadiradze, A. Sabour, P. Davies, I. Markov, S. Li, and D. Alistarh, “Decen-
tralized SGD with asynchronous, local and quantized updates,” arXiv preprint
arXiv:1910.12308, 2019.

[67] T. Adikari and S. Draper, “Decentralized optimization with non-identical sampling
in presence of stragglers,” in ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 3702–3706.

[68] L. Xiao, S. Boyd, and S. Lall, “Distributed average consensus with time-varying
Metropolis weights,”Automatica, vol. 1, 2006.

[69] E. Jeong, M. Zecchin, and M. Kountouris, “Asynchronous decentralized learning
over unreliable wireless networks,” arXiv preprint arXiv:2202.00955, 2022.

[70] O. Esrafilian, R. Gangula, and D. Gesbert, “Autonomous UAV-aided mesh wireless
networks,” in IEEE INFOCOM 2020-IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS). IEEE, 2020, pp. 634–640.

[71] D. Behnke, K. Daniel, and C. Wietfeld, “Comparison of distributed ad-hoc net-
work planning algorithms for autonomous flying robots,” in 2011 IEEE Global
Telecommunications Conference-GLOBECOM 2011. IEEE, 2011, pp. 1–6.

[72] S. Sabino and A. Grilo, “Topology control of unmanned aerial vehicle UAV mesh
networks: A multi-objective evolutionary algorithm approach,” in Proceedings of the
4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications,
2018, pp. 45–50.

146



Bibliography

[73] I. Donevski, N. Babu, J. J. Nielsen, P. Popovski, and W. Saad, “Federated learning
with a drone orchestrator: Path planning for minimized staleness,” IEEE Open
Journal of the Communications Society, vol. 2, pp. 1000–1014, 2021.

[74] I. Mrad, L. Samara, A. A. Abdellatif, A. Al-Abbasi, R. Hamila, and A. Erbad,
“Federated learning for UAV swarms under class imbalance and power consumption
constraints,” arXiv preprint arXiv:2108.10748, 2021.

[75] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude for maximum
coverage,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569–572, 2014.

[76] G. J. Lieberman and F. S. Hillier, Introduction to operations research. McGraw-Hill
New York, NY, USA, 2005, vol. 8.

[77] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness through
awareness,” in Proceedings of the 3rd innovations in theoretical computer science
conference, 2012, pp. 214–226.
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