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General introduction

"The noise is the signal". This is the mysterious title of an article in Nature condensedmatter physics from Rolf Landauer in 1998 [START_REF] Landauer | The noise is the signal[END_REF]. The author reminds us that, even if the noise generally obscures the observables we aim to measure, it also contains crucial information. Whether in the vibrating motion of particles to explain the temperature, in the Brownian motion of proteins responsible for the very fabric of life, or in the cosmic microwave background to clarify our understanding of the inhomogeneities in the current galaxy distributions, the noise is essential to comprehend our world. In this thesis, we apply this simple and yet powerful notion in the context of nuclear physics. In particular, we aim at exploiting the information contained in the fluctuations measured in heavy-ion collisions (HIC) to infer the thermodynamic properties of the strongly interacting matter. The last sentence already expressed intriguing and puzzling questions by bringing together three key notions, strongly interacting matter, heavy-ion collisions and fluctuations. Strongly interacting matter is composed of quarks and gluons, the elementary particles forming the nucleons. In the standard model of particle physics, their behavior is described by Quantum Chromodynamics (QCD). The non-Abelian structure of QCD results in the fact that gluons, as carriers of the strong force, are able to interact with themselves. In the non-perturbative regime, a description of the dynamics of quarks and gluons is extremely difficult both physically and mathematically. However, this peculiar feature of the QCD offers an incredible richness of behaviors and especially, the confinement and the asymptotic freedom. Confinement limits our direct access to knowing the properties of quark and gluon (or QCD) matter. If one tries to extract a quark from a nucleon, the strength of the strong interaction between the quark and the rest of the nucleon will continuously increase until a breaking point where it becomes energetically favored to relieve the accumulated tension by bringing a quark anti-quark pair to existence. One quark from the pair goes with the nucleon and the other one with the quark. In the end, one has two quarks forming a bound state called a hadron and not a single quark. Fortunately, the confinement is not an absolute limitation. At very high energy, quarks and viii gluons can evolve freely as single particles. Indeed, the anti-screening of color charge makes the strong force appear weaker and weaker as the length scale diminishes with increasing energy. As in a reception buffet surrounded by a crowd attracted by the food. From far away, there is plenty of delicious foodstuffs everywhere. Getting closer and closer to the buffet you realize that all the food on the plates is not on the buffet anymore and you end up with the remaining peanuts. The asymptotic state, the QCD buffet, is called the quark-gluon plasma (QGP). The existence of these two features of QCD matter, asymptotic freedom and confinement, implies that QCD matter can be found in two (at least) different phases. At high energy, the QGP, and at low energy, the hadronic phase (or hadron gas (HG) phase). The transition temperature is extremely high, of the order of terakelvins, at least a hundred times the temperature in the core of the sun (∼ 150 MeV). At the very early stages of the universe's history, microseconds after the Big Bang, such a condition was fulfilled. The young universe has been a QGP at some point, all matter was once melted into a soup of its fundamental constituents. Today we can only observe hadrons in nature (except maybe in the core of neutron stars). The latter conclusion has far-reaching consequences as it means that a phase transition from QGP to HG occurred in the universe's history and that the current state of the universe is probably dictated by the transition features. Does the QGP solidify in the same way as water becomes ice at a certain temperature? Can we imagine that there were bubbles of QGP inside the gas of hadrons as when water boils? Depending on the answer to these questions, completely different scenarios for the history of the universe may explain the current galaxy distribution or the fluctuations in the Cosmic Microwave Background for instance. Particle colliders such as the Large Hadron Collider (LHC) at CERN or the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory are now able to reproduce the necessary pressure and temperature conditions to create a QGP for a brief instant (∼ 10 -22 seconds !). The idea is to collide heavy ions such as led or gold ions at relativistic velocities and measure the particles created by the transfer of kinetic energy to mass energy during the collision. Although not observed directly, strong experimental indications such as strangeness enhancement, collective behavior measured by the anisotropic flow, or J/Ψ suppression, advocate in favor of the creation of a QGP. As understood currently, when two heavy ions collide, the energy in the center of mass frame becomes large, and the QGP is formed. Then, the QGP rapidly expands and cools down until the transition temperature is reached. After this, the energy is not sufficient enough, and quarks form hadrons again. Pushing the reception metaphor a little further, a HIC is like a guest doing a round trip to the buffet. Our detectors are then kind gentlemen asking the guest questions about the buffet content and other guests' plates. Heavy-ion collisions are a formidable tool to study ix the phase transition between QGP and hadronic matter. But, what detected particles can tell us about such a dynamical and ephemeral phenomenon? And, what kind of question should we ask? These two questions are crucial in heavy-ion experiments and represent challenging issues in contemporary high-energy physics. The first one asks about the impact of the measurement methodology on the measurement. Indeed, HIC are occurring at velocities close to the speed of light and involve the highest temperatures one can imagine. Moreover, the object of interest is created during the collisions, expands, and disappears afterward. The outcome of such events is thus intrinsically connected to its dynamics. To sum up, the measurements of the QGP are done in a highly dynamic situation taking place in one of the most extreme environments in the universe. Interestingly enough, experimental results are well reproduced considering the QGP as a relativistic fluid with small viscosity. It offers a comprehensive framework to tackle the issue of the QGP dynamics. It is now extensively used to describe the QGP behavior in HIC. In this work we make the same assumption, that the QGP dynamics in a HIC can be described by a relativistic fluid model. The second question refers to the indirect observation of the phase transition. Concretely, the only available data are the energy, momentum, and the nature of the particles reaching the detectors after the collision. Depending on the detectors these quantities are evaluated with great precision, poor precision, or even not at all for some particles. In the subset of available and precise enough data, what can we ask from the data to reveal information on the phase transition? The first step is to make our questions more precise. If the fluid description holds then we can infer some global properties from other known fluids such as water for instance (this is not a naive example as it will be explained in the thesis !). Looking at the phase diagram of other fluids, we see that phase transitions are classified into different types: The first order, second order, crossover phase transition, etc. We also find particular points, the triple point where gas, liquid, and gas coexist and the critical point, the joining point between first order and a crossover phase transition. The assumption that the QGP is a fluid thus raises many questions about the phase diagram of QCD matter. In particular, knowing the type of phase transition between the QGP and the HG or whether the QCD phase diagram possesses a critical point or not could have important implications on our understanding of the universe. The precise question we want ask to the QCD matter is: what is the structure of your phase diagram? This is where the last key ingredient, the fluctuations, enters into the game. A (continuous) phase transition is described by an order parameter whose statistical average is vanishing in one of the two phases. The canonical example for a phase transition is that in a ferromagnet, where the order parameter is the averaged magnetization. When all spins point in the x same direction at low temperatures, the magnetization takes a finite value. When the spins point in random directions at high temperature, it is vanishing and the material becomes paramagnetic. It unequivocally distinguishes the two phases. Looking at the fluctuations of the order parameter around its expectation value adds extra information, for example the transition temperature can be deduced. Indeed, far from the transition, the fluctuations are short-ranged as the free energy (understood as the competition between order and disorder) is governed by only one phase. Close to the transition, the two phases try to impose their version of the order to disorder balance at the same time. The system has no other choice than to respect the two simultaneously and long-ranged correlations are created. In the ferromagnetic phase, one can imagine that at the transition temperature, the ceaselessly flipping spins of the large temperature phase compete with the organized one-directional alignment in the small temperature phase. It means that when a spin flips, which happens often due to the proximity to the large temperature phase, a large number of other spins also flips due to the order constraint of the small temperature phase. The fluctuations around the averaged magnetization are long-ranged. At the precise location of the transition, the correlation length of the fluctuations becomes infinite. Studying the fluctuations of an order parameter of QCD matter would then be incredibly informative concerning the QCD phase diagram. Unfortunately, this is not possible directly and we have to rely on our understanding of quantities that might serve as proxies. It turns out that the fluctuations of the QCD order parameter have an impact on the event-by-event net-baryon number fluctuations and its rapidity distribution. The net-baryon number is the difference between the measured number of baryons and anti-baryons (generally, the net-proton number is taken as a proxy) and is thus easily accessible. This is the connection to the experimental available data we needed. The mysterious title "the noise is the signal" evoked at the beginning shows all its signification here, the fluctuations around the expectation value of measurements in fact contain information about the system. The direct consequence of these considerations is that phase transition and critical point signals are believed to be found in the net-baryon number event by event fluctuations in HIC. In the two previous paragraphs we implicitly assumed that the fluctuations were at thermal equilibrium in and infinite sized system. As evoked before, HIC are a dynamical phenomenon. How can we be sure that the event-by-event fluctuations of the net-baryon number are only due to the phase transition or the critical point? Indeed, the system created in the relativistic HIC is short-lived (∼ 10 fm/c), small (likely ∼ f m) and highly dynamical. The interplay between the finite size and the dynamics may drive the fluctuations out-ofequilibrium. The consideration of off-equilibrium effects via a dynamical description of the evolution of the fluctuations during the collisions is crucial to understand experimental meaxi surements. This is the motivation for the study presented in this thesis. The three key ingredients, QCD matter, HIC, and fluctuations are also essential to understanding the technical details of this work. We aim at describing the dynamical evolution of the fluctuations of the net baryon, net electric charge and net strangeness densities in heavyion collisions. For this reason, we build stochastic diffusion equations in a Bjorken-type expanding fluid and perform numerical simulations of the fluctuating fields until freeze-out. These equations are based on a fluctuating fluid dynamical model which allows us to make a connection between the thermodynamic properties of the QCD matter and the dynamical evolution.

In the first chapter, we present the detailed motivation for this study and introduce several key concepts necessary to fully grasp how the fluctuations in HIC maybe described and connected to experimental measurements. In the second chapter, we introduce a model for the dynamical evolution of the fluctuations based on relativistic fluid dynamics. The third chapter is dedicated to the study of the diffusive dynamics of the net-baryon density near the QCD critical point. The fourth chapter discusses the coupled diffusive dynamics of the fluctuations of the conserved net-charge densities in the hadronic medium. The fifth chapter gives all the needed details on the numerical implementation of the equations as well as technical details of the stochastic studies.

Chapter 1 Thermodynamics and Dynamics of the QCD matter

The phase structure of the strongly interacting matter is currently understood via the quantum chromodynamics (QCD). This is a quantum field theory that describes quarks and gluons, and their interaction, the QCD matter. First principle approaches such as Lattice QCD (introduced by Wilson [START_REF] Wilson | Confinement of quarks[END_REF], for a review see [START_REF] Ratti | Lattice QCD and heavy ion collisions: a review of recent progress[END_REF]) or functional methods [START_REF] Wetterich | Exact evolution equation for the effective potential[END_REF] for the study of the phase diagram, are actively improving our knowledge on the QCD matter. However, the non-Abelian structure of QCD makes it extremely difficult to manipulate. To circumvent this difficulty, other approaches such as effective theories like PNJL [START_REF] Nambu | Dynamical model of elementary particles based on an analogy with superconductivity. ii[END_REF][START_REF] Klevansky | The nambu-jona-lasinio model of quantum chromodynamics[END_REF] or perturbative QCD [START_REF] Peskin | An Introduction to quantum field theory[END_REF] have been proposed. They allow solving QCD with approximated symmetries or in particular regimes. Altogether, the current knowledge of the QCD matter phase structure is condensed in the QCD phase diagram. There are mainly two phases in the diagram, the quark and gluon plasma (QGP) at high temperature and/or large baryon density and the hadron gas (HG) at low temperature and density. It is also conjectured that the QCD phase diagram may have a critical point (see for instance [START_REF] Stephanov | QCD critical point and correlations[END_REF]). Since the discovery of the "perfect fluid" at CERN in 2000 [START_REF] Heinz | Evidence for a new state of matter: An assessment of the results from the cern lead beam programme[END_REF], later confirmed by BNL, it is known that a QGP can be created during HIC. As the QCD matter is ordinarily in the HG, heavy-ion collisions are a formidable tool to probe the phase transition. It enables the confrontation between theoretical predictions on the phase structure of the QCD matter and experimental measurements. In large particle colliders such as the Large Hadron Collider (LHC) at CERN or the Relativistic Heavy-ion Collider (RHIC) at BNL, when two accelerated particles or ions collide, kinetic energy is transferred into mass energy, into particles. These particles interact with each other and reach for detectors. The analysis of the particles reaching the detector allows for reconstructing the history of the collision and thus reveals information about the QCD matter and its phase diagram.

Understanding the impact of the measuring instrument and measurement context on the studied physical object is a crucial step before any interpretations of the results. It is particularly true in the study of phase transition in HIC. Indeed, in the standard picture [START_REF] Belenkij | Hydrodynamic theory of multiple production of particles[END_REF][START_REF] Bjorken | Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region[END_REF], QCD matter melts into a QGP right after the collision, it expands dynamically at relativistic speed, and then hadronizes and hadrons are detected. In other words, the physical object is created and destroyed dynamically during the measurement and we measure only remnants. Measuring the thermodynamics properties of the QCD matter is thus a considerable challenge due to its interplay with the dynamics in heavy-ion collisions. In this thesis, we tackle the above-mentioned issue in the search for QCD criticality in HIC through the following questioning: are we able to measure criticality in heavy-ion collisions? First, by asking ourselves if the dynamical features of the collisions allow the birth of a critical signal during a collision (in Chapter 3). Second, supposing that a signal is generated earlier in the collision, evaluate its survival in the dynamical hadronic medium until the end of the event (in Chapter 4). Coming back to the QCD matter, it turned out that predictions from relativistic fluid dynamics [12] are in good agreement with experimental measurement (for a review see [START_REF] Kolb | Hydrodynamic description of ultrarelativistic heavy-ion collisions[END_REF]). It is a very useful observation as it allows to make a straight connection between thermodynamics and dynamics via the equation of state (EoS). Giving both theoretical inputs from QCD and phenomenological inputs from the experimental context allow us to describe the out-of-equilibrium dynamics of the QCD matter during a heavy-ion collision. The hydrodynamic description holds if local equilibrium can be assumed. Moreover, it studies the average over a control volume at a mesoscopic scale making any microscopic details irrelevant. In particular, the thermal fluctuations are neglected in fluid dynamics description and thus it only applies when these fluctuations are small compared to the averages. These requirements are obstacles to the study of criticality. Indeed, in the vicinity of a critical point, a peculiar phenomenon occurs, the critical slowing down [START_REF] Berdnikov | Slowing out-of-equilibrium near the QCD critical point[END_REF]. Basically, the relaxation time of the system increases drastically. The local equilibrium assumption may not be respected during the whole collision event if the system passes near the critical point. On top of that, the susceptibility of the fluid becomes large in the critical region. It means that the thermal fluctuations are expected to become large and thus cannot be neglected. For these reasons, we need to consider fluctuations. In this introductory chapter, we first recall the major ingredients to the construction of the QCD phase diagram and describe how the phase transition and critical point physics of QCD matter can be described. Second, we put the emphasis on the theory of phase transitions and critical point at equilibrium. Third, we talk about the experimental motivation at the origin of this work and difficulties related to the highly dynamic situation of HIC.

QCD matter at thermal equilibrium

In this section, we briefly describe the quantum chromodynamics. In particular, we explain why it predicts that the QCD matter can be in at least two phases, the HG and the QGP. These two phases are then pictured in the QCD phase diagram and we detail a Ginzburg-Landau mean-field theory describing the transition and critical point on the crossover side.

QCD: A non-Abelian gauge theory

QCD is the Quantum field theory (QFT) describing the dynamics of the strong interactions between quarks and the gluons. Quarks are spin-1/2 elementary particles carrying fractional electric charge and baryon number. They have flavor, up (u), down (d), strange (s), charm (c), bottom (b), and top (t), and colors red (R), blue (B), and green (G) degrees of freedom. The mediator of the strong interaction, gluons are spin-1 gauge bosons. The Lagrangian density is given by [START_REF] Yagi | Quark-Gluon Plasma: From Big Bang to Little Bang[END_REF].

L QCD (q) = qα iγ µ D µ αβ -mδ αβ q β - 1 4 F a µν F µν a (1.1)
This lagrangian density is invariant under SU(3) gauge transformations. SU( 3) is a noncommutative group and thus, QCD is a non-Abelian theory. The latter properties are at the very essence of the particular behaviors of the QCD matter. For instance, it allows the gluons to carry a color charge. Likewise, the richness of the QCD phase structure comes from this peculiar property. To understand what it means, it is interesting to go back to the foundation of the QCD. In particular, breakthrough discoveries in deep-inelastic scattering (DIS) from Bjorken and Feynman in the 60s, the Bjorken scaling and the parton model. This short presentation is based on chapter 14 in [START_REF] Peskin | An Introduction to quantum field theory[END_REF] , and refs [START_REF] Taels | Quantum chromodynamics at small bjorken-x[END_REF][START_REF] Greenberg | The parton model[END_REF]. Before Bjorken and Feynman's discovery, deep-inelastic scattering experiments were carried out at the Standford Linear Accelerator Center (SLAC) [START_REF] Taylor | Deep inelastic scattering: The early years[END_REF] to probe the basic component of the matter. These experiments consisted in studying the scattering of an electron on a proton target (see Figure 1.1). It was conjectured that matter inside the proton was made of weakly bounded components and thus that the outcome of DIS experiments would be an electron e ′ with similar momentum as the incoming electron e and a particle X being the proton. As if the electron passes through the proton without interacting due to its large energy in the weakly bounded structure of the proton (see Figure 1.2a ). However, they observed that in the majority of cases the incoming electron interacts with the proton and that many hadrons are in the final state.

If only the proton was found in the final state, it would have meant that the electron

P Q 2 k µ k ′µ X e e ′ Figure 1
.1: Representation of the deep-inelastic experiment at SLAC-MIT [START_REF] Taylor | Deep inelastic scattering: The early years[END_REF]. The incoming electron exchange a virtual photon with square 4-momentum Q 2 with a parton from the proton. In the final state, electron e ′ and particle X composed of the interacting and spectators partons are detected. This picture is taken from ref [START_REF] Taels | Quantum chromodynamics at small bjorken-x[END_REF].

e interacted with the proton considered as a point-like particle. As many hadrons were observed, it meant that protons were a composite of substructures on which the electron scattered.

From this observation, Bjorken and Feynman built the parton model. In this model, the proton is composed of point-like particles, the partons. They are electrically charged fermions that can only exchange small momentum through their interaction. The latter assumption is at the heart of their discovery and will be discussed later on. The parton model imposed strict constraints on the DIS cross-sections and especially that at very high Q 2 , it must only depend on the Bjorken-x and not on the Q 2 anymore. This is called the Bjorken scaling. The Bjorken-x represents the fraction of the total momentum carried by the incoming proton of the parton which interacts with e. Its precise definition is not useful here, the only thing to retain is that it could be tested experimentally. It has been experimentally measured that the scaling is respected up to 10% (see [START_REF] Poucher | High-energy single-arm inelastic e -p and e -d scattering at 6 and 10°[END_REF] Figure 2 for instance). The violation of the Bjorken scaling lead to an interesting development in QCD, in particular with the DGLAP and BFKL evolution equations [START_REF] Gribov | Deep inelastic e p scattering in perturbation theory[END_REF][START_REF] Dokshitzer | Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e-Annihilation by Perturbation Theory in Quantum Chromodynamics[END_REF][START_REF] Lipatov | Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian Gauge Theories[END_REF][START_REF] Balitsky | The Pomeranchuk Singularity in Quantum Chromodynamics[END_REF] but this goes out of the scope of this presentation.

The point-like parton assumptions are easily understood considering that the photon squared 4-momentum Q 2 can be interpreted as a resolution scale. The Bjorken scaling then means that the partons behave the same at all resolution scales and thus must be point-like. However, the weak interaction between the partons due to the assumption that they can only exchange small momenta was difficult to understand. Indeed, by comparing the time scales of the photon momentum exchange with the interaction between partons time scale it appeared to be frozen. Within the framework of fermions exchanging momentum via virtual particles, the Heisenberg uncertainty principle makes virtual exchange of large momentum in very short time scales possible. In other words, everything went as if the partons stopped exchanging these possible momenta or that their interaction is weaker at smaller distances, which is in complete disagreement with the usual 1/r 2 interaction for instance. The latter interpretation turned out to be receivable if the theory describing the partons was asymptotically free.

Asymptotic freedom

Since the above-mentioned developments, the parton model has been identified with the quarks and their interaction by the exchange of virtual gluons in the QFT framework. In 1966, Han and Nambu [START_REF] Han | Three Triplet Model with Double SU(3) Symmetry[END_REF] then suggested that SU(3) local symmetry holds for the three lightest flavors (u), (d), and (s). It allowed us to understand the experimentally observed hadrons formed from quark and gluons bound states and especially ∆ ++ (uuu) and Ω -(sss) which violated the Pauli exclusion principle. But this is only in 1973 that Gross, Wilczek, and Politzer [START_REF] Gross | Ultraviolet behavior of non-abelian gauge theories[END_REF][START_REF] Politzer | Reliable perturbative results for strong interactions[END_REF] demonstrated that QCD symmetries described by a non-Abelian group such as SU(3) lead to its asymptotic freedom as expected from DIS experiment and the Bjorken scaling. Their demonstration is deeply rooted in the QCD renormalization. In particular, they used the Callan-Symanzik equation [START_REF] Symanzik | Small distance behavior in field theory and power counting[END_REF][START_REF] Callan | Broken scale invariance in scalar field theory[END_REF] which imposes a constraint on the renormalized n-point Green's functions G (n) of a field theory with coupling constant g when the renormalization scale κ is shifted of a value δk. It reads,

κ ∂ ∂κ + β(g) ∂ ∂g + nγ(g) G (n) (X, g, κ) = 0 (1.2)
where X = (x 1 , ..., x n ) represents the points on which G (n) is evaluated. Without going into further details (which can be found in [START_REF] Peskin | An Introduction to quantum field theory[END_REF] chapter 12), the compensation for the shift δκ in the renormalization scale is controlled by two functions β and γ depending only on the coupling constant g. Their independence from both X, the scale κ, and the order n makes them fundamental objects of the theory. While γ is related to a shift in the field strength induced by δκ, the function β describes the shift in the coupling constant g due to δκ and is at the center of the proof that QCD is asymptotically free. Indeed, looking into details in Callan and Symanzik derivation and one finds

β(g) = κ ∂g ∂κ (1.3)
Gross, Wilczeck, and, independently, Politzer were able to derive the expression of β from perturbative QCD. At leading order, they found

β(g) = - 1 (4π) 2 11 - 2 3 N f g 3 (1.4)
For the three lightest flavor of QCD, N f = 3. As g and κ are positive, it means that ∂ k g < 0 and thus that the coupling constant of QCD is a decreasing function of the energy scale κ. In other words, the strength of the strong interaction is decreasing with the energy scale at which it is looked at. With this result, the Feynman hypothesis on the weakly interacting partons at high DIS virtual photon 4-momentum Q 2 is now fully understood. The other interpretation is that at a large energy scale the quarks interact weakly, QCD is asymptotically free.

Confinement of color

The sign of the β function Equation (1.4) also implies that the QCD coupling constant becomes large at a small energy scale. The interaction between quarks and gluons becomes large and the energy needed to separate quark bound-states into single quarks increases drastically. Experimentally, single color-charged particles have never been observed. Both theoretical and experimental considerations (even very recent measurements [START_REF] Abazov | Odderon exchange from elastic scattering differences between pp and pp data at 1.96 tev and from pp forward scattering measurements[END_REF]) seem to point to the fact that at a small energy scale, quarks and gluons form color-singlet bound states and that it is impossible to dissociate them. This observation is known as the confinement of color.

Even though it is strongly motivated by the observation, the confinement of color remains to be rigorously proven for non-Abelian SU(3) QCD. The difficulty lies in the fact that the con-

Figure 1.3:
The potential between a heavy-quark and an anti-quark as the function of the distance between them for different lattice spacing a (6/g 2 = 6.0, a = 0.094 fm 6/g 2 = 6.2, a = 0.069 fm 6/g 2 = 6.4, a = 0.051 fm). r 0 = 0.5 fm and Cornell potential is a combination of linear and coulomb potential fit. This plot has been taken from ref [START_REF] Bali | Qcd forces and heavy quark bound states[END_REF] finement of color occurs at a small energy scale and thus in the strong coupling limit where non-perturbative effects dominate. In 1974, a model of QCD on a discrete lattice Euclidian spacetime, now called lattice QCD (lQCD), has been proposed by Wilson [START_REF] Wilson | Confinement of quarks[END_REF]. Using lQCD it is possible to demonstrate that in the strong coupling limit, the potential between and heavy-quark and an anti-quark (Q-q) is proportional to the distance between these quarks (see Figure 1.3) and chapter 5 in [START_REF] Yagi | Quark-Gluon Plasma: From Big Bang to Little Bang[END_REF] for detailed presentation). In this approximation, the energy required to put the heavy quark and the anti-quark at an infinite distance is infinite.

In practice, at a certain energy threshold, the description does not hold and it is believed that the Q-q system breaks by collecting a quark anti-quark pair from the QCD vacuum to form two pairs Q-q and q-q. This result strongly advocates for the confinement of color in QCD.

QCD Phase diagram

The asymptotic freedom and the confinement of color presented above distinguish two states of the QCD matter. At large energy scale, larger than Λ QCD ∼ 200 MeV [START_REF] Peskin | An Introduction to quantum field theory[END_REF], the QCD matter is composed of quarks and gluons evolving freely. At a small energy scale, smaller than Λ QCD , the confinement of color occurs and the QCD matter is made into color singlet bound states. The strongly interacting matter can be found in (at least) two different phases. Moreover, if one could gradually increase the energy scale, one would expect confined quarks to melt into the deconfined state [START_REF] Rafelski | Melting hadrons, boiling quarks[END_REF]. This observation opened the way for the study of the thermodynamics of the QCD matter [START_REF] Cabibbo | Exponential hadronic spectrum and quark liberation[END_REF]. Now, all the knowledge is condensed in the QCD phase diagram. In Figure 1.4, we represented an up-to-date version of the QCD phase diagram based on refs [START_REF] Guenther | An overview of the QCD phase diagram at finite T and µ[END_REF][START_REF] Alford | Color superconductivity in dense quark matter[END_REF]. The phase structure is represented as a function of the temperature and the baryo-chemical potential. The baryo-chemical potential and the baryon density are related and have the same sign, increasing µ B can then be understood as increasing n B . From recent lattice QCD calculations [START_REF] Borsanyi | Qcd crossover at finite chemical potential from lattice simulations[END_REF], the transition temperature at vanishing baryo-chemical potential is found to be T c = 158 MeV. At low temperature and baryo-chemical potential, the energy scale is smaller than Λ QCD , we observe hadrons. Conversely, at large T and µ B , the energy scale is large than Λ QCD , and the QCD matter is a quark-gluon plasma. Another state of the QCD matter is expected at large µ B and small temperature [START_REF] Alford | Color superconductivity in dense quark matter[END_REF], the color superconductor where quarks form Cooper pairs as in electrons is superconductors. This state has never been experimentally observed (even indirectly) and is supposed to occur only in the core of neutron stars. At a small temperature and slightly smaller chemical potential, the QCD matter is in the form of the matter composing neutron stars. At even small µ B , the QCD matter is in the form of the nuclei, its most common form.

There are still many unanswered questions, in particular on the phase transition between QGP and HG [START_REF] Stephanov | QCD phase diagram and the critical point[END_REF]. At large µ B , effective theories such as NJL, non-linear sigma models or hadronic bootstrap for instance [START_REF] Masayuki | Chiral restoration at finite density and temperature[END_REF][START_REF] Scavenius | Chiral phase transition within effective models with constituent quarks[END_REF][START_REF] Antoniou | Bootstraping the qcd critical point[END_REF] predict that there is a first-order phase transition (see details after) between HG and QGP (black line in Figure 1.4). At small µ B , lQCD calculations demonstrated that the transition is a crossover [START_REF] Borsanyi | Qcd crossover at finite chemical potential from lattice simulations[END_REF]. By combining these two arguments, there must exist a point at finite µ B where the nature of the transition change (red dot noted "CP" in Figure 1.4). Looking at other phase diagrams, this point must be a critical point. The discovery of the QCD critical point would be a landmark in the understanding of the QCD matter. As there is a critical point for all liquid-gaseous first order phase transition endpoint [START_REF] Landau | Statistical Physics[END_REF], it would reveal compelling evidence of the fluid nature of the QGP. For this reason, many efforts have been made on the theory side to predict its precise location in the phase diagram. In Lattice QCD is applicable rigorously only at vanishing µ B due to the fermion sign problem [START_REF] Goy | Sign problem in finite density lattice QCD[END_REF]. Taylor-expansion and other methods allow lattice calculations to reach further regions at finite µ B (typically µ B /T < 2, blue regions in both Figure 1.4 and Figure 1.5). However, the results will depend on the order of the Taylor expansion, and the next orders need to be computed. The perturbative QCD (see Figure 1.4) is not a good approximation of the values predicted by other models, the critical point is likely to be in the non-perturbative region of the diagram. We also see that FRG and lQCD are not compatible. All these observations advocate for the difficulty of understanding QCD criticality from first-principal calculations for the moment. On the compilation Figure 1. [START_REF] Kekelidze | The nica project at jinr dubna[END_REF].

In this thesis, we concentrate our efforts on the first step of this methodology, estimating the expected criticality signal in heavy-ion collisions from phenomenological models. Building such models can be decomposed into three steps. First, understand QCD criticality from the theoretical perspective. Second, find a relevant experimental observable. Third, connect theoretical considerations and experimental context via a phenomenological model to allow for eventual theory-to-measurements comparison.

Phase transition in the QCD phase diagram

Near a critical point, one expects to observe the divergence of the correlation length of the fluctuations (of density, for instance, see critical opalescence experiments). It is an exciting consideration in the search for QCD criticality as it allows to expect extraordinary behaviors of experimental observables if a collision is done at the √ s N N corresponding to the critical point. A description of what is to expect can be made by studying the phase transition between the QGP and HG. We present here a pedagogical approach to the QCD phase transition on the crossover side of the phase diagram (small µ B ). The interested reader may take a look at refs [START_REF] Stephanov | QCD critical point and correlations[END_REF][START_REF] Yagi | Quark-Gluon Plasma: From Big Bang to Little Bang[END_REF][START_REF] Stephanov | Signatures of the tricritical point in QCD[END_REF][START_REF] Zinn-Justin | Quantum Field Theory and Critical Phenomena[END_REF]. 

Order and disorder

The concept of phase transition is deeply-rooted in the battle between order and disorder.

A nice way to visualize it is to consider a two-dimensional lattice where each node can be either in a spin up or spin down state, the 2D Ising model ( [START_REF] Ising | Beitrag zur Theorie des Ferromagnetismus[END_REF][START_REF] Cipra | An introduction to the ising model[END_REF], see [START_REF] Gitterman | Phase Transitions: Modern Applications[END_REF] for a pedagogical introduction). The concept of order can be seen in the global orientation of the spins. If they are all up or down, the system is ordered. If they are randomly placed, the system is disordered (see Figure 1.6. In the Ising model, the order can be measured by the magnetization M . It is defined as the expectation value of the spin on the total number of spin N , M = 1/N i s i . It unequivocally distinguishes the ordered and disordered phases as it vanishes only in one of the two phases. The magnetization is called the order parameter of the phase transition. Two parameters will control the flipping dynamics of the spins, the temperature, and the magnetic field. Respectively, increasing the flip probability and orienting the spins in one direction. This simple model already exhibits an incredible richness of behaviors. The 2D Ising model also allows grasping one of the fundamental ideas for the study of criticality in the QCD phase diagram, the extraordinary features around a phase transition and a critical point are related to the fluctuations of the order parameter around its expected value. Indeed, spins are not static as presented in Figure 1.6. One has to imagine that the spins flip ceaselessly and interact with each other. The value of the order parameter is then constantly fluctuating and can be split into where ⟨.⟩ denotes the average when at thermal equilibrium and δM are the fluctuations of the magnetization. In Figure 1.7, we give a visual explanation of the growth of the fluctuations correlation length at the critical temperature T c (understood here as the transition temperature) in a response theory fashion. Let's consider that we impose an initial fluctuation at the dark green site by flipping an up spin to a down spin. Then, for

M = ⟨M ⟩ + δM, (1.5) 
• T < T c : δM << ⟨M ⟩
The 2D Ising model is in the ordered (or low temperature) phase. Spins are aligned and the constant flips are rare. Once the initial fluctuation has been imposed, it can be communicated to its closest neighbors by ferromagnetic interactions. Most of the time, the direction imposed by the rest of the system wins and the information cannot pass (grey lines). Only on, rare occurrences, the flip is transmitted to a neighbor spin (light green line). The characteristic correlation length of the fluctuations is small compared to the size of the system (the green area). It also means that the susceptibility of the system is small, it almost does not react.

• T > T c : δM << ⟨M ⟩

The 2D Ising model is in the disordered phase. An equal number of spins are up and down and the constant flips occur very often. This time, the information related to the initial fluctuation we imposed is transmitted as there are no constraints due to the orientation of other spins. However, constant spins and flips destroy this information quickly. It does not transmit in the system and again, the correlation length and the susceptibility are small.

• T ∼ T c : δM >> ⟨M ⟩

The 2D Ising model has to respect low and high-temperature phase features simultaneously. As a consequence, the signal from the initial fluctuation is transmitted easily and is not quickly destroyed. The characteristic fluctuations correlation length is thus very large. In the same way, the susceptibility becomes very large, a simple fluctuations can have dramatic consequences (in the same way as in the theory of self-organized criticality [START_REF] Gitterman | Phase Transitions: Modern Applications[END_REF]). If a simple fluctuation at one node can have such an impact on the whole system, the notion of scale disappear. If one considers that the 5 × 4 lattice presented in Figure 1.7 is infinite, the correlation length of the fluctuation may become infinite. In other words, one cannot distinguish between short and long distances as the system has no intrinsic characteristic scale anymore.

These considerations allow us to qualitatively understand that extraordinary behaviors related to the fluctuations of the order parameter are expected to occur near a phase transition and thus have to be expected in the QCD phase diagram in one way or another.

Static Ginzburg-Landau theory for second order phase transition

The previous example helps to understand one last point about a phase transition, the notion of symmetry in a phase transition. Looking at Figure 1.6, we observe that in the disordered phase (right panel), any transformation leaving the lattice nodes position invariant leads to the same system. Indeed, the spins being arbitrarily distributed, no direction is preferred. In the ordered phase (left), a direction is privileged as all spins are up on average. The ordered phase possesses less invariant transformation. Mathematically, it reads G OP ⊊ G DP where G OP and G DP represents the groups formed by the transformations leaving respectively, the ordered phase and the disordered phase invariant 1 . From this consideration, Landau was able to construct a mean-field theory based on the free energy of a thermodynamic system that captures all essential effects of the order and disorder battle presented in the Ising model [START_REF] Landau | On the theory of phase transitions[END_REF], the Landau theory of phase transition. Nonetheless, this theory did not encompass the growth of long-range correlations at transition temperature (see Figure 1.7) and was later upgraded to a theory now called the Ginzburg-Landau theory of phase transition (see [START_REF] Hohenberg | An introduction to the ginzburg-landau theory of phase transitions and nonequilibrium patterns[END_REF] for complete review).

It is known from lQCD calculations that the phase transition at small baryo-chemical potential is a crossover. Recent theoretical studies suggest nevertheless the existence of a critical point with a second order phase transition at higher µ B . For our purpose then, it is instructive to have a qualitative understanding of the behavior of the free energy in the Landau theory for second order phase transition first. Then we will simply present the corresponding Ginzburg-Landau (GL) theory for QCD phase transition on the crossover side.

The main idea of the Landau theory is to express the free energy F in the form of a Taylor expansion in the order parameter σ around the transition σ ∼ 0 assuming it is analytic at σ = 0. This theory makes general considerations and thus, σ can be related to a large variety of situations. For instance, it can be the magnetization of the Ising model in the limit of vanishing lattice spacing between the spins. Its expression in the context of the QCD is discussed in the Section 1.1.3.3. The Taylor expansion at order N reads

F (T, P, σ) -F (T, P, σ = 0) = N -1 i=1 a i (T, P )σ i + O(σ N ), (1.6) 
where a i (T, P ) are continuous functions of the pressure and the temperature T and the pressure P . For second-order phase transition symmetry arguments developed in [START_REF] Landau | On the theory of phase transitions[END_REF] suggest to write ∆F (P, T ) = F (T, P, σ) -F (T, P, σ = 0) = a 2 (P, T )σ 2 + a 4 (P, T )σ 4 + O(σ 6 ).

(1.7)

Note that the the fact that σ = 0 in the disordered phase by construction does not mean that the right-hand side of Equation (1.6) is vanishing for T > T c . The system represented by a free energy evolves towards its minimization and σ = 0 only at equilibrium. This consideration impose constraints on the a i functions. The first one is that a 4 must be a positive function, if so, the free energy is guaranteed to have a minimum. The second constraints are ∂ σ F = 0 and ∂ 2 σ F > 0, it guarantees that the free energy will have stable minima. Applying these constraints impose that a 2 (P, T ) > 0 in the disordered phase and a 2 (P, T ) < 0 in the ordered phase. By continuity, a 2 (P, T c ) = 0. An additional dependence on an external field h 2 can be added into the free energy by a 2 h can be the external magnetic field in the Ising model for instance. trivial coupling to the order parameter as ∆F (P, T, h) = a 2 (P, T )σ 2 + a 4 (P, T )σ 4 + hσ.

(

In Figure 1.8, we represent the Landau free energy F as a function of the order parameter σ for the three situations mentioned above for a vanishing external field h. At high reduced temperature r = (T -T c )/T c in red, at a low reduced temperature in blue, and at the transition temperature in red. In the first case, the potential is parabolic, the system relaxes towards σ = 0. In the second case, we find a double-well potential, the system relaxes towards either σ > 0 or σ < 0. Thinking of the 2D Ising model, in the low-temperature phase, the spins can be all up or all down. And in the third case, the potential is quartic, the system relaxes slowly towards σ = 0 and is easily excited. The curves smoothly change when r is shifted, this is the essence of a crossover phase transition. As we discussed above, the peculiar behavior of the phase transition is related to the fluctuations of the order parameter. In the Landau free energy, the order parameter is considered uniform. To go further, we need to take into account a possible space and time dependence of σ, which becomes a field. The free energy subsequently becomes a functional of the σ field and its space derivatives. Truncating the spatial derivative dependence at first order, the Ginzburg-Landau free energy associated with the second order phase transition reads [START_REF] Hohenberg | An introduction to the ginzburg-landau theory of phase transitions and nonequilibrium patterns[END_REF] F

[P, T, σ] = dx 3 a 2 (P, T )σ 2 (⃗ x) + a 4 (P, T )σ 4 (⃗ x) + K(∇σ(⃗ x)) 2 .
(1.9)

In this expression, the integral is taken over the whole space. The coefficient before the gradient of the field, K is called surface tension in the remainder of this work. It can be interpreted as a modelization of the cohesive force which tends to reduce spatial inhomogeneities of the σ field gradients. Large K means that different parts (or layers) of the fluid with different veolicties will exchange energy easily with each other and thus that density gradients will be homogeneous. It is crucial for the study of criticality. Indeed, it is responsible for the long-range correlations as we will see in detail in Section 3.2.3. As for the Landau free energy Equation (1.8), the system will evolve towards the minimization of the free energy functional with respect to the field σ. The interpretation is then the same as in Figure 1.8, it is simply adapted to the functional nature of the free energy, e.g., it is minimized by a field and not a numerical value.

To understand, let's consider that σ is a fluctuating field. The position of the free energy functional minima imposes an average value to the field. The shape of the free energy around the minima will determine the amplitude of the fluctuations. In particular, a soft potential leads to large amplitude fluctuations. Concretely, when T > T c , the system evolves toward ⟨σ(⃗ x)⟩ = 0 and the fluctuations around the expectation values are small. For T < T c , toward ⟨σ(⃗ x)⟩ = ±σ 0 corresponding to the two minima and the fluctuations stay small in each potential well. When T ∼ T c , the system evolves also toward ⟨σ(⃗ x)⟩ = 0 but, considering the softening of the free energy functional at vanishing σ field, the fluctuations become very large. This is particularly suited for the study of the slow modes near the critical point and will be discussed in more detail in Section 2.1.1. Indeed, as it will be explained in Section 3.1.1 the critical point corresponds to h = r = 0 (red curve in Figure 1.8). The criticality softens the potential controlling the amplitude of the fluctuations. We discuss how GL free energy is adapted to the study of the QCD critical point. As a last comment, it can be demonstrated that the free energy Equation (3.1) has infrared divergence at the critical point, the term proportional to σ 4 cannot be considered as a small perturbation due to its scaling with the correlation length in less than 4 dimensions [START_REF] Yagi | Quark-Gluon Plasma: From Big Bang to Little Bang[END_REF]. It fundamentally arises from the loss of relevant scale in the scaling region and leads to the development of more sophisticated renormalization theories in 4-ϵ dimensions by Wilson [START_REF] Wilson | The renormalization group and the ϵ expansion[END_REF] at first and Jean Zinn-Justin [START_REF] Zinn-Justin | Quantum Field Theory and Critical Phenomena[END_REF]. In this study, we limit ourselves to a region close to the critical point but far enough to guarantee the consistency of the GL model (see also Chapter 3).

QCD order parameter

The order parameter field σ is not specified in the Ginzburg-Landau formalism and depends on the nature of the matter undergoing the phase transition. As discussed in Section 1.1.3.1, the most important concept of phase transition is a change in the symmetry between the two phases. Finding an order parameter for the QCD thus relies on studying its symmetries. For this purpose it is interesting to write the QCD Lagrangian Equation (1.1) in terms of lefthanded and right-handed quarks q L and q R using the chirality operator γ 5 , q L = 1 2 (1 -γ 5 )q and q R = 1 2 (1 + γ 5 )q. It allows writing

L QCD (q) = L L + L R + (q L mq R + q L m qR ) (1.10)
where L L = L QCD (q L ) and L R = L QCD (q R ) and m is the quark mass matrix. The Lagrangian for left-handed and right-handed quarks, L L and L R , are obviously invariant under global U(N f ) rotations for N f flavors. At vanishing quark mass m = 0, the QCD Lagrangian is thus invariant under U(N f )× U(N f ) transformations. This is the chiral symmetry. At non-vanishing quark mass, however, the term qL mq R + q L m qR is not invariant. The chiral symmetry is spontaneously broken by the non-vanishing quark mass. If one considers only the lightest flavors u, d and s and m u = mu d = m s = m, the QCD Lagrangian can be rewritten

L QCD (q) = L L + L R + mq q (1.11)
where q q = qL q R +q L qR is not invariant under U(N f )× U(N f ) transformations. Even though the quark mass explicitly breaks the chiral symmetry, it is possible that q q becomes very small in certain conditions leading to L QCD (q) ∼ L L + L R even at non-zero quark mass. This is the dynamical restoration of the chiral symmetry. The expectation value of q q in the vacuum ⟨q q⟩, the chiral condensate can thus be used to the measure restoration of the chiral symmetry [START_REF] Nambu | Dynamical model of elementary particles based on an analogy with superconductivity. i[END_REF]. Considering that at high T , the QCD matter is composed of noninteracting quarks and gluons, it can be demonstrated that ⟨q q⟩ ∼ 0. In the same way at low T , considering a weakly interacting gas of pions, ⟨q q⟩ ̸ = 0 (see [START_REF] Yagi | Quark-Gluon Plasma: From Big Bang to Little Bang[END_REF] for details). In the end, the chiral condensate behaves like an order parameter for a phase transition between a QCD matter composed of quark pairs (at low T ) and free quarks (at high T ). In the GL model developed Section 1.1.3.2, we take σ = ⟨q q⟩ to describe the phase transition between the HG and the QGP. The chiral condensate is not the only order parameter related to the chiral phase transition. Any other quantities which take different values in the QGP and the HG related to a change in symmetries between these two phases may serve as an order parameter.

Criticality in heavy-ion collisions

The softening of the free energy functional Equation (3.1) in the vicinity of a critical point leads to large fluctuations and long-range correlations of the chiral condensate field. In the experimental study the QCD critical point, it is expected to have an impact on the event-by-event fluctuations [START_REF] Ejiri | Hadronic fluctuations at the qcd phase transition[END_REF][START_REF] Jeon | Event-by-event fluctuations[END_REF][START_REF] Stephanov | Signatures of the tricritical point in qcd[END_REF]. The event-by-event (e.b.e) fluctuations of an observable refer to the variation of its value for each single collision event considered for the analysis. As we saw in Section 1.1.3.1, one of the most important features at a phase transition or a critical point is that a small fluctuation may have a large impact at the system scale. It traduces the divergence of the susceptibility. Large e.b.e fluctuations mean that repeating the same measurement in the same conditions gives a widely spread outcome. In practice, it is known that the conditions are not the same and thus, the widening of the outcome traduces a large susceptibility. The system is very sensitive to small deviations of conditions event by event. Large event-by-even fluctuations are thus expected to occur in the presence of a critical point [START_REF] Stephanov | Signatures of the tricritical point in qcd[END_REF]. In this thesis, we particularly focus on the net-baryon number event-by-event fluctuations. Indeed, using a similar GL free energy as Equation (3.1), it has been suggested that the net-baryon number e.b.e fluctuations, and especially their higher order cumulants are relevant probes for the criticality in the phase diagram [START_REF] Hatta | Proton-number fluctuation as a signal of the qcd critical end point[END_REF][START_REF] Stephanov | Non-gaussian fluctuations near the QCD critical point[END_REF]. In fact, the net-baryon number cumulants are related to the correlation length of the chiral condensate fluctuations and thus are expected to show extraordinary behavior in the scaling region. Moreover, the netbaryon number is accessible experimentally via the net-proton number distribution and has been measured at different energies [START_REF] Esha | Measurement of the cumulants of net-proton multiplicity distribution in au+au collisions at s n n = 7.7 -200 gev from the star experiment[END_REF][START_REF] Adam | Nonmonotonic energy dependence of net-proton number fluctuations[END_REF][START_REF]Closing in on critical net-baryon fluctuations at lhc energies: cumulants up to third order in pb-pb collisions[END_REF][START_REF] Adamczewski-Musch | Proton-number fluctuations in √ s N N = 2.4GeVAu+Au collisions studied with the high-acceptance dielectron spectrometer (hades)[END_REF] allowing for simulations-to-measurements comparison. In this section, we precise the connection between net-baryon number fluctuations and criticality in the QCD phase diagram, and discuss recent experimental measurements on the net-proton fluctuations and especially the behavior of higher order cumulants. Eventually, we address the question of the comparison between experimental measurement and theoretical expectations in the context of HIC.

Net-proton number fluctuations

The fact that the chiral symmetry is explicitly broken by the quark mass imposes that the divergence of the chiral condensate fluctuations correlation length is accompanied by those of net-baryon, energy, and momentum density fluctuations [START_REF] Fujii | Sigma and hydrodynamic modes along the critical line[END_REF]. The order parameter of the QCD phase diagram is thus a combination of these three densities. Considering a GL model similar to Equation (3.1) and introducing a coupling between the chiral condensate and the net-proton density, Stephanov suggested [START_REF] Stephanov | Non-gaussian fluctuations near the qcd critical point[END_REF] that the fluctuations of the net-proton number δN p are connected to the correlation length of the chiral condensate in the vicinity of the critical point. In particular, he demonstrated that

⟨(δN p ) 2 ⟩ c ∝ ξ 2 , ⟨(δN p ) 3 ⟩ c ∝ ξ 4.5 , ⟨(δN p ) 4 ⟩ c ∝ ξ 7 .
(1.12)

In these formulas, ⟨O n ⟩ c denotes the cumulant of order n of the distribution O. The n-th order cumulants c n of a distribution O contain essentially the same information as the n-th order central moment µ k defined as

µ k = dx(x -Ō) k O(x), (1.13) 
where Ō = dxO(x) and are related to them at order n = 2, 3, 4 as

c 2 = µ 2 , c 3 = µ 2 , c 4 = µ 4 -3µ 2 2 .
(1.14)

In Equations (1.12), the chiral condensate fluctuations correlation length ξ diverges at the critical point. It mechanically entails that the fluctuations of the net-proton number are largely affected by the presence of the critical point. Moreover, as the scaling power increases with the order, higher-order cumulants of the net-proton distribution are even more sensitive to the presence of the critical point. It reveals that the higher-order cumulants of the net-proton number are a promising probe for the search for criticality in the QCD phase diagram. The proportionality relations 1.12 contains a volume factor. It is inconvenient Taken from [START_REF] Asakawa | Fluctuations of conserved charges in relativistic heavy ion collisions: An introduction[END_REF] in the experimental situation as the volume of the fireball is not known and may fluctuate largely from one collision to another. For this reason, the higher-order cumulants κ 3,4 are generally presented as standardized cumulants, respectively the skewness S and the kurtosis κ defined as

S = c 3 c 3/2 2 , κ = c 4 c 2 2 (1.15)
As ratios of cumulants have the same dependence on the volume, S, and κ are independent of the volume. Moreover, they can be interpreted as a measure of the deviation from Gaussian distributions (in red Figure 1.9). Indeed, for Gaussian distributions, S, and κ are vanishing, and thus, non-Gaussian fluctuations and in particular non-monotonic behaviors of the netproton number fluctuations are an indication of criticality in the QCD phase diagram.

Net-proton number fluctuations in experiments

The skewness and the kurtosis Equation same way, recent proton cumulants ratios measurement by HADES collaboration [START_REF] Adamczewski-Musch | Proton-number fluctuations in √ s N N = 2.4GeVAu+Au collisions studied with the high-acceptance dielectron spectrometer (hades)[END_REF] on Au-Au at √ s NN = 2.4 GeV shows a non-monotonic kurtosis as a function the rapidity window for the most central collisions. These results strongly indicates that a peculiar behavior of the net-proton and proton number fluctuations below √ s NN = 20 GeV corresponding to the predicted locations of the critical points in Figure 1.5. It is then likely they are due to the presence of the QCD critical point. However, the direct comparison between predictions from [START_REF] Stephanov | Non-gaussian fluctuations near the qcd critical point[END_REF] is done at thermal equilibrium and relativistic HIC are dynamical phenomena. 

Space-time picture

To fully comprehend the experimental results presented in Figures 1.11 and 1.12 it is crucial to have a clear space-time picture of HIC. Indeed, even though one expects the net-proton fluctuation distribution to be impacted by the criticality, nothing guarantees that the signal suggested by STAR and HADES experiment is solely due to criticality. Indeed, HIC are highly dynamic processes and sources of the proton yield fluctuations such as initial conditions fluctuations, volume dependence, global charge conservation, or finite size and time effects are many [START_REF] Bluhm | Dynamics of critical fluctuations: Theory -phenomenology -heavy-ion collisions[END_REF]. In this work, we consider particularly focus on the effects regarding the finite evolution time of the fireball. Indeed, the conclusion regarding the impact of the correlation length of the σ field on the net-proton yield is essentially true at thermal equilibrium. Even though the remarkable agreement between fluid dynamical simulation and experimental measurement suggests that the initial fireball is close to equilibrium, this is not clear for the fluctuations. In particular, the critical slowing down due to the softening of the potential in the scaling region leads to a dramatic increase in the relaxation time of the fluctuations. If the system passes through the scaling region during the collision, the fluctuations may be driven out-of-equilibrium [START_REF] Berdnikov | Slowing out-of-equilibrium near the QCD critical point[END_REF]. As the evolution time is finite, the fluctuations may remain out of equilibrium during the whole evolution of the fireball. If so, the fluctuations of the net-proton number may not reflect the equilibrium properties of the medium. Moreover, the finite size of the system prevents the correlation length to diverge, Taken from [START_REF] Adamczewski-Musch | Proton-number fluctuations in √ s N N = 2.4GeVAu+Au collisions studied with the high-acceptance dielectron spectrometer (hades)[END_REF] and thus the global effect of criticality on fluctuations observables is reduced [START_REF] Nouhou | Finite size effects on cumulants of the critical mode[END_REF]. For all these reasons, interpreting the experimental results requires studying the dynamical evolution of the fluctuations in a realistic collision scenario. As a first approach, we consider the classical Bjorken picture of a heavy-ion collision [START_REF] Bjorken | Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region[END_REF]. It is decomposed into four important steps as a function of the proper-time τ (see its definition in Section 2.2.1).

1. Thermalization (τ = 0 ∼ 1 fm)

Just before the collisions, the two nuclei are composed of hadrons at very high energy and then dominated by gluons, which is theoretically described by a color-glass condensate [START_REF] Strickland | Small system studies: A theory overview[END_REF]. Just after the collision, the two nuclei pass through each other, and their gluons interact strongly forming flux tubes called a glasma [START_REF] Mclerran | The CGC and the Glasma: Two Lectures at the Yukawa Insitute[END_REF]. At some point, the tubes transform into high-energy virtual gluons and progressively generate on-shell quarks and gluons. After roughly τ 0 ∼ 1 fm, the system composed of free quarks and gluons had enough time to interact and thermalize. The fireball has been created. This (fm) explanation of the earliest time of the collisions is only theoretical for the moment.

2. The quark and gluons plasma (τ ∼ 1 -10 fm) When the fireball is thermalized, the temperature inside is sufficiently high to form a QGP. Subsequently, due to internal pressure, the QGP will expand following Bjorken's prescription (see Section 2.2.1). It is known that this is a rough approximation and that Bjorken expansion should be replaced by a more sophisticated scheme [START_REF] Gubser | Symmetry constraints on generalizations of bjorken flow[END_REF][START_REF] Gubser | Conformal hydrodynamics in minkowski and de sitter spacetimes[END_REF]. However, we stick to it in this Ph.D. thesis. The expansion is accompanied by a temperature cooling of the hot QGP. At some point, the energy is not sufficient and the quarks and the gluons form hadrons.

(fm) (MeV)
3. The hadron gas (τ ∼ 10 -20 fm/c) The formed hadron continues to interact via elastic and inelastic collisions. As the expansion continues, the energy is not sufficient to generate inelastic collisions, this is the Chemical freeze-out. Then, when the distance between each hadron becomes larger than their mean free path, all interactions stop. This is the Kinetic freeze-out.

In this work, we particularly focus on the QPG and hadron gas phase before freeze-outs.

In particular, in Chapter 3 we concentrate on the dynamical evolution of the fluctuations during the QGP and hadron gas until chemical freeze-out and in Chapter 4 we focus on the hadron gas between chemical and kinetic freeze-outs.

Purpose and outline of this thesis

As we saw, from studies on thermal equilibrium, the higher order cumulants of the netproton distribution seem to be a good probe for the experimental discovery of the QCD critical point. In particular, the non-monotonic behavior of the kurtosis, if confirmed with the BES II program is a strong sign for the QCD criticality.

The growth of the net-proton higher order cumulants comes from the divergence of the netbaryon density fluctuations at the critical point. During a heavy-ion collision, the QCD matter describes a trajectory in the phase diagram due to the dynamical nature of the phenomenon, the pathway through the scaling region is thus transient (see Figure 1.16).

The fluctuations of the net-baryon density will "see" the critical point only for a short time. Now, due to the softening of the GL free energy functional near the critical point, the relaxation time of the fluctuation is expected to increase. As a consequence, the in-or out-of-equilibrium nature of the fluctuations is not known a priori. As the fluctuations must be at least close to equilibrium in the scaling region to see the growth of a critical signal, the dynamical study of the critical fluctuations is required. In this way, the interplay between the finite exposure to the critical point and the increase of the fluctuation relaxation time can be properly discussed.

To observe a non-monotonic behavior of the net-proton number fluctuations at the detectors, the growth of a critical signal in the net-baryon density fluctuations is not sufficient. Indeed, supposing that the signal is created around T c = 150 MeV, it has to survive in between the chemical freeze-out and the kinetic freeze-out to be measurable by the detectors. Two approaches currently try to understand this issue. The first one consists in studying the deterministic evolution of the n-point functions using the framework Hydro+ [START_REF] Rajagopal | Hydro+ in Action: Understanding the Out-of-Equilibrium Dynamics Near a Critical Point in the QCD Phase Diagram[END_REF]. Indeed, the n-point functions contain all the information related to the fluctuations and their in-orout-of-equilibrium nature. The second one, studied here, consists in studying the stochastic evolution of the fluctuations directly and then computing the n-point functions. Both approaches have pros and cons. For the Hydro+ approach, analytical calculations are generally complicated and interpretation is difficult. For the stochastic study approach, the numerical implementation is complex and the computational resource needed is tremendous.

Previously, a study of the Gaussian fluctuations (or 2nd order) have been made by Sakaida, Asakawa, Fujii, and Kitazawa in 2017 [START_REF] Sakaida | Dynamical evolution of critical fluctuations and its observation in heavy ion collisions[END_REF]. They demonstrated that a non-monotonic behavior of 2-point correlation functions in heavy-ion collisions is a clear sign of the critical point. After that, in 2018, Nahrgang and Bluhm went further into this work by evaluating the higher-order fluctuations in a dynamical situation and taking into account the finite size of the system created in heavy-ion collisions [START_REF] Nahrgang | Diffusive dynamics of critical fluctuations near the QCD critical point[END_REF]. They demonstrated that non-linear couplings in the Ginzburg-Landau functional generate higher-order fluctuations leading the way for a more realistic evaluation of their dynamical evolution. The goal of this work is to go further on the study made by Sakaida et al and Narhgang and Bluhm by studying a realistic scenario for the dynamical evolution of the net-conserved charges fluctuations in HIC and have a clear understanding of the sensitive variables and what to expect at freeze-out. Indeed, the n-point functions contain all the information related to the fluctuations and their in-or-out-of-equilibrium nature. The second one, studied here, consists in studying the stochastic evolution of the fluctuations directly and then computing the n-point functions. Both approaches have pros and cons. For the Hydro+ approach, analytical calculations are generally complicated and interpretation is difficult.

For the stochastic study approach, the numerical implementation is complex and the computational resources needed are tremendous.

Previously, a study of the Gaussian fluctuations (or 2nd order) have been made by Sakaida, Asakawa, Fujii, and Kitazawa in 2017 [START_REF] Sakaida | Dynamical evolution of critical fluctuations and its observation in heavy ion collisions[END_REF]. They demonstrated that a non-monotonic behavior of 2-point correlation functions in heavy-ion collisions is a clear sign of the critical point. After that, in 2018, Nahrgang and Bluhm went further into this work by evaluating the higher-order fluctuations in a dynamical situation and taking into account the finite size of the system created in heavy-ion collisions [START_REF] Nahrgang | Diffusive dynamics of critical fluctuations near the QCD critical point[END_REF]. They demonstrated that non-linear couplings in the Ginzburg-Landau functional generate higher-order fluctuations leading the way for a more realistic evaluation of their dynamical evolution. The goal of this work is to go further on the study made by Sakaida et al and Narhgang and Bluhm by studying a realistic scenario for the dynamical evolution of the net-conserved charges fluctuations in HIC and have a clear understanding of the sensitive variables and what to expect at freeze-out. The study is split into two. First, we evaluate whether it is reasonable to think that a critical signal in the net-baryon density fluctuations can be seen at chemical freeze-out and what it should look like. Second, supposing that a critical signal has been built in the net-baryon fluctuations earlier in the collision, evaluate its survival in the hadronic medium.

To do this we perform numerical simulations of the net-charge density fluctuations dynamics in a heavy-ion collision. In particular, we use a set of stochastic diffusion equations compatible with both the fluid dynamics description of the fireball and the thermodynamics in and out of the scaling region. The interplay between the dynamics and the density fluctuations is evaluated within a Bjorken expansion of the underlying medium. The thesis is organized as follows

• Chapter 2: Evolution model for the fluctuations in heavy-ion collisions

We construct the model for the evolution of the density fluctuations in HIC, the stochastic diffusion equations in Milne corrdinates.

We start by discussing how the GL model built in Section 1.1.3.2 ican be adapted to dynamical studies. Then we describe briefly the relativistic ideal fluid dynamics and we make the connection with dynamical GL model. Eventually, we adapt the obtained diffusion equation to a Bjorken expansion of the medium.

• Chapter 3: Dynamics of the critical fluctuations

We study the dynamical evolution of the critical net-baryon density fluctuations until chemical freeze-out.

First, we explain how we parametrize the GL free energy built in Chapter 2 in the vicinity of the QCD critical point. Second, linearized models are solved analytically or semi-analytically to understand the impact of the inclusion of the surface tension, responsible for the long-range correlations near the critical point. Third, we benchmark the numerical implementation by systematic comparison with linearized models. Eventually, we perform numerical simulations of the non-linear model and discuss the results.

• Chapter 4: Coupled dynamics of conserved charges fluctuations

We evaluate the impact of the dynamical evolution of the coupled fluctuations of the net-baryon, net-electric charge, and net-strangeness densities from chemical freeze-out to kinetic freeze-out.

We first emphasize the way the fluctuation-dissipation theorem is implemented in the coupled stochastic diffusion equations. Second, we adapt the stochastic diffusion equations to the physics of the hadronic medium and describe a simple collision model. Third, we show the numerical calculations in the linearized approach and discuss the results.

• Chapter 5: Numerical simulations of stochastic equations The technical details of the stochastic simulations and their implementation is discussed.

First, we give precision to the discretization in stochastic models with a special focus on the impact of the choice of the derivative scheme and the lattice spacing dependence. Second, we discuss the use of Graphical processing units in stochastic studies. Eventually, we present a proposition of algorithm to solve the non-linear model of Chapter 4 numerically.

• Chapter 6: Conclusion

We discuss the different results and give an outlook for future studies.

This thesis contains two Appendices, the first one summarizes and explains the derivation of the diffusion matrix used in Chapter 4 The second one presents the GPU library used to implement the numerical simulations. We use the natural unit where ℏ = c = k = 1 with ℏ, c, and k being the Planck constant, the speed of light, and the Boltzmann constant, respectively.

Chapter 2

Evolution model for the fluctuations in heavy-ion collisions

As we saw in Section 1.2.3, HIC are dynamic phenomena. As a consequence, it is difficult to assume that the QCD matter remains at thermal equilibrium from collision point to detectors. Likewise, the direct comparison between thermodynamics calculations and experimental measurements is not facilitated. To allow for comparison, a less restrictive hypothesis can be made, that the QCD matter remains locally at equilibrium during the event.

From this hypothesis, it is possible to describe the dynamical evolution of the strongly interacting matter within the framework of relativistic fluid dynamics (originally from [START_REF] Landau | On the multiparticle production in high-energy collisions[END_REF] before the birth of the QCD ! see [START_REF] Dumitru | Collective dynamics in highly relativistic heavy-ion collisions[END_REF][START_REF] Ollitrault | Relativistic hydrodynamics for heavy-ion collisions[END_REF][START_REF] Hirano | Hydrodynamics and Flow[END_REF] for the use of fluid dynamics in HIC). It turns out that relativistic fluid dynamics was particularly suited for the description of many experimental measurements in HIC (see for instance [START_REF] Kolb | Hydrodynamic description of ultrarelativistic heavy-ion collisions[END_REF] for Au-Au collisions at RHIC and [START_REF] Gale | HYDRODYNAMIC MODELING OF HEAVY-ION COLLISIONS[END_REF] for review). The agreement between hydrodynamic modelization and experimental measurement suggests that the bulk matter is close to equilibrium in HIC.

In [START_REF] Hirano | Hydrodynamics and Flow[END_REF], we can read "hydrodynamic is a general framework to describe the spacetime evolution of locally thermalized matter for a give equation of state". The equation of state (EoS) can be computed from thermodynamic calculations. It links the energy density and the pressure and closes the sets of hydrodynamics equations. Hydrodynamics is thus the perfect tool to study the dynamics of a system close to its thermal equilibrium when one knows its thermodynamic properties at equilibrium. In HIC, hydrodynamics also requires initial conditions, obtained from either Monte-Carlo Glauber [START_REF] Miller | Glauber modeling in highenergy nuclear collisions[END_REF] or color-glass condensate estimations [START_REF] Mclerran | The CGC and the Glasma: Two Lectures at the Yukawa Insitute[END_REF][START_REF] Giacalone | Fluctuations in heavy-ion collisions generated by qcd interactions in the color glass condensate effective theory[END_REF], and a decoupling prescription such as the Cooper-Frye method [START_REF] Cooper | Single-particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production[END_REF]. The latter converts the energy, momentum, and conserved charge densities into particles in the final state.

In the study of criticality in HIC, the first assumption of the relativistic fluid dynamics description, local equilibrium, may not be respected due to the critical slowing down [START_REF] Berdnikov | Slowing out-of-equilibrium near the QCD critical point[END_REF]. However, recent studies (see [START_REF] Romatschke | Relativistic fluid dynamics in and out of equilibrium -ten years of progress in theory and numerical simulations of nuclear collisions[END_REF] for a review) suggest that fluid dynamics is applicable beyond the local thermalization constraint. Following this argument, we use hydrodynamics to describe the evolution of the fluctuations in HIC. The fluid dynamical model needs to include fluctuations. Indeed, the even-by-event fluctuations of the net-proton number come from those of the net-baryon number. The net-baryon number is a conserved charge and thus conventional fluid dynamics cannot encompass event-by-event fluctuations. Nonetheless, the construction of the fluctuating model from the deterministic hydrodynamic comes naturally considering the relativistic equivalent to the Fick law for the definition of the 4-current.

In this chapter, we build a connection between a dynamical version of the GL model developed in Section 1.1.3.2 and ideal fluid dynamics to construct a sets of stochastic diffusion equations. Eventually, we adapt this model to a longitudinal Bjorken expansion.

Stochastic diffusion equations for conserved charges

Considering a uniform chiral condensate field, the time evolution of the critical fluctuations has been studied in Refs [START_REF] Berdnikov | Slowing out-of-equilibrium near the QCD critical point[END_REF][START_REF] Nonaka | Hydrodynamical evolution near the qcd critical end point[END_REF][START_REF] Kapusta | Thermal conductivity and chiral critical point in heavy ion collisions[END_REF]. However, as argued in Refs [START_REF] Fujii | Sigma and hydrodynamic modes along the critical line[END_REF][START_REF] Son | Dynamic universality class of the qcd critical point[END_REF] and detailed briefly in the next development, the ordering field of the QCD critical point is given by a linear mixing of the order parameter at vanishing quark mass, σ = ⟨q q⟩ and the conserved charges e.g. the baryon, electric and strangeness charges. In this context, the slow modes near the critical point are the diffusive modes of the conserved charges. In response, the diffusive dynamics of the net-baryon density fluctuations have been studied in Refs [START_REF] Sakaida | Dynamical evolution of critical fluctuations and its observation in heavy ion collisions[END_REF][START_REF] Nahrgang | Baryon number diffusion with critical fluctuations[END_REF][START_REF] Bluhm | Time-evolution of net-baryon density fluctuations across the qcd critical region[END_REF][START_REF] Nahrgang | Modeling the diffusive dynamics of critical fluctuations near the qcd critical point[END_REF].

In the search for consistency with the current dynamical description of the HIC, we give here a comprehensive construction of the diffusion equations for the conserved charges within the framework of ideal hydrodynamics. We use the signature (+, -, -, -) in the remainder of this work.

Stochastic Time-dependent Ginzburg-Landau equation

As it is demonstrated in Ref [START_REF] Fujii | Sigma and hydrodynamic modes along the critical line[END_REF] from the symmetry argument, the spontaneous breaking of the chiral symmetry (see Section 1.1.3.3) induces a coupling between the chiral condensate σ and baryon density in the vicinity of the QCD critical at a thermodynamic level. In Ref [START_REF] Son | Dynamic universality class of the qcd critical point[END_REF], the reasoning has been made clear and adapted to dynamical studies. To fully comprehend their argument it is interesting to come back to GL model built in Section 1.1.3.2. The coupling between the baryon density and the σ field imposes that the GL functional contains coupling terms and depends on the net-baryon density as

F[σ, n B ] = dx 3 V (σ, n B ) + K σσ (∇σ) 2 + K n B σ (∇σ)(∇n B ) + K n B n B (∇n B ) 2 . (2.1)
where

V (σ, n B ) = a σσ σ 2 + a n B σ n B σ + a n B n B n 2 B + higher order terms (2.2)
If one considers that the potential associated with the GL functional lives now in a twodimensional space, the softening of the GL functional near the phase transition (discussion around Figure 1.8) happens not only in the σ direction anymore. In other words, the increase of the fluctuations in σ necessarily induces fluctuations in the net-baryon sector and the ordering field is a linear combination (the softening happens in a straight direction in the (σ, n B ) plane) between the sigma field and the baryon density. This coupling represents a difficulty for dynamical description as it also involves nonhydrodynamic variables, different from the conventional energy, momentum, and charge conservation [START_REF] Son | Real-time pion propagation in finite-temperature qcd[END_REF]. In line with the assumptions of hydrodynamic description to limit the set of variables through constitutive relations (see for instance [START_REF] Kovtun | Lectures on hydrodynamic fluctuations in relativistic theories[END_REF], they assumed that the non-hydrodynamic modes can be expressed as local functions of the hydrodynamic modes up to short-range correlations corrections. In other words, they impact the hydrodynamic modes like a noise. This assumption is at the heart of this study as it transforms the fluid dynamic equations of motion into stochastic equations.

Assuming that the QCD matter slowly relaxes towards the equilibrium imposed by Equations (2.1) and (2.2) the authors of Ref [START_REF] Son | Dynamic universality class of the qcd critical point[END_REF] demonstrated that the chiral condensate and the net-baryon density relaxes with different time scales. Essentially, the chiral condensate relaxes much faster than the net-baryon density, the latter being then a relevant way to study the slow modes near the critical point. They eventually suggested that the dynamical evolution of the net-baryon density fluctuations under all the previous assumptions is given by the following stochastic diffusion equation

∂ t n B = λ∇ 2 δF δn B + ∇ξ, (2.3) 
where ξ is a Gaussian white noise. It is defined by its two-point correlation function

⟨ξ(t, ⃗ x)ξ(t ′ , ⃗ x ′ )⟩ = 2λδ(t -t ′ )δ (3) ( ⃗ x ′ -⃗ x), (2.4) 
The coefficient 2λ on the right hand side is given by the fluctuation-dissipation theorem [START_REF] Bluhm | Time-evolution of net-baryon density fluctuations across the qcd critical region[END_REF]. The latter is crucial constraint in stochastic equations as it imposes a balance between the noise and the dissipation (here diffusion) amplitudes. In particular, it allows the fluctuations to reach an equilibrium. In the end, Equation (2.3) is a stochastic time-dependent Ginzburg-Landau equation (STDGLE) and we will now explain how it can be understood more simply within the framework of ideal hydrodynamics.

Ideal relativistic fluid dynamics

conservation laws

The relativistic fluid dynamic model is based on the conservation of the energy, momentum and charges (for complete review see [START_REF] Yagi | Quark-Gluon Plasma: From Big Bang to Little Bang[END_REF][START_REF] Romatschke | Relativistic fluid dynamics in and out of equilibrium -ten years of progress in theory and numerical simulations of nuclear collisions[END_REF][START_REF] Csernai | Introduction to relativistic heavy ion collisions[END_REF], for pedagogical presentations see [START_REF] Ollitrault | Relativistic hydrodynamics for heavy-ion collisions[END_REF][START_REF] Hirano | Hydrodynamics and Flow[END_REF] and for connection with effective field theories [START_REF] Kovtun | Lectures on hydrodynamic fluctuations in relativistic theories[END_REF]). The conservations laws can be written in a covariant way as

∂ ;µ T µν = 0, (2.5a) ∂ ;µ N µ X = 0, (2.5b) 
where ";" stands for "covariant with respect to". T µν is the stress-energy tensor and N µ j the conserved 4-currents of charge X = {B, Q, S, ..} corresponding to the baryon (B), electric charge (Q) and strangeness (S) numbers. Considering the 4-velocity of flow u µ expressed as a normalized time-like 4-vector (u µ u µ = 1, u 0 LRF = 1 and u i LRF = 0 in the local rest frame), one can decompose the stress-energy tensor on its timelike and spacelike components respectively as

ϵ = u µ u ν T µν , (2.6) P = - 1 d ∆ µν T µν , (2.7) 
defining the energy density ϵ and the pressure P . In Equation (2.7), d is the number of spatial dimensions and ∆ µν = η µν -u µ u ν , where η µν is the Minkowski metric, is the projector on the spacelike components. Similarly for the charges 4-currents,

n X = u µ N µ X (2.8) j µ = ∆ µν N X,ν , (2.9) 
where n X is the density and j µ X the current of charge X. Equations (2.6) to (2.9) can be connected to Equations (2.5a) and (2.5b) as

T µν = ϵu µ u ν -P ∆ µν , (2.10a) N µ X = n X u µ + j µ X , (2.10b) 

Equations of motion

Injecting Equations (2.10a) and (2.10b) into the conservation laws Equation (2.5a) one can express the equation of motion for the energy and charge density for ideal hydrodynamics.

For the stress-energy tensor, we have

• projecting on u ν 0 = u ν ∂ ;µ T µν = u ν ∂ ;µ ϵu µ u ν -P ∆ µν = u ν ∂ ;µ (ϵ + P )u µ u ν -P η µν = u ν ∂ ;µ (ϵ + P )u µ u ν + u ν (ϵ + P )∂ ;µ (u µ )u ν + u ν (ϵ + P )u µ ∂ ;µ (u ν ) -u ν η µν ∂ ;µ P Now, as ∂ ν (u µ u µ ) = 0 due to the normalization, we have u µ ∂ ν u µ + u µ ∂ ν u µ = 0. Then, u µ ∂ ν u µ = u µ ∂ ν u µ = 0. Also, η µν ∂ ν .. = ∂ µ .
. We are left with

0 = u µ ∂ ;µ (ϵ + P ) + (ϵ + P )∂ ;µ (u µ ) -u ν ∂ ;ν P Now, as u ν ∂ ;ν = u µ ∂ ,µ , we found u µ ∂ ;µ ϵ + (ϵ + P )∂ ;µ (u µ ) = 0
Eventually, defining the comoving derivative D.. = u µ ∂ ;µ .. and the expansion scalar

θ = ∂ ;µ u µ , we get Dϵ = -(ϵ + P )θ (2.11) • projecting on ∆ αν 0 = ∆ αν ∂ ;µ T µν = ∆ αν ∂ ;µ (ϵ + P )u µ u ν -P η µν
Since ∆ µν u ν = 0 by construction, we have

0 = (ϵ + P )∆ αν u µ ∂ ;µ (u ν ) -∆ αν ∂ ;µ (P η µν ) = (ϵ + P )∆ αν D(u ν ) -∆ αν ∂ ;ν P
In the same way as previously, u ν Du ν = 0, then

(ϵ + P )Du α = ∆ αν ∂ ;ν P
For N µ X , no indices are left once the derivative is taken. The equation of motion is simply given by the continuity equation

∂ ;µ N µ X = 0 u µ ∂ ;µ n X + n X ∂ ;µ u µ = -∂ ;µ j µ and thus Dn X + θn X = -∂ ;µ j µ X (2.12)

Connecting relativistic fluid dynamics and STDGLE

The conservation of the net-charge number in relativistic hydrodynamic leads to the equation of motion Equation (2.12) for the densities. In a fixed size cartesian box, the comoving derivative D identifies to the time derivative D = ∂ t . In [START_REF] Hirano | Hydrodynamics and Flow[END_REF], we can read that the expansion scalar measure the change of system volume, θ ∼ V /V which is vanishing for a fixed-sizedbox. Eventually, the current j µ X only has spacelike components and thus, the covariant derivative is the spatial derivative ∇, in the fixed cartesian box. The equation of motion then reads

∂ t n X = -∇j X (2.13)
where j X = (j 1 X , j 2 X , j 3 X ). This is a classical continuity equation. The Fick law written in terms of the chemical potential [12], the current can be written

j X = -D∇ µ X T (2.14)
where D is a diffusion coefficient and T is the temperature. Now, considering the GL free energy functional as a Gibbs free energy density, we have the following thermodynamic relation

µ X = δF δn X P,T (2.15) 
where δ/δn X is the functional derivative with respect to the field n X . The current then reads

j X = -D∇ δF/T δn X P,T (2.16) 
at homogeneous temperature

j X = - D T ∇ δF δn X (2.17)
Now, taking a look back at Equation (2.3) and comparing it with Equation (2.13) one obtains an expression for the current

j X = -λ∇ δF δn X -ξ X (2.18) 
Comparing Equation (2.17) and Equation (2.18) we see that dynamics of the critical fluctuations can be studied using ideal fluid dynamics with a stochastic current defined as

j X = j X + ξ X (2.19)
The Fick law Equation (2.17) for the current j X can be generalized for and aribitrary number of conserved charge considering the diffusion matrix D XY which transcribes the diffusive coupling between charge X and charge Y . Expressing it in a covariant way it allows to write the stochastic noise j X as

j µ X = D XY ∆ µν ∂ ;ν µ Y T + ξ µ . (2.20)
similarly for the noise correlation Equation (2.4),

⟨ξ µ X (x)ξ ν Y (x ′ )⟩ = -2D XY δ (4) (x -x ′ )∆ µν . (2.21)
As compared to Equation (2.17) involves the chemical potential. This is more general writing allowing to study both critical fluctuations by replacing the chemical potential by the free energy functional using Equation (2.15) (see Chapter 3) and hadron gas chemical potentials (see Chapter 4).

With this definition of the current, the equation of motion for the charges density Equation (2.12) reads

Dn X + θn X = -D XY ∂ ;µ ∆ µν ∂ ;ν µ Y T -∂ ;µ ξ µ X . (2.22)
This covariant form Equations (2.21) and (2.22) can now be adapted to a particular choice of coordinate system and thus to the geometry of the collisions.

Stochastic diffusion equation in expanding geometry

Bjorken expansion

When two heavy ions collide, one expects that the pressure in the center of mass frame is larger in the longitudinal direction than in the transverse direction. Consequently, the fireball created right after the collision will expand in the longitudinal direction. For very high collision energy, P T << P L (see Figure 2.1). In ref [START_REF] Bjorken | Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region[END_REF], this simple approximation has been translated into a concrete expression for the 4-velocity of flow called the Bjorken's

Ansatz u µ = t √ t 2 -z 2 , 0, 0, z √ t 2 -z 2 (2.23) 
This expression comes from the consideration of the boost-invariance of the fireball for very high collision energies in the center-of-mass frame. Indeed, when such a collision occurs, the two nuclei are highly contracted in the longitudinal direction as their velocities are close to c = 1. Then, if a small boost is added, the receding nuclei will still travel at the speed of light due to the invariance of the light cone under Lorentz transformations and consequently, the same situation is seen by the initial baryonic fireball which contains high transverse momentum particles. This is a very fortunate property as the majority of particles taking part in the formation of the QGP have very large transverse momenta. This means that the fireball created in the collision is very similar in all frames in the first moments of the collision (∼ 1fm), the fireball is initially boost-invariant. Now, the energy density of the initial fireball ϵ 0 can be evaluated by counting the number of particles contained inside a slab of size 2d, likely to contain the highest transverse momentum particles at initial time t 0 . This is simply evaluated as the fraction of energy contained in the rapidity window ∆y associated with 2d (see Figure 2.2)

Figure 2.2: Schematic representation of the two receding nuclei (named "pancakes" due to Lorentz contraction) and the fireball (the dashed region in the center) after the collision. This cartoon is taken [START_REF] Bjorken | Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region[END_REF] (Fig. 2).

ϵ 0 = N ∂⟨E⟩ ∂y ∆y = N A ∂⟨E⟩ ∂y 2d t 0 . ( 2 

.24)

Where A is the transverse area and N is the number of incident nucleons. This relation means that the initial energy density is inversely proportional to the initial time t 0 where one considers that the equilibrium has been reached in the slab. As a direct consequence of the initial boost-invariance, the initial energy density is constant on the hyperbola

√ t 2 -z 2 = t 0 . (2.25)
This observation implies that the initial 4-velocity of flow is compatible with the constant energy density on the hyperbola e.g particle velocities are only determined by their initial velocities. No acceleration is allowed at constant energy. Consequently, v z (t = t 0 , z) = z/t 0 .

The reason for this exact form can be understood geometrically in Figure 2.3

u µ 0 = γ t 0 , z/t 0 = 1 t 2 0 -z 2 t 0 , z (2.26) 
Now, this particular structure of the 4-velocity of flow will be conserved through the fluid dynamics evolution following Equations (2.5a) and (2.5b). In the end, during the whole evolution, the 4-velocity of flow takes the form of Equation (2.23). Using Milne coordinates, the proper time τ = √ t 2 -z 2 and the spatial rapidity y = 1 2 ln t+z t-z the expression of the 4-velocity of flow can be simplified to

u µ = cosh y, sinh y (2.27) Figure 2.3:
The impact of a small boost γ on the Bjorken 4-velocity of flow at initial time t 0 ∼ 1 fm u µ 0 . The hyperbola of constant energy ϵ 0 is represented in black (equation on black rectangle). The length of u µ 0 on the parabola of constant ϵ 0 follows the grey curve and its direction is given by z/t =cte. The receding nuclei are represented in red straight lines. The light cone is represented in orange. As both z/t and t 2 0 + z 2 are invariant under Lorentz transformation, the overall geometry of u µ 0 field remains unchanged by boost (here in the forward direction).

Stochastic diffusion equation in Milne coordinates

Cartesian to Milne coordinates

From Equation (2.27), Equations (2.21) and (2.22) the equation of motion can be explicitly written for Bjorken expanding geometry. For this, we consider the transformation

Φ : (τ, y) -→ (t = τ cosh y, z = τ sinh y), (2.28) 
the Lorentz transform between Cartesian and Milne coordinates is the Jacobian of Φ,

J Φ =     ∂t ∂τ ∂t ∂y ∂z ∂τ ∂z ∂y     =     cosh y τ sinh y sinh y τ cosh y     .
(2.29)

The new metric can then be expressed as

g ′ = J T Φ gJ Φ = 1 0 0 -τ 2 . (2.30) 
To go further, one needs to express the material derivative D, the expansion scalar θ and ∆ µν appearing in Equation (2.22). For this, it is convenient to find the transformation law in the orthogonal basis as in [START_REF] Yagi | Quark-Gluon Plasma: From Big Bang to Little Bang[END_REF] page 271. Compared to the basis associated with g ′ , the orthonormal basis has normalized basis vectors. The transformation needed to normalize the previous basis is

φ : (τ, τ y) -→ (τ, y), (2.31) 
its Jacobian is

J ϕ =      ∂τ ∂τ ∂τ ∂(τ y) ∂y ∂τ ∂y ∂(τ y)      =      1 0 0 1 τ      . (2.32)
The full Jacobian is then

J tot = J Φ J ϕ =     cosh y sinh y sinh y cosh y     , (2.33) 
it can be seen as a hyperbolic rotation matrix of hyperbolic angle y. Its inverse thus is obtained by evaluating it at -y

J -1 tot =     cosh y -sinh y -sinh y cosh y     . (2.34)
The metric is then

g = J T tot gJ tot =     1 0 0 -1     . (2.35)
This metric and the associated basis are confusing. It looks like the flat spacetime metric but is not. The space is curvilinear, the dependence of τ is hidden but basically, contravariant vectors transform as

α β -→ α τ β (2.36) 
and covariant vectors as

∂ α ∂ β -→ ∂ α 1 τ ∂ β . (2.37)
Now, the transformation law can be applied to express the EoM in Bjorken expanding geometry.

The 4-velocity of flow and ∆ µν

Using the Bjorken's ansatz for the 4-velocity of flow in Milne coordinates Equation (2.27)

u µ ′ = J µ ′ tot,ν u ν = cosh y -sinh y -sinh y cosh y cosh y sinh y = 1 0 (2.38)
and then

∆ µ ′ ν ′ = g µ ′ ν ′ -u µ ′ u ν ′ = 0 0 0 -1 . (2.39)
In the continuity, using the covariant transformation Equation (2.37) we get

∂ ;µ ∆ µν ∂ ;ν = ∂ τ 1 τ ∂ y 0 0 0 -1 ∂ τ 1 τ ∂ y = ∂ τ 1 τ ∂ y 0 -1 τ ∂ y = 0 -1 τ 2 ∂ 2 y (2.40)

The comoving derivative and the expansion scalar

From the expression of u µ in the Milne coordinates Equation (2.38)

D = u µ ′ ∂ ;µ ′ = 1 × ∂ τ + 0 × 1 τ ∂ y = ∂ τ (2.41)
The expansion scalar reads in Milne coordinates

θ = ∂ ;µ ′ u µ ′ = ∂ τ 1 τ ∂ y cosh y sinh y = cosh y τ (2.42)
which, following the transformation of u µ Equation (2.38) reads

θ = 1 τ (2.43)
Now, if we consider σT independent of time and space, the EoM Equation (2.22) can be rewritten

Dn X + θn X = -D XY ∂ ;µ ∆ µν ∂ ;ν µ B T -∂ ;µ ξ µ X . (2.44) 
Replacing all quantities determined above we find

∂ τ n X + n B τ = D XY τ 2 ∂ 2 y µ Y T + 1 τ ∂ y ξ µ X . (2.45) 
This equation can be rewritten as

∂ τ n X (τ, y) = D XY τ ∂ 2 y µ Y T + ∂ y ξ µ X (2.46)
The quantity n B (τ, y) = τ n B appears naturally in the SDE. We notice that n B (τ, y) is coherent with the evolution of the densities in ideal relativistic hydrodynamics (no current j µ involved) undergoing a Bjorken expansion e.g n(τ ) = n 0 τ 0 τ . The quantity n B (τ, y), which has to be understood as τ 0 n 0 is conserved and thus is the natural density field in expanding systems. Starting from Equation (2.21), the noise two-point correlation function can be written

⟨ξ µ X (Y )ξ ν Y (Y ′ )⟩ = 2 D XY τ δ(Y -Y ′ )δ µ y δ ν y .
(2.47) as δ-Dirac functions are covariant. Taking into account the constraints of the Dirac-δ functions we fin eventually

⟨ξ y X (τ, y)ξ y Y (τ ′ , y ′ )⟩ = 2 D XY τ δ(τ -τ ′ )δ(y -y ′ ) (2.48)
Equations (2.46) and (2.48) define a stochastic diffusion equation. This is expected from the Fick form of the 4-current (Equation (2.20)). This is the first-order approximation of a full fluid dynamic model.

Energy and momentum

In this first approach, we did not consider the energy and momentum density as dynamical variables. From energy and momentum conservation we only infer the time-evolution of the temperature.

Starting from the EoM for the energy density for an ideal fluid Equation (2.11)

Dϵ = (ϵ + P )θ (2.49)
One can then specify the material derivative and the expansion scalar as in Equations (2.41) and (2.43)

∂ϵ ∂τ = ϵ + P τ , (2.50) 
which can be written ∂ϵ ∂P

∂P ∂T ∂T ∂τ = ϵ + P τ . (2.51) 
From thermodynamic relations, we can now precise the partial derivatives and the R.H.S

• The equation of states of an ideal gas

From P = dc 2 s ϵ we get ∂ϵ ∂P = 1 dc 2 s
Where c s is the speed of sound and d is the number of spatial dimensions. Notice that this is only valid for ultra-relativistic HIC as an ideal gas of quark and gluons is strictly speaking only true at very high temperatures where the asymptotic freedom is realized.

• Thermodynamic identities

The variable ϵ is a measure of the internal energy density, thus it is related to the pressure P , the temperature T , the entropy density s, the baryo-chemical potential µ B and the net-baryon density n B via ϵ = -P + T s + µ B n B . The boost-invariance of Bjorken expansion is a good approximation only at mid-rapidity, meaning that the baryon number is not carried in the QGP fireball considered here. As a consequence, we can do the approximation µ B = 0 MeV and get the relation ϵ = -P + T s leading to

ϵ + P = T s
• The free energy Defining the (Helmholtz) free energy E as E/V = ϵ -T s, we have the relation E/V = -P . Now, the entropy can also be specified using the free energy as

S = - ∂E ∂T V which means ∂P ∂T = s
Injecting these relations into Equation (2.51) we find the differential equation

∂T ∂τ = -T dc 2 s τ (2.52) 
which can be solved using the variable separation method as

T (τ ) = T i τ 0 τ dc 2 s (2.53)
The obtained temperature evolution is used to determine the connection between T and dynamical variable τ in the following. For pure Bjorken expansion, the spatial dimension is d = 1, together with c 2 s ) = 1/3 for ideal fluid, we get the conventional temperature evolution of a Bjorken-expanding QGP. Here, we still conserve a degree of freedom to better adapt the temperature evolution to a realistic situation. Indeed, this formula with d = 1 is only valid for very large collision energies and represents a rough approximation in the search for criticality. Recent studies suggest that taking dc 2 s = 1 is already an improvement for the modelization [START_REF] Mukherjee | Real-time evolution of non-gaussian cumulants in the qcd critical regime[END_REF]. We make the same choice here.

conclusion

In this chapter, we have seen how the dynamics of the conserved charge density fluctuations can be describe in the vicinity of the QCD critical point. We understood that not only hy-drodynamic modes particiapte in the dynamics in the scaling region. In fact, it is precisely the growth of the relative importance of these non-hydrodynamic modes that characterize the criticality. Consering these non-hydrodynmic modes as small correlation length perturbation, the dynamical equations became stochastic diffusion equations. Then, we explained how it can be connected to ideal hydrodynamics via thermodynamic considerations and we suggested a set of coupled stochastic diffusion equations particuarly suited for the study of the dynamics of the density fluctuations in HIC. Eventually, we show how to translate this set of equation into Milne coordinates to take into account the longi-tudinal expansion of the medium. The set of equations Equation (2.46) and the associated noise-noise correlation Equation (2.48) is a general framework, by defining the chemical po-tential either as a GL free energy functional (as in chapter 3) or as the chemical potential of the hadron gas (as in chapter 4) one can describe the diffusive dynamics of the flucutations in different context.

Chapter 3

Dynamics of the critical fluctuations

Among all possible thermodynamic properties of the strongly interacting matter accessible via the study of the fluctuations, the existence and location of a possible critical point is of major importance. Its experimental discovery would be a landmark in the explanation of the peculiar fluid nature of the QGP as all known fluid have a critical point [START_REF] Landau | On the theory of phase transitions[END_REF]. The efforts towards the experimental discovery of the critical point rely on the study of the fluctuations observables such as the net-proton number fluctuations in HIC [START_REF] Adam | Nonmonotonic Energy Dependence of Net-Proton Number Fluctuations[END_REF][START_REF] Adamczewski-Musch | Proton-number fluctuations in √ s N N =2.4 GeV Au + Au collisions studied with the High-Acceptance DiElectron Spectrometer (HADES)[END_REF]. In turns, the equilibrium properties of the QCD matter may be out-of-reach in the laboratory as the thermalization may be longer than the lifetime of the fireball. The observed fluctuations are highly intricate to the dynamic nature of the collision. In the context of the criticality, two major dynamical features play a role, the rapid longitudinal expansion of the fireball and the critical slowing down [START_REF] Berdnikov | Slowing out-of-equilibrium near the QCD critical point[END_REF]. The first one is expected due to a large difference between the pressure in the longitudinal and transverse direction right after the collision [START_REF] Bjorken | Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region[END_REF]. The second one is a peculiar behavior of the fluctuations near a critical point, their thermalization time is expected to become large [START_REF] Rajagopal | Hydro+ in Action: Understanding the Out-of-Equilibrium Dynamics Near a Critical Point in the QCD Phase Diagram[END_REF]. The measured critical fluctuations may largely deviates from thermodynamic expectation. At equilibrium, the fluctuations of density in the QGP and hadron gas can be evaluated analytically. Indeed, the QGP is in the same universality class as the 3D Ising model [START_REF] Stephanov | QCD critical point and correlations[END_REF]. The universal exponents are the same as the one calculated in this model. Thus, the way the thermodynamic quantities and especially the correlation length diverges with a known power law at the critical temperature. From this consideration, fluctuation observables such as the skewness or the kurtosis of the net-baryon number can be evaluated in the critical region of the phase diagram. In order to take into account both thermodynamic expectations for the fluctuations and the dynamical features of the HIC, the fluid dynamics model discussed in Chapter 2 is a suitable framework. On the one hand, the criticality can be encoded in parametrization of the GL functional and on the other hand, the dynamical features included via the average value of the 4-velocity of flow ⟨u µ ⟩. In this chapter we use the model discussed in ?? where the chemical potential is replace by the GL functional to study the non-trivial interplay between criticality and the dynamics in HIC. First, we parametrize the GL functional using a mapping from the 3D Ising model into the QCD phase diagram and lQCD calculations at vanishing baryo-chemical potential. The GL free energy functional is valid in the scaling region and on the crossover side. Second, we study the analytical solutions of the linearized model. It allows to understand the major features of the impacts of the dynamics on the critical fluctuations and benchmark the numerical calculations. Third, we study the time-evolution of fluctuations observables such as the variance, the correlation function or the kurtosis. We especially focus on the possible growth of a critical signal. We demonstrate that the expected large anti-correlations due to charge conservation and the non-monotonic behavior of the kurtosis as a function of the rapidity window are strong signals for criticality if experimentally measured. But also, that the diffusion properties of the matter inside the QGP fireball significantly impacts these signals.

Parametrization of the Free-energy functional

As explained in Section 2.1.1, the relevant slow mode near the QCD critical point is the net-baryon density. Thus, the coupled GL free energy functional presented Equation (2.1) can be replaced by a GL functional which depend only on the net-baryon density field. In Ref [?], it has been suggested to use the following GL functional

F[n B ] = T dV m 2 (T ) 2n 2 c (∆n B ) 2 + K 2n 2 c (∇n B ) 2 + λ 3 (T ) 3n 3 c (∆n B ) 3 + λ 4 (T ) 4n 2 c (∆n B ) 4 (3.1)
Where ∆n B = n B -n c , n c being the critical density. In the following, we call m 2 the mass term, K the surface tension and λ i the non-linear couplings. The temperature dependence of these coefficient is obtained from a non-universal mapping from 3D Ising into the QCD phase diagram. Their variations determine the equilibrium behavior of the net-baryon critical fluctuations.

From 3D Ising model to QCD phase diagram

In Equation (3.1), the Taylor expansion coefficients m 2 (T ) and λ i (T ) are not specified yet.

Their behavior with the temperature can nonetheless be found by considering that the QCD matter is in the same universality class as the 3D Ising model [?]. Even though the quark-gluon plasma and the 3D Ising model are in the same universality class, their connection is not straightforward. One needs to identify 3D Ising variables to QCD variables and determine a way to map the scaling region of the two models. The variables for the ferromagnet are the reduced temperature r = T -Tc Tc , the normalized magnetic field h = H/H 0 and the order parameter, the magnetization M . The variables for the QCD phase diagram are the temperature T and the baryo-chemical potential µ B and the order parameter, the net-baryon density, n B . If one wants to properly retrieve the scaling behavior of the 3D Ising near its critical point written in the language of QCD variable, the mapping between these two sets of variables is required to conserves the universal critical exponents. Such transformation leaving the exponents invariant has been discussed in [START_REF] Schofield | Parametric representation of the equation of state near a critical point[END_REF] following Widow's phenomenological hypothesis of the homogeneity of the free energy in the scaling region [START_REF] Widom | Equation of State in the Neighborhood of the Critical Point[END_REF]. The variables from the 3D Ising model are parametrized as follows

M = M 0 R β θ (3.2) r = R(1 -θ 2 ) (3.3) h = 3R βδ θ(1 -2θ 2/3 ) (3.4)
This parametrization with variables R and θ for the reduced temperature and the magnetic field guarantees that the free energy written in terms of the order parameter M , defined this way, will be homogeneous and thus that the proper critical exponents will be retrieved. In particular, fixing the values of β and δ will have an impact on such scaling. The next step is to compute the observables of interest, express them as a function of the new variables R and θ, apply the mapping onto the QCD phase diagram, and then compute the said observables in the QCD phase diagram. In this precise study, we want to determine the coefficients which appear in the free energy functional Equation (3.1) except the surface tension K, which can be related to the correlation length ξ as [60]

m 2 (T ) = 1 ξξ 0 λ 3 (T ) = n c λ 3 ξ 0 ξ 3/2 λ 4 (T ) = n c λ 4 ξ 0 ξ (3.5)
The numerical constant ξ 0 , the correlation length far from the critical point, and the nonlinear couplings λ 3 and λ 4 are obtained via the mapping. To realize the mapping, one needs to express ξ and λ 4 as a function of the variable R and θ first. By expressing the second, third and fourth-order centered moments (n = 2, 3, 4) of the order parameter for both the 3D Ising model

⟨(δσ) n ⟩ Ising c = T V H 0 n-1 ∂ n-1 M ∂h n-1 , (3.6) 
and the second, third and fourth-order centered moments of the order parameter described by a Ginzburg-Landau (GL) type free energy (see [START_REF] Bluhm | Impact of resonance decays on critical point signals in net-proton fluctuations[END_REF])

⟨(δσ) 2 ⟩ GL c = T V ξ 2 , (3.7) 
⟨(δσ) 3 ⟩ GL c = -2λ 3 T 2 V 2 ξ 6 , (3.8) 
⟨(δσ) 4 ⟩ GL c = 6(2(λ 3 ξ) 3 -λ 4 ) T 3 V 3 ξ 8 , (3.9) 
one can find the expression of ξ with respect to R and θ. We get

ξ = M 0 H 0 1 R 2/3 √ 3 + 2θ 2 (3.10) 
λ 3 = 2θ(9 + θ 2 ) (3 -θ 2 )(3 + 2θ 2 ) 3/2 C (3.11) λ 4 = 2 λ 3 2 + 2 81 -783θ + 105θ 4 -5θ 6 + 2θ 8 (3 -θ 2 ) 2 (3 + 2θ 2 ) 3/2 C 2 (3.12)
With C = (T 2 H 0 /M 5 0 ) 1/4 . We notice that when R -→ 0, the correlation length ξ goes to infinity. The variable R then can be understood as the distance to the critical point. The angle variable θ helps to choose the exact direction needed in the mapping but has no connection with the criticality itself. We also notice that λ 3 and λ 4 do not depend on R making them independent of the distance to the critical point, all the critical behavior is included in ξ. To go further, the mapping needs to be done explicitly. It consists in finding a relation between (r, h) from the 3D Ising model and (T, µ B ). In ref [START_REF] Bluhm | Impact of resonance decays on critical point signals in net-proton fluctuations[END_REF], on which this work is based, a linear correspondence with the intermediary variables r and h defined as

r(T ) = T -T c ∆T c h(µ B ) = µ B -µ c ∆µ c (3.13)
These two quantities have to be understood as what one wants to call reduced temperature "r" and normalized magnetic field "h" in the QCD phase diagram. In these equations, T c is the critical temperature and µ c is the critical baryo-chemical potential. The connection with Ising variables is made via the following linear mapping (see Figure 3.1)

r = ω(ρr sin(α 1 ) + h sin(α 2 )) (3.14) h = ω(-ρr cos(α 1 ) -h cos(α 2 )) (3.15) 
The numerical constant ω serves as a global scaling and ρ as weight to adapt the scale of each direction r and h separately. The size and shape of the scaling region in the QCD phase diagram remaining unknown, these constants are free parameters used to specify it.

To explain how the angles α 1 and α 2 are chosen, it is of great help to recall that in the 3D Ising model variable language, the critical point is placed at r = h = 0. Moreover, on the line h = 0, the side r > 0 corresponds to a crossover phase transition and on the side r < 0 the transition is of first-order [START_REF] Schofield | Parametric representation of the equation of state near a critical point[END_REF]. Looking at the QCD phase diagram, these properties impose that r is in the continuity of the first-order phase transition curve and points towards decreasing µ B , the crossover being at small µ B . The direction in which h points is less constrained and is taken to be parallel to the temperature axis for simplicity reasons. It directly follows that α 1 = π/2. However, α 2 is model dependent, its numerical value will depend on the parametrization of the first-order transition line equation as a function of T and µ B . This and the unknown size of the scaling region in the QCD phase diagram make this mapping non-universal. In our precise case, the first-order transition line is parameterized as

T 1 (µ B ) = T c 1 -κ c µ B T 1 (µ B ) 2 + O µ B T 1 (µ B ) 4 .
(3.16)

The truncation at order 2 in µ B /T 1 leads to a functional equation satisfied by

T 1 T 1 (µ B ) 3 -T c T 1 (µ B ) 2 + T c κ c µ 2 B = 0, (3.17) 
Where κ c = 0.02 is the chiral crossover curvature [103]. Taking the derivative of Equation (3.17) with respect to µ B allows writing

∂T 1 ∂µ B = -2T c κ c µ B 3T 1 (µ B ) 2 -2T c T 1 (µ B ) , (3.18) 
which leads to

α 2 = -arctan( ∂T 1 ∂µ B (T = T c , µ B = µ c )) = arctan(-2κ c µ c /T c ).
The values for ρ and ω are not shown explicitly as they are not relevant in this study (see next subsection). Now, we completely determined r(R, θ) and h(R, θ) and thus of T (R, θ) and µ B (R, θ) using Equation (3.13). Eventually, the equations

T (R, θ) -T = 0, µ B (R, θ) -µ B = 0, (3.19) 
for T and µ B in the scaling region of the QCD phase diagram give a one-to-one correspondence between (R, θ) and (T , µ B ) and thus allows expressing Equation (3.12) in the scaling region and thus Equations (3.5). In Figure 3.2 we show the correlation length ξ and nonlinear couplings λ 3 and λ 4 obtained via this procedure for λ 3 = 1 and λ 4 = 10. We can see their amplitude decreasing in the vicinity of the critical point. This is the behavior that will eventually lead to the critical features in the dynamical study. At this point, the coefficients in Equation (3.1) are parametrized solely in the scaling region. It is an issue as the trajectory may not pass through the scaling region and if ti does, the freeze-out temperature may be outside this region. To avoid such consideration we extend the validity of the coefficients on a larger temperature interval. In Figure 3.3 we can already see the effect of using the 3D Ising model outside the critical region on the mass term m 2 . Two effects can be seen, the first one is the shift of the minimum of each curve towards decreasing temperature as µ B decreases out of the scaling region. The second effect manifests on the tails of curves at low and large temperature, their slope is overestimated for non-critical trajectories. As a direct consequence, the trajectories cross each other meaning that the signal far from the critical point can be larger than closer at very large or low temperature. This makes no physical sense.

To circumvent these two difficulties, the validity of the coefficient m 2 , λ 4 , and λ 3 described above is extended to a larger temperature interval. The general methodology is to consider that the extended coefficient should reach constant values far from the critical region and be equal to the previously defined coefficient in the scaling region. We first rewrite the free energy functional as

F[n B ] = T dV (∆n B ) 2 χ 2 (T ) + K 2n 2 c (∇n B ) 2 + (∆n B ) 3 6χ 3 (T ) + (∆n B ) 4 24χ 4 (T ) (3.20)
This writing allows us to introduce the susceptibilities of the free energy functional χ 2,3,4 (T ) related to the free energy via the following relation

χ n (T ) = 1 T δ n F δn n B ∆n B =0 -1
.

Applying this formula for n = 2, 3, 4 we get the susceptibilities as expected from Equation (3.20)

χ 2 (T ) = n 2 c m 2 (T ) , χ 3 (T ) = n 3 c 2λ 3 (T ) , χ 4 (T ) = n 4 c 6λ 4 (T ) . (3.21)
This choice of variables for the free energy functional is very suitable to enlarge the validity domain of this model as the susceptibilities can be described both in the scaling region and far from it. More precisely, we cut the susceptibilities into a singular and a regular contribution

χ n (T ) = χ sing n (T ) + χ reg n (T ) . (3.22)
The singular part is given by Equation (3.21) and the regular part is a smooth connection between two constant values as in [START_REF] Sakaida | Dynamical evolution of critical fluctuations and its observation in heavy ion collisions[END_REF] 

χ reg n (T ) = χ H 0,n + χ QGP 0,n -χ H 0,n S(T ) , (3.23) 
where

S(T ) = 1 2 1 + tanh T -T c δT (3.24)
The physical motivation for this choice is discussed in detail later in this subsection. Numerical constants χ H 0,n and χ QGP 0,n are chosen so the susceptibilities χ n reach the chosen constant values. They compensate for the singular contributions which are not relevant at large and small temperatures. We present now the precise methodology used to realise the smooth connection between these two contributions. The method involves the function m 2 from which all other coeffi- cients can then be expressed via the correlation length. The first step is to impose that the minimum of a curve at constant µ B is precisely at T = T c (see Figure 3.4). It changes the behavior of each curve with the temperature at small and large temperature drastically but this is not a problem as they will be cut afterwards. This recentering technique conserves the amplitude of each curves as well as its shape very close to the critical point. In this way, we guarantee that the scaling of 3D Ising is respected.

The next step is to restore the ordering of the curves at large and small temperatures. For this, we add constant values c(µ B ) ensuring that there are no overlaps (see Figure 3.5). Notice that these constants change the minimum of each curve and thus the critical signal. A solution is suggested in the next step of the procedure. To avoid any residual temperature dependence of the m 2 at large and small temperatures we apply a cut that depend on µ B and c(µ B ) as in Figure 3.6. The next step is to recover the actual amplitude of the critical signal. For this we apply the transformation

m 2 (T ) ′ -→ (m 2 (T ) -c(µ B ))γ + c(µ B ) (3.25)
where γ is a constant allowing to retrieve the proper values for the minimum value of m 2 . It reads

γ = min(m 2 (T )) min(m 2 (T ) -c(µ B )) . (3.26)
The result for all curves is shown Figure 3.8. Now we retrieve the exact values for the parameter m 2 at the critical temperature but we see that the curves overlap. For this, we apply another transformation to squeeze the curves in the T direction to get has an impact on the scaling but has the advantage to conserve the amplitude. Now, we just apply Equation (3.21) to express the susceptibilities and we obtain Figure 3.10. In this form, the smooth connection can be easily done by finding χ H 0,n and χ QGP 0,n , the only information needed is the actual numerical value of the constants. This is where the translation of the coefficient in the free energy functional int potential Equation (3.36), it is related to the free energy by taking the derivative at constant volume. In expanding geometry, the constant volume is an increasing volume in the associated Cartesian coordinates. Another way to see that the thermodynamic properties are impacted by the geometry is the τ dependence of the functional via the relation between the temperature and the proper time. It may seem peculiar that the equilibrium probability distribution of the fluctuations depends on the dynamical variable τ but it just means that the equilibrium situation is different in each part of the expanding system and may only be defined locally. As a direct consequence, it is very convenient to see χ 2,3,4 as susceptibilities per unit of rapidity and transverse area. Indeed, in the expanding system, the equilibrium situation is uniquely defined by the propertime τ meaning that the correct variables for the integration over the volume in the free energy functional are the spatial rapidity y and the transverse direction x ⊥ . The transverse direction is not studied in this one-dimensional study and can thus be integrated-out in the expression of the free energy functional leaving

F[n B ] = T A dy (∆n B ) 2 χ 2 (T ) + K 2n 2 c (∂ y n B ) 2 + (∆n B ) 3 6χ 3 (T ) + (∆n B ) 4 24χ 4 (T ) . (3.27)
From there we can rewrite the susceptibilities χ n (T ) := χ n (T )/A. The free energy then reads

F[n B ] = T dy (∆n B ) 2 χ 2 (T ) + A K 2n 2 c (∂ y n B ) 2 + (∆n B ) 3 6χ 3 (T ) + (∆n B ) 4 24χ 4 (T ) . (3.28)
In the remainder of this work, we take A = 1 fm 2 . A quick dimension study reveals that χ n should have the same dimension as ∆n n B and thus can be regarded as susceptibilities per unit volume which in the case of expanding geometry means susceptibilities per unit of rapidity and transverse area. The susceptibilities defined this way are then a measure of the fluctuations per unit of rapidity and transverse area. The magnitude of these fluctuations at equilibrium can be inferred from Lattice QCD calculations (for instance [START_REF] Cheng | Baryon Number, Strangeness and Electric Charge Fluctuations in QCD at High Temperature[END_REF][START_REF] Bazavov | The QCD Equation of State to O(µ 6 B ) from Lattice QCD[END_REF]). The argument is as follows, the equilibrium fluctuations per unit of rapidity at second-order ⟨∆N B 2 ⟩/∆y are expected to be constant as a function of temperature [START_REF] Sakaida | Dynamical evolution of critical fluctuations and its observation in heavy ion collisions[END_REF]. To obtain the limiting values from lattice QCD results, we use the fact that the entropy per unit rapidity S/∆y is conserved as a function of τ in the Bjorken expansion described by ideal fluid dynamics that may be justified at sufficiently large collision energies. We then define the quantity

X 2 = ⟨∆N B 2 ⟩ S (3.29)
By construction, it reaches constant values at small and large temperatures. We can now make a connection with lattice QCD second-order susceptibility χ B 2 as in [105]

⟨∆N B 2 ⟩ = V T 3 χ B 2 , (3.30) 
we can express X 2 as

X 2 = χ B,latt 2 s/T 3 . (3.31)
Evaluating this ratio at large and small temperatures gives an estimation of the constant value reached by the fluctuations of the net-baryon number. Note that using Equation (3.30) imposes that we do not consider event-by-event volume fluctuations, which is incorrect in actual HIC [START_REF] Skokov | Volume fluctuations and higher-order cumulants of the net baryon number[END_REF] for instance, the number of participants is fluctuating event-by-event.

However, by studying the ratios of cumulants we can get rid of the volume dependence in the observables. For the same reason, the fluctuations of the net-baryon number ⟨∆N 2 ⟩ and ⟨∆n B ⟩ are considered identical as, at constant volume, n B = N B /V and the volume dependence is canceled afterward. Using the values for the entropy density s/T 3 and χ B 2 found in ref [START_REF] Cheng | Baryon Number, Strangeness and Electric Charge Fluctuations in QCD at High Temperature[END_REF][START_REF] Bazavov | The QCD Equation of State to O(µ 6 B ) from Lattice QCD[END_REF] we can evaluate the quantity Equation (3.31) between QCD susceptibilities. We find

X QGP 4 = 0.00135 (3.34) 
X H 4 = 0.01. (3.35) 
Unfortunately, χ 3 cannot be connected to lattice QCD calculations. The Taylor expansion of QCD pressure p/T 4 does not contain any contribution from odd powers at vanishing baryochemical potential. Then, the third order contribution cannot be inferred from lattice QCD calculations pressure as it makes no sense for Taylor expansion. We thus ignore the thirdorder contribution for this study due to the lack of a connection to first-principle calculations.

The last point allows a discussion on the validity of this modelization, the numerical values given above are exact only at vanishing baryo-chemical potential. However, we assume that far from the critical temperature, the behavior of the fluctuation is the same for all values of µ B on the crossover side.

Using the numerical values for X QGP,H

2,4

allows to determine χ QGP,H 0,2 in Equation (3.22) and eventually have susceptibilities defined both in and out of the scaling region. In Figure 3.11 we present the curves obtained by this method. The curve at µ B = 0 MeV is added for completeness and is simply given by Equation (3.22) where the different constants are equal to the numerical values found above.

Linear models

SDE with free-energy functional

Starting from Equation (2.46) and the noise-noise correlation Equation (2.48) we can express the explicit form of the equation of motion for the net-baryon density fluctuations including the GL functional build previously. For this, we derive its relation with the chemical potential

µ B T = 1 T δF δn B = ∂ ∂n B -∂ y ∂ ∂(∂ y n B ) f (∆n B , ∂ y n B ) (3.36) with f (∆n B , ∂ y n B ) = (∆n B ) 2 χ 2 (T ) + A K 2n 2 c (∂ y n B ) 2 + (∆n B ) 3 6χ 3 (T ) + (∆n B ) 4 24χ 4 (T ) (3.37)
it leads to the following equation

∂ τ n B = Dn c τ χ 2 (τ ) ∂ 2 y n B - Dn c K τ ∂ 4 y n B + Dn c 6 τ χ 4 (τ ) ∂ 2 y n B 3 -∂ y ξ . (3.38)
and the associated noise correlation

⟨ξ(τ, y)ξ(τ ′ , y ′ )⟩ = 2Dn c τ δ(τ -τ ′ )δ(y -y ′ ) . (3.39) 
In the remainder, we take the initial proper-time to be τ 0 = 1 fm. Equation (3.38) is non linear in the net-baryon density field due to the non linear coupling ∝ n 3 B , an analytical solution is not accessible. However, if we consider that the non-linear coupling λ 4 is vanishing, the previous equation simplifies as

∂ τ n B = Dn c τ χ 2 (τ ) ∂ 2 y n B - Dn c K τ ∂ 4 y n B -∂ y ξ . (3.40)
which is analytically solvable. We call the truncated Equation (3.40) the Gauss + Surface approximation (G+S) of the model. It is very instructive to look at analytical solution in the linear model first as it allows having a clear understanding of the major features of the model such as the memory effects and the impact of the dynamics. Moreover, these calculations will also be of great help to benchmark the numerical implementation of the algorithm and ensure that it reproduces the expected probability distribution of the fluctuations.

The Gaussian approximation

In the G+S approximation described above, two terms appear, the diffusion term proportional to the diffusion coefficient D and the surface tension term proportional to K. It is interesting to consider the Gaussian approximation (G) first to comprehend the impact of the surface tension, i. It consists in taking K = 0 fm -4 . The SDE then reads

∂ τ n B = Dn c τ χ 2 (τ ) ∂ 2 y n B -∂ y ξ . (3.41) 
This equation can be formally regarded as a diffusion equation with a decreasing diffusion as a function of time. Despite its simplicity, this first approach already encompasses the non-trivial interplay between the diffusion coefficient, the geometry, and the critical physics via the second-order susceptibility. A similar model is developed in previous work from Sakaida et al [START_REF] Sakaida | Dynamical evolution of critical fluctuations and its observation in heavy ion collisions[END_REF].

An analytical solution can be found taking the Fourier transform, for which we use the definition

n B (q, τ ) = e -iqy n B (y, τ )dy (3.42) 
ξ(q, τ ) = e -iqy ξ(y, τ )dy

Note that as simple as these two equations may seem, n B and ξ are stochastic variables, and consequently, we consider the integral of a stochastic process. In classical measure theory, these integrals are not defined as one cannot integrate a discontinuous function. However, if n B and ξ present some regularities, the Itô or Stratanovitch integral can be defined properly [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]. It turns out that using Itô integration, all algebraic operations are formally identical to classical calculations. For this reason, we continue the derivation as if the two fields were deterministic square-integrable functions. Defining D(τ ) = Dn c /(τ χ 2 (τ )), the algebraic form of Equation (3.41) is then

∂ τ n B (q, τ ) = -q 2 D(τ )n B (q, τ ) + iqξ(q, τ ) (3.44)
Considering first the homogeneous equation (ξ = 0) we use the separation of variable as

dn B n B = -q 2 D(τ )dτ. (3.45)
Taking the integral on both sides leads to

n b (q, τ ) = n(q, τ 0 )e -q 2 d(τ 0 ,τ ) 2 /2 , (3.46) 
where τ 0 is the initial proper time. The function d(τ 0 , τ ) = 2 τ τ 0 D(τ ′ ) dτ ′ is an interesting feature due to the expanding geometry (see Figure 3.12). By analogy with the solution of a diffusion equation in the Cartesian coordinates, it corresponds to the diffusion length. We keep the same terminology here. In Cartesian diffusion, the diffusion length is proportional to the square root of time, this is the classical scale law between space and time t ∝ L 2 . In expanding system, this relation is changed, if the susceptibility is constant as a function of the temperature, the diffusion length increases as the square root of the logarithm with time and thus t ∝ exp(L 2 ). The relation between the τ and y is thus qualitatively different than the relation between t and z at a fixed system size. For µ B = 350 MeV (left), we observe a the diffusion length plateaus around τ -τ 0 = 2.3 fm (black vertical dashed line). In the Bjorken picture for the expansion Equation (2.53) with dc 2 S = 1, τ 0 = 1 fm and T i = 500 MeV it correspond to T = T c = 150 MeV, the critical temperature. The effect is then due to criticality, this is the critical slowing down. The diffusion length is slowed down in the scaling region. For µ B = 0 MeV, no such effect can be seen, only a smooth change due to the shape of the regular susceptibility Figure 3.11 occurs for T ∼ 150 MeV. This qualitative difference is at the heart of this work as it has an impact on the evolution of the fluctuations at later times, giving rise to memory effects. Here for instance, we observe that for µ B = 0 MeV, the diffusion length is concave after τ -τ 0 = 2.3 fm. For µ B = 350 MeV the curves are convex and then linear. It means that the diffusion length growth speed is decreasing for non-critical trajectories and increasing for critical trajectories at freeze-out (assumed at T < T c ). A particular solution can be found using the variation of constants, namely

n b (q, τ ) = λ(τ )e -q 2 d(τ 0 ,τ ) 2 /2 , (3.47) 
Injecting this form to the stochastic diffusion equation we get

∂ τ λ(τ ) = iqξ(q, τ )e q 2 d(τ 0 ,τ ) 2 /2 . (3.48)
It can be transformed into an integral form

λ(τ ) = τ τ 0 iqξ(q, τ ′ )e q 2 d(τ 0 ,τ ′ ) 2 /2 dτ ′ (3.49)
Plugging this result in Equation (3.47) we find the particular solution Eventually the full solution reads n B (q, τ ) = n B (q, τ 0 )e -q 2 d(τ 0 ,τ ) 2 /2 + iq τ τ 0 ξ(q, τ ′ )e -q 2 d(τ ′ ,τ ) 2 /2 dτ ′ .

n B (q, τ ) = τ τ 0 iqξ(q, τ ′ )e -q 2 d(τ ′ ,τ ) 2 /2 dτ ′ (3.
(3.51)

As ξ is a random variable, an explicit form of this solution cannot be derived. However, the average over all possible noise configurations noted ⟨.⟩ gives information about the density fluctuation distribution. In particular, one can infer the moments and correlation function. These quantities are related to the net-baryon density and thus contain information about the competition between critical enhancement and the dynamics.

One-point function

From the solution of Equation (3.51) we can first evaluate the average of n B as

⟨n B (q, τ )⟩ = ⟨n B (q, τ 0 )⟩e -q 2 d(τ 0 ,τ ) 2 /2 + iq τ τ 0 ⟨ξ(q, τ ′ )⟩e -q 2 d(τ ′ ,τ ) 2 /2 dτ ′ . (3.52)
Taking into account that ξ is chosen to be a local Gaussian white noise with vanishing mean value ⟨ξ(q, τ )⟩ = 0 for all q and τ we have

⟨n B (q, τ )⟩ = ⟨n B (q, τ 0 )⟩e -q 2 d(τ 0 ,τ ) 2 /2 . (3.53)
The average of the net-baryon density fluctuations coincides with the general solution of Equation (3.47). This simple result is already worth a discussion. In deterministic fluid dynamics, the event-by-event fluctuations of the net-baryon density are only given by the initial fluctuations. It is the goal of this work to reach a further understanding of the higherorder structure of the fluctuations to reveal their dynamical evolution which is out of reach on average.

Two-point function

In the continuity of what has been stated in the previous paragraph, we can reveal the dynamical dependence of the fluctuations by looking at the two-point correlation function at equal proper time defined as

C(τ, q 1 , q 2 ) = ⟨n B (q 1 , τ )n B (q 2 , τ )⟩. (3.54) 
Using the general solution Equation (3.51) it reads

C(τ, q 1 , q 2 ) = ⟨ n B (q 1 , τ 0 )e -q 2 1 d(τ 0 ,τ ) 2 /2 + τ τ 0 iq 1 ξ(q 1 , τ ′ )e -q 2 1 d(τ ′ ,τ ) 2 /2 dτ ′ n B (q 2 , τ 0 )e -q 2 2 d(τ 0 ,τ ) 2 /2 + τ τ 0 iq 2 ξ(q 2 , τ ′′ )e -q 2 2 d(τ ′′ ,τ ) 2 /2 dτ ′′ ⟩. (3.55) 
It gives four terms, but the vanishing correlation between the net-baryon density and noise field directly stems from the supposition that the noise ξ is a local Gaussian white noise, its values are purely random at each point in space and time, and thus there cannot be any correlation with another field. Which means

⟨n B (q i , τ 0 )ξ(q j , τ )⟩ = 0 ∀τ ≥ τ 0 , ∀ i, j (3.56) 
The only terms left in Equation (3.55) are

C(τ, q 1 , q 2 ) = ⟨n B (q 1 , τ 0 )n(q 2 , τ 0 )⟩e -(q 2 1 +q 2 2 )d(τ 0 ,τ ) 2 /2 -q 1 q 2 τ τ 0 τ τ 0 dτ ′ dτ ′′ ⟨ξ(q 1 , τ ′ )ξ(q 2 , τ ′′ )⟩e -q 2 1 d(τ ′ ,τ ) 2 /2 e -q 2 2 d(τ ′′ ,τ ) 2 /2 .
(3.57)

The noise correlation in Fourier space which appears in the second term of the R.H.S of this equation can be determined using Equation (2.48)

⟨ξ(q 1 , τ ′ )ξ(q 2 , τ ′′ )⟩ = ⟨ dy ′ e -iq 1 y ′ ξ(y ′ , τ ′ ) dy ′′ e -iq 2 y ′′ ξ(y ′′ , τ ′′ )⟩ = dy ′ dy ′′ ⟨ξ(y ′ , τ ′ )ξ(y ′′ , τ ′′ )⟩e -iq 1 y ′ e -iq 2 y ′′ = 2Dn c τ dy ′ dy ′′ δ(y ′ -y ′′ )δ(τ ′ -τ ′′ )e -iq 1 y ′ e -iq 2 y ′′ = 2Dn c τ δ(τ ′ -τ ′′ )δ(q 1 + q 2 ) (3.58) 
Rewriting C 0 = ⟨n B (q 1 , τ 0 )n(q 2 , τ 0 )⟩ we find

C(τ, q 1 , q 2 ) = C 0 e -(q 2 1 +q 2 2 )d(τ 0 ,τ ) 2 /2 -2Dn c q 1 q 2 δ(q 1 + q 2 ) τ τ 0 dτ ′ τ ′ e -(q 2 1 +q 2 2 )d(τ ′ ,τ ) 2 /2 (3.59)
This expression simplifies considering that the initial correlation function C 0 is proportional to a Dirac-δ function on the sum of the modes q 1 + q 2 . Physically, this means that the initial state of the fluctuations is not correlated in the y direction. In other words, the initial correlation length of the net-baryon density fluctuations is vanishing. Mathematically, it can be written ⟨n B (τ 0 , y 1 )n B (τ 0 , y 2 )⟩ = χ 0 δ(y 1 -y 2 ) where χ 0 is the initial local variance of the fluctuations. The translation in Fourier space is straightforward using the same derivation as in Equation (3.58). We find

C 0 = ⟨δn B (τ 0 , q 1 , )δn B (τ 0 , q 2 )⟩ = χ 0 δ(q 1 + q 2 ) (3.60)
Eventually, the correlation function in the Fourier space can be written

C(τ, q 1 , q 2 ) = δ(q 1 + q 2 ) χ 0 e -(q 2 1 +q 2 2 )d(τ 0 ,τ ) 2 /2 -2Dn c q 1 q 2 τ τ 0 dτ ′ τ ′ e -(q 2 1 +q 2 2 )d(τ ′ ,τ ) 2 /2 . (3.61)
We note that contrary to Equation (3.53) the two-point function in Fourier space contains a non-trivial dependence on the noise field ξ and the susceptibilities χ 2,4 defined in the previous subsection via its dependence on the diffusion length d. The physical interpretation of this function is not straightforward, but we can derive two interesting functions from this expression. First, the structure factor S q (τ ) which is the power spectrum of the fluctuations. Second, the correlation function in the real space C(τ, y 1 , y 2 ). These two quantities allow us to have an insight into the local and global behavior of the fluctuations. 
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The structure factor

If we write the correlation function in the Fourier space as follows C(τ, q 1 , q 2 ) = δ(q 1 + q 2 )c(τ, q 1 , q 2 ), (3.62) the structure factor is simply defined as

S q (τ ) = c(τ, q, -q). (3.63) 
By identification

S q (τ ) = χ 0 e -q 2 d(τ 0 ,τ ) 2 + 2Dn c q 2 τ τ 0 dτ ′ τ ′ e -q 2 d(τ ′ ,τ ) 2 . (3.64)
As χ 2 is defined analytically only in the scaling region, no analytical form of the structure factor is accessible everywhere. However, numerical integration is possible and presented in Figure 3.13. We took χ 0 = 0, q = 0 mode curve is thus vanishing at all proper-times and q > 0 curves are zero at τ = τ 0 . Consistently with the input values for X QGP 2 and X H 2 Equations (3.33) and (3.35), we observe that S q (τ ) = X QGP 2 for τ > τ r (q) where τ r (q) is the relaxation time of mode q (for τ < τ r , the curves increase to reach X QGP

2

) and

lim τ →∞ S q (τ ) = X H
2 for all trajectories and modes. Indeed, due to the fluctuation-dissipation theorem, the variance of the net-baryon density is determined by χ 2 . Moreover, in the small The equal-time structure factor Sq as a function of q for different temperatures.

and large temperature limit, when χ 2 is roughly constant, the fluctuations of n B are essentially a white noise in the Gaussian approximation (see discussion around Equation (3.73)). As a consequence, the only possible value for the variance is χ 2 . It is a crucial result in the present study as it confirms the close connection between the input susceptibilities and the fluctuation observables, it is discussed in more detail in the numerical calculations in Section 3.4.2

The time evolution of each mode is qualitatively identical to that of χ 2 . Nonetheless, one can observe that smaller modes, corresponding to long-wavelength, take more time to thermalize. Indeed, the retardation between the position of the maximum of the curves and the critical time associated with the critical temperature (vertical dashed line) is related to this relaxation time. It is found to be larger for smaller modes. Coming back to the relaxation time τ r (q), one can see the time it takes for S q to reach X QGP 2 at a small proper time is negligible as compared to the total evolution time. This is a direct consequence of the choice of the diffusion coefficient in this study D = 1 fm. In Figure 3.14 we show the equal-time structure factor as a function of the mode q for several temperatures. We observe a large enhancement of the fluctuations at large modes for critical trajectories (right panel) for T = T c = 150 MeV. This is the critical enhancement of the fluctuations. We also notice that S q>0 is monotonic for T > T c and non-monotonic for T < T c , this is a direct consequence of the previous discussion on the relaxation times of the modes. Smaller modes have a longer relaxation time, thus, after the large critical enhancement or the smooth monotonic decrease for non-critical trajectories, the larger modes will reach the equilibrium much faster than the smaller modes creating this behavior. The major difference between critical and non-critical trajectories is the concavity of this non-monotonic behavior. The non-monotonic behavior is convex for µ B = 0 MeV and concave for µ B = 350 MeV. We will see that it is true only for the Gaussian approximation. It is a strong signal for criticality in the Gaussian approximation and it can be seen in the correlation function too.

The correlation function in real space

Taking the inverse Fourier transform of Equation (3.61) we can derive the correlation function. This is easily feasible in the Gaussian approximation as the correlation in the Fourier space is Gaussian. First of all, based on the relation D(τ ) = Dnc/(τ χ 2 (τ )) we rewrite the correlation function in Fourier space as a function of χ 2 as

C(τ, q 1 , q 2 ) = δ(q 1 + q 2 ) χ 0 e -q 2 1 d(τ 0 ,τ ) 2 + 2q 2 1 τ τ 0 dτ ′ χ 2 (τ ′ )D(τ ′ )e -q 2 1 d(τ ′ ,τ ) 2 . (3.65)
Where we applied directly the condition imposed by the Dirac-δ function directly in the parenthesis of the R.H.S. Now, noticing that

∂ τ ′ e -q 2 1 d(τ ′ ,τ ) 2 = -q 2 1 ∂ τ ′ d(τ ′ , τ ) 2 e -q 2 1 d(τ ′ ,τ ) 2 = -2q 2 1 ∂ τ ′ τ τ ′ D(τ ′′ )e -q 2 1 d(τ ′ ,τ ) 2 dτ ′′ = 2q 2 1 ∂ τ ′ τ ′ τ D(τ ′′ )e -q 2 1 d(τ ′ ,τ ) 2 dτ ′′ = 2q 2 1 D(τ ′ )e -q 2 1 d(τ ′ ,τ ) 2 (3.66) 
we have

C(τ, q 1 , q 2 ) = δ(q 1 + q 2 ) χ 0 e -2q 2 1 d(τ 0 ,τ ) 2 /2 + τ τ 0 dτ ′ χ 2 (τ ′ )∂ τ ′ e -q 2 1 d(τ ′ ,τ ) 2 . (3.67)
Using the relation inverse Fourier transformation

FT -1 [e -q 2 d(τ 1 ,τ 2 ) ](y 1 -y 2 ) = e -(y 1 -y 2 ) 2 /(4d(τ 1 ,τ 2 ) 2 ) 2 √ πd(τ 1 , τ 2 ) , (3.68) 
we arrive to

C(τ, y 1 , y 2 ) = χ 0 e -(y 1 -y 2 ) 2 /(4d(τ 0 ,τ ) 2 ) 2 √ πd(τ 0 , τ ) + τ τ 0 dτ ′ χ 2 (τ ′ )∂ τ ′ e -(y 1 -y 2 ) 2 /(4d(τ ′ ,τ ) 2 ) 2 √ πd(τ ′ , τ ) . ( 3 

.69)

A simplified version of this equation can be found using an integration by part as

C(τ, y 1 , y 2 ) = χ 0 e -(y 1 -y 2 ) 2 /(4d(τ 0 ,τ ) 2 ) 2 √ πd(τ 0 , τ ) + χ 2 (τ ′ ) e -(y 1 -y 2 ) 2 /(4d(τ ′ ,τ ) 2 ) 2 √ πd(τ ′ , τ ) τ τ 0 - τ τ 0 dτ ′ ∂ τ ′ χ 2 (τ ′ ) e -(y 1 -y 2 ) 2 /(4d(τ ′ ,τ ) 2 ) 2 √ πd(τ ′ , τ
) .

(3.70)

The second term of the R.H.S can be detailed as follows

χ 2 (τ ′ ) e -(y 1 -y 2 ) 2 /(4d(τ ′ ,τ ) 2 ) 2 √ πd(τ ′ , τ ) τ τ 0 = lim τ ′ →τ χ 2 (τ ′ ) e -(y 1 -y 2 ) 2 /(4d(τ ′ ,τ ) 2 ) 2 √ πd(τ ′ , τ ) -χ 2 (τ 0 ) e -(y 1 -y 2 ) 2 /(4d(τ 0 ,τ ) 2 ) 2 √ πd(τ 0 , τ ) (3.
71) The first term of the R.H.S becomes a Dirac-δ function after taking this limit. In the end

C(τ, y 1 , y 2 ) = χ 0 -χ 2 (τ 0 ) e -(y 1 -y 2 ) 2 /(4d(τ 0 ,τ ) 2 ) 2 √ πd(τ 0 , τ ) +χ 2 (τ )δ(y 1 -y 2 ) - τ τ 0 dτ ′ ∂ τ ′ χ 2 (τ ′ ) e -(y 1 -y 2 ) 2 /(4d(τ ′ ,τ ) 2 ) 2 √ πd(τ ′ , τ ) (3.72) 
As a first comment, the second-order susceptibility χ 2 is constructed so χ 2 (τ 0 ) ∼ X QGP 2 , the first term of the R.H.S, can then be understood as the relaxation towards equilibrium. Indeed, this term is proportional to χ 0 -χ 2 (τ 0 ) ∼ χ 0 -X QGP 2 meaning that it only appears if there is a discrepancy between the local variance of the initial fluctuations and the value of χ 2 in the QGP. In a HIC, we can expect that this term is close to zero as initial fluctuations are likely to at thermal equilibriuym as suggests the good agreement between experimental results and fluid dynamical calculations. Second, the two remaining terms reveal the overall structure of the correlation in the Gaussian approximation. A local variance represented by the term proportional to the Dirac-δ function is added with another term, including an integral over the history of the system. We notice that the long-range correlations (∆y = y 1 -y 2 > 0) are only determined by the latter term, which is related to the variation of the susceptibility and diffusion length d. This, is a thought-provoking result as it unfolds the close connection between the variation of the second-order susceptibility with the temperature and the variation of the long-range correlations of the net-baryon density fluctuations in rapidity space. Indeed, the variation of the C(τ, ∆y) with respect to ∆y for the long-range correlation and initially χ 0 ∼ X QGP 2 is simply given by Considering that sign(∂ ∆y {e -(y 1 -y 2 ) 2 /(4d(τ ′ ,τ ) 2 ) }) < 0, the spatial rapidity variation of C(τ, ∆y) are only given by the temperature variation of χ 2 . If χ 2 is constant, its derivative with respect to the temperature vanishes, and the correlation stays local, no long-range correlations emerge. If χ 2 is a monotonic function of the temperature, as considered in this study at µ B = 0 MeV, its derivative has a constant sign and thus the long-range correlations are monotonic (see the left panel of Figure 3.15). Eventually, if χ 2 is a non-monotonic function of the temperature, its derivative changes sign with respect to τ and thus the long-range correlations may present a non-monotonic behavior (see the right panel of Figure 3.15). If one takes into account that χ 2 is likely to be non-monotonic only in the scaling region of QCD, these non-monotonic long-range correlations become a strong signal for the critical point. This interesting result is extensively studied in [START_REF] Sakaida | Dynamical evolution of critical fluctuations and its observation in heavy ion collisions[END_REF] and is just presented here to test its robustness when surface tension term and non-linear contributions are added.

∂ ∆y C(τ, ∆y) = - τ τ 0 dτ ′ ∂ τ ′ χ 2 (τ ′ ) ∂ ∆y e -∆y 2 /(4d(τ ′ ,τ ) 2 ) 2 √ πd(τ ′ , τ ) (3.

Now, as

∂ T χ 2 (T ) = ∂χ 2 ∂τ ∂τ ∂T , if τ is connected to the temperature via τ (T ) = τ 0 T i /T dc 2 s , dc 2 s > 0,

The Gauss + Surface approximation

Considering now G+S approximation K ̸ = 0 which we recall here

∂ τ n B = Dn c τ χ 2 (τ ) ∂ 2 y n B - Dn c K τ ∂ 4 y n B -∂ y ξ . (3.75)
In the Fourier space we get similarly

∂ τ n B (q, τ ) = -q 2 D(τ )n B (q, τ ) -q 4 D(τ )χ 2 (τ )K + iqξ(q, τ ). (3.76)
Now, using the same procedure as the previously in the Gaussian approximation we find the following solution of the equation

n B (q, τ ) = n B (q, τ 0 )e -q 2 d(τ 0 ,τ ) 2 /2-q 4 κ(τ 0 ,τ ) 4 /4 +iq τ τ 0 ξ(q, τ ′ )e -q 2 d(τ ′ ,τ ) 2 /2-q 4 κ(τ ′ ,τ ) 4 /4 dτ ′ (3.77)
Where

κ(τ ′ , τ ) = 4 4 τ τ ′ D(τ ′ )χ(τ ′ )Kdτ ′ , (3.78) 
κ(τ ′ , τ ) = 4 4Dn c K τ τ ′ 1 τ dτ ′ , (3.79) 
κ(τ ′ , τ ) = 4 4Dn c K ln τ τ ′ . (3.80)
The quantity defined above have also to be understood as the characteristic length scale or inverse energy scale related to the surface tension K in the expanding system (see Figure 3.16).

One point function

From solution Equation (3.77) we fin that the average over the noise configurations of the net-baryon density field in Fourier space is ⟨n B (q, τ )⟩ = ⟨n B (q, τ 0 )⟩e -q 2 d(τ 0 ,τ ) 2 /2-q 4 κ(τ 0 ,τ ) 

Structure factor

Using the same procedure as for Gaussian approximation, the correlation function in the Fourier space reads

C K (τ, q 1 , q 2 ) = δ(q 1 + q 2 ) χ 0 e -(q 2 1 +q 2 2 )d(τ 0 ,τ ) 2 /2-(q 4 1 +q 4 2 )κ(τ 0 ,τ ) 4 /4 -2Dn c q 1 q 2 τ τ 0 dτ ′ τ ′ e -(q 2 1 +q 2 2 )d(τ ′ ,τ ) 2 /2-(q 4 1 +q 4 
2 )κ(τ ′ ,τ ) 4 /4 .

(3.82)

From which the structure factor can be expressed easily using Equations (3.62) and (3.64). It reads

S q (τ ) = χ 0 e -q 2 d(τ 0 ,τ ) 2 -q 4 κ(τ 0 ,τ ) 4 /2 + 2Dn c q 2 τ τ 0 dτ ′ τ ′ e -q 2 d(τ ′ ,τ ) 2 -q 4 κ(τ ′ ,τ ) 4 /2 . (3.83)
In Figure 3.17, we show the comparison between the structure factor for the Gaussian approximation and the G+S approximation. Surface tension has a strong impact on large modes. The surface tension suppresses high-frequencies fluctuations. It has to be understood as a necessary regularization of the Gaussian approximation. Indeed, we observe that the structure factor tends to a constant value when q → ∞. It is not physical as it leads to a Dirac-δ terms in the correlation function. The surface tension remove the divergence and lead to a natural finite correlation length in the system. The latter being crucial at the critical point as long-range correlations are expected to arise.

Correlation function

The impact of the surface tension on the correlation is also significant. Unfortunately, the analytic inverse Fourier transform from the structure factor as in the pure Gauss approximation is not possible due to the term proportional to q 4 . However, numerical evaluation of the inverse Fourier transform is still possible. The numerical inverse Fourier transform of the structure factor Eq (3.83) is shown in Figure 3.18. In this figure, we can see that the relation between the non-monotonicity of the correlation function and the non-monotonicity of the susceptibility no longer holds in the Gauss+Surface model (right panels) because also along a non-critical trajectory with monotonic χ 2 the correlation function exhibits a non-monotonic behavior as a function of ∆y. For the pure Gauss limit (left panels), the correlation function will be monotonic for a trajectory far from the critical point and non-monotonic after passing the critical temperature on a trajectory near the critical point. This property is highlighted in the plots by the dashed lines which show the location of the minima of the curves. For a non-critical trajectory there is no minimum for ∆y > 0, while along the critical trajectory below the critical temperature there is always a minimum for ∆y > 0. For the Gauss model (right panels), we can see that all curves have a minimum located at ∆y > 0 no matter the trajectory. The correlation function for the Gauss model will be always decreasing for small ∆y and increasing for larger ∆y. Consequently, the distinction between critical and non-critical trajectory by looking at the variation of the correlation function is not possible with surface tension. We observe that for non-critical trajectories the position of the minima in ∆y decreases as a function of the temperature. For critical trajectories, this position changes non-monotonically with T . Of course, the magnitude of the correlations is much larger along a critical trajectory. This again put the emphasis on the fact that the Gaussian approximation is not physical. Extreme behaviors such as explained above cannot be compared to those of G+S model. The inclusion of the surface tension is thus essential.

Benchmark of the numerical calculations

A major issue in numerical stochastic studies is to guarantee that the produced probability distribution of the noise behaves properly and converges to the continuum limit probability distribution. Numerical simulations impose the discretization of the involved fields on space and time. The continuum limit has to be understood here as the limit where the associated lattice spacing tends to zero. Although it is a simple approximation of the continuum limit in deterministic studies, it becomes a complicated issue in stochastic studies. For instance, the obtained variance of the fields depends on the lattice spacing (see Section 5.1.3.1). The equal proper time structure factor is a formidable tool for comparing the analytical and numerical calculations. It can be calculated in the continuum limit and for the discretized field. We will refer to the latter calculation as the discretized structure factor. It also contains all the relevant information about the probability distribution of the noise as it is simply proportional to the probability distribution in the Fourier space. Besides, it is possible to look at the two-points correlation function in the real space for such comparison. However, as the correlation function is more suited to see global features and system size dependence, it will only serve to evaluate the impact on the amplitude of the fluctuations as explained further in the following.

The discretized structure factor

In ref [START_REF] Donev | On the accuracy of finite-volume schemes for fluctuating hydrodynamics[END_REF], two different definitions of the structure factor are discussed. The static structure factor and the dynamic structure factor. The first one corresponds to the power spectrum of the fluctuations when the equilibrium is reached. The second one is the dynamic counterpart. Theoretically, the dynamic structure factor tends the static structure factor when time goes to infinity. In expanding systems, none of these two definitions are suitable. The connection between the temperature T and the dynamic variable τ prevents from taking the limit τ → ∞ and taking the Fourier transform both in space and time to get respectively, the static and the dynamic structure factor. Indeed, the temperature is an inverse power law of the proper time. The infinite proper time limit corresponds to a vanishing temperature and thus to vanishing thermal fluctuations. In a constant size box, the time-reversal symmetry at the microscopic scale allows performing the Fourier transform in time by integrating over all possible time from -∞ and +∞. In the expanding system, τ is posivitve as there is no physical sense to consider the system before the collision. Thus, the integral can only be taken from τ = τ 0 > 0 to +∞. It poses complicated issues concerning causality and in particular, the Laplace transform should be preferred in this situation. We choose to circumvent these issues by constructing the equal-time structure factor which consists in taking the static structure factor as if equilibrium has been reached at each proper time. Another way to see this is considering that we look at the dynamic structure factor where the Fourier transform on time has not been performed. The physical interpretation of the static structure factor being the power spectrum of the fluctuations at equilibrium, and the dynamic structure factor being the Green's function of the diffusion is clear and straightforward. Howbeit, the equal-time structure factor cannot be easily interpreted. It is not an issue because it only serves for analytical and numerical analysis and does not represent a physical observable of the model. In the continuum limit, the equal-time structure factor is given by Equation (3.83). In the discretized space, coherently with the definition of the equal-time structure factor, we consider the line approximation of the SDE in the G+S approximation used in the numerical calculations.

∂ τ n j (τ ) = Dn c τ χ 2 (τ )δy 2 n j+1 (τ )-2n j (τ ) + n j-1 (τ ) + 1 δy 3 ξ j+1 (τ ) -ξ j (τ ) + KDn c τ δy 4 n j+2 (τ ) -4n j+1 (τ ) + 6n j (τ ) -4n j-1 (τ ) + n j-2 (τ ) (3.84)
With δy is the lattice spacing used in the numerical calculations. It is related to the system size L and the number of considered cells N as δy = L/N . The exact same methodology as the one developed previously can be used again with a discrete inverse Fourier transform defined as ∂ τ n k (τ )e ikjδy = Dn c τ χ 2 (τ )δy 2 e ik(j+1)δy -2e ikjδy + e ik(j-1)δy n k (τ ) + 1 δy 3 e ik(j+1)δy -e ikjδy ξ k (τ )

n j (τ ) = 1 N N -1 k=0 n k (τ )

+

KDn c τ ∆y 4 e ik(j+2)δy -4e ik(j+1)δy + 6e ikjδy -4e ik(j-1)δy + e ik(j-2)δy n k (τ ).

(3.87)

Defining ∆k = kδy, the equation can be rewritten

∂ τ n k (τ ) = Dn c τ χ 2 (τ )δy 2 e i∆k -2+e -i∆k n k (τ ) + 1 δy 3 e i∆k -1 ξ k (τ ) + KDn c τ δy 4 e 2i∆k -4e i∆k + 6 -4e -i∆k + e -2i∆k n k (τ ). (3.88) 
Using Euler formula and trigonometric relations, we get

∂ τ n k (τ ) = 2Dn c τ χ 2 (τ )δy 2 (cos(∆k) -1)n k (τ ) + 2ie i∆k/2 1 δy 3 sin(∆k/2)ξ k (τ ) +
4KDn c τ δy 4 (cos(∆k) -1) 2 n k (τ ).

(3.89)

Again we can express the general form of the solution as

n k (τ ) =n k (τ 0 )e -(1-cos(∆k))/δy 2 d(τ 0 ,τ ) 2 -(1-cos(∆k)) 2 κ(τ 0 ,τ ) 4 /δy 4 + 2i sin(∆k/2)e i∆k/2 τ τ 0 ξ(q, τ ′ )e -(1-cos(∆k))/δy 2 d(τ ′ ,τ ) 2 -(1-cos(∆k)) 2 κ(τ ′ ,τ ) 4 /δy 4 dτ ′ (3.90)
We eventually arrive at the equal-time structure factor in discretized space

S k (τ ) = χ 0 e -2(1-cos(∆k))/δy 2 d(τ 0 ,τ ) 2 -2(1-cos(∆k)) 2 κ(τ 0 ,τ ) 4 /δy 4 - 4Dn c δy 2 sin(∆k/2) 2 τ τ 0 dτ ′ τ ′ e -2(1-cos(∆k))/δy 2 d(τ ′ ,τ ) 2 -2(1-cos(∆k)) 2 κ(τ ′ ,τ ) 4 /δy 4 .
(3.91)

The discretized structure factor S k is formally consistent with its continuum limit counterpart Equation (3.83) and allows to study the impact of the lattice spacing δy. We notice that we have the following relations And in direct consequence of the discrete Fourier definition Equation (3.86), k coincides with the continuum mode q. We thus expect that the discretized structure factor S k (τ ) tends to the continuum limit structure factor S q (τ ) when the lattice spacing δy goes to zero.

Regarding the numerical structure factor, it is simply calculated as the squared modulus of the Fourier transform of the net-baryon density field averaged over all noise configurations

N conf as S k = L N conf N conf i=1 n k,i n * k,i (3.95) 
In Figure 3.19, we show the comparison between S q (τ ), S k (τ ) and S k for different temperatures, values of µ B and lattice spacing δy at constant system size L. Because of the symmetry property of the discretized structure factor S(τ, κ) = S(τ, N -κ) we show the results only for 0 ≤ κ ≤ N/2. The wavenumber κ = Lq/(2π) ranging from 0 to N is used to have a coherent variable for continuum, discretized, and numerical calculations. For simplicity reasons we chose χ 0 = 0. We observe that the numerical results perfectly reproduce analytic expectations in discretized space for all T and µ B and resolutions. Moreover, as N is increased the structure factor progressively approaches the continuum result. For N = 128 we find already a reasonable agreement between the numerics and the continuum for small and intermediate wavenumbers. For this reason and to optimize the computational effort, we choose N = 128 in the remainder of this work.

The correlation function

The impact of finite resolution can as well be seen on the equal proper time two-points correlation function. The continuum limit and discretized space correlation functions are obtained by taking the inverse Fourier transform of Equations (3.83) and (3.91) and the numerical correlation function reads

C j = 1 N conf N conf i=1 (n 0,i -n0 )(n j,i -nj ) (3.96)
where n j,i is the net-baryon density at rapidity -L/2 + jδy for noise configuration i and nj is the average value of the density at cell j for all noise configurations. Notice that in the case of periodic boundary conditions used here (see Section 5.1.1.2), the choice of j = 0 for the base point on which the correlation is calculated is arbitrary and can be chosen to be any other value from j = 0 to j = 128.

In a critical and a non-critical trajectory. Notice that the curves become negative at certain rapidity depending on the T and µ B . We can explain this observation in the following way. In all microscopic interactions during the evolution, the net-baryon number is conserved, meaning that the integral over all rapidities of the net-baryon density stays constant. In this study, we set the constant net-baryon number to zero. In line with Bjorken's picture of the initial fireball, the net-baryon number is carried by the receding pancakes, and thus the fireball, mainly responsible for the physics at mid-rapidity studied here, should carry a vanishing net-baryon number. As a direct consequence, the integral of the correlation function over all the finite size of the system must vanish as it involves the integral over the rapidity space of the net-baryon density. Thus, negative correlations should arise to counter-balance the positive correlations expected as y → 0. Besides, the solution y 0 to C(y 0 ) = 0 for a non-critical trajectory is much larger than for a critical trajectory. Indeed, in expanding medium, large fluctuations are balanced locally meaning that the large increase of positive correlation at vanishing rapidity due to criticality will be compensated in the vicinity of y = 0 (here at y ∼ 1), shifting the position of y 0 to smaller rapidity. It is interesting to notice that this local compensation of positive correlation is specific to expanding medium.

In the non-expanding situation, positive correlations are compensated equally over all the system-size [START_REF] Nahrgang | Modeling the diffusive dynamics of critical fluctuations near the QCD critical point[END_REF]. As explained in further detail in the next section, this feature is related to the different treatments of the diffusion coefficient between the two approaches. In Figure 3.20 one observes that as one approaches the critical point with increasing µ B , correlations increase significantly at small distances. As a consequence, the anti-correlations are also enhanced and remain visible over a large region in space-time rapidity up to y ≈ 1 -2.5 for the considered D = 1 fm.

Regarding the resolution dependence at N = 128, we observe that finite resolution impacts the amplitude of the critical signal both in positive correlation at small rapidity and anticorrelations at larger rapidities. At finite resolution, we underestimate the enhancement of the fluctuations as compared to the continuum limit at a maximum 20%. Yet, the qualitative difference in behaviors between critical and non-critical trajectories remains the same as in the continuum limit.

The presented studies on the resolution dependence of the structure factor and the impact of total charge conservation on the correlation function in a finite-size system serve as successful benchmark tests for our numerical approach. In addition, we observe the basic effect of an increase of the fluctuations as the critical point is approached with increasing µ B . This motivates us to proceed and include as a next step the non-linear coupling term, see Eq. (3.38). In this case, no analytic expressions are available.

Non-linear model

In the previous section, we demonstrated the accurate reproduction of the noise distribution in the numerical calculations via the equal-time structure factor. The algorithm is then suited to study the full SDE

∂ τ n B = Dn c τ χ 2 (τ ) ∂ 2 y n B - Dn c K τ ∂ 4 y n B + Dn c 6 τ χ 4 (τ ) ∂ 2 y n B 3 -∂ y ξ , (3.97) 
including a non-linear contribution ∝ n 3 B . First, we present a modelization of the collision from τ ∼ 1 fm to the end of the hydrodynamic evolution. Second, we present the time evolution, the diffusion length, and rapidity window dependence of the fluctuations observables.

For further details on the way these fluctuations observables are calculated please refer to ??.

Modelization of the collision

In the detailed description of the different steps of a HIC described in Section 1.2.3 we only consider here the two first ones. Namely, the pre-equilibrium and the hydrodynamic phase until chemical freeze-out. We consider then that the hydrodynamic description of the system is relevant until this stage of the collision.

pre-equilibrium stage

The incredible success of fluid dynamics to describe the particle spectra is a clear indication that the strongly-interacting fireball created right after the collision is close to thermal equilibrium. This assumption imposes that the fluctuations observables related to the fluctuations of the net-baryon density are time-invariant in the initial stage around τ ∼ 1 fm. In the numerical simulation, we perform numerous time steps of the dynamical evolution of the net-baryon density at constant temperature T i = 500 MeV. Once the fluctuation observables such as the variance are found to be independent of the time step, we record the obtained net-baryon density fluctuations and take them as the starting point of the next stage. In Figure 3.21, we represent the time-evolution of the net-baryon density variance in the pre-equilibrium stage. It can be seen that after a certain amount of time, σ 2 B is constant. Notice that time required to reach this equilibrium situation τ eq depends on the diffusion coefficient D and is thus adapted to each working value of D. We also stress that τ eq is not connected to the actual pre-equilibration time often taken to be 1 fm.

Hydrodynamic stage

At the beginning of the hydrodynamic stage, we take the net-baryon density obtained at the end of the pre-equilibrium phase, imposing τ to be equal to τ 0 = 1 fm, and start the expansion by increasing its value. Indeed, the expansion is solely determined by the proper time in the context of a Bjorken longitudinal expansion Equation (2.53). This connection allows us to find the adapted values for the susceptibilities χ 2,4 defined as a function of the temperature. Taking T i = 500 MeV, the total evolution time of the fireball is taken to be τ tot = 6 fm. For this duration, the final temperature reached is T = 83 MeV. The susceptibilities χ 2,4 depend on the value of the baryo-chemical potential µ B . We consider that µ B stays constant in the whole evolution. It is certainly not the case in an actual collision as the equation of state imposes a relation between µ B and the entropy. It then describes paths in the phase diagram that are not at constant µ B (see Figure 3.22). We perform this approximation for simplicity reasons, the susceptibilities coming from a complex modelization inside and outside the critical region, we keep µ B constant. If the susceptibilities are parametrized directly during the evolution, a simple extension of this model for actual trajectories is straightforward. It is left for future studies. This peculiar feature of the model imposes to distinguish between a global µ B used to select the susceptibilities and a local µ B stemming from Equation (3.36).

Time-evolution of fluctuations observables

In Figure 3.23, we show the time evolution of the net-baryon density variance and the kurtosis in a rapidity window ∆y = 1 for different µ B . These curves correspond to the trajectories shown schematically in Figure 3.22. These results represent the average over N conf = 2.25 × 10 6 noise configurations.

The critical enhancement

As expected from the input susceptibilities χ 2,4 , constant values are reached for both the variance and the kurtosis. If one compares the values reached at small by the variance and X H 2 we observe that they are of the same order but slightly different. We measured a difference of roughly 20%. In the Gaussian approximation, the values reached small and large temperatures should be the same as X H,QGP 2 for vanishing rapidity window ∆y. Indeed, in the limit of large or small temperature and vanishing rapidity window, the correlation function Equation (3.73) reduces to χ 2 (τ ) which takes exactly the values of X H,QGP 2 at the limits. In a model including surface tension and a non-linear coupling, this relation does not hold anymore, the variance at vanishing rapidity window now depends on K and λ 4 . In Figure 3.24, we show the scaled variance σ 2 (∆y)/(X H 2 ∆y) for different values of K at µ B = 0 MeV and T = 100 MeV (small temperature limit). We see in the limits K → 0 and ∆y → 0, the scaled variance goes to unit. At working surface tension term K = 2 fm -4 and rapidity window ∆y = 1 we retrieve a difference of the order of 20% as compared to Gaussian approximation. Thus we conclude that the values reached at both large and small temperatures by the variance are affected by the value of K in a non-trivial way and that this explains the difference with the input values from lattice QCD. In Figure 3.23, we also observe that the fluctuations are affected by the presence of a critical point despite the rapid expansion in the longitudinal direction. More precisely, after the susceptibilities reach their peak values at T = 150 MeV (dashed vertical line), the variance and the kurtosis also show a peak value which increases when µ B approaches the critical baryo-chemical potential µ c = 390 MeV. Moreover, compared to the susceptibilities (see Figure 3.11) the critical signals are visible in a broadened temperature region. The kurtosis is negative for positive λ 4 (and in the absence of a cubic coupling). It can be anticipated from the leading-order term in [START_REF] Stephanov | Non-Gaussian fluctuations near the QCD critical point[END_REF]. The criticality also impacts the two-point correlation function. In Figure 3.25, we show the correlation function for several snapshot temperatures for critical and non-critical trajectories. The behavior observed for the full non-linear model is consistent with the G+S approximation Figure 3.20, strong correlations at smaller rapidity are compensated by strong anti-correlation at rapidities between y ≈ 1 -2.5 for the considered D = 1 fm for critical trajectories at µ B = 350 MeV (right panel). The non-critical trajectories remain roughly the same for all snapshot temperatures. The main difference between the G+S approximation and the full model lies in the amplitude of the correlations (and consequently anticorrelations). The general behavior remains the same for the two-point function. Even if the correlation function studied here still is dependent on the lattice spacing, the anticorrelations at intermediate rapidities due to the global charge conservation are a robust signal. Experimentally, they should be considered on an equal footing as the expected enhancement of positive correlations at small rapidities as a signal of criticality. 

Freeze-out temperature dependence

As it can be observed in both Figure 3.23 and Figure 3.25, the critical enhancement around T = T c has a very short lifetime. Then, knowing the freeze-out conditions, interpreted here as (T f , µ B ) where T f is the temperature where hydrodynamic evolution stops, is of major importance in the evaluation of the possible measurement of the critical enhancement. Indeed, if T f = 145 MeV (resp. T f = 132 MeV), the signal in the variance, kurtosis and the correlation function is very large (resp. small). In Figure 3.26 we represent an alternative perspective on the time-dependence of the variance and the kurtosis. We show the value of each trajectory for several temperatures. The sensitivity of the signal with T f is clearly seen in the difference in values for T = 145 MeV and = 132 MeV curves, the variance (resp. kurtosis) loses roughly 25% (resp. 50%) in amplitude. It is a drastic decrease as it happens in a window ∆τ = 0.6 fm which is much less than the total evolution time of ∼ 10 fm. This result is of far-reaching consequence at the experimental level, a small T f may prevent any critical signal measurement in the QCD phase diagram through HIC.

Diffusion length dependence

The strong statement of the previous part is dependent on the coefficient diffusion D. In Figure 3.27, we see that a decreasing D results in a decrease in the amplitude of the critical signal and a broadening of the curves. Smaller (resp. larger) D results in a smaller (resp. larger) amplitude signal with a longer (resp. shorter) lifetime. It represents a tricky compro- mise as a larger critical signal may be decisive for experimental discovery but the associated short lifetime may prevent any detection in particle spectra stemming from freeze-out hypersurface.

The model we developed here has been shown to reproduce the dynamical scaling of model B in the classification [START_REF] Hohenberg | Theory of Dynamic Critical Phenomena[END_REF][START_REF] Nahrgang | Diffusive dynamics of critical fluctuations near the QCD critical point[END_REF] namely that the relaxation time τ r scales with the correlation ξ (see Equation (3.12)) as τ r ∝ ξ 4 . In particular, an increase in the correlation length expected in the scaling region directly imposes a longer relaxation time. The closer to the critical point, the longer it takes for the thermal fluctuations to reach equilibrium. The diffusion term ∝ D in Equation (3.38) can as well be connected to the correlation length [START_REF] Nahrgang | Modeling the diffusive dynamics of critical fluctuations near the QCD critical point[END_REF] allowing us to determine its relation with the relaxation time at first-order as be closer to equilibrium. Following this observation, three situations emerge. First, for D ≤ 0.5 fm (blue curves), z is close to 1 in the scaling region. The fluctuations are not in equilibrium when passing near the critical point and thus remain roughly unaffected by the criticality. The expansion dominates the diffusion. This small impact of the criticality on the fluctuations will nonetheless be long-lived as can be seen by the large size of the plateau near the proper time τ c -τ 0 = 2.3 fm/c where the critical temperature is reached (vertical dashed line). This plateau is due to the critical slowing down, i.e. the slowdown of the diffusion near the critical point, which here corresponds to an increase of the derivative of z. Second, for D ≥ 0.7 fm (red curves), z(τ ) becomes negative before τ c is reached. Then, the net-baryon density fluctuations are close to equilibrium in the critical region and are largely impacted by the criticality. The diffusion wins over the expansion. However, as can be seen for the curve D = 0.7 fm for example, the critical slowing down plateau is now small, meaning that the large critical enhancement of the fluctuations will be very short-lived. Third, for intermediate states 0.5 fm < D < 0.7 fm (green curves), the fluctuations are close enough to equilibrium to be impacted by the criticality and the critical signal survives a reasonable amount of time after being printed into the system due to the smaller diffusion. It is a thought-provoking observation as it uncovers the intricate interplay between the diffusion coefficient and the freeze-out conditions when it comes to studying the impact of dynamics on critical fluctuations. Nonetheless, these results for deterministic evolution can be compared only qualitatively to the stochastic studies. In particular, the value of D given only gives qualitatively accurate description of the impact of the diffusion coefficient.

D ∝ τ -1 r . ( 3 

Diffusion dependence at freeze-out temperature T = 145 MeV

Before studying the joint effect of the freeze-out conditions and diffusion coefficient on the fluctuations, it is instructive to isolate the impact of the diffusion coefficient only. For this, we choose a T f = 145 MeV as a freeze-out temperature and use several values of D. We choose the freeze-out temperature according to ref [START_REF] Alba | Freeze-out conditions from net-proton and net-charge fluctuations at rhic[END_REF][START_REF] Bluhm | Freeze-out conditions from strangeness observables at RHIC[END_REF] and also as it turned out to be an especially good temperature for D = 1 fm. In Figure 3.29 we show the impact of D on the variance and the kurtosis as fixed T f = 145 MeV. According to the result for the deterministic study, we observe a strong dependence of the fluctuations observables with D. As in for the freeze-out dependence, the kurtosis is more affected. We measure a relative decrease of 40% for the variance and 75% for the kurtosis at µ B = 350 MeV between D = 2 fm to D = 0.1 fm. The previous discussion demonstrates that the kurtosis is much more affected by out-equilibrium evolutions in the scaling region. Higher-order fluctuations need larger time to establish in the system. The diffusion coefficient also impacts the correlations at namely that a trajectory with a smaller diffusion coefficient (corresponding to D min ) and larger criticality (in blue) crosses a trajectory with larger D (corresponding to D max ) and smaller criticality (in orange) inside the uncertainty window of the freeze-out temperature (in-between the two vertical dashed lines). Interpreting the experimental result will fall on two possibilities

• The freeze-out temperature is considered to be T f,min We associate the larger signal σ 2 B,1 to the blue curve which have larger criticality, the interpretation is correct.

• The freeze-out temperature is considered to be T f,max

We associate the larger signal σ 2 B,1 to the orange curve which have a smaller criticality, the interpretation is wrong.

If the two curves cross inside the freeze-out uncertainty interval, experimental measurements may be wrongly interpreted. It may prevent the precise location of criticality in the QCD phase diagram. None of the freeze-out temperature and diffusion coefficient is known precisely. Nonetheless, this may not be interpreted as a strong statement as it is known that the freeze-out temperature is a phenomenological interpretation and occurs dynamically. More precise estimations of the diffusion coefficient are currently available from microscopic theories and are presented and studied in Chapter 4.

Rapidity dependence of fluctuation observables at freeze-out

Experimentally, the time evolution of the fluctuations observables is not accessible. In a heavy-ion collision, the only accessible information is the particle spectra which can be easily expressed as a function of the pseudo-rapidity or the rapidity. In the simulations, we can study the rapidity dependence of the variance and the kurtosis at a certain freeze-out temperature T f = 145 MeV. In Figure 3.31, we show the rapidity window dependence of the variance and the kurtosis at T f = 145 MeV for different trajectories. A monotonic increase of the second-order cumulant (upper panel) can be observed for all trajectories. It denotes the volume increases considered. At larger rapidities, we observe the bending of the µ B > 0 MeV curves. It is due to the global charge conservation. For even larger rapidity windows, not shown here, the variance plateaus, and then decreases back to zero. monotonic, with a pronounced minimum. This non-monotonic behavior of the fourth-order cumulant survives the rapid expansion of the system for a diffusion length D = 1 fm and consequently, if observed experimentally, is a strong indication of the presence of the critical point. In Figure 3.32, we show the impact of the diffusion coefficient on the rapidity dependence of the variance and the kurtosis for µ B = 350 MeV and T f = 145 MeV. Again, with a smaller D, we observe a smaller amplitude of the signal. Moreover, we see that the minimum of the kurtosis depends on the diffusion coefficient. It is a thought-provoking observation as it nuances the need for a large coefficient D to see an actual signal. The amplitude of the kurtosis is decreased for smaller D. But one also notices that the position of this dip is shifted to a smaller rapidity window. In a collider, large rapidities are generally not accessible (it would require very long detectors), and thus, if the signal is smaller but also at smaller rapidity, that could be an advantage for experimental discovery. Large D may also be a drawback if one searches the critical point looking for a non-monotonicity of the net-proton kurtosis.

Discussion

The main result of this work is that the enhancement of the variance, the kurtosis, and the correlation and anti-correlations of the net-baryon density are observable at freeze-out temperature. In particular, the large anti-correlations for the intermediate rapidity window Figure 3.25 and the non-monotonic behavior of the kurtosis as a function of the rapidity window Figure 3.32, which is accessible experimentally via the net-proton number fluctuations, is a strong sign for the critical point in the QCD phase diagram. The strong dependence of this signal in the net-baryon kurtosis is an essential aspect of dynamical studies. There is of crucial importance to have precise knowledge of the diffusive property of the QGP before interpreting any results. Indeed, due to a possible joint uncertainty on the freeze-out temperature, memory effects may blur our insight on the QCD phase diagram. But also, whether the diffusion coefficient is large or small, the non-monotonicity of the kurtosis may be experimentally accessible or not. Indeed, on the one hand, if the diffusion coefficient is very large, it is likely that non-monotonic behavior will never be seen within the acceptance of current detectors. On the other hand, if the diffusion coefficient is very small, the amplitude of the signal may be very small even if it is measurable within acceptance. As a consequence, the statistic needed would be tremendous. Recent experimental results on the rapidity dependence of the net-proton cumulants ratios and especially the kurtosis [START_REF] Adam | Nonmonotonic Energy Dependence of Net-Proton Number Fluctuations[END_REF] have been published and show a non-monotonic dependence of the said kurtosis as a function of the rapidity window for small collision energy at (s) = 7.7 GeV. If this nonmonotonic behavior is confirmed, it advocates for a very small diffusion coefficient of the strongly-interacting matter. The natural continuation of this work would be to try different D and see if the experimental result can be reproduced using this model. However, before doing so, many important features are to be treated first :

• Bjorken flow approximation

The Bjorken flow is an approximation at ultra-relativistic energies. Indeed, the assumption of the collision velocity being close to 1 is essential in the boost-invariance argument of the Bjorken flow. When it comes to critical point studies, experimental results show a peculiar behavior at smaller collision energy in the center of mass, and especially, the non-monotonic behavior of the kurtosis as a function of the rapidity window evoked above seems to happen at smaller energies. It may prevent the Bjorken flow to be used in this kind of study and in fluid dynamics to study the critical point of the QCD phase diagram in general.

• The particlization

The results are shown for the net-baryon density and experimentally, only particle spectra are available. A direct comparison with experimental data is thus not possible. The Cooper-fry particlization generally used to translate densities to particles spectra is not appropriate here for two reasons. First, the charge conservation is a crucial ingredient to see anti-correlations which are potentially a sign of the critical point. Second, the Monte-Carlo procedure used to generate particle from distributions conserve the average value but not necessarily the higher-order fluctuations of the net-baryon number. The critical signal in the density must survive the particlization.

• The energy and momentum conservation

In this study, the energy and the momentum are not conserved. In particular, the number of particles involved is not fixed. We study the fluctuations around an unknown average. Consequently, no information can be given concerning the relative importance of average fluctuations and thus the actual quantitative values of them. To include such conservation, the stress-energy tensor stochastic dynamical evolution needs to be taken into account. This is also the subject of the next subsection.

Chapter 4

Coupled dynamics of conserved charge fluctuations

The dynamics of the conserved charges in HIC comes from the underlying dynamics of the QCD matter. Either quarks, gluons, or hadrons carry multiple conserved charges. For instance, quarks have a fractional electric charge and baryon number. Kaons possess an electric charge and strangeness. Consequently, when a particle carrying multiple conserved charges as such moves, it mechanically results in currents for all the concerned charges simultaneously. The dynamical evolution of the net-baryon, net-electric charge, and net-strangeness densities is coupled. Such an influence on each other leads to a correlation of their respective fluctuations.

A recent study [START_REF] Fotakis | Diffusion processes involving multiple conserved charges: A study from kinetic theory and implications to the fluid-dynamical modeling of heavy ion collisions[END_REF] enlightened the coupling between the conserved charges in a heavy-ion collision. By expressing the currents from a microscopic theory and relativistic hydrodynamics, the authors inferred the diffusion matrix. This matrix gives realistic magnitudes for the diffusion coefficients and the coupling between the diffusive currents of the net-baryon, net-electric charge, and net-strangeness. In this chapter, we use the diffusion matrix to build a model for the coupled diffusive dynamics of the fluctuations in HIC. Although a deterministic fluid dynamics model has been studied directly in [START_REF] Fotakis | Diffusion processes involving multiple conserved charges: A study from kinetic theory and implications to the fluid-dynamical modeling of heavy ion collisions[END_REF] we emphasize here the stochastic correlations induced by the coupling. First, we construct the noise-noise correlations from the diffusion matrix by using the fluctuation-dissipation balance. Second, we discuss the applicability in the study of the dynamics of the fluctuations in the hadron gas at the later stage of the collision. In particular, we make use of a linear approximation of the hadron resonance gas model to get a connection between the densities and their chemical potentials. Eventually, we show the dynamical evolution of the second order fluctuations of the conserved charges during the expansion in a hadronic medium focusing on the out-of-equilibrium dynamics.

Coupled stochastic diffusion equations

The model built in Chapter 2 involves a diffusion matrix noted D XY for X and Y being B, Q or S depending on the sector. It directly stem from the choice of the Fick laws to determine the current. In this model, the currents cannot be considered independent.

It transcribes the diffusion of particles carrying more than one conserved charge. If one considers a baryon number gradient, it imposes the displacement of a proton towards lower baryonic densities. The proton also carries an electric charge. A current of electric charge is thus naturally induced by the movement of the proton originally due to the baryon number gradient. Currents are coupled. The model reads

∂ τ n i (τ, y) = ∂ y κ ij τ ∂ y µ j T -∂ y 2 τ C ij Z j (4.1)
⟨ξ µ i (x)ξ ν j (x ′ )⟩ = 2κ ij (T, µ j )∆ µν δ (4) (x -x ′ ) . (4.2)
As compared to the model Equation (2.46), the matrix D XY has been simply replaced by κ ij (in line with [START_REF] Fotakis | Diffusion processes involving multiple conserved charges: A study from kinetic theory and implications to the fluid-dynamical modeling of heavy ion collisions[END_REF]). The diagonal elements correspond to the diffusion coefficients for each conserved charge. The off-diagonal element i, j is the strength of the induced diffusion of the charge i by a current of charge j. Z j is a Gaussian white noise with vanishing expectation value and unit variance. C ij is a matrix element of the Cholesky decomposition of κ, the equivalent of the square root for matrices. The energy and momentum conservation is considered via the temperature evolution of the fireball as presented in Section 2.2.2.4.

The κ matrix has been taken from the existing literature see [START_REF] Fotakis | Diffusion processes involving multiple conserved charges: A study from kinetic theory and implications to the fluid-dynamical modeling of heavy ion collisions[END_REF]. The interested reader will find more details about the construction and the exact structure of the κ matrix in Appendix A.

Coupled fluctuation-dissipation balance

The noise needs to be balanced by dissipation to reach equilibrium. In single-charge diffusion, with diffusion coefficient D, it is respected by imposing that the factor in front of the noise term is √ 2D. For multiple charge diffusion, this is another story. Formally, it is the same idea. The noise term needs to be equal to the "square root" of the κ matrix. However, as it is now a matrix, the square root is replaced by the Cholesky decomposition (CD). The square root is defined for positive real numbers. In the same way, a Cholesky decomposition only applies to a positive definite matrix (all its eigenvalues are strictly positive). The need for a Cholesky decomposition imposes constraints on the κ matrix. In practice, a decomposition can also be found for semi-positive definite matrices (eigenvalues are positive or zero). This point is not a pure mathematical constraint. The positive definiteness property of the diffusion coefficient matrix is a consequence of the second principle of thermodynamics for irreversible processes such as diffusion. Ideally, κ would be automatically positive definite. However, approximations have been done to obtain its expression (see Appendix A) and it is evaluated numerically. It means in particular that the property is not always respected. It is a problem for deterministic studies as anti-diffusion can appear sometimes. For stochastic studies, it is an inescapable obstacle. One can simply not study stochastic coupled diffusion equations if the coefficient diffusion matrix is not positive semi-definite (PSD). First, we make a clear connection between the PSD property of the diffusion coefficient matrix and irreversible processes in relativistic fluid dynamics. Second, we describe a method to find the nearest PSD matrix for the Frobenius norm and discuss its application to κ. Eventually, we briefly describe the Cholesky decomposition itself.

Irreversible processes and definite positivity

In irreversible processes, such as diffusion, the entropy always increases. It is the second law of thermodynamics. It imposes constraints on the diffusion matrix κ, not all couplings are compatible with the increase of entropy. In diffusive processes, the increase of entropy fundamentally arises from a much larger probability for a particle to escape crowded regions due to elastic collisions than the opposite. At the macroscopic level it induces currents toward smaller concentration regions. The classical Fick's law expresses this idea in a straightforward way as

⃗ j = -D - → ∇c (4.3)
where c is the concentration, ⃗ j the current and D the diffusion coefficient. Particles will move towards smaller concentration regions if and only if D > 0. If D < 0, anti-diffusion occurs. It results in a concentration increase and thus a decreasing entropy. It is not physically acceptable. The positive property of the scalar D is translated to a definite-positivity constraint in the case of multiple component diffusion for κ.

In relativistic fluid dynamics, the classical Fick's law is replaced by its relativistic counterpart. Essentially, particles move towards regions with smaller chemical potential. In this context, the increase of entropy reads

∂ ;µ S µ > 0 . (4.4)
Writing the expression of the entropy current in the grand canonical ensemble

S µ = su µ - i={B,Q,S} µ i T j µ i . (4.5)
The 4-divergence of the entropy then reads

∂ ;µ S µ = ∂ ;µ {su µ } - i={B,Q,S} ∂ ;µ {α i j µ i } . (4.6)
Using the fundamental thermodynamic relation T s = p + ϵ -µ i n i , one can rewrite the 4-divergence of the entropy current as

∂ ;µ S µ = ∂ ;µ ϵ + P T u µ - i={B,Q,S} α i ∂ ;µ {n i u µ } + {∂ ;µ α i }n i u µ + α i {∂ ;µ j µ i } + {∂ ;µ α i }j µ (4.7) ∂ ;µ S µ = ∂ ;µ ϵ + P T u µ - i={B,Q,S} α i ∂ ;µ n i u µ + j µ i - i={B,Q,S} {∂ ;µ α i }n i u µ + {∂ ;µ α i }j µ .
We recognize the charge conservation equation in the second sum, ∂ ;µ n i u µ + j µ . This term thus vanishes and we find

∂ ;µ S µ = D ϵ + P T + ϵ + P T θ - i={B,Q,S} n i Dα i - i={B,Q,S} {∂ ;µ α i }j µ i .
Using the ideal hydrodynamic relation between the energy and pressure density Dϵ = -(ϵ + P )θ we get

∂ ;µ S µ = D P T - i={B,Q,S} n i Dα i - i={B,Q,S} {∂ ;µ α i }j µ i .
Now, the infinitesimal Gibbs-Duhem relation

s T dT - 1 T dP + i={B,Q,S} n i dα i = 0 (4.8)
allows us to conclude that at constant

T ∂ ;µ S µ = - i={B,Q,S} {∂ ;µ α i }j µ i (4.9)
by giving an explicit form for j µ i = j={B,Q,S} κ ij ∆ µν ∂ ν α i and placing ourselves in the local rest frame where ∆ µν = diag(0, -1, -1, -1) in signature (+, -, -, -). Applying Equation (4.4) we obtain the constraint

i={B,Q,S} j={B,Q,S} κ ij 3 k=1 ∂ k α i ∂ k α j > 0 . (4.10)
This can be rewritten as

i={B,Q,S} j={B,Q,S} κ ij ∂.α 2 ij > 0 , (4.11) 
where ∂.α 2 = 3 k=1 ∂ k α i ∂ k α j happens to be a quadratic form. This constraint implies that κ must be a positive-definite matrix.

Imposing definite positivity on κ

Higam's method

The κ matrix determined in [START_REF] Fotakis | Diffusion processes involving multiple conserved charges: A study from kinetic theory and implications to the fluid-dynamical modeling of heavy ion collisions[END_REF] is not positive-definite for more than 50% of the available tabulated values. As explained previously, this constraint must be fulfilled for the consistency of the stochastic description. We thus impose the positivity and definiteness of the diffusion matrix. For this, we use the method proposed by Higam & al [START_REF] Higham | Computing the nearest correlation matrix-a problem from finance[END_REF] where an algorithm is described to find the nearest PSD for the weighted Frobenius norm

||A -B|| W = ij W 1/2 (A -B)W 1/2 2 ij (4.12)
For A and B two square matrices. W is a symmetric positive definite matrix, the notation W 1/2 refers to the Cholesky decomposition of W , W = (W 1/2 ) T W 1/2 . The weighted Frobenius norm is the traditional Euclidean distance on each matrix element when W is the identity. Starting from a matrix A = A ij , the first step is to a construct its correlation matrix A = A ij whose elements are

A ij = A ij A ii A jj (4.13)
Notice that in the case of diffusion, the diagonal elements are the diffusion coefficients in each sector (B, Q, S) and are thus positive and non-zero. The next step is to choose a matrix W (symmetric positive definite) and define the matrix

B = W 1/2 AW 1/2 (4.14)
It is a symmetric and real matrix. It is then possible to diagonalize it in an orthonormal basis with transfert matrix P as

B = P T D B P (4.15) 
Where .. T denotes the transposition and D B is the diagonalized matrix associated with B. The diagonal elements of D B are the eigenvalues of B. It is where the trick happens. Indeed, the (semi) definite positiveness of square symmetric and real matrix is respected if all its eigenvalues are positive (or zero). The algorithm consists in replacing the negative eigenvalues of D B by zero. The modified matrix D B now generates a modified matrix B, B applying Equation (4.15) as

B = P T D B P (4.16) 
This matrix has all of its eigenvalues positive or zero and is thus PSD. We can then reconstruct A using Equation (4.14). This operation creates a matrix A ′ but not the closest one in the Frobenius norm sense. Moreover, A ′ is not a correlation matrix as its diagonal coefficients are not in general equal to unity. To go further, we evaluate

δ A = A ′ -A (4.17) 
It is a way to evaluate the change imposed by the algorithm. We then apply the algorithm again to Ā -δA (4.18

)
where Ā is A where the diagonal coefficient has been imposed to be 1. It is the correlation matrix with the same off-diagonal elements as A. The PSD property of a matrix can also be understood as a small ratio of the absolute value of off-diagonal to diagonal elements. This algorithm is specifically built to change the off-diagonals elements as it acts on the correlation matrix. For a full demonstration of the reason why this algorithm converges towards the nearest PSD matrix please refer to the original publication. We are able to construct the closest correlation matrix. We come back to the original matrix by applying Equation (4.13) the other way around.

Analysis of the corrected diffusion matrix

The algorithm described above is used on the diffusion coefficient matrix κ given by the calculations in [START_REF] Fotakis | Diffusion processes involving multiple conserved charges: A study from kinetic theory and implications to the fluid-dynamical modeling of heavy ion collisions[END_REF] with W = id. We found that fifty iterations of the algorithm are sufficient to find the closest PSD matrix κ for all κ(T, µ B , µ Q , µ S ) available. This number has been found simply by evaluating if the given result is a PSD matrix or not trying a Cholesky decomposition. However, the two matrices can be quite different. In we show the relative difference between the original κ matrix and the nearest PSD matrix κ ′ . We observe that the diagonal elements are generally very close, this is expected from this method using the correlation matrix to find the nearest PSD. The off-diagonal elements can be very different. Especially, κ BQ and κ BS vary up to 10 5 % even if these occurrences are rare. Another important aspect of the new matrix is that it shouldn't change the physics we try to describe. in particular, we must impose that the sign of the matrix coefficient remains unchanged under this transformation. Indeed, if for instance, sign(κ BQ ) = -sign( κ BQ ), the baryonic number and the electric charge would be anti-correlated instead of correlated. For all available data, we measure that the percentages of sign change are κ BQ : 12%, κ BS : 3%, and κ QS : 0%. Both of the large differences and sign changes through this transformation are physically not receivable. That is the reason why we chose to calculate the closest PSD matrix using weighed Frobenius norm as W is a free choice as long as it is symmetric positive definite. Using W = 2id yields already better results concerning the difference between the original and new matrix. However, even with this potential modification of W , the number of sign changes is difficult to control. Together with the choice W = 2id we decided to divide the new matrix by two (in a way that conserves the method). There is no physical motivation for this choice except that it allows having a rate of sign change of 0% for all sectors. Moreover, diagonalizable. Writing this decomposition for κ reads

κ = P T D κ P (4.20) 
with P change of basis matrix from original basis to the new basis and D κ the diagonal matrix associated to κ. As κ is PSD, its eigenvalues {λ i } i∈[0,2] are positive or zero. This means one can build the new matrix

D κ = diag( λ 0 , λ 1 , λ 2 ) (4.21) 
From this, one can construct the matrix C as

C = P T D κ P (4.22) 
It can be demonstrated to be the only matrix to fulfill Equation (4.19). This is the Cholesky decomposition of κ. This methodology can be verified by simply trying to reproduce the noise-noise correlations Equation (4.2). For this, we evaluate

ξ i = C ij Z j (4.23) 
for i = {B, Q, S} and compute the noise-noise correlations average ⟨ξ i ξ j ⟩ for a large amount of normal random values for Z j . In Figure 4.3 we show the average of the noise correlation for each pair of charges as a function of the noise configurations Z j used to compute the average. The black dashed lines represent the expected values for the ij noise correlation 2κ ij . We observe that the noise correlators converge to the expected values when the number of noise configurations increases. It demonstrates that the Cholesky decomposition of κ leads to a faithful reproduction of the expected noise-noise correlations. The noise imposed in the stochastic coupled equations now respects the fluctuation-dissipation theorem. 

Net-density fluctuations in the hadronic medium

Now that the consistency of Equations (4.1) and (4.2) is established, we apply the model to a concrete situation in HIC. In Chapter 4, the susceptibilities were constant outside the scaling region after the transition. This was motivated by the idea that the kinetic freeze-out occurs rapidly. However, current estimation at LHC [START_REF] Adam | Production of light nuclei and anti-nuclei in pp and pb-pb collisions at energies available at the cern large hadron collider[END_REF] and RHIC [START_REF] Adamczyk | Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program[END_REF] suggest that the kinetic freeze-out temperature is closer to T kin = 115 MeV for very central collisions using fits to a blast-wave model. Then, the dynamical evolution of the fluctuations does not stop right after the phase transition and thus have to be considered also in the hadronic medium between T c = 150 MeV T kin = 115 MeV. Indeed, it may have a non-trivial impact on the fluctuations coming from earlier stages of the collision. Let's imagine that a signal from the critical point survives until T = 145 MeV for instance. If it is barely altered during its evolution in the hadronic medium there is a chance that one can detect it. Conversely, if it is washed out the QCD critical point may be out of reach in HIC. It is thus crucial to study the dynamical evolution of the fluctuations also in the last stages of the collision. The model presented Equations (4.1) and (4.2) is particularly suited for this kind of study as it allows to make a connection between the thermodynamic properties of the hadronic medium and the dynamical evolution of the fluctuations. The hadronic equilibrium properties are given by the hadron resonance gas (HRG) model. In particular, the relation between the chemical potentials µ i and the charge n i . Using a simple physical setup relevant for HIC, we can evaluate fluctuations at kinetic freeze-out. Stricto sensu, the model cannot be used when the fluid dynamic description of the QCD matter ceases to be valid. It is the case in the hadronic medium after chemical freeze-out where the degrees of freedom are now hadrons only interacting via elastic collisions. It is thus different than in Chapter 4. We consider here the diffusion in a gas rather than in a fluid. At the diffusive level, equations are formally identical but the mindset is not the same.

Here we first describe the HRG model and how it is used used in these simulations and second discuss the κ matrix in the hadronic medium.

Hadron resonance gas

The coupled SDEs Equation (4.1) cannot be solved directly, a relation between the chemical potentials µ i and the charges n j is needed. We choose the hadron resonance gas model to find this relation. It is in line with the choice made for the derivation of the diffusion coefficient matrix. The hadron resonance gas is a non-interacting gas composed of all hadronic resonances. The thermodynamics is described within the grand-canonical ensemble. It allows particle exchange with a reservoir. It is suited to colliders physics where not all particles are detected in the final state within the finite acceptance of the detectors [START_REF] Karsch | Probing freeze-out conditions in heavy ion collisions with moments of charge fluctuations[END_REF]. The hadron resonance gas describes a non-interacting gas. As such, the probability of finding a specie in a particular state is independent of the state of other particles. Starting from a gas composed of N b,j,q bosons and N f,j,q fermions in the macrostate q we have

N j b ,q = i∈microstates(q) n j b ,q (i) (4.24) N j f ,q = i∈microstates(q) n j f ,q (i) (4.25) 
E j b ,q = i∈microstates(q) n j b ,q (i)ϵ j b ,q (i) (4.26) E j f ,q = i∈microstates(q) n j f ,q (i)ϵ j f ,q (i) (4.27)
where n j b ,q (i) and n j f ,q (i) and ϵ f,j (q, i) represent resp. the occupation number for bosonic specie j b and fermionic specie j f and the associated energy for in the microstate i within the macrostate q. For bosons, the occupation number n b,j (q, i) can take any arbitrary integer values denoting that any number of bosons can be in the same quantum state. For fermions, n b,j (q, i) = 0, 1 as there is either one fermion or zero in a single quantum state. The energy and the number of particles in the macrostate q can be written as a form of a sum Equations (4.24) to (4.27) as the particles do not interact in HRG model. The grand canonical partition can then be written as the sum of the bosonic and fermionic partition functions as

Z(T, µ b , µ f ) = Z b (T, µ b ) × Z f (T, µ f ) (4.28) Z(T, µ b , µ f ) = j b q exp{-(E j b ,q -µ j b N j b ,q )/T } × j f q exp{-(E j f ,q -µ j f N j f ,q )/T } (4.29)
Here, µ b = {µ j b } bosons and µ f = {µ j f } fermions . We separated the sum over bosons and fermions as they are treated differently due to their respective statistics.

Bosons

The bosonic partition function can be re-written using Equations (4.24) to (4.27)

Z b (T, µ b ) = j b q exp{- i∈microstates(q) n j b ,q (i)(ϵ j b ,q (i) -µ j b )/T } (4.30) 
Z b (T, µ b ) = j b q i∈microstates(q)
exp{-n j b ,q (i)(ϵ j b ,q (i) -µ j b )/T } (4.31)

Now, the sum over all macrostates q can be replaced by the sum over all corresponding microstates occupation number n j b = n j b ,1 , ..., n j b ,max , n j b ,max , for bosons, these occupations number can take arbitrary values then, all possiblities have to be considered leading to

Z b (T, µ b ) = j b ∞ n j b ,1 ... ∞ n j b ,max i∈microstates(n j b ) exp{-n j b (i)(ϵ j b ,q (i) -µ j b )/T } (4.32) 
As no occupation number in each microstate depend on each other, the sum can be factorized as

Z b (T, µ b ) = j b i ∞ n=0 exp{-n(ϵ j b ,q (i) -µ j b )/T } (4.33)
For physical consistency, a microstate cannot have an energy less than the chemical potential.

The energy is at least the particle content of the microstate. It implies that the sum on the R.H.S is actually a geometric serie.

Z b (T, µ b ) = j b i 1 1 -exp{-(ϵ j b ,q (i) -µ j b )/T } (4.34) 4.3.1.

Fermions

The same derivation can be done for fermions but the occupation number can only be 0 or 1. Equation (4.32) is adapted for fermions

Z f (T, µ b ) = j f 1 n j f ,1 ... 1 n j b ,max i∈microstates(n j f ) exp{-n j f (i)(ϵ j f ,q (i) -µ j f )/T } (4.35) 
which leads to

Z f (T, µ b ) = j f i exp{-(ϵ j f ,q (i) -µ j f )/T } + 1 (4.36) 
The first contribution in the product over i comes from n j f (i) = 1 and the +1 comes from

n j f (i) = 0.

Relation between densities and chemical potentials

Using Equations (4.34) and (4.36) the grand partition function reads

Z = j b j f j i exp{-(ϵ j f ,q (i) -µ j f )/T } + 1 1 1 -exp{-(ϵ j b ,q (j) -µ j b )/T } (4.37)
The grand potential can then be written

Ω = -T ln Z = -T j f i ln 1+ exp{-(ϵ j f ,q (i) -µ j f )/T } (4.38) +T j b k ln 1 -exp{-(ϵ j b ,q (k) -µ j b )/T } (4.39) 
Considering that all particles have a baryonic number B j = -1, 0, 1, this expression can be condensed to

Ω = T j i (-1) B j ln 1 + (-1) B j +1 exp{-(ϵ j,q (i) -µ j )/T } (4.40)
where j runs over all particles, either fermions or bosons. In the limit of a very large system L → ∞, the energy gap between two states becomes very small. Indeed, as the energy is only composed of kinetic energy for non-interacting gases, it is proportional to 1/L. The sum over microstates i can then be replaced by an integral over the density of states dn. The energy of a microstate i is replaced by its continuous counterpart ϵ j (p). Taking the thermodynamic limit the grand potential then reads

Ω V = - j d j 2π 2 ∞ 0 (-1) B j +1 p 2 dp ln 1 + (-1) B j +1 exp{-(ϵ j (p) -µ j )/T } (4.41 
)

Ω V = j Ω j V (4.42) 
where d j stands for the spin degeneracy of specie j. The total grand potential is the sum of the grand potentials of each specie. The net-density of specie j can then be obtained applying classical thermodynamic relation on

Ω j n j = 1 V ∂Ω j ∂µ j = d j 2π 2 ∞ 0 dp p 2 (-1) B j +1 + exp{(ϵ j (p) -µ j )/T } (4.43) 
No interactions are taken into account, the energy is then ϵ 2 j (p) = p 2 +m 2 j , m j being the mass of specie j. The chemical potential of a specie j can be related to the chemical potential of its content in baryon number, electric charge and strangeness as

µ j = B j µ B + Q j µ Q + S j µ S (4.44) 
B j , Q j and S j are resp. the baryon number, electric charge and strangeness of specie j. The net-charge densities can then simply expressed adding up the densities of each specie as

n X (T, µ B , µ Q , µ S ) = 1 2π 2 j X j d j ∞ 0 p 2 dp (-1) B j +1 + e ( √ p 2 +m 2 j -B j µ B -Q j µ Q -S j µ S )/T (4.45) 
with X = {B, Q, S}. This equation gives the necessary connection between the chemical potentials in each sector and the associated conserved charge net density. For the derivation of the κ matrix, the thermodynamics properties of the hadronic medium are described by a HRG model composed of the ninetieth lightest species summarized in Table 4.1. Consistently, we use the same HRG model to express the densities. For consistency, the net densities must vanish when the chemical potentials are zero. The total sum of conserved quantum numbers over all specie must vanish. We notice that masses are slightly different from [START_REF] Workman | Review of Particle Physics[END_REF]. However, we stick to the values used in the derivation of the diffusion coefficient matrix. 

mass (GeV) Spin Degeneracy Baryon number Electric charge Strangeness

π + 0.138 0 1 0 1 0 π - 0.138 0 1 0 -1 0 π 0 0.138 0 1 0 0 0 K + 0.496 0 1 0 1 1 K - 0.496 0 1 0 -1 -1 K 0 0.496 0 1 0 0 1 K0 0.496 0 1 0 0 -1 p 0.938 0.5 2 1 1 0 p 0.938 0.5 2 -1 -1 0 n 0.938 0.5 2 1 0 0 n 0.938 0.5 2 -1 0 0 λ 0 1.116 0.5 2 1 0 -1 λ0 1.116 0.5 2 -1 0 1 σ 0 1.193 0.5 2 1 0 -1 σ0 1.193 0.5 2 -1 0 1 σ + 1.189 0.5 2 1 1 -1 σ+ 1.189 0.5 2 -1 -1 1 σ - 1.197 0.5 2 1 -1 -1 σ+ 1.197 0.5 2 -1 1 1 

HRG in SDEs

Unfortunately, Equation (4.45) cannot be used directly in the stochastic diffusion equations as it gives the densities as a function of the chemical potential and not chemical potentials as a function of the densities. Moreover, no analytical form can be found. It complexifies the equation needs to be inverted numerically to obtain µ X (n B , n Q , n S ). In deterministic studies, the inversion can be performed separately and tabulated on a certain range for n B , n Q and n S . In stochastic studies, the input densities (n B , n Q , n S ) are random values, knowing their range a priori is impossible, and the tabulated files can only be a partial solution. On top of that, evaluating the fluctuations observables requires a significant amount of statistics. In other words, getting µ X (n B , n Q , n S ) in stochastic studies requires the numerical inversion of Equation (4.45) a tremendous amount of time.

For this reason, it is interesting to consider a linear approximation at first. It allows having a qualitative insight into the expected results and avoids complicated technical issues. The full model is also presented with an emphasis on the challenges imposed by stochastic studies. A solution to circumvent these difficulties is discussed here and detailed in Section 5.3.

Linear approximation

The linear approximation consists in two simplifications. First, the conserved deterministic part of the current J µ i (first term of the R.H.S of Equation (4.2)) is expressed directly as a function of the density fields as

J µ i = D ij (T, µ j )∆ µν ∂ ;ν n j (T, µ B /T, µ Q /T, µ S /T ) (4.46) 
Considering that the temperature is spatially uniform we can write

J µ i = D il (T, µ j )T χ lj ∆ µν ∂ ;ν µ j T (4.47) 
with

χ lj = ∂n l ∂µ j (4.48) 
and then, by identification in Equation (4.2)

D ij (T, µ j ) = 1 T κ il (T, µ j )(χ -1 ) lj (T, µ j ) (4.49) 
The susceptibility χ j taking the derivative with respect to the chemical potential of Equation (4.43) and is evaluated numerically.

Second, we consider that both κ ij and χ ij do not depend on the local values of the chemical potential but only on their spatial average µ 0,j . Equation (4.48) allows to connect the densities and the chemical potentials at first order as n j = χ ij µ j , we thus define

µ 0,j = ⟨µ j ⟩ = n i (χ -1 ) ij (4.50) 
where ⟨.⟩ denotes the spatial average for a single event. The input chemical potentials µ 0,j are then spatially uniform, and D ij is a function of the temperature (proper-time) only. It allows to rewrite the SDE system as

∂ τ n i (τ, y) = D ij (T, µ 0,j ) τ ∂ 2 y n j (τ, y) - 2 τ C ij (T, µ 0,j )∂ y Z j (4.51)
The matrix C is still the Cholesky decomposition of κ as only the diffusion term is affected by the first simplification. This approximation will be valid only for small fluctuations of densities n j around the densities imposed by the input µ 0,j . If the density fluctuations are large, this becomes a crude approximation. Nonetheless, it allows getting the qualitative behavior of the fluctuations at a lower cost in computational efforts.

One last point, the linear approximation Equation (4.51) is a Gauss model with timedependent diffusion and noise amplitude. As such, the fluctuations are affected by a trivial lattice spacing dependence in the numerical calculations. It has the same meaning as in the Section 5.1.3.1, namely that the second order fluctuations such as the variance scales as the inverse of the lattice spacing.

Towards local inversion

The inversion is performed using a Newton-Raphson method. For n = (n B , n Q , n S ) T and µ = (µ B , µ Q , µ S ) T the method consists in finding the root of

n(T, µ) = n(T, µ) -n 0 (4.52)
n(T, µ) is given by Equation (4.45) and n 0 is the input density vector. The root µ 0 which guarantees that n(T, µ 0 ) = 0 is chemical potentials vector corresponding to n 0 . The root of Equation (4.52) is obtained by iteratively apply the following algorithm

µ (k) = µ (k-1) -J -1 (µ (k-1) ) n(µ (k-1) ) (4.53) 
Starting from a prior µ (0) = µ p , the sequence µ k k∈N converges to µ 0 as k goes to infinity. J is the Jacobian matrix of the density Equation (4.45) defined as

J =            ∂n B ∂µ B ∂n B ∂µ Q ∂n B ∂µ S ∂n Q ∂µ B ∂n Q ∂µ Q ∂n Q ∂µ S ∂n S ∂µ B ∂n S ∂µ Q ∂n S ∂µ S            (4.54)
At each step of the method, one needs to evaluate the inverse of the Jacobian matrix numerically. It gives the direction and the distance of the next approximation of the solution. As no analytical form of Equation (4.45) is available, the evaluation of the Jacobian is extremely costly in terms of computational time. It is a big challenge in stochastic studies where computational time optimization is crucial to meet statistics requirements. On top of that, the number of iterations to reach the root is highly dependent on the prior µ (0) and the method may fail to converge for certain prior. The number of iterations to converge within the input accuracy thus ranges from a few steps to infinitely many steps. In stochastic studies, it thus is impossible to guarantee that all possible random input densities will produce relevant chemical potentials in a finite time at a constant prior. In particular, the Newton-Raphson method can lead to cyclic iterations. Eventually, using a tabulated file solves these issues but this is not possible here as the random input densities may be out of the range of the file. More elaborated algorithms are thus required.

A natural idea to circumvent these issues is to use a tabulated file when the densities are in the range and perform the inversion in situ only when needed. An algorithm is presented in Section 5.3.1 to solve all the above issues and have maximum efficiency by the use of graphical unit processors (GPU).

Evolution model

The aim is to evaluate the impact of the dynamical evolution in the hadronic medium on a signal from earlier times in the collision. We build here a simple collision model for such an application. As currently understood, the hadronic phase of a collision is situated between the transition temperature T c = 150 MeV and the kinetic freeze-out temperature final temperature T f = 100 MeV. The trajectory is schematically represented in the (T, µ B ) plane in Figure 4.5. We aim to evaluate the impact of the dynamically expanding system on the trajectory in orange on the initial fluctuations (blue star) by looking at the fluctuations observable and especially the variances and covariances at the end of the evolution (green lozenge). For the temperature evolution, consistently with a Bjorken expansion, we use the ideal fluid temperature evolution

T
T (τ ) = T i τ 0 τ (4.55) 
where τ 0 corresponds to the starting time of the hydrodynamic expansion, again we take τ 0 = 1 fm/c. The collision is split into two steps. First the equilibration and second the expansion. To mimic a signal in the fluctuations coming from earlier times in the collision we choose the simplest approach i.e thermally equilibrated hadron gas density fluctuations at temperature T i = 160 MeV. As the goal is to measure the impact of the dynamics on initial fluctuations, it is a reasonable first approach. Especially to see whether the fluctuations stay at thermal equilibrium or not during the expansion. To build such equilibrated initial conditions we perform numerous time steps of Equation (4.1) at constant temperature T i and constant proper-time τ = τ 0 . The thermalization time here is disconnected to τ 0 = 1 fm/c we suppose that the initial fluctuations are at equilibrium. We consider that the fluctuations are at equilibrium when the variances and covariances reach constant values.

Once the fluctuations are equilibrated, we let the system expands for a total duration of τ f = T i/T f -τ 0 = 0.6 fm corresponding to T i = 160 MeV and T f = 100 MeV. As figured in Figure 4.5, we stick to the LHC conditions on average. In particular, ⟨n B ⟩ i = ⟨n Q ⟩ i = ⟨n S ⟩ i = 0 fm -3 where ⟨.⟩ i denotes the average over space for one single event i. This first approach is interesting for comparison with in-equilibrium lattice QCD calculations at vanishing baryo-chemical potential. The comparison is left for future studies.

In 

Net-baryon density fluctuations

To fully understand the impact of the coupling between all conserved charges it is interesting to study the net-baryon density fluctuations first. It is possible to study the net-baryon density fluctuations only using the linear approximation by imposing that ⟨n B ⟩ = 0 fm -3 and n Q = n S = 0 fm -3 during the evolution. 

Equilibration

The first step of this approach is to build a signal in the net-baryon density variance σ 2 B that serves as a reference for subsequent evolution. In Figure 4.8, we show the dynamical equilibration σ 2 B over 100 fm/c for different temperatures. We draw the reader's attention on the fact that the equilibration for any T 0 < T i = 160 MeV is done with the corresponding propertime in Equation (4.51), τ (T 0 ) = τ 0 T i /T 0 , given by Equation (4.55). As the temperature and the proper time are related in the Bjorken expansion picture, the initial temperature plays a different role than others. These equilibrium values correspond to nothing physical. They are obtained as if the expansion stopped at T = T 0 and one let the fluctuations thermalize for a long time in a fixed-sized box. We observe that the net-baryon density equilibrium variance is a decreasing function of the temperature. It is expected from the dilution due to the expansion via the τ factors in Equation (4.51). This result is qualitatively different from those in Chapter 3 where the variance increased to a constant value at µ B = 0 MeV. The second-order susceptibility was specially designed to reproduce this kind of behavior neglecting the evolution in the hadronic medium, of less interest for critical point studies. 

Conserved charges density fluctuations

We now switch to the coupled diffusion of the conserved charges fluctuations following Equation (4.51) with ⟨n B ⟩ = ⟨n Q ⟩ = ⟨n S ⟩ = 0 fm -3 .

Equilibration

In The fluctuations are thus larger and so are the equilibrium values for the variance. We see a slight increase in the amplitude of the net-baryon density fluctuations in the coupled system. It can is interpredted as additional fluctuations coming from the coupling to other fluctuating density fields. While B and S are anti-correlated leading to a decrease in the sum of their fluctuations, the positive correlation with the net electric charge which has a bigger amplitude leads to a global increase.

Conserved charges covariances in the expansion

In Figure 4.11, we show the variance and the covariances of the conserved charges during the expansion. Several points can be observed. First of all, the net-baryon density variance has the same qualitative evolution as in the uncoupled case with a slightly largeir amplitude due to net-charge fluctuations. Second, the net-strangeness variance is also close to equilibrium. This is expected from the κ SS amplitude which is larger than κ BB and their susceptibilities are of the same order. Looking carefully, σ 2 SS is even closer to the equilibrium expectation than σ 2 BB simply expressing the ordering κ SS > κ BB during the whole evolution. Different behavior is observed for the net-electric charge. We see a clear discrepancy between σ 2 QQ and the equilibrium values. This shows that the net-electric charge fluctuations are not at equilibrium during the expansion. As in Chapter 3, we observe the significant dependence of the in-or out-of equilibrium nature of the fluctuations during the evolution. Indeed, looking at the κ QQ values, we see that it is smaller than κ BB and κ SS for temperatures large than ∼ 125 MeV. However, κ BB and κ SS are not orders of magnitude larger. At most, κ QQ ∼ κ BB /2.5 and κ QQ ∼ κ SS /5. Consistently, with the previous observations, the off-diagonals covariances including the electric-charge (BQ and QS) are slightly out-ofequilibrium. The fluctuations in the BS sector stay close to equilibrium during the expansion. Eventually, the oscillations in the expanding situation are not due to a lack of statistics and thus potentially represent a dynamical feature. Yet, their exact interpretation remains to be understood as numerical issues may also explain this behavior.

Discussion

This very first approach to study the coupled diffusive dynamics of the conserved charge fluctuations in HIC shows that the amplitude of the fluctuations is largely affected by the later stage of the collision. In Section 4.7, we condensate the comparison between the amplitude of the density fluctuations at initial and final time. The number presented are the relative difference in percentage ∆σ 2 = (σ 2 (τ 0 ) -σ 2 (τ f ))/σ 2 (τ 0 ) × 100. The first line of entry corresponds to the comparison in the dynamically expanding system, the second line to the equilibrium expectations and the third line to the relative difference between them. The third line is interesting to compare the values for each sectors as the equilibrium expected value in the end of the evolution is not the same for all sectors. We observe that amplitude of the second order fluctuations of the net-baryon and the netstrangeness decreases shaprly and especially in the baryon sector. Their covariance σ 2 BS is the most affected sector in the expansion. Looking at the "impact" line, we see that these sectors are also the less impacted by the dynamics of the expansion, their amplitude decreases mainly at equilibrium. For sectors related to the electric charge, a generally smaller impact of the expansion is expected (see line "Equilibrium") and the out-of-equilibrium evo-123 lution of the net-electric charge fluctuations adds to this effect leading to a large impact of the dynamical evolution. These results suggests that a signal in the fluctuations coming from earlier in the collision survives longer in all sectors related to the electric charge. Nonetheless, these results need to be taken with a grain of salt as the model presented here is a sharp approximation. First, we only consider the Gaussian approximation of the stochastic diffusion equation. In Section 3.2.3, we saw that the inclusion of a surface tension term in the free-energy drastically impacted the evolution of the fluctuations. Second, we took a linear approximation supplemented with κ ij coefficients independent of the chemical potentials. The magnitude of the variance allows us to think that local values of the conserved charge densities may reach regions where the linear approximation does not hold. Eventually, quantitative insight may only be reached by considering the coupling of charge fluctuations with the energy and momentum fluctuations. For future studies, these results must be compared to analytical expectations. It will serve to benchmark the numerical simulations. Once the simulations reproduce the equal-time structure factor, the non-linear model may be considered following the implementation suggested in Section 5.3.

Chapter 5 Numerical simulations of stochastic equations

The equations used in the study of the dynamics of fluctuations are stochastic. They are considered deterministic equations supplemented with a noise term. Even though its simplicity, this addition completely changes the physical meaning of the mathematical objects involved. In particular, the connection between the event-by-event net-charge densities computed via this method and their deterministic counterparts is not straightforward. Rigorously, only n-points correlations or moments make physical sense as they are constrained by the fluctuations dissipation theorem mentionned in Section 2.1.1. In the alternative model, Hydro+ [START_REF] Stephanov | Hydrodynamics with parametric slowing down and fluctuations near the critical point[END_REF], a stochastic equation needs to be replaced by a large set of deterministic hydro-kinetics equations. A stochastic equation is not simply a deterministic one with noise added [START_REF] De La Torre | Finite element discretization of nonlinear diffusion equations with thermal fluctuations[END_REF]. Many features of this observation have been discussed already. Here we concentrate on the impact such consideration has at the level of numerical calculations . When computing numerical approximations, the first step is to define the field in a discretized space and time. Then, one uses a scheme for time and space derivatives. The latter is crucial in stochastic equations containing the space derivative of a noise term. In general, the discretized space derivatives are proportional to the inverse lattice spacing. For spatially continuous one-dimensional functions this dependence on the lattice spacing is not a problem as the limit on the left and on the right of the field coincide as the lattice spacing goes to zero by definition of continuity. Stochastic fields are not continuous. Taking the continuum limit may result in divergences. The inverse lattice spacing dependence is an issue that needs proper analysis in numerical simulations. Another major issue of numerical simulations of stochastic equations is the need for statistics. Only the average of fluctuation observables over a considerable amount of noise configurations is relevant. It requires simulating many events of the same physical situation and thus demands extensive computational efforts. In this work, stochastic equations are diffusion equations. The required operations to compute the next time step of the evolution are elementary such as sums or multiplications. In other words, simulating SDEs relies on performing the same elementary operations many times. It is an interesting observation as graphical processing units (GPUs) are processors especially designed to perform such tasks. We thus choose to formulate our algorithms for GPUs application. It allows massive parallelization and a siginificant reduction in computational time.

Euler-Maruyama method

As exemplified by the Richardson effect, the ruler length impacts the measured distance. The coastline of an Isle does not have a well-defined length. The stochastic fields involved in SDEs are like coastlines in the paradox, irregular enough to have an amplitude depending on the lattice spacing. For this reason, the noise field cannot be evaluated point-wise. The discretization of the fields is then solely relevant in the finite-volume method as presented in [START_REF] Donev | On the accuracy of finite-volume schemes for fluctuating hydrodynamics[END_REF].

Discretization

The most general stochastic equation in the Ito form reads

dn(t, x) = L n, t, x dt + κ dB(t, x), t, x (5.1) 
where L and κ are linear operators (such as derivatives) on respectively the stochastic field n and the noise measure dB associated with the Wiener process B. In this work, Equation (5.1) is written with the abusive notation

∂ t n(t, x) = L n(t, x), t, x + κ W, t, x , (5.2) 
where W is a gaussian white noise. The finite-volume method (in one-dimension for simplicity reasons) considers the spatial average over a cell of length ∆x = L/N c with L the length of the system and N c the total number of cells. Notice that here we suppose that the cells are of the same size and equally spaced. Over the cell j > 1 at position j∆x, the average reads

n j (t) = 1 ∆x j∆x (j-1)∆x n(t, x)dx (5.
3)

The field is then discretized in time simply as

n k j = n j (t k = t 0 + k∆t) (5.4)
with ∆t the time increment, t 0 the initial time and k a positive integer. A point-wise evaluation of the noise is impossible. Thus, the average over a cell can only be done both in space and time, imposing the double integration as follows

W k j = 1 ∆x 1 ∆t (k+1)∆t k∆t j∆x (j-1)∆x W(t, x)dxdt (5.5)
for time t k = t 0 + k∆t again. The noise W(t, x) is gaussian with vanishing expectation value and unit variance for each t and x. However, the averaged quantity W k j does not have the same property as W(t, x) a priori. That is a difficulty as the SDE in a discretized space has a similar form as Equation (5.2) due to the linearity of the operator κ. In other words, W k j must not contain any additional mean value, variance, or higher order moments. All the physics needs to be encoded in the operator κ.

Treating the noise

The average of W k j can be calculated as The last line is obtained using ⟨W(t, x)⟩ = 0. The variance can be calculated as well 

⟨W k j ⟩ = ⟨
⟨W k j W k j ⟩ = 1 ∆x 2 1 ∆t 2 ⟨ (k+1
W k j = √ ∆x∆tW k j .
(5.15)

The variance of W k j is now equal to unity. W k j is thus the natural way to define the noise term in Equation (5.2). With this definition of the field and noise in the discretized space, one can write the discretized counterpart of the SDEs used in this work.

Example : stochastic heat equation

As an example, we present the procedure for the toy equation dn = D∂ 2

x ndt + a∂ x dB (5.16) This is the Ito process corresponding to the stochastic heat equation. Using the Euler-Maruyama approximation [START_REF] Kloeden | Numerical Solution of Stochastic Differential Equations[END_REF] we find

n(t k+1 , x) = n(t k , x) + D∂ 2 x n(t k , x)∆t + a∂ x W (t k , x) (5.17)
Notice that the notation ∂ x W (t k , x) is an abusive notation. As previously discussed, the noise W only makes sense when integrated over space and time. It will be connected to the well-defined quantity Equation (5.15) later on. Taking the space average over cell j we get

n k+1 j = n k j + D 1 ∆x j∆x (j-1)∆x dx∂ 2
x n(t k , x)∆t + a j∆x (j-1)∆x dx∂ x W (t k , x)∆t.

(5.18)

• The diffusion term of the right-hand side.

D 1 ∆x j∆x (j-1)∆x dx∂ 2 x n(t k , x)∆t = D 1 ∆x j∆y (j-1)∆y dx∂ 2 x n(t k , x)∆t = D 1 ∆x ∂ x n(t k , x) j∆x (j-1)∆x ∆t = D 1 ∆x [∂ x n](t k , j∆x) -[∂ x n](t k , (j -1)∆x)∆t.
( (5.20)

The field evaluated at the boundaries of the cell n(t k , j∆x) can be replaced by the integrated field over the whole cell Equation (5.4) as the difference between the field and its average is O(∆x 2 ) leading to

D 1 ∆x j∆x (j-1)∆x dx∂ 2 x n(t k , x)∆t = D∆t ∆x 2 n k j+1 -2n k j + n k j-1 .
(5.21)

• The noise term of the R.H.S Similarly, on finds

1 ∆x j∆x (j-1)∆x dx∂ x W (t k , x) = 1 ∆x W (t k , j∆x) -W (t k , (j -1)∆x) (5.22)
W represents the time derivative of the Wiener process B. As such, it is a Gaussian white noise with vanishing average and unit variance. Thus, the notation in the above equation only make sense if the quantity W (t k , j∆x) evaluated at time t k and cell j is replaced by space and time integration of the noise W k j of Equation (5.15) over the cell. It then simply gives the following equation

1 ∆x j∆x (j-1)∆x dx∂ x W (t k , x) = 1 ∆x √ ∆x∆t W k j -W k j-1 .
(5.23)

In the end, the discretized counter-part of the stochastic heat equation reads

n k+1 j = n k j + D ∆t ∆x 2 n k j+1 -2n k j + n k j-1 + a ∆t ∆x 3 W k j -W k j-1 .
(5.24)

Notice that choosing the discretized derivatives as the first order Taylor expansion of the field is a choice here. Any other derivation scheme also fits into this procedure. The general case can be written explicitly with operators L j and K j operating on the discretized field

{n k i } i∈[1,Nc+1
] and noise field { W k i } i∈ [START_REF] Landauer | The noise is the signal[END_REF]Nc+1] at cell j and time step k as

n k+1 j = n k j + L j {n k i } i∈[0,Nc] + K j { W k i } i∈[0,Nc] (5.25) 
For instance, the stochastic heat equation 5.24 is simply obtained by

L j {n k i } i∈[0,Nc] = D ∆t ∆x 2 n k j+1 -2n k j + n k j-1 , (5.26) 
K j { W k i } i∈[0,Nc] = a ∆t ∆x 3 W k j -W k j-1 .
(5.27)

Notice that L j and K j depend on the time increment and lattice spacing. Based on the general formula Equation (5.25), we give the obtained discretized evolution equations for

• The net-baryon density critical fluctuations (Chapter 3) :

n k+1 j = n k j + a Dn c τ k χ 2 (τ k ) n k j+1 -2n k j + n k j-1 + b 2Dn c τ k W k j -W k j-1 -a Dn c K τ k 1 ∆x 2 n k j+2 -4n k j+1 + 6n k j -4n k j-1 + n k j-2 a Dn c 6τ k χ 4 (τ k ) n 3 k j+1 -2n 3 k j + n 3 k j-1 , (5.28) 
• The coupled charges density fluctuations (Chapter 3) :

n X k+1 j =n X k j + a τ k T (τ k ) Y =B,Q,S κ k XY,j -κ k XY,j-1 µ k Y,j -µ k Y,j-1 + κ k XY,j µ k Y,j+1 -2µ k Y,j + µ k Y,j-1 - b √ τ k Y =B,Q,S C k XY,j -C k XY,j-1 Z k Y,j + C k XY,j Z k Y,j -Z k Y,j-1 , (5.29) 
with a = ∆t/∆x 2 , b = 2∆t/∆x 3 . For these two schemes we use periodic boundary conditions, e.g. cell at n k Nc = n k 0 for all k. Much more elaborated derivative schemes are available in the literature [START_REF] Donev | On the accuracy of finite-volume schemes for fluctuating hydrodynamics[END_REF]. For instance, the projector-corrector method or the so-called Runge-Kutta methods are more accurate and precise than the Euler-Maruyama scheme. However, the goal here is to be able to analyze the numerical simulation of the fluctuations. The complexity of the derivative scheme increases the complexity of the analysis. In this thesis, we concentrate on the Euler-Maruyama scheme that we can analyze and manipulate easily.

Analysis of the scheme

All derivative discretization schemes tend to the continuum derivatives as the lattice spacing ∆x and the time increment ∆t tend to zero. However, the choice is not arbitrary and impacts the solutions. First, the scheme will produce relevant results only if it is stable. It simply means that the solution does not diverge as a function of time. Certain stability conditions on the lattice spacing and time increment guarantee this for the Euler-Maruyama scheme. Second, in a stochastic context, the power spectrum of the noise, the equal time structure factor in the discretized space (see for instance Section 3.2.2.3) highly depends on this choice.

Stability

In this work, we use an explicit method. The information needed to compute the next time step is encoded in the previous time step. The numerical approximation of the solution (stochastic or deterministic) introduces an error at each time step of the evolution. If this error is not bounded, the numerical approximation is not valid, and the solution diverges. The stability of the diffusion equation can be verified via the v on Neumann stability analysis [START_REF] Charney | Numerical integration of the barotropic vorticity equation[END_REF]. It is also known as the Fourier decomposition of the numerical error. For the heat equation (Equation (5.24) for a = 0) this method gives an estimate of the error aquired at each time step by calculating the amplification factor g(k). We start from

n i+1 j = n i j + a(n i j+1 -2u i j + n i j-1 ), (5.30) 
where a = D∆t/∆x 2 . We replace n i j by ϵ i j = e ωt i e ikx j which represents an exponentially evolving error in the Fourier space. We get the following relation

ϵ i+1 j = (1 -2a) + a(e ik∆x -e -ik∆x ) ϵ i j , (5.31) 
which means that the amplification factor g(k) = (1 -2a) + a(e ik∆x -e -ik∆x ). The stability criterion then states that

| g(k) |< 1. (5.32)
It is natural as this is a multiplicative error. If the amplification factor from one step to another is bigger than one, the error increases. If it is less than one, the error stays bounded. Developing the calculations leads to

| 1 -4a sin 2 ( k∆x 2 ) |< 1, (5.33) 
which imposes that

a < 1/2 =⇒ D ∆t ∆x 2 < 1/2.
(5.34)

The same calculations can be done including a fourth order discrete derivative (as for the surface tension term in Equation (5.28) for instance)

n k+1 j = n k j + α ∆t ∆x 2 n k j+1 -2n k j + n k j-1 -β ∆t ∆x 4 n k j+2 -4n k j+1 + 6n k j -4n k j-1 + n k j-2
(5.35)

to find the sharper constraint

β ∆t ∆x 4 < 1/2. (5.36)
This condition is sharper as it is inversely proportional to the lattice spacing to the fourth power. It reveals the general law for explicit Euler-Maruyama schemes, the higher the derivative, the stronger the stability criterion. The exact condition used related to Equation (5.28) is

Dn c K∆t τ k ∆x 4 < 1 2 =⇒ ∆t < τ 0 ∆x 4 2Dn c K (5.37)
where the proper-time τ k has been chosen to be the initial proper-time as it is the worse case, all other τ k giving less restrictive criterion. Rigorously, the nonlinear contribution ∝ 1/χ 4 in Equation (5.28) prevents from using the previous procedure for the stability analysis. However, we observed no divergences in our calculations. The stability condition associated to Equation (5.29) is more complicated, this scheme involves multiplicative noise, the amplitude of the noise term depend on the fields. The previous methodology is not applicable. The stability constraint on the time increment is then found by trying to get finite second-order variances for a constant κ matrix. After tests, ∆t = 0.001 fm is a leads to stable evolution for a lattice spacing ∆x = 0.15625 fm.

Impact of the derivative scheme

We demonstrate here the impact of the choice of the scheme for the derivative on the equal time structure factor of the stochastic heat equation. The first situation is given by Equation (5.24). The second situation is a slight modification of the previous scheme given as

n k+1 j = n k j + D ∆t ∆x 2 n k j+1 -2n k j + n k j-1 + a ∆t 2∆x 3 W k j+1 -W k j-1 (5.38) 
The noise term is discretized over two cells. It is a natural way to think of the noise term as coming from fluctuating current. The noise in a cell is the difference between in-and outward densities as

W j+1/2 -W j-1/2 = W j+1 -W j 2 + W j -W j-1 2 = W j+1 -W j-1 2 
(5.39)

In Figure 5.1 we show the difference between these two schemes on the equal time structure factor.

We see that at small wavenumber κ, the two schemes are consistent with the continuum solution (black dashed line). At large wavenumber, the behavior is totally different. For the one cell discretization (red curve) there is an excess of large wavenumber fluctuations. For the two cell schemes (blue curve) there is a filtering of higher wavenumber fluctuations. This result shows the significant dependence of the behavior of the fluctuations on the choice of the discretized scheme for derivatives. The increase at small wave number is due to the finite lattice spacing. In this work, we use the one cell noise scheme as it turns out that the two cells scheme will always have vanishing energy at wavenumber N c /2 (N c is the number of cells). It prevents the uniform convergence of the discretized equal time structure factor to the continuum solution when N c → ∞.

Fluctuations observables in the numerics

In Chapter 3 and Chapter 4, we compute cumulants, higher-order cumulants and correlation functions of the net-charge densities. We refereed to them as fluctuations observables. In particular, we are interested in the second order cumulant, the fourth order cumulant and the two points correlation functions. They are defined as

⟨n 2 B ⟩ c = dy(n B (τ, y) -nB (τ )) 2 p(y) (5.40) ⟨n 4 B ⟩ c = dy(n B (τ, y) -nB (τ )) 4 p(y) -3⟨n 2 B ⟩ 2 c (5.41) C(τ, y) = dy ′ n B (τ, y ′ )n B (τ, y + y ′ ) (5.42)
where, nB is the average of the net-baryon density over all space. As we use numerical simulations to evaluate these observables, a relevant expression in discretized space must be found. It is usually straightforward, but in the context of stochastic studies, the physical result obtained from naive formulas may contain a residual lattice spacing dependence. It is not acceptable for physical observables as the lattice spacing in the numerical study is arbitrary.

Local observables and lattice spacing dependence

The first approach is to consider local quantities. They correspond to the naive definition of the numerical fluctuations observables. For instance, having a set of net-baryon density value on the lattice {n i,k } i∈{0,Nc} , N c being the total number of cells and k designate the noise configuration, the variance Equation (5.40) may be translated to discretized space as

σ 2 c = 1 N conf N conf k=1 σ 2 k = 1 N conf N conf k=1 1 N c Nc-1 i=0 (n i,k -nk ) 2
(5.43)

Where nk = 1/N c Nc-1 i=0 n i,k is the average of the density over all cells. It is the average of the variance calculated in each set of N c cells for all noise configurations. This naive definition depends on the lattice spacing as it involves the density field explicitly. In SDEs, the spatial derivative of the noise appear and as discussed above, it is inversely proportional to the lattice spacing. It implies that the density field is not bounded in the continuum limit. As a consequence, any definition of the fluctuations observables involving the field directly will diverge in the continuum limit. In Figure 5.2 we demonstrate this effect looking at the local variance Equation (5.43) of the net-baryon density in the Gaussian approximation Equation (3.41) at late time during the equilibration procedure. We see a proportional dependence of the amplitude of the variance as a function of the total number of cells N c at fixed system size. We see that the local variance depends on the lattice spacing. It is not receivable at the physical level as the choice of lattice spacing is arbitrary. We expect this effect to be enhanced for higher-order cumulants as they involve larger power of the density 

Stochastic studies on the GPU

From the beginning of computers, not only the central processing unit (CPU) handled the display of images. As soon as in the 70s, arcade video games necessitated a specialized graphic acceleration unit on top of the CPU to offer the best user experience. With the need for a higher and higher quality of images, the CPU was not sufficient enough. Today, computers have a graphic card to create and alter images before they are displayed on the screen. The graphical processing unit GPU is the main component of the graphic card. It is used to accelerate image calculations. Its hardware architecture is dedicated to image processing, in particular, the transformation of vector images into matrix images (via the graphics pipeline), the rasterization. This operation can be performed identically for millions of pixels on the screen. The GPU is then built for massive parallel calculations. Today, it is possible to use GPUs for other purposes than image processing via APIs (application programming interface) such as NVidia CUDA (Compute Unified Device Architecture) or OpenCL (Open Computing Language). They bypass the graphics pipeline. The GPUs are now extensively used for different applications such as geography, meteorology, finance, etc. This work allows a sharp increase in efficiency for numerical calculations. For instance, in Equation (5.28), we see that each time step k involves only elementary operations. Using massive parallelism on the GPU allows performing these elementary operations for many noise configurations simultaneously. In other words, we compute a large number of events in one run on the GPU. Then, the acceleration may continue by using multiple GPUs. It largely reduces the computational time compared to calculations on the CPU.

What is a GPU

We now focus briefly on the GPUs in itself to have a glimpse on how it can be used for the study of the stochastic diffusion equations presented in this thesis. We detail that purpose of GPUs and how it can be used for scientific calculations.

Rasterization

Originally, the GPUs were built to take care of the image memory and processing, especially in the context of 2D and 3D graphics. When a scene is designed, the information of all objects is given in the form of primitives. Generally, they are represented by triangles for simplicity but can be any polygons. In Figure 5.4, we show an example of the tessellation of a 2D surface with squares. It comes to the GPU as a set of vertices and connections according to the chosen primitive shape. Adding the information of the observer position, the camera, and the texture property of each primitive we get a large set of numbers describing the vectorized image. The role of the GPU is to transform the vectorized image into a displayable matrix image. This step is called rasterization. In real-world applications (video games for instance) this work is done in real-time. It is where the GPU demonstrates its full power as the rasterization procedure is done massively in parallel on each primitive of the scene simultaneously. The primitives are indeed independent of each other and the same operations are used (in particular linear algebra via matrix operations). In Figure 5.5, the different colored triangles are transformed into a bunch of pixels with their respective positions on the screen. The GPU performs this transformation on all triangles simultaneously. Possible overlappings are treated afterward. Considering that each triangle is represented by a set of numbers related to the vertex positions, textures, and colors. The GPU translates these numbers into the positions, colors, and intensities of each concerned pixel. In other words, it builds a set A ′ from a set A where A ′ is obtained only via elementary operations for all primitives at the same time.

GPU for SDE

Now, if one considers that the state of the system Equation (5.28) for instance at time step 

= {n k i } i∈[|j-2,j+2|] , { W i } i∈[|j-1,j+1|] , C
, where C is a set of constant values as the primitives properties, this calculations can be done easily parallelized on the GPU. Interestingly, the set A does not depend on the absolute position in the system. It means that in Figure 5.6, the blue and red positions can be computed in parallel. It can be applied identically to an arbitrary number of cells in parallel within the hardware limitations. If one needs to run a hundred events, the only thing to do is to apply Equation (5.28) on 100 × N c cells in parallel for each timestep on the GPU. The efficiency gain as compared to sequential calculations on the CPU is tremendous. We use the NVidia Tesla V100 to perform our numerical calculations at the In2p3 Computing Center in Lyon, France. It is one of the most advanced data center GPU. It is based on the Volta architecture which benefits a total of double-precision 2560 cores for peak 7.8 TFLOP/s (7.8 thousand billion floating-point arithmetic operations per second) and 16GB RAM.

Efficiency gain

The efficiency gain is expected to be large, it can be estimated by running Equation (5.24) on both the NVidia Tesla V100 and an AMD Ryzen 7 3700X 8-Core CPU. We call these devices resp. V100 and Ryzen7 in the remainder. The direct comparison between the V100 and traditional CPU is complicated as the V100 is fully optimized to run on a data center. For this reason, we show the results for the V100 for reference compared to Ryzen7. The comparison is qualitative. To compare the performance, we simulate the stochastic heat equation Equation (5.24) for each device and represent the computational time needed for an evolution of a total of 2048 time steps as a function of the noise configurations. To obtain the time for Ryzen7, we evaluated it over one noise configuration and linearly extrapolated the result. As the CPU works sequentially, the total time is proportional to the time used for one noise configuration. In Figure 5.7, we observe that V100 is much more efficient than Ryzen7. It is expected as it is specialized in numerical computation in data centers. At peak value, it is roughly 10000 times faster. Even though the behavior is linear for both devices at a large number of noise configurations, we notice a plateau at a small number of noise configurations for V100. This plateau is an advantage of the GPUs. The Tesla V100 has 2560 double precision cores. It means that below this number of parallel noise configurations, the computational time remains roughly the same. As a direct consequence, the start of the linear increase is shifted to a higher number of parallel calculations (or noise configurations). The efficiency gain is tremendous.

Newton-Raphson method on the GPU

In Chapter 4, we aim to use a Newton-Raphson method to find the chemical potentials associated with an input set of net-charge densities n 0 . We describe here the algorithm used to perform this procedure. Two particular aspects of this study need careful attention.

• The numerical approximation of the HRG charge densities

The function one wants to invert is defined from the integral of the Fermi-Dirac and Bose-Einstein distributions in the form

n X (T, µ B , µ Q , µ S ) = n X (T, µ B , µ Q , µ S ) -n 0,X , n X (T, µ B , µ Q , µ S ) = 1 2π 2 j X j d j ∞ 0 p 2 dp (-1) B j +1 + e ( √ p 2 +m 2 j -B j µ B -Q j µ Q -S j µ S )/T -n 0,X , (5.48) 
where n 0,X is the input density of charge X. It thus cannot be expressed analytically. Each time n X is called, computational time is used to produce a numerical approximation of the integral on the R.H.S. It leads to a compromise between speed and accuracy.

• The evaluation and inversion of the Jacobian matrix

The inversion is three dimensional. It then involves the Jacobian matrix J of n X numerically. 5.49) This matrix needs to be evaluated and inverted. In other words, it forces us to evaluate n X again multiple times. We tried to simplify the expression of the Jacobian inverse without success. The obtained expression diverges when bosons condensate. We also tried methods approximating the inverse Jacobian, avoiding its calculation. In particular, we employed Broyden's "bad" method [START_REF] Broyden | A class of methods for solving nonlinear simultaneous equations[END_REF] but the convergence was much slower than the Newton-Raphson method in general. Moreover, Broyden's method requires an initial guess for both the chemical potentials and the inverse matrix of n X . This choice has a huge impact on the convergence speed. In the end, the Jacobian is evaluated numerically replacing the partial derivative by the forward discretized derivative,

J =            ∂ n B ∂µ B ∂ n B ∂µ Q ∂ n B ∂µ S ∂ n Q ∂µ B ∂ n Q ∂µ Q ∂ n Q ∂µ S ∂ n S ∂µ B ∂ n S ∂µ Q ∂ n S ∂µ S            ( 
∂ µ X n Y = ( n Y (µ X + δµ) -n Y (µ X ))/δµ.
In this work δµ = 10 -9 GeV. Computing the Jacobian matrix requires three extra calculations. It again emphasizes the need for an efficient evaluation of the integral in Equation (5.48).

These two points must be compatible with the stochastic nature of the study and included in the algorithm which runs on the GPU. These are problematic points as it prevents performing the inversion of n X in the usual way. Indeed, to increase efficiency, the methodology is generally to tabulate the inverted function in a file and then call an interpolation of this file when the value is needed. It is irrelevant here for two reasons. First, accessing a file during the evolution of the charge densities would drastically diminish the efficiency gain from the use of the GPU (discussed ??). Indeed, the GPU cannot read the file. It is typically the type of task which are not efficient on the GPU. The file is then read on the CPU. Each time a value is needed, time is wasted in inefficient host-to-device communication.

Second, the file reading methodology intrinsically imposes limits. If the input densities are larger than these limits, the program stops or one performs an extrapolation. In a stochastic context, the input densities are random variables. There is a non-zero probability that the densities are out of the range of the tabulated input files. Thus, the inversion needs to be done in situ.

In this thesis, we propose an algorithm (based on the VexCL library capabilities Ap-

1: τ k ← τ 0 + ∆t * k ▷ Store current time 2: T ← T (τ k )
▷ Store current temperature.

3:

4: ZB ← randomNormal(0, 1) 5: ZQ ← randomNormal(0, 1) 6: ZS ← randomNormal(0, 1) ▷ normally distributed random vectors with m = 0, sig =1 

FMBF = filter(IB, FILTER) f F (k, m j , α) = 1 1 + e ( √ k 2 +m 2 j -α)/T (5.51)
for fermions and

k 2 f B (k, m j , α) = k 2 e ( √ k 2 +m 2 j -α)/T -1 (5.52)
for bosons (notice the k 2 for bosons to take regularize possible condensation).

For fermions, two limits can be considered, α -→ -∞, the Fermi-Dirac distribution Equation (5.51) goes to 0 for all p. For floating-point arithmetic, the values become negligible for all hadronic species considered when α < -5. Thus, if α is less than -5 GeV, the integral is not evaluated and the value 0 is returned automatically. The second limit is naturally α -→ ∞. Now the distribution is 1 everywhere. In practice, the limit is replaced by a large value of α and the behavior is then cut into three parts (see Fig-

ure 5.8). In the range [0, √ α 2 -m 2 -m] the distribution is equal to 1. In the range [ √ α 2 -m 2 -m, √ α 2 -m 2 + m] the functions goes smoothly from 1 to 0. In the range [ √ α 2 -m 2 + m, ∞[ it is 0.
Consequently, for α large enough, the integral may only be performed on the interval

[ √ α 2 -m 2 -m, √ α 2 -m 2 + m.
The rest is given by the approximation that integral between 0 and

√ α 2 -m 2 -m is √ α 2 -m 2 -m].
In the numerical implementation α is considered large enough for α > 3 GeV. For even larger values of α the integral is simply approximated by α as the mass becomes negligible. When -5 < α < 3 the integral is performed using Simpson's method between k = 0 GeV and k = 5 GeV. For bosons, we take the same lower limit. When α < -5 the integral is considered 0. The higher limit cannot be the same as α < m by construction. Then we consider the limit when α -→ m. The obtained function presents a plateau at 0. Nothing can be improved. The integral is thus performed (again with Simpson's method) between k = 0 GeV and k = 5 GeV for all α > -5. In the inversion procedure, α = B i µ B + Q i µ Q + S i µ S making these integrals adapted to all kind of stochastic input for the chemical potential. In the following description of the algorithm, this way to implement the integral is hidden in the function "densities" (see lines [START_REF] Bali | Qcd forces and heavy quark bound states[END_REF][START_REF] Guenther | An overview of the QCD phase diagram at finite T and µ[END_REF][START_REF] Alford | Color superconductivity in dense quark matter[END_REF][START_REF] Borsanyi | Qcd crossover at finite chemical potential from lattice simulations[END_REF]. 

The inversion algorithm reads

1: if FILTER[x] =1
= √ α 2 -m 2 -m, k = √ α 2 -m 2 and k = √ α 2 -m 2 + m
from the in situ calculations and the interpolated values (lines 36 -42).

Conclusion

In this chapter, we discussed the technical details of the implementation of the stochastic diffusion equations used in Chapter 3 and Chapter 4. In particular, we examined the Euler-Maruyama discretization and its stability. Through the example of the equal time structure factor, we showed the impact the of the discretization scheme on the final results in stochastic studies. It has a strong effect and needs to be thoroughly understood when making numerical implementations of partial differential equations involving random variables. It has been done carefully for the model in Chapter 3. It remains to be properly understood for the model in Chapter 4, the non-linearity being at the heart of the model. The actual implementation of these models on the GPU has been discussed extensively. We first focused on the efficiency gain due to the use of graphics processors. As GPUs specialize in massive parallelism of simple operations, they are perfectly suited for stochastic diffusion equations. They indeed require a small number of operations at each time step but need a tremendous amount of noise configurations to yield relevant results.

The algorithm which will be used in Chapter 4 to solve the coupled set of stochastic diffusion equations has been extensively described. It was specially built for GPU applications. All important steps are suited for parallel execution. The mindset of the GPU algorithm is quite different from the CPU algorithm. Especially, simple operations such as accessing functions inside GPU OpenCL functions are not possible. The general idea when coding for GPU is to think in terms of matrix product and linear algebra whereas, on the CPU, the paradigm is more those of iterative functions or objects. Lots of efforts have been put into the search for efficiency in this work. But many improvements remain to be tested. In particular, when writing the result of a calculation into a file, an inefficient host-to-device copy is required. When studying dynamic systems such as the evolution of fluctuations in HIC, the observables need to be estimated regularly during the evolution. Then, the inefficient communication between devices occurs often. It limitates the computational time gain using GPUs. A direct improvement could be to compute the observables directly on the GPU each time it is needed during the evolution and store the result in the GPU memory until the end of the run. When the evolution stops, all data is copied directly on the CPU and written in the file. Regarding discretization, it is known that the Runge-Kutta method offers much better accuracy than the Euler method in the deterministic context. It turns out that this is the same in the stochastic context [START_REF] Kloeden | Numerical Solution of Stochastic Differential Equations[END_REF][START_REF] Rackauckas | Stability-optimized high order methods and stiffness detection for pathwise stiff stochastic differential equations[END_REF]. The adaptation of the current scheme is almost straightforward. Nonetheless, the analysis of the fluctuations, in particular with the equal-time structure factor is more complicated using stochastic Runge-Kutta methods. At the algorithmic level, the Newton-Raphson method converges extremely fast. However, it is not always convergent, and computing the Jacobian matrix at each iteration is time-consuming. It could be accelerated in two ways. The first, having a clear analytical formula for the Jacobian even in pathological situations such as Bose-Einstein condensation of bosons. The careful analytical study of the Jacobian matrix may lead to an improvement of the method and thus a decrease in computational time. The second could be to go further and use more satisfactory Broyden's methods. By studying the input-output relation, one can find a relation between the input densities and the initial guess for the chemical potentials leading to a quicker and safer convergence.

rapidity or the collision energy is expected. Interesting non-monotonic behaviors of the event-by-event net-proton and proton number have been measured by STAR collaboration at RHIC and by HADES collaboration at GSI. These results suggest that the critical point of the QCD matter should be at µ B > 200 MeV in line with predictions.

Nonetheless, the interpretation of these results in terms of a critical signal is not straightforward. Indeed, from dynamical universality class arguments, it is expected that the relaxation time of the fireball created right after the collision grows near the critical point. Moreover, the fireball is very small and short-lived. It means that the expected growth of the correlation length from the static universality class is not realized either. Thus, it is likely that the thermodynamic considerations discussed above are not relevant to the heavy-ion collisions, the non-monotonic behavior observed experimentally may come from dynamical features only. In this thesis, we tackled this issue by studying the dynamics of the fluctuations in HIC to understand the growth and the survival of a signal coming from the QCD critical point.

In Chapter 2, we constructed a model for the evolution of the conserved charges density fluctuations in a Bjorken expanding medium. For this, we used ideal hydrodynamics supplemented with random noise to take into account non-hydrodynamics modes near the QCD critical point. The obtained model is a set of three coupled stochastic diffusion partial differential equations. In these equations, three features play a role, the diffusion matrix, the connection between the chemical potential and the densities, and the noise term. Thanks to the fluctuation-dissipation theorem, the noise term, and the diffusion matrix are connected leaving the model with two important ingredients, the diffusion matrix and the link between densities and chemical potentials. These parameters allow using the set of equations in different situations.

In Chapter 3, we studied the net-baryon density critical fluctuations only. The diffusion matrix has then been replaced by a diffusion coefficient chosen to be independent of the temperature and rapidity. The chemical potential is related to the net-baryon density via a free energy functional in line with the GL model built in Chapter 2. The free energy is parametrized as a function of the temperature via a mapping from the 3D Ising model in the scaling region and a match with lQCD susceptibilities at vanishing baryo-chemical potential. As a first observation, the growth and anti-correlations and the non-monotonic behavior of the kurtosis are strong signs for criticality if observed experimentally. Due to the dynamical expansion though, the amplitude of the signal is significantly impacted by the numerical value of the diffusion coefficient. Moreover, due to the memory effects, the freeze-out temperature is crucial to understanding the experimental outcome. The main take-out of this study is that the critical signal is not washed-out by the dynamics but its amplitude largely depends on the interplay between memory effect and diffusion. A large diffusion coefficient implies a large but short-lived critical signal and a small diffusion coefficient leads to a small but long-lived signal. This result suggests that precise knowledge of both diffusion coefficient and chemical freeze-out temperature is the key to interpreting the non-monotonic behavior of the net-proton fluctuations observed by STAR and HADES collaborations.

In Chapter 4, we studied the evolution of the conserved charge fluctuations in the hadronic medium at LHC energies. The diffusion matrix has been taken from a match between microscopic theory and ideal relativistic fluid dynamics from Ref [START_REF] Fotakis | Diffusion processes involving multiple conserved charges: A study from kinetic theory and implications to the fluid-dynamical modeling of heavy ion collisions[END_REF]. The chemical potentials are connected to the densities at first order in the hadron resonance gas model. The first observation of this study is that the amplitude of the net-baryon density fluctuations increases due to the coupling. The second observation is that both baryon and strangeness sectors fluctuations remain close to equilibrium and the electric charge is offequilibrium. The third, that the amplitudes are sharply impacted by the evolution in the hadronic medium. The expansion imposes a large decrease of their amplitude and particularly in the baryon and strangeness sectors, ∼ 90% of their initial amplitude is lost during the expansion. In the electric charge sectors the out-of-equilibrium evolution supplemented with smaller decrease of amplitude due to the expansion leads to a much smaller impact at kinetic freeze-out. It suggests that a signal in the fluctuations coming from earlier in the collision will survive longer in observables related to the electric charge.

The results presented in Chapter 3 and Chapter 4 have to be understood as a simplistic approach to the dynamics of fluctuations as many important features are lacking and several approximations have been done. First of all, the hydrodynamic modes are made of conserved charges, energy, and momentum density. Here, the energy and momentum density evolution is only considered via the temperature evolution within the Bjorken expansion. Strictly speaking, the momentum and energy densities are also impacted by the quickly relaxing and locally correlated non-hydrodynamic modes in the scaling region and thus, a realistic study should use fluctuating fluid dynamics. Moreover, the Bjorken expansion is relevant only at LHC energies and it is now known that the QCD critical point should be at √ s NN < 20 GeV which corresponds to RHIC, FAIR, and NICA energies where the Bjorken picture does not hold. In Chapter 3, the scaling of the 3D Ising model is not preserved via the procedure to match the susceptibilities with lQCD susceptibilities. As a consequence, the behaviors can be only interpreted qualitatively at this stage. In Chapter 4, only the Gaussian approximation has been considered. This is not a physically acceptable situation. The power spectrum of the fluctuations (the structure factor) is flat in this approximation. Consequently, there is an infinite amount of energy (integral of the structure factor for all modes) in the continuum limit. Before any reliable results can be discussed profoundly, a surface tension term or higher order terms should be added to regularize the model. This approach can be upgraded at a different level. From the most direct the most fundamental improvement we can discuss the following.

• The combination of the two studies

The most straightforward improvement is the combination of the two studies presented in this work. For this, we can parametrize the free-energy functional from the EoS [START_REF] Parotto | Qcd equation of state matched to lattice data and exhibiting a critical point singularity[END_REF] which contains a critical point and match lQCD data at vanishing baryo-chemical potential. The diffusion coefficient matrix could be taken from [START_REF] Fotakis | Diffusion processes involving multiple conserved charges: A study from kinetic theory and implications to the fluid-dynamical modeling of heavy ion collisions[END_REF] as data are also available for T > 200 MeV. In the end, the fully coupled evolution of the conserved charge fluctuations may be simulated in the presence of a critical point leading to a more realistic model.

• The Bjorken expansion

The Bjorken expansion is known to be a crude approximation at lower energies. A direct improvement of the model presented in this thesis would be the consideration of other more realistic types of expansion. For instance, the Gubser flow [START_REF] Gubser | Symmetry constraints on generalizations of bjorken flow[END_REF] extends the Bjorken flow to a finite-size system and includes a transverse expansion. Other incite can be given by the consideration that at smaller energy, the nucleus is not almond-shaped at the moment of the collision and thus the subsequent evolution is impacted [START_REF] Mendenhall | Calculating the initial energy density in heavy ion collisions by including the finite nuclear thickness[END_REF][START_REF] Mendenhall | Semi-analytical calculation of the trajectory of relativistic nuclear collisions in the qcd phase diagram[END_REF].

• Fluctuating fluid dynamics

The fluctuations of the conserved charges are coupled to the density and momentum density fluctuations and are thus non-trivially impacted by them. A better understanding of the fluctuations of the conserved charges densities can then be reached by considering a fluctuating fluid dynamic model. Several models are available [START_REF] Murase | Relativistic fluctuating hydrodynamics with memory functions and colored noises[END_REF][START_REF] An | Relativistic Hydrodynamic Fluctuations[END_REF][START_REF] Romatschke | Relativistic fluid dynamics in and out of equilibrium -ten years of progress in theory and numerical simulations of nuclear collisions[END_REF][START_REF] Kovtun | Lectures on hydrodynamic fluctuations in relativistic theories[END_REF], but the difficulty lies in the numerical implementation of these models. For the moment, two approaches are trying to go further in this direction [START_REF] Bluhm | Dynamics of critical fluctuations: Theory -phenomenology -heavyion collisions[END_REF], Hydro+ [START_REF] Rajagopal | Hydro+ in Action: Understanding the Out-of-Equilibrium Dynamics Near a Critical Point in the QCD Phase Diagram[END_REF], and the present work.

• 3+1 dimensions

The dynamics of the fluctuations are presented here in a one-dimensional setup. A more realistic study can be made by considering three spatial dimensions. However, as discussed in this thesis, the one-dimensional approach allows to have a trivial lattice spacing dependence of the fluctuation observables and thus simply getting rid of it by calculating integrated quantities Section 5.1.3.1. In three dimensions, the lattice spacing dependence becomes more complicated as it couples to the physical observables in a non-trivial way. As a consequence, a more sophisticated renormalization scheme is needed to get lattice-independent fluctuations observables. The systematic derivation of the correction term is possible and future studies regarding the dynamical evolution of the fluctuations need to include them.

• Particlization

In this work, we presented the dynamical evolution of the fluctuations of the conserved charges densities. However, only particles are measured in the final state and thus, a proper particlization scheme remains to be used to get hadrons from the densities at freeze-out. The traditional Cooper-Frye method [START_REF] Cooper | Single-particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production[END_REF] cannot be used for critical point studies for two reasons. First, the procedure does not conserve the information on higher-order fluctuations and thus on the most relevant probes. Second, global charge conservation is not always respected in the Monte-Carlo Cooper-Frye procedure. The global charge conservation is crucial in these studies as it leads for instance to the enhancement of anti-correlations in the scaling region. Several approaches are nonetheless on the way to an improved reconstruction of particle spectrum from density profiles (see for instance [START_REF] Pradeep | Freezing out critical fluctuations[END_REF][START_REF] Vovchenko | Particlization of an interacting hadron resonance gas with global conservation laws for event-by-event fluctuations in heavy-ion collisions[END_REF][START_REF] Vovchenko | Cumulants of multiple conserved charges and global conservation laws[END_REF]). The hadronization of the density profiles would allow for data-to-simulations comparisons. with C ij (x, k) the collision term. The latter takes into account the variation of f i (x, k) coming from the balance between particles entering and leaving the phase-space infinitesimal volume d 3 x j d 3 k j in a time dt (details on relativistic microscopic theories can be found in [START_REF] Yagi | Quark-Gluon Plasma: From Big Bang to Little Bang[END_REF] page 283-284) In the particular context of the linear response theory (see chapter 2), Equation (A.3) can be linearized. The idea consists in considering that particles are initially at equilibrium at constant chemical potentials α i = µ i /T . Then, looking at the induced 4-current after applying small chemical potentials gradient. Splitting the single-particle of specie j distribution as

f j (x, k) = f (0) j (x, k) + δf j (x, k), (A.4)
with f (0) j (x, k) = g j exp(-u µ k µ j /T + α j ) is the relativistic Boltzmann distribution equilibrium distribution at temperature T . δf j (x, k) is small perturbation induced by the chemical potentials gradients. The latter expansion fully makes sense in the Chapman-Enskog expansion of the distribution f j not detailed here. Then, the Boltzmann equation can be written

k µ i ∂ µ f (0) i (x, k) = N species j=0 C ij [δf j (x, k)] (A.5)
The small gradient of chemical potential generating the linear response δf j (x, k) is then made explicit deriving the the L.H.S of Equation (A.5) in the ideal fluid dynamic equations (see Section 2.1.2) as

k µ i ∂ µ f (0) i (x, k) = - X∈{B,Q,S} F µ (f (0) 
i , k i , ϵ, P )∆ µν ∂ ν α X , (A.6)

where F µ (f

i , k i , ϵ, P ) is obtained from the ideal fluid dynamics. Its precise expression is not required for the understanding. The collision term in the R.H.S of Equation (A. 

A.1.2 Hadron gas cross-sections

The hadron gas is describe by a hadron resonance gas model composed of the nineteen lightest species presented in Table A.1. It includes pions, kaons, nucleons, lambdas and sigmas. The cross-sections are taken from the particle data group, theoretical studies from GiBUU, and SMASH and UrQMD.

π + π -π 0 K + K -K 0 K0 p n p n Λ 0 Λ0 Σ 0 Σ0 Σ + Σ+ Σ -Σ- Table A.1: The considered hadronic species and their elastic cross-sections (mb) used in ref [START_REF] Fotakis | Diffusion processes involving multiple conserved charges: A study from kinetic theory and implications to the fluid-dynamical modeling of heavy ion collisions[END_REF]. The term "res" corresponds to tabulated data for the resonances in GiBUU and SMASH (see We notice that the resonance cross-sections Figure A.1 depend on the center of mass collision energy √ s, especially at small energy. It plays a role in the dependence of the cross-sections and thus of the κ matrix on the temperature and baryo-chemical potential. Indeed, √ s imposes a initial condition as well as a trajectory in the phase diagram. For instance, the H-theorem can be used here to make a link between the entropy and δf i Equation (A.8). the entropy can then be evaluated via ideal fluid dynamics and one gets the connection σ → (T, µ B ). In Figure A.2 we show the diffusion coefficients κ ij at µ B = µ Q = µ S = 0 MeV as a function of the temperature. Compared to the critical point studies Chapter 3 where the diffusion coefficient is independant of the temperature, we notice the strong dependence of the diffusion coefficient with the temperature and µ i as expected from their dependence on the cross-sections. Depending on the values of the chemical potentials, the behavior can be monotonic or non-monotonic resp. for small and large chemical potential. Physically, this can be related to the abundance of each species for certain temperature and chemical potential. For instance, at small temperature and chemical potential, the hadronic matter is dominated by light particles such as π + , π -and π 0 which carry no baryonic number nor strangeness. In turns, the diffusion coefficients in these two sectors drop drastically towards The cross-sections for the resonances obtained using data for SMASH and GiBUU in ref [START_REF] Fotakis | Diffusion processes involving multiple conserved charges: A study from kinetic theory and implications to the fluid-dynamical modeling of heavy ion collisions[END_REF].

small temperature. Conversely, the electric charge diffusion is largely enhanced as charged pions still carries electric charge.

It is interesting to notice that due to Onsager reciprocal relations [START_REF] Onsager | Reciprocal relations in irreversible processes. i[END_REF],

κ ij = κ ji . (A.13)
The reciprocal relation is imposed by the time-reversal symmetry at microscopic level in irreversible macroscopic process such as diffusion. It can be understood here as a detailed balance for elastic collisions between the considered hadrons close to equilibrium or in other word, σ ij = σ ji (this is also the reason why the lower-half triangle is not represented in Table A.1. In this work, we follow the presentation of Table A.1 and always refer to charge i and j as "ij" and not as "ji". As the coefficient comes from numerical calculations, this property is not exactly true. However, the deviation between κ ij and κ ji has been tested to be less than 1% in the available data. To make sure that this constraint is respected we then choose to ignore the lower half part of the κ matrix. ) ;

The function is defined by calling the macro "VEX_FUNCTION". The first input is the type returned by the function, here it is a double. The second input is the function name, here "next_step". Third, all inputs needed in the function core are specified in the form (type, name). Eventually, the core of the functions is written in OpenCL language and as in traditional C++ functions, the keyword "return" denotes the end of the core. Vex functions have two major limitations. First, the number of inputs is limited to ten. One can give more inputs in the form of a C++ array. The second limitation is that the core needs to be written in OpenCL (or CUDA depending on the user choice). It prevents the use of any other interesting C++ library. Everything inside a vex function needs to be implemented in a minimalist way using if, for, and while statements. where {T, muB, muQ, muS} represents all the possible quadruplet of temperature and different chemical potentials on which κ is defined. We add to this the host vector containing the associated values of κ XY for X and X being the conserved charge B, Q and S. Notice that this function runs on the GPU. These values can be vex vectors on the GPU. The interpolation is calculated in parallel for all quadruplets. 

Abstract:

The universe was once made up of a soup of matter called the quark-gluon plasma. Today we observe bound states of quarks and gluons, the hadrons. The study of the phase transition between these two states of nuclear matter is essential to understand our current universe. It is now possible to produce similar conditions as those of primordial universe in relativistic heavy-ion collisions and thus to study the transition experimentally. Fluctuations of net-baryon, net-electric charge and net-strangeness numbers have proven to be observables of choice in this approach, in particular for the search of a possible QCD critical point (CP). Heavy-ion collisions are dynamic experiments and thermodynamic equilibrium may not be reached during the collision, making non-equilibibrium studies is a necessity. In this thesis, we study the impact of the heavy-ion collision dynamics on the diffusive evolution of conserved charge density fluctuations. We demonstrate the great sensitivity of the signals from the CP to the diffusion coefficients and the freeze-out temperature, thus revealing a significant impact of the dynamics. A first study of the coupled evolution with realistic diffusion coefficients shows that the critical signal can survive for a long time in the hadronic phase.
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 a Schematic representation of the outcome expected in SLAC DIS experiements (b) Schematic representation of the outcome obtained in SLAC DIS experiements
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 14 Figure 1.4: The QCD phase diagram in the (T, µ B ) plane. The lines represent 1st order phase transitions and the dashed-line crossovers. This representation is based on discussions in ref[START_REF] Guenther | An overview of the QCD phase diagram at finite T and µ[END_REF][START_REF] Alford | Color superconductivity in dense quark matter[END_REF].
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 15 Figure 1.5: The review of the location of the QCD critical point from lQCD, Dyson-Schwinger equation, and NJL models from 2004 to 2020. This review has been made by Luo and Huang. For more detail, see [41].
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 1 5 we show a review of the predictions from lQCD, Dyson-Schwinger equation, functional formalism, and NJL effective model. It can be observed that the location of the critical point is widely spread over a span of ∼ ∆µ B = 650 MeV. It comes from the difficulty to infer the location from first-principle lQCD calculations.
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 16 Figure 1.6: Representation of the 2D Ising model. Red upward arrows are spins up and blue downward arrows are spins down. M = 1/N i s i is the magnetization (N is the total number of nodes.
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 17 Figure 1.7: Representation of the correlation length in the 2D Ising model in the ordered phase (left) in the disordered phase (right) and close to the critical temperature (middle). The initial spin fluctuation (dark green) causes spin flipping at other sites (light green). The down-up arrows show the constantly flipping spins. The light green lines represent the transfer of the information from the initial fluctuation and the grey line when the information cannot be transmitted. They are in light green is the correlation surface.
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 18 Figure 1.8: The free energy functional free Landau theory as a function of the order parameter (right). Three cases are considered, the ordered phase, r = (T -T c )/T c < 0 (blue), at the transition temperature r = 0 (red), in the disordered phase r > 0 (green). Here the external field h = 0. The numerical values are arbitrary.
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 19 Figure1.9: Probabilty distributions with non-vanishing Skewness (left) and kurtosis (right). The red curves are gaussian distributions with vanishing expectation values and unit variances. Taken from[START_REF] Asakawa | Fluctuations of conserved charges in relativistic heavy ion collisions: An introduction[END_REF] 
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 110 Figure 1.10: The net-proton number N p -N p distribution for most central collisions in Au-Au collisions at STAR for several √ s NN . Plot taken from Ref [68].
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 111 Figure 1.11: The skewness (left) and the kurtosis (right) as a function of the collision energy for most central collisions in Au-Au collisions at STAR [68]. The dashed represents the Poisson baseline. The black, polynomial fits. The lower panels show the derivatives of the polynomials. The bars (shaded band) represent the statistical (systematic) uncertainties.
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 11224 Figure 1.12: Ratios of cumulants of the proton distribution in Au-Au collisions at √ s NN = 2.4 GeV. The error bars show the statistical uncertainty.Taken from[START_REF] Adamczewski-Musch | Proton-number fluctuations in √ s N N = 2.4GeVAu+Au collisions studied with the high-acceptance dielectron spectrometer (hades)[END_REF] 
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 113 Figure 1.13: Early times of a heavy-ion collision τ < 1 fm.
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 114 Figure 1.14: The QGP expanding in the longitudinal direction in a Bjorken expansion scenario 1 < τ < 10 fm. The temperature cools down from the initial temperature which depends on the energy of the collision and 150 MeV.
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 115 Figure 1.15: The hadron gas for τ > 10 fm. Red stars represent inelastic interaction and yellow stars, elastic interaction.
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 116 Figure 1.16: Schematic representation of a trajectory followed by the QCD matter during a heavyion collision in the (T, µ B ) plane.
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 21 Figure 2.1: Schematic representation of the almond-shaped initial fireball. P L and P T are respectively the longitudinal and transverse pressure. Due to the higher density in the longitudinal direction after the two receding nuclei (in grey) collide, P L >> P T and subsequently, the fireball expands longitudinally.
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 31 Figure 3.1: A sketch of the non-universal mapping of the 3D Ising variables (r, h) into the QCD Phase diagram ( r, h).
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 3233 Figure 3.2: The correlation length ξ and the non-linear couplings λ 3 and λ 4 for µ B = 300 MeV obtained from the mapping of the 3D Ising model into the QCD phase diagram as a function of the temperature.T c is the critical temperature. This graphic is taken from[START_REF] Nahrgang | Modeling the diffusive dynamics of critical fluctuations near the QCD critical point[END_REF] 
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 34 Figure 3.4: The mass term m 2 after applying the centering method.
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 3935 Figure 3.5: The centered mass term m 2 after applying the separation method.
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 36 Figure 3.6: The centered and separated mass term m 2 after the cutting method.
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 37 Figure 3.7: The cut mass term m 2 after the Bézier method.
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 38 Figure 3.8: The cut m 2 after retrieving the original amplitude of the critical signal.
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 39 Figure 3.9: The mass term m 2 after the squeezing method.
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 310 Figure 3.10: The second-order susceptibility χ 2 obtained from the mass term cut at the limits.
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 312 Figure 3.12: The diffusion length in the expanding system as a function of the proper time for different values of the diffusion coefficient D.
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 313 Figure 3.13: The equal proper time structure factor in the Gaussian approximation as a function of the time for different modes q. The vertical dashed line indicates the proper time where the critical temperature is reached.
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 3 Figure 3.14: The equal-time structure factor Sq as a function of q for different temperatures.

Figure 3 . 15 : 2 .

 3152 Figure 3.15: The analytical correlation function Equation (3.73) as a function of the rapidity ∆y = y 1 -y 2 for equilibrated initial conditions χ 0 = X QGP 2 . The solution is shown for both noncritical trajectory (left panel) and critical (right panel).

  true in Bjorken-type expanding medium, we have sign(∂ τ {χ 2 (τ )}) = sign(∂ T {χ 2 (T )})sign(∂ T {τ }) = -sign(∂ T {χ 2 (T )}).(3.74)

4 Figure 3 . 16 :

 4316 Figure 3.16: The surface tension in the expanding system as a function of the proper time for different values of K.

Figure 3 . 17 :

 317 Figure 3.17: The structure factor for the Gaussian approximation (blue) and the G+S approximation (orange) at T = 145 MeV and µ B = 350 MeV.

Figure 3 . 18 :

 318 Figure 3.18: The correlation function for Gaussian approximation (left) and G+S approximation (right) for non-critical trajectory (upper panel) and critical trajectories (lower panel).

lim δy→0 2 ( 1 - 2 ( 1 -

 2121 cos(∆k))/δy 2 = k 2 (3.92) lim δy→0 cos(∆k)) 2 /δy 4 = k 4 /2 (3.93) lim δy→0 4 sin(∆k/2) 2 /δy 2 = k 2 (3.94)
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 319 Figure 3.19: The structure factor S(τ, κ) of the net-baryon density fluctuations at T = 400 MeV (left panels) and at T = T c = 150 MeV (right panels) as a function of the wave-number κ = Lq/(2π). The continuum solution (solid line) is compared to our numerical results (symbols) and the solutions in discretized space (dashed lines) for different numbers of cells N = 32, 64, 128, 256 within L = 20 units of rapidity. In the upper panels the comparison is shown for a trajectory at constant µ B = 0 MeV far away from the critical point and in the lower panels for a trajectory with µ B = 350 MeV passing near the critical point.
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 3320 Figure 3.20: The correlation function at equal proper time in the G+S approximation as a function of space-time rapidity for different trajectories with constant µ B at T = 150 MeV. The symbols represent our numerical results, and the solid and dashed lines are the analytic solutions obtained through the inverse Fourier transform of the continuum and the discretized structure factor, respectively.
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 321322 Figure 3.21: The variance of the net-baryon density in the pre-equilibration stage (T = 500 MeV) as a function of time and several diffusion coefficients.

Figure 3 . 23 :

 323 Figure 3.23: The second (upper panel) and fourth (lower panel) order cumulants of n B within a space-time rapidity window of ∆y = 1 as a function of the proper time for different constant µ B (the corresponding temperature is displayed on the upper x-axis). The vertical dashed line indicates the proper time where the pseudo-critical temperature is reached. Here, the diffusion length is set to D = 1 fm.

Figure 3 . 24 :

 324 Figure 3.24: The late-time value (at T = 100 MeV) of the scaled second-order cumulant of n B , σ 2 /(χ H 0,2 ∆y) for a non-critical trajectory as a function of the rapidity window ∆y for λ 4 = 0 and several constant values of K(τ ).
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 325 Figure 3.25: The correlation function of n B as a function of the spatial rapidity y for different fixed T and D = 1 fm.

Figure 3 . 26 :

 326 Figure 3.26: The second (upper panel) and fourth (lower panel) order cumulants of n B within rapidity window ∆y = 1 as a function of µ B for different fixed T and D = 1 fm. The colored bands highlight the statistical uncertainties in the cumulants for a total number of 2.25 × 10 6 noise configurations.

Figure 3 . 28 :

 328 Figure 3.28: The normalized difference between the size of the expanding system z max (τ ) and the time evolution of the standard deviation of an initially Gaussian density profile in Cartesian coordinates z D (τ ) as a function of proper time and input diffusion length D for the deterministic evolution of the net-baryon density. The vertical dashed line corresponds to the critical proper time τ c .

Figure 3 . 29 :

 329 Figure 3.29: The second (upper panel) and fourth (lower panel) order cumulants of n B within rapidity window ∆y = 1 as a function of µ B for different values of the diffusion length D at fixed T f = 145 MeV. The colored bands correspond to the statistical uncertainties in the cumulants for 2.25 × 10 6 noise configurations.

Figure 3 . 30 :

 330 Figure 3.30: The integrated variance (∆y = 1) for two different trajectories associated with different diffusion coefficient D.

Figure 3 . 31 :

 331 Figure 3.31: The second (upper panel) and fourth (lower panel) order integrated cumulants of n B as a function of the rapidity window ∆y at T = 145 MeV for different trajectories at constant µ B . Here, we set the diffusion length to D = 1 fm. The error bands indicate statistical uncertainties for 2.25 × 10 6 noise configurations.
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 332 Figure 3.32: The second (upper panel) and fourth (lower panel) order integrated cumulants of n B as a function of the rapidity window ∆y at T = 145 MeV for µ B = 350 MeV and different values of the diffusion coefficient D. The error bands indicate statistical uncertainties for 2.25 × 10 6 noise configurations.
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 441 Figure 4.1: The relative difference (κ ij -κ ij )/κ ij × 100 showing the relative difference between the coefficient of the original κ matrix and the nearest PSD matrix for all available values of κ.

Figure 4 . 3 :

 43 Figure 4.3: The simulated noise correlator ⟨ξ X ξ Y ⟩ of the transformed κ matrix using its Cholesky decomposition. The horizontal dashed lines represent the expected values 2κ XY . For this test T = 160 MeV, µ B = µ Q = µ S = 0 MeV.

Figure 4 . 4 :

 44 Figure 4.4: Comparison between the baryo-chemical potential obtained via the inversion (blue) and the linear approximation (red) of Equation (4.45). For this example T = 160 MeV and n Q = n S = 0 fm -3 .

  kin = 115 MeV. We slightly extend this range to initial temperature T i = 160 MeV and

Figure 4 . 5 :

 45 Figure 4.5: The illustration of the trajectory followed in the QCD phase diagram. The fluctuations right after the phase transition (blue star) evolve through the hadronic medium following a trajectory (orange line) and lead to the fluctuations at freeze-out (grey dashed curve) represented by the green lozenge.
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 446 Figure 4.6: The diffusion coefficient matrix κ (left) and its Cholesky decomposition C (right) as a function of the temperature for LHC conditions.
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 47 Figure 4.7: HRG susceptibilities as a function of the temperature.
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 49 Figure 4.9: The local variance of the net-baryon density fluctuations during the expansion as a function of the proper time (red). The equilibrium covariances are represented in black. The blue curve represents the variance obtained by artificially multiplying the diffusion coefficient by 100.

Figure 4 . 4 )Figure 4 . 10 :

 44410 Figure 4.10: The local conserved charges fluctuations covariances during the equilibration as a function of the proper time.
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 4411 Figure 4.11: The local covariances of the conserved charges during the expansion as a function of the proper time (red). The equilibrium covariances are represented in black.

Figure 5 . 1 :

 51 Figure 5.1:The equal-time structure factor as a function of the wavenumber for the one cell ( W j+1 -W j ) (red) and two cells ( W j+1 -W j-1 )/2 (blue) derivative schemes for the noise term. The black dashed line represents the continuum equal time structure factor of a white gaussian noise. Here we take D = 1, ∆x = 0.15625 and N c = 128 for total evolution time of t = 10 (no units are involved here).
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 5253 Figure 5.2: The local variance Equation (5.43) as a function of time for a constant temperature T = 500 MeV for different number of cell N at fixed system size.
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 54 Figure 5.4: Example of the square tessellation of a 2D surface in a 3D space. source : wallpapercave.com

  t k , {n k j } j∈[0,Nc] . The "rasterization" of this state is simply the next time step {n k+1 j } j∈[0,Nc] . Taking a closer look at Equation (5.28) we see that each cells n k+1 j only requires the set{n k i } i∈[j-2,j+2] to be calculated (seeFigure 5.6). Moreover, the content of each cells at time t k+1 can be computed independently. Considering A ′ = {n k+1 j } as the image on the screen and A

Figure 5 . 5 :

 55 Figure 5.5: Example of the rasterization of a 2D figure. Primitives are here triangles with their respective colors.

Figure 5 . 6 :

 56 Figure 5.6: Schematic representation of the cells needed at time t k to compute the field at time t k+1 when second order derivative is involved in the equation (in blue). The translated situation in red can be computed in parallel on the GPU.

Figure 5 . 7 :

 57 Figure 5.7: The computational time for V100 and Ryzen7 as a function of the number of noise configurations for the resolution of Equation (5.24).

  then

← 100 ▷

 100 Define maximum number of iterations
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 58 Figure 5.8: The Fermi-Dirac distribution Equation (5.51) for protons and neutrons with α = 5 GeV (plain line). The dashed vertical lines are placed, from left to right, at k= √ α 2 -m 2 -m, k = √ α 2 -m 2 and k = √ α 2 -m 2 + m

δ ( 4 )

 4 5) is given byC ij [δf i (x, k)] = (k i + k ′ j -p a -p ′ b ) × L[δf (x)](k i , k ′ j , p a , p ′ b )sσ ij→ab (s, Ω). (A.7)

Figure A. 1 .

 1 The constant values comes from UrQMD[START_REF] Fotakis | Diffusion processes involving multiple conserved charges: A study from kinetic theory and implications to the fluid-dynamical modeling of heavy ion collisions[END_REF].
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 1 Figure A.1:The cross-sections for the resonances obtained using data for SMASH and GiBUU in ref[START_REF] Fotakis | Diffusion processes involving multiple conserved charges: A study from kinetic theory and implications to the fluid-dynamical modeling of heavy ion collisions[END_REF].

Figure A. 2 :

 2 Figure A.2: The diffusion coefficient matrix elements as a function of the temperature for µ B = µ Q = µ S = 0 MeV.

  The function "next_step" takes first an unsigned integer representing an index in the vex vectors (size_t, x). Then, three pointers to vex vectors of double (double*, Diffusion), (double*, noise), and (double*, U) which are resp. the diffusion term, the noise term, and the density field at the previous step. It also takes two double (double, a) and (double, b) given by a = D∆t/δx 2 and b = 2D∆t/∆x 3 . It is the exact translation of Equation(5.18) in terms of VexCL user-defined function. This code computes all cells simultaneously within the limitation of the number of cores of the Tesla V100. One can call the function as time structure factor (see Figure5.1 for instance). The Fourier transform FFTA of a device vector A with these properties is then obtained by FFTA = * fft ( A ) ;B.6 Multivariate B-Spline interpolationA last powerful function from the VexCL library is used in this work. The multivariate B-Spline interpolation on the GPU memory. It is implemented based on ref[START_REF] Lee | Scattered data interpolation with multilevel bsplines[END_REF]. This function allows the efficient interpolation of n-dimensional sets of data. In this work it serves to interpolate the values of the κ matrix of the study of the coupled charge evolution (see Chapter 4). The algorithm is set first on the CPU by defining the coordinates on which the data point lies std : : vector< std : : array<double , 4> > coords = {{T , muB , muQ , muS }}

1 XY

 1 std : : vector<double> kXY ;If coords[0] = {200, 0, 0, 0} for instance, kXY[0] is the value of κ XY associated to T = 200 MeV, µ B = 0 MeV, µ Q = 0 MeV and µ S = 0 MeV. As there is only one vector associated with a set of coordinates in this algorithm, the interpolation is done for each couple of conserved charges {XY}. It represents a total of 6 interpolations (including the symmetry of κ). The next step is to give extra information on the set of data to the algorithm. Namely the extremal values of the coordinates and the size of the data in each direction std : : array<num ,4> xmin = { { 4 0 , -510 , -510 , -510}}; std : : array<num ,4> xmax= { { 2 1 0 , 5 1 0 , 5 1 0 , 5 1 0 } } ; The xmin (resp. xmax) values are the minimal (resp. maximal) values taken by {T, muB, muQ, muS}. std : : array<size_t , 4> Hagrid = { { 1 5 , 2 0 , 2 0 , 2 0 } } ; These are the number of data points in temperature and chemical potentials. The last step is to build the algorithm on the GPU via = new vex : : mba<4>( * ctx , xmin , xmax , coords , kXY , Hagrid ) ; It creates a function realizing the B-Spline interpolation. The interpolation on the GPU is then simply obtained values T, muB, muQ, muS as 1 * XY ( T , muB , muQ , muS )
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  Dynamique des fluctuations dans les collisions d'ions lourds Mot clés : Dynamique des fluides fluctuante ; Collisions d'ions lourds ; Transition de phase ; Point critique Résumé : L'univers a un jour été composé d'une soupe de matière appelé le plasma de quark et de gluons. Aujourd'hui on observe des états liés de quark et de gluons, les hadrons. L'étude de la transition de phase entre ces deux états de la matière nucléaire est primordiale dans la compréhension de l'univers actuel. Il est désormais possible de reproduire des conditions similaires à celles de l'univers primordial dans les collisions d'ions lourds relativiste et ainsi d'étudier la transition expérimentalement. Les fluctuations des nombres net de baryon, charge électrique et d'étrangeté sont des observables de choix dans cette approche, en particulier pour la recherche d'un éventuel point critique (CP). Les collisions d'ions lourds sont des expériences dynamiques, l'équilibre thermodynamique n'est peut-être pas atteint pendant la collision, rendant les études dynamiques indispensables. Dans cette thèse, on étudie l'impact de la dynamique des collisions d'ions lourds sur l'évolution diffusive des fluctuations de densités des charges conservées. On démontre la grande sensibilité des signaux provenant du point aux coefficients de diffusion ainsi qu'à la température de freeze-out révélant ainsi un grand impact de la dynamique. Une première approche de diffusion couplée avec des coefficient de diffusion réalistes montre que le signal peut survivre longtemps dans le phase hadronique. Title: Dynamics of fluctuations in heavy-ion collisions Keywords: Fluctuating fluid dynamics; Heavy-ion collisions, Phase transitions, Critical point

  

  4, one can also see the associated collision energy in the center of mass frame √ s N N associated with the baryo-chemical potential. It is widely spread, going from 17 GeV to less than 3 GeV, the √ s N N is poorly constrained from first-principle calculations. Experimentally, one has thus to probe for criticality in the whole range of energy which requires huge efforts. For the moment, it is complicated to have a glimpse of criticality using first principle calculations and we have to rely our understanding on a phenomenological methodology. The idea is simple, first, estimate expected criticality signals in HIC assuming that the critical point exists using phenomenological models, and second perform a systematic experimental scan for √ s

N N < 20 GeV. The latter has to lead to extensive experimental programs in high µ B and moderate T regions. In particular at RHIC with the Beam Energy Scan I and II ( √ s N N ∈ [3, 19.6] GeV ) [43], the High Acceptance DiElectron Spectrometer (HADES) at GSI ( √ s N N ∈ [2, 3] GeV) [44] and future NICA experiment in Dubna ( √ s N N ∈ [4.5, 12.6] GeV)

  both in the QGP at T = 280 MeV From this two values, it is possible to evaluate the equivalent quantity X 4 by making use of the relation in the hadron resonance gas model χ B 4 = χ B 2 in and in the QGP χ B 4 = 2 (3π 2 ) χ B

	X QGP 2	= 0.02,	(3.32)
	and in the hadron phase at T = 130 MeV		
	X H 2 = 0.01.	(3.33)
			2

Table 4 .

 4 

1: The properties of the ninetieth lightest hadronic species used to determine Equation (4.45). mass : m i , Spin s i , Degeneracy d i , Baryon number B i , Electric charge Q i , Strangeness S i

  ′ , x ′ )dx ′ dt ′ ⟩ (5.9) [a,b] represents a distribution which is 1 everywhere in the interval [a, b] and 0 elsewhere. The variance of W k j differs from unity and depends on space and time increments. One then has to consider a new definition of the discretized noise, namely

				)∆t	j∆x		(k+1)∆t	j∆x
	k∆t W(t = (j-1)∆x W(t, x)dxdt k∆t (j-1)∆x 1 ∆x 2 (k+1)∆t j∆x (k+1)∆t j∆x 1 ∆t 2 k∆t (j-1)∆x k∆t (j-1)∆x ⟨W(t, x)W(t ′ , x ′ )⟩dxdtdx ′ dt ′
									(5.10)
	=	1 ∆x 2	1 ∆t 2	(k+1)∆t k∆t	j∆x (j-1)∆x	(k+1)∆t k∆t	j∆x (j-1)∆x	δ(t -t ′ )δ(x -x ′ )dxdtdx ′ dt ′ (5.11)
	=	1 ∆x 2	1 ∆t 2	(k+1)∆t k∆t	j∆x (j-1)∆x	1 [n∆t,(k+1)∆t] 1 [(j-1)∆x,j∆x] dxdt	(5.12)
	= =	1 ∆x 2 1 ∆x∆t 1 ∆t 2 ∆x∆t					(5.13) (5.14)
	where 1							

We note that in certain case, G OP is not a subgroup of G DP[START_REF] Guymont | Symmetry analysis of structural transitions between phases not necessarily group-subgroup related. domain structures[END_REF], but it is not believed to be the case for continuous or crossover phase transition as in QCD at low baryo-chemical potential.

Remerciements

Deterministic approach

This link highlights the impact of the diffusion coefficient on the evolution of the net-baryon density fluctuations. It reveals the close relationship between the amplitude of the critical signal and the in-or out-equilibrium nature of the fluctuations. The ability of the netbaryon density fluctuations to reach equilibrium is highly dependent on the competition between the diffusion and the expansion. To emphasize this captivating relation, we show in Figure 3.28 the evolution of the full width at half maximum (FWHM) of an initially Gaussian distribution of net-baryon density evolving through the deterministic counterpart of Equation (3.38) (namely the noise ξ(τ, y) = 0 fm -2) compared to the total size of the system in the Cartesian coordinates. More precisely, we evaluate the FMWH y F W M H (τ ) as a function of time, translate it into Cartesian coordinates z D (τ ) = τ sinh(y F W M H (τ )).

Then, we compare it to the increasing size of the expanding system z max (τ ) via the quantity z(τ ) = (z max (τ ) -z D (τ ))/z max (τ ). Studying the evolution of the diffusion length through the deterministic equation is a source of information for stochastic studies. If one imagines that a fluctuation is created at a point in the stochastic evolution. Its diffusion through the medium will be similar to the evolution of the FMWH of a gaussian in the deterministic case. If z is close to 1, the Gaussian initial distribution barely evolves during the expansion. In a stochastic context, fluctuations will be correlated over a very small distance and remain out-of-equilibrium. Conversely, if z < 0, fluctuations will be correlated over distances larger than the total system size and then will as shown in Figure 4.2 the relative difference between the original and new matrices is controlled, 50% for the off-diagonal elements and 0% for the diagonal elements (as in the first method). By building a function of the relative number of sign changes, and relative difference κ-κ ′ , a better W matrix could have been found numerically. Minimizing the said function with input W with gradient descent or the Newton-Raphson method could have given the best possible W . We let this for future studies and choose here the second method W = 2id for our study. We just have to keep in mind that the off-diagonal coefficients of the original matrix are modified ( 50%) by this choice.

Cholesky Decomposition

The major ingredient of this study is the Cholesky decomposition of κ, the matrix noted C in Equation (4.1). It is related to κ via the following relation

Where .. T denotes the transposition. When a matrix is PSD, obtaining its Cholesky decomposition is straightforward. First, as it is a symmetric and real matrix, it is orthonormally 

Net-baryon density variance in the expansion

Starting from the equilibrated initial condition at T i = 160 MeV, we let the system expand.

In Figure 4.9 we show the dynamical evolution of σ 2 B compared to the equilibrium values obtained previously. We observe that σ 2 B decreases accordingly to the expansion. The dynamical values of the variance are close to the equilibrium values. The diffusion coefficient obtained from Equation (4.49) is thus large enough to consider that the fluctuations are equilibrated during the expansion. This result is interesting but needs to be nuanced. We started from initially equilibrated initial conditions. No information related to the return to equilibrium can be inferred in this study. Anyway, we see that initial fluctuations will decrease sharply during the expansion. In Fig -we also show the evolution of σ 2 B for artificially bigger κ ij coefficients.The variance goes to the equilibrium value when the amplitude of the diffusion coefficient increases as expected.

field. We specify that local quantities presented here are used in Chapter 4. There is thus a residual lattice dependence in the variances and covariances presented.

Integrated observables

To remove the lattice spacing dependence, we chose to compute the fluctuations observables in a different way. Inspired by the actual experimental measurements, we integrate the netcharge densities over a rapidity window ∆y for each noise configurations and compute the fluctuations observables from this distribution. It can be written

(5.44)

with

for N y corresponding to the bigger integer such that N y δy < ∆y. It is the number of cells with a rapidity smaller than ∆y. The average n∆y is simply the average value of the n i,∆y overall noise configurations. These referred to these quantities as integrated quantities.

They are a simple coarse-graining of the naive definition over a rapidity window ∆y and represent a trivial renormalization of the physical observables. In one dimension, this simple approach is sufficient to avoid divergences. In Figure 5.3, we demonstrate the lattice spacing independence of Equations (5.44) and (5.45) evaluated in the same context as the naive definitions Figure 5.2. Unfortunately, it is no straightforward way to find lattice spacing independent definition of the correlation functionand. We conserve the naive definition.

(5.47) pendix B that solves these two issues and guarantees maximum efficiency when solving Equation (5.29). This algorithm is a hybrid approach between the tabulated file reading method and the in situ calculation method.

General description of the hybrid algorithm

To describe the algorithm, we detail how the values of the coupled charge density fields at time step k + 1 are obtained from their values at step k. The SDE in the discretized space reads

In this equation, the κ matrix and its Cholesky decomposition C are functions of the temperature and chemical potentials,

). The κ matrix as a function of the temperature and chemical potentials is tabulated. As explained above, regular communications with the CPU is highly inefficient. We thus use the B-Spline interpolation furnished by the VexCL Library. It is a way to have all the data in the GPU memory and a fidel interpolation. For the description of the algorithm we write

). The Cholesky decomposition C is obtained via the procedure described in Section 4.2.3 on the tabulated values of κ. Its values are thus tabulated as well (the interpolated decomposition has been tested to respect relation). We also write

). In the same way, the chemical potentials are functions of the temperature and charge densities

In this hybrid approach, the chemical potentials come from the inversion of Equation (5.48) in two ways. First, from the B-Spline interpolation of tabulated data regarding the inversion. Again we refer to it as

). Second, when the input densities are out of the tabulated limit, the inversion is done in situ,

). All variables with capital names are on the GPU memory.

In pseudo-language the algorithm reads ▷ Compute next step according to derivative scheme Equation (5.50)

55: END

The algorithm can be summed up as checking if input densities are out of the range of tabulated inversion files. If not, read the value using the interpolation. If yes, apply the in situ calculations. Then find the value of κ and C and compute the next step. Despite its simplicity, the use of GPU imposes a different mindset. For this reason, we also detail algorithms used for each sub-part of the hybrid approach described above.

The Newton-Raphson method

The inversion algorithm is performed in the same way for both generating the tabulated files and running on the GPU (resp. BSI and IS ). As designed for the GPU, efficiency is a crucial point. In particular, integrals evaluation must be as efficientl as possible. Moreover, the stochastic input of these integrals prevents having a generic cut-off. If on works at constant cut-off and constant subdivision spacing for integration, the integral will be a weak approximation for some input. To circumvent this issue and increase efficiency, we treat bosons and fermions separately. The shapes of the curves are different. Bosons can be integrated at constant cut-off, fermions cannot. However, it is possible to systematically have a good approximation of the integral for fermions by finding a cut-off adapted to the stochastic input. This cut-off can be found via the study of the functions if j=0 then 13:

µ S ← 1 ▷ This is the initial guess.

16:

else if j=1 then 17:

maxIters ← 1000

21:

Jc ← 0.25

22:

▷ Randomize initial guess if first attempt failed. And restart with finer steps.

23:

else if j=1 then 24:

µ S ← mean_S +0.02×RANDS while err > tol and steps_taken < maxIters do 36:

▷ Store initial values for error estimation 39:

40:

▷ evaluate the function Equation (5.48).

42:

43:

J = Jacobian(dB, dQ, dS, n, δµ) ▷ Compute the jacobian matrix numerically ▷ re roll the dice when no directions can be found. return 0, 0, 0 86: end if 87: END First, give an initial guess for chemical potential (lines 12 -13). Enter the loop, and calculate the next Newton-Raphson step (line 49). Evaluate the error (defined as the maximum between (n X -n 0,X )/n 0,X × 100 and (µ -µ 0 )/µ 0 × 100 at step k of the inversion here). If the error is within the tolerance (line 10), exit the loop and return µ B , µ Q , and µ S . This algorithm has to converge as much as possible. Unfortunately, it does not all the time. Depending on the initial guess, the Newton-Raphson method may not converge after a finite number of iterations (here maxIters -line 5). To avoid these situations, we implemented a three steps finer convergence. At each steps of the method, we check if the determinant of the Jacobian matrix is smaller than a certain value (here 1e -3 -line 57). Geometrically, a small but non vanishing determinant means that the algorithm found a direction towards the next step chemical potentials but the also that the distance with the previous chemical potentials (in Euclidean norm for instance) is large. If the area around the solution is very flat in a small interval, it generally leads to an oscillating method, the ditance to next step being large than the dip width. To remedy, we impose a smaller step size in the same direction by multiplying the inverse Jacobian matrix by a constant smaller than one before computing the new step (constant c line 68). It allows the algorithm to get closer to the solution and converge even in flat area. Nonetheless, it may used carefully as the error in Newton-Raphson method is then proportional to this constant. In our case, the error is defined as the maximum between the Newton-Raphson error (∝ µ k+1 -µ k ) and the difference between the input densities and the currently calculated density ∝ n -n 0 . This is a particularity of this method as we search for the zero of n = n -n 0 . We thus have an additional information, the final densities needs to be as close as possible to the input densities for n to be close to zero. We observed that this algorithm converges for 100% of input densities and temperature (on ∼ 50000 inputs). The drawback of this methodology is that the ordinary quick quadratic convergence of Newton-Raphson method is lost, the convergence requires sometimes much more steps. As a last safeguard, the determinant of the Jacobian matrix is checked each time it is calculated (line 40). If it vanishes, the Newton-Raphson method is not capable of finding the next direction in the 3D space. It corresponds to a singular point in the densities vector gradient, there is thus no steepest descent at this point. All directions are on an equal footing, the method fails. If this happens, we discard the previous steps and continue with random input for the initial guess around the original initial guess.

Filter reconstruction method

In the Newton-Raphson algorithm presented above, the first line checks if the filter at position x in the GPU vectors (corresponding to a set of n 0,B , n 0,Q , n 0,S is one or not. We explain here the reason for this and the need for filter and checkfilter functions in the general hybrid approach algorithm (lines 12 -16, 28 -30 and 36 -42).

The efficiency gain of the hybrid approach comes from the fact that the inversion is calculated in situ only when needed. It imposes to detect when the in situ calculation is needed.

On the CPU, a simple if statement is sufficient. If the input densities are within the limits of the tabulated files, return the interpolated values. If not, perform the in situ calculations.

Using the VexCL library, this cannot be done in the same way. The only way to perform the in situ inversion is to define a vex function limited to low-level OpenCL language. In particular, it is impossible to call the B-Spline interpolation function inside the vex function.

To circumvent this issue, we perform extra steps. The first one creates a filter GPU vector FILTER (line 15). If the triplet of densities at position x are out of the range of the tabulated file, FILTER[x] = 1. The other values are zero. It is created from the equivalent vectors for each charge FUB, FUQ, and FUS by the function reducSum. This function simply returns 1 if one of its three input vectors is 1. As the FILTER vector has the same size as the density GPU vectors, it indicates the positions where the in situ calculations need to be performed. The next step is to verify if in situ calculations are needed or not in the current time step.

The sum of all elements of the FILTER vector CHECK_SUM answers (line 16). If the sum is vanishing, it means that no densities are outside the tabulated range. The algorithm then branches, if CHECK_SUM is 0 the chemical potentials are given by the B-Spline interpolation BSI (lines 18 -21). If CHECK_SUM is not 0, some densities are out of the range. The inversion is then performed only at the needed position by giving it both densities and the filter vectors. It is the reason for line 1 of the Newton-Raphson algorithm. It checks the FILTER vector at position x. If it is 1, the method is applied. If it is 0, the algorithm returns µ = 0 (lines 23 -25). The BSI method applies to the whole densities vectors where the previously detected densities are set to 0 (lines 28 -34). The last step is to reconstruct the chemical potential vectors. It is done by putting all the values given from interpolation at detected densities at 0 and summing the contribution Chapter 6

Outlook and perspectives

From the theoretical point of view, one has a quite clear idea of what the QCD phase diagram should look like but from the experimental point of view, the QCD phase structure remains mainly unknown. If strong experimental evidence shows that a QGP can be formed in HIC, the nature of the phase transition between hadronic matter and melted quark and gluon plasma needs further investigation. In particular, the experimental discovery of a critical point at finite baryo-chemical potential would be a giant step in our understanding of the QCD matter.

Due to the non-Abelian nature of the QCD, first-principle calculations such as lQCD or perturbative QCD struggle to give answers at the supposed location of the critical point. It is complicated to know precisely what to look for and where to search for it experimentally. Consequently, the issue is tackled via a phenomenological approach. First, using the capabilities of heavy-ion colliders such as RHIC, FAIR, and NICA, one can perform a systematic scan of the region where it is the most likely to find the QCD critical point. Second, construct relevant observables and make predictions from phenomenological considerations in this region. Third, do a data-to-simulations comparison to evaluate if these predictions coincide with experimental measurements. Here we focused on the second point.

From the theory of phase transitions, it has been suggested that at vanishing quark mass, the chiral condensate, that is the vacuum expectation value of the quark anti-quark pairing, was a possible order parameter of the transition from HG to QGP. At non-vanishing quark mass, the chiral symmetry is explicitly broken, and consequently, the chiral condensate couples with the baryon density. It is an interesting feature as it allows us to infer that the event-by-event net-proton number fluctuations are a relevant probe for criticality. In particular, a non-monotonic behavior of the higher order cumulants as a function of the

Appendix A Diffusion coefficient matrix

A.1 Diffusion coefficients of conserved charges

A.1.1 Derivation of the diffusion coefficients

The basic principle of the derivation is to write the 4-current j µ i of charge the conserved i = {B, Q, S} by two methods. A first expression is given by the relativistic Fick law (which has been already used in this work (Equation (2.20))

Another expression is obtained from microscopic calculations

where X j = B j , Q j , S j is the quantum conserved number associated to particle specie j. k µ j is the 4-momentum of specie j. The function f j (x, k) is the single-particle distribution function of specie j. This is the fundamental object of microscopic theories. It describes the number density of particles in the phase-space volume d 3 x j d 3 k j . This function obeys the Boltzmann equation

It simply represents the amplitude of the binary interaction ij → ab of particles i and j resulting in particles a and b at energy in the center of mass √ s and differential crosssection σ ij→ab in solid angle Ω. The operator L acting on δf is linear. This is expected, the response is linear with respect to the input k i,µ ∆ µν ∂ ν α X . It allows to make a guess on the form of the solution for δf i

The coefficients a i,X can be found by injecting the solution Equation (A.8) in Equation (A.3) and get a solution. Notice that they depend on the cross-sections here denoted σ. The last step is to use Equation (A.2) in the context of the linear response theory. Namely, replacing

Equating the obtained current with Equation (A.1) leads to

(A.12)

The diffusion coefficient can then be expressed as a function of the a i,X (σ) which can be evaluated numerically. The derivation shows that the diffusion matrix is uniquely determined by two ingredients, the considered species and the binary associated cross-sections. In this model, only the elastic cross-sections σ ij→ij are considered. They are evaluated on two cases. First, in the hadron phase where the degrees of freedom are hadrons and mesons. Second in the QGP considered as a gas of massless quarks and gluons. Here, we particularly focus and the hadron gas.

Appendix B

The VexCL library

The OpenCL API allows bypassing the original purpose of a GPU to use it for numerical calculations. In particular, it allows programming the GPU directly via the OpenCL language. The OpenCL language is specialized in parallel programming. It considers that the computer is divided into a CPU and accelerators unit (such as GPU). It is a C-like language dedicated to the programming of compute kernel. A kernel is a routine dedicated to high throughput devices (understand, where the number of elementary operations per second is determinant) such as GPU by exploiting parallelism as its best. The OpenCL language resembles C but has its own way to be written. For this reason, it is not used often in scientific calculations. calculations (see Figure B.1). As scientists (and CUDA are needed by the compiler. Using makefile or directly the CMakeLists suggested on GitHub-ddemidov/vexcl can be helpful. Sometimes, the OS cannot detect the GPU device preventing VexCL to properly functions. To circumvent this issue, the graphic card driver was updated and or reloaded by switching to the open-source "nouveau" driver. If it is not sufficient, disabling the SecureBoot in the BIOS will allow your computer to start with the graphic card directly. It can cause minor graphic issues when booting if the drivers are not updated but make it detectable by the CPU and thus by Vexcl. The library remains updated. Issues can be discussed directly with Denis Demidov on his GitHub.

We present now the functions and features of VexCL used in this work. The interested reader can find more detailed documentation in the VEXCL documentation.

B.1 Context and VexCL vectors

When programming a VexCL code (or any OpenCL applications) the first step is to create an object of class context. The context represents the devices available on the machine. For instance, if the computer has one CPU and two GPUs, the context will contain all information to communicate with these devices. It also allows choosing which device will be used or not in the current application via a filter function. A pointer to the context can be declared as The Context constructor takes filters separated by "&&". Here for instance, we define the context only with GPUs adapted to double precision. The context is essential for VexCL objects as it will allow them to be distributed on all selected devices efficiently.

The most important objects of the VexCL library are the vex vectors. They behave exactly as the vector in the standard library of C++ except that they access to the information on the device context. A pointer on a vex vector can be declared as Where "type" is the type of C++ objects stored in the vex vector (like int or double) and "size" is an integer-type object (can be int, unsigned int, long, etc.) representing the size of vex vector. Notice that the vex vector takes the context "ctx" defined above. Whatever the size of A, its content will be efficiently distributed on all selected devices. Elementary arithmetic like element-wise addition and multiplication between two vex vectors or between a vex vector and a constant value is possible. It is also possible to access the vex vector We see the use of the vex raw pointers here. It allows to access vex vectors element-wise (Diffusion can be accessed via Diffusion[x] in the core of next_step). Another function from the VexCL library appears in the function call, the vex element index. This function allows running over all indices of any vex vector without regard to its size. The numbering is continuous over all devices. It is used to specify that we want to apply next_step on all elements of each vex vector involved. This is the heart of the programming with the VexCL library, applying a user-defined function on all elements of a large vex vector containing all the events one wants to simulate. In practice, all vex vectors in our code consists in N conf chunks of N c cells where N conf is the number of noise configuration and N c the number of cells considered in each simulation. Their total length is then N conf × N c and we apply next_step on all element simultaneously. The chunks are delimited at the boundary conditions. If the next_step function needs cell j + 1 from cell N c -1 in a chunk, it is redirected to cell 0 in the same chunk (same for j -1 at cell 0 of the chunk).

It is also possible to use user-defined functions inside other defined functions. The syntax is similar, it only needs the suffix "_D" to the VEX_FUNCTION macro.

VEX_FUNCTION_D ( r e t u r n type , F , ( type , name ) , ( f ) , core involving f r e t u r n . .

) ;

The user vex function "f" can be used in the core of the function F.

B.3 Copy function

VexCL comes with many other useful functions as the copy function. When GPU-accelerated, applications generally store the data in the GPU memory. It is not accessible directly by other functions defined on the CPU. For instance, one cannot write the data on a file using the traditional C++ function when the data are on the GPU memory. To remedy this, VexCL proposes a copy function that takes device data (hear "on the GPU") and transfers it into a host (hear "CPU") function. It reads vex : : copy ( A_GPU , A_CPU )

Where A GPU represents a device vex vector and A CPU a same type and same size host vector. Subsequently, A CPU can be written in files or used on the CPU. It is the only difficulty with GPU accelerated calculations as it takes a massive amount of time to communicate between the GPU and the CPU. Writing in files needs to be done sparsely during the use of the GPU. The copy function works the same for host-to-device vector copy.

B.4 Random number generation

The VexCL library also has a way to generate random numbers efficiently directly on the device. It avoids the generation of random numbers on the CPU and computational time wasted on the host-to-device copy. In particular, it allows generating a Gaussian white noise with vanishing average and unit variance by declaring The vex object RandomNormal contains all information needed to generate doubles obeying a normal law with vanishing average and unit variance using the Threefish encryption function (see schneier.com, no publications are available). W is then a vex vector of size N conf × N c containing all random numbers needed for our stochastic study for one time step.

B.5 Fast Fourier Transform

VexCL also have a built-in Fast Fourier Transform on the GPU. The algorithm can be declared on the GPU as fft = new vex : : FFT<double , cl_double2 >( * ctx , N , vex : : fft : : forward ) ;

It creates a function "fft" which takes double as input and returns cl_double2 which is the OpencCL equivalent for double2 . It represents complex numbers. This function expects to be used on device vectors of size N containing double and defined on the context ctx to perform the forward Fourier transform. We use it in this work to compute the equal