
HAL Id: tel-04098769
https://theses.hal.science/tel-04098769

Submitted on 16 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large scale urban transport control for enhanced
resilience : Analysis via complex networks, artificial

intelligence and Big Data processing
Cécile Daniel

To cite this version:
Cécile Daniel. Large scale urban transport control for enhanced resilience : Analysis via complex
networks, artificial intelligence and Big Data processing. Artificial Intelligence [cs.AI]. Université de
Lyon, 2022. English. �NNT : 2022LYSE1062�. �tel-04098769�

https://theses.hal.science/tel-04098769
https://hal.archives-ouvertes.fr


 
 
 
 
 
 
N°d’ordre NNT : 2022LYSE1062 
 
 

THESE de DOCTORAT DE L’UNIVERSITE DE LYON 
opérée au sein de 

l’Université Claude Bernard Lyon 1 

 

Ecole Doctorale N° 512  

Info Maths 

 
Spécialité de doctorat : Informatique 

Discipline : Transport, Mobilité 
 
 
 

Soutenue publiquement le 21/04/2022, par : 

Cécile DANIEL 

 
Large Scale Urban Transport Control for 

Enhanced Resilience 
Analysis via Complex Networks, Artificial 

Intelligence and Big Data Processing 
 

 
Devant le jury composé de : 
 
 

Hamamache KEDDOUCI Prof. des Universités, Université Lyon 1 Président 
 

Flavien BALBO Profe., Ecole Nationale des Mines Rapporteur 

Giovanna DI MARZO 
SERUNGENDO 

Prof., Université de Genève (Suisse) Rapporteure 

Zahia GUESSOUM MC, Université Gustave Eiffel - Bron Examinatrice 
David REY Prof. Associé, SKEMA Business School – 

Sophia Antipolis 
Examinateur 

Salima HASSAS Prof. des Universités, Université Lyon 1 Directrice de thèse 
Nour-Eddin EL FAOUZI 
 
Angelo FURNO 

Dir. de Recherches, Université Gustave 
Eiffel – Bron 
Chargé de Recherche, Université Gustave 
Eiffel - Bron 

Co-directeur de thèse  
 
Co-directeur de thèse 

Eugenio ZIMEO Prof. Associé, Université de Sannio  Invité  

   
 



DISSERTATION OF THE UNIVERSITY OF LYON at :
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Angelo FURNO, Researcher, Université G. Eiffel - ENTPE Thesis Director

Eugenio ZIMEO, Associate Professor, University of Sannio Guest



LLIRIS--CCNRSS 

Laboratoire d’Informatique en Image et Systèmes d’information 

UMR 5205 CNRS

Université Claude Bernard Lyon 1

LLICITT 

Laboratoire Ingéniérie CIrculation Transports 

LICIT UMR T9401

Université de Lyon

Université Gustave Eiffel

COSYS/LICIT

25 Avenue François Miterrand 

Case 24 Cité des mobilités

69675 Bron Cedex, France 

ENTPE

LICIT

Rue Maurice Audin

69518 Vaulx-en-Velin Cedex, France

Université Claude Bernard Lyon 1

Bâtiment Nautibus 

Campus de la Doua

25 avenue Pierre de Coubertin 69622 Villeurbanne Cedex, France 

This work has been supported by the French ANR 

research project PROMENADE

grant number ANR-18-CE22-0008

https://promenade.licit-lyon.eu/

And at:

Thesis prepared at:



3

Abstract

The economic and social development of modern cities relies on the efficiency,
mobility and resilience of their transportation systems. The latter has thus be-
come a major research challenge involving multiple disciplines, related to urban
activities. Old infrastructures and their limited capacity make cities more and
more vulnerable to unpredictable events and increasing demand. Congestions are
more frequent, as a consequence of the growth of the urban population, vehicle
emissions and air pollution create high stress on the infrastructures and increase
time waste for travelers.Solutions to improve traffic conditions, in terms of health,
security and traffic management are more and more precise, embracing the gen-
eralized use of Artificial Intelligence, jointly with Big Data technologies for data
collection, storage and computing. Moreover, traffic simulations are now based on
various data sources and on more accurate information to better reproduce traffic
dynamics and travelers’ behaviors. However, analyzing such complex data in a
large scale context is still a significant research challenge that requires solutions
based on agent-based modelling, distribution and parallelization. Moreover, the
characterization and modelling of transport vulnerabilities for improving human
mobility is still at early stages of research.

To prevent congestion and identify vulnerable locations, i.e. areas or sections
where failures would have high cost consequences, two types of vulnerability anal-
yses are most common in the domain of transport: dynamic system-based, and
static topological based. They are both studied in this thesis. The first approach
is the dynamic system-based representation that simulates travelers, their trips
and the infrastructure over a given period of time, supported by the large volume
of data now collected. The second approach is a topological analysis based on
graph theory, and static topological considerations. To reduce vulnerability in-
side road networks, we propose in this thesis a control strategy that dynamically
protect identified areas and recommends new routes to drivers to avoid creation of
congestion in such zones. Our strategy relies on a hierarchical cooperative multi-
agent algorithm. Road infrastructures and vehicles are modeled as agents that
dynamically react to traffic conditions. This control strategy enables congestion
avoidance and a reduction of the congestion duration. We take into consideration
drivers behaviours to find a balance between system performance improvement
(system optimum) and individual travel choices (individual optimum), as well as
privacy constraints that are now necessary for realistic applications. We prove
the robustness of our approach by testing it on different demand scenarios and
show that identifying and protecting critical spots of the network improves our
strategy. To identify such vulnerable spots, our solution integrates the compu-
tation of Betweenness Centrality (BC), a metric usually studied with topological
approaches. It is indeed quite unusual to include BC in dynamic congestion avoid-
ance approaches whereas the BC is a popular metric in many domains for critical
spot identification in the context of static graph analysis. This is due to the high
computation time and the difficulty of computing it on large graphs in a context



4

of real-time applications. This second problem of computation of BC for static
vulnerability analysis is addressed in this thesis with a distributed algorithm for
the exact and fast computation of BC developed for large graphs. We provide
mathematical proofs of our algorithm exactness and show the high scalability
of our approach, developed in an optimized framework for parallel computation.
Through distributed approaches, we can design a robust solution, based on a
combination of control and topological study, to dynamically reduce vulnerability
inside cities in a real-time context. The proposed solution for computation of
BC on large-scale graphs can be extended for real-time computation of this met-
ric on time-varying weighted graphs and further enhance our control solution for
congestion avoidance based on dynamic vulnerability detection of road networks.
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Résumé

Le développement économique et social des villes modernes repose sur l’efficacité,
la fiabilité et la résilience des systèmes de transport. Les transports sont donc de-
venus un défi crucial qui touche plusieurs domaines liés à l’activité des villes.
L’ancienneté de certaines infrastructures et leur capacité d’accueil limitée ren-
dent les villes de plus en plus vulnérables à des événements imprévisibles et à une
demande croissante. Les embouteillages sont ainsi plus fréquents, augmentant
les émissions des véhicules et donc la pollution atmosphérique, et augmentant
la perte de temps pour les conducteurs. Les embouteillages sont ainsi devenus
ces dernières décennies un problème majeur des réseaux urbains. Les solutions
améliorant les conditions de transport d’un point de vue santé, sécurité et gestion
du trafic sont de plus en plus précises, adoptant en particulier l’usage généralisé
de l’Intelligence Artificielle, conjointement au développement des technologies Big
Data de stockage, de détection, de communication et de calcul. Les simulations
de trafic sont maintenant basées sur des sources de données variées et sur de
l’information plus précise pour mieux reproduire les dynamiques de trafic et le
comportement des utilisateurs. L’analyse de telles données complexes et volu-
mineuses reste cependant un défi qui requiert notamment des solutions comme
le calcul distribué, les modélisations multi-agent et la parallélisation. De plus,
l’étude de la caractérisation et de la modélisation des vulnérabilités des réseaux
de transport améliorant la mobilité urbaine n’est encore qu’à ses débuts.

Pour prévenir les congestions et identifier les endroits vulnérables du réseau,
i.e. les zones ou sections où les défaillances (congestions, inaccessibilité) auraient
des conséquences importantes, deux types d’analyse de vulnérabilité sont les plus
courantes dans le domaine du transport : une analyse dynamique, basée sur la
modélisation des systèmes, et une analyse statique basée sur la topologie des
réseaux. Ces deux volets de l’analyse de vulnérabilité sont étudiés dans cette
thèse. La première approche, que le volume et la qualité des données collectées a
encouragée, simule dynamiquement les voyageurs, leurs trajets et les infrastruc-
tures de transport sur une période de temps. La deuxième approche est basée
sur la théorie des graphes et des considérations statiques de topologie. Dans
ce contexte-là, nous proposons dans cette thèse tout d’abord une stratégie de
contrôle qui calcule et recommande dynamiquement de nouvelles routes aux con-
ducteurs pour éviter la création de congestions et ainsi réduire la vulnérabilité
des réseaux urbains. Notre stratégie repose sur un algorithme de coopération
hiérarchique d’un système multi-agent où le réseau routier et les véhicules sont
modélisés comme des agents qui réagissent en temps réel aux conditions de trafic.
Cette stratégie de contrôle permet une diminution de création de congestion et une
réduction de la durée des embouteillages lorsque la congestion ne peut être évitée.
Nous prenons en considération le comportement des conducteurs pour trouver
un équilibre entre les performances du système de transport et les préférences
individuelles, ainsi que les contraintes liées à la protection des données qui sont
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nécessaires dans les applications réelles. Nous montrons la robustesse de notre ap-
proche en la testant sur différents scénarios de demande de notre modèle et nous
montrons aussi que l’identification des noeuds vulnérables du réseau améliore la
qualité de notre stratégie. Nous identifions ces endroits vulnérables grâce à la
Betweenness Centrality (BC), mesure de résilience qui appartient normalement à
l’analyse topologique de la vulnérabilité. Elle est donc rarement incluse dans les
approches dynamiques, alors qu’elle est utilisée dans de nombreux domaines pour
l’identification de noeuds critiques. Cela s’explique par la difficulté de calculer
cette métrique dans un contexte de calcul en temps réel sur des réseaux statiques
à large échelle. Ce second problème de calcul de BC pour l’analyse statique de
vulnérabilité est étudié dans un deuxième temps avec un algorithme distribué de
calcul exact et rapide de la BC sur de grands graphes. Nous apportons les preuves
mathématiques de l’exactitude de la BC calculée ainsi et montrons que dans un
contexte optimal de calcul distribué, cette approche est scalable.Basée sur des ap-
proches distribuées, notre solution de réduction dynamique de vulnérabilité d’un
réseau urbain, via du contrôle combiné à une étude topologique, est robuste et
fonctionne dans un contexte de temps réel. La solution proposée pour calculer la
BC sur de grands graphes peut être étendue pour du calcul en temps réel sur des
graphes pondérés et ainsi compléter la solution de réduction de congestion via de
la détection dynamique de vulnérabilité.
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Chapter 1

Introduction

The urban population has rapidly grown from 751 millions of people in 1950
to 4.2 billion in 2018 and will probably grow with 2.5 billion more people, corre-
sponding to 68% of population1. The growing concentration of people translates
into increasing mobility demand on the urban transport infrastructures. Hence,
transport networks become a backbone of urban systems with new transportation
modes and new services, like riding scooters or sharing bikes. The complexity and
interdependence of all these modes make the transportation system, especially the
road network, more vulnerable to failures other modes. A recent example of strikes
in France in 2019 showed that consequences of public transportation strikes cre-
ated 23% more congestion in Lyon 2 and provoked a rush on bike services in Paris,
strongly deteriorating the service 3.

Efficient, sustainable and reliable transport in large urban areas is vital for
the economic and social development of modern cities and represents a major
research challenge involving multiple disciplines, ranging from information and
data science to economics and urban planning. The daily mobility of large masses
of people and goods in, from and to urban areas strongly depends on a seamlessly
available multimodal transport infrastructure, and on proper knowledge of the
mobility demand. A system is considered to be vulnerable if its operations can
be significantly reduced by failure (i.e. improper functioning or dysfunction of
one or more elements). The probability and consequences of failure inside cities
thus increase, making them more vulnerable to external events, especially extreme
weather disasters that can damage infrastructures and provoke peaks of demand,
reducing the performances of transportation systems. The New York subway was
for example completely shut down because of Hurricane Sandy in October 2012,
among many other consequences, paralyzing the city and obliging authorities to
propose other modes of transportation. Especially because of climate change, the
intensity and the frequency of climate disasters increase and force the cities and

1https://www.un.org/development/desa/en/news/population/2018-revision-of-world-
urbanization-prospects.html

2https://www.lemonde.fr/economie/article/2019/12/09/greve-des-transports-plus-de-500-
km-d-embouteillages-sur-les-routes-franciliennes 6022161 3234.html

3https://www.lesechos.fr/industrie-services/tourisme-transport/les-velib-en-surchauffe-
pendant-la-greve-des-transports-1156790
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their transportation systems to be more robust to unpredictable events. Cities will
face threats of different kinds that will have economical and social consequences,
as well as pollution and thus health issues, enhanced by the population growth.

Resilient cities is thus a goal for main metropolitan areas, but how can we
identify vulnerabilities in large networks? What are the solutions to anticipate
or recover from perturbations? With the amount of collected data, is it really
possible to consider real-time analysis of large scale networks?

The vulnerability of transportation systems is analyzed through two distinct
traditions: static topological analysis, that focuses on topological and intrinsic vul-
nerabilities of the network using graph theory, and dynamic system-based analysis,
which is a more realistic representation of transport network, dealing with demand
and supply issues in a dynamic context. This latter requires more information
to be effective, hence more computational power. The system-based vulnerability
analysis is enhanced by the development of smart cities, enabling better simula-
tions and offering new types of approaches (Artificial Intelligence in particular).
Indeed, cities are becoming “smarter” and collect more and more data in real-
time, via connected sensors, devices, people and infrastructures. Such massive
data possess the great potential to provide highly valuable insights to improve
demand characterization, to pinpoint system vulnerabilities and to help design-
ing solutions increasing resilience of the transportation system. The increasingly
available amount of data and computation power enable the development of new
data-oriented and realistic solutions, with the constraint of real-time analysis in
the context of Big Data. New technologies have made it possible to analyze
those large data sets and to consider dynamic solutions, especially in Artificial
Intelligence, which would have been impossible to implement due to computation
capacity and memory limitation. The concrete applications for those solutions
are the Intelligent Transportation Systems (ITS), that are more and more devel-
oped, due to the recent advances in Information and Communication Technologies
(ICT) and the deployment of sensors inside vehicles and in infrastructures.

The resilience of cities in the future relies on the understanding of vulnera-
bilities via proper indicators and on finding solutions to face threats of different
kinds, using ITS.

Objectives of the thesis

The main objective of this thesis is to propose solutions to reduce the vul-
nerability of large scale transport networks and enhance network resilience, via
artificial intelligence, complex networks and Big Data processing.

The first aspect of vulnerability studied in this thesis is the traffic monitoring
and demand vulnerability of the network. The solution we develop is a multi-
agent control strategy of rerouting. Embracing the recent technological growth
(computational power, data availability, communication), our strategy takes into
account network constraints, drivers behaviour and preferences, and topological
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bottlenecks of the network. The second contribution is related to vulnerability
analysis and is a new algorithm of fast computation of a resilience metric in large
static unweighted graphs.

We place ourselves in a large scale context where many districts of an urban
area are monitored, and in the context of real-time application. The analysis of
large scale road networks in real-time can be done by aggregating information or
by processing data with distributed approaches.

This thesis is organized as follows:

• Chapter 2: we introduce the different notions of vulnerability, resilience re-
lated to serviceability and reliability of transportation systems. We then
present what is done and what data are collected in cities to make trans-
portation systems more resilient.

• Chapter 3: we present general concepts for control inside road networks,
the need for distributed approaches and describe our proposed solution for
better traffic distribution to address demand fluctuation vulnerability issues.

• Chapter 4: we describe our road network control solution prototype, the
settings of the performed simulations and the results obtained.

• Chapter 5: we present our algorithm for fast computation of a resilient
metric and propose a performance evaluation for synthetic and real graphs.
The control solution presented in Chapter 3 and Chapter 4 is improved by
adding this resilient metric in the route choice.

• Chapter 6: we develop the limitations of our work and the different per-
spectives that can compensate for those limitations.

Figure 1.1: Chapter organization
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Chapter 2

Vulnerability and Transport
Network Management

With the increase of urban population, transportation networks grow as well
and become more complex. The dependency of the road network with the other
transportation modes and recurrent congestions taking place in most of urban
networks make it more vulnerable to disturbance and failure. The consequences
of a failure impact more people and more infrastructures than before. Sources
of failures are numerous: internal incidents like strikes, technical failures, or road
maintenance that are frequent, for example, and external threats, such as terrorist
attacks, cyber attacks, climate disasters. The level and duration of disturbance
varies depending on the cause of failure and the ability of the transportation
system to cope with these events and recover from it.

New technologies enable a better monitoring of environmental, weather or traf-
fic conditions and driver behaviours, offering new possibilities of resilience-oriented
applications. However, the amount of collected data represents a challenge and
requires distributed approaches to be studied and analyzed.

In this chapter, we first define and introduce the vulnerability, resilience and
related concepts inside road networks, we then describe the context of applications
enabling a resilient transportation system inside smart cities.

2.1 Vulnerability and Resilience of Transportation Sys-
tems

Different concepts are related to the characterization of transport system qual-
ity. We present in this section the main notions related to the level of service inside
the network, that lead to vulnerability analysis. Our work focuses on a reduction
of demand vulnerability and performances are evaluated in view of serviceability
and reliability. We also introduce the resilience that encompasses serviceability,
reliability and vulnerability.
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2.1.1 Serviceability and Reliability

Perturbations inside road networks have consequences on the level of service
of transportation systems and many concepts related to transportation system
help characterizing the consequences of perturbation, the quality of the network.
The performances of a road network are measured in terms of serviceability. The
serviceability of a road network is defined by Berdica in [1] as “the possibility
to use that link/route/road network during a given time period”. An incident
is an event that reduces the serviceability of the network, impeding the mobility
of some travelers and blocking some parts of the network (road sections, subway
station, etc).

The consequences of failures are a decrease of serviceability of the network
system as links or nodes become unavailable for a period of time. In road networks,
failures result in reduction of accessibility of a road, causing (or caused by) traffic
jams, leading to travel times increase. As an example, high demand will produce
congestion and will lower performance in terms of speed and travel times, by
blocking some road sections, forcing the drivers to find a new route, to wait, to
choose another mode or worse, to cancel their trip.

Another related concept of road network analysis is the reliability of the sys-
tem, that can be measured as the variance of travel cost (travel times e.g.) for a
given source and destination or the probability of duration lower than a threshold.
More globally, reliability of an Origin-Destination pair (OD) is the comparison of
the travel duration with a given time. The reliability of a network corresponds
to its stability ([2]). Reliability focuses on “maintaining the performance of crit-
ical infrastructure elements” (Murray et al. [3]). Taylor describes different ways
of measuring reliability in [4], related to travel time and capacity of links inside
the network. It can be by considering the standard deviation of travel times
(Bates et al. [5]) or considering percentile values (Lam et al. [6] or Tilahun et al.
[7]). Chen et al. ([8]) define it as the probability a network can absorb the
demand.

The reliability of the network is affected by two main variables: the demand
and the supply. More precisely, Kwon et al. ([9]) identify three sources of travel
time reliability:

• traffic influencing events, including traffic incidents, work zone activity,
weather conditions

• traffic demand, corresponding to fluctuation in day-to-day demand, or spe-
cial events

• physical road features like traffic control devices (railway crossings for ex-
ample), inadequate base capacity (bottlenecks)

Typically, after technical failures or extreme weather incidents (flooding, earth-
quake), infrastructures may be deteriorated and inaccessible, affecting the relia-
bility of the network by forcing the users to find alternative routes. If the failure
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happened in a critical spot of the network, like a bridge, the alternative routes
may be much longer, thus significantly reducing the reliability. Similarly, when
the demand strongly varies inside road networks, the reliability is impacted be-
cause the travel times from origin to destination vary as well. This is typically
the case when failures like strikes are observed on public transportation system:
the demand inside road networks increases because more people will use their
car instead of public transportation. The main focus of our work will be on the
demand fluctuations.

2.1.2 Vulnerability

Serviceability and reliability are concepts related to the quality of mobility in-
side the transport system. A more general concept that includes the risks and con-
sequences affecting serviceability and reliability of the network is the vulnerability.
Many definitions of network vulnerability exist, taking into account probability of
incidents, causes and consequences of failures. Berdica ([1], p. 119) defines it as
follows: “Vulnerability in the road transportation system is a susceptibility to in-
cidents that can result in considerable reductions in road network serviceability.”
A network is vulnerable when an unexpected event has high cost consequences
and reduces serviceability and reliability of the system. Some nodes or links can
for example be identified as vulnerable if on the path of many users. Indeed, con-
sequences would be increased as failure would concern many people. Centrality
measures like the Betweenness Centrality help identifying those vulnerable spots.

More generally, the reduction of vulnerability can be done in two ways: fail-
safe approach, reducing the risk with the protection of vulnerable spots (bridge or
tunnel for example) or safe-fail approach reducing the consequences of an incident
([1]). The reduction of vulnerability relies on the anticipation of incidents, the
reactivity when an incident occurs and the quality of solutions, either to solve the
problem or to find alternative ([2]).

2.1.3 Resilience

The resilience is a complementary concept to vulnerability as it is related to
the cause and consequences of a disruption in a system but encompasses more
parameters of the system as it includes also duration of disturbance, the reach
of new equilibrium and is related to the performance of the system. It appeared
in biology, when considering the ecosystems ability to recover from disturbance.
The concept has now spread in other domains and is more and more studied in
transportation systems. US National Academy of Sciences defines the resilience
[10] as “the ability to prepare and plan for, absorb, recover from and more success-
fully adapt to adverse events”. Hollnagel [11] proposes a more precise definition
that includes the dynamic of the system : the resilience is “the intrinsic ability
of a system to adjust its functioning prior to, during, or following changes and
disturbances, so that it can sustain required operations under both expected and
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unexpected conditions”. The resilience is thus not only the ability to recover
from a disruption but also to anticipate and prepare for unexpected events, and
be able to rapidly react. Hollnagel highlights four cornerstones of the resilience,
illustrated in Figure 2.1:

• “responding”: how to respond to normal or unexpected events by changing
the functioning: it can be alerting the people when accident occurs so that
they can change plans, or deviation during road maintenance for example;

• “monitoring”: monitor the current state of the system: speed, accumulation,
air quality, weather conditions for example;

• “learning”: from past events, be able to address current situations from the
understanding of the past: congestion anticipation with demand prediction
typically, knowledge on consequences from previous events like strikes;

• “anticipating”: anticipate future events or failures (which falls under the
vulnerability analysis). Recent actions are taken, especially for congestion
avoidance: traffic speed regulation when high demand is expected (vacation
departure day), route recommendation, or during extreme weather events:
nearby subway stations can be closed1.

Vulnerability analysis helps improving the resilience of a system, as it is fo-
cused on “what to expect”.

Figure 2.1: The four cornerstones of resilience ([11])

Usually, the resilience is measured when analyzing the performance of the
transportation system. In Figure 2.2 from Koren et al. [12], the performance
drops after an incident, natural disaster in the case studied by the authors. After
the time of response, the system recovers until reaching an equilibrium, that can

1https://www.liberation.fr/france/2016/06/03/ratp-une-trentaine-de-stations-au-bord-de-la-
fermeture1457194/
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be the initial one (A) or a new one (B). If the system is not resilient, it will not be
able to recover, like state C, or take more time to recover. The resilience in this
case is the area bellow the curve of performance, between the time of disturbance
and the time of recovery.

R =

∫ tr

t0

P (t)dt (2.1)

Figure 2.2: Illustrative Example of a Resilience Function
(from [12])

The metric for performance assessment depends on the context of the study
and area related to the Level Of Service (LOS). It can be the travel time reliability,
the speed, the total travel time spent in the network, or any other metric able
to provide indications on the performance of the transportation system. It can
be related to the whole system or specific components of it. For instance, in the
context of an urban large scale transportation network, one could focus on the
resilience of specific transport modes or specific regions.

In transportation systems, the main focus is maintaining an acceptable LOS.
The increase of resilience is done by limiting the performance drop, reducing
the duration of recovery and ideally having a new and better stable state after
enhancing the LOS when it is possible.

2.1.4 Vulnerability Analysis and Performance of a Road Network

Cities are more and more vulnerable to external events, due to their size
and the different sources of perturbation. Today, global warming in particular
is a serious threat for transportation systems as it increases the frequency and
the intensity of natural disasters2, which are the two indicators of vulnerability
(probability of happening, and consequences). Extreme weather conditions, like

2The different consequences of global warming on network resilience are further developed by
Jaroszweski ([13]).
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storms or blizzards, may disrupt one or more transport modes, reducing supplies
and increasing demand on other transport modes, making the system more vul-
nerable. Many studies thus focus on the impact of extreme weather incidents, as
it is a major threat for infrastructures.

Cities have to be prepared and able to rapidly react otherwise the transporta-
tion system would be paralyzed. Their resilience is strongly dependant on the
capacity of anticipation, time of reaction and solution found. More globally, two
aspects of a transportation system may affect the vulnerability of a road network:
variation of demand and variation of supply of transport services. For example,
during intense precipitations, drivers behaviours change, the speed is lowered,
which decreases the capacity of areas ([14]), and the number of traffic accident
increases. In this case, the demand is steady but the supply is lowered, decreasing
the performance of the system.

In this thesis, we place ourselves in a more frequent risk context, where the
source of vulnerability is the demand variation, as a day-to-day problem to solve.

Vulnerability Analysis: Static vs Dynamic Perspective

Traditionally, vulnerability analysis can be divided in two categories: topolog-
ical analysis and system-based analysis ([2]). The topological analysis relies on
the representation of transport network as graphs, usually with links representing
road sections and nodes road intersections. The advantages of this approach is
its simplicity in terms of computation and input data. Graph theory and math-
ematical considerations enable various topological vulnerability analyses, such as
vulnerable nodes identification or topological consequences of node removal. The
fast computation algorithms for resilience and vulnerability analysis make it very
appealing but the lack of dynamic information such as the demand and the sup-
plies hinders realistic applications. The consequences of disruption from a user
perspective are not well evaluated in this case.

The second approach addresses the drawbacks of the first but with the default
of complexity. System-based analysis takes into account the demand, the supply
and other information about the dynamics of the network. As the demand is
a source of vulnerability, it allows testing the robustness of infrastructures with
increasing demand or vulnerability measurements. From system-based analysis,
consequences on travelers such as travel time delay or mode choice are easily mea-
sured. They are also useful to test the performance of the system with a varying
demand or capacity. The recent advances in computation technologies reduce the
default of system-based analysis and enable large quantities of information to be
analyzed.

Those two approaches are rarely combined but in their own way provide lots
of insights for vulnerability studies. Recent studies however, focus on the combi-
nation of spatio-temporal vulnerability analysis (for example Henry et al. [15]).
Nowadays, such analyses are enhanced by the quantity and quality of collected



2.2. Context of Application for Dynamic Vulnerability and Resilience Analysis23

data and new applications in the scope of Intelligent Transportation Systems allow
improving the resilience of cities.

2.2 Context of Application for Dynamic Vulnerability
and Resilience Analysis

The global notion of resilience of a transport network, we can associate a more
concrete field aiming at improving resilience addressing different issues (security,
health, congestion,...): the Intelligent Transportation Systems (ITS). As the re-
silience is knowing what happened, what to look for, what to do and what to
expect, technologies of collection, storage and computation of data, in a large
scale, are necessary to have a resilient transportation network.

2.2.1 Intelligent Transportation System

Intelligent Transportation Systems (ITS) appeared with the vehicular connec-
tivity and aim at reducing issues related to transportation, via data collection,
analysis and communication. They are part of the improvement of resilience inside
transportation networks, increasing the knowledge on the transport environment
and offering solutions to different kinds of mobility issues. Simple applications ap-
peared decades ago, where traffic information were broadcasted through the radio,
or via variable message signs (VMS), signaling traffic perturbations or advising
travelers during their trips.

To face the problem of urban mobility, ITS now benefit from the improvement
of technologies of data collection and storage, computation power and communi-
cation. Recent technological advances enabled indeed the development of appli-
cations around mobility inside urban network. Data collection can now be done
in real-time and software are more powerful and able to perform computation on
large data sets rapidly. ITS are composed of communication and data process-
ing technologies to improve and analyze mobility data. Guerrero-Ibanez et al..
([16], [17]) highlight four principles for the ITS: sustainability, integration, safety,
responsiveness and present the main objectives of the ITS: access and mobility,
environmental sustainability and economic development. ITS are thus main ac-
tors for resilience improvement inside cities, and address the four cornerstones of
resilience.

Cooperative ITS, or C-ITS correspond to a new type of ITS where the mobility
actors (vehicle or infrastructure) do not act individually but in cooperation. C-
ITS are induced by the increasing connectivity and sensor equipment of vehicles
and infrastructures. Infrastructures can exchange information with vehicles to
alert them on real-time events, affecting their trip. Cooperation between vehicles
is also possible to improve general traffic conditions. Adaptive Cruise Control
for example helps vehicles to adapt their speed depending on vehicles in front of
them, and can regulate traffic speed on portion of roads ([18]).
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Applications for ITS are numerous, such as security (lane management, blind
spot information), environment (weather prediction, pollution management), as-
sistance (parking spot location, pre-trip information). All these applications help
the cities to become more resilient, storing past information, analyzing informa-
tion in real-time and communicating with users or infrastructures.

2.2.2 Data Collection and Sensors

Data used by the ITS are collected from sensors, that can be in-road sensors,
also referred as infrastructure, or in-vehicle sensors. Those sensors enable the
monitoring of various indicators, giving information to the traveller or city plan-
ners, and more globally help measuring the performance transportation systems.

In-road Sensors

The first and more mature category of sensors is the in-road sensors. Mea-
suring outside conditions, they provide information about traffic or also environ-
mental conditions (weather), enabling a better risk evaluation of transportation
systems. Guerrero et al. ([17]) distinguish two types of in-road sensors: intrusive
(inductive loops, pneumatic tubes, magnetic sensors) and non-intrusive (radar
sensors, cameras), depending on their installation on or outside of the road. In
both cases, the in-road sensors are accurate and is a well-known technology to
rely on. They can measure occupancy, speed, length of a vehicle or flow in a
road section. Among the traffic related sensors, the Road Side Units (RSU), mea-
sure traffic at fixed location and are able to communicate with vehicles in a close
perimeter or other RSU. They give partial information as they are stationary but
can provide precious traffic indication such as the flow or the speed of vehicles in
a zone.

The main issue of those infrastructures is their high cost, hindering their in-
stallation. Traffic State Estimation can reconstruct traffic flow pattern based on
observed data ([19]) and can thus compensate for limited deployment of infras-
tructures. The demand and number of vehicles inside a road network can thus be
evaluated with RSU.

In-vehicle Sensors

With the development and spread of self-driving vehicles, more and more
sensors are added to new vehicles. They are now able to compute distance to
other vehicles for example, have proximity sensors to help parking or monitor
tire-pressure.

RAdio Detection And Ranging (RADAR) scan the road and notify drivers
when obstacles appear to avoid collision. Self-driving vehicles are equipped with
LIght Detection And Ranging (LIDAR) which scans the environment with a 360-
degree visibility. Most of the in-vehicle sensors for Advanced Driver Assistance
Systems (ADAS) aim at helping the driver and increase its security, alerting the
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driver when the risk of collision is high for example or helping him/her to park.
Lane management helps the driver stay in its lane, adaptive cruise control manages
distance between vehicles and avoid sudden speed change, blind spots are better
checked via radars. In the end, all these applications, protecting the driver, reduce
the risk of accident and in a way decrease the vulnerability of road network by
reducing the probability of incidents.

Nonetheless, the lack of common standards between brands and the difficulties
of connecting them with other components are their main drawbacks and are a
limitation when designing strategies involving communication with the vehicles.

2.2.3 Communication Systems

In ITS in general, communication can be done in three different ways: infrastructure-
to-infrastructure (I2I), vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V).
Vehicles communicate with other vehicles or infrastructure via vehicular adhoc
networks (VANET). V2I and V2V are often used in cooperative control strate-
gies, where vehicles exchange information with other vehicles to adapt their speed
for example ([20]), or with infrastructure to send or receive traffic information.
V2V approaches require connected vehicles, with the ability to communicate with
each other and the same measure system.

V2I communications are more common with the maturity of infrastructure
technologies. Moreover, mobile applications (Waze, Google Maps or other navi-
gation systems) are good vectors of communication between vehicles and infras-
tructures. Those new ways of interactions are though sources of two problems:
privacy and security. Particular attention should be paid on the type of informa-
tion communicated by vehicles and the way they are sent (receiver, data storage,
communication protocol, etc). Privacy is a main issue for new applications as
information related to mobility are particularly sensitive. Laws protecting in-
dividuals privacy emerge, like GDPR in European Union, and force the design
of new applications to take into account this constraint before any deployment.
Fries et al. ([21]) explore the privacy issues that ITS will have or already have to
address and the possible solutions (aggregation, masking id, law or third parties).

One of the contributions of this thesis is a TMS on a large scale road network,
this is the dimension of ITS we will focus on the rest of the thesis.

2.2.4 Traffic Management Systems

One of the fields of ITS applications (Figure 2.3) is Traffic Management Sys-
tems (TMS) that aim at improving traffic flow on road network and reducing
or avoiding congestion. TMS focus on the improvement of user mobility in gen-
eral, for public transportation, vehicles or other transportation modes. TMS are
composed of sensors to gather information, applications or computation tools
to analyze the traffic situation and offer a solution to the vehicles. TMS are
articulated with three phases [23]: information gathering via sensors or mobile
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Figure 2.3: ITS Applications (from [22])

applications, data processing to analyze the traffic situation, and service delivery
which is the application of the management strategy. Traffic management in-
cludes lane management, surveillance, parking management, automatic tolling or
intersection management. The common goal of all theses approaches is a better
management of traffic flow, mainly of vehicles, in urban areas, addressing demand
issues of cities. Depending on the application, the scale of TMS can differ, from a
road section to a large urban area. Intersection management, as well as lane man-
agement for example, belongs to microscopic approaches, where only portion of
roads are observed and vehicles included in the management are only considered
for a short period. Larger zones including more roads and more vehicles focus
for example on a better distribution of traffic inside the network by making some
vehicles change their route in case of congestion, accident for example. Large
scale TMS are difficult to deploy because of the large amount of data they can
require. De Souza et al. ([24]) classify TMS in different categories. The two main
categories are infrastructure-free and infrastructure-based. The infrastructure-free
solutions are based on communication between vehicles (V2V) and enables con-
gestion detection or traffic control.

2.3 Toward a Large Scale Management Strategy

Applications for vulnerability analysis are part of ITS and are more and more
useful for large cities to improve their resilience. Traffic management systems
especially help reducing vulnerability inside the network, avoiding accident or
saturation of the network. Their dynamic makes the system more reactive and
prepared for unexpected events. ITS enable communication between transporta-
tion network actors, large quantity of data and more precise information to be
collected for simulation. Analyzing a whole city area increases the size of the
data, the duration of observation, the size of the studied population and the size
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Figure 2.4: Contribution of the thesis on resilience cornerstones

of the network. Performing system-based analysis thus requires to work on a Big
Data context, where the computation needs to be distributed.

To address computation issues and be as close as possible to real interactions,
decentralized approaches are a solution enabling the distribution of computation
on large scale in a dynamic context. In this thesis, we will mainly focus on three
aspects of the resilience in a large scale context: responding, monitoring and
anticipating. The first two are addressed with a control strategy in a context of
TMS, using a distributed multi-agent system in Chapters 3 and 4. Anticipation
is addressed in Chapter 5, in a topological vulnerability analysis context where
we describe and analyze the performance and scalability of a fast computation
algorithm of a resilience indicator that we developed.
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Chapter 3

Multi-Agent Control
Framework for Vulnerability
Mitigation

To design solutions for Traffic Management Systems contributing to a reduc-
tion of transportation system vulnerability, the representation of transportation
and user interaction need to be defined and contextualized. This modeling is
a large part of the dynamic system-based vulnerability analysis, related to the
choices of data used, the level of information considered and thus the accuracy
of the approach. From simulations, one can evaluate the performance of a traf-
fic management strategy, reproducing part of the behaviours and interactions of
travelers. In this chapter, we introduce the context of dynamic analysis we choose,
the existing control approaches, and the hypothesis of traffic theory underlying
our strategy. Finally, we present our hybrid control strategy.

3.1 Demand as an Enabler of Road Network Vulner-
ability

As introduced in the previous chapter, two phenomena may affect the relia-
bility and vulnerability of a network: the demand and the supply (i.e. network
topology, connectivity, etc). In this chapter we focus only on the vulnerability of
road networks with respect to the demand.

Berdica ([1]) addresses the demand vulnerability through the reliability on a
microscopic level : “Terminal reliability is addressed at link level, and link reli-
ability of connectivity is the probability that demand does not exceed reference
capacity on a certain link for given time periods.” A congested link is thus con-
sidered as a failure because not accessible for the drivers for a period of time. To
avoid congested links and at a larger scale, congested areas, different solutions ex-
ist to better control traffic, by changing the departure time, the mode or the route
of users. The main focus of this work is on the user rerouting during day-to-day
perturbation, when the demand is too high (morning peak hours typically).
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Our goal is to better distribute vehicles over the network by dynamically
anticipate and locate congestions while considering available data and realistic
interactions between actors of the rerouting strategy.

3.2 A Brief State of the Art and Motivations

Demand vulnerability in a large scale context is difficult to capture because
of the data volume (number of travelers, size of the network, precise traffic in-
formation, etc) and the computation time required for simulation. To work on
large scale, one common solution is to aggregate the information and the model-
ing simplification but at the price of lack of realism. We present in the following
sections solutions based on aggregated traffic information for large scale network,
vehicle-oriented solution based on communication with vehicles and finally the
context of multi-agent rerouting strategies.

3.2.1 Traditional Traffic Control

The state estimation and control a network level is a complex task and requires
a huge effort in terms of sensor deployment, data processing and forecasting. Re-
ducing model complexity and designing control strategies at this level has become
an active research topic and has been one of the main challenges to efficiently cope
with traffic congestion in urban cities. Approaches to solve this problem include
aggregated directional control (Tumash et al. in [25]) or reduction of scalability
dependence, (Nikitin et al. in [26]) to name a few.

Real-time data-driven solutions based on Intelligent Traffic Systems and con-
nected Vehicles have attracted a lot for deployment effort, as their effectiveness
increases with the development of smart city solutions and the growing availability
of fine grained data to better monitor traffic conditions. From this perspective,
traffic jams can be nowadays more precisely detected and, in some situations,
proactively avoided.

Boundary Control

From the perspective of traffic control engineering, infrastructure-based ap-
proaches are more suitable as they establish specific boundary actions leaving the
routing a decision to the driver. Boundary control has shown to be efficient to
limit access to the network and improve its throughput (Boufous et al. in [27]
for example). In [28], Tumash et al. propose a solution of boundary control
based on the solution of Hamilton-Jacobi equation on a single road. A subzone
boundary control is presented by Yang et al. in [29], based on Macroscopic Fun-
damental Diagram theory (or MFD, later further described). Gao et al. ([30])
propose a resilience-oriented boundary control from MFD properties between two
regions. They present the concept of traffic-flow resilience and develop a solu-
tion to optimize flow between two regions. A hierarchical approach was proposed
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by Yildirimoglu et al. ([31]) for routing assignment. The upper-level route
guidance scheme optimizes network performance based on actuation via regional
split ratios, whereas the lower-level path assignment mechanism recommends sub-
regional paths for vehicles to follow, satisfying the regional split ratios in order to
achieve performance. Through its hierarchical structure, this approach address
the problem of translating regional guidance to a more precise route guidance.

Nonetheless, these approaches suffer from low adaptability to sudden changes
of the travel demand, variations of the transport supply and evolution of con-
gestion patterns. Moreover, those macroscopic approaches are focused on flow
optimization and do not consider individual preferences via microscopic driver
behaviour.

Vehicle-Oriented Solutions

Traffic engineers are also focusing the effort of empowering new control schemes
by the connectivity between vehicles. In vehicle-oriented approaches, that are
infrastructure-free, CoTEC, from Bauza and Gozalvez [32] or CARTIM, from
Araujo et al. [33] propose a solution for intelligent rerouting to avoid congested
areas. They do not require a lot of infrastructures to be effective, only vehicles
need to be equipped. Similarly, Pan et al. ([34]) propose an infrastructure-free
route guidance system based on three different strategies: DSP (Dynamic Shortest
Path) which dynamically assigns shortest paths, RkSP (Random k Shortest Path)
which randomly chooses a shortest path among the k top and EBkSP (Entropy
Based k Shortest Path) which takes into account future positions of vehicles and
assigns them to lowest popularity path, enabling a better distribution of vehicles
inside the network. The complexity of this last approach face scalability issues. In
[35], Wang et al. propose a solution of Next Road Rerouting, based on VANET’s
communications, where infrastructure agents suggest nearby vehicles which road
to go next after an unexpected event. Other V2V solutions are based on alerting
vehicles when an accident occurs ([36], [37]).

The main goal of those approaches is though to detect congestion rather than
avoid them. Another limitation of these applications is that they strongly depend
on the number of connected vehicles driving inside the controlled zone. This
kind of actions keep traffic safe and try to smooth congestion based on messaging
sources but proactive approach to handle congestion requires better and precise
advise for users on the road.

3.2.2 Multi-Agent Approaches for Distributed Intelligent Solu-
tions

To compensate the lack of user consideration of boundary control and consider
cooperative strategies for a global improvement of the system through anticipa-
tion, multi-agent context offers a dynamic, reactive and robust framework, suited
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for complex rerouting strategies. We present rapidly in this section the main
multi-agent concepts and some multi-agent based control strategies.

Multi-Agent Context

Before motivating the use of multi-agent context, let us first present the main
definitions and characteristics of multi-agent systems.

Agent : an agent is an entity able to sense its environment (via sensors) and to
act depending the information collected, via effectors. More concretely, the main
characteristics associated defined by Wooldridge and Jennings ([38]) to agents are:

• autonomy: the agent performs its action without external intervention;

• social ability: the agent can interact with other agents or external entities;

• responsiveness: the agent is able to sense its environment and respond to
changes inside this environment;

• proactiveness: more than responding to the environment variation, the agent
acts depending on a given goal, individual or global.

Multi-agent System (MAS): group of agents which evolve in a environment,
interact and act to achieve an individual or global purpose.

Wooldridge and Jennings ([38]) highlight four types of problem the MAS can
solve and that are typically related to traffic assignment:

• openness: inside unpredictable environments that can change quickly, solu-
tions can not be found easily because of the dynamic and various states of
the system;

• complexity: decomposing a complex problem, because of its size or its un-
predictable state, into simpler sub-problems that can be solved by agents
and different types of actions;

• distribution of data, control, expertise or resources: agents representation
offers solution when the problem depends on many distributed entities that
can interact to find a solution;

• legacy systems: or modularity, the modification of an agent property or
behaviour does not require changing the whole system.

MAS offer robustness, simplification of problem solving, reactivity inside a
changing environment and a realistic representation of individual behaviours, and
is thus our choice for a traffic control strategy.

Multi-agent representation is especially appropriate to address individual mi-
croscopic representation as it aims at individualize autonomous entities and be-
haviours. Moreover, distributing the demand over given supplies is a complex
problem of resource allocation, that can be solved in a multi-agent context with
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cooperative approaches ([39]). Multi-agent modeling enables problem-solving dis-
tribution and thus computational distribution, a dynamic environment and a re-
alistic representation while keeping the simplistic modeling. For these reasons, a
multi-agent representation, more and more used in studies at microscopic traffic
modeling level, seems to be suited for dynamic analysis on large scale networks.
MAS have the advantages to introduce new kinds of interactions either by game
theory in cooperative/competitive schemes or by specific communication protocols
to reach consensus.

We introduced previously (Chapter 2) different kinds of actors of TMS, vehicles
or infrastructures, and their interactions: V2V, V2I or I2I. This can be easily
mapped into a multi-agent framework where vehicles and infrastructures are seen
as agents. The use of navigation systems makes the travelers even more aware
of the environment, receiving information about traffic condition in real-time.
The infrastructures such as traffic lights or sensors are also represented in traffic
multi-agent modeling as fixed agents.

Multi-Agent Control Strategies

The usual types of multi-agent control strategies are traffic light management
and vehicle rerouting, which is the scope of our analysis. Traffic light management
is typically a way of applying boundary control and is thus efficient for system
improvement but does not really consider traveler preference. Wiering et al. [40],
and more recently Liu et al. [41] developed a multi-agent traffic light manage-
ment strategy, using reinforcement learning to minimize the waiting time of cars
inside urban networks. In [42], Belbachir et al. use three infrastructure agents
that cooperatively manage intersections in a self-adaptative mechanism but at a
microscopic scale. Traffic light management helps smoothing traffic flow inside
urban areas but do not face high demand issues that require for the users to find
a better route.

For route recommendation, multi-agent frameworks are a way of modeling the
autonomy of vehicles and enable cooperation strategies between vehicles and/or
infrastructure. Recently Chavhan et al. [43] proposed a solution that predict
traffic and manage flow distribution in the road network, divided into zones and
subzones. The authors use mobile and static agents, corresponding to RSU and
vehicles or pedestrians. One type of algorithms explored in multi-agent rout-
ing context is the Ant Colony Optimization (ACO): introduced in the nineties
(Bonabeau et al. in [44]) to solve the problem of traveling sales man, ACO algo-
rithms are now widely used to solve complex problems. Inspired by the behaviour
of ants searching for food, their functioning is based on the exploration of a topo-
logical environment by simple agents, leaving “pheromone” on their way back
from a given location (food in the real case of ants). The pheromone later at-
tracts the other agents until it evaporates. The search of shortest paths can thus
be done via ACO.
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In the context of traffic control solutions, ACO are used to anticipate conges-
tion, evaluating paths and demand on roads with the pheromone, and improve the
search of new shortest paths without greedy computations. Cao et al.([45]) pro-
pose a pheromone based detection of congestion on a microscopic level. Pheromone
represents the current traffic state, by using the location of vehicles and an-
other pheromone unveils the future state of congestion from their routes. The
pheromone is used to predict potential congestion and reroute vehicles according
to this information. An extension includes pheromone for traffic light control.
The combination of those two approaches leads to a robust framework. In this
case, the size of the network is not very large as every road section is evaluated.
An other ant-based solution is developed by Tatomir et al. ([46]) where the au-
thors split the network into zones and apply a hierarchical rerouting algorithm.
Shortest paths are dynamically updated and computed using local ants (moving
only inside zones) and exploration ants (moving between zones). Clustering the
network and working with a multi-agent system ensure a robust and scalable so-
lution but in this case, the solution requires a lot of information from the driver.
Indeed, the drivers provide traffic state information as well as their route, which
could cause some privacy concerns. A hierarchical approach was also developed by
Kammoun et al.([47]) where ACO is used to reroute vehicles avoiding congestion
without creating new congestion.

Based on attraction/repulsion of road sections, these approaches optimize the
distribution of vehicles through the network for congestion avoidance but they
require a large amount of precise information about the network are though tested
on small urban areas because of computation issues and data storing: the traffic
conditions are evaluated at road section scale. Our solution aims at reproducing
the attractive/repulsive mechanism on a larger scale.

3.2.3 Hierarchical Multi-Agent Control Strategy

The main difficulty in control strategies is to consider both the user equilib-
rium, where the route choices are individually optimized, and the system optimum,
where the assigned routes are chosen to optimize a performance indicator (total
travel time e.g.) in the whole system (Wardrop [48]). Centralized approaches
tend to find a balance between those two optimums but require a comprehensive
knowledge of the whole network and face scalability issues. On the other hand,
user centered approaches commonly found in routing applications focus their at-
tention on providing better individual experience at a cost of degrading the total
network performance, and at the end having an impact on user experience. ACO
approaches take into consideration the network performance, avoiding concentra-
tion of vehicles in the same locations but require a full knowledge of the network
and are thus less applicable for large networks.

The combination of aggregated traffic management strategy (on a region level),
such as boundary control, and actions of vehicles considered individually has at-
tracted little attention in the recent literature, (Leclercq et al. [49]). One of the
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main concerns to consider is the possibility to structure an aggregated actuation
mechanism that contributes to improve the performance of the system, reducing
congestion, without constraining the freedom of drivers to use the network in
specific ways. One possible way to perform this is by providing informed rout-
ing suggestions, based on attraction or repulsion of monitored zones. Operators
can provide an approach where user-centered experience is as relevant as traffic
network performance. This combination is proposed and explored within this
thesis.

Figure 3.1: Hierarchical Cooperation between Infrastructures and Vehicles

Our solution is to propose a hierarchical dynamic route recommendation al-
gorithm for large scale road networks. It computes and suggests dynamically
new routes to vehicles using aggregated congestion proxy measures, computed in
a distributed way by infrastructures. In a hierarchical context, with zones and
local/global decisions, the traffic network is partitioned into different zones, with
homogeneous traffic conditions. Congestion indicators are then locally computed
to grade the capability of the zone to accommodate incoming traffic or reroute it
via other zones. The aggregated metrics determine zones that may accept vehicles.
Vehicles then compute new routes according to the traffic information provided
by the zones, with an attraction/repulsion mechanism. The difficulty with this
general assumption will be to understand which cooperation caused which effects
as vehicles will not always comply with the recommendations of the zones.

Moreover, we designed our strategy to be as realistic as possible, including
drivers preferences and privacy constraints as it is a major issue with ITS (see
Hahn et al. [50]).

This approach overcomes those limitations as it works on large scale networks,
through cooperation of two types of agents in a distributed hierarchical frame-
work, with limited vehicle information exchanged with the infrastructures. The
combination of dynamic rerouting on microscopic agents via an aggregated control
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strategy makes it a new way of improving traffic conditions and hence network
vulnerability. From a resilience point of view, by better distributing the traffic
flow, our control strategy facilitates the absorption of demand perturbations and
reduces the duration of performance drop.

3.3 Multi-Agent Infrastructure and Vehicle Interac-
tions

In this section, we present the general components of our model, and their
interactions.

3.3.1 General Architecture of our Framework

When people travel through road networks from one origin to their destination,
they go near sensors and produce data during their trip. Traffic state can be
sensed by fixed sensors such as inductive loop detectors (ILDs), ultrasonic or radar
sensors. Those installations are expensive but mature and accurate enough for
traffic management applications ([17]). Those data can be then sent via cellular
network to traffic management centers (if we consider a fully distributed approach
with one computer per zone for example). While sensors in the infrastructure are
expensive, they can provide accurate information at fixed spots. GPS and mobile
data provide less accuracy but with better spatial distribution at lower cost, both
type of measurements are useful for estimating the traffic state, and can be fused.
Once this information is retrieved, it is aggregated and regularly updated on a
higher level. The higher level is the abstract representation of reality and is where
data processing and analysis are done.

An illustration of those layers is shown in Figure 3.2 where the framework is
presented. In our case, the higher level contains distributed agents of two types,
representing vehicles and infrastructures. Moreover, we consider two types of
agent: the zones which corresponds to a group of roads, located in delimited
areas corresponding to a given segmentation of a city, and vehicles which can
actually be seen as an interface to vehicles, such as a navigation system, or an
application, capable of interaction with our framework by providing information
on the area where the vehicle is located at a given timestamp, and provide route
suggestion to the vehicle itself. The road network is represented in the abstract
layer as a graph with road intersections as nodes and road sections as links.

The aim of this work is to combine at control level interactions between in-
frastructures and vehicles.

3.3.2 Zone and Graph Definition

The transcription of the road network inside the control framework is done
with two components: the zones, which are the agents and actors of the multi-
agent control strategy, and the road graph, which is based on the real network
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Figure 3.2: Processing of data collected from Road Side Units (RSU) and vehicles

and accessible by both types of agents.
The road network is split into zones. A zone is a delimited area, with sensors

fixed at known location. Each sensor is associated to a zone and send information
that will be later aggregated by zone. For example the sensors measure the flow
inside the zone that will characterize its level of congestion. Zones characteristics,
and especially critical performance indicators, are derived from observations.

The graph is an abstract representation of the road network with road sections
as links and road intersections as nodes. It is a common resource, broadcasted
and updated by all the agents zones, accessible to vehicle agents. In this graph
representation, a zone corresponds to a connected sub-network. The weights of
the links are the free-flow travel times. The graph is updated with aggregated
metrics from sensors data collection. Its goal is to help the vehicles to find a new
route from the information communicated by the zones and not to represent the
exact network in real-time.

3.3.3 Agent Description

In our model, we consider two types of agents: the vehicle and the infrastruc-
ture. We define them so that their communications, their information sharing and
their level of traffic understanding are as realistic as possible. Agents are usually
characterized by the information they sense, the actions they can perform and
the communication with other agents or entities of their environment.

Vehicle Agent:

• Agent actions: moves, computes new shortest paths, changes route;
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• Agent information: id, departure time, origin, destination, route, macro
route, arrival time, number of rerouting;

• Agent interaction: with its current zone, with its next zone. Mainly receives
information from zones;

A vehicle agent has an initial origin, destination, departure time and route.
Its route and departure time are considered as an optimal solution for the vehicle
(user equilibrium). The vehicle only communicates with its current zone and its
next zone. The vehicle precise location is not known by the zone, the zone only
knows if the vehicle is in it or not.

The constraint of privacy requires that the vehicle agent computes some in-
formation for rerouting on its own. The vehicle agent is able to compute a new
route, using the resources it has access to. Here we use local information, such as
weighted graph, representing the road network.

It is worth noting that the vehicle information such as speed, acceleration or
precise location are not used nor sent to external entities. Moreover, they do not
have to be connected as our approach does not require knowledge on the speed
or trajectories of the vehicles. Furthermore, our control strategy relies on the
cooperation of few vehicles that are willing to change their route, not all vehicles
need to have a specific application or to activate their location via GPS to be
detected by the zone.

Zone Agent (infrastructure):

• Agent actions: monitors traffic inside its perimeter, computes its own indi-
cators of congestion, auto-evaluates itself;

• Agent information: id, graph of the road network, critical accumulation,
critical spatial speed;

• Agent interaction: with its neighbor zones, with vehicles driving in its
perimeter;

The zones aggregate local information such as the accumulation to evaluate their
state of congestion. They can communicate with their neighbor zones, which are
zones that are close to them. They also communicate with the vehicles inside
them or driving toward them to help them find a better route. The zones update
and share common variables such as the graph.

3.3.4 Communication Between Zones

As defined previously, a zone agent can communicate with its neighbors. To
have a fully distributed multi-agent system, we use gossip algorithm to compute
global and local aggregated metrics such as mean, min, max or else, via commu-
nication between the agents. The purpose of gossip algorithms is to propagate
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information among a large network of agents, via simple communications between
each agent and part of their neighbors. Gossip algorithms can be implemented to
propagate information or to compute a global metric in a network of agents in a
distributed way. By communicating their local state and the information received
from some of their neighbors, agents are able to converge to the exact value of
a global metric. Agents compute an aggregate indicator and share the same in-
formation, computed in a distributed way, and achieve consensus or agreement.
Through distributed computation, gossip algorithms reduce the dependency on a
central system and increase the robustness of our solution. If an agent fails, the
others are still able to perceive the surrounding environment.

Kempe et al., in [51] describe the mechanism of gossip implemented with
Push/Sum algorithm. This algorithm enables the computation of sum, mean,
min, max of a metric inside a network of agents with iterative interactions.

Let consider the sum x of the metric values xi of all the agents:

x =
∑

i

xi

.
We want x to be computed and known by all the agents in a distributed way.

Each agent i will send and update two variables written si and wi. Those two
variables will be sent to neighbors and updated iteratively. At the first iteration
(t = 0), s0,i is initialized with xi and w0,i is initialized with zero for all the
agents except for one, where w0,i = 1 (in the case of “mean” computation, all
the weights w are initialized at 1). The pseudo-code of Kempe et al. is presented
in Algorithm 1. In the paper, x is vector, we thus simplify the pseudo-code to a
one-dimension variable.

Algorithm 1 Pseudo-code of a Push/Sum iteration (from [51])

1: Let {(ŝr, ŵr)} be all pairs sent to ai in round t− 1

2: Let st,i =
∑

r ŝr, wt,i =
∑

r ŵr

3: Choose shares αt,i,j for each j

4: Send (αt,i,j · st,i, αt,i,j · wt,i) to each j

5: x̂t,i =
st,i
wt,i

Each iteration, an agent broadcasts to k random neighbors and itself the
following information: {αt,i,j · st,i, αt,i,j , where

∑

j αt,i,j = 1. It will receive from
part of its neighbors the information {st,r, wt,r}, with r a neighbor of i. From the
received information, agent will update its local variable st+1,i and wt+1,i.

st+1,i =
∑

r

st,r

wt+1,i =
∑

r

wt,r
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where sr(t) and wr(t) are the information sent by neighbor r.
At each iteration, the estimated sum x̂(t) computed by agent i is:

x̂t,i =
st,i
wt,i

.
After few iterations, for each agent i, the ratio si

wi
converges to x, enabling

every agent to have an estimation of the sum x.
In this case, the agents communicating through gossip algorithms are the

zones. They exchange information about their state of congestion and the global
state of congestion of the whole network, computed via Push/Sum. Through
this distributed algorithm, we remove a dependency of zones on a centralized
component and ensure a robust system of information sharing and aggregated
computation. The zones can work on a complete decentralized environment.

3.4 Traffic Conditions Analysis and Network Parti-
tioning

Our goal is to homogenize traffic to avoid congestion in a spatial environment
and reduce zone vulnerability to high-level demand. By controlling the distribu-
tion of vehicles inside the network, between zones, we aim at reducing the duration
of congestion and their intensity, and thus the total travel time spent inside the
network by the vehicles. This section introduces how the individual choice of
users impact the system optimum. We then describe the traffic model that will
characterize the zone state and will be a corner stone of our model and induces
the partitioning of the road network.

3.4.1 User Equilibrium and Aggregated Effects

Users naturally tend to choose the route that minimize their own time spent
(e.g.) in the network. When all the users chose their best route, this situation
is referred to as user equilibrium situation. The problem of this equilibrium is
that it does not guarantee the optimization of transport system which is desir-
able from Traffic Management perspective. The congestion though worsens and
increases the travel time of other users. A situation where the sum of travel times
among all the users is minimized is a system optimum. Our objective is to lower
the congestion index in zones. The idea is still to provide optimal routes to the
drivers, subject to a minimum degradation of system optimum. The equilibrium
assumptions are often done on a macro-scale and take rarely into account micro-
scopic behaviors. In our work, we combined macroscopic theories with microscopic
actions to improve traffic conditions.
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3.4.2 Macrocospic Fundamental Diagram: Congestion Proxy

To protect zones from congestion, we need to characterize the congestion state
with the available data. Sensors, as previously introduced, enable to measure the
out-flow and the accumulation inside zones. We choose the Macroscopic Funda-
mental Diagrams (MFD) first introduced theoretically by Godfrey et al. ([52]) in
1969 as they connect the congestion state of a zone with its accumulation, spa-
tial speed and out-flow. The existence of MFD was later proved under dynamic
homogeneous conditions by Geroliminis and Daganzo ([53]) in urban areas with
homogeneous distribution of congestion and MFD are now widely used for traffic
flow optimization, and thus boundary control.

Figure 3.3: MFD

The MFD distinguish two states inside the studied region: the free-flow regime
and the unstable state, or congestion state.

The “free flow regime” corresponds to the accumulation lower than a critical
value nc

i . When the accumulation is greater than nc
i , the zone becomes unstable

and congestion appears: the out-flow, or production, decreases, fewer vehicles
leave the zone. When the accumulation reaches its maximum, no vehicle can
leave the zone, the zone is fully congested.

The maximum of production is reached at ni = nc
i . The critical speed corre-

sponds to the slope of the line between ni = 0 and ni = nc
i .

The MFD is very convenient when working on delimited regions as it links the
state of congestion of each region with their accumulation and thus characterize
congestion state with few and easily measurable data. In our case, we will base
our cooperative rerouting strategy with the observed accumulation, in compar-
ison with the critical accumulation value inside each region. The speed is later
measured as an indicator of performance but is not an input to characterize con-
gestion in our model. The MFD of an area and the critical values of the indicators
can be obtained from real observations ([54], [55]) or simulations ([31], [56]).

The MFDs help identify state of congestion in regions of the network and are
thus a good indicator for vulnerability analysis: we want to prevent zones to be
in an unstable state.
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Detecting the congestion and preventing it with the MFD plays a capital role
in the partitioning of the road network. The ellaboration of MFD depends on the
partitioning of the network into homogeneous zones ([57]).

3.5 Control Strategy for Vehicle Rerouting

Now that we have introduced the functioning and interactions of the differ-
ent components, and characterized the congestion identification, we present in
this section our hierarchical control algorithm. First we describe the coopera-
tion between zones and then we present how the rerouting is applied from the
recommendations of zones.

3.5.1 Infrastructure Cooperation Mechanism

By controlling the distribution of vehicles inside the network, we aim at re-
ducing the duration of congestion and their intensity, and thus the total travel
time spent on the network. This problem does not only apply to traffic engineer-
ing. The general idea targeting a metric inside a network with a redistribution
among agents has been applied in other domains. An illustrative example is the
work of Lequay et al. ([58]), which describes how multi-agent system enables the
reduction of energy consumption. The flexibility of a home (agent) is defined as
the reduction of consumption the agent is willing to do without reducing its com-
fort. The agents have a common goal: the total consumption of electricity can
not exceed a certain quantity. By exchanging information, and recalculating the
common effort, agents converge to a consensus respecting the initial goal. The
whole mechanism and definitions are described in [58]. At each round, agents
will engage a certain value of flexibility, regarding the common goal and knowing
the total engagement from gossip communications. It will adapt its flexibility
depending on the engagement of the others. Comparing real value of flexibility
and the engaged initial value, the agent computes its error from which it gets a
grade. This grade will later be included in the computation of the new engaged
flexibility.

Likewise, our multi-agent system aims at reproducing this mechanism of nego-
tiation and redistribution of vehicles, in order to respect a global constraint and
auto-evaluation. We keep the concept of flexibility, engagement and grades, from
the work of Lequay et al., by adapting them to our case.

The main differences between our approach and one of Lequay et al. are: first
of all, the topology constraint of our situation: the redistribution of vehicles is
from one zone agent to a close zone agent. Receiving more or less vehicles than
expected inside a zone will also affect traffic conditions in the neighbor zones.
Moreover, the actions of the agents do not immediately impact the whole network
and can thus not be as accurately evaluated as in the context of energy reduction.
Another main difference is that we consider two types of agents and the success of
our strategy depends on the ability of the vehicles to fulfill the engagement of the
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zones. The vehicles do not have the same goal as the zones, we thus used common
resources to both types of agents to link them and enable a better cooperation.
These common resources are for example a graph, updated by the zones with
their congestion state, used later by the vehicles to compute new shortest paths.
Finally, we do not consider an aggregated metric such as the sum of flexibilities
as an order but rather the reach of a better distributed traffic. Traffic flow will
be redistributed based on the accumulation of zones compared with the critical
accumulation (from the MFD theory).

3.5.2 Notations and Definitions

The zone agents are denoted as ai and vehicle agents are denoted as ve. The
set of neighbor zone agents of ai is written Ni. Time-dependant variables are
sub-scripted with (t) and are updated periodically with an interval of time equal
to τ . The road network is represented as the graph G, with V the set of nodes
(intersections) and E the set of edges (road sections). G is weighted with the
free-flow travel times and partitioned into to connected sub-networks (the zones).

In our strategy, we characterize the zone agents with the following indicators:

• total flexibility : their global state of congestion

• flexibility : the evolution of their traffic conditions

• grade: their ability to cooperate.

Those three aspects and related concepts are described in the dedicated sections.
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Table 3.1: Notations

Notation Description

Graph related notations

G, GM graph, macro graph of road network

V, VM set of nodes of G, GM

E, EM set of edges of G, GM

tt(l) free-flow travel time of link l ∈ E

ttw(l) weighted free-flow travel time of link l ∈ E

ttBC−w(l) BC-weighted free-flow travel time of link l ∈ E

BC(l) Betweenness Centrality of link l ∈ E

Zone agent related notations

ai a zone agent

Ni set of neighbors zones of ai

nc
i critical accumulation inside zone ai

ni(t) accumulation inside ai at time t

f tot
i (t) total flexibility of ai

fi(t), f̂i(t) flexibility, engaged flexibility of ai

emin|max(t) minimum or maximum moving average error among all zones

gi(t) grade of ai

f base
i (t) base flexibility of ai

Vehicle agent related notations

ve a vehicle agent

tr(ve) timeout for rerouting decision of vehicle ve

r(ve) number of reroutings already done by vehicle ve

Hyperparameters

τ time interval for the communications between zones and vehicle

β hyper-parameter of the link weight function

Tbase base time window for the rerouting decision timeout

Indicators

TTTnocontrol Total Travel Time spent in the network during the simulation without
control

TTTcontrol Total Travel Time spent in the network during the simulation with
control

%TTT percentage difference between TTTnocontrol and TTTcontrol

Γr rerouting gain
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3.5.3 Vehicle Distribution and Flexibility

From the MFD of a zone, we can estimate the maximum number of vehicles
that can be inside it before the emergence of congestion, the critical accumulation
nc
i . We thus define the total flexibility of a zone i as follows: where ni(t) is

the occupation (number of vehicles) of zone agent ai at time t. When the total
flexibility of a zone is negative, it means that its current occupation is greater
than the critical value and a congestion will occur or is already happening.

Figure 3.4: Total flexibility compared with the production and accumulation

At each time step, zones will engage part of their flexibility, f̂i(t), depending on
their current accumulation ni(t), their critical capacity nc

i (t) and the congestion
state of their neighbors. The engaged flexibility is the number of vehicles a zone
is willing to accept or evacuate until the next time interval.

The actual flexibility at time t depends instead on both the current and the
previous state of the transport network, and is defined as follows:

fi(t) = ni(t)− ni (t− τ) (3.1)

In other words, fi(t) corresponds to the number of vehicles that were actually
accepted inside the zone during τ , i.e., the time interval between two engagements
of flexibility. The objective of each zone is to keep ni(t) < nc

i .

3.5.4 Zone Performance and Engagement

Once the actual flexibility is retrieved for each zone (via sensors), we compare
it to the one engaged by the zone in the previous time interval1. The relative
error is computed comparing those two values:

ei(t) =

(

f̂i(t)− fi(t)
)2

f̂i(t)2
(3.2)

1We note that f̂i(t) is computed by each zone at time t− τ .
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Based on this error, each zone can grade itself by comparing itself to the
others, as follows:

gi(t) =
emax(t)− ei(t)

emax(t)− emin(t)
(3.3)

where gi(t) is the grade of zone ai and emax(t) and emin(t) are the maximum and
minimum of errors from all zones. These information are computed in a fully
decentralized way via gossiping. Grades range from 0 to 1.

As introduced earlier, the engagement is the number of vehicles a zone is
willing to accept. We want the zones to cooperate so that a global optimum in
terms of travel time spent in the network could be reached. Hence the engagement
of a zone is designed to depend on its own total flexibility, its ability to respect the
engagement (measured via the zone’s grade) and the total flexibilities and grades
of its neighbors. The engaged flexibility is thus defined as follows:

f̂i(t) =
gi(t) · f

tot
i (t) + (1− gi(t)) · f

base
i (t)

||Ni||+ 1

+

∑

γ∈Ni

(
gγ(t) · f

tot
γ (t) + (1− gγ(t)) · f

base
γ (t)

)

||Ni||+ 1

(3.4)

Specifically, the engagement of a zone corresponds to the weighted average of the
total engagements of its neighbors including itself. The second term of Equation
3.4 corresponds to the cooperative mechanism. The weights are here the grades
of each zone.

In this formula, we consider f base
i which is the base flexibility of the zone,

computed based on the minimum and maximum flexibilities of all the zones.

f base
i (t) = fmin(t) ·

fmax(t)− f tot
i (t)

fmax(t)− fmin(t)
(3.5)

The use of f base
i forces non-reliable agent to still engage part of their flexibility.

The minimum engagement f base
i depends on how the importance of the agent’s

flexibility f tot
i (t) compares to the minimum and maximum flexibility among the

population, respectively fmin and fmax (known via decentralized aggregation)
fmin and fmax are also computed in a distributed way, via gossiping.

3.5.5 Routing Mechanism

Initial routes are computed based on a user equilibrium situation, with pre-
defined paths and with times corresponding to a free-flow state. When traffic
conditions evolve, in particular in the presence of congestion, those times are
altered.

To help the zones achieve their engagement, vehicles are rerouted following
the principle of attraction/repulsion. The vehicles are meant to more attracted
by zones without congestion, but the access to congested zones must not be fully
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restricted. This is achieved by two mechanisms, the timeout for rerouting decision
and a new path finding.

Timeout for Rerouting Decision

When a vehicle enters a zone, it will calculate a timeout that sets when the
vehicle will look for an alternative shortest path, allowing to avoid congestion.
This timeout will depend on the congestion state of its next zone.

Denoted as tr(ve) where ve is a vehicle, it is computed as follows:

tr(ve) = t+ Tbase ·

(

gj(t) +max

(

0,
f tot
j (t)

nc
j

))

(3.6)

where Tbase is a time, gj(t) is the grade of the next zone aj of vehicle ve, and
f tot
j (t)

nc
j

corresponds to the level of congestion of aj .

The rationale behind (3.6) is that when the zone is congested and currently
exhibits a low grade, the timeout is low, and the vehicle should look for a new
route almost instantaneously. On the contrary, if its next zone has no or low
congestion, and accordingly a high grade, the driver might wait for conditions
to evolve before searching for an alternative path. Potentially, the vehicle will
enter the next zone before tr(ve) and thus will not change its route. Vehicles
moving through non-congested zones have a low probability to be rerouted. It is
worth noting that f tot

j (t) can be negative when the zone is congested, but (3.6) is
designed to avoid a negative timeout.

Tbase, defined in Equation 3.6 represents the reactivity of the driver to find a
new route. The timeout for rerouting computed at t is comprised between t and
t + 2 ∗ Tbase. The higher Tbase is and the more chances a vehicle has to be in a
new zone. On the contrary, with a low Tbase, a vehicle will very likely still be in
the same zone and will have to compute a new route. The number of potential
reroutings should thus increase when the time window decreases. Tbase represents
the anticipation time window of our strategy. Low Tbase will tend to produce a
high number of rerouting decisions.

New Path Finding

At time tr, if the vehicle has not reached a new zone, the vehicle will look for
an alternative route as illustrated in Figure 3.5. To compute its shortest path, the
vehicle will request the updated graph to its zone. The new path is computed on
G, with weighted links, depending on the aggregated traffic metrics of their zone.
A nearly congested zone will have links with higher weights than initially, whereas
links of non congested zones would have decreased weights. The vehicles are thus
more attracted by zones without congestion but the access to congested zones is
not fully restricted. We simulate a mechanism of attraction/repulsion depending
on the aggregated level of congestion of the zones. The choice of the weight



48 Chapter 3. Multi-Agent Control Framework for Vulnerability Mitigation

Figure 3.5: New route computation at tr

function and its parameter is later described in the implementation chapter. The
new routes are computed using Dijkstra, with a complexity of O(|E| · log(|V|)).
In this computation, we need to weight the time spent to cross zones to reflect
their congestion state.

3.5.6 Graph and Macro Graph: Common Resources for all the
Agents

To lower the complexity, we simplify the shortest path computation by in-
troducing a macro graph. The macro graph enables us to compute a macro path
which is the succession of zones a vehicle will go through. When a vehicle is about
to reroute, it will compute its macro path. The new path will be the shortest path
computed on G filtered on the zones of the macro path.

The macro graph is built from the initial graph and the zone composition.
Each zone contains border nodes, that are nodes with neighbors from other zones.
A node is chosen as centroid when it is the closest to the barycenter of all the
nodes of the zone. From G, we define the macro graph GM, containing the border
nodes of the zones and their centroid. The centroid is connected to all the border
nodes of its zone. The weight of the link between the centroid and a border node
is computed as the total travel time in free-flow conditions between those two
nodes when considering the shortest path inside the real graph G.This needs to
be computed only once, and offline. We keep the existing links between border
nodes.

The weights of G and GM are updated depending on the total flexibility of
the zone agent of the links. At each time interval, the zones update only their
links with their local values of total flexibility. The weighted travel time of links
belonging to a congested zone will increase with the level of congestion whereas
the weight will decrease if the total flexibility is high.

When a vehicle needs to be rerouted, its current zone will send the last updated
version of G and GM. The graph and macro graph are the common resources to
all the agents and enable vehicles to cooperate with zone agents.
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Graph of Manhattan 3X3 Macro graph of Manhattan 3X3

Figure 3.6: Graph and macro graph representation of a Manhattan road network
partitioned in 9 zones

3.5.7 Updating the Travel-Time Computation

The weights of G and GM are updated depending on the total flexibility of
the corresponding zone agent. At each time interval, the zones update only their
links with their local values of total flexibility. The weighted travel time of links
belonging to a congested zone will increase with the level of congestion whereas
the weight will decrease if the total flexibility is high.

When a vehicle needs to be rerouted, its current zone will send the last updated
version of G and GM. The graph and macro graph are common resources to all
the agents.

At tr, if the vehicle has not reached a new zone, it first computes a macro path
from the macro graph GM, corresponding to the succession of zones it will cross,
and then a new route from the graph G, filtered with the zones of the macro path.
The macro paths and the new shortest paths are computed on G and GM with
weighted links. To attract/repulse vehicles from free-flow state/congested zones,
the weight function is defined to reduce/increase link travel time. The weights of
the links depend on the initial free flow travel time and the total flexibility of the
zones.

We chose a sigmoid function, defined as follows:

ttw(l) = tt(l) ·

(

α−
1

1 + e−β·f tot
i (t)

)

(3.7)

where l is a link inside zone agent ai, tt(l) is its free-flow travel time and ttw(l)
is travel time weighted by zone-related congestion information.

The sigmoid enables the attraction/repulsion mechanism to be more or less
smooth depending on its parameter β. Low values of β correspond to a weight
function close to affine, whereas high values correspond to a binary step function
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(see Fig. 3.7). If the weight applied to a zone is too high, the zone will not be
reachable at all. Conversely, if the weight is too low, it will attract all the vehicles.

In our case, the limits of the weights are set with a minimum of 0.5 ∗ tt(l) and
a maximum of 1.5 ∗ tt(l), corresponding to α = 1.5.

Figure 3.7: Sigmoid weight function to update links of G and GM, with tt(l) =
21s, corresponding to the free-flow travel time of most of the links of Manhattan
network

Gridlocks may appear at simulation level due to the circular paths existing
in specific traffic networks, and the nature of the dynamic traffic assignment. In
order to avoid them, we assign a random shortest path among the k-top shortest
paths (like in [34]) with k = 5. Otherwise, some vehicles would choose the same
paths and create even bigger congestion than without control action.

3.5.8 Stochastic Acceptance of Rerouting

As the initial routes correspond to a user equilibrium, we consider that few
drivers actually accept to change their routes many times. The probability they do
should quickly decrease when they have already done one rerouting. We can thus
consider their rerouting acceptance with a decreasing probability of happening:

p(accept, ve) = e−r(ve)−0.1 (3.8)

with r(ve) the number of rerouting of the vehicle ve. If r(ve) = 0, vehicles
have 90% chances of accepting the rerouting, the confiance rate is hence set to
0.9. With r(ve) = 1, the probability drops to 0.33, as shown in Figure 3.8.
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Figure 3.8: Routing acceptance

3.6 Conclusion

This approach embraces the new possibilities offered by recent technologies
that enable communications between infrastructures and vehicles and a better
monitoring of traffic conditions in a large scale road network. The large scale
issue is addressed using a hierarchical traffic control, with aggregated information
used for microscopic rerouting. Zones of the network are characterized using the
MFD and compare themselves with their neighbors. Through cooperation and
auto-evaluation, they provide information to vehicles that help them find the
accurate moment to compute new routes, based on the graph updated with traffic
state of the zones. Vehicles do not share particularly sensitive information with
the zones but are still able to take part to the cooperative control strategy. From
this theoretical presentation of our strategy, we present in the next chapter its
implementation and performance evaluation in a simulation context.
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Chapter 4

Implementation and Use Cases

In this chapter, we propose an implementation of the control strategy de-
scribed in the previous chapter. After presenting the prototype of our framework
and the main functions of agents, we analyze the results obtained after a sensi-
bility analysis, on synthetic and real networks. Finally, we include a topological
resilience metric as part of our control strategy and show that the former enables
better reroutings and thus fewer driver solicitations.

4.1 Prototype

To test our strategy, we needed to implement a simulation on a large scale
road network for a duration of at least 3 hours, corresponding to rush hours
inside cities. We present in this section the required components of our prototype
and the choices made to run the simulation. We also present the traffic simulator
and the data we used for our strategy.

Figure 4.1: Framework of simulation

The traffic simulator is SymuPy1, an open source simulation tool for micro-
scopic transport simulation. The car-following law is based on the Lagrangian

1https://github.com/licit-lab/symuvia
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resolution (Leclercq et al. [59]) of the LWR model ([60], [61]). SymuPy is not
designed to be multi-agent, we thus created in Python the vehicle agents and
zone agents outside of the simulator as shown in Figure 4.1. The agents up-
date their information from the simulator, process the information and once a
new route is assigned, it is transmitted to the simulator. Our prototype, imple-
mented in Python, wraps SymuPy in a multi-agent framework. The latter, in the
end, becomes a multi-agent framework that integrates a powerful tool for realistic
traffic simulations. Realistic simulations are generally a limitation of concurrent
multi-agent solutions from the state of the art (like MATSim or GAMA).

Figure 4.2: Zone-Vehicle Interactions

Agents are thus Python objects and shortest paths are computed with Dijsk-
tra algorithm on the library Networkx. The actions of zone agents and vehicle
agents are presented in Figure 4.2, that includes the adjustments we have done
for prototyping purpose, described in the following sections.

To improve our strategy and understand the impacts on performance, we
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modify some hyper-parameters and evaluate the gain or loss compared with the
situation without control. The two main hyper-parameters we focus on are Tbase,
the time window determining the time of rerouting, and β, a parameter of the link-
weight function of the graph. We define in this section the hyper-parameters and
the evaluation of our strategy for the system and the vehicles. We then present
the results, with hyper-parameter modifications and on a single case, and then
test our solution on unknown demand scenarios. Finally we present the results
for a real case scenario on a subnetwork of Lyon road network.

4.2 Hyper-Parameter Sensitivity Analysis

To improve our strategy and understand the impacts on performance, we
evaluate the gain or loss compared with the situation without control, within a
set of selected values for two hyper parameters. Those hyper-parameters were
chosen as they affect the quantity and the nature of reroutings.

The first hyper-parameters on which we focused is Tbase, the time window
determining the timeout for rerouting decision, which is presented in section ??.
Tbase can be seen as the reactivity of the vehicles and has a major impact on the
number of reroutings, as shown in our experiments. The values of Tbase that we
test are expressed in seconds.

The second is β, a parameter relative to the sigmoid function applied to weight
the links in the graph, in function of the congestion level (section 3.5.7). A
high β will distinguish zones as “congested” / “non congested”, close to a binary
function (β = +∞), while a low β will smooth the weights of the links depending
on the total flexibility (see Figure 3.7) up to the point when weights are left
unchanged (β = 0). We tested the extreme cases as well as values empirically
chosen between 0.001 and 0.05. New paths thus strongly depends on β as it
affects the attraction/repulsion of zones.

A last hyperparameter is τ , which corresponds to the time step used to update
agent state variables. Experimentally, we set it at 60 seconds.

4.3 Performance Evaluation

The indicator of congestion reduction we consider to evaluate our strategy and
compare the results is the reduction of Total Travel Time (TTT ) in percentage.

%TTT =
TTTnocontrol − TTTcontrol

TTTnocontrol
(4.1)

The best parameters are those with high %TTT (Equation 4.1) and a limited
impact on user equilibrium. To quantify the user disturbance, we consider the
percentage of rerouted vehicles and the total number of reroutings.
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The variation of Tbase makes the anticipation of congestion avoidance change
(hence the number of reroutings) while β, as it changes the weights on the graph
and macro graph, makes the choice of the new shortest paths vary.

4.4 Case Study: the Manhattan Grid

As a baseline, we consider a grid Manhattan network to test our algorithm,
with 3712 nodes and 10324 edges, as it represents many city centers (see the work
of Boeing et al. [62] on US cities). This grid is split into 9 (3X3) and 25 (5X5)
zones, representing a zone in the center, surrounded by one circle of zones (3X3
zones) or two circles (5X5 zones). The two sizes of zones enable a comparison
of our control strategy performance depending on two clusterings. The critical
values of spatial speed and accumulation of the zones are computed in advance,
from previous simulations. A neutral zone surrounds the set of zones, containing
the entry and exit point of the demand. The nodes belonging to the neutral zone
are included to the graph and macro graph but as the neutral zone is not an agent,
it does not take part to the cooperative strategy and does not communicate with
zones nor vehicles. Vehicles driving inside the neutral zone do not compute new
route nor receive information from their next zone and the weights of links inside
the neutral zone do not change during the simulation. It is worth noting that the
global performance of the system, however, includes the traffic indicators of the
neutral zone.

Figure 4.3: Main axes of demand in Manhattan 3X3

The vehicles demand is predefined and corresponds to a user equilibrium sit-
uation. Every driver agent starts the simulation with a given route and a given
departure time. We consider in our base case simulation 16743 vehicles, in an ap-
proximately 4h simulation. Their origin and destination points are in the neutral
zone. Most of the trips goes through the center, the main trip axes are shown in
Figure 4.3.
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We run our solution with varying hyper-parameters that modify the reactivity
of our strategy and the penalization of congested zones, on one reference demand
scenario and later test it on different demand scenarios.

4.4.1 Hyper-Parameter Choice

The exploration of hyper-parameters allows us to first notice that clustering
with 25 zones gives more often good results than with 9 zones. The more zones
we have and the more precise is the congestion detection and the rerouting which
explains the stability and robustness of the rerouting strategy when working with
25 zones.

We can observe that the variation of one parameter when fixing the other
does not induce a predictable %TTT reduction. There is no monotonic variation
neither an optimum that could lead to global optimal hyper-parameters.

Logically, we can observe that when Tbase increases, the number of reroutings
decreases. The outliers, corresponding to blank squares in Figure 4.4 and Fig-
ure 4.5 are simulations where a grid lock has appeared, creating more congestions
and thus more reroutings than expected.

Figure 4.4: %TTT depending on β and Tbase (expressed in seconds)

In Manhattan 3X3, we can observe that we have better results when β is high,
which corresponds to a strict filtering of congested zones. On the contrary, low
values of β improve the simulations in the case of 5X5. This can be explained by
the fact that in Manhattan 3X3, due to the low number of zones, if the filtering
is not binary, vehicles would still go to the congested zone. A clustering with few
zones offers less alternative to congestion making the congested location not that
repulsive. On the other hand, in the case of Manhattan 5X5, low values of β offer
a smooth filtering, more precise as the values of the links strongly depend on the
total flexibility of their zone. In the extreme case where β = 0, corresponding to
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Figure 4.5: Number of reroutings depending on β and Tbase

G and GM never updated, results show an improvement for most of Tbase values
in Manhattan 5X5 but unstable: when Tbase = 2500s, the performance dropped.
Results for Manhattan 3X3 are always lower than 5% with β = 0 showing that
with fewer zones, the penalization of congested zones is more important to improve
the results whereas a more precise clustering of the network does not require a
special value of β (and weight function) to be efficient.

Moreover, higher values of Tbase reduce the %TTT improvement or worse,
deteriorate the initial situation. This is explained by the reactivity of vehicles:
large Tbase will provoke late reroutings if the vehicle is still in the zone. This means
that when a congestion appears, vehicles entering a nearby zone will reduce their
chance of avoiding the congestion by computing a new route.

In both cases, Tbase has to be higher than 500 to ensure %TTT reduction,
except for extreme values of β.

In Figure 4.6, we can notice that the efficiency of our strategy depends on
the number of reroutings. Especially, with too few reroutings (≤ 3000), most of
the results are worse with control than without. A certain number of reroutings,
around 3000, ensures an improvement. On the contrary, too many reroutings
(more than 10000) worsen the initial situation and provoke sometime more con-
gestions than initially, which is the case when Tbase is lower than 500s. From
the colors representing Tbase, the relationship between the rerouting time window
and the number of reroutings is confirmed: the lower Tbase is and the greater the
number of rerouting is.

Many sets of {Tbase, β} enable a reduction of %TTT greater than 10% but
with a varying number of reroutings. We consider rerouting action as a cost for
the driver and thus the best solution is not only the one maximizing the %TTT
reduction but also having the less impact on vehicle rerouting. From Table 4.1,
one perfect hyper-parameter calibration does not appear. The highest %TTT
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Figure 4.6: %TTT compared with the number of rerouting and Tbase

Table 4.1: Results for set of parameters giving the the highest %TTT reduction

size Tbase β %TTT
%rerouted

vehicles

rerouting

per vehicles

3X3

500 +∞ 11.9 % 40 % 0.43

1500 +∞ 14.2 % 22 % 0.23

2000 0.05 12.4 % 25 % 0.27

5X5

1000

0 12.8 % 29 % 0.31

0.01 12.2 % 33 % 0.36

+∞ 12.4 % 30 % 0.31

1500
0 14.6 % 33 % 0.36

0.005 13.1 % 25 % 0.25

2500 0.025 13.0 % 28 % 0.29

reduction (14.6%) provoked reroutings for 33% of the vehicles, which is quite
high. We can not assume that a third of the vehicles are willing to change their
route.

More globally, best results are obtained for a Tbase between 1000s and 2500s.

4.4.2 Single Case Comparison With and Without Control

To better understand the impact of our control strategy on the agents and
further analyze the dynamic between zones and vehicles, we focus on a single
case, with a high %TTT . We choose Manhattan 5X5 for this single case analysis
and generalization as this size of clustering gives more stable and robust results.
From the previous results, the hyper-parameters maximizing the total travel time
reduction without generating too many reroutings are Tbase around 1500s and



60 Chapter 4. Implementation and Use Cases

low β values. We here consider the case of β = 0.005 and Tbase = 1500s for a
clustering of 25 zones.

In this optimized scenario, we compare different indicators, such as spatial
speeds or total travel time, to better understand the impacts of the hybrid coop-
eration of zone agents and vehicles on the traffic and on the trips.

Considering the speed as the performance indicator for resilience characteri-
zation, we can see in Figure 4.7b that the drop of performance inside the whole
network is reduced. The minimum speed is around 5 m ·s−1 whereas without con-
trol it dropped bellow 3 m · s−1. The recovery is also shorter as without control,
the stable state is around time step 180min when it is recovered at 160min with
control. Considering the quantification of resilience as in Equation 2.1 where the
speed is the performance indicator, we have the following:

R =

∫ Tr

T0

vs(t)dt (4.2)

Accumulation Spatial Speed

Figure 4.7: Global indicators comparison for Manhattan 5X5

where vs is the spatial speed, T0 corresponds to the beginning of perturbation,
Tr to the end of the recovery. We consider T0 and Tr from the initial simulation,
without control and compare RnoControl with Rcontrol. From Figure 4.7b, T0 =
60min and Tr = 180min and the increase of resilience is 21%.

Globally, when comparing the accumulation of vehicles in the whole network
during the simulation, we can see in Figure 4.7a that the accumulation of the
simulation with control decreases faster than the initial situation, although the
peak of accumulation is not reduced. This means that vehicles arrive sooner to
their destination. It is confirmed by the global total travel time reduction equal to
13% compared with the simulation without control. The reroutings start around
time step 60, right before the congestions of zones like zone a22 or zone a33 (see
Figure 4.9), with a peak of reroutings corresponding to the beginning of actual
congestions. This shows the reactivity of the system as actions are produced right
when monitored indicators are reaching a critical value. The effect of reroutings
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are seen with a certain delay which explains why not all speed of zones remain
higher than the critical speed. The rerouting strategy increased the resilience of
the network in day-to-day demand perturbations with high reactivity and accurate
solutions.

Figure 4.8 depicts the accumulation per zone and the number of reroutings
induced by the zone (when vehicles are rerouted when they should have gone to
the zone). When the accumulation of a zone is close to its critical points, we
can observe that many reroutings are triggered. In some cases, it reduces the
accumulation (a24) or maintains the accumulation around the critical value (a32,
a34). The central zone, where most of the vehicles intend to go through, can not
avoid congestion and higher accumulation than required even though a22 triggered
a lot of reroutings. Those new assignments are effective later, thus reducing the
duration of congestion. This is a limitation due to the fact that vehicles can
change their path only with respect the next zone. One could consider zones that
are two or three hops away in the macro path to improve the strategy. The zones
that were not on the path of many vehicles have absorbed part of the reroutings
and we can see that they only accept vehicles if their accumulation is not too
high. In zones a31, a44, a53, the reach of critical accumulation induces a small
number of reroutings, effective almost immediately.

The consequences on the speed inside the zones is visible in Figure 4.9. We
can see that even though congestions were not totally avoided, we managed to
reduce the duration of congestion (e.g. a22, a44). Zones that were not congested
at all have a reduction of their spatial speed but without congestion. Indeed the
spatial speed remains close to the critical speed and barely lower. In zones such
as zone a23, zone a34 or zone a42 the congestion is totally avoided.

From Figure 4.10a, we can observe that the number of longer of trips is reduced
as only few vehicles spent more than 60 minutes inside the network. The control
strategy has thus reduced the number of long trips and increased the number of
shorter trips. In particular, the variance of the trip duration has decreased.

Rerouting can be a constraint for drivers with no actual benefits. From Fig-
ure 4.10b, we can see first of all that most of the drivers are not rerouted (75.4%),
which means that our solution does not require the cooperation of all the vehicles
to be efficient. Furthermore, vehicles that have been rerouted once have reduced
their trip duration with a median gain of 5 minutes. The gain for vehicles hav-
ing been rerouted twice is even higher but concerns fewer people (because of the
probability of rerouting acceptance). Some outliers have increased their travel
time and in further developments the rerouting acceptance could also depend on
the detour induced by the potential new route. Globally, 86% of vehicles have
shorter or equal travel trip duration and the mean gain is 13 min whereas the
median increase of travel time is 5 min.

To conclude, from all the results shown, the cooperation between zone agents,
at an aggregated level, and vehicles, at microscopic level is successful. The rerout-
ing instructions are well transmitted from zones to vehicles and have a rapid effect
on the global traffic state. This results to an increased level of performance inside
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Figure 4.8: Accumulation (vehicles) and reroutings produced per zone per simu-
lation step (min)

Figure 4.9: Spatial Speed per zone (m · s−1) per simulation step (min) with and
without control on Manhattan 5X5 network

each zone and in general in the whole network, with the speed higher than critical
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Trip duration histogram Boxplots of trip duration difference per
number of rerouting

Figure 4.10: Results on trip duration for Manhattan 5X5

for a longer duration. The system is thus more resilient to demand perturbations.

4.4.3 Robustness Tests on Different Demand Scenarios

Transport networks are usually sized in order to accommodate a recurrent
travel demand, which is traditionally known by transport operators with different
estimation methods with some uncertainty. Even a regular travel demand can
produce relevant performance drops, due to the way travellers distribute over
the network over time. In the previous analysis, we focused on such recurrent
demand scenario and showed the effectiveness of our approach. However, to study
the capability of our solution to sustain the resilience of transport network, we
focus in the following on more extreme configurations of the travel demand, that
would stress the network and expose its vulnerability without a proper control
action. We calibrated our control strategy on a reference case, we now test it
with unknown demand scenarios. This allows us to have a global performance
evaluation of our model, similarly to a train/test evaluation of machine learning
models.

Five different scenarios are proposed: scenario A is the one used for the cali-
bration of the model (reference case in the previous sections), scenarios B, C, D,
and E with varying number of vehicles (see Figure 4.11) and peaks of congestion.

The worst case scenario is B, with more vehicles (around 18k) and is close
to creation of grid locks, its peak of accumulation is 2.5% higher than that of
scenario A. Scenario C corresponds to the case of few vehicles, and thus fewer
congestions, with a lower peak of accumulation of −7.9%. Scenario D contains a
similar amount of vehicles than scenario A but has a lower peak of accumulation
(−2.5%). Scenario E is a scenario with no congestion.

The main results are presented in Table 4.2. For the scenario B, we obtain
a reduction of total travel time of 17.9% with a third of rerouted vehicles. Our
strategy and the hyper-parameters are thus suited for a high-demand scenario with
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Figure 4.11: Demand scenarios

a bigger disturbance on the global performance of the road network. The effort
required to the drivers is bigger than for scenario A but has also more positive
consequences as 11% of trips are longer with control and 47% are shorter.

For scenarios with less congestion, the increase of performance is not as good
but the performance is still significantly increased for C and D, more than 10%
compared with the simulation without rerouting. However, cost of rerouting in
the case of demand E is too high (14.6% of rerouted vehicles) compared to the
benefits for the system and the users. More globally, the TTT of all the scenarios
have decreased, and the more congested the network was and the higher was the
reduction of %TTT . The accumulation and spatial speed during the simulation
for every scenario are shown in Figure 4.12. In all cases, the lower peak of spatial
speed is reduced and the accumulation decreases faster with control.

With the chosen set of hyper-parameters, we obtain a reduction of TTT ,
keeping the global performance of the system higher without requiring too much
changes on driver behaviours. The main problem is however when there is no
need for control: if our strategy does not deteriorate the initial situation, the
benefits are too low compared with user cost. In conclusion, our strategy performs
better when strong demand perturbations occur than when the network is not
congested. Our approach is robust and can deal with unknown demand negative
perturbations. To face its lack of efficiency for low-demand scenario, the proposed
strategy should be activated only once certain conditions of congestion or travel
demand increase are met, with respect to a reference scenario (recurrent travel
demand).
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Table 4.2: Results for other scenarios, with Tbase = 1500s, β = 0.005

scenario vehicles %TTT
%rerouted

vehicles

rerouting per

vehicles

% longer - shorter

trips

vehicles

resilience

increase

A 16743 13.1 % 24.6 % 0.25 13.3% - 43.5% 21%

B 18475 17.9 % 30.8 % 0.33 11.2% - 46.8% 37%

C 15426 7.8 % 20.7 % 0.21 14.3% - 37.0% 10%

D 16470 9.3 % 27.4 % 0.27 17.0% - 40.6% 14%

E 14803 1.1 % 14.6 % 0.15 18.4% - 25.2% 1%

Figure 4.12: Results on other demand scenarios

4.5 Application on a Real Case Scenario

To further validate our approach, we worked with Lyon northern parts as
real case scenario. Lyon is the main city of an urban area of more than one
million inhabitants in France. This network, illustrated on Figure 4.13, contains
1883 nodes, 3383 links and is divided in 17 zones. The number of trips for the
simulation is 68573, between 7 : 30 and 10 : 30, corresponding to the morning
peak hours. Origins and destinations are located in the perimeter and inside
the network. The demand has been estimated based on real data, collected via
surveys and loop detectors. The zones are delimited depending on the existence
of a MFD and based on our knowledge of the area. A zone can contain only one
critical intersection which is often congested, and only one main arterial. Three
zones are composed of a single arterial segment because their alternative paths
are close to them and they need to be in another zone to be chosen.

There is a neutral zone, corresponding to a highway where vehicles can go to
but which is not an agent and thus does not trigger reroutings.

Similarly to the Manhattan case, we performed a hyper-parameter sensibility
analysis on Tbase and β.
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Figure 4.13: Network of Lyon (3rd, 6th district and Villeurbanne). Every zone is
represented by a distinct color.

Figure 4.14: Hyper-parameter exploration: reduction of TTT and number of
rerouting for Lyon subnetwork

Figure 4.14 shows that for almost all the parameters, when no gridlock ap-
pears, the control strategy improves the initial strategy. This can be explained by
the fact that we work on real datasets, which does not imply an reached optimum
in the initial situation. The initial simulation can thus be easily improved. An
optimal area of %TTT is observed for Tbase ∈ [300s, 1500s] and β ∈ [0.01, 0.05].
The optimum is reached with β = 0.025 and Tbase ≤ 1000. The maximal %TTT
is equal to 18%.
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Figure 4.15: Accumulation with β = 0.025 and Tbase = 300s inside Lyon network

Very few reroutings are necessary to improve the initial situation. The max-
imum percentage of rerouted vehicles is 6.7%, corresponding to 4700 rerouted
vehicles. This is partially due to the fact that 46% of vehicles do not go through
a zone agent and only drive in the neutral zone. Those vehicles can never be
rerouted. Moreover, the mean number of zones in the vehicle paths is 4 whereas
for Manhattan network split into 25 zones, all vehicles drive through at least 11
zones. The low number of crossed zones reduces the possibility of rerouting for
the vehicles.

In Figure 4.16, we can see that for the case of Tbase = 300s and β = 0.025,
the drop of spatial speed inside the network is reduced and the time of recovery
is lower with control. The resilience is thus increased by 22%. This performance
improvement is due to the accumulation reduction showed in Figure 4.15, where
the peak of accumulation is reduce and decreases much faster with contorl than
without.

Figure 4.16: Spatial Speed comparison with β = 0.025 and Tbase = 300s inside
Lyon network
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Figure 4.17: Accumulation comparison with β = 0.025 and Tbase = 300s inside
Lyon network for each zone

Figure 4.17 shows the accumulation per zone and we can notice that 7 zones
where highly congested initially. The control strategy enabled the reduction of
accumulation for zones 2, 5, 6, 14 bellow the critical capacity. On the contrary,
we can observe in the zones 1, 4, and 11 which were highly congested, no real
improvement. This is explained by the fact they are on the south border of the
network (see Figure 4.13) and the alternative paths are thus more limited for the
drivers.

The consequences on the performance of each zone in terms of spatial speed are
shown in Figure 4.18. The control strategy reduced the time of recovery for many
zones but the zones where accumulation was not reduced have the same drop of
spatial speed than without control. The improvements per zone are thus not as
obvious than for Manhattan network. This is due to the topological differences:
Manhattan network offers more alternative zones for rerouting than Lyon and is
more homogeneous. Congestions are more easily avoided and vehicles are more
often attracted by new paths than in Lyon network.

These results show that the reroutings were efficient to globally reduce the
total travel time spent in the network but the control strategy could not prevent
some zones to be congested. Some further developments could help improving
these results by changing other hyper-parameters like α that sets the limit of the
weight function in G.
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Figure 4.18: Speed comparison with β = 0.025 and Tbase = 300s inside Lyon
network for each zone

4.6 Preliminary Conclusions

The results showed great robustness and ability of anticipation of our strategy
for both real and synthetic networks. We managed to reduce or avoid congestion,
especially for high-demand scenario in the synthetic network. This is particularly
interesting because a high demand scenario is harder to manage, and the need
of flow redistribution is greater. Furthermore, it is easier to detect low-demand
scenario and not perform control than the opposite, where the solution is less
efficient when it is more needed.

We modeled the acceptance of rerouting as dependant on the number of rerout-
ing. In reality, drivers accept to change their route depending on the new sug-
gested route, which could be added to the acceptance function in further work.
Another perspective would be to distinguish the type of drivers depending on their
equipment: not all the drivers activate a GPS device or navigation application
and it would be interesting to compare the performance of our strategy depending
on the proportion of equipped vehicles.
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4.7 Resilience Inside the Controlled Area

The results of our approach in a context of simulation show that we were able
to maintain a certain level of performance by modifying traffic flow distribution
inside the network. By cooperating, zone agents were able to reduce the duration
and intensity of congestion. The traffic is better absorbed by the system and
the calibrated version of the algorithm showed robustness toward scenarios with
travel demand higher than usual. The algorithm thus reduces the road network
vulnerability and offers a robust solution in case of exceptional high demand.

Nonetheless, some locations inside the network are more vulnerable than oth-
ers. Their failures have more consequences or impact more people than that of
other parts of the network. Reducing vulnerability inside road network can be
done by identifying vulnerable nodes or links and protecting them. Those nodes
or links can be identified with resilience metric, the most popular one being the
Betweenness Centrality, used in topological analysis of various networks (not only
road networks).

4.7.1 Betweenness Centrality as a Metric of Resilience

BC is widely used, with both directed and undirected graphs, to identify
opinion leaders or influential people in social network analysis [63], critical inter-
sections in transportation networks [64]–[68], vulnerabilities in computer networks
[69], threats from terrorist networks [70]. However, in spite of the great potential,
the computation time of BC often represents a barrier to the application of this
metric in large-scale contexts, especially with dynamic graphs.

In graph theory, the BC of a node or a link is a topological metric that quan-
tifies the proportion of shortest paths crossing the node or link. The number of
shortest paths between a source node s and a destination node t is denoted by
σs,t, whereas the number of shortest paths between s and t that cross a generic
link l ∈ E is denoted by σs,t(l).

The Betweenness Centrality (BC) of a link l ∈ E is defined as follows:

BC(l) =
∑

s �=,t∈V

σs,t(l)

σs,t
(4.3)

A high BC on a link means that a high proportion of shortest paths go through
this link, making it a vulnerability for the system.

High BC links tend indeed to have higher probabilities of being chosen for
new shortest paths and have thus more chances of being congested. Congestion
on high BC links create a higher drop of performance as it impacts more people
and more shortest paths. In our case, rerouting vehicles on links with high BC
would create a congestion in the new routes which could be worse than the first
congestion. Those links need to be protected to prevent propagation of congestion
in the network.
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The computation time of BC on all the links or nodes of large graph is high
due to the high number of explorations across the whole graph needed for shortest
path computation. A main focus on the computation of BC is done in the next
chapter, in a more global context than that of transport.

4.7.2 BC in the Control Strategy

Links with high BC are likely to attract vehicles as they are on many shortest
paths. To maintain robustness inside the network and avoid creating new conges-
tions, we modify the weight function of the graph by adding the BC to protect the
vulnerable links. They should remain attractive when no congestion appears but
we choose to make them much more unattractive when their zone is congested.
This way, we do not prevent vehicles to go through them in a regular situation
but start limiting their access in unstable state.

The BC is thus used to help cars finding new shortest paths without creating
new congestion in vulnerable locations of the network. As the BC values depend
on the size of the graph, we normalized the values with a division by the maximum.
This way, all the BC values are comprised between 0 and 1.

The weight function, defined in Equation 3.7 and illustrated in Figure 3.7 in
the previous section is a sigmoid, with the parameter α = 1.5, defined as follows:

ttw(l) = tt(l) ·

(

α−
1

1 + e−β·f tot
i (t)

)

With α = 1.5, the limits of the weights are 0.5 ∗ tt(l) and 1.5 ∗ tt(l).
We include the BC normalized, written B̂C in the weighted travel time chang-

ing the formula of Equation 3.7 as follows:

ttBC−w(l) = tt(l) ·

(

eB̂C(l)

1 + eβ·f
tot
i (t)

+ α′

)

(4.4)

The normalized BC of each link inside Manhattan network is shown as an example
in Figure 4.19a. Logically, the highest-BC links are those in the center of the
graph.

As a link with a high BC is a vulnerable link if congested, we increase the
higher bound to protect it, making it more repulsive than links with lower BC.
On the contrary, if the traffic is fluid, the weight will decrease, but reaching the
same lower bound for all links.

To maintain a higher bound to 1.5 · tt(l), the value of α′ is set to 0.5 and the
coefficient formula is slightly different from Equation 3.7 in terms of signs. Fig-
ure 4.19b illustrates the new weight BC function depending on the total flexibility
of the link zone for a set of values of β. The upper curve corresponds to weight
function for link with a normalized BC equal to 1 whereas the lower curve is for
links with normalized BC equal to 0. This latter case gives the same function than
Equation 3.7 (with α = 1.5 and α′ = 0.5). The lower bound is not modified as the
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Normalized BC of Manhattan
network

Weight function depending on total flexibility and BC for different values of β

Figure 4.19: BC inside Manhattan network and BC-weight function

goal is not to particularly attract vehicles to high BC links but rather to prevent
new congestion. For this reason, only the upper bound varies depending on the
BC of the links and the flexibility of their zone. Compared to the initial weight
function, links with high BC would have higher travel time weights than simula-
tions without considering the BC. Nonetheless, we can notice from Figure 4.19b
that with lower values of β, the decrease of the weight is slower and thus for high
values of total flexibility we still have higher values of weighted travel time of high
BC links.

For computation’s sake, we only consider a static topological BC, computed
on the graph with free-flow travel time weights.

4.7.3 Use of the BC for Traffic Control (results)

We test the integration of the BC in case of Manhattan 5X5 and demand
scenario A. As the BC plays a role in the choice of new shortest paths, the goal
is not only to improve the total travel time reduction but to increase the gain of
each rerouting. This means that with less reroutings we would be able to still
have the same total travel time reduction.

First we perform the simulation on multiple sets of hyper-parameters as in
section 4.2. We reduced the number of hyper-parameters based on the results
obtained without BC. We thus select higher values of Tbase, greater than 1000s



4.7. Resilience Inside the Controlled Area 73

and β ∈ {0.001, 0.005, 0.025}. We take 0.025 as the maximum because higher
values of β in the case of Manhattan 5X5 did not give good results in general.
When β = 0, the weights without considering the BC are constant and equal to
the free-flow travel times. We thus do not evaluate the use of BC for this case.

Figure 4.20: Results comparison with and without use of BC for different β and
Tbase

Visualizing the percentage of rerouted vehicles in comparison with the per-
centage of total travel time, shown in Figure 4.20, we can see that if in general
the performances are quite similar but the best results are obtained using the BC.
Indeed, only using the BC were we able to obtain a %TTT reduction greater than
14%, with low values of β keeping a proportion of rerouted vehicles close to 20%.
Moreover, for a similar travel time reduction, simulations with the BC require less
reroutings (except for some outliers).

This shows that the BC helps finding new shortest paths that have a better
impact in terms of resilience when computed taking into acccount the values of BC.
We characterize this new route improvement with the rerouting gain written Γr:

Γr =
TTTnocontrol − TTTcontrol

number of reroutings
(4.5)

The rerouting gain represents the total travel time saved per rerouting. The
higher it is and the more positive the impact generated by one rerouting is. We
compare the gain per rerouting of simulations with and without BC by computing
the difference, expressed in minutes.

From Figure 4.21, we can see that the best performances in terms of %TTT
and increase of gain per rerouting are observed for low values of β, when the
weight function is close to an affine function (Figure 4.19b). As expected, for low
values of Tbase, the improvement is not really high because a lot of reroutings are
done with and without BC which reduces the gain per rerouting. The number
of reroutings is indeed the main source of %TTT reduction. What is actually
interesting and useful is the improvement observed for high Tbase: by increasing
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the gain per rerouting, it enables good performance for the system with fewer
requests to the vehicles.

Too much penalization of high-BC congested links is also not that efficient:
with β too high, performances are lower than without considering the BC. The
highest increase of performance is found for β = 0.001 and Tbase = {4000s, 4500s}
but the overall %TTT is around 12% which is low compared to the reduction of
TTT of simulations with different values of {Tbase, β}.

%TTT reduction using the BC Difference of rerouting Gain
(Γr(BC)− Γr(noBC))

Figure 4.21: Increase of performance via BC adding

In conclusion, using the BC boosted the performance of our control strategy
by fine-tuning the new path computation. The new choice of paths increased the
travel time gain per rerouting, making the drivers efforts more valuable. Even if
the BC was static and thus not dynamically updated with real-time traffic infor-
mation, the improvements are significant, showing that combining static topolog-
ical vulnerability analysis and a dynamic system-based approach gives interesting
results and should be further studied.

4.8 Conclusion

To conclude this section and the global work on dynamic rerouting, our control
strategy performs well after some parameter optimizations. We are able to reduce
the duration of congestion and for some zones to totally avoid it without creating
new congestion, with a low impact on vehicles. In a fully distributed way, we
manage to make zones cooperate and vehicles help them achieve their goals. The
hierarchical control is efficient at an aggregated level (zones) and microscopic
level (vehicles). The reactivity of both types of agents reduced quickly the drop
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of performance measured by the speed inside the whole network. It also reduced
the duration of congestion, thus increasing overall resilience inside the network.

The use of BC has enabled a better stability of results, and ensures a minimum
of performance. The combination of the topological properties of the road network
and the dynamic rerouting solution enabled a higher reduction of vulnerability.
The topological understanding of the network is thus useful for dynamic system-
based vulnerability analysis while still quite uncommon.

In our case, the BC is computed in a static network, not considering the evo-
lution of traffic conditions. We did not grasp the dynamics of the network into
the BC computation. To improve even more the performance of control strategies
using the BC, update values just before the rerouting process is a solution. Unfor-
tunately, computing the BC means exploring the whole graph from all the nodes
and with the state-of-the-art algorithms, the computation time is high. This ex-
plains why we only considered the BC computed before, on a free-flow travel time
network.

To enable a real-time computation of BC, we developed an algorithm able
to reduce computation time by decomposing the BC and dividing the network
into clusters (similarly to zones). This algorithm is further described in the next
chapter.
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Chapter 5

Cluster-based Algorithm for
Fast and Exact Computation of
Betweenness Centrality

This chapter is dedicated to a contribution on the fast and exact computation
of the Betweenness Centrality published in two papers ([71], [72]). As the BC is
a common resilience metric in traffic network, we developed an algorithm able to
perform its exact computation in a short amount of time. The BC is not only used
in traffic but in many other domains such as social networks, or internet networks,
we thus present our work in a more general context than transportation.

Introduction

In recent years, the Floyd method [73], which requires O(n3) computation
time, has been overcome by the well known Brandes’ algorithm [74]. Given a
graph G(V,E), it exhibits O(n + m) space complexity, O(nm) time complexity
for unweighted graphs and O(nm + n2log(n)) for weighted ones, where n = |V |
is the number of nodes and m = |E| the number of edges. However, the polyno-
mial complexity of Brandes’ algorithm, which is almost quadratic for very sparse
graphs, is still an obstacle for analyzing very large networks. Such problem be-
comes even more evident and limiting if centrality is used for real-time analysis
of dynamic networks.

In the last decade, many researchers have therefore worked with the aim of
improving the performance of Brandes’ algorithm.

In this chapter, we propose an algorithm based on clustering, inspired by
previous work on approximated BC computation [67], [75], which makes possible
the exact computation of BC on large, undirected graphs with an impressive
speedup when compared to Brandes’ algorithm and a significant improvement
over recent variants of Brandes’ algorithm based on clustering [76].

The algorithm leverages structural properties of graphs to find classes of equiv-
alent nodes: by selecting one representative node for each class, we are able to
compute BC by significantly reducing the number of single-source shortest path
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explorations required by Brandes’ algorithm. We formally prove the graph proper-
ties that we exploit to define and implement two versions of the algorithm based on
Scala for both sequential and parallel map-reduce executions. The experimental
analysis has been conducted by testing both versions of the algorithm on synthetic
and real-world graphs. The algorithm we propose is able to work with undirected,
weighted or unweighted graphs. In this chapter, we focus on unweighted graphs
while its extension to weighted ones can be easily obtained by substituting the
breadth-first search (BFS) with Dijkstra algorithm.

Undirected graphs are very common in real-world systems; examples are so-
cial networks, communication networks, protein interactions graphs, people in-
teraction graphs, finite element meshes, etc. Among these graphs, scale-free and
Barabási-Albert graphs [77] represent an important target of our analysis, since
they model many real-world systems, such as the World Wide Web, the Internet
and other computer networks, citation networks, social networks, airline networks,
financial networks, etc.

The main contributions of this work are:

• Introduction of the general concept of equivalence class for reducing BC
computation time.

• Formal proof about the existence of topological properties to identify an
equivalence class with respect to clusters’ border nodes in undirected graphs.

• Two variants of Brandes’ back propagation technique to avoid the direct
computation of the dependency score on cluster nodes due to pivots.

• Scala-based implementations of the proposed algorithm for both sequential
and parallel map-reduce executions.

• Extensive evaluation of the proposed algorithm with both synthetic and real
large-scale graphs.

The rest of the chapter is organized as follows. Section 5.1 positions our work
with reference to the main results from the literature. Section 5.2 introduces the
notation we use in the rest of the chapter, as well as the background concepts and
algorithms that are at the basis of the proposed solution. Section 5.3 presents
the main properties we exploit to define the algorithm when clustering is used to
identify classes of equivalent nodes. Section 5.4 illustrates the rationale of the spe-
cific implementation of the algorithm and the main steps that characterize it, by
presenting also the constituent sub-algorithms exploited for the implementation.
Section 5.5 reports on the experimental results obtained by running the proposed
algorithm on several synthetic and real graphs characterized by different sizes and
topological properties. Section 5.6 is dedicated to the formal proofs of the theo-
rem and claims used in our algorithm for fast BC computation. Finally, Section
5.8 summarizes the results and discusses the limits of the proposed solution by
highlighting possible future improvements.
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5.1 Related Work

Brandes’ algorithm is a fast and robust solution to compute BC, but it is
not adequate for real-time processing of large graphs, since BC computation time
increases very rapidly with the graph size, even in sparsely-connected configura-
tions.

Several approaches, either exact or approximated, have been developed to
reduce BC computation time by improving Brandes’ algorithm. The proposed
solutions can be classified into five main categories: (a) exploiting and increasing
parallelism; (b) updating the BC of specific nodes in dynamically evolving graphs;
(c) estimating BC via a partial exploration of the graph in terms of nodes or edges;
(d) exploiting structural properties of some kinds of graphs to compress them; (e)
reducing complexity by decomposing graphs in clusters. It is worth noting that
some proposals may belong to multiple categories since in many cases, techniques
falling in a category can be complemented with other ones to further reducing
computation time.

Exploiting parallelism. Brandes’ algorithm is extremely parallelizable due to
the possibility of performing n independent breadth first searches (BFS) or Di-
jkstra explorations on a shared graph structure. In [78], an efficient parallel im-
plementation of BC computation is provided. The solution leverages fine-grained
multi-level parallelism by concurrently traversing the neighbors of a given node
via a shared data structure with granular locking in order to increase concur-
rency. The improved version of the previous approach, proposed in [79], removes
the need for locking in the dependency accumulation stage of Brandes’ algorithm
through the adoption of a successor list instead of a predecessor list for each node.
In [80], the authors propose a MPI-based parallel implementation of the adaptive
sampling algorithm KADABRA [81]. Other efforts in this direction try to exploit
the large amount of cores available on GPUs to better exploit parallelism [82].

Incremental computation. These (stream-based) approaches try to avoid re-
computing the BC values of all the nodes of a graph when they are known for a
previous configuration, by performing computation over only a small portion of
the graph that is impacted by some changes. Recently, an efficient algorithm for
streamed BC computation [83] of evolving graphs has been proposed based on
edges addition or removal. However, the algorithm is efficient only when the new
graph changes in only one edge if compared with the old one. Continuous BC pro-
cessing of large graphs to handle streamed changes of a significant number of edges
is therefore inefficient. MR-IBC [84] is a MapReduce-based incremental algorithm
for BC computation in large-scale dynamic networks that supports edge addition
or removal. The paper exploits distributed computing to achieve scalability and
reduce computing time. Even in this case, the focus is on changes related to one
single edge. The solution proposed in [85], instead, handles batches of updates
in parallel. In particular, it exploits a bi-connected component decomposition
technique along with some structural properties to improve performance.
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Approximated computation. These algorithms aim at achieving low computa-
tion time by calculating approximated BC values. Brandes and Pich proposed in
[86] an approximated algorithm for faster BC calculation by choosing only k ≪ n
nodes, called pivots, as sources for the single-source shortest path (SSSP) algo-
rithm through different strategies, showing that random selection of pivots can
achieve accuracy levels comparable to other heuristics. The approach has been
further improved by other authors [87]. The goal of these algorithms is to cal-
culate the BC only for selected nodes called pivot nodes. The selection of these
nodes depends on the problem to solve and may limit the use of BC.
KADABRA [81] is an adaptive sampling algorithm to approximate betweenness
centrality. In particular, it adopts a probabilistic approach: BC of a node v is
seen as the probability that, given two randomly selected nodes s and t and a
randomly selected shortest path p between them, v belongs to p. The algorithm
allows to specify the maximum absolute error and the probability that error is
guaranteed.
A similar approach is followed in ABRA [88], a suite of algorithms to compute
high-quality approximations of the betweenness centrality of all nodes (or edges)
of both static and fully dynamic graphs by using progressive random sampling.

Topology manipulation. Some algorithms exploit topological properties of
graphs to accelerate BC computation. Puzis et al. in [89] propose two heuris-
tics to simplify BC computation: (a) identification of structural equivalent nodes,
i.e., nodes that have the same centrality index and contribute equally to the
centrality of other nodes; (b) partitioning a large graph in smaller bi-connected
sub-graphs. Computation time on the graph partitions is significantly lower due
to the quadratic to cubic complexity of Brandes’ algorithm. The authors also
combine the two techniques to improve the speedup when compared with Bran-
des’ algorithm. In [90], the authors use both compression and splitting techniques,
including the ones developed in [89], to reduce the size of the input graph and
its largest connected component since these are the main parameters that affects
the computation time. In particular, they split the input graph by using bridges
and articulation vertices and compress it by removing degree-1, identical and
side vertices. Bridges and articulation vertices are edges and nodes, respectively,
whose removal from a graph leads to a new graph with a greater number of con-
nected components; degree-1 vertices are leaf nodes which, considered as source
and targets, contribute equally to the computation of BC of crossed nodes; iden-
tical vertices are the ones characterized by the same neighbors and, consequently,
by the same BC values; side vertices are nodes such that the graphs induced by
their neighbors are cliques and they are not crossed by shortest paths. By using
all these techniques, the authors achieve significant speedup with different kinds
of graphs. The authors in [91] propose a variant of Brandes’ algorithm based
on topological characteristics of social networks where nodes belonging to par-
ticular tree structures are not considered for Brandes’ SSSP explorations; their
contribution is simply computed by counting. Topology manipulation and graph



5.1. Related Work 81

compression are very useful techniques with some types of graphs and are com-
plementary to other solutions from the literature, including the one proposed in
this chapter.

Reducing complexity by decomposing graphs in clusters. A way to compute BC
is to cluster a large graph into smaller sub-graphs, calculate the BC inside these
small graphs, and then compute the BC on the remaining part of the graph. A
first paper based on this approach was proposed in [75]. This technique exploits a
fast clustering method [92] to identify clusters inside a graph. The border nodes of
the clusters are then used as reference nodes to discover, for each cluster, classes
of nodes that contribute the same way to the dependency score of the nodes
outside the clusters. For each class, a pivot node is selected as representative
node for the computation of the dependency scores from the class nodes to the
other graph nodes by exploiting the well-known SSSP exploration of the graph.
Hence, the dependency score is multiplied by the cardinality of the class the source
node belongs to and summed up to the local contribution of BC, computed by
considering only nodes belonging to the clusters, to obtain the final approximated
values of BC. This technique can be also classified among the ones based on pivots,
typically used for computing approximated BC values, even if the strategy adopted
to identify pivots is based on clustering. The authors in [76] propose a technique
based on clustering to reduce the complexity of BC computation. They prove
that with a decomposition of graphs into hierarchical sub networks (HSNs), time
complexity can be reduced to O(n2) for unweighted graphs under the hypotheis
that the number of clusters c ≫ k/2. In that case, the speedup, compared with
Brandes’ algorithm, is in the order of one half of the graph’s average degree k,
since the number of edges m = k · n/2. This means that if the considered graph
has a number of edges m ∼ n, then k ∼ 2 and the speedup is 1, that is, the
algorithm is not able to improve Brandes’ algorithm.
A very similar solution has been proposed in [93]. Differently from [76], the
authors propose to build a simplified hierarchical representation of the graph
after clustering (named Skeleton) by substituting each cluster with a weighted
clique connecting the cluster border nodes. This way, they reduce the number
of nodes in the Skeleton but need the more computationally expensive Dijkstra
algorithm for computing the shortest paths over the weighted graph. Moreover,
the proposed solution computes exact BC values of nodes only with respect to a
subset of nodes of a graph, named target set. When the target set includes all the
nodes of a given graph, the solution converges towards Brandes’ algorithm, but
with the additional overhead due to the creation and exploitation of the skeleton
graph.
Very recently, a Graph Neural Network (GNN) based model to approximate be-
tweenness and closeness centrality has been proposed [94]. This work, among
other similar ones [95], demonstrates that the efficient computation of the BC is
a topic of great interest even in the field of deep learning and, particularly, graph
neural networks.
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In this chapter, we propose a technique to reduce the time needed for comput-
ing exact values of BC in undirected graphs by: i) computing BC as the sum of
two main contributions, local for each cluster and global among clusters (category
e), ii) reducing the SSSP explorations for the global phase through the identifi-
cation of pivot nodes (category c), and ii) considering HSN-based corrections on
local contributions and the properties of undirected graphs to completely remove
errors during computation (which affected the first proposal in [75]).

This chapter extends our previous proposal in [71], by significantly improving
the algorithm and its implementations that now have been tested also with real
graphs. Moreover, we formally prove the correctness of the proposed technique.

It is worth noting that our algorithm could be complemented by algorithms
from different aforementioned categories, such as finer-grained parallelism from
the first category or compression-based techniques exploiting graphs topological
properties as the ones falling within the second category. Conversely, incremental
and approximated computations are approaches for specific classes of applications
that regard slowly changing graphs or rank-based exploitation of BC, respectively,
which we consider out of the scope of this chapter.

5.2 Background

In this section, we first introduce the notation used throughout the chapter,
then we briefly describe Brandes’ algorithm. Finally, we present the concept of
equivalence class, which constitutes the basis of our algorithm.

Let G(V,E) be an undirected unweighted graph with V representing the set
of n vertices (or nodes) and E the set of m edges (or links). Let s, t ∈ V be two
generic nodes of G. We denote by es,t the edge connecting s and t. The neighbors
of a vertex s are all vertices u such that es,u ∈ E. The distance between s and
t, denoted by dG(s, t), is the length of the shortest path(s) connecting them in
G. The number of shortest paths between s and t is denoted by σs,t, whereas
the number of shortest paths between s and t that cross a generic node v ∈ V is
denoted by σs,t(v). It is worth noting that since the graph is undirected, dG and σ
are symmetric functions, thus dG(s, t) = dG(t, s), σs,t = σt,s and σs,t(v) = σt,s(v).
Given a generic node w ∈ V, Ps(w) = {u ∈ V : eu,w ∈ E, dG(s, w) = dG(s, u)+1}
is the set of direct predecessors of vertex w on shortest paths from s.

The Betweenness Centrality (BC) of a vertex v ∈ V is defined as follows:

BC(v) =
∑

s �=v �=t∈V

σs,t(v)

σs,t
(5.1)

BC(v) thus represents the fraction of shortest paths containing v among all
the shortest paths in the graph between any generic pair of nodes s and t, summed
over all possible pairs s and t with s 	= v, s 	= t and v 	= t.

We refer to Table 5.1 for a summary of the notation used in this chapter.
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Notation Description

G undirected unweighted input graph

Ĝ a connected sub-graph of G

V set of vertices of G (|V| = n)

V
Ĝ

set of vertices of G inducing Ĝ (set of vertices of Ĝ)

V
Ĝ

set of vertices in V \V
Ĝ

VHSN set of vertices of HSN

E set of edges of G (|E| = m)

es,t edge connecting vertices s and t

dG(s, t) distance between vertices s and t in G

d̂G(s, t) normalized distance between vertices s and t in G

σs,t number of shortest paths between vertices s and t

σs,t(v) number of shortest paths between vertices s and t which cross vertex v

σ̂s,t normalized number of shortest paths between vertices s and t

Ps(v) set of direct predecessors of vertex v on shortest paths from vertex s

Ps(V) set of direct predecessors of vertices in V on shortest paths from vertex s

BC(v) betweenness centrality of vertex v

δs,t(v) pair-dependency of pair of vertices (s, t) on the intermediary vertex v

δs,•(v) dependency score of vertex s on vertex v due to all destination vertices

δs,V
Ĝ
(v) dependency score of vertex s on vertex v due to all destination vertices in V

Ĝ

C set of clusters of G

Ci a generic cluster in C

C(v) the cluster vertex v belongs to

C
∗ set of extended clusters in G

C
∗

i a generic extended cluster in C
∗

K set of all the equivalence classes

Ki an equivalence class

KCi
set of equivalence classes of cluster Ci

P set of all the pivots

ki pivot node of the equivalence class Ki

EN set of all the external nodes

ENCi
set of external nodes of cluster Ci

BN set of all the border nodes

BNCi
set of border nodes of cluster Ci

BNCi
(s, t) set of border nodes of cluster Ci on shortest paths from s ∈ VCi

to t ∈ VCi

bi a generic border node in BN

δγs,•(v) global dependency score of s on v due to all t ∈ VC(s) (same as δγ
s,VC(s)

(v))

δγs,VC(v)
(v) global dependency score of s on v due to all t ∈ (VC(s) ∩VC(v))
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δγs,VC(v)
(VC(v)) global dependency score of s on vertices inVC(v) due to all t ∈ (VC(s)∩VC(v))

δγ(v) sum of all the global dependency scores (global BC) on v

δγ(V) sum of all the global dependency scores (global BC) on vertices in V

δλs,•(v) local dependency score of s on v due to all t ∈ VC(s) = VC(v)

δλs,•(V) local dependency score of s on vertices in V due to all t ∈ VC(s) = VC(v)

δλ(v) sum of all the local dependency scores (local BC) on v

δλ(V) sum of all the local dependency scores (local BC) on vertices in V

δǫs,•(v) dependency score of s on v, as external node, due to all t ∈ VC(s)

δǫs,•(EN) dependency score of s on external nodes EN due to all t ∈ VC(s)

δǫ(v) sum of all the dependency scores on v as external node

δǫ(ENC(s)) sum of all the dependency scores on external nodes of cluster C(s)

Table 5.1: Notation.

5.2.1 Brandes’ Algorithm

Brandes’ algorithm is the fastest known general-purpose sequential algorithm
for computing BC. It is based on the notions of pair-dependency and dependency
score. Let us consider two generic nodes s, t ∈ V. Given shortest paths counts
σs,t(v) and σs,t, the pair-dependency δs,t(v) of a pair s, t on an intermediary node
v ∈ V is defined as follows:

δs,t(v) =
σs,t(v)

σs,t
(5.2)

The pair-dependency represents the fraction of shortest paths between s and
t crossing v. The dependency score δs,•(v) of a vertex s on a vertex v ∈ V is then
defined as follows:

δs,•(v) =
∑

t∈V

δs,t(v) (5.3)

BC can thus be redefined in terms of dependency score:

BC(v) =
∑

s �=v �=t∈V

σs,t(v)

σs,t
=

∑

s �=v �=t∈V

δs,t(v) =
∑

s∈V

δs,•(v) (5.4)

The key observation of Brandes’ algorithm is that the dependency score obeys
a recursive formula. In particular, for each s ∈ V we have:

δs,•(v) =
∑

w:v∈Ps(w)

σs,v
σs,w

· (1 + δs,•(w)) (5.5)

Brandes’ algorithm runs in two phases, exploiting equation 5.5. For each
(source) node s ∈ V, in the first phase, a single-source shortest-paths (SSSP)
algorithm, based on breadth-first search (BFS), is executed on G to find all the
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shortest paths rooted in s. In the second phase, dependency scores are accu-
mulated by backtracking along the discovered shortest paths using the recursive
relation in Equation 5.5. In backtracking, nodes are visited in descending order
of distance from the source. During these two phases, for each node v ∈ V the
algorithm builds and exploits the following data structures: the set of direct pre-
decessors Ps(v) on shortest paths from the source, the distance dG(s, v) from the
source, the number of shortest paths σs,v from the source and the dependency
score δs,•(v) that accumulates the contribution of the source on node v due to all
destinations during the back-propagation step.

5.2.2 Equivalence Class

To reduce the number of explorations and thus lower the BC computation
time, we exploit the concept of equivalence class. Formally, given a connected
sub-graph Ĝ of G induced by the set of nodes V

Ĝ
⊂ V, we define an equivalence

class Ki as any subset of nodes in V
Ĝ

that produce the same dependency score

on all nodes - and for destinations - outside sub-graph Ĝ when used as sources
for SSSP explorations.

By choosing only one representative node (called pivot) for each class, the
correct dependency scores of nodes can be computed by multiplying the scores
computed via the SSSP rooted in the pivot by the cardinality of the class, i.e.,
let ki be a pivot of Ki and v /∈ V

Ĝ
, a node outside sub-graph Ĝ, we have:

∑

s∈Ki

∑

t/∈V
Ĝ

δs,t(v) = |Ki| ·
∑

t/∈V
Ĝ

δki,t(v)

which, according to our notation, can be re-written as:

∑

s∈Ki

δs,V
Ĝ

(v) = |Ki| · δki,VĜ

(v) (5.6)

Equation 5.6 clearly shows that a low number of classes significantly reduces
the computation time, by allowing to skip a high number of SSSP explorations.

5.3 Clustering and BC Computation

A possible technique to identify equivalence classes is to consider reference
nodes. Given a generic sub-graph Ĝ, the reference nodes in V

Ĝ
are those that

need to be traversed to reach, via shortest paths from nodes in V
Ĝ
, any other

node in VĜ.
In this chapter, to easily identify reference nodes, we use clustering, and to in-

crease the chances of identifying a low number of equivalence classes, we consider
a clustering technique based on modularity, which allows reducing the amount
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of connections among groups of nodes belonging to different clusters, and, con-
sequently, lowers the number of reference nodes to be considered for discovering
equivalence classes.

The proposed approach relies on a set of mathematical properties that, for
the sake of readability, are introduced and used in the following subsections, but
proved in Sec. 5.6, at the end of the chapter.

5.3.1 Equivalence Class with Clustering

Let us assume a given graph G is split into a set of clusters C, where a single
cluster Ci is a connected sub-graph of G induced by a set of nodes VCi

⊂ V.
For each clusterCi ∈ C, it is possible to identify a set of border nodes BNCi

. A
border node bi ∈ BNCi

is a node belonging to Ci and having at least one neighbor
belonging to another cluster, as graphically presented in Figure 5.1 (circled nodes
are border nodes).

To discover equivalence classes, for each cluster Ci, we group nodes based on
their distance and number of shortest paths to the border nodes. To this end,
we can leverage the following theorem (see Section 5.6, Theorem 5.6.1, for formal
proof).

Let k ∈ R
+ and l ∈ R, let Ci be a generic cluster of graph G with border

nodes BNCi
, and s, p ∈ VCi

. If ∀ bj ∈ BNCi
σs,bj = k · σp,bj and dG(s, bj) =

dG(p, bj) + l, then δs,VCi
(v) = δp,VCi

(v), ∀v ∈ VCi
.

In other words, any given pair of nodes s, p belonging to the sub-graph induced
by nodes in cluster Ci (i.e., s, p ∈ VCi

), produces the same dependency score on
all nodes v ∈ VCi

for destinations t ∈ VCi
if the distances and the number of

shortest paths from s and p to every border node of Ci are the same, except for
an additive or multiplicative factor, respectively.

From the previous theorem, we can derive the following corollary (formally
proved in Sec. 5.6 as Corollary 5.6.1):
if ∀ bj ∈ BNCi

, σ̂s,bj = σ̂p,bj and d̂G(s, bj) = d̂G(p, bj), then δs,VCi
(v) =

δp,VCi
(v), ∀v ∈ VCi

,

where d̂G(s, bj) represents the normalized distance of the generic node s to the
generic border node bj , defined as follows:

d̂G(s, bj) = dG(s, bj)−minbk∈BNCi
dG(s, bk)

and σ̂s,bj represents the normalized number of shortest paths from the generic
node s to the generic border node bj , and is defined as:

σ̂s,bj = σs,bj/minbk∈BNCi
σs,bk

Normalized distance and normalized shortest paths simplify the identification
of classes since they are characterized by the same vector of normalized distances
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Example of clustered graph

Three sub-graphs originated by clustering the graph

Figure 5.1: Example of clustering.

and shortest paths as explained below with an example and the support of a
graphical representation.

Let G be the simple graph reported in Figure 5.1a, decomposed in three
clusters, each separately shown in Figure 5.1b. We focus on the blue cluster,
referred as C1, in order to illustrate the concept of equivalence class (see Table 5.2
and Figure 5.2).

In C1, nodes 1 and 2 are border nodes (i.e., b1 and b2 in Table 5.2), while
the remaining nodes of C1 are related to b1 and b2 according to the properties
detailed in Table 5.2: for each node the normalized distances and normalized
number of shortest paths to the border nodes are reported. According to our
previous definitions, nodes 3, 4, 6, 14 and 5, 1 can be grouped in two classes
respectively, whereas node 2 is assigned to a singleton class. Nodes 1, 2 and 14
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Figure 5.2: Classes of equivalent nodes in the blue cluster C1

node v d̂C1(v, b1) d̂C1(v, b2) σ̂vb1 σ̂vb2

1 0 2 1 2

2 2 0 2 1

3 0 0 1 1

4 0 0 1 1

5 0 2 1 2

6 0 0 1 1

14 0 0 1 1

Table 5.2: Normalized distances and normalized number of shortest paths for the
blue cluster C1

are the pivots1.

5.3.2 Cluster-based Exact BC Computation

The equivalence classes allow us to compute the dependency score on nodes -
and for destinations - that do not belong to the same cluster of the source node,
which means that the contributions computed via this approach are only partial.

1In our previous version of the algorithm, the pivots were chosen to minimize the error. Here,
as we will explain later, any node in a class can be a pivot.
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To obtain the total BC, we rewrite Equation 5.4 as follows:

BC(v) =
∑

s∈V

δs,•(v)

=
∑

s∈V

∑

t∈VC(s)

δs,t(v) +
∑

s∈V

∑

t/∈VC(s)

δs,t(v)

=
∑

s∈VC(v)

∑

t∈VC(v)

δs,t(v)

︸ ︷︷ ︸

sum of local dependency scores = δλ(v)

+
∑

s∈V

∑

t/∈VC(s)

δs,t(v)

︸ ︷︷ ︸

sum of global dependency scores = δγ(v)

+
∑

s/∈VC(v)

∑

t∈VC(s)

δs,t(v)

︸ ︷︷ ︸

sum of dependency scores on external nodes = δǫ(v)

(5.7)
As a result, we can distinguish two main terms, local and global dependency

scores. The additional term is necessary to properly take into account the pos-
sible existence of shortest paths connecting nodes of the same cluster via nodes
belonging to one or more different clusters, i.e., external nodes.

We define the local dependency score of a node s on a node v, δλs,•(v), as the
sum of pair dependency scores for which source s, the destinations and node v
belong all to the same cluster. We define the local BC of a node v, δλ(v), as the
BC of v computed on the sub-graph C(v).

Local BC is computed using Brandes’ algorithm inside each cluster2, which
generates, as a by-product, additional information (i.e., the number of shortest
paths and distances to border nodes). This information is later used to group
nodes into equivalence classes and to fasten the computation of global dependency
scores, as further discussed (see Subsec. 5.4.2).

The global dependency score of a node s on a node v, δγs,•(v), is the sum of
all the pair dependency scores for which destinations do not belong to the same
cluster of source node s. The global BC of the generic node v, δγ(v), is thus the
sum of the global dependency scores for source node s ranging over the whole set
of nodes V.

The dependency score of a node s on an external node v, i.e. C(v) 	= C(s),
noted as δǫs,•(v), is the sum of all the pair dependency scores for which destinations
belong to the same cluster of the source node s. We denote by δǫ(v) the sum of
all the dependency scores on v, when v is an external node and the sources and
destinations are in the same cluster, different from C(v).

This last term δǫ(v) is equal to zero when the clustering is ideal, i.e. when
all the shortest paths between any pair of nodes of a cluster only contain nodes
from that same cluster. When this condition is not fulfilled, multiple side effects

2As explained later, in the special case where there are external shortest paths in the cluster,
the local BC is actually computed inside the extended cluster.
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due to the presence of external nodes have to be taken into account, as discussed
below.

External Nodes/Shortest Paths

Given a cluster Ci, two nodes s, t ∈ Ci and two border nodes b1, b2 ∈ Ci,
there may exist shortest paths between s and t which exit Ci through b1, cross a
certain number of nodes belonging to other clusters and then re-enter Ci through
b2. We call these shortest paths external shortest paths and the nodes lying on
them which do not belong to Ci, ENCi

, external nodes of Ci. If the existence
of such external shortest paths is neglected, BC computation will be affected
by an error due to incorrect values of the distances and the counts of shortest
paths between pairs of nodes inside the same cluster. Consequently, an error
in the computation of the local BC, δλ, and in the identification of equivalence
classes will be introduced. This was one of the approximation errors affected the
previous version of our algorithm [75]. To remove this intra-cluster error, we join
the idea proposed by the authors in [76]. After clustering, we build a Hierarchical
Sub-Network (HSN), i.e., a sub-graph of G induced by the border nodes of all
the clusters and nodes lying on the intra-cluster shortest paths between pairs of
border nodes of the same cluster.

By retrieving all the shortest paths between pairs of border nodes of the same
cluster via the HSN, we are able to identify possible external nodes for that cluster.
Afterwards, we can extend each cluster with the related external nodes and use the
extended clusters as sub-graphs to identify equivalence classes and pivots. Thus,
local BC δλ can be correctly computed inside these extended clusters instead of
the initial ones.

Formally, an extended cluster C∗
i of a cluster Ci ∈ C is defined as a connected

sub-graph induced by nodes VC∗

i
= VCi

∪ENCi
.

To better understand how the HSN is built and how it is used to form the
extended clusters, we provide an illustrative example. Let us consider again the
clustered graph from Figure 5.1. In cluster C1, nodes 1 and 2 are border nodes,
while node 4 lies on the only intra-cluster shortest path between them. In cluster
C2, nodes 17 and 20 are border nodes and nodes 15, 21, 19 and 16 lie on the
intra-cluster shortest paths between them. Finally, in cluster C3, there is only
border node 8. All the aforementioned nodes build up the HSN (see Figure 5.3a).
If we now consider the shortest paths between border nodes 1 and 2 via the HSN,
we notice that node 17 lies on a shortest path connecting the two former nodes.
Consequently, it represents an external node of C1 (see Figure 5.3b).

Dependency Score of Pivots

From the equivalence class relationship described in Subsec. 5.2.2, a pivot of
such a class is representative only for the dependency scores on nodes v - and
destinations t - which do not belong to its own cluster. In fact, given a cluster
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Hierarchical Sub-Network from clus-
ters in Figure 5.1b

Cluster C1, extended with the external node 17

Figure 5.3: Example of external node found through the HSN.

Ci ∈ C and all its equivalence classes KCi
, from Equation 5.6, we have:

∑

s∈Ki

δs,VCi
(v) = |Ki| · δki,VCi

(v) ∀v ∈ VCi
,Ki ∈ KCi

. (5.8)

This equation can be exploited to speed up computation of BC building on
Brandes’ algorithm and SSSP explorations, but only holds if v ∈ VCi

. Thus,
it cannot be directly applied to correctly compute values of global BC when v
is in the same cluster of the source. Therefore, the algorithm requires a more
elaborated approach to properly and efficiently calculate the contribution from
the pivot of KCi

to the BC of nodes v ∈ VCi
3.

First of all, let us decompose the global dependency scores from Equation 5.7
based on the cluster of node v as follows:

δγ(v) =
∑

s/∈VC(v)

∑

t/∈(VC(v)∪VC(s))

δs,t(v)+
∑

s/∈VC(v)

∑

t∈VC(v)

δs,t(v)+
∑

s∈VC(v)

∑

t/∈VC(v)

δs,t(v)

(5.9)

3In our previous version of the algorithm, we used Equation 5.8 without taking into account
the cluster of v and the pivots were chosen to minimize the error. Here, we avoid such an error
during the computation of global dependency scores by exploiting the properties of undirected
graphs, as explained later.
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The previous equation can be further simplified by considering the following
claim which is proved in Sec. 5.6 as Claim 5.6.1. In undirected graphs:

∑

s∈VC(v)

∑

t/∈VC(v)

δs,t(v) =
∑

s/∈VC(v)

∑

t∈VC(v)

δs,t(v) (5.10)

By relying on Equation 5.10, it becomes possible to replace with zero the sum
of the pair-dependencies δs,t(v) for which s ∈ VC(v) and t ∈ VC(v) in Equation 5.9
and compensate later the lack of this term by doubling the sum of the pair-
dependencies δs,t(v) for which s ∈ VC(v) and t ∈ VC(v).

Global dependency scores in Equation 5.9 are therefore redefined as follows:

δγ(v) =
∑

s/∈VC(v)

∑

t/∈(VC(v)∪VC(s))

δs,t(v) + 2 ·
∑

s/∈VC(v)

∑

t∈VC(v)

δs,t(v) (5.11)

With this further step, we can now use pivots to efficiently compute the exact
global BC. In particular, let δγs,VC(v)

(v) and δγ
s,VC(v)

(v) be the global dependency

scores from node s on node v for destinations not belonging toC(s), but belonging
to C(v), and the global dependency score from node s on node v for destinations
not belonging to C(s) and C(v). Equation 5.11 can be rewritten as follows:

δγ(v) =
∑

s/∈VC(v)

[2 · δγs,VC(v)
(v) + δγ

s,VC(v)
(v))] (5.12)

Therefore, given a cluster Ci ∈ C and all its equivalence classes KCi
, we have:

∀v /∈ VCi
,Ki ∈ KCi

,
∑

s∈Ki

(
2 · δγs,VC(v)

(v) + δγ
s,VC(v)

(v)
)
= |Ki| ·

(
2 · δγki,VC(v)

(v) + δγ
ki,VC(v)

(v)
)

(5.13)

Equation 5.13 means that, during the back propagation phase, we should
distinguish between contributions due to destinations inside the same cluster of v
and contributions due to destinations outside the cluster of v.

For a better understanding of the formulas above, let us consider an illus-
trative example by leveraging again the clustered graph from Figure 5.1 and the
equivalence classes of cluster C1 from Figure 5.2.

The pivot node of the equivalence class composed of nodes {3, 4, 6, 14}
is node 14. According to the proposed approach, we calculate the dependency
scores from node 14 on all nodes of clusters C2 and C3 and multiply them by 4,
avoiding to calculate the dependencies scores from nodes 3, 4 and 6. This way,
the computation time is divided by 4. However, while it is correct to multiply by
4 the dependency scores for nodes in C2 and C3, it is not for nodes belonging
to the same cluster of the pivot (see Figure 5.4a) since nodes 14, 3, 4, 6 of the
class are equivalent only with reference to border nodes of cluster C1 (nodes 1,
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2). Therefore, we can not multiply by 4 the dependency scores on nodes 1, 2, 3,
4, 5, 6 since these scores are not the same when computed, for instance, from
node 14 or node 4. To avoid the problem, we put these dependency scores to 0
and we later compensate during SSSP explorations from a pivot node in C2 and
C3 (see Figure 5.4b).

Problem with nodes belonging to clusters of
pivots

Solution for undirected graphs

Figure 5.4: Global SSSP explorations from pivots

Back-propagation. Differently from Brandes’ algorithm, it is not possible
to directly express the global dependency score4 of a node v, δγs,•(v), in terms
of the global dependency scores of w, δγs,•(w) , where v ∈ Ps(w). Indeed, when
C(v) 	= C(w) (i.e., when crossing a cluster), the set of destinations of w which do
not belong to C(w) can be composed of both destinations belonging to C(v) and
destinations not belonging to C(v): for the former, the pair-dependencies have
to be multiplied by 2, whereas for the latter no further operation is needed (see
Equation 5.13).

To overcome this problem, we apply the classic recursive formula of Brandes’
algorithm (Equation 5.5) on a vector of contributions, propagating the global
dependency scores δγs,•(v). The dimensions of this vector of contributions corre-
spond to the number of clusters, so that the contribution due to a destination t
is assigned to δγs,VC(t)

(v). Formally, we have the following recursive formula:

∀Ci ∈ C \C(s) : δγs,VCi
(v) =

∑

w:v∈Ps(w)

σs,v
σs,w

∗ ( w∈Ci
+ δγs,VCi

(w)), (5.14)

where w∈Ci
represents a boolean variable equal to 1 if w ∈ Ci, 0 otherwise5. At

the end of the back-propagation phase, we put the dependency scores of nodes

4δγs,•(v) is equivalent to δs,VC(s)
(v)

5This is the part of contribution due to w as a destination
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v belonging to the same cluster of the (pivot) source node to 0, whereas the
dependency scores of nodes belonging to the other clusters are computed using
the following formula:

δγ
s,VC(s)

(v) = 2 · δγs,VC(v)
(v) +

∑

Ci �=C(v)

δγs,VCi
(v) (5.15)

Finally, according to Equation 5.13, δγs,•(v) is multiplied by the cardinality of the
equivalence class s belongs to.

5.4 E1C-FastBC Algorithm

In this section, we describe the E1C-FastBC algorithm, the implementation
of the cluster-based solution introduced in the previous section. We also discuss
a parallel version based on MapReduce.

5.4.1 Louvain Clustering

To group nodes in clusters and minimize the number of border nodes, |BN|,
and consequently |BNCi

| for each cluster Ci ∈ C, we exploit a modularity-based
clustering algorithm. Modularity is a scalar metric, defined in the range -1 and 1,
which measures the density of links inside clusters as compared to links between
them: the higher its value, the lower the number of inter-clusters links. Conse-
quently, maximizing the modularity score reduces the number of border nodes in
the clusters. This allows not only to keep low the complexity of the algorithm
by reducing the size of the HSN and the number of nodes against which topolog-
ical properties (normalized distances and normalized number of shortest paths)
have to be computed, but also to maximise the chances of having few equivalence
classes, each with many nodes, since smaller vectors (those storing the topologi-
cal properties) increase the probability of having linear dependency among them
and consequently a smaller number of classes. This is highly beneficial from the
perspective of reducing SSSP explorations.

The Louvain method [92] is an example of modularity-based clustering tech-
nique. Its time complexity of O(nlog2n) is very good compared to that of Brandes’
algorithm. The Louvain algorithm runs in two phases which are iteratively re-
peated. In the first phase, each node is initially assigned to its own cluster and
moved in the cluster of the neighbor which ensures the maximum increase of mod-
ularity, with respect to the previous configuration. This phase terminates when
all nodes have been explored and no further modularity improvement is possible.
In the second phase, a new graph is generated by considering the identified clus-
ters as nodes, and the loops inside them as self-loops. Phase one is then repeated
using the graph generated by the second phase. The two phases are iterated until
a maximum of modularity is reached and a hierarchical structure of clusters has
been formed. The output of the algorithm, and consequently the modularity of
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the identified clusters, may be affected by the order nodes are evaluated with.
This order can also influence the computation time. To improve solutions that
are sub-optimal in terms of modularity, multiple runs of the algorithm can be
performed over the same network, each associated to a different order for the
analysis of the nodes.

5.4.2 Algorithm Implementation

Algorithm 2 reports the pseudo-code of the E1C-FastBC algorithm taking as
input an undirected unweighted graphG and producing in output the exact values
of BC for every node in V. The algorithm is composed of several phases. We
provide a detailed description for all the intermediate phases, while the associated
pseudo-code is provided for the most relevant ones in Algorithm 2.

Algorithm 2 Pseudo-code of the E1C-FastBC algorithm

1: function E1CFastBC(G)

2: C ← modularityBasedClustering(G)

3: BN ← findBorderNodes(G,C)

4: VHSN ← buildHSN(BN,C,G)

5: EN ← findExternalNodes(VHSN ,C,BN,G)

6: C
* ← updateClusters(C,EN)

7: δλ, δǫ, σ̂, d̂ ← computeLocalδ(C∗,C,EN,BN,G)

8: K ← findClasses(σ̂, d̂)

9: δγ ← computeGlobalδ(K,G,C)

10: for v ← 1,V do ⊲ For all nodes

11: BC(v) ← δλ(v) + δγ(v) + δǫ(v)

12: end for

13: return BC

14: end function

At line 2, the Louvain, modularity-based clustering algorithm is exploited for
splitting graph G into a set of clusters C (see Subsection 5.4.1). These clusters
do not need to be explicitly stored in a dedicated data structure as they represent
a view of the starting graph, filtered through a membership information stored in
every node.

At line 3, we identify the set of border nodes BN by checking, for each node
v ∈ V, the existence of at least one neighbor belonging to a different cluster.

At line 4, the nodes building up the HSN, referred as VHSN , are retrieved.
As detailed in the pseudo-code of Algorithm 3, to build the HSN we first execute
|BN| local BFS, each rooted in a border node used as source, i.e., s ∈ BN. The
term local here refers to the fact that only nodes belonging to the same cluster
of s, i.e., VC(s), are crossed during the explorations. Each BFS returns the set
of direct predecessors Ps(VC(s)) of every node in VC(s) on shortest paths from s.
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These sets are later used at line 6 of Algorithm 3 to cross the discovered shortest
paths backwards starting from destinations t.

Each traversal returns the set of nodes lying on the shortest paths between a
pair of border nodes of the same cluster: these nodes, together with the source
and destination border nodes themselves, belong to the HSN and are therefore
added to the set of all its nodes, i.e., VHSN .

Algorithm 3 Pseudo-code of building HSN algorithm

1: function buildHSN(BN,C,G)

2: for s ← BN do

3: Ps(VC(s)) ← BFS(s,G,VC(s))

4: end for

5: for s, t ← BN where C(s) == C(t) do

6: VHSN ← VHSN

⋃
crossSPBackwards(t,Ps(VC(s)))

7: end for

8: return VHSN

9: end function

At line 5, we identify external nodes EN as detailed in Algorithm 4. First, a
BFS is executed from each source s ∈ BN. In these explorations, only nodes of
the HSN, VHSN , are considered. Each BFS returns the set of direct predecessors
of every node in VHSN on shortest paths from s, i.e., Ps(VHSN ). Similarly to the
previous step, shortest paths are crossed backwards from destination t to source s
using the sets of predecessors and every crossed node not belonging to the cluster
of s and t is added to the set of external node EN.

Algorithm 4 Pseudo-code of external nodes identification algorithm

1: function findExternalNodes(VHSN ,C,BN,G)

2: for s ← BN do

3: Ps(VHSN ) ← BFS(s,G,VHSN )

4: end for

5: for s, t ← BN where C(s) == C(t) do

6: EN ← EN
⋃

crossSPBackwards(t,Ps(VHSN ))

7: end for

8: return EN

9: end function

The extended clusters C∗ are generated at line 6 of Algorithm 2 from the
original clusters, updated with the external nodes.

At line 7, we compute in each (extended) cluster, i) the local BC on every
node, i.e., δλ, ii) BC contributions δǫ on external nodes, and iii) the topological
properties of every node, i.e., the normalized distances d̂ and the normalized
numbers of shortest paths σ̂, computed with respect to the set of border nodes
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belonging to the cluster of the node. These topological properties are subsequently
used at line 8 to find equivalence classes (see Subsec. 5.3.1). A modified version
of Brandes’ algorithm enables the computation of all these metrics, as described
in Algorithm 5.

The only difference compared to the canonical implementation of Brandes’
algorithm is related to the back-propagation phase: in our case, the contribu-
tions due to the external nodes (as destinations) are not propagated, since they
represent non-local destinations.

Algorithm 5 Pseudo-code of local BC computation

1: function computeLocalδ(C∗,C,EN,BN,G)

2: for s ← V do

3: δλs•(VC(s)), δ
ǫ
s•(ENC(s)), σ̂s,BNC(s)

, d̂G(s,BNC(s))) ← BrandesModifiedV 1(

s,C∗(s),C(s),BN,G)

4: δλ(VC(s)) ← δλ(VC(s)) + δλs•(VC(s))

5: δǫ(ENC(s)) ← δǫ(ENC(s)) + δǫs•(ENC(s))

6: end for

7: return δλ, δǫ, σ̂, d̂

8: end function

At line 9, we compute the global BC, δγ . As shown in Algorithm 6, a second
modified version of Brandes’ algorithm, which exploits Equation 5.13, Equation
5.14 and Equation 5.15, is run from one pivot ki, randomly selected from each class
Ki ∈ K. From the explorations rooted at the class pivots, the global dependency
scores, δγ

ki,VC(ki)
(V) are computed on every other node v of the graph. The global

BC of every node v is then obtained by summing the global dependency scores
deriving from all the pivots.

Finally, at lines 10-12 of Algorithm 2, all the previously computed partial
terms are aggregated via a sum operation to obtain the exact BC values for each
node.

Algorithm 6 Pseudo-code of global BC computation

1: function computeGlobalδ(K,G,C)

2: for Ki ← K do ⊲ For all classes

3: ki ← random(Ki)

4: δγ
ki,VC(ki)

(V) ← BrandesModifiedV 2(ki,G,C)

5: δγ(VC(ki)) ← δγ(VC(ki)) + δγ
ki,VC(ki)

(VC(ki)) · |Ki|

6: end for

7: return δγ

8: end function
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5.4.3 Parallel Implementation with Map/Reduce

The proposed E1C-FastBC algorithm can be parallelized since the execution of
its sub-algorithms is highly parallelizable, with the only exception of the selected
clustering algorithm. We can exploit data parallelism by performing the same
operations on different partitions of a given graph leveraging the MapReduce
paradigm since most of the computations are applied to each node of the graph.
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Figure 5.5: Map-reduce, Spark-based description of E1C-FastBC.

The main execution flow is represented by solid arrows, while dashed ones represent
broadcast variables. Jobs and tasks are depicted as rounded rectangles and cubes,

respectively. RDDs are shown as non-rounded rectangles.

Figure 5.5 reports the representation of the parallel version of E1C-FastBC,
built using some key concepts introduced in Apache Spark, a popular big data
processing engine that we use to run the tests reported in the experimental eval-
uation. Spark applications are generally defined in terms of transformations and
actions that are applied to Resilient Distributed Datasets (RDDs). RDDs are
immutable collections of data partitioned across the worker nodes of a cluster.
Transformations and actions can be processed in parallel on such partitions. In
particular, transformations are functions that produce new RDDs starting from
the ones they are invoked on, whereas actions are functions that return the result
of a computation performed over an RDD.

A Spark application is a collection of jobs, each created to perform an action,
and executed by one or more executors deployed on the worker nodes of the cluster
by running, in parallel, tasks over the partitions of an RDD. The tasks of the jobs
encapsulate all the transformations that have to be applied to RDDs. The latter
are then collected at the end of the jobs by the master node of a cluster: such node
hosts the driver, which is the process responsible for running the application.
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To process RDDs, jobs may also require other inputs that can possibly be
shared across executors through the so-called broadcast variables : they are lazily
copied between worker nodes during execution.

The parallel version of E1C-FastBC is a sequence of jobs, each implementing
one or more sub-algorithms of the algorithm, as detailed in Figure 5.5. The main
execution flow is represented with solid arrows, whereas, with dashed arrows, we
present data that are copied via broadcast among all Spark workers and needed
to carry out the jobs. Each job executes a specific type of task, as illustrated in
Figure 5.5, and receives two classes of inputs: i) RDDs, which are used to guide
parallelism, i.e., the number of tasks, and ii) broadcast variables, which are used
by every single task to process its own partition. In the following, we describe
each job in terms tasks behaviors and needed inputs.

• Job 1 organizes the graph into clusters (Algorithm 2, line 2) by performing
parallel executions of the Louvain method, using different configurations
with the aim of selecting the one that produces the clustering with the best
modularity score.

The job takes as input the graph, passed as broadcast variable, and outputs
the clusters. The starting RDD, which does not contain data, only enables
parallel executions of multiple runs of the Louvain method.

• Job 2 identifies border nodes (Algorithm 2, line 3), by checking for each
node the existence of at least one neighbor belonging to a different cluster. It
requires as input the set of clusters and the graph, both passed as broadcast
variables. The starting RDD contains all the nodes to analyze, and it is
built from the whole set of graph vertices

• Job 3 retrieves the HSN nodes (Algorithm 2, line 4), by performing, for each
border node, a constrained (intra-cluster) BFS. It needs the border nodes,
the clusters and the graph as its inputs. A broadcast variable is used for
all of them, but the set of border nodes is also used to build the starting
RDD. Nevertheless, each execution requires the availability of the whole set
of border nodes i) to avoid leaving clusters while performing BFSs and ii)
to check whether a destination is a border node.

• Job 4 discovers the external nodes (Algorithm 2, lines 5-6) through BFSs
bound to nodes belonging to the HSN. Consequently, compared to Job 3,
it requires HSN nodes as additional input, passed in the form of broadcast
variable, while the starting RDD is the same as that of Job 3. At the end,
the job outputs the clusters extended with external nodes. .

• Job 5 computes the local BC, the BC on external nodes, the normalized
distances and normalized numbers of shortest paths (Algorithm 2, line 7).
The job receives the graph, clusters, the extended clusters and the border
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nodes as inputs, all transferred as broadcast variables6. The starting RDD
of this job contains all the nodes of the graph.

• Job 6 identifies the equivalence classes and their pivots (Algorithm 2, line 8).
The starting RDD contains the topological properties (normalized distances
and normalized number of shortest paths) per node, while the inputs passed
as broadcast variables are the same as the previous job.

• Job 7 computes the global BC (Algorithm 2, line 9) by using a starting RDD
containing pairs composed of a pivot and the cardinality of its equivalence
class. The only inputs passed via broadcast variables are the graph and the
clusters.

Final BC values are obtained by aggregating all the previously calculated
values. This step is performed entirely on the driver in a sequential manner. In
all cases, except for Job 1, we use a node-level grain: all functions encapsulated
in the various tasks are defined to work starting from a single node (simple node,
border node or pivot).

Figure 5.6 reports a detailed description of Job 2 to exemplify how a job is
performed. Solid arrows represent elaboration phases, while the dashed ones rep-
resent data transfer phases. The dotted box shows the set of transformations
applied by the tasks hosted on the executors over the different partitions. The
first dashed box reports the source code related to the job, whereas the second
reports the source code of the first map task in the pipeline. The job is triggered
by the collect action. The driver builds the initial RDD by executing the paral-
lelize method (1). The number of partitions is equal to the number of executors,
i.e., each executor works on a single partition. Partitions are sent to executors
along with the operations to be performed on them (2). These operations are
encapsulated in a task. In particular, the first map operation (3a) generates
an intermediate RDD of key-value pairs where the second element is the unique
node identifier and the first element is a boolean value (true/false) that depends
on whether the node is a border node or not. Then, the filter operation creates
a new intermediate RDD containing only the pairs with the key equal to true
(3b). Finally, the second map operation produces an RDD by extracting only the
second element of the previous pairs (3c). Hence, the border nodes are collected
on the driver (4) and stored in a set (5).

5.5 Experimental Evaluation

In this section, we report the main results of the experimental evaluation we
conducted by testing the algorithm with both sequential and parallel executions
on different types of graphs, and with different graphs and sizes.

6We do not explicitly pass the set of external nodes as it is trivial to recognize them by
leveraging the extended clusters.
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We compare the execution times obtained with our algorithm to those ob-
tained with other algorithms by using the Algorithmic Speedup (AS). Given two
algorithms, a1 and a2, the algorithmic speedup of a1 over a2 with p cores, noted

as AS
a1/a2
p , is defined as T a2

p /T a1
p , where T a2

p and T a1
p are the computation times

obtained with p cores using algorithms a2 and a1, respectively. Hence, the larger
the value of AS, the faster a1 is compared to a2 with the same computing re-
sources. For example, AS = 2 means that the time taken by a1 is half the time
taken by a2 and therefore that a1 is two times faster than a2.

In particular, we will compare the E1C-FastBC algorithm, labelled with E ,
with Brandes’ algorithm, labelled as B and with the solution proposed in [76],
labelled with H. We chose this algorithm for comparison because it belongs to the
same category as ours (cluster-based computation) and it addresses the problem
of exact BC computation.

However, due to the unavailability of source/executable code for H, we only
consider the AS metric in sequential mode, by relying on the indications provided
by the authors in this chapter for its computation (see Equation 7 in [76]).
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To further explore the performance of our solution, we also analyze the effi-
ciency of the E1C-FastBC algorithm, based on the canonical definition of speedup.
Specifically, the speedup obtained with p cores is defined as Sp = Ts/Tp, where Ts

is the computation time in sequential mode and Tp is the computation time with
p cores. The efficiency with p cores, noted as Ep, is then defined as Sp/p.

Efficiency Ep may influence the AS metric as demonstrated by the following
analysis. From the definition of speedup we can write that T a2

p = T a2
s /Sa2

p , where
T a2
s and Sa2

p are the execution time in sequential mode and the speedup obtained
with p cores of algorithm a2. Similarly, we can write that T a1

p = T a1
s /Sa1

p . By

using these equations in the definition of the AS metric, we have that AS
a1/a2
p =

(T a2
s /T a1

s ) ·(Sa1
p /Sa2

p ). Since efficiency, for a given number of cores p, is Sa1
p /Sa2

p =

Ea1
p /Ea2

p , we have: AS
a1/a2
p = (T a2

s /T a1
s ) · (Ea1

p /Ea2
p ).

The relationship between AS and Ep suggests that if a1 and a2 have compara-
ble efficiency with p cores, then the AS only depends on the ratio of the execution
times of the two algorithms in sequential mode, thus providing interesting insights
to comparatively analyze the two different solutions.

Finally, we also provide a breakdown analysis of the computation time of our
solution, useful to investigate the contribution of each composing sub-algorithms.
In all reported tests, we checked the accuracy of our solution by always observing
zero error on BC values.

5.5.1 Datasets

In our tests, we consider both synthetic and real graphs.
For the first category, we focus on scale-free graphs generated using the im-

plementation of the Barabási-Albert model provided by the Python library Net-
workX. According to that model, a graph of n nodes is grown by attaching new
nodes, one at a time, each with m′ edges that are preferentially attached to ex-
isting nodes with high degree. In our case, m′, which is called the preferential
attachment coefficient, is equal to 1. This way, we have graphs with m = n − 1
edges and an average degree approximately equal to 2, i.e., double the preferen-
tial attachment coefficient. This choice is motivated by the features of the current
implementation of our algorithm that benefits of high modularity. In other words,
this class of dataset is considered as best-case scenario. However, as mentioned
in the introduction, this does not limit the applicability of our solution because
many real-world systems can be represented with the Barabási-Albert model. In
particular, to analyze the algorithm in terms of performance and scalability, we
generate graphs with different sizes (see Table 5.3).

For the second category, we focus on some real graphs8 available in public
datasets. Table 5.3 reports all the graphs we use, together with some relevant

7This dataset was supplied by the French National Institute of Geographic Information (IGN).
https://www.ign.fr

8For each graph, we extract the largest connected component. Then, the latter is converted
in an unweighted undirected graph.
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Graph n m davg dmax ccavg

Synthetic

barabási-albert 6,250 6,249 1.999 126 0.000

barabási-albert 12,500 12,499 ” 225 ”

barabási-albert 25,000 24,999 ” 344 ”

barabási-albert 50,000 49,999 ” 463 ”

barabási-albert 100,000 99,999 ” 1,138 ”

barabási-albert 200,000 199,999 ” 676 ”

barabási-albert 400,000 399,999 ” 1,142 ”

barabási-albert 800,000 799,999 ” 1,587 ”

Real

web-webbase-2001[96] 16,062 25,593 3.187 1,679 0.224

ego-twitter[97] 22,322 31,823 2.851 238 0.072

internet[96] 124,651 193,620 3.107 151 0.062

lyon-road-network7 156,102 178,845 2.291 8 0.017

email-euAll[98] 224,832 339,925 3.024 7,636 0.079

Table 5.3: Topological information of synthetic & real graphs.

The names of the graphs are given in the first column, whereas the number of nodes and
edges are given in the second and third columns. davg and dmax are the average and max
degree, respectively. ccavg is the average clustering coefficient.

properties. In particular, for each graph we consider the average degree (davg),
the max degree (dmax) and the average clustering coefficient (ccavg).

All the datasets, except the one related to the Lyon road network, are scale-free
graphs.

5.5.2 Experimentation Testbed

The platform for our experiments is a server machine with 128 GB of RAM
and 2 sockets Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, with 14 physical
cores and 2 threads per core for a total of 28 logical cores per socket and 56 virtual
cores in hyper threading, running Linux Debian as operating system.

Both Brandes’ algorithm and E1C-FastBC are implemented in Scala and ex-
ecuted using Apache Spark 2.2.0 in standalone mode. In particular, we deploy
a spark cluster composed of the master node and one worker node holding all
available resources (56 cores and approximately 125GB of memory). Tests are
performed employing a driver with one core and 30GB of memory, and a vari-
able number of executors having a variable amount of memory and computing
resources. Specifically, except for the case with one core (sequential execution)
where there is only one executor that holds all the resources (i.e., the single core
and 90GB of memory), we fix the total number of cores for the experimenta-
tion and instantiate a number of executors such that each of them has 5 cores.
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The amount of memory is divided evenly among executors. For instance, with 5
cores we only deploy one executor with 90GB of memory, while with 10 cores two
executors, each with 45GB of memory, are deployed.

The RDDs are decomposed in a number of partitions equal to the total number
of cores.

5.5.3 Synthetic Graphs Analysis

Figure 5.7 shows the algorithmic speedup of E1C-FastBC over Brandes’ algo-

rithm, AS
E/B
p , obtained on the synthetic graphs in both sequential and parallel

modes. In particular, we double the number of nodes from 25,000 to 800,000,
and we consider a number of cores p equals to 1, 5, 10, 15, 20 and 25. We esti-
mate by log-log regression the computation times with Brandes’ algorithm for the
graphs with 400,000 and 800,000 nodes, since executions would require weeks to
complete, whereas our algorithm ends in maximum 31.5 minutes and 1.64 hours,
respectively (sequential mode).

Figure 5.7: Comparison with Brandes’ algorithm. Algorithmic speedup
analysis -

AS
E/B
p=[1,5,10,15,20,25]

As highlighted by Figure 5.7, AS
E/B
p increases with the size of the graph,

meaning that E1C-FastBC is not only faster than Brandes’ algorithm but its
speedup grows with larger graphs. This is due to the fact that the computation
of our algorithm is strongly dependent on the number of border nodes (|BN|),
pivots (|K|) and external nodes (|EN|), in addition to the number of nodes (n)
and edges (m). The first two variables increase slowly compared to the number
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of nodes and edges, while the third is almost always zero (only in one case it

was equal to 2). The drawback is that AS
E/B
p decreases as the number of cores

increases. This behaviour is due to the fact that the Brandes’ algorithm is more
efficient than E1C-FastBC (see Figure 5.8). This means that the ratio Ea1

p /Ea2
p

in the relationship between the AS metric and the efficiency is lower than 1.
Consequently, the AS value in the sequential case is not preserved as the number
of cores increases. However, as the following efficiency analysis will further clarify,
this does not mean that E1C-FastBC is less scalable than Brandes’ algorithm, but
rather that it needs very large graphs to better exploit the available computing
resources. This statement is also confirmed by Figure 5.7, which clearly shows
that when the graph size is 400,000, a higher number of cores performs even better

than a smaller one: in particular, we have that the AS
E/B
p is better with 5 cores

than with 1 core. To have a similar behavior even for a number of cores greater
than 5, we should consider larger graphs.

To better understand the performance of E1C-FastBC, we investigate its effi-
ciency with respect to that of Brandes’ algorithm. Figure 5.8 reports the results
of the efficiency analysis performed for the two algorithms. In both cases, it is
possible to observe that: i) the efficiency decreases as the number of cores in-
creases and ii) for a given number of cores, it increases as the number of nodes
increases.

However, it is worth to highlight that in the efficiency analysis, we use different
but overlapping ranges of values for the number of nodes. In particular, for our
solution we select larger graphs since we aim at showing that our algorithm scale
well especially with very large graphs. In fact, the efficiency trend is almost the
same in the two cases reported in Figure 5.8. Moreover, given the maximum
values of the number of nodes for the two algorithms (800,000 for ours, 200,000
for Brandes’), efficiency values are approximately the same with 5 cores (i.e., the
first considered parallel configuration) but significantly diverge as the number of
cores increases. In particular, efficiency of E1C-FastBC decreases with a higher
rate.

The reason for this behaviour lies in the reduced amount of computation re-
quired by our solution. Indeed, pivots allow to significantly decrease the number
of (modified) Brandes’ SSSP explorations performed on the whole graph, which
represent the heaviest part of the whole computation (see Figs. 5.13 and 5.14),
thus reducing the workload of each core.

Our solution also introduces another benefit: it allows to mitigate the vari-
ability of the computation times due to the different topological characteristics
of the graphs and to the partitioning of data performed by Spark during execu-
tions. Indeed, there may exist some partitions of the RDDs characterized by a
high concentration of nodes that generate the most complex shortest path trees.

The time required to process these partitions directly impacts the time re-
quired to process the whole RDD, since partitions are processed in parallel. How-
ever, Spark tasks process each single partition sequentially. This aspect, combined
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E1C-FastBC algorithm

Brandes’ algorithm

Figure 5.8: Comparison with Brandes’ algorithm. Efficiency analysis -
Ep=[1,5,10,15,20,25]

with the fact that the number of partitions of an RDD is always equal to the num-
ber of cores and the default partitioning scheme of Spark distributes data evenly
across the partitions, explains the punctual efficiency drops that can be observed
in the plot related to Brandes’ algorithm, when using graphs with 50,000 and
100,000 nodes and a low number of cores (see Figure 5.8b).

Figure 5.9 reports the algorithmic speedup of E1C-FastBC over Brandes’ al-

gorithm, AS
E/B
p=1 , alongside with the algorithmic speedup of the approach in [76]

over Brandes, AS
H/B
p=1 , on synthetic graphs and in sequential settings. AS

H/B
p=1 is
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Figure 5.9: Comparison with the solution proposed in [76]. Algorithmic speedup
analysis with synthetic graphs in sequential mode -

AS
E/B
p=1 and AS

H/B
p=1 . AS

H/B
p=1

is always equal to 1 for synthetic graphs (see Subsection

5.5.3). We therefore add only one single zoomed bar in the figure just to make it visible
to the reader.

analytically computed based on Equation 7 provided in [76].

Using such equation, it is possible to observe that: i) AS
H/B
p=1 depends on the

number of clusters (|C|) and the average degree (davg), and ii) when |C| + 2 ≫
davg/2, it can be approximated with davg/2. Therefore, since for synthetic graphs
the average degree is constant and the number of clusters increases with the

number of nodes, AS
H/B
p=1 is always approximately equal to 1 (the average degree

is 2). In particular, the higher the number of clusters, the closer to 1 the AS
H/B
p=1 .

This means that the algorithm proposed in [76] is not able to improve that of
Brandes. Conversely, ours is able to do it by a large multiplicative factor. We can
thus conclude that our solution always outperforms the one in [76] with synthetic
graphs.

5.5.4 Real Graphs Analysis

Figure 5.10 reports the results of the analysis of AS
E/B
p=1 and AS

H/B
p=1 carried

out on real graphs. AS
H/B
p=1 is computed again using Equation 7 provided in [76].

In all cases, our solution outperforms the one in [76].
To further confirm the considerations on the scalability of our solution, re-

ported in the previous section, we analyze in the following both the algorithmic
speedup and efficiency values of E1C-FastBC on the lyon-road-network graph,
for which we observed a very high number of pivots (about 60% of the number
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Figure 5.10: Comparison with the solution proposed in [76]. Algorithmic speedup
analysis with real graphs in sequential mode -

AS
E/B
p=1 and AS

H/B
p=1

of nodes) and the lowest algorithmic speedup factor. As shown in Figure 5.11,
the AS is always greater than 1, thus confirming the usefulness of our solution,
although the reported values are not comparable to those obtained on synthetic
graphs (see Figure 5.7) with a similar number of nodes (100,000 and 200,000). In
spite of this, the algorithm becomes more scalable and efficient than in the case
of synthetic graphs with 100,000 and 200,000 nodes due to the increased amount
of computation resulting from the higher number of border nodes, pivots and ex-
ternal nodes (see Figure 5.12). Also in this case, by considering the two figures
(Figure 5.11 and Figure 5.12), it is possible to note the dependency relationship
between the AS metric and the efficiency. In particular, going from 15 to 20
cores the difference between efficiency values for the Brandes’ algorithm and of
E1C-FastBC decreases while AS increases.

5.5.5 Breakdown of Computation Time

In this section, we analyze the contributions of the different component sub-
algorithms to the overall computation time of E1C-FastBC. The goal of this anal-
ysis is to find bottlenecks that limit scalability and, consequently, room for further
improvements.

We split the algorithm in seven parts (see Algorithm 2): Dataset Reading,
Louvain Clustering (line 2), HSN & External Nodes (lines 3-6), Local BC & Top.
Props. (line 7), Classes & Pivots (line 8), Global BC (line 9) and Final Accumu-
lation (lines 10-12). Figures 5.13 and 5.14 report the time taken by each of the
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Figure 5.11: Algorithmic speedup analysis for lyon-road-network graph in
parallel mode -

AS
E/B
p=[1,5,10,15,20,25]

Figure 5.12: Efficiency analysis for lyon-road-network graph -
Ep=[1,5,10,15,20,25]. Comparison with synthetic graphs having similar size (100k and

200k nodes) and with Brandes’ algorithm on the same graph.

parts above. Results have been obtained by running our algorithm on the syn-
thetic graphs with 100,000 and 200,000 nodes in sequential and parallel modes.
The level of parallelism (i.e., total number of exploited cores) is indicated on the
x-axis of the figures.

The parts exhibiting the highest computation time are Global BC and Local
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BC & Top. Props.. They both show a very good scalability as increasing resources
up to the maximum limit (25 cores) translates into a reduction in time.

The third heaviest part is Louvain Clustering. Its computation time does
not keep decreasing when augmenting parallelism beyond 5 cores. This is due
to the fact that we have chosen to launch 10 parallel executions of the Louvain
method in different configurations with the aim of selecting the one that produces
the clustering with the best modularity score. This aspect highlights a potential
bottleneck, since the computation time of Louvain Clustering at high levels of
parallelism becomes comparable with those related to Global BC and Local BC
& Top. Props..

As already discussed in Subsec. 5.5.3, the number of external nodes for our
synthetic graphs is almost always equal to zero. Therefore, the contribution of
HSN & External Nodes is not relevant as well as those of Classes & Pivots and Fi-
nal Accumulation. In particular, the latter is a sequential step entirely performed
on the driver. Therefore it does not vary with the number of cores.

For Dataset Reading, computation time slowly increases with the number of
cores due to the overhead introduced for creating the initial RDD, by reading data
from the file system, with a number of partitions equal to the number of cores.
Even for this step, the computation time becomes comparable with those obtained
for Local BC & Top. Props. and Global BC when the parallelism increases.

It is worth to note that synthetic graphs represent a sort of best-case scenario:
the very low number of border nodes and pivots, together with the almost com-
plete absence of external nodes, allows for excellent performance. A more realistic
scenario is analyzed in the following, by focusing on a real graph.

Figure 5.15 reports the time taken by each part of the algorithm on the ego-
twitter graph9, in sequential and parallel modes. In his case, HSN & External
Nodes becomes the second heaviest contribution with values comparable to those
of Local BC & Top. Props.. This is mainly due to the increased number of
external nodes and confirms the importance of achieving ideal clustering. Similar
considerations as those made for synthetic graphs apply as well to the remaining
contributions from the breakdown analysis related to the ego-twitter graph.

5.6 Mathematical Foundations

As discussed in Sec. 5.3, our algorithm relies on multiple mathematical prop-
erties to allow for the exact fast computation of BC. In the following, we provide
the mathematical proofs of the mathematical foundation (theorem, corollary and
claim) at the basis our algorithm. In theorem 5.6.1, we prove that two nodes of
the same cluster that satisfy some properties produce the same dependency score
on nodes outside the cluster for destinations that are outside the cluster.

9We do not use lyon-road-network graph as in Subsection 5.5.4 because of the Out of Memory
error that arise when running the algorithm in profiling mode.
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Figure 5.13: Breakdown analysis of computation time on synthetic graph with
100,000 nodes

Figure 5.14: Breakdown analysis of computation time on synthetic graph with
200,000 nodes

Theorem 5.6.1. Let k ∈ R
+ and l ∈ R, let Ci be a generic cluster of graph G

with border nodes BNCi
and s, p ∈ VCi

. If ∀ bj ∈ BNCi
σs,bj = k · σp,bj and
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Figure 5.15: Breakdown analysis of computation time on real graph ego-twitter

dG(s, bj) = dG(p, bj) + l, then δs,VCi
(v) = δp,VCi

(v), ∀v ∈ VCi
.

Proof. By rewriting the statement of the theorem as follows:

δs,VCi
(v) = δp,VCi

(v) ∀v ∈ VCi
⇐⇒

∑

t/∈VCi

σs,t(v)

σs,t
=

∑

t/∈VCi

σp,t(v)

σp,t
∀v ∈ VCi

(5.16)
we can prove it by proving that the two following conditions:

σs,t(v) = k · σp,t(v) ∀v, t ∈ VCi
(5.17)

and
σs,t = k · σp,t ∀t ∈ VCi

(5.18)

hold under the hypotheses of the theorem.
Let us first prove the following Lemma 5.6.1, which permits to express the

relationship on the distances to cluster border nodes (i.e., dG(s, bj) = dG(p, bj)+l)
as an equivalence of the sets of border nodes traversed from s and p to reach nodes
t outside the given cluster.

Lemma 5.6.1. Let BNCi
(u, t) ⊆ BNCi

denote the set of border nodes of cluster
Ci on the shortest paths from u ∈ VCi

to t ∈ VCi
. Given a constant l ∈ R

and two nodes s, p ∈ VCi
, if dG(s, bj) = dG(p, bj) + l ∀ bj ∈ BNCi

then
BNCi

(s, t) = BNCi
(p, t).
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Proof. Let us consider two border nodes bj , bk ∈ BNCi
with bj ∈ BNCi

(s, t) and
bk /∈ BNCi

(s, t). By definition of shortest path between two nodes, we have:

dG(s, bk) + dG(bk, t) > dG(s, t) (5.19)

Given that bj ∈ BNCi
(s, t) by hypothesis, Equation 5.19 can be easily re-written

as follows:

dG(s, bk) + dG(bk, t) > dG(s, t) ⇐⇒ dG(s, bk) + dG(bk, t) > dG(s, bj)

+ dG(bj , t) (5.20)

Now, by relying on the hypothesis of the lemma, we exploit the relationships
holding between the distances of generic nodes s and p to each border node in
BNCi

, thus obtaining:

dG(s, bk) + dG(bk, t) > dG(s, t) ⇐⇒ dG(p, bk) + l + dG(bk, t) > dG(p, bj)

+ l + dG(bj , t)

⇐⇒ dG(p, bk) + dG(bk, t) > dG(p, bj)

+ dG(bj , t) (5.21)

From Equation 5.21, we can derive that bk does not belong to any shortest path
between p and t, i.e.:

dG(s, bk) + dG(bk, t) > dG(s, t) ⇐⇒ bk /∈ BNCi
(p, t)

As the relation above holds for any node bk ∈ BNCi
which does not belong to

any shortest path between s and t, we can conclude that:

BNCi
(p, t) ⊆ BNCi

(s, t) (5.22)

Likewise, it is possible to prove that if bj ∈ BNCi
(p, t) and bk /∈ BNCi

(p, t), we
have:

dG(p, bk) + dG(bk, t) > dG(p, t) ⇐⇒ BNCi
(s, t) ⊆ BNCi

(p, t) (5.23)

Therefore, from Equation 5.22 and Equation 5.23, we can conclude that the fol-
lowing relationship holds:

BNCi
(s, t) ⊆ BNCi

(p, t) AND BNCi
(p, t) ⊆ BNCi

(s, t)

⇐⇒

BNCi
(s, t) = BNCi

(p, t) (5.24)

which proves the lemma.
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To complete the proof of Theorem 5.6.1, we need now to prove Equation 5.17
and Equation 5.18. To that purpose, we consider the following lemma.

Lemma 5.6.2. Let s be a node of cluster Ci, and t any node in VCi
. BNCi

(s, t)
is the set of border nodes of cluster Ci that belong to the shortest paths between s
and t. If BNCi

(s, t) = BNCi
(p, t), then, ∀t ∈ VCi

, σs,t = k · σp,t and σs,t(v) =
k · σp,t(v).

Proof. By leveraging Bellman’s criterion:

σs,t =
∑

bj∈BNCi
(s,t)

σs,bj · σbj ,t. (5.25)

From the hypothesis of Theorem 5.6.1, we know that σs,bj = k · σp,bj ∀bj ∈ BNCi

and equivalently ∀bj ∈ BN(s, t), as BN(s, t) ⊆ BNCi
. Therefore, Equation 5.25

becomes:
σs,t =

∑

bj∈BNCi(s,t)

k · σp,bj · σbj ,t (5.26)

By the hypotheses of this lemma, we also know that BNCi
(s, t) = BNCi

(p, t).
Thus, we have:

∑

bj∈BNCi(s,t)

k · σp,bj · σbj ,t = k ·
∑

bj∈BNCi
(p,t)

σp,bj · σbj ,t

= k · σp,t (5.27)

With the same reasoning, it is also evident to prove the following:

σs,t(v) = k · σp,t(v) (5.28)

Equation 5.28 and Equation 5.27 from Lemma 5.6.2 prove, via Lemma 5.6.1,
Equation 5.17 and Equation 5.18 respectively. Therefore Theorem 5.6.1 is proved.

We now prove that the normalized distances and number of shortest paths
fulfill the conditions of Theorem 5.6.1 and hence can be used to group nodes into
classes of equivalence.

Corollary 5.6.1. If ∀ bj ∈ BNCi
: σ̂s,bj = σ̂p,bj and d̂G(s, bj) = d̂G(p, bj), then δs,VCi

(v) =

δp,VCi
(v), ∀v ∈ VCi

.
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Proof. To prove the corollary, we only need to prove that the following two equa-
tions hold:

d̂G(s, bj) = d̂G(p, bj) ∀bj ∈ BNCi
=⇒ dG(s, bj) = dG(p, bj) + l ∀bj ∈ BNCi

(5.29)
and:

σ̂s,bj = σ̂p,bj ∀bj ∈ BNCi
=⇒ σs,bj = k · σp,bj ∀bj ∈ BNCi

(5.30)

Let us consider any two generic pair of nodes s and p belonging to cluster Ci

such that:

∀bj ∈ BNCi
,

dG(s, bj)−minbk∈BNCi
dG(s, bk) = dG(p, bj)−minbk∈BNCi

dG(p, bk) (5.31)

AND
σs,bj

minbk∈BNCi
σs,bk

=
σp,bj

minbk∈BNCi
σp,bk

(5.32)

By definition, Equation 5.31 can be easily re-written as follows:

∀bj ∈ BNCi
,

dG(s, bj)−minbk∈BNCi
dG(s, bk) = dG(p, bj)−minbk∈BNCi

dG(p, bk)

⇐⇒ dG(s, bj) = dG(p, bj)−minbk∈BNCi
dG(p, bk) +minbk∈BNCi

dG(s, bk)
︸ ︷︷ ︸

constant value

⇐⇒ dG(s, bj) = dG(p, bj) + l with l ∈ R

which corresponds to Equation 5.29.
Likewise, Equation 5.32 can be re-written as:

∀bj ∈ BNCi
,

σs,bj
minbk∈BNCi

σs,bk
=

σp,bj
minbk∈BNCi

σp,bk

⇐⇒ σs,bj = σp,bj ·
minbk∈BNCi

σs,bk
minbk∈BNCi

σp,bk
︸ ︷︷ ︸

constant ratio

⇐⇒ σs,bj = σp,bj · k with k ∈ R
+

which corresponds to Equation 5.30. As the two equations (Equation 5.29 and
Equation 5.30) are jointly satisfied, the corollary is proved from Theorem 5.6.1.
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Claim 5.6.1. In undirected graphs:

∑

s∈VC(v)

∑

t/∈VC(v)

δs,t(v) =
∑

s/∈VC(v)

∑

t∈VC(v)

δs,t(v) (5.33)

The proof of the claim above, used in Subsec. 5.3.2, is entirely based on
the property of undirection. We remove part of the estimation errors we had
in the previous implementations ([75]) by changing the computation of global
dependency score using this claim.

Proof. Thanks to the undirected nature of the graph, we have:

∑

s∈VC(v)

∑

t/∈VC(v)

δs,t(v) =
∑

s∈VC(v)

∑

t/∈VC(v)

σs,t(v)

σs,t

=
∑

s∈VC(v)

∑

t/∈VC(v)

σt,s(v)

σt,s

=
∑

t/∈VC(v)

∑

s∈VC(v)

σt,s(v)

σt,s

Now, by changing the name of variables s and t:

∑

s∈VC(v)

∑

t/∈VC(v)

δs,t(v) =
∑

t/∈VC(v)

∑

s∈VC(v)

σt,s(v)

σt,s

=
∑

s/∈VC(v)

∑

t∈VC(v)

σs,t(v)

σs,t

=
∑

s/∈VC(v)

∑

t∈VC(v)

δs,t(v)

5.7 Complementary Information on the Implementa-
tion of E1CFBC

In our work, we implemented two alternative approaches to back-propagate
contributions during the computation of the global BC. The first one, detailed in
Subsec. 5.3.2, is based on using one vector of contributions per node, with one
entry per cluster of destinations. The main limitation of this approach is related
to high memory consumption as it implies working with n vectors (n = number of
nodes), each including |C| contributions. To optimise our solution with respect to
this limitation, we developed another approach based on a vector of two elements
only per node. This method is described below.
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We can consider a vector of two elements instead of |C| elements, so that
the contribution due to a destination t is assigned to δγs,VC(v)

(v) or δγ
s,VC(v)

(v)

depending on whether t is in the same cluster as v, C(v), or not. During the
back-propagation, the two contributions are propagated independently as follows:

δγs,VC(v)
(v) =

{
σs,v

σs,w
· (1 + δγs,VC(w)

(w)) if C(v) = C(w),

0 otherwise

δγ
s,VC(v)

(v) =

⎧

⎨

⎩

σs,v

σs,w
· δγ

s,VC(w)
(w) if C(v) = C(w),

σs,v

σs,w
· (1 + δγs,VC(w)

(w) + δγ
s,VC(w)

(w)) otherwise

(5.34)
At the end of back-propagation, we put the dependency scores of nodes v

belonging to the same cluster of the (pivot) source node to 0, whereas the depen-
dency scores of nodes not belonging to the same cluster of the source node are
computed using the following formula:

δγ
s,VC(s)

(v) = 2 · δγs,VC(v)
(v) + δγ

s,VC(v)
(v) (5.35)

Finally, according to Equation 5.13, δγs,•(v) is multiplied by the cardinality of
the equivalence class s belongs to. However, this solution introduces an error.
In fact, in Equation 5.34, δγ

s,VC(w)
(w) may contain contributions of destination

nodes belonging to VC(v), which should be moved from δγ
s,VC(v)

(v) to δγs,VC(v)
(v),

so that they can be correctly multiplied by 2 as required by Equation 5.35. This
situation is a consequence of the presence of external shortest paths that leave
and then re-enter the clusters.

The correction above has to be performed during the back-propagation phase
for each border node such that i) there is at least one external shortest path
starting from that border node, and ii) all the contributions of the border node
have been computed, i.e., when the border node is the current w. Consequently,
for each pair of border nodes b1, b2 belonging to the same cluster Ci, we need to
compute the distance dG(b1, b2) and the number of external shortest paths σext

b1,b2
between them. We perform this operation when searching for external nodes.

5.8 Conclusion

In this chapter, we presented a very fast algorithm for performing the exact
computation of BC in undirected graphs. The algorithm exploits clustering and
structural properties of graphs to reduce the computing time. In particular, the
algorithm exhibits an impressive speedup (compared with Brandes’ algorithm
and the one labelled with H, especially for very large scale-free graphs with an
attachment coefficient m = 1. A significant speedup is achieved also with other
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kinds of graphs, as demonstrated by the results obtained with real graphs. The
reduction of the computation time is mainly due to the adoption of pivots, i.e.,
nodes that contribute equally to the dependency score of other graph nodes.

This chapter described both a sequential and a map-reduce parallel version of
the algorithm implemented in Scala over Spark. The experimental analysis, per-
formed with reference to the number of cores exploited for computation, revealed
that the efficiency is slightly lower than Brandes’ algorithm but it increases with
graph size. In fact the granularity per Spark-task of the SSSP computations is
small when graphs are not very large due to the relative low number of pivots.

The speedup of E1C-FastBC strongly depends on the number of pivots; thus
clustering and modularity play a key role for the computation time of the al-
gorithm. As future work, we aim to study other clustering methods for more
effectively identifying border nodes in (synthetic and real) graphs with different
topologies. Finally, we will investigate a better mapping of the algorithm on
distributed resources, when data-parallelism is exploited, by improving locality
especially when different Spark executors are used.



119

Chapter 6

Limitations, Conclusion and
Prospects

We studied in this thesis two types of approaches for vulnerability analysis
inside road networks to make cities more resilient to incidents. The first dynamical
approach was a solution of traffic management for large scale road networks. This
solution offered a reduction of congestion in critical zones. It reduced the drop of
performance induced by a high peak of demand. Our approach showed robustness
as it also performed well for extreme scenarios, especially a highly congested
one. The dynamic and cooperative multi-agent based decision process made our
approach reactive to unpredictable events, thus increasing the global resilience of
the network. Not only did we reduce the drop of performance measured by the
mean speed but the duration of disturbance was reduced as well. The hierarchical
cooperation between infrastructures and vehicles enable a reduction of travel times
for most of the users. This solution has been later improved with the use of the
resilience metric Betweenness Centrality, widely used to identify vulnerable nodes
inside a graph. We added a stronger penalization to nodes with high BC when
their zone was congested to better protect vulnerable nodes. Better choices of
shortest path, taking into account the topological vulnerability of road sections,
improved the total travel time reduction per rerouting. It thus improved the
overall performance of our strategy, showing that the combination of topological
and system-based vulnerability analysis is possible and beneficial for resilience
increase. Studying the BC was the main focus of the second type of vulnerability
analysis done during this thesis. Computing the BC in real-time, to include it
in a dynamical analysis, is a challenge because of its computation time. We thus
developed an algorithm for distributed computation of BC in large scale network,
based on graph theory and paralleling of tasks. The algorithm showed great
scalability and performed well for sparse graphs, in different domains other than
transport.
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6.1 Resilience Scope

The main scope our work was travel demand fluctuations over a road network.
We tested our control strategy on different demand scenarios in order to evaluate
the capability of our approach to handle perturbations that strongly increase
demand on road networks such as failures in the transport systems. Further work
could be focused on failures on the supplies, i.e. when strong weather incidents
occur, blocking parts of the network. In this case, many nodes and links of the
graph become unreachable, areas can even become totally inaccessible. The threat
would not come from the demand but rather the supply.

Moreover, only static BC, computed on the free-flow travel time weighted
graph, was included into our strategy. One of the first possible improvements
would be to update the BC according to traffic conditions and to evaluate scenarios
of supply failures, making an entire zone inaccessible. The dynamic computation
of BC would be even more necessary for this kind of scenarios, where major
changes occur on the graph that would undergo many link or node removal.

The computation of BC over a dynamic graph would thus be a first step for
control strategy improvement and necessary for new scenario of supply failure.

6.2 Framework Modeling and Other Alternatives

We chose the context of multi-agent system to develop our strategy but on
a framework (SymuPy) that is not multi-agent oriented. Traditional transport
models like SymuPy are based on aggregated flows between zones. The demand
is represented with an OD matrix (Origin-Destination). When dealing with a
complex population (age, activity, time of day), the demand becomes more com-
plicated to represent and requires many OD matrices. Modeling the demand with
agents allows more realistic and complex simulations ([99], [100]).

For few decades, multi-agent simulation frameworks have been developed that
better model driver’s choice, preferences and reaction to its environment in a large
scale context. They are derivated from the activity-based modeling of demand,
where the population has a succession of activities during one day and travel from
one to another. It is opposed to the trip-based modeling, which our approach was
closer to. Multi-agent tools enable a better representation of driver interactions
and their travel preferences, and modeling solutions for traffic management. The
unpredictable behaviours are better represented and large-scale simulations can
be run modeling each traveler. These simulators can perform one-day simulations
using the succession of trips and activities. We could thus consider zone agents
that learn from previous days of simulation and demand to adapt their strategy
with past information.

Among multi-agent activity-based simulators, the main ones are TRANSIMS
(TRansportation Analysis and SIMulation System), developed by the Los Alamos
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National Laboratory for the U.S. Department of Transportation, the environment-
oriented ILUTE (Integrated Land Use, Transportation, Environment), maintained
and contributed by Canadian universities or OpenAMOS (Open Activity-Mobility
Simulator). Most of the multi-agent transportation simulator tools are activity-
based, which means that the demand is not only a succession of trips but rather
of scheduled activities per person, with trips to reach them.

One of the most popular activity-based mesoscopic simulators is MATSim
(MultiAgent Transport Simulation), an open-source tool, used for dynamic traffic
assignment. Its main advantage compared with the other simulators is its paral-
lelization of computation enabling large scale simulation of millions of agents.

MATSim is an open-source project, started with Kai Nagel at ETH Zürich,
when TRANSIMS was not open-sourced yet. MATSim is developed in Java and
module-based, enabling the adding and plugging of own developments and thus
a useful customizability. MATSim performs a microscopic modeling of traffic,
using microscopic modelling of demand and a co-evolutionary algorithm to find a
stochastic user equilibrium. The main reason we did not choose MATSim for our
control strategy is that it omits the car-following and lane-changing behaviour
to reduce computation time. This misrepresentation is due to the queue-based
implementation where roadways are FIFO queues. With this representation, par-
allelization is feasible and allows short computation times. Such a misrepresenta-
tion of traffic dynamics could have though distorted the evaluation of our control
strategy. Now that we proved its performance, further developments could be
done on MATSim. Especially, MATSim offers two solutions to compensate the
problem of the incorrect modeling of backward wave. The first solution is to use
JDEQSim as mobility simulation or “mobsim” (see Figure 6.1), loosing part of
the parallelization efficiency. The other option is to tune the QSim as suggested
in [101].

In MATSim, the demand is activity-based (and not trip-based): the persons,
agents, have a succession of activities, and their trips are no longer the goal but
the mean. At the end a simulation, each agent has a score, computed using a
scoring function which depends on the time spent in trips, the delays and the
time spent during the activities. Basically, a plan is optimal when the agent
spent a minimal time in transportation which left him/her a maximal time for
his/her activities. To optimize plans, MATSim runs several simulations with a co-
evolutionary algorithm and modifies some plans, by changing the transportation
mode or the departure time of some activities or the routes. These parameters
can be tuned, the user can choose not to change the transportation mode for
example. At the end of the simulation, we reached a user equilibrium, where the
people have the best plan they can hope for.

To run simulations from large data set (population, network, duration), MAT-
Sim is multi-threaded. The consequences is that the computation time is not as
high as other simulation tools but the congestion propagation is not perfectly
simulated, as explained earlier. As an example, by converting SymuPy demand
into MATSim inputs, it took 2 minutes for MATSim to run the simulation for the
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Figure 6.1: MATSim loop ([101])

same scenario instead of the 4 hours of SimuPy. As we worked with a given sets
of trips, only one iteration was necessary, the equilibrium being already found.

With such computation improvement, we could consider more complete sce-
narios. With a shortened computation time, more complex simulations can be
chosen, especially for multi-modal vulnerability analysis. The interdependence of
transportation modes makes some parts of the network more vulnerable such as
road sections near big subway hubs. Moreover, bus or taxi suffer from jams and
can be distinguished from other vehicles as their constraints and objectives are
completely different from other travelers.

The modularity of MATSim makes it also easy to plug the fast BC computa-
tion algorithm, E1CFastBC, to a simulation.

6.3 Future work

We were able to reproduce multi-agent behaviour and interactions but the
possibilities offered by multi-agent systems were not fully explored. The use of
object oriented solution makes it easier to be close to a multi-agent context but
does not capture driver behaviours. Our solution did not require a fully multi-
agent oriented framework and the first objective was to prove that our approach
was pertinent to reduce vulnerability. For further developments though, the use
of multi-agent frameworks will be relevant. Multi-agent frameworks make it easier
to model the diversity of population (connected vehicles or not) and the diversity
of behaviours. For example, in our case, we consider that all vehicles can be
rerouted. In a more detailed context, we could differentiate the kind of drivers, the
connectivity of the vehicle, the availability of the driver to accept recommendation.

Moreover, the cornerstone of resilience not addressed in this thesis is the
“learning” stage, which corresponds to the ability of the system to store past
information and reuse it adequately in the present. The zone agents could for
example act depending on the effects of their past actions, in a context of Rein-
forcement Learning. The demand or the level of congestion can also be predicted
from past data. We saw in Chapter 4 that the performance of our control was
higher when the demand was high. By predicting the global demand on the net-
work, we could have a level of control dependant on the prediction: with low
predicted demand, no rerouting would be suggested whereas a high predicted
demand would trigger our rerouting strategy. Many studies already focus on de-
mand prediction: Raj et al. ([102]) using k-NN and neural network to predict
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demand from sensor data, Polson et al. ([103]) using deep learning for short-term
flow prediction during two special events (sport game and storm) for example.

The tool and scope of our analysis allowed to prove the robustness and effi-
ciency of our approaches in a realistic traffic flow dynamic context. Nonetheless,
for further developments that would include an enlarged scope, more suited multi-
agent frameworks should be considered that are more appropriate and efficient.
MATSim would enable larger urban zone to be studied with a more diversified
population. It would for example help to better characterize resilience and vul-
nerability from different points of view and better evaluate the performance of
transportation systems (including pollution for example). The use of activity-
based modeling via multi-agent frameworks is a good perspective to continue the
vulnerability analysis of road networks. As the combination of topological and
dynamic vulnerability analysis is possible and benefits the transportation system,
our algorithm for BC fast computation should be integrated to the control frame-
work and more critical scenarios should be tested, with further developments on
consequences analysis. Multi-modal representation of transportation network is
also interesting for further development to better grasp the dependence between
transportation modes. The analysis of the multi-modal transport network is in-
teresting for both the dynamic and static vulnerability approaches.
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