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Abstract

Time series classi�cation is one of the must studied and applied time series

analysis tasks. Several methods have been proposed to perform this task accurately,

e�ciently and sometimes in an explainable way. However, situations where the time

series are made of uncertain values are still under-explored although any physical

measurement is subject to uncertainty. The existing works in this �elds are based on

uncertain similarity measures such as DUST, MUNICH, and FOTS which have the

same main limitation of not propagating uncertainty to the next step of the classi-

�cation process. This behavior causes the last parts of the process to treat the data

as if they were certain while they are not, leading to untrustable predictions. This

thesis tackles this limitation by proposing e�cient, robust and explainable meth-

ods for uncertain time series classi�cation (uTSC). We start by proposing a general

framework for uncertain time series classi�cation which propagates uncertainty from

the beginning to the end of the process. Then, we instantiate this framework using

uncertainty propagation arithmetic to propose the UST model which outperformed

existing uTSC models while being explainable. We continue by improving the scal-

ability of UST by proposing the SAST and the uSAST models. SAST is a novel

accurate, scalable and interpretable method that we propose for time series classi-

�cation. uSAST is the extension of SAST to uTSC. We show the e�ectiveness our

methods on simulated datasets, on state-of-the-art datasets, and on a real-world

uncertain time series dataset from the astrophysics domain. The source codes and

the data used in the work are all available publicly.

Keywords: Time series, classi�cation, uncertainty, explainability, shapelet,

astrophysics, transient.



Résumé

La classi�cation de séries temporelles est l'une des tâches d'analyse de séries tem-

porelles les plus étudiées et les plus appliquées. Plusieurs méthodes performantes

et des fois interprétables ont été proposées pour réaliser cette tâche. Cependant, les

cas où les séries temporelles sont faites de valeurs incertaines restent sous-explorés,

et ceci malgré que toute mesure physique soit sujette à incertitude. Les travaux

existants dans ce domaine sont basés sur des mesures de similarité incertaine telles

que DUST, MUNICH et FOTS qui partagent la principale limite de ne pas propager

l'incertitude à la prochaine étape de la classi�cation. Par conséquent, les dernières

étapes du processus de classi�cation ne sont pas conscientes du fait que les données

sont incertaines et les traitent donc comme si elles étaient certaines, conduisant

ainsi à des prédictions non �ables. Cette thèse a pour but de corriger cette limite

en proposant des méthodes e�caces, robustes et interprétables pour la classi�cation

de séries temporelles incertaines. Nous commençons par proposer un cadre général

pour la classi�cation de séries temporelles incertaines qui propage l'incertitude du

début à la �n du processus de classi�cation. Nous instancions ensuite ce cadre en

utilisant l'arithmétique de propagation de l'incertitude pour proposer la méthode

UST qui a donné des résultats meilleurs que ceux données par les méthodes exis-

tantes de classi�cation de séries temporelles incertaines tout en étant interprétable.

Par la suite, nous améliorons le temps de calcul requis par UST en proposant les

méthodes SAST et uSAST. SAST est une nouvelle approche performante, rapide

et interprétable que nous avons proposé pour la classi�cation de séries temporelles,

et uSAST est son extension aux séries temporelles incertaines. Nous évaluons nos

méthodes sur des jeux données simulées, sur des données de l'état de l'art et sur un

jeu de données réel provenant du domaine de l'astrophysique. Les codes sources et

les données utilisés dans ce travail sont rendus disponible sur internet.

Mots clés: Série temporelle, classi�cation, incertitude, interprétabilité,

shapelet, astrophysique, objet transitoire.
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Chapter 0

Introduction

This chapter gives the motivation of this thesis and summarizes its main contri-

butions.

Contents

0.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.2 Uncertainty, not a bad thing ! . . . . . . . . . . . . . . . . . . 2

0.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . 4

0.4 Report structure . . . . . . . . . . . . . . . . . . . . . . . . . . 5

0.1 Context

In this era of Big Data, machine learning (ML) has become ubiquitous in

almost any aspect of human life. Whether it is in the �eld of trans-

portation [Lopez Conde & Twinn 2019, Zheng et al. 2021], medicine [May 2021,

Miller et al. 2022], industry or in physics [Boone 2019, Leoni et al. 2021]. ML is

used not only to assist corresponding domain experts, but also to improve how the

task is done and the service quality. ML is used to make predictions and to dis-

cover new knowledge from raw data. This is made possible by the data collection

capabilities that are available today and the proliferation of tremendous techniques

to analyze di�erent types of data including tabular, image , video, audio and time

series data. Most of the time however, and speci�cally for time series, the data

are required to be precise for ML algorithms to perform well. This is not the

case in every application as the data are sometimes uncertain because of many fac-

tors including noise, sensors precision, privacy preservation, and collection methods

[Mazzi et al. 2019, Abdar et al. 2021]. Being able to analyze uncertain data is at

least as important as being able to analyze certain data. The goal of this thesis is

to build ML methods for the analysis of uncertain time series data. Although there

are many types of uncertainty, in this work we focus on imprecision, a special type

of uncertainty. There are three key properties that we would like our methods to

have, namely:

� E�ciency: the methods should produce accurate results, uses as less resource

as possible, and be competitive with state-of-the-art methods.



2 Chapter 0. Introduction

� Robustness: the methods should be resilient to the variation of data uncer-

tainty.

� Explainability: the methods should be inherently explainable or explainable

by other means.

Let us discuss these three properties in details and understand why they are im-

portant to have. E�ciency is the ability of a machine learning model to achieve good

performance while being trained using a �small� quantity of memory and computa-

tion time [Hernandez & Brown 2020]. The magnitude of �small" quantity is appli-

cation dependent and may vary a lot. For instance, a model that detects anomalous

heartbeats should report anomalies as soon as they appear and not many hours af-

ter the patient cannot be saved anymore [Lu et al. 2022]. On the contrary, a model

trained to detect plagiarism could take three hours to run. For Internet Of Things

systems, which are governed by limited memory and computation power, e�ciency

is a must [Sliwa et al. 2020]. In any case, it is always good to have models that are

e�cient as ine�cient ones have higher carbon footprint [Patterson et al. 2022].

The robustness property is another important quali�er of machine learning mod-

els and re�ects its capability of achieving similar performance on both training and

new data. This property is even more important nowadays as it has been proved

that machine learning models can be fooled by malicious individuals (adversaries),

noisy and uncertain data [Fawaz et al. 2019a, Yang et al. 2020]. In this work, the

importance of this property is emphasized by the fact that we are dealing with

uncertain data.

The explainability of a machine learning model is the ability to explain its deci-

sions, to describe its weaknesses and strengths, and to convey an understanding of

how it will behave in the future [DARPA ]. Beyond understanding the model and

increasing its faithfulness and adoption by humans, explainability helps in debug-

ging machine learning models by revealing the features used by the model to make

its predictions [Ribeiro et al. 2016]. In the case where the wrong features are used,

the model can be modi�ed correspondingly.

With these three characteristics, we would like to ensure in the �rst hand that

the proposed methods work correctly and do what they have been built for using

acceptable amount of resources. On the second hand, we would like the proposed

methods to be adopted with con�dence by domain experts as well as any end users.

0.2 Uncertainty, not a bad thing !

Uncertainty is ubiquitous in real life, the majority of the decisions we take everyday

is based on uncertain knowledge. For instance, we choose how we dress regarding

an uncertain and changing forecasting of the weather [Slingo & Palmer 2011]; we

plan our future without having the certitude that we are going to live up to that

future; we learn lot of things at school hoping that it will be useful someday in

someway [Kau�man et al. 2022]. There are many of such examples. Similarly, any
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collected data is associated with an uncertainty coming from the precision of sen-

sor used, the environmental condition of the measurement, the source of the data,

and other application-dependent constraints. It is sometimes possible to reduce

the uncertainty, but it cannot be completely suppressed [Taylor 1996]. Therefore,

uncertainty cannot be avoided and needs to be properly taken into account in ma-

chine learning algorithms as learning from uncertain data may lead to uncertain and

inaccurate predictions.

Uncertainty is usually seen as a problem, a hindrance to learning from data.

This is why it is usually handled during the preprocessing step, during which some

assumptions are considered in order to get rid of uncertainty. The preprocessing of

uncertainty requires domain knowledge, limiting the usability of this approach of

uncertainty handling. Furthermore, assumptions made for getting rid of uncertainty

actually add more uncertainty in the process as they are based on an incomplete

knowledge of the system that generated the data.

Uncertainty comes with challenges for decision-making systems

[Stanton & Roelich 2021], but it also brings some advantages. In particular,

uncertain data can be used to model situations on which we have incomplete

knowledge and on which we do not have a total control like modeling the climate

change; they are more expressive and less prone to assumptions that may not

hold in practice. Learning from uncertain data has gained a lot of interest

recently. For instance, there is a community working on imprecise probabilities

(SIPTA [SIPTA ]) , there are international workshops organized for uncertain

machine learning (Workshop on Uncertain Machine Learning [WUML 2020], Online

Learning from Uncertain Data Streams [OLUD 2022]). For these communities,

uncertainty is not a problem, but an additional input that should be taken into

account in order to build more robust and trustable machine learning systems.

These systems are expected to be aware of uncertainty, should be at least as

e�ective as if there was no uncertainty, and should be used without requiring

domain knowledge.

This thesis focuses on the classi�cation of uncertain time series. Unlike, regu-

lar/certain time series which are generated from a stochastic process assumed to be

completely known, uncertain time series are generated by processes that are only

partially known. Some authors have worked on uncertain time series classi�cation

(uTSC) and have proposed di�erent methods to perform this task. The main com-

ponent of all these works is a similarity measure for uncertain data. These measures

are named uncertain similarity measures [Dallachiesa et al. 2012]. They take as in-

put two uncertain time series, and output a real number representing the similarity

between the two objects. We claim in this work that modeling the similarity with a

real number is enough for certain data, but is not su�cient for uncertain data. In

fact, as the compared objects are uncertain, their similarity should also be uncertain.

Existing works have never discussed how uncertain is the similarity computed by

their uncertain measures, how this uncertainty might in�uence the �nal prediction,

and even less, how this uncertainty could be computed. In this work, we address

these limitations.
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0.3 Main contributions

We mentioned in the previous section that existing uncertain time series classi�ca-

tion methods share the same limitation of not providing the similarity uncertainty.

In addition to this limitation, we identi�ed three other lacks in the state-of-the-art

of uncertain time series classi�cation, namely the absence of published applications

on real uncertain datasets and the di�culty to reproduce existing works. The four

main contributions that we did throughout this thesis are guided by these limitations

and the key properties presented in Section 0.1. These contributions are described

in the following subsections:

Contribution 1: Uncertain shapelet transform

We �rst observed that with the existing uTSC approaches, uncertainty is not han-

dled throughout the whole classi�cation process. This is because the proposed un-

certain similarities give the similarity without any information about the uncertainty

on that similarity. This behavior is �rstly not natural as the compared objects are

uncertain. Secondly, it is misleading, as the end-user may think that the similarity

between two uncertain objects is certain though it is not guaranteed. We tackled

this limitation by proposing an explainable and accurate method for uTSC named

UST, for Uncertain Shapelet Transform. UST is described in detailed in Chapter 2.

Contribution 2: Scalable subsequence transform

Shapelet approaches are known to be accurate and interpretable. However, they are

computationally expensive. In this thesis, we proposed a new design of shapelet-

based TSC, allowing us to signi�cantly improve the scalability of shapelet approaches

while slightly increasing the classi�cation performance. Our method is named SAST

for Scalable and Accurate Subsequence Transform and it is presented in Chapter 3.

In Chapter 4, we extend SAST to uncertain time series classi�cation.

Contribution 3: Real-word application

The authors of existing uTSC methods have limited their experiments on datasets

with simulated uncertainties. This observation may question the usability of these

methods in real world. In this thesis, we applied our method on real uncertain time

series dataset. As described in Chapter 4, our method achieves good classi�cation

performance while being interpretable by astrophysicists.

Contribution 4: Reproducibility

The last contribution of this thesis is that all the datasets used, including the

datasets with the simulated uncertainties that we created are publicly available.

Elsewhere, the source codes of our experiments are accessible on public repositories.

We wanted to make this work easily reproducible by anyone in order to facilitate
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subsequent contributions to the �eld of uncertain time series classi�cation in par-

ticular, and in the �eld of uncertain time series analysis in general.

0.4 Report structure

In the previous section, we gave our main contributions while specifying in which

part of this report each contribution is detailed; however, we �nd it clearer and more

informative to present the organization of this report in a dedicated section. We

organized this report in 6 chapters: Chapter 0, this one, is actually the �rst and it

gives this work's context, its motivations and goals, summarizes the main contribu-

tions and presents how this report is organized. A detailed background and related

works of time series classi�cation in the absence and presence of uncertainty is given

in Chapter 1. For readers who are not familiar with time series classi�cation or with

uncertainty, we strongly suggest reading this chapter before the following ones as

subsequent chapters use concepts described in Chapter 1. Next comes Chapter 2

which describes our �rst main contribution UST. The second main contribution,

SAST, is described in Chapter 3 as our proposed solution to improve UST's time

complexity. Chapter 4 extends SAST to uncertain time series and details its per-

formance on a real uncertain time series dataset. Finally, a general conclusion and

some possible future directions of this work are given in Chapter 5.





Chapter 1

Background and related work

In this chapter, we give in-depth background required for understanding this work.
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1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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1.3 Our proposed general approach for uTSC . . . . . . . . . . . 28

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.1 Background

1.1.1 What is a time series

A time series is a type of data that allows the modeling of the evolution of a phe-

nomenon through time. Di�erently said, a time series is used to see how an object

changes with time. A time series is formally de�ned as follows:

De�nition 1.1 (Time series). A time series (TS) is a �nite sequence of objects

ordered in time.

T = (td1 , td2 , ..., tdm),∀j ∈ [1,m], dj ∈ D, tdj ∈ Ω,m ∈ N,m ≥ 1 (1.1)

In the previous de�nition, D is a totally ordered set and for any pair of integers

j1 and j2 such that j1 < j2, we have dj1 < dj2 . The set Ω is the domain of the

objects whose evolution in time is tracked. The objects in Ω are generally of the

same nature, for instance, it could be a set of numbers, images, videos, audio, text,

etc. Finally, m is the length of the time series. When Ω is an ordered set, the time

series can be represented as a line plot on a 2 dimensional space where the x-axis is

labeled by sorted objects from the set D and the y-axis is labeled by objects from
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Ω. In order to better understand this general de�nition of time series, concrete

examples are shown on Figures 1.1 and 1.2.

Figure 1.1: A time series modeling the the evolution of daily new covid-19 cases in

Africa

Figure 1.1 is a time series of daily covid-19 cases in Africa from the 18th February

2020 to the 20th April 2022 as collected by the Our World in Data organization

[Our World in Data 2022]. In this case the set D contains calendar days and the set

Ω is the set of positive integers. Figure 1.2 is the time series of the groundwater level

in the french department Puy-de-dôme collected by the France's public institution

in earth science [BRGM ]. In this case, the set D is still the calendar days, but the

set Ω is the set of positive real numbers.

A time series could be either univariate or multivariate. It is univariate when

only the evolution of a single variable is considered. This is the case for the time

series on Figures 1.1 and 1.2. When the evolution of more than one variable is

tracked simultaneously, the obtained time series is multivariate. A multivariate time

series is shown on Figure 1.3, it models the successive positions in a 2 dimensional

plan of my right ankle when I perform the Taekwondo round house kick. Here, two

variables are tracked, the x-axis and the y-axis positions of my ankle.

In this thesis, we consider only the case where the set Ω is the set of real numbers.

Therefore, we reduce the de�nition of time series to a �nite set of numbers ordered

in time.

1.1.2 Notion of uncertainty

Any measurement is subject to uncertainty, and unlike error which can be avoided

by being careful, uncertainty cannot be avoided [Taylor 1996]. It can be reduced
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Figure 1.2: A time series modeling the groundwater level in the french department

Puy-de-dôme

Figure 1.3: A multivariate time series modeling the successive positions of my right

ankle when performing the Taekwondo roundhouse kick.
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to a certain level but it cannot be eliminated. Many factors can lead to uncertain

measurements including the sensitivity and the precision of the sensor used to make

the measurement, the environmental conditions in which the measurement is done

and the privacy preservation constraints. To make this clear, let's assume we want

to know the height of a person who is 500 meters far away, we could estimate that he

measures between 150 centimeters and 160 centimeters with some level of con�dence

given our experience. The uncertainty here is due to the fact that the person is far

away, and hence, it is di�cult to make a more precise estimation of its height.

This uncertainty can be reduced by getting closer to the person. A more precise

height can be obtained using a meter, but the precision of this measurement will

still be limited by the graduation of the meter. A meter graduated in centimeter

will give less precise measurements than a meter graduated in millimeter. It is

di�cult and even impossible in some applications to obtain the required level of

certainty. Therefore, it is necessary to build ML tools that could work well despite

the uncertainty in the data.

There exists two types of uncertainty: aleatoric and epistemic. Also called sta-

tistical, aleatoric uncertainty is due to the unknowns that di�er each time a mea-

surement is made. A typical source of aleatoric uncertainty is the random seed used

for random numbers generation in computer science. Epistemic uncertainty, which

is also called systematic uncertainty is due to things that should be known in princi-

ple, but are not in practice. The uncertainty in the measurement of a person height

as described in the previous paragraph is epistemic as it is possible to measure a

person height with precision using an appropriate tool. Some subtypes of epistemic

uncertainty are imprecision, incompletion and unreliability. Imprecision is when

there are many possible outputs for the same measurement and the exact output

is unknown. An example is to give an interval in which a person height is known

to be instead of a crisp real number. Incompletion is when some measurement are

unknown or missing. A typical example is missing values in datasets. Unreliability

is when it is not guarantee at 100% if the output of a measurement is correct or not.

Figure 1.4 summarizes the categorization of the di�erent types of uncertainty that

have just been described.

Besides, being either epistemic or aleatoric, uncertainty has other facets

[Destercke 2022]. For instance, it can be either objective or subjective depend-

ing if it can be measured objectively or only depends on the agent that quantify it;

if an entire population is concerned by the uncertainty, it said generic, otherwise it

is singular; another aspect is the uncertainty reducibility or non-reducibility.

There are two ways to represent uncertainty in the literature of uncertain time

series: the multiset and the probability density function (PDF) representations

[Dallachiesa et al. 2012, Siyou Fotso et al. 2020].

De�nition 1.2 (PDF-based uncertain value). The probability density function

representation of an uncertain value x is given as a probability density function with

known mean and maximal deviation from that mean. The mean is the best estimate
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Uncertainty

Epistemic Aleatoric

Imprecision Incompletion Unreliability

Yes No
Is it due to
unknown ?

Figure 1.4: Categorization of uncertainty types

of the value and the deviation is the maximal possible error on that estimate.

x = x̂± δx, x̂ ∈ R, δx ∈ R+ (1.2)

Therefore, the exact value is somewhere in the interval [x̂− δx, x̂+ δx].

De�nition 1.3 (Multiset uncertain value). An uncertain value can be given as

a set of all the possible exact values. These values could be equiprobable or not.

x = {x1, x2, ..., xs},∀i, xi ∈ R, s ∈ N+ (1.3)

The exact value is either one of the values in the set or a value close to one of the

values in the set.

Now that we know what is an uncertain value, we can easily de�ne what an

uncertain time series is.

De�nition 1.4 (Uncertain time series). An uncertain time series (uTS) is a

time series of uncertain values.

Figure 1.5 illustrates some uncertain time series. The �rst two �gures are from

[Siyou Fotso et al. 2020] and show a multiset uncertain time series (Figure 1.5a)

and a probability density function uncertain time series (Figure 1.5b). The last two

�gures use the PDF representation, the blue lines are obtained by connecting the

best estimates, these lines can be seen as the best estimate of the uncertain time

series. The red bars are the possible deviation from the best estimates. Unlike

Figure 1.5b, the probability distributions are unknown on the last two �gures.
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(a) A multiset uncertain time series (b) A PDF uncertain time series

(c) A simulated uTS (d) A uTS from the PLAsTiCC dataset

[Allam Jr et al. 2018]

Figure 1.5: Illustration of uncertain time series

1.1.3 Time series classi�cation

Time series analysis includes several tasks including the four classical machine

learning tasks which are classi�cation [Ye & Keogh 2009b, Bagnall et al. 2017],

clustering[Ulanova et al. 2015, Siyou Fotso et al. 2020], regression [Tan et al. 2021],

and dimensionality reduction [Lewandowski et al. 2010, Lin et al. 2007]. Others

time series analysis tasks are forecasting [Hewamalage et al. 2022, Mbouopda 2022,

Mbouopda et al. 2022], novelty detection [Ma & Perkins 2003], anomaly detection

[Nakamura et al. 2020, Audibert et al. 2020], motif discovery [Yeh et al. 2018] and

querying [Ding et al. 2008, Yagoubi et al. 2018]. These tasks can be classi�ed as

either supervised or unsupervised as shown on Figure 1.6.

This thesis focuses on the classi�cation task of time series whose values are

uncertain. The presence of uncertainty makes this task more complicated, since

even for humans, it is not easy to take decisions when the possessed information

are inaccurate. Because the existing methods for the classi�cation of uncertain time

series are inspired from certain time series classi�cation methods, we present the

later methods �rst.
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1.2 Related work

1.2.1 Certain time series classi�cation approaches

This subsection describes the existing approaches to perform time series classi�ca-

tion when uncertainty is assumed to be absent or negligible: this is what we call

certain or regular time series classi�cation.

De�nition 1.5 (Time series classi�cation). Let D =

{(T1, c1), (T2, c2), ..., (Tn, cn)} be a dataset, where each Ti is a time series and ci the

associated class label taken from a �nite set of discrete classes C = {c1, c2, ..., cnc}
(nc is the number of classes and C ⊂ N). The classi�cation task for this dataset

consists of learning a function f̂ (also called a classi�er) such that:

f̂(Ti) = ci (1.4)

Once the function is learned, it can be applied to new time series to automatically

predict their class labels. In practice, learning the exact function f̂ is generally a

di�cult problem depending on the complexity of the relationship between the time

series and the classes. Instead, an approximated function f , close as possible to f̂ is

learned. The quality of the approximation is measured using a loss function l which

computes how far is the approximation from the exact function. One of the most

used loss functions is the categorical cross entropy de�ned as follows:

De�nition 1.6 (Cross entropy). The cross entropy loss of a classi�er f on a

given time series Ti is de�ned as follows:

l(Ti, ci) = ci log f(Ti) (1.5)

The overall loss is obtained by averaging the losses for every time series in the

dataset. De�nitions 1.5 and 1.6 remain valid when the time series are uncertain.

Time series classi�cation has been used in several practical applica-

tions including human activity recognition [Le Nguyen et al. 2019], phoneme

detection [Hamooni & Mueen 2014], astronomical transients classi�ca-

tion [Möller & de Boissière 2020, Moss 2018] and irrigation management

[Zhao et al. 2016]. Diverse approaches has been developed in the literature

to perform time series classi�cation. Regarding the discriminative features

used to classify the data, the existing methods have been grouped in �ve

categories which are: whole series, interval, shapelet, dictionary and spectral

approaches[Bagnall et al. 2017]. In order to include the methods proposed sub-

sequently, we add three other categories, namely: subsequence, hybrid and deep

learning approaches.

Whole series

Whole series approaches classify time series using the k-Nearest Neighbor (k-NN)

classi�er. In particular, a new time series is a�ected to the class of its �rst nearest
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neighbor. The neighborhood is de�ned using a distance that measures the dissim-

ilarity between two times series. The Euclidean distance is one of the most used

distances in machine learning, and time series classi�cation is not an exception.

De�nition 1.7 (Euclidean distance (ED)). Given two times series T1 and T2

of same length m, the Euclidean distance between them is de�ned as follows:

ED(T1, T2) =

√√√√ m∑
i=1

(t1i − t2i)2 (1.6)

where t1i and t2i are the respective values of T1 and T2.

In practice, the square root can be omitted to save computation since its e�ect is

only to change the dissimilarity scale. The main limitation of ED appears when the

compared time series are not aligned, for instance when there is a time shift. To illus-

trate this situation, let us consider the the time series T1 = (0, 0, 0, 2, 2, 2, 0, 0, 0, 0)

and T2 = (0, 0, 0, 0, 2, 2, 2, 0, 0, 0). It can be seen that T2 is obtained by shifting

T1 one time step to the right. However the ED between them is not 0, meaning

that this time series are not similar. The reason behind this behavior is that ED is

computed assuming that the time series are naturally aligned as depicted in Figure

1.7. Time series are rarely perfectly aligned in practice, and particularly for long

time series.

0 2 4 6 8

T1
T2

Figure 1.7: Natural alignment of both time series. ED(T1, T2) = 2.82

To handle situations where the time series does not follow a natural alignment,

researchers has proposed to minimize the Euclidean distance by �nding the optimal

alignment. The resulted distance is called elastic distances in the state-of-the-art.

Dynamic time warping (DTW) is one of the most used elastic distance in time series

analysis. DTW has been proposed in the context of speech recognition, it stretches

and realign one speech signal to perfectly match another one [Sakoe & Chiba 1978].

The optimal alignment found using DTW is illustrated on Figure 1.8. The Euclidean

distance computed with respect to this alignment is 0, meaning that these two time

series are exactly the same.

Combining DTW and the 1-NN has been the state-of-the-art approach to clas-

sify time series [Bagnall et al. 2017] for many years. Di�erent variants of DTW

has also been proposed, in particular the constrained DTW which accounts for
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0 2 4 6 8

T1
T2

Figure 1.8: Elastic alignment of both time series. DTW (T1, T2) = 0

a parameter called the warping window in order to reduce the computation time

complexity [Sakoe & Chiba 1978, Ratanamahatana & Keogh 2004]. Beside DTW,

there exists other elastic distances that has been used in time series analysis, but

DTW performs better. Unlike ED which has a linear time complexity, elastic dis-

tances generally have a quadratic time complexity as the optimal alignment is ob-

tained using dynamic programming. Some pruning and early abandon techniques

has been proposed to accelerate this computation [Herrmann & Webb 2021]. Given

the success of ensemble techniques in machine learning, and the fact that di�er-

ent distances computes di�erent dissimilarities, whole series approaches has been

combined in order to improve the classi�cation. Elastic Ensemble (EE), proposed

in [Lines et al. 2018] is one of these ensemble methods. EE's time complexity has

been signi�cantly reduced in [Tan et al. 2020] to obtain the Fast Elastic Ensemble

(FastEE).

Interval

Whole series approaches assume that the whole time series is important to achieve

the classi�cation. It is said that these approaches perform classi�cation regarding the

global features of the time series. By doing so, the computational time is high. On

the contrary, interval approaches hypothesize that only a limited portion of the time

series are relevant for classi�cation. For instance, consider the time series dataset

on Figure 1.9. It can be realized that the classi�cation could be done regarding

only the subsequences that are inside the gray rectangles, the remaining parts of

the time series do not bring more information as these parts are similar regardless

of the time series' class. Interval approaches are suitable for these type of datasets.

An interval approach for time series classi�cation works in tree steps: intervals

selection, features computation, and �nally, classi�cation. Relevant intervals iden-

ti�cation is generally done randomly or using an heuristic. The next step after the

selection of relevant intervals is the computation of a set of statistics on these inter-

vals. In particular the mean, the standard deviation, the slope, the median, etc are

computed for each interval and for each time series in the dataset. The last step is

the actual classi�cation using any supervised classi�er on the computed statistics.

This process in summarized on Figure 1.10.

State-of-the-art methods that follow the interval based approach are the time
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Figure 1.9: Relevant intervals in a dataset (image obtained by annotating an original

image from [Lines et al. 2018])

m(T1, I1) s(T1, I1) m(T1, I2) s(T1, I2) m(T1, I3) s(T1, I3)

m(T2, I1) s(T2, I1) m(T2, I2) s(T2, I2) m(T2, I3) s(T2, I3)

m(T3, I1) s(T3, I1) m(T3, I2) s(T3, I2) m(T3, I3) s(T3, I3)

m(T4, I1) s(T4, I1) m(T4, I2) s(T4, I2) m(T4, I3) s(T4, I3)

Interval 1 Interval 2 Interval 3

Interval 1's
features

Interval 2's
features

Interval 3's
features

Classification

class 1
class 2

m(T, I) computes the mean of the values of the time series T for time steps in the interval I. 
s(T, I) computes the standard deviation of the values of the time series T for time steps in the interval I.

Figure 1.10: Overview of time series classi�cation based on intervals

series forest (TFS) [Deng et al. 2013]. As TSF computes basic statistic, the method

CIF has been proposed [Middlehurst et al. 2020a]. CIF uses 22 statistics speci�cally

designed for time series and named as �catch22" [Lubba et al. 2019]. The supervised

time series forest (STSF) selects the relevant intervals using a supervised approach

in order to improve the classi�cation performance [Cabello et al. 2020].

Shapelet

A Shapelets is a time series primitive proposed by [Ye & Keogh 2009b] as an e�ective

and interpretable feature for time series classi�cation. Simply said, a shapelet is

subsequence (a set of consecutive values in a time series) that is characteristic of a

class in a dataset. This notion is illustrated on Figure 1.11 on which the shapelets are

the subsequences located in the rectangles. It can be seen that these subsequences

are enough to perform the classi�cation e�ectively as the green shapelets are only

present in the green time series, while the blue shapelets are only present in the

blue ones. Therefore, similarly to interval approaches, shapelet methods assume

that only a subpart of the time series are relevant for the classi�cation. However,

unlike intervals whose locations are �xed once for all, shapelets can appear at any

location on the time series: shapelet are phase-independent, while interval are phase-
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dependent.

Figure 1.11: Illustration of shapelets (image obtained by annotating an original

image from [Lines et al. 2018])

The classi�cation of a time series using a shapelet approach is done with respect

to the similarity between the time series and the shapelets. More speci�cally, if a

time series contains a subsequence that is similar to a shapelet, then it is consider as

being from the same class as the shapelet. The similarity is computed using a dis-

tance function, generally the Euclidean distance, but any distance can be also used.

A shapelet approach performs classi�cation in three steps: shapelets extraction,

shapelets transformation, and �nally, the actual classi�cation. Extracting shapelets

consists in �nding the top most relevant shapelets from the training set. This is

done by generating all the subsequences from the dataset, then computing the in-

formation gain obtained by splitting the dataset with respect to each subsequence

(the split is done by creating two groups: one containing time series that are the

most similar to the subsequence, and the other containing time series that are the

less similar to the subsequence). Finally, the subsequences with the highest infor-

mation gain are selected as shapelets. Then comes the second step which consists of

transforming the original time series dataset to a tabular dataset. This is achieved

by replacing each time series in the dataset by the vector of its distances to the

selected shapelets. The �nal step is the training of any supervised classi�er on the

the transformed dataset. Figure 1.12 summarizes how time series classi�cation with

shapelets is performed.

This approach is said to be interpretable since the selected shapelet are mean-
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Shapelet 1

Shapelet 2

Classification

class 1
class 2

d(T,S) computes the distance between the time series T and the subsequence S

Shapelet 1 Shapelet 2

d(T1, S1) d(T1, S2)

d(T2, S1) d(T2, S2)

d(T3, S1) d(T3, S2)

d(T4, S1) d(T4, S2)

Figure 1.12: Overview of time series classi�cation based on shapelets

ingful to domain expert: It is an explainable-by-design approach.

The �rst shapelet method is the Shapelet Decision Tree (SDT)

[Ye & Keogh 2009b]. By discretizing the time series using SAX [Lin et al. 2007],

the Fast Shapelet (FS) [Rakthanmanon & Keogh 2013] method has been proposed

to reduce SDT's time complexity from O(n2m4) to O(nm2) while achieving a

similar accuracy. Unlike SDT and FS which extract shapelets while performing

the classi�cation, Shapelet Transform Classi�er (STC) isolated the extraction

phase from the classi�cation phase, allowing the usage of any supervised classi�er

[Hills et al. 2014]. Some authors proposed to improve the time complexity by

reducing the space of shapelet candidates. This is achieved by evaluating a random

subset of shapelet candidates [Renard et al. 2015, Wistuba et al. 2015]. Although

these methods can �nd competitive shapelets, they are less accurate in general.

Instead of extracting shapelets from the training dataset, other methods start

with a random set of shapelets, then modify them iteratively using optimization

techniques such as gradient descent in order to minimize the �nal classi�cation

error. These methods are Learning time series Shapelet (LS) [Grabocka et al. 2014],

ELIS and ELIS++ [Zhang et al. 2021], and XCM [Wang et al. 2020]. These approaches

are generally faster, but it is not guaranteed that the learned shapelets will be

meaningful to domain experts.

Subsequence

Recently, a new approach able to learn shapelets has been proposed, this approach is

XEM [Fauvel et al. 2022]. Instead of trying to �nd the most important subsequences

before hand of classi�cation, XEM uses every subsequences from the dataset then

let the classi�er learns the most discriminative ones during its training process. The

used classi�er is the Local Cascade Ensemble (LCE), a tree-based classi�er that

combines bagging (like in Random Forest) and Boosting (like in eXtreme Gradient

Boosting trees) in order to reduce variance and bias. Since there is no guarantee

that the most important subsequences learned by XEM will be shapelets, we �nd

it justi�ed to put this method in a dedicated category. Similar to shapelet-based
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methods, XEM is explainable-by-design by extracting the most important region of

the time series.

Dictionary

Shapelet, interval and whole series approaches work in the time domain as they

perform classi�cation based directly on the observed values of the time series. In

some cases, this could be ine�ective. The dataset shown on Figure 1.13 illustrates

a situation where these approaches may not be suitable. This is because the time

series are made of similar subsequences with di�erent frequencies depending on the

time series class.

Figure 1.13: Illustration of a dictionary dataset [Lines et al. 2018]

This kind of dataset are generally classi�ed in tree step: discretization, features

extraction and �nally classi�cation. Discretizing a time series consists of convert-

ing it to a string or word using a �nite set of symbols. The obtained string is an

approximation of the original time series and is generally of a smaller length, there-

fore, leads to a kind of dimensionality reduction and accelerate computation. The

most used discretization techniques in time series classi�cation are the Symbolic

Fourier Approximation (SFA [Schäfer & Högqvist 2012]) and the Symbolic Aggre-

gate approXimation (SAX [Lin et al. 2007]). We illustrate the discretization using

the example of SAX on Figure 1.14.

The next step after discretization is feature extraction from the obtained dis-

cretized time series. The Bag of SFA Symbol (BOSS [Schäfer 2015]) and the

Word ExtrAction for time SEries cLassication (WEASEL [Schäfer & Leser 2017a])

methods use histograms as features. The last step is the actual classi�cation,

where any supervised classi�er can be used. Additionally to BOSS and WEASEL,

other dictionary methods are MUSE [Schäfer & Leser 2017b] which extends WEASEL

to multivariate time series classi�cation, the Temporal Dictionary Ensemble (TDE

[Middlehurst et al. 2020b]) which uses ensemble techniques in order to improve the

classi�cation performance, and TEASER [Schäfer & Leser 2020] which classi�es a time

series as soon as possible given its very �rst values.
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Figure 1.14: SAX illustration [Lin et al. 2007]. The string representing the time

series is baabccbc.

Spectral

Datasets like the one shown on Figure 1.15 cannot be classi�ed using feature ex-

tracted in the time domain as the time series look too similar regardless of the class.

This kind of datasets are preponderant in the �eld of speech analysis.

Figure 1.15: Illustration of spectral dataset [Lines et al. 2018]

For these datasets, going from the time domain to the frequency domain gen-

erally leads to a more e�ective classi�cation [Bagnall et al. 2012]. The idea is to

extract features from the high frequencies of the time series using Fourier trans-

form, then classify time series based on their respective Fourier coe�cients using

any supervised classi�er. Besides, Fourier coe�cients, other transforms are auto-

correlation (including partial autocorrelation), power spectrum and autoregressive

features. The e�ectiveness of using Fourier coe�cients, autocorrelation and power

spectrum has been demonstrated in [Bagnall et al. 2012]. [Corduas & Piccolo 2008]

used di�erent supervised classi�ers on autoregressive features in order to perform

time series clustering and classi�cation.
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Deep learning approaches

Whole series, shapelet, interval, dictionary and spectral approaches perform clas-

si�cation using handcrafted features. Deep learning has been proved in diverse

domains (image, speech, video, text analysis) to be able to automatically extract

not only handcrafted features, but also relevant features that were unexpected by

humans from the data. For this reason, some authors explored deep learning ef-

fectiveness in time series classi�cation. In 2017, three di�erent deep learning ar-

chitecture has been applied on 44 time series datasets from the UCR & UEA

[Anthony Bagnall & Keogh 2018] and the obtained results has been compared to

the state-of-the-art time series classi�cation method at that time [Wang et al. 2017].

The compared architectures were the multi-layer perceptron (MLP), the fully con-

nected convolutional neural network (FCN) and the residual neural network (ResNet).

FCN achieved the best performance, followed by ResNet. This work shown that deep

learning is e�ective for time series classi�cation, with the great advantage that there

is no need to handcraft features.

With the development of new time series classi�cation methods, a new bench-

mark of deep learning methods for time series classi�cation has been proposed by

[Fawaz et al. 2019b]. This study includes recent advances in time series classi�-

cation, but also many methods that were not considered in [Wang et al. 2017].

Furthermore, with the availability of more open time series datasets, this review

also considered more diverse application domains. This time, ResNet signi�cantly

outperformed the others deep learning methods, followed by the FCN. Addition-

ally, the state-of-the-art handcrafted features method at this time, HIVE-COTE

[Lines et al. 2018], achieved better classi�cation performance compared to ResNet.

HIVE-COTE will be described in the next section. Subsequently, the deep learning

method InceptionTime has been proposed [Fawaz et al. 2020]. It is an ensemble of

convolutional neural network models that include residual connections as in ResNet.

The state-of-the-art deep learning method for time series classi�cation is ROCKET

[Dempster et al. 2020]. It is a special kind of convolutional neural network as it

uses random �lters. In fact, instead of learning convolutional kernels by optimiza-

tion as it is generally done in deep learning, ROCKET uses random kernels sampled

from a uniform distribution. As there is no learning, this method is extremely

fast. Additionally, ROCKET uses a new feature called the proportion of positive

values (PPV) computed after applying the convolutions. PPV allows ROCKET to

achieve comparable performance to state-of-the-art methods. An almost determin-

istic variant of ROCKET has been developed recently under the name MiniRocket

[Dempster et al. 2021]. Another variant of ROCKET is MultiROKET which extract fea-

tures from the �rst order derivative of the raw time series in addition to features

extracted on the raw time series [Tan et al. 2022]. In addition to PPV, MultiROCKET

considers the Mean of Positive Values (MPV), the Mean of Indices of Positive Values

(MIPV) and the Longest Stretch of Positive Values (LSPV).
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Hybrid approaches

Some time series datasets simultaneously contains whole series, shapelet, interval,

dictionary and spectral features. In this situation, using a single type of feature to

perform the classi�cation leads to poor performance. Moreover, it would be bene�-

cial to have a method than could perform well on any dataset. Hybrid approaches

has been proposed to tackle these challenges. The main idea is to extract every type

of features, then use a strategy to merge the predictions from each feature type to

obtain the �nal prediction. For instance, the Random Interval Spectral Ensemble

(RISE [Lines et al. 2018, Flynn et al. 2019]) combines features from the frequency

and interval domains, and uses ensemble techniques to reduce the variance. RISE is

signi�cantly more accurate than any other spectral method.

The Hierarchical Vote Collective of Transformation-Based Ensembles

(HIVE-COTE) [Lines et al. 2018], inspired from the collective of transformation-based

ensembles (COTE) is the state-of-the-art method for time series classi�cation. It

combined 35 time series classi�ers grouped in 5 modules: 1 shapelet module, 1

whole series module, 1 dictionary module, 1 interval module and 1 spectral module.

Each module is made of ensemble classi�ers. The �nal classi�cation is obtained by

a majority vote. The second version of HIVE-COTE has been developed exploiting

the recent advances in time series classi�cation [Middlehurst et al. 2021]. This

version is made of four modules of ensemble classi�ers whose base learners are:

STC, TDE, ROCKET and CIF.

The most important limitation of HIVE-COTE is the computational time which is

in the order of O(n2m4) for a dataset of n time series of length m. This limitation is

solved in practice by searching shapelet for a given amount of time only. Although

this works well in practice, there is no guarantee that some interesting shapelets will

not be missed by the algorithm. The Time Series Combination of Heterogeneous and

Integrated Embedding Forest (TS-CHIEF [Shifaz et al. 2020]) combines whole series,

interval and dictionary features in a forest of trees fashion in order to reduce the

variance, increase the classi�cation performance, while reducing the computational

time. The authors did not include shapelet features because they are computation-

ally expensive. TS-CHIEF achieves performance comparable to the �rst HIVE-COTE

version while being much more scalable. However, the second HIVE-COTE version is

signi�cantly more accurate than TS-CHIEF.

Summary of time series classi�cation approaches

It can be realized by looking carefully at the existing time series classi�cation ap-

proaches that they follow the same pattern to perform classi�cation. In fact, each

approach works in three main steps: features extraction, feature transformation, and

�nally classi�cation. This process is summarized in Figure 1.16 and is described as

follow: Given a dataset of time series with their class labels, a feature extractor is

used to extract relevant features (shapelets, intervals, words, arti�cial neural net-

work (ANN) weighs, etc), then the input dataset is transform with respect to the
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extracted features (shapelet transformation, interval transformation, histogram, for-

ward pass for ANN, etc), and �nally, a supervised classi�er is trained on the obtained

tabular dataset. The feature transformation is performed using the function v(T, f)

which computes the values of the feature f for the the time series T . This function

is the distance function in shapelet and whole series approaches, it is the statistic

functions (mean, standard deviation, median, etc) for interval approaches, it is the

count for dictionary approaches, it is the correlation for spectral approaches, and it

is the forward pass for deep learning approaches.

Feature extraction Classification

class 1
class 2

Feature transform
f1, f2, ..., fk

Val_f1 Val_f2 ... Val_fk

v(T1, f1) v(T1, f2) ... v(T1, fk)

v(T2, f1) v(T2, f2) ... v(T2, fk)

v(T3, f1) v(T3, f2) ... v(T3, fk)

v(T4, f1) v(T4, f2) ... v(T4, fk)

Figure 1.16: Overview of existing time classi�cation approaches

Whole series approaches are particular as they do not perform feature extrac-

tion. However, they can also be designed following the general process depicted in

Figure 1.16. Concretely, it can be considered that the feature extraction process

returns the whole dataset (in other words, the identity function is applied), then

the feature transformation replaces each time series with the vector of its distances

to the remaining time series. Finally, the classi�cation is performed.

We synthesized the existing methods for time series classi�cation in Table 1.1.

The �rst two columns respectively indicate the category and the features that are

used for classi�cation. The last column gives some state-of-the-art methods in the

corresponding category. The third column indicates the type of explainability, which

is either absent when the method is not explainable, by design when the method is

explainable right after training without using any additional tool, and post hoc when

the method is explainable after the training by using additional techniques such as

LIME [Ribeiro et al. 2016] and SHAP [Lundberg & Lee 2017]. Note that although

post hoc explainability methods such as LIME and SHAP are model-agnostic, and

thus are applicable to any method, there is no theoretical guarantee that the result

will be meaningful to the end-users.

1.2.2 Uncertain time series classi�cation approaches

Existing uncertain time series classi�cation (uTSC) approaches are inspired from

regular time series classi�cation (TSC) approaches. The general idea is to take

uncertainty into account in an existing TSC approach by the means of some adap-
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Table 1.1: Summary of the current time series classi�cation state-of-the-art (SOTA)

Category Features Explainability SOTA methods

Whole series time series absent

1NN-DTW

EE

FastEE

Subsequence-based subsequences by design XEM

Shapelet-based shapelets by design

LS

STC

ELIS++

Interval-based intervals post hoc

TSF

STSF

CIF

Dictionary words post hoc

BOSS

WEASEL

TDE

Deep Learning
Arti�cial neural network

weights
post hoc

InceptionTime

ResNet

Hybrid
combination of some or all

of the above features
post hoc

RISE

HIVE-COTE

TS-CHIEF

tations. Despite the fact that any measure is uncertain (either for epistemic, or for

aleatoric reasons), researchers have not focused on uTSC as much as they did for

TSC.

The few methods that exist for uncertain time series classi�cation work in the

same way: combining an uncertain similarity measure with the 1-Nearest Neighbor

(1-NN) classi�er. The development has been therefore focused on the building of

similarity measures for uncertain time series.

The uncertain similarity measure MUNICH has been proposed by

[Aÿfalg et al. 2009] and can be used when the uncertainty is represented by

a set of possible observations at each time step. It is used to compute the proba-

bility that the similarity between two uncertain time series is below a user-de�ned

threshold. Therefore, MUNICH does not actually compute the uncertain similarity

and has never been used in a classi�cation context. The uncertain similarity

measure PROUD [Yeh et al. 2009] also computes the probability of the similarity

being below a threshold, but unlike MUNICH, uses PDF representation of uncertain

time series.

The uncertain similarity distance DUST [Sarangi & Murthy 2010] has been been

proposed as a generalized notion of distance between uncertain time series to over-

come the limitation of PROUD and MUNICH. It makes fewer assumptions on the

uncertainty compared to PROUD, is computationally less expensive compared to
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MUNICH and degenerates to the Euclidean distance when the uncertainty is very

small. Moreover, it does not compute a probability on the similarity, but the simi-

larity itself. DUST assumes that the imprecision in the time series follows a normal

distribution. N_DUST is a DUST variant that assumes the best estimate to be

normally distributed while U_DUST considers uniform distribution.

De�nition 1.8 (DUST). The DUST similarity is de�ned as follows:

U_DUST (T1, T2) =

√√√√ l∑
1

(
ˆt1,i − ˆt2,i
2σi

)2

(1.7)

N_DUST (T1, T2) =

√√√√ l∑
1

(
ˆt1,i − ˆt2,i

2σi(1 + σ2
i )

)2

(1.8)

where σi is the uncertainty at time step i.

Since DUST requires the compared values to have the same uncertainty, we

consider σi = max(δt1,i, δt2,i) in this work.

About 10 years after DUST, the uncertain similarity measure FOTS has been

proposed [Siyou Fotso et al. 2020]. Compared to DUST, MUNICH and PROUD,

FOTS does not explicitly model the uncertainty, but assumes the time series are

noisy and there is no information nor assumptions made on that noise. FOTS uses

Eigenvalues decomposition to keep only the most important components of the uTS

and to reduce the noise.

De�nition 1.9 (FOTS). The FOTS similarity is de�ned as follows:

FOTS(T1, T2) =

√√√√ l∑
i=1

k∑
j=1

(U1 − U2)2ij (1.9)

where U1 and U2 are the k �rst Eigenvector matrices of the local auto-covariance

matrices of T1 and T2 respectively.

The local auto-covariance at timestamp t of a time series T is computed using

M sliding windows of size w as follows:

Γt(T,w,M) =

t∑
τ=t−M+1

Tτ,w ⊗ Tτ,w (1.10)

where Tτ,w is the subsequence of length w from T and which starts at timestamp τ .

⊗ is the outer product operator.

DUST, MUNICH, PROUD have been compared against each other on some time

series analysis tasks such as querying and classi�cation [Dallachiesa et al. 2012]. In

the same work, the authors proposed the uncertain moving average (UMA), a moving

average strategy for uncertain time series.

We have noted four main limitations in the existing works on uncertain time

series:
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1. First, existing similarity measures give the similarity between two uncertain

time series as an exact similarity without any uncertainty information. Since

the compared objects are uncertain, it is natural to expect the similarity be-

tween them to have some uncertainty. Elsewhere, since the existing measures

do not give the uncertainty on the similarity, the classi�er cannot be aware

that the input data are uncertain. Likewise, the result of applying UMA is

provided without the associated uncertainty,

2. second, except FOTS which has been proved to be more robust for clustering

uncertain time series than Euclidean distance, the other uncertain measures

have not been proved to be more e�ective compared to any exact distance

that ignores uncertainty. This opens a question: are the existing uncertain

similarity measures really necessary/useful?

3. third, the existing uncertain similarity measures have never been applied on

real uncertain time series datasets, but always on exact time series on which

random uncertainty have been added,

4. Finally, the synthetic uncertain time series data on which the existing methods

have been tested are never provided, making it di�cult to reproduce or verify

the published results.

The Uncertain Euclidean Distance (UED) that we are proposing in Section 2.2 is

a solution for the �rst aforementioned limitations. This thesis mitigates the second

limitation by giving a comparison of DUST, which is to our knowledge the state-

of-the-art uncertain measure, to Euclidean distance. In addition, we also consider

FOTS and UED in this comparison. We apply these measures on synthetic datasets,

but also on PLAsTiCC, an astronomical dataset of time series with real uncertainty

[Allam Jr et al. 2018]. Finally, we share the source code, datasets and results of our

experiment on a public repository to encourage reproducibility and re-usability.

As mentioned earlier, the existing methods are based on the combination of a

similarity measure with a 1-NN classi�er and it has been shown that this approach

is signi�cantly less e�ective than approaches that extract local and/or global fea-

tures on which classi�cation is then performed [Bagnall et al. 2017]. The UST and

uSAST methods, which we respectively propose in Chapter 2 and Chapter 4 are

based on shapelet features which are known to be very competitive for exact time

series classi�cation when tested on the UCR archive [Dau et al. 2019]. Beside giving

accurate classi�cation, shapelet features provide an inherent and easy explanation

of the predictions [Hills et al. 2014].

Figure 1.17 summarizes existing uncertain time series classi�cation methods.

Because the existing uncertain similarity measures do not provide the similarity

uncertainty, the brutal disappearance of the uncertainty at the very beginning of

the classi�cation process can be observed, misleading the remaining part of the

process to wrongly believes that the input data is certain.
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Feature extraction Classification

class 1
class 2

Feature transform
f1, f2, ..., fk

Val_f1 Val_f2 ... Val_fk

v(T1, f1) v(T1, f2) ... v(T1, fk)

v(T2, f1) v(T2, f2) ... v(T2, fk)

v(T3, f1) v(T3, f2) ... v(T3, fk)

v(T4, f1) v(T4, f2) ... v(T4, fk)

Figure 1.17: Overview of existing uncertain time classi�cation approaches

1.3 Our proposed general approach for uTSC

Given the limitations that we noticed in the state-of-the-art, we argue that un-

certainty should be handled throughout the whole classi�cation process. Doing so

will increase the reliability of uTSC methods, but also its usability by non expert

users. Our proposal follows the same steps as existing uTSC approaches, but with

the di�erence that the extracted features are accompanied with their respective un-

certainties. Similarly, the dataset obtained after the transformation step also have

associated uncertainty, and �nally, the classi�cation is performed while taking un-

certainty into account. Hence, the uncertainty on the predicted labels can also be

quanti�ed. This process is summarized in Figure 1.18.

Uncertain feature
extraction

Uncertain
classification

uncertain class 1
uncertain class 2

Uncertain feature
transform

Val_f1 Val_f2 ... Val_fk

v(T1, f1) v(T1, f2) ... v(T1, fk)

v(T2, f1) v(T2, f2) ... v(T2, fk)

v(T3, f1) v(T3, f2) ... v(T3, fk)

v(T4, f1) v(T4, f2) ... v(T4, fk)

f1, f2, ..., fk

Figure 1.18: Overview of the new proposed uncertain time classi�cation approach

1.4 Conclusion

In this chapter we de�ned the background notions that are going to be used through-

out all this work. In addition, we presented a detailed review of the existing methods

for certain and uncertain time series classi�cation. We identi�ed the scienti�c locks

in the existing methods, and proposed a novel design of uncertain time series clas-

si�cation which takes uncertainty into account from the beginning to the end of the
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process.

In the next chapter, we follow our proposed design by propagating uncertainty

in the euclidean distance in order to obtain the uncertain euclidean distance (UED)

which allows us not only to have the similarity, but also the quanti�cation of the

uncertainty on that similarity. Subsequently, UED is used to perform uTSC classi-

�cation e�ciently.





Chapter 2

Uncertain Time Series

Classi�cation With Shapelet

Transform

Time series classi�cation is a task that aims at classifying chronological data. It

is used in a diverse range of domains such as meteorology, medicine and physics.

In the last decade, many algorithms have been built to perform this task with very

appreciable accuracy. However, applications where time series have uncertainty

has been under-explored. Using uncertainty propagation techniques, we propose a

new uncertain dissimilarity measure based on Euclidean distance. We then pro-

pose the uncertain shapelet transform algorithm for the classi�cation of uncertain

time series. The experiments we conducted on state-of-the-art datasets show the

e�ectiveness of our contribution.
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2.1 Introduction

The last decade has been characterized by the availability of measurements in a

large and variate set of domains such as meteorology, astronomy, medicine and

object tracking. Generally, these measurements are represented as time series



32
Chapter 2. Uncertain Time Series Classi�cation With Shapelet
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[Dallachiesa et al. 2012], that means a sequence of data ordered in time. Time series

classi�cation is used in many applications such as astronomy, land cover classi�cation

and human activity recognition. Meanwhile, there has been an increase of the num-

ber of methods for time series classi�cation [Shifaz et al. 2020, Bagnall et al. 2017].

However, to the best of our knowledge, these methods do not take data uncertainty

into account. Any measurement is subject to uncertainty that can be due to the

environment, the mean of measurement, privacy constraints and other factors. Fur-

thermore, even if uncertainty can be reduced, it cannot be eliminated [Taylor 1996].

In some applications, uncertainty cannot be neglected and has to be explicitly han-

dled [Sarangi & Murthy 2010].

Shapelet based methods are one of the best approaches that have been developed

for time series classi�cation. A shapelet is a subseries that is representative for a class

of time series. These methods are especially appreciated for their interpretability,

their robustness and their classi�cation speed [Ye & Keogh 2009b].

Almost every time series classi�cation methods are built by coupling a similarity

measure with a supervised classi�er. We follow this pattern in this chapter to build

an uncertain time series classi�er. We are not aware of any existing method in the

literature for the classi�cation of uncertain time series.

Our contribution is as follows, we �rst propose an uncertain dissimilarity mea-

sure based on Euclidean distance. Secondly we use it to build the uncertain shapelet

transform algorithm, which is the shapelet transform algorithm adapted to the clas-

si�cation of time series with available uncertainty information.

The rest of this chapter is organized as follows: In Section 2.2, we present a

new uncertain dissimilarity measure called UED, and in Section 2.3, we present the

uncertain shapelet transform algorithm (UST). Section 2.4 is about experiments and

Section 2.5 �nally concludes this chapter.

2.2 UED: a new uncertain dissimilarity measure

As stated by [Taylor 1996], uncertainty is di�erent from error since it cannot be

eliminated, but it can be reduced up to a certain magnitude. Regardless of the

measurement method, there is always an uncertainty and uncertain measures cannot

be compared with a 100% reliability: the result of the comparison of uncertain values

should also be uncertain.

From now on, we consider only PDF-based representation of uncertain values.

Let x be an uncertain value, we have x = x̂ ± δx, the exact value of x follows

a probability distribution and lies in the interval [x̂ − δx, x̂ + δx]. x̂ is the best

guess of the exact value of x. Let y be another uncertain value, any mathematical

operator applied on x and y produces a new uncertain value. We have the following
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uncertainty propagation properties [Taylor 1996]:

z = x+ y = (x̂+ ŷ)± (δx+ δy)

z = x− y = (x̂− ŷ)± (δx+ δy)

z = x× y = (x̂× ŷ)± (
δx

|x̂|
+

δy

|ŷ|
)× (|x̂× ŷ|)

z =
x

y
=

x̂

ŷ
± (

δx

|x̂|
+

δy

|ŷ|
)× |x̂|
|ŷ|

Euclidean distance (ED) is widely used in the literature to measure the dis-
similarity between time series. It is particularly used in shapelet-based approaches
[Ye & Keogh 2009b, Hills et al. 2014, Bagnall et al. 2017]. Using the uncertainty
propagation properties, an uncertain dissimilarity measure based on ED can be
computed for two uncertain time series T1 and T2 by propagating uncertainty in
the ED formula. We name the obtained measure UED for Uncertain Euclidean
Distance, and it is de�ned as follows:

UED(T1, T2) =

n∑
i=1

(t̂1i − t̂2i)
2 ± 2

n∑
i=1

|t̂1i − t̂2i| × (δt1i + δt2i) (2.1)

where T̂i is the time series of the best guesses of Ti.

The output of UED is an uncertain measure representing the similarity between

the two uncertain time series given as inputs. In order to use UED to classify

time series, especially with a shapelet algorithm, an ordering relation for the set

of uncertain measures is needed. We propose three ways to compare uncertain

measures: the �rst one is the simpler one and is based on con�dence, the second

one is a stochastic order and the last one is an interval number ordering.

Simple ordering for uncertain measures

This ordering is based on two simple properties. Let x and y be two PDF-based

uncertain measures, the �rst property is the property of equality and states that

two uncertain measures are equal if their best guesses and their uncertainties are

equals.

x = y ⇐⇒ x̂ = ŷ ∧ δx = δy (2.2)

The property of inferiority is the second one and states that the uncertain mea-

sure x is smaller than the uncertain measure y if and only if the best guess of x

is smaller than the best guess of y. In the case where x and y have the same best

guesses, the smaller is the one with the smallest uncertainty.

x < y ⇐⇒ (x̂ < ŷ) ∨ ((x̂ = ŷ) ∧ (δx < δy)) (2.3)

Unlike the property of equality which is straightforward, the property of inferiority

need some explanations. Unfortunately, we don't have a mathematical justi�cation

of this property but it is guided by two points: �rstly we are in some way con�dent
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about the best guess since it must have been given by an expert, and secondly we

are more con�dent with smaller uncertainties.

Of course, these properties do not always give a correct ordering; in fact, if

x = 2 ± 0.5 and y = 2 ± 0.1 then the inferiority property says that y < x. Now, if

there is an oracle able to compute the exact value of any uncertain measure, it might

says that x = 1.8 and y = 2, and thus invalidating our ordering. This observation

also holds for the properties of equality.

Stochastic ordering of uncertain measures

An uncertain measure can be considered as a random variable with mean equals

to the best guess and standard deviation equals to the uncertainty. Given this

consideration, a stochastic order can be de�ned on the set of uncertain measures. A

random variable X is stochastically less than or equal to (noted ≤st) another random

variable Y if and only if Pr[X > t] ≤ Pr[Y > t] ∀t ∈ I, where I is the union of the

domains of X and Y [Marshall et al. 2010]. The stochastic order can be rewritten

and developed as follows:

X ≤st Y ⇐⇒ Pr[X > t] ≤ Pr[Y > t] ∀t ∈ I
⇐⇒ 1− Pr[X > t] > 1− P [Y > t] ∀t ∈ I
⇐⇒ Pr[X ≤ t] > Pr[Y ≤ t] ∀t ∈ I
⇐⇒ CDFX(t) > CDFY (t) ∀t ∈ I

(2.4)

CDFX(t) is the cumulative distribution function of the random variableX evaluated

at t. Because the cardinality of I is in�nite, we discretized it as being the set of the

following values:

min(I) + i× max(I)−min(I)
k

0 ≤ i ≤ k and k is a whole number to be de�ned.
(2.5)

Unlike the simple ordering which is a total order, the stochastic ordering is a

partial order. That means, the relation stochastically less than or equal to is not

de�ned for any two random variables as the condition may not hold for every t

in I, and thus, sorting some uncertain measures using the stochastic ordering is

impossible. This is clearly a limitation, but we did not �nd a total stochastic

ordering in the literature.

Interval numbers ordering

De�nition 2.1 (Interval number). An interval number in is a number represented
as an interval, that is in = [iln, i

u
n], where iln and iun are respectively the lowest and

highest possible values of the number.

A PDF-based uncertain value is by de�nition an interval number, enhanced with

a probability distribution in that interval. Given two uncertain values x and y, the
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interval number-based ordering can be estimated using the following probability

[Xu & Da 2002, Yue 2011]:

Pr[x ≥ y] = max(1−max(
ŷ + δy − x̂+ δx

2δx+ 2δy
)) (2.6)

Unlike the stochastic ordering, the simple ordering and the interval number-

based ordering do not exploit the uncertainty distribution, nor the best guess given

by the expert. The simple ordering required the best guess to be known, and this

is not always the case in practice. If the compared uncertain values do not overlap

at all, that is they do not have some possible exact values in common, all the three

ordering give the same order.

Now that we know how to sort uncertain measures, let us see how to use UED

to classify uncertain time series.

2.3 UST: The uncertain shapelet transform classi�cation

In this section, we describe how to classify uncertain time series using shapelets.

Uncertain observations are represented using the probability density function model

(or simply PDF model). We start by de�ning the concepts that are used in our

algorithm, then we describe the algorithm itself.

2.3.1 De�nition of concepts

De�nition 2.2 (Uncertain subsequence). An uncertain subsequence S of an

uncertain time series T is a series of l consecutive uncertain values in T .

S = Ŝ ± δS = (t̂i+1 ± δti+1, ..., t̂i+l ± δti+l)

1 ≤ i ≤ m− l, 1 ≤ l ≤ m,m = |T |
(2.7)

De�nition 2.3 (Distance). The distance between a subsequence S of length l and

a time series of length m is de�ned as follows:

Dist(S, T ) = min
P∈T l

dist(S, P ),

, where T l = {(ti, ti+1, ..., ti+l)| 1 ≤ i ≤ m− l + 1}

The dist(·, ·) function in De�nition 2.3 could be any distance metric. In practice

the Euclidean Distance (ED) and the Dynamic Time Warping (DTW) are generally

used. The de�nition is also applicable between uTS and uncertain subsequence by

ignoring the uncertainty or by taking it into account using an uncertain distance,

namely the UED distance.

Let D = {(Ti, ci)|1 ≤ i ≤ n} be a dataset of n time series Ti (respectively

uncertain time series) with their class labels ci taken from a discrete �nite set C

such that the cardinality of C is much less than n. We can de�ne the notions of

separator and shapelet for this dataset.
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De�nition 2.4 (Separator). A separator (respectively uncertain separator) is a

pair of a subsequence S (respectively uncertain subsequence) and a threshold ε that

divide the dataset in two groups DL and DR such that:

DL = {(Ti, ci)|Dist(S, Ti) < ε, 1 ≤ i ≤ n}
DR = {(Ti, ci)|Dist(S, Ti) ≥ ε, 1 ≤ i ≤ n}

De�nition 2.5 (Shapelet). Given a dataset D = {(T1, c1), (T2, c2), ..., (Tn, cn)} of
time series with their class labels ci taken from a �nite set of classes C, a shapelet

S⋆ is a separator that maximizes the information gain.

S⋆ = argmax
S∈W

IG(D,S), with W being the set of all subsequences in D. (2.8)

De�nition 2.6 (Information gain (IG)). Let D be a time series dataset and S

a shapelet. Let DL = {T ∈ D | dist(T, S) ≤ ε} and DR = {T ∈ D | dist(T, S) > ε},
then

IG(D,S) = max
ε∈SP⊂R

(
H(D)− |DL|

|D|
H(DL)−

|DR|
|D|

H(DR)

)
, with H(D) = −

∑
c∈C

pc log pc

(2.9)

H(·) is the entropy, pc is the probability of having the class c in the dataset D, C is

the set of classes in D, and SP is the set of possible split points.

Shapelets have been introduced as primitives for time series classi�cation by

[Ye & Keogh 2009b]. The authors proposed a shapelet based decision tree in which

each node is a subsequence and the time series arriving at a node are split in two

groups such that one group contains data that are similar to the subsequence at that

node, and the other group is the set of data that are not similar to the subsequence.

Figure 2.1 illustrates a node in the proposed decision tree. The blue time series

contain the subsequence in the node (i.e they are similar to the subsequence at the

node), so they follow the branch labeled with yes. The red time series does not

contain the subsequence in the node (i.e they are not similar to the subsequence at

the node), therefore the follow the branch labeled with no.

Figure 2.1: An illustration of a node in a shapelet decision tree for a binary time

series classi�cation

Training a shapelet based decision tree consists of learning the best subsequence

(i.e shapelet) to use at each node, and for each shapelet the best similarity threshold.
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This training is done in a top-down approach as in a classical decision tree using

the information gain (IG) at each node to �nd the best split.

2.3.2 Uncertain shapelet transform classi�cation

Our algorithm for uncertain time series classi�cation is an extension of the shapelet

transform algorithm [Hills et al. 2014].

Given a dataset D of uncertain time series, the �rst step is to select the top k

best uncertain shapelets from the dataset. This step is achieved using the procedure

described by Algo. 1, which takes as input, the dataset D, the maximum number

of uncertain shapelets to be extracted k, the minimum and the maximum length of

an uncertain shapelet MIN and MAX. This algorithm uses three subprocedures:

� GenCand(T,MIN,MAX) which generates every possible uncertain shapelet

candidates from the input uncertain time series T . These candidates are un-

certain subsequences of T , with length at least MIN and at most MAX.

� AssessCand(cands,D) which computes the quality of each candidate in the

list of candidates cands. The quality of a candidate is the information gain it

produces when used as a separator for the dataset.

� ExtractBest(C,Q, k) which takes the list of uncertain shapelet candidates C,

their associated qualities Q and returns �rst k uncertain shapelets with highest

qualities.

In summary, Algo. 1 generates every uncertain subsequences of length at leastMIN

and at most MAX from the dataset, assesses the quality of each one by computing

the information gain obtained when it is used as a separator for the dataset and

�nally returns the k subsequences that produce the highest information gain. The

parameters MIN and MAX should be optimized to reduce the execution time of

the algorithm. With the knowledge of the domain, the length of a typical shapelet

can be estimated and used to set MIN and MAX in order to reduce the number of

shapelet candidates. By default MIN is set to 3 and MAX is set to m− 1, where

m is the length of the time series.

The next step after the top-k uncertain shapelets selection is the uncertain

shapelet transformation. This step is done using Algo. 2, which takes as input

the dataset D, the set of the top-k uncertain shapelets S and the number of uncer-

tain shapelets k. For each uncertain time series in the dataset, its uncertain feature

vector of length k is computed using UED. The ith element of the vector is the

UED between the uncertain time series and the uncertain shapelet i. Because the

uncertainties add up during the transformation, the uncertain feature vectors are

such that the scale of the best guesses is smaller than the scale of the uncertainties.

It is very important to have everything on the same scale. The second for loop

of Algo. 2 performs the standard normalization of the transformed dataset. We

use D̂:j to represent the list of the best guesses of uncertain dissimilarities between

every uncertain time series and the jth uncertain shapelet, and δD:j is the list of the
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Algorithm 1: Top-K Uncertain Shapelet Selection

Input: D, k,MIN,MAX

1 begin
2 C ← ∅;Q← ∅
3 for i← 1, n do
4 cands← GenCand(Ti,MIN,MAX)

5 qualities← AssessCand(cands,D)

6 C ← C + cands

7 Q← Q+ qualities

8 end
9 S ← ExtractBest(C,Q, k)

10 return S // Top k uncertain shapelets

11 end

corresponding uncertainties. The scaled and transformed dataset is �nally returned

by the algorithm.

The third and last step is the e�ective classi�cation. A supervised classi�er

is trained on the uncertain transformed dataset, such that, given the feature vec-

tor of an unseen uncertain time series, it can predict its class label. Since the

uncertainty have been propagated, the training process can be aware of uncer-

tainty by taking it as part of the input. More speci�cally, best guesses are fea-

tures and uncertainties are features of best guesses, and thus are meta-features.

There exists many supervised classi�ers in the literature for the classi�cation

of uncertain tabular data [Li et al. 2020a, Aggarwal & Yu 2009]. We have de-

cision tree-based methods [Tsang et al. 2009, Qin et al. 2009], SVM-based meth-

ods [Bi & Zhang 2005, Yang & Gunn 2007, Li et al. 2020b] and Naive Bayes-based

methods [Qin et al. 2011, Qin et al. 2010]. Since the transformed data is an uncer-

tain tabular data, uncertain supervised classi�ers can be used for the classi�cation

step. Furthermore, any supervised classi�er can be used as soon as the transformed

dataset is formatted in a way that is accepted by that classi�er.

If instead of UED, one of the existing metrics from the state of the art (DUST,

MUNICH, PROUD or FOTS) is used, the classi�er would not be able to learn

while being aware of uncertainty in the input since the output of these metrics

are apparently 100% reliable; most importantly, it would not be possible to take

advantage of an uncertain classi�er.

Fig. 2.2 gives an overview of the classi�cation process. During the training step,

top-k uncertain shapelets are selected and an uncertain supervised model (illustrated

here by a decision tree for simplicity) is trained on the uncertain transformed dataset.

During the test step, the uncertain shapelets extracted during the training step are

used to transform the test set, and the trained model is used to predict the class

labels of the test set according to the result of the transformation. We call this

model UST for Uncertain Shapelet Transform classi�cation.
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Algorithm 2: Uncertain Shapelet Transformation

Input: D,S, k

1 begin
2 for i← 1, n do
3 temp← ∅ for j ← 1, k do
4 tempj ← UED(Ti, Sj)

5 end
6 Di ← tempj
7 end
8 for i← 1, n do
9 for j ← 1, k do

10 best← D̂ij−mean(D̂:j)

std(D̂:j)

11 delta← δDij−mean(δD:j)
std(δD:j)

12 Dij = best± delta

13 end

14 end
15 return D // The transformed dataset

16 end

Figure 2.2: Uncertain time series classi�cation process

2.3.3 UST time complexity

Since the number of shapelet candidates of length l in the dataset is bounded to

n × (m − l + 1), the subprocedures used by the Uncertain Shapelet Transform

algorithm do not last forever; the rest of the algorithm are for loops, and thus the

UST algorithm ends. The algorithm also evaluates all possible shapelet candidates

and keep only the k best ones. In term of time complexity, it is the same time

complexity as the original shapelet transform (ST) which is O(n2m4). In fact the

di�erences are the dissimilarity computation and the transformation process. UST

uses UED to compute the dissimilarity, while ST uses the Euclidean distance (ED).

The time complexity of UED is O(n)+O(n) which is asymptotically equal to O(n),

the time complexity of ED. The scaling of the transformed dataset does not change

the complexity order of the transformation process as well.
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2.4 Experiments

In this section, we experimentally assess our model and compare it with the state of

the art. The comparison criterion is the model classi�cation accuracy as it is always

done in the literature [Bagnall et al. 2017, Hills et al. 2014, Siyou Fotso et al. 2020,

Dallachiesa et al. 2012]. Since the output of our model is the probability distribution

over the set of classes, we take the most probable class as the predicted class and

use it to compute the model accuracy.

2.4.1 Compared models

We have compared di�erent models which are di�erent con�gurations of the UST

model. In particular, our models are built regarding the following attributes: un-

certain similarity, ordering strategy, and supervised classi�er.

Uncertain similarity

This is how the dissimilarity between uncertain subsequences is computed by UST.

This attribute has �ve possible values which are ED, UED, FOTS, U_DUST, and

N_DUST.

We set the parameter of FOTS following the speci�cations in its original paper

[Siyou Fotso et al. 2020]. Hence, the number of windows (m) is equal to the length

of a window (w) which is equal to half the length of the time series. The time index

(t) used to compute the auto-covariance matrices is equal to half the length of the

time series, and �nally the number of eigenvectors (k) is set to 4.

Ordering strategy

This is the method used to sort uncertain measures, that is simple, stochastic or

interval ordering. When measures are not uncertain (when using FOTS or DUST),

we use the natural order.

For the stochastic ordering we consider an uncertain measure x to be normally

distributed. Given this assumption, the following cumulative distribution function

can be used

CDFX(t) =
1

2
(1 + erf(

t− x̂

δx
√
2
)) (2.10)

where erf(·) is the Gauss error function. To discretize I (using Eq. 2.5), we �xed

the value of k to 100. Larger values of k lead to best approximation of I, however

slow the classi�cation process. We tried several values of k, but k = 100 worked

better. We have also used a relaxed version of the stochastic ordering: given two

random variables X and Y , we have X ≤st Y if the number of values t in I such

that CDFX(t) > CDFY (t) is greater than the number of values t in I such that

CDFX(t) ≤ CDFY (t).

For the interval ordering, we say that x ≤ y if Pr[x ≤ y] > 0.5
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Supervised classi�er

This is the model used to classify the transformed dataset in the last step of UST.

We used the classical Gaussian Naive Bayes (GNB) and the Uncertain Gaussian

Naive Bayes (UGNB) models. We implemented UGNB following [Qin et al. 2011].

We chosen these classi�ers for their simplicity in order to evaluate UED and the

importance of propagating uncertainty followed by the use of a classi�er that takes

uncertainty into account during its training phase.

For each model, the parameter MIN and MAX are set to 3 and m − 1 re-

spectively, where m is the length of the uncertain time series in the dataset being

processed. Because of the high time complexity of the algorithm, we have used a

time contract to limit the execution time of each model. After the evaluation of an

uncertain shapelet candidate, the next candidate is evaluated only if there is time

remaining in the contract; otherwise the shapelet search is ended. Because FOTS is

more time consuming than ED, UED and DUST, we set FOTS's time contract 12

times higher above the time limit of other measures.

Tab. 2.1 gives a summary of the di�erent models that are evaluated and com-

pared throughout our experiments. In order to apply the model UST(UED, GNB),

Table 2.1: Summary of the models that are compared in our experiments.

Name Measure Ordering Classi�er Time contract

ST ED Natural GNB 10 minutes

UST(DUST_NORMAL) DUST NORMAL Natural GNB 10 minutes

UST(DUST_UNIFORM) DUST UNIFORM Natural GNB 10 minutes

UST(FOTS) FOTS Natural GNB 120 minutes

UST(UED, GNB) UED Simple, Stochastic and Interval GNB 10 minutes

UST(UED, UGNB) UED Simple, Stochastic and Interval UGNB 10 minutes

each uncertain feature vector is �atten such that the �rst half contains the best

guesses and the second half contains the uncertainty deviation. This is required

because the Gaussian naive bayes (GNB) classi�er does not take uncertainty into

account.

2.4.2 Datasets

We used datasets from the well known UCR repository [Dau et al. 2019]. Instead

of running our experiment on the whole repository, we use only datasets on which

shapelet approaches are known to work well. According to [Bagnall et al. 2017],

shapelet approaches are more suitable for electric device, ECG, sensor and simu-

lated datasets. Tab. 2.2 gives a summary of the 15 shapelet datasets on which

we conducted our experiments. The �rst column is the name of the dataset, the

second is the number of instances in the training/test set, the third is the length

of time series and the fourth and last column is the number of di�erent classes in

the dataset. Each dataset is already split into the training and the test sets on the

repository.
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Table 2.2: Datasets Description

Datasets train/test length #classes

BME 30/150 129 3

CBF 30/900 129 3

Chinatown 20/345 25 2

ECGFiveDays 23/861 137 2

ECG200 100/100 96 2

ItalyPowerDemand 67/1029 24 2

Plane 105/105 145 7

ShapeletSim 20/180 500 2

SmoothSubspace 150/150 16 3

SonyAIBORobotSurface1 20/601 70 2

SonyAIBORobotSurface2 27/953 65 2

SyntheticControl 300/300 60 6

Trace 100/100 275 5

TwoLeadECG 23/1139 83 2

UMD 36/144 151 3

Since the datasets in this repository are without uncertainty, we manually add

uncertainty in the datasets listed in Tab. 2.2. Given a dataset, the standard de-

viation σi of each timestep is computed. For each time series in the dataset, the

added uncertainty for the observation at timestep i follows a normal distribution

with mean 0 and standard deviation c×σ, where σ is randomly chosen from a normal

distribution with mean 0 and standard deviation σi . We used di�erent values of c

ranging from 0.1 to 2. The uncertainty result for an instance from the Chinatown

dataset is shown by Fig. 2.3 for c = 0.6. The orange line is the original time series,

and the blue one is the obtained uncertain time series. Sometimes, the original time

series does not cross the uncertainty interval (vertical red bars), these cases are there

to represent situations where the uncertainty has not been well estimated, maybe

because the expert has been too optimistic. Situations where the expert had been

too pessimistic are represented by very large uncertainty bars. During the training

phase, original time series are not used, only the uncertain time series are used.

We implemented UST in the Python programming language, and we used the

open source package sktime [Löning et al. 2019]. The code and the data used for

our experiment are publicly available1.

2.4.3 Results

For each of the models we compared, we have recorded the obtained accuracy, the

training duration and the testing duration. These values are recorded for each level

of uncertainty.

1https://github.com/frankl1/ustc/releases/tag/litsa

https://github.com/frankl1/ustc/releases/tag/litsa
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Figure 2.3: Illustration of uncertainty for an instance from the Chinatown dataset.

the uncertainty level is c = 0.6

Uncertain ordering analysis

Let's analyze how the uncertain ordering used a�ects the accuracy of UED-based

models. Fig. 2.4 shows the critical di�erence diagram to exhibit any signi�cant

di�erence between our ordering strategies. The ordering strategy does not a�ect

the model accuracy too much, this is normal given the fact that the three order-

ing could be di�erent only if the uncertain measures to be sort overlap. However

the simple ordering (called SIMPLE_CMP on the plots) and the interval order-

ing (called INTERVAL_CMP on the plots) are better than the stochastic ordering

(called CDF_CMP on the plots).

Accuracy analysis

In this analysis, UST(UED, GNB) and UST(UED, UGNB) use the interval ordering

only. UED-based models are better than the others. They are even better when the

uncertain naive bayes is used as classi�er, that is UST(UED, UGNB). We observe

also that the accuracy of each model decreases when the uncertainty level increases;

however the accuracy of UED-based models decreases more slowly than the accu-

racy of DUST and FOTS-based models: UED-based models are more robust to

uncertainty changes, and even more when an uncertain classi�er is used.

The critical di�erence diagrams on Fig. 2.5 show how di�erent the compared

models are for some levels of uncertainty. Whatever the level of uncertainty is,

propagating the uncertainty gives models that are signi�cantly more accurate than

not using uncertainty propagation.

The model ST is the classical shapelet approach, in which the Euclidean dis-

tance is used. The classi�er used is the Gaussian naive bayes. In this model only

the best guesses are used, and there is no uncertainty handling at all. For low un-

certainty levels, this model is the second best model, behind UST(UED, UGNB).
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(a) Uncertainty level c = 0.4

(b) Uncertainty level c = 1.2

Figure 2.4: Critical di�erence diagrams of UED-based models regarding the ordering

strategy for some levels of uncertainty

When the uncertainty increases, ST becomes among the worst models, exhibiting

the importance of uncertainty handling in time series classi�cation. For instance, on

the dataset SmoothSubspace and the uncertainty level of c = 0.4, ST achieves 47%

of accuracy, UST(UED, GNB) achieves 49%, while UST(UED, UGNB) achieves

83%.

Training duration

In term of training duration, the UST model that uses FOTS dissimilarity takes in

average 128 ± 9 minutes to �nish. When using DUST, ED or UED, UST takes in

average 10 ± 0.35 minutes to �nish. Hence, FOTS-based models are much slower

compared to DUST and UED-based models. This is because FOTS has a quadratic

time complexity (due to eigenvector decomposition) while ED, DUST and UED

have a linear time complexity. Hence the FOTS-based model requires more time to

learn.

Overall discussion

To build the uncertain shapelet transform classi�cation algorithm, we have handled

uncertainty in each step of a typical shapelet algorithm. During the �rst step where

shapelets are selected, UED is used to select shapelets while taking uncertainty

into account; when two shapelets has the same information gain, the one that is

less uncertain is preferred. During the shapelet transform step, the uncertainty is

propagated so that the transformed dataset contains uncertainty information. To

really take advantage of the propagated uncertainty, a classi�er that has been built

for uncertain data is used in the last step. Without the use of an uncertain classi�er,
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(a) Uncertainty level c = 0.1

(b) Uncertainty level c = 0.8

Figure 2.5: Critical di�erence diagrams of models for some levels of uncertainty

all the previous steps of uncertainty management are not really worthy.

Uncertainty is unpredictable, and because we are dealing with it, it is di�cult to

identify in which uncertain situation our approach will work well. For this reason,

we use di�erent levels of uncertainty in our experiment, expecting to cover at most

possible situations as we can. The uncertainty levels from c = 1 to c = 2 are more

likely to be extreme and may not be found in a real application, but it is important

to see how the model's behavior as the uncertainty becomes too large.

We manually added uncertainty in our datasets. Applying our model on a real

uncertain dataset will strengthen our contribution. Nevertheless, by using di�erent

levels of uncertainty in our datasets, we expect to cover any real situation.

The uncertain classi�er we used is the uncertain naive Bayes. We choose

it for its simplicity. There are other uncertain classi�ers [Li et al. 2020a,

Aggarwal & Yu 2009], and they can be used in UST, but we did not try them

because our goal was to show how important it is to correctly handle uncertainty

in the context of uncertain time series classi�cation. We highly recommend to try

other uncertain classi�ers when in real application.

Finally, the time contract we set during our experiments limits in some ways

the discovery of more, and why not better uncertain shapelets. In fact, maybe new

uncertain shapelets might have been discovered with a larger time contract.

2.5 Conclusion

The goal of this chapter was to classify uncertain time series using the shapelet

transform approach. To achieve this goal, we use uncertainty propagation tech-

niques to de�ne an uncertain dissimilarity measure called UED. Then we adapt

the well known shapelet algorithm to the context of uncertain time series using
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UED and propose the uncertain shapelet transform algorithm (UST). We have run

experiments on state of the art datasets. The results show that propagating uncer-

tainty during the shapelet transformation and then using an uncertain classi�er lead

to a more accurate model for uncertain time series classi�cation. The idea of uncer-

tainty propagation can be used with any dissimilarity measure, and any uncertain

supervised classi�er can be used in the classi�cation phase.

Similarly to shapelet transform, UST's high computation time for identifying

shapelets is one the of the greatest limitations of the approach. In the next chapter,

we will describe a novel design of shapelet-based classi�cation that overcomes this

limitation while keeping at least the same level of accuracy.

Key points

� We proposed the Uncertain Euclidean Distance (UED) which provides

uncertain similarities between uncertain time series.

� We used UED to take uncertainty into account in the shapelet-based

classi�cation and proposed the Uncertain Shapelet Transform (UST).

� We shown that using UED leads to better classi�cation than using ex-

isting uncertain measures in the state-of-the-art.
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Chapter 3

Scalable and Accurate

Subsequence Transform for Time

Series Classi�cation

Time series classi�cation using phase-independent subsequences called shapelets

is one of the best approaches in the state of the art. This approach is especially

characterized by its interpretable property and its fast prediction time. However,

given a dataset of n time series of length at most m, learning shapelets requires

a computation time of O(n2m4) which is too high for practical datasets. In this

chapter, we exploit the fact that shapelets are shared by the members of the same

class to propose the SAST (Scalable and Accurate Subsequence Transform) algo-

rithm which has a time complexity of O(nm3). SAST is accurate, interpretable

and does not learn redundant shapelets. The experiments we conducted on the

UCR archive datasets shown that SAST is more accurate than the state of the art

Shapelet Transform algorithm while being signi�cantly more scalable.
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3.1 Introduction

Time series classi�cation with shapelets is accurate, robust to noise and inter-

pretable [Ye & Keogh 2009b]. In particular, the shapelet transform algorithm is

known to be among the most e�ective when tested on the UEA & UCR archive

[Bagnall et al. 2017]. Shapelet have also been proved to be e�ective in time series

clustering [Siyou Fotso et al. 2020], showing how useful shapelets are. The inter-

pretability of a shapelet method is obtained by visualizing the subsequences that

triggered the class label of a given instance. Since the introduction of time series

classi�cation using shapelets, one of the major limitations of the developed algo-

rithms is their time complexity. In fact, the state-of-the-art time complexity of

shapelet based methods is n2m4 where n is the number of time series in the dataset

and m is the length of the longest time series. This high time complexity is due to

the large number of shapelet candidates that need to be evaluated in order to �nd

the top best shapelets.

A human brain is able to recognize a lot of variations of an object after seeing

a single variant. For instance, we are able to recognize any model of car after

seeing one of them, we can recognize many species of dog if we have ever seen a

dog. This ability is called core object recognition [DiCarlo et al. 2012]. Inspired

by this amazing behavior of our brain, we claim that a shapelet model should be

able to recognize any variant of a shapelet if it knows one or a few number of its

variants. Simply de�ned, a shapelet is a pattern that is shared by the time series that

belong to the same class. Therefore, any single instance of a class should contain

all the shapelet or at least a variant of each shapelet for that class. Guided by this

observation, we propose the Scalable and Accurate Subsequence Transform (SAST)

algorithm, a time series classi�cation algorithm that is accurate, scalable and whose

predictions are interpretable.

Existing shapelet based methods use the whole dataset to generate shapelet

candidates, then use information gain to select the top best shapelets before doing

the classi�cation using a supervised classi�er. We claim that it is not necessary to

generate the shapelet candidates from the whole dataset, only one or few instances

per class is enough. We also claim that pruning shapelet candidates without taking

into account the classi�er can lead to inaccurate classi�cation. We propose the

SAST model to support our claims ; it uses only a single instance per class in order

to generate shapelet candidates. Furthermore, shapelet candidates are not assessed

beforehand of classi�cation. The supervised classi�er automatically identi�es the

top best shapelets during its training phase. The key points of our contribution are

the following:

� We introduce the core shapelet recognition task which aims to recognize any

variant of a shapelet from one or few variants of that shapelet. We claim that

time series classi�cation by shapelets is a core shapelet recognition task and

therefore the size of the shapelet space is considerably reduced without losing

crucial information.
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� We propose the SAST method, which successfully performs the core shapelet

recognition task in order to accurately classify time series. SAST is also more

scalable than the state of the art shapelet methods. In particular, SAST took

1 second to classify the Chinatown dataset with an accuracy of 96%, while the

state of the art shapelet based algorithm STC took 51 seconds and achieved

an accuracy of 97% on the same computer. Furthermore our proposed method

can successfully classify some datasets on which STC fails.

The rest of this chapter is organized as follows: In Section 3.2 we describe our

proposed method SAST, which is inspired by the core object recognition capability

of human brain. In Section 3.3, we assess SAST on various datasets and compare it

to state of the art shapelet and non-shapelet based methods. Section 3.4 summarizes

this work and presents future direction.

3.2 SAST: Scalable and Accurate Subsequence Trans-

form

In time series classi�cation, a shapelet is ideally a pattern that is shared by every

instances of the same class, and that instances of other classes do not have, they are

called discriminative patterns or subsequences. The number of patterns in a dataset

of n time series of length m is O(nm2), and state of the art shapelet algorithms

evaluate each of them by computing their information gain for a set of similarity

thresholds before keeping the patterns and their corresponding similarity thresholds

that give the highest information gain. Reducing the number of patterns to be

assessed will make shapelet models faster to train. In this section we propose a way

to reduce the number of shapelet candidates. Then we show that there is no need

to select the top best shapelets beforehand. Finally we present a novel method for

shapelet based time series classi�cation.

3.2.1 Reducing the number of shapelet candidates

Human brain e�ortlessly performs core object recognition, the ability to recognize

objects despite substantial appearance variations [DiCarlo et al. 2012]. This gives

human the capability to recognize a vast number of objects that have the same

name just by seeing a few of them. [Heeger 2014] used Figure 3.1 in his lecture

notes on Perception to illustrate the notion of invariance in recognition. This �gure

shows di�erent ducks. Some are in water while others are not, some ducks are

photographs and other are drawings. Furthermore, the ducks have di�erent sizes,

colors, etc. Despite all these variabilities, a human brain that has already seen a

duck is able to recognize that each object on this �gure is a duck.

A shapelet is a pattern, a shape that is �common� to time series that have the

same class label. By �common�, we do not mean that these time series have exactly

that shapelet, but they have a pattern that is very similar to the shapelet. Any

pattern that is similar to a shapelet can be considered as a variant of that shapelet.
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Figure 3.1: Illustration of invariance in recognition.

Therefore, we introduce the core shapelet recognition task, which goal is to recognize

any variant of a shapelet by just seeing one or very few number of its variants. We

argue that time series classi�cation based on shapelets is a core shapelet recognition

task and that it should be solved using very few shapelet candidates than it has been

done since the introduction of shapelets by [Ye & Keogh 2009b]. Hence, instead of

generating shapelet candidates from the whole dataset, we propose to use only one

or a few number of instances per class. In fact, the members of a class should contain

common patterns or at least di�erent variants of the same pattern. In this way, the

learning algorithm must focus on one (or a small number) variant of each shapelet

candidate to learn how to classify a time series. We acknowledge that the more

variants the model learns from, the more accurate the model would be. However

this can also cause the model to over�t, especially when the training data is not

enough representative of the testing data.

On Figure 3.2, we have three randomly selected instances of the Chinatown

dataset from the UEA & UCR archive [Anthony Bagnall & Keogh 2018]. This

dataset has two classes of data. The left example is from class 1 and the second

example (in the middle) is from class 2. It is easy to observe that the instance from

class 1 starts by a deep valley, while the instance of class 2 does not. One reason

that can be considered in order to classify the instance on the right in class 2 is that

it does not start by a valley. Hence, observing only one instance per class can be

enough to discover discriminative patterns and successfully perform classi�cation of

new instances.

Figure 3.3 shows 4 randomly selected instances for each class. Instances of the

same class are superposed in order to expose global patterns. The �gure emphasizes

the previous observation that class 1 contains instances that start by a deep valley

while class 2 are instances that are more �at at the beginning.

Based on this observation, we propose the following statement:
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Figure 3.2: Three randomly selected instances from the Chinatown dataset. The

instance on the right is probably from class 2 since it does not start with a valley

Figure 3.3: Some randomly selected instances from the Chinatown dataset. The

instance on the right is de�nitely from class 2

Proposition 3.2.1. Let D = {(T1, c1), (T2, c2), ..., (Tn, cn)} be a dataset of time

series. Let Dc be any subset of D that contains at most k (k ≥ 1) instances from

each class. If classes in D can be distinguished using shapelets, then for any shapelet

shp of D, there exists a time series in Dc that is similar to shp.

Proof. Let's assume that classes in D are distinguishable using shapelets and that

there exists a shapelet shp for the dataset D that is not similar to any time series in

the set Dc. Since Dc contains at least a time series of each class in D, any shapelet

for the dataset D must be similar to at least one time series in Dc. It follows from

there that assuming shp to be a shapelet is wrong. Therefore the statement is

true.

From the previous proposition, any shapelet shp of D is always similar to a pat-

tern in Dc. Therefore, a shapelet algorithm that generated shapelet candidates from

Dc can achieve the same accuracy as if D was used. We run the shapelet transform

algorithm (STC) [Hills et al. 2014] on the Chinatown dataset and plotted the top

5 shapelets that have been selected for each class on Figure 3.4. The shapelets on

the �rst row clearly identify the valley at the beginning of time series in class 1.

Although they are coming from di�erent time series, they are very similar in shape.

Likewise, the shapelets on the last row identify the �at starting of instances in class

2. Generating shapelet candidates from the whole dataset makes STC learns di�er-

ent variants of the same patterns. The variations are in terms of starting position,

length and shape.
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Figure 3.4: Top 5 shapelets extracted for each class of the Chinatown dataset by

the shapelet transform algorithm.

By applying proposition 3.2.1 in the STC algorithm, we introduce STC-k, a

variation of the STC algorithm that uses at most k time series from each class to

generate the shapelet candidates. Hence, for a dataset with c classes, the number

of shapelet candidates to be evaluated in STC-k is O(ckm2) unlike STC in which

O(nm2) need to be evaluated. Algorithm 3 is an outline of the STC-k algorithm.

The only di�erence with STC is that the size of the shapelet space can be controlled

by the parameter k. For a more detailed description of the algorithm, the reader

should refer to the original STC's paper [Hills et al. 2014].

By default, the length_list parameter is the set {3, 4, ...,m}, where m is the

length of the time series in the dataset. min_ig is set to 0.05. In practice, two

other parameters are used in STC: the maximum number of shapelets to keep per

class and the time contract. The number of shapelets to keep per class is by default

set to 200. The time contract is the maximum time allocated to the algorithm to

search shapelets on the given dataset. [Middlehurst et al. 2020a] stated that in one

hour of searching per dataset, the result is not signi�cantly worse than the full search.

Following the implementation of STC in the sktime library [Löning et al. 2019], our

implementation of Algorithm 3 handles the time contract and the maximum number

of shapelets to keep per class.

We use the Chinatown dataset from the UCR archive

[Anthony Bagnall & Keogh 2018] as a toy dataset to assess STC-1 (that is

STC-k with k = 1). STC-1 took about 10 seconds to classify the Chinatown

dataset with an accuracy of 96% (average over �ve runs), while the original STC

algorithm took 51 seconds and gave an accuracy of 97% on the same computer.

Therefore, the STC-1 algorithm is about 5 times faster and achieves almost the

same accuracy as the original algorithm. The extracted shapelets are shown in

Figure 3.5. Di�erent variants of the same shapelet are not learned anymore. For

this dataset, exactly one shapelet has been selected for each class. As we will show

in Section 3.3, STC-k is signi�cantly less accurate than STC, even when k is equal
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to 75% of the number of time series in each class.

Figure 3.5: Shapelets extracted by STC on the Chinatown dataset using a single

randomly selected instance per class to generate shapelet candidates.

3.2.2 Identify shapelets using feature importance analysis

When time series classi�cation using shapelets was introduced, shapelets were

learned while building a decision tree [Ye & Keogh 2009b]. Later, shapelet trans-

form (STC) [Hills et al. 2014] has been proposed to allow the use of any supervised

classi�er. The algorithm proceeds by �nding the top best shapelets, then trans-

forms the dataset using the found shapelets and �nally trains a classi�er on the

transform dataset [Hills et al. 2014, Bostrom & Bagnall 2017, Karlsson et al. 2016].

Therefore, there are three main steps: feature extraction where best shapelets are

selected, dataset transformation where each time series is replaced by a vector of its

distance to the selected shapelets and �nally training where a classi�er is trained

on the transformed dataset.

We propose to remove the feature extraction step and use every shapelet can-

didates to transform the dataset. After training the classi�er on the transformed

dataset, a post hoc method for model explanation can be used to �nd the most

important features. The importance of a feature represents how much that feature

is correlated to the target variable [Dash & Liu 1997, Molnar 2020].

Proposition 3.2.2. Let D = {(T1, c1), (T2, c2), ..., (Tn, cn)} be a dataset of time se-

ries, and S the set of all subsequences in D. Let Df = {(x1, c1), (x2, c2), ..., (xn, cn)}
be a dataset such that xi = [xi:1, xi:2, ..., xi:|S|], where xi:j = dist(Ti, Sj). If the jth

feature is an important feature given by the analysis of feature importance for the

dataset Df , then Sj is a shapelet for the dataset D.

Proof. Let's suppose the jth feature is an important feature, and that Sj is not a

shapelet for the dataset. By de�nition 2.5, not being a shapelet means that the

information gain of Sj is not high enough, and whether a time series T is similar or

not to Sj does not give any clue about the class of T . Therefore, knowing dist(T, Sj)

doesn't help to classify T . In other words, the jth feature is not correlated to
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the target variable. Hence, it cannot be an important feature. This proves the

statement.

The importance of a feature in a tree based algorithm determines how much it

reduces the variance of the data compared to the parent node [Dash & Liu 1997,

Molnar 2020]. This corresponds exactly to the de�nition of a shapelet (see De�nition

2.5). In a linear model, the absolute value of the weight of an important feature will

be greater than the one of a less important feature [Molnar 2020]. Classi�ers such as

decision trees and linear models are said to be inherently interpretable since a post

hoc analysis is not required to interpret their predictions. More generally, when a

classi�er is �tted, a post hoc explainer can be used to �nd most important features

[Murdoch et al. 2019] in order to interpret predictions. Two examples of these post

hoc explainers are LIME [Ribeiro et al. 2016] and SmoothGrad [Smilkov et al. 2017]

for saliency maps. More methods can be found in the review of [Samek et al. 2020].

Hence, selecting shapelets beforehand of classi�cation using information gain can be

skipped, since the classi�er can automatically learn the top best shapelets during its

training iterations and feature analysis can be used after training to get the learned

shapelets.

3.2.3 Time series classi�cation with SAST

Time series classi�cation with SAST (Scalable and Accurate Subsequence Trans-

form) is designed with respect to Proposition 3.2.1 and Proposition 3.2.2. A visual

view of the the method is shown on Figure 3.6. There are two main blocks:

� The classi�cation block: this block is actually the SAST algorithm and begins

with the random selection of reference time series from which subsequences are

then generated. Thereafter, the dataset is transformed by replacing each time

series with a vector of its distances to each subsequence. Finally a supervised

classi�er (illustrated here by a decision tree) is trained on the transformed

dataset.

� The interpretability block: The role of this block is to explain the SAST algo-

rithm by identifying shapelet candidates associated with the most important

features learned by the classi�er. For inherently interpretable classi�ers such

as decision trees, the importance of each feature is computed while �tting the

classi�er. For other classi�ers, eventually not inherently interpretable, an ex-

isting post hoc explainer such as LIME [Ribeiro et al. 2016] can be used to

�nd the importance of each feature.

A pseudo code of the SAST algorithm is given by Algorithm 4. SAST takes as

input the time series dataset D, the number k of instances to randomly select from

each class in order to create the shapelet candidates, the list of lengths to use to

generate shapelet candidates, and �nally the supervised classi�er C that is going to

be trained on the transformed dataset.
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Figure 3.6: Overview of the SAST method

SAST starts by randomly select k instances per class from the dataset (line 2).

By default, k is set to one. We call the selected instances reference time series.

The next step is the generation of every subsequences of length in length_list from

the reference time series (line 3). The dataset transformation is performed from

line 4 to 11. Here, the similarity between each time series in the dataset and each

shapelet candidate is computed. The classi�er taken as input is then trained on

the transformed dataset (line 12). The algorithm returns the trained classi�er, the

shapelet candidates that have been generated.

After the training is done, the class labels of a test dataset can be predicted in

two steps: �rstly the dataset is transformed using the shapelet candidates that have

been generated during training, and �nally the trained classi�er is used to predict

the class labels of the transformed test dataset.

Since the number of time series in the dataset and the number of subsequences in

a time series are limited, Algorithm 4 always terminates. According to Proposition

3.2.2, the returned classi�er should have learned to classify time series regarding

features that are related shapelets.

3.2.4 SAST time complexity

Each step of the SAST algorithm runs in a �nite amount of time, therefore the

algorithm always terminates. Selecting k reference time series is done in O(c) time

complexity, c is the number of classes in the dataset. There are m − l + 1 subse-

quences of length l in a time series of length m. The total number of subsequences

for a time series is m(m+1)
2 . Since there are kc reference time series in a dataset with

c classes, generating all shapelet candidates is done in O(kcm2). The transformation

step requires O(nm2) distance computations, each of which requires O(l) (l is the

length of the subsequence) point wise operations. As the maximum subsequence

length is m, the time complexity of the transformation step is O(nm3). Therefore,

to total time complexity of SAST is O(c) + O(kcm2) + O(nm3) + O(classifier),

where O(classifier) is the time complexity of the classi�er used. The overall asymp-

totic time complexity of the SAST algorithm is therefore O(nm3) +O(classifier).

SAST is much faster than the state of the art shapelet transform algorithm (STC)
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[Hills et al. 2014] which time complexity is O(n2m4) +O(classifier).

3.2.5 Ensemble of SAST models

SAST accuracy is highly dependent on the randomly selected reference series. If

a reference time series is noisy or not representative of its class, then it could be

di�cult for SAST to learn the best shapelets for the dataset. Furthermore, the

random selection of reference time series could lead to a variance in performance. We

use Bagging [Breiman 1996] to leverage these possible issues and we call the obtained

model SASTEnsemble (or SASTEN in reduced form). SASTEN is obtained by

ensembling r SAST models. Each individual model in the ensemble uses randomly

selected reference time series and may also have di�erent parameters, especially

the parameters controlling the length of shapelet candidates (that is length_list in

Algorithm 4). The �nal prediction is obtained by averaging the predictions of every

SAST models in the ensemble.

The time complexity of SASTEN is r times the time complexity of SAST if run

sequentially. But this can be reduced using parallelization. SASTEN uses r times

more memory than a regular SAST.

3.3 Experiments

We have implemented STC-k, SAST and SASTEN in Python. Our implementation

is based on the scikit-learn machine learning library [Pedregosa et al. 2011]. We

have also followed scikit-learn design principles so that our models are compatible

with any scikit-learn pipeline. We have used the implementation of STC (Shapelet

Transform Classi�er) from the sktime library [Löning et al. 2019]. The source code

of our experiments and all the results we discuss here are publicly available here 1.

In all our experiments, the number of reference time series per class (that is the

parameter k in Algorithm 4) is always set to one. The supervised classi�er used

in STC-k, STC and SAST is the Ridge classi�er with Leave-One-Out (LOO) cross

validation. This classi�er is available in the scikit-learn library. The LOO cross

validation is used to �nd the best regularization parameter among 10 log spaced

values ranging from −3 to 3 (these values are inspired from [Dempster et al. 2020]).

The other parameters are left to their default values and are not �ne tuned.

We have also used the Random Forest classi�er in SAST. For this classi�er all

features are evaluated at each node to �nd the best split and a split is selected if

the impurity decreases by about 0.05, the minimal information gain for a shapelet

like in STC. Although it is generally better to evaluate only a subset of the feature

space in Random Forest in order to reduce the correlation between the trees, we

have not followed this guideline in our work because we want the model to always

select the best possible split (that is the best shapelet). However, each tree in the

1https://github.com/frankl1/sast/tree/master

https://github.com/frankl1/sast/tree/master
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ensemble is trained on a random subset of the training set. This classi�er is also

available in the scikit-learn library.

We make use of the Wilcoxon signi�cance test with a p-value of 0.05 to compare

our models. We give the result of this test as a critical di�erence diagram on which

models that are not signi�cantly di�erent from each other are linked with a bold

line. The code used for this test and to draw critical di�erence diagrams is from

[Fawaz et al. 2019b].

Table 3.1 describes the models that we use in our experiments.

We experiment using 72 randomly selected datasets from the UEA & UCR repos-

itory [Anthony Bagnall & Keogh 2018]. The datasets in the repository are di�erent

in terms of series length, number of series, number of classes and application do-

main. For each dataset, the repository provides a training set and a test set. Since

searching shapelets for one hour is not signi�cantly worse than the full search on

the UEA & UCR archive [Middlehurst et al. 2020a], we used a time contract of one

hour for each STC-k models as well as for STC.

3.3.1 Accuracy

In this subsection, we compare the models in terms of accuracy and we use scatter

plots and critical di�erence diagrams to summarized the results. However, the exact

accuracy of SAST, STC and STC-k, which are the core models of this work are given

in Table A.2.

3.3.1.1 STC-k results

We have evaluated STC-k on 72 datasets with di�erent value of the parameters k.

We have considered STC-1, STC-0.25, STC-0.5, STC-0.75 and STC. These models

are described in Table 3.1. Figure 3.7 shows pairwise comparisons of these model

accuracies on the test set of each dataset.

STC is better than any STC-k on almost every datasets. This is because an

STC-k model does not search the whole shapelet space, and therefore the shapelets

obtained using the minimum information gain are not good enough to classify the

dataset. The critical di�erence diagram on Figure 3.8 shows that STC-0.75 is not

signi�cantly more accurate than STC-0.5, which is signi�cantly more accurate than

STC-0.25, which is in turn signi�cantly more accurate than STC-1. Therefore,

STC-k accuracy increases with the value of the parameter k. All STC-k models are

considerably less accurate than STC.

We have observed that, STC generally fails at classifying datasets that have

few time series in the training set. In particular, STC failed to �nd shapelets on

the Fungi datasets. This dataset has 18 classes with one instance per class in the

training set. In this particular case, STC is exactly the same as STC-1.
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(a) STC (69 wins) vs STC-

1 (1 win), 2 draws

(b) STC (58 wins) vs STC-

0.25 (12 wins), 2 draws

(c) STC (55 wins) vs STC-

0.5 (12 wins), 5 draws

(d) STC (50 wins) vs STC-

0.75 (16 wins), 6 draws

Figure 3.7: Comparison of STC-k to STC in terms of accuracy

Figure 3.8: Critical di�erence diagram between STC and STC-k

3.3.1.2 SAST model results

Before comparing SAST to STC, let's see how SAST and ensemble of SAST are

compared to each other in terms of accuracy. Figure 3.10 shows a pairwise compar-

ison of the SAST based models described in Table 3.1 on the 39 datasets marked

with a star in Table A.2. The �rst thing to note is that SAST-Ridge is generally

more accurate than SAST-RF on our datasets (Figure 3.10a). There are many pa-

rameters in RF that can be optimized in order to improve SAST-RF, but we did

not perform parameter tuning in this work and we consider SAST-Ridge as the best

model for our experiment. This is why we use SAST-Ridge as the default SAST

model and as the pivot in our comparison.

We tried several length_list for the approximated SAST model, and we are

presenting here only the four that achieved the best accuracy on our datasets.

The critical di�erence diagram between these four models is given in Figure 3.9.

There is no signi�cant di�erence between the models, however the model using

length_list = {7, 11, 15} is the best of all. When not clearly precised in the
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rest of this chapter, SAST-Ridge-A is the approximated SAST-Ridge model with

length_list = {7, 11, 15}.

Figure 3.9: Critical di�erence diagram between approximated SAST models

The approximated SAST-Ridge is less accurate than SAST-Ridge in general

(Figure 3.10b). However it is important to note that the approximated model wins

on 9 datasets among 30. Therefore, knowing a prior about possible shapelet lengths

can be used to train the model faster and without losing accuracy. Furthermore,

ensembling approximated SAST models, each one focusing on di�erent shapelet

lengths is a possible way to improve accuracy while decreasing the computation

time. In fact, SASTEN-Ridge-A is more accurate than SAST-Ridge on 20 datasets

and less accurate on 18 (Figure 3.10c).

(a) SAST-Ridge (25 wins)

vs SAST-RF (12 wins), 2

draws

(b) SAST-Ridge (29 wins)

vs SAST-Ridge-A (9 wins),

1 draw

(c) SAST-Ridge (18 wins)

vs SASTEN-Ridge-A (20

wins), 1 draw

(d) SAST-Ridge (4 wins) vs

SASTEN-Ridge (33 wins),

2 draws

Figure 3.10: Pairwise comparison of model accuracies

Figure 3.10d reveals that ensembling SAST-Ridge models improves accuracy

on almost every dataset. But the improvement is slight, because even though the
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reference time series are chosen randomly, SAST-Ridge has very low variance in

accuracy over multiple runs. We think that this capability comes from the fact that

the model uses only one variant of each shapelet to learn the decision boundaries.

The critical di�erence diagram between SAST models is shown in Figure 3.11.

SASTEN-Ridge is the best of all, follows by SASTEN-Ridge-A which is not signif-

icantly less accurate. SAST-Ridge is the third best model and is not signi�cantly

worse than SASTEN-Ridge-A, but is considerably less accurate than SASTEN-

Ridge. SAST-Ridge-A and SAST-RF are signi�cantly less accurate.

Figure 3.11: Critical di�erence diagram between SAST models

Although SASTEN-Ridge and SASTEN-Ridge-A are more accurate than SAST-

Ridge, we believe that the accuracy gain does not worth the computation time

overhead required by SASTEN-Ridge or the engineering work required to �nd the

appropriate length_list to use in SASTEN-Ridge-A. Therefore, in the rest of this

work , we consider only the SAST-Ridge model and call it SAST for simplicity.

3.3.1.3 SAST vs STC

We now compare SAST (i.e SAST-Ridge) to STC, the state of the art shapelet

method to our knowledge. This experiment is performed on the same 72 datasets

and a pairwise comparison of SAST, STC and STC-1 is shown of Figure 3.12. SAST

is more accurate than STC on 43 datasets, worse on 27 and there are two draws.

STC-1 is more accurate than SAST on only 5 datasets among 72, although the

only di�erence between these two models is that the Ridge classi�er in SAST is

trained using the whole shapelet space while only a subset of the shapelet space is

used in STC-1. STC-1, STC and SAST respectively achieve an average accuracy of

0.68± 0.21, 0.79± 0.20 and 0.84± 0.12 on the 72 datasets. The standard deviation

of STC and STC-1 models is higher due to the zero score obtained on one dataset

(Fungi).

There are datasets on which STC and STC-1 hardly achieve 50% accuracy,

while SAST performs signi�cantly better. This is the case for the datasets Crop,

ElectricDevices and Fungi. These datasets contain respectively 24, 7 and 18 classes.

It is di�cult to �nd a subsequence in these datasets that is present in one class

and not in the others. A subsequence is generally shared among multiple classes,

and therefore is not highly discriminative in terms of information gain by itself.

Subsequences need to be combined in other to di�erentiate classes, and since all the

subsequences are available in SAST, this combination is automatically learned by

the classi�er. Elsewhere SAST achieves 90% accuracy on the dataset Fungi, while
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STC and STC-1 fails to �nd any shapelet on it. These results con�rm our though

that pruning shapelet candidates, without taking into account the classi�er can lead

to very inaccurate classi�cation.

(a) SAST (43 wins) vs STC (27

wins), 2 draws

(b) SAST (66 wins) vs STC-1 (5

wins), 1 draw

Figure 3.12: Pairwise comparison of SAST, STC and STC-1

The critical di�erence diagram on Figure 3.13 reveals that SAST is generally

more accurate that STC, but the di�erence is not highly signi�cant.

Figure 3.13: Critical di�erence diagram between SAST, STC and STC-1

3.3.1.4 SAST vs other shapelet methods

We compare our proposal to Fast Shapelet or FS [Rakthanmanon & Keogh 2013].

We also compare our proposal to methods that learn shapelets, namely Learning

time series Shapelets or LS [Grabocka et al. 2014] and ELIS++ [Zhang et al. 2021].

The accuracy of ELIS++, FS and LS are taken from the ELIS++ paper and we

considered the same 35 datasets they used (marked with a plus sign in Table A.2).

The average accuracies of these models on the 35 datasets are 0.78±0.14, 0.81±0.14,
0.83± 0.13 and 0.85± 0.14 for FS, LS, SAST and ELIS++ respectively.

Figure 3.14 shows a pairwise comparison of these method and the critical dif-

ferent diagram on Figure 3.15 shows how signi�cant is each model compared to

others in terms of accuracy. LS, ELIS++ and SAST are not signi�cantly di�erent

in terms of accuracy, however they outperform FS. It is important to note that LS

and ELIS++ do not select shapelets from the training set, but learn them through

an optimization process. Therefore the shapelet space is unlimited, the learned

shapelets are unpredictable as well as the time required for convergence. Further-

more, �nding the hyper-parameters and the appropriate shapelet initialization for
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(a) SAST (12 wins) vs

ELIS++ (22 wins), 1 draw

(b) SAST (17 wins) vs LS

(16 wins), 2 draws

(c) SAST (30 wins) vs FS

(4 wins), 1 draw

Figure 3.14: Pairwise comparison of SAST, ELIS++, LS and FS

Figure 3.15: Critical di�erence diagram between SAST, LS, FS and ELIS++

these models is challenging. Without no optimization, SAST can achieve accuracies

that are not signi�cantly worse than ELIS++ accuracies and that are slightly better

that LS accuracies.

3.3.1.5 SAST vs other types of methods

We also compare SAST to other state of the art algorithms that are not necessarily

based on shapelets, nor on one type of features. ROCKET [Dempster et al. 2020],

HIVE-COTE [Lines et al. 2018] and TS-CHIEF [Shifaz et al. 2020] are to our

knowledge the most accurate methods for time series classi�cation. The

results of these models are taken from the UEA & UCR repository

[Anthony Bagnall & Keogh 2018]. Among the 72 datasets on which we have SAST

results, ROCKET, HIVE-COTE and TS-CHIEF do not have results for the datasets

DodgerLoopDay, DodgerLoopGame, DodgerLoopWeekend, Fungi and Melbourne-

Pedestrian; so we excluded these 5 datasets from this comparison. Elsewhere, we

believe that the comparison we are doing here is not fair since these methods are

not based on only shapelet features. However, considering the no free lunch theorem

[Wolpert & Macready 1997], SAST could outperform these models on some datasets

and the goal of this experiment is to see how SAST stands w.r.t to these methods

that are based on combination of features.

Although our model uses only shapelet features, it manages to outperform

ROCKET on 5 among the 67 with 4 draws (Figure 3.16a). Elsewhere, SAST respec-

tively outperforms HIVE-COTE and TS-CHIEF on 10 and 9 datasets among the

67 with 4 and 3 draws. Since SAST can perform better than HIVE-COTE on some

datasets, replacing the shapelet module in HIVE-COTE with a SAST based model
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could increase HIVE-COTE accuracy and could reduce its time complexity since

the shapelet module is the most time consuming one in HIVE-COTE. When TS-

CHIEF was proposed, their authors decided not to exploit shapelet features because

of their computation time. With the core shapelet recognition task we introduce in

this work, we believe that shapelet feature can be added in TS-CHIEF a low cost

and that this could increase the accuracy of this model .

(a) SAST (5 wins) vs

ROCKET (58 wins), 4

draws

(b) SAST (10 wins) vs

HIVE-COTE (53 wins), 4

draws

(c) SAST (9 wins) vs TS-

CHIEF (55 wins), 3 draws

Figure 3.16: SAST vs SOTA

The Wilcoxon statistical test failed to reject the null hypothesis with a p-value of

0.05, meaning that these four models are not signi�cantly di�erent on the considered

67 datasets. In fact, SAST, ROCKET, HIVE-COTE and TS-CHIEF respectively

achieve an average accuracy of 0.84± 0.12, 0.88± 0.11, .88± 0.11 and 0.88± 0.12.

These average scores clearly show that SAST is comparable to ROCKET and HIVE-

COTE in terms of accuracy, and in addition SAST is more interpretable as it is a

shapelet based method [Ye & Keogh 2009b, Bagnall et al. 2017].

3.3.1.6 Model accuracies per dataset type

The datasets on the UEA & UCR archive are categorized in problem types. Among

the 72 datasets we have experimented on, there is 1 electric device problem, 4 ECG

problems, 1 High Resolution Melt (HRM) problem, 25 image problems, 9 motion

recognition problems, 1 power consumption problem, 16 sensor reading problems, 7

simulated dataset problems, 6 spectrograph problems and 2 tra�c problems.

We would like to see the method that is more appropriate for each problem type.

However, be careful drawing too much conclusions because the number of datasets

per problem type is relatively small to be representative. We compute these statistics

among three groups of methods as in the previous subsections: the �rst group is

SAST, STC-1 and STC; the second group is SAST, ELIS++, FS and LS; and the

last group is SAST, ROCKET, TS-CHIEF and HIVE-COTE. For each group and

for each problem type, the percentage of times each method achieves the highest

accuracy is computed. These statistics are shown as stacked bar plots with problem

types on the x-axis and the number of times the highest accuracy is achieved on the

y-axis. Above each bar, the number of datasets in the corresponding problem type
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is displayed. Since more than one model can achieve the highest accuracy on the

same dataset, summing the percentage in a bar could be greater than 100% and the

value above a bar can be less than the bar height.

Figure 3.17 shows the percentage of times SAST, STC-1 and STC achieve the

highest accuracy per problem type. STC-1 achieves the highest accuracy on the

image dataset MiddlePhalanxOutlineAgeGroup and on the sensor dataset Earth-

quake. STC is the only method that achieves the highest accuracy for ECG and

Power. Elsewhere STC seems more appropriate for simulated datasets. SAST tends

to be generally the best choice for electric device, HRM, image, motion recogni-

tion, sensor and is always the best for spectrograph problems compared to STC

approaches.

Figure 3.17: SAST, STC-1 and STC percentage of wins per dataset type

When comparing SAST to other shapelet methods (ELIS++, FS and LS), we can

see on Figure 3.18 that SAST always achieves the highest accuracy on spectrograph

problems and is therefore a good choice for this problem type. Elsewhere it achieves

the highest accuracy on more than 25% of image and sensor datasets. ELIS++ is

more suitable for ECG, image, motion, and sensor problem types. LS is a good

choice for simulated datasets.

Finally, Figure 3.19 reveals that ROCKET, TS-CHIEF and HIVE-COTE win

on more datasets than SAST, but with a relatively small di�erence in accuracy.

ROCKET seems to be the most promising method for ECG, motion, sensor, sim-

ulated , spectrograph and tra�c datasets while HIVE-COTE is a good choice for

image and power datasets. TS-CHIEF is a fair option for device.

Although SAST achieves the highest accuracy than ROCKET, HIVE-COTE

and TS-CHIEF on some datasets, it sometimes obtains the same average accuracy

as these methods. In fact, Table 3.2 gives the mean and standard deviation of each

model accuracy per dataset type. We can see that SAST achieves the same average
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Figure 3.18: SAST, ELIS++, LS and FS percentage of wins per dataset type con-

sidering the 35 datasets used in ELIS++ paper.

accuracy as the state of the art methods on spectrograph and is on average relatively

closed on many other data types, except device (but there is only one dataset of that

type). This results emphasize the fact that SAST can achieve accuracy equal to or

closed to the state of the art method accuracy while o�ering easier interpretability.

3.3.2 Scalability

The scalability of SAST based models and STC is assessed regarding two criteria:

the time series length and the number of time series in the dataset. In this ex-

periment, the time contract is not used for STC, and therefore the full search is

performed. Elsewhere, the training set and the test set are exactly the same. For

each model, the time taken to �t the model on the training set and then predict the

test set is recorded.

3.3.2.1 Time series length

Here we use the dataset HouseTwenty from the UEA & UCR repository

[Anthony Bagnall & Keogh 2018]. It is a binary dataset of electricity usage in

houses. The training set has 34 time series and of length 3000 each. We vary

the series length starting at 32 and only the �rst time steps up to the current length

are used to train our models. More precisely, we consider the HouseTwenty dataset

with time series truncated at length 25, 26, 27 and �nally 28. The running time of

each model is given in Figure 3.20a.

For each of the four models, the running time increases with the length of time

series in the dataset. However, SAST models are much more scalable than STC,

and SASTEN-A is the most scalable of all, since it uses a �xed number of shapelet
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Figure 3.19: SAST, HIVE-COTE, TS-CHIEF and ROCKET percentage of wins per

dataset type

(a) Regarding time series length (b) Regarding the number of time series

Figure 3.20: Running time (in second) of each model

candidates whatever the length of time series. For SASTEN-A, increasing the length

of the time series only increases the computation time of the similarity between time

series and shapelet candidates. More speci�cally, STC takes about 1 hour and 40

minutes to train on a dataset of 34 time series of length 64, while SAST, SASTEN

and SASTEN-A take about 13 seconds, 27 seconds and 8 seconds respectively. For

the same number of time series but now of length 256, STC takes a bit more than

a day, while SAST, SASTEN and SASTEN-A take about 14 minutes, 26 minutes

and 2 minute respectively. Therefore, even our slowest method SASTEN is 55 times

faster than STC. SASTEN-A and SAST are respectively 1440 times and 102 times

faster than STC.
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3.3.2.2 Training set size

The Chinatown dataset is used here. It is a binary dataset with time series of length

24. There are 20 instances in the training set and we use random oversampling to

create bigger versions of this dataset. Figure 3.20b shows the running time of each

model.

The running time of each model increases nearly linearly with the number of

time series in the dataset. STC running time starts higher and increases much

faster compared to other models. This is not surprising since the training time of

shapelet methods is extremely related to the number of shapelet candidates, and the

number of shapelet candidates in STC increases with the number of time series while

the number of shapelet candidates in a SAST model increases with the number of

classes. More precisely, STC takes about 12 minutes on a dataset of 64 time series

of length 24, while SAST takes only 2 seconds, SASTEN requires 10 seconds and

SASTEN-A needs about 6 seconds. For a dataset with 1024 time series of length

24, SASTEN, SAST and SASTEN-A are respectively about 5000 times, 8000 times

and 9000 times faster than STC.

3.3.3 Interpretability

The predictions of a SAST model trained on a dataset are explained by identifying

and visualizing the shapelets that have been learned for that dataset. This is how

the explanation of shapelet methods is given in the litterature [Ye & Keogh 2009b,

Wang et al. 2020]. This is done using feature importance analysis (see Proposition

3.2.2). Each feature is related to a shapelet candidate extracted from a time series

whose class label is known. Shapelet candidates related to the most important

features are the top best shapelets. We say that any shapelet candidate is from the

class of the time series from which it has been extracted. Therefore, the class label

of a time series can be interpreted by looking at the class labels of the shapelet

candidates to which it is the most similar. Let us interpret the predictions of SAST-

RF and SAST-Ridge trained on the Chinatown dataset. We consider this dataset

because it has only two classes and time series of length 24, it is therefore easy to

visualize this dataset. However, what we are doing here is applicable to any dataset.

Since SAST-RF uses a tree based classi�er, information gain is used as feature

importance. With SAST-Ridge, the importance of feature is given by the absolute

value of the corresponding learned weight. Although feature importance is computed

di�erently for both models, we show that their predictions are interpretable in the

same manner.

Figure 3.21 and 3.22 show the top 5 best shapelets plotted on the reference

time series for the Chinatown dataset with respect to SAST-Ridge and SAST-RF

respectively. The top rows of the �gures are the reference time series selected from

class 1, while the second rows are the reference time series selected from class 2. A

perfect match between a shapelet candidate and a reference time series means that

the shapelet has been extracted from that reference time series. Hence, the top 5
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best shapelets learned by SAST-Ridge are from class 1. The second of the top 5

best shapelets learned by SAST-RF is from class 1, while the four others are from

class 2.

Figure 3.21: Top 5 shapelets learned by SAST-Ridge on Chinatown.

Figure 3.22: Top 5 shapelets learned by SAST-RF on Chinatown.

In order to predict the class label of a test time series, SAST identi�es the most

important features similar to the time series. In other words, SAST checks if the

time series contains subsequences that are similar to the most important features.

Figure 3.23 shows the matches between the top 5most important features learned by

SAST-Ridge and two randomly selected test time series. We can note that the model

correctly predicts the class labels. Since the top 5 shapelets learned by SAST-Ridge

are from class 1, there are near perfect matches with the test instance from class 1

(see Figure 3.23 top). A near perfect match between a subsequence and shapelet

candidate means that the subsequence is a variant of that shapelet candidate. No

good match is found with the test instance from class 2 (see Figure 3.23 bottom).

Therefore, we have an explanation (i.e the most important features that triggered

the predicted class label) of why the �rst instance is predicted as coming from class
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1, while the second one is predicted as coming from class 2.

The same analysis is shown for SAST-RF in Figure 3.24. Like SAST-Ridge,

SAST-RF also predicted the class labels correctly. The �rst test time series has a

near perfect match with the second top best shapelet candidate (see Figure 3.24 top)

which is a shapelet candidate of class 1. The other top best shapelet candidates,

which are all from class 2 do not match with the �rst time series. This explains

why the predicted class label for the �rst time series is class 1 and not class 2. The

�rst, third, fourth and �fth top best shapelet candidates, which are all from class

2 have near perfect matches with the second time series, while the second top best

shapelet candidate, which is from class 1 does not match (see Figure 3.24 bottom).

Hence, we can interpret why the class label of the second instance is predicted as

class 2 and not class 1.

Figure 3.23: Explanation of SAST-Ridge predictions on two random test instances

Figure 3.24: Explanation of SAST-RF predictions on two test instances

Therefore, we experimentally proved in this Section that SAST-RF and SAST-

Ridge automatically learn to put more attention on the subsequences that are

shapelets for any given dataset. More generally a SAST model automatically learns
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to put more attention on shapelet candidates that are actually shapelets during

its training. It also automatically learns to put less attention on the shapelet can-

didates that are not shapelets. We also note that the top best shapelets learned

by SAST-Ridge and SAST-RF on the Chinatown dataset are the same as the one

selected by STC (see Figure 3.4).

3.4 Conclusion

In this work, we shown that the number of shapelet candidates in a shapelet algo-

rithm can be reduced considerably without losing accuracy. We also shown that it

is not always necessary to learn shapelets beforehand of classi�cation. We intro-

duced the Scalable and Accurate Subsequence Transform (SAST) algorithm which

is interpretable, accurate and a more scalable alternative to the Shapelet Transform

algorithm. Furthermore, SAST is comparable in terms of accuracy to the state of

the art methods ROCKET, HIVE-COTE and TS-CHIEF, especially for the spectro-

graph dataset type, while o�ering easier interpretability. Our experiments revealed

that a good trade-o� between accuracy and scalability can be found by ensembling

di�erent SAST models, each one focusing on di�erent length of shapelet candidates.

We have also introduced the core shapelet recognition task which consists of learning

a shapelets model using only few variants of each shapelet candidate. SAST achieves

this task accurately and we hope future shapelet methods will follow the design we

introduced.

We plan to do many improvements on the SAST algorithm in the future. Par-

ticularly, distance computation could be speed up using lower bounding and early

abandon techniques. Di�erent variants of the same shapelet can be present in the

same time series, therefore similar subsequences can be pruned in order to further

reduce the number of shapelet candidates. We are also planing to explore how core

shapelet recognition can be applied in TS-CHIEF in order to take shapelet features

into account.

Although we focused on time series classi�cation in this chapter, we hope that

the same idea can be used in the near future to increase the scalability of shapelet-

based time series clustering [Siyou Fotso et al. 2020].

In the next chapter, we will improve SAST by removing duplicate subsequences

and extend it to uncertain time series using uncertainty propagation.
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Key points

� We introduced the core shapelet recognition task, consisting of building

a ML model able to recognize any shapelet by seeing one or a few

number of its variants.

� We proposed the Scalable and Accurate Subsequence Transform

(SAST), a novel design of subsequence-based time series classi�cation

approach which is many magnitudes more scalable than shapelet trans-

form while being more accurate.

� We demonstrated SAST's e�ectiveness on respectively 72 and 8 state-

of-the-art datasets and methods.

� We demonstrated that SAST is an interpretable-by-design method.
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Algorithm 3: ShapeletTransformK

Input: D = {(T1, c1), (T2, c2), ..., (Tn, cn)}: the training dataset, k: the

number of instances to use per class: the list of subsequence

lengths, C: the classi�er to use, length_list: the list of

subsequence lengths, min_ig: the minimum information gain to

consider a subsequence as shapelet

1 begin
/* randomly select k instances per class from the dataset */

2 Dc ← randomlySelectInstancesPerClass(D, k)

/* generate every subsequence of length in length_list from Dc

*/

3 S ← generateShapeletCandidates(Dc, length_list)

/* compute the information gain of each subsequence and

return the one that have at least the required

information gain */

4 S ← extractShapelet(S,D,min_ig)

/* transformed the dataset using every patterns in S */

5 Df ← ∅
6 for i← 1 to n do
7 xi ← []

8 for j ← 1 to |S| do
9 xi[j]← dist(Ti, Sj)

10 end
11 Df ← Df ∪ {(xi, ci)}
12 end

/* train the classifier on the transformed dataset */

13 clf ← trainClassifier(C,Df )

14 return (clf , S) ; // the trained classifier and the shapelet

candidates

15 end
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Algorithm 4: ScalableAndAccurateSubsequenceTransform

Input: D = {(T1, c1), (T2, c2), ..., (Tn, cn)}, k: the number of instances to
use per class, length_list: the list of subsequence lengths, C: the

classi�er to use

1 begin
/* randomly select k instances per class from the dataset */

2 Dc ← randomlySelectInstancesPerClass(D, k)

/* generate every patterns of length in length_list from Dc */

3 S ← generateShapeletCandidates(Dc, length_list)

/* transformed the dataset using every patterns in S */

4 Df ← ∅
5 for i← 1 to n do
6 xi ← []

7 for j ← 1 to |S| do
8 xi[j]← dist(Ti, Sj)

9 end
10 Df ← Df ∪ {(xi, ci)}
11 end

/* train the classifier on the transformed dataset */

12 clf ← trainClassifier(C,Df )

13 return (clf , S) ; // the trained classifier and the shapelet

candidates

14 end
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Table 3.1: List of models used in our experiments

Name classi�er length_list Description

STC-1 Ridge classi�er {3, 4, ..,m} STC-k with k = 1, mean-

ing that shapelets are selected

from a randomly selected time

series per class

STC-0.25 Ridge classi�er {3, 4, ..,m} STC-k that select shapelets

from 25% of time series per

each class randomly selected

STC-0.5 Ridge classi�er {3, 4, ..,m} STC-k that select shapelets

from 50% of time series per

each class randomly selected

STC-0.75 Ridge classi�er {3, 4, ..,m} STC-k that select shapelets

from 75% of time series per

each class randomly selected

STC Ridge classi�er {3, 4, ..,m} STC-k that select shapelets

from every time series in the

dataset

SAST-RF Random Forest {3, 4, ..,m} SAST model using Random

Forest classi�er

SAST-Ridge Ridge classi�er {3, 4, ..,m} SAST model using Ridge clas-

si�er with LOO

SAST-Ridge-A Ridge classi�er {9, 13, 15},
{7, 11, 15},
{7, 9, 15} or

{9, 11, 15}

Approximated SAST-Ridge,

that is a SAST-Ridge which

considers only some subse-

quence lengths

SASTEN-Ridge Ridge classi�er - Ensemble of 3 SAST-Ridge

SASTEN-Ridge-A Ridge classi�er - Ensemble of 3 Approximated

SAST-Ridge with length_list

{3, 4, .., 9}, {10, 11, ..., 16},
and {17, 18, ..., 23} respec-

tively

Table 3.2: Average accuracy of each model per problem type

HIVE-COTE ROCKET SAST TS-CHIEF Number of datasets

Device 0.75± 0.0 0.73± 0.0 0.62± 0.0 0.76± 0.0 1

ECG 0.95± 0.06 0.96± 0.05 0.93± 0.07 0.94± 0.07 4

Image 0.82± 0.12 0.82± 0.12 0.78± 0.12 0.83± 0.12 25

Motion 0.93± 0.09 0.93± 0.07 0.88± 0.1 0.93± 0.09 9

Power 1.0± 0.0 0.94± 0.0 0.91± 0.0 0.99± 0.0 1

Sensor 0.89± 0.12 0.9± 0.11 0.85± 0.14 0.89± 0.13 13

Simulated 0.99± 0.02 1.0± 0.01 0.95± 0.04 1.0± 0.01 7

Spectro 0.87± 0.11 0.87± 0.12 0.87± 0.11 0.87± 0.11 6

Tra�c 0.98± 0.0 0.98± 0.0 0.96± 0.0 0.97± 0.0 1

Average 0.88± 0.11 0.88± 0.11 0.84± 0.12 0.88± 0.12 67



Chapter 4

Explainable Classi�cation of

Astronomical Uncertain Time

Series

Exploring the expansion history of the universe, understanding its evolutionary

stages, and predicting its future evolution are important goals in astrophysics. To-

day, machine learning tools are used to help achieving these goals by analyzing

transient sources, which are modeled as uncertain time series. In this chapter, we

propose an uncertainty-aware subsequence based model which achieves a classi�-

cation comparable to that of state-of-the-art methods. Unlike conformal learning

which estimates model uncertainty on predictions, our method takes data uncer-

tainty as additional input. Moreover, our approach is explainable-by-design, giving

domain experts the ability to inspect the model and explain its predictions. The

explainability of the proposed method has also the potential to inspire new devel-

opments in theoretical astrophysics modeling by suggesting important subsequences

which depict details of light curve shapes.
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4.1 Introduction

Uncertain time series are preponderant in transient astrophysics. Astronomical ob-

jects whose brightness varies with time (a.k.a transients) are primarily characterized

by the presence or absence of speci�c chemical elements found in their spectra. This

data taking process (called spectroscopy) is very time-consuming and requires very

good observation conditions to be performed. Moreover, since transients are objects
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which appear in the sky for a limited period of time then disappear forever, there

is a small time-window of opportunities when such measurements can be taken.

Alternatively, we can also associate di�erent classes of astronomical transients

to the respective shape of their light curves (brightness variation as a function of

time). In this case, we need to repeatedly measure the brightness of the source

in a relatively broad region of the wavelength spectrum. This process, called pho-

tometry, is less expensive and imposes more manageable constraints on observation

conditions. However, measurements are more prone to uncertainties (due to moon-

light, twilight, clouds, etc) in the �ux determination and the distinction between

light curves from di�erent classes is subtle, resulting in less accurate classi�cation.

Nevertheless, since there is not enough spectroscopic resources to provide de�nite

label for all photometric observed objects, being able to e�ectively analyze uncertain

photometric light curves means that a wider range of the universe can be quickly

understood and at a lower cost.

The Vera C. Rubin Observatory1 is a ground-based observatory, currently under

construction in Chile, whose goal is to conduct the 10-year Legacy Survey of Space

and Time (LSST) in order to produce the deepest and widest images of the universe.

The observatory is expected to start producing data in early 2024, and in order to

prepare the community for the arrival of its data, one important data challenge

was put in place: the Photometric LSST Astronomical Time-Series Classi�cation

Challenge or simply PLAsTiCC [Allam Jr et al. 2018]. The goal was to identify

machine learning models able to classify 14 types of transients in simulated data,

represented by uncertain time series, or light curves. The ultimate goal behind

the challenge was to understand which methods are expected to perform better

in LSST-like data, thus preparing the community to the arrival of its data and

help understanding the universe's expansion history. Therefore, using interpretable

approaches was very important. However, contributors focused on minimizing the

classi�cation loss by employing techniques such as mixture of classi�ers and data

augmentation [Hloºek et al. 2020] while neglecting explainability. In this chapter,

we address this problem with explainability in mind.

We consider two approaches to classify uTS in an explainable manner : the �rst

one ignores uncertainty and uses only the best estimates, while the second one takes

uncertainty into account. Ignoring uncertainty makes the task a regular time series

classi�cation task, allowing the usage of Shapelet Transform Classi�cation or simply

STC [Hills et al. 2014], an e�ective and explainable regular time series classi�cation

algorithm. This model failed to �nd a valid shapelet on PLAsTiCC, and therefore

could not perform the classi�cation task. We performed extensive hyper-parameter

tuning tests, but the result was the same. We also tried to take uncertainty into

account by using the Uncertain Shapelet Transform algorithm, but as expected, this

method also failed since it is an extension of STC for uncertain time series.

In this chapter, we propose the Uncertain Scalable and Accurate Subsequence

Transform (or uSAST for short) method which is able to achieve an F1-score of

1https://lsst.org/

https://lsst.org/
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70% while providing faithful explanation similarly to STC. The rest of this chapter is

organized as follows: we start by describing the uSAST method (Section 4.2). Then,

we detail our experiments and the obtained results Section 4.3 before concluding this

Chapter in Section 4.4.

4.2 Uncertain Subsequence Transform Classi�cation

In this section, we describe a new uncertain time series classi�cation method based

on uncertainty propagation as in UST and subsequence transform as in SAST. In

fact, uncertainty propagation is an e�ective approach to analyze uncertain data

[Gruber et al. 2020, Liu et al. 2021] and particularly uncertain time series. By using

a single random instance from each class, SAST is more scalable and at least as

accurate as STC while keeping STC interpretability capabilities.

Given a time series dataset, SAST follows four steps: i), one instance is randomly

selected from each class: these are called reference time series; ii) a set containing

every subsequences from the selected time series is created; iii) each instance in the

dataset is replaced by the vector of its distances to each subsequence obtained in

the second step; iv) a supervised classi�er is trained on the transform dataset.

Performing classi�cation following the SAST steps could be ine�cient because

of the redundancy in the set of subsequences obtained at the second step. The

redundancy is particularly high for small length subsequences and in datasets such

as electrocardiogram (ECG) and PLAsTiCC, in which repetitive patterns occur

very often. Furthermore, the third step is based on the application of De�nition

2.3 using the Euclidean distance and, therefore, only the most similar subsequence

is considered; however, taking into account the number of occurrences of the best

match is important in some contexts. To overcome these limitations, we de�ne the

notion of ε-similarity as follows:

De�nition 4.1 (ε-similarity). Two subsequences (respectively uncertain subse-

quences) S1 and S2 of same length l are ε-similar if the distance between them

is less than or equal to a user-de�ned threshold ε ≥ 0.

ε-similar(S1, S2) =

{
True, if dist(S1, S2) ≤ ε

False, otherwise

Theorem 4.2.1. The ε-similar relationship is not transitive.

Proof. Let X, Y , and Z be three subsequences of same length l such that

ε-similar(X,Y ) = True and ε-similar(Y,Z) = True. Let us assume that the tran-

sitivity property is veri�ed, that is ε-similar(X,Z) = True. A counterexample is

built by considering X, Y , and Z as points in a high dimensional space (Rl) such

that dist(X,Y ) = dist(Y,Z) = ε, and XY ⊥ XZ. The following derivation proves

the theorem:
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dist(X,Z) =
√
dist(X,Y )2 + dist(Y, Z)2

=
√
ε2 + ε2

=ε
√
2

>ε

=⇒ ε-similar(X,Z) = False

Using De�nition 4.1, we can reduce redundancies and count subsequence fre-

quencies in SAST. The updated SAST method, hereafter SAST+, is detailed in

Algorithm 5.

Algorithm 5: SAST+

Input: D = {(T1, c1), (T2, c2), ..., (Tn, cn)}, k: the number of instances to
use per class, length_list: the list of subsequence lengths, C: the

classi�er to use, ε: ε-similarity parameter.

1 begin Randomly select k instances per class from the dataset

2 Dc ← randomlySelectInstancesPerClass(D, k)

/* Generate every patterns of length in length_list from Dc, using

ε to remove similar patterns */

3 S ← generateSubsequences(Dc, length_list, ε)

4 Df ← ∅
5 for i← 1 to n do

/* Transformed the dataset using every patterns in S */

6 xi ← []

7 for j ← 1 to |S| do
/* The procedure distAndCount(Ti, Sj , ε) returns Dist(Ti, Sj)

and the number of occurrences of the subsequence Sj in

Ti */

8 xi[j], xi[j + |S|]← distAndCount(Ti, Sj , ε)

9 end
10 Df ← Df ∪ {(xi, ci)}
11 end
12 clf ← trainClassifier(C,Df ) /* Train the classifier on the

transformed dataset */

Result: (clf , S) /* The trained classifier and the subsequences */

13 end

The time complexity of the SAST method is O(Nc) + O(kNcm
2) + O(nm3) +

O(classifier), where Nc is the number of classes, n the number of time series,

m the length of the time series and k the number of reference time series per

class. In practice, it is not necessary to have k greater than one. Removing re-
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dundancies in SAST is done only once (during the training phase) with a theo-

retical time complexity of O(km4) ; counting frequencies is done while comput-

ing the distance in a constant time. Therefore, the SAST+ time complexity is

O(Nc) + O(kNcm
2) + O(nm3) + O(classifier) + O(km4) which is asymptotically

equivalent to O(classifier)+O(km4). Removing redundancies makes SAST+ much

faster than SAST during inference.

Similarly to the Uncertain Shapelet Transform, the uncertain SAST+ (uSAST+

) is obtained by using UED as the distance metric in Algorithm 5; allowing un-

certainties to be propagated to the classi�er which then uses these uncertainties to

learn robust decision boundaries.

4.3 Experiment

4.3.1 The PLAsTiCC dataset

As far as we know, existing methods published on uTS classi�cation have never been

evaluated on real uncertain time series datasets, but solely on simulated datasets.

The corresponding simulated datasets have never been made publicly accessible

neither for reproducibility reasons, nor for facilitating research on uTS. In this work,

we evaluate our method on a realistic publicly available uncertain time series dataset

from the astrophysics domain.

The Photometric LSST Astronomical Time-Series Classi�cation Challenge

(PLAsTiCC) dataset contains uncertain time series representing the brightness evo-

lution of astronomical transients including supernovae, kilonovae, active galactic

nuclei and eclipsing binary systems [Allam Jr et al. 2018], among others. The un-

certainty in this dataset is modeled by the probability density-based model. There-

fore, for each measurement, the astrophysicists provides a best estimate and the

maximal possible deviation from that estimate. Each object is represented as a

multivariate uncertain time series of 6 dimensions named u, g, r, i, z, y, each cor-

responding to a particular broadband wavelength �lter. After the challenge was

�nished, the organizers made available an updated version of the data through Zen-

odo [PLASTICC Team and PLASTICC Modelers 2019] with some bug �xes and the

classi�cation answers for both the training and test sets. In this work, we demon-

strate our method using only uncertain time series from the training set, but the

methodology is general enough to be extended to the test set. There are 7848 tran-

sients in the dataset, grouped in 14 di�erent classes, and the number of objects in the

classes are highly imbalanced. More speci�cally, the most underpopulated class has

only 0.3% of objects, whereas the most populated one contains 29% of the objects.

Furthermore, the dataset contains a lot of missing observations. We handled this

with the help of astrophysicists who suggested to �ll missing data using a rolling

average with a window of length 5. Missing values and corresponding error bars

are replaced by the mean and standard deviation of the window. This procedure

translated the original dataset into a homogeneously sampled uncertain time series.
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The preprocessed dataset is made public2.

Our implementation uses the Python programming language and is based on the

Scikit-learn machine learning library [Pedregosa et al. 2011] and the Sktime time

series dedicated machine learning library [Löning et al. 2019]. The experiment is

run on a computing node equipped with 1 Gb of RAM and an AMD EPIC 7452

processor containing 64 logical cores of 2.35 GHz frequency. The source code of our

experiments and all the results we discuss in this chapter are publicly available on

GitHub3.

4.3.2 Results et discussion

Since PLAsTiCC is a multivariate uncertain time series dataset, the subsequence

transformation is performed on each dimension independently. The transformations

from each dimension are then concatenated together to build a large matrix which

is subsequently fed to the supervised classi�er. We used 80% of the data for training

and the remaining is used for testing.

4.3.2.1 Shapelet-based methods results:

Shapelet-based classi�cation is a special case of subsequence-based classi�cation

which consider only shapelets as relevant subsequences. We considered two shapelet-

based methods STC [Hills et al. 2014] and UST for their interpretability. For both

methods, we kept every parameters to their default values except the minimum

information gain parameter which is the threshold used to decide if a separator is

a valid shapelet. We tried di�erent values for this parameter without success, none

of these methods were able to �nd a single valid shapelet in the dataset. Since

feature extraction was not successful, classi�cation was not possible. This result

is due to the dataset being highly imbalanced and the uncertain time series from

di�erent classes being too similar in shape. The same dimension of two randomly

selected samples from two di�erent classes is shown on Figure 4.1. The left �gure

which is a Supernova Type Ia-x (SNIax) looks like a left-shifted version of the right

�gure which is a Supernova Type Ia-91bg (SNIa-91bg). SNIax and SNIa-91bg are

known to be di�cult to distinguish by astrophysicists. This observation holds, with

di�erent magnitude, for other classes in the PLAsTiCC dataset and therefore, any

shapelet-based methods might struggle to �nd shapelets in this dataset.

4.3.2.2 SAST-based methods results:

For this experiment we considered di�erent SAST+ con�gurations in order to mea-

sure the e�ect of taking uncertainty into account, dropping duplicates and counting

the number of occurrences of patterns (i.e patterns frequency). We named con�g-

urations that ignore uncertainty as SAST<X> and those which take uncertainty

into account as uSAST<X>, where <X> is either : i) an empty string to specify

2
Cleaned dataset: https://drive.uca.fr/f/f0741be3fb77402f8e82/

3
Source code: https://anonymous.4open.science/r/usast-FBC0/

https://drive.uca.fr/f/f0741be3fb77402f8e82/
https://anonymous.4open.science/r/usast-FBC0/
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(a) Supernova Type Ia-x (b) Supernova Type Ia-91bg

Figure 4.1: Two supernova from PLAsTiCC. They look similar in terms of shapes

although they are from distinct classes.

that duplicate subsequences are not removed and the patterns frequency is ignored;

ii) the character d, meaning that duplicate patterns are removed; iii) the string dc,

meaning that duplicate patterns are removed and the frequency of patterns is taken

into account.

We use three di�erent supervised classi�ers, namely Random Forest (RF), eX-

treme Gradient Boosting (XGBoost) and the Ridge regression with Leave-One-Out

cross-validation (RidgeCV). The cross-validation procedure is used to �nd the best

regularization parameter. We set the minimum and maximum subsequence lengths

to 20 and 60 respectively, with a step of 10. Compared to a step of 1, a step of

10 reduces the chance of having similar subsequences while reducing the number of

subsequences to be used. We observed that the classi�cation performance is better

with this setup as can be seen in Appendix B. The ε-similarity is computed with

ε = 0.25 as experiments shown that too much relevant subsequences are discarded

with higher values. The parameters of the classi�ers are left to their default val-

ues, except for the regularization parameter in RidgeCV which is selected using

cross-validation. As the reference time series are chosen randomly, we run each ex-

periment 3 times and we report the average precision, recall, F1 score, cross entropy

loss and the time taken for training and inference (in hours). As PLAsTiCC is an

imbalanced multiclass dataset, we use a weighted average to compute the precision,

recall and F1 score; the weights being the percentage of each class in the dataset.

Table 4.1 shows the result using the XGBoost classi�er only as it has led to the best

classi�cation performance. However, detailed results are available in Appendix B.

Table 4.1: Results on PLAsTiCC averaged over 3 runs.

Precision Recall F1 score LogLoss Time (h)

uSAST 0.72± 0.01 0.72± 0.00 0.69± 0.01 0.96± 0.01 51.03± 0.12

uSASTd 0.72± 0.00 0.73± 0.00 0.70± 0.01 0.97± 0.01 43.49± 0.27

uSASTdc 0.71± 0.01 0.72± 0.01 0.69± 0.01 0.96± 0.01 43.52± 0.72

The �rst observation is that any variant of our proposed method is able to achieve
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around 70% precision, recall and F1 score, unlike shapelet-based methods which

completely failed on the PLAsTiCC dataset. This result corroborates with the claim

that pruning subsequences before the e�ective classi�cation could sometimes lead

to poor performance. Dropping duplicates, counting patterns frequency or doing

both does not have signi�cant impact on the classi�cation performance. However,

dropping duplicate makes the models faster. In particular, uSASTd is about 12

hours faster than uSAST. Counting pattern frequency does not add a computation

overhead because it is done while computing the distance in O(1) time.

Choosing the right subsequence lengths to considered is challenging and assessing

all possible values is computationally expensive; However, domain knowledge could

guide in setting this parameter as it is application-dependent.

PLAsTiCC contains objects that are either galactic or extra-galactic, and whose

light curves were obtained following a Deep Drilling Fields (DDF) or Wide Fast

Deep (WFD) observation strategy. Extra-galactic objects are further away than

galactic ones, they are fainter and more di�cult to be observed. DDF light curves

contain more frequent observation points than WFD ones. Thus, DDF light curves

provide a more certain determination of the time series properties than their WFD

counterparts which have more uncertainties. Table 4.2 gives the performances of the

model uSASTd regarding if the objects are galactic or not, DDF or WFD. The model

is considerably better at classifying galactic objects than extra-galactic ones, and a

little better at classifying DDF objects thanWFD ones. While the model achieves an

F1 score of 94% for galactic objects in DDF, it achieves an F1 score of only 67% for

extra-galactic objects in WFD. This is directly related to the astrophysical nature of

galactic objects. These are, in general, variables whose brightness go through many

cycles within the 3 years covered by our data. On the other hand, extragalactic

objects are dominated by transients, consisting of only 1 region of signal which

never repeats, thus rendering a smaller quantity of information encoded in its time

series.

Table 4.2: uSASTd performance regarding if the object are galactic or extra-galactic,

are from the DDF or WFD.

Galactic Extra-galactic Both

Precision 0.96 0.73 0.77

DDF Recall 0.94 0.75 0.79

F1 score 0.94 0.71 0.76

Precision 0.94 0.67 0.71

WDF Recall 0.84 0.64 0.71

F1 score 0.87 0.61 0.67

Precision 0.94 0.68 0.72

Both Recall 0.86 0.67 0.73

F1 score 0.88 0.64 0.70

The data set includes 6 classes with overall similar behavior (42, 52, 62, 67, 90,

95). Among these, astronomers are specially interested in type 90 (SNIa), which

is used as distance indicator in cosmological analysis [Ishida 2019]. Reporting our

results as a binary problem with class 90 against all others, we achieve 85% precision,

81% recall and 82% F1 score. Therefore, our method is able to correctly classify a
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high proportion of SNIa despite its similar behavior to other classes.

4.3.2.3 Ablation study:

Here, we study the impact of taking uncertainty into account. In particular, we

compare the results obtained when uncertainty is ignored (Table 4.3) to the results

obtained when uncertainty is taken into account (Table 4.1).

Table 4.3: Results on PLAsTiCC averaged over 3 runs when uncertainty is ignored.

Precision Recall F1 score LogLoss Time (h)

SAST 0.65± 0.01 0.67± 0.00 0.63± 0.00 1.16± 0.01 16.41± 0.52

SASTd 0.66± 0.02 0.68± 0.00 0.64± 0.00 1.14± 0.00 12.79± 0.84

SASTdc 0.66± 0.01 0.68± 0.00 0.64± 0.01 1.14± 0.01 12.99± 0.30

Taking uncertainty into account increases the classi�cation performance in terms

of precision, recall, F1 score and cross entropy loss. In fact, from SASTd to uSASTd,

there is a gain of 6% in precision, 5% in recall, 6% in F1 score. It can also be seen that

the model is more con�dent on its predictions as the loss has decreased. However,

this gain in performance requires almost four times more computation.

4.3.2.4 Comparison to SOTA:

In this subsection, we compare our proposed method to the state-of-the-art multi-

variate time series classi�cation methods ROCKET [Dempster et al. 2020], MUSE

[Schäfer & Leser 2017b] and XEM [Fauvel et al. 2022] which have been shown to

be among the most accurate methods for this task [Ruiz et al. 2021]. Results are

shown in Table 4.4.

Table 4.4: uSASTd vs SOTA results.

Precision Recall F1 score Time (h)

uSASTd 0.72± 0.00 0.73± 0.00 0.70± 0.01 43.49± 0.27

MUSE 0.71± 0.01 0.73± 0.01 0.71± 0.01 3.36± 0.04

ROCKET 0.77± 0.00 0.77± 0.00 0.75± 0.00 0.05± 00

XEM 0.69± 0.01 0.71± 0.00 0.69± 0.00 12.24± 0.46

The classi�cation performance of our method is comparable to those of the SOTA

methods. In particular, uSASTd achieves better precision, recall and F1 score com-

pared to XEM on PLAsTiCC. uSASTd and MUSE have similar classi�cation perfor-

mance. ROCKET achieves the best classi�cation performance. SOTA methods are

faster than our proposal. Except for XEM which is explainable-by-design, SOTA
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methods are not explainable. In fact, ROCKET uses the proportion of positive val-

ues obtained after applying random convolutions. MUSE uses bag of words obtained

after applying some transformations to the time series. These features have no par-

ticular meaning for domain experts. Our method does not have this limitation, as

it is based on features that are intelligible to domain experts.

4.3.2.5 Explainability:

One of the best properties of subsequence-based classi�cation is its interpretability.

The explanation could be done either locally, when it concerns only a single in-

stance, or globally when it concerns the whole model. In any case, this is generally

done by inspecting the model in order to extract the most discriminative subse-

quences [Ye & Keogh 2009a]. These subsequences could also be found using a post-

hoc method such as LIME [Ribeiro et al. 2016] or SHAP [Lundberg & Lee 2017],

but since our approach is explainable-by-design, inspecting the model is su�cient.

More speci�cally, since the classi�er used in our model is tree-based, the informa-

tion gain can be used as a measure of the discriminative power of the subsequences

similarly to what is done in shapelet-based methods. The local explainability of

our method is obtained by inspecting the subsequence on which the model focused

the most in order to make the prediction for a single instance, these are the sub-

sequences which led to the highest information gain (see De�nitions 2.4 and 2.5).

Figure 4.2 shows local explanations for a Supernova Type Ia (SNIa) and a Core-

collapse Supernova Type II-P (SNII-P) correctly classi�ed by the model. The �P�

in the denomination of the latter references the plateau phase observed in its time-

series just after maximum brightness. This feature is clearly shown in the bottom

panel of Figure (4.2). This con�rms that our model focuses on the relevant regions

and dimensions of the time series to make the classi�cation. Being able to cor-

rectly learn the dimension's relevance is crucial as the discriminative subsequence

may appear only in a subset of the dimensions. Furthermore, the location of the

discriminative subsequence may not be the same on every dimension. In PLAsTiCC

in fact, depending how far is the object, the light may be visible only on some wave-

lengths (i.e. dimension). Due to the accelerated expansion of the universe, objects

which are further away are also moving with a higher velocity. Thus, there is a

Doppler e�ect in the observed light which shifts it to higher wavelengths. Thus,

closer (galactic) objects will generally have higher signals in lower wavelengths than

further away (extragalactic) ones. Our method perfectly captures the Doppler ef-

fect unlike XEM which cannot identify from which dimensions the discriminative

subsequences is located.

A global explanation is obtained by building a subsequence-based pro�le of each

of the class. The top 20 most discriminative subsequences from the uSASTd model

are shown in Figure 4.3. Subsequences that are from the same class label are plotted

with the same color, its rank, its class label and its type are given at the top of its

corresponding plot. The type is either Value if the discriminative power comes

from the value itself or Uncertainty if the discriminative powers comes from the
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Figure 4.2: Local explainability of a Supernova Type Ia (top) and a Core-collapse

Supernova Type II (bottom)

.
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uncertainty. The dimension from which the subsequences are coming from are also

given on the �gure.

#1, Class: 16, Kind: Value, Dim: y #2, Class: 15, Kind: Value, Dim: y #3, Class: 64, Kind: Value, Dim: y #4, Class: 52, Kind: Value, Dim: y #5, Class: 95, Kind: Value, Dim: u

#6, Class: 16, Kind: Value, Dim: y #7, Class: 64, Kind: Value, Dim: y #8, Class: 65, Kind: Value, Dim: y #9, Class: 90, Kind: Value, Dim: y #10, Class: 42, Kind: Value, Dim: u

#11, Class: 92, Kind: Value, Dim: y #12, Class: 65, Kind: Value, Dim: y #13, Class: 16, Kind: Value, Dim: y #14, Class: 6, Kind: Value, Dim: i #15, Class: 62, Kind: Value, Dim: u

#16, Class: 42, Kind: Value, Dim: u #17, Class: 53, Kind: Value, Dim: u #18, Class: 67, Kind: Uncertainty, Dim: y#19, Class: 16, Kind: Uncertainty, Dim: r #20, Class: 15, Kind: Value, Dim: u

Figure 4.3: The top 20 most discriminative subsequences in the PLAsTiCC dataset

It is observed that the discriminative power is generally due to the value, but

sometimes it is due to the uncertainty (for example subsequences #18 and #19).

Seeing that some subsequences are important because of their uncertainty empha-

sizes the fact that taking uncertainty into account is important and improves the

classi�cation performance. There are also some subsequences that are too similar

despite the fact that duplicate subsequences have been dropped; for instance, the

subsequences #3 and #7. This is because the similarity between subsequences is

computed using the Uncertain Euclidean Distance (UED) which considers the sub-

sequences to be perfectly aligned. This problem can be resolved by using an elastic

distance such as the DTW distance at the cost of more computational time since

such distances generally have at least quadratic time complexity while UED is lin-

ear. From the domain knowledge point of view, these discriminative subsequences

are able to grasp the important shapes commonly associated with their respective

class of astronomical transients. Subsequences #1 and #6 were taken from class

16 (eclipsing binary) and clearly show the expected light curve from a well mea-

sured binary system where one star eclipses the other exactly in the line of sight,

thus leading to a decrease in brightness. Subsequence #19 is also associated to the

eclipsing binary class, but in this case the signal is less clear, corresponding to an

object which is further away � thus leading to low signal and large uncertainties.

We also call attention to the supernova-like behavior exhibited by subsequences #4

and #9 � one single burst events whose brightness are only visible for weeks to

months. The fact that such characteristic behaviors are easily spotted in the list of

most important subsequences certi�es that our �nal classi�cation results are in line

with the expert de�nition of such classes and hence, shows that our model is safe

and trustworthy. Moreover, further investigations of a more extensive list of impor-
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tant subsequences have the potential to reveal unexpected time series shapes and

promote the development of more detail theoretical models for such astrophysical

sources.

4.4 Conclusion and future directions

The classi�cation of time series with available uncertainty measures is an under-

explored and challenging task. In this work, we proposed an approach to perform

this task with a global F1 score of 70%, without using techniques such as data aug-

mentation nor oversampling. The explainability of the proposed approach allows

domain experts to not only understand individual predictions, but also to charac-

terized each class by a set of subsequences with high discriminative power, which

can then be used to perform other important tasks in astrophysics such as novel as-

tronomical transients detection and anomaly detection. The ablation study shown

the positive impact of taking uncertainty into account. A limitation of the ap-

proach is the time complexity, which could be considerably high for datasets with

relatively long uncertain time series. A future direction would consist of further re-

ducing the number of subsequences to be used and optimizing the computation time

of the method. Another future direction would consist of �nding a better way of

managing uncertainty during the classi�cation step in order to improve the perfor-

mances. Nevertheless, the results presented in this work illustrate how our approach

is e�ective in identifying meaningful subsequences which, beyond the classi�cation

performance, can provide important information to the expert. The approach is

�exible enough to be applied to other scienti�c domains where uncertain time series

are the common, thus enabling future advances in multiple subject areas.

Key points

� We reduced SAST's computational time and proposed the uncertain

SAST (uSAST), an extension of SAST to uncertain time series classi�-

cation.

� We applied uSAST to a realistic uncertain time series dataset and

demonstrated its classi�cation e�ectiveness as well as explainability.

Communications

� Michael F. Mbouopda, Emille E. O. Ishida, Engelbert Mephu Nguifo,

Emmanuel Gangler. Explainable Classi�cation of Astronomical Uncer-

tain Time Series. HAL preprint, pp 1-8. 2022.





Chapter 5

General conclusion and future

directions

In this chapter, we summarize our contributions, discuss the limitations of this

work and give some future directions. We also give the list of publications that we

did throughout this thesis.
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5.1 Conclusion

In this thesis, we addressed the task of classifying uncertain time series. The un-

certainty in the data makes this task more challenging than a regular time series

classi�cation task. We de�ned what are uncertainty and uncertain time series, then

we shown that the current state-of-the-art on the classi�cation of uncertain time se-

ries is limited and di�cult to adopt by end-users because of a brutal disappearance

of the uncertainty in the classi�cation process. This work advances the state-of-

the-art of uncertain time series classi�cation by proposing explainable, robust and

e�cient methods. Speci�cally, we proposed a novel general design of uncertain time

series classi�cation which propagates uncertainty throughout the whole classi�ca-

tion process. The propagation is achieved using uncertainty propagation techniques,

widely used in physics.
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5.1.1 Main contributions

From the novel design, we derived the Uncertain Shapelet Transform (UST) which

is a shapelet-based, hence explainable method for the classi�cation of uncertain

time series. UST internally uses the Uncertain Euclidean Distance (UED) that we

proposed as a novel similarity measure for uncertain time series with the ability

to give not only the similarity, but also the uncertainty on that similarity. We

demonstrated the performance of UST on synthetic datasets.

Given the high time complexity of existing shapelet-based methods (including

UST), we proposed the Scalable And Accurate Subsequence Transform (SAST),

a subsequence-based method to signi�cantly reduce the computation time with-

out losing accuracy, nor interpretability. Concretely, while the state-of-the-art

shapelet-based method STC's time complexity is O(n2m4), SAST's time complex-

ity is O(nm3), where n and m are respectively the number and the length of time

series. This correspond to a reduction by a factor of nm. We also shown that SAST

is competitive with state-of-the-art methods for regular time series classi�cation

HIVE-COTE and ROCKET. We have also demonstrated SAST explainability on

the Chinatown dataset from the UCR & UEA archive.

Finally we proposed uSAST, an extension of SAST to uncertain time series

classi�cation. We assessed uSAST not only on simulated datasets, but also on a

real uncertain time series dataset from the astrophysics domain named PLAsTiCC.

As far as we know, this is the �rst open-sourced experiment on real uncertain data.

uSAST shown good classi�cation performance on PLAsTiCC as well as great local

and global explanations.

5.1.2 Scienti�c valorization

We valorized and shared our contributions at national and international conferences.

In particular, the �rst UST version has been accepted and presented at the French

national conference on arti�cial intelligence (CNIA 2020) and at the Workshop on

Uncertainty in Machine Learning (WUML 2020) which was hosted by the Euro-

pean Conference on Machine Learning (ECML/PKDD 2020). Later on, the �nal

UST version has been presented at the workshop on Large-Scale Industrial Time

Series Analysis (LITSA 2021) hosted by the IEEE International Conference on Data

Mining (IEEE ICDM 2021).

SAST has been accepted for a long presentation at the french conference on

machine learning (CAp 2021) and is currently under review at the Elsevier journal

Pattern Recognition. A working paper on uSAST is available on the open archive

HAL.

5.1.3 Open sourced codes and data

We open sourced the codes and data used throughout this thesis in order to facilitate

research and applications in uncertain time series classi�cation in particular, and in

uncertain time series analysis in general. Access links are given below:
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� UST: https://github.com/frankl1/ustc

� SAST: https://github.com/frankl1/sast

� uSAST: https://github.com/frankl1/usast

5.2 Limitations and perspectives

We proposed to use uncertainty propagation to take uncertainty into account in

uncertain time series classi�cation. We shown that this approach lead to models

that are more robust and accurate, but also more natural to users and therefore,

more trustable. Both UST and uSAST have three steps: feature selection, feature

transformation and classi�cation. We successfully took uncertainty into account in

the three steps, but we strongly believe that uncertainty handling could be improved

in the classi�cation step. In fact, we used regular supervised classi�ers (Random

Forest, XGBoost, etc) for this step, these classi�ers consider uncertainties as regular

features although they should be considered as meta features. This step would be

more e�ective if the classi�er used was aware of uncertainties and di�erentiated

them from regular features. Few works exist in the literature to achieve that, namely

the Decision Tree for Uncertain data [Qin et al. 2009, Qin et al. 2011]. Therefore, it

would be interesting to explore how the work started in this thesis could be improved

using uncertain supervised classi�ers.

Given that preprocessing generally makes learning easier, it would be legitimate

to ask why we did not mention it in this work. In fact, preprocessing is generally ap-

plication and data-dependent, and therefore not straightforward to be integrated in

an end-to-end approach. Instead, we wanted our models to have good performance

on the raw data. Nevertheless, it would be a good future direction to see if the perfor-

mance of our models could be improved by applying some preprocessing of the time

series �rst. One of this techniques could be the uncertain moving average (UMA)

and the uncertain exponential moving average (UEMA) [Dallachiesa et al. 2012].

In order to ensure the explainability of our methods, we used only the shapelet

features, which are acknowledge in the literature for their natural explainability.

However, it has been shown in the literature that time series classi�cation is more

e�ective when di�erent features (shapelet, interval, word, etc) are combined to-

gether. Hence, another future direction will be to take uncertainty into account

in interval, dictionary, spectral, hybrid and deep learning methods for time series

classi�cation.

We modeled uncertainty in this work using two values which are the best esti-

mate (or guess) and the standard deviation from that estimate, however, there exist

other representations: random sets, possibility distributions, probability intervals,

etc [Destercke et al. 2008] which have particular properties. It is worthy to analyze

how these representation could be used with time series data. For instance, using

imprecise probability modeling will ease the adaptation of existing works to time

series data [Destercke & Couso 2015, Carranza Alarcon & Destercke 2019].

https://github.com/frankl1/ustc
https://github.com/frankl1/sast
https://github.com/frankl1/usast
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In this work, we considered the case were input time series were uncertain while

the labels were certain. In their current form, our proposed methods cannot be

applied in scenarios where the labels are also uncertain. Given that this scenarios

is likely to arise in practice, it is important to adapt or extend UST and uSAST

to this case. A possible way of tackling this issue is to use belief function theory

as proposed in [Quost & Den÷ux 2009]. Furthermore, it would be interesting to

evaluate the con�dence of our methods on their predictions using conformal learning

techniques. We expect our methods' con�dence to be correlated with the uncertainty

level, that is, the more uncertain is the data, the less con�dent our model would be.

Combining conformal learning with the explainability of our methods will increase

their trustability and adoption by end-users.

The last future direction, but not the least is to explore other time series analysis

tasks. In particular, it would be worthy to see how our proposed uncertain similarity

measure UED is compared to FOTS for the task of uncertain time series clustering.

Beyond that, assessing the performance of uncertainty propagation in the tasks of

uncertain time series anomaly detection and forecasting would be good steps to

advance the state-of-the-art of uncertain time series analysis in general.

5.3 Recommendations

Uncertain time series classi�cation and more generally the classi�cation of uncertain

data is challenging, yet under-explored. We shown in this work that uncertainty is

not necessarily a problem, but an additional input that can be used to improve the

classi�cation performance and the decision boundaries' robustness. We also hope

that uncertainty quanti�cation will be integrated in the data collection process so

that the �nal data is released with the associated uncertainty.

5.4 List of publications

During this thesis, we made many publications on the topic of uncertain time series

classi�cation, but also on uncertain time series clustering, anomaly detection in

dataset stream, and time series forecasting.

5.4.1 First-authored publications

� Michael F. Mbouopda, Engelbert Mephu Nguifo. Classi�cation des Séries

Temporelles Incertaines Par Transformation Shapelet. In Conférence Na-

tionale en Intelligence Arti�cielle (CNIA), pp.14-21, Jun. 2020.

� Michael F. Mbouopda, Engelbert Mephu Nguifo. Classi�cation of Uncer-

tain Time Series by Propagating Uncertainty in Shapelet Transform. In

ECML/PKDDWorkshop on Uncertainty in Machine Learning (WUML), pp.1-

12, Sep. 2020.
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A.1 Models performance on each dataset

Table A.2 gives the average accuracy obtained by each STC-k models, STC and

SAST on the 72 datasets listed in Table A.1. For each dataset, each model is run 5

times and the accuracy mean and standard deviation on the test set are recorded.

The last row in the table gives the mean and standard deviation of each method

accuracy on the datasets.

Table A.2: Accuracy of models on 72 UEA & UCR datasets (average over 5 runs).

The numbers are rounded at 2 decimals.

STC-1 STC-0.25 STC-0.5 STC-0.75 STC SAST

1 0.29± 0.06 0.32± 0.03 0.34± 0.04 0.34± 0.02 0.48± 0.04 0.68± 0.0

2 0.63± 0.06 0.71± 0.08 0.74± 0.03 0.72± 0.04 0.75± 0.03 0.77± 0.02

3 0.65± 0.1 0.68± 0.05 0.86± 0.05 0.95± 0.02 0.87± 0.03 0.87± 0.02

4 0.44± 0.05 0.47± 0.09 0.55± 0.09 0.65± 0.06 0.71± 0.09 0.8± 0.02

5 0.74± 0.06 0.79± 0.09 0.78± 0.09 0.77± 0.07 0.78± 0.05 0.8± 0.03

6 0.76± 0.1 0.76± 0.1 0.91± 0.04 0.83± 0.14 0.86± 0.1 0.76± 0.1

7 0.88± 0.09 0.95± 0.01 0.96± 0.01 0.96± 0.01 0.95± 0.01 0.98± 0.01

8 0.66± 0.04 0.75± 0.02 0.74± 0.02 0.76± 0.03 0.77± 0.06 0.88± 0.01

9 0.91± 0.08 0.95± 0.02 0.95± 0.03 0.96± 0.01 0.97± 0.01 0.96± 0.01

10 0.54± 0.02 0.54± 0.01 0.54± 0.01 0.56± 0.0 0.56± 0.0 0.75± 0.04

11 0.96± 0.03 0.99± 0.02 0.99± 0.03 1.0± 0.0 1.0± 0.0 1.0± 0.0

12 0.38± 0.04 0.35± 0.03 0.35± 0.01 0.38± 0.03 0.66± 0.02 0.77± 0.01

13 0.41± 0.04 0.36± 0.04 0.35± 0.03 0.42± 0.05 0.64± 0.02 0.74± 0.01

14 0.41± 0.06 0.4± 0.06 0.4± 0.03 0.38± 0.03 0.69± 0.01 0.77± 0.01

15 0.08± 0.0 0.08± 0.0 0.08± 0.0 0.08± 0.0 0.08± 0.0 0.73± 0.0

16 0.9± 0.03 0.87± 0.06 0.91± 0.04 0.93± 0.02 0.94± 0.04 0.97± 0.0

Continued on next page
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Table A.2: Accuracy of models on 72 UEA & UCR datasets (average over 5 runs).

The numbers are rounded at 2 decimals.

STC-1 STC-0.25 STC-0.5 STC-0.75 STC SAST

17 0.71± 0.02 0.77± 0.01 0.76± 0.01 0.77± 0.01 0.77± 0.01 0.76± 0.02

18 0.66± 0.01 0.68± 0.02 0.69± 0.01 0.69± 0.03 0.71± 0.01 0.74± 0.01

19 0.67± 0.01 0.68± 0.01 0.68± 0.01 0.68± 0.01 0.68± 0.0 0.67± 0.02

20 0.43± 0.03 0.47± 0.02 0.54± 0.02 0.52± 0.04 0.47± 0.04 0.61± 0.04

21 0.61± 0.09 0.68± 0.11 0.8± 0.02 0.77± 0.03 0.81± 0.03 0.9± 0.02

22 0.94± 0.05 0.97± 0.0 0.96± 0.0 0.97± 0.01 0.97± 0.01 0.98± 0.01

23 0.74± 0.07 0.85± 0.02 0.84± 0.01 0.85± 0.01 0.84± 0.0 0.84± 0.03

24 0.91± 0.01 0.93± 0.01 0.93± 0.01 0.93± 0.01 0.94± 0.0 0.94± 0.0

25 0.92± 0.05 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

26 0.75± 0.0 0.75± 0.0 0.75± 0.0 0.75± 0.0 0.75± 0.0 0.68± 0.04

27 0.32± 0.04 0.32± 0.07 0.31± 0.05 0.34± 0.05 0.32± 0.03 0.62± 0.01

28 0.43± 0.04 0.46± 0.03 0.44± 0.04 0.47± 0.03 0.74± 0.01 0.78± 0.01

29 0.96± 0.06 0.95± 0.03 0.96± 0.06 0.99± 0.01 0.99± 0.01 1.0± 0.01

30 0.71± 0.04 0.88± 0.01 0.92± 0.01 0.93± 0.01 0.94± 0.0 0.95± 0.0

31 0.33± 0.06 0.29± 0.03 0.31± 0.02 0.31± 0.03 0.59± 0.01 0.77± 0.0

32 0.95± 0.09 0.97± 0.03 0.96± 0.03 0.96± 0.03 0.97± 0.01 0.98± 0.01

33 0.93± 0.1 0.91± 0.13 0.86± 0.17 0.87± 0.08 0.93± 0.03 0.73± 0.01

34 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.9± 0.0

35 0.79± 0.05 0.94± 0.06 0.97± 0.02 0.96± 0.03 0.97± 0.02 0.97± 0.02

36 0.84± 0.03 0.96± 0.01 0.97± 0.0 0.98± 0.0 0.97± 0.0 0.97± 0.0

37 0.89± 0.05 0.97± 0.01 0.97± 0.01 0.98± 0.01 0.97± 0.01 0.99± 0.01

38 0.75± 0.03 0.93± 0.02 0.95± 0.01 0.96± 0.01 0.95± 0.01 0.96± 0.02

39 0.62± 0.06 0.72± 0.02 0.72± 0.04 0.7± 0.01 0.7± 0.02 0.71± 0.03

40 0.59± 0.07 0.57± 0.04 0.58± 0.02 0.57± 0.06 0.62± 0.03 0.6± 0.04

41 0.53± 0.02 0.56± 0.01 0.56± 0.01 0.54± 0.01 0.62± 0.0 0.56± 0.01

42 0.91± 0.06 0.96± 0.0 0.96± 0.01 0.96± 0.0 0.96± 0.0 0.96± 0.01

43 0.63± 0.1 0.84± 0.04 0.77± 0.02 0.87± 0.03 0.87± 0.06 0.92± 0.02

44 0.54± 0.02 0.59± 0.03 0.56± 0.01 0.58± 0.02 0.66± 0.01 0.68± 0.01

45 0.3± 0.04 0.3± 0.07 0.3± 0.03 0.28± 0.01 0.72± 0.02 0.87± 0.0

46 0.62± 0.02 0.6± 0.01 0.6± 0.02 0.61± 0.02 0.61± 0.02 0.53± 0.02

47 0.57± 0.0 0.65± 0.05 0.66± 0.04 0.62± 0.04 0.65± 0.06 0.83± 0.01

48 0.57± 0.02 0.58± 0.02 0.56± 0.01 0.58± 0.01 0.59± 0.02 0.56± 0.02

49 0.8± 0.06 0.79± 0.05 0.85± 0.02 0.87± 0.02 0.89± 0.01 0.85± 0.03

50 0.64± 0.01 0.64± 0.01 0.64± 0.0 0.64± 0.0 0.65± 0.01 0.78± 0.01

51 0.97± 0.02 0.99± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0

52 0.76± 0.03 0.93± 0.02 0.92± 0.02 0.93± 0.02 0.94± 0.02 0.91± 0.02

53 0.85± 0.01 0.85± 0.01 0.86± 0.01 0.85± 0.01 0.86± 0.01 0.85± 0.0

54 0.71± 0.03 0.76± 0.03 0.75± 0.04 0.76± 0.01 0.82± 0.02 0.87± 0.01

55 0.77± 0.02 0.78± 0.01 0.78± 0.01 0.78± 0.0 0.77± 0.01 0.78± 0.01

56 0.82± 0.15 0.92± 0.06 0.98± 0.01 0.98± 0.02 1.0± 0.0 0.96± 0.01

57 0.68± 0.05 0.91± 0.01 0.94± 0.01 0.95± 0.01 0.95± 0.01 0.91± 0.02

58 0.7± 0.14 0.82± 0.03 0.81± 0.02 0.78± 0.05 0.79± 0.04 0.76± 0.05

59 0.75± 0.05 0.84± 0.03 0.86± 0.05 0.83± 0.03 0.88± 0.01 0.85± 0.04

Continued on next page
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Table A.2: Accuracy of models on 72 UEA & UCR datasets (average over 5 runs).

The numbers are rounded at 2 decimals.

STC-1 STC-0.25 STC-0.5 STC-0.75 STC SAST

60 0.75± 0.05 0.81± 0.02 0.82± 0.03 0.83± 0.02 0.91± 0.03 0.97± 0.01

61 0.58± 0.05 0.61± 0.02 0.59± 0.07 0.6± 0.09 0.83± 0.02 0.88± 0.02

62 0.91± 0.05 0.63± 0.07 0.93± 0.02 0.93± 0.01 0.95± 0.01 0.95± 0.0

63 0.87± 0.02 0.97± 0.01 0.97± 0.01 0.97± 0.01 0.98± 0.0 0.98± 0.0

64 0.88± 0.04 0.91± 0.02 0.94± 0.01 0.95± 0.0 0.95± 0.0 0.88± 0.04

65 0.84± 0.08 0.9± 0.04 0.87± 0.02 0.89± 0.02 0.88± 0.03 0.88± 0.03

66 0.94± 0.07 0.99± 0.01 1.0± 0.0 1.0± 0.0 0.99± 0.0 1.0± 0.0

67 0.93± 0.04 0.95± 0.02 0.98± 0.03 0.99± 0.01 0.98± 0.01 0.96± 0.03

68 0.56± 0.07 0.61± 0.05 0.64± 0.07 0.64± 0.03 0.81± 0.03 0.99± 0.0

69 0.83± 0.07 0.93± 0.03 0.97± 0.03 0.96± 0.03 0.98± 0.01 0.98± 0.01

70 0.99± 0.01 1.0± 0.0 1.0± 0.01 1.0± 0.0 1.0± 0.0 1.0± 0.0

71 0.54± 0.06 0.71± 0.1 0.72± 0.07 0.8± 0.04 0.8± 0.06 0.85± 0.06

72 0.4± 0.01 0.45± 0.02 0.47± 0.02 0.44± 0.01 0.56± 0.01 0.7± 0.01

A.2 Scalability of SAST, SASTEN and SASTEN-A re-

garding the dataset size

Figure A.1 shows a zoom on Figure 3.20b. We can now clearly see that SASTEN

is slower than SAST and SASTEN-A whatever the number of time series in the

dataset. SASTEN-A running time is quite linear because the shapelet space is

constant and only the transform time increases with the number of series.

Figure A.1: Running time in sec-

onds of SAST, SASTEN and

SASTEN-A regarding the num-

ber of time series
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Table A.1: Dataset identi�ers, names, and types. Datasets marked with a star are

those used for the experiment which results are presented in Section 3.3.1.2 and

datasets marked with a plus sign are those used for the experiment which results

are given in Section 3.3.1.4.

Id Name Type Id Name Type

1 Adiac Image 37 GunPointMaleVersusFemale* Motion

2 ArrowHead+ Image 38 GunPointOldVersusYoung* Motion

3 BME* Simulated 39 Ham+ Spectro

4 Beef+ Spectro 40 Herring+ Image

5 BeetleFly+ Image 41 InsectWingbeatSound Sensor

6 BirdChicken+ Image 42 ItalyPowerDemand*+ Sensor

7 CBF*+ Simulated 43 Meat Spectro

8 Car+ Sensor 44 MedicalImages* Image

9 Chinatown* Tra�c 45 MelbournePedestrian Tra�c

10 ChlorineConcentration* Sensor 46 MiddlePhalanxOutlineAgeGroup*+ Image

11 Co�ee+ Spectro 47 MiddlePhalanxOutlineCorrect*+ Image

12 CricketX Motion 48 MiddlePhalanxTW*+ Image

13 CricketY Motion 49 MoteStrain*+ Sensor

14 CricketZ Motion 50 PhalangesOutlinesCorrect* Image

15 Crop* Image 51 Plane*+ Sensor

16 DiatomSizeReduction+ Image 52 PowerCons* Power

17 DistalPhalanxOutlineAgeGroup*+ Image 53 ProximalPhalanxOutlineAgeGroup*+ Image

18 DistalPhalanxOutlineCorrect*+ Image 54 ProximalPhalanxOutlineCorrect* Image

19 DistalPhalanxTW*+ Image 55 ProximalPhalanxTW*+ Image

20 DodgerLoopDay Sensor 56 ShapeletSim+ Simulated

21 DodgerLoopGame Sensor 57 SmoothSubspace* Simulated

22 DodgerLoopWeekend Sensor 58 SonyAIBORobotSurface1*+ Sensor

23 ECG200*+ ECG 59 SonyAIBORobotSurface2*+ Sensor

24 ECG5000* ECG 60 Strawberry Spectro

25 ECGFiveDays*+ ECG 61 SwedishLeaf* Image

26 Earthquakes+ Sensor 62 Symbols+ Image

27 ElectricDevices* Device 63 SyntheticControl*+ Simulated

28 FaceAll* Image 64 ToeSegmentation1+ Motion

29 FaceFour+ Image 65 ToeSegmentation2+ Motion

30 FacesUCR* Image 66 Trace Sensor

31 FiftyWords Image 67 TwoLeadECG*+ ECG

32 FreezerRegularTrain Sensor 68 TwoPatterns* Simulated

33 FreezerSmallTrain Sensor 69 UMD* Simulated

34 Fungi HRM 70 Wafer* Sensor

35 GunPoint*+ Motion 71 Wine+ Spectro

36 GunPointAgeSpan* Motion 72 WordSynonyms Image
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B.1 SAST-based methods results

Table B.1: SAST<X> models results on the PLAsTiCC dataset average over 3

runs. The stared row is the run that achieved the lowest cross entropy loss.

Classi�er Precision Recall F1 score LogLoss Time (h)

SAST

RF 0.59± 0.04 0.61± 0.00 0.56± 0.01 1.29± 0.05 16.41± 0.52

RidgeCV 0.56± 0.00 0.57± 0.00 0.55± 0.00 2.22± 0.01 16.41± 0.52

XGBoost 0.65± 0.01 0.67± 0.00 0.63± 0.00 1.16± 0.01 16.41± 0.52

XGBoost* 0.65 0.67 0.64 1.15 16.23

SASTd

RF 0.58± 0.05 0.60± 0.00 0.54± 0.00 1.33± 0.08 12.79± 0.84

RidgeCV 0.56± 0.01 0.58± 0.01 0.55± 0.01 2.20± 0.00 12.79± 0.84

XGBoost 0.66± 0.02 0.68± 0.00 0.64± 0.00 1.14± 0.00 12.79± 0.841

XGBoost* 0.66 0.68 0.64 1.13 11.84

SASTdc

RF 0.58± 0.03 0.61± 0.00 0.55± 0.00 1.33± 0.04 12.99± 0.30

RidgeCV 0.52± 0.02 0.54± 0.01 0.52± 0.01 2.25± 0.00 12.99± 0.30

XGBoost 0.66± 0.01 0.68± 0.00 0.64± 0.01 1.14± 0.01 12.99± 0.30

XGBoost* 0.65 0.68 0.64 1.14 13.04
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B.2 uSAST-based methods results

Table B.2: uSAST<X> models results on the PLAsTiCC dataset average over 3

runs. The row with the star is the run that achieved the lowest cross entropy loss.

Subsequence length: from 16 to 32 with a step of 1.

Classi�er Precision Recall F1 score LogLoss Time (h)

uSAST

RF 0.62± 0.01 0.66± 0.01 0.60± 0.01 1.20± 0.03 53.61± 0.10

RidgeCV 0.33± 0.02 0.34± 0.02 0.33± 0.02 2.98± 0.11 53.61± 0.10

XGBoost 0.69± 0.00 0.70± 0.00 0.66± 0.00 1.04± 0.01 53.61± 0.10

XGBoost* 0.69 0.70 0.66 1.04 53.56

uSASTd

RF 0.61± 0.03 0.64± 0.00 0.58± 0.00 1.20± 0.04 41.58± 0.47

RidgeCV 0.35± 0.01 0.37± 0.01 0.35± 0.01 2.90± 0.06 41.58± 0.47

XGBoost 0.70± 0.01 0.70± 0.00 0.67± 0.00 1.06± 0.02 41.58± 0.47

XGBoost* 0.71 0.70 0.67 1.04 41.78

uSASTdc

RF 0.60± 0.00 0.64± 0.01 0.58± 0.00 1.21± 0.00 40.45± 1.00

RidgeCV 0.37± 0.04 0.38± 0.03 0.37± 0.03 2.78± 0.07 40.45± 1.00

XGBoost 0.69± 0.01 0.70± 0.00 0.66± 0.00 1.04± 0.02 40.45± 1.00

XGBoost* 0.68 0.70 0.66 1.03 41.16
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Table B.3: uSAST<X> models results on the PLAsTiCC dataset average over 3

runs. The row with the star is the run that achieved the lowest cross entropy loss.

Subsequence length: from 20 to 60 with a step of 10.

Classi�er Precision Recall F1 score LogLoss Time (h)

uSAST

RF 0.64± 0.01 0.68± 0.01 0.62± 0.01 1.09± 0.01 51.03± 0.12

Ridge 0.39± 0.01 0.40± 0.01 0.39± 0.01 2.82± 0.08 51.03± 0.12

XGBoost 0.72± 0.01 0.72± 0.00 0.69± 0.01 0.96± 0.01 51.03± 0.12

XGBoost* 0.71 0.72 0.69 0.95 51.17

uSASTd

RF 0.65± 0.02 0.67± 0.01 0.62± 0.01 1.12± 0.04 43.49± 0.27

Ridge 0.39± 0.02 0.41± 0.02 0.40± 0.02 2.77± 0.07 43.49± 0.27

XGBoost 0.72± 0.00 0.73± 0.00 0.70± 0.01 0.97± 0.01 43.49± 0.27

XGBoost* 0.72 0.73 0.69 0.95 43.18

uSASTdc

RF 0.67± 0.03 0.67± 0.00 0.62± 0.00 1.11± 0.00 43.52± 0.72

Ridge 0.39± 0.02 0.40± 0.02 0.39± 0.02 2.79± 0.02 43.52± 0.72

XGBoost 0.71± 0.01 0.72± 0.01 0.69± 0.01 0.96± 0.01 43.52± 0.72

XGBoost* 0.70 0.72 0.68 0.95 44.26

B.3 Results of state-of-the-art models

Table B.4: Performance of state-of-the-art models average over 3 runs. MUSE uses

a linear classi�er. The row with the star is the run that achieved the lowest cross

entropy loss

Classi�er Precision Recall F1 score LogLoss Time (h)

MUSE - 0.71± 0.01 0.73± 0.01 0.71± 0.01 1.78± 0.03 3.36± 0.04

ROCKET

RF 0.75± 0.01 0.75± 0.00 0.72± 0.00 0.94± 0.03 0.05± 0.00

Ridge 0.71± 0.01 0.71± 0.01 0.70± 0.01 2.07± 0.00 0.05± 0.00

XGBoost 0.77± 0.00 0.77± 0.00 0.75± 0.00 0.82± 0.01 0.05± 00

XGBoost* 0.78 0.77 0.75 0.81 0.05
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