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RÉSUMÉ 

 

Une question centrale dans le décodage de l'activité cérébrale est de savoir comment 

détecter des schémas d'activité anormale ou pathologique. Dans cette thèse, nous 

appliquons des méthodes d'apprentissage automatique et des approches de 

modélisation informatique pour analyser les données d'activité neuronale dans le cortex 

et apprendre à détecter des marqueurs d'activité anormale dans des modèles animaux 

de plusieurs maladies neurodégénératives courantes. Tout d'abord, nous identifions les 

méthodes d'apprentissage automatique qui fonctionnent bien dans les tâches de 

classification sur des données d'activité au niveau d'un seul neurone. Nous établissons 

une référence pour la classification des trains de pointes neuronales et trouvons les 

caractéristiques de séries chronologiques hautement prédictives de l'état du circuit 

neuronal dans différentes tâches et zones cérébrales. En utilisant les approches établies, 

nous analysons un ensemble de données d'activité neuronale dans le cortex préfrontal 

(PFC) chez des animaux présentant des mutations entraînant des dysfonctionnements 

du système de signalisation cholinergique couramment associés à des maladies telles 

que la schizophrénie et la maladie d'Alzheimer. Nous utilisons également la modélisation 

informatique de la dynamique des circuits locaux dans le PFC pour expliquer 

mécaniquement les origines des changements d'activité observés chez ces animaux. 

Enfin, nous testons les approches d'apprentissage automatique sur un ensemble de 

données multimodales d'activité neuronale dans un modèle animal de sclérose latérale 

amyotrophique (SLA) précoce. Nous montrons que pour concevoir un système capable 

de détecter avec précision l'activité pathologique inhérente à la SLA précoce, il faut 

entraîner le modèle à extraire des informations de l'interaction entre les modalités de 

l'activité corticale et le mouvement animal. Dans l'ensemble, nous avons fourni des 

informations sur la façon dont la modélisation informatique et l'apprentissage 

automatique pourraient fournir des outils pour détecter la pathologie à partir des 

enregistrements d'activité des circuits neuronaux. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 

A central question in brain activity decoding is how to detect patterns of abnormal or 

pathological activity. In this thesis, we apply machine learning methods and 

computational modelling approaches to analyze neural activity data in the cortex and to 

learn how to detect markers of abnormal activity in animal models of several common 

neurodegenerative diseases. First, we identify the machine learning methods that 

perform well in classification tasks on single-neuron level activity data. We establish a 

benchmark for neuronal spike train classification and find the time-series features that are 

highly predictive of the neural circuit state across different tasks and brain areas. Using 

the established approaches, we analyze a data set of neural activity in the prefrontal 

cortex (PFC) in animals with mutations leading to dysfunctions of the cholinergic 

signalling system commonly associated with diseases such as schizophrenia and 

Alzheimer's disease. We also use computational modelling of the local circuit dynamics in 

the PFC to mechanistically explain the origins of the activity changes observed in these 

animals. Finally, we test the machine learning approaches on a multimodal data set of 

neural activity in an animal model of early amyotrophic lateral sclerosis (ALS). We show 

that in order to design a system that is capable of accurately detecting the pathological 

activity inherent to early ALS, one has to train the model to extract information from the 

interaction between the modalities of cortical activity and animal movement. Overall, we 

have provided insights into how computational modelling and machine learning could 

provide tools for detecting pathology from neural circuit activity recordings. 
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neural activity, machine learning, neurodegenerative disease, data mining, cortical 

activity 
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Chapter 1

Introduction

1.1 Thesis summary

Machine learning tools could be very useful for neural data analysis not just merely

for engineering applications but for discovering the state-dependent changes in the

structure of neural activity. This is in particular important for the cases when one

is aiming to build systems to automatically detect pathological activity patterns

from neural circuit activity in animal models of nervous system disorders. Machine

learning methods might help reveal hidden structure in the neural data and identify

the features of activity predictive of disease. The question of how one could utilize

machine learning methods to study what information is contained in the activity of

single neurons and which of its features might serve as disease markers is a central

question we attempt to tackle in this thesis. We first start with identifying the

machine learning methods for time-series data that work well for neural activity

signals from across different brain areas and states. To this end, we consider the

task of spike train time-series classification and propose an evaluation benchmark

consisting of a set of binary classification tasks based on open-access neural spiking

data sets. The tasks include prediction of the animal’s behavioural state, predic-

tion of the input stimulus type and prediction of the neuronal sub-type given a

single neuronal spike train. We establish a strong machine learning baseline for the

benchmark based on massive time-series feature extraction coupled with effective

classifiers such as decision tree based gradient boosting machines. This approach
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is shown to outperform state-of-the-art deep learning approaches for neural decod-

ing on our benchmark while also allowing to identify the time-series features of the

spike trains useful for decoding across tasks and brain regions. We then analyze

a data set of neuronal activity in the prefrontal cortex (PFC) in animal models of

schizophrenia and early Alzheimer’s disease. We build a minimal computational

model of interacting neuronal populations in the PFC and show that it is possible

to capture experimental data by finding a suitable parametrization of the model.

We use the model to predict restoration of activity in mice with the 𝛼5SNP muta-

tion under nicotine treatment as well as the effect of galantamine in mice expressing

the amyloid beta peptide. We further utilize the developed machine learning ap-

proach for these data. We show that it is possible to build predictive models that

recognize patterns of pathological activity from single-neuron recordings and detect

animals with mutations such as the 𝑎5SNP or animals expressing the amyloid beta

peptide. We also use machine learning to assess the effects of neuromodulation and

pharmacological manipulations on neural activity like in the case of activity level

restoration from nicotine application in animals with the 𝛼5SNP mutation or galan-

tamine treatment in animals expressing the amyloid beta peptide. Finally, we test

different machine learning approaches on a multi-modal data set of neural activity

in an animal model of early amyotrophic lateral sclerosis (ALS). We show that in

order to design a system that is capable of accurately detecting the pathological

activity inherent to early ALS, one has to train the model to extract information

from the interaction between the modalities of cortical activity and animal move-

ment. We demonstrate that deep learning models, specifically convolutional neural

nets (CNNs), are particularly well-suited for this task and outperform the feature

extraction approach by a large margin. Interestingly, we show that simple CNN

architectures outperform more advanced convolutional and non-convolutional archi-

tectures like transformers. One central finding from the early ALS data set is that

data that are the most predictive of the pathology are state-dependent correspond

to the periods of high mobility of the animals. We hope that these findings could

further help design paradigms of early diagnosis of the ALS in human patients.
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1.2 Background

Understanding the underlying features and factors that are predictive of nervous

system disorders is critical in medical applications. Machine learning has been em-

ployed to this end for neurodegenerative diseases like Alzheimer’s disease to estimate

the relevance of neuroimaging characteristics (e.g. the importance scores of func-

tional connectivity measures extracted from a machine learning model Challis et al.

[2015]). In humans, deep learning approaches were also used to estimate the pre-

dictiveness of fMRI connectivity relationships in the context of schizophrenia Kim

et al. [2016] and ADHD Deshpande et al. [2015]. Highly interpretable deep learning

methods have been designed to identify correlates of depression and other mental

health disorders from noisy EEG data Honke et al. [2020]. Philips et al. [2021] used

time-series machine-learning methods cortical functional connectivity patterns of

distinct subcortical regions. Hultman et al. [2016] identified variables of prefrontal

cortex activity predictive of pathological behaviour in a mouse model of depression

which helped them design a neural stimulation paradigm to restore normal behavior.

Deep learning is a common tool used to predict neural disorders from a vari-

ety of data modalities. The primary input data modalities for systems predicting

Alzheimer’s disease are fMRI and PET data Gautam and Sharma [2020] or also

speech data in some cases Punjabi et al. [2019]. Convolutional neural networks are

widely used for AD classification Wen et al. [2020]. Several studies have addressed

Parkinson’s disease classification using single-photon emission computed tomogra-

phy Choi et al. [2017] or diffusion MRI Zhang et al. [2018].

The current state-of-the-art approaches in neural decoding in general are based

on advanced machine learning methods such as deep neural networks and model

ensembles. Tampuu et al. [2019] used deep recurrent neural network architectures

such as LSTMs Hochreiter and Schmidhuber [1997] to decode self-location from

hippocampal place cell activity. Glaser et al. [2020] benchmarked several common

decoding methods in the tasks of predicting position of a rat chasing rewards on

a platform from its hippocampal activity or predicting a position of a cursor con-

trolled by a monkey via moving a manipulandum from its motor cortex activity. Xu
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et al. [2019] have evaluated a set of different machine learning methods in the task

of decoding from head direction cells. The common finding in these studies is that

advanced techniques such as deep neural nets outperform more traditional decoding

methods such as Kalman and Wiener filters. While some of the studies have been

primarily aimed at improving the decoding accuracy, the machine learning model

also helped better understand the data that they were trained on. For instance,

Livezey et al. [2019] trained a deep neural network to predict produced speech sylla-

bles based on gamma cortical surface electric potentials recorded from human sen-

sorimotor cortex and revealed hierarchical latent structure in the neural data using

uncertainties in the network’s predictions as well as discovered high-gamma-to-beta

activity coupling during speech production. There is a general trend in using inter-

pretability techniques on trained neural decoders to analyze the underlying neural

activity data Livezey and Glaser [2021]. Troullinou et al. [2020] have shown that is

possible to infer neuron type from calcium imaging recordings with high accuracy

using common deep learning architectures such as CNNs or RNNs. Chowdhury et al.

[2020] investigated cell type classification using transcriptomic data with recurrent

neural networks.

Notably, most of the studies applying deep learning to neural data rely on basic

DNN architectures like simple VGG-style CNNs or LSTM RNNs. However, there

have been many recent developments on improving machine learning methods for

time series data Fawaz et al. [2019]. This includes specific deep architectures like

XCM Fauvel et al. [2020], InceptionTime Fawaz et al. [2020] or the Time-Series

Transformer Zerveas et al. [2020] as well as more traditional machine learning ap-

proaches like nearest-neighbor models with the Dynamic Time-Warping (DTW)

measure Bagnall et al. [2017], time-series feature extraction approaches Christ et al.

[2018], Fulcher and Jones [2017] and shapelet learning Ye and Keogh [2009]. A

promising avenue of research is adopting these techniques that have been estab-

lished as state-of-the-art approaches in time-series classification Bagnall et al. [2017]

to neural decoding and in particular to the problems of detecting pathological ac-

tivity from neural recordings, which is one of the central questions addressed in this

thesis.
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One way to model the pathological activity on the level of single neurons or

neural populations is to build mechanistic models of neural function and fit them

to available experimental data. This approach, based on population-level modeling

of neural activity, has been successfully applied to study the cognitive deficits in

schizophrenia Wang [2006] as well as the pathophysiology of the Parkinson’s disease

Humphries et al. [2018]. A central idea here is based on modeling decision making

or working memory processes via networks of connected excitatory neural popula-

tions modulated by a pool of interneurons Barak and Tsodyks [2014], Albantakis

and Deco [2011]. In the case of cortical activity, the inhibitory part of the network

is modelled by a hierarchy of interneuron populations of different subtypes with a

specifc inter-population connectivity pattern Litwin-Kumar et al. [2016], Hertäg and

Sprekeler [2019]. Notably, these distinct interneuronal populations in the cortex are

found to be differentially modulated by different types of nicotinic acetylcholine re-

ceptors Poorthuis et al. [2013]. A computational model of nicotinic neuromodulation

Graupner and Gutkin [2009] coupled with a population-level model of cortical activ-

ity then gives an effective tool to simulate cholinergic system dysfunctions typically

associated with neural disorders such as schizophrenia, which is known to be linked

to the mutation of the 𝛼5 subunit of the nicotinic acetylcholine receptor Besson

et al. [2018], Koukouli et al. [2016a].
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Abstract

Modern well-performing approaches to neural decoding are based on machine learn-

ing models such as decision tree ensembles and deep neural networks. The wide

range of algorithms that can be utilized to learn from neural spike trains, which are

essentially time-series data, results in the need for diverse and challenging bench-

marks for neural decoding, similar to the ones in the fields of computer vision and

natural language processing. In this work, we propose a spike train classification

benchmark, based on open-access neural activity datasets and consisting of several

learning tasks such as stimulus type classification, animal’s behavioral state predic-

tion and neuron type identification. We demonstrate that an approach based on

hand-crafted time-series feature engineering establishes a strong baseline perform-

ing on par with state-of-the-art deep learning based models for neural decoding. We

release the allowing to reproduce the reported results.

Chapter summary

Machine learning-based neural decoding has been shown to outperform the tradi-

tional approaches like Wiener and Kalman filters on certain key tasks Glaser et al.

[2020]. To further the advancement of neural decoding models, such as improvements

in deep neural network architectures and better feature engineering for classical ML

models, there need to exist common evaluation benchmarks similar to the ones in

the fields of computer vision or natural language processing. In this work, we pro-

pose a benchmark consisting of several individual neuron spike train classification

tasks based on open-access data from a range of animals and brain regions. We

demonstrate that it is possible to achieve meaningful results in such a challeng-

ing benchmarks using the massive time-series feature extraction approach, which is

found to be hard to beat using state-of-the-art deep learning approaches.
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2.1 Introduction

The latest advances in multi-neuronal recording technologies such as two-photon cal-

cium imaging Pachitariu et al. [2016], extracellular recordings with multi-electrode

arrays Tsai et al. [2015], Neuropixels probes Steinmetz et al. [2018] allow producing

large-scale single-neuron resolution brain activity data with remarkable magnitude

and precision. Some of the neural spiking data recorded in animals has been released

to the public in the scope of data repositories such as CRCNS.org Teeters and Som-

mer [2009]. In addition to increasing experimental data access, various neural data

analysis tools have been developed, in particular for the task of neural decoding,

which is often posed as a supervised learning problem Glaser et al. [2020]: given

firing activity of a population of neurons at each time point, one has to predict the

value of a certain quantity pertaining to animal’s behaviour such as its velocity at

a given point in time.

Such a formulation of the neural decoding task implies that it is a multivariate

time-series regression or classification problem. An array of supervised learning

methods focused specifically on general time-series data has been developed over

the years, ranging from classical approaches Bagnall et al. [2017] to deep neural

networks for sequential data Fawaz et al. [2019]. It is not fully clear, however, how

useful these methods are for the specific tasks of learning from neural spiking data.

In order to establish a sensible ranking of these algorithms for neural decoding,

there is a need for a common spiking activity recognition benchmark. In this work,

we propose a diverse and challenging spike train classification benchmark based on

several open-access neuronal activity datasets. This benchmark incorporates firing

activity from different brain regions of different animals (retina, prefrontal cortex,

motor and visual cortices) and comprises distinct task types such as visual stimulus

type classification, animal’s behavioral state prediction from individual spike trains

and interneuron subtype recognition from firing patterns. All of these tasks are

formulated as univariate time-series classification problems, that is, one needs to

predict the target category based on an individual spike train recorded from a single

neuron. The formulation of the classification problems implies that the predicted

25



category is stationary across the duration of the given spike train sample.

Our main contributions can be summarized as follows:

• We propose a diverse spike train classification benchmark based on open-access

data.

• We show that global information such as the animal’s behavioral state or

stimulus type can be decoded (with high accuracy) from single-neuron spike

trains containing several tens of interspike intervals.

• We show that inter-spike interval encoding of spike trains in general contains

more information predictive of neural circuit state and the cell properties com-

pared to the spike count encoding and, consequently, the firing rate time-series

• We establish a strong baseline for spike train classification based on hand-

crafted time-series feature engineering that performs on par state-of-the-art

with deep learning models.

• We demonstrate that highly compressed representations of neuronal spike

trains with as few as 2 bits per inter-spike interval could be used to decode

relevant information about stimuli or animal state.

Well-established machine learning techniques such as gradient boosted decision

tree ensembles and recurrent neural networks have been successfully applied both

to neural activity decoding (predicting stimuli/action from spiking activity) Glaser

et al. [2020] as well as neural encoding (predicting neural activity from stimuli)

Benjamin et al. [2018]. Neural decoding tasks are often formulated as regression

problems, whereas binned spiking count time-series of a single fixed neural popula-

tion are used to predict the animal’s position or velocity in time.

A number of previous studies on feature vector representations of spike trains also

focused on defining a spike train distance metric Tezuka [2018] for identification of

neuronal assemblies Humphries [2011]. Several different definitions of the spike train

distance exist such as van Rossum distance Rossum [2001], Victor-Purpura distance

Victor and Purpura [1997], SPIKE- and ISI- synchronization distances Mulansky
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and Kreuz [2016] (for a thorough list of existing spike train distance metrics see

Tezuka [2018]). These distance metrics were used to perform spike train clustering

and classification based on the k-Nearest-Neighbors approach Tezuka [2015]. Jouty

et al. Jouty et al. [2018] employed ISI and SPIKE distance measures to perform

clustering of retinal ganglion cells based on their firing responses to a given stimulus.

In addition to characterization with spike train distance metrics, some previous

works relied on certain statistics of spike trains to differentiate between cell types.

Charlesworth et al. Charlesworth et al. [2015] calculated basic statistics of multi-

neuronal activity from cortical and hippocampal cultures and were able to perform

clustering and classification of activity between these culture types. Li et al. Li

et al. [2015] used two general features of the interspike interval (ISI) distribution to

perform clustering analysis to identify neuron subtypes. Such approaches represent

neural activity (single or multi-neuron spiking patterns) in a low-dimensional feature

space where the hand-crafted features are defined to address specific problems and

might not provide an optimal feature representation of spiking activity data for a

general decoding problem. Finally, not only spike timing information can be used

to characterize neurons in a supervised classification task. Jia et al. Jia et al. [2018]

used waveform features of extracellularly recorded action potentials to classify them

by brain region of origin.

The aforementioned works were aimed at, to some extent or another, trying

to decode properties of neurons or stimuli given recorded spiking data. In some

of the cases the datasets used were not released to be openly available, in some

of the cases the predictive models used constituted quite simple baselines for the

underlying decoding/cell identification tasks. In this work, we aim to propose a

benchmark base on open-access datasets that is diverse and challenging enough to

robustly demonstrate gains of advanced time-series machine learning approches as

compared to some of the simple baselines used in previous works. We release the

code allowing to reproduce the reported results1.
1https://github.com/lzrvch/pyspikelib
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2.2 Materials and methods

2.2.1 Overview of time series classification methods

We applied general time series feature representation methods Bagnall et al. [2017]

for classification of neuronal spike train data. Most approaches in time series classi-

fication are focused on transforming the raw time series data into an effective feature

space representation before training and applying a machine learning classification

model. Here we give a brief overview of state-of-the-art approaches one could uti-

lize in order to transform time series data into a feature vector representation for

efficient neural activity classification.

Neighbor-based models with time series distance measures

A strong baseline algorithm for time series classification is k-nearest-neighbors (kNN)

with a suitable time series distance metric such as the Dynamic Time Warping

(DTW) measure or the edit distance (ED) Bagnall et al. [2017]. In this work,

we evaluated performance of nearest-neighbor models for generic distance measures

such as 𝑙𝑝 and DTW distance, converting spike trains to the interspike-interval (ISI)

time-series representation prior to calculating the spike-train distances. Some of the

distance metrics we also used for evaluation are essentially distribution similarity

measures (e.g. Kolmogorov-Smirnov distance, Earth mover’s distance) which allow

comparing ISI value distributions within spike trains. Such a spike train distance

definition would only use the information about the ISI distribution in the spike

train, but not about its temporal structure. Alternatively, one can keep the original

event-based representation of the spike train and compute the spike train similarity

metrics such as van Rossum or Victor-Purpura distances or ISI/SPIKE distances

Tezuka [2018].

The choice of the distance metric determines which features of the time series

are considered as important. Instead of defining a complex distance metric, one can

explicitly transform time series into a feature space by calculating various properties

of the series that might be important (e.g. mean, variance). After assigning appro-

priate weights to each feature one can use kNN with any standard distance metric.
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Moreover, such a representation allows the application of any state-of-the-art ma-

chine learning classification algorithm beyond kNN to obtain better classification

results. In the following, we discuss approaches using various feature space repre-

sentations available for time series data.

Models using hand-crafted time series features

One of the useful and intuitive approaches in time series classification is focused on

manually calculating a set of descriptive features for each time series (e.g. their basic

statistics, spectral properties, other measures used in signal processing and so on)

and using these feature sets as vectors describing each sample series. There exist

approaches which enable automated calculation of a large number of time series

features which may be typically considered in different application domains. Such

approaches include automated time series phenotyping implemented in the hctsa

MATLAB package Fulcher and Jones [2017] and automated feature extraction in

the tsfresh Python package Christ et al. [2018]. Here we utilize the tsfresh package

which enables calculation of 779 descriptive time series features for each spike train,

ranging from Fourier and wavelet expansion coefficients to coefficients of a fitted

autoregressive process.

Once each time series (spike train) is represented as a feature vector, the spiking

activity dataset has the standard form of a matrix with size [𝑛samples, 𝑛features] rather

than the raw dataset with shape [𝑛samples, 𝑛timestamps]. This standardized dataset

can be then used as an input to any machine learning algorithm such as logistic

regression or gradient boosted trees Friedman [2001]. We found this approach to set

a strong baseline for all of the classification tasks we considered.

Quantization/bag-of-patterns transforms

Some state-of-the-art algorithms in general time series classification use text mining

techniques and thus transform time series into bags-of-words (patterns). This is

typically done the following way. First, a time series of real numbers is transformed

into a sequence of letters. One of the methods to perform this transform is Symbolic

Aggregate approXimation (SAX) Lin et al. [2007]. In SAX, bins are computed for

30



each time series using gaussian or empirical quantiles. After that, each datapoint

in the series is replaced by the bin it is in (a letter). Another algorithm commonly

used for this task is Multiple Coefficient Binning (MCB). The idea is very similar to

SAX and the difference is that the quantization is applied at each timestamp. The

third algorithm for the series-letter transform is Symbolic Fourier Approximation

(SFA) Schäfer and Högqvist [2012]. It performs a discrete Fourier transform (DFT)

and then applies MCB, i.e. MCB is applied to the selected Fourier coefficients of

each time series. Once the time series is transformed into a sequence of letters,

a sliding window of fixed size can be applied to define and detect words (letter

patterns) in the sequence. After that, the bag-of-words (BOW) representation can

be constructed whereby each "sentence" (time series) turns into a vector of word

occurrence frequencies.

Several feature generation approaches were developed utilizing the BOW rep-

resentation of time series data. One such method is Bag-of-SFA Symbols (BOSS)

Schäfer [2015]. According to the BOSS algorithm, each time series is first trans-

formed into a bag of words using SFA and BOW. Features that are created after

this transformation are determined by word occurrence frequencies.

Some classification algorithms which use this bag-of-patterns approach represent

whole classes of samples with a set of features. One example of such a method is an

algorithm called SAX-VSM Senin and Malinchik [2013]. The outline of this algo-

rithm is to first transform raw time series into bags of words using SAX and BOW,

then merge, for each class label, all bags of words for this class label into a sin-

gle class-wise bag of words, and finally compute term-frequency-inverse-document-

frequency statistic (tf-idf) Sparck Jones [1972] for each bag of words. This leads to a

tf-idf vector for each class label. To predict an unlabeled time series, this time series

is first transformed into a term frequency vector, then the predicted label is the one

giving the highest cosine similarity among the tf-idf vectors learned in the training

phase (nearest neighbor classification with tf-idf features). A very similar approach

is Bag-of-SFA Symbols in Vector Space (BOSSVS) Schäfer [2016] which is equiva-

lent to SAX-VSM, but words are created using SFA rather than SAX. The choice of

SAX/MCB or SFA representation of the time series depends on the task at hand –
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in particular, SFA would work best if spectral characteristics of the time series are

important for classification, while SAX/MCB would be efficient for describing the

temporal structure (e.g. reoccurring patterns) of the series.

These time series representation methods are implemented in the pyts Python

package Faouzi [2018], which was used in the present work. Whenever we apply

BOSSVS and SAX-VSM algorithms to classify neural activity, we make use of the

ISI representation of the corresponding spike trains.

Image representation of time series

Several methods to represent time series as images (matrices with spatial structure)

were developed and utilized for classification as well. One such image representation

method is called the recurrence plot Eckmann et al. [1987]. It transforms a time

series into a matrix where each value corresponds to the distance between two tra-

jectories (a trajectory is a sub time series, i.e. a subsequence of back-to-back values

of a time series). The obtained matrix can then be binarized using some threshold

value.

Another method of time series image representation is called Gramian Angular

Field (GAF) Wang and Oates [2015]. According to GAF, a time series is first

represented as polar coordinates. Then the time series can be transformed into

a Gramian Angular Summation Field (GASF) when the cosine of the sum of the

angular coordinates is computed or a Gramian Angular Difference Field (GADF)

when the sine of the difference of the angular coordinates is computed.

Yet another image representation method is the Markov Transition Field (MTF).

The outline of the algorithm is to first quantize a time series using SAX, then to

compute the Markov transition matrix (the quantized time series is treated as a

Markov chain) and finally to compute the Markov transition field from the transition

matrix. These image representations can be effectively used in junction with effective

deep learning models for image classification (e.g. various available architectures of

convolutional neural nets Wang and Oates [2015], LeCun et al. [2015]).
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Deep learning models

Lastly, there are deep learning based approaches working well for time-series classi-

fication Fawaz et al. [2019] such as deep recurrent networks like LSTMs and GRUs

Karim et al. [2017] and 1D convolutional neural networks (1D-CNNs) Zhao et al.

[2017], Fawaz et al. [2020]. While rather generic model architectures have been

typically applied to neural decoding tasks Glaser et al. [2020], there exist models

specifically designed for time-series classification and regression tasks, like Incep-

tionTime Fawaz et al. [2020], achieving state-of-the-art results on benchmarks like

the UCR Time Series Classification Archive Dau et al. [2019]. Recent developments

in deep learning model for time series also include the Time Series Transformer

Zerveas et al. [2020] and convolutional architectures like the Omniscale-CNN Tang

et al. [2020]. Perhaps surprisingly, we found that deep learning models could not

significantly outperform the baseline with hand-crafted time series features on the

spike train classification tasks, oftentimes performing worse than the baseline.

Ensembling: the best of all worlds

All model types listed in the above subsections (e.g. neighbor-based models, mod-

els based on hand-crafted features, bag-of-patterns classifiers) are different in their

underlying feature representation of the time series and the kind of information

they extract from these features. To attain better prediction performance, all these

models may be effectively combined in an ensemble of models using model stack-

ing/blending Džeroski and Ženko [2004] to improve classification results.

2.2.2 The proposed spike train classification benchmark

We propose a spike train classification benchmark comprising of several different

open-access dataset and distinct classification tasks. The datasets used for the

benchmark are as follows:

• Retinal ganglion cell stimulus type classification based on the pub-

lished dataset Prentice et al. [2016], Loback [2016]: Spike time data from

multi-electrode array recordings of salamander retinal ganglion cells under four
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stimulus conditions: a white noise checkerboard, a repeated natural movie, a

non-repeated natural movie, and a bar exhibiting random one-dimensional mo-

tion. We define the 4-class classification task to predict the stimulus type given

the spike train chunk, also considering binary classification tasks for pairs of

stimuli types (e.g. "white noise checkerboard" vs. "randomly moving bar").

• WAKE/SLEEP classification based on fcx-1 dataset Watson et al. [2016a,b]

from CRCNS.orgTeeters and Sommer [2009]: Spiking activity and Local-Field

Potential (LFP) signals recorded extracellularly from frontal cortices of male

Long Evans rats during wake and sleep states without any particular behav-

ior, task or stimulus. Around 1100 units (neurons) were recorded, 120 of

which are putative inhibitory cells and the rest is putative excitatory cells.

Figure 4-8 shows several examples of spiking activity recordings that can be

extracted from the fcx-1 dataset. The authors classified cells into an inhibitory

or excitatory class based on the action potential waveform (action potential

width and peak time). Sleep states (SLEEP activity class) were labelled semi-

automatically based on extracted LFP and electromyogram features, and the

non-sleep state was labelled as the WAKE activity class. We define the binary

classification task as the prediction of WAKE or SLEEP animal state given a

spike train chunk recorded from a putative excitatory cell.

• Interneuron subtype classification task based on the Allen Cell Types

dataset All: Whole cell patch clamp recordings of membrane potential in neu-

rons of different types. We selected the PV, VIP and SST interneurons from

the whole dataset, as these interneuron groups comprise the majority of in-

hibitory cells in the prefrontal cortex Rudy et al. [2011]. We selected the spike

trains recorded under the naturalistic noise stimulation protocol (as a proxy for

the in vivo spontaneous activity in these cells). The non-trivial prediction task

is defined for VIP vs. SST spike train classification, since the PV interneuron

spike trains can be easily distinguished from the other interneuron types. The

latter is due to a significantly higher firing frequency in PV interneurons that

we found in the Allen Cell Types dataset.
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• Unsupervised temporal structure recognition task. We defined a set

of spike train classification tasks constructed in a self-supervised manner Jing

and Tian [2020]. In such tasks, we take any set of (unlabelled) neuronal spike

train recordings and generate a additional set of spike trains by applying a

given transformation to the original data. The target classification task is to

determine whether a given spike train chunk belongs to the original dataset

or to the transformed one. Note that this task can be constructed for any

spiking dataset without the need for the ground truth labels, i.e. in an unsu-

pervised way. The spike train transformations we consider here are (i) adding

spike timing jitter via, in particular, timing noise following a truncated nor-

mal distribution, (ii) random shuffling of the interspike intervals in the spike

train, (iii) reversing the spike train. The models trained in such tasks learn to

detect the temporal structure of the original spike trains, since the order/pre-

cise values of interspike intervals have been disrupted by the transformation

(e.g. by ISI shuffling), while the ISI value distribution is preserved by some

of the transformations (e.g. by the shuffling and reversal operations). The

final trained model accuracy in a shuffled vs. non-shuffled spike train clas-

sification task can thus be thought of as a measure of temporal structure in

the original spiking dataset (test set accuracy would be on the chance level

if the ISI values in the original spike trains were independently sampled from

a fixed value distribution, i.e. the exact ordering of the ISIs did not contain

any predictive information). We consider the the fcx-1 and retinal ganglion

cell datasets described above to construct the temporal structure recognition

tasks.

2.2.3 Cross-validation scheme and data preprocessing

Suppose we are given a dataset containing data from several mice each recorded

multiple times with a large number of neurons captured in each recording. For

each recorded neuron, we have a corresponding spike train captured over a certain

period of time (assuming that the preprocessing steps like spike sorting or spiking

time inference from fluorescence traces were performed beforehand). The number of
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spikes within each spike-train is going to be variable. A natural way to standardize

the length of spike-train sequences would be dividing the full spike train into chunks

of 𝑁size spike times, where 𝑁size is fixed for each chunk. The chunks can be can be

produced by moving a sliding window across the spike-timing-vector. Thus, each

neuron would contribute a different number of spike-timing-chunks depending on

its average firing rate. This sliding window procedure can be applied to both the

sequences of inter-spike intervals (ISIs) and time-binned spike count time series. We

empirically investigate the advantages of using either ISI-encoding or spike-count

encoding of spike trains further in this work.

The cross-validation strategy we use in this work is based on group splits,

whereby we determine the split into the training and the testing datasets based

on neuron/animal identifiers available in the original data. The motivation is that,

in cases recordings from several animals and corresponding animal identifiers are

available, the set of animals used to construct the training dataset and the set

of animals for the testing dataset should not overlap in order to test whether the

trained decoding models could generalize across different animals. In case animal

identifiers are not available, we split the dataset into training and testing based

on non-overlapping neuron identifiers in train and test. We perform several ran-

dom train/test splits for all datasets based on animal/neuron groups to evaluate the

variance of classification metrics across splits.

The metrics we use to evaluate model performance in classification tasks is ac-

curacy and AUC-ROC. The testing datasets are balanced by undersampling to mit-

igate the influence of class imbalance on the ranking properties of accuracy and

AUC-ROC metrics. Since the class distribution in the testing datasets is balanced

by construction, the values of these metrics reflect the real classification performance

of the trained models relative to the chance level of 0.5.

The base task we consider for all benchmark datasets is classification given an

individual spike train. However, prediction performance can be improved by aggre-

gating predictions from several spike trains (in case such data is available) or from

several sub-sequences of a single large spike train. If the final classification in such

a setting is done by majority voting from all single spike-train predictions and we
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Figure 2-2 – Spike train classification accuracy values for the retinal neuron activity
dataset for nearest-neighbor models with different distance metrics . The task is
defined as binary classification of the stimulus type ("white noise checkerboard" or
"randomly moving bar"), with the test set balanced in class distribution (that is,
accuracy=0.5 corresponds to chance level).

assume that recorded spike-trains (neurons) are randomly sampled from the whole

ensemble, the optimistic estimate for accuracy improvement with the number of

spike trains (neurons) 𝑁trains would be

𝜇 =

𝑁trains∑︁
𝑖=𝑚

𝐶𝑖
𝑁trains

𝑝𝑖(1− 𝑝)𝑁trains−𝑖 (2.1)

where 𝜇 is the probability that the majority vote prediction is correct, 𝑝 is the prob-

ability of a single classifier prediction being correct (single spike train prediction

accuracy), 𝑁𝑡𝑟𝑎𝑖𝑛𝑠 is the number of predictions made, 𝑚 = [𝑁𝑡𝑟𝑎𝑖𝑛𝑠/2] + 1 is the

minimal majority of votes. We found that the empirical values of accuracy improve-

ment are close to the optimistic analytical estimate (2.1) in both cases when the

spike train chunks are sampled from different neurons and from a large spike train

of a single neuron (see Fig. 2-6).
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2.3 Results

2.3.1 Visual stimulus type classification from retinal spike

trains

We first start with looking the at the retinal ganglion cell spike train classification

task. Recorded spike trains in the dataset are associated with one of the four cat-

egories corresponding to different visual stimulus types, labelled with "white noise

checkerboard", "randomly moving bar", "repeated natural movie" and "unique nat-

ural movie". The classification task is, given a chunk of the spike train recording,

predict the corresponding stimulus type category. The number of neurons in the

dataset belonging to each category is 155, 140, 178, 152, respectively. The number

of interspike intervals is quite variable among individual cells (due to firing rate vari-

ability) ranging from 100 ISIs per recording to as much as 60000 ISIs per recording.

We focus on the binary classification task aimed at predicting one of the two

types of stimuli: "randomly moving bar" or "white noise checkerboard". We select

recorded spike trains corresponding to those stimuli types and split 50% of recorded

neurons for the training part of the dataset and the remaining 50% for the testing

dataset. We encode spike trains using the ISI representation and apply a rolling

window of size equal to 200 ISIs with a stride of 100 ISIs to each recorded neuron.

We then perform undersampling to make the class distribution balanced and arrive

at a dataset of 5188 training and 5272 testing examples (each containing 200 spikes),

with an equal amount of spike-trains corresponding to both stimuli types in the

training and testing datasets.

2.3.2 Nearest-neighbor models for spike train classification

We evaluated performance of nearest-neighbor models with different distance metrics

on the retinal stimulus classification task, results are shown on Figure 2-2. We

found that the nearest neighbor model with the DTW distance is amongst the

best performing ones, but is still outperformed by nearest-neighbor models with

Kolmogorov-Smirnov and Earth Mover’s distances, suggesting that differences in ISI
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distributions contain discriminative information helpful for the classification task.
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Figure 2-3 – (Caption next page.)
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Figure 2-3 – (Previous page.) Spike train classification metric values for the retinal
neuron activity dataset on a range of models. The task is defined as binary classifi-
cation of the stimulus type ("white noise checkerboard" or "randomly moving bar"),
with the test set balanced in class distribution (that is, accuracy=0.5 corresponds
to chance level). Accuracy is shown on the left and AUC-ROC on the right for the
same set of models and train/test dataset splits. The "simple" model tag corre-
sponds to spike trains encoded with 6 basic distribution statistics (representing a
simple baseline), the "raw ISI" tag implies that the model has been directly trained
on ISI time-series data without encoding. The "tsfresh" tag corresponds to encoding
with the full set of time-series features. "ISIe" stands for interspike-interval encod-
ing of the spike train, "SCe" stands for spike-count encoding. "ISIe + SPe" means
that feature vectors corresponding to both types of encoding are concatenated.

2.3.3 Hand-crafted feature extraction for time-series classifi-

cation

The kNN results clearly suggest that characteristics of the interspike-interval distri-

bution of the given spike train are predictive of the category label in our classification

task. At the same time, one would expect the the temporal (sequential) information

contained in the spike train also has certain predictive power. A straightforward

way to incorporate both types of features in the model is to build a corresponding

vector embedding of the spike train time-series. An efficient way to do so is to use

a set of hand-crafted time-series features, like for example the set of 779 features

provided in the tsfresh Python package. In order to compute vector embeddings for

the spike trains in the training and testing datasets, one has to convert spike times

into a time-series, which in principle could be done using either an interspike-interval

encoding (the time-series is the sequence of ISIs) or a spike-count encoding (time is

binned and spike counts in each time bin comprise the time series). The latter type

of encoding depends on an additional hyperparameter which is the size of the time

bin while ISI-encoding is parameter-free. We tested both types of spike-train encod-

ing for our task and observed that on average models trained using the ISI-encoding

of spikes perform better than the ones using binned spike counts. Furthermore, we

found that combining features corresponding to both encoding types leads to better

performance compared to using a single encoding scheme (see Figure 2-3).

For each spike-train encoding type, we computed the 779-dimensional tsfresh
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Figure 2-4 – Spike train classification metric values for the WAKE/SLEEP state
prediction dataset (left) and VIP/SST interneuron type prediction dataset (right)
on a range of models. The task is defined as binary classification, with the test
set balanced in class distribution for both datasets (that is, accuracy=0.5 corre-
sponds to chance level). Accuracy is shown on the top panes and AUC-ROC on
the bottom panes for the same set of models and train/test dataset splits. The
"simple" model tag corresponds to spike trains encoded with 6 basic distribution
statistics (representing a simple baseline), the "raw ISI" tag implies that the model
has been directly trained on ISI time-series data without encoding. The "tsfresh"
tag corresponds to encoding with the full set of time-series features. "ISIe" stands
for interspike-interval encoding of the spike train, "SCe" stands for spike-count en-
coding. "ISIe + SCe" means that feature vectors corresponding to both types of
encoding are concatenated.
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Retinal stimulus
(white noise vs.
moving bar)

fcx-1
WAKE/SLEEP
state prediction

Allen Cell Types
SST/VIP INs

Logistic regression
on basic ISI statis-
tics

76.49 ± 0.78 69.83 ± 0.82 55.57 ± 1.63

GBDT on unpro-
cessed ("raw") ISI
time-series

82.58 ± 0.47 68.30 ± 0.51 53.27 ± 1.74

Logistic regression
on tsfresh-encoded
ISI time-series

82.96 ± 0.32 71.44 ± 0.45 67.05 ± 1.89

Random forest on
tsfresh-encoded
ISI time-series

88.69 ± 0.48 72.31 ± 0.60 67.95 ± 2.21

GBDT on tsfresh-
encoded ISI time-
series

88.99 ± 0.47 71.84 ± 0.60 66.55 ± 2.11

Random forest on
tsfresh-encoded
ISI + spike count
time-series

89.70 ± 0.62 73.74 ± 0.75 68.27 ± 2.29

1D-CNN on un-
processed ("raw")
ISI time-series

61.57 ± 2.33 71.88 ± 1.58 57.13 ± 1.87

InceptionTime
on unprocessed
("raw") ISI time-
series

73.60 ± 1.34 72.35 ± 1.31 60.08 ± 2.10

Omniscale-CNN
on unprocessed
("raw") ISI time-
series

71.34 ± 2.91 68.10 ± 0.19 62.05 ± 2.23

LSTM-FCN
on unprocessed
("raw") ISI time-
series

65.12 ± 3.65 64.12 ± 2.42 54.14 ± 3.63

Table 2.1 – Test set accuracy values for different spike train classification models
over the three tasks proposed in the benchmark.

time-series embeddings independently for each sample in the training and testing

datasets (no statistic aggregation across samples is performed). We then performed

simple pre-processing steps by (i) removing low-variance features from the embed-
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ding (features 𝑓 satisfying std(𝑓)/(mean(𝑓) + 𝜀) < 𝜃 with 𝜃 = 0.2 and 𝜀 = 10−9

were removed) and (ii) performing standard scaling for each feature using mean and

variance statistics collected over the training dataset. Note that since the number of

spikes in each data sample is fixed and interspike intervals are highly variable, the

number of time bins also becomes variable from sample to sample. The tsfresh em-

beddings can nevertheless be computed since they are applicable to variable-length

time series.

We then trained classification models on the resulting spike-train vector embed-

dings. We chose a representative set of models comprising (i) a linear model, namely

logistic regression with an 𝑙2 penalty and (ii) various types of tree-based ensembles: a

random forest classifier, randomized decision trees (extra trees), a gradient boosted

decision tree ensemble. The classifier hyperparameter values used are specified in

the Supplementary Materials.

Classification results obtained with the described approach are presented in Fig-

ure 2-3. We report classification accuracy and AUC-ROC values for each model

type; note that the testing sets were constructed to be balanced such that the accu-

racy value of 0.5 corresponded to chance level. We generated 10 random balanced

subsamples of the training and testing sets (80% of training/testing data randomly

sampled) to estimate accuracy/AUC-ROC distributions presented via boxplots in

Figure 2-3. We were able to reach significant performance levels (> 0.9 accuracy,

> 0.96 AUC-ROC) with our best tsfresh-based models on the binary stimulus clas-

sification task ("randomly moving bar" vs. "white noise checkerboard"). To make

better sense of these metric values, we compared our tsfresh-based models against

two simple baselines: (a) a logistic regression model on ISI-encoded spike-trains

represented by 6 basic statistical features – the mean, median, minimum and maxi-

mum ISI values, the standard deviation and the absolute energy of the ISI-sequence

(the mean of squared ISI values) and (ii) a gradient-boosted decision tree ensemble

trained directly on unprocessed ISI-encoded spike trains.

We found that the worst performing model was logistic regression trained on 6

basic statistical features of the ISI distribution, reaching the median test set accu-

racy of 0.7649 and AUC-ROC of 0.8741. We further demonstrated that one could
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significantly improve upon those results by training a strong model directly on the

unprocessed ISI-encoded samples, with a GBDT model reaching 82.63 median test

set accuracy and 0.9030 median AUC-ROC (see Figure 2-3 and Table 2.1). We found

that using tsfresh embeddings significantly improves upon that, with a GBDT model

reaching lower metric values for spike-count-encoded spike trains (85.97 median ac-

curacy; 94.13 median AUC-ROC) compared to ISI-encoded spike trains (89.05 me-

dian accuracy; 95.97 median AUC-ROC for the GBDT classifier). Furthermore,

merging tsfresh features calculated for both encoding types and training a classifier

on the extended set of features increased the test accuracy to 89.77 (with median

AUC-ROC of 96.46) for the GBDT classifier.

We also evaluated the performance of state-of-the-art deep learning models in

our retinal stimulus classification tasks, using implementation from sktime-dl Löning

et al. [2019] and tsai Oguiza [2020]. Accuracy results for a range of deep learning

models (1D-CNN, InceptionTime, LSTM-FCN and Omniscale-CNN) are shown in

Table 2.1. It is clear that models using tsfresh-encodings typically perform better

deep learning models in terms of classification accuracy on the retinal stimulus

classification task as well as the other tasks we establish.

We performed the same preprocessing steps for the WAKE/SLEEP and VIP/SST

datasets as for the retinal stimulus classification dataset. The rolling window of size

equal to 200 ISIs and a stride of 100 ISIs together with undersampling for class

balance produced a dataset of 19786 training examples and 5540 testing examples

(according to a 70/30 train/test split) for the WAKE/SLEEP state dataset. A

rolling window of size equal to 50 ISIs and a stride of 20 ISIs with undersampling

was applied to the VIP/SST dataset, resulting in 1630 training and 872 testing

examples.

We observed similar trends both for the WAKE/SLEEP state and VIP/SST

interneuron classification tasks, shown in Figure 2-4 and Table 2.1. The best per-

forming models were found to be tsfresh-based ones using the combined ISI and

spike count encodings of the underlying spike trains.
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Figure 2-5 – Spike train feature embeddings for WAKE (points marked red) vs.
SLEEP (points marked blue) activity states of the neural circuit. Two-dimensional
embeddings of the (20-dimensional) selected-tsfresh-feature space using (A) unsu-
pervised UMAP and (B) supervised UMAP embedding algorithms for spike trains
corresponding to WAKE vs. SLEEP activity states.

2.3.4 Prediction accuracy from quantized spike trains

One might hypothesize that the information contained in the spike trains that is

learned by the classifiers is not contained in the fine-grained timing of the spikes,

but instead, the precise spike timing information might not be relevant for a clas-

sification task at hand, for instance for the stimulus type decoding. We tested this

hypothesis by limiting the set of possible values in the ISI sequences by applying

vector quantization to the spike trains. We first applied a log transformation the ISI

representations of spike trains to get rid of the heavy tail in the value distributions,

and then performed vector quantization using the k-means algorithm to determine

the quantization centroids. After this, we applied the tsfresh feature extraction

pipeline to the quantized ISI sequences and trained a Random Forest model on top

of this vectorized feature-based representation. The results for the retinal spike train

stimulus classification task (moving bar vs. random checkerboard stimuli) and the

fcx-1 WAKE/SLEEP state classifcation task are shown in Tables 2.2 and 2.3, respec-

tively. Interestingly, the accuracy and AUC-ROC scores do not significantly drop

when the spike trains are quantized down to 2 bits, with the best performing models

(with the same hyperparameter values) corresponding to 3-5 bits and even beating
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the non-quantized baseline for both tasks. The accuracy scores drop significantly

for 1 bit quantization even compared to the model trained on the 6 basic statistics

of the non-quantized spike trains, which implies that the distortion introduced to

the ISI value distribution by 1-bit quantization is too large compared for instance

to quantization with 3 possible value levels. Overall, these results suggest that the

information needed to decode the stimulus type or a global animal state contained

in the spike trains (to the extent it is extracted by the tsfresh+RF model) is robust

to extreme low-bitwidth quantization and can be extracted from symbolic represen-

tations of spike trains with as few as 3 or 4 possible characters (corresponding to 2

bit quantization).

Number of quantization bits Test set accuracy Test set AUC-ROC
No quantization 0.844404 ± 0.005098 0.931788 ± 0.003469
No quantization (basic stats.) 0.762265 ± 0.011024 0.858245 ± 0.010463
8 0.849228 ± 0.004748 0.959834 ± 0.002477
7 0.845782 ± 0.003613 0.958322 ± 0.002888
6 0.847712 ± 0.003883 0.958819 ± 0.002691
5 0.846747 ± 0.004296 0.962793 ± 0.001982
4 0.843026 ± 0.005474 0.958753 ± 0.004400
3 0.855016 ± 0.004360 0.952253 ± 0.003331
2 0.830485 ± 0.004602 0.943829 ± 0.003635
3 quantization levels 0.849641 ± 0.004377 0.924570 ± 0.001955
1 0.624586 ± 0.007284 0.713986 ± 0.007230

Table 2.2 – Test set accuracy and AUC-ROC scores in the retinal spike train stim-
ulus classification task (moving bar vs. random checkerboard stimuli) achieved on
quantized ISI sequences with a tsfresh + Random Forest model depending on the
number of quantization bits. Median value ± standard deviation is shown.

2.3.5 Unsupervised spike train temporal structure recogni-

tion

The spike train temporal structure recognition task is defined as follows: for a set of

spike train activity data, we generate a binary classification task by producing an ad-

ditional category of spiking data consisting of spike trains from the original dataset

with a certain transformation applied to them. We consider the following spike train

transformations: (i) ISI shuffling inside the spike train (random shuffling applied to
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Number of quantization bits Test set accuracy Test set AUC-ROC
No quantization 0.722526 ± 0.004966 0.796485 ± 0.004133
No quantization (basic stats.) 0.687829 ± 0.002994 0.757096 ± 0.004226
8 0.752161 ± 0.004693 0.809916 ± 0.003708
7 0.753322 ± 0.003422 0.808470 ± 0.003674
6 0.751740 ± 0.003929 0.807201 ± 0.006228
5 0.751001 ± 0.005085 0.803855 ± 0.006503
4 0.754798 ± 0.006267 0.809998 ± 0.007574
3 0.741615 ± 0.005924 0.803788 ± 0.007489
2 0.750896 ± 0.004535 0.803850 ± 0.005467
3 quantization levels 0.730436 ± 0.006422 0.782436 ± 0.006388
1 0.540392 ± 0.005679 0.551334 ± 0.009612

Table 2.3 – Test set accuracy and AUC-ROC scores in the fcx1 WAKE/SLEEP state
classfication achieved on quantized ISI sequences with a tsfresh + Random Forest
model depending on the number of quantization bits. Median value ± standard
deviation is shown.

the ISI time series), (ii) reversing the ISI time series and (iii) adding spike timing

jitter sampled from the truncated normal distribution to the time series. Note that

the first two transformation types do not change the value distribution of the time

series, only its temporal structure (the exact ordering of the interspike intervals of

the spike train). Hence, if it is possible to construct a classification model capable

of distinguishing between the two activity classes (original spiking activity versus

the transformed one), then one could say that the model has learned to detect the

temporal structure in the time series. In the case of classifiers trained on tsfresh

feature vectors, the classification accuracy metrics obtained can be thought of as

measures of the amount of temporal structure contained in the spike trains (to the

extent encoded in tsfresh features). In case of the ISI shuffling transformation, if the

spiking is described by a Poisson model Kass and Ventura [2001], or ISIs are in gen-

eral sampled from a stationary probability distribution, the classification accuracy

in this task would be on the chance level, otherwise in case there is a dependence of a

given inter-spike interval on the previous spiking history the classification accuracy

value would be significantly higher compared to the chance level.

The classification results for different base spiking data and different transforms

is shown in Table 5.1. Notably, one could observe higher accuracy values for the
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retinal ganglion cell spiking data in case of "structured" inputs (i.e. moving bar or

natural movie) as compared to the white noise input for all of the three transforms

considered. The same difference in accuracy values is observed for the fcx-1 dataset

whereby classification accuracy is higher for all of the three transforms when the

SLEEP state is used as the base spiking dataset as opposed to the WAKE state.

The accuracy values that we observe are above the chance level in most cases except

for, interestingly, the reverse transform for the WAKE spiking data. Time reversal

appeared to be a strong invariant for the WAKE state spiking activity, since we

could not achieve a significant level of accuracy in that classification tasks neither

with tsfresh-based feature encodings, nor by training deep neural networks on this

task.

Reverse transform Shuffling transform Noise transform
Retinal gan-
glion cells
(randomly
moving bar
input)

0.7469471 ± 0.002794 0.80608 ± 0.00297 0.77501 ± 0.00298

Retinal gan-
glion cells
(white noise
checker-
board input)

0.696856 ± 0.007963 0.77845 ± 0.00423 0.77859 ± 0.004575

fcx-1 WAKE
spike trains

0.52777 ± 0.00644 0.82476 ± 0.00441 0.80936 ± 0.00433

fcx-1 SLEEP
spike trains

0.65619 ± 0.002426 0.83085 ± 0.00211 0.84983 ± 0.00178

Table 2.4 – Test set accuracy values for the unsupervised temporal structure recog-
nition tasks for different base spiking datasets and different transforms.

2.3.6 The set of predictive spike train features

Being able to estimate feature importance ranks from trained decision tree ensembles

allows us to detect the most discriminating features of ISI time-series for a particular

classification problem. In order to select the important groups of discriminative

features, we applied the following procedure to the full set of tsfresh features: first,

we trained 10 logistic regression models with 𝑙1 regularization penalty (with different
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random seeds, 𝐶 = 0.01) on the full feature set; we then selected the features which

had non-zero values of corresponding weight coefficients in all trained models. After

that, we identified highly correlated pairs of features (|𝑅| > 0.98), which represent

almost equivalent quantities, and removed one randomly selected feature out of

each such pair. Further, we trained several random forest classifier models (with

different random seeds) and calculated the aggregated feature importance ranks

across models to select groups of features relevant for the classification task. After

merging important feature sets corresponding to all of the three classification tasks,

the following groups of tsfresh features are selected (see also Fig. 2-7):

• 𝑚𝑒𝑑𝑖𝑎𝑛, 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠, 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒_𝑞 – simple statistics of the ISI value distribution

in the series like the median ISI value, 𝑞 quantiles and kurtosis of the ISI value

distribution

• 𝑐ℎ𝑎𝑛𝑔𝑒_𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑠 – this feature is calculated by fixing a corridor of the time

series values (defined by lower and higher quantile bounds, 𝑞𝑙 and 𝑞ℎ, which are

hyperparameters), then calculating a set of consecutive change values in the

series (differencing) and then applying an aggregation function (mean or vari-

ance). Another boolean hyperparameter 𝑖𝑠_𝑎𝑏𝑠 determines whether absolute

change values should be taken or not.

• 𝑓𝑓𝑡_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 – absolute values of the fast Fourier transform coefficients

(individual coefficient values and aggregates).

• 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 – values of the sample entropy, the approximate entropy and the

binned entropy of the power spectral density of the time series.

• 𝑎𝑔𝑔_𝑙𝑖𝑛𝑒𝑎𝑟_𝑡𝑟𝑒𝑛𝑑 – features from linear least-squares regression (standard

error in particular) for the values of the time series that were aggregated over

chunks of a certain size (with different aggregation functions like min, max,

mean and variance). Chunk sizes vary from 5 to 50 points in the series.

To visualize class separation for the WAKE vs. SLEEP state spike trains from

the fcx-1 dataset as point clouds in two dimensions, we took the top-20 importance
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tsfresh features identified during the above feature selection procedure. We then

used dimensionality reduction techniques on this reduced 20-dimensional dataset to

visualize the structure of the data with respect to excitatory/inhibitory labels of

the series. Results are shown in Fig. 2-5 for two Uniform Manifold Approximation

and Projection, UMAP McInnes et al. [2018] low-dimension embedding algorithms.

We also applied other methods such as PCA and t-SNE (t-distributed Stochastic

Neighbor Embedding) which gave essentially the same results (not shown). In all

cases, classes cannot be linearly separated in two-dimensional embedding spaces,

however, there is a separation of large fraction of the points of the excitatory-cell

and inhibitory-cell classes.

We conclude that the hand-crafted feature engineering approach combined with

strong tree-based learning models sets a strong baseline for spike train classification

for all of the tree studied tasks.

Classifier hyperparameter values.

We did not perform dataset-specific hyperparameter search, rather just using sane

settings for each of the models to see "out-of-the-box" performance for each classifier.

Listed below are hyperparameter values and implementation references for all of the

classifier types we used.

• Random Forest: sklearn implementation, 500 trees, maximal depth = 13

• Extra Trees Classifier: sklearn implementation, 500 trees, no limit on depth

• Logistic Regression: sklearn implementation, 𝑙2 penalty, 𝐶 = 0.01

• Decision Tree Gradient Boosting: xgboost implementation, max_depth = 8,

n_trees = 1000, learning_rate = 1e-1, gamma = 0, reg_lambda = 1

• 1D-CNN, InceptionTime: sktime-dl implementation, batch size = 1024, num-

ber of epochs = 2000, data was normalized before inference

• Omniscale-CNN, LSTM-FCN: tsai implementation, batch size = 1024, max-

imal learning rate = 1e-4 with a flat cosine annealing schedule, 500 epochs,

data was normalized before inference
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Figure 2-7 – Boxplots of tsfresh-extracted feature distributions for features with high
discriminative power as detected by the trained decision tree ensemble classifiers
in the retinal stimulus type prediction task. Two-sided Mann-Whitney-Wilcoxon
test with Bonferroni correction is performed to assess statistical significance; ****
denotes 𝑝 < 1𝑒− 4.
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2.4 Discussion

In this work, we have introduced a diverse neuronal spike train classification bench-

mark to evaluate neural decoding algorithms. The benchmark consists of several

single-neuron spike train prediction tasks spanning stimulus type prediction, neuron

type identification and animal behavioural state prediction. We have demonstrated

that individual neuronal spike trains contain information related to the global state

of the underlying neural circuit and this information can be decoded if appropriate

time-series learning models are used. Extensive experiments on several datasets that

we have conducted imply that not only ISI value distribution is important for global

state identification but also the temporal information contained in the spike trains,

that is, features related to the exact sequences of interspike intervals in neural firing.

We have identified groups of features highly informative for neural decoding tasks

and established that this feature encoding combined with strong supervised learning

algorithms such as gradient boosted tree ensembles establishes a strong baseline on

the proposed benchmark that performs on par with state-of-the-art deep learning

approaches. It was shown that significantly large accuracy values can be obtained

on all of the proposed tasks using the hand-crafted feature encoding approach on

single-neuron spike train chunks containing as low as 50 interpike intervals. We

suggest that accuracy values can further be improved by model ensembling and

test-time data augmentation. We propose that neural decoding models be evalu-

ated on diverse and challenging tasks including the proposed benchmark in order to

establish a sensible model performance ranking similarly to what is done for com-

puter vision and natural language understanding problems. We believe that this

would drive further development of highly accurate neural decoding/neural activ-

ity mining approaches enabling their application in precision-critical tasks such as

identifying pathological disease-related firing activity patterns in the brain.

2.5 Conclusion

To summarize our contributions, we have proposed a challenging and diverse bench-

mark for individual cell spike train classification to evaluate neural decoding models.
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We have shown that the deep learning models which tend to perform well on other

decoding tasks could not outperform a classical machine learning baseline comprised

of massive time-series feature extraction from different spike train encodings coupled

with well-performing classification approaches such as gradient boosting. We have

thus established a strong baseline for neuronal spike train classification and we hope

that this would further drive the advancement of models/architectures for neural de-

coding. Furthermore, we have shown that the firing of individual neurons contains

information about the global state of the organism as well as the information about

the neuron type that can be decoded with machine learning approaches. This ap-

proach was further generalized to the unsupervised (self-supervised) setting, which

helped reveal interesting structural properties of the spiking data we considered, in

particular the WAKE-state time-reversal invariance of the cortical activity in the

fcx-1 data set. The massive time-series feature engineering approach helped detect

groups of time-series features that have discriminative power over a set of different

tasks in our benchmark and might thus be useful in general neural decoding tasks.
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Nicotinic acetylcholine receptors (nAChRs) modulate the cholinergic drive to a

hierarchy of inhibitory neurons in the superficial layers of the PFC, critical to cog-

nitive processes. It has been shown that genetic deletions of the various types of

nAChRs impact the properties of neuronal activity in the PFC in mice during quiet

wakefulness. The impact characteristics depend on specific interneuron populations

expressing the manipulated receptor subtype. In addition, recent data indicate

that a genetic mutation of the 𝛼5 nAChR subunit, located on vasoactive intestinal

polypeptide (VIP) inhibitory neurons, the rs16969968 single nucleotide polymor-

phism (𝛼5 SNP), plays a key role in the hypofrontality observed in schizophrenia

patients carrying the SNP. Data also indicate that chronic nicotine application to

𝛼5 SNP mice reverses the hypofrontality. In this Chapter, we use a computational

model of PFC activity to show that the activity patterns recorded in the genetically

modified mice can be explained by changes in the dynamics of the local PFC cir-

cuit. Notably, the model shows that these altered PFC circuit dynamics are due to

changes in the stability structure of the activity states. We identify how this sta-

bility structure is differentially modulated by cholinergic inputs to the parvalbumin

(PV), somatostatin (SOM) or the VIP inhibitory populations. We demonstrate how

nicotine-induced desensitization and upregulation of the 𝛽2 nAChRs located on the

SOM interneurons, as opposed to the activation of 𝛼5 nAChRs located on VIP in-

terneurons, is sufficient to explain the nicotine-induced activity normalization in 𝛼5

SNP mice. We demonstrate that different parametrizations of the rate-based model

fitting the observed experimental data result in similar predictions with regard to

activity restoration in 𝛼5SNP animals under nicotine application. The model fur-

ther implies that subsequent nicotine withdrawal may exacerbate the hypofrontality

over and beyond one caused by the SNP mutation. We also use the developed rate-

based modeling approach to find parametrizations that fit the PFC activity data in

different wild-type and nAChR knock-out mice expressing the amyloid beta (A𝛽)

peptide, linked to the pathogenesis of the Alzheimer’s disease. The model predicted

a reduction in the activity of the principal neurons of the PFC in case of enhanced 𝛼5

nAChR currents, a prediction confirmed by the experimental data on galantamine

application in 𝐴𝛽-expressing mice.
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3.1 Introduction

Alteration in the resting activity of the prefrontal cortex (PFC) occurs at the very

onset of schizophrenia Barch et al. [2001]. Cortical acetylcholine (ACh) release ex-

erts strong modulation of the PFC via the metabotropic muscarinic as well as the

ionotropic nicotinic acetylcoline receptors. In this work, we focus on modelling the

role of nicotinic acetylcholine receptors (nAChRs) in structuring the PFC resting

state activity. These receptors are ligand-gated ion channels that mediate depolar-

izing current in response to ACh and nicotine. Within the layer II/III of the PFC

nAChRs are specifically expressed on a hierarchically organized circuit of inhibitory

neurons Bloem et al. [2014]. The subunit composition of these receptors determines

their properties and their specific expression targets among the interneuronal pop-

ulations. Individuals with nAChR gene variants appear to be susceptible to mental

disorders and cognitive deficits Sinkus et al. [2015], Koukouli and Changeux [2020].

Notably, a mutation of the 𝛼5 nAChR subunit, the 𝛼5 SNP, has been observed in

a subpopulation of patients with schizophrenia Maskos [2020]. This mutation has

been specifically linked to nicotine addiction and to a functional cortical deficit, hy-

pofrontality, a characteristic of schizophrenia patients Koukouli et al. [2017], Hong

et al. [2010]. Experiments in mice 𝛼5 SNP mutation show that the resting-state

PFC neural activity exhibits a reduction that is qualitatively similar to the hy-

pofrontality seen in humans. This tell-tale hypofrontality is reversed after 7 days of

chronic nicotine application Koukouli et al. [2017]. In this work we build upon these

findings and use computational modelling to support a specific hypothesis for the

generative mechanism of the hypofrontality – that such hypofrontality is generated

by a nicotinic receptor pathology in a local cortical circuit in the superficial layers of

the PFC. More specifically, our model tests the hypothesis that the 𝛼5 SNP alters

the hierarchical interneuronal inhibitory/disinhibitory layer II/III subcircuits within

this local PFC circuit.

During quiet wakefulness, neural activity in layers II/III of the mouse PFC is

characterized by synchronous ultra-slow fluctuations, with alternating periods of

high and low activity Koukouli et al. [2016a]. Genetic knock-outs (KO) of spe-
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cific nAChRs subunits were shown to disrupt these ultra-slow fluctuations, leading

to changes in duration of high and low activity states (H-states and L-states, re-

spectively). These patterns of activity are functionally significant since they may

optimize information transmission in the context of lowered metabolism, such as

quiet wakefulness, and because they could play an important role in memory con-

solidation processes Droste and Lindner [2017]. Furthermore, multi-stable dynamics

in recurrent networks have been suggested to play a crucial role in working memory

and decision-making processes Durstewitz et al. [2000], Wong and Wang [2006], as

well as in disease Koukouli et al. [2016b]. Interestingly, patterns of hypofrontality

in schizophrenia are associated with working memory deficits Carter et al. [1998],

hypothesized to be a core feature of the disease Lee and Park [2005].

Using the designed and validated local circuit computational model, we stud-

ied the modulatory role of the cholinergic inputs to the layer II/III GABAergic

interneurons, mediated by the different nAChR subtypes. Specifically we focused

on the nicotinic influence on the PFC ultra-slow fluctuations and the changes of the

neural firing rate dynamics seen in mice with altered nAChR gene function. We used

our model to examine the chronic nicotine impact on specific nAChR subunit-types

to pinpoint the principal target of nicotine-dependent restoration of neural activity

in 𝛼5 SNP mice. These modelling results may lend support to the self-medication

hypothesis for smoking in schizophrenia patients as previously suggested in Kouk-

ouli et al. [2017]. Furthermore, we used our model to predict the consequence of

nicotine withdrawal following chronic nicotine applications in 𝛼5 SNP mice. Our

model showed a significant reduction in the PFC activity for this phenotype during

nicotine withdrawal.

We also applied our modeling framework to the imaging activity data in mice ex-

pressing the amyloid beta peptide, which is known to be linked to the pathogenesis

of the the Alzheimer’s disease. The AD-like deficits in mice were elicited using an

adeno-associated viral vector expressing the human mutated amyloid precursor pro-

tein (AAV-hAPP) Koukouli et al. [2016b]. We have demonstrated experimentally

that the differential disruption of nAChR subtypes results in substantial deficits in

network activity, and found parametrizations of the rate-based neural population
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model that reproduced activity levels in different knock-out mice groups, including

the ones expressing APP. We then use different fitted parametrizations of the model

to predict the changes in pyramidal neuron population activity under different sim-

ulated nAChR manipulations. We found that a block of 𝛽2-containing nAChRs

and enhancement of 𝛼5-containing nAChRs leads to activity reduction relative to

wild-type APP animals, an effect confirmed experimentally.

3.2 Methods

3.2.1 Neural population rate model

The model describes the dynamics of the firing rates of the various neuronal pop-

ulations (𝑟𝑒, 𝑟𝑝, 𝑟𝑠, and 𝑟𝑣, for PYR, PV, SOM and VIP neurons, respectively) in

a local PFC circuit using a generalization of the Wilson-Cowan model Papasavvas

et al. [2015]. We follow the theoretical framework for dominant subtractive vs. di-

visive inhibition by the SOM and PV interneuron populations, respectively Chance

and Abbott [2000]. Following Chance and Abbott [2000], we can heuristically justify

this modelling choice, based on the relative location of the SOM and PV synapses on

the layer II/III pyramidal neurons. SOM synapses are located largely on the distal

part of the dendritic tree. They are electrotonically distant from the soma, hence

their impact on the cell’s activity is mostly subtractive (a de facto hyperpolarizing

current). The PV interneurons tend to furnish synapses peri-somatically and onto

the proximal dendritic segments, hence the synaptic conductance effects would yield

a de facto divisive inhibition (synaptic-activation dependent reduction of the input

resistance and change in the input-output pyramidal gain). See below for further

discussion.

We further implemented structured subtractive inhibitory-inhibitory connections

between SOM, VIP and PV interneuronal populations Papasavvas et al. [2015]. The

full set of equations describing the firing rate dynamics of all the populations can

be written as
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜏𝑠
𝑑𝑟𝑒
𝑑𝑡

= −𝑟𝑒 + (𝐴𝑒𝑘𝑒 (𝜔𝑝𝑒𝑟𝑝)− 𝑟𝑒)𝐹𝑒

(︁
𝜔𝑒𝑒𝑟𝑒/𝐴𝑒−(1−𝑘𝑑)𝜔𝑝𝑒𝑟𝑝/𝐴𝑝−𝜔𝑠𝑒𝑟𝑠/𝐴𝑠+𝐼𝑒𝑥𝑡−𝑒)

1+𝑘𝑑𝜔𝑝𝑒𝑟𝑝/𝐴𝑝

)︁
+ 𝜎𝑠𝜉(𝑡).

𝜏𝑠
𝑑𝑟𝑝
𝑑𝑡

= −𝑟𝑝 + (𝐴𝑝𝑘𝑝 − 𝑟𝑝)𝐹𝑝

(︁
𝜔𝑒𝑝𝑟𝑒
𝐴𝑒

− 𝜔𝑝𝑝𝑟𝑝
𝐴𝑝

− 𝜔𝑣𝑝𝑟𝑣
𝐴𝑣

+ 𝐼𝑒𝑥𝑡−𝑝

)︁
+ 𝜎𝑠𝜉(𝑡)

𝜏𝑠
𝑑𝑟𝑠
𝑑𝑡

= −𝑟𝑠 + (𝐴𝑠𝑘𝑠 − 𝑟𝑠)𝐹𝑠

(︁
𝜔𝑒𝑠𝑟𝑒
𝐴𝑒

− 𝜔𝑣𝑠𝑟𝑣
𝐴𝑣

+ 𝐼𝑒𝑥𝑡−𝑠

)︁
+ 𝜎𝑠𝜉(𝑡)

𝜏𝑠
𝑑𝑟𝑣
𝑑𝑡

= −𝑟𝑣 + (𝐴𝑣𝑘𝑣 − 𝑟𝑣)𝐹𝑣

(︁
𝜔𝑒𝑣𝑟𝑒
𝐴𝑒

− 𝜔𝑠𝑣𝑟𝑠
𝐴𝑠

+ 𝐼𝑒𝑥𝑡−𝑣

)︁
+ 𝜎𝑠𝜉(𝑡)

(3.1)

with 𝐼𝑒𝑥𝑡−𝑝 = 𝐼0−𝑝 + 𝐼𝛼7−𝑝 + 𝐼𝑎𝑑𝑎𝑝𝑡, 𝐼𝑒𝑥𝑡−𝑠 = 𝐼0−𝑠 + 𝐼𝛼7−𝑠 + 𝐼𝛽2−𝑠 and 𝐼𝑒𝑥𝑡−𝑣 =

𝐼0−𝑣+𝐼𝛼5−𝑣. 𝐼𝛼7−𝑝, 𝐼𝛼7−𝑠, 𝐼𝛽2−𝑠 and 𝐼𝛼5−𝑣 are cholinergic external currents regulated

by nAChRs. 𝐼0−𝑝, 𝐼0−𝑠 and 𝐼0−𝑣 are non-specific constant external currents. 𝐼𝑎𝑑𝑎𝑝𝑡

is the adaptation current determined by the equation 2 below.

We set 𝜏𝑠 = 20 ms, close to each population type’s membrane time constant

Pfeffer et al. [2013]. 𝐹𝑥 is a sigmoid response function characteristic of an excitatory

(inhibitory) population, which gives a nonlinear relationship between input currents

to a population, and its output firing rate. 𝑘𝑥 modulate the amplitude of the firing

rate response to an input current, dependent on PV activity for PYR neurons. See

Papasavvas et al. [2015] for the details of 𝐹𝑥 and 𝑘𝑥 functions, which are set by two

constants, 𝜃𝑥 (minimum displacement) and 𝛼𝑥 (maximum slope).

We note that most of the PV interneurons are Basket cells, and thus have a

lower input resistance compared to PYR neurons Beierlein et al. [2003]. On the

other hand, SOM interneurons, mostly Martinotti cells, and VIP interneurons have

higher input resistance compared to PYR neurons Beierlein et al. [2003]. The highest

input resistances are recorded in VIP interneurons Beierlein et al. [2003]. Hence, we

changed the maximal slopes 𝛼𝑥 according to those experimental findings.

As mentioned above, we modelled PV modulation of PYR activity as a combi-

nation of both divisive and subtractive inhibition, which can be thought as more

biologically realistic Jadi et al. [2012], Wilson et al. [2012]. PV interneurons were

specifically found to exert a divisive inhibition effect, which is assumed to be caused

by powerful somatic, rather than dendritic, inhibition Wilson et al. [2012]. An ad-

ditional constant parameter 𝑘𝑑 = 0.8 is introduced in the model in order to express

the fraction of divisive modulation that is delivered to the excitatory population.
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The rest of the modulation, 1− 𝑘𝑑, is delivered as subtractive.

The 𝜔𝑥𝑥 (with 𝑥 ∈ {𝑒, 𝑝}) are the self-excitatory (or self-inhibitory) synaptic

coupling weights of the excitatory (inhibitory) neural populations. The 𝜔𝑥𝑦 (with

𝑥 ̸= 𝑦, 𝑥 ∈ {𝑒, 𝑝, 𝑠, 𝑣} and 𝑦 ∈ {𝑒, 𝑝, 𝑠, 𝑣}) are the excitatory (or inhibitory) synaptic

coupling weights from one population to another. We did not consider self-inhibition

in the SOM and VIP interneuron populations, since inhibitory chemical synapses

between those neurons are rarely observed Pfeffer et al. [2013], Tremblay et al. [2016],

and did not consider the direct SOM-PV connections in the main body of the paper,

since regional discrepancies have been reported Pfeffer et al. [2013], Gibson et al.

[1999], Ma et al. [2012], Hu et al. [2011]. However, we looked at the impact of these

connections parametrically (see Fig. 3-5) and found that for a range of connectivity

strengths our results were not significantly altered. The parameter 𝜎𝑠 controls the

strength of fluctuations of neural populations’ firing rate, and 𝜉(𝑡) is a Gaussian

white noise with mean 0 and variance 1.

As in Papasavvas et al. [2015], activities of the various neural populations were

normalized in the range 0 to 0.5. We added factors (𝐴𝑒, 𝐴𝑝, 𝐴𝑠, 𝐴𝑣) in order to fit

the range of firing rates in the model to experimental values.

In order to model spike frequency adaptation in the PYR neuron population

of the network model, we used the following equation, adapted from Hayut et al.

[2011]:

𝜏𝑎𝑑𝑎𝑝𝑡
𝑑𝐼𝑎𝑑𝑎𝑝𝑡
𝑑𝑡

= −𝐼𝑎𝑑𝑎𝑝𝑡 + 𝑟𝑒𝐽𝑎𝑑𝑎𝑝𝑡 (3.2)

where 𝜏𝑎𝑑𝑎𝑝𝑡 and 𝐽𝑎𝑑𝑎𝑝𝑡 are the adaptation time constant and the adaptation

strength of the PYR population. We chose 𝜏𝑎𝑑𝑎𝑝𝑡 = 600 ms according to Destexhe

[2009]. The resulting adaptation current 𝐼𝑎𝑑𝑎𝑝𝑡 was added to the right hand side of

the equation for the activity of the pyramidal population in eq. 1 above.

The modelling framework for the input terms dependent on the nicotinic acetyl-

choline receptors is described below.
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3.2.2 Model parameter search procedure

The random search algorithm sampled 106 random parameter sets (points in param-

eter space), in a fixed value range for each parameter (values 1.0-55.0 for synaptic

connection strengths, and 0.1 to 0.55 for external input currents). A single con-

straint was added to the parameter values of the model at this stage: VIP to PV

connection strength value was set to be lower (by 50%) than VIP to SOM connec-

tion strength value Pi et al. [2013]. After that, the parameter sets sampled by the

random search algorithm were filtered out through a set of consecutive constraints:

• First, we performed a basic sanity check for each parameter set to determine

if it could produce the bistable firing rate dynamics for the WT (baseline)

parameter values. To do so, we computed the roots of the non-linear set of

equations 𝑑𝑟𝑒/𝑑𝑡 = 0, 𝑑𝑟𝑝/𝑑𝑡 = 0, 𝑑𝑟𝑠/𝑑𝑡 = 0, 𝑑𝑟𝑣/𝑑𝑡 = 0, using MINPACK’s

hybrd and hybrj algorithms. We then selected the parameter sets that cor-

responded to the three roots of the above equations, hence two stable steady

states of firing rate activity. These parameter sets represent ∼ 6% of the total

number of tested value sets.

• Second, we selected connection sets for which the normalized H-state is far

from saturation (< 0.45), and with a higher activity in H-state than L-state

for all neuron types, so that the transitions between H-states and L-states are

simultaneous across cell types. 93%, 61% and 96% of networks exhibited a

higher PV, SOM and VIP activity all together in PYR high activity state (H-

state) compared to the low activity state (L-state), according to experimental

data.

• During the third step, parameters were selected based on residual error values

for H- to L-state firing rate ratios for the simulated values versus the experi-

mental ones. We fitted the scaling factors 𝐴𝑒, 𝐴𝑝, 𝐴𝑠, 𝐴𝑣 so that the H-state for

each simulated population type corresponded to the one found experimentally

(to the median firing rate during the H-state in the experiments). We selected

the networks for which the absolute error of the L-state rate level between the
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model and experiments did not exceed 5 spikes/min for each neural population

type.

• From those selected networks, we simulated the firing rate time evolution of

all neural types, in order to compute the distribution of H-state and L-state

durations (with at least 500 state transitions in each simulation) for varying

levels of noise 𝜎𝑠 (values between 0.001 and 0.02). For each given parameter

set, we selected the noise level that best reproduced the mean and mode of H-

state and L-state duration distributions in terms of the summed mean squared

error. Then, for the matched noise level value, we selected parameter sets

with low mean absolute percentage error (MAPE) values for the properties of

ultraslow fluctuations extracted from the experimental data in WT animals.

Parameter sets corresponding to MAPE values below 100% were taken.

At this step of the parameter selection pipeline, we were left with ∼ 50 parameter

set candidates out of the initially sampled 106 parameter sets. This "training" stage

of the parameter selection procedure allowed us to effectively downselect the large

initial collection of models to several plausible ones using only the WT experimental

data to formulate constraints.

In order to select one final of the 50 last parameter set candidates, we intro-

duced an additional "validation" selection stage, which determined the model with

the best predictive power outside the previously used WT data. Instead of pure

WT data, for the validation stage we looked at the change of H-state firing rate

levels between WT and 𝛼5 KO states. We chose the network in which the change

of SOM H-state firing rate was the closest to the experimental value in terms of

absolute error. Further on, we tested the selected parameter set against experimen-

tal data for all neural populations across different KO states. As we demonstrate,

the selected model performs quite well during testing on KO states and predicts the

key features of experimental data. Note that the other candidate parameter sets

found during our search procedure also have relatively low values of the WT fitting

error and decent performance when predicting activity levels in different knockout

variants we considered (see Fig. 3-3). These parameter sets were selected based on
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the above procedure as leading to small values of the WT fitting error and well pre-

dicting the change in the SOM H-state firing rate in the 𝛼5 knockout state relative

to the WT state. The set of candidate model parameters providing a good fit was

found to span a relatively wide area in parameter space, however we found that all

the major predictions inferred from the parameter set we ended up selecting were

well reproduced qualitatively by the other found parameter sets. In particular, pre-

dictions concerning pyramidal population activity changes under nicotine treatment

in wild-type and 𝛼5 SNP animals were found to be similar for different candidate

parameter sets (see Fig. 3-3E).

3.2.3 Modeling nAChRs

We used a minimal model of subtype-specific activation and sensitization of nAChRs

Graupner et al. [2013], from which we determined the amplitude of each cholinergic

current:

𝐼𝑥−𝑛 = 𝑤𝑥−𝑛𝑎𝑥𝑠𝑥, 𝑤𝑛 = 0.01𝑁𝑥−𝑛, 𝑥 ∈ {𝛼4𝛽2, 𝛼5𝛼4𝛽2, 𝛼7}, 𝑛 ∈ {𝑠, 𝑝, 𝑣} (3.3)

where 𝑎𝑥 is the activation variable, while 𝑠𝑥 is the sensitization variable. They

both take values between 0 and 1. The receptor is fully activated for 𝑎𝑥 = 1 and

fully sensitized for 𝑠𝑥 = 1, while it is closed for 𝑎𝑥 = 0 and fully desensitized for

𝑠𝑥 = 0. We did not take into account desensitization of nAChRs by physiological

levels of ACh because of its rapid breakdown through acetylcholinesterase Graupner

et al. [2013], Dani et al. [2001], such that 𝑠𝑥 = 1. So the desensitization plays a role

only for the nicotine simulations.

Using formulas from Graupner et al. [2013], with 𝐴𝐶ℎ = 1.77𝜇𝑀 , relevant for

in vivo simulations, we found 𝑎𝛼4𝛽2 = 𝑎𝛼5𝛼4𝛽2 = 0.0487, and 𝑎𝛼7 = 0.0014. 𝑁𝑥−𝑛 is

the number of nAChRs of each type that best reproduced the changes of activity

patterns recorded in experimental data (see Fig.3-7A1-A2-A3). For the nicotine

application simulations, we used a physiologically relevant blood concentration for

smokers 𝑁𝑖𝑐 = 1𝜇𝑀 and computed the change in sensitization and activation of
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different nAChR types. For 𝛼5𝛼4𝛽2 nAChRs, more resistant to desensitization, we

shifted 𝐷𝐶50 from 61 nM to 610 nM Vyazovskiy and Harris [2013].

In the main body of the paper, we modeled the different KO mice by setting

the corresponding cholinergic currents to zero. We also studied how the results

depend on this assumption and found that the same trends in activity changes can

be observed for small non-zero amplitudes of the nAChR currents, see Fig. 2. In

particular, for the modelled 𝛼5 SNP mice, expressing a human polymorphism of the

𝛼5 nAChRs associated with both schizophrenia and heavy smoking, decreasing the

VIP-expressed 𝛼5 receptor activation by 30% was sufficient to give results compatible

with the experiments.

3.3 Results

3.3.1 Summary of the experimental approach and results

We studied experimentally the spontaneous activity of neurons in the prelimbic cor-

tex of PFC in awake mice by two-photon calcium imaging Koukouli et al. [2017].

Male 𝛼7KO, 𝛽2KO, 𝛼5KO and WT C57BL/6J mice were used and experiments

were performed at 3 months of age. Mice engineered to harbor the 𝛼5 D398N vari-

ant (𝛼5SNP mice) were obtained via homologous recombination. Briefly, a chronic

cranial window was prepared and 200 nl of AAV1.syn.GCaMP6f.WPRE.SV40 were

injected bilaterally in the prelimbic cortex (PrL) (coordinates: AP, +2.8 mm from

the bregma; L, ±0.5 mm; DV, -0.3 to -0.1 mm from the skull) for recordings of

pyramidal neurons. To record the activity of interneurons we used Cre mouse

lines (VIP-Cre, SOM-Cre and PV-Cre mouse lines) and 200 nl of AAV1.syn.Flex.

GCaMP6f.WPRE.SV40 were injected as before. A sterile small stainless steel bar

was embedded over the cerebellum in order to head-fix the mouse for imaging. Mice

were trained for awake imaging by gentle handling for 4 days and were habituated

to rest in a support tube on the mouse stage during the recordings, as previously

described Koukouli et al. [2017]. In vivo imaging was performed using an Ultima

IV two-photon laser-scanning microscope system (Bruker). For pyramidal neurons

expressing GCaMP6f, time-series movies were acquired at the frame rate of almost 7
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Hz, with a movie duration of approximately 215 seconds. The frame rate used for the

interneuron recordings was about 30 Hz and the duration of each focal plane movie

was approximately 165 seconds. Detection of individual neuron Ca2+ transients was

performed automatically using a preprocessing and deconvolution pipeline written

in MATLAB (Mathworks) Koukouli et al. [2017].
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Figure 3-1 – (Caption next page.)
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Figure 3-1 – (Previous page.) Bistable firing rate dynamics of interconnected
neural populations replicates ultra-slow fluctuations recorded in the PFC of WT
mice. (A1) Two-photon image of GCaMP6f expressing neurons, from Koukouli et al.
[2017]. (Scale bar: 20 𝜇𝑚). (A2) Inferred events of a population of simultaneously
recorded cells in a WT mouse, obtained by deconvolving the spontaneous Ca2+
transients. 80% of the recorded cells are PYR neurons Koukouli et al. [2017]. (A3)
Time varying population mean activity of the neurons shown in A2. The dashed
red line delineates the threshold between high and low activity states (H-states and
L-states, respectively). Red periods correspond to H-states and blue periods to
L-states. See Koukouli et al. [2016a] for more info on the methods. (A4) H-state
and L-state durations recorded in the different neuron types. H-state durations are
similar between neuron types (mean of 3 seconds, no statistical differences), as well
as L-state durations (mean of 20 seconds, no statistical differences). (B1) Schematic
of the studied circuitry. (B2) A simulated rastergram of neuronal activity, generated
for illustration purposes from the population rate model, using a Poisson process
with 𝜆(𝑡)=𝑚𝑒𝑎𝑛_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒(𝑡). (B3) Time varying mean population activity
of pyramidal neurons, computed from the network model. We use the same method
as Koukouli et al. [2016a] to delineate H-states (in red) and L-states (in blue). (B4)
The model reproduces the similar H-state and L-state durations across neural types.
Distribution of a total of 500 state durations collected are plotted.

Briefly, we identified the temporal structure of the spontaneous activity in the

layer II/III as alternating between low and high activity states (see Fig. 3-1A2-3 for

an example of transition in a WT mouse). The typical time-scale of the high activity

states (H-states) and low activity states (L-states) was on the order of several to tens

of seconds. We then studied how the average activity and the temporal structure is

altered by the experimentally induced genetic mutations of the nAChRs. Notably,

we showed that mice expressing the human 𝛼5SNP exhibit reduced pyramidal cell

activity. Our results also showed that the different nAChR subunits control the

spontaneous PFC activity through a hierarchical inhibitory circuit. Specifically, in

𝛼5SNP mice and 𝛼5 KO mice, lower activity of VIP-expressing interneurons ap-

peared to result in an increased SOM-interneuron inhibitory drive over the pyrami-

dal neurons. Chronic nicotine administration reversed the hypofrontality observed

in 𝛼5SNP mice through possible desensitization of 𝛽2-containing nAChRs in SOM

interneurons. Specific experimental data on the SNP as well as other KO mice

will be shown below alongside the simulations for comparison and discussion of the

circuit mechanisms.
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3.3.2 Modelling formalism and strategy

For our local circuit model we used a neural population approach first pioneered

by Wilson and Cowan Destexhe and Sejnowski [2009] and subsequently widely used

in modelling studies. In this approach, the firing rates of cell ensembles are taken

as the dynamical variables of the model (as opposed to modelling the biophysics of

individual cells). Each variable in the model represents the activity of the specific

cell-type population. The circuit is constructed by weighted connections between the

cell populations so that the inputs to a given population represent the summarized

synaptic connectivity between the neural populations. External inputs to the circuit

can be included in a similar way. These inputs are then put through a non-linear

input-output function specific for each neuronal population.

Central to our work was to explicitly include the influence of the nicotinic cholin-

ergic modulation exerted on specific cellular targets of the layer II/III PFC circuitry.

We have previously shown how acetylcholine-dependent currents mediated by the

nAChRs can be incorporated in the population rate models using simple kinetic

schemes modified from Katz and Thesleff [1957] (see Methods and Koukouli et al.

[2017] for more details). The key point is that these currents can be parameterized

to reflect the pharmacological and electrophysiological properties of specific receptor

subtypes (temporal scales and ligand affinities for the activation and the desensi-

tization) and incorporated into the specific neural population dynamics, reflecting

their expression targets. We can then use the model to perform analysis, param-

eter fitting, validation and in silico genetic manipulation to understand how the

local circuit dynamic mechanisms could explain the observed data. In other words,

the strategy is to use a highly reduced model that distills away much biological

complexity.

The logic for using such a highly reduced modelling approach is two-fold. First

of all, the calcium imaging data analysis focused mainly on the dynamics and alter-

ations of the mean activity of the recorded cell populations. Second, after incorpo-

rating the proposed structure of the local circuit and the relevant receptor-mediated

currents, we were able to arrive at a model that was sufficient to explain key aspects

of the data and yet was still tractable and understandable.
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Overall, the circuit model was structured as shown in Figure 3-1B. It reflects

the hierarchical structure of the local inhibitory circuitry in the PFC layer II/III .

Inspired by Chance and Abbott [2000] we used an extended Wilson-Cowan formalism

to account for two kinds of inhibition impinging on the pyramidal neuron population:

divisive inhibition due the PV interneurons and subtractive inhibition due to the

SOM interneurons. Please note that the effect of PV interneurons was modelled

as a mix of subtractive and divisive inhibition, reflecting that these neurons target

the pyramidal cells peri-somatically and hence exert a shunting effect Jadi et al.

[2012]. The ratio of divisive to subtractive inhibition in the model is controlled

by the parameter 𝑘𝑑, Fig. 3-4 shows the robustness of the obtained results to

the value of this parameter. The divisive inhibition acts to modulate the gain of

PYR response, while the subtractive inhibition shifts this response. In fact one can

heuristically think of two recurrent PYR-interneuronal pathways in this circuit: the

PYR-PV divisive inhibitory one and the net additive disinhibitory one through the

PYR-VIP-SOM neurons. We further included the inhibitory interactions between

these sub-circuits. The specific neuronal population variables were also coupled to

the nAChR models as indicated by the circuit scheme. As we will see below, the

interplay of the recurrent excitation with the multiple interneuronal sub-circuits can

lead to non-trivial dynamical outcomes in the model. The equations are described

in full detail in the Methods.

Our strategy was to identify a model (i.e. the set of parameter values) that was

able to account for the experimental data by first fitting the model parameters to

match the control data of ongoing spontaneous activity, and then subjecting it to

the simulated variations reflecting the genetic manipulations of the nAChRs. To

do so we made an ansatz that the spontaneous high-low activity state alterations

are due to a bistability in the local cortical circuit and the switching is controlled

by random noise and firing rate adaptation in the PYR population. In order to

identify the model regimes that could account for the experimental data, we used a

multi-step model selection (fitting and validation) procedure (see Methods). First,

we performed a semi-analytic analysis of the model dynamics as a function of the

various inhibition strengths (see below). These results were then used as a guide for
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a global search procedure to identify a subset of model parameters that exhibited

bistable dynamics. We then selected the model parameters so as to minimize the

quantitative discrepancy (mean error) between the observed control experimental

activity data and the data obtained by simulating the model. We found that the

connectivity parameters that minimize this error were generally widely distributed.

We thus added further constraints on the model parameters. Since we were ulti-

mately interested in accounting for the effects of the 𝛼5-SNP on the population

firing patterns, we further selected the parameters so that we could focus on those

models that could produce the mean activity changes when the ACh input to the

VIP neurons was turned off. See Fig.3-3 for the distribution of the fitting (control

activity) and validation (knockout activity) errors across different parameters sets.

We then performed parametric manipulations of the receptor models to reflect

the genetic alterations in the 𝛼7KO and 𝛽2KO animals (to validate the model on

obtained experimental data), as well as to measure the influence of nicotine in those

phenotypes. Below we present the model predictions for average firing activity level

alterations in manipulated animals.

The details of model fitting and validation procedures are given in the Methods

section; details of the calcium imaging analysis are given in Koukouli et al. [2017].

Further simulation results are given in the methods and the Supplement. Our model

strategy and model selection procedures allowed us to potentially identify the local

circuit pathways linking the genetic alterations and the in vivo PFC activity ob-

servations. Furthermore, we could use the model to profile future experiments and

make predictions on the effects of nicotine withdrawal in the WT and 𝛼5SNP animal

phenotypes.

Furthermore, we relaxed our model selection and examined multiple parametric

sets of the model, to understand how the impact of the nicotinic receptor manip-

ulations are distributed across multiple parameter sets (see Fig. 3-3). Indeed we

found that there exist several different parameter sets that could predict the activity

changes during simulated nAChR knockouts while giving a slightly worse fit in terms

of the control wild-type data. Moreover, we found that the predictions regarding

activity shifts during nicotine treatment were consistent across different parameter
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sets (see Fig. 3-3). Hence, the parameter set that we selected to obtain the main

model predictions (marked as a red dot in Fig. 3-3) is representative of the whole

model population.
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Figure 3-3 – (Previous page). The distribution of fitting (WT) and validation (KO)
errors along with some of the parameter values for the set of candidate models found
during parameter optimization. The main model candidate chosen in the paper is
denoted with the red color. (A) Scatter plot for a range of candidate model param-
eter sets whereby every parameter set is represented by its WT activity statistics
fitting error (MAPE of WT high-low activity statistics) and the KO activity pre-
diction error (MAPE of PYR firing rates in 𝛼5, 𝛼7 and 𝛽2 knockout states, see Fig.
4A1), normalized to the error values of the selected parameter set (denoted with
red color), (B) scatter plot of 𝜔𝑒𝑒, 𝜔𝑝𝑒 parameter values for the candidate param-
eter sets normalized to the selected values, (C) same for 𝐼𝑒𝑥𝑡−𝑠, 𝐼𝑒𝑥𝑡−𝑣 parameters,
(D) same for 𝐼𝑒𝑥𝑡−𝑒, 𝐽𝑎𝑑𝑎𝑝𝑡 parameters, (E) distributions of the WT fitting errors
and nicotine treatment activity level prediction errors (error in predicted change
in WT and 𝛼5SNP PYR firing rates after nicotine treatment), along with the 𝛽2
nAChR enhancement factors required for the candidate models to reproduce the
normalization of 𝛼5SNP activity to WT levels under nicotine treatment.

3.3.3 Bistable layer II/ III local PFC circuit firing rate dy-

namics replicate ultraslow fluctuations in WT mice

The basis for this modelling study are our experimental studies, briefly described

above, of the spontaneous activity in the layers II/III of the prelimbic cortex in

awake mice by two-photon calcium imaging Koukouli et al. [2017]. As shown by an

example in Fig. 3-1A2-3, a population of simultaneously recorded cells in a WT

mouse exhibits transitions between high activity states (H-states) and low activity

states (L-states) lasting several to tens of seconds. We then set out to model the

local circuitry that may produce this activity pattern. The circuit model sketched

out in Fig. 3-1B1 simulates the firing rate evolution of populations of pyramidal

(PYR) neurons intercoupled with a hierarchy of interneurons. Parvalbumin (PV)

interneurons, expressing 𝛼7 nAChRs subunits Bloem et al. [2014], target PYR cells

axosomatically, with strong reciprocal connections Holmgren et al. [2003]. Somato-

statin (SOM) interneurons, expressing both 𝛼7 and 𝛼4𝛽2 nAChRs subunits Bloem

et al. [2014], target the dendrites of the PYR cells. The 𝛼5𝛼4𝛽2 nAChRs subunits

are expressed only by vasoactive intestinal polypeptide (VIP) interneurons Porter

et al. [1999], that preferentially inhibit the SOM cells, and to a lesser extent PV cells

Pi et al. [2013]. Both the SOM and the VIP interneurons receive excitatory feedback

from the PYR neurons Silberberg and Markram [2007], Porter et al. [1998]. The
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model is able to reproduce the ultra-slow fluctuations of PYR population activity

recorded in WT mice (Fig. 3-1B2-3) by assuming that two stable states of activ-

ity arise from the connectivity between neural populations (see Methods for more

information on the model and fitting procedure). Simultaneous network transitions

between activity states, for all neural types, drive the activity fluctuations. This

prerequisite is consistent with our experimental findings, showing that the various

neuron types have similar H-state and L-state durations (Fig. 3-1A4, Fig. 3-1B4).

Establishing that the local circuit model can replicate central properties of the WT

data provided us with a computational model platform to turn to the data from the

genetically modified animals.
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Figure 3-4 – Evolution of WT activity statistics fitting error (normalized to the
error value at 𝑘𝑑=0.8) for different values of the divisive-to-subtractive inhibition
ratio 𝑘𝑑 while the other parameter values in the model are fixed (corresponding to
the main chosen parameter set). The default value of 𝑘𝑑 is 0.8 for the fitted model.
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of the SOM-PV connection strength. The maximal value of the synaptic strength
parameters that we considered in the model was equal to about 50 (in arbitrary
units).
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3.3.4 Heuristic analysis of impact of inhibitory population

activity variation on network state stability.

Before proceeding to modelling the genetic nAChR manipulations, we wanted to

develop an intuition about the influence of the different inhibitory inputs on the dy-

namics of the pyramidal neuron population using a reduced feed-forward inhibitory

circuit (see Supplementary Materials). Here we explicitly differentiated the subtrac-

tive (SOM) versus the divisive (PV) inhibition. The PV-divisive inhibition controls

the gain of the PYR input-output function. Our analysis showed that reducing

the PV-divisive inhibition of the PYR population, increases this gain and makes

both the high and the low states more stable. Therefore, decreases in the divisive

inhibition should lead to increases in the state-durations during the spontaneous

activity. Reducing the subtractive inhibition of the PYR population shifts the PYR

activation function (without changing its shape). This leads to the low activity state

becoming less stable and the high activity state gaining in stability. In other words,

decreasing the SOM-dependent subtractive inhibition increases the duration of the

H-states and decreases the duration of the L-states. Since the VIP neurons project

to the SOMs and inhibit them, decreases in VIP activity lead to L-states increasing

their durations and H-states becoming shorter on average. In summary, the prelim-

inary analysis points out that SOM and VIP activity decrements should have an

opposing effect on the PYR activity: former increasing it and latter decreasing it.

Taking the above into account, we now turn to the fully connected network,

where we take into account the excitatory feedback from pyramidal neurons to the

various interneurons subtypes, as well as the inhibitory inputs from VIP to PV neu-

rons. We found that generally the simplified network intuition (see Supplementary

Materials) holds for the full network (Fig. 3-6). The full model shows the ex-

pected increase of both H-state and L-state duration for decreased external inputs

to PV population (Fig. 3-6B1). When the external inputs to the SOM population

is decreased, we saw the predicted increase of H-state- and a decrease of L-state-

duration for (Fig. 3-6B2). A decrease of H-state duration was seen for decreased

external inputs to VIP population (Fig. 3-6C2). Note the shape of the bifurcation
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diagram as a function of the external input to PV population (Fig. 3-6A1). Due

to the strong excitatory feedback from PYR to PV population Lee and Park [2005],

for external inputs higher than a critical value, the network loses its bistability to

a single H-state. Second, we observe a slight decrease of L-state duration for de-

creased external inputs to the VIP population (Fig. 3-6C2). This is where the

VIP-PV connection plays the defining role: the decreased VIP activity increases the

PV activity in both the H- and L-states, which in turn decreases both H-state and

L-state duration, due to the increased divisive inhibition impinging onto the PYR

population. The results of this analysis indicate that if the knockout does not fully

abolish the nAChR-mediated current, we would still observe the same qualitative

behaviour in the modelled circuit, due to the smoothness and monotonicity of the

activity level curves in Fig. 3-6. Interestingly, we observed the same trends in terms

of increases/decreases of L- and H-state durations and firing rates for the different

sets of parameters that we found during the model search procedure (the parameter

set distribution is reflected in Fig. 3-3).

3.3.5 Impact of the nAChR genetic manipulations on the

temporal structure of the ultraslow activity fluctuations

In order to analyze the nicotinic modulation of the resting state temporal struc-

ture through the 𝛽2- and 𝛼7-nAChR-mediated currents on their target inhibitory

neurons, we explicitly modeled nAChR activation levels following a computational

framework developed in Graupner et al. [2013] (see also Methods). Our model re-

flected that the various receptor subclasses are expressed on specific neuronal targets

(here exclusively on the different interneuronal subtypes). The model also took into

account the ligand-gated electrophysiological properties of the modelled nAChR

subclasses. According to the computational framework, 𝛽2 nAChRs, which have

high affinity to acetylcholine (ACh), activate such that their cholinergically evoked

input to the target cell population is ∼35 fold the amplitude of the cholinergic cur-

rent due to the 𝛼7 nAChRs. Note that due to the rapid ACh breakdown by the

acetylcholinesterase Dani et al. [2001], Giniatullin et al. [2005] and following our
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previously developed nAChR/neural circuit modelling framework, we chose not to

take into account desensitization of nAChRs by physiological levels of ACh.

We then simulated our model with the in silico receptor knock-outs and tracked

the duration of the high and low activity states as well as the proportion of neu-

ral populations (out of 100 simulated samples of our models generated from the

pre-determined model parameter set as explained above) that showed the bistable

dynamics. You can see in Fig. 3-7A1 that a knock-out of 𝛼7 nAChRs, located on

both PV and SOM interneurons, induces an increase of H-state mean duration as

compared to the WT animals, 4.2 ± 0.3 to 6.1 ± 0.5 sec, with 𝑃 < 0.05. Knock-

outs of SOM-localized 𝛽2 nAChRs induce increased H-state durations (8.7 ± 0.5

sec) that are much larger than those in the 𝛼7 KO animals. We modeled the KO

case by setting the relevant receptor-mediated currents to zero. In our model we

observed that setting the 𝛼7-mediated current to zero induces an increase of mean

H-states duration from 4.0± 0.2 sec, for simulated WT animals, to 5.6± 0.3 sec, for

simulated 𝛼7 KO animals (𝑃 < 0.001, see Fig. 3-7B1). The model also was able to

account for the strong effect of the high affinity 𝛽2 nAChRs manipulation, with a

a more than 2-fold increase of H-state mean duration to 9.7 ± 0.8 sec. The model

further showed reduced H-state mean duration for the 𝛼5 KOs (2.0±0.1, 𝑃 < 0.001)

compared to WT mice, similar to experimental findings (2.6± 0.2 sec, 𝑃 < 0.001).

These results are consistent with 𝛼5-containing nAChRs having a modulatory effect

on VIP activity, which in turn inhibit both PV and SOM interneurons. We found

no significant changes in the H-state mean duration for 𝛼5 SNP compared to WT

mice, both experimentally and through modeling (4.0± 0.3 sec of H-state duration

for experiments, and 3.3 ± 0.2 sec for simulations). Our analysis above lead us to

expect a significant decrease of mean L-state duration for 𝛽2 KO animals. Indeed

we observed a drop from 22.6± 1.3 sec to 13.9± 0.8 sec, 𝑃 < 0.01 (see Fig 3-7B2),

which we identify in the model as a combined effect of the decreased cholinergic in-

put to the SOM and VIP populations, and which reproduces experimental findings

(21.7±1.3 sec to 15.3±1.0 sec, 𝑃 < 0.001, Fig 3-7A2, modified from Koukouli et al.

[2017]). No significant change of L-state durations was found for 𝛼7, 𝛼5 and 𝛼5SNP

compared to WT, both experimentally and through modeling. This is consistent
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with our prediction that VIP change of input to PV population, exerting divisive

type of inhibition over PYR activity, would counterbalance VIP effects on L-state

stability through SOM population (Fig. 3-6B3).

Having determined that our model can account for the mean statistics of the

high-low spontaneous dynamics under various genetic manipulations of the nAChRs

in the hierarchical inhibitory sub circuit of the PFC, we then examined the pro-

portion of neural populations that would show bistable high-low dynamics in the

spontaneous activity and how these are modified by the 𝛽2-receptor modulation. To

do so, we constructed distribution histograms of the firing rates observed for a given

phenotype (see also Methods and Koukouli et al. [2017] for further analysis details)

and identified what proportion of the populations showed multi-modal activity dis-

tributions. In our data (also see Koukouli et al. [2017] for fuller discussion), we

found that 65.9 ± 5.7% of populations exhibited high and low activity states tran-

sitions dynamics in 𝛽2 KO mice, a significant decrease compared to WT animals

(90.3 ± 5.0% of populations, 𝑃 < 0.05, Fig. 3-7A3, modified from Koukouli et al.

2017 Koukouli et al. [2017]). We simulated the 𝛽2 KO in our model by setting the

cholinergic current strength terms to zero for the SOM neuron population. Accord-

ing to our model analysis, a decrease of cholinergic currents in the SOM population

should induce an increase of H-state stability while a decrease of L-state stability

(Fig. 3-6B2). Our simulations indeed reproduce the decreased proportion of pop-

ulations exhibiting L-state/H-state transitions from 88.6 ± 3.6% in simulated WT

animals to 64.3 ± 4.9% for simulated 𝛽2 KO mice (Fig. 3-7B3). Furthermore, the

model predicted that knocking out either the 𝛼7 or the 𝛽2 nAChRs should decrease

the H-state mean rate amplitude, and induce no changes in the L-state amplitudes,

analysis of experimental data was in fact consistent with this prediction (see Fig.

3-7C).
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Figure 3-6 – (Caption next page.)
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Figure 3-6 – (Previous page.) Effects of changing external inputs to inhibitory
populations on network state stability in the fully connected network (A1) H-state
(red line) and L-state (blue line) PYR activities as a function of the external input
current to VIP interneurons population. The dashed green line shows the selected
parameter value to reproduce WT mice neural dynamics. KO of nAChRs is asso-
ciated with a decrease of external currents (black arrow). (A2) H-state (red line)
and L-state (blue line) durations as a function of the external input current to PV
interneurons population. The shaded areas delineate ±sem. The dashed green line
shows the selected parameter value to reproduce WT mice neural dynamics. (B1)
Same as (A1), but for the external input current to SOM INs population. (B2) Same
as (A2), but for the external input current to SOM INs population. (C1) Same as
(A1), but for the external input current to VIP INs population. (C2) Same as (A2),
but for the external input current to VIP INs population.

3.3.6 Layer II/III circuit model accounts for the VIP and

SOM neuron firing rate changes under schizophrenia-

associated 𝛼5 pathology.

To further confirm our hypothesis that the decreased disinhibition in 𝛼5 KO and 𝛼5

SNP mice accounts for hypofrontality, we compared the changes of VIP, PV, and

SOM interneurons under 𝛼5 knock-down in experiments and simulations. In the

experiments, clustered, regularly interspaced, short palindromic repeats (CRISPR)-

associated endonuclease (Cas)9 technology was used to knock-down the 𝛼5 subunits

in vivo, as shown in Koukouli et al. [2017]. We implemented this manipulation

in the model by decreasing the activation of the a5-associated input to the VIP in-

terneurons. Experimentally it was found that VIP neuron median activity decreased

drastically under the CRISPR technology from 21.5± 2.17 spikes/min to 3.5± 0.7

spikes/min (𝑃 < 0.001, see Fig. 3f in Koukouli et al. [2017]). The model accounting

for these results yielded decreased H-state network durations and decreased VIP

H-state activity (see Fig. 3-7A1, Fig. 3-7B1). As a result, the simulated spike fre-

quency of VIP interneurons in VIP 𝛼5 knock down mice (5.7± 0.2 spikes/min) was

significantly lower than VIP neural activity in simulated WT animals (21.4 ± 1.2

spikes/min, 𝑃 < 0.001, see Fig. 3-8A2,B2). The model predicted that the decreased

VIP levels of activity should result in increased levels of SOM activity through

disinhibition. Experimental findings endorsed this prediction, through a robust in-
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crease in SOM interneuron spontaneous activity (39.1 ± 3.1 spikes/min) compared

to control mice (5.6 ± 1.3 spikes/min, 𝑃 < 0.001, see Fig. 3n in Koukouli et al.

[2017]). The model could reproduce this increase of SOM activity quantitatively (

see Fig. Fig. 3-8C3) despite the significant decrease of network H-state duration

(Fig. 3-7A1). Please note that the H-state durations are determined with all neu-

ronal populations without being differentiated. In the model the over-all H-state

duration decrease was associated with an unexpected increase in SOM H-state level

of activity specifically. SOM WT mice simulated median activity increased from

13.9± 0.7 spikes/min to 32.0± 1.2 spikes/min (𝑃 < 0.001, see Fig. 3-8C3). Exper-

imentally, the decrease in PV interneuron activity was slight and not statistically

significant (6.1 ± 0.6 spikes/min) compared to WT mice (5.6 ± 0.4 spikes/min, see

Fig 3j in Koukouli et al. [2017]). We confirmed that in our model with parameters

optimized to quantitatively reproduce the 𝛼5 SNP affect as reviewed above, we saw

only a slight decrease of PV activity in CRSPR mice, as compared to WT simulated

mice, from 7.9 ± 0.3 spikes/min to 5.0 ± 0.2 spikes/min (𝑃 < 0.001). Because PV

interneurons receive high levels of excitatory input from PYR neurons, we would ex-

pect a decrease of excitatory input to this population in 𝛼5 KO and CRISPR mice,

due to decreased PYR neurons firing rate. This decreased excitatory input may be

compensated by a decreased inhibition from the less active VIP interneurons, yet

this connection is rather weak.

3.3.7 Nicotine re-normalizes 𝛼5 SNP PFC network activity

through desensitization and upregulation of SOM 𝛽2

nAChRs

Experimentally it was observed that nicotine administration to 𝛼5 SNP mice by

mini-pump infusion increased their PFC PYR neuron activity to WT levels Kouk-

ouli et al. [2017], implying that it could reduce some of the cognitive deficits linked

to schizophrenia, we used our model to pinpoint the specific nAChRs responsible for

this normalization. We know that 𝛽2-dependent nAChR currents, but not 𝛼7, inner-

vating interneurons in layer II/III of PFC, completely desensitize after exposure to
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Figure 3-7 – (Caption next page.)
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Figure 3-7 – (Previous page.) Accounting for the nAChR KO and mutation impact
on ultraslow fluctuations (A1) Mean of H-state durations, for WT and mutant mice,
modified from Fig 3C in Koukouli et al. [2016a] for 𝛼7 KO and 𝛽2 KO mice. For
𝛼5 KO and 𝛼5 SNP mice, we use the same method as in Koukouli et al. [2016a].
All mutant mice distributions are significantly different from WT (Kruskal-Wallis,
𝑃 < 0.001), except for 𝛼5SNP mice. The error bars are ±sem. (A2) Mean of L-
state durations, for WT and mutant mice, modified from Fig. 3B in Koukouli et al.
[2016a] for 𝛼7 KO and 𝛽2 KO mice. 𝛽2 KO mice L-state durations are significantly
lower compared to WT (Kruskal-Wallis, 𝑃 < 0.001). The error bars are ±sem. (A3)
Mean % of populations with H-states and L-states transitions. The error bars are
±sem. The circle shows the proportions computed for single mice. 𝛽2 KO mice
exhibit significantly lower % of populations with H-states and L-states transitions
(ANOVA, 𝑃 < 0.05), compared to WT mice. Modified from Fig. 3D in Koukouli
et al. [2016a] for 𝛼7 KO and 𝛽2 KO mice. (B1-2-3) Same as (A1-2-3), computed
from simulations. (C) H-states (red bars) and L-states (blue bars) activity levels
from simulations (filled bars) and experiments (empty bars). Error bars are ±sem.
Experimental data described in Koukouli et al. [2016a]. A total of 200 simulation
repetitions with 500 state transitions each were carried out to produce the simulated
data.

smoking concentrations of nicotine in slice preparation Poorthuis et al. [2013], with

an exception for 𝛼5𝛼4𝛽2 nAChRs, that are more resistant to desensitization Grady

et al. [2012]. Modeling nAChRs levels of activation and desensitization Graupner

et al. [2013] in contact of physiologically realistic levels of nicotine during smoking

permits to predict the exact change of cholinergic currents amplitude, for each spe-

cific interneuron subtype. The model predicts activations of 𝛼7 and 𝛼5-containing

nAChRs in contact of 1 𝜇𝑀 of nicotine and a strong desensitization of 𝛽2-containing

nAChRs (see Fig. 3-14A1). As a result, you can see in Fig. 3-14A1 and Fig. 3-14A2

our predictions for PYR activity variations in WT and 𝛼5 SNP mice when nicotine

targets selectively each type of nicotinic receptor. Desensitization of 𝛽2 nAChRs

decreases cholinergic inputs to SOM interneurons, and should increase the H-state

network duration, leading to higher PYR firing rates in both WT and 𝛼5 SNP ani-

mals. An increase of cholinergic inputs to both SOM and PV interneurons, through

the activation of 𝛼7 nAChRs, is assumed to induce a decrease of H-state durations,

reducing PYR activity in WT and 𝛼5 SNP mice. Activation of 𝛼5 nAChRs, increas-

ing cholinergic inputs to VIP interneurons, should disinhibit PYR neurons, causing

higher PYR activities in both WT and 𝛼5 SNP mice. However, 𝛼5 SNP mice with 𝛼5
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nAChRs activated by nicotine application still has lower PYR activities compared

to WT mice without treatment.

According to our work, 𝛼5 nAChRs activation is not high enough to overcome

𝛼5 SNP receptor malfunction. As a consequence, in 𝛼5 SNP mice under treatment,

higher PYR activities compared to WT control mice can only be replicated by

nicotine interaction with 𝛽2 nAChRs located on SOM interneurons (Fig. 3-14A2).

Experimental results (Fig. 4c in Koukouli et al. [2017]) show that in both WT

mice and 𝛼5 SNP mice, nicotine induces high increase of PYR activity after two

days of nicotine administration, consistent with simulations predictions (see Fig. 3-

14B). We know from our preliminary analysis in Fig. 3-14A2 and Fig. 3-14A3 that

those effects are almost entirely due to the desensitization of 𝛽2 nAChRs on SOM

interneurons.

We can notice in Fig. 4d, in Koukouli et al. [2017], that the increase in PYR

activity after 7 days of nicotine administration is reduced in both WT mice and

𝛼5 SNP mice compared to the 2 days treatment, such that PYR neurons firing

rate in 𝛼5 SNP mice treated with nicotine are at the level of WT mice. Previous

studies have indicated that long-term nicotine exposure over days increases or up-

regulates the number of high-affinity nicotine binding sites on 𝛼4𝛽2 nAChRs Govind

et al. [2009]. In addition to this, no nicotine-induced upregulation was observed for

𝛼5𝛼4𝛽2 nAChRs Mao et al. [2008]. Hence, we tested through modeling the effect

of the upregulation of 𝛽2 nAChRs, located on SOM interneurons, on the PYR neu-

ron firing rates. We were able to reproduce the normalization of PYR activity to

WT levels in 𝛼5 SNP mice after 7 days of administration by considering a 1.8-fold

increase of the number of 𝛽2 nAChRs located on SOM interneurons (see Fig. 3-

14C). The factor by which one needs to increase the 𝛽2 nAChR current in the SOM

population in order to reproduce this activity normalization was found to be simi-

lar for a range of different parameter sets found during model search (see Fig.3-3),

with a mean of about 1.7. You can see that the increase of PYR activity in WT

animals after 7 days of nicotine treatment is accompanied by an increase of H-state

durations, that is reproduced in simulations. It is also accompanied by a significant

decrease of SOM activity (Fig. 4h in Koukouli et al. [2017]), consistent with the
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model predictions (Fig. 3-14B).
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Figure 3-8 – (Caption next page.)

Having validated our modelling framework on available experimental data, we

set out to test the effects of nicotine withdrawal. We considered the neural circuit

activity alterations that follow a 7-day nicotine application. We hypothesized that
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Figure 3-8 – (Previous page.) Reproduction of the effects of KO and mutations of
nAChRs on neural firing rates (A) Boxplots of PYR neurons firing rates for WT and
mutant mice, computed from simulations. All distributions are significantly different
(Kruskal-Wallis, 𝑃 < 0.001). (B) Boxplots of VIP interneurons baseline activities for
WT and CRISPR mice. CRIPSPR mice exhibit lower neural activities compared to
WT mice (Kruskal-Wallis, 𝑃 < 0.001). (C) Boxplots of SOM interneurons baseline
activities for WT and CRISPR simulated mice. CRIPSPR mice exhibit higher neural
activities compared to WT mice (Kruskal-Wallis, 𝑃 < 0.001). (D) Boxplots of PV
interneurons baseline activities for WT and mutant mice affected by the CRISPR
technology for the deletion of the 𝛼5 subunits, according to simulations. CRIPSPR
mice exhibit similar levels of neural activity compared to WT mice. A total of 200
simulation repetitions with 500 state transitions each were carried out to produce
the simulated data.

nicotine withdrawal would rapidly resensitize 𝛽2-containing nAChRs. On other

hand, the renormalization of the number of receptors, which had been increased

through upregulation, would occur on much slower time scales. As a result, the

SOM interneurons would end up with higher levels of cholinergic innervation in the

post- compared to the pre-treatment condition. Model simulations predict that WT

and 𝛼5 SNP mice in the withdrawal condition to show a significant suppression of

PYR activity as compared to the initial (pre-nicotine) state (Fig. 3-14D). Therefore

our modelling results predict that post-nicotine withdrawal may exacerbate the 𝛼5

SNP-associated hypofrontality.

3.3.8 Population model of the PFC fitted to data in APP-

expressing mice predicts PYR hyper-activity reduction

by galantamine

In order to make predictions regarding activity changes in mice with amyloid beta

expression as a result of its interaction with nAChRs, we have used the same model-

ing framework as described above to fit model parameters to replicate mean activity

levels recorded in a variety of knock-out and APP-expressing animal groups (see

Figs. 3-9 and 3-10) in pyramidal as well as interneuronal populations. We have re-

laxed the bistability assumption on population activity, as the low-high state tran-

sitions were not consistently observed across all experimental activity recordings.
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Starting with the parameters best fitted on the nAChR activity data before as an

initial guess point for optimization, we ran a global optimization procedure based

on differential evolution with consequent local non-gradient optimization based on

the Nelder-Mead algorithm. All of the knock-out and APP groups were used to

formulate mean activity level targets for the fitting procedure. The nAChR inacti-

vation levels due to interaction with the amyloid beta peptide were treated as free

parameters for all three receptor subtypes and were fitted along with other model

parameters such as synaptic weights between populations. We found that it is possi-

ble to find parameter sets that closely replicate the activity trends between different

animal groups using the population model (Figure 3-12).
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Figure 3-9 – Summary of activity levels in different groups of APP-expressing mice
vs. control groups. (A) Representative recordings of spontaneous Ca2+ transients
in WT, WT APP, 𝛼7KO, 𝛼7KO APP, 𝛽2KO, 𝛽2KO APP, 𝛼5KO and 𝛼5KO APP
mice. The detected calcium transients are indicated in red. (B) Median frequency
of spontaneous Ca2+ transients/min of WT, WT APP, 𝛼7KO, 𝛼7KO APP, 𝛽2KO,
𝛽2KO APP, 𝛼5KO and 𝛼5KO APP mice. (C) Same, but for mean transient duration
in seconds.

We then used the fitted parameters that reproduce the activity in different animal

groups to make predictions regarding pharmacological manipulations of different

nicotinic receptor subtypes. In particular, we used the computational model to
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Figure 3-10 – Summary of interneuron activity levels in different groups of APP-
expressing mice. (Left column) Representative recordings of spontaneous Ca2+
transients in different interneuron populations in control and APP mice. (Middle
left column) Median frequency of spontaneous Ca2+ transients/min in different in-
terneuron populations in control and APP mice. (Middle right column) Cumulative
distribution of firing frequency (transient/min) in different interneuron populations
in control and APP mice. (Right column) Median transient durations in different
interneuron populations in control and APP mice.
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estimate the effects of 𝛽2 nAChR block (by setting the corresponding current value

to zero) as well as the effect of enhanced 𝛼5 nAChR activity (by setting the value of

the corresponding current to its maximal value) (see Figure 3-13). We have found

a reduction in pyramidal cell activity in both cases relative to the wild-type APP

activity level. This observation was then confirmed experimentally by treating the

wild-type APP mice with galantamine, which at a specific concentration used acts as

a positive allosteric modulator (PAM) of the 𝛼5-containing nAChRs. A reduction in

pyramidal cell activity was observed in mice treated with galantamine as opposed to

APP mice treated with vehicle (Figure 3-11), in correspondence with model findings.

Figure 3-11 – Galantamine restores PYR neuron hyperactivity early in AD. Top:
Representative recordings of spontaneous Ca2+ transients in WT APP vehicle and
WT APP galantamine treated mice. Bottom left: Median frequency of spontaneous
Ca2+ transients/min of WT APP vehicle (3.969±0.11 transients/min; n= 4 mice)
and WT APP galantamine treated mice (3.22±0.09 transients/min; n= 4 mice).
p=0.0286, Mann-Whitney test. Bottom center: Cumulative distribution of firing
frequency (transients/min) of WT APP vehicle and WT APP galantamine treated
mice. Bottom right: Median transient durations of WT APP vehicle (5.078±0.27
secs) and WT APP galantamine treated mice (5.269±0.18 secs). p=0.6857, Mann-
Whitney test.
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Figure 3-12 – Median simulated activity levels for the fitted population model in
pyramidal neurons and interneurons corresponding to different animal groups with
nAChR knock-outs and APP expression.

Figure 3-13 – Predictions on activity level change in the model fitted on APP data
upon a block of the 𝛽2-containing nAChRs or enhanced activity of the 𝛼5-containing
nAChRs.
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3.4 Discussion

In this work we developed a data-driven framework to model the influence exerted by

nicotinic cholinergic neuromodulation of the hierarchical inhibitory local circuitry in

the prefrontal cortex. We also showed how this inhibitory sub-circuit in turn controls

the spontaneous resting state activity. We used the resulting computational model

to account for effects of alterations in nAChR function by genetic manipulations

and mutations associated with schizophrenia. We specifically applied to model to

cellular imaging data obtained from the superficial layers of the prefrontal cortex of

genetically modified mice in quiet wakefulness.

3.4.1 Summary of the results.

What we learned from this modeling framework is two-fold.

First, the change of cholinergic input to the various GABAergic neurons, due

to the knockout of various types of nAChRs, could fully account for the change of

activity patterns recorded in the various mouse lines. The KO of the high-affinity 𝛽2

nAChRs, decreased the cholinergic input to the SOM population, thereby decreased

the subtractive inhibition of PYRs. Decreasing this specific type of inhibition in-

creases the stability of the network high activity states (H-states), increasing their

durations. In addition reduction of SOM-mediated additive inhibition decreases the

stability of the network low activity states (L-states), decreasing their durations.

Simulated KO of 𝛼5 nAChRs decreases the cholinergic inputs to the VIP interneu-

ronal population, decreasing synaptic inhibition of SOM interneurons. This in turn

increases the SOM-mediated inhibition of PYRs and leads to a significant decrease

of H-state stability, decreasing their durations. However, this SOM-inhibition in-

crease does not appear to lead to a significant increase of L-states durations. This is

because the VIP inhibition of the PV neurons is also decreased, boosting the divi-

sive inhibition of PYRs and having an opposite effect on L-state stability. Hence the

impact of VIP alterations on the SOM-PYR inhibition and the PV-PYR inhibition

balance out. The 𝛼7 nAChR have a lower affinity to ACh. Hence KO of the 𝛼7

nAChR leads to a relatively weaker decrease of cholinergic inputs to SOM and PV
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interneurons, which both, through subtractive and divisive inhibition respectively,

increase the stability, thus durations, of the H-states.

Second, simulated 7-day nicotine application could restore the PYR activity to

WT levels as compared to the 𝛼5SNP case because of a mixture of desensitization

and upregulation of 𝛽2 nAChRs. The model showed that activation of 𝛼5 nAChRs

by nicotine was not sufficient to compensate the 𝛼5SNP activity deficits. Upregu-

lation of 𝛽2 nAChRs after 7 days of treatment should lead to activity depression

in both WT and 𝛼5SNP cases when nicotine is removed, which could represent a

highly critical situation in schizophrenia patients. Hence, this work provides exper-

imentally testable predictions that the severity of symptoms in schizophrenia linked

to decreased neural activity might increase upon nicotine withdrawal.

3.4.2 Predictions of the model.

We summarize the predictions obtained with the proposed modelling framework as

follows:

• Based on the constructed model, we hypothesize that the ultra-slow firing rate

fluctuations in the prefrontal cortex are due to the internal bistable dynamics

of the connected neuronal populations in the layer II/III PFC local circuit,

with low-high activity state transitions triggered by inherent noise.

• The stability of the low-high states, and thus their life-times, are differen-

tially controlled by a hierarchy of interneuronal populations. In particular,

PV interneurons are key in supporting the activity balance in the PFC circuit,

with the synaptic VIP-PV connection pathway being dominant in controlling

network bistability.

• Reduced pyramidal neuron activity in 𝛼5 nAChR dysfunctions associated with

schizophrenia (e.g. in 𝛼5 SNP animals) can be normalized by enhancing the

𝛽2 nAChR activity, in particular under acute nicotine treatment.

• The model predicts that the existing 𝛼5 SNP-associated hypofrontality can be

significantly worsened by nicotine withdrawal.
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Figure 3-14 – (Previous page.) Desensitization and upregulation of 𝛽2 nAChRs
normalizes 𝛼5 SNP mice network activity to WT levels after chronic nicotine appli-
cation (A1) Distribution of PYR neurons firing rates for WT mice, computed from
simulations of nicotine effects on 𝛼7, 𝛽2, and 𝛼5 nAChRs. All distributions are
significantly different (Kruskal-Wallis, 𝑃 < 0.001). (A2) Distribution of PYR neu-
rons firing rates for WT and 𝛼5SNP mice, computed from simulations of nicotine
effects on 𝛼7, 𝛽2, and 𝛼5 nAChRs in 𝛼5SNP mice. All distributions are signif-
icantly different (Kruskal-Wallis, 𝑃 < 0.001). (B) Distribution of PYR neurons
firing rates for WT and 𝛼5SNP mice, control and treated with 2 days of chronic
nicotine application, obtained from simulations. All distributions are significantly
different (Kruskal-Wallis, 𝑃 < 0.001). (C) Distribution of PYR neurons firing rates
for WT and 𝛼5SNP simulated mice, control and treated with 7 days of chronic
nicotine application. All distributions are significantly different (Kruskal-Wallis,
𝑃 < 0.001). The model predicts an upregulation of 𝛽2 nAChRs. (D) Distribution
of PYR neurons firing rates for WT and 𝛼5SNP mice, control and after nicotine
removal following 7 days of chronic nicotine administration, predicted from simu-
lations. All distributions are significantly different (Kruskal-Wallis, 𝑃 < 0.001). A
total of 200 simulation repetitions with 500 state transitions each were carried out
to produce the simulated data.

• The population model fitted on activity data from APP-expressing mice pre-

dicted reduction in PYR population activity upon enhanced 𝛼5 nAChR cur-

rents, experimentally validated by galantamine treatment experiments in APP

mice.

3.4.3 Limitations of the model and future direction.

The prefrontal cortex is a well-connected brain region receiving inputs from multiple

brain regions. The complexity of the PFC circuitry, function and the multiplicity of

the potential mechanisms that could influence its activity dynamics suggest that one

may need to consider a range of compensatory, secondary and off-target effects when

analysing experimental conditions like receptor knockout or/and nicotine treatment

in animals Bernard [2020], Grashow et al. [2010], O’Leary et al. [2014], Wolff [2018].

These multiple effects could be potentially reflected in the constructed computa-

tional models. However, in the scope of this work, we primarily focused on the

cholinergic signaling components of the prefrontal cortex local circuitry as the main

source triggering activity changes in the PFC. Within this reductionist approach to

modelling, we were aiming to arrive at a minimal model that would be sufficient to
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explain our experimental data, assuming that the dynamics of the PFC circuitry is

controlled by a hierarchy of interneurons expressing distinct nicotinic receptor types.

While acknowledging that this is a strong hypothesis, there is experimental evidence

supporting our local activity modulation proposal. Our previous experimental work

Koukouli et al. [2016a] demonstrated that targeted nicotinic acetylcholine receptor

re-expression in layers II/III of the prelimbic cortex of the knockout mice completely

restores pyramidal neuron activity to the levels of the wild-type mice, justifying our

assumption that the activity change effects are due to receptor knockouts and are

not significantly influenced by the developmental issues of the studied animals. This

local re-expression also suggests that the effects we observed are unlikely to be simply

due to changes in the inputs to our circuit. Furthermore, knockouts of 𝛽2-containing

nAChRs were shown to completely shut down the activity of these receptors, with

its complete restoration by local re-expression Guillem et al. [2011], Maskos et al.

[2005], Avale et al. [2008]. Knockouts of 𝛼5-containing nAChRs were found to cause

dramatic shifts in dose-response curves for nicotine Morel et al. [2014], Besson et al.

[2019, 2018].

3.4.4 Implications for nicotine withdrawal in schizophrenia

Based on our work we may further speculate on the neurobiological explanation

for the high prevalence of smoking and low smoking cessation rate observed among

individuals with schizophrenia Anthenelli et al. [2016]. Our modelling framework

gives predictions that nicotine cessation should decrease the prefrontal activity in

both WT and the 𝛼5SNP PFC, with the most drastic hypofrontality seen in 𝛼5SNP

mice under nicotine removal. This predicted exacerbated decrease of pyramidal

activity is due to the upregulation of 𝛽2 nAChRs located on SOM interneurons,

induced by several days of chronic nicotine application. These model results beg

the question: might not the lower cessation rates seen in schizophrenia patients be

caused by a pronounced hypofrontality, induced by a combination of mutated 𝛼5

nAChRs located on VIP interneurons and the upregulation of 𝛽2 nAChRs located on

SOM interneurons. In fact, previous work showed that negative affect, one aspect

of the negative schizophrenia symptoms associated with hypofrontality, is a key
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contributor to the low quitting rate seen in smoker schizophrenia patients Tidey

et al. [2008]. At the same time pharmacotherapy, through the use of varenicline,

having similar nAChRs interaction mechanisms to nicotine, increases the abstinence

rate in smokers and even more drastically in schizophrenia patient who are smokers

(from 4.1% to 23.2%) Anthenelli et al. [2016]. We may suggest that these studies

lend support to our hypothetical conjecture.

3.5 Conclusions

Schizophrenia is a severe mental disorder implicating a large variety of symptoms,

among which apathy, abolition or social withdrawal, grouped as negative symptoms.

Nowadays, no specific treatment can be recommended to treat negative aspects of

schizophrenia pathology. Yet, it has been suggested recently that a mutation of

a specific type of nicotinic receptor was implicated in the reduced neural activity

levels recorded in the prefrontal cortex (PFC) of schizophrenia patients. Chronic

nicotine injections in mice expressing this mutation (𝛼5 SNP mice) permits to re-

store neural activities to control levels, consistent with the idea that schizophrenia

patients smoke to self-medicate. Using computational modeling, we showed that

nicotinic receptors located on a hierarchy of inhibitory neurons were able to control

ultra-slow neural activity fluctuations recorded in the PFC of mice. Furthermore,

our modelling framework suggests that 𝛽2 receptors are the nicotine’s main target

in restoring neural activity to control levels in 𝛼5 SNP mice. We provide a testable

model prediction that nicotine withdrawal in schizophrenia patients with the 𝛼5

SNP mutation should lead to a progressively severe hypofrontality. Lastly, we apply

our modeling framework to fit activity data in APP-expressing mice and make pre-

dictions for activity restoration upon pharmacological manipulations targeting 𝛽2-

and 𝛼5-containing nicotinic acetylcholine receptors.

To cast a wider perspective to our circuit-based dynamic modelling approach

opens a number of further avenues to both study specific disease-related alteration

of nicotinic modulation in cortical circuits and to identify potential points-of-entry

for therapeutic interventions.
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Chapter 4

Discovery of the cholinergic system

pathologies in the PFC from cortical

activity using machine learning
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In Chapter 2 of the thesis we have established that for a wide range of neural spik-

ing activity data sets one could effectively utilize approaches from machine learning

for time-series data to build predictive models and study the structure of recorded

neuronal activity and what information about the outside world is contained therein.

Machine learning approaches to neural decoding have been successfully applied to

practical tasks with potential engineering applications such as predicting position

of a rat chasing rewards on a platform from its hippocampal activity or predicting

a position of a cursor controlled by a monkey via moving a manipulandum from

its motor cortex activity Glaser et al. [2020]. What, however, remains relatively

unexplored is the application of machine learning methods to detect patterns of

pathological activity in neural circuits in animal models of neural disorders. In

this chapter, we consider a data set introduced in the previous chapter consisting

of recordings of pyramidal cell activity in the prefrontal cortex obtained in vivo in

genetically-modified animals with dysfunctions of specific nAChR subtypes associ-

ated with disorders such as schizophrenia and Alzheimer’s disease. We show that

it is possible to construct accurate predictive models that classify between healthy

control animals and animals with mutations specific for neural disorders.

4.1 Analysing prefrontal cortex activity in mice with

nAChR dysfunctions

We start by looking at the two-photon calcium imaging data from Koukouli et al.

[2017] introduced in the previous chapter comprised of recordings from pyramidal

cell from the layers II/III of the PFC in mice with genetic alterations of nAChR

expression. Alterations of resting dynamics in the prefrontal cortex have been hy-

pothesised to serve as biomarkers of schizophrenia Barch et al. [2001]. A mutation

of the 𝛼5 nAChR subunit, the rs16969968 single nucleotide polymorphism (𝛼5SNP),

is linked to both nicotine addiction and a functional cortical deficit associated with

reduced neural activity (hypofrontality) and is characteristic to schizophrenia pa-

tients Hong et al. [2010], Koukouli et al. [2017]. Here we look neural activity data

recorded in vivo in prefrontal cortices of mice with this specific nAChR mutation.
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A reduction of pyramidal cell firing is generally observed in these mice, similarly to

hypofrontality seen in humans, but an important question is whether there exist ac-

tivity patterns specific to thus mutation that could help separate single-neuron and

ensemble activity in such animals from activity recorded in healthy, control mice.

We investigate this question in depth in the rest of the chapter and identify the key

variables predictive of the 𝛼5 nAChR subunit dysfunction.

4.1.1 Two-photon imaging data pre-processing

In case of an activity classification task, the choice of the particular data pre-

processing pipeline could be solely driven by its contribution to the final attain-

able classification accuracy metric. To that end, the data pre-processing procedure

should remove as much irrelevant information and noise from the signal as possible

to maximize final prediction accuracy. One might assume that if the Ca 2+ fluo-

rescence traces are given as the input, it could be beneficial to not only perform

denoising of the extracted traces, but also to apply a deconvolution transformation

to produce a proxy signal of the firing activity of the given neuron Friedrich et al.

[2017]. In our work, we first perform trace normalization via baseline subtraction

regardless of the other transformations in the pipeline. This step is performed by

calculating the baseline resting fluorescence signal as the 8𝑡ℎ percentile of the val-

ues within a sliding window (20 seconds in size) applied to the fluorescence trace.

The baseline signals are then subtracted from each of the traces in the dataset and

the traces are also divided by the baseline values to standardize the variance. We

then optionally apply the deconvolution procedure to empirically validate whether

the spike extraction transformation could boost the attainable classification scores.

Being aware of the issues encountered when inferring the spiking activity from fluo-

rescence traces Stringer and Pachitariu [2019], we are not interested in obtaining a

perfect proxy for the spiking activity of the neurons in question. Rather, we aim to

transform the signals in way that maximizes the classification accuracy. One might

hypothesize that using firing proxy signals instead of raw fluorescence traces might

help classify pathological activity on the single-neuron level. We test this hypothesis

by comparing the baseline classification accuracy obtained with the raw traces to
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the values obtained with trace deconvolved using the OASIS algorithm Friedrich

et al. [2017]. An example set of activity traces prior to and after the pre-processing

procedure (without deconvolution) is shown in Figure 4-1.

4.1.2 PFC activity structure revealed with time-series fea-

tures

In terms of building a classification model from time-series data, we apply the same

approach to the pre-processed Ca2+ fluorescence signals recorded from the PFC as

the one we defined for ISI-encoded spike trains in Chapter 1. We first construct sets

of binary classification tasks by picking pairs of states from the data set and measure

the classification accuracies attainable by first encoding the time-series with tsfresh

features and then building an efficient nonlinear classifier on that embedding (e.g. a

random forest classifier). The cross-validation scheme that we employ for this task

is based on individual animal identifiers so that the train and test subsets do not

contain recordings from the same animals. Each sample in the data set corresponds

to a full recording from a single neuron in a certain experiment containing 1500

timestamps. We first consider two main models: (i) a simple baseline comprised of

a random forest classifier built on a set of 6 basic statistical features of the time

series and (ii) an RF classifier trained on top of a full tsfresh embedding of the

data. The difference in median accuracies between these models reveals the amount

of discriminative information that is contained in time-series characteristics beyond

the simple statistics like the mean and variance of the activity trace. It is com-

mon in experimental literature to measure the significance of the difference between

functional states and/or animal lines by running statistical tests on the aggregates

of the activity like the median firing rate between experiments. Much information

remains hidden, however, in other activity covariates and the states that are deemed

to be insignificantly different might appear to not be so if the appropriate activity

measure is chosen for the analysis. This is our main motivation for probing the

activity data in different animal lines for differences by building discriminative ma-

chine learning models in our constructed classification tasks instead of just looking
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Figure 4-1 – (Caption next page.)
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Figure 4-1 – Top: activity traces obtained by two-photon imaging of GCaMP6f
expressing neurons (data from Koukouli et al. [2017]), middle: a set of neural activity
traces from the same data set with pre-processing applied to the extracted signals,
bottom: value distribution histograms obtained from the pre-processed time-series
for two separate groups of animals – the wild-type control group and the group
with the 𝛼5-containing nAChR knockout mutation (aggregated over neurons over
animals).

at arbitrary activity aggregates. The power of the massive time-series feature en-

gineering approach here is then in the ability to automatically detect the activity

characteristics that allow distinguishing between activity states and then proceed to

decide whether the found differences are significant from a functional point of view.

In terms of our classification models, if the median accuracy attainable on the

full tsfresh embeddings does not significantly exceed that of the simple baseline, it

would mean that not much of discriminative information is contained in the data

(e.g. in the structure of the time-series) beyond the difference in basic statistics like

mean and variance. If the accuracies of the both types of models we consider are

on the chance level, it means that the activity series are indeed indistinguishable, at

least to the extent of the tsfresh representation. This is much stronger evidence of

similarity between activity states than the mere similarity between the mean or the

median activity levels. We have observed, perhaps quite surprisingly, such a simi-

larity between tsfresh embeddings of the PFC activity states that were previously

identified to be similar by just looking at the average firing rates of neural ensembles

inferred from Ca2+ fluorescence traces.

In the case when the simple baseline RF model shows a near-chance-level ac-

curacy but the full-tsfresh-embedding model shows a significantly higher accuracy

level, that means that the differences between activity states perhaps would not

have been observed by doing a classical statistical test on the average firing rates of

the neurons. Rather a more advanced approach such as building a machine learning

classifier is required in this case.

On the other hand, the absolute accuracy values obtainable by the full tsfresh

models are representative of what accuracy could be achieved in general in tasks

of predicting patterns of pathological neural activity (patterns induced by modeled
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WT traces
2KO traces
7KO traces
5KO traces

Figure 4-2 – Two-dimensional tSNE projection of the top-25 discriminative 𝑡𝑠𝑓𝑟𝑒𝑠ℎ
features for recorded neuronal activity traces in the imaging experiments for normal
and nAChR knockout states. Each point in the scatter plot corresponds to a trace
from a single neuron; activity states are color-coded.

WT traces
2KO traces
7KO traces
5KO traces

Figure 4-3 – Two-dimensional projection by a VAE model trained on vectors of the
top-25 discriminative 𝑡𝑠𝑓𝑟𝑒𝑠ℎ features for recorded neuronal activity traces in the
imaging experiments for normal and nAChR knockout states. Each point in the
scatter plot corresponds to a trace from a single neuron; activity states are color-
coded.
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WT

beta2 KO

alpha7 KO

alpha5 KO

Figure 4-4 – Graph representation of the Wasserstein distance matrix between the
distributions of the first tSNE mapping component in different knockout states.
Note the proximity of 𝛼7KO and 𝛽2KO states.

dysfunctions of the cholinergic system in the PFC, in particular).

Figures 4-2 and 4-3 show two-dimensional scatter plots as a result of two dimen-

sionality reduction techniques applied to tsfresh-encoded time-series in all nAChR

knock-out animal groups as well as the wild-type group. There is an apparent

structural difference between the distributions of embedded time-series samples in

different animal groups, also reflected as a graph representation of the Wasserstein

distance matrix of the first t-SNE mapping component of the data 4-4. Activity

patterns observed in 𝛼7 and 𝛽2 nAChR knock-out groups appear to be close, with

the 𝛼5 knock-out state appearing to be the farthest from all other states.

4.1.3 Detecting nAChR dysfunction from single-neuron ac-

tivity data with machine learning

As mentioned previously, we are aiming to build a predictive model for the animal

group (wild-type animals vs. animals with specific nAChR mutations) based on
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single-cell firing patterns, rather than activity data from a whole ensemble of cells.

The latter potentially contains more predictive information compared to the single-

cell case, given that the observed synchronicity patterns are found to change in

animals with nAChR knock-outs compared to wild-type animals Koukouli et al.

[2016a]. However, in part motivated by the small size of the available data set,

we found that it is indeed possible to build sufficiently accurate predictive models

based on single-cell activity traces as inputs. These results are promising, since they

imply that it would also be possible to build accurate predictive models using scarce

aggregate signals of neural activity such as local field potential recordings from just

several electrode locations. The problem of data scarcity, as we demonstrate further

on, could also be tackled with the use of data augmentation techniques for time-series

data.

We begin by defining a single binary classification problem: given activity record-

ings from wild-type animals and animals with 𝛼5-subunit containing nAChR knock-

out on the level of single neurons in the PFC, build a model that would predict if the

activity recording corresponds to the WT group or the mutant group. We extracted

signal chunks of 500 timestamps (corresponding to a recording of about 70 seconds)

with a rolling window with a step of 500 timestamps (hence 3 chunks per full neu-

ron recording) from across different experiments on different animals belonging to

the two groups. We first started with a tsfresh-based time-series feature extraction

approach whereby we encoded the pre-processed signal chunks as feature vectors

and trained a random forest classifier on that feature representation. First of all, we

compared the performance of the RF model on the full tsfresh vector representation

against the RF model trained on vectors of 6 basic statistics of the input time-series

(the mean, median, standard deviation values, maximal and minimal value across

the time-series and its absolute energy value). We found that the accuracy values of

the full tsfresh models is significantly higher than that of the baseline trained on sim-

ple statistics (see Figure 4-5). This means that there is information to be decoded

that would help classify the animal groups contained in the time-series beyond the

simple statistics. We have also found (Fig. 4-5) that denoising the input signals via

convolving with a small Gaussian kernel further boosted the accuracy scores of the
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Figure 4-5 – Test set accuracy and AUC-ROC score distributions in the 𝛼5 nAChR
KO detection task depending on the feature representation of the time-series and
its pre-processing. Distributions are computed over different train/test splits of the
data set and undersampling is performed to keep the class balance in the training
and testing data sets.
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tsfresh+RF models. On the other hand, applying the OASIS algorithm to get an

estimate of neuronal firing rate to be used as an input to the model did not result

in higher classification accuracy scores, but in similar accuracy values. This means

that most of the information needed for predictions is contained in the time-series

of neuronal firing rate, but the OASIS transformation itself leads to a distortion of

the signal that slightly decreases the accuracy scores.

We extracted feature importance scores from the random forest classifiers trained

on tsfresh-encoded data and used the top-30 most important features to produce

two-dimensional embeddings of the data using PCA and t-SNE algorithms, as shown

in Figure 4-6. There is a clear separation between the two-color coded clusters

corresponding to the two different animals groups. Figure 4-7 shows the ranking of

time-series features in the task of classifying the WT vs. 𝛼5KO animals. Note that

the most discriminative features revealed by the classifier are the features related to

the temporal structure of the time-series, rather than to the statistics of the value

distribution (like e.g. the mean or the median activity value). These results show

that rather than looking at basic statistics of recorded activity, one has to consider

the local and structure of neural activity to distinguish well between the healthy

control animals and the mutant group. Figure 4-11 shows the increase in accuracy

when several samples are available to make a single prediction, with the accuracy

value saturating at ∼ 80% if the base accuracy level (for a single sample) is around

67%, as we typically found for feature extraction based models in the WT vs. 𝛼5KO

classification task.

We further looked into what temporal patterns are most predictive of the nAChR

dysfunction. We employed a time-series classification algorithm named shapelet

learning Ye and Keogh [2009], whereby a representation of the time-series is learned

as a vector of distances to a set of fixed-size time-series named shapelets that are

defined as subsets of a time series, that is a set of values from consecutive time

points. The distance between a shapelet and a time series in the data set is defined

as the minimum of the distances between the shapelet and all the shapelets of

same length extracted from this time series. The most discriminative shapelets

for the classification task are learned via gradient descent. The number and sizes of
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WT
5KO

WT
alpha5KO

Figure 4-6 – Two-dimensional PCA (top) and t-SNE (bottom) embeddings of the
WT vs. 𝛼5KO neuronal signals data set encoded with top-30 most important tsfresh
features. Animal group is color-coded.

shapelets are hyperparameters of the algorithm and were chosen based on a heuristic

from Grabocka et al. [2014].

The results obtained with the shapelet learning algorithm in the WT vs. 𝛼5KO

animals classification task were interestingly on par with time-series extraction ap-

proaches (see Table 4.1) with only 6 shapelets and hence a 6-dimensional representa-

tion of the time-series. Learned shapelet waveforms and their corresponding spectra

are shown in Figure 4-9. Note the dominance of oscillatory components in the delta

range (specifically, the 0.75-1.25 Hz band) in the shapelets, suggesting that these

are the frequencies most predictive of the nAChR dysfunction.

To further look into the contribution of the different frequency band components
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Figure 4-7 – Feature importance scores extracted from a random forest classifier
trained on the tsfresh embeddings in the WT vs. 𝛼5KO animal classification task.
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Figure 4-8 – Confusion matrix (left panel) and ROC curve (right panel) of a ran-
dom forest classifier trained on tsfresh embeddings in the WT vs. 𝛼5KO animal
classification task.
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Figure 4-9 – Training results from the shapelet learning algorithm applied to the
WT vs. 𝛼5KO single-neuron activity classification task. Bottom: evolution of
cross-entropy loss value during shapelet learning. Top left: Learned shapelet wave-
forms after the end of the training. Top right: FFT spectra of the shapelet wave-
forms. Note the peaks in the 0.75-1.25 Hz frequency band (the delta band) in many
shapelets.
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Model (training data) Balanced test
set classification
accuracy

catch22 + Random Forest 0.64251
tsfresh + Random Forest 0.64815
Shapelets (1500 epochs, Adam with lr=1e-2, 𝜆 = 0.01) 0.64734
Shapelets (1500 epochs, Adam with lr=1e-2, 𝜆 = 0.001) 0.65942
Vanilla FCN, 20 epochs with lr=1e-3 0.68518
catch22 + Random Forest (band-pass filtered, 0.25-0.75 Hz) 0.570048
catch22 + Random Forest (band-pass filtered, 0.75-1.25 Hz) 0.644122
catch22 + Random Forest (band-pass filtered, 1.25-1.75 Hz) 0.568438

Table 4.1 – Test set accuracy in the WT vs. 𝛼5KO classification task (with a fixed
train/test split and class-balanced training and testing data) achieved with different
time-series classification methods (and data pre-processing strategies).

in the input signals to the classification accuracy, we carried out training experiments

on band-pass filtered input signals for a range of 0.5 Hz wide frequency bands in

the delta range. Figure 4-10 shows the classification accuracies of the random forest

classifiers trained on catch22-encoded band-pass filtered data depending on the fre-

quency range (also see 4.1). Note a peak around the 0.75-1 Hz range for both the

accuracy and the AUC-ROC metrics, suggesting that this range contains the most

discriminative information useful for the considered classification task.

Table 4.2 shows the Wasserstein distances between feature value distributions

for the wild-type and the 5KO animal groups for basic statistics and tsfresh features

with the highest importance scores extracted from a trained random forest model.

Note that the separation between the two animal groups is higher when the tsfresh

features that reflect the temporal structure of the samples are considered rather

than simple statistics. This is in particular important when considering the effect

of pharmacological interventions in both animal groups on the activity levels.
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Figure 4-10 – Classification accuracy (top panel) and AUC-ROC scores (bottom
panel) in a WT vs. 𝛼5KO neural activity classification task with Catch22 + Random
Forest classification models trained on band-pass filtered signals depending on the
frequency range in the band.
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Time-series feature Wasserstein distance between
WT and 𝛼5KO groups

Mean value 0.194852
Median value 0.250456
Standard deviation value 0.429985
Permutation entropy (dimension=7, 𝜏 = 1) 0.871484
1st AR coefficient (k=10) 0.751611
Matrix profile (feature="75", threshold=0.98) 0.614185

Table 4.2 – Wasserstein distance values between time-series feature value distribu-
tions in WT and 𝛼5KO animal groups.

4.2 Detection of 𝛼5 subunit containing nAChR dys-

function from interneuronal activity and the ef-

fect of nicotine application

We have further investigated whether the pathological activity could also be inferred

from the activity of interneurons in the PFC. Previously, we have shown that the

imaged PYR neuron activity is predictive of the 𝛼5-containing nAChR mutations.

Figure 4-12 shows classification accuracy and AUC-ROC scores when using activity

of PV and SOM interneurons as input data to the model. Significantly higher

classification scores for PV interneurons suggest that the activity changes caused

by the 𝛼5 nAChR knockout are most prominent in PV interneurons compared to

SOM interneurons and pyramidal cells as well. Given that PV interneurons could

be accurately classified from other interneuron types by their activity trace features

Troullinou et al. [2020], one could first predict the neuron type in case it is not

known and then weigh predictions from different neurons based on the predicted

type, with predictions from PV interneuron traces having the largest weights.

Figure 4-13 shows the accuracy and AUC-ROC scores for two binary classifica-

tion tasks: (i) WT vs. 𝛼5SNP animal classification and (ii) classification of WT vs.

𝛼5SNP animals after nicotine application. One could observe the reduction of clas-

sification scores to almost chance level when trying to train a model to predict the

presence of the 𝛼5SNP mutation after nicotine application, with above-chance-level

accuracy for the 𝛼5SNP animals without nicotine application. This result strongly
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Samples are independently taken from the training set.
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Figure 4-12 – Accuracy (left panel) and AUC-ROC (right panel) scores in the WT
vs. 𝛼5KO animal group classification task from the imaging activity recordings of
PV and SOM interneuron subtypes. Note significantly better classification quality
in the case of PV recordings, implying that PV interneurons are affected the most
by the knock-out.
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Figure 4-13 – Accuracy (left panel) and AUC-ROC (right panel) scores in the WT
vs. 𝛼5SNP animal group classification task under control conditions and after nico-
tine application in the SNP group. Note the poor classification quality in the case
of nicotine application, implying significant activity restoration in 𝛼5SNP animals
subject to nicotine application.

supports the activity re-normalization hypothesis due to nicotine in 𝛼5SNP animals.

It is important to note that the previously observed nicotine normalization effect

Koukouli et al. [2016a] was measured the by lack of difference in estimated average

per-animal firing rates. We have, however, demonstrated that it is not possible to

train an accurate machine learning model to differentiate between WT 𝛼5SNP-Nic

animal groups based on a range of different time-series features computed from the

imaged activity traces. This means that the activity is restored after nicotine ap-

plication as measured not only by the mean firing rate or other simple statistics of

the activity traces, but also by comprehensive vector encodings of the corresponding

time-series.

4.3 Detecting the effect of beta-amyloid expression

on the activity of PFC neurons

We next turn to the imaging data in mice with AD-like activity deficits, elicited using

an adeno-associated viral vector expressing the human mutated amyloid precursor

protein (AAV-hAPP) Koukouli et al. [2016b]. Intracranial injection of AAV-hAPP

causes 𝐴𝛽 production as early as one month post-injection, leading to increased

pyramidal cell activity when injected in the prefrontal cortex. We collected data
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Figure 4-14 – Accuracy score distribution over different train/test split in the task
of classifying wild-type animals from the ones with A𝛽 expression depending on
the neuron type in the PFC. Note the low classification quality obtained with VIP
activity data recordings suggesting the significant invariance of the VIP population
to A𝛽 expression.

from wild-type APP expressing mice as well as nAChR knock-out mice expressing

APP and formulated a set of different neural activity classification tasks between

animal groups.

Figure 4-14 shows the accuracy scores in the tasks of predicting animals with

the APP expression depending on the neuron type that the activity traces are taken

from. The most significant change in activity, and hence highest classification scores,

are seen in the pyramidal neuron traces, with classification scores almost as low as

the chance level for the VIP interneuron traces. The latter observation hints at the

apparent invariance of VIP activity to APP expression, not as apparently present

in PV and SST interneuron groups.

Figure 4-15 shows obtained classification scores for the three classification tasks

of detecting the animals with expressed A𝛽 versus the control group in animals with

genetic knock-outs of three different receptor groups – 𝛼7, 𝛽2, 𝛼5-subunit contain-

ing nAChRs, respectively. The accuracy score level allows to evaluate the strength

of A𝛽 expression in disrupting neural activity in different knock-out animal groups.
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Figure 4-15 – Accuracy score distribution over different train/test splits in the task
of classifying control nAChR knock-out animal groups from the knock-out groups
expressing A𝛽.

Figure 4-16 shows AUC-ROC classification scores when classifying between APP-

expressing mice versus two different groups with pharmacological manipulations –

one control one (with vehicle injection) and another with galantamine injection. We

have demonstrated in Chapter 3 that galantamine application leads to reduced ac-

tivity levels relative to the wild-type APP-expressing animal group. This is directly

reflected in the classification score values, which could be interpreted as inter-group

activity difference scores as reflected by the trained machine learning models. The

classification scores in the APP vs. APP with galantamine application classifica-

tion task are found to be significantly higher than scores in the control task with

vehicle-injected animals.

4.4 Conclusions

In this Chapter, we have shown that the nicotinic acetylcholine receptor dysfunc-

tions in the prefrontal cortex associated with common nervous system disorders lead

to changes in activity of all neuron types which can be accurately detected with ma-

chine learning approaches on the single-neuron scale. Applying a range of different
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Figure 4-16 – AUC-ROC score distribution over different train/test splits in the task
of classifying control 𝐴𝛽-expressing animal groups vs. 𝐴𝛽 animals with vehicle and
galantamine injections.

machine learning algorithms to the dataset of imaged neural activity in the PFC in

different animal groups allowed us to reveal the time-series features most predictive

of dysfunction as well as the primary frequency bands associated with patterns of

pathological activity. We have also used the obtained classification scores in tasks

involving different animal groups to support the hypothesis of activity restoration

in animals with the 𝛼5SNP mutation after nicotine application and the hypothe-

sis of VIP interneuron activity invariance in animals with beta-amyloid expression

relative to the control group. In summary, we have demonstrated the effectiveness

of machine learning as a tool to extract the features of neural activity most predic-

tive of disease as well as a tool to evaluate effects of genetic and pharmacological

manipulations on neural circuit activity.
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Chapter 5

Deep learning models detect markers

of early amyotrophic lateral sclerosis

from neural activity and movement

data

Ivan Lazarevich, Suhel Tamboli, Lisa Topolnik

To be submitted to Cerebral Cortex as a part of: Amalyan, S., Tamboli, S., Lazare-

vich, I., Topolnik, D., Bouman, L. H., Topolnik, L. (2021). Impaired motor cortex

function in female mice with a C9orf72 genetic expansion.

I.L. and L.T. conceived and designed computational experiments. I.L. performed

computational experiments. S.T. and L.T. performed all in vivo experimental work.
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In this Chapter, we apply the approach developed in the previous chapters to a

data set of cortical activity in animal models of early amyotrophic lateral sclerosis.

The task is to detect the markers of the disease from the recordings of ensemble

activity in the motor cortex in freely-behaving animals. We demonstrate that the

time-series feature extraction approach does not work well for this task and propose

an alternative based on deep convolutional networks. All experimental data used

in this chapter were acquired at the Topolnik lab, Universite Laval, Quebec City,

Canada.

5.1 Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating incurable disease, in which pro-

gressive loss of upper and lower motor neurons causes muscle weakness and loss

Rowland and Shneider [2001]. Most of the cases of ALS are sporadic, whereas only

10% have a family inherited history Gros-Louis et al. [2006], and until now, no

definitive cause is known for ALS. The most common genetic abnormality identified

in familial and sporadic ALS cases is a GGGGCC (G4C2) hexanucleotide repeat

expansion in the C9orf72 gene DeJesus-Hernandez et al. [2011]. Recently, the first

mouse model has been developed, which reproduces the human form of C9orf72

repeat expansion with ∼500 𝐺4𝐶2 repeats (C9-500; Liu et al. [2016]), and, depend-

ing on genetic and environmental factors Mordes et al. [2020], demonstrates some

behavioral and neuropathological features of ALS/FTLD Liu et al. [2016]. We used

the C9-500 mouse model to directly explore the impact of an ALS/FTLD risk gene

mutation on the activity of neuronal circuits involved in the control of motor func-

tions. We utilized calcium imaging data recorded in these mice and machine learning

approaches to link motor cortex activity and movement in healthy animals and in

ALS pathology.
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5.2 Neural activity data in the model of the early

amyotrophic lateral sclerosis

The data comprises simultaneous recordings of neural activity in the motor cortex

captured by calcium imaging and movement data (speed signals) in healthy (con-

trol) mice and mice carrying the most common ALS mutation – c9orf72. Calcium

signals in axons of pyramidal neurons in the motor cortex were imaged using fiber-

photometry on awake mice. During experiments, mice were freely moving with a

wireless miniature fiberscope attached, the animal speed was recorded simultane-

ously with the calcium signals. The sampling rate of the calcium signal was close to

100 Hz, with recording duration of around 300 seconds per animal (per experiment).

The video camera used for speed recording captured 10 frames per second, so we

upsampled the raw recorded speed signals using standard linear one-dimensional

interpolation with an upsampling factor of about 10 to match the number of times-

tamps in the imaged calcium signal. Then, the dataset consists of recordings from

7 wild-type (control) animals and 7 mutant animals, with a single signal of about

30000 timestamps per animal (in both neural activity and speed modalities). The

neural activity signal is an aggregate proxy for the ensemble activity of the motor

cortex, rather than single-neuron activity. The amount of data is hence limited with

a single two-channel signal per animal and 14 animals recorded in total.

We applied standard pre-processing to signals of both modalities: a linear de-

trending procedure and standard scaling along the time axis (subtracting the mean

and dividing by the standard deviation). We further applied a denoising proce-

dure to both channels in the signal by convolving them with a Gaussian kernel with

𝜎 = 10 timepoints. We then applied a rolling window of size equal to 500 timestamps

with a step of 100 timestamps to produce a dataset of fixed-length time series of

both activity classes (control mice and mutant mice). This procedure resulted in a

dataset of 3609 samples with 2 channels (modalities) and 500 timestamps each. The

objective is to train a machine learning model to predict the class label (0 for con-

trol, 1 for mutant) which essentially boils down to a multivariate binary time-series

classification problem. The average target variable value in the dataset is 0.4989,
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the dataset is thus fairly balanced. The presence of two distinct modalities in the

data allows us further to evaluate the amount of predictive information contained in

the neural activity data and in the movement data alone and in their joint dynam-

ics (i.e. features of the interaction between motor cortex activity and movement)

and to also estimate how much the recorded data contributes to prediction quality

depending on the animal state (e.g. during low-mobility and high-mobility periods).

5.3 Model validation scheme

Due to the small size of the full dataset, we did not perform a single train/test split,

but rather utilized a leave-one-out cross-validation scheme, whereby we performed

14 training experiments for each model corresponding to every one of the animals

being consecutively put into the test set while the rest of the data comprised the

train set. Therefore, for each of the 14 experiments, the test set is comprised of the

500-timestamp time-series chunks corresponding to a particular animal ID, with that

animal being in either the control or the mutant group. The trained model is then

used to output the probability of the time-series sample belonging to the mutant

group independently of each sample and either the average probability or the average

predicted label (thresholded probability) is taken as the output probability of the

animal belonging to the mutant group. We did not perform class balancing of the

training datasets in any of the reported training results, as we found empirically that

the inherent class imbalance caused by the described train/test dataset construction

did not significantly impact the obtainable accuracy scores. Example visualization

of model predictions distributed across training trials of an FCN model can be seen

in Fig. 5-5. We base the ranking of different approaches on the cross-entropy loss

function for median model predictions averaged across animals.
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5.4 Visualizing data set structure by hand-crafted

time-series feature encoding

We first began exploring the dataset using the massive time-series feature extraction

approach whereby we encoded each of the time-series samples as vectors of features

computed as pre-determined manually-engineered functions of the time-series. We

started with the neural activity modality only and encoded the samples using the

tsfresh package Christ et al. [2018]. After sample-wise normalization of every fea-

ture column and discarding of the low-variance features, we trained a random forest

classifier model (with 1000 decision tree estimators with a maximal depth of 5) to

predict whether a sample came from a WT or a mutant animal. We used the fea-

ture importance scores from the random forest model to condense the feature set

to 30 most discriminative ones (the ones with highest importance scores). We then

performed a two-dimensional embedding of the computed 30-dimensional feature

vectors using a linear (PCA) and a non-linear (t-SNE) embedding techniques to

visualize the dataset structure (Figure 5-1). One can note the lack of clear visual

separation between points corresponding to either WT or mutant animals (points

being color-coded). We observed a similar picture for tsfresh-encoded speed signal

samples (Figure 5-2) as well as feature vectors comprised of features extracted from

both neural activity and speed time-series (Figure 5-3). This lack of clear separation

in manually-constructed time-series feature space is also reflected in poor classifica-

tion quality obtained with models trained on time-series feature representation of

the data. Figure 5-4 shows the model predictions across time-series samples for each

animal separately in the test set obtained with random forest classifier trained on a

Catch22 encoding of the dataset Lubba et al. [2019] for (i) only the neural activity

modality, (ii) only the speed modality and (iii) both modalities (with features from

modalities concatenated to form larger feature vectors). What we observed was poor

performance in predicting the wild-type animals (particularly for animals with IDs

0, 1, 2) and overall high variance (hence uncertainty) including the predictions for the

mutant animal group. This feature extraction approach is inherently designed for

univariate time-series and the final predictions could only be obtained as a function
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of aggregate features each extracted from a single given modality. As we demon-

strate further, the interaction between cortical activity and movement time-series is

essential to obtain accurate model predictions in this task.

5.5 Pathological activity detection with deep con-

volutional neural networks

We next turn to deep learning models for time-series to solve our classification

problem. Deep neural nets can tackle multi-variate time-series classification by

design, with each modality incorporated as a separate channel in the input tensor.

We found that a simple one-dimensional convolutional architecture named FCN

could provide sufficiently good predictions when trained on signals of both modalities

represented as different input (one-dimensional) image channels (Figure 5-5). The

results we obtained with this baseline model in terms of per-animal predictions

correspond to 3 falsely classified animals (animal 0 is a false positive – a WT animal

classified as a mutant and animals 9 and 12 are false negatives – mutant classified

as control animals). The predictions are done by comparing the median predicted

label over training trials with a pre-defined confidence threshold, in our case equal

to 0.5 and specified with a dashed horizontal line in Fig. 5-5. In other words, after

each training trial the model is used to predict a discrete label (0 or 1) for each

of the samples in the testing set (all of these samples corresponding to a single

animal), the per-sample mean of predicted labels is aggregated over several training

runs (7 in our case) and the median value is given as a final output probability

of the animal belonging to the mutant group. The decision whether the animal

belongs to the mutant group is made whenever the output probability for the animal

exceeds the 0.5 threshold. Figure 5-5 also shows the distribution of mean per-sample

probabilities of being in the MUT group over separate training runs in the bottom

panel. The decision to aggregate results from different training runs stems from the

variability in neural net training observed depending on the random initialization of

its weights. This variability is demonstrated in Figure 5-6 where the dynamics of the

test set loss (the cross-entropy loss on the test set) and the test set accuracy during
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Figure 5-1 – Top: Scatter plot of a two-dimensional PCA embedding of the motor
cortex activity time-series encoded by top-30 tsfresh features (with features sorted by
importance scores determined from a random forest classifier trained on the dataset).
The class labels are color-coded with red points corresponding samples from control
animals and blue points to samples from mutant ones. Bottom: similar scatter plot
of the top-30 tsfresh features of neural activity time-series embedded with a t-SNE
algorithm.
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Figure 5-2 – Top: Scatter plot of a two-dimensional PCA embedding of the animal
speed signal time-series encoded by top-30 tsfresh features (with features sorted by
importance scores determined from a random forest classifier trained on the dataset).
The class labels are color-coded with red points corresponding samples from control
animals and blue points to samples from mutant ones. Bottom: similar scatter plot
of the top-30 tsfresh features of the animal speed signal time-series embedded with
a t-SNE algorithm.
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Figure 5-3 – Top: Scatter plot of a two-dimensional PCA embedding of the top-30
feature vectors obtained by combining tsfresh features from both neural activity
and speed signal time series (with features sorted by importance scores determined
from a random forest classifier trained on the dataset). The class labels are color-
coded with red points corresponding samples from control animals and blue points
to samples from mutant ones. Bottom: similar scatter plot of the top-30 tsfresh
features from both neural activity and speed signal time series embedded with a
t-SNE algorithm.
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Figure 5-4 – Accuracy scores (average predicted labels) per animal over training
trials of a Catch22 time-series classifier trained on (top) neural activity, (middle)
movement data and (bottom) neural activity + movement data using the leave-one-
out cross-validation scheme.
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Figure 5-5 – Top: Accuracy scores (average predicted labels) per animal over training
trials of an FCN model trained on neural activity + movement data using the leave-
one-out cross-validation scheme. Blue part of the chart (animal IDs from 0 to 6
correspond to WT animals, the rest to the mutant group). Thresholding the average
labels with a value of 0.5 to get the animal-wide predictions leads to a single false
positive error (animal ID 0) and two false negative errors (animal IDs 9 and 12).
Bottom: same for per-sample average mutant class probabilities for each animal.
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training is visualized for different training runs and different animals. The animals 2

and 13 are correctly classified, but the accuracy of a single run could be close to 0.5

meaning that approximately half of the samples in the test set are misclassified. This

is resolved by averaging predictions over different training runs, which consistently

converge to an accuracy value higher than 0.5, also demonstrated in Figure 5-7

depicting probability distributions over samples in the training set across training

runs. Figure 5-6 also demonstrates that the default amount of iterations of the FCN

model (50 training epochs) is sufficient for the model to converge to certain local

optimum.

The model used to generate predictions for the referred figures is a model named

FCN (fully-convolutional network) which is a VGG-like model (FCN baseline from

Fawaz et al. [2020]). The default architecture consists of three convolutional layers

(with BatchNorm layers and ReLU activations following the convolutions) with ker-

nel sizes [7, 5, 3] and output channel counts [128, 256, 128], respectively, followed by

a global average pooling layer and a fully-connected classification head. We found

this simple architecture hard to beat with more advanced deep learning approaches,

as detailed in the following section.

5.6 Choice of DNN architecture: an ablation study

We compared performance of a range of different neural net architectures commonly

used for sequence modeling in general and time-series classification in particular such

as various one-dimensional convolutional architectures such as the FCN Wang et al.

[2017], XCM Fauvel et al. [2020] and InceptionTime Fawaz et al. [2020] as well as

non-convolutional architectures such as the fully-connected MLP Fawaz et al. [2019],

Transformers and more recent Time-Series Transformers (TSTs) Zerveas et al. [2020]

as well as an array of different recurrent architectures like LSTMs Hochreiter and

Schmidhuber [1997] and GRUs Chung et al. [2014]. Surprisingly, we found that the

simple FCN baseline appears quite hard to beat with more advanced approaches.

The default hyper-parameters for the training procedure used throughout the work

are a constant learning rate schedule with a learning rate of 1e-3 and 50 training
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Figure 5-6 – The dynamics of test set cross-entropy loss (top panels) and test set
accuracy (bottom panels) during neural net training across different training trials
for different animals. Animals 0 and 12 correspond to misclassfied animals from WT
and MUT groups, respectively, animals 2 and 13 are correctly classified animals from
the two respective groups. Note that generally neural net training converges to a
similar accuracy values regardless of random initialization.
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Figure 5-7 – Per-sample distributions of probabilities of test set samples belong-
ing to the mutant group over training trials. Note the distributions for animal 2
highlighting the need for averaging the final predictions across training runs.
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epochs and an SGD optimizer, with a PyTorch-based implementation of the training

procedure provided in the tsai package Oguiza [2020]. We did not use data aug-

mentations unless specified (augmentations were used in the state-dependent sample

selection experiments to speed up the training). First, we selected a single animal

to first evaluate a whole zoo of architectures available in the tsai package on. We

observed that the animals typically misclassified by the FCN models after training

(such as animal 0 and animal 9) were also incorrectly classified by the other architec-

tures we tested. We thus focused on an animal that was correctly classified in most

cases but had a high uncertainty in neural net predictions, in particular animal 2.

Data recorded from that animal was used to construct a test set of samples and the

corresponding performance results of the different DNN architectures are shown in

Figure 5-8. The top panel of the figure 5-8 demonstrates scores obtained with differ-

ent convolutional architectures, with the FCN model being an apparent leader, both

in terms of median accuracy and in terms of having low variability of accuracy scores

across training runs. The bottom panel of Figure 5-8 shows performance across

primarily non-convolutional architectures. LSTM has significantly better accuracy

scores compared to vanilla RNNs and GRUs (which results in a misclassification for

animal 2), but we found that LSTM performance was not consistent across other

animals (ones from the mutant group in particular). Transformer models were found

to be among the better performing ones, in particular when the learning rate was

reduced by an order of magnitude (with a fixed value of 1e-4 throughout training),

however this class of models was observed to have large variance in final accuracy

scores. This effect of large variance in predictions was further confirmed during

evaluation on every one of the 14 animals (see Figure 5-11). Recognizing the FCN

as one of the best performing architectures on our task, we have further looked into

how the hyperparameters of the model affect the obtained classification accuracy.

Figure 5-9 shows how the accuracy obtained on the test set comprised of the animal

2 varies with different output channel count layouts, number of layers and the input

size. Reduction of the per-layer output channel counts by factors of 4 or 8 results in

higher accuracy variance, while the median accuracy remains on a sufficiently good

level even for the [16, 32, 16] channel layout. Accuracy variance is somewhat reduced
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with a higher number of channels in the first layer of the network. We have also

found that the vanilla layer layout can benefit from a lower input resolution, which

we obtained by average pooling the input time-series with a factor of 4 (hence, a

resolution of 125 timestamps instead of original 500). Classification performance did

not significantly improve from the addition of the squeeze-and-excitation blocks to

convolutional layers, nor from increasing the depth of the network to 4 or 5 layers

(see the bottom panel of Figure 5-9). We further checked whether increased accu-

racy variance due to reduced channel count was present across all animals during

the leave-one-out validation, which turned out to be true (see Figure 5-10), with an

increased variance in predictions in spite of the same number of misclassified animals

as for the vanilla FCN model.

5.7 Prediction accuracy as a function of input data

modality and animal state

An important question to tackle when analyzing the predictions obtained in the

given task with a deep convolutional neural net is whether predictive information

that the network learns to extract from input signals is contained in the interaction

between the two input modalities (cortical activity and movement) or it is contained

in each modality separately. We have previously seen that nonlinear combinations of

aggregate time-series features from both modalities separately provide poor predic-

tive quality. We hence designed ablation experiments for our neural network training

whereby we trained our best performing architecture (vanilla FCN) on input tensors

with only a single input channel corresponding either to cortical activity time-series

or speed signal time-series. The results obtained with FCN models trained on single-

modality data are shown in Figure 5-12. Interestingly, we have found that relatively

poor prediction quality is observed in both cases, with the cortical activity data

apparently containing more predictive information compared to movement data in

general. These results, however, strongly suggest that it is the interaction between

the two modalities that is learned by the neural networks that allows accurate pre-

dictions, since this level of classification performance cannot be reached considering
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Figure 5-8 – Accuracy score distributions (accuracy scores collected over different
training runs) for the test set consisting of samples corresponding to the animal 2
(the rest of the samples in the training set) depending on the neural net architecture
with (top panel) common convolutional architectures for time-series classification
and (bottom panel) some other architectures widely used for sequence modeling
such as recurrent networks and transformers.
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Figure 5-9 – Accuracy score distributions (accuracy scores collected over different
training runs) for the test set consisting of samples corresponding to the animal
2 (the rest of the samples in the training set) for FCN models with different hy-
perparameter values – numbers of output channels, numbers of layers and inputs
sizes.

136



0 1 2 3 4 5 6 7 8 9 10 11 12 13
Animal ID (blue: control, red: mutant animals)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 p
ro

ba
bi

lit
y 

of
 b

ei
ng

 M
UT

Distribution of average predicted labels over training trials for each animal
(FCN model with [32, 32, 32] channels trained on neural activity data + speed signal)

Figure 5-10 – Accuracy scores (average predicted labels) per animal over training
trials of an FCN model with [32, 32, 32] output channel layout (other parameters
same as in the default model) trained on neural activity + movement data using the
leave-one-out cross-validation scheme. Blue part of the chart (animal IDs from 0 to
6 correspond to WT animals, the rest to the mutant group).
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Figure 5-11 – Accuracy scores (average predicted labels) per animal over training
trials of a Transformer model with 64 self-attention heads trained on neural activity
+ movement data using the leave-one-out cross-validation scheme. Blue part of the
chart (animal IDs from 0 to 6 correspond to WT animals, the rest to the mutant
group).
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single modalities separately.

Another important question to address here is whether all the recorded data

evenly contributes to neural net training, in other words, whether some of the time-

series samples contain significantly more predictive information than others and

whether there exist a simple heuristic to filter out the unimportant samples. This

issue can be addressed by considering that the ALS-inducing mutation leads to

movement impairment in general, so it would be sensible to hypothesize that the

periods of high mobility (reflected in the speed data) could more strongly reveal the

presence of the pathology rather than the resting low-mobility periods also present

in the recordings. We tested this hypothesis by simply filtering the samples in the

dataset based on the average speed value in every sample. We defined the samples

corresponding to high-mobility periods as the ones with the mean speed value in

the sample exceeding a certain threshold (which an adjustable parameter of the

dataset filtering procedure) and, conversely, the low-mobility period samples as the

ones with the mean speed value below a certain threshold. Based on the speed

distribution and in order to keep around 1500-2000 samples in the training set after

the filtering, we selected a threshold value for high-mobility periods as 0.08 m/s

and a threshold for the low-mobility periods as 0.05 m/s. Sample filtering based

on the average speed value was applied to both the training set and the testing

set to preserve the similarity in the training and testing data distributions. This,

in particular, means that the test set in all of the evaluation runs is reduced in

terms of the amount of samples. Since the size of the training set is reduced by

the filtering procedure, we found that a larger amount of epochs is required to

reach convergence or, alternatively, data augmentation could be used to increase

the size of the dataset. We found that both approaches work equally well in terms

of final classification quality. To augment our time-series dataset, we use simple

transformations such as adding Gaussian noise, time warp (random changes of the

timeline) and drift (random drift of a set of consecutive values in the time-series).

The classification results obtained using the FCN model trained on samples

corresponding to low-mobility and high-mobility periods in the recording are shown

in Figure 5-13. Interestingly, the classification quality significantly drops when the
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Model (training data) Log-loss value
FCN (neural activity + speed) 0.56551
FCN (neural activity + speed; high mobility periods) 0.54462
FCN (neural activity + speed; low mobility periods) 8.02311
FCN-[32,32,32] (neural activity + speed) 0.62741
Transformer (lr=1e-3) (neural activity + speed) 0.58114
FCN (neural activity) 0.56623
FCN (speed data) 0.60688

Table 5.1 – Logistic loss score values computed over the animals in the data set for
different models and training data preparation strategies evaluated.

network is trained on samples extracted from low-activity periods in the recording.

On the other hand, the classification performance slightly increases overall when

only high-mobility samples are used for training. Using predictions from the best

performing model we obtained on high-mobility period samples (see the top panel of

Figure 5-13) we only ended up with two misclassified animals (one from the WT and

one from the mutant group). These results imply that the predictive information

about whether the animal demonstrates pathological activity is mostly contained in

signals recorded during high-mobility periods and thus isolating time-series samples

corresponding solely to these periods could potentially improve predictive power of

the models trained on these data.

5.8 Conclusions

In summary, we have demonstrated that one could detect patterns of pathological

activity from the signals recorded in the motor cortices of C9orf72 mice. The dis-

criminative features to be used for accurate classification of mutant animals have

to be learned by a deep neural network, and the amount of predictive information

contained in the cortical activity alone does not lead to the best classification results

alone. We have shown that it is the interaction between the movement signal and

the cortical activity that is highly predictive of pathology, with the amount of pre-

dictive information in the data being state-dependent, found to be highest during

high-mobility periods of the animal. We hope that these observations could further

help design paradigms of early diagnosis of the ALS in human patients.
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Figure 5-12 – Accuracy scores (average predicted labels) per animal over training
trials of a base FCN model trained on (top panel) only neural activity time-series and
(bottom panel) only speed signal time-series using the leave-one-out cross-validation
scheme. Blue part of the chart (animal IDs from 0 to 6 correspond to WT animals,
the rest to the mutant group).
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Figure 5-13 – Accuracy scores (average predicted labels) per animal over training
trials of a base FCN model trained on time-series samples of both modalities cor-
responding to (top panel) high-mobility periods meaning that the average animal
speed within the sample is higher that 0.08 m/s and (bottom panel) low-mobility
periods meaning that the average animal speed within the sample is lower that 0.05
m/s. Evaluation is done using the leave-one-out cross-validation scheme.
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Chapter 6

Discussion

Across the chapters of this thesis, we aimed to better understand how to apply ma-

chine learning and computational modelling to create and improve systems capable

of detecting signs of pathological activity from neural circuit level data. We started

by defining a common evaluation benchmark for single-neuron activity classifica-

tion models in Chapter 2, keeping in mind that a similar kind of problem setup

would further be extended to pathological activity detection problems. The evalu-

ation benchmark for spike train classification is based on several open-access data

sets, and we hope that this benchmark would facilitate the advancement of machine

learning approaches (and, in particular, deep learning approaches) for spike train

data and for neural decoding in general. We found that a strong baseline for spike

train classification is an approach based on time-series feature extraction, which also

has an advantage of being interpretable. We then went on to apply this approach to

calcium imaging data of pathological neural activity in the PFC in Chapter 4 and

have shown that it is indeed possible to detect dysfunctions of cholinergic signalling

associated with common neurodegenerative disorders in the brain from single-neuron

or neural ensemble activity data (like e. g. the local-field potential time-series).

In Chapter 5, we have shown that for the particular task of detecting patholo-

gies associated with early-stage ALS, one has to report to multivariate time-series

analysis methods, and that deep learning is particularly well suited to capture the

interaction between different data modalities to make predictions, rather than try-

ing to extract predictive information from distinct data modalities separately. One
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central finding in this study is that data that are the most predictive of the pathol-

ogy correspond to the periods of high mobility of the animals. These findings could

further help design paradigms of early behaviour-dependent diagnosis of the ALS in

human patients.
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