
HAL Id: tel-04099383
https://theses.hal.science/tel-04099383v2

Submitted on 16 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards modeling the power usage efficiency of
software-defined computing infrastructures

Guillaume Fieni

To cite this version:
Guillaume Fieni. Towards modeling the power usage efficiency of software-defined computing infras-
tructures. Software Engineering [cs.SE]. Université de Lille, 2022. English. �NNT : 2022ULILB039�.
�tel-04099383v2�

https://theses.hal.science/tel-04099383v2
https://hal.archives-ouvertes.fr

Towards Modeling the Power Usage
Efficiency of Software-Defined
Computing Infrastructures

Guillaume Fieni

University of Lille

This dissertation is submitted for the degree of
Doctor of Philosophy in Computer Science

Thesis committee:

Supervisors Prof. Romain Rouvoy − University of Lille

Prof. Lionel Seinturier − University of Lille

Reviewers Prof. Patricia Stolf − University of Toulouse - Jean Jaurès

Prof. Alain Tchana − Grenoble INP

Examiner Dr. Valerio Schiavoni − University of Neuchâtel

Chair Prof. Giuseppe Lipari − University of Lille

Defended on Thursday, December 15, 2022

Vers la Modélisation de l’Efficience
Énergétique des Infrastructures de

Calcul Virtualisées
Guillaume Fieni

Université de Lille

Thèse présentée pour l’obtention du titre de
Docteur en Informatique

Jury de thèse :

Directeurs de thèse Prof. Romain Rouvoy − Université de Lille

Prof. Lionel Seinturier − Université de Lille

Rapporteurs Prof. Patricia Stolf − Université Toulouse - Jean Jaurès

Prof. Alain Tchana − Grenoble INP

Examinateur Dr. Valerio Schiavoni − Université de Neuchâtel

Président Prof. Giuseppe Lipari − Université de Lille

Défendue le Jeudi 15 Décembre 2022

Acknowledgements

I would like to thank the people who contributed to the realization of this thesis.

Foremost, I would like to thank my thesis supervisors Romain Rouvoy and Lionel Sein-
turier for giving me this opportunity, as well as for their trust and support throughout this
adventure. This thesis allowed me to work on interesting subjects and with great autonomy,
for which I am very grateful. I would particularly like to thank Romain Rouvoy for his
precious help, his numerous remarks and suggestions, as well as his kindness and patience.

I would also like to thank the members of my thesis committee for having accepted to
devote their time to the evaluation of my work and for their remarks and suggestions. In
particular, I would like to thank the reviewers, Patricia Stolf and Alain Tchana, for the review
of this manuscript and for the richness of their reports which allowed me to improve it.

I would like to thank the members of the Spirals team for their kindness, and their
willingness to share their knowledge. Thanks also to the former members of the team such as
Maxime Colmant, Antoine Vastel, Walter Rudametkin and Antonin Durey, for their kindness
and the numerous exchanges.

To conclude, I would like to thank my parents, who have always trusted me, supported me
and encouraged me in what I do, especially during these long years of study. As well as my
friends, on whom I could always count and who always supported me.

Remerciements

Je souhaite remercier l’ensemble des personnes ayant contribué à la réalisation de cette thèse.

Dans un premier temps, je remercie mes directeurs de thèse Romain Rouvoy et Lionel
Seinturier pour m’avoir donné cette opportunité, ainsi que pour leur confiance et soutien tout
au long de cette aventure. Cette thèse m’aura permis de travailler sur des sujets intéressants
et avec une grande autonomie, ce dont je vous suis très reconnaissant. Je tiens tout partic-
ulièrement à remercier Romain Rouvoy pour son aide précieuse, ses nombreuses remarques
et suggestions, ainsi que de sa bienveillance et sa patience.

Je souhaite également remercier les membres de mon jury de thèse d’avoir accepté
de consacrer leur temps à l’évaluation de mes travaux ainsi que pour leurs remarques et
suggestions. Je tiens à remercier en particulier les rapporteurs, Patricia Stolf et Alain Tchana,
d’avoir accepté de relire ce manuscrit ainsi que pour la richesse de leurs rapports qui m’a
permis de l’améliorer.

Je voudrais ensuite remercier les membres de l’équipe-projet Spirals pour leur gentillesse,
bonne humeur au quotidien, ainsi que de leur volonté de partager leurs connaissances. Merci
également aux anciens membres de l’équipe telle que Maxime Colmant, Antoine Vastel,
Walter Rudametkin et Antonin Durey, pour leur bienveillance et les nombreux échanges.

Pour conclure, je tiens à remercier mes parents, qui m’ont toujours accordé leur confiance,
soutenu et encouragé dans ce que je fais, surtout durant ces longues années d’études. Ainsi
que mes amis, sur qui j’ai toujours pu compter et qui m’ont toujours apporté leur soutien.

Abstract

Energy is one of the biggest expenses for a data center, most of which is attributed to the
cooling system, as well as the many underlying parts, such as network equipment and the
large number of machines used. These infrastructures are very energy-intensive, and their
number is constantly increasing around the world, especially due to the growing popularity
of the Cloud Computing.

A lot of software is needed to run these infrastructures, especially for network manage-
ment, data storage, task scheduling and the supervision of all hardware and software. All
these software consumes a significant amount of energy, but are not taken into account in the
calculation of the energy efficiency of the infrastructures. The scientific community as well
as data center operators have developed many approaches to evaluate and optimize energy
consumption globally, but the question of the energy cost of software infrastructures remains
rarely studied.

The objective of this thesis is to propose methods to analyze the end-to-end software
energy efficiency of data processing infrastructures. To do so, we propose approaches and
tools to accurately estimate the energy consumption of software running on a distributed
infrastructure, as well as an indicator to calculate their energy efficiency.

Firstly, we introduce SmartWatts, a software power meter to estimate the energy con-
sumption of software containers deployed on a machine. Secondly, we propose SelfWatts,
a controller to automate the configuration of software power meters to facilitate their de-
ployment in heterogeneous infrastructures. And finally, we propose xPUE, a metric to
calculate the energy efficiency of software and hardware in real-time at different levels of an
infrastructure.

Through these contributions, we aim to advance the knowledge in the field of software
energy consumption, and allow to accurately measure the energy consumption of software
deployed at different levels of the infrastructure. This allows infrastructure operators, as well
as software developers and users, to observe and analyze in detail the energy consumption
and thus assist in its optimization.

Résumé

L’Énergie représente l’un des principaux postes de dépense pour un centre de données, dont la majeure
partie est attribuée au système de refroidissement, ainsi qu’aux nombreuses parties sous-jacentes,
comme les équipements réseau et au grand nombre de machines utilisées. Ces infrastructures sont très
énergivores, et leur nombre ne cesse d’augmenter à travers le monde, notamment grâce à la popularité
croissante du Cloud Computing.

De nombreux logiciels sont nécessaires au bon fonctionnement de ces infrastructures, notamment
pour la gestion du réseau, du stockage de données, de l’ordonnancement des tâches ainsi que de la
supervison de l’ensemble du matériel et des logiciels. Tous ces logiciels consomment une quantité
significative d’énergie, mais ne sont pourtant pas pris en compte dans les calculs de l’efficience
énergétique des infrastructures. La communauté scientifique ainsi que les opérateurs de centres
de données ont développé de nombreuses approches afin d’évaluer et d’optimiser globalement la
consommation énergétique, mais la question du coût en énergie des infrastructures logicielles reste
peu étudiée.

L’objectif de cette thèse est de proposer des méthodes permettant d’analyser de bout en bout
l’efficacité énergétique logicielle des infrastructures de traitement de données. Pour cela, nous
proposons des approches et outils permettant d’estimer fidèlement la consommation énergétique des
logiciels exécutés sur une infrastructure distribuée, ainsi qu’un indicateur permettant de calculer leur
efficience énergétique.

Dans un premier temps, nous proposons SmartWatts, un wattmètre logiciel permettant d’estimer
la consommation énergétique des conteneurs logiciels déployés sur une machine. Ensuite, nous
proposons SelfWatts, un contrôleur permettant d’automatiser la configuration des wattmètres logiciels
afin de faciliter leur déploiement dans des infrastructures hétérogènes. Et enfin, nous proposons le
xPUE, un indicateur permettant de calculer l’efficience énergétique des logiciels et du matériel en
temps réel aux différents niveaux d’une infrastructure.

À travers ces différentes contributions, nous visons à faire évoluer la connaissance dans le
domaine de la consommation énergétique des logiciels, et permettre de mesurer avec précision la
consommation énergétique des logiciels déployés aux différents niveaux des infrastructures. Cela
permet aux opérateurs de ces infrastructures, mais également aux développeurs et utilisateurs de
logiciels d’observer et d’analyser en détails la consommation énergétique et ainsi d’assister dans
l’optimisation de celle-ci.

Table of contents

List of figures xv

List of tables xvii

1 Introduction 1
1.1 Problem Statement . 3

1.1.1 Estimating the energy consumption of software containers 4
1.1.2 Optimizing the power models for heterogenous environments . . . 4
1.1.3 Evaluating the software energy efficiency of an infrastructure 5

1.2 Contributions . 6
1.2.1 Self-Adaptive Software Power Models 6
1.2.2 Self-Optimizing Software Power Models 6
1.2.3 Extending the Power Usage Effectiveness for Cloud Infrastructures 7

1.3 Publications . 9
1.3.1 Published . 9
1.3.2 Future Submission . 9
1.3.3 Proof of Concept . 10

1.4 Outline . 11

2 State-of-the-Art 13
2.1 Power estimation . 13

2.1.1 Hardware Power Meters . 13
2.1.2 Software-Defined Power Meters 15
2.1.3 Limitations & Opportunities . 16

2.2 Optimization of software power models 16
2.2.1 Power Model Calibration Methods 16
2.2.2 Feature Selection for Software Power Models 18
2.2.3 Hardware Power Optimizations 18

xii Table of contents

2.2.4 Limitations & Opportunities . 20
2.3 Energy Efficiency Metrics . 20

2.3.1 Data Center Efficiency . 20
2.3.2 Limitations & Opportunities . 23

3 SmartWatts: Self-Calibrating Software-Defined Power Meter for Containers 25
3.1 SMARTWATTS Power Monitoring . 26

3.1.1 Overview of SMARTWATTS . 27
3.1.2 Modelling the Host Power Consumption 28
3.1.3 Isolating the Static Power Consumption 29
3.1.4 Monitoring Power States & HWPC Events 29
3.1.5 Selecting the Correlated HWPC Events 30
3.1.6 Estimating the Container Power Consumption 31

3.2 Implementation of SMARTWATTS . 32
3.2.1 Client-side Sensor . 32
3.2.2 Introducing the POWERAPI Toolkit 34
3.2.3 Server-side Power Meter . 34

3.3 Validation of SMARTWATTS . 35
3.3.1 Evaluation Methodology . 35
3.3.2 Experimental Results . 36
3.3.3 Tracking the Energy Consumption of Distributed Systems 41

3.4 Summary . 43

4 SelfWatts: On-the-fly Selection of Performance Events for Power Meters 47
4.1 Power Monitoring with SelfWatts . 48

4.1.1 Approach Overview . 48
4.1.2 Host Power Model Inference . 50
4.1.3 Software Power Estimation . 52
4.1.4 Performance Events Monitoring 52

4.2 Implementation Details . 53
4.2.1 A Sensor to Monitor Performance Events 53
4.2.2 A Controller to Explore Performance Events 54
4.2.3 A Formula to Optimize Power Models 54
4.2.4 Deployment of SELFWATTS . 55

4.3 Empirical Evaluation . 55
4.3.1 Evaluation Methodology . 56
4.3.2 Experimental Results . 57

Table of contents xiii

4.3.3 Lessons Learned & Perspectives 65
4.4 Summary . 66

5 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures 69
5.1 Introduction . 69
5.2 Contributions . 70

5.2.1 Overview of xPUE . 71
5.2.2 SPUE: Assessing Cloud Servers Power Usage Effectiveness 71
5.2.3 VPUE: Assessing Cloud Services Power Usage Effectiveness . . . 72
5.2.4 CPUE: Applying xPUE Metrics to Cloud Infrastructures 73
5.2.5 Revisiting State-of-the-Art Metrics with CPUE 74

5.3 Implementation Details . 75
5.3.1 Implementing the xPUE Formulas 75
5.3.2 Deploying the xPUE Metrics . 76

5.4 Empirical Validation . 76
5.4.1 Evaluation Methodology . 78
5.4.2 SPUE Experiments . 80
5.4.3 VPUE Experiments . 86
5.4.4 CPUE & GPUE Experiments . 91

5.5 Summary . 94

6 Conclusion & Perspectives 97
6.1 Summary of Contributions . 97
6.2 Short-Term Perspectives . 98

6.2.1 Extends Software Power Meters to more Processing Units 98
6.2.2 Intelligent Application-Level Power Budgeting 99

6.3 Long-Term Perspectives . 100
6.3.1 Distributed Application Energy Efficiency 100
6.3.2 Application-Driven Hardware Power Management 101
6.3.3 Energy Efficient Trusted Execution Environments (e-TEE) 101

References 103

List of figures

3.1 Overview of SMARTWATTS . 27
3.2 Deployment of SMARTWATTS . 32
3.3 Evolution of the aggregated PKG & DRAM power consumption (in Watts)

along time and containers . 37
3.4 Global & per-frequency error rate of the PKG power models 39
3.5 Global & per-frequency error rate of the DRAM power models 39
3.6 Deployment of Kubernetes IoT backend services across 6 nodes 42
3.7 Monitoring of service-level power consumptions 43
3.8 Distribution of the energy consumption across nodes and resources 44

4.1 Overview of the SELFWATTS approach. 49
4.2 Deployment of SELFWATTS, compared to SMARTWATTS. 55
4.3 Power estimations per VM for SEQUENTIAL phase 58
4.4 Power estimations per VM for PARALLEL phase 58
4.5 Cumulative Distribution Function (CDF) of estimation errors ε for SELF-

WATTS and SmartWatts . 60
4.6 Estimation errors ε per application involved in the SEQUENTIAL phase . . . 61
4.7 Estimation errors ε for the PARALLEL phase 62
4.8 CPU power consumption of the Controller/Sensor and Formula compo-

nents . 63
4.9 DRAM power consumption of the Controller/Sensor and Formula com-

ponents . 63
4.10 Estimation errors ε for SELFWATTS on across different CPUs 64

5.1 Coverage of xPUE metrics. 72
5.2 Deployment of xPUE . 77
5.3 Evolution of the SPUE over time and increasing workload 81
5.4 Correlation of the SPUE and the CPU average load 81

xvi List of figures

5.5 Comparing the SPUE of all the hardware configurations under-test. 82
5.6 Comparing the SPUE of a cluster used to host OPENSTACK and KUBER-

NETES platforms. 84
5.7 Comparing the SPUE of control & workers nodes for OPENSTACK & KU-

BERNETES platforms. 85
5.8 Evolution of the VPUE of OPENSTACK when increasing the number of

hosted VMs. 87
5.9 Evolution of the VPUE for the amount of VMs 88
5.10 Mean power consumption of the OPENSTACK services. 88
5.11 Total energy consumption of the OPENSTACK services. 89
5.12 Total energy consumption of the OPENSTACK cluster. 90
5.13 Evolution of the VPUE of KUBERNETES over the time. 91
5.14 Total energy consumption of the KUBERNETES services. 92
5.15 Total energy consumption of the KUBERNETES cluster per amount of workers. 92
5.16 Comparing the CPUE of hardware/software configurations. 93
5.17 Comparing the GPUE of DC/Platform configurations. 94
5.18 Comparing the GCUE (gCO2/kWh) of OVHcloud data center of various

countries. 95

List of tables

3.1 Per-socket PKG & DRAM power models accuracy 40
3.2 PKG power models stability per frequency 40
3.3 DRAM power models stability per frequency 41
3.4 Per-component power consumption of the sensor 41

4.1 Testbed hardware settings . 56
4.2 Power consumptions of the Controller/Sensor component 61
4.3 Power consumptions of the Formula component 62

5.1 Testbed hardware settings . 78
5.2 Cluster-wide SPUE statistics. 83
5.3 Control plane impact on SPUE. 85
5.4 Energy consumption of KUBERNETES and OPENSTACK services. 90

Chapter 1

Introduction

Computing infrastructures are a massive energy consumption hotspot due to their underlying
nature and popularity across the world. Being particularly energy-intensive, the data center
industry accounts for around 0.9–1.3% of global electricity consumption and nearly 1% of
global energy-related greenhouse gas emissions [31]. Computing infrastructure providers,
such as on-demand cloud computing platforms, aim at continuously improving the energy
efficiency of their infrastructures in order to reduce the operating costs. This trend, combined
with environmental concerns, makes energy efficiency a prime technological and societal
challenge.

While trying to optimize the energy consumption of computing infrastructures, one needs
to have the means to precisely assess its efficiency. Researchers and infrastructure operators
have been proposing solutions to increase energy efficiency at all levels, from the application
down to the underlying hardware. As surveyed by Orgerie et al., examples of such methods
include energy-based task scheduling, energy-efficient software, dynamic frequency and
voltage scaling, and energy-aware workload consolidation using virtualization [43].

The massive increase of cloud infrastructures raises a key challenge to operate at scale,
while being energy-efficient. Cloud infrastructures are mostly based on virtual machines
and software containers, where the underlying hardware is virtualized and the execution
confined from other VMs, and/or software containers where only a light resources separation
is applied. Such environments have various machine configurations to cope with a wide range
of use cases, such as generic compute, memory, networks and disks intensive workloads, to
more specific machine learning problems that requires dedicated hardware.

This thesis aims to propose new solutions to observe the energy consumption of modern
computing infrastructures by proposing tools that allow an end-to-end analysis of the energy
consumption of the various parts of the infrastructure. To do so, first we propose a lightweight
power monitoring system that adopts online calibration to automatically adjust the CPU

2 Introduction

and DRAM power models by using the activity of the machine to maximize the accuracy
of runtime power estimations of software containers. Beyond the power model, we offer a
framework to foster the research on green computing and to offer tools to measure the energy
consumption of various parts of the infrastructure, and helps building software-defined power
meters. This solution can be used to evaluate the energy consumption of an infrastructure
based on software containers, but also to manage a power budget to cap the energy consumed
from users to applications and down to individual instances [18].

Then, we extend our previous work to propose a lightweight power monitoring system
that explores and selects the relevant performance events to automatically optimize the
power models to the underlying architecture. The deployment of software power meters in
heterogenous environments is challenging as the specificities of the underlying hardware can
drastically change between nodes. As time passes, hardware evolves to be more performant,
gains features advantageous for specific workloads (vectors, cryptography) and becomes
more energy-efficient. This leads to previously accurate power models to become either
obsolete or inaccurate by not taking into account changes in the micro-architecture, such
as the energy optimization mechanisms, for example. To solve this problem, we propose a
self-adaptive power meter that automatically explores and chooses the relevant performance
events for the machine hardware at runtime. This allows to further simplify the deployment of
software power meter at scale and in heterogenous environments without a priori knowledge
about the underlying hardware.

Finally, we propose an energy efficiency metric that allows to measure the efficiency
from various levels of the computing infrastructures. Various energy efficiency metrics exists
to evaluate the efficiency of data centers, and some of them are part of standards such as
the Power Usage Effectiveness (PUE) [22] and the Data Center Infrastructure Efficiency
(DCiE) [19]. However, these metrics only show the general efficiency of the infrastructures
and do not cover the efficiency of the underlying hardware and software needed to make
them work. This contribution aims to provide a multi-level energy efficiency metric that
allows data center operators and users to analyze in depth the energy hotspots of the software
running on their infrastructures.

The following chapter is organized as follows. Section 1.1 introduces the problem
statements extracted from the state-of-the-art. Section 1.2 exposes the goals of this thesis and
shows how our contributions bring new solutions to face these problems. Section 1.3 reports
on all the papers (published or under submission) with the Proofs-of-Concept contributed as
part of this thesis. And finally, Section 1.4 summarizes the content of this thesis.

1.1 Problem Statement 3

1.1 Problem Statement

The research community showed a high interest about the energy efficiency of the hardware
and software running in computing infrastructures. To optimize the energy efficiency of such
infrastructures, one must be able to discover and analyze its various energy hotspots.

Most cloud computing and data-center providers, such as Google Cloud Platform
(GCP) [25], for example, publish detailed information about the efficiency of theirs data cen-
ters each year/quarter. These infrastructures are built with efficiency in mind and leverage
various optimization methods, such as building data centers in countries where the air is cool
to limit the usage of the Air Conditioning (AC), using advanced cooling methods, such as
water cooling for the servers, and consuming renewable energy to greatly lower their energy
prices and CO2 emissions footprint. Unfortunately, such metrics only scratches the surface
of the energy efficiency measurements, and do not allow stakeholders to obtain a precise
insight of the energy hotspots in the hardware and the software hosted in the infrastructures.
To this extent, we choose to focus on providing approaches enabling an in-depth analysis of
the energy consumption for the various hardware and software layers composing a modern
computing infrastructure.

Power monitoring is usually achieved by hardware measurement equipments, such as
Wattmeters, Power Supply (PSU) and Power Distribution Units (PDU), which only report
power measurements at a coarse-grained level. However, one needs to monitor at a finer level
to optimize the energy of the whole system by targeting the applications that are running on
it. Several solutions have been proposed over the years to estimate the power consumption of
the software running on a machine, such as software power models [13, 37]. Unfortunately,
these approaches require a priori learning steps that hinder their deployments at scale and in
heterogeneous environments, in addition to be extremely fragile to workload changes and
non-portable across machines.

Consequently, such environments complicate the deployment at scale of software power
meters, mainly because of the required knowledge about the machine hardware to manually
tune the power models. For example, most of the CPU power models rely on a thorough ex-
pertise of the targeted architectures, thus leading to the design of hardware-specific solutions
that can hardly be ported beyond the initial settings. State-of-the-art solutions are facing
several key limitations and are often limited to specific hardware components and are mostly
offline based, which complicates even more theirs usage for heterogenous infrastructures.

The power estimation of software processes provides critical indicators to drive schedul-
ing policies [27], power capping heuristics [18] or even improve the performance of work-
loads [53]. Combined with existing hardware power measurements, software power models
introduce another dimension in the evaluation of the energy efficiency of computing infras-

4 Introduction

tructures. Software power measurements are the missing link in the chain of the energy
efficiency indicators of computing infrastructures, and the state-of-the-art currently fails to
provide end-to-end approaches to this problem.

Therefore, the objective of this thesis is to propose an end-to-end approach to eval-
uate the energy efficiency of the underlying software running on heterogeneous com-
puting infrastructures. To this effect, we focus on the following research problems and
propose practical solutions throughout various contributions.

1.1.1 Estimating the energy consumption of software containers

Nowadays, most of the computing infrastructures are built around the concept of software
containers, such as Docker/Podman and Kubernetes. These containers are used to isolate the
software processes from the underlying hardware and to provide a portable and reproducible
environment to run the software. However, the energy consumption of the software running
in such containers is not easily observable, especially when they are treated as black box
components by the platform provider.

In the state of the art, most software power models require a calibration phase to estimate
the CPU energy consumption of the software processes. This phase is usually done offline by
using synthetic benchmarks to generate workload data, and can last several hours to multiple
days depending of amount of samples needed by the power models. We believe that such
approaches are not only wasteful in resources, time and energy, but also not suitable for the
deployment of power models at scale.

Hence, a solution that allows to estimate the CPU and DRAM energy consumption of
software containers at runtime, without requiring any calibration phase could allow users and
developers to easily monitor the energy consumption of their software containers.

1.1.2 Optimizing the power models for heterogenous environments

As stated in Section 1.1.1, power models are useful to estimate the energy consumption of
software processes. However, their configuration is usually written manually by the operator
or user, which requires a thorough knowledge of the underlying hardware. Over the time, the
underlying hardware evolves, and the topology of the infrastructure changes, thus requiring
to re-tune the power models to keep them working with the new hardware. In some cases,
using the previous configuration of the power models on new hardware can even lead to
wrong estimations of the energy consumption of the software, due to major changes in the
underlying architecture.

1.1 Problem Statement 5

Power models need performance events in order to accurately estimate the energy con-
sumption. Performance events are deeply linked to the underlying hardware and requires
context specific attention. In the state of the art, power models have an offline benchmark
phase where the performance events for the CPU of the machine are explored, and where the
correlation coefficient of the various events is used to select the most relevant [13, 37]. This
allows to select the most relevant performance events for the software power models used to
monitor the power consumption of the software processes.

Hence, a solution that allows to automatically configure software power meters, would al-
low to automatically adapt to the underlying hardware, and to avoid the need of manual tuning
while easing the deployment of power meters at scale and in heterogenous environments.

1.1.3 Evaluating the software energy efficiency of an infrastructure

Modern data centers go to great length to limit the energy consumption of their services, by
optimizing the placement of the different services, choosing equipment that consume less
electricity, or by fine-tuning how the software interact with the hardware, in addition to using
environmental enhancement building methods. Various energy efficiency measurements
have been proposed or are being investigated to fully grasp the energy efficiency of the
infrastructures. The most used indicator is the Power Usage Effectiveness (PUE) [22], which
is the ratio of the total amount of energy used by a computer data center facility to the energy
delivered to computing equipment. While this metric widely used, it lacks of granularity
needed to evaluate the underlying software energy of the computing infrastructure.

In the state of the- art, the proposed energy efficiency metrics only allow to evaluate parts
of the data centers, but do not dive much deeper than the machine’s power supply [22, 19, 20].
The lack of solutions to evaluate the energy efficiency of the software running on the
infrastructures prevents the analysis of the architecture’s hotspots, and is a major limitation
to the deployment of energy efficient infrastructures.

Hence, an indicator that incorporates the energy efficiency of the underlying software
layers of the infrastructure will provide a new dimension to analyze and optimize the energy
efficiency of computing infrastructures.

6 Introduction

1.2 Contributions

To address the aforementioned problems, we propose in this thesis multiple approaches
that contribute to the research about the evaluation of the energy efficiency of the software
running on heterogeneous computing infrastructures. We summarize these contributions in
the following subsections.

1.2.1 Self-Adaptive Software Power Models

As explained in Section 1.1.1, existing software power models rely on specific hardware or
need an offline calibration phase to train the power models. This leads to a lack of portability
and scalability of the power models, and complicates the deployment of power meters in
infrastructures. The lacks of support of the various energy efficiency features of the CPU
lead to inaccurate power models, especially when the machine is idle, or when the workload
is not CPU bound.

For the first contribution of this thesis, we focus on the energy consumption of software
containers running on modern computing infrastructures. The main goal of this contribution
is to propose a lightweight power monitoring system that allows to estimate in real-time
the energy consumption of software containers, helping to better understand the energy
consumption of software and discover and plan possible optimizations.

To do so, we propose a novel approach to estimate the CPU and DRAM energy con-
sumption of software containers, based on the monitoring of the performance events of
the CPU. This contribution provides a self-adaptive power model that provides real-time
power estimations for the running software containers by automatically recalibrating the
power models when an error threshold is exceeded. The power models are based on the
Hardware Performance Counters (HwPC) for the CPU activity of the software containers,
and the Running Average Power Limit (RAPL) interface for the CPU’s energy consumption
measurements. The models are automatically calibrated over the time, by using the activity
and inactivity of the machine, without interfering with the normal operation of the software
containers. This allows to provide accurate power estimations for the running software
containers in real-time, which can then be used to analyze the energy consumption and/or
integrate such measurements for other usage in the infrastructure.

1.2.2 Self-Optimizing Software Power Models

As depicted in Section 1.1.2, existing software power models are not easily deployable
in heterogeneous environments, and require a manual tuning to be able to work with new

1.2 Contributions 7

hardware. Software power models rely on the hardware performance counters to account
the hardware activity, and needs a set of performance events related to the activity in order
to accurately estimate the energy consumption. Most contributions that rely on such power
models select the performance events by various methods, such as manually by an expert,
semi-automatically by filtering the events a priori, or letting an automated process to select
the relevant events.

For the second contribution of this thesis, we focus on the automation of the performance
events selection at runtime for software power models. The main goal of this contribution
is to completely automate the configuration of software power meters and allows their
unsupervised deployment in heterogenous infrastructures.

To do so, we propose a novel approach that automatically selects the performance events
for the power models of the running software containers. This contribution provides a
self-calibrating software-defined power meter that performs an online performance events
exploration and selection, and automatically adapts to the underlying hardware. The goal of
this contribution is to provide a fully plug-and-play software power meter that provides power
estimations for the running software containers and can be deployed on a heterogeneous
infrastructure.

1.2.3 Extending the Power Usage Effectiveness for Cloud Infrastruc-
tures

As stated in Section 1.1.3, the Power Usage Effectiveness (PUE) is the most used metric to
evaluate the energy efficiency of computing infrastructures. However, this metric only allows
to evaluate the energy efficiency at a coarse grain, and does not help in assessing the energy
efficiency of the software running on the infrastructure. Other metrics have been proposed to
evaluate the energy efficiency of the infrastructures, but they are not widely used, and do not
take into account the software energy efficiency of the infrastructure either.

For the third contribution of this thesis, we focus on the in-depth analysis of the energy
efficiency of the software running on computing infrastructures. The main goal of this
contribution is to provide an energy efficiency indicator that allows to evaluate the efficiency
of the software running on the infrastructure.

To do so, we propose a novel approach that extends the PUE metric to the software
running on the computing infrastructure. This contribution provides an in-depth analysis of
the energy efficiency of the software of the various levels of the infrastructure. The goal of
this contribution is to provide a new metric that allows to evaluate the energy efficiency of

8 Introduction

the software running on the infrastructure, while remaining flexible enough to fit logical and
physical infrastructures.

1.3 Publications 9

1.3 Publications

In this section, we summarize the scientific contributions that have been published in confer-
ences or still under evaluation.

1.3.1 Published

The following papers have been published in International Conferences and Workshops:

1. Guillaume Fieni, Romain Rouvoy, Lionel Seinturier, "SelfWatts: On-the-fly Selection
of Performance Events to Optimize Software-defined Power Meters," In proceedings
of the 21st IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), 2021.

2. Guillaume Fieni, Romain Rouvoy, Lionel Seinturier, "SmartWatts: Self-Calibrating
Software-Defined Power Meter for Containers," In proceedings of the 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing (CCGRID), 2020.

3. Jonatan Enes, Guillaume Fieni, Roberto R. Expósito, Romain Rouvoy, Juan Touriño,
"Power Budgeting of Big Data Applications in Container-based Clusters," In proceed-
ings of the 2020 IEEE International Conference on Cluster Computing (CLUSTER),
2020.

4. Guillaume Fieni, "Towards Sustainable Software Infrastructures for Data-Intensive
Systems," In proceedings of the 12th EuroSys Doctoral Workshop (EuroDW), 2018.

1.3.2 Future Submission

The following papers are still ongoing work and aims to be published in International
Conferences or Journals:

1. Guillaume Fieni, Romain Rouvoy, Lionel Seinturier: "xPUE: Extending Power Us-
age Effectiveness Metrics for Cloud Infrastructures," 2023.

https://hal.archives-ouvertes.fr/hal-03173410
https://hal.archives-ouvertes.fr/hal-03173410
https://hal.archives-ouvertes.fr/hal-02470128
https://hal.archives-ouvertes.fr/hal-02470128
https://hal.archives-ouvertes.fr/hal-02904300
https://hal.archives-ouvertes.fr/hal-01784225
https://hal.archives-ouvertes.fr/hal-01784225

10 Introduction

1.3.3 Proof of Concept

The various contributions proposed in this thesis needed implementations in order to be
evaluated empirically. Some software is mature enough to be used in production environ-
ments, and some industrial partners are actively using it. This shows strong evidence on
the relevance and usability of the contributions of this thesis. Following, a summary of the
various software and tools that was developed and are open-source and available on GitHub.

PowerAPI is a middleware toolkit for building software-defined power meters that
can estimate the power consumption of software in real-time. PowerAPI supports
the acquisition of raw metrics from a wide diversity of sensors (eg., physical meters,
processor interfaces, hardware counters, OS counters) and the delivery of power
consumptions via different channels (including file system, network, web, graphical).
As a middleware toolkit, PowerAPI offers the capability of assembling power meters
«à la carte» to accommodate user requirements.1

HwPC-Sensor is a software agent for monitoring Hardware Performance Counters
of cgroups based software containers on Linux. It allows to periodically collect a set
of Hardware Performance Counters values for the running software containers of a
machine. Various output formats are supported such as CSV files, MongoDB and
Socket in order to send the measurements to a processing pipeline. This tool allows to
use highly precise hardware-related metrics for the software power meters and is the
base of the contributions in Chapter 3 and Chapter 4.2

SmartWatts Formula is the implementation of the SmartWatts contribution depicted
in Chapter 3. SmartWatts is a formula for a self-adaptive software-defined power meter
based on the PowerAPI framework. 3

SelfWatts Controller is a wrapper that allows to remotely control the HwPC-Sensor
monitored events. It is made to be used by the SelfWatts Formula to explore the
available Hardware Performance Events of the CPU in order to construct a robust
power model over time.4

SelfWatts Formula is the implementation of the SelfWatts contribution. SelfWatts
is a formula for a software-defined power meter that explores and select the relevant
performance events at runtime.5

1https://github.com/powerapi-ng/powerapi
2https://github.com/powerapi-ng/hwpc-sensor
3https://github.com/powerapi-ng/smartwatts-formula
4https://github.com/powerapi-ng/selfwatts-controller
5https://github.com/powerapi-ng/selfwatts-formula

https://github.com/powerapi-ng/powerapi
https://github.com/powerapi-ng/hwpc-sensor
https://github.com/powerapi-ng/smartwatts-formula
https://github.com/powerapi-ng/selfwatts-controller
https://github.com/powerapi-ng/selfwatts-formula

1.4 Outline 11

1.4 Outline

The remainder of this thesis is organized as follows.

Chapter 2 introduces the context and the most relevant works about the topic of this thesis.
This includes works about hardware and software power models and theirs optimizations for
the underlying hardware and workload, then we follow with the energy efficiency metrics
and their usages in a green computing context.

Chapter 3 covers SmartWatts, a self-adaptive power model for software containers based on
the Hardware Performance Counters of the CPUs for the activity, and the Running Average
Power Limit (RAPL) interface for the CPU energy measurements.

Chapter 4 presents SelfWatts, a self-calibrating power model that allows to automatically
configure software power meters in heterogeneous environments.

Chapter 5 reports on xPUE, an extension of the Power Usage Effectiveness (PUE) indicator
to evaluate the software energy efficiency of the various levels of the computing infrastruc-
tures.

Finally, Chapter 6 concludes this thesis by summarizing the contributions and proposing
possible research directions.

Chapter 2

State-of-the-Art

While the field of the energy efficiency of data centers is quite mature, the research on the
energy efficiency of software systems is still lacking in-depth contributions, especially with
the evolutions of the hardware and software infrastructures. In particular, the works that are
related to the energy efficiency of software systems are still limited to the energy efficiency of
the hardware components, such as the CPU and the DRAM, and lack the software dimension
needed to provide a holistic view of the energy consumption of the complete infrastructure.

The remainder of this chapter will focus on the following contributions. Section 2.1
introduces the state of the art in software-defined power meters, which are in charge of esti-
mating the power consumption from the hardware down to the software services. Section 2.2
presents the works that are related to the performance events selection and other calibration
methods which are in charge of adjusting the power models of the software power meters to
the underlying hardware. Section 2.3 concludes this chapter by covering the various energy
efficiency metrics that are used to evaluate computing infrastructures.

2.1 Power estimation

2.1.1 Hardware Power Meters

Over the years, hardware power meters have evolved to deliver hardware-level power mea-
surements with different levels of granularity, from physical machines to specific electronic
components.

POWERMON2 [5] uses an external power monitoring board to be inserted between a
system’s power supply and a motherboard in order to retrieve the power consumption per
connected hardware component. It can measure up to 8 DC rails and can read and report

14 State-of-the-Art

power measurements at a rate up to 3 KHz. While all schematics and source code are freely
available online, the hardware requirements of this solution cost up to $150 per-machine.

Icsi et al. [29] describe an approach for learning CPU power models based on predefined
15 Harwdare Performance Counters (HWPC) for 22 selected processor subunits. In addition,
they propose a live CPU power monitoring solution that implies different modules. First, a
reader runs inside the system under test for collecting values for the selected HWPC. Once
collected, the values are sent via the network to a logger machine which uses the power
model and the extracted values for producing live power estimation of the 22 processor
subunits. With this approach, the authors show runtime power estimations for one concurrent
running application that can be divided per involved subunit.

POWERPACK [23] monitors all hardware components separately. To retrieve power
measurements, a precision sensing resistor is attached to each DC power line, thus allowing to
measure the voltage differences with a power meter. Power measurements are simultaneously
collected on all power lines to be representative of all hardware components. The data
retrieved are then recorded and used in a post mortem analysis. The authors consider their
approach as being able to deliver per-process power estimation, but they only consider a
single concurrent application during their validation. They also mention that it can target
a cluster, but only one node can be monitored at a time, which makes it unsuitable in
production.

POWERINSIGHT [36] follows the same principle as POWERMON2 and is built on top
of another external board that uses an ARM Cortex processor. This external board can be
connected up to 15 components and is used to acquire power measurements from custom
power sensing boards connected to it. Each board is then connected through Ethernet and
report the measurements to a master node.

WATTPROF [46] power monitoring platform supports the profiling of High Performance
Computing (HPC) applications. This solution is based on a custom board, which can collect
raw power measurements from various hardware components (CPU, disk, memory, etc.)
from sensors connected to power lines. The board can connect up to 128 sensors that can
be sampled at up to 12KHz. The data can be thus be retrieved via an Ethernet interface,
or be buffered inside the board for postmortem analysis. As in [23], the authors argue that
this solution is able to perform per-process power estimation, but they only validate their
approach while running a single application.

WATTWATCHER [37] is a tool that can characterize workload energy power consumption.
The authors use several calibration phases to build a power model that fits a CPU architecture.
This power model uses a predefined set of Hardware Performance Counters (HWPC) as
input parameters. As the authors use a special power model generator that can target any

2.1 Power estimation 15

CPU architecture, this model still has to be carefully calibrated to take into account the
hardware energy optimization mechanisms, such as P-states and C-states. An efficient
network connection is required to send data to the generator to monitor the power estimation
in real-time.

RAPL [50] offers specific hardware performance counters (HWPC) to report on the
energy consumption of the CPU since the “Sandy Bridge“ micro-architecture for Intel (2011)
and “Zen“ for AMD (2017). Intel divides the system into domains (PP0, PP1, PKG, DRAM)
that report the energy consumption according to the requested context. The PP0 domain
represents the core activity of the processor (cores + L1 + L2 + L3), the PP1 domain the
uncore activities (LLC, integrated graphic cards, etc.), and PKG represents the sum of PP0
and PP1, and the DRAM domain exhibits the DRAM energy consumption. Desrochers et al.
demonstrate the accuracy of the DRAM power estimations of RAPL, especially on Intel
Xeon processors [16].

2.1.2 Software-Defined Power Meters

To get rid of the hardware cost imposed by the above solutions, the design of power models
has been regularly considered by the research community over the last decade, in particular
for CPU [6, 12, 32, 41, 56]. Notably, as most architectures do not provide fine-grained power
measurement capabilities, McCullough et al. [41] argue that power models are the first step
towards enabling dynamic power management for power proportionality at all levels of a
system.

While standard operating system metrics (CPU, memory, disk, or network), directly
computed by the kernel, tend to exhibit a large error rate due to their lack of precision [32, 56],
HWPC can be directly gathered from the processor (e.g., number of retired instructions,
cache misses, non-halted cycles). Modern processors provide a variable number of HWPC
events, depending on the generation of the micro-architectures and the model of the CPU.
As shown by Bellosa [6] and Bircher [8], some HWPC events are highly correlated with
the processor power consumption, while the authors in [48] concluded that not all HPC are
relevant, as they may not be directly correlated with dynamic power.

Power modeling often builds on these raw metrics to apply learning techniques [7] to
correlate the metrics with hardware power measurements using various regression models,
which are so far mostly linear [41]. Three key components are commonly considered to
train a power model: a) the workload(s) to run during sampling, b) the minimal set of input
parameters, and c) the class of regression to use [7, 60, 59, 17].

The workloads used along the training phase have to be carefully selected to capture the
targeted system. In this domain, many benchmarks have been considered, but they are mostly

16 State-of-the-Art

a) designed for a given architecture [7, 29], b) manually selected [9, 12, 14, 17, 38, 58–60],
or even c) private [60]. Unfortunately, this often leads to the design of power models that are
tailored to a given processor architecture and manually tuned (for a limited set of power-aware
features) [7, 9, 29, 38, 39, 58, 60, 52].

2.1.3 Limitations & Opportunities

To the best of our knowledge, the state of the art in hardware power meters often imposes
hardware investments to provide power measurements with a high accuracy, but a coarse
granularity, while software-defined power meters target fine-grained power monitoring, but
often fail to reach high accuracy on any architecture and/or workload. Most of the existing
solutions are limited to hardware components and require hardware investments to be fully
operational [5, 54], thus this kind of tools cannot be then used while targeting fine-grained
power estimations. To overcome these limitations, several tools propose to target software
power consumption, but a few of them implies costly investments and/or are not usable
in practice [23, 37, 46]. Moreover, only a few contributions discuss the overhead of their
approach [42] and a lot of research efforts remain to be done.

So far, the state of the art fails to deploy software-defined power meters in production
because i) the model learning phase can last from minutes to days, ii) the power models are
often bound to a specific context of execution that do not take into account hardware energy-
optimization states, and iii) the reference power measurement requires specific hardware to be
installed on a large amount of nodes. This therefore calls for methods that can automatically
adapt to the hardware and workload diversities of heterogenous environments in order to
maintain the accuracy of power measurements at scale.

2.2 Optimization of software power models

2.2.1 Power Model Calibration Methods

Hardware and software power meters keep evolving to deliver hardware-level power measure-
ments with different levels of granularity, from physical machines to electronic components
and running software.

KOALA [53] introduce a platform that uses a pre-characterized model at run-time to
predict the performance and energy consumption of a piece of software. The generic model
is calibrated using a set of benchmarks, during a calibration process which is performed
offline. Then, the model is re-calibrated at runtime in order to correct the coefficients and
increase the accuracy of the model. However, this method still requires a calibration phase,

2.2 Optimization of software power models 17

and the online recalibration does not work if the machine differs too much from the one used
during the calibration phase.

RAPL [50] exposes additional hardware performance counters (HWPC) to report on
the energy consumption of the CPU since the “Sandy Bridge“ micro-architecture for Intel
(2011) and “Zen“ for AMD (2017). RAPL divides the system into domains (PP0, PP1,
PKG, DRAM) that report the energy consumption according to the requested components. As
stated by the authors, RAPL include a set of architectural power meters that does not require
any calibration from the user, as it is setup at factory level, where physical properties like the
leakage information is coded into the die. The models use a set of architectural events from
each cores, GPU, and I/O, and combines them with energy weights, which are scaled with
operating conditions such as voltage and temperature, to predict the components active power
consumption. Thus, even if RAPL does not capture the software-level energy consumption,
we believe it offers a relevant ground truth for modeling the power consumption at the scale
of the processor.

POWER CONTAINERS [52] proposes to account for and control the power and energy
usage of individual requests in multicore servers. However, the deployment of power
containers requires to pre-calibrate the power model with offline samples and then recalibrate
these power models with online context samples. This implies that several micro-benchmarks
require to be executed to infer the coefficients of the power model, thus imposing a long
delay that prevents it to be deployed in production when multiple generations and models of
machines are available.

BITWATTS [12] is a monitoring middleware providing real-time power estimations of
software processes running at any level of virtualization in a system. BITWATTS includes a
power model that computes a polynomial regression for each frequency supported by the
CPU (including Turbo Boost frequencies). BITWATTS requires a physical power meter
(PowerSpy) with a manual calibration phase to benchmark every frequency supported by the
CPU. Unfortunately, this procedure also prevents BITWATTS to be deployed on a wide panel
of hardware architectures. WATTSKIT [11], which is an extension of BITWATTS, supports
the power monitoring of distributed services, but suffers from the same limitation when it
comes to the effective deployment of the solution in a cluster of heterogeneous machines.

WATTWATCHER [37] is a tool that can characterize the energy consumption of a workload.
To do so, the authors combine several calibration phases to train a power model that fits a
CPU architecture. The authors propose a special power model generator that can target any
CPU architecture, but requires to be carefully described a priori. Unfortunately, this power
model uses a predefined set of HwPC events as input parameters, which may not be available
on some CPU architectures, thus preventing the exploitation of the generated power model.

18 State-of-the-Art

2.2.2 Feature Selection for Software Power Models

As mentioned above, power models are learned from raw metrics that are expected to relate
the activity of the hardware components energy consumption. Modern CPUs provide several
Performance Monitoring Units (PMU), which implement a limited number of HwPC slots
that can be used to monitor a large number of performance events. In the literature, the
selection of the relevant performance events that feed a power model is mostly achieved
offline, thus requiring a calibration phase during which a target machine has to execute
several workloads over a long period to identify such relevant raw metrics.

To select the key metrics, the literature usually builds on Pearson or Spearman corre-
lation [53, 13, 21] and Principal Component Analysis (PCA) [59], which often leads to
consider performance events like unhalted core cycles, unhalted ref cycles, instructions
retired, llc misses/prefetch, or memory transactions cycles [52, 12, 37, 13, 21]. Yet, this
selection phase requires to be executed on every single target architecture to make sure that
the relevant performance events are made available, which inevitably impacts the cost and
the scale of the deployment of software-defined power meters. Furthermore, all these a priori
calibration phases share the same limitation: the selected performance events highly depend
on the nature of the calibration workload, which may strongly differ from the workload
monitored in production and thus question the accuracy of the resulting power model.

2.2.3 Hardware Power Optimizations

This contextual issue is particularly challenging to capture as modern processors embed
several mechanisms that are autonomously triggered in order to optimize the idle power
consumption and the performance of the host machine upon context. For example, Intel
CPUs are currently implementing the following power-aware hardware features:

P-states are performance power states, where each state specifies the voltage and the
clock frequency at which the CPU operates. This allows the CPU to maintain performance
objectives while minimizing power consumption. The operating system picks the most
suitable state, according to the current usage of the processor by the running workload. The
number of supported P-states depends on the micro-architecture and the model of the CPU.
Currently, the highest state is P0 when the CPU operates at the highest voltage and frequency,
leading to an increase in performance along with the dissipated heat.

C-states are idle power states, also known as core C-states (CC-states), package C-states
(PC-states) and logical C-states, specify parts of the CPU that can be powered down to reduce
the power consumption depending on usage and the latency cost imposed by power state
transitions. The highest state is C0 when the CPU is fully operational, and the lowest is C8

2.2 Optimization of software power models 19

when the CPU is inactive and its state saved to LLC before its power cut-off by the power
gate transistors. The number of supported C-states also depends on the micro-architecture
and model of the CPU. While the operating system suggests to the Power Control Unit (PCU)
a target state for each core based on the current load of the machine, the PCU autonomously
decides the most suitable core and package C-state to optimize the power consumption of the
CPU.

Turbo Boost feature allows the CPU to run one or many cores to higher P-states than
usual, leading to an increase in performance for a short period. However, this feature becomes
only available when the CPU is operating below its rated maximum temperature, current, and
power limits. This mode leverages the C-states as the frequency depends on the number of
active cores—i.e., the more cores in idle states the higher frequency of active cores. Typically,
turbo boost becomes active when the system requests a transition to the P-state P0, the
operating conditions are below certain model-specific limits and the workload demands more
performance. Several turbo frequencies are available depending of the model of the CPU and
the current workload. Additionally, while standard workloads can use all turbo frequencies,
the AVX2 and AVX512 workloads have dedicated turbo frequencies.

CKE-states are memory power-down modes that allow DIMM ranks to be powered
off dynamically when unused. These states are linked to the package C-states where the
deepest states allow the memory to enter the self-refresh mode to greatly reduce its power
consumption. An IDLE counter is available for each memory rank and determines its CKE
mode to maximize the opportunities to power-off unused ranks even under memory-intensive
workloads. The integrated Memory Controller (iMC) can autonomously power down the
DIMM ranks to save energy at the cost of more latency when it will be woken up.

When these mechanisms are triggered by the CPU or the DRAM components, some
HWPC events are no longer correlated with the power consumption. In the literature, some
power models are Dynamic voltage and frequency scaling (DVFS) aware, including the
Turbo Boost—i.e., P-states effects on the power consumption of the CPU [12]. However, to
the best of our knowledge, none of the existing power models take into account the power
states in their power models, which leads to incorrect power estimations, when the CPU
enters such states, thus preventing their adoption at scale. This limitation is mainly due to the
emergence of new energy optimizations, such as the migration from the legacy generic ACPI
CPU performance scaling driver to processor-driven ones, such as Intel P-states which can
even offload the P-states selection responsibility to the hardware for the most recent CPUs,
being known as Hardware P-states (HWP). While such behavior can enhance the power
efficiency and the performance of the CPU, the lack of fine-grained control of these states
prevents the adoption of most of the available power estimation methods, which rely on an

20 State-of-the-Art

a priori calibration phase to build a static power model from the execution traces of a given
workload run under variable frequencies.

2.2.4 Limitations & Opportunities

In the state of the art, most contributions require offline calibration and previous knowledge of
relevant Performance Events for the power model which makes impractical the deployment in
a highly heterogeneous infrastructure, like the Cloud. Because of the lack of documentation
of performance events, and the constraints imposed by the HwPC slots, the automatic
selection of relevant performance events remains an open challenge to support more adaptive
power models that can adjust to changes in the workload or the context and keep optimizing
the accuracy of power estimations.

2.3 Energy Efficiency Metrics

2.3.1 Data Center Efficiency

Modern Data Centers (DC) are continuously trying to maximize the efficiency of their
infrastructure to reduce their operating costs. Various metrics have been proposed and stan-
dardized to measure the efficiency of the numerous components of computing infrastructures
at different levels of granularity.

PUE & DCiE The standard ISO/IEC 30134-2:2016 [22] defines the Power Usage Effec-
tiveness (PUE) as a metrics reflecting the energy efficiency of a Data Center (DC). More
specifically, the PUE is defined as the ratio of energy at the input of the DC to the energy
consumed by hosted IT equipment. The PUE of a DC is calculated as:

PUE =
∑Energy(DC)
∑Energy(IT)

= 1+
∑Energy(non-IT)

∑Energy(IT)
(2.1)

where ∑Energy(DC) is the sum of energies drawn by what is not considered a computing
device but required to operate a DC (so-called non-IT), such as lighting, air conditioning,
etc., and the IT equipment. The PUE is a widely adopted metric, often cited by major cloud
providers to demonstrate their progress in DC efficiency. While the ideal PUE is 1.0, the
average PUE for a DC in 2020 was 1.58 [28]. For example, Google publishes quarterly and
trailing 12-month PUE values going back to 2008 for their DC hosted globally and reports a
fleet-wide PUE of 1.10 for 2021 [25]. Nonetheless, PUE has been criticized when adopted as
a measure of efficiency, because it only considers energy and does not consider the effective

2.3 Energy Efficiency Metrics 21

usage of the computational resources [10, 15]. This means that a PUE can mechanically
decrease by artificially increasing the IT workload, even though the DC efficiency has not
been improved.

Then, the Data Center infrastructure Efficiency (DCiE) is the reciprocal of the PUE,
defined as:

DCiE =
1

PUE
=

∑Energy(IT)
∑Energy(DC)

(2.2)

One can observe that, although PUE and DCiE are the most commonly used metrics to
compare the energy efficiency of data centers, they only assess the global energy efficiency
and fail to provide any insight into the IT efficiency in particular [51].

GEC & ERF The Green Grid also defined three indicators related to DC energy efficiency.
The Green Energy Coefficient (GEC) allows to compute the part of renewable energy used
by the DC, reported as:

GEC =
∑EnergyREN(DC)

∑Energy(DC)
(2.3)

GEC has a maximum value of 1.0, indicating the ratio of energy consumed by the DC from
green sources. Then, the Energy Reuse Factor (ERF) reports on the amount of energy reused
outside of the DC:

ERF =
∑EnergyREUSE(DC)

∑Energy(DC)
(2.4)

The ERF value ranges from 0.0 to 1.0, where 0.0 means that no energy is being exported by
the DC for further reuse, while 1.0 means that all the energy brought into the DC is reused
outside of it.

DCEM The European Telecommunications Standards Institute (ETSI) published the ES
205 200-2-1 standard [19], which defines the Data Centre Energy Management (DCEM)
indicator to measure energy efficiency and compare energy management efficiency in DC.
This indicator meets a twofold objective: to assess the level of efficiency in DC and to
compare DC efficiency between different locations and/or industrial sectors. It is composed
of multiple objective Key Performance Indicators (KPI) to evaluate in depth the efficiency of
DC [20, 19]. These indicators assess the DC efficiency from multiple perspectives: Energy
Consumption (EC), Task Efficiency (TE), Energy Reused (REUSE) and Renewable Energy
(REN). The documents also define the measurement points, the procedures and constraints
that must be followed to take the measurements used in the KPI:

KPIEC = EnergyREN(DC)+EnergyFEN(DC) (2.5)

22 State-of-the-Art

The energy consumption objective KPI (KPIEC) is composed of the yearly energy consump-
tion coming from a renewable source (EnergyREN(DC)) and the yearly energy consumption
from other power sources (EnergyFEN(DC)).

KPIT E =
KPIEC

EnergyHE(DC)
(2.6)

The task efficiency objective KPI (KPIT E) is defined by the ratio of energy consumption
(KPIEC) to the yearly energy consumed by equipment that manages data for calculation,
storage or transport purposes inside the DC (EnergyHE) [20].

KPIREUSE =
EnergyREUSE(DC)

KPIEC
(2.7)

The energy reused (REUSE) objective KPI (KPIREUSE) is the ratio of the yearly energy
reused outside of the DC (ECREUSE) to its energy consumption KPIEC.

KPIREN =
EnergyREN(DC)

KPIEC
(2.8)

The renewable energy (REN) objective KPI (KPIREN) is the ratio of the yearly energy
consumption from renewable sources (EnergyREN(DC)) to its energy consumption KPIEC.

Then, the Data Centre Energy Management (DCEM) is composed of the DC energy
consumption (Energy(DC)) which is equivalent to the KPIEC, and the DC Class (DCCLASS),
which is determined according to the energy use management performance (DCP) for a given
energy consumption (DCG). DCG is an intermediate KPI defining the energy consumption
gauge, based on the range of values of the KPIEC objective KPI. Each gauge has the cor-
responding weight factors WREUSE and WREN , which are used to compute the DCP of the
DC.

DCP = KPIT E × (1−WREUSE ×KPIREUSE)× (1−WREN ×KPIREN) (2.9)

The Energy Management Performance (DCP) is computed by using the objectives KPIs (TE,
REUSE, REN), with a mitigation factor applied to KPIREUSE and WREN , depending on the
gauge and the policy the operator choose to promote.

CUE Finally, the Carbon Usage Effectiveness (CUE) (in kilograms of carbon dioxide per
kilowatt-hours: kgCO2eq) aims to assess the efficiency of the energy used for the DC:

CUE =
∑EmissionCO2(DC)

∑Energy(DC)
(2.10)

2.3 Energy Efficiency Metrics 23

The CUE does not take into account the emissions accountable to the manufacturing of the
DC or its equipment. However, the CUE includes the carbon emissions due to the mix of
energy being used by the DC.

SPUE Introduced by Barroso et al. in 2013 [4], the Server PUE (SPUE) is computed as
the ratio of the server input power to its useful component power, including all the parts
directly involved in the computations, namely motherboard, disks, CPUs, DRAM, GPU,
I/O, etc. SPUE aims to quantify the efficiency of individual servers and authors report that
state-of-the-art SPUE should be less than 1.2 at the time of writing their book. Low SPUE
should highlight from optimized power supply and cooling of the components of the machine.
However, to the best of our knowledge, neither the cloud operator nor the literature adopted
this indicator to report on best practices in the design of hardware servers.

2.3.2 Limitations & Opportunities

In the state of the art, various energy efficiency indicators aim to evaluate globally or
specific hardware parts of the infrastructures. However, none of them proposes an end-to-end
approach from the DC input to the machine power supply and down to the hosted software
services.

In particular, in the context of cloud infrastructure, providing an end-to-end energy
indicator should allow deeper analysis and tuning of the infrastructure hardware and software
components to optimize energy usage at large.

Chapter 3

SmartWatts: Self-Calibrating
Software-Defined Power Meter for
Containers

As demonstrated in Section 2.1, while physical power meters offer a suitable solution to
monitor the power consumption of physical servers, they fail to support the energy profiling
at a finer granularity: dealing with the software services that are distributed across such
infrastructures. To overcome this limitation, software-defined power meters build on power
models to estimate the power consumption of software artifacts to identify potential energy
hotspots and leaks in software systems [42] or improve the management of resources [53].
However, existing software-defined power meters are integrating power models that are
statically designed, or learned prior to any deployment in production [13, 37]. This may result
in inaccuracies in power estimations when facing unforeseen environments or workloads,
thus affecting the exploitation process. As many distributed infrastructures, such as clusters
or data centers, have to deal with the scheduling of unforeseen jobs, in particular when
handling black-box virtual machines, we can conclude that the adoption of such static power
models [12] has to be considered as inadequate in production. We therefore believe that the
state-of-the-art in this domain should move towards the integration of more dynamic power
models that can adjust themselves at runtime to better reflect the variation of the underlying
workloads and to cope with the potential heterogeneity of the host machines.

In this chapter, we therefore introduce SMARTWATTS, as a self-calibrating software-
defined power meter that can automatically adjust its CPU and DRAM power models to meet
the power accuracy requirements of monitored software containers. Our approach builds
on the principles of sequential learning principles and proposes to exploit coarse-grained
power monitors like Running Power Average Limit (RAPL), which is commonly available

26 SmartWatts: Self-Calibrating Software-Defined Power Meter for Containers

on modern Intel’s and AMD’s micro-architecture generations, to control the estimation
error. We have implemented SMARTWATTS as an open source power meter to integrate
our self-calibrating approach, which is in charge of automatically adjusting the power
model whenever some deviation from the ground truth is detected. When triggered, the
computation of a new power model aggregates the past performance metrics from all the
deployed containers to infer a more accurate power model and to seamlessly update the
software-defined power meter configuration, without any interruption. The deployment of
SMARTWATTS in various environments, ranging from private clouds to distributed HPC
clusters, demonstrates that SMARTWATTS can ensure accurate real-time power estimations
(less than 2 Watts of error on average, at a frequency of 2 Hz) at the granularity of processes,
containers and virtual machines. Interestingly, the introduction of sequential learning in
software-defined power meters eliminates the learning phase, which usually last from minutes
to hours or days, depending on the complexity of the hosting infrastructure [12, 13].

Additionally, our software-defined approach does not require any specific hardware
investment as SMARTWATTS can build upon embedded power sensors, like RAPL, whenever
they are available. As stated in Section 1.3, the code of SMARTWATTS is freely available
online as open-source software to encourage its deployment at scale and to leverage the
adoption and reproduction of our results. The key contributions of this chapter can therefore
be summarized as follows:

1. a self-calibrating power modelling approach,
2. CPU & DRAM models supporting power states,
3. an open source implementation of our approach,
4. an assessment on container-based environments.
In the remainder of this chapter, we start by introducing this contribution (cf. Section 3.1).

Then, we detail the implementation of SMARTWATTS as an extension of the BITWATTS

middleware framework (cf. Section 3.2) and we empirically assess its validity on three
scenarios (cf. Section 3.3). We conclude and provide some perspectives for this work in
Section 3.4.

3.1 SMARTWATTS Power Monitoring

We therefore propose to support self-calibrating power models that leverage Reference Mea-
surements and Hardware Performance Counters (HWPC) to estimate the power consumption
at the granularity of software containers along multiple resources: CPU and DRAM. More
specifically, this contribution builds upon two widely available system interfaces: RAPL to
collect baseline measurements for CPU and DRAM power consumptions, as well as Linux’s

3.1 SMARTWATTS Power Monitoring 27

perf events
selection
(§ 3.E)

host
modelling

(§ 3.B)

pres

power
estimation

(§ 3.F)

idle power

pres

ppkg(c), pdram(c)

Mres

estimation erroridle isolation
(§ 3.C)

perf events
monitoring

(§ 3.D) model
calibration

(§ 3.F)

c

target error

eHwPC

e H
w

PC

 ˆ dyn ˆ dyn

eHwPC
rapl

ˆ dyn

Fig. 3.1 Overview of SMARTWATTS

perf_events interface to capture the Hardware Performance Counters (HWPC) events used to
estimate the per-container power consumption from resource-specific power models, which
are adjusted at runtime.

3.1.1 Overview of SMARTWATTS

Figure 3.1 introduces the general architecture of SMARTWATTS. SMARTWATTS manages at
runtime a set of self-calibrated power models (M f

res) for each power-monitorable resource
res (e.g., CPU, DRAM). These power models are then used by SMARTWATTS to estimate
the power consumptions of i) the host p̂res and ii) all the hosted containers c: p̂res(c).

SMARTWATTS uses p̂res to continuously assess the accuracy of the managed power
models (M f

res) and to ensure that the estimated power consumption does not diverge from
the baseline measurements reported by RAPL (prapl

res , cf. Section 3.1.2). Whenever the
estimated power consumption error (εres) diverges from the baseline measurements beyond a
configured threshold, SMARTWATTS automatically triggers a new online calibration process
of the diverging power model to better match the current input workload.

To better capture the dynamic power consumption of the host, SMARTWATTS needs to
isolate its static consumption. To do so, we use a dedicated component that activates when
the machine is at rest—e.g., after booting (cf. Section 3.1.3)—to monitor the power activity
of the host.

28 SmartWatts: Self-Calibrating Software-Defined Power Meter for Containers

In addition to the static constant, SMARTWATTS estimates the power consumption of the
host from a set of raw input values that refers to HWPC events, which are selected at runtime
(cf. Section 3.1.5).

This design ensures that SMARTWATTS keeps adjusting its power models to maximize
the accuracy of power estimations. Therefore, unlike the state-of-the-art power monitoring
solutions, SMARTWATTS does not suffer from estimation errors due to the adoption of
an inappropriate power model as it autonomously optimizes the underlying power model
whenever an accuracy anomaly is detected.

3.1.2 Modelling the Host Power Consumption

For each resource res ∈ {pkg,dram} exposed by the RAPL interface, the associated power
consumption prapl

res can be modelled as:

prapl
res = pstatic

res + pdyn
res (3.1)

where pstatic
res refers to the static power consumption of the monitored resource (cf. Sec-

tion 3.1.3), and pdyn
res reflects the dynamic power dissipated by the processor along the

sampling period.
Then, we can compute a power model M f

res = [α0, · · · ,αn] that correlates, for a given
frequency f (among available frequencies F , cf. Section 3.1.4), the dynamic power con-
sumption (p̂dyn

res) to the raw metrics reported by a set of of Hardware Performance Counter
(HwPC) events (cf. Section 3.1.5), E f

res = [e0, . . . ,en]:

∃ f ∈ F, p̂dyn
res = M f

res ·E f
res (3.2)

We build M f
res from an Elastic net regression—that linearly combines the L1 and L2

penalties of the Lasso and Ridge methods—applied on the past k samples S f
k = ⟨pdyn

res ,E
f
res⟩,

with pdyn
res = prapl

res − pstatic
res . To ensure that the power consumption of every single container is

linear with regards to the global power consumption of the node, we enforce the inference of
positive coefficients when computing the regression and we check that the intercept belongs to
the range [0,TDP] where TDP refers to the Thermal Design Power of the CPU. By comparing
pdyn

res + pstatic
res with prapl

res , we can continuously estimate the error εres =| pdyn
res − p̂dyn

res | from
estimated values in order to monitor the accuracy of the power model M f

res. Whenever the
error exceeds a given threshold set by the administrator, a new power model is generated for
the frequency f by integrating the latest samples.

3.1 SMARTWATTS Power Monitoring 29

3.1.3 Isolating the Static Power Consumption

Isolating the static power consumption of a node is a challenging issue as it requires to
reach a quiescient state in order to capture the power consumption of the host at rest. To
capture this information, we designed and implemented a power logger component that
runs as a lightweight daemon with low priority that periodically logs the package and
DRAM power consumptions reported by RAPL. Then, we compute the median value and
the interquartile range (IQR) from gathered measurements to define the pstatic

res constant as
: pstatic

res = medianres −1.5× IQRres. This approach intends to filter out outliers reported by
RAPL, including periodic measurement errors we observed, and to consider the lowest power
consumption observed along a given period of time as the static consumption of a node.

By default, SMARTWATTS assumes that the static consumption of the host does not
require to be spread across the active containers. However, other power accounting policies
can be implemented. For example, by reporting an empty static consumption, SMARTWATTS

will share it across the running containers depending on their activity.

3.1.4 Monitoring Power States & HWPC Events

As previously introduced, the accuracy of a power model M f
res strongly depends on i) the

selection of relevant input features (HWPC events en) and ii) the acquisition of input values
that are evenly distributed along the reference power consumption range. This is one of the
reasons why the input workloads used in standard calibration phases are often critical to
capture an accurate power model that reflects the power consumption of a host for a given
class of applications. SMARTWATTS rather promotes a self-calibrating approach that does
not impose the choice of a specific benchmark or workload, but exploits the ongoing activity
variations of the host machine to continuously adjust its power models. To achieve this,
SMARTWATTS monitors selected sets of HWPC events and stores the associated samples in
memory. To better deal with the power features of hardware components, we group the input
samples per operating frequency. This allows to calibrate frequency-specific power models
when an estimation arises, with the goal to converge automatically to a stable and precise
power model over the time.

By balancing the samples along the range of frequencies operated by the processor,
SMARTWATTS ensures that the power model learning phase does not overfit the current
context of execution, which may lead to the generation of unstable power models, thus
impacting the accuracy of the power measurements. The sampling tuples S f

k are grouped into
memory as frequency layers L f

res = [S f
0 , ...,S

f
n], which are the raw features we maintain to

build M f
res.

30 SmartWatts: Self-Calibrating Software-Defined Power Meter for Containers

To store the samples in the layer corresponding to the current frequency of the processor,
SMARTWATTS compute the average running frequency as follows:

Favg = Fbase ∗
∆ APERF

∆ MPERF
(3.3)

where Fbase is the processor base frequency constant extracted from the Model Specific
Registers (MSR) PLATFORM_INFO. APERF and MPERF are MSR-based counters that increment
at the current and maximum frequencies, respectively. These counters are continuously
updated, hence they report on a precise average frequency without consuming the limited
HWPC slots. Interestingly, the performance power states, such as P-states and Turbo Boost,
will be accounted by these counters as they act mainly on the frequency of the core in order to
boost the performance. The idle optimization states (C-states) will also be accounted as they
mainly reduce of the average frequency of the core towards its Max Efficiency Frequency
before being powered-down.

3.1.5 Selecting the Correlated HWPC Events

The second challenge of SMARTWATTS consists in selecting at runtime the relevant HWPC
events that can be exploited to accurately estimate the power consumption. To do so, we
list the available events exposed by the host’s Performance Monitoring Units (PMU) and
we evaluate their correlation with the power consumption reported by RAPL. Instead of
testing each available HWPC events, we narrow the search using the PMU associated to
the modelled component—i.e., we consider the HWPC events from the core PMU to model
the PKG power consumption. As reference events, we consider unhalted-cycles for the
package and llc-misses for the DRAM, which are the standard HWPC events available
across many processor architectures, and have been widely used by the state of the art to
design power models [12, 13, 37]. To elect a HWPC event as a candidate for the power
model, we first compute the Pearson coefficient re,p for n values reported by each monitored
HWPC event e and the base power consumption p reported by RAPL:

re,p =

n
∑

i=1
(ei − e) (pi − p)√

n
∑

i=1
(ei − e)2

√
n
∑

i=1
(pi − p)2

(3.4)

Then, SMARTWATTS stores the list of HWPC events that exhibit a better correlation
coefficient r than the baseline event for DRAM and PKG. This list of elected HWPC events

3.1 SMARTWATTS Power Monitoring 31

is further used as input features to implement the PKG and DRAM power models exploited
by SMARTWATTS.

3.1.6 Estimating the Container Power Consumption

Given that we learn the power model M f
res from aggregated events of the running containers

or virtual machines C, E f
res = ∑c∈C E f

res(c), we can predict the power consumption of any
container c by applying the inferred power model M f

res at the scale of the container’s events
E f

res(c):
∃ f ∈ F, ∀c ∈C, p̂dyn

res (c) = M f
res ·E f

res(c) (3.5)

Then, we distribute the value of the intercept i that is included in the estimate p̂dyn
res (c)

proportionally to the dynamic part of the consumption of c

∀c ∈C, p̃dyn
res (c) = p̂dyn

res (c)− i× (1− p̂dyn
res (c)− i

p̂dyn
res − i

) (3.6)

In theory, one can expect that p̂dyn
res

!
= pdyn

res if the model perfectly estimates the dynamic
power consumption but, in practice, the predicted value may introduce an error εres =|
pdyn

res − p̂dyn
res |. Therefore, we cap the power consumption of any container c as:

∀c ∈C, ⌈p̃dyn
res (c)⌉=

pdyn
res × p̃dyn

res (c)

p̂dyn
res

(3.7)

to ensure that pdyn
res =∑c∈C⌈p̃dyn

res (c)⌉, thus avoiding potential outliers. Thanks to this approach,
we can also report on the confidence interval of the power consumption of containers by
scaling down the observed global error:

∀c ∈C, εres(c) =
p̃dyn

res (c)

p̂dyn
res

× εres (3.8)

In the following sections, we derive and implement the above formula to report on the
power consumption of pkg and dram resources. Our empirical evaluations report on the
capped power consumptions for pkg (⌈p̂dyn

pkg⌉) and dram (⌈p̂dyn
dram⌉), as well as the associated

errors εpkg and εdram, respectively.

32 SmartWatts: Self-Calibrating Software-Defined Power Meter for Containers

cluster

nodenodenodenode (master)

OS

sensor

process

process

OS

sensor

mongodb

power meter

OS OS

sensor

container

container

VM

VM

...

...

sensor

samples

power estimations

Fig. 3.2 Deployment of SMARTWATTS

3.2 Implementation of SMARTWATTS

We implemented SMARTWATTS as a modular software system that can run atop a wide
diversity of production environments. As depicted in Figure 3.2, our open source im-
plementation of SMARTWATTS mostly relies on 2 software components—a sensor and a
power meter—which are connected with a MONGODB database.1 MONGODB offers a
flexible and persistent buffer to store input metrics and power estimations. The sensor is
designed as a lightweight process that is intended to run on target nodes with a limited impact.
The power meter is a remote service that can be deployed whenever needed. SMARTWATTS

uses this feature to support both online and post mortem power estimations, depending on
use cases.

3.2.1 Client-side Sensor

The component sensor consists in a lightweight software daemon deployed on all the nodes
that need to be monitored.

Static power isolation When the node boots, the sensor starts the idle consumption iso-
lation phase (cf. Section 3.1.3) by monitoring the PKG and DRAM power consumptions
reported by RAPL along the global idle CPU time and the fork, exec and exit process
control activities provided by Linux process information pseudo-filesystem (procfs). When-
ever a process control activity or the global idle CPU time exceed 99 % during this phase,

1https://www.mongodb.com

https://www.mongodb.com

3.2 Implementation of SMARTWATTS 33

the power samples are discarded to prevent the impact of background activities on the static
power isolation process. As stated in Section 3.1.3, this phase is only required when the idle
attribution policy considers the idle consumption as a power leakage. It is not needed to
run this phase as long as there is no change in the hardware configuration of the machine
(specifically CPU or DRAM changes).

Event selection Once completed, the sensor switches to the event selection phase (cf. Sec-
tion 3.1.5). To select the most accurate Hardware Performance Counters (HwPC) to estimate
the power of a given node, SMARTWATTS need to identify the HWPC statistically correlated
with the power consumption of the components. For that, the sensor monitors the power
consumption reported by RAPL and the maximum simultaneous HWPC events possible
without multiplexing, as it can a significant noise and distort the correlation coefficient of the
events, over a (configurable) period of 30 ticks. The maximal amount of simultaneous HWPC
events depends of the micro-architecture of the CPU and will be detected at runtime using
the PMU detection feature of the libpfm4 library.2 We then correlate the power consumption
with the values of the monitored HWPC events and rank them by highest correlation with
RAPL and lowest correlation across the other HWPC. Whenever possible, fixed HWPC event
counters are selected in priority to avoid consuming a programmable counter.

Control groups SMARTWATTS leverages the control groups (Cgroups) implemented by
Linux to support a wide range of monitoring granularities, from single processes, to software
containers (DOCKER),3 to virtual machines (using LIBVIRT).4 The sensor also implement a
kernel module that is in charge of configuring the Cgroups to monitor the power consumption
of kernel and system activities, which is not supported by default. To do so, this module
defines 2 dedicated Cgroups for the roots of the system and the kernel process hierarchy.

Event monitoring Once done with the above preliminary phases, the sensor automatically
starts to monitor the selected HWPC events together with RAPL measurements for the
DRAM and CPU components at a given frequency and it reports these samples to the
MONGODB backend (cf. Section 3.1.4). The sensor monitors the selected HWPC events
for the host and all the Cgroups synchronously to ensure that all the reported samples are
consistent when computing the power models.

2http://perfmon2.sourceforge.net
3https://docker.com
4https://libvirt.org

http://perfmon2.sourceforge.net
https://docker.com
https://libvirt.org

34 SmartWatts: Self-Calibrating Software-Defined Power Meter for Containers

3.2.2 Introducing the POWERAPI Toolkit

POWERAPI is an open-source middleware toolkit for building software-defined power
meters (i.e. formulas) in Python.5 This toolkit supports the acquisition of raw metrics
from a wide diversity of sensors (eg., physical power meters, hardware energy monitoring
interfaces, performance counters) and the delivery of power consumptions via different
channels (including file system and various kinds of databases). POWERAPI adopts a
modular architecture based on the actor programming model, which is used to deliver power
estimations at scale by devoting one actor per formula. Multiple deployment methods are
available, such as containers and packages for various Linux distributions, in order to cope
with the heterogeneity of the underlying infrastructures. Application developers can then
leverage POWERAPI to focus on the development of the core logic of their own formula and
benefit from the various features of the toolkit.

3.2.3 Server-side Power Meter

The power meter is implemented as a software service that requires to be deployed on a single
node (e.g., the master of a cluster). The power meter can be used online to produce real-time
power estimations or offline to conduct post mortem analysis. This component consumes the
input samples stored in the MONGODB database and produces power estimations accordingly.
We implemented SMARTWATTS as a POWERAPI formula, which allow the use of a wide
range of input/output data storage technologies (such as MongoDB, InfluxDB, etc.) and to
delivers power estimations at scale.

Power modelling The power meter provides an abstraction to build power models. In
this contribution, the power model we report on is handled by Scikit-Learn, which is the
de facto standard Python library for general-purpose machine learning.6 We embed the Ridge
regression of Scikit-Learn in an actor, which is in charge of delivering a power estimation
whenever a new sample is fetched from the database.

Model calibration When the error reported by the power model exceeds the threshold
defined by the user, the power meter triggers a new calibration of the power model to take
into account the latest samples. This new power model is checked against the last sample to
estimate its accuracy. If it estimates the power consumption below the configured threshold,
then the actor is updated accordingly.

5https://github.com/powerapi-ng/powerapi
6https://scikit-learn.org

https://github.com/powerapi-ng/powerapi
https://scikit-learn.org

3.3 Validation of SMARTWATTS 35

Power estimation Power estimations are delivered at the scale of a node and for the
Cgroups of interest. These scopes of these Cgroups can reflect the activity of nodes’ kernel
and system, as well as any job or service running in the monitored environment. These power
estimations can then be aggregated by owner, service identifier or any other key, depending
on use cases. They can also be aggregated along time to report on the energy footprint of a
given software system.

3.3 Validation of SMARTWATTS

This section assesses the efficiency and the accuracy of SMARTWATTS to evaluate the power
consumption of running software containers.

3.3.1 Evaluation Methodology

We follow the experimental guidelines reported by [55] to enforce the quality of our results.
In this case, the experiments are executed on real environments, we fully share the machine
specifications, the version of the software used, and publish our code to ease the reproducibil-
ity of our results. The benchmarks used for the validation are standard and widely used
in the evaluation of other contributions in the literature. [5, 23, 12, 27, 13] For the sake of
reproducible research, SMARTWATTS, the necessary tools, deployment scripts and resulting
datasets are open-source and publicly available on GitHub.7

Testbeds & workloads While our production-scale deployments of SMARTWATTS cover
both KUBERNETES and OPENSTACK clusters, for the purpose of this contribution, we
chose to report on more standard benchmarks, like STRESS NG8 and NASA’s NAS Parallel
Benchmarks (NPB) [2] to highlight the benefits of our approach.

Our setups are reproduced on the GRID5000 testbed infrastructure,9 which provides
multiple clusters composed of powerful nodes. In this evaluation, we use a Dell PowerEdge
C6420 server having two Intel® Xeon® Gold 6130 Processors (Skylake) and 192 GB of
memory (12 slots of 16 GB DDR4 2666MT/s RDIMMs). We are using the Ubuntu 18.04.3
LTS Linux distribution running with the 4.15.0-88-generic Kernel version, where only a
minimal set of daemons is running in the background. As stated in 3.2.1, we are using the
Cgroups to monitor the activity of the running processes independently. In the case of the

7https://github.com/powerapi-ng/smartwatts-formula
8https://launchpad.net/stress-ng
9https://www.grid5000.fr

https://github.com/powerapi-ng/smartwatts-formula
https://launchpad.net/stress-ng
https://www.grid5000.fr

36 SmartWatts: Self-Calibrating Software-Defined Power Meter for Containers

system services managed by systemd and the services running in Docker containers, their
Cgroups membership is automatically handled as part of their lifetime management.

For this host, the reported TDP for the CPU is 125 Watts and 26 Watts for the DRAM.
Theses values were obtained from the PKG_POWER_INFO and DRAM_POWER_INFO Model
Specific Registers (MSR). The energy and performance optimization features of the CPU—
i.e., Hardware P-States (HWP), Hyper-Threading (HT), Turbo Boost (TB) and C-states, are
fully enabled and use the default configuration of the distribution. The default CPU scaling
driver and governor for the distribution are intel_pstate and powersave.

In all our experiments, we configure SMARTWATTS to report power measurements twice
a second (2Hz) with an error threshold of 5 Watts for the PKG and 1 Watt for the DRAM.

Objectives We evaluate SMARTWATTS with the following criteria:

• The quality of the power estimations when running sequential and parallel workloads,

• The accuracy and stability of the power models across different workloads,

• The overhead of the SMARTWATTS sensor component on the monitored host.

3.3.2 Experimental Results

Quality of estimations Figure 3.3 first reports on the PKG and DRAM power consumptions
we obtained with SMARTWATTS. The first line (rapl) refers to the ground truth power mea-
surements we sample for the PKG and the DRAM via the HWPC events RAPL_ENERGY_PKG
and RAPL_ENERGY_DRAM, respectively. The second line (global) refers to the power mea-
surements estimated by SMARTWATTS for the PKG and the DRAM components from
CPU_CLK_THREAD_UNHALTED:REF_P and CPU_CLK_THREAD_UNHALTED:THREAD_P fixed coun-
ters, INSTRUCTIONS_RETIRED, and LLC_MISSES programmable counters. The list of events
has been automatically selected by the sensor component as presenting the best correlation
with RAPL samples, as described in Section 3.1.5. The error for each of the power models
are further discussed in Figures 3.4 and 3.5.

The lines kernel and system isolate the power consumption induced by all kernel and
system activities. Kernel activities include devices specific background operations, such as
Network interface controller (NIC) and disks I/O processing queues, while system activities
cover the different services, like the SSH server and Docker daemon, running on the node.

The remaining lines reports on individual power consumptions of a set of NPB bench-
marks, which are executed in sequence (lu, ep, ft) or concurrently (ft, cg, ep, lu, mg) with
variable number of cores (ranging from 8 to 32 cores). One can observe that SMARTWATTS

3.3 Validation of SMARTWATTS 37

10
0

20
0

30
0

ra
pl

0

20
0

gl
ob

al

020
ke

rn
el

0

10
0

sy
st

em

050
po

we
ra

pi
-s

en
so

r

10
0

15
0

np
b-

s-
lu

.C
.8

0

20
0

np
b-

s-
ep

.D
.3

2

0

20
0

np
b-

s-
ft.

D.
16

10
0

20
0

st
re

ss
-n

g-
ud

pf
lo

od
32

0

20
0

np
b-

p-
ft.

D.
16

0

20
0

np
b-

p-
cg

.D
.1

6

0

10
0

np
b-

p-
ep

.D
.1

6

050
np

b-
p-

lu
.C

.8

15
 12

:55
15

 13
:00

15
 13

:05
15

 13
:10

15
 13

:15
15

 13
:20

15
 13

:25
0

10
0

np
b-

p-
m

g.
C.

8

Fig. 3.3 Evolution of the aggregated PKG & DRAM power consumption (in Watts) along
time and containers

38 SmartWatts: Self-Calibrating Software-Defined Power Meter for Containers

supports the isolation of power consumptions at process-level by leveraging Linux Cgroups.
This granularity allows SMARTWATTS to monitor indifferently processes, containers or
virtual machines.

We also run stress-ng to observe potential side effects on the kernel activity by starting
32 workers that attempt to flood the host with UDP packets to random ports. While it
remains negligible compared to the power consumption of the UDP flood process (3.26 W vs.
94.46 W on average), one can observe that this stress induces a lot of activity at the kernel to
handle I/O, while the rest system is not severely impacted.

One can also observe that our sensor (powerapi-sensor) induces a negligible overhead
(less than 0.2 Watts) with regards to the consumption of surrounding activities.

Estimation accuracy Figures 3.4 and 3.5 reports on the distribution of estimation errors
we observed per frequency and globally (right part of the plots) for the above scenario. We
also report on the number of estimations produced for each of the frequency (upper part of
the plots). While the error threshold for CPU and DRAM is set to 5 Watts and 1 Watts, one
can observe that SMARTWATTS succeeds to estimate the power consumption with less than
3 Watts and 0.5 Watt of error for the PKG and DRAM components, respectively. The only
case where estimation error grows beyond this threshold refers to the frequency 1000Hz of
the CPU (cf. Figures 3.4).The frequency 1000 Hz refers to the idle frequency of the node and
the sporadic triggering of activities in this frequency induces a chaotic workload which is
more difficult to capture for SMARTWATTS given the limited number of samples acquired in
this frequency (130 samples against 3555 samples for the frequency 2700Hz).

The DRAM component, however, provides a more straightforward behavior to model
with the selected HWPC events and therefore reports an excellent accuracy, no matter the
operating frequency of the CPU package (cf. Figure 3.5).

The accuracy of the power models generated by SMARTWATTS are further detailed
in Table 3.1. While our approach succeeds to deliver accurate estimations of the power
consumption for both CPU and DRAM components, the maximum error refers to the
bootstrapping phase of the sensor that requires to acquire a sufficiently representative number
of samples in order to build a stable and accurate power model.

Model stability Beyond the capability to accurately estimate the power consumption of
software containers, we are also interested in assessing the capability of SMARTWATTS

to generate stable power models over time. Tables 3.2 and 3.3 therefore reports, for each
frequency, on metrics about the stability of power models. In particular, we look at the
number of correct estimations produced by the power models in a given frequency. Given

3.3 Validation of SMARTWATTS 39

1000 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 All
Frequency layer of the model (in MHz)

0

2

4

6

8

10

12

Er
ro

r o
f t

he
 m

od
el

 c
om

pa
re

d
to

 th
e

re
fe

re
nc

e
(in

 W
)

130 79 384 1316 3555 1258 424 794 214 276 221 8651

Fig. 3.4 Global & per-frequency error rate of the PKG power models

1000 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 All
Frequency layer of the model (in MHz)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r o
f t

he
 m

od
el

 c
om

pa
re

d
to

 th
e

re
fe

re
nc

e
(in

 W
)

121 79 384 1315 3554 1257 424 794 214 276 221 8639

Fig. 3.5 Global & per-frequency error rate of the DRAM power models

40 SmartWatts: Self-Calibrating Software-Defined Power Meter for Containers

Table 3.1 Per-socket PKG & DRAM power models accuracy

Resource Socket εmin εmax εmean εstd

PKG 0 0.000 W 117.563 W 2.625 W 5.548 W
1 0.000 W 97.906 W 3.278 W 6.743 W

DRAM 0 0.000 W 26.114 W 0.465 W 0.839 W
1 0.000 W 5.737 W 0.309 W 0.442 W

our input workloads, we can observe that SMARTWATTS succeeds to reuse a given power
model up to 594 estimations, depending on frequencies. While we observed that the stability
of our power models strongly depends on the sampling frequency, the error threshold, as well
as the input workloads, one should note that the overhead for calibrating a power model in a
given frequency does not take more than a couple milliseconds, which is perfectly acceptable
when monitoring software systems in production.

Table 3.2 PKG power models stability per frequency

Frequency models total min max mean std

1000 130 130 1 13 1.710 1.881
2400 35 79 1 19 2.323 3.345
2500 72 384 1 58 3.764 10.226
2600 152 1316 1 417 6.045 29.904
2700 239 3555 1 358 8.610 27.591
2800 95 1258 1 294 9.530 39.320
2900 64 424 1 266 5.108 29.061
3000 134 794 1 121 4.783 13.581
3100 56 214 1 127 3.890 17.061
3200 53 276 1 115 5.307 17.817
3300 44 221 1 79 4.911 12.770

Monitoring overhead Regarding the runtime overhead of SMARTWATTS, one can observe
in Figure 3.3 that the power consumption of SMARTWATTS is negligible compared to the
hosted software containers. To estimate this overhead, we leverage the fact that the sensor
component is running inside a software container, thus enabling SMARTWATTS to estimate
its own power consumption. In particular, one can note in Table 3.4 that the sensor power
consumption represents 0.333 Watts for the PKG and 0.030 Watts for the DRAM, on average,
when running at a frequency of 2Hz. The usage of the Hardware Performance Counters
(HwPC) is well known for its very low impact on the observed system, hence it does not

3.3 Validation of SMARTWATTS 41

Table 3.3 DRAM power models stability per frequency

Frequency models total min max mean std

1000 21 121 1 58 6.050 14.009
2400 18 79 1 14 4.647 3.390
2500 82 384 1 129 4.425 14.082
2600 290 1315 1 70 3.887 7.961
2700 499 3554 1 594 4.980 25.637
2800 106 1257 1 300 7.618 37.541
2900 89 424 1 33 4.326 5.469
3000 137 794 1 60 5.293 8.270
3100 58 214 1 14 3.754 3.444
3200 50 276 1 62 5.520 9.361
3300 34 221 1 29 6.314 8.312

induce runtime performance penalties [12, 17, 35, 44]. Additionally, we carefully took care
of the cost of sampling these HwPC events and executing as little as possible instructions on
the monitored nodes.

Table 3.4 Per-component power consumption of the sensor

Power min max mean std

PKG 0.0 W 63.961 W 0.333 W 3.097 W
DRAM 0.0 W 8.365 W 0.030 W 0.283 W

By proposing a lightweight and packaged software solution that can be easily deployed
across monitored hosts, we facilitate the integration of power monitoring in large-scale
computing infrastructures. Furthermore, the modular architecture of SMARTWATTS can
accommodate existing monitoring infrastructures, like KUBERNETES METRICS or OPEN-
STACK CEILOMETER, to report on the power consumption of applications. The following
section therefore demonstrates this capability by deploying a distributed case study atop of a
KUBERNETES cluster.

3.3.3 Tracking the Energy Consumption of Distributed Systems

To further illustrate the capabilities of SMARTWATTS, we take inspiration from [11] to deploy
a distributed software systems that processes messages forwarded by IoT devices to a pipeline
of processors connected by a KAFKA cluster to a CASSANDRA storage backend. Figure 3.6

42 SmartWatts: Self-Calibrating Software-Defined Power Meter for Containers

cluster

slave 5
slave 2slave 1

master

OS
sensor

Zookeeper
Kafka

OS
sensor

mongodb
power meter

OS OS
sensor

...
sensor

Cassandra
Consumerproducer

Zookeeper
Kafka

Cassandra
Consumer

Kafka

Cassandra
Consumer

Fig. 3.6 Deployment of Kubernetes IoT backend services across 6 nodes

depicts the deployment of this distributed system on a KUBERNETES cluster composed of 1
master and 5 slave nodes of the same configuration as stated in 3.3.1. The input workload
consists in a producer injecting messages in the cluster with a throughput ranging from 10 to
100 MB/s.

Figure 3.7 reports on the evolution of the power consumption per service while injecting
the workload from the master node. One can observe that, when increasing the message
throughput, the most impacted service is the Consumer, which requires extensive energy to
process all the messages enqueued by the Kafka service. This saturation of the Consumer
service seems to represent a core bottleneck in the application.

To further dive into this problem, we consider another perspective on the deployment
in order to investigate the source of this efficiency limitation. While the execution of
this workload requires 1.32 MJoules of energy to process the whole dataset, Figure 3.8
further dives inside the distribution of the energy consumption of individual pods along
the PKG and DRAM components as a Sankey diagram [40]. This diagram builds on the
capability of SMARTWATTS to aggregate power estimations along time to report on the
energy consumption, as well as its capacity to track power consumption from software
processes (on left-hand side) down to hardware components (on the right-hand side). This
diagram can therefore be used to better understand how a distributed software system takes
advantage of the underlying hardware components to execute a given workload. In particular,
one can observe that 91 % of the energy is spent by the CPU package, while the Consumer
service drains 65 % of the energy consumption of the monitored scenario. Interestingly,
one can observe that this energy consumption is evenly distributed across the 5 slaves, thus
fully benefiting from the pod replication support of KUBERNETES. The observed energy
overhead is not due to the saturation of a single node, but rather seems to be distributed
across the nodes, therefore highlighting an issue in the code of the Consumer service. This

3.4 Summary 43

02:0001:40 01:45 01:50 01:55 02:05 02:10
Timestamp

0

200

400

600

800

1000

1200

Po
we

r c
on

su
m

pt
io

n
(in

 W
at

ts
)

Kernel
System
Zookeeper
Kafka
Consumer
Cassandra

Fig. 3.7 Monitoring of service-level power consumptions

issue is related to the acknowledgement of write requests by the CASSANDRA service, which
prevents the CONSUMER service to process pending messages.

We believe that, thanks to SMARTWATTS, system administrators and developers can
collaborate on identifying energy hotspots in their deployment and adjusting the configuration
accordingly.

3.4 Summary

Power consumption is a critical concern in modern computing infrastructures, from clusters
to data centers. While the state of practice offers tools to monitor the power consumption at a
coarse granularity (e.g., nodes, sockets), the literature fails to propose generic power models,
which can be used to estimate the power consumption of software artifacts.

In this chapter, we therefore presented a novel approach, named SMARTWATTS, to deliver
per-container power estimations for the CPU and DRAM components. In particular, we
propose to support self-calibrating power models to estimate the CPU and DRAM power
consumption of software containers. Unlike static power models that are trained for a specific
workload, our power models leverage sequential learning principles to be adjusted online in

44 SmartWatts: Self-Calibrating Software-Defined Power Meter for Containers

Fig. 3.8 Distribution of the energy consumption across nodes and resources

3.4 Summary 45

order to match unexpected workload evolutions and thus maximize the accuracy of power
estimations.

While we demonstrate this approach using Intel RAPL and the Linux’s perf_events
interface, we strongly believe that it can be used as a solid basis and generalized to other
architectures and system components. In particular, other CPUs implementing the RAPL
interface, such as AMD Ryzen, can be supported by our approach.

Thanks to SMARTWATTS, system administrators and developers can monitor the power
consumption of individual containers and identify potential optimizations to apply in the
distributed system they manage. Instead of addressing performance issues by adding more
resources, we believe that SMARTWATTS can favorably contribute to increase the energy
efficiency of distributed software systems at large.

Chapter 4

SelfWatts: On-the-fly Selection of
Performance Events for Power Meters

As stated in Section 2.2, while software-defined power meters offers a solution to support
process-level power estimations, through the implementation of dedicated power models
that leverage system-level metrics to estimate the power consumption at the granularity of
software services [21, 11]. The design of the underlying power models that estimate the
power consumption of the monitored software components keeps being a long and fragile
process that remains tightly coupled to the host machine [53, 35, 13]. Furthermore, the
deployment of such software-defined power meters remains a critical issue when facing
the diversity of hardware settings in the wild, which prevents a wider adoption by the
industry. In particular, the proposed power models either cannot be exploited because of the
unavailability of required metrics or, at best, deliver incorrect power estimations of hosted
software services [56, 7].

This key limitation, therefore, calls for more adaptive approaches that can adjust and
optimize the power model to the hardware constraints of a given deployment target. More
specifically, this contribution addresses the self-optimization of power models by i) automati-
cally selecting the most relevant set of hardware performance events and ii) continuously
inferring the best power model for the target architecture. The proposed approach ensures that
our self-optimized power models keep delivering accurate power estimations while fitting
to the hardware constraints imposed by the deployment. Our approach is made available
as a software solution, named SELFWATTS, that can be quickly deployed at the scale of a
data center to monitor the power consumption of software containers or virtual machines
(VM), with negligible overhead. Once deployed, SELFWATTS keeps exploring the space
of available hardware performance events to detect if unexplored events contribute more
favorably to the accuracy of the power model.

48 SelfWatts: On-the-fly Selection of Performance Events for Power Meters

Interestingly, we show that SELFWATTS delivers real-time power estimations that com-
pete with the state-of-the-art software-defined power models while offering a plug-and-play
solution to data center administrator for monitoring the power consumption of their infras-
tructure services, as well as reporting the energy consumption of their customers, no matter
their hardware constraints. This contribution thus paves the way for more sustainable cloud
services by exposing this key performance indicator to interested stakeholders (e.g., cloud
administrators and customers) and encourage them to reduce their environmental footprint.

As stated in Section 1.3, the code of SELFWATTS is freely available online as open-source
software to encourage its deployment at scale and to leverage the adoption and reproduction
of our results.

The key contributions of this chapter can therefore be summarized as follows:
1. a self-calibrating power modelling approach,
2. CPU & DRAM models supporting power states,
3. an open source implementation of our approach,
4. an assessment of the accuracy, runtime overhead and on container-based environments.
In the remainder of this chapter, we start by introducing our contribution (cf. Section 4.1).

Then, we detail the implementation of SELFWATTS as an extension of the (already described
in Section 3) SMARTWATTS software-defined power-meter (cf. Section 4.2) and we empiri-
cally assess its validity on three scenarios (cf. Section 4.3). We conclude and provide some
perspectives for this work in Section 4.4.

4.1 Power Monitoring with SelfWatts

4.1.1 Approach Overview

To learn power models that continuously deliver the best accuracy, no matter the workload
and the deployment target, we propose an approach that explores the space of performance
events incrementally and evaluates the impact of available events on the energy consumption
of the monitored host. We propose to apply this approach at runtime, while the software-
defined power meter keeps running to challenge the current power model with alternative
performance events. This online learning approach aims to ensure the convergence of the
power model towards the best combination of performance events that characterize the
power consumption of a given workload and target architecture. While this approach may
require some time to converge, we consider that the context of cloud computing assumes
long-term monitoring that can accommodate such a training phase, given the timescale of
virtual machine deployments.

4.1 Power Monitoring with SelfWatts 49

As introduced in Figure 4.1, our approach introduces a feedback loop between the
inference of a power model and the monitoring of performance events. By doing so, the mon-
itoring becomes aware of the relevance of the selected events and can adjust the exploration
of performance events accordingly.

CPU
RAPL

Performance events
monitoring

Host power model
inference

⟨e
m ...e

n ⟩⊂
 E

E

⟨e1,...,en⟩ ⊂ E
p

Software power
estimation

⟨p1
cpu,...,pn

cpu⟩ ∈ VM

Perf events

[S1...Sn]

ℳcpu(e1,...,em)ℳdram(e1,...,em)

⟨p1
dram,...,pn

dram⟩ ∈ VM

Fig. 4.1 Overview of the SELFWATTS approach.

More specifically, the monitoring component starts by selecting a subset of performance
events ⟨e1, . . .,en⟩ ∈ E from the list of events E available on the target CPU (cf. Section 4.1.4).
The cardinality of the selected set of events depends on the number of HWPC slots that can
be used concurrently. The monitoring component forwards metrics samples for the selected
events to the inference component, which applies a supervised machine learning algorithm to
establish a relationship between the energy consumption p retrieved from the RAPL interface
and the selected events (cf. Section 4.1.2). This model is further exploited by the estimation
component to report on the power consumption of individual virtual machines or containers
(cf. Section 4.1.3). The inference component also reports on the list of irrelevant performance
events, which can be used by the monitoring component to select another set of performances
events among E. In this approach, performance events used by the power model are kept by
the monitoring component, which only replaces the irrelevant performance events. By doing
so, the power model is intended to converge towards a model that retains the performance
events delivering the most accurate power estimations.

The following sections dive into the specific challenges of each component, starting from
the host power model inference (cf. Section 4.1.2), before explaining how software power

50 SelfWatts: On-the-fly Selection of Performance Events for Power Meters

estimation works (cf. Section 4.1.3) and finally, how the performance events monitoring
explores the space of available events (cf. Section 4.1.4).

4.1.2 Host Power Model Inference

First, we consider that, for any hardware resource res ∈ {pkg,dram} exposed by the RAPL
interface, the associated power consumption prapl

res can be modelled as:

prapl
res = pstatic

res + pdyn
res (4.1)

where pstatic
res refers to the static power consumption of the monitored resource, and pdyn

res

reflects the dynamic power dissipated by the processor along the sampling period. By default,
SELFWATTS consider pstatic

res to be 0 and will spread the static consumption of the host across
the active containers and virtual machines proportionally to theirs activity. However, other
power accounting policies where the static consumption needs to be specifically handled can
be implemented.

As previously introduced, the accuracy of a power model M f
res strongly depends on i) the

selection of relevant input features (performance events ei) and ii) the acquisition of input
samples that are evenly distributed along with the reference power consumption range. To
better deal with the power features of hardware components, we group the input samples
per operating frequency f ∈ F , being the set of all frequencies operated by the hardware
resource. Thus, we learn frequency-specific power models, aiming to converge automatically
to a stable and precise representation over time. By tagging the samples along with the
frequency operated by the processor, SELFWATTS ensures that the learned power models
do not overfit the current context of execution, which may lead to inaccurate power models.
The sampling tuples S f

k , containing the raw sampled performance events, are grouped into
memory as frequency layers L f

res = [S f
1 , . . . ,S

f
n], which are the input features we maintain to

build M f
res.

To classify the samples in the layer corresponding to the current frequency of the proces-
sor, SELFWATTS compute the average running frequency f as follows:

f = fbase ∗
∆ APERF

∆ MPERF
(4.2)

where fbase is the processor base frequency constant extracted from the field Package Maxi-
mum Non-Turbo Ratio of the PLATFORM_INFO Model Specific Registers (MSR). The APERF
and MPERF variables are MSR-based counters that increment at the current and maximum
frequencies, respectively. These counters are continuously updated, hence they report on a

4.1 Power Monitoring with SelfWatts 51

precise average frequency without consuming the limited HWPC slots. Interestingly, the
performance power states, such as P-states and Turbo Boost, are covered by these counters as
they act mainly on the frequency of the core to boost the performance. The idle optimization
states (C-states) are also included, as they mainly reduce the average frequency of the core
towards its Max Efficiency Frequency before being powered-down.

To filter out the irrelevant performance events for the power model, we compute a
ranking of performance events using a Recursive Feature Elimination (RFE) and a cross-
validated selection of the best number of features. This phase considers not only the raw
input samples, but also transformed samples obtained from a fixed set of transformers,
such as Log,Exp,Sqrt,Cbrt,MinMaxScaler,StandardScaler, RobustScaler,Normalizer, to
boost the accuracy of the inferred models. The output of this phase is an ordered list of event
and transformer combinations that can be used to infer a power model based on the subset of
relevant performance events E = ⟨e1, . . .,em⟩ ⊂ ⟨e1, . . .,en⟩ ⊂ E. From these filtered events,
we can infer a frequency-specific power model M f

res = [γ1, · · · ,γm] that correlates, for a given
frequency f , the dynamic power consumption (p̂dyn

res) to the raw samples for the frequency f
that associated to set of relevant performance events E, L f

res(E):

∃ f ∈ F, p̂dyn
res = M f

res ·L f
res(E) (4.3)

In SELFWATTS, we learn M f
res from a Lasso regression applied over the past k samples

filtered by E, S f
k = ⟨pdyn

res ,e1, · · · ,em⟩, with pdyn
res = prapl

res − pstatic
res .

To ensure that the power consumption of hosted virtual machines (or any application)
is consistent with regards to the global power consumption of the host, we check that the
intercept belongs to the range [0,TDP] where TDP refers to the Thermal Design Power of
the CPU. By comparing pdyn

res + pstatic
res with prapl

res , we can continuously estimate the error
εres =| pdyn

res − p̂dyn
res | from estimated values in order to monitor the accuracy of the power

model M f
res. This estimation error is then stored in a sliding window of k samples to keep

track of the accuracy of the model over time:

ε̃
f

res = med(ε1,ε2, . . . ,εn) (4.4)

Whenever the median error ε̃
f

res of the window exceeds a given threshold α set by the
administrator, we assumes that a new power model requires to be inferred for the frequency
f by reasoning over the latest input samples forwarded by the monitoring component.

52 SelfWatts: On-the-fly Selection of Performance Events for Power Meters

4.1.3 Software Power Estimation

Given that we learn the host power model M f
res from aggregated relevant performance events

samples, L f
res = ∑c∈C L f

res(c), we can predict the power consumption of any container or
virtual machine c ∈ C by applying the inferred power model M f

res to the input samples
associated to c, L f

res(c):

∃ f ∈ F, ∀c ∈C, p̂dyn
res (c) = M f

res ·L f
res(c)(E) (4.5)

Then, we distribute the value of the intercept i that is included in the estimate p̂dyn
res (c)

proportionally to the dynamic part of the consumption of c

∀c ∈C, p̃dyn
res (c) = p̂dyn

res (c)− i× (1− p̂dyn
res (c)− i

p̂dyn
res − i

) (4.6)

In theory, one can expect that p̂dyn
res

!
= pdyn

res if the model perfectly estimates the dynamic
power consumption but, in practice, the predicted value may introduce an error εres =|
pdyn

res − p̂dyn
res |. Therefore, we cap the power consumption of any container c as:

∀c ∈C, ⌈p̃dyn
res (c)⌉=

pdyn
res × p̃dyn

res (c)

p̂dyn
res

(4.7)

to ensure that pdyn
res =∑c∈C⌈p̃dyn

res (c)⌉, thus avoiding potential outliers. Thanks to this approach,
we can also report on the confidence interval of the power consumption of containers by
scaling down the observed global error:

∀c ∈C, εres(c) =
p̃dyn

res (c)

p̂dyn
res

× εres (4.8)

4.1.4 Performance Events Monitoring

SELFWATTS aims to explore the space of available performance events to monitor the most
relevant set of events E that accurately model the power consumption of the host.

To do so, the monitoring component lists all the available performance events E that can
be monitored from the target architecture together with the number of HWPC slots s that
can be used for monitoring these performance events without triggering multiplexing effects,
which seriously impact the accuracy of the input samples. Then, it randomly picks a set of s
performance events ⟨e1. . .en⟩ ⊂ E and configures the HWPC slots accordingly. The resulting

4.2 Implementation Details 53

set of input samples S f
k is forwarded to the power model inference component to be used

whenever a new power model requires to be learned.
When picking the set of events to be monitored, the events that are included in the current

power model are kept in the new set, while the previous subset of events that were tagged as
irrelevant by the inference component is replaced by another set of unexplored performance
events taken from E.

One can note that, to speed up the convergence of power models and reduce the delay
to produce accurate estimations, one can configure the monitoring component with a set of
performance events that should be considered in priority. For example, this hint can be used
to favour performance events, like unhalted core cycles, unhalted ref cycles, instructions
retired, llc misses/prefetch, or memory transactions cycles, which are commonly adopted
by the literature and then let SELFWATTS evaluate the relevance of these events in the
deployment context, possibly identifying alternative performance events that better fit the
power consumption of the target host.

4.2 Implementation Details

SELFWATTS builds on the POWERAPI toolkit presented in Section 3.2.2 to implement the
self-optimizing power modelling approach. Interestingly, POWERAPI was designed as a
modular software system that can run atop a wide diversity of production environments.
More specifically, SELFWATTS is an extension of the SMARTWATTS power meter presented
in Chapter 3, that introduces three key components: Controller, Sensor, and Formula.
Controller and Sensor are covering the monitoring phase of SELFWATTS, while the
inference and estimation phases are implemented by the Formula.

4.2.1 A Sensor to Monitor Performance Events

This component, developed in C, is a lightweight software daemon that uses Hardware
Performance Counters (HWPC) to monitor a given set of performance events for all the
Cgroups available on the host. We monitor Linux’s Kernel Control Groups (Cgroups), as
they are widely used by software container (Docker, LXC, Kubernetes) and virtual machine
(libvirt) technologies, thus offering the adequate granularity to deliver software power
estimations. The Sensor, therefore, periodically reports on samples of performance events
per Cgroup, with a frequency that can be configured upon start (β = 2 HZ by default). This
component represents the minimal requirement to obtain power estimations from a target

54 SelfWatts: On-the-fly Selection of Performance Events for Power Meters

architecture and is carefully implemented to limit its impact on hardware resources (CPU,
DRAM) and co-located processes (containers, virtual machines).

4.2.2 A Controller to Explore Performance Events

This component, developed in C, is in charge of controlling the Sensor by configuring it with
the appropriate set of performance events to monitor. The Controller uses the Libpfm4
library1 to detect the available Performance Monitoring Unit (PMU) of the target architecture,
the number of HWPC slots and list the associated performance events. In SELFWATTS,
the resulting set of performance events is randomly shuffled before starting the exploration.
The Controller obtains the list of irrelevant performance events from the Formula and
kills the active Sensor to replace it by another instance configured with a new selection
of performance events. This new selection includes all the relevant performance events of
the active power models (including CPU and DRAM power models) and completes the
set with the next events consumed from the shuffled list. Once fully consumed, the list of
available performance events is reset and shuffled with another random seed, thus resulting
in a different combination of performance events to be explored by our approach.

4.2.3 A Formula to Optimize Power Models

As long as the median error of the active power models remains below the configured
threshold (α = 5W by default), the Formula component delivers power estimation at the
pace of forwarded samples (twice a second by default). If the median error exceeds this α

threshold, then the Formula discards the active power model to infer a new power model
from the new set of performance events. Given that the list of irrelevant events is forwarded to
the Controller as soon as a new power model is computed, the Controller can anticipate
by starting a new Sensor with a set of performance events. The list of relevant performance
events will therefore be used to deliver power estimations as long as the power model is kept
active, while the remaining performance events will be accumulated and consumed by a
new power model will be requested, thus drastically reducing the delay to infer a new power
model. The power model inference is implemented in Python and leverages Scikit-learn,
which is the de facto standard Python library for general-purpose machine learning.2

1https://perfmon2.sourceforge.net/
2https://scikit-learn.org

https://perfmon2.sourceforge.net/
https://scikit-learn.org

4.3 Empirical Evaluation 55

PowerAPI backend

host
with SmartWatts host with SelfWatts

TSDB
SmartWatts
Formula

Sensor Controller
perf

eventsSensorSensorSensor

SelfWatts
Formula

Fig. 4.2 Deployment of SELFWATTS, compared to SMARTWATTS.

4.2.4 Deployment of SELFWATTS

All the components of SELFWATTS are made to be deployed as Docker containers to
ease their deployment and lifecycle management in container-based environments. The
Controller embeds the Sensor and is deployed on all host machines. Optionally, one can
use a MONGODB instance as a message queue to communicate input samples through a
publish-subscribe pattern and as a time series database (TSDB) to store power estimations.

Figure 4.2 depicts an example of SELFWATTS configuration and compares it to the
deployment of SMARTWATTS. In this configuration, the Formula component can be hosted
by a remote virtual machine in charge of delivering the power estimations for all the monitored
hosts and Cgroups. But, given the modularity of POWERAPI, SELFWATTS can also be
deployed as a standalone solution where the components Controller/Sensor and Formula
are co-located on the host machine. The latter deployment scheme is the one we consider in
the following section to assess the accuracy and overhead of SELFWATTS in a "worst-case"
configuration, which requires all the computations to be completed on the monitored host.

4.3 Empirical Evaluation

This section assesses the accuracy and the efficiency of SELFWATTS to select relevant
performance events and to estimate the power consumption of hosted virtual machines with
accuracy. More specifically, this section evaluate our contribution on the following criteria:

• How does SELFWATTS compare to SMARTWATTS in terms of accuracy?

56 SelfWatts: On-the-fly Selection of Performance Events for Power Meters

• What is the runtime overhead of SELFWATTS?

• How does SELFWATTS adapt to different target architectures?

4.3.1 Evaluation Methodology

We follow the experimental guidelines reported by [55] to enforce the quality of our empirical
results. In this case, the experiments are executed on real environments, we fully share
the machine specifications and the version and configuration of the software used. The
benchmarks used for the validation are standard and widely used in the evaluation of other
contributions in the literature. [5, 23, 12, 27, 13] For the sake of reproducible research,
SELFWATTS, the necessary tools, deployment scripts, and resulting datasets are open-source
and publicly available on GitHub.3

Testbeds

Our setups can be reproduced on the GRID5000 testbed infrastructure,4 which provides
large clusters of machines for experiment-driven research. To assess the versatility of our
approach, we consider several heterogeneous processor architectures that exhibit different
characteristics and combinations of power-aware features, as reported in Table 4.1.

Table 4.1 Testbed hardware settings

Model Dell PowerEdge C6420 Dell PowerEdge R730 Dell PowerEdge R630

CPU Intel Xeon Gold 6130 Intel Xeon E5-2650 v4 Intel Xeon E5-2630 v3
Generation Skylake Broadwell Haswell
Cores per-socket 16 12 8
Thread(s) per-core 32 24 16
Socket(s) 2 2 2
TDP 125 W 105 W 85 W
Memory 192 GiB 128 GiB 128 GiB

Perf. Events 257 260 265
HWPC slots 3 fixed / 4 generic 3 fixed / 4 generic 3 fixed / 4 generic

Both the host and virtual machines are using the Ubuntu 20.04.1 LTS Linux distribution
with the 5.4.0-53-generic Kernel version, where only a minimal set of daemons are

3https://github.com/powerapi-ng
4https://www.grid5000.fr

https://github.com/powerapi-ng
https://www.grid5000.fr

4.3 Empirical Evaluation 57

running in background. All the selected workloads run inside QEMU5 virtual machines
managed by libvirt.6

Workloads

Our workloads are based on standard benchmarks, like STRESS NG7 and NASA’s NAS
Parallel Benchmarks (NPB 3) [2], to highlight the benefits of our approach. The experiment
workload is split into two phases, SEQUENTIAL where these benchmarks will run one after
the other, and PARALLEL where all the benchmarks will run concurrently.

Power meters

In all our experiments, we configure the Controller/Sensor components SELFWATTS to
report on power estimations twice a second (β = 2 HZ), and the FORMULA component with
an error threshold of α = 5W , which are the default parameters of SELFWATTS.

We evaluate and compare the following configurations:

1. SmartWatts refers to the configuration of the SMARTWATTS power meter as previously
introduced in Section 3.3,

2. SELFWATTS (default) to the configuration of SELFWATTS with default settings,

3. SELFWATTS with fixed events starts SELFWATTS with the following x86 performance
events: UNHALTED_REFERENCE_CYCLES, UNHALTED_CORE_CYCLES, INSTRUCTION_-
RETIRED, which consumes the 3 fixed HWPC slots and are commonly considered by
the state of the art.

4.3.2 Experimental Results

We start by reporting in Figures 4.3 and 4.4 on the power estimations reported by the
default configuration of SELFWATTS when running our sequential and parallel workloads,
respectively. The cumulated execution of these workloads lasts for 30 minutes on a Dell
PowerEdge C6420 machine and both figures report on 3 classes of power estimations. First,
the kernel and system power profiles reflect the Linux kernel and all the operating system
activities, respectively. One can observe that the power consumption of the kernel and system
layers remains low in general, by reaching up to 2 W in the sequential phase, but may go
above 25 W when dealing with the UDP stress in the parallel phase.

5https://www.qemu.org
6https://libvirt.org
7https://launchpad.net/stress-ng

https://www.qemu.org
https://libvirt.org
https://launchpad.net/stress-ng

58 SelfWatts: On-the-fly Selection of Performance Events for Power Meters

0

2
kernel

0

1
system

0.0
2.5 selfwatts-controller

0

25 selfwatts-formula

60
80 npb-cg.D.2

75
100
125

npb-sp.D.4

110
120
130 npb-lu.D.8

03 21:10
03 21:15

03 21:20
03 21:25

122.5
125.0 npb-ep.E.16

Fig. 4.3 Power estimations per VM for SEQUENTIAL phase

0
25 kernel

0.0

2.5 system

0

1 selfwatts-controller

0

10
selfwatts-formula

50
100 stress-cpu.8

25
50

stress-vecmath.8

21:25:30
21:25:45

21:26:00
21:26:15

21:26:30
21:26:45

21:27:00
21:27:15

25

50
stress-udpflood.8

Fig. 4.4 Power estimations per VM for PARALLEL phase

4.3 Empirical Evaluation 59

Then, the selfwatts-controller and selfwatts-formula power profiles illustrate the activity
of SELFWATTS along with the benchmark. This power profile highlights periods where
SELFWATTS invests energy to find a new power model by exploring alternative performance
events before reaching more stable period with a reduced power consumption that reflects
the exploitation of a stable8 and accurate power model.

Finally, the lower part of both figures depicts the individual power profiles of NPB and
STRESS NG workloads, which are isolated in dedicated virtual machines. One can observe
that, no matter the workload and the number of involved cores, SELFWATTS keeps delivering
power estimations with accuracy and low overhead. We further investigate these claims in
the remainder of this section.

Estimation accuracy

To assess the accuracy of SELFWATTS, we start by reporting on the error ε of the 3 configu-
rations under study. The statistics reported in Figure 4.5 show that SELFWATTS succeeds
to compete with SmartWatts in terms of accuracy by reaching the same error on average
(2 W for the host estimation), far below the error threshold of 5W we used for all the config-
urations. Yet, SELFWATTS reports on more occurrences of larger errors, as its exploration
phase may lead to inaccurate estimations for short periods, compared to SmartWatts which
boots with an accurate model and never explores alternative performance events, essentially
adjusting the coefficients of the power model M by computing a new Ridge regression, while
SELFWATTS combines RSE and a Lasso regression to perform on-the-fly performance events
selection and power model optimization. Our approach, therefore, goes one step beyond
SmartWatts by adopting a more dynamic power modeling approach that takes the freedom
to consider alternative performance events to optimize the power model.

To further investigate the errors reported by SELFWATTS, we compare the evolution
of this error ε along with phases and steps of the workloads. We, therefore, split the
SEQUENTIAL phase into 4 consecutive steps, which are aligned with the 4 NPB applications
that are executed during this phase (cf. Figure 4.6). One can observe that, no matter the
applications, both configurations of SELFWATTS reach a similar accuracy compared to
SmartWatts.

These results can be further confirmed with the PARALLEL phase of our workload in
Figure 4.7. Although SELFWATTS can be perceived as less accurate than SmartWatts, our
manual investigations revealed that SmartWatts entered the PARALLEL phase with a power
model that exhibited a high error ratio and triggered the inference of a much more accurate

8a power model is considered as stable as long as it keeps estimating host power consumption with a median
error ε̃ below the configured threshold α .

60 SelfWatts: On-the-fly Selection of Performance Events for Power Meters

0 2 4 6 8 10
Estimation error compared to the reference (in Watt)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SelfWatts with Fixed Events
SelfWatts (default)
SmartWatts

Fig. 4.5 Cumulative Distribution Function (CDF) of estimation errors ε for SELFWATTS and
SmartWatts

power model, while the power models exploited by the two configurations of SELFWATTS

turned out to be a stable, but a bit less accurate (still far below the configured error threshold).

Runtime overhead

To evaluate the runtime overhead of SELFWATTS, we explore the power consumption
of its components in order to investigate the overhead imposed by our solution on the
monitored host. Tables 4.2 and 4.3 more specifically report on the average power consumption
of the Controller/Sensor and Formula components we implemented. The Formula
component runs with the PYPY runtime for Python, version 7.3.3.9 Interestingly, as both
Controller/Sensor and Formula components are deployed as DOCKER containers, SELF-
WATTS can monitor and deliver fine-grained power estimations of its components in addition
to the monitored VMs.

We also study the evolution of the power consumption of SELFWATTS when monitoring
an increasing number of hosted virtual machines on a single node. Thus, Figures 4.8 and 4.9
report on the power consumptions of the DRAM and CPU hardware resources for both
components when monitoring a growing number of hosted virtual machines that ranges from

9https://www.pypy.org

https://www.pypy.org

4.3 Empirical Evaluation 61

0 1 2 30

2

4

6

8

SelfWatts (default)

0 1 2 30

2

4

6

8

10

12
SelfWatts with Fixed Events

0 1 2 30

2

4

6

8 SmartWatts

Fig. 4.6 Estimation errors ε per application involved in the SEQUENTIAL phase

Table 4.2 Power consumptions of the Controller/Sensor component

Configuration Avg Std Energy

SELFWATTS (default) 0.26 W 0.75 W 600 J
SELFWATTS with fixed events 0.20 W 0.44 W 465 J
SmartWatts 0.16 W 0.20 W 379 J

62 SelfWatts: On-the-fly Selection of Performance Events for Power Meters

SelfWatts (default) SelfWatts with Fixed Events SmartWatts0

2

4

6

8

10

12

Es
tim

at
io

n
er

ro
r c

om
pa

re
d

to
 th

e
re

fe
re

nc
e

(in
 W

at
t)

Fig. 4.7 Estimation errors ε for the PARALLEL phase

Table 4.3 Power consumptions of the Formula component

Configuration Avg Std Energy

SELFWATTS (default) 0.64 W 1.53 W 1,458 J
SELFWATTS with fixed events 0.42 W 0.52 W 960 J
SmartWatts 0.33 W 1.65 W 817 J

0 to 200, by starting 10 new VMs every 10 seconds (vertical red lines refers to increments
of 40 VMs). The consumption spikes observed in Figure 4.8 refer to periodic adjustments
of the coefficients of the power model M when additional VMs are started, while the first
consumption spike observed in Figure 4.8 refers to a change of the performance events used
by the power model M. This is due to the fact that the node moves from 0 to 40 hosted VMs,
which drastically change the execution context, but demonstrates that SELFWATTS succeeds
to automatically adapt its power models. In the latter case, one can observe that SELFWATTS

succeeds to free the memory associated to irrelevant performance events.
Interestingly, when reaching 200 VMs, the default configuration of SELFWATTS con-

sumes 10W and 1.5W for the CPU and DRAM resources, on average, which represents a
cost per VM of 0.06W . Among the factors that can contribute to further reduce this overhead,
one can mention the exploitation of fixed events (cf. Tables 4.2 & 4.3), the reduction of the
monitoring rate β , or increasing the error threshold α .

4.3 Empirical Evaluation 63

18 11:10
18 11:15

18 11:20
18 11:25

0

5

10

15

20

25

Po
we

r c
on

su
m

pt
io

n
(in

 W
at

t)

Component
selfwatts-controller
selfwatts-formula

Fig. 4.8 CPU power consumption of the Controller/Sensor and Formula components

18 11:10
18 11:15

18 11:20
18 11:25

0.0

0.5

1.0

1.5

2.0

2.5

Po
we

r c
on

su
m

pt
io

n
(in

 W
at

t)

Component
selfwatts-controller
selfwatts-formula

Fig. 4.9 DRAM power consumption of the Controller/Sensor and Formula components

64 SelfWatts: On-the-fly Selection of Performance Events for Power Meters

SelfWatts on Skylake SelfWatts on Broadwell SelfWatts on Haswell0

2

4

6

8

10

Er
ro

r o
f t

he
 m

od
el

 c
om

pa
re

d
to

 th
e

re
fe

re
nc

e
(in

 W
)

Fig. 4.10 Estimation errors ε for SELFWATTS on across different CPUs

With regards to the power consumption profiles of monitored applications, ranging from
25W to 125W (cf. Figures 4.3 & 4.4), we can conclude that SELFWATTS offers a lightweight
solution to monitor the power consumption of virtual machines and containers.

Self-optimization

Finally, to assess the adaptability of SELFWATTS, we deployed the default configuration on
three target architectures that exhibit a different set of performance events (cf. Table 4.1).
In this mode, SELFWATTS offers a zero-configuration solution to automatically converge
towards accurate power models for any target architecture, as reported in Figure 4.10. Our
results show in particular that, no matter the target architecture, SELFWATTS succeeds to
estimate the power consumption of the host machine with high accuracy, which contributes to
estimate the power consumption at the scale of virtual machines and containers with higher
confidence. We believe that this accuracy is particularly critical when further estimating the
power consumption of guest software systems, as proposed by [12].

4.3 Empirical Evaluation 65

4.3.3 Lessons Learned & Perspectives

Beyond the high accuracy and the low overhead exhibited by SELFWATTS, we would like
to share the lessons we learned from designing and implementing such a self-optimizing
middleware solution.

First, the monitoring of performance events requires carefully considering the pitfalls
related to the limited number of HWPC slots. While SELFWATTS detects the number
of available HWPC slots that can be used to explore the relevant performance events,
nothing prevents another co-located software system to monitor other performance events
and incidentally impact the accuracy of SELFWATTS by triggering multiplexing at the level
of the hardware performance counters.

Surprisingly, the randomization process introduced by the Controller component of
SELFWATTS conducted to the inference of power models exploiting performance events that
are different from the ones commonly identified by the community, yet achieving similar
accuracy. Furthermore, due to the stochastic nature of the monitored environment, nothing
prevents SELFWATTS to exploit power models based on a different set of relevant perfor-
mance events when running the same workload on the same target architecture. Nevertheless,
both our accuracy and overhead investigations show that the lack of convergence towards
a single power model is not a limitation of our solution, contrary to state-of-the-art claims
about the fact only a limited number of performance events can accurately capture the power
consumption of a target architecture.

Unfortunately, the introduction of input feature transformers in the Formula component
of SELFWATTS did not lead to expected results, as most of the inferred power models we
manually analyzed rather exploit the raw input samples after completing the Lasso regression.
We, nonetheless, believe that this negative result deserves to be mentioned as part of the
lessons we learned to open discussions for the relevance of such methods commonly adopted
in machine learning in the specific-case of online supervised training based on performance
events.

Through the definition of an error threshold, our approach enforces a trade-off between the
stability of the inferred power models and their accuracy (cf. Figure 4.7). This parameter α ,
therefore, indirectly controls the decision process of SELFWATTS to balance the exploration
of a more accurate power model versus the exploitation of an acceptable power model, yet
not optimal. While this problem is commonly known in reinforcement learning communities,
we believe that it is particularly critical as our experimentation has shown that the exploration
phases inevitably induce a power consumption overhead.

Finally, while SELFWATTS ambitions to support any target architecture, our experiments
with an AMD EPYC 7301 (32 cores / 64 threads) has shown that, although the RAPL

66 SelfWatts: On-the-fly Selection of Performance Events for Power Meters

interface is being supported on latest Linux kernel versions, i) the RAPL support for the
DRAM is still lacking and ii) the support for performance events remains immature compared
to Intel-based processors. We nonetheless believe that future developments of AMD-related
libraries will fix this limit in a near future.

Finally, beyond the specific case of power modeling we explore in the context of this
contribution, we believe that the proposed architecture could also benefit to other case
studies that require to downscale ground truth observations (here RAPL measurements) to
the scale of individual Cgroups, by automatically correlating causal connections between
global observations and more fine-grained activities. For example, the identification and
monitoring of side-channel attacks in the domain of security could leverage our contribution.

4.4 Summary

Power consumption is a critical concern in modern distributed computing infrastructures,
from HPC to data centers, which more and more aim to implement sustainable solutions to
cope with environmental challenges raised by the massive deployment of software services.
While current practices leverage tools to monitor the power consumption at a coarse granu-
larity (e.g., nodes, sockets), the literature still fails to propose generic power models, which
can be easily deployed and used to estimate the power consumption of software artifacts
in production with accuracy. This failure can be explained not only by the prohibitive cost
of some solutions and models deployed on monitored hosts, but also the consideration of a
static set of input features (e.g., performance events) that may not be available on a specific
target architecture, thus compromising the deployment of the monitoring solution.

In this chapter, we reported on a novel zero-configuration power meter, named SELF-
WATTS, that automatically selects the relevant performance events and continuously self-
optimize the power models that can be used to deliver real-time power estimations with
accuracy. Interestingly, we demonstrate that, no matter the target architecture, SELFWATTS

does not require a prohibitive offline calibration phase to maintain a power model that
can report the power consumption of software containers or virtual machines (VM). The
experimental results we conducted highlights that SELFWATTS can estimate the power
consumption of an unknown host with an average error of 2W (1.6 % of the TDP) for a
monitoring cost of 0.06W per monitored VM.

Thanks to SELFWATTS, data center operators and users can easily deploy a software
power meter that can be used to monitor the power consumption of their software containers,
no matter their hardware constraints. This allows to removes barriers to the deployment of

4.4 Summary 67

power-aware software solutions, in which the power consumption of software components is
continuously monitored and optimized.

Chapter 5

xPUE: Extending
Power Usage Effectiveness Metrics
for Cloud Infrastructures

5.1 Introduction

As demonstrated in Section 2.3, while existing Energy Efficiency metrics are able to provide a
global view of the energy consumption of a cloud infrastructure, they fail to support the energy
profiling at a finer granularity: dealing with the software services that are distributed across
such infrastructures. Modern Data Centers (DC) are continuously trying to maximize the
Power Usage Effectiveness (PUE) of their infrastructure to reduce their operating costs, and
eventually their carbon emission [22]. In the context of cloud providers, PUE is increasingly
adopted and communicated as a Key Performance Indicator (KPI) reflecting the energy
efficiency of the delivered solution. For years, reducing the PUE of data centers has become
an active research area where actors compete to propose the most efficient cooling techniques,
consider renewable energies as part of their electricity mix, and improve the utilization of IT
resources. While this metric is mostly used to broadly communicate on the general efficiency
of an infrastructure, it does not provide any insight on the energy efficiency of the software
services that are deployed on top of it.

In this chapter, we introduce xPUE, an extension of the well known Power Usage
Effectiveness (PUE) metric that allows operators and users to assess the energy efficiency of
their infrastructure. Our approach, based on the combination of multiple energy efficiency
metrics that are tailored to the different layers of the infrastructure, can be used at will
depending on the required granularity of the analysis. The availability of the various metrics

70 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures

depends on the availability of the power measurements at the level of abstraction requested.
For example, estimating the energy efficiency of a machine at least requires access to the
energy consumption of the machine itself. However, we designed xPUE to be able to work
by incorporating the existing efficiency data published by the data center operators, which is
often the case for the PUE and CUE metrics.

We show that xPUE success to provide an in-depth view of the energy efficiency of
the various hardware and software components of a cloud infrastructure. This contribution
allows future work on the energy efficiency of cloud infrastructures, and more generally of
distributed infrastructures, by providing a fine-grained view of the energy consumption of
the software services that are deployed to help identify potential inefficiencies.

As stated in Section 1.3, the tools used by xPUE are freely available as open-source
software to encourage the deployment at scale and to leverage the adoption and reproduction
of our results. The key contributions can therefore be summarized as follows:

1. an extension of the Power Usage Effectiveness (PUE) metric to support a top-down
analysis of energy hotspots on an infrastructure,

2. an implementation of the proposed extensions as instrumented approach completely
based on open-source components,

3. an assessment of the proposed metrics on various hardware and software platforms
under different contexts.

In the remainder of this chapter, we start by introducing this contribution (cf. Section 5.2).
Then, we detail the implementation of xPUE as a real-time energy effectiveness metric for
Cloud infrastructures (cf. Section 5.3), and we empirically assess its validity on multiple
scenarios (cf. Section 5.4). We conclude and provide some perspectives for this work in
Section 5.5.

5.2 Contributions

xPUE groups a family of PUE-related metrics that can be easily adopted by cloud providers,
and more generally service providers, to estimate the power usage effectiveness of their
infrastructure in the deep, including the software platforms they may operate. xPUE extends
the state-of-the-art PUE and SPUE coverage by delivering insights beyond the power supply
of physical servers. All xPUE metrics can be explored post mortem to audit a given archi-
tecture on a given period (e.g., 1 year of operation), or in real-time to monitor the impact
of operational conditions. Real-time monitoring of xPUE metrics allows cloud operators
to quickly understand the conditions under which these indicators are optimal, or critical,

5.2 Contributions 71

hence offering them actionable feedback to immediately identify the most efficient levers to
consider and optimize.

5.2.1 Overview of xPUE

In this chapter, we specifically leverage the SPUE introduced by Barroso et al. [4] to introduce
the VPUE metrics and highlight resource usage effectiveness at the scales of hardware and
virtual layers, respectively. Figure 5.1 depicts the complementarity of xPUE metrics with
state-of-the-art metrics, including PUE, SPUE, CUE and WUE. One can observe that, while
PUE, WUE, and CUE are delivering an in-breath coverage of the resource usage effectiveness
of DC along different perspectives—energy, water, and carbon, respectively—SPUE and
xPUE brings more in-depth insights by investigating how these resources are consumed
within servers and ultimately cloud services. As the energy consumption of the hardware
servers and software services is proportional to their usage, they can exhibit significant
variability when it comes to energy efficiency. In the context of this chapter, we are therefore
interested in investigating the resource usage effectiveness of cloud services, by covering
hardware and software layers. By doing so, we intend to expose the real effectiveness of
cloud infrastructures and to contribute to a more transparent exposure of how much energy
is consumed by cloud providers for each functional unit, whenever operating a Metal-as-a-
Service (MaaS), Infrastructure-as-a-Service (IaaS), or a Container-as-a-Service (CaaS) offer.
By focusing on the hardware and software layers that are not covered by existing metrics, we
intend to raise new environmental challenges for cloud infrastructures, by encouraging the
ecosystem to maximize the end-to-end power usage effectiveness of cloud services, hence
going beyond the sole effectiveness of DC buildings, as covered by the PUE.

In the remainder of this section, we first remind the SPUE (Section 5.2.2) and formalize
the VPUE metrics (Section 5.2.3), before illustrating how they can be combined in a com-
pound metric CPUE (Section 5.2.4) and applied to state-of-the-art resource usage metrics
(Section 5.2.5).

5.2.2 SPUE: Assessing Cloud Servers Power Usage Effectiveness

The metric SPUE (standing for "server PUE") aims to estimate the power usage effectiveness
at the scale of a server [4]. This metric is particularly relevant in the cloud when operating a
Metal-as-a-Service (MaaS, also known as bare-metal) offer, which consists in delivering a
hardware server to the customer. In this context, the cloud provider is in charge of hosting
and eventually assembling, the delivered server. While the PUE stops at the power outlet of
hosted servers, the SPUE metric intends to dive into the integrated components to capture

72 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures

Energy
Provider

Data
Center Non-IT IT Hardware

Servers
Software
Platforms

PUE / DCiE

CUE / GEC / ERF

sPUE vPUE

Network Water
Supply

WUE

cPUE

Fig. 5.1 Coverage of xPUE metrics.

the overhead imposed by the cooling systems and power supplies inside the server. To do
so, we compute the ratio between the energy consumed by the IT equipment and the energy
directly consumed by the server components (incl. CPU, GPU, memory, disk, controllers,
etc.), as follows:

SPUE =
∑Energy(IT)

∑Energy(servers)
(5.1)

This metric indicates how much energy is consumed by the physical server for each
unit of computation delivered by the CPU and related components. By formalizing the
SPUE, we are interested in highlighting the efforts spent by cloud providers to deliver
energy-proportional bare-metal solutions—i.e., limiting the cost of cooling components and
optimizing the supply of direct current. We believe that this additional dimension is important
to capture, as there is no guarantee that the PUE reflects this overhead.1

SPUE covers general-purpose computations that can be delivered to cloud customers, but
also exploited internally to operate a cloud platform. However, no matter their nature—being
IaaS, CaaS, PaaS, etc.—these cloud platforms impose a control plane to orchestrate the
deployment of cloud services, which is another resource overhead that we further capture
with the VPUE.

5.2.3 VPUE: Assessing Cloud Services Power Usage Effectiveness

The metric VPUE (standing for "virtual PUE") dives into the software layers of cloud infras-
tructures by investigating the cost of operating large and complex software platforms, such

1The PUE might eventually reflect, indirect, side-effects of server emissions.

5.2 Contributions 73

as OPENSTACK2 for a IaaS or KUBERNETES3 for a CaaS. These cloud solutions generally
share two key concepts: virtualization techniques to control access to the computational
resources, and control planes to deploy and manage the hosted services. In this context, we
are interested in investigating how much energy is consumed by the cloud infrastructure for
each unit of computation delivered to the hosted services, no matter their nature—i.e., virtual
machines or containers. To capture this information, we define the VPUE as follows:

VPUE =
∑Energy(servers)
∑Energy(services)

(5.2)

where servers refer to all the server components required to operate the services hosted by the
considered cloud platform. The resulting ratio is intended to measure the overhead imposed
by the virtualization techniques and the associated control planes, depending on the current
usage.

One should also keep in mind that, unlike hardware layers, software layers can be stacked
by cloud providers and/or their customers. For example, the deployment of a KUBERNETES

cluster atop virtual machines hosted by an IaaS infrastructure is commonly adopted by
practitioners to offer more flexibility when it comes to adjusting resource usage.

5.2.4 CPUE: Applying xPUE Metrics to Cloud Infrastructures

The metrics SPUE and VPUE can then be combined in the metric CPUE (referring to "cloud
PUE"), which is intended to capture the end-to-end power usage effectiveness of cloud
infrastructures. To compute this compound metric, one needs to compute the product of
xPUE metrics, depending on the spectrum of the deployed infrastructure, as follows:

CPUE = ∏
x∈L

xPUE with L the selected cloud layers (5.3)

The list of selected layers, L, depends on the context and the owner of the infrastruc-
ture. For example, a IaaS provider operating an OPENSTACK cloud platform will com-
pute CPUE = SPUE × VPUE(OpenStack). Then, a KUBERNETES platform hosted on
premise will rather be reported as CPUE = SPUE × VPUE(Kubernetes). Finally, be-
cause of the recursive property of virtualization techniques, one can imagine computing
CPUE = SPUE×VPUE(OpenStack)×VPUE(Kubernetes) to capture the end-to-end PUE
a multi-layers service platform leveraging several cloud technologies.

2https://www.openstack.org
3https://kubernetes.io

https://www.openstack.org
https://kubernetes.io

74 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures

Beyond being a product of xPUE metrics, any CPUE metric can also be multiplied by
the PUE of the DC hosting the platform services as follows:

GPUE = CPUE×PUE (5.4)

which is reported as the "global PUE" (GPUE) revealing, for each unit of computation
performed by a cloud service, how much energy is effectively consumed by the whole DC
hosting this service. Given that xPUE metrics share the same properties as the PUE—i.e.,
the ideal value is 1.0—one can observe that any waste of resource in any of the covered
layers may severely impact the global PUE of the infrastructure, thus challenging the cloud
ecosystem to pay attention to the effectiveness of their solutions.

5.2.5 Revisiting State-of-the-Art Metrics with CPUE

Beyond the GPUE, one can also revisit the state-of-the-art metrics to consider their global
impact, beyond the DC building optimizations. For example, the GDCiE metric can be
extended with the CPUE as follows:

GDCiE =
DCiE
CPUE

(5.5)

Similarly, the Carbon Usage Effectiveness (CUE) and Water Usage Effectiveness (WUE)
metrics can be more accurately reported by cloud infrastructures as follows:

GCUE = CPUE×CUE (5.6)

GWUE = CPUE×WUE (5.7)

Overall, we claim that cloud providers and, more generally, owners of software service
infrastructures should more systematically compute and share the CPUE of their solution to
demonstrate that they do not waste the resources saved by an efficient PUE. Additionally, the
GCUE and GWUE are providing a complementary and important perception on the emissions
of cloud infrastructures, by sharing more accurate information about their environmental
impact.

In the following sections, we report on different experiments we deployed to illustrate
the critical impact of hardware and software layers in the cloud ecosystem, hence calling for
the development of more energy-efficient cloud platforms, going beyond the advertisement
of their sole PUE.

5.3 Implementation Details 75

5.3 Implementation Details

The implementation of the xPUE metrics we propose requires reporting power measurements
at a finer granularity than a power outlet. To do so, we leverage the POWERAPI toolkit
presented in Section 3.2.2 to propose runtime support for our xPUE metrics.

For the global energy measurements required by the SPUE—i.e., ∑Energy(IT) in Equa-
tions 5.1—we leverage hardware power meters plugged into the power supply and Intelligent
Platform Management Interface (IPMI) for the global power measurements of the servers.
IPMI measurements have a low refresh rate and a low accuracy, it is preferable to use hard-
ware power meters whenever possible. When the server combines multiple power supplies,
the power measurements of all active power supplies are aggregated.

For hardware-specific measurements (CPU, DRAM, GPU. . .) required by the SPUE and
VPUE—i.e., ∑Energy(servers) in Equations 5.1 and 5.2—we use the energy monitoring
interface(s) exposed by the hardware.

Regarding software power measurements—i.e., ∑Energy(services) in Equation 5.2—we
use the SMARTWATTS power meter presented in Chapter 3, which infers automatically
power models from hardware measurements and disaggregates power consumption among
software processes. SMARTWATTS supports power estimation both at the granularities of
virtual machines and containers as well as it succeeds in estimating CPU and DRAM power
consumptions in real-time with high accuracy.

To differentiate the hosted cloud services from the control plane services, we can select
and tag pre-defined groups of services. For example, in a KUBERNETES cluster, some
services are directly related to the infrastructure, like the container runtime, control plane,
networking, and monitoring services. Subgroups can also be defined for the services: one
can compute dedicated VPUE for network and monitoring services to further analyze their
energy efficiency.

5.3.1 Implementing the xPUE Formulas

We implemented each xPUE metric as a Python function that can be integrated as a dedicated
formula in the open-source library POWERAPI. The POWERAPI toolkit exposes a software
agent that consumes input measurements from various sources (databases, message queues),
processes the samples, and produces estimations through the same or another database(s).
It is built to be extensible and allows to easily fit the deployment environment. We also

76 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures

leverage the de facto standard libraries in Python: PANDAS4 for the samples manipulation
and analysis, as well as SCIPY5 for the computation of the xPUE estimations.

This results in the development of a family of dedicated xPUE formulas atop POWERAPI
that continuously estimate SPUE and VPUE indicators and can even be further combined
to report on the CPUE and GPUE compound metrics in real-time, as depicted in Figure 5.2.
As xPUE metrics rely on power measurements coming from multiple sources (Intel RAPL,
IPMI, hardware, and software power meters) that are not synchronized, we resample the
power measurements to a common time base. By default, xPUE formula detects the shortest
time window possible to resample the PANDAS DataFrame. Finally, our implementation of
xPUE leverages a database to store the power measurements received from hardware and
software power meters. We choose to leverage the publisher-subscriber pattern to handle
large-scale deployments. Thus, all power measurements are sent to a MONGODB capped
collection. These measurements are then handled by the formula components and xPUE
metrics are then stored in the database for further analysis.

5.3.2 Deploying the xPUE Metrics

To simplify the deployment process, xPUE is available as containers, which provide an
environment-agnostic deployment and ease the lifecycle management of its related services.
The formula components can be deployed on any host of the cluster, or a remote server,
as it only requires access to the power measurements through a message queue to work.
For example, one can use a MONGODB instance as a message queue to communicate
the power-meters measurements through a publish-subscribe pattern and then store the
xPUE metrics into an INFLUXDB Time Series DataBase (TSDB). The xPUE metrics are
exposed as GRAFANA dashboards6 for environment/service-specific metrics reporting and
real-time/offline analysis.

5.4 Empirical Validation

This section builds on our implementation of xPUE to study the factors that contribute to
improving or degrading the xPUE metrics we introduced. We start by investigating the impact
of SPUE on different hardware configurations (cf. Section 5.4.2), then exploring the VPUE
in the context of a IaaS infrastructure (based on OPENSTACK) and a CaaS infrastructure

4https://pandas.pydata.org
5https://www.scipy.org
6https://grafana.com

https://pandas.pydata.org
https://www.scipy.org
https://grafana.com

5.4 Empirical Validation 77

PowerAPI

Power Sensor

SmartWatts formula

IPMI RAPLNvidia Power monitor

sPUE formula

vPUE formula (IaaS)

cPUE formula

vPUE formula (CaaS)

gPUE formula

Performance counters

gDCiE formula

Metrics storage & visualization

gERF formula gWUE formula gCUE formula

Fig. 5.2 Deployment of xPUE

78 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures

Table 5.1 Testbed hardware settings

Provider Grid’5000 OVHcloud
Model Dell PowerEdge R640 Dell PowerEdge R7525 Dell PowerEdge R640 Intel bare-metal server AMD bare-metal server

CPU Intel Xeon Gold 5220 AMD EPYC 7352 Intel Xeon Gold 5218 Intel Xeon Silver 4214R AMD EPYC 7413
Generation Cascade Lake Zen 2 Cascade Lake Cascade Lake Zen 3
Socket(s) 1 1 2 2 1
Cores per socket 18 24 16 12 24
Threads per socket 36 48 32 24 48
Memory 96 GiB 128 GiB 384 GiB 32 GiB 64 GiB
TDP 125 W 155 W 125 W 100 W 180 W
Cooling Air Water

(based on KUBERNETES). We conclude by illustrating the CPUE in the context of a CaaS
deployed in a IaaS, a widely-adopted architecture in the cloud industry (cf. Section 5.4.4).

In this section, we assess the accuracy of xPUE to evaluate the Power Usage Effectiveness
into deeper layers of KUBERNETES and OPENSTACK based cloud infrastructures.

5.4.1 Evaluation Methodology

We follow the experimental guidelines reported by [55] to enforce the quality of our empirical
results. In this case, the experiments are executed on real environments, we fully share the
machine specifications and the version and configuration of the software used. We choose
to evaluate our contribution on the OPENSTACK and KUBERNETES platforms, which are
widely used by the industry. For the sake of reproducible research, xPUE, the necessary
tools, deployment scripts, and resulting datasets are open-source and publicly available on
GitHub.7

Hardware Settings

Most of our experiments are deployed on the Grid’5000 testbeds infrastructure [3], which
is a large-scale and flexible testbed for experiment-driven research in all areas of computer
science, with a focus on parallel and distributed computing—including cloud, HPC, Big Data,
and AI. We deploy our experimental infrastructure on 5 nodes of the cluster gros located in
the site of Nancy. The description of the considered servers (cf. 2 first columns in Table 5.1).
This cluster is particularly interesting as each node has its power supply monitored by a
hardware power meter to monitor the power consumption of the node with high accuracy
and at a high frequency.

We also consider the provisioning of additional bare-metal servers from a production-
scale cloud infrastructure provided by OVHcloud.8 We chose this cloud provider as all the

7https://github.com/powerapi-ng
8https://www.ovhcloud.com/

https://github.com/powerapi-ng
https://www.ovhcloud.com/

5.4 Empirical Validation 79

hosted servers are cooled using an advanced water cooling system, which may contribute
favorably to the SPUE, compared to traditional air cooling.9 Furthermore, OVHcloud
proposes a MaaS offer with a wide diversity of hardware architectures (including Intel and
AMD processors) and access to server-scale power measurements.

Software Settings

All machines of our experiment are using the Ubuntu 20.04 LTS Linux distribution with a
kernel version 5.4.0-121-generic, where only a minimal set of daemons are running in
the background.

For the KUBERNETES cluster, the deployment is done using kubeadm and the version
deployed is the 1.21. The container runtime is Containerd version 1.6.6 and the Container
Network Interface (CNI) deployed is FLANNEL10 version 0.18.1.

For the OPENSTACK cluster, the deployment is done using MICROSTACK,11 which
deploys OPENSTACK version Ussuri through the SNAP12 package manager. This allows us to
quickly deploy an OPENSTACK instance in self-contained packages that support individual
monitoring through Linux Cgroups. This choice considerably eases the deployment and the
reproducibility of our results, while remaining representative of real-world deployments.

Input Workloads

For both deployments, we use a state-of-the-art benchmark tool for Linux, STRESS-NG,13

to simulate various resource-intensive workloads that stress various parts of the system.
Therefore, during each experiment, containers and VMs will be started with a random
resource workload that will be maintained until it is stopped. This allows us to generate a
base workload on the infrastructure and to stress multiple parts of the software services and
underlying hardware.

Power Meters

Hardware measurements. To monitor the power consumption of the servers, we use the
available hardware power meters attached to the input of the power supply of every machine
in the cluster. The measurements are automatically reported to an INFLUXDB at a frequency
50 measurements per second, which is more than required for our experiments.

9https://blog.ovhcloud.com/water-cooling-from-innovation-to-disruption-part-i/
10https://github.com/flannel-io/flannel
11https://microstack.run
12https://snapcraft.io
13https://launchpad.net/stress-ng

https://blog.ovhcloud.com/water-cooling-from-innovation-to-disruption-part-i/
https://github.com/flannel-io/flannel
https://microstack.run
https://snapcraft.io
https://launchpad.net/stress-ng

80 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures

Software measurements. SmartWatts requires the deployment of two components, the
Sensor who monitors the Hardware Performance Counters HwPC) and needs to be deployed
on every node, and the Formula component who computes the power estimations. In all our
experiments, we configure the Sensor components to report on power estimations once per
second (β = 1 HZ), and the FORMULA component with an error threshold of α = 5W at the
scale of the CPU package (PKG).14

5.4.2 SPUE Experiments

Server setting. To evaluate the relevance of SPUE, we run our benchmark designed to
stress twice the maximum CPU load of the Intel Xeon Gold server. This aims to investigate
the behavior of the hardware infrastructure in a situation of resource over-commitment.
Figure 5.3 reports on the evolution of the SPUE over time, when increasing CPU workload.
One can first observe that idle servers seriously degrade the energy efficiency of cloud
infrastructures, with an SPUE > 4. Beyond this first observation, the SPUE tends to decrease
with higher CPU usage, no matter the number of concurrent containers, as acknowledged
by Figure 5.4. With an average value of 3.1 throughout experimentation, one can observe
that the optimal and lowest value reached for the SPUE of such a standard server caps
at 2.7, which is high above the values commonly communicated for PUE. As the SPUE
should be combined with the PUE of any cloud provider to report the GPUE reflecting
the physical power consumption induced by any Joule consumed by the computing units
(cf. Equation 5.4), it can only degrade the value of the standard PUE. These observations
thus challenge cloud infrastructures and MaaS providers to deliver more energy-efficient
servers by investing in energy-proportional techniques to power linearly a server with the
triggered activities. This is particularly critical as DC and cloud providers are known to be
under-utilized, which let us expect higher SPUE in production than the one we measured in
our testbed.

GPU impact. Unfortunately, none of the server configurations of our testbed did in-
clude any GPU (or other hardware accelerators) to investigate the impact of such computing
units. Nonetheless, our xPUE models can apply to any computing units, as long as one can
obtain energy measurements at the required granularity (e.g., CPU and DRAM measure-
ments provided Intel RAPL). Regarding the GPU, one can use nvidia-smi to collect energy
measurements from NVIDIA cards and add the reported values to the servers part of Equa-
tion 5.1. This challenge technology providers to implement and expose fine-grained energy

14https://01.org/blogs/2014/running-average-power-limit-\T1\textendash-rapl

https://01.org/blogs/2014/running-average-power-limit-\T1\textendash -rapl

5.4 Empirical Validation 81

100

150
PDU

50

100
RAPL

17:30 17:35 17:40 17:45 17:50
Timestamp

2

4

6 sPUE

Fig. 5.3 Evolution of the SPUE over time and increasing workload

20 30 40 50 60 70 80 90
Average Load

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

sP
UE

3.1

2.7

Fig. 5.4 Correlation of the SPUE and the CPU average load

82 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures

OVHCloud - AMD Grid5000 - Intel x1 OVHCloud - Intel x2 Grid5000 - AMD Grid5000 - Intel x21.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

sP
UE

Fig. 5.5 Comparing the SPUE of all the hardware configurations under-test.

interfaces—like Intel, AMD, and NVIDIA recently did—in order to help the cloud ecosystem
to better diagnose the causes of energy wastes and related opportunities for improving the
efficiency of cloud infrastructures.

Hardware impact. To further investigate this hardware overhead of servers, we hypoth-
esize like [4] that the SPUE might be influenced by the CPU architecture and the air cooling
system of the server. Therefore, using the same input workload as in the previous experiment,
we estimate the SPUE of Intel and AMD servers that are deployed in Grid’5000 (based on air
cooling) and OVHcloud (based on water cooling) infrastructures (cf. Table 5.1). While water
cooling systems directly contribute to improving the PUE of the DC, they may also indirectly
impact the SPUE by removing the CPU/GPU fans from the server frame, hence saving
energy consumption required by the equipment embedded in most of the servers. Figure 5.5
thus depicts the distribution of SPUE for each hardware configuration of Table 5.1 as a
violin plot. Each configuration is stressed in the same conditions, by executing a workload of
twice the maximum CPU load of each configuration. One can observe that the major factor
contributing to effectively improving the SPUE is related to the adoption of a water cooling
system, while the CPU architecture has a lower impact on the SPUE.

Other impacts. While we could not change the AC-DC power supply of our testbed or
include alternative supply designs, we believe that the SPUE can also capture the efficiency

5.4 Empirical Validation 83

Table 5.2 Cluster-wide SPUE statistics.

Platform min max mean median

KUBERNETES 2.9 22.6 5 3.8
OPENSTACK 2.9 27.5 6.5 4.4

of this hardware component and contribute to adopting a more energy-efficient solution.
We are also confident that this separation of concerns could be captured by a partial SPUE
(pHPUE), inspired by the partial PUE (pPUE) [22], to isolate the overhead imposed by this
hardware component.

One can therefore observe that optimizing the SPUE does not only require adopting
energy-saving strategies to power and cool down server components but also maximizing
the utilization of provisioned resources. This observation thus challenges the hardware
configuration of servers to be carefully sized to the closest number of CPU threads, and
other hardware components, which are required to support a target workload. In this context,
elasticity mechanisms should be deployed at the hardware level by cloud infrastructure to
implement energy proportionality and deal with the variability of workloads, hence preventing
the over-provisioning of resources that require to be kept always on.

Cluster setting. Beyond single node deployments, cloud infrastructures are often consid-
ered to provision a cluster of several nodes that are then assembled to deploy a IaaS (e.g.,
OPENSTACK) or CaaS (e.g., KUBERNETES) platform. These clusters are typically composed
of, at least, a control node and several worker nodes. We, therefore, consider the injection of
a cluster-wide input workload to both OPENSTACK and KUBERNETES platforms, deployed
atop 5 Intel Xeon Gold 5220 servers, to study the average SPUE at the scale of a cluster.
Table 5.2 and Figure 5.6 compare the SPUE distribution of all the nodes involved in the
cluster for both experiments. Similarly to the case of idle servers, idle platforms may be
the root cause of a critical SPUE observed at the scale of a cluster, with observed factors
above 20. Such situations typically witness the over-provisioning, and under-allocation, of
a cloud infrastructure that allocates much more computing resources than required. While
the optimal SPUE observed for a cluster of 5 nodes reaches 2.9, one can observe that even a
stressful scenario like one of our scenario results in an average SPUE of 5 to 6.5—depending
on platforms—thus highlighting the critical impact of the power usage efficiency of the nodes
composing the cluster required to host a cloud infrastructure.

84 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures

Kubernetes OpenStack1

5

10

15

20

25

30

sP
UE

Fig. 5.6 Comparing the SPUE of a cluster used to host OPENSTACK and KUBERNETES

platforms.

Network impact. In the context of a distributed setting, like a cluster, the question of
including network equipment might arise. As part of our experiment, we consider the impact
of the network—i.e., a single Top of Rack (ToR) switch in our context—as part of this cluster
setting, assuming that a switch is required to connect several nodes.15 However, the power
consumption of most hardware network equipment (switch, routers, etc.) is known to be
stable, no matter the workload (115.3W in the context of our ToR switch), thus we advocate
including the energy consumption of network equipment within the IT part of the SPUE, and
not as part of the servers (cf. Equation 5.1). The motivation for doing such is that SPUE
could be easily reduced by adding more and more network equipment in the servers part,
which would go against the objective of optimizing the energy efficiency of the overall cloud
infrastructure.

Control plane impact. Then, we compute the SPUE of the control node and the worker
nodes separately for each configuration (cf. Table 5.3 and Figure 5.7). One can observe that
no matter the cloud platform, the SPUE of the control node is always higher than the SPUE
of the worker nodes, as the control plane is consuming fewer resources than the worker nodes,
on average. One can nonetheless observe that an OPENSTACK control reports a slightly
better SPUE on average than its worker nodes. This can be explained by the consumption

15Production-scale cloud infrastructures may involve multiple ToR switches to ensure failover.

5.4 Empirical Validation 85

Table 5.3 Control plane impact on SPUE.

Node Platform min max mean median

control KUBERNETES 2.9 4.4 4 4
node OPENSTACK 2 6.2 3.3 2.9

worker KUBERNETES 1.4 6.7 2.1 1.8
nodes OPENSTACK 1.7 14.9 3.5 2.8

Kubernetes - Control Plane Kubernetes - Worker OpenStack - Control Plane OpenStack - Worker1

2

3

4

5

6

7

8

sP
UE

Fig. 5.7 Comparing the SPUE of control & workers nodes for OPENSTACK & KUBERNETES

platforms.

of this control node, which tends to be relatively high compared to other nodes, due to the
number of control services that are involved in the OPENSTACK platform. To reduce the
impact of the control plane on the SPUE, one should therefore consider maximizing the
number of active worker nodes and consider the deployment of carefully sized control nodes,
involving potentially smaller servers.

One can also observe that the SPUE of KUBERNETES and OPENSTACK platforms seem
to differ, which highlights that both technologies are not stressing the hardware components
in the same way. To better understand the root cause of these differences, we further explore
the VPUE of both platforms in the following section.

86 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures

5.4.3 VPUE Experiments

We then move to the study of VPUE, first in the context of an IaaS platform, based on
OPENSTACK, and then on a CaaS platform, based on KUBERNETES. Through the following
experiments, we intend to study the resource overhead imposed by the software platform and
all the services it provides to deploy and control VM and/or containers. We believe that such
software layers represent another key efficiency factor to carefully consider when delivering
cloud infrastructures. Furthermore, unlike hardware layers, software layers can be embedded
to deliver, for example, a CaaS platform atop IaaS. Thus, considering the impact of such
common practices is also another insightful feedback that we intend to cover thanks to the
VPUE indicator.

Estimating the VPUE of OPENSTACK

Platform setting. To estimate the VPUE of OPENSTACK, we used the same input work-
load as in the SPUE experiments, namely, we run a benchmark designed to start twice the
maximum CPU load of the provisioned cluster. This aims to investigate the efficiency of the
cloud infrastructure ranging from an idle state to a situation of resource over-commitment.
We use a separate control node for hosting cluster-wide OPENSTACK services in addition to
services that are required to be deployed in the worker nodes. The CPU and DRAM overcom-
mitment parameters are kept to default: 16:1 and 1.5:1, respectively. Each allocated VM
uses a profile m1.exp, which consists of 1 vCPU and 256 MB of DRAM. Given that we use
4 worker nodes, summing to 144 threads and about 384 GB of DRAM, we can allocate—in
theory—up to 2,304 vCPUs and 576 GB of vRAM, which represent about 2,000 VMs with
profile m1.exp. However, we stop our benchmark when reaching 288 VMs, which represent
twice the physical threads made available at the scale of the cluster.

The VPUE is computed as the ratio of the total energy consumption of all the cluster
services (including VM) to the energy consumption of hosted VM. As introduced in Sec-
tion 5.3, we estimate the energy consumption of individual VM by using the SMARTWATTS

software-defined power meter.

Overcommitment impact. Figure 5.8 illustrates the evolution of the VPUE over time
when increasing the number of hosted VM. One can observe that the more VM, the better
VPUE, as one could expect.

More precisely, Figure 5.9 shows that the VPUE converges towards its optimal value
when reaching more than 100 hosted VMs, which roughly corresponds to the total amount of
physical resources (CPU & memory) available in the cluster we provisioned. This average

5.4 Empirical Validation 87

200

400 VMs

50

100

150
Services

00:30 01:0000:35 00:40 00:45 00:50 00:55 01:05 01:10
Timestamp

2

4

6 vPUE

Fig. 5.8 Evolution of the VPUE of OPENSTACK when increasing the number of hosted VMs.

value is estimated to 1.3 in the context of our deployment of OPENSTACK, involving on 1
control node and 4 worker nodes. This first part of the experiment demonstrates that, as
does the SPUE, the optimal VPUE is reached when fully loading the worker nodes, which
encourages the optimization of the overcommitment parameters as a way to maximize the
resource utilization of cloud infrastructures, hence favorably contributing to both indicators.

Control plane impact. Regarding the control plane of OPENSTACK, one can observe in
Figure 5.10 that the major power-consuming service is neutron-api, which is the central
service for managing virtual machines in OPENSTACK. In our testbed, NEUTRON-API

consumed 5× more than the average power consumption of a hosted VM (labelled as VMs
(Reference) in Figure 5.10), which can be partially explained by the benchmark we run to
stress the OPENSTACK platform.

Yet, when considering the overall energy consumption for the scenario we executed,
one can observe in Figure 5.11 that almost 80% of the energy is consumed by the virtual
machines, and 20% are imposed by the OPENSTACK services, resulting in an aggregated
VPUE of 1.25.

We believe that such detailed reports offered by the SMARTWATTS software-defined
power meter can be further exploited by the operators of OPENSTACK platforms to highlight

88 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures

50 100 150 200 250
Number of VMs

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4 vPUE

Fig. 5.9 Evolution of the VPUE for the amount of VMs

0 2 4 6 8 10
Mean Power Consumption (in Watts)

cluster-uwsgi
cinder-uwsgi

ovn-ovsdb-server-nb
memcached

cinder-scheduler
nova-spicehtml5proxy

ovsdb-server
ovn-ovsdb-server-sb

neutron-ovn-metadata-agent
nginx

nova-api-metadata
libvirtd

placement-uwsgi
glance-api

horizon-uwsgi
virtlogd

rabbitmq-server
ovn-northd

nova-scheduler
nova-api

ovs-vswitchd
ovn-controller

mysqld
VMs (Reference)
nova-conductor
nova-compute

keystone-uwsgi
neutron-api

Fig. 5.10 Mean power consumption of the OPENSTACK services.

5.4 Empirical Validation 89

102 103 104 105 106

Total Energy Consumption (in Joules, logarithmic scale)

cluster-uwsgi
cinder-uwsgi

ovn-ovsdb-server-nb
cinder-scheduler

ovn-ovsdb-server-sb
nginx

memcached
nova-api-metadata

nova-spicehtml5proxy
ovsdb-server

placement-uwsgi
glance-api

horizon-uwsgi
rabbitmq-server

ovn-northd
neutron-ovn-metadata-agent

nova-scheduler
nova-api

libvirtd
mysqld
virtlogd

nova-conductor
keystone-uwsgi

ovs-vswitchd
ovn-controller

neutron-api
nova-compute

VMs (Reference)

 0.00%
 0.01%

 0.01%
 0.01%

 0.03%
 0.05%

 0.06%
 0.07%

 0.08%
 0.11%
 0.12%

 0.14%
 0.15%

 0.17%
 0.18%
 0.18%

 0.20%
 0.44%
 0.45%

 0.59%
 0.80%

 1.20%
 1.38%

 2.63%
 2.92%

 3.42%
 6.51%

 78.08%

Fig. 5.11 Total energy consumption of the OPENSTACK services.

platform energy hotspots that require to be carefully considered, hence challenging the
relevance and benefit of deployed services, beyond the standard configurations.

One should also note that, while the VPUE reports a lower value (1.25) than the SPUE
(2.7, in Figure 5.6), it keeps representing a factor that needs to be combined with other
indicators—i.e, CPUE = 2.7× 1.25 = 3.375 in this experiment—to reason upon global
indicators and not partial ones.

To deepen our analysis, we then explore the relation between the energy efficiency of
the infrastructure and its amount of workers. To do so, we ran a fixed workload that fully
loads a node (in this case, 36 vCPUs) on clusters with a different amount of worker nodes.
Figure 5.12 shows the energy usage proportion for the infrastructure services and the virtual
machines deployed in OPENSTACK clusters with various amounts of workers nodes. As
expected, the proportion of the energy used for infrastructure-related services decreases
when we increase the amount of worker nodes. For a single worker cluster, infrastructure
services consume 24.56% of the total energy consumed, and 74.44% is consumed by the
virtual machines. This highlight the significant energy impact of the infrastructure, hence
recommending to maximize the number of active nodes in a cluster to reduce its VPUE.

Estimating the VPUE of KUBERNETES

Beyond the specific case of OPENSTACK, we also investigate the VPUE of a KUBERNETES

platform in this section.

90 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures

1 worker 2 worker 3 worker 4 worker 5 worker 6 worker 7 worker 8 worker0

25000

50000

75000

100000

125000

150000

175000

200000

To
ta

l E
ne

rg
y

(in
 Jo

ul
es

)

75.44%

81.42%

83.84%

85.66%
86.48%

86.99%
87.39%

87.43%

24.56%

18.58%

16.16%

14.34%

13.52%

13.01%

12.61%

12.57%

VMs
Services

Fig. 5.12 Total energy consumption of the OPENSTACK cluster.

Table 5.4 Energy consumption of KUBERNETES and OPENSTACK services.

Node Platform Energy (kJ) diff (kJ)

control KUBERNETES 15.6
services OPENSTACK 166.7 +151.1
hosted KUBERNETES 484.3
jobs OPENSTACK 593.9 +109.6

Platform setting. We keep using our benchmark designed to start twice the maximum
CPU load of the cluster. To keep the configuration of the KUBERNETES cluster as close
as possible to a production environment, we follow the best practices and do not allow the
scheduling of containers to the control plane. This means that, in a cluster composed of 4
worker nodes, there are 144 available threads.

Figure 5.13 depicts the evolution over the time of the VPUE of this KUBERNETES cluster
when deploying more than 400 containers across the 4 worker nodes.

During this experimentation, we observe an average VPUE of 1.3 with an optimal value
of 1.1. Interestingly, one can observe that the control plane of KUBERNETES consumes less
energy than the one of OPENSTACK to execute the same workload.

One can observe in Table 5.4 that the services composing the control plane of OPEN-
STACK impose an overhead of 151.1 kJ (910%) compared to the control plane of KUBER-

5.4 Empirical Validation 91

200

400 Containers

20

40

60

Kubernetes

17:30 17:35 17:40 17:45 17:50
Timestamp

1

2

3

4 vPUE

Fig. 5.13 Evolution of the VPUE of KUBERNETES over the time.

NETES, while the expectable overhead imposed by virtual machines over containers is limited
to 109.6 kJ (23%).

The control plane of KUBERNETES thus leaves 96.88% of the total energy consumed
for the execution of hosted containers (cf. Figure 5.14), compared to 78.08% in the case of
OPENSTACK.

As previously done for OPENSTACK, we ran a fixed workload that fully loads a node
(in this case, 36 threads) on clusters with a different amount of worker nodes. Figure 5.15
shows the energy usage proportion for the infrastructure services and application containers
deployed in KUBERNETES clusters with various amounts of workers nodes. As expected, the
proportion of the energy used for infrastructure-related services decreases when we increase
the amount of worker nodes. For a single worker cluster, infrastructure services consume
14.07% of the total energy consumed, compared to 24.56% for an OPENSTACK cluster.
One can therefore observe that this factor strongly impacts the VPUE of the cluster, hence
recommending to maximize the number of active nodes in a cluster to reduce its VPUE.

5.4.4 CPUE & GPUE Experiments

As previously mentioned, KUBERNETES clusters can be provisioned atop a set of VM hosted
by a IaaS. In such a situation, the VPUE of the IaaS has to be combined with the one of
KUBERNETES to better reflect the resulting efficiency of the platform.

92 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures

103 104 105 106

Total Energy Consumption (in Joules, logarithmic scale)

kube-proxy

coredns

kube-scheduler

kube-flannel

kube-controller-manager

etcd

kube-apiserver

Containers (Reference)

 0.02%

 0.03%

 0.09%

 0.13%

 0.29%

 0.37%

 2.19%

 96.88%

Fig. 5.14 Total energy consumption of the KUBERNETES services.

1 worker 2 worker 3 worker 4 worker 5 worker 6 worker 7 worker 8 worker0

20000

40000

60000

80000

100000

120000

140000

160000

To
ta

l E
ne

rg
y

(in
 Jo

ul
es

)

85.93%

89.43%

90.37%

91.42%

92.10%
92.44%

92.63%
92.72%

14.07%

10.57%

9.63%

8.58%

7.90%

7.56%

7.37%

7.28%
Containers
Services

Fig. 5.15 Total energy consumption of the KUBERNETES cluster per amount of workers.

5.4 Empirical Validation 93

OVHcloud
Intel x2

OVHcloud
AMD

Grid5000
Intel x1

Grid5000
Intel x2

Grid5000
AMD

Op
en

St
ac

k
+

Ku
be

rn
et

es
Op

en
St

ac
k

Ku
be

rn
et

es

2.82 2.35 2.77 3.19 2.8

2.48 2.06 2.43 2.8 2.46

2.02 1.68 1.99 2.29 2.01

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Fig. 5.16 Comparing the CPUE of hardware/software configurations.

To evaluate the ability of xPUE to assess the energy efficiency of a KUBERNETES

infrastructure provisioned in an OPENSTACK cluster, we explore different configurations of
IaaS/CaaS technologies and compute the associated CPUE. The estimated CPUE metrics
are reported in Figure 5.16. By combining SPUE and VPUE metrics, one can observe that
both the hardware server and the software stack can have a strong influence on the energy
consumption of cloud infrastructures. In our setup, one can observe that the CPUE can
range from 1.68 for a bare-metal KUBERNETES cluster hosted by AMD servers provisioned
by OVHCLOUD to 3.19 for a virtualized KUBERNETES cluster provisioned atop a set of
OPENSTACK virtual machines deployed in a private IaaS (Grid5000). This observation
strengthens our claim that the optimization of energy efficiency of cloud infrastructure
requires a holistic approach covering all hardware and software layers, beyond the sole
optimization of the data center and its PUE.

To reveal the concrete energy footprint of a cloud service, one should therefore combine
the CPUE of the cloud infrastructure with the PUE of the data center hosting the servers.
Figure 5.17 estimates the global PUE (GPUE) of several server deployments hosted by
OVHCLOUD, according to the selected data center. We use the PUE publicly published as
reference for the data centers built by OVHCLOUD (i.e., Gravelines in France, Beauharnois
in Canada and Limburg in Germany). As for the data centers leased to OVHCLOUD (i.e., Big

94 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures

Grid5000 (FR) OVHcloud
Gravelines (FR)

OVHcloud
Beauharnois (CA)

OVHcloud
Limburg (DE)

OVHcloud
Singapore (SG)

OVHcloud
Sydney (AU)

0

1

2

3

4

gP
UE

3.19

1.83 1.82 1.93

2.57

2.17

3.91

2.25 2.22 2.37

3.15

2.66

4.45

2.56 2.53
2.70

3.59

3.03

Platform
Kubernetes
OpenStack
OpenStack + Kubernetes

Fig. 5.17 Comparing the GPUE of DC/Platform configurations.

Data Exchange16 (previously Telstra) for Singapore and NextDC17 for Sydney in Australia),
we use the data publicly published by the operators as reference.

Figure 5.18 estimate the global Carbon Usage Effectiveness (CUE) (GCUE) of several
data center of OVHCLOUD across the world. As there is no data officially published by
OVHCLOUD at the data center granularity for the CUE, we choose to use the data published
by ELECTRICITY MAP18 as reference for the Carbon Dioxide Emission Factor (CEF) of the
countries in which is based each data center.

5.5 Summary

The energy efficiency of cloud infrastructure is a critical concern for modern deployments
and a lot of work has been made in order to accurately evaluate this efficiency. While there
are multiple indicators that aim to assess the efficiency of data centers, none of them take
into account the efficiency of the running software. They mostly treat the running software
as a black-box and give a yearly feedback about the global efficiency of the infrastructure,
which does not allow to evaluate individually specific parts of the infrastructure.

16https://www.bdxworld.com/
17https://www.nextdc.com/
18https://www.electricitymaps.com/

https://www.bdxworld.com/
https://www.nextdc.com/
https://www.electricitymaps.com/

5.5 Summary 95

OVHcloud
Beauharnois (CA)

OVHcloud
Gravelines (FR)

OVHcloud
Limburg (DE)

OVHcloud
Singapore (SG)

OVHcloud
Sydney (AU)

Op
en

St
ac

k
+

Ku
be

rn
et

es
Op

en
St

ac
k

Ku
be

rn
et

es

68.03 176 912.6 1152 1262

59.74 154.5 801.3 1011 1108

48.75 126.1 653.9 825.4 904.4
200

400

600

800

1000

1200

Fig. 5.18 Comparing the GCUE (gCO2/kWh) of OVHcloud data center of various countries.

In this chapter, we presented xPUE, an extension of the Power Usage Effectiveness (PUE)
metric that allows operators and users to assess the energy efficiency of their infrastructure.
We mainly focus on the energy efficiency of the computing hardware and theirs underlying
software services composing the infrastructure, and we show that xPUE success to provide
an in-depth view of the energy efficiency of the various hardware and software components
of a cloud infrastructure.

While we demonstrate our approach on Kubernetes and OpenStack test clusters, we
strongly believe that it can be deployed and used across a large variety of infrastructure. We
took care to allow a high flexibility to the users in order to easily adapt our solution to their
specific infrastructure control plane and tools. The experimental results obtained showed the
ability of our approach to flexibly adapt to the underlying infrastructure, and to provide a
deep insight of the energy efficiency of the multiple layers composing the infrastructure in
real-time.

Thanks to xPUE, cloud infrastructure operators can assess in real-time the efficiency of
their infrastructure, from the hardware level and down to the software level. This allows
for more experiments on energy management policies, and a faster feedback about its short,
middle and long term behavior and efficiency for the cloud operator. Instead of relying on
very complicated metrics that have a very long delay (mostly yearly) before getting feedback,
we believe that xPUE provides a reliable indicator of the energy efficiency of the different
parts of a cloud infrastructure while allowing more flexibility for the cloud operator.

Chapter 6

Conclusion & Perspectives

In this chapter, we summarize the contributions of our thesis and we discuss our short and
long-term perspectives.

6.1 Summary of Contributions

In this thesis, we presented three contributions to the research in the field of software energy
consumption.

In Chapter 3, we presented SmartWatts which is a self-adaptive power model for software
containers based on the Hardware Performance Counters of the CPUs for the activity, and
the Running Average Power Limit (RAPL) interface for the CPU energy measurements. This
contribution provides tools to accurately estimate the power consumption of the software
containers deployed on a machine, thus allowing operators and developers to better analyze
the energy efficiency of their software systems.

In Chapter 4, we presented SelfWatts which is a self-calibrating power model that
allows to automatically configure software power meters in heterogeneous environments.
This contribution provides tools to easily deploy software power meters in heterogeneous
environments, without needing specific configuration and specialized knowledge about the
underlying hardware architecture of the machine.

In Chapter 5, we presented xPUE which is an extension of the Power Usage Effectiveness
(PUE) indicator to evaluate the software energy efficiency of the various levels of the
computing infrastructures. This contribution extends the scope the the PUE indicator to
the software level, thus allowing to evaluate the energy efficiency of the software systems
deployed across an infrastructure.

All contributions have been implemented and validated on a real-world testbed, and the
results have been published in international conferences and journals. These contributions

98 Conclusion & Perspectives

provide usable approaches and tools to accurately measure the energy consumption of
software deployed at different levels of the infrastructure. To foster the adoption of our
contributions, all tools are open-source and freely available on GitHub (cf. Section 1.3 for
the links to the repositories).

6.2 Short-Term Perspectives

In this section we present the short-term perspectives of this thesis. As mentioned in the
previous chapters, many perspectives can be considered throughout our presentation of the
contributions and their implications.

6.2.1 Extends Software Power Meters to more Processing Units

In Chapter 3 and Chapter 4, we presented software-defined power meters that are able
to measure the CPU and DRAM energy consumption of software containers running on
heterogeneous hardware configurations. Market trends are pushing the industry to develop
more heterogeneous architectures, with more processing units (e.g. GPUs, FPGAs, etc.) and
more complex power management policies. While we designed our approaches to be easily
extensible to other processing units, we did not have the opportunity to validate them on such
architectures.

Central Processing Units.

CPUs architecture are greatly evolving and the industry is pushing for more flexible, perfor-
mant and energy efficient architectures.

Recently, Intel pushed for heterogeneous multi-core architectures for the first time in its
Lakefield micro-architecture, where big—more powerful and power-hungry—core(s) along
with small—slower and energy-efficient—cores are integrated on the same die. This concept,
borrowed from ARM big.LITTLE architecture, is called Hybrid Cores and is a promising
approach to improve the energy efficiency of the CPUs [34].

ARM is also becoming more and more present in the data center and High Performance
Computing (HPC) spaces in addition to be the major player in the mobile space. To this effect,
major cloud providers such as Amazon Web Services (AWS), Microsoft Azure and Google
Cloud Platform (GCP) introduced their own ARM-based servers, where better efficiency
often reduces the price of such services.

RISC-V is an open-source Instruction Set Architecture (ISA) that is gaining traction in
the industry. It is mostly dedicated to embedded systems and the Internet of Things (IoT)

6.2 Short-Term Perspectives 99

devices, where energy efficiency is a major concern because of the limited battery life of
such environment.

Unfortunately, the current software-defined power meters are not able to measure the
energy consumption of software containers on these architectures. While many software
power meters rely on the Running Average Power Limit (RAPL) feature on Intel and AMD
CPUs, there is no equivalent feature on ARM and RISC-V architectures. Keller et al. [33]
proposed a RISC-V System-on-Chip (SoC) with an integrated power-management unit that
can measure system state and actuate changes to core voltage and frequency, which allows
to measure the energy consumption of the software. For ARM architectures, this feature is
currently available on specific development boards where an energy probe is required, and it
is not proposed on server SoC of the market.

Specialized Processing Units.

As Machine Learning (ML) and Artificial Intelligence (AI) are becoming more and more
important, the industry is pushing for more specialized processing units to accelerate the
execution of ML and AI algorithms. Hardware dedicated to improving the performance of
such algorithms are called Accelerators and are often based on Graphics Processing Units
(GPUs), Tensor Processing Units (TPU) or Field-Programmable Gate Arrays (FPGAs).

Cryptocurrencies mining is another good example of this trend, where the industry is
pushing for more specialized processing units to accelerate the execution of the algorithms
used to mine cryptocurrencies, and thus increase the profit of the miners. In this case, the
processing units are often based on Application-Specific Integrated Circuits (ASICs) or
Graphics Processing Units (GPUs).

Concerning the energy consumption of Graphics Processing Units (GPUs), there is a lot
of work in the literature to measure the energy consumption of these devices, and to optimize
the energy efficiency of the algorithms executed on them. Most GPUs vendors provide tools
to measure the energy consumption of their devices, and there are also open-source tools
such as Nvidia Management Library (NVML) and ROCm that are able to measure the energy
consumption of GPUs. However, the equivalent for Application-Specific Integrated Circuits
(ASICs) and Field-Programmable Gate Arrays (FPGAs) is far more sporadic, which greatly
hinders the energy profiling of such devices.

6.2.2 Intelligent Application-Level Power Budgeting

Nowadays, resources intensive applications have access to many solutions to accelerate their
execution, such as Accelerators (e.g. GPUs, TPUs, FPGAs, etc.), Cloud Computing (e.g.

100 Conclusion & Perspectives

AWS, Azure, GCP, etc.), High Performance Computing (HPC) clusters, etc. In Chapter 5,
we presented xPUE which is an extension of the Power Usage Effectiveness (PUE) indicator
to evaluate the software energy efficiency of the various hardware and software levels of
computing infrastructures. While we showed the importance of using efficient hardware
and software architectures and to choose appropriately the data center location, we did not
address the energy efficiency of the applications themselves, especially when accelerators
were used.

In this perspective, multiple approaches can be used to improve the energy efficiency of
applications. First, the application can be optimized to reduce its own energy consumption
under a set of user-defined constraints. For example, in Enes et al. [18], we proposed a
platform based on our work presented in Chapter 3 to automatically distribute and enforce
a power budget among users and applications. This platform allows users to set a power
budget on their containerized applications and have it enforced in real-time and in a dynamic
way. However, we did not explore the possibility to dynamically manage the power budget
of applications using accelerators.

Secondly, one can explore the energy efficiency of its application/infrastructure on various
hardware configurations, and plan accordingly to deploy the application on the most energy
efficient configuration. For example, the authors of HEATS [49] took this approach to exploit
the hardware diversity of the underlying infrastructures in order to make energy-aware
scheduling decisions and improves the energy efficiency of the tasks deployed.

6.3 Long-Term Perspectives

In this section, we present the long-term perspectives of this thesis.

6.3.1 Distributed Application Energy Efficiency

In Chapter 5, we presented an analysis of the energy efficiency of the various levels of the
computing infrastructures. However, we mainly assessed the energy efficiency of Cloud
Computing architectures, where workloads are deployed on shared IT resources hosted in a
data center.

Edge Computing is a computing paradigm where the data is processed at the edge
of the network, close to the source of the data, instead of being processed in the cloud.
This paradigm is used to reduce the latency of the applications, and to reduce the energy
consumption of the applications by reducing the amount of data that needs to be transferred
over the network. However, as stated by Jiang et al. [30], the energy consumption of the

6.3 Long-Term Perspectives 101

applications is still a major concern in this paradigm, and there is a lot of work to do to
improve the energy efficiency of the applications deployed in such environments.

As the popularity of Edge Computing is increasing, we believe there is a need to develop
new approaches to measure the energy consumption and efficiency of the infrastructures and
applications deployed in such environments.

6.3.2 Application-Driven Hardware Power Management

Currently, the power management of the hardware is mostly driven by the operating system
or the hardware itself. However, the operating system is not aware of the energy consumption
of the applications, and thus cannot adapt the power management policies to the energy
consumption of the applications. Such optimization mechanics are mostly based on heuristic
and will always lack application specific knowledge.

Some efforts have been made to allow the operating system to adapt its power manage-
ment policies to the energy consumption of the applications. In the Linux kernel, the Energy
Model (EM) framework is an interface between drivers knowing the power consumed by
various devices, and the kernel subsystems willing to use that information to make energy-
aware decisions.1 While this is a big step enabling more efficient scheduling of tasks on
heterogeneous CPU topologies, it is still not enough to adapt the power management policies
to a specific application.

Another approach to improve the energy efficiency is to have the hardware power man-
agement policy tailored to the workload of the application. Wright et al. [57] presents a
dual-core RISC-V System-on-Chip (SoC) with integrated fine-grain power management,
which allows to adapt the power management policies to the workload of the machine. This
technique provides a good example of the potential of such approach, but it is still limited to
a specific hardware architecture.

We believe there is still space for application-agnostic power management policies that
can be automatically adapted to the workload of the application, and thus collaborate actively
with the hardware energy optimization mechanism in order to improve the efficiency of the
whole system.

6.3.3 Energy Efficient Trusted Execution Environments (e-TEE)

Trusted Execution Environments (TEE) are a class of hardware that provides a secure environ-
ment to execute sensitive applications. Cloud infrastructures supporting secure environments
are emerging, such as Microsoft Azure confidential computing, allowing safe resources to

1https://docs.kernel.org/power/energy-model.html

https://docs.kernel.org/power/energy-model.html

102 Conclusion & Perspectives

be shared across multiple stakeholders. A Linux Foundation Consortium has been founded
by Microsoft, Intel, AMD, and others actors to develop a standard for TEEs, called the
Confidential Computing Consortium (CCC) [45].

In this category, Intel SGX is an approach to safely isolate software processes sharing the
same resources (CPU, RAM) of a given host. Arnautov et al. [1] provides an approach to
protect Docker containers from external tampering using Intel’s SGX enclaves. However,
such security guarantees come at a price and Gjerdrum et al. [24] evaluates the performance
impact imposed by Intel SGX enclaves. An increase of the energy consumption for the
application is also observed by Göttel et al. [26], especially when the application do not
respect the memory constraints imposed by the enclave.

Another case of such application is the Homomorphic Encryption (HE) which is a
technique to perform computations on encrypted data. In some cases, applications rely
on Near-Memory Processing (NMP) and Computing-in-Memory (CiM) paradigms, where
computation is done within the memory boundaries, to reduce latency and energy associated
with data transfers in data-intensive applications [47].

While the TEEs are a promising technology to protect sensitive data, we believe there is
still a lot of work to do to improve the energy efficiency of the applications running in such
environments.

References

[1] Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind, J., Muthuku-
maran, D., O’Keeffe, D., Stillwell, M. L., Goltzsche, D., Eyers, D., Kapitza, R., Pietzuch,
P., and Fetzer, C. (2016). Scone: Secure linux containers with intel sgx. In Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and Implementation,
OSDI’16, page 689–703, USA. USENIX Association.

[2] Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum, L.,
Fatoohi, R. A., Frederickson, P. O., Lasinski, T. A., and Schreiber, R. S. (1991). The nas
parallel benchmarks. IJHPCA.

[3] Balouek, D., Carpen Amarie, A., Charrier, G., Desprez, F., Jeannot, E., Jeanvoine, E.,
Lèbre, A., Margery, D., Niclausse, N., Nussbaum, L., Richard, O., Pérez, C., Quesnel, F.,
Rohr, C., and Sarzyniec, L. (2013). Adding virtualization capabilities to the Grid’5000
testbed. In Cloud Computing and Services Science, volume 367 of Communications in
Computer and Information Science, pages 3–20. Springer International Publishing.

[4] Barroso, L. A., Clidaras, J., and Hölzle, U. (2013). The datacenter as a computer: An
introduction to the design of warehouse-scale machines. Synthesis lectures on computer
architecture, 8(3):1–154.

[5] Bedard, D., Lim, M. Y., Fowler, R., and Porterfield, A. (2010). Powermon: Fine-grained
and integrated power monitoring for commodity computer systems. In Proceedings of the
IEEE SoutheastCon 2010 (SoutheastCon).

[6] Bellosa, F. (2000). The benefits of event: Driven energy accounting in power-sensitive
systems. In Proceedings of the 9th Workshop on ACM SIGOPS European Workshop:
Beyond the PC: New Challenges for the Operating System.

[7] Bertran, R., González, M., Martorell, X., Navarro, N., and Ayguadé, E. (2010). De-
composable and responsive power models for multicore processors using performance
counters. In ICS, pages 147–158. ACM.

[8] Bircher, W. and John, L. (2007). Complete system power estimation: A trickle-down ap-
proach based on performance events. In Proceedings of the IEEE International Symposium
on Performance Analysis of Systems Software, ISPASS ’07.

[9] Bircher, W. L., Valluri, M., Law, J., and John, L. K. (2005). Runtime identification
of microprocessor energy saving opportunities. In Proceedings of the International
Symposium on Low Power Electronics and Design.

104 References

[10] Brady, G. A., Kapur, N., Summers, J. L., and Thompson, H. M. (2013). A case study
and critical assessment in calculating power usage effectiveness for a data centre. Energy
Conversion and Management, 76:155–161.

[11] Colmant, M., Felber, P., Rouvoy, R., and Seinturier, L. (2017). Wattskit: Software-
defined power monitoring of distributed systems. In CCGrid, pages 514–523. IEEE /
ACM.

[12] Colmant, M., Kurpicz, M., Felber, P., Huertas, L., Rouvoy, R., and Sobe, A. (2015).
Process-level power estimation in vm-based systems. In EuroSys, pages 1–14. ACM,
ACM.

[13] Colmant, M., Rouvoy, R., Kurpicz, M., Sobe, A., Felber, P., and Seinturier, L. (2018).
The next 700 CPU power models. JSS, 144:382–396.

[14] Contreras, G. and Martonosi, M. (2005). Power Prediction for Intel XScale® Proces-
sors Using Performance Monitoring Unit Events. In Proceedings of the International
Symposium on Low Power Electronics and Design.

[15] Dayarathna, M., Wen, Y., and Fan, R. (2016). Data center energy consumption modeling:
A survey. IEEE Commun. Surv. Tutorials, 18(1):732–794.

[16] Desrochers, S., Paradis, C., and Weaver, V. M. (2016). A validation of DRAM RAPL
power measurements. In Jacob, B., editor, MEMSYS, pages 455–470. Association for
Computing Machinery, ACM.

[17] Dolz, M. F., Kunkel, J., Chasapis, K., and Catalán, S. (2015). An analytical methodology
to derive power models based on hardware and software metrics. Computer Science -
Research and Development.

[18] Enes, J., Fieni, G., Expósito, R. R., Rouvoy, R., and Touriño, J. (2020). Power budgeting
of big data applications in container-based clusters. In IEEE International Conference
on Cluster Computing, CLUSTER 2020, Kobe, Japan, September 14-17, 2020, pages
281–287. IEEE.

[19] ETSI (2014). Access, Terminals, Transmission and Multiplexing (ATTM); Energy
management; Global KPIs; Operational infrastructures; Part 2: Specific requirements;
Sub-part 1: Data centres. Standard, ETSI, Sophia Antipolis CEDEX, FR.

[20] ETSI (2017). Access, Terminals, Transmission and Multiplexing (ATTM); Energy
management; Global KPIs; Operational infrastructures; Part 3: Global KPIs for ICT sites.
Standard, ETSI, Sophia Antipolis CEDEX, FR.

[21] Fieni, G., Rouvoy, R., and Seinturier, L. (2020). Smartwatts: Self-calibrating software-
defined power meter for containers. In CCGrid, pages 479–488. IEEE.

[22] for Standardization, I. O. (2016). Information technology – Data centres – Key per-
formance indicators – Part 2: Power usage effectiveness (PUE). Standard, International
Organization for Standardization, Geneva, CH.

References 105

[23] Ge, R., Feng, X., Song, S., Chang, H.-C., Li, D., and Cameron, K. (2010). Powerpack:
Energy profiling and analysis of high-performance systems and applications. IEEE
Transactions on Parallel and Distributed Systems.

[24] Gjerdrum, A. T., Pettersen, R., Johansen, H. D., and Johansen, D. (2017). Performance
of Trusted Computing in Cloud Infrastructures with Intel SGX. In 7th International
Conference on Cloud Computing and Services Science (CLOSER).

[25] Google (2021). Data centers efficiency. https://www.google.com/about/datacenters/
efficiency/.

[26] Göttel, C., Pires, R., Rocha, I., Vaucher, S., Felber, P., Pasin, M., and Schiavoni,
V. (2018). Security, performance and energy trade-offs of hardware-assisted memory
protection mechanisms. In 2018 IEEE 37th Symposium on Reliable Distributed Systems
(SRDS), pages 133–142.

[27] Havet, A., Schiavoni, V., Felber, P., Colmant, M., Rouvoy, R., and Fetzer, C. (2017).
GENPACK: A generational scheduler for cloud data centers. In 2017 IEEE International
Conference on Cloud Engineering, IC2E 2017, Vancouver, BC, Canada, April 4-7, 2017,
pages 95–104. IEEE Computer Society.

[28] Insitute, U. (2020). Data center pues flat since 2013. https://journal.uptimeinstitute.
com/data-center-pues-flat-since-2013/.

[29] Isci, C. and Martonosi, M. (2003). Runtime power monitoring in high-end proces-
sors: Methodology and empirical data. In Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture.

[30] Jiang, C., Fan, T., Gao, H., Shi, W., Liu, L., Cérin, C., and Wan, J. (2020). Energy
aware edge computing: A survey. Computer Communications, 151:556–580.

[31] Kamiya, G. (2022). Data centres and data transmission networks. Technical report,
IEA: International Energy Agency.

[32] Kansal, A., Zhao, F., Liu, J., Kothari, N., and Bhattacharya, A. A. (2010). Virtual
machine power metering and provisioning. In Proceedings of the 1st ACM Symposium on
Cloud Computing.

[33] Keller, B., Cochet, M., Zimmer, B., Kwak, J., Puggelli, A., Lee, Y., Blagojević, M.,
Bailey, S., Chiu, P.-F., Dabbelt, P., Schmidt, C., Alon, E., Asanović, K., and Nikolić, B.
(2017). A risc-v processor soc with integrated power management at submicrosecond
timescales in 28 nm fd-soi. IEEE Journal of Solid-State Circuits, 52(7):1863–1875.

[34] Khushu, S. and Gomes, W. (2019). Lakefield: Hybrid cores in 3d package. In 2019
IEEE Hot Chips 31 Symposium (HCS), pages 1–20.

[35] Kurpicz, M., Orgerie, A., and Sobe, A. (2016). How much does a VM cost? energy-
proportional accounting in vm-based environments. In Euromicro, pages 651–658. IEEE.

[36] Laros, J. H., Pokorny, P., and DeBonis, D. (2013). Powerinsight - a commodity power
measurement capability. In Green Computing Conference, 2013 International.

https://www.google.com/about/datacenters/efficiency/
https://www.google.com/about/datacenters/efficiency/
https://journal.uptimeinstitute.com/data-center-pues-flat-since-2013/
https://journal.uptimeinstitute.com/data-center-pues-flat-since-2013/

106 References

[37] LeBeane, M., Ryoo, J. H., Panda, R., and John, L. K. (2015). Wattwatcher: Fine-grained
power estimation for emerging workloads. In SBAC-PAD.

[38] Li, T. and John, L. K. (2003). Run-time modeling and estimation of operating system
power consumption. SIGMETRICS Perform. Eval. Rev.

[39] Lim, M. Y., Porterfield, A., and Fowler, R. (2010). Softpower: Fine-grain power
estimations using performance counters. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing.

[40] Lupton, R. and Allwood, J. (2017). Hybrid sankey diagrams: Visual analysis of
multidimensional data for understanding resource use. Resources, Conservation and
Recycling, 124:141–151.

[41] McCullough, J. C., Agarwal, Y., Chandrashekar, J., Kuppuswamy, S., Snoeren, A. C.,
and Gupta, R. K. (2011). Evaluating the effectiveness of model-based power characteriza-
tion. In Proceedings of the USENIX Annual Technical Conference.

[42] Noureddine, A., Rouvoy, R., and Seinturier, L. (2015). Monitoring energy hotspots in
software - energy profiling of software code. Autom. Softw. Eng.

[43] Orgerie, A.-C., Dias de Assuncão, M., and Lefèvre, L. (2014). A survey on techniques
for improving the energy efficiency of large-scale distributed systems. ACM Comput.
Surv.

[44] Prekas, G., Primorac, M., Belay, A., Kozyrakis, C., and Bugnion, E. (2015). Energy pro-
portionality and workload consolidation for latency-critical applications. In Proceedings
of the Sixth ACM Symposium on Cloud Computing.

[45] Rashid, F. Y. (2020). The rise of confidential computing: Big tech companies are
adopting a new security model to protect data while it’s in use - [news]. IEEE Spectrum,
57(6):8–9.

[46] Rashti, M., Sabin, G., Vansickle, D., and Norris, B. (2015). Wattprof: A flexible
platform for fine-grained hpc power profiling. In 2015 IEEE International Conference on
Cluster Computing.

[47] Reis, D., Takeshita, J., Jung, T., Niemier, M., and Hu, X. S. (2020). Computing-in-
memory for performance and energy-efficient homomorphic encryption. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 28(11):2300–2313.

[48] Rivoire, S., Ranganathan, P., and Kozyrakis, C. (2008). A comparison of high-level
full-system power models. In Proceedings of the Conference on Power Aware Computing
and Systems.

[49] Rocha, I., Göttel, C., Felber, P., Pasin, M., Rouvoy, R., and Schiavoni, V. (2019).
Heats: Heterogeneity-and energy-aware task-based scheduling. In 2019 27th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP),
pages 400–405.

References 107

[50] Rotem, E., Naveh, A., Ananthakrishnan, A., Weissmann, E., and Rajwan, D. (2012).
Power-management architecture of the intel microarchitecture code-named sandy bridge.
Micro.

[51] Schaeppi, B., Bogner, T., Schloesser, A., Stobbe, L., and de Asuncao, M. D. (2012).
Metrics for energy efficiency assessment in data centers and server rooms. In 2012
Electronics Goes Green 2012+, pages 1–6. IEEE.

[52] Shen, K., Shriraman, A., Dwarkadas, S., Zhang, X., and Chen, Z. (2013). Power
containers: an OS facility for fine-grained power and energy management on multicore
servers. In ASPLOS, ASPLOS ’13, pages 65–76, New York, NY, USA. ACM.

[53] Snowdon, D. C., Sueur, E. L., Petters, S. M., and Heiser, G. (2009). Koala: a platform
for os-level power management. In EuroSys, pages 289–302. ACM.

[54] Stoess, J., Lang, C., and Bellosa, F. (2007). Energy management for hypervisor-based
virtual machines. In Proc. of USENIX Annual Technical Conference.

[55] van der Kouwe, E., Andriesse, D., Bos, H., Giuffrida, C., and Heiser, G. (2018).
Benchmarking crimes: An emerging threat in systems security. CoRR, abs/1801.02381.

[56] Versick, D., Waßmann, I., and Tavangarian, D. (2013). Power consumption estimation
of cpu and peripheral components in virtual machines. SIGAPP Appl. Comput. Rev.,
13(3):17–25.

[57] Wright, J. C., Schmidt, C., Keller, B., Dabbelt, D. P., Kwak, J., Iyer, V., Mehta, N.,
Chiu, P.-F., Bailey, S., Asanović, K., and Nikolić, B. (2020). A dual-core risc-v vector
processor with on-chip fine-grain power management in 28-nm fd-soi. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 28(12):2721–2725.

[58] Yang, H., Zhao, Q., Luan, Z., and Qian, D. (2014). iMeter: An integrated {VM} power
model based on performance profiling. Future Generation Computer Systems.

[59] Zamani, R. and Afsahi, A. (2012). A study of hardware performance monitoring
counter selection in power modeling of computing systems. In IGCC, pages 1–10. IEEE
Computer Society.

[60] Zhai, Y., Zhang, X., Eranian, S., Tang, L., and Mars, J. (2014). Happy: Hyperthread-
aware power profiling dynamically. In Proceedings of the USENIX Annual Technical
Conference.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Problem Statement
	1.1.1 Estimating the energy consumption of software containers
	1.1.2 Optimizing the power models for heterogenous environments
	1.1.3 Evaluating the software energy efficiency of an infrastructure

	1.2 Contributions
	1.2.1 Self-Adaptive Software Power Models
	1.2.2 Self-Optimizing Software Power Models
	1.2.3 Extending the Power Usage Effectiveness for Cloud Infrastructures

	1.3 Publications
	1.3.1 Published
	1.3.2 Future Submission
	1.3.3 Proof of Concept

	1.4 Outline

	2 State-of-the-Art
	2.1 Power estimation
	2.1.1 Hardware Power Meters
	2.1.2 Software-Defined Power Meters
	2.1.3 Limitations & Opportunities

	2.2 Optimization of software power models
	2.2.1 Power Model Calibration Methods
	2.2.2 Feature Selection for Software Power Models
	2.2.3 Hardware Power Optimizations
	2.2.4 Limitations & Opportunities

	2.3 Energy Efficiency Metrics
	2.3.1 Data Center Efficiency
	2.3.2 Limitations & Opportunities

	3 SmartWatts: Self-Calibrating Software-Defined Power Meter for Containers
	3.1 SmartWatts Power Monitoring
	3.1.1 Overview of SmartWatts
	3.1.2 Modelling the Host Power Consumption
	3.1.3 Isolating the Static Power Consumption
	3.1.4 Monitoring Power States & HwPC Events
	3.1.5 Selecting the Correlated HwPC Events
	3.1.6 Estimating the Container Power Consumption

	3.2 Implementation of SmartWatts
	3.2.1 Client-side Sensor
	3.2.2 Introducing the PowerAPI Toolkit
	3.2.3 Server-side Power Meter

	3.3 Validation of SmartWatts
	3.3.1 Evaluation Methodology
	3.3.2 Experimental Results
	3.3.3 Tracking the Energy Consumption of Distributed Systems

	3.4 Summary

	4 SelfWatts: On-the-fly Selection of Performance Events for Power Meters
	4.1 Power Monitoring with SelfWatts
	4.1.1 Approach Overview
	4.1.2 Host Power Model Inference
	4.1.3 Software Power Estimation
	4.1.4 Performance Events Monitoring

	4.2 Implementation Details
	4.2.1 A Sensor to Monitor Performance Events
	4.2.2 A Controller to Explore Performance Events
	4.2.3 A Formula to Optimize Power Models
	4.2.4 Deployment of SelfWatts

	4.3 Empirical Evaluation
	4.3.1 Evaluation Methodology
	4.3.2 Experimental Results
	4.3.3 Lessons Learned & Perspectives

	4.4 Summary

	5 xPUE: Extending Power Usage Effectiveness Metrics for Cloud Infrastructures
	5.1 Introduction
	5.2 Contributions
	5.2.1 Overview of xPUE
	5.2.2 sPUE: Assessing Cloud Servers Power Usage Effectiveness
	5.2.3 vPUE: Assessing Cloud Services Power Usage Effectiveness
	5.2.4 cPUE: Applying xPUE Metrics to Cloud Infrastructures
	5.2.5 Revisiting State-of-the-Art Metrics with cPUE

	5.3 Implementation Details
	5.3.1 Implementing the xPUE Formulas
	5.3.2 Deploying the xPUE Metrics

	5.4 Empirical Validation
	5.4.1 Evaluation Methodology
	5.4.2 sPUE Experiments
	5.4.3 vPUE Experiments
	5.4.4 cPUE & gPUE Experiments

	5.5 Summary

	6 Conclusion & Perspectives
	6.1 Summary of Contributions
	6.2 Short-Term Perspectives
	6.2.1 Extends Software Power Meters to more Processing Units
	6.2.2 Intelligent Application-Level Power Budgeting

	6.3 Long-Term Perspectives
	6.3.1 Distributed Application Energy Efficiency
	6.3.2 Application-Driven Hardware Power Management
	6.3.3 Energy Efficient Trusted Execution Environments (e-TEE)

	References

