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Chapter 1

Introduction

What is the role of human mobility in infectious disease transmission? Human mo-
bility affect the mixing among populations and thus crucially alter the probability
of coming in contact with infected individuals and the likelihood of disease prop-
agation [1, 2]. Infected individual who travels may also introduce pathogens and
generate local clusters in not-affected locations, or may lead to re-seeding events in
places with low or no epidemic activity.

The availability in the last twenty years of mobility data ranging from interna-
tional air traffic data, census commuting data to daily individual trajectory data
has widely contributed to a better understanding of human mobility patterns and
their impact on the epidemic spread. Targeted models spanning several levels of
complexity - from homogenous mixing populations to explicit contact and mobil-
ity structures - have been developed and informed by mobility data [3, 4, 5, 6, 7,
8, 9]. Researchers found that mobility traffic spans several orders of magnitude in
intensity and spatio-temporal scales. Individual travels indeed are mainly charac-
terized by recurrent short movements to few locations, and few international long-
range travels [5, 7, 10]. The collective effects of the sum of the individual trajectories
generate coupling forces among locations, which lead to a preferential path of trans-
mission [5, 11]. It was also observed how the heterogeneity of the coupling among
locations has a crucial influence on the speed of disease spatial transmission [12].
Epidemiological studies aimed to understand the role of human mobility are mostly
based on mobility fluxes defined from theoretical models, static mobility data such
as commuting census data or mobility data collected during peacetime.

However, patterns of mobility may be altered during an ongoing epidemic. Indi-
viduals may change their behaviours due to: i) mobility restrictions put in place by
governments to mitigate the epidemic activity; or ii) individual adaptive behaviours
to the epidemic, like risk aversion. In recent years, researchers have had the intuition
that mobile phone data could be used to monitor the population’s behaviours in re-
sponse to emergencies [13, 14]. For instance, they used mobile phone traces to high-
light the role of mass gatherings on the spread of waterborne diseases like cholera
[15], or quantified seasonal population fluxes in Kenya to assess how these drive
rubella transmission dynamics [16]. Moreover, researchers highlighted the poten-
tial of mobile phones to track individual behaviors to assess the impact of mobility
restrictions enforced to mitigate the Ebola Virus epidemic in Sierra Leone [17].

Dealing with such sensitive data led to many issues on the privacy, resulting in
complications in legal agreements which often delay data accessibility [18, 19]. The
reluctance of data sharing is also increased with the raised awareness of the limits of
data anonymization procedures [19, 20].

The COVID-19 health global crisis has underlined the necessity for rapid access
to mobility data in order to help mitigate the viral diffusion [21]. Network operators
and companies across the world made thus huge efforts to quickly pre-process and
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share their data through legally and ethically compliant agreements. Mobile phone
data have been shared at national level, and they have been largely used to track
individual behaviours within countries [11, 13, 14, 15, 22, 23, 24, 25, 26, 27, 28, 29],
while air traffic data have been mainly used to monitor international mobility fluxes
over time and global importations [4, 5, 10, 30].

This fast data availability on a large scale and high-resolution allowed researchers
to quantify mobility changes since the early stage of the COVID-19 pandemic. For
instance, during the first national lockdown in France, trips were reduced by 65%
[31]. Similar results were found also in Belgium [32], Spain [33], and Italy [34]. In
addition, due to risk aversion individuals living in regions with higher incidence
showed a higher reduction of mobility during mobility restrictions [17, 31], gener-
ating mobility changes heterogeneous in space. Spatial heterogeneities also depend
on socio-economic constraints as the standard of living, labor structure, household
crowding and retail stores availability [31, 35].

The massive and detailed information of mobility in space and time we col-
lected during COVID-19 has thus opened new challenges on i) quantifying mobility
restrictions in terms of mobility reductions; ii) integrating real-time mobility data
into models, in order to increase their predictive power by accounting for mobility
changes.

My doctoral thesis deal with theoretical and applied research work aimed at inte-
grating mobility data on different spatial scales into mathematical models for public
heath applications. It is an interdisciplinary research work of mathematical and com-
putational modeling, data science, and epidemiology. I developed my doctoral work
at Institut Pierre Louis d’Epidémiologie et de Santé Publique, INSERM, Sorbonne
Université, Paris, France, at EPIc Lab within the team of the Surveillance et Mod-
élisation des maladies transmissibles (SUMO), supervised by Dr. Vittoria Colizza.
My PhD thesis was promoted and funded by Orange SA, within the framework of
French CIFRE (Convention Industrielle de Formation par la Recherche) fellowships,
under the supervision of Dr. Stefania Rubrichi. Thanks to this collaboration between
Orange and Inserm, I had the possibility to access and analyse mobile phone traces.
Since January 2020, I have dedicated my research exclusively to the COVID-19 epi-
demic. In this context, we collaborated with Santé publique France [36] and Réseau
Sentinelles group [37] in the assessment of the COVID-19 epidemic in France. Our
group helped inform public health and political authorities on the situation and ef-
ficacy of interventions.

The work is organized as follows. In Chapter 2 I discuss how on large, medium,
and short scales mobility affects epidemic spread, leading to the high predictability
of the transmission of diseases. I explain, how international travel drives the inva-
sion of pathogens at a global level, while recurrent daily mobility affects epidemic
peak timing and incidence at local and national level.

In Chapter 3 I discuss the use of mobile phone data to quantify mobility fluxes.
Particular attention is devoted to the use of such data in fighting emergencies in
real-time, as in the context of COVID-19 pandemic. The different types and sources
of these data are described, and I discuss the privacy issues in dealing with such
sensitive data. In the last Section of the Chapter, I review the aggregation process for
computing mobility indicators from individual trajectories extracted from mobile
phone data.

Chapter 4 is dedicated to describing the theoretical frameworks to integrate mo-
bility into epidemic models. First, I review the cornerstones of disease transmis-
sion modelling, introducing basic and age-structured compartmental models and I
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present the age-structured transmission model we designed and developed specif-
ically to fight the COVID-19 epidemic in France. Particular attention is devoted to
the innovative method we proposed to parametrize social mixing through mobile
phone data in order to account for the evolving individual behaviours due to mobil-
ity restrictions and adaptive behaviours to the epidemic.

Then, I describe the metapopulation frameworks largely used by researchers to
model explicitly spatial structures and mobility among populations. The attention
is focused on the transmission model we designed and developed to assess how to
integrate mobile phone data at a national level into metapopulation models. Then,
I present how we quantified the risk of the introduction of a new pathogen carried
by international travellers using air traffic data. To conclude, I present an original
work issued from my thesis on assessing the appropriate definition and resolution
of mobility at national level to inform metapopulation models from mobile phone
data.

In Chapters 5 and 6, I present the two main research works that I performed
during the COVID-19 pandemic, considering the impact of human mobility across
different scales. Our work on the COVID-19 pandemic resulted in 8 published pa-
pers, 1 as first author and 2 as co-first author. In my thesis I selected two of them for
presentation: Pullano, Giulia, et al. "Novel coronavirus (2019-nCoV) early-stage im-
portation risk to Europe, January 2020.", Eurosurveillance (2020) and Pullano, Giulia
et al. "Underdetection of cases of COVID-19 in France threatens epidemic control",
Nature (2021). In the first one, we computed the risk of global epidemic importations
of COVID-19 into Europe from China due to international travellers. In the second
one, we estimated the underdetection of COVID-19 cases after the first wave, when
a new surveillance system was put in place to systematically detect all cases.
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Chapter 2

The role of human mobility in
infectious disease transmission

In the last decades there are several examples of emerging or endemic diseases glob-
ally and locally transmitted by mobility fluxes including the ongoing COVID-19 [38,
39, 40, 41], influenza [10, 42, 43, 44, 45], Ebola virus [17, 46], Middle East Respiratory
Syndrome (MERS) [47], Severe Acute Respiratory Syndrome (SARS) [6, 48], cholera
[15, 49], dengue [50] and malaria [51, 52]. Mobility fluxes affect the infectious disease
transmission by altering the time of arrival of the infection in previously not-affected
locations, their incidence and the frequency of the epidemics [5, 7, 10, 11, 22, 24, 53,
54, 55]. In this Chapter, I will explain in detail the role of mobility in shaping epi-
demics in space and time, providing examples on past and ongoing epidemics.

Mobility traffic spans several orders of magnitude in intensity and spatio-temporal
scales ranging from short-range recurrent patterns such as commuting fluxes at na-
tional level [22, 24, 55], to international long-range trips. (Fig 2.1) [5, 7, 10], and
such patterns play a different role in infectious disease transmission. The Chapter is
therefore divided into three different sections. In Section 2.1, I will explain the role
of international travelers in spreading infectious diseases globally. In Section 2.2, I
will describe the role of national internal mobility in spreading epidemics within the
country once first cases have emerged. To conclude, in Section 2.3, I will focus on
how social mixing among individuals generated by individual movements affects
spread at local level.

2.1 International travels and the global spread

Human travels and migrations are the major drivers of carrying infections world-
wide. Given the improvements in transportation infrastructures and means, nowa-
days big cities across the world are strongly connected among themselves and to
the neighbouring locations, allowing travellers to move from one location on earth
to any other point on the planet in only 1/2 days. This leads to a continuous social
mixing among subpopulations geographically far from each other, thus creating a
faster epidemic spatial transmission among countries.

International travel may contribute to localized or global epidemics

Once a new pathogen is introduced into a location by travellers, infections may lead
to global epidemics such as COVID-19 or H1N1 influenza, causing localized epi-
demics such as Schistosomiasis in Corse or not generate epidemic clusters, such
Ebola when it was introduced into some countries in Europe. In this Section, I
will present the most relevant recent human diseases transmitted by vectors, or by
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human-to-human, and I will discuss how they spread across countries driven by
mobility.

Short-range mobility layer Long-range mobility layer

101

105

101

105

levart riagnitummoc

FIGURE 2.1: Illustrative maps of multiscale structure of human mo-
bility in Europe. The short-range mobility layer covers commuting
fluxes among municipalities and the long-range mobility layer cov-
ers the air travel flows between worldwide airport pairs connected.
The colour bar represents mobility traffic i.e. the number of people

moving among the connected locations. Figure from [56].

Vectorborne diseases. Vectorborne diseases generate predominantly localized
epidemics as they are transmitted by the bite of infected species and may generate
epidemics only in environments that have suitable conditions for vectors to survive
and reproduce. The two vectorborne diseases with the highest prevalence in the
world are Malaria and Schistosomiasis [8]. In the context of Malaria, the vectors
are the mosquitoes, and they live in tropical and temperate countries, especially in
African countries [57]. Researchers in [58] showed the top ten air travel risk routes
for malaria-carrying mosquitoes by air traffic. By combining air traffic volumes and
climatic similarity between origin-destination airports, they found that all routes fly
from endemic African countries to European destinations in specific climate condi-
tions in July, August or September. Schistosomiasis, on the other hand, is transmit-
ted by direct contact with fresh water contaminated by specific snails, and it is most
commonly found in Africa, Asia, and South America [59]. Cases of schistosomiasis
introduced by air travel from Africa were discovered recently in Corsica as there
were local snails to host agents of schistosomiasis [8].

Human-to-human transmission diseases. In recent years, air travel has con-
tributed to several epidemics of global health significance including 2002–2004 Se-
vere Acute Respiratory Syndrome (SARS) outbreak, the 2009 H1N1 Pandemic, the
2012 Middle East Respiratory Syndrome (MERS) outbreak, the 2014-2016 Ebola Out-
break in West Africa, and the 2019 coronavirus disease (COVID-19) pandemic [8].

The 2014 Ebola virus disease (EVD) epidemic began in Sierra Leone in 2014 cross-
ing the borders also to Guinea and Liberia resulting in fatality rates ranging from
30% to 80% [8]. Since the active spread in West-Africa, cases began appearing in
several countries via international air travel such as Nigeria, the USA, Italy, United
Kingdom, Spain. Nigeria experienced the largest cluster due to air travellers with
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19 confirmed cases in two cities of which seven died [60]. In spite of the fact that the
travel ban reduced air traffic by 60% between the West African regions most affected
by Ebola and the rest of the world, such a reduction was insufficient to prevent the
exportation of Ebola cases. Travel restrictions indeed only led to delaying the risk of
case importation per country from a few days to a few weeks [30]. Since the severe
symptoms generated by the virus are easily recognizable, imported cases however
were promptly detected and isolated, leading at most to small localized clusters.

The greatest threats for Global Heath are, however, diseases with an airborne
transmission (i.e. transmitted through the air over time and distance) as they have
the highest risk of generating global epidemics not requiring physical contacts to be
transmitted. There are many examples of airborne viruses indeed that have gener-
ated simultaneous epidemics in non contiguous geographical areas across the world.

For instance, the SARS outbreak caused by a SARS-CoV in 2002/2003 spread
from southern China to more than two dozen countries in North America, South
America, Europe, and Asia. The global epidemic lasted about six months, with over
8,000 infected people. The World Health Organization (WHO) estimated a fatality
rate of 14-15% [61]. The MERS outbreak caused by a MERS-CoV, which originated in
Saudi Arabia in 2012 reached 27 countries in Europe, North America and Asia and
in the Middle East. This generated more then 2,000 confirmed cases and around 800
deaths, leading to a fatality rate of around 30% [62]. Analyses of traffic data from/to
Saudi Arabia show this latter covers a central role in connecting different regions of
the world resulting in large traffic fluxes towards the continents of Asia, Europe and
Africa [47]. South Korea experienced the largest epidemic outside of Saudi Arabia,
which was introduced by an infected traveller returning from the affected country.

At the beginning of the 20th century, the 1918 influenza pandemic highlighted
the potential of an airborne disease to spread globally thanks to the new intercon-
nected world. In fact, the virus infected about 500 million individuals, then one-
third of the population of the world. Later on, the 2009 Influenza H1N1 pandemic
demonstrated the acceleration of global spread due to the increase in international
mobility fluxes. In fact, it emerged in Mexico and it reached the United States in less
then one month and it quickly spread across the world (See Figure 2.2), reaching the
21% of the global population [63]. Following the international alert, an air travel ban
from/to Mexico was put in place, and air traffic was reduced by about 40%. How-
ever, this was not sufficient to contain the global emergence, producing only a delay
of around 2 days in the arrival of infection out of Mexico. Bajardi et al. found that
even with a 90% travel reduction, the resulting delay in the exportation worldwide
would have been less than 2 weeks [10].

Lastly, the most recent emerging airborne virus was the severe acute respiratory
syndrome coronavirus 2 (SARS CoV 2). This virus is the pathogen responsible for
COVID-19. The ongoing COVID-19 pandemic has shown very clearly how inter-
connected the modern world has become. In fact, the rapid increase of COVID-19
infections all over the world generated a pandemic by reaching nearly every country
in the World in around 70 days. The speed of spatial transmission exceeded all the
other pandemics (See Figure 2.2) and resulted in more than 100 million cases and
millions of deaths globally to date [64]. The global distribution of COVID-19 cases
in the first wave occurred particularly in Asia, where there are most of the flight
routes from China. Lau et al. [65] in found a positive correlation among passenger
volume in any continent and international COVID-19 cases ( r2 = 0.98, p < 0.1). In
the early stage of the COVID-19 pandemic, China implemented a travel ban from/to
Wuhan (the epicentre of the epidemic), 59 airline companies suspended or limited
flights to Mainland China and several countries including USA, Russia, Australia,
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and Italy imposed travel restrictions. In this case also, however, air travel restric-
tions were not sufficient to contain the global emergency. Air travel restrictions may
work, only when they are put in place in combination with other social distancing
measures in the affected areas [38, 66]. Otherwise, new infections will quickly reach
neighbouring locations, and these latter in turn, will spread the disease globally. In
fact, after the travel ban in Wuhan, the other big cities in China including Shang-
hai, Beijing, and Shenzhen continued exporting infected COVID-19 cases all over
the world as they were already previously infected [67].

The most alarming factor of the global spread is the speed of worldwide diffu-
sion. The figure 2.2 shows the cumulative number of infected countries over time
for a set of pandemics over the past century. The speed of global invasion has dra-
matically increased. Such an acceleration phenomenon is related to the increase in
volume and connections resulting in an even higher heterogeneity in the distribution
of the connections between locations given the increased urban concentralisation. In
the next Section, I will explain the structure of air traffic network and how its affect
global spread.

Days since first reported case globally

N
um

be
r o

f c
ou

nt
rie

s 
re

po
rti

ng
 a

t l
ea

st
 o

ne
 c

as
e

FIGURE 2.2: Plot of cumulative number of countries reporting first
imported cases by day (day= 1 is when first case is reported in the
epicentre). Coloured curves shows six disease pandemics over the

past century. Figure from [68].

The architecture of air traffic flows

In the past decades, we have experienced the increase of global connectivity and
mobility through air travel as Figure 2.4 shows. The number of connections of any
airport and the number of passengers (air traffic) have become highly heterogeneous
[4, 7, 69] and such intrinsic feature of air traffic flows play a crucial role in shaping
epidemics [7, 69, 70].

Barrat et al. in [4] analysed the list of any pair of airports connected by di-
rect flights in 2002 and the number of available seats on any given connection and
showed that the traffic handled by each airport T with the corresponding number of
connections k follows the non-linear form T ≈ kβ with β ∼= 1.5 (See Figure 2.3). This
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means that mobility connections between airports span several orders of magnitude:
there are few hubs showing a huge number of connections, essentially big cities,
while, the majority of the airports show few connections. Figure 2.4 also shows a
very different behaviour for the real data network and its randomized version. The
air traffic between connections belonging to highly connected airports tends to have
a higher value than the one corresponding to the randomized weighted network.
This means there is a strong correlation between the traffic among airports and the
topology of the air traffic network, where the larger an airport is in terms of number
of connections, the more traffic it can handle. Such airports with numerous con-
nections and high volumes of passengers are called airport hubs. In the following
section, I will explain how they drive the global epidemic diffusion.

Int Health, Volume 6, Issue 1, March 2014, Pages 5–11, https://doi.org/10.1093/inthealth/ihu006
The content of this slide may be subject to copyright: please see the slide notes for details.

Figure 2. Changing global connectivity and mobility through air 
travel. The international commercial air network in (a) ...

FIGURE 2.3: The increase of global connectivity and air travel. The
international commercial air network in (a) 1933 and (b) 2010. Figure

from [71].

From radial to heterogeneous diffusion

In the pre-industrial era, only a few means of transport were available and trips
on the average timescale of one day were limited to short distances, resulting in
contagions between individuals only in adjacent locations. A historical example is
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given by the bubonic plague, called "the Black Death" which spread from China to
Western Europe in the 14th century and took around 15 years with a velocity in the
order of 300–700 km per year and whose spatio-temporal spread was dominated by
radial diffusion [72] as shown in Figure 2.5 a).

At present given the high heterogeneity of air traffic fluxes previously discussed,
global spread is not only dominated by radial diffusion as we have witnessed with
the emergence and spread of novel pathogens to distant countries in a few days
or weeks, such as the severe acute respiratory syndrome (SARS) in 2002, the 2009
A/H1N1 influenza pandemic, or the COVID-19 pandemic [68]. In Figure 2.5 b the
2009 pandemic that originated in Mexico and spread to more than 100 countries in a
few months is reported. In this new perspective, the global spread presents different
spatial transmission patterns, moving from a local diffusion (e.g. Black Death) to a
diffusion that presents even long-range contagions. These "jumps" across countries
are due to international travellers carrying pathogens across the planet and they are
the reason why we are experiencing such epidemic acceleration.

Researchers indeed found that the increase of heterogeneity in the air traffic net-
work reduces the the global invasion threshold i.e. the minimum number of trav-
ellers between locations in order to have a macroscospic number of infected subpop-
ulations [70]. Therefore, the higher the heterogeneity is among airport connections,
the lower the number of passengers that is needed to generate global epidemics.
This means that the topology of the mobility network is a key driver to shaping
infectious disease transmission.

Considering the same air traffic network presented in the previous Section, Col-
izza et al. in [5] found a direct relationship between the air traffic structure and the
epidemic transmission.

FIGURE 2.4: Properties of the worldwide air traffic. Left. The dis-
tribution P(k) follows a power-law behavior with exponent 1.8± 0.2
where k is the number of connections of any airport. The total traffic
handled by the airport as function of the number of connections of

the airport. Figure from [4]

In fact, researchers compared the level of heterogeneity of the simulated global
epidemics generated by real air traffic, with simulated epidemics generated in a
synthetic scenario in which air traffic between airports had been homogeneously
distributed. The latter case displays a homogeneous evolution of the simulated epi-
demics during a long time window. On the other hand, in the real scenario, cities are
affected differently. In the real scenario, they then measured the similarity between
two different outbreak stochastic realizations to understand if differences among
cities’ prevalence depended on the stochastic nature of the epidemic transmission



2.1. International travels and the global spread 11

or to the nature of the air traffic network. They found a high level of predictabil-
ity which is explained by the presence of preferential routes for spatial transmission
that are weakly affected by the stochastic nature of the epidemic transmission.

In fact, the heterogeneity of traffic flows introduces dominant connections be-
tween airports with a higher exchange number of passengers (hub airports). These
connections select preferential pathways, increasing the epidemic predictability [5].

CHAPTER 2. THE PHYSICS OF NETWORKS AND EPIDEMICS

b

a

Figure 2.3: (a) The spread of the Black Death in 14th Century Europe was mainly a diffusive
process, with an epidemic front wave crossing the continent from South to North. (b) The
2009 A/H1N1 pandemic originated in Mexico and reached all the five continents in a few
months through air travel.

22

FIGURE 2.5: The spread of the Black Death and of the 2009 A/H1N1
pandemic. (a) The spread of the Black Death in the 14th Century in
Europe had a radial diffusion, with an epidemic front wave crossing
the continent from South to North. (b) The 2009 A/H1N1 pandemic
originated in Mexico and reached all continents in a few months

through air travel. Figure b) from [10].

Since the high predictability of spatial invasion related to mobility fluxes, it is
possible to extract the global mobility patterns relevant to the spatial transmission
and to design spatial epidemic models ad hoc for controlling and containing the
emerging disease [38, 48, 73, 74, 75, 76, 77]. This especially allows to compute the
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risk of introduction due to air travelers in the early phase of an epidemic which is
the most relevant phase for epidemic surveillance [38, 47, 78]. In Section 5.2, I will
present my research work on assessing the risk of importation of COVID-19 cases in
Europe in the early stage of COVID-19 pandemic.

2.2 Recurrent mobility and national spread

Once local clusters of a disease emerge in a country, new infections may rapidly
spread across the entire country due to internal mobility fluxes. In this Section, I
will discuss the role of daily individual displacements in shaping national spread.
First, I will discuss relevant mobility patterns of individuals, and then I will explain
how such patterns affect epidemics.

Mobility recurrent patterns

Individuals have a recurrent travel distance and mainly return every day to the few
locations that they frequent quite often [22, 55]. Researchers found that the distri-
bution of displacements over all users and of their radius of gyrations (i.e. a metric
defining the characteristic distance travelled by individuals) are well approximated
by a truncated power-law (See Figure 2.6 c, d). To do that, they analyzed the individ-
ual trajectories of 6 million European mobile phone users (the use of mobile phone
data to quantify human mobility is described in Chapter 3). Most individuals travel
only over short-range distances, but a few regularly move over hundreds of kilo-
meters. For example, in Figure 2.6 b, the user visits a total of 12 different locations,
but he spends 88% of his time in two locations. Other studies proved the average
number of frequently visited locations by individuals is only 2.14, and we may sup-
pose that these locations are the home and the workplace [24]. Daily individual
mobility is thus mainly dominated by commuting fluxes. Commuting flows appear
to connect mainly neighboring subpopulations and few long-range high-populated
cities, and they are on average an order of magnitude larger than the average airline
traffic flow (See Figure 2.1). Moreover, commuting flows are recurrent as they refer
to round trip processes with a characteristic time of the order of 1/3 day (average
duration of a workday). From a spatial diffusion perspective, this strong coupling
involves a rapid diffusion among neighboring areas and long-range connected cities
giving rise to the heterogeneous spatial spread commonly experienced in national
spread.

The most recent example of a national rapid and heterogeneous diffusion due
to individual movements was experienced during the early stage of the COVID-
19 pandemic. The virus emerged in Wuhan, the ninth-most populous Chinese city.
As the city was strongly connected by mobility fluxes (domestic flights, railways,
highways) to the rest of the country, most of the early detected cases reported out-
side the epicentre came from Wuhan and were distributed across China (57%) [66].
Exported cases from Wuhan contributed to initiating local clusters, both in neigh-
boring provinces (e.g., Henan) and in more distant provinces (e.g., Guangdong and
Zhejiang). The earliest evidence of COVID-19 outside of Wuhan, however, was de-
tected in big cities (e.g., Beijing, Shanghai, Guangzhou and Shenzhen) and these
highly connected cities contributed to the further spread of COVID-19 to places less
directly connected to Wuhan. A strict lockdown was put in place in Wuhan city on
23 January 2020 and subsequently in 14 other cities across Hubei province.
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with r0g~5:8 km, br5 1.656 0.15 and k5 350km (Fig. 1d, see

Supplementary Information for statistical validation). Lévy flights
are characterized by a high degree of intrinsic heterogeneity, raising
the possibility that equation (2) could emerge from an ensemble of
identical agents, each following a Lévy trajectory. Therefore, we
determined P(rg) for an ensemble of agents following a random walk
(RW), Lévy flight (LF) or truncated Lévy flight (TLF) (Fig. 1d)8,12,13.
We found that an ensemble of Lévy agents display a significant degree
of heterogeneity in rg; however, this was not sufficient to explain the
truncated power-law distribution P(rg) exhibited by the mobile
phone users. Taken together, Fig. 1c and d suggest that the difference
in the range of typical mobility patterns of individuals (rg) has a
strong impact on the truncated Lévy behaviour seen in equation
(1), ruling out hypothesis A.

If individual trajectories are described by an LF or TLF, then
the radius of gyration should increase with time as rg(t), t3/(21 b)

(ref. 21), whereas, for an RW, rg(t), t1/2; that is, the longer we
observe a user, the higher the chance that she/he will travel to areas
not visited before. To check the validity of these predictions, we
measured the time dependence of the radius of gyration for users
whose gyration radius would be considered small (rg(T)# 3 km),
medium (20, rg(T)# 30 km) or large (rg(T). 100 km) at the end
of our observation period (T5 6months). The results indicate that

the time dependence of the average radius of gyration of mobile
phone users is better approximated by a logarithmic increase, not
only a manifestly slower dependence than the one predicted by a
power law but also one that may appear similar to a saturation
process (Fig. 2a and Supplementary Fig. 4).

In Fig. 2b, we chose users with similar asymptotic rg(T) after
T5 6months, and measured the jump size distribution P(Drjrg)
for each group. As the inset of Fig. 2b shows, users with small rg travel
mostly over small distances, whereas those with large rg tend to
display a combination of many small and a few larger jump sizes.
Once we rescaled the distributions with rg (Fig. 2b), we found that the
data collapsed into a single curve, suggesting that a single jump size
distribution characterizes all users, independent of their rg. This
indicates that P Dr rg

��� �
*r{a

g F Dr
�
rg

� �
, where a< 1.26 0.1 and

F(x) is an rg-independent function with asymptotic behaviour, that
is, F(x), x2a for x, 1 and F(x) rapidly decreases for x? 1.
Therefore, the travel patterns of individual users may be approxi-
mated by a Lévy flight up to a distance characterized by rg. Most
important, however, is the fact that the individual trajectories are
bounded beyond rg; thus, large displacements, which are the source
of the distinct and anomalous nature of Lévy flights, are statistically
absent. To understand the relationship between the different expo-
nents, we note that themeasured probability distributions are related

Figure 1 | Basic human mobility patterns. a, Week-long trajectory of 40
mobile phone users indicates that most individuals travel only over short
distances, but a few regularly move over hundreds of kilometres. b, The
detailed trajectory of a single user. The different phone towers are shown as
green dots, and the Voronoi lattice in grey marks the approximate reception
area of each tower. The data set studied by us records only the identity of the
closest tower to amobile user; thus, we can not identify the position of a user
within a Voronoi cell. The trajectory of the user shown in b is constructed
from 186 two-hourly reports, during which the user visited a total of 12
different locations (tower vicinities). Among these, the user is found on 96
and 67 occasions in the two most preferred locations; the frequency of visits

for each location is shown as a vertical bar. The circle represents the radius of
gyration centred in the trajectory’s centre of mass. c, Probability density
function P(Dr) of travel distances obtained for the two studied data sets D1

and D2. The solid line indicates a truncated power law for which the
parameters are provided in the text (see equation (1)). d, The distribution
P(rg) of the radius of gyration measured for the users, where rg(T) was
measured after T5 6 months of observation. The solid line represents a
similar truncated power-law fit (see equation (2)). The dotted, dashed and
dot-dashed curves show P(rg) obtained from the standard null models (RW,
LF and TLF, respectively), where for the TLF we used the same step size
distribution as the one measured for the mobile phone users.
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FIGURE 2.6: Individual mobility patterns. a) Week-long trajectory
of 40 mobile phone users. Colors represent different users. b) The
detailed trajectory of a single user. The different phone towers are
shown as green dots, and the spatial partitioning (Voronoi cells) in
gray marks the approximate reception area in which each tower han-
dles the signal. The frequency of visits for each location is shown as
a vertical bar and the circle represents the radius of gyration centered
in the trajectory’s mass center. c) Probability density function P(∆r)
of travel distances for two mobile phone data sets D1 and D2. The
solid line is a fitted power low ((∆r + ∆r0)

−βexp(−∆r/k))with ex-
ponent β = 1.75 and ∆r0 = 1.5 km and cutoff values k are 400km
and 80km for D1 and D2 respectively. d) The distribution P(rg) of
the radius of gyration measured for the users after 6 months of mo-
bility patterns’ observation. The solid lines are a fitted power law
((rg + r0

g)
−βrexp(−rg/k)) with exponent β = 1.65, r0

g = 5.8km and
k = 350 km. The dotted, dashed and dot-dashed curves show P(rg)
for a modelled scenario in which agents follow a random walk (RW),

Lévy flight (LF) or truncated Lévy flight (TLF). Figure from [22].

By analysing daily individual trajectories, in [66] researchers found that the total
number of cases (until 10 February 2020) outside of Wuhan was very well predicted
by the mobility fluxes out of Wuhan alone (R2 = 0.89 from a log-linear regression us-
ing cumulative cases) and in less than six days localized epidemics were established
in most Chinese provinces (See Figure 2.7). After importations, similar patterns of
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invasion at national level were observed in the other countries in the world includ-
ing in US and Europe [39, 79, 80, 81, 82].

Kraemer et al., Science 368, 493–497 (2020) 1 May 2020 2 of 5

Fig. 1. Number of cases and key dates during the epidemic. (A) Epidemic
curve of the COVID-19 outbreak in provinces in China. Bars indicate key dates:
implementation of the cordon sanitaire of Wuhan (gray) and the end of the
first incubation period after the travel restrictions (red). The black line
represents the closure of the Wuhan seafood market on 1 January 2020. The

width of each horizontal tube represents the number of reported cases in
that province. (B) Map of COVID-19 confirmed cases (n = 554) that had
reported travel history from Wuhan before travel restrictions were
implemented on 23 January 2020. Colors of the lines indicate date of travel
relative to the date of travel restrictions.

Fig. 2. Human mobility, spread, and synchrony of the COVID-19 outbreak
in China. (A) Human mobility data extracted in real time from Baidu Inc.
Travel restrictions from Wuhan and large-scale control measures started
on 23 January 2020. Gray and red lines represent fluxes of human

movements for 2019 and 2020, respectively. (B) Relative movements
from Wuhan to other provinces in China. (C) Timeline of the correlation
between daily incidence in Wuhan and incidence in all other provinces,
weighted by human mobility.
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FIGURE 2.7: Early-stage COVID-19 transmission in China. A) Epi-
demic curve of the COVID-19 outbreak in the most affected provinces
in China. The width of each horizontal tube represents the number
of reported cases in each province. The gray shaded area represents
the implementation of travel ban from/to Whuan and lockdown in
Wuhan. The red shaded area show the end of the first incubation
period after the implementation of restrictions. The black line repre-
sents the closure of the Wuhan seafood market where the virus was
emerged. B) Map of COVID-19 confirmed cases with ravel history
from Wuhan before travel restrictions. Colors indicate the travel date
in terms of number of day after travel restrictions. Figure from [66].

The impact of recurrent patterns on synchronizing epidemics

Researchers have largely studied the impact of mobility at shaping epidemics within
countries. For instance in [7], they simulated global epidemics through the GLEAM
epidemic model [56] and analysed the epidemic outputs of different scenarios. They
found that at a global level, the effect of commuting flows on prevalence profiles
is relevant in the tail of the epidemic wave (Figure 2.8 A top): Commuting fluxes
produce a faster decay of the new infections compared with a scenario in which lo-
cations are not connected by commuting fluxes. As shown in Figure 2.8 B), epidemic
waves in many regions of the world last longer in the absence of commuting, show-
ing that the commuting fluxes accelerate the time of arrival and may synchronize
local epidemics.

They did not find significant changes in the epidemic profiles of locations with
airport hubs as these are rapidly reached by infected individuals via air traffic, whereas
the time in neighboring locations with limited airline connections crucially depends
on commuting flows (See Figure 2.9). In fact, once hubs are infected, the epidemic
may quickly spread out to the neighboring locations via a radial diffusion. This
means that incidence profiles in the neighboring locations and in the hub overlap
and fade out at the same time, generating the peak of importations occurring at the
same time as the peak of the local epidemic wave [83]. On the other hand, when
the volume of mobility between locations is not enough to generate synchroniza-
tion effects, the epidemic emerges in these places with a certain delay. The non-
synchronized epidemics (e.g. in one place infected cases decrease over time and in
the other places new cases show an exponential growth) create rescue effects in the
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place with lower epidemic activity. This mechanism is called a re-seeding event, and
it may imply disease persistence, leading to a new re-growth of cases in the locations
presenting few cases.

the tail of the epidemic event. As presented in Fig. 2, many regions
of the world show a broader tail in the absence of commuting,
showing that the commuting coupling enhances the synchroniza-
tion of the local epidemic profiles. The observed broadening of an
epidemic profile that includes multiple subpopulations is due to the
different timing of the outbreak that reaches the various subpopu-
lations. The effect is more pronounced in the lack of short range
coupling, as highlighted in the example reported in Fig. 3D and E
of an air transportation hub loosely connected by air travel flow to

the surrounding subpopulations. As expected, no significant change
is observed in the hub profile, whereas the time delay in neighboring
locations with limited airline connections is dramatically reduced by
the coupling due to local commuting flows. After infecting the hub,
the epidemic radiates out to the neighboring geographical census
areas in a pattern reminiscent of the physical process of diffusion.
This effect naturally leads to a much stronger correlation and
synchrony in the evolution of the pandemic at the local level. In the
SI Appendix, we present the model informed with the realistic
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Fig. 2. Comparison of GLEaM predictions at the global and regional level obtained with and without commuting flows. Results refer to a pandemic influenza with
R0 � 1.9 starting in Hanoi on April 1. (A, Top) Probability of outbreak. About 40% of the realizations leads to an extinction at the source (Hanoi), whereas the remaining
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andtheprevalence,averagedoverglobaloutbreaks. (B)Regionalprofilesfortheprevalenceaveragedoverall runsthat ledtoanoutbreak inthegivenregion.All results
show a very limited impact of the commuting on the simulated patterns, more evident in the faster decay in the prevalence profiles as highlighted by the shaded areas.
Reported results are averaged over 103 outbreak realizations.

Nov Dec Jan Feb Mar Apr

0.01
0.02
0.03
0.04
0.05

No commuting

Nov Dec Jan Feb Mar Apr

Commuting

Nov Dec Jan Feb Mar Apr

Boston

Provincetown

Bedford

Nov Dec Jan Feb Mar Apr

Portsmouth

New Bedford

Nov Dec Jan Feb Mar Apr
0

0.02

0.04

0.06

0.08

East
North
Central

Middle
Atlantic

New
England

No commuting Commuting

A B C

ED

Regions in United States

pr
ev

al
en

ce
pr

ev
al

en
ce

Cities in New England

Providence

Fig. 3. Comparison of GLEaM predictions at the local level obtained with and without commuting. (A–C) Prevalence profiles of three continental U.S. regions. The
effect of commuting is visible in the faster decay (as highlighted by the shaded areas) and absence of multiple peaks. (D and E) Prevalence profiles for Boston area and
the surrounding cities with no commuting (D) and with commuting (E). A schematic network representation of the short-range connections is shown for guidance. The
synchronization among the prevalence profiles is considerably increased when commuting is considered, with a reduction of over one month in the time interval
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FIGURE 2.8: Comparison of GLEAM predictions [56] at the global
and regional level obtained with and without commuting flows. Re-
sults refer to a pandemic influenza scenario starting in Hanoi. A) Top.
Probability of outbreak. About 40% of the realizations lead to ex-
tinction at the source, whereas the remaining 60% causes a pandemic
reaching more than 100 countries. A) Middle and Bottom. Global pro-
files for the epidemic size (number of cases per 1,000) and the preva-

lence. B) Prevalence at regional level. Figure from [7].

By studying influenza in the United States over the past 30 years, Viboud et al.
in [44] found a synchrony in the time of arrival of epidemics across states which
decays with geographical distance and is positive correlated with state population
sizes. The most populous locations strongly connected by commuting fluxes indeed
exhibit synchronized epidemics. To understand the relationship between disease
spread and severity, distance, and population size, they compared the time of arrival
and incidence to relevant measures of human movement, and they found that the
commuting flow compared to long-distance trips and air travel is a higher predictor
of influenza spread.

In order to better understand synchronized effects on seasonal influenza, Crepy
et al. also studied seasonal influenza outbreaks and they analysed epidemiological
data over 30 years in the US, and over 20 years in France [54]. For all pairs of lo-
cations (regions in France and states in US), they computed the Pearson correlation
coefficient for incidence over each epidemic. Indeed, by carrying pathogens from an
infected area to a non-infected one, they observed a difference in the times of arrival
and peak times.
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the tail of the epidemic event. As presented in Fig. 2, many regions
of the world show a broader tail in the absence of commuting,
showing that the commuting coupling enhances the synchroniza-
tion of the local epidemic profiles. The observed broadening of an
epidemic profile that includes multiple subpopulations is due to the
different timing of the outbreak that reaches the various subpopu-
lations. The effect is more pronounced in the lack of short range
coupling, as highlighted in the example reported in Fig. 3D and E
of an air transportation hub loosely connected by air travel flow to

the surrounding subpopulations. As expected, no significant change
is observed in the hub profile, whereas the time delay in neighboring
locations with limited airline connections is dramatically reduced by
the coupling due to local commuting flows. After infecting the hub,
the epidemic radiates out to the neighboring geographical census
areas in a pattern reminiscent of the physical process of diffusion.
This effect naturally leads to a much stronger correlation and
synchrony in the evolution of the pandemic at the local level. In the
SI Appendix, we present the model informed with the realistic
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FIGURE 2.9: Comparison of GLEaM [56] predictions at the local level
obtained with and without commuting. (A–C) Prevalence profiles
in East North Central, Middle Atlantic and New England. The grey
shaded area highlights the effect of commuting which it is in the faster
decay and absence of multiple peaks. (D and E) Prevalence profiles
for Boston area and the surrounding cities with no commuting (D)
and with commuting (E). in (E) is also shown an illustrative repre-
sentation of the short-range mobility connections. Commuting fluxes
increase the synchronization effect, by reducing of around 1 month

the delay between peaks among cities. Figure from [7].

In the case of US, for instance, considering the correlation between California and
other states, some states present high fluctuations in the correlation e.g. for Wiscon-
sin with a 95% CI ranging from 0.46 to 0.92, while others, like Arizona , display more
robustness (0.84-0.94). This robustness means that recurrent pattern exists. Correla-
tions between states are found for neighboring states (<600km), as well as distance
ones (>3000km). Moreover, in US they found a positive correlation (linear fit with a
coefficient of 0.74) among domestic air traffic between two states and their robust-
ness in the correlations. Finally, they found that domestic air traffic makes a greater
contribution to such robustness than distance or temperature (estimates were 0.407,
-0.096, and 0.220, respectively). By considering inter-regional road and railways traf-
fic volume, the same results have been found for France. This means that spatial
spread has a preferential spatial path driven by individual mobility, leading to syn-
chronization effects in locations strongly connected by both short and long-range
mobility fluxes .

Therefore, high mobility inside countries tends to synchronize epidemics in neigh-
bouring locations and between highly populated cities [67], while international travel
as I described in the previous section tend to synchronize national epidemics, has-
tening global spread [84].

Changes in mobility in specific settings and for targeted age groups as in the case
of holidays might affect spatial transmission. Holidays indeed alter mobility and so-
cial interactions as children and adults travel for the holidays and spend time with
their families, rather than to commute to work and schools. In this context in [85],
researchers found that the changes in seasonal influenza incidence patterns were
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not synchronous across age groups during holidays. In fact, every year both chil-
dren and adults experience a temporary decrease and rebound in incidence around
Christmas, but adults only experience a reduction after the holiday while children
start to decrease before then. In the next Section, I will discuss in detail the role of
social mixing between age groups and its influence in shaping epidemics.

Source and sinks of imported cases

I previously discussed the invasion dynamics of an emerging disease and the result-
ing synchronized epidemics. More in general, in the context of ongoing epidemics or
endemic diseases, people living in a given place are exposed to an infection which
can be carried by (i) people living there and not moving around (ii) infected indi-
viduals living in other places and visiting by traveling (visitors), and (iii) residents
who have been infected in other locations and have then returned back (returning
residents) (See Section 4.3).

For example, the highest risk of acquiring HIV in Namibia depends on localized
transmission from people not moving (60%), 25% of the risk depends on returning
residents infected in other communities (returning residents), and 15% of the risk
depends on infected visitors (visitors) [86].

Regarding mobility fluxes, therefore, some cities have a high percentage of vis-
itors which results in a high risk of importing new infections (sink). While, other
locations where residents move a lot may result in a high risk of exporting new cases
(source). Clearly, big cities may play both roles. For instance, [52], researchers iden-
tified the sources and sinks of imported infections of malaria due to human travel in
Kenya and the high-risk sites of parasite importation e.g. they found that the capi-
tal Nairobi imports the largest fraction of infections of malaria by residents infected
during trips to the coast in the Lake Victoria region. Source and sink of malaria have
been implemented also by Chang et al. [87] in Bangladesh. They found that the
highest proportion of imported cases come from the south-western forested area of
the CHT region (source) to more populated areas (sink). Similar results have also
been found in [88] by Floyd et al. that proved that malaria parasites are more often
carried from rural to urban districts (2.986% of movements) than vice versa (0.009%
of movements).

Detecting sources and sinks of imported infections due to human mobility thus
provide a starting point to improve targeted implementation of surveillance pro-
grams e.g. improving prevention strategies in sink areas and medical treatments in
source ones. For instance, by quantifying source and sinks, Wesolowski et al. [26]
estimated seasonal dengue virus importation and computed dynamic risk maps at
high spatial resolution with direct application to dengue containment and epidemic
preparedness.

Particular situations, however, (e.g. pilgrimage, traditional festivals, holidays)
may generate new source and sink locations by leading many individuals to move
to specific places at the same moment. For instance, it is well known how a mass
gathering due to a pilgrimage was the factor responsible for the cholera outbreak in
Senegal in 2005 [15]. The epidemic was originally localized in the region of Diourbel
and its surroundings with hundreds of cases per week, but after the religious pil-
grimage it suddenly spread to around a dozen of regions of the country, with over
27,000 reported cases. Researchers found a correlation between the mass gathering
and the sudden peak of cases in Diourbel and the national spread by pilgrims re-
turning to their homes (coefficient of determination between modelled and reported
weekly cases R2 = 0.78). In fact, during the pilgrimage, the number of travellers
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away from home almost doubles with respect to an average day. People travelled to
the holy city of Touba from all over the country, resulting in an estimated number
nearly 6 times the usual population of people present in the city. This underlines
the importance of monitoring real-time human behaviour to assess dynamically the
source and sink of potential emerging epidemics.

Mobility fluxes, therefore, affect epidemics by mixing individuals and thus alter-
ing the probability and frequency of encounters among them. In the next Section, I
will explain in detail what occurs at local level within a mixed population and how
social mixing favours new infections.

2.3 Social mixing and local spread

While local transportation, commuting, or global travels allow the disease to reach
different places by mixing individuals, at local level such mixing patterns i.e. who
meets whom (where, when, how long, and how often) may actually lead to new
infections [76, 84, 89, 90, 91].

Co-location for social mixing

One of the largest and earliest efforts to understand social mixing driven by co-
location and its role in the epidemic transmission was carried out in 2008 by the
POLYMOD project. They conducted a large scale population-based survey in eight
European countries asking participants to provide their daily contacts. They trans-
lated survey data into contact matrices whose elements report the rate of face-to-
face contacts among individuals of different age groups in different settings: home,
work, transports, doing leisure activities, and doing other not specified activities
[89]. Contacts are also broken down into physical contacts and non-physical ones.
Such matrices cannot capture all the complex details of any face-to-face interactions,
however, they provide a useful combination of the social interactions of a population
level which reveals key factors relevant for epidemic transmission [89, 91].

The analysis of this survey shows that the reported contacts present a regular
pattern of contact frequency by age: the number of contacts rises with age in chil-
dren; contacts then fall to a lower plateau in adults until the age of 50 and decrease
after that age. Contacts also change also over time. On weekdays individuals make
30%–40% more contacts than on Sundays. Moreover, individuals interact differently
in different locations. Most of the contacts at home (75%) and at school (50%) and
during leisure activities (50%) were physical, whereas in other settings most of the
contacts are non-physical. The same results were found in all countries ( Figure 2.10).
The dominant characteristic is that individuals in all age groups tend to mix in an
assortative manner (i.e., preferentially with others of similar age). In the Figure 2.10,
the assortative pattern is shown by the yellow diagonal. This pattern is most evi-
dent in young people aged 5–24, and least pronounced in older people aged 55–69.
Another characteristic is the two parallel secondary diagonals representing children
mixing with adults (mainly at home). (Figure 2.10).

Similar studies have been successively conducted in various other countries [92,
93] including France in 2015 [94] and they found similar contact patterns. This is a
crucial result as it underlines how there are common patterns at population level in
the way individuals mix among age groups. Considering the difficulty of designing
a survey and the similar contact patterns found in most countries, researchers devel-
oped estimation methods to compute contact matrices. Researchers indeed mixed
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We have used simulations to expand on two particular
types of contacts (physical and nonphysical) and to sketch the
consequences of the observed contact patterns on the age
distribution of incidence in the initial phase of an epidemic,
when a new infectious disease is introduced into a completely
susceptible population. As shown clearly by our simulations,
the highest incidence of infection will occur among the
younger age classes (5–19 y) for all countries. It is tempting to
link such contact patterns to the observation during the 1957
Asian influenza A H2N2 pandemic that the first few
generations of infection primarily affected those aged 11–
18 y [35]. However, we note that our survey did not address
the clustering of contacts; such clustering of contacts might

result in less-pronounced differences in age-specific inci-
dence than suggested by our calculations. Addressing the
frequency of clustered contacts, duration and type of contact,
differential impact of pathogen on different age groups, time
correlation of contacts, and assortative mixing by demo-
graphic factors other than age should be key priorities for
future research.
One of the major assumptions behind our approach is that

talking with or touching another person constitutes the main
at-risk events for transmitting infectious diseases. There may
be other at-risk events that our methodology does not
capture, such as being in a confined space or in close physical
proximity with other individuals and not talking to them [23].

Figure 3. Smoothed Contact Matrices for Each Country Based on (A) All Reported Contacts and (B) Physical Contacts Weighted by Sampling Weights

White indicates high contact rates, green intermediate contact rates, and blue low contact rates, relative to the country-specific contact intensity. Fitting
is based on a tensor-product spline to contact matrix data using a negative binomial distribution to account for overdispersion.
doi:10.1371/journal.pmed.0050074.g003
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Social Contacts and Mixing Patterns

FIGURE 2.10: Smoothed Contact Matrices for many European coun-
tries on A) All Reported Contacts and B) Physical Contacts. White in-
dicates high contact rates, green intermediate contact rates, and blue
low contact rates. Rates are relative to the country-specific contact in-

tensity. Figure from [89].
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the data from POLYMOD project and local census to compute contact matrices in
144 other countries [95].

To summarize, we discussed how contact patterns are different according to lo-
cation, with most contacts made at school and at home and fewer contacts during
transport and in public places. Contact patterns were also found to be assortative
with age in all locations, and mixing among different ages groups occurred mainly
at home. At the same time, social mixing has a seasonality effect as daily interac-
tions of individuals may vary over time e.g. during the workday, people tend to
spend most of the day at work or school interacting in pairs, while, at the weekend
or during school holidays people are more likely to interact with their family [93,
96].

Contact matrices, however, are static as they are collected in a given time slot,
therefore do not capture any potential change in social mixing e.g. during an out-
break. In this respect, online questionnaires and behavioral data collections app
have been developed to monitor dynamical social mixing [93].

Social mixing affects local epidemic profiles

Static and dynamical contact matrices or explicit contact networks among individ-
uals have been largely embedded into epidemic models to study the role of social
mixing and its changes in shaping epidemics [76, 81, 84, 89, 90, 91, 92, 97, 98, 99, 100,
101].

Since interactions between individuals vary according to age and the place where
they occur, indicators as household size, the fraction of workers and students in the
population crucially affect epidemic profiles [91]. Indeed, results show how coun-
tries characterized by large household groups and by a large fraction of students and
workers in the population like Ireland face more severe epidemics of influenza than
countries like Germany and Bulgaria [84].

Moreover, the reduction of social mixing at weekends and holidays strongly af-
fects pathogen circulation as individuals do not go to school or work and spend time
mainly with friends and family. As children make more contacts overall and have
several close contacts at school, this increases their risk of being infected, making
schools an important source of transmission to households [97, 99, 102, 103].

In order to get a better understanding on this, several research works have been
done to understand the role of school closure in shaping epidemics. During the 2009
H1N1 pandemic, a correlation was observed between the changes in contact patterns
due to the opening of schools and the onset of widespread transmission of H1N1 in
the US [101].

Moreover, in the context of seasonal influenza in the US, Ewing et al. found in
[103] that the reduction of contacts at school due to Christmas holidays decreases the
risk of epidemic activity among children, increasing it instead in adults. They also
found that winter holidays reduce the viral circulation of influenza overall across all
metropolitan areas in US, delay the peak timing, and thus increase the synchrony
of local epidemics. Since during school holidays, social contacts are reduced but
travelling increases, they also analysed the role of holiday-related trips in shaping
epidemics, finding that travel has minimal effects compered to social mix changes.

Corroborating, De Luca et al. found that changes in social mixing due to week-
ends and holidays result in a delay of the peak time incidence of seasonal influenza
in Belgium [97]. By simulating seasonal influenza waves, they analyzed both a sce-
nario with only workdays and, a more realistic one, considering changes in social
patterns due to weekends and holidays. Comparing the simulated outcomes, they
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found that the realistic model delays the peak time (median among Belgian munic-
ipalities has 3.7 weeks of delay). They also found that the realistic model reduces
peak time incidence (33% median relative change) and the total epidemic size (11%
median relative change).

Since results suggest that most infections occur in specific places such as work-
places and schools, monitoring social mixing is thus crucial to detecting locations
favouring the spreading and applying targeted interventions of social distancing.
Research studies on this topic largely emerged during the COVID-19 pandemic with
the ongoing emergency and the availability of empirical data capturing behavioral
change induced by the diseases and strict interventions.

Indeed during the COVID-19 pandemic governments had to put in place strict
interventions in place as the health-care systems were overwhelmed in several coun-
tries due to the high viral circulation. Since early 2020, most countries in the world
experimented national lockdowns (i.e. a restriction policy where people do not
move except for basic needs) to promptly bring down transmission below the level
needed to sustain the epidemic [38, 39, 66, 81, 92, 98, 104, 105]. In this context, sev-
eral works have been done to assess the impact of the interventions put in place and
the expected impact of potential new interventions both to mitigate new infections
during the ascending phase of the epidemic, and to avoid the new increase of cases
during the descending phase.

In fact, as I discussed in the previous Sections, travel restrictions only delay im-
portations in non-affected locations, while social distancing interventions are the
only means to reduce the basic reproductive number R0 when viral circulation is
high and testing strategies are not efficient enough to detect and isolate cases (See
Section 4.1 to the definition of R0) [66]. For instance in Italy results suggest that the
sequence of restrictions posed to mobility and human-to-human interactions suc-
ceeded in reducing transmission by 45% [39]. In France, we estimated the basic re-
productive number R0 before the implementation of interventions to be at 3.18 [3.09,
3.24] (95% confidence interval) and thanks to a reduction of the average number of
contacts of 81%, R0 this decreased to 0.68 [0.66, 0.69] during lockdown [81]. Re-
searchers also estimated that in a synthetic scenario of an uncontrolled epidemic in
Wuhan and Shanghai (without intervention measures, travel restrictions, and spon-
taneous behavioural responses of the population), the mean infection attack rate had
to be ranging from 64% to 92% after a year of disease circulation with R0 in the range
of 2 to 3 [92]. On the other hand, they estimated that in a scenario where social dis-
tancing measures were implemented as the new virus emerged, R0 would remain
under the threshold, and thus the epidemic would not take off in other locations.

2.4 Conclusions

In this chapter, I presented the role of human mobility on epidemic transmission.
In Section 2.1, I explained the role of international fluxes mainly composed of air
travellers at rapidly spread disease globally.

In Section 2.2, I focused on epidemic spread at national level. I focused princi-
pally on how individual mobility and commuting fluxes affect epidemics resulting
in contagion among neighboring locations and highly populated long-range loca-
tions. In Section 2.3, I explained how social mixing caused by individual mobility
affects local epidemics. In the next Chapter 3, I will present how to quantify mo-
bility patterns from mobile phone data and how to translate individual behaviours
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to population patterns relevant to infection transmission, more specifically I will de-
scribe the most common aggregation method used in literature. Then, In Chapter 4,
I will describe the integration of mobility data in a comprehensive theoretical frame-
work, in order to model epidemic spread. Finally, in Chapter 5 and 6, I will present
my research work where I will quantify mobility fluxes at different scales and from
a different source and I will show how to integrate mobility into theoretical frame-
works introduced in Chapter 4 to help authorities to control spatial transmission and
to better implement surveillance strategies.
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Chapter 3

Mobile phone data and epidemic
spread

The availability of human mobility data on a large scale and high resolution has
impacted several research fields such as urban planning, social sciences and in par-
ticular the spatial epidemiology of infectious diseases [18]. As human movements
are a key driver of spatial transmission of infectious diseases, tracking and analyz-
ing individual daily trajectories help understand geographical conditions that lead
to epidemic diffusion. In the previous Chapter, I showed how human mobility is
responsible for the spatial spread of infectious diseases. In this chapter, I will de-
scribe how to quantify human mobility from mobile phone data for epidemiological
purposes.

3.1 Mobile phone data for epidemiological purposes

Mobile phones are one of the most pervasive technologies. In 2019, there were al-
ready around 5 billion unique mobile phone subscribers globally, which means a
penetration rate of 67% of the global population, as shown in Fig 3.1. Even in the
less-developed countries, such as Sub-Saharan Africa, the penetration rate of mobile
phone subscriptions has reached 45% of the population. Projections for 2025 show
an increasing trend in every country reaching an expected penetration rate of 70.5%
globally.

Unique Mobile Subscribers
Penetration Rate (%)

FIGURE 3.1: The figure shows the penetration rate (%) of unique mo-
bile phone subscriptions in 2019 and the projections for 2025.
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As mobile phones are now an integral part of modern life, mobile phone data has
emerged as a deeply valuable source to understand human mobility and pathogen
spread across spatial and temporal scales [11, 14, 15, 25, 26, 27, 28, 29]. Mobile-
derived human mobility has been used for epidemiological studies in the context
of COVID-19 [31, 34, 39, 66, 81, 104, 106, 107, 108, 109, 110, 111, 112], malaria [52],
dengue [26], cholera [113], Ebola [17], and human immunodeficiency virus (HIV)
infection [114]. Traditionally, human mobility has been measured by data from cen-
suses, travel history surveys or traffic surveys. Although survey and census data
have the advantage of having a very refined spatial resolution which is often the
census block, in data-poor countries this type of data is only updated every 5/10
years. In the last decades, other sources have also been largely used – e.g. global air
traffic and infrastructure data. Global air traffic data has been analyzed to measure
national and international mobility and its impact on the global spread of pathogens
and vectors at city or airport level [5, 10, 30, 38]. While, infrastructure data - e.g.
ground transportation data - have been used to define the connectivity within coun-
tries, for example to assess the health accessibility [115] or to detect patterns in the
national spread of epidemics [54]. The crucial power of mobile phone data over
other data sources is that it allows for a better and more specific understanding of
individual mobility behavior. Furthermore, thanks to its high penetration in the en-
tire population, the information is on a large scale and long term. Although mobile
phone data have been largely used to study national mobility [14], the analysis of in-
ternational mobility fluxes however, is recent and very limited [116]. At the moment,
the most largely used source of data to study international mobility is air traffic data.

Since early 2008, the access to this data allowed researchers to understand hu-
man mobility dynamics in terms of quantity [22, 23]. Researchers in [22] have found
that individual trajectories have a certain regularity in time and space and are highly
influenced by their historical behavior. Individuals have a recurrent travel routine
and return to the few locations that they frequent a lot almost every day. For ex-
ample, analyzing mobile phone data from Portugal, researchers discovered that the
average number of frequently
is only 2.14 and that 95% of the users frequently visit less than 4 locations [24].

Since this data enables routine monitoring of population activities, it also has the
potential to detect atypical behaviors. Candia et al. [23], first, introduced a method to
study the statistical fluctuations in space and time of individual user behaviors, with
respect to their average behavior. Given this background,in 2010 Lu et al. had the
intuition that mobile phone data might be used to monitor population’s behaviors
in response to emergencies. As a result, they asked the biggest network operator
in Haiti, to share mobile phone data from millions of users from before and after
the earthquake. Analyzing this data, they found that the population of the capital
of Haiti, Port-au-Prince, decreased by almost one-quarter soon after the quake, and
slowly increased in the following 11 months [13]. These results have been validated
by data coming from intensive surveys conducted by the United Nations.

This work was the first clear demonstration of the reliability of this data. Sci-
entists started collaborating with network operators or companies to analyse mo-
bile phone data from tens of millions of phone owners in several countries all over
the world. Combining mobile phone data with epidemiological information, re-
searchers had thus the possibility to better study the impact of human mobility
patterns on the spread of infectious disease. One of the earliest studies was [52].
Researchers used 1 year of mobile phone data from 15 million individuals in Kenya.
They quantified connectivity in terms of mobility network among 692 sites that have
cell towers within 10 km of their boundaries, and they detected the high-risk sites of
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parasite importation of malaria [16]. With the same dataset, researchers quantified
seasonal population fluxes in Kenya between districts, and they embedded them
into an epidemic model to assess how these drive rubella transmission dynamics.

In 2012 Orange.S.A., the French multinational telecommunications corporation,
organized two open innovation challenges within a project called Data for Develop-
ment (D4D) [117] in which Orange Telecom offered researchers its aggregated mo-
bile phone data of 5 million Orange customers in Ivory Coast and of 9 million cus-
tomers in Senegal at department level. The challenge marked the first time a large
database of mobile network data was opened to the international scientific commu-
nity for use in research. Thanks to D4D datasets, researchers have highlighted the
role of mass gatherings on the spreading of waterborne diseases like cholera [15]
in Senegal. They found that a mass gathering, which took place during the initial
phase of the Cholera outbreak, influenced the course of the epidemic. This study
underlined the potential of such a source of data to perform analysis that would not
be feasible by static sources of human mobility like census and survey data.

The D4D challenge also helped to better characterize the interplay between mo-
bility patterns and epidemic activity. In fact, by using the dataset from Ivory Cost,
researchers extracted 224 different features to describe the number and the average
duration of users’ calls and the locations visited by users [118]. They also extracted
migration features by tracking the changes in the home locations of the users. They
defined home locations as the places where individuals make the largest number of
calls during nighttime and the migration process as the moment when people do
not sleep at home for more than 3 nights. Thanks to the high resolution of the data
in time and in space, they were able to map each indicator at different temporal and
spatial scales at the same time. Given all these features, they then built regression
models and evaluated their performance when predicting prevalence rate, finding
that mobility fluxes during nighttime, the spatial areas covered by users, and the
frequent migrations are strongly linked to HIV transmission. Most recently, by us-
ing mobile phone data from Namibia, researchers have proven that the majority of
the risk of acquiring HIV was due to localized transmission from people not moving
(%60), 25% of the risk was due to returning infected residents from other communi-
ties (returning residents), and 15% of the risk was due to infected visitors (visitors).

3.2 Mobile phone data to fight emergencies in real-time

Mobile phone data have a crucial role in the assessment of the emerging and ongoing
epidemics as elements for strategic planning, outbreak preparedness, and response
include knowing the patterns of movements, the interplay of movements at different
time and spatial scales, the presence of high-risk locations in highly dense areas. Fur-
thermore, most important is how these aspects evolve in time as individuals change
their behavior in response to the epidemic.

By aiming to implement control strategies in order to contain the rapid spread
of the virus within Guinea, Sierra Leone, and Liberia, epidemiologists called for
its use during the 2014 West Africa Ebola virus epidemic [46]. In the absence of
mobile phone data from the currently affected countries, they revolved then around
the use of mobility models fitted on data provided by D4D challenge in Ivory Cost
[119]. Not only were the data not specific to the affected countries, but it was also
collected in peacetime - i.e. in the absence of an ongoing outbreak, inevitably leading
to disruption of regular patterns. More recently, researchers had access to mobile
phone data from Sierra Leone and they had the possibility to do a retrospective study
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to quantify the population mobility reductions associated with travel restrictions
[17].

Researchers therefore started to underline the need to develop protocols for the
sharing of operator data to have rapid access to it during public health emergencies
[46]. In May 2019, at least 20 mobile-phone companies donated their proprietary
information to such efforts [14], including operators who back an initiative called
Big Data for Social Good, sponsored by the GSMA. The urgent need for real-time
mobility data has then been recently experienced during the COVID-19 pandemic
[21]. The European Commission called European mobile network operators to share
their data. A call for action was also developed by the World Bank, the Interna-
tional Telecommunication Union (ITU), GSMA (Global System for Mobile Commu-
nications) and the World Economic Forum with the aim of using the power of mobile
big data to fight COVID-19 [120]. As a consequence, operators and digital companies
from all around the world started sharing aggregated mobile phone information on
human travels and positioning. For example, Google and Apple started publishing
periodically community mobility reports by providing changes in human activity
behaviors compared to pre-pandemic scenarios [121]. Facebook also made online
maps of population movement for 169 countries available [122].

The rapid and pervasive sharing of this data allowed a better estimate of human
behavioral adaptations to COVID-19 pandemic and the effectiveness of ongoing con-
trol measures in many countries – e.g. Austria, Belgium, Chile, China, Germany,
France, Italy, Spain, United Kingdom, and the United States [34, 66, 104, 107, 108,
109, 110, 111, 112]. Real-time data matched with epidemiological information were
also used to integrate epidemic models to quantify the impact of the interventions
put in place [39, 81, 106]. In addition, to find the optimal future restrictions needed
to avoid new waves - e.g. closure of non-essential activities, partial attendance at
school, curfew [81, 123, 124, 125]. For example in [106], in order to inform reopen-
ing strategies in 10 metropolitan areas in the US after a lockdown, they mapped the
hourly movements of 98 million people from census blocks to points of interest such
as restaurants and religious establishments, connecting 56,945 census block groups
to 552,758 points of interest with 5.4 billion hourly connections. Integrating a trans-
mission epidemic model with this information, they found that few points of interest
account for a large majority of the infections. They suggested that the optimal strat-
egy in this context would be restricting the maximum occupancy in these targeted
points of interest, instead of implementing homogeneous travel restrictions.

COVID-19 pandemic showed how mobile phone data can be an essential source
of information for decision-makers and authorities during the ongoing epidemics.
By collaborating with researchers and health authorities, operators may share their
data as quickly as possible in an ethical and privacy-preserving manner to help fight
ongoing epidemics and for studying invasion dynamics in both emerging and en-
demic diseases.

3.3 Type and sources of mobile phone data

Mobile phone data includes mobile network data and location history data from mo-
bile apps. Mobile network data is collected by network operators and include call
detail records (CDRs), extended data records (XDRs) and signaling data. A mobile
phone, switched on, regularly notifies its position in terms of the closest tower cell
where it is currently located. The information on the mobile phone positioning ei-
ther by active communication events - calls, text messages, or Internet usage - or by
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signaling between the network and the device. A CDRs and XDRs are generated for
billing purposes every time people use their phones to call or message. Each record
contains several attributes: the caller and callee IDs, the time-stamp, the duration of
the activity, the type of communication - national, international, call outgoing, call
incoming -, and the identifier of the antenna that handled the activity. This data
allows the extraction of the individual trajectories by interpolating every user’s dis-
placements based on two consecutive calls/SMS. It means that CDRs can measure
individual displacements only if individuals are using the mobile phone (See Fig-
ure 3.2). Individual trajectories from CDRs, however, are interpolated on any two
consecutive calls and this is strongly dependent on users’ calling behavior [126, 127].

FIGURE 3.2: Individual trajectories of two mobile phone users in-
ferred by CDRs. The color code represents the different mobile phone
users. The time label is the time when users do an activity - e.g. call-
ing or sending a message. For any activity, the signal is handled by
the closest cell tower and the call detail record stored. Figure from

[14]
.

The second type of mobile phone data collected by operators is signaling data.
Signaling data overcomes the bias of calling frequency as they are driven by updates
of the network. In fact, signaling data provides the geolocation of all the events that
are generated by the network itself as Location Area updates. A Location Area is
a set of tower cell stations that are grouped together to optimize signaling. Loca-
tion updates can occur for i) periodic update, which occurs to provide information
on which cell towers the phone is connected to; ii) handover, which occurs when a
user involved in a call moves between two cell towers; iii) mobility location update,
which occurs when a user moves between two Location Areas even if he is not us-
ing the mobile. Despite the fact that signaling data is network-driven data, it has
some other biases. In fact, generally speaking, network data can not measure spatial
movements better than cell tower-level spatial resolution.

More recently, given the extensive use of smartphones, another source of mobile
phone data has emerged. Various mobile phone applications record the position of
users with high spatial precision. This data is called location history data, and it can
be extracted from the usage of mobile-based social media - e.g. Tweets, Facebook,
or other applications. In this case, the location is identified by the phone’s internal
GPS [21], the individual trajectories of the users are thus spatially refined as GPS
tracker data. This is collected by location intelligence companies [128], specific apps
or companies that develop mobile phone operating systems (e.g. Google, Apple)
[129]. The high resolution of mobile-based location history data means they are
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one of the most powerful sources of information for better understanding human
activities and travel routes across long periods and countries. However, smartphone
penetration is still very low in low-income countries. In fact, in 2019, the penetration
rate was globally 49% ranging from 76% in US and Europe to 25% in Sub-Saharan
Africa.

However, mobile phone data may have ownership biases as they do not capture
the entire population. Since individuals may own multiple SIM cards and multiple
individuals may use the same SIM cards [130]. However, despite the bias, several
studies have been done to validate their reliability showing that aggregated net-
work data can accurately replicate population counts and migration patterns from
censuses [131, 132, 133]. They have been also validated as a good proxy of commut-
ing fluxes [11]. In [11], Tizzoni et al. proved that commuting fluxes extracted from
mobile phone data present same patterns as census commuting data. They also in-
troduced a transmission model with both mobility fluxes and they found similar
epidemic outcomes.

The state of the art presented in the previous section is mainly based on CDRs
datasets as operators in the past preferentially shared this kind of data. While loca-
tion history data is an emerging source that companies have recently started sharing.

3.4 Data access and privacy issues

From the discussion in previous chapters emerges the important role of mobile phone
data to help fight epidemics. However, there are also several risks associated with
sharing and dealing with such sensitive data. In fact, the high level of detail of in-
dividuals’ behaviours extracted from mobile phone data might threaten the security
of citizens, more especially of minorities e.g. racial, religious.

In most democratic countries, such as in Europe, both national and regional le-
gal regulations limit the use of personal data. In this regard, the main pillar of data
protection legislation in the European countries is the General Data Protection Reg-
ulation (GDPR) [134] and the ’Privacy and electronic communications’ directive (e-
privacy) with its national transposition [135].

However, most companies, including mobile network operators, still tend to be
reluctant to share their data, even when aggregated and anonymized. The main
concerns are due to i) the limits of data anonymization, as personal information
could be still retrieved after the process [136], and sometimes to ii) the lack of clear
and harmonized legal frameworks for sharing the data.

To date, external access to private data has proceeded under specific bilateral
agreements, mostly between research institutions and data providers, or in the con-
text of data challenges like D4D (Data 4 Development). During the COVID-19 emer-
gency, companies, operators, and researchers underlined the need for standardized
sharing models, legally compliant and ethically acceptable so to reduce concerns
about sharing data [21, 46]. In this regard, researchers also proposed creating an
ethics and privacy advisory committee to supervise research projects dealing with
data [21].

Awarding contracts between companies and researchers/health authorities and
computational efforts to aggregate and anonymize data requirement time, which is
not always affordable with the speed of the spread of an emerging disease. In fact,
the emergency of the COVID-19 pandemic showed the importance of implementing
a health emergency sharing protocol early. Both for the use of digital data and for
algorithms to pre-process such datasets.
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3.5 Extraction of mobility indicators from mobile phone data

Mobile phone individual trajectories give us mobility indicators about different spa-
tial and temporal resolutions, which may be used to study mobility fluxes and to
provide information for epidemic models. Here I present the most common mobil-
ity indicators used to quantify coupling between locations due to mobility fluxes.
Given the high-resolution of such data, we may consider different levels of details
of the individual trajectories in the aggregation process to compute coupling forces.

Translating individual trajectories into coupling forces between locations means
defining: (i) the mobility process that is relevant, and (ii) the resolution in space and
time that is needed. Namely, to define when two locations i and j need to be cou-
pled (pij 6= 0) and to quantify the probability of coupling pij between the connected
locations.

By selecting the level of details, aggregated individual trajectories have been
largely used to study many diseases through different methodological approaches.
The aggregation method at the highest resolution is when the entire resolution of
the individual trajectories is preserved. This approach was used by researchers in
[25, 27] to assess the impact of non-pharmaceutical interventions in simulated syn-
thetic epidemics. They used coupling matrices to inform a mechanistic transmission
model where human mobility among locations is explicitly modelled through the
movements of the individuals (See Section 4.3). In this work, they constructed the
coupling matrix from CDRs accounting for the number of displacements between
each two consecutive calls made by mobile phone users. I refer to this matrix as
displacement-based coupling matrix D and the mathematical formulation is the fol-
lowing:

Displacements based coupling matrix D

pD
ij =

∑u Du
i,j

∑k ∑u Du
i,k

(3.1)

where Du
i,j is the number of times user u moves from location i to j. This method

is at high resolution as it keeps the temporal sequence of any displacement of the
users into account. The coupling probability between two locations is defined as
the probability of moving from one place to another. In this approach, the time
spent by users in any place is not considered. In fact, each displacement has the
same weight in the total sum regardless of the time elapsed between two consecutive
displacements. In a further work [137], Lima et al. introduced another formulation
where D

′u
i,j is re-defined as the sum of the time elapsed between any displacement

between i and j done by the user u.
Though the former method covers each individual’s movement, it is highly de-

pendent on the place, time and frequency of mobile phone activities made by them.
By using signalling data, in [138] Kang et al. suggested an improvement of the def-
inition of displacements. They divided the space in grids - 500 m by 500 m - and
defined a trip when users make two consecutive network connections in two differ-
ent grids. This way, they reduced short-distance trips within an identical grid and
the bias due to the frequency of mobile phone activities made by users. Compar-
ing these aggregated mobility fluxes with taxicab trips, they found that taxicab trips
within 1 km are much less than trips derived by mobile phone data. While taxicab
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trips longer than 3 km are much more than the others. They also found that the dis-
tance decay effect in trips extracted from mobile phone data is stronger than that of
taxicab trips as shown in Figure 3.3.
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Figure 5: The distance decays of taxicab trips (a) and mobile
phone movements (b). In general, mobile phone movements
follow the power-law distribution with an exponent about
2.5, while taxicab trips follow the exponential distribution
with an exponent about 2.9 (when normalizing distance by
its mean and standard deviation).

that gains interests of researchers in various fields. The dis-
tance decay of human travels relies on both geographical
environment and transport modes. In the context of this
study, we have two distinct types of trips, enabling us to
decouple the impact of transport modes upon human move-
ments in the same area.

Figure 5 demonstrates the distance distributions of taxi-
cab trips and mobile phone movements in Singapore. As
expected, the proportion of taxicab trips within 1,000 me-
ters is much lower than its counterpart of mobile phone
movements. However, due to the particular role of taxicabs
in public transportation systems, the proportion of taxi-
cab trips larger than 3,000 meters is much higher than its
counterpart of mobile phone movements. Besides, consider-
ing that mobile phone movements are mixtures of various
transport modes including walking, bus, subway as well as
taxicab, its distance decay effect is inherently stronger than
that of taxicab trips. Therefore, the distribution of displace-
ments of taxicabs is more flat than the distribution of dis-
placements of mobile phone movements. This observation
explicitly confirms that taxicab trips, which are constraint
by travel distance and time, decay more slowly than mobile
phone movements. Quantitatively, the distribution of dis-
placements of mobile phone movements within 10 km well
follows the power-law with an exponent about 2.5, while in
the tail the exponent is much larger due to constraint of
the boundary of Singapore (Figure 5b). The distribution
of displacements of taxicab trips, however, well follows the
exponential law with an exponent about 2.9 (Figure 5a).

The difference between the distributions of displacements
of taxicab trips and mobile phone movements might be at-
tributed to two factors. First and foremost, taxicab is a
kind of transport tool mainly used in specific circumstances
by people. It captures only a small part of individuals’ daily
movements, particularly the medium and long distance trav-
els as well as those movements originating/terminating at
specific areas. Besides, taxicab trips highly relies the under-
lying road network, making it less flexible and accessible in
certain areas. Another potential reason is that mobile phone
movements depict inherent biases regarding individual hu-
man movements. The temporal-sparse and spatial-coarse
nature of mobile phone data as well as individuals’ habits of
mobile phone usages make it hard to derive human move-
ments accurately.

(a) (b)

Figure 6: The communities derived from taxicab trips (a)
and mobile phone movements (b) in Singapore. The 5 com-
munities in the network of taxicab trips well match the 5
administrative regions in Singapore. Particularly, the air-
port is clustered together with the downtown (green). The
network of mobile phone movements is partitioned into 16
small communities, which are generally sub-divisions of the
5 regions in Singapore.

3.3 Regionalization
From the network-based perceptive, human movements

reflect spatial interactions between different locations and
the volume of human movements represents the strength of
their interaction. As discussed above, taxicab trips largely
reflect interactions between further-separating locations than
mobile phone movements. Following this framework, we un-
cover how taxicab trips and mobile phone movements can
be applied to identifying different regions in Singapore.

In this analysis, each grid is abstracted as a node, vi
(i = 1, 2, . . . , 2640), and the number of trips from node i
to node j as weight of the link Eij between them. Based
on taxicab trips and mobile phone movements, we thus ob-
tain two direct spatial networks S1 and S2 consisting of the
N = 2, 640 grids in Singapore. Note that E1

ij for S1 and E2
ij

for S2 are the number of taxicab trips and the number of
mobile phone movements from vi to vj respectively. But, for
simplicity, hereafter we use Eij to denote the weight from
vi to vj as the general form. By applying the community
detection algorithm to both S1 and S2, results as shown in
Figure 6 confirm that both taxicab trips and mobile phone
movements are capable for uncovering spatial cohesive com-
munities inside the city. In S1, we find 5 large communities
in Singapore as Central Region (green), East Region (red),
North Region (purple), North-East Region (blue) and West
Region (orange) (see Figure 6a). In S2, we find 16 more
fine-grained spatial cohesive communities (Figure 6b) that
are generally sub-regions of the 5 regions derived from taxi-
cab trips.

Interestingly, the 5 regions derived from taxicab trips well
match the 5 urban planning subdivisions demarcated by the
Urban Redevelopment Authority of Singapore. Particularly,
the airport at the east of Singapore is clustered together with
the Central Region, revealing the heavy taxicab traffic be-
tween the downtown area and the airport in Singapore. Fur-
thermore, we adopt the clustering comparison approach to
quantify the similarity between the resulting spatial commu-
nities and the administrative divisions in Singapore [16][5].
The upper-triangular and the lower-triangular of Table 2
tabulate the Rand (RI) and the Fowkles-Mallows (FM) sim-
ilarity indices between the regions defined by taxicab trips,
mobile phone movements and administrative divisions. The

FIGURE 3.3: The distance decays of taxicab trips (a) and mobile phone
displacements (b). in (a) it is shown as taxicab trips follow the ex-
ponential distribution with an exponent about 2.9, while in (b) it is
shown as mobile phone movements follow the power-law distribu-

tion with an exponent about 2.5. Figure from [138]
.

These differences are partly due to the fact that taxicabs are mainly used by peo-
ple in specific circumstances and they better indicate medium and long-distance
travels. On the other hand, the high resolution of individual displacements extracted
by mobile phones makes deriving a proper definition of an individual trip hard. This
work underlined how in the Displacements based aggregation, individuals’ trip may
be fragmented into several displacements leading to an underestimation of the geo-
graphical distance of the real journey.

By reducing the level of details of the trajectories even more, Wesolowski et al. in
[16, 26] aggregated displacements at time slots of one day. They evaluated the users’
most visited location every day and computed the daily displacements between lo-
cations obtaining a time series of daily trips. The most visited locations were com-
puted as the place where the users made the most number of calls each day. With
this approach, they quantified i) the impact of human mobility in the emergence of
dengue epidemics in Pakistan in non endemic areas [26] and ii) the impact of sea-
sonal travel patterns on driving rubella transmission dynamics in Kenya [16]. In the
first work, they estimated the number of introduced cases in j from i by sampling
from a binomial distribution B(nj, pij) with pij the coupling probability and ni the
number of infected cases in a given day. While in the second one, they analyzed the
time series of daily trips, climatic changes and school holidays as observable in a
linear regression with seasonal transmission as the response variable.

Location based coupling matrix L

A totally different approach to aggregate CDRs trajectories at medium resolution
was suggested by researchers in [15]. They connected the home location of each
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user to all the other visited locations, with a coupling force that was proportional
to the number of calls made in each location. They used the resulting coupling ma-
trix to inform a metapopulation model with an effective spatial transmission where
individuals in each location do not move but feel a force of infection depending on
coupling matrices (See Section 4.3). They used this approach to study the role of
mass gatherings in the spreading of cholera outbreaks in Senegal. The same model
and aggregation procedure was also used to study the spatial spread of schistosomi-
asis within a network of connected villages in the endemic region of Saint-Louise,
in Senegal [29]. The aggregation process they used is radically different from the
displacement-based one. In this case the trajectory is lost in favour of a coupling
home - visited location. I refer to this method as location based coupling matrix L
and the mathematical formulation is the following:

pL
ij =

∑ui
Lui

i,j

∑k ∑ui
Lu

i,k
(3.2)

where Lui
i,j is the number of calls made in j by user ui living in i. Users living in

i are detected by extracting individuals that do the most number of calls in i during
nighttime - from 7 pm to 7 am. This is a well-established method used in literature to
define the home location of mobile phone users [18]. In this method, the information
of the temporal sequence of any individual displacement is lost, and the coupling is
proportional to the number of calls made by users in each location. By assuming
that the number of calls made by users in a place is proportional to the time that
they spend in it, this method measures the coupling between any two locations i-j
as the probability of being in j living in i. In this approach, all the locations users
visits are divided into places where they spend most of their time and places where
they just spend few minutes. However, by accounting for the number of calls, in this
case as in the displacement-based one, there is a bias due to the heterogeneity of the
activity of mobile phone users.

A similar aggregation method was used in [106] to inform the reopening after
the first lockdown due to COVID-19 epidemic in ten of the largest US metropoli-
tan areas. They used already aggregated location history data from SafeGraph, a
company which aggregates anonymized location data from mobile applications. Re-
searchers quantified coupling matrices in terms of the number of movements of mo-
bile phone users from their home location to specific points of interest, which are
non-residential locations that people visit such as work places, restaurants, grocery
stores and religious establishments. Given the GPS positioning of the location his-
tory data, it was possible to extract these types of places. Thus, selecting the points
of interest of the users by excluding all the ones where people were only passing
through.

Commuting based coupling matrix C

An even lower resolution approach than the latter is to only select the most visited
locations by excluding all the places where people only pass through, considering
them secondary points of interest. This approach was proposed by Wesolowski et al.
in [52] in order to identify the main importation routes that contribute to the spread-
ing of malaria in Kenya through a spatially-explicit probabilistic model. First, they
assigned the home location for each user. Then, they computed the destination of
each daily trip made by users as the location where they spent the majority of their
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time during the day. With this approach, the number of connections between loca-
tions are a subset of the ones detected with the location based method. Therefore, I
refer to it as commuting based coupling matrix C and the mathematical formulation
is the following:

pC
ij =

∑ui
Cui

i,j

∑k ∑ui
Cui

i,k
(3.3)

Cui
i,j is the amount of time user ui spends at his most visited location daily in j.

Therefore, this method takes only locations where users spend most of their time
into account. Any other less visited location is neglected. Since the most visited
location often coincides with the work location of an individual, this aggregation
process may be considered an extraction of the commuting fluxes. In [11], Tizzoni
et al. found similar patterns by using a similar definition computed in commuting
fluxes from mobile phone data in three European countries. Followed by comparing
them with mobility fluxes from census. The results showed that commuting fluxes
from mobile phone data capture more than 87% of the total census fluxes.

However, commuting fluxes aside, each presented coupling matrix has been in-
tegrated into disparate epidemic models without paying attention to the accuracy of
the process of aggregation. Aggregating individual trajectories properly means as-
sessing how many details of the trajectory are needed, which details are negligible,
and which ones produce a bias when embedded into models. Considering the pri-
vacy issues (See Section 3.4), the biggest operators and companies must aggregate
individual trajectories before sharing data with researchers. In this context, knowing
the proper aggregation methods may be very important in order for operators and
companies to develop standard algorithms to process their data for epidemiological
purposes.

3.6 Conclusions

To conclude, in this Section I presented how mobile phone data has been largely used
to quantify mobility. Then I integrated this into epidemic models to study its role in
the epidemic diffusion in many countries around the world. More specifically, in
Section 3.2 I explained how such data has been used to fight epidemics in real-time.
Then, in Section 3.3, I described how mobile phone data is collected, its different
types and the information we can extract from it. Finally, in Section 3.5 I presented
the most common methods to aggregate individual trajectories extracted from mo-
bile phone data in order to define mobility indicators for epidemiological means.
In the next Section, I will present how to integrate mobility into epidemic models.
Particular emphasis will be dedicated to my research work aimed at assessing the
impact on informing transmission models with different aggregation approaches.
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Chapter 4

Integrating mobility into epidemic
models

Epidemic models are used to assess the mechanisms behind the transmission of in-
fectious disease in order to quantitatively understand its prevalence and distribu-
tion in the general population, as well as the key factors which determine its inci-
dence, spread in time and space, and persistence. The first epidemic model with a
mathematical approach was developed by Daniel Bernoulli in 1766 to study the ex-
pected impact of vaccinations to help eradicate smallpox [139]. Almost two centuries
later, in 1906 Hamer theorized that the spread of an epidemic depends on social con-
tacts between infectious and susceptible individuals [140] and in 1927, Kermack and
McKendrick introduced a theoretical formulation of the compartmental models to
describe the dynamics of infectious diseases [141]. Nowadays, mathematical and
computational epidemiology are based on this powerful framework. Moreover, the
improvement of the computational capability in recent decades has allowed the de-
velopment of computational models not analytically solvable and to integrate large
sources of data [2]. The effort of researchers has created disparate models, rang-
ing on very different levels of complexity and targeted for every specific epidemi-
ological settings. Epidemic models indeed span different levels of realism ranging
from the simplest models in which individuals have all the same probability to inter-
act among each other to more realistic models in which spatial, social and mobility
structures are integrated. The higher the resolution of the model, the more data is
needed to inform it. In the next Chapter, I will introduce a few of these models and
I will pay particular attention to how design models account for the role of human
mobility in shaping new infections. More specifically, in Section 4.1 I will explain
how to describe the evolution of the disease by compartmental models and how to
embed social structures into models. Next, in Section 4.2, I will explain in detail
the age-structured model specific for the COVID-19 disease I developed during my
PhD thesis. In Section 4.3, I will present spatially explicit epidemic models which
account explicitly for mobility fluxes between locations using a metapopulation ap-
proach. Particular attention will be devoted to the model I designed and developed
to asses the use of mobile phone data to inform transmission models. In Section 4.4,
I will describe the method to model invasion dynamic and the risk of importation
into any country. I will present in detail, methods I used to compute the risk of
COVID-19 imported cases into Europe from China in the early-stage of the COVID-
19 pandemic. Finally, in Section 4.5, I will present the theoretical work I performed
during my PhD on assessing the mobility definition and resolution needed to inform
metapopulation models using mobile phone data.



34 Chapter 4. Integrating mobility into epidemic models

4.1 Basic and age-structured compartmental models

Compartmental models describe the interaction between host and pathogen by clas-
sifying any host with respect to its health statuses. The transitions between one
compartment (or status) and another are formalized as a set of coupled differential
equations. Such transitions can be event-driven like the infection that depends on
the event to make contact with infected individuals, or spontaneous like the time
needed to recover if you are ill. The number and type of compartments depend on
the dynamic of the disease. However, all compartmental models are a variation of
two basic archetypes: SIR or SIS [142].

S stands for susceptible, and it is when an individual is in good health and he is
susceptible to an infection. After coming in contact with an infected individual, the
susceptible person could be infected and become infectious (I). Finally, in SIR hosts
recover (R) having an immunity that allows them to avoid further infection, while
in SIS they do not have immunity and become susceptible again.

In both models this transition of the reaction process is SI
β−→ 2I in which β is the

transmission rate. Instead, the transitions from I to R in SIR and from I to S in SIS
are spontaneous and can be written as I

µ−→ R and I
µ−→ S, respectively, where µ is

the recovery rate.
I have reported here the equations in the case of SIR model:

ds(t)
dt

= −β〈k〉i(t)s(t) = βi(t)s(t) = −λs(t) (4.1)

di(t)
dt

= λs(t)− µi(t) (4.2)

dr(t)
dt

= µi(t) (4.3)

whit N the population size, N = S + I + R and s = S/N, i = I/N and r = R/N
respectively. The factor 〈k〉 represents the average number of contacts of a single
individual. Here, we make a homogeneous mixing assumption, assuming that 〈k〉 is
a constant value for every person in the population. This means that all individuals
can interact randomly with each other.

Social contact structures may be then added to the model to describe key epi-
demiological behaviours in the case of the disease affecting sub-populations het-
erogeneously (e.g. per age groups) or to answer specific questions such assessing
the implementation of targeted intervention strategies in particular social settings.
Social interactions commonly appear with various structural heterogeneity among
individuals [90], by changing patterns depending on locations where they occur and
age of the individuals. Even if several works have been done to quantify the precise
social network, collecting data about them on a large scale for entire populations
is extremely difficult. Contact matrices per age group are thus a middle way ap-
proach to modelling social mixing between homogeneously mixed populations and
effective social contacts [81, 92, 94, 95, 97, 143, 144]. Contact matrices are often em-
bedded into age-structured models to capture the impact of social mixing patterns
and its changes on the epidemic transmission [97, 144, 145, 146]. In age-structured
epidemic models, the host population is divided into n age groups. For any age class
i, the force of infection λ(i, t) at the time t is driven by social interactions among age
groups as follows [97]:
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λ(i, t) = β ∑
j

Cij
I j(t)

N
(4.4)

with j ∈ {1, 2, .., n}.
C is the contact matrix. The Cij element of the matrix represents the per capita

number of contacts that an individual of age i has with an individual of age j. The
force of infection is proportional to the sum of the probabilities of encountering an
infectious individual of any age class j. Considering only one age bracket, we find
the equation 4.1 that is the force of infection in the case where age classes are not
considered.

Contact matrices estimate the number and intensity of face-to-face contacts peo-
ple have in a day per age groups. Matrices are computed in several locations and for
physical and non-physical contacts and successively aggregated into one matrix to
generate the effective descriptions of human mixing patterns relevant to the spread-
ing of a specific disease (See Section 2.3).

In my research work, using real-time individual behaviours (e.g. the estimate
of the percentage of people going to school, at work, or the adaptation of social
distancing measures), I parametrized changes in social mixing compared to the static
contact matrices estimated in a regular period in France. In the following section
4.2, I will describe the age-structured transmission model specific per COVID-19 we
designed, and I will explain how we parametrized contact matrices during and in
exit of the first national lockdown.

4.2 Compartmental models specific for COVID-19

SIR and SEIR-like archetypes may be used to design specific disease models. Ad hoc
models have been designed to study several diseases including Ebola [30], COVID-
19 [142], MERS [47], SARS [147]. In this section, I will present the age-structured
SEIR-like model specific for COVID-19 epidemic in France that I used in my research
work in Section 6.2. The model was adapted from the model already designed in
[81].
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FIGURE 4.1: The figure shows the compartmental model spe-
cific for COVID-19 epidemic. S=Susceptible, E=Exposed, Ip=
Infectious in the prodromic phase, Ia=Asymptomatic Infectious,
Ips=Paucisymptomatic Infectious, Ims=Symptomatic Infectious with
mild symptoms, Iss=Symptomatic Infectious with severe symptoms,

H=severe case admitted to the hospital, R=Recovered.
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In order to model the COVID-19 epidemic, we considered a compartmental model
where transmission dynamics evolve according to the scheme reported in Figure 4.1.
Specifically, we consider four age classes. Younger children (yc): [0-10] years old;
teenagers (t): [11,18] years old; adults (a): [19-64] years old and seniors (s): 65+ years
old. The first two age groups refer to students, [0-10] for pre-school and primary
school, [11-18] for middle school and high school. In the context of COVID-19, so-
cial structures are deeply important because the disease does not affect age groups
homogeneously e.g. there is a very small percentage (<≤5 %) of children in COVID-
19 confirmed cases worldwide [148].

The dynamic of the disease is a generalization of the classic SEIR model as it is
defined as follows. Once susceptible individuals get the infections, they will first en-
ter in E. Later on, individuals will move to the prodromic status Ip and become able
to transmit the disease. At the end of the prodromic phase, with a spontaneous tran-
sition individuals may either not show symptoms and thus to be asymptomatic (Ia)
or develop symptoms. The proportion of asymptomatic individuals in our model
is 40%, as estimated by [149]. By doing a sensitivity analysis, we also examined a
probability of being asymptomatic equal to pa = 50% and pa = 30%. Concern-
ing individuals developing symptoms, we considered different degrees of severity:
i) paucisymptomatic individuals (Ips), ii) individual with mild symptoms (Ims) or
iii) individual with severe symptoms (Iss). Probability rates to move from Ip sta-
tus to one of the four infectious ones are all informed by previous studies [149, 150,
151]. Current evidence from household studies, contact tracing investigations, and
modeling works suggested that young people (younger children and adolescents)
have a reduced susceptibility and are more likely to become either asymptomatic
or paucisymptomatic [92, 152, 153, 154, 155, 156]. Further evidence from serologi-
cal investigations in high schools and primary schools suggested a different role of
children compared to adolescents [152], with the latter more likely to act as asymp-
tomatic adults, whereas children are likely less infectious. Based on this knowledge,
we considered that: young people have a 50% relative susceptibility compared to
adults and become either asymptomatic or paucisymptomatic when infected; ado-
lescents have the same reduction in transmissibility as adults in absence of symp-
toms (rβ = 0.55) [157], whereas younger children have a smaller transmissibility,
rβ[0, 11) = 0.25. Individuals showing severe symptoms may move into the hospi-
talized compartment (H). Finally, all compartments converge in status R in which
there are people who have recovered or died. Values used to parameterize the model
are reported in 4.1. The model was developed for every region in France by using
demographics and age profile data provide by INSEE (National Institute of Statistics
and Economic Studies) [158].

The theoretical formulation of the compartmental model for a given age class i is
based on the following set of differential equations:

dSi

dt
= −λiSi (4.5)

dEi

dt
= λiSi − εEi (4.6)

dIi
p

dt
= εEi − µp Ii

p pi
a − µp Ii

p(1− pi
a)[p

i
ps + pi

ms + pi
ss] (4.7)

dIi
a

dt
= pi

aµp Ii
p − µIi

a (4.8)
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Variable	 Description	 Value	

𝜃!"	 Incubation	period	 5.2d		

𝜇#!"	 Duration	of	prodromal	phase	

1.5d,	computed	as	the	fraction	of	pre-
symptomatic	transmission	events	out	of	pre-
symptomatic	plus	symptomatic	transmission	
events.	

𝜖!"	 Latency	period	 𝜃!" − 𝜇#!"	

𝑝$	 Probability	of	being	asymptomatic	 0.4	

𝑝#%	 If	symptomatic,	probability	of	being	paucisymptomatic	 1	for	children	
0.2	for	adults,	seniors	

𝑝&%	 If	symptomatic,	probability	of	developing	mild	symptoms	
0	for	children	
0.7	for	adults		
0.6	for	seniors	

𝑝%%	 If	symptomatic,	probability	of	developing	severe	symptoms	
0	for	children	
0.1	for	adults		
0.2	for	seniors	

𝑔	 Generation	time		 6.6d	

𝜇!"	 Infectious	period		 2.3d,	chosen	accordingly	to	generation	time	
distribution		

𝑟'	 Relative	infectiousness	of	𝐼#,	𝐼$,	𝐼#%	
0.25	for	younger	children	
0.55	for	adolescents,	adults,	seniors	

𝑠	 Relative	susceptibility	 0.5	for	younger	children,	adolescents	
1	for	adults,	seniors	

 

TABLE 4.1: Parameters and values to define the COVID-19 age-
structured transmission model.

dIi
ps

dt
= (1− pi

a)pi
psµp Ii

p − µIi
ps (4.9)

dIi
ms

dt
= (1− pi

a)pi
msµp Ii

p − µIi
ms (4.10)

dIi
ss

dt
= (1− pi

a)pi
ssµp Ii

p − µIi
ss (4.11)

dHi

dt
= µIi

ss − λH,RHi (4.12)

dRi

dt
= λH,RHi + µIi

ps + µIi
ms + µIi

ss (4.13)

with

λi =
β

N

[
∑

j
Cij(t)srβ I j

p + ∑
j

CIa
ij (t)srβ I j

a + ∑
j

CIps,ms
ij (t)srβ I j

ps + ∑
j

CIps,ms
ij (t)sI j

ms + ∑
j

CIss
ij (t)sI j

ss

]
(4.14)

and i, j ∈ {yc, t, a, s} and N is the population size.
The contact matrix C(t) provides the average contact rates made by healthy indi-

viduals between different age classes over time t. We also considered the individual
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behavioural changes due to the onset of symptoms and self-isolation of individuals
testing positive for COVID-19.

From C(t), we thus defined CIa(t) , CIps,ms(t) and CIss(t) as follows:

• CIa(t) = xa · C(t) · 0.1 + (1− xa) · C(t)

• CIps,ms(t) = xs · C(t) · 0.1 + (1− xs) · C(t)

• CIss(t) = xs · C(t) · 0.1 + 0.25 · (1− xs) · C(t)

where xa and xs are fitted parameters representing the percentage of individ-
uals testing positive for COVID-19 without and with symptoms, respectively. We
assumed a reduction of 90% of contacts for individuals with a positive test. An ad-
ditional reduction of 75% of contacts was considered for individuals not tested and
showing severe symptoms, because we supposed that they self-isolate in any case
as they are sick.

Social mixing on a regular weekday between healthy individuals in France was
estimated by a national survey in 2015 [94]. The survey provides contact matrices
in different settings: home, school, work, transport, leisure, and other locations not
specified with the possibility to break down contact matrices for physical and non-
physical contacts. Therefore, the contact matrix in a regular condition for a a pre-
pandemic scenario C(t) is the sum over all the empirical location-based matrices.
To take into account the changes of social mixing due to interventions put in place
by the French government and adaptive behaviors of individuals to the epidemic
(e.g.risk aversion), we parameterized contact matrices over time. The parametriza-
tion is explained in the following Section.

4.2.1 Parametrization of contact matrices

Anomalous changes in patterns are not detected from contact matrices provided by
the 2015 Survey in France [94]. They only provide seasonal behavior changes during
weekends or holidays. Here, I present how we parameterized contact matrices from
behavioral data to better describe real-time evolving social mixing during first wave
of COVID-19 epidemic in France. We thus had to infer changes in human behavior
depending on the implementation put in place by French government.

Contact matrices are thus mechanistically parameterized by region to reduce
contacts in specific social settings for targeted age classes. We obtained synthetic
contact matrices reproducing social distancing interventions during the first national
lockdown and exit phase interventions in the 7 weeks after lockdown. Details on the
timeline of the first wave of COVID-19 in France have been discussed in Section 6.1.

To parametrize the matrices, we reduced social mixing by considering multi
source data on the percentage of students going to school, the percentage of work-
ers going to the workplace and on the percentage of people compliant to preventive
measures of social distancing.

School attendance

Schools during first lockdown were closed, therefore we considered contacts at school
equal to zero. While, contacts at school after lockdown was parameterized by ac-
counting for the percentage of reported attendance at pre-school, primary, middle
and high school provided by the Ministry of Education [159] per region (See Figure
4.2). For instance, the attendance of 14.5% in Île-de-France region in pre-schools and
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primary schools, corresponds to a reduction of 85.5% in the number of contacts made
at school by individuals in the same age class. As students did not go to school, we
accordingly reduced contacts made in the means of transport.

(a) (b)

FIGURE 4.2: Percentage of students going to school, as reported by
the Ministry of Education on May 28, 2020 [159]. (a) Students of pre-
and primary schools (b) Students of middle schools. Red areas refer to
regions where schools remaining closed at that time as they presented

an high viral circulation.

Presence at work

Given the closure of non-essential activities, factories and companies during the
lockdown and the recommendations on remote working and activities that were
not yet reopened in the exit of lockdown, we also reduced contacts at work. To do
that, we used the estimated variation of presence at workplaces per week based on
mobile phone location data provided by Google Mobility Trends [121] (See Figure
4.3). The Figure shows the 7 weeks after the first national lockdown, but we also
analyzed variation of presence at workplaces during lockdown. Contacts at work
and for different means of transport (as we did in the case of the school attendance)
were therefore modified according to this percentage. As individuals (students and
workers) did not commute, we also increased contacts in households by considering
the changes in contact patterns during weekend versus weekday and the proportion
of adults working during the weekend.
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practitioner and obtain a prescription for a virological test8. Contacts 
of confirmed cases were traced and tested. A total of 20,777 virologi-
cally confirmed cases were notified from 13 May (week 20) to 28 June 
(week 26) in mainland France. These cases included individuals with 
or without symptoms at the time of testing who tested positive for 
SARS-CoV-2 or individuals who tested positive for SARS-CoV-2 for 
whom information on clinical status at the time of testing was miss-
ing (Extended Data Fig. 1). Accounting for presymptomatic individuals 
among those presenting with no symptoms at the time of testing and 
after imputation of missing data (Methods), an estimated 16,165 (95% 
confidence interval, 16,101–16,261) symptomatic cases were tested 
in the study period (Fig. 1a). The average delay from symptom onset 
to testing decreased from 12.5 days in week 20 to 2.8 days in week 26 
(Fig. 1b and Extended Data Fig. 1). Accounting for this delay (Methods 
and Extended Data Fig. 2), we estimated that 14,061 (13,972–14,156) 
virologically confirmed symptomatic cases had an onset of symptoms 
in the study period, showing a decreasing trend over time (2,493 in 
week 20, 1,647 in week 26). The test positivity rate decreased in the 
first weeks and stabilized at around 1.2% (mean over weeks 24–26).

A digital participatory system was additionally considered for COVID-
19 syndromic surveillance in the general population20, including those 
who did not consult a doctor. Called COVIDnet.fr, it was adapted from 
the platform GrippeNet.fr (which is dedicated to the surveillance of 
influenza-like illnesses4) to respond to the COVID-19 health crisis in early 
2020. It is based on a set of volunteers who weekly self-declare their 
symptoms, along with sociodemographic information. On the basis of 
symptoms declared by an average of 7,500 participants each week, the 
estimated incidence of suspected cases of COVID-1919 decreased from 
about 1% to 0.8% over time (Fig. 1c). Of 524 suspected cases, 162 (31%) 
consulted a doctor in the study period. Among them, 89 (55%) received 
a prescription for a test, resulting in the screening of 50 individuals 
(56% of those given the prescription) (Fig. 1d).

COVID-19 pandemic trajectories and detection rates
We used stochastic discrete age-stratified epidemic models2,14 based on 
demography, age profile21 and social contact data15 of the 12 regions of 
mainland France to account for age-specific contact activity and role in 
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Fig. 1 | Virological surveillance, participatory syndromic surveillance and 
behavioural data for model parameterization. a, Estimated number of 
virologically confirmed symptomatic cases in mainland France by week of 
testing and week of onset (bar graphs), and test positivity rate (line graphs). 
Estimates are based on the imputation of individuals without symptoms who 
tested positive at the time of testing into asymptomatic or presymptomatic; 
imputation of missing data on clinical status at the time of testing into 
asymptomatic, presymptomatic or symptomatic; and imputation of the date of 
onset of symptoms for presymptomatic and symptomatic cases (Methods). 
Imputations were performed n = 100 times. Uncertainties (black bars) 
correspond to the 95% confidence intervals. Test positivity rates were 
computed for cases with complete information. Data for weeks 20–26 were 
consolidated in week 30. b, Breakdown of virologically confirmed cases with 
symptoms and complete information in the SI-DEP database by week of testing 
according to the declared onset of symptoms (left y axis; n = 5,514).  

The estimated time from onset to testing is also shown (right y axis; median and 
95% confidence interval obtained from n = 100 imputations of the onset date).  
c, Weekly incidence of suspected cases of COVID-19 (median (dashed line), 95% 
confidence interval (shaded area) and 3-week moving average (solid line)), and 
percentage of individuals seeking healthcare (median and 95% confidence 
interval), estimated from the participatory surveillance system, COVIDnet.fr 
(average weekly n = 7,481). d, The number of suspected cases of COVID-19 in the 
participatory cohort who sought healthcare, and among those individuals, the 
number of individuals who received a prescription and performed a virological 
test when given the prescription. e, Estimated change in presence at workplace 
locations over time and by region based on Google location history data17. 
Region acronyms are listed in Table 1. f, Percentage of individuals avoiding 
physical contact with respect to lockdown, estimated from a large-scale survey 
conducted by Santé publique France18.

FIGURE 4.3: Percentage of individuals not going to workplace loca-
tions. The plot shows the estimated change in presence at workplace
locations in the 7 weeks after the first lockdown and by region based
on Google location history data [121]. Region acronyms are listed in

the paper reported in Section 6.2.

Adoption of physical distancing

Since during lockdown, it was compulsory to stay at home, going out only for basic
needs, we considered compliance of 100% of physical distancing by accounting for
physical contacts only in households according to the results we found in [81] and
in agreement with data collected afterwards [160]. Then, to account for individual
adoption of preventive behaviour after lockdown, we used the percentage of pop-
ulation avoiding physical contacts estimated from a large-scale survey conducted
by Santé publique France [160]. We fit the data of the survey with a linear regres-
sion to infer the weekly percentage of individuals avoiding physical contacts (Figure
4.4 (a)). We therefore reduced contact matrices week by week, according to the fit-
ted percentage of individuals avoiding physical contacts per week. Santé publique
France data also show how older individuals present a higher risk aversion com-
pared to the other age classes. In fact, on average, seniors respected physical dis-
tancing 28% more than the other age classes as shown in Figure 4.4 (b). For this
reason, we considered a further reduction of 30% in contacts for older individuals in
the exit phase.
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(a) (b)

FIGURE 4.4: Percentage of individuals avoiding physical contact esti-
mated from a large-scale survey conducted by Santé publique France
[160]. a) Fitted percentage of individuals avoiding physical con-
tact with respect to lockdown over time. Black dots are the estima-
tion by Santé publique France. b) Probability distribution of the in-
creased adoption of physical distancing adopted by seniors compared
to other classes (n=20, with median 0.275 and 95% CI [0.074, 0.516]).

The red dotted line indicates the median value.

Information on the progressive reopening of activities indicates that leisure and
other activities were only partially open in the study period. Data, however, are not
fine-grained enough to parameterize our model, so we assume a 50% opening of
these activities and explore variations in the sensitivity analysis.

4.3 Metapopulation models

Modern epidemic models recognize the importance of the role of mobility fluxes and
how these can substantially alter the probability of encounters, patterns of exposure,
and the likelihood of disease propagation [2, 5, 47, 56, 66, 69, 161]. In the previous
sections, I described the reaction-diffusion process used to model the disease dy-
namics in homogeneous mixing and age-structured models. In age-structured mod-
els, the mobility is implicitly modelled accounting for the number of contacts among
age classes in any setting. However, the natural framework to explore the interplay
between mobility, spatial structure and the epidemic transmission is the metapop-
ulation approach. In this framework, compartmental models are integrated into a
structured system, in which individual movements and space are explicitly consid-
ered.

In recent decades, metapopulation models have been largely developed and in-
formed by demographic and mobility data for analyzing the spread of infectious
diseases across time and spatial scales [5, 48, 69, 162, 163, 164]. The assumption be-
hind the model is that the system is characterized by a spatial fragmentation of the
population in sub-populations also called patches. Each patch represents a single
well-defined social or ecological entity such as a geographical area, social commu-
nity in human-related disease; or a pack, a herd, a habitat, in animal-related disease.

The metapopulation model has a multiscale structure as shown in Figure 4.5.
At the microscopic level, each patch i is composed of a population of individuals.
The health status of the individuals in any patch is modelled by a compartmental
model. The compartment dynamics accounts for the possibility that individuals in
the same location may make contact with and change their health status according to
the infection dynamics. In the illustrative Figure 4.5 an example of a metapopulation
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model is considered where a SIR dynamics in homogeneous mixing is modelled in
each patch.

��������

FIGURE 4.5: At the macroscopic level the system is composed of a set
of coupled subpopulations. Coupling is defined from mobility con-
nections. At the microscopic level, each subpopulation is a popula-
tion of individuals. The infection dynamics in Figure is described by a
compartmental model with only three compartment: S=Susceptible,

E=Exposed, I= Infectious individuals.

At the macroscopic level, the metapopulation model has a network structure
where each subpopulation is a node and each node i is connected to another node ac-
cording to the movement of individuals between the two nodes. The mobility of in-
dividuals between subpopulations can be described using two different approaches.
The first one is called explicit metapopulation approach as mobility fluxes between
any pair of patches are defined by explicit mechanistic approaches [165, 166]. Indi-
viduals move from one patch to another with a given rate of movement and, once
people have moved to a new patch, they feel the force of infection λ depending on
the patch they have moved to. The second approach is called effective metapop-
ulation. In this case, mobility patterns can be accounted for by effective couplings
expressed as a force of infection generated by the infectious individuals in patch i
on the individuals in patch j [167, 168, 169, 170, 171]. Both approaches have been
widely adopted in recent years and informed by mobility data (e.g. mobile phone
data, commuting data, or air traffic data) [5, 7, 29, 30, 38, 97, 106, 142, 145]. In Sec-
tion 4.5, I presented my theoretical research work on how to aggregate individual
trajectories from mobile phone data to inform such transmission models.

Explicit metapopulation model

The mechanistic approach used in explicit metapopulation models has a Markovian
assumption as it does not imply any memory of the individual movements. The
Markovian character is in the fact that individuals are not labelled according to their
original patch and at each time step, the same probability of moving is applied to
all individuals in the subpopulation without having memory of their origin. At
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any time step, individuals thus may move according to a given probability pij. pij
expresses the probability of an individual to travel from the patch i to the patch j
and is defined by the mobility fluxes wij which are the number of travellers moving
from the subpopulations i to j. wij may be inferred from a mobility process based on
transportation, air traffic and commuting data [5, 10, 30, 38, 54]. More recent models
have also used mobility fluxes from mobile phone data [11, 14, 15, 25, 26, 27, 28, 29].

Here, I reported the differential equations for an explicit metapopulation model
in the simple case of a SEIR compartmental model:

dSi

dt
= −βiSi

Ii

Ni
+ ΩS

i (4.15)

dEi

dt
= βSi

Ii

Ni
− εEi + ΩE

i (4.16)

dIi

dt
= εEi − µIi + ΩI

i (4.17)

dRi

dt
= µIi + ΩR

i (4.18)

with ΩX
i = ∑j(pjiXj − pijXi) and

pij =
wij

Ni
. (4.19)

where i defines all the parameters and variables referring to subpopulation i and
Si, Ei, Ii, Ri, denoting the number of susceptible, exposed, infected and recovered
individuals at time t in a patch i.

In general, accounting for fact that the duration of trips delays the time of in-
troduction of a pathogen, regardless of the pathogen, the fluctuations on the path
of the spatial spread increase proportionally with pathogen-generation time[172].
By labelling the home location of individuals, model improvements have been then
made in this direction to design a non-Markovian model which accounts for return-
ing residents and the length of stay in any location [173, 174, 175]. All these compli-
cated mechanistic patterns, however, can be accounted for more easily by using an
effective metapopulation approach.

Effective metapopulation model

The effective metapopulation approach models mobility as an associated force of
infection among subpopulations. The approach is also called kernel transmission
method, as the individual movements are effectively translated into a spatial trans-
mission kernel between subpopulations [176]. Using this approach, individuals not
explicitly moving from one patch to another, but living in i felt a force of infection
proportionally with the coupling between subpopulations. This approach is Non-
Markovian as it has it has memory of the home location of individuals [44, 177, 178].
The advantage of this approach is that it does not require exceptional computational
efforts to be computed as opposed to the explicit metapopulation approach. More-
over, another advantage is that the length of stay does not have to be inferred explic-
itly from mobility data, but is implicitly factored into the definition of the coupling
forces (See Section 4.5). I will now report the differential equations for the effective
metapopulation approach in the simple case of a SEIR compartmental model:
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dSi

dt
= −λiSi (4.20)

dEi

dt
= λiSi − εEi (4.21)

dIi

dt
= εEi − µIi (4.22)

dRi

dt
= µIi (4.23)

λi is the force of infection felt by susceptible people i.e. people in compartment
S living in i and is defined as follows:

λi = β ∑
j

f (M)Ij (4.24)

f (M) takes the role of the mobility into account and it may be defined depending
on the mobility process and the disease considered.

I will now present the novel implicit SEIR metapopulation model I designed and
developed. The model is stochastic, discrete, and Non-Markovian. The force of in-
fection for a susceptible in patch i is given by three contributions: (i) the transmission
of the infection by infectious individuals resident in i and not moving; (ii) the trans-
mission of the infection by infectious individuals resident in j and spending time in
i (visitors); (iii) the transmission of the infection by infectious individuals resident in
i who spent time in j, got infected there and came back to their residency (returning
residents).

Here I report the differential equations of the model I designed:

dSi

dt
= −λiSi (4.25)

dEi

dt
= −εEi + λiSi (4.26)

dIi

dt
= −µIi + εEi (4.27)

dRi

dt
= µIi(t) (4.28)

Taking into account the three terms of the mobility, the force of infection in patch
i is calculated as:

λi = λii + ∑
i 6=j

λv
ji + ∑

i 6=j
λr

ij. (4.29)

with
λii = βp2

ii
Ii

N̂i
(4.30)

λv
ji = βpii pji

Ij

N̂i
(4.31)

λr
ij = βpij

Îj

N̂j
(4.32)
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where pij is the coupling probability between patches i and j,

N̂i = piiNi + ∑
j 6=i

pjiNj (4.33)

N̂i is the effective population in i considering the coupling among patches and

Îi = pii Ii + ∑
j 6=i

pji Ij (4.34)

Îi is the effective number of infected individuals in i.
pij is called coupling probability as it is not simply the probability of moving

but, as previously discussed in Section 4.5 represents the probability that in the sub-
population j a resident in j interacts with an individual living in i. The processes to
define coupling forces among locations is not trivial, and it is discussed in detail in
Section 4.5. In fact, in my research work, I focused my attention on how to use mo-
bile phone data for translating high-resolution individual trajectories into coupling
forces between locations for effective metapopulation models.

Invasion trees

With the aim of modelling the invasion dynamics, it is possible to compute the epi-
demic invasion trees [7, 11]. An invasion tree is the most probable spatial transmis-
sion path of the infection, and it is computed as follows. Considering a disease-free
location i, as soon as Ii 6= 0, a direct link - between i and the source location from
which the infection came - is tracked. Computing several runs, the invasion path is
computed by summing for any pair of locations i, j the number of runs in which this
contagion link exists. The invasion path is thus a network in which the nodes are
the patches of the metapopulation and the weights of the links are the percentage
of the number of runs in which this contagion link exists. Once the network of the
invasion path is obtained, the invasion tree may be computed by measuring the di-
rect maximum spanning tree [179]. A spanning tree is computed from a network by
extracting the subgraph containing no cycles and the maximum spanning is the one
that has a larger sum of weights on its links.

We compared the invasion trees through two metrics: the betweenness central-
ity distance [180] and the invasion distance. The betweenness centrality distance
between coupling matrices X and Y is defined as follows:

dcentrality(X, Y) =

√
n

∑
k=1

(bX
i − bY

i )
2. (4.35)

where the betweenness centrality of a node i is given by the expression:

b(i) = ∑
s 6=j 6=k

σst(i)
σjk

(4.36)

σjk is the total number of the shortest paths from node j to node k σjk(i) is the
number of those paths that pass through i. The shortest path in a network is a path
between two nodes in which the sum of the weights of its links is minimized. In-
stead, the invasion distance in any invasion tree is measured for each node, and it is
the number of edges connecting the considered node with the root (epidemic seed).
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Considering every node, we obtain the distribution probability of the invasion dis-
tance and the betweenness centrality distance. We thus compering different invasion
trees by comparing such probability distributions.

In addition to the epidemic trees, we also defined the invasion probability pinv(t)
for a patch i as the probability that the epidemic has arrived in i in a given time t.
We evaluated it at t5%, t10%, t20% when respectively 5%, 10%, 20% of the patches
were infected. For every patch we counted the number of runs where the epidemic
arrived before t5%, t10%, t20%, respectively.

4.4 Modeling risk of introduction

Since the spatial transmission due to human movements, it is possible to assess the
risk of importation from an affected (origin) area to a non-affected (destination) area.
To compute the risk of invasion, two key factors have to be considered: prevalence
in the location of origin and the mobility fluxes between considered locations. Im-
portations may occur at different spatial scales ranging from local level carried by
short-range trips to worldwide carried by long-range travel. Different sources of
mobility data may be used depending on the context of interest. Within countries,
mobile phone data have been largely used to assess the risk of introduction into new
locations [16, 26, 52]. On the other hand, since the data available on mobile phones
does not yet allow for the global tracking of international movements, the risk of in-
ternational introduction has so far been commonly calculated from air traffic flows.
[38, 47, 75, 78].

In my research work presented in Section 5.2, I computed the risk of importation
of COVID-19 cases into Europe from China.

Computation of the probability of importing at least 1 case in Europe

First of all, we computed the probability of importing at least 1 case into Europe
by considering a given infected area in China acting as seed of exportation. PEU is
the probability provided by Epirisk [181] that an individual travels from that area to
Europe. If x cases are exported, the risk of importation of at least 1 case to Europe is
computed as

1− (1− PEU)
x (4.37)

Computation of the probability of importing 1 case in Europe except France,
conditioned to observing

In a second moment, we computed the probability of importing 1 case into Europe
except France, conditioned to observing 3 imported cases in France on January 27,
2020. Given the travel ban in Wuhan at that time, in this case, we considered 13
cities that are highly connected to Wuhan as possible seeds of case exportation out
of China.

The general formula is defined as P(y|~x) where y is the number of cases po-
tentially imported to Europe except the m countries in Europe with detected cases.
Then, we decomposed P(y|~x) in:

P(y|~x) = P(y,~x)
P(~x)

(4.38)



4.5. Mobility definition and resolution needed to inform metapopulation models47

P(y,~x) and P(~x) come from (m + 1)-dimensional and (m+ 2)-dimensional multi-
nomial distributions, respectively. P(~x) is (m + 1)-dimensional as describe the prob-
ability of importing to one of the m countries, and probability to import somewhere
else. P(y,~x) is (m+ 2)-dimensional as describe the probability of importing to one of
the m countries, to import somewhere in Europe except for the m countries, and the
probability to import somewhere else. We computed separately the numerator and
the denominator:

P(~x) = n!(
m

∏
j=1

P
xj
j

xj!
)
(1− g)n−c

(n− c)!
(4.39)

P(y,~x) = n!(
m

∏
j=1

P
xj
j

xj!
)

qy

y!
(1− g− q)n−c−y

(n− c− y)!
(4.40)

Therefore,

P(y|~x) = (n− c)!
y!(n− c− y)!

qy(1− g− q)n−c−y

(1− g)n−c =

(
n− c

y

)
(1− q

1− g
)n−c(

q
1− g− q

)y

(4.41)
with:

n: number of cases exported from China;
~x: m-dimensional vector encoding the number of cases in each European country
with detected cases;
c = ∑m

j=1 xj: number of detected cases imported to Europe;
p=m-dimensional vector encoding the importation probabilities in each European
country with detected cases;
g = ∑m

j=1 pj: probability of importing to any of the m countries with detected cases;
q: probability of importing to Europe except for the m countries;

Setting y = 0, we found the probability of having at least one case in Europe
conditioned at the number of the imported cases (c) in Europe as:

P(y > 0,~x) = 1− (1− q
1− g

)n−c (4.42)

4.5 Mobility definition and resolution needed to inform metapop-
ulation models

As I discussed in Section 3.5, there are different aggregation approaches to com-
pute coupling forces among locations. By integrating coupling forces into metapop-
ulation models, a crucial point is to accurately define the mobility process that is
relevant to the epidemic spread, and the resolution that is needed to describe the
invasion dynamics. As little attention has been devoted to this in literature, I fo-
cused on identifying the meaningful mobility fluxes extracted from mobile phone
data needed to estimate the coupling probability between locations for epidemic
transmission models.

To answer this question, I selected the three principal aggregation methods pre-
sented in the previous section: the Displacement-based coupling matrix D, the Location-
based coupling matrix L and the Commuting-based coupling matrix C, at high,
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medium and low resolution, respectively. I then assessed the impact of their dif-
ferent levels of aggregation on the modelled epidemic diffusion. Comparing D and
L, the aim was to consider two possible approaches which take into account all the
displacements of the users: the coupling between any two consecutive visited lo-
cations in D and the coupling between home location and any visited location in
L. Instead, comparing L with C, the focus was to understand if commuting fluxes
extracted in C could be enough for epidemiological purposes or instead, all visited
locations should be considered.

To implement D,L and C, I used the pseudo-anonymised mobile phone indi-
vidual trajectories collected by Orange. The dataset I used consists of a set of Call
Detail Records (CDRs) of phone calls and text exchanges between Orange’s cus-
tomers in Senegal. I had access to this data as I was an Orange PhD student and
I thus was effectively an Orange employee, otherwise non-aggregated data cannot
be accessed by external researchers. As I already discussed, to comply with privacy
regulations it is very common for mobile phone data providers to share already ag-
gregated data with external researchers. Having the opportunity to have access to
such high-resolution dataset, I found it extremely important to assess the impact of
different aggregation procedures. By knowing the impact of different aggregation,
researchers may have a better understanding on which aggregation to use or request
of mobile data providers.

I analyzed a set of 15,859,942,126 records of 9,569,425 million mobile phone users
(80 % of the Senegalese population) from January to December 2013 handled by
15999 Orange antennas. I only considered users having more than 30 days of mo-
bile phone usage and having less than 1000 activities (calls/SMS) per week. Since
shared phones is a very common phenomenon in Africa [130] the threshold on the
maximum number of activities per week allows the avoidance of bias due to multi-
ownership of the phone. Moreover, the cell towers are heterogeneously distributed
over the whole territory of Senegal covering all 46 urban municipalities and 357 out
of 437 rural ones. Besides, fluctuations in time of the number of active antennas
means that the number of covered municipalities is time-varying over the year. So,
considering only the covered municipalities throughout 2013, I selected 394 ones (46
urban and 348 rural). The 46 urban areas are located in the following cities: Dakar,
Guediawaye, Pikine, Rufisque, Thies. After this preprocessing, I computed the cou-
pling matrices D,L and C at municipality level per any given month. The illustrative
Figure ?? shows the resulting three coupling matrices obtained from the individual
trajectory of only one user.

To assess the role of the mobility definition on disease diffusion, I made a statisti-
cal comparison of the estimated coupling matrices and I then integrated the coupling
matrices in a novel metapopulation model.

4.5.1 Statistical comparison of coupling matrices

Extracting the three coupling matrices D, L, C per month, I obtained 12 matrices for
each method. Connections between municipalities depend on the aggregation pro-
cess as described in Figure 4.6). To understand similarities and differences between
each pair of matrices, I measured the Pearson coefficient of their elements, and I
found that all matrices are highly correlated (RC,L = 1,RD,L = 0.97,RD,C = 0.99).
Even though all three matrices are correlated to each other, elements in D differ
from the other two methods of an order of magnitude. In fact, while C and L have a
quite similar probability distribution of the coupling probabilities, in D the median
of the distribution, is around 1 order of magnitude lower (Figure 4.7 a). The Largest
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differences are on links connecting Urban/Rural municipalities (Figure 4.7 b). Also,
the median of the geographical distance distribution is lower in D compared with
the other two methods (Figure 4.7 c). Another key difference between D and L and
C is on the outgoing probability in any location. Considering the coupling matrix,
the outgoing probability is defined as follows:

pout = ∑
i 6=j

pij = 1− pii. (4.43)

Such differences increase between municipalities far from the urban areas (Figure
4.7 d,e,f) in which outgoing probability in D is around two orders of magnitude
smaller compared with L and C.

I focused the comparison of the matrices on i) common connected locations and
ii) links detected in one method and not in another one. In Figure 4.8 a) and b) I
reported the distribution of relative variation of the common links between any pair
of methods. Considering subsets of links that have relative differences higher than
a certain cut-off, I found that the biggest differences are between D and L for links
with the highest weight in L and the lowest in D. The probability of coupling in D
can be up to 1000 times lower compared with the L (Figure 4.8 c, e). I found that
these differences increase with the increase of the geographical distance between
the coupled municipalities (Figure 4.8 c). Assuming the earth as a spherical body, I
evaluated the geographical distance using the Haversine Formula between the cen-
troids of any two municipalities. The same results were found in the comparison
between D and C. Instead, C and L are quite similar. We found that links in C are no
more than 10 times bigger than in L and their discrepancies are quite stable on the
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geographical distance. (Figure 4.8 d, f).
Concerning (ii), I found (Figure 4.8 g) that the 37% of the links in L (27% in C) are

not detected in D: 25% are links that have a weight that is higher than the median
(26% in C) (Figure 4.8 g), 71% (73% in C) are links between municipalities at long-
range distance (Figure 4.8 g). Otherwise, the fraction of links, existing in D and not
in the other methods, represent people who pass from one municipality to another
one not living in the location of origin. Moreover, the 12% of links detected in L do
not exist in C. These links connect home locations to destinations in which people do
secondary activities and thus as is shown in Figure 4.8 all these links have coupling
probability lower than the median.
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4.5.2 The aggregation approach affects the invasion dynamics

To assess the impact of the different coupling definitions on the epidemic diffusion,
I used them to inform a spatially-explicit epidemic model at the level of munic-
ipalities. To design the model, I partitioned the Senegalese population into sub-
populations at municipality level basing them on 2013 Census provided by the Sene-
galese national institute of statistics ANSD [182]. I thus considered 13092348 inhabi-
tants distributed among these municipalities. The force of infection for a susceptible
individual in a municipality i is given by three contributions: (i) the transmission of
the infection by infectious individuals resident in i and not moving; (ii) the trans-
mission of the infection by infectious individuals resident in j and spending time in
i (visitors); (iii) the transmission of the infection by infectious individuals resident in
i who spent time in j, got infected there, and came back to their residency (return-
ing residents). All these components are weighted with the coupling matrices (See
Section 4.3).

I considered three different epidemic scenarios: i) the top value in the confiden-
tial interval of Ebola Virus, R0 = 3 (high transmissibility) ii) the top value in the
confidential interval of Influenza, R0 = 1.5 (medium transmissibility) iii) a scenario
of an epidemic with control measures in action, R0 = 1.1 (Low transmissibility). I
then evaluated how the simulated epidemic behaviour depends on the underlying
spatial and time aggregation scheme, by investigating the time to the first infection
in each location and the invasion epidemic dynamics.

For each scenario, I compared the output of the simulated epidemic in D, L, C
equally initialized. I initialized the epidemics with 10 infected people and I explored
92 potential epidemic seeds i.e. municipalities in which the epidemic began (46 ur-
ban areas and 46 rural ones). Epidemic seeds are selected by considering all the
urban areas and the top 10% of rural ones which have the highest variation on the
coupling probabilities among different approaches. I investigated a set of global ob-
servables to characterize the simulated epidemic in time and space. I then based
the comparison of the matrices on two main observables. i) the arrival time of the
infection in each location and ii) the epidemic invasion tree from the epidemic seed
to the rest of the country. The arrival time of the epidemic in a given municipality is
the time when the first case arrives. Instead, the invasion epidemic tree is the more
likely route of the spatial invasion from the epidemic seed to the rest of the munici-
palities. Methods on how invasion epidemic paths are implemented are reported in
Section 4.4.

Overall, the lower coupling probability measured in D compared to the other
methods results in delayed arrival times. The arrival time in D ranges from few
weeks to almost 410 days, while in L and C it is quite a bit lower, not exceeding 250
days. Comparing L and C, the median of the relative variation on the arrival times is
0 regardless of the transmissibility of the disease (Figure 4.9 a). Instead, comparing
L and C with D, the relative variation is relatively higher (around 100%).
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In addition, L and C present a high correlation in the ranking of the arrival times
in each location (Kendall tau coefficient ranging from 0.65 to 0.90). Instead, it is
not so high between D and the other two methods as shown in Figure 4.9 b). It
means that L and C not only reproduce a quite similar distribution of the arrival
time but also simulate the arrival of the epidemic in each place with the same order.
Furthermore, the maximum distance achieved when the 5% of the municipalities
have been infected is much smaller in D compared with L and C (Figure 4.9 d). By
analysing the invasion trees, I observed a relation between the arrival time in D and
the geographical distance and this explains the differences with C and L. As the
map shows in Figure 4.9 e for R0 = 1.1, the first 5% of municipalities infected in D
are clustered close to the capital Dakar, instead, in L and C the epidemic invasion is
more heterogeneous in space. Similar results are found with R0 = 1.5, R0 = 3.

Focusing on the spatial invasion, we found L and C reproduce similar paths of
invasion of the epidemic in the country. To implement epidemic invasion trees, I
selected only 2 seeds: i) the most populated urban area in Dakar and ii) a rural area
in the department of Saraya. I selected this rural area as it is the farthest munici-
pality from Dakar, and it is in one of the municipalities with the highest variation
in the coupling probabilities between D and L. I analysed the similarity between
epidemic trees by using a metrics based on the betweenness centrality (See Section
4.4). I found that the betweenness distance on the trees between C and L is lower
compared with D,L and D,C as shown in Figure 4.10 a (D,L <0.05, D,C and D,L
ranges from 0.05 to 0.25). Invasion trees are shown in Figure 4.10 d. I also found that
in D the spatial transmission is mainly fragmented into short paths (Figure 4.10 b,
c). To compare D, L and C, I thus quantified the epidemic invasion distance (dinv)
for any municipality i as the number of links in the invasion trees i.e. the number
of municipalities reached from the seed before the infection arrives in i. Focusing
on the first layer of infection (dinv = 1), as is shown in Figure 4.10 d, e, in D, the
infected locations are clustered close to the seed, while in L and C, these are more
heterogeneously distributed in space. It means that C and L reproduce more realistic
epidemic patterns integrating long-range transmission with local-range dispersal. A
key difference in the invasion trees in D compared to C and L is played by one mu-
nicipality: Touba, the second most populated Senegalese city after the capital Dakar.
In C and L around the 15% of the municipalities are infected by Touba, instead, in
D less than 5%. In Figure 4.9e it is also shown that the invasion probability at t5%
in Touba is around one order of magnitude higher in L and C than in D (epidemic
seed is at Dakar). I defined the invasion probability pinv(t) for a patch i as the prob-
ability that the epidemic arrives in i in a given time t. Considering the strong daily
connections for commuting and commercial exchanges between Dakar and Touba
[183], this suggests that L and C perform better the modelled epidemics by detect-
ing Touba as a relevant epidemic hotspot. In any case, the differences between the
simulated epidemic outcomes decrease, as expected, with high values of the basic
reproduction number.
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Improving coupling matrices

Finally, I introduced the matrices D′, L′, C′ to improve the previous matrices D, L,
C and I analyzed the differences in the relative epidemic outcomes. In L′, I consid-
ered the time spent in a place by interpolating exactly the time spent in any location
instead of using the number of calls as a proxy of time as in L. In C′, I evaluated
the most visited location over 12h (7am-7pm) instead of over all day as in C. In D′,
I considered the time lapse between each two displacements, instead of the number
of displacements as in D.

Few differences exist between L, L′ and C, C′, while relevant ones have been
found between D, D′. I found that in L′ the outgoing probability decreases compared
with L. It is probably a bias of the overestimation of the outgoing probability in L
due to the fact that at night users make fewer calls. Relevant differences between
D and D′, instead, could mean that users make a lot of consecutive calls in a short
period in the same place involving an underestimation of the outgoing probability
in D as any two consecutive calls account for a displacement. Then, I found that the
outgoing probability in C′ is higher compared with C (Figure 4.11 a). Intuitively, it
means that the most visited location, computed only over the 12 daily hours, more
likely does not match with the home location compared with the one computed over
the 24 hours.

Our findings indicate that preserving the full resolution of the observed trajec-
tory of individual movements (D, D′) may bias the spatio-temporal diffusion of the
simulated epidemic in both the timing and pattern of invasion. Instead, aggregating
on visited locations (L, L′), even if the sequence of the trajectories is not considered,
reproduces realistic simulated patterns. The high similarity between L, L′ and the
commuting-based method C, C′ suggests that secondary visited locations have no
significant impact on the spread, and commuting-like mobility is the main driver of
disease diffusion. D and D′ are thus not well-defined enough to be embedded into
transmission models. They could be a good option in the case where it is important
to know the actual path of the individuals e.g. to study migration phenomena. As
individuals change their home location, in this case, it would be incorrect to couple
home-visited locations as in L or home-work as in C.
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4.5.3 Discussion

Adequately aggregating human movements becomes particularly relevant for im-
proving the reliability of infection disease models and predictive capacity. In my
research work, I showed that it is necessary to aggregate mobile phone data prop-
erly, as the level of details of the individual trajectories in the aggregation process
significantly impacts the epidemic outputs of the models.

I found two key results: i) preserving the maximum resolution of the individual
trajectories may involve a bias in the simulated invasion dynamics; ii) commuting
fluxes are enough to reproduce the spatial transmission. Keeping the full resolu-
tion of the individual trajectories, Displacement-based method D does not couple
the actual origin and destination locations of the individuals. This implies an error
when such a matrix is embedded into metapopulation models, as the modelled spa-
tial transmission is delayed and do not present long-range contagions. In fact, D
reproduces a process of invasion that is thus radial. Finally, pij in D is defined, ac-
counting for users’ displacements at different time scales by depending on the time
elapsed between two consecutive calls. This may involve a bias when the matrix is
integrated into discrete epidemic models which have a given timescale (e.g. weekly,
daily, hourly). All these considerations suggest that D is not properly indicated to
be integrated into transmission models aimed at reproducing the invasion dynam-
ics. However, it may be embedded into probabilistic epidemic models and be used
for epidemiological studies in which the temporal sequence of the individual trajec-
tories is important, e.g. the impact of migration flows in the spatial transmission.

Conversely, C and L reproduce more realistic spatial and temporal epidemic pat-
terns by simulating both short than long-range contagions. The high similarity be-
tween L and C means that all leisure activities considered in computing L can be
neglected, and the information on daily commuting is already sufficient to define
the coupling forces well. The commuting method may thus be considered a valu-
able aggregation approach in terms of accuracy and reliability for metapopulation
models.

The work has, however, some limitations. Concerning the model, I developed a
SEIR model with a hypothesis of homogeneous mixing in each municipality. Sub-
structures of the population based on social and mobility behaviours may be con-
sidered. However, my aim was not to reproduce a real epidemic but rather to get
a better understanding of the use of mobile phone data and the details required for
the design of metapopulation models. Then, the model is not validated on epidemi-
ological data. The realism of L and C is assumed on the basis that they reproduce
heterogeneous patterns in the spatial spread, as it is well established in literature that
epidemics spread through complex spatio-temporal patterns combining both short-
range and long-range seeding events. This has been experienced both in epidemics
with a medium transmissibility rate like Influenza [184] and in faster epidemics like
Ebola [185].

The study was performed in Senegal in a peacetime period when ongoing epi-
demics were not present. Mobility patterns reproduce a regular situation presenting
seasonal patterns, and they are thus reliable to describe commuting fluxes. We stud-
ied the aggregation processes at municipality level as it is the lowest administrative
level. There is not a correct level of spatial fragmentation for studying infectious dis-
ease dynamics, it really depends on the target question and the spatial resolution of
the epidemiological data available. Further research work should be done on com-
paring aggregation approaches at different spatial scales. Reducing the spatial scale,
however, means averaging all the heterogeneity, therefore we expect the differences
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between the aggregation methods to decrease drastically. We also expect that results
we found will not change in other countries having a similar cultural, social, and
economic situation.

While addressing a specific methodological problem of reducing data resolution,
our findings also have important implications for the identification of the most rele-
vant locations to be targeted for disease prevention and control and for the data and
resolution needs in case of an emerging epidemic.

4.6 Conclusions

In this Chapter, I presented the mathematical and computational modelling back-
ground of my research and I discussed my theoretical work on assessing ways to
embed mobility into transmission models. I introduced some basics of mathematical
models used for studying infectious transmission. More specifically, in Section 4.1 I
introduced compartmental models to describe the dynamics of disease in a homo-
geneous mixed population and I explained how to integrate social structures. I then
focused on the age-structured compartmental model specific for describing COVID-
19 epidemic in Section 4.2. In Section 4.2.1, I explained in detail the parametrization
of the contact matrices that we used in the model to define social mixing during the
first wave of COVID-19 in France. In Section 4.3, I introduced ways to integrate the
mobility dimension in transmission models with a metapopulation approach, with
a main focus on the stochastic metapopulation models we designed and developed.
Given the modelled epidemics, I also explained how to compute the most likely
spatial path of invasion, so-called invasion tree. Then, in Section 4.4 I explained
mathematical tools to model the risk of introduction of a pathogen in a previously
non-affected area. To conclude, in Section 4.5, I presented how to aggregate mobile
phone individual trajectories to extract specific mobility indicator for metapopula-
tion models. In the next Chapters, I will present my two main research works and
I will show how we accounted for the mobility dimension at different scales and in
different phases of the epidemic to study COVID-19 pandemic.
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Chapter 5

Travel bans and global epidemic
importations of COVID-19

In this chapter, I present my research work on the assessment of the risk of the in-
troduction of COVID-19 infected cases from China to Europe by air travellers in the
early stage of the COVID-19 pandemic. By spotting locations with the highest risk
of importation, the aim was to allow European countries to be prepared to face the
emerging epidemic in order to implement targeted surveillance in places served by
high-risk airports.

In Section 5.1, I will describe the early stage of Covid-19 pandemic. Then, in Sec-
tion 5.2, I will present how we integrated air traffic data into a mathematical frame-
work to compute the risk of importing at least one case of COVID-19 from China to
Europe prior to the travel ban in Hubei province, and after the travel ban on January
27 2020, when little information on the route of transmission of the disease and its
effective viral circulation in China was available. The mathematical framework is
extensively described in Section 4.4. The presented research work was published on
January 30, 2020, in the scientific journal Eurosurveillance.

5.1 Early stage COVID-19 pandemic

On December 31, 2019 Chinese authorities detected a cluster of cases of pneumonia
of unknown aetiology in Wuhan City, Hubei Province of China [79]. A novel coro-
navirus disease (2019-nCoV) was identified, on February 11, 2020, and the WHO
announced the official name COVID-19. The situation evolved so fast that on Jan-
uary 23, 2020, 571 confirmed cases of 2019-nCoV were reported in several provinces
in China and Chinese authorities enforced a travel ban on international flights in the
province of Hubei. On January 27, 2020, local clusters were detected in most of the
provinces in China, and forty-one imported cases were confirmed in the rest of the
world including three cases in Europe, all in France. There was also a confirmed case
in Germany not coming from China. He got infected by a Chinese guest visiting his
company in Germany [186].

In order to prevent importation and secondary transmissions in not-affected ar-
eas, on January 25, 2020, the WHO Director for Europe issued a public statement
underlining the importance of being ready to detect international travellers from lo-
cations in China where there were ongoing transmissions, at the local and national
levels, . Even if WHO announced that the COVID-19 disease had human-to-human
transmission, however, the route of transmission and epidemiological features of the
disease were not clear at that stage.
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During previous outbreaks due to other coronaviruses (MERS and SARS), human-
to-human transmission occurred through droplets, contact, and fomites, suggest-
ing that the route of transmission of COVID-19 could be similar. Starting from this
knowledge, WHO published travel advice for international traffic on 27 January, ad-
vising exit screening for travellers coming from Chinese provinces and isolation for
confirmed cases. Exit screening included detecting symptomatic individuals e.g. via
temperature scanner and interviewing passengers with potential exposure to high-
risk contacts, who had left the affected areas.

In order to help national health authorities to optimize surveillance efforts, we
quantified the potential risk of importation of infected cases by air travellers to Eu-
rope from China with the little information available at that moment. We computed
the importation risk in each country within Europe, and for each county, we assessed
the risk of every airport. In the following Section, I will present the published article
about this work.

5.2 Article #1: Novel coronavirus (2019-nCoV) early-stage im-
portation risk to Europe, January 2020
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As at 27 January 2020, 42 novel coronavirus (2019-
nCoV) cases were confirmed outside China. We esti-
mate the risk of case importation to Europe from 
affected areas in China via air travel. We consider travel 
restrictions in place, three reported cases in France, 
one in Germany. Estimated risk in Europe remains 
high. The United Kingdom, Germany and France are at 
highest risk. Importation from Beijing and Shanghai 
would lead to higher and widespread risk for Europe.

Starting December 2019, cases of pneumonia of 
unknown aetiology were reported in the city of Wuhan, 
in the province of Hubei in China [1]. The infective path-
ogen was later identified as a novel coronavirus, called 
2019-nCoV [2]. As at 26 January 2020, a total of 1,988 
confirmed cases have been reported from China [3]. 
The main affected area is in the province of Hubei, but 
as at 27 January 2020, confirmed cases have also been 
reported in 32 other provinces [4].

Forty-one travel-related cases were confirmed as at 
27 January 2020, all coming from China. Twenty-seven 
cases were imported to Asia, six to North America, five 
to Oceania, and three to Europe [3,5-7]. Thirty of them 
were exported from Wuhan. In Europe, all three cases 
were imported to France. They were confirmed on 24 
January 2020, with travel dates on 18 January 2020 (2 
cases) and 22 January 2020 (1 case). One case was con-
firmed in Germany on 27 January 2020 with no history 
of travel to China but contact with a Chinese guest visit-
ing their company [8]. In an effort to contain the spread 
of the virus, Chinese authorities enforced a travel ban 
in the province of Hubei starting on 23 January 2020 (3 
a.m. Central European Time). This includes a complete 
ban on international flights [9].

Here we estimate the risk of importation of 2019-nCoV 
cases to Europe from infected areas in China by air 
travel. We compare the risk prior to the travel ban in 
Hubei province, with the risk updated to the outbreak 

situation of 27 January 2020, accounting for three 
cases imported to France and one case confirmed in 
Germany.

Modelling risk of importation
For this study, Europe is defined according to the 
Wikipedia contemporary geographical definition 
but with exclusion of transcontinental countries 
(Azerbaijan, Georgia, Kazakhstan, Russia and Turkey) 
[10]. The risk of importation to Europe is estimated as 
the probability that at least one case is imported from 
China to Europe. It is based on estimates from the 
platform EpiRisk [11] and accounts for origin-destina-
tion air travel flows of January 2019 from the Official 
Airline Guide (OAG) database of the GLEAM Project 
[11-13]. Details of the computation are provided in 
the Supplementary Material.

To estimate the risk in Europe prior to the travel ban 
in the Hubei province, we consider Wuhan as the only 
seed of the international spread [3,5-7]. We then pro-
vide a colour-coded map of Europe to report for each 
country the probability that a case imported to the con-
tinent arrives there, when coming from Wuhan only. For 
sensitivity, we tested whether the risk changes consid-
ering air travel flows of the month of February 2019.

To estimate the risk in Europe following the travel ban, 
we consider as possible seeds of case exportation out 
of China the cities that are highly connected to Wuhan 
based on de-identified and aggregated domestic popu-
lation movement data (2013–2015) derived from Baidu 
Location-Based Services [14]. These cities are depicted 
in  Figure 1. They were also found to be highly corre-
lated with those reporting a high number of cases in 
the corresponding provinces [14]. 

To account for the current situation, including the 
three cases in France and one in Germany, we esti-
mate the risk of importation to Europe except France 
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Figure 1
Map of Chinese provinces colour coded according to the number of cases of 2019-nCoV [4] as at 27 January 2020
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Figure 2
(A) Country-specific risk of importation assuming one case imported to Europe from Wuhan before the travel ban, and (B) 
relative risk by airporta, January 2020
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and Germany as the probability that Europe (France 
and Germany excluded) imports at least one travel-
related case from China, conditioned to the observa-
tion of three cases imported to France and one case 
in Germany. Details of the computation are provided in 
the Supplementary Material. We estimate the risk for a 
varying number of exported cases from China, cumu-
lative in time, to account for likely detection delays or 
under-detection of travel-related cases. As before, we 
then provide a colour-coded map of Europe to report 
for each country the probability that a case imported 
to the continent arrives there, when coming from cities 
depicted in Figure 1, except Wuhan. For sensitivity, we 
also tested whether the risk changes due to the addi-
tional inclusion of Wuhan in the multi-source seeding.

Estimated importation risk from Wuhan 
before the travel ban in Hubei province
The exportation of 30 cases from Wuhan before the 
travel ban, as reported so far, was estimated to put 
Europe at 61% risk of importing at least one case. The 
risk was localised in Western European countries, with 
the highest risk estimated for the United Kingdom (UK; 
39%), followed by France (24%), and Germany (15%) 
(Figure 2). In some countries, importations are likely to 
occur at multiple airports (e.g. Germany, Italy, Spain), 
whereas in others the risk is mostly concentrated in 
airports serving the capital city (e.g. London in the UK, 
and Paris in France). 

Estimated importation risk from considered 
areas of China following the travel ban in 
Hubei province
The probability that at least one case is imported to 
Europe except France and Germany, given the three 
imported cases reported in France and one case 

confirmed in Germany, is high (Figure 3). It is esti-
mated to be more than 64% for the number of travel-
related exportations from China reported so far (41 
travel-related and one confirmed case in Germany). 
The probability becomes larger than 80% if 60 cases 
are exported from China.

In the event that one travel-related case is imported 
to Europe, the risk of importation is highest in the UK 
(25%) (Figure 4). Germany and France, which already 
have confirmed cases, rank second and third with a 
probability of 16% and 13% to receive another case, 
respectively. Italy (11%) and Spain (9.5%) rank as 
fourth and fifth in terms of risk. The risk is in general 
higher in more populated countries (Supplementary 
Figure S1). Also Eastern Europe and Northern Europe 
would be at risk of importing cases.

In the UK and France, the airports serving the capital 
cities continue to contribute the largest likelihood of 
importing cases (London contributes to 83% of the 
risk, Paris contributes to 94% of the risk, respectively).
The estimates account for the travel ban imposed in the 
province of Hubei. Including travel flows from Wuhan, 
to account for cases who may have flown before the 
travel ban and are not yet detected, does not alter the 
estimations (data not shown).

Discussion and conclusions
France reported on 24 January 2020 the importation 
of three 2019-nCoV confirmed cases from China, and 
Germany confirmed its first case on 27 January 2020 
with no history of travel to China. They are still the first 
and only imported cases confirmed in Europe, at the 
time of writing. We estimate that the risk of importa-
tion of at least one case to Europe except France and 
Germany is high. It is larger than 80% if 60 travel-related 
cases are exported from China. The three countries at 
highest risk are the UK, Germany, and France (confirm-
ing estimates reported by other studies [12,14,15]), 
with the latter two countries already reporting cases. 
Delays are expected from date of importation to date 
of identification that may bias observations at the time 
of writing. All three cases imported to France were 
confirmed on 24 January 2020, with two travelling on 
18 January 2020 (6 days delay) and one on 22 January 
2020 (2 days delay).

The risk pattern of 2019-nCoV importation estimated 
for Europe varies considerably depending on the geo-
graphical extent of the affected areas in China. In par-
ticular, a larger area acting as seed of exportation that 
includes Shanghai and Beijing (two cities with larger 
number of travellers to more widespread areas in 
Europe) would likely result in a higher and more wide-
spread risk for Europe.

Our results are based on available data and estimates 
of the affected provinces in China and account for ori-
gin-destination travel fluxes from these provinces, as 
well as the travel ban enforced in the Hubei province. 

Figure 3
Risk, as a function of the cumulative number of exported 
cases from China, of importing at least one case to Europe 
except France and Germany, given three imported cases 
reported in France and one case confirmed in Germany, 
January 2020
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However, estimates are sensitive to different health-
seeking behaviours that infected travellers may have, 
and to the active surveillance practices put in place in 
European countries. We did not provide estimates of 
the expected number of imported cases per country, as 
this depends on the number of travel-related exported 
cases from China, a variable that is still hard to assess 
at this early stage.

Risk maps will need to be rapidly updated as the out-
break situation evolves.
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5.3 Conclusions

In the article, we integrated air traffic data into a mathematical model to compute
the risk of importation of COVID-19 cases from Chinese provinces to Europe at the
end of January 2020, before and after the travel ban in the province of Hubei.

We estimated the probability of importing at least one case to Europe, excluding
France and Germany, given that the already imported cases were more than 64%,
and considering the forty-one travel-related confirmed cases on January 27, 2020.
Moreover, we found that the countries at highest risk on 27th January 2020 were UK
(25%), Germany (16%), France (13%), Italy (11%), and Spain (9.5%), and that London,
Frankfort, Paris, Milan and Madrid, were the airports at highest relative risk in each
country, respectively, suggesting that targeted surveillance efforts in such places be
improved.

Our results were quite in accord with what we then experienced, showing how
most of the detected cases arrived in hub airports strongly connected with Chinese
provinces, for example, Paris, Milan and London. The first cluster of COVID-19 with
local transmission was in fact confirmed in Bavaria, Germany on January 29, 2020,
and afterward, new imported cases from China were detected; two in France (Paris
airport), two in Italy (Milan airport), two in UK (York and London airports), one
in Finland and one in Sweden [187, 188]. Local spread in northern Italy was then
detected on February 22, 2020 [186]. In a short time, cases also started to spread
among European counties and soon COVID-19 reached all of Europe. On March 13,
2020, as the number of new cases became greater than those in China, the World
Health Organization (WHO) began to consider Europe as the active centre of the
COVID-19 pandemic [186].

At the time when this research work was done, there was no knowledge on the
underreporting of imported cases, we were thus unable to accurately estimate the
importation risk, even when taking undetected imported cases into account. To gen-
eralize our analysis, we estimated the relationship between the risk of importation
into Europe and the number of imported cases from China. As this empirical low
shows, the risk of importation becomes higher than 80% if only 60 travel-related
cases are exported from China. Subsequent studies have estimated that less than
40% of exported cases were detected by surveillance systems [187, 188]. This means
that imported cases should have been more than 100 at that time, corresponding to
a risk of importation into Europe of over 90%.

Our results, however, were not predictions, but were simply aimed at detecting
airports with the highest risk of importation. As local transmission was already self-
sustainable in China when we performed the work, we should have integrated air
traffic into transmission models, estimating the expected number of imported cases
due to the actual situation of incidence. However, at that time we did not know the
stage reached by the epidemic seeing that the first period of the spread was silent
due to the high percentage of infected individuals passing undetected with mild or
no symptoms. Moreover, we did not have any information on the disease dynamics
and on the delay between infection and case report to calibrate an ad hoc predictive
model. Later on, having a broader understanding of the disease, works were done
in this direction [38, 189].

Given the lack of information on the disease in January 2020 and the fast epi-
demic transmission, the efforts of the surveillance systems were not sufficient to
contain the COVID-19 global diffusion. In fact, travel restrictions in the early stage
of the pandemic were too few and too late.
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First, the local transmission in most of the Chinese provinces explains the negli-
gible impact of travel restrictions put in place only in Hubei province. In fact, on 23
January 2020, the epidemic was seeded in several locations across mainland China
[38]. On [41], researchers inferred that the epidemic was already growing exponen-
tially in multiple major cities of China with a lag time behind the Wuhan outbreak of
about 1–2 weeks. This meant that big cities outside Wuhan become the new potential
origin of importation. In fact, before the travel ban, around 86% of the internation-
ally imported cases came from Wuhan. After the implementation, around 86% of
the internationally imported cases came from Shanghai (28.1%), Beijing (14%), and
Shenzhen (12.8%) as reported on [38].

Secondly, the travel restrictions were implemented too late, as other countries
already had local transmission. There were more cases of coronavirus than officially
reported, around two out of three cases passed undetected across international bor-
ders [187]. Before the travel ban, 30 exported cases from Wuhan were confirmed.
Considering underreporting, at least 50 undetected but infectious travellers were al-
ready on the move when the travel bans went into effect. Given that situation, and
other public health non-pharmaceutical interventions, such as increasing awareness,
isolating sick people, or at worst, social distancing measures like lockdown became
necessary to try to mitigate the ongoing spread.
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Chapter 6

Parametrizing social mixing from
mobility data to model the first
wave of COVID-19 in France

In this Chapter, I present my research work on estimating the underreporting of
symptomatic cases of COVID-19 in France in May-June 2020 (on emerging from the
first national lockdown) through epidemic transmission models specific for COVID-
19. During an epidemic, adaptive behaviours such as risk aversion and social and
mobility restrictions put in place by governments involve changes in social mixing
and thus reduce contacts. This implies many challenges in designing proper mod-
els which capture such changes. In my research work, in order to model the first
wave of COVID-19 in France, I parametrized social contacts over time using mobil-
ity and behavioural data to properly describe the local transmission at that time. In
the following Section, I will present the intervention put in place by the French gov-
ernment to mitigate the first wave of Covid-19 and how I embedded them into the
transmission models. The presented research work was published in Nature Journal
on December 21, 2020.

6.1 Social mixing reductions due to control strategies

In order to mitigate the first wave of the COVID-19 epidemic in France, a national
lockdown was implemented (March 17 - May 10, 2020) in which schools, non-essential
businesses, companies and factories were closed. Lockdown was efficient in reduc-
ing incidence, for example, in Île-de-France the reproductive number decreased from
around 3 prior to the lockdown to 0.68 during lockdown thanks to a reduction of
81% in the average number of contacts [81]. The French government thus decided
to reopen non-essential businesses, companies and factories and to partially reopen
schools. In order to avoid a resurgence of infections, however, teleworking and so-
cial distancing were highly recommended. At the same time, an aggressive testing
strategy was planned in order to promptly identify infectious individuals and isolate
them with the aim of keeping the epidemic activity low. By aiming to help health au-
thorities to improve tracking of infected cases on emerging from the first lockdown,
we thus decided to quantify the rate of detection of symptomatic cases in each re-
gion in France. Improving the surveillance system is crucially important as it allows
us to reduce interventions.

To this end, we designed and developed age-structured regional transmission
models specific for COVID-19 (see Section 4.2) accounting for the incubation pe-
riod, pre-symptomatic and asymptomatic transmission, age-dependent susceptibil-
ity and infectiousness, different degrees of symptom severity and hospitalization.



72
Chapter 6. Parametrizing social mixing from mobility data to model the first wave

of COVID-19 in France

In the age-dependent models, we consider the structure of social relationships i.e.
social mixing per age bracket. Social mixing within the population is informed in
the model through contact matrices that quantify the average daily number of con-
tacts between age groups performed by individuals in several settings: at work, at
home, at school, during leisure time, during transport, or in other unspecified con-
texts. Contact matrices in France for a regular situation were estimated from a sur-
vey launched in 2015 [94]. When control strategies were put in place, mobility and
social interactions in each of these locations changed depending on policies imple-
mented such as school closure, work from home, closure of places of mass gathering
(e.g. gym, theatre, cinema). In my research work, I thus parametrized changes in
mobility and thus in social contacts in France during the first national lockdown
(March 17 - May 10, 2020) and in the 7 weeks after lockdown (May 11 - June 28,
2020). We parametrized such matrices through mobility and behavioural data. In
particular, we reduced contact consideration % of attendance at school [159], adop-
tion of physical distancing over time [190] and percentage of teleworkers informed
by mobile phone data [121]. Other studies also proved that seniors have a higher risk
aversion behaviour compared to other age groups leading to an average additional
30% reduction of their physical contacts [190] . After parametrizing contact matri-
ces, we integrated them into the regional transmission models and we quantified the
underdetection of COVID-19 cases in France at emergence from lockdown.

In the following section, I will present the resulting article about my research
work.

6.2 Article #3: Underdetection of COVID-19 cases in France
threatens epidemic control
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Underdetection of cases of COVID-19 in 
France threatens epidemic control

Giulia Pullano1,2,7, Laura Di Domenico1,7, Chiara E. Sabbatini1, Eugenio Valdano1, 
Clément Turbelin1, Marion Debin1, Caroline Guerrisi1, Charly Kengne-Kuetche1, Cécile Souty1, 
Thomas Hanslik1,3,4, Thierry Blanchon1, Pierre-Yves Boëlle1, Julie Figoni5, Sophie Vaux5, 
Christine Campèse5, Sibylle Bernard-Stoecklin5 & Vittoria Colizza1,6 ✉

As countries in Europe gradually relaxed lockdown restrictions after the first wave, 
test–trace–isolate strategies became critical to maintain the incidence of coronavirus 
disease 2019 (COVID-19) at low levels1,2. Reviewing their shortcomings can provide 
elements to consider in light of the second wave that is currently underway in Europe. 
Here we estimate the rate of detection of symptomatic cases of COVID-19 in France 
after lockdown through the use of virological3 and participatory syndromic4 
surveillance data coupled with mathematical transmission models calibrated to 
regional hospitalizations2. Our findings indicate that around 90,000 symptomatic 
infections, corresponding to 9 out 10 cases, were not ascertained by the surveillance 
system in the first 7 weeks after lockdown from 11 May to 28 June 2020, although the 
test positivity rate did not exceed the 5% recommendation of the World Health 
Organization (WHO)5. The median detection rate increased from 7% (95% confidence 
interval, 6–8%) to 38% (35–44%) over time, with large regional variations, owing to a 
strengthening of the system as well as a decrease in epidemic activity. According to 
participatory surveillance data, only 31% of individuals with COVID-19-like symptoms 
consulted a doctor in the study period. This suggests that large numbers of 
symptomatic cases of COVID-19 did not seek medical advice despite recommendations,  
as confirmed by serological studies6,7. Encouraging awareness and same-day 
healthcare-seeking behaviour of suspected cases of COVID-19 is critical to improve 
detection. However, the capacity of the system remained insufficient even at the low 
epidemic activity achieved after lockdown, and was predicted to deteriorate rapidly 
with increasing incidence of COVID-19 cases. Substantially more aggressive, targeted 
and efficient testing with easier access is required to act as a tool to control the 
COVID-19 pandemic. The testing strategy will be critical to enable partial lifting of the 
current restrictive measures in Europe and to avoid a third wave.

Surveillance and detection aim to rapidly identify and isolate cases to pre-
vent onward transmission of SARS-CoV-2 in the community and to avoid a 
substantial resurgence of cases of COVID-19. After an initial period—during 
which, because of a limited capacity, testing for SARS-CoV-2 infections 
mainly focused on severely ill patients—a new testing policy was imple-
mented in France to systematically screen for potential infections with 
SARS-CoV-2 and enable lifting of the lockdown restrictions on 11 May 20208.

The specific characteristics of COVID-19, however, hinder the iden-
tification of cases9–11. Large proportions of asymptomatic infectious 
individuals12, and the presence of mild or paucisymptomatic infections 
that easily go unobserved9,11, present serious challenges to the detec-
tion and control of SARS-CoV-29,10,13. Missing a substantial portion of 
infectious individuals compromises the control effort, enabling the 

virus to silently spread10–12. Synthesizing evidence from virological3 and 
participatory syndromic surveillance4 with mathematical models2,14 
that account for behavioural data15–18, we assessed the performance 
of the new testing policy in France and identified its main limitations 
for actionable improvements.

COVID-19 surveillance
Management of the COVID-19 pandemic in France after lockdown 
in spring (May–June) 2020 involved the generation of a centralized 
database that collected all data on virological testing (SI-DEP3, the 
information system for testing). All individuals with symptoms that 
were compatible with COVID-1919 were invited to consult their general 
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practitioner and obtain a prescription for a virological test8. Contacts 
of confirmed cases were traced and tested. A total of 20,777 virologi-
cally confirmed cases were notified from 13 May (week 20) to 28 June 
(week 26) in mainland France. These cases included individuals with 
or without symptoms at the time of testing who tested positive for 
SARS-CoV-2 or individuals who tested positive for SARS-CoV-2 for 
whom information on clinical status at the time of testing was miss-
ing (Extended Data Fig. 1). Accounting for presymptomatic individuals 
among those presenting with no symptoms at the time of testing and 
after imputation of missing data (Methods), an estimated 16,165 (95% 
confidence interval, 16,101–16,261) symptomatic cases were tested 
in the study period (Fig. 1a). The average delay from symptom onset 
to testing decreased from 12.5 days in week 20 to 2.8 days in week 26 
(Fig. 1b and Extended Data Fig. 1). Accounting for this delay (Methods 
and Extended Data Fig. 2), we estimated that 14,061 (13,972–14,156) 
virologically confirmed symptomatic cases had an onset of symptoms 
in the study period, showing a decreasing trend over time (2,493 in 
week 20, 1,647 in week 26). The test positivity rate decreased in the 
first weeks and stabilized at around 1.2% (mean over weeks 24–26).

A digital participatory system was additionally considered for COVID-
19 syndromic surveillance in the general population20, including those 
who did not consult a doctor. Called COVIDnet.fr, it was adapted from 
the platform GrippeNet.fr (which is dedicated to the surveillance of 
influenza-like illnesses4) to respond to the COVID-19 health crisis in early 
2020. It is based on a set of volunteers who weekly self-declare their 
symptoms, along with sociodemographic information. On the basis of 
symptoms declared by an average of 7,500 participants each week, the 
estimated incidence of suspected cases of COVID-1919 decreased from 
about 1% to 0.8% over time (Fig. 1c). Of 524 suspected cases, 162 (31%) 
consulted a doctor in the study period. Among them, 89 (55%) received 
a prescription for a test, resulting in the screening of 50 individuals 
(56% of those given the prescription) (Fig. 1d).

COVID-19 pandemic trajectories and detection rates
We used stochastic discrete age-stratified epidemic models2,14 based on 
demography, age profile21 and social contact data15 of the 12 regions of 
mainland France to account for age-specific contact activity and role in 
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Fig. 1 | Virological surveillance, participatory syndromic surveillance and 
behavioural data for model parameterization. a, Estimated number of 
virologically confirmed symptomatic cases in mainland France by week of 
testing and week of onset (bar graphs), and test positivity rate (line graphs). 
Estimates are based on the imputation of individuals without symptoms who 
tested positive at the time of testing into asymptomatic or presymptomatic; 
imputation of missing data on clinical status at the time of testing into 
asymptomatic, presymptomatic or symptomatic; and imputation of the date of 
onset of symptoms for presymptomatic and symptomatic cases (Methods). 
Imputations were performed n = 100 times. Uncertainties (black bars) 
correspond to the 95% confidence intervals. Test positivity rates were 
computed for cases with complete information. Data for weeks 20–26 were 
consolidated in week 30. b, Breakdown of virologically confirmed cases with 
symptoms and complete information in the SI-DEP database by week of testing 
according to the declared onset of symptoms (left y axis; n = 5,514).  

The estimated time from onset to testing is also shown (right y axis; median and 
95% confidence interval obtained from n = 100 imputations of the onset date).  
c, Weekly incidence of suspected cases of COVID-19 (median (dashed line), 95% 
confidence interval (shaded area) and 3-week moving average (solid line)), and 
percentage of individuals seeking healthcare (median and 95% confidence 
interval), estimated from the participatory surveillance system, COVIDnet.fr 
(average weekly n = 7,481). d, The number of suspected cases of COVID-19 in the 
participatory cohort who sought healthcare, and among those individuals, the 
number of individuals who received a prescription and performed a virological 
test when given the prescription. e, Estimated change in presence at workplace 
locations over time and by region based on Google location history data17. 
Region acronyms are listed in Table 1. f, Percentage of individuals avoiding 
physical contact with respect to lockdown, estimated from a large-scale survey 
conducted by Santé publique France18.
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COVID-19 transmission. Disease progression is specific to COVID-192,14 
and parameterized using the current knowledge to include presymp-
tomatic transmission22, and asymptomatic12 and symptomatic infec-
tions with different degrees of severity9,11,23,24. The model was shown to 
capture the transmission dynamics of the pandemic in Île-de-France 
in the first wave and was used to assess the effect of lockdown and exit 
strategies2,14. Full details are reported in the Methods.

Intervention measures were modelled as mechanistic modifications 
of the contact matrices, accounting for a reduction in the number of 
contacts engaged in specific settings, and were informed from empiri-
cal data. Lockdown data were obtained from previously published 
studies2,14. The exit phase was modelled considering region-specific 
data of school attendance based on the data from the Ministry of Educa-
tion16, partial presence at workplaces based on estimates from location 
history data of mobile phones17 (Fig. 1e), a reduction in the adoption of 
physical distancing over time and the increased risk aversion of older 
individuals based on survey data18 (Fig. 1f), and the partial reopening 
of activities. A sensitivity analysis was performed on the reopening 
of activities, as data were missing for an accurate parameterization 
of associated contacts. Testing and isolation of detected cases were 
implemented by considering a 90% reduction in contacts for the viro-
logically confirmed cases of COVID-192,14. Region-specific models were 
fitted to regional hospital admission data (Fig. 2) using a maximum 
likelihood approach. Further details are reported in the Methods and 
Supplementary Information.

The projected number of cases decreased over time in all regions, in 
agreement with the decreasing tendency reported in hospital admis-
sions during the study period (Fig. 2 and Extended Data Fig. 3). Overall, 
103,907 (95% confidence interval, 90,216–116,377) new symptomatic 
infections were predicted in mainland France in weeks 20–26 (from 
35,704 (30,290–40,748) in week 20 to 4,319 (3,773–4,760) in week 26). 
Île-de-France was the region with the largest predicted number of symp-
tomatic cases (from 12,427 (8,104–14,136) to 1,704 (1,258–2,004) from 
week 20 to week 26), followed by Grand Est and Hauts-de-France (Table 1 
and Extended Data Table 1).

Projections were substantially higher than the number of virologi-
cally confirmed cases (Figs. 2, 3). The estimated detection rate for 

symptomatic infections in mainland France in the period of weeks 
20–26 was 14% (12–16%), suggesting that about 9 out of 10 new cases 
with symptoms were not identified by the surveillance system. A lower 
detection rate was found for asymptomatic infections (Extended Data 
Fig. 5). The estimated detection rate increased over time (7% (6–8%) 
in week 20, 38% (35–44%) in week 26) (Table 1). By the end of June, five 
regions had a median detection rate above 50%, and six regions had 
a detection rate within the confidence interval of model projections 
(Fig. 3b–d). All regions except Brittany displayed average increasing 
trends in the estimated detection rate in June compared with May. We 
did not find any significant associations between the detection rate 
and the number of detected cases, or the test positivity rate (Extended 
Data Fig. 4). However, the detection rate was negatively associated 
with model-predicted incidence (Spearman correlation, r = −0.75, 
P < 10−15) (Fig. 3f). In addition, the data followed a power-law function, 
π = 66 × i−0.51, where π is the weekly detection rate of symptomatic cases 
(expressed as a percentage) and i the projected weekly incidence (num-
ber of cases per 100,000). This function quantifies the relationship 
between the detection capacity of the test–trace–isolate system and 
the circulation of the virus in the population. It clearly shows that the 
detection capacity rapidly decreases as the incidence of COVID-19 
increases.

Validation of the model was performed in two ways. First, we com-
pared our model projections of the percentage of the population 
infected with the results of three independent seroprevalence stud-
ies performed after the first wave in France7,25,26 (Methods). Modelling 
results are in agreement with serological estimates at the national and 
regional level (Fig. 3e and Extended Data Fig. 6). Second, we compared 
the projected incidence of symptomatic cases of COVID-19 in week 26 
(6.69 (5.84–7.37) cases per 100,000) with the value obtained from the 
number of virologically confirmed cases (2.55 (2.48–2.61) cases per 
100,000) and two estimates based on COVIDnet.fr data (Fig. 3g). The 
first estimate applies the measured test positivity rate to the incidence 
of self-reported suspected cases of COVID-19 (estimate 1, which yielded 
8.6 (95% confidence interval, 6.2–11.5) cases per 100,000); the second 
additionally assumes that only 55% would be confirmed as a suspected 
case by a physician and prescribed a test (according to COVIDnet.fr 

Table 1 | Population, confirmed and projected symptomatic cases, estimated detection rate and trends

Region Acronym Population 
(millions)

Number of 
laboratory-confirmed 
symptomatic cases 
by week of onset

Number of projected symptomatic  
cases by week of onset

Estimated detection 
rate (%) for 
symptomatic cases

Trend in 
detection 
rate

Week 20 Week 26 Week 20 Week 26 Week 20 Week 26

Île-de-France IDF 12.3 737 574 12,427 (8,104–14,136) 1,704 (1,258–2,004) 6 (5–9) 34 (29–46) +146%

Grand Est GRE 5.5 323 135 4,868 (2,992–5,848) 756 (568–914) 7 (6–11) 18 (15–24) +99%

Hauts de France HDF 6.0 308 225 4,476 (2,381–6,648) 396 (219–538) 7 (5–13) 57 (42–100) +186%

Auvergne-Rhône-Alpes ARA 8.0 204 181 3,552 (2,017–5,283) 312 (173–451) 6 (4–10) 58 (40–100) +244%

Occitanie OCC 5.9 166 106 851 (397–1,400) 128 (57–235) 19 (12–42) 83 (45–100) +165%

Provence–Alpes–Côte d’Azur PACA 5.1 164 73 3,040 (1,665–4,625) 157 (83–239) 5 (4–10) 46 (31–88) +289%

Pays de la Loire PDL 3.8 127 96 1,158 (463–1,846) 255 (103–423) 11 (7–27) 38 (23–93) +45%

Bourgogne–Franche–Comté BFC 2.8 118 36 1,591 (854–2,379) 154 (88–235) 7 (5–14) 23 (15–40) +95%

Nouvelle Aquitaine NAQ 6.0 115 43 1,040 (482–1,691) 94 (38–166) 11 (7–24) 46 (26–100) +54%

Centre-Val de Loire CVL 2.6 94 44 1,706 (812–2,511) 79 (34–142) 6 (4–12) 56 (31–100) +187%

Brittany BRE 3.3 80 23 672 (294–1,155) 113 (51–206) 12 (7–27) 20 (11–45) −28%

Normandy NOR 3.3 55 112 725 (322–1,194) 153 (63–258) 8 (5–17) 73 (43–100) +342%

Francea 64.6 2,493 1,647 35,704 (30,290–
40,748)

4,319 (3,773–4,760) 7 (6–8) 38 (35–44) +142%

Regions are ranked by decreasing number of confirmed cases in week 20. The trend is computed comparing the average of the estimated detection rate in the weeks of June (weeks 23–26) with 
the average in the weeks of May (weeks 20–22). For the number of projected symptomatic cases and the estimated detection rate, data are medians and 95% confidence intervals obtained from 
n = 500 independent stochastic runs. 
aData are for mainland France; Corsica and overseas territories were excluded.
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data; estimate 2, which yielded 4.7 (3.4–6.3) cases per 100,000). Our 
projections are in line with plausible estimates from COVIDnet.fr, and 
suggest that, on average, at least 80% of suspected cases should be 
tested to reach the predicted incidence.

Sensitivity analysis showed that the findings were robust to elements 
of the contact matrices that could not be informed by empirical data 
(Supplementary Figs. 8, 9). Furthermore, a model selection analysis 
showed that changes in contact patterns over time due to restrictions 
and the activities of individuals of different age classes after lockdown 
(for example, partial attendance at school and remote working) are 
needed to accurately capture the transmission dynamics (Supplemen-
tary Table 2 and Supplementary Fig. 5).

Discussion
Despite a test positivity rate in mainland France well below the rec-
ommendations (5%) of the WHO5, a substantial proportion of symp-
tomatic cases (9 out of 10) remained undetected in the first 7 weeks 
after lockdown.

Low detection rates in mid-May were in line with estimates for the 
same period from a seroprevalence study in Switzerland27. Surveil-
lance improved substantially over time, leading to half of the French 
regions reporting numbers of cases that were compatible with model 
projections. The framework progressively strengthened with increasing 
resources over time, as shown by a more-rapid detection of cases (78% 
reduction in the average delay from symptom onset to testing from May 
to June). At the same time, the system benefited from a substantial and 
concurrent decrease in epidemic activity in all regions.

Despite this positive trend, our findings highlight structural limita-
tions and a critical need for improvement. Some areas remained with 
limited diagnostic exhaustiveness. This is particularly concerning in 
those regions that were predicted to have large numbers of weekly 
infections (Île-de-France, in which only one out of three symptomatic 
cases was detected by the end of June, and Grand Est, in which one 
out of five was detected). Almost all patients (92%) who were clini-
cally diagnosed by sentinel general practitioners as suspected cases of 
COVID-19 were prescribed a test20. However, only 31% of individuals with 
COVID-19-like symptoms consulted a doctor according to participatory 
surveillance data. Overall, these figures suggest that a large number 
of symptomatic cases of COVID-19 were not screened because they 
did not seek medical advice despite the recommendations. This was 
confirmed by serological studies. In France, only 48% of symptomatic 
participants with antibodies against SARS-CoV-2 reported consulting 
a general practitioner7; in Spain, between 16% and 20% of individuals 
with antibodies against SARS-CoV-2 reported a previous virological 
screening6. By combining estimates from virological and participa-
tory surveillance data, we extrapolated an incidence rate from crowd-
sourced data that is compatible with model projections, under the 
hypothesis that the large majority of suspected cases would get tested 
(>80%). This finding further supports testing of all suspected cases of 
COVID-19. Large-scale communication campaigns should reinforce 
recommendations to raise awareness in the population and strongly 
encourage healthcare-seeking behaviour especially in patients with 
mild symptoms. At the same time, investigations to identify reasons 
for not consulting a doctor could be quickly performed through the 
participatory surveillance system.
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Fig. 2 | Hospital admissions and number of new symptomatic cases.  
a–c, Hospital admissions over time; data (points) and simulations (median and 
95% confidence intervals) for Île-de-France (a), Pays de la Loire (b) and 
Normandy (c). Hospital admission data up to week 27 (consolidated in  
week 28) were used to infer parameter values. d–f, Projected number of new 
symptomatic cases over time (median and 95% confidence interval) and 
estimated number of virologically confirmed symptomatic cases by week of 

onset (points), for the same regions (Île-de-France (d), Pays de la Loire (e)  
and Normandy (f)) (left y axis). The estimated detection probability of 
symptomatic cases (%) is also shown (red points, median and 95% confidence 
interval; right y axis). In all panels, 95% confidence intervals were obtained from 
n = 500 independent stochastic runs. Plots for the remaining regions are shown 
in Extended Data Fig. 3.
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Red tape might have contributed to low testing rates. Prescription 
of a test was deemed compulsory in the new testing policy to prevent 
misuse of diagnostic resources8; however, this involved consultation, 
prescription and a laboratory appointment, which may have discour-
aged mildly affected individuals who do not require medical assistance. 
To facilitate access, testing should not require a prescription, as later 
established by authorities28. Some local initiatives emerged over sum-
mer that increased the number of drive-through testing facilities, pro-
moted massive screening in certain areas and offered mobile testing 
facilities to increase proximity to the population29. The use of antigen 
tests will further facilitate access. These initiatives are particularly 
relevant to counteract socioeconomic inequalities in access to care in 
populations that are vulnerable to COVID-1930,31. However, such strate-
gies should not hinder a testing protocol that targets suspected index 
cases. Our results show that high testing efforts, measured by low test 
positivity rates, are not associated with high rates of detection. This was 
also observed in the UK during the first wave, when detection remained 
low despite large numbers of tests and a low positivity rate32. Without 
strong case-based surveillance, the risk is to disperse resources towards 
random individuals without symptoms who are unlikely to be positive. 
This could saturate the test–trace–isolate system, as observed during 
summer33, without slowing down the circulation of SARS-CoV-2 that is 
required to safeguard the hospital system.

Given presymptomatic transmission, notification of contacts should 
be almost immediate to enable the effective interruption of trans-
mission chains22. For testing to be an actionable tool to control the 

transmission of SARS-CoV-2, delays should be suppressed and screen-
ing rates greatly increased but better targeted. Over May–June, the 
average weekly number of tests was 250,000—remaining well below 
the objective that was originally set by authorities (700,000 tests). 
The number of tests increased over summer, but proportionally to 
the increased circulation of the virus. The capacity of detection of the 
test–trace–isolate system scaled as the inverse of the square root of 
the incidence, already deteriorating rapidly at low incidence levels. 
More aggressive testing that targets suspected index cases should 
be performed at low viral circulation to avoid case resurgence. The 
system was predicted to be able to detect more than two out of three 
cases (rate >66%) only if the incidence was lower than one symptomatic 
case per 100,000, a figure that is 50 times smaller than estimated at 
the exit from lockdown. As detection of at least 50% of cases is needed 
to control the pandemic while avoiding strict social distancing2, these 
results indicate that the system was insufficient to perform comprehen-
sive case-based surveillance, as has been recommended when aiming 
to phase out restrictions5. Current restrictions applied in Europe to 
curb the second wave offer a second opportunity to improve testing 
policies and support the lifting of these measures in the upcoming 
weeks. Failing to do so may lead to a rapid and uncontrolled increase 
in the number of cases of COVID-192,34. Such risk is even stronger in the 
winter season and with the existing fatigue with regard to adhesion to 
the restrictions18.

Models were region-based and did not consider a possible cou-
pling between regional epidemics caused by mobility. This choice 
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Fig. 3 | Detection rate and incidence. a, Projected number of new 
symptomatic cases over time (median and 95% confidence interval) and 
estimated number of virologically confirmed symptomatic cases by week of 
onset (points) in mainland France (left y axis). The estimated detection rate of 
symptomatic cases (%) is also shown (red points, median and 95% confidence 
interval; right y axis). b, Estimated detection rate of symptomatic cases (%) and 
95% confidence intervals over time for mainland France (red dots and bars), and 
for all regions (grey lines, only median values are shown for visualization).  
c, Map of the estimated detection rate (%) by region in week 26 (22–28 June 
2020). d, Estimated detection rate per region compared to the national 
estimate. Regions are ranked by increasing median detection rate. Box plots 
represent the median (line in the middle of the box), interquartile range (box 
limits) and 2.5th and 97.5th percentiles (whiskers). e, Predicted percentage of 
the population infected (median and 95% confidence interval) compared with 

estimates from the serological study EpiCov26 performed on a representative 
sample of the population in mainland France. f, Estimated detection rate of 
symptomatic cases (%) by region and by week compared with the projected 
incidence by region and by week. The curve shows the result of a least-square fit 
to the data with a power-law function, π = a × i−b, where π is the detection rate 
(expressed as a percentage), i is the weekly incidence (cases per 100,000), 
a = 66 (95% confidence interval, 52–85) and b = 0.51 (0.41–0.60). g, Estimated 
incidence of symptomatic cases and 95% confidence intervals in mainland 
France in week 26 from different sources: virological surveillance data (SI-DEP), 
participatory surveillance data (COVIDnet.fr, with two estimates) and model 
projections. h, Projected incidence per region compared to the national 
estimate. Regions are ranked as in d. Box plots are as defined in d. In all panels, 
medians and 95% confidence intervals for model projections were obtained 
from n = 500 independent stochastic runs.
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was supported by stringent movement restrictions during lockdown30, 
and by the limited mobility increase in May–June, before important 
inter-regional displacements took place at the start of the summer 
holidays in July. Foreign importations of the virus35 were neglected 
as France reopened its borders with EU member states on 15 June, 
and the Schengen area remained closed until July. The COVIDnet.fr 
cohort is not representative of the general population; however, a pre-
vious study on influenza-like illnesses has shown that the adjusted 
incidence was in good agreement with sentinel estimates4. Under-
detection may also continue because of the imperfect characteris-
tics of the reverse-transcription PCR tests used to identify infections 
of SARS-CoV-236. Some cases tested for SARS-CoV-2 could have had 
false-negative results, for example, because they were tested too early 
after the infection, thus further increasing the rate of underdetec-
tion. Previous work assessed the rate of underdetection in 210 coun-
tries32, but this study mainly focused on the early global dynamics. 
Our model gives up geographical extent for higher data quality in a 
specific country, providing a synthesis of data sources that character-
izes human behaviour over time and space together with virological 
and participatory surveillance data to identify the weak links in the 
pandemic response.

Our findings identify critical needs for the improvement of the test–
trace–isolate response system to control the COVID-19 pandemic. Sub-
stantially more aggressive and efficient testing that targets suspected 
cases of COVID-19 needs to be achieved to act as a way to control the 
COVID-19 pandemic. Associated communication and logistical needs 
should not be underestimated. These elements should be considered 
to enable the lifting of restrictive measures that are currently used to 
curb the second wave of COVID-19 in Europe.
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Methods

No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Virological surveillance data
The centralized database SI-DEP for virological surveillance3 collects 
all tests performed in France for any reason. In the period under study, 
guidelines recommended individuals to consult a general practitioner 
at the first sign of COVID-19-like symptoms and to obtain a prescription 
for a virological test (a prescription was compulsory to access the test)8. 
In addition, routine testing was performed for patients admitted to 
the hospital with any diagnosis, healthcare personnel and individuals 
at other facilities (for example, in some care homes for older people 
or long-term healthcare facilities). Data include detailed information 
for the individuals tested in France, including (1) the date of the test;  
(2) the result of the test (positive or negative); (3) location (region); (4) the 
absence or presence of symptoms at the time of testing; (5) self-declared 
delay between onset and test in presence of symptoms. The delay is 
provided with the following breakdown: onset date occurring 0–1 day 
before date of test, 2–4 days before, 5–7 days before, 8–15 days before, 
or more than 15 days before. For some tests, information on points (4) 
and (5) is missing. The SI-DEP database provided complete information 
for 23,210 (66%) out of 35,264 laboratory-confirmed cases of COVID-
19 tested between week 20 (11–17 May) and week 30 (19–26 July), with 
an increasing trend of complete information over time (from 49% in 
week 20 to 76% in week 30) (Extended Data Fig. 1). Among confirmed 
cases with complete information, 12,716 (55%) showed no symptoms 
at the time of testing (Extended Data Fig. 1). The study referred to the 
period from week 20 to week 26. Data up to week 30 were used to con-
solidate the data in the study period accounting for the delays.

Imputation of asymptomatic versus presymptomatic cases, 
onset date and missing information
Individuals who tested positive on a given date were recorded in the 
SI-DEP database as: cases with symptoms at the time of testing, with a 
self-declared delay from onset of symptoms; cases without symptoms 
at the time of testing; or cases with no information on presence or 
absence of symptoms at the time of testing. These three subsets of 
cases were analysed to account for the presence of presymptomatic 
individuals among those with no symptoms at the time of testing, 
imputation of missing data and the estimation of dates of infection 
or symptom onset.

For laboratory-confirmed cases of COVID-19 who had symptoms at 
the time of testing, we estimated their date of onset using the informa-
tion on the date of test and the time interval of onset-to-test delay, which 
was self-declared by the patients (Fig. 1b). In the time period between 
weeks 20 and 30, 20% of cases had an onset-to-test delay of ≤1 day, 63% 
had a delay of ≤4 days, 83% had a delay of ≤7 days and 88% had a delay 
of ≤15 days (Extended Data Fig. 1). We fitted a Gamma distribution to 
the onset-to-test delay data with a maximum likelihood approach, 
using three different periods of time (May, June and July), to account 
for changes in the distribution of self-declared delays over time (that is, 
longer delays at the beginning of the study period, shorter delays at its 
end) (Extended Data Fig. 2). The estimated average delay in May, June 
and July was 12.9 (95% confidence interval, 7.0–16.1), 5.1 (3.7–6.3) and 
2.7 (2.0–3.1) days, respectively. July data were used to consolidate data 
corresponding to infections with onset in June and tested with delay. 
Given a confirmed case with symptoms testing on a specific date, we 
assigned the onset date by sampling the onset-to-testing delay from 
the fitted distribution for that period, conditional to the fact that the 
delay lies in the corresponding time interval declared by the patient. 
We assumed that onset did not occur before the implementation of the 
national lockdown, on 17 March 2020 (week 12); we therefore truncated 

the Gamma distribution accordingly, when assigning the date of onset 
for cases with onset-to-test delay >15 days. The imputation procedure 
was carried out 100 times. Results were aggregated by week of onset.

For laboratory-confirmed cases of COVID-19 with no symptoms at the 
time of testing, we assumed that on average 40% of them were asymp-
tomatic12 (see the ‘Transmission model summary’ section), whereas 
the remaining 60% were presymptomatic who tested early thanks to 
contact tracing. Imputation was done by sampling from a binomial 
distribution and repeated 100 times. Data on contact tracing could 
not be used to inform data on infection or symptom onset, because 
of national regulatory framework on privacy preventing the matching 
of the two databases (virological tests and contact tracing). Given the 
low sensitivity of PCR tests in the early phase of the incubation period, 
we considered that imputed presymptomatic cases belonged to the 
prodromic phase. Onset date for presymptomatic cases was estimated 
by sampling from an exponential distribution with a mean of 1.5 days, 
corresponding to the duration of the prodromic phase in our model 
(Supplementary Table 1). For imputed asymptomatic, we assumed the 
same delay from infection to testing as in cases with symptoms. Given 
the structure of our compartmental model and to match the defini-
tion of the time used for symptomatic individuals (week of onset), 
we considered a delay in the detection of asymptomatic individuals 
starting from the end of the prodromic phase (corresponding to the 
symptom onset time for symptomatic infections) to the date of testing. 
We assigned this date by sampling the delay from the monthly gamma 
distribution. Imputation of the dates was repeated 100 times.

For laboratory-confirmed cases of COVID-19 with no information on 
symptoms at the time of testing, missing data were imputed by sam-
pling from a multinomial distribution with probabilities equal to the 
rate of occurrence of the outcomes (asymptomatic, presymptomatic 
or symptomatic with five possible time intervals for the onset-to-test 
delay) reported for cases with complete information and assuming 
the imputation of cases without symptoms into asymptomatic and 
presymptomatic, as described above. Imputation was performed by 
region and by week and repeated 100 times. Presymptomatic and symp-
tomatic individuals were aggregated together by onset date (Fig. 1a) 
to estimate the rate of detection of symptomatic cases.

Participatory surveillance data and analysis
COVIDnet.fr is a participatory online system for the surveillance of 
COVID-19, available at https://www.covidnet.fr/. It was adapted from 
GrippeNet.fr4 to respond to the COVID-19 health crisis in March 
2020. GrippeNet.fr is a participatory system for the surveillance of 
influenza-like illnesses available in France since 2011 through a col-
laboration between Inserm, Sorbonne Université and Santé publique 
France, supplementing sentinel surveillance4,37. The system is based 
on a dedicated website to conduct syndromic surveillance through 
self-reported symptoms volunteered by participants resident in France. 
Data are collected on a weekly basis; participants also provide detailed 
profile information at enrolment38. In addition to tracking the incidence 
of influenza-like illnesses4,37, GrippeNet.fr was used to estimate vaccine 
coverage in specific subgroups39, individual perceptions towards vac-
cination40 and healthcare-seeking behaviour41. It was also used to assess 
behaviours and perceptions related to diseases other than influenza42, 
including COVID-1943.

Participants are on average older and include a larger proportion 
of women compared to the general population38,44. The participating 
population is, however, representative in terms of health indicators 
such as diabetes and asthma conditions. Despite these discrepancies, 
trends of the estimated incidence of influenza-like illnesses from Grip-
peNet.fr reports compared well with those of the national sentinel 
system4,37. All analyses were adjusted by age and sex of participants.

To monitor suspected cases of COVID-19 in the general population, 
we used the expanded case definition recommended by the High 
Council of Public Health for systematic testing and described in their  



20 April 2020 notice19, which included either of the two following defi-
nitions: (1) (sudden onset of symptoms OR sudden onset of fever) AND 
(fever OR chills) AND (cough OR shortness of breath OR (chest pain 
AND age > 5 years old)) or (2) (sudden onset of symptoms) OR (sudden 
onset of fever AND fever); and one of the three following conditions:  
(i) (age > 5 years old) AND ((feeling tired or exhausted) OR (muscle/joint 
pain) OR (headache) OR (loss of smell WITHOUT runny or blocked nose) 
OR (loss of taste)); or (ii) ((age ≥ 80 years old) OR (age < 18 years old)) 
AND (diarrhoea); or (iii) (age < 3 months old) AND (fever WITHOUT 
other symptoms).

Two independent estimates obtained from COVIDnet.fr cohort data 
for the incidence of symptomatic cases in week 26 are shown in Fig. 3. 
These estimates were computed as follows. Estimate 1 = (COVIDnet.fr 
estimated incidence of suspected cases in week 26) × (test positivity 
rate from SI-DEP in week 26); estimate 2 = (COVIDnet.fr estimated inci-
dence of suspected cases in week 26) × (estimated proportion screened 
and confirmed as a suspected case of COVID-19 by a physician, and 
prescribed a test; estimates from COVIDnet.fr) × (test positivity rate 
from SI-DEP in week 26). The two estimates were used to validate model 
projections and identify the specific surveillance mechanisms that 
needed improvement.

Ethics statement
GrippeNet.fr/COVIDnet.fr was reviewed and approved by the French 
Advisory Committee for research on information treatment in the 
health sector (that is, CCTIRS, authorization 11.565), and by the French 
National Commission on Informatics and Liberty (that is, CNIL, authori-
zation DR-2012–024)—the authorities ruling on all matters related to 
ethics, data and privacy in the country. Informed consent was provided 
by each participant at enrolment, according to regulations.

Transmission models summary
We used a stochastic discrete age-stratified transmission model for 
each region based on demographic, contact15 and age profile data of 
French regions21. Models were region-specific to account for the geo-
graphically heterogeneous epidemic situation in the country and given 
the mobility restrictions limiting inter-regional movement fluxes. The 
study focused on mainland France where the epidemic situation was 
comparable across regions, and excluded Corsica, which reported 
very limited epidemic activity and overseas territories characterized 
by increasing transmission20.

Four age classes were considered: [0–11), [11–19), [19–65) and 
65+ years old, referred to as children, adolescents, adults and older 
individuals. Transmission dynamics follows a compartmental scheme 
specific to COVID-19, in which individuals were divided into susceptible, 
exposed, infectious and hospitalized (Supplementary Information and 
Supplementary Figs. 1, 2). We did not consider further progression from 
hospitalization (for example, admission to intensive care units, recov-
ery or death2) as it was not needed for the objective of the study. The 
infectious phase is divided into two steps: a prodromic phase (Ip) and 
a phase during which individuals may remain either asymptomatic (Ia, 
with probability12 pa = 40%) or develop symptoms. In the latter case, we 
distinguished between different degrees of severity of symptoms9,11,23,24, 
ranging from paucisymptomatic (Ips), to infectious individuals with 
mild (Ims) or severe (Iss) symptoms. Prodromic, asymptomatic and pau-
cisymptomatic individuals have a reduced transmissibility rβ = 0.55, 
as estimated previously11, and in agreement with evidence from the 
field45–47. A reduced susceptibility was considered for children and 
adolescents, along with a reduced relative transmissibility of children, 
following available evidence from household studies, contact-tracing 
analyses, serological investigations and modelling works48–53. A sensitiv-
ity analysis was performed on the relative susceptibility and transmis-
sibility of children, and on the proportion of asymptomatic infections 
(Supplementary Figs. 10–13). Full details are reported in the Supple-
mentary Information.

The study was not extended to the summer months, because of (1) the 
challenge of mechanistically parameterizing the contact matrices dur-
ing summer; (2) the increase of movement fluxes across regions weaken-
ing our assumption of region-specific models; and (3) the interruption 
of COVIDnet.fr surveillance during the summer break, which prevented 
the identification of the key factors behind case underascertainment.

Contact matrices
Age-stratified transmission uses a social contact matrix that reports 
the average contact rates between different age classes in France15. 
This refers to the baseline condition, that is, before lockdown. The 
contact matrix includes the following layers: contacts at home, 
school, workplace, transport, leisure activities and other activities, 
and discriminates between physical and non-physical contacts. To 
account for the change of contact patterns over time, contact matri-
ces are mechanistically parameterized, by region and over time, 
with different data sources informing on the percentage of students 
going to school16, the percentage of workers going to the workplace17, 
the compliance to preventive measures18, with a higher compliance 
registered in older individuals18. Information on the progressive 
reopening of activities indicates that leisure and other activities 
were only partially open in the study period. Data, however, are not 
fine-grained enough to parameterize our model, so we assume a 50% 
opening of these activities and explore variations in the sensitivity 
analysis.

School attendance. School reopening was parameterized by consider-
ing the percentage of reported attendance at school (pre-school and 
primary school; middle and high school) provided by the Ministry of 
Education16 (Supplementary Fig. 3). The number of contacts in the 
school matrix was modified to account for the attendance of students 
in each school level provided by data. That is, attendance of 14.5%, 
referring, for example, to the attendance registered in Île-de-France in 
pre-schools and primary schools, corresponds to a reduction of 85.5% 
in the number of contacts established at school by students belonging 
to that school level. Contacts for different modes of transport were 
modified accordingly.

Presence at work. To account for the percentage of individuals at 
work, given recommendations on remote working and activities that 
were not yet reopened, we used the estimated variation of presence at 
workplaces based on mobile phone location data provided by Google 
Mobility Trends17. Contacts at work and for different modes of transport 
were therefore modified according to this percentage, as described for 
contacts at school. Household contacts were increased proportionally 
to each adult staying at home based on statistics comparing weekend 
versus weekday contacts15 and the proportion of adults working during 
the weekend54, as done previously2.

Adoption of physical distancing. Our previous work showed that 
physical contacts during lockdown were fully avoided2, in agreement 
with data collected afterwards18. To account for individual adoption 
of preventive behaviour after lockdown, we used the percentage of 
population avoiding physical contacts estimated from a large-scale 
survey conducted by Santé publique France (CoviPrev18). Data were 
fitted with a linear regression (Fig. 1) to provide the weekly percent-
age of individuals avoiding physical contacts. We therefore modified 
our contact matrices over time, removing the percentage of physical 
contacts corresponding to the survey estimates for that week.

Increased risk aversion of older individuals. Data from the Santé 
publique France survey CoviPrev18 also show that older individuals 
protected themselves further relative to other age classes. On aver-
age, they respected physical distancing 28% more than the other age 
classes (Supplementary Fig. 4). For this reason, we considered a further 
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reduction of 30% in contacts for older individuals in the exit phase, 
informed by survey data.

Inference framework
The parameters of the transmission models to be estimated are specific 
to each pandemic phase.

Before lockdown, {β, t0}, where β is the transmission rate per contact 
and t0 is the date of the start of the simulation, seeded with 10 infec-
tious individuals.

During lockdown, {αLD, tLD}, where αLD is the scaling factor of the trans-
mission rate per contact and tLD is the date when lockdown effects on 
hospitalization data became visible.

After lockdown, {αexit, πa(w), πs(w)}, where αexit is the scaling factor 
of the transmission rate per contact, and πa(w) and πs(w) are the pro-
portion of asymptomatic and symptomatic cases tested in week w of 
the exit phase, respectively. Detected cases in the simulations had 
their contacts reduced by 90% to mimic isolation, as done in previous 
studies2,14.

We used simulations of the stochastic model to predict values for all 
quantities of interest (500 simulations each time). We fitted the model 
to the daily count of hospitalizations Hobs(d) on day d throughout the 
period and the number of people testing positive by week of onset, 
split according to disease status (symptomatic or asymptomatic), 
denoted Tests,obs(w) and Testa,obs(w) in week w of the exit phase. We used 
hospital admission data up to week 27 (29 June–5 July) to account for 
the average delay from infection to hospitalization. Data in week 27 
were consolidated by waiting for one additional week to account for 
updates and missing data (week 28, 6–12 July 2020).

We assumed a Poisson distribution for hospitalizations and a bino-
mial distribution for the number of people getting the test, therefore 
the likelihood function is
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where Θ = {β, t0, αLD, tLD, αexit, {πa(w)}, {πs(w)}} indicates the set of param-
eters to be estimated, Hpred(d) is the model-predicted number of hospi-
tal admissions on day d, is,pred(w) and ia,pred(w) are the model-predicted 
weekly incidences of symptomatic and asymptomatic cases, respec-
tively, in week w of the exit phase, PPoisson is the probability mass function 
of a Poisson distribution, PBinomial for a binomial distribution, [t0, tn] is 
the time window considered for the fit, and w is the week in the exit 
phase (weeks 20–26).

We reduced the required computations with an optimization pro-
cedure in two steps, first maximizing the likelihood function in the 
pre-lockdown and lockdown phase to estimate the first four param-
eters, and then maximizing the likelihood in the exit phase by fixing 
the first four parameters that describe the epidemic trajectory before 
the exit phase to their maximum likelihood estimators (MLEs). This 
second step was further simplified through an iterative procedure, 
and we show through simulations that the simplified optimization 
procedure is consistent and well-defined. The parameter space was 
explored using NOMAD software55. Fisher’s information matrix was 
estimated at the MLE value to obtain the corresponding confidence 
intervals. Simulations were then parameterized with 500 parameter 
sets obtained from the joint distribution of transmission parameters 
at MLE (one stochastic simulation for each parameter set). A Bayesian 
estimate of the posterior parameter distribution using Markov chain 
Monte Carlo (MCMC) would also have been an alternative to maximum 
likelihood and confidence interval estimation. In this case, however, 
MCMC would have considerably slowed down parameter exploration, 
with negligible added value to the fitting procedure.

We repeated model fitting starting from several starting points and 
using different random number streams. Values of fitted parameters 
and full details on the different steps and the tests performed are 
reported in the Supplementary Information (Supplementary Figs. 6, 
7 and Supplementary Table 3).

Simulation details
Simulations are initialized with 10 infected adults in the Ip compartment 
at time t0. We obtained 500 parameter sets from the joint distribution 
of transmission parameters at MLE and ran one stochastic simulation 
for each parameter set. Therefore, errors in the detection rates com-
puted in the output account for the variability of the estimate of the 
parameters, in addition to the stochastic fluctuations of the model. We 
find that the errors in the estimation of the detection rates obtained 
including the variability of the parameters are slightly larger than the 
ones obtained with only stochastic fluctuation, suggesting that the 
stochasticity of the model is the main source of error in the estimation 
of the detection rate.

Model selection analysis
To assess the role of the mechanistic modification of the contact matrix 
informed by the different data sources in the exit phase, we compared 
our model to a simplified version assuming that contact patterns in 
the exit phase do not change from pre-epidemic conditions, and that 
all changes in the epidemic trajectory are explained exclusively by 
the transmissibility per contact. This is equivalent to normalizing the 
contact matrix to its largest eigenvalue and estimating the reproductive 
ratio over time. We compared the two models with the Akaike infor-
mation criterion and found that accounting for changes in contacts 
better describes the epidemic trajectory (Supplementary Table 2 and 
Supplementary Fig. 5).

Comparison with serological estimates
We compared model projections with serological estimates from three 
independent studies7,25,26 (Fig. 3e and Extended Data Fig. 6).

Estimates by Carrat et al.7 used ELISA-S tests and ELISA-NP tests. The 
sample was not representative of the population, and estimates were 
weighted to account for this bias. In the comparisons, we used the results 
from a multiple imputation method performed by the authors and esti-
mating a participant’s positivity with a likelihood of positivity based on 
observed test results and covariates (see ref. 7 for more details).

Estimates by Santé publique France25 are based on at least one 
positive result in one of the following three tests: ELISA-S, ELISA-NP 
and a pseudo-neutralization test that detects the presence of 
pseudo-neutralizing antibodies, representative of the presence of 
neutralizing antibodies as conferring protection against infection. 
Analyses were performed on residual sera obtained from clinical 
laboratories, and estimates were weighted to account for the lack of 
representativeness.

Estimates by EpiCoV26 (Enquête Eṕideḿiologie et Conditions de vie 
lieés à la Covid-19) used ELISA-S tests and further validated these with a 
seroneutralizing antibody test at higher specificity (see ref. 26 for more 
details). This was the only seroprevalence survey that was conducted 
in a representative sample of the population. For this reason, we used 
it as the reference study.

For all studies, we report in Fig. 3e and Extended Data Fig. 6 the estimates 
14 days before the last blood collection to account for the time needed 
to mount a detectable presence of antibodies. For the EpiCoV survey, 
we used the last date at which samples were sent back to the laboratory.

Modelling results are in good agreement with the serological esti-
mates at the national level (Fig. 3e) and in the large majority of the 
regions (Extended Data Fig. 6). Projections tend to be systematically 
smaller than serological estimates in two regions that were weakly 
affected by the epidemic (Pays de la Loire and Brittany), although they 
remained compatible with observations.



Overall differences may be due to the limitations of the methods 
involved. First, the type of tests, the specificity levels, the samples of 
the population tested, and the weighting and imputation approaches 
considered in each serological study could lead to differences across 
the three investigations. We note, for example, that larger discrepan-
cies are observed between EpiCov and Santé publique France results 
in those regions that experienced smaller epidemics. We used EpiCov 
as the reference study as it was the only one study that was conducted 
on a representative sample of the population. Second, there are limita-
tions to the dataset of hospital admissions used to calibrate the models: 
the database infrastructure for data collection became operational in 
mid-March and was filled in retrospectively. Notification biases would 
inevitably alter the inference of parameters in the pre-lockdown phase. 
This may have differed region by region; however, we have no way to 
control for this potential bias; possible errors would have affected 
regions with small-size epidemics more than others. In support of this 
hypothesis, we note that a similar but independent mathematical model 
fitted to regional hospitalization data24 in the first wave predicted small 
epidemics in Pays de la Loire and Brittany, similarly to our model.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data used for model parameterization (contact matrices15, school 
attendance16, presence at workplaces17 and avoidance of physical con-
tacts18) are available at the cited sources. Hospitalization data used 
for model calibration are made available with the code. Virological 
data3 are available at the cited source; data on onset-to-test delay 
are made available with the code. COVIDnet.fr individual data can-
not be shared owing to restrictions imposed by the French national 
data protection authorities. Requests for custom access to aggre-
gated and post-processed data can be made to the GrippeNet.fr/
COVIDnet.fr Scientific Committee (https://covidnet.fr/fr/covidnet/
confidentialite-et-securite-des-donnees/) through the submission 
of a scientific proposal describing the aims, methods, data format 
requested and team proposing the project. Decisions by the GrippeNet.
fr/COVIDnet.fr Scientific Committee will be based on pertinence of the 
scientific proposal to the objectives of COVIDnet.fr and on the con-
straints on privacy and data treatment imposed by national regulatory 
authorities. Adjusted data on COVIDnet.fr participants, incidence and 
healthcare-seeking behaviour are made available with the code. Source 
data are provided with this paper.

Code availability
Code for the transmission models used for the analyses is available 
at https://github.com/EPIcx-lab/COVID-19/tree/master/Underdetec-
tion_France.
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Extended Data Fig. 1 | Information provided by SI-DEP database and 
imputation of missing data. a, Breakdown of laboratory-confirmed cases of 
COVID-19 (n = 35,264) according to information available. Missing data refer to 
cases for which information regarding absence or presence of symptoms at the 
time of testing and self-declared onset-to-test delay were not provided.  
b, Breakdown of laboratory-confirmed cases of COVID-19 with complete 
information (n = 23,210) according to absence or presence of symptoms on the 

date of testing and onset-to-test delay. c, Estimated number of asymptomatic, 
presymptomatic and symptomatic confirmed cases by week of testing, after 
imputation of missing data about presence or absence of symptoms. Darker 
and lighter colours indicate cases with complete information and missing data, 
respectively. The 95% confidence intervals (black bars) are obtained by 
applying the imputation procedure 100 times.



Extended Data Fig. 2 | Estimation of onset-to-test delay distribution.  
a, Data used for the fit. Breakdown of laboratory-confirmed cases of COVID-19 
with symptoms (n = 10,494) according to month of testing and the declared 
time interval of onset-to-testing delay. b, Gamma distribution fitted through 
maximum likelihood to data referring to May (shape parameter 0.61, 0.42–0.80 
(median estimate and 95% Wald confidence interval); scale parameter 21.08, 

9.41–32.78). c, Gamma distribution fitted through maximum likelihood to data 
referring to June (shape parameter 0.75, 0.51–0.99; scale parameter 6.77,  
3.77–9.75). d, Gamma distribution fitted through maximum likelihood to data 
referring to July (shape parameter 1.69, 1.12–2.28; scale parameter 1.57,  
0.96–2.17). Shaded areas represent 95% confidence interval of the cumulative 
distribution function.
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Extended Data Fig. 3 | Hospital admissions and number of new 
symptomatic cases. a–l, For each region, the pair of panels shows the hospital 
admissions over time (data (points) and simulations (median and 95% 
confidence interval)) (left) and the projected number of new symptomatic 
cases over time (median and 95% confidence interval) and the estimated 
number of virologically confirmed symptomatic cases by week of onset 
(points) and detection rate (red points; right y axis) (right). Medians and 95% 

confidence intervals are obtained from n = 500 independent stochastic runs. 
Plots are reported for all 12 regions of mainland France: Île-de-France (a), 
Hauts-de-France (b), Grand Est (c), Auvergne–Rhône–Alpes (d), Pays de la  
Loire (e), Provence–Alpes–Cote d’Azur (f), Nouvelle Aquitaine (g), Occitanie 
(h), Bourgogne–Franche–Comté (i), Centre-Val de Loire ( j), Brittany (k) and 
Normandy (l). Hospital admission data up to week 27 (consolidated in week 28) 
were used to calibrate the models.



Extended Data Fig. 4 | Detection rate versus indicators linked to testing 
policy and effectiveness. a, Detection rate versus the number of 
detected symptomatic cases, by week and by region. b, Detection rate versus 

positivity rate by week of testing. Results of a Spearman correlation test are 
provided (r, Spearman correlation coefficient; P, P value).
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Extended Data Fig. 5 | Estimates of the detection rate for symptomatic and 
asymptomatic cases. a, Projected number of new asymptomatic cases over 
time (median and 95% confidence interval), estimated number of virologically 
confirmed symptomatic cases by week of onset (black dots) and detection rate 
by week (red dots, median and 95% confidence interval) in mainland France. 

Medians and 95% confidence intervals are obtained from n = 500 independent 
stochastic runs. b, As in a, but considering both symptomatic and 
asymptomatic cases. c, Percentage of estimated asymptomatic and 
symptomatic individuals among the estimated number of virologically 
confirmed cases (n = 17,939).



Extended Data Fig. 6 | Model predictions versus serological estimates.  
a, Serological estimates per region from three seroprevalence studies versus 
corresponding model projections. Error bars correspond to 95% confidence 
intervals. b–m, For each region, the panel shows the predicted percentage of 
infected population over time (red curves and shaded areas for median and 95% 
confidence interval) and serological estimates of EpiCov26 (red dots), Santé 
publique France (SpF)25 (green dots) and ref. 7 (black dots in b, c, m). Medians 

and 95% confidence intervals for model projections are obtained from n = 500 
independent stochastic runs. Plots are reported for all 12 regions of mainland 
France : Île-de-France (b), Grand Est (c), Provence–Alpes–Cote d’Azur (d), 
Hauts-de-France (e), Centre-Val de Loire (f), Auvergne–Rhône–Alpes (g), 
Bourgogne–Franche– Comté (h), Occitanie (i), Normandy ( j), Pays de la  
Loire (k), Brittany (l) and Nouvelle Aquitaine (m).
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Extended Data Table 1 | Population, confirmed and projected symptomatic cases, and estimated detection rate

Results correspond to the full study period, from 11 May to 28 June 2020. 
* Data are for mainland France; Corsica and overseas territories were excluded.
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Chapter 6. Parametrizing social mixing from mobility data to model the first wave

of COVID-19 in France

6.3 Conclusions

In this work, we used a stochastic discrete age-stratified transmission model, inte-
grating demographic, age profile, social contact data, mobility data, data on adop-
tion of preventive measures to quantify the underdetection of COVID-19 cases in
France in the 7 weeks after the first national lockdown.

A total of 20,777 virologically confirmed cases of COVID-19 on emerging from
the first lockdown from 13 May to 28 June 2020 were reported in mainland France
by Santé publique France with a weekly number of tests of around 250,000 and a
positivity rate < 2%. We used virological data to estimate the number of confirmed
cases by onset date, and we measured the weekly rate of underdetection by compar-
ing these estimates with model projections and we found that around 90,000 symp-
tomatic infections, corresponding to 9 out of 10 cases, were not ascertained by the
surveillance system, although the test positivity rate was lower than the threshold
of 5% recommended by the World Health Organization (WHO). This suggests that
test positivity rate is not a good indicator of a system’s detection capacity.

The detection rate increased over time in France, ranging from 7% [6%-8%] at the
beginning of May to 38% [35%-44%] at the end of June, and it varies widely region
by region, showing how the number of cases is not a reliable estimation to monitor
viral circulation within regions. Moreover, we found that the capacity of detection
of the surveillance system scaled as the inverse of the square root of the incidence,
showing that the surveillance system detects more than two out of three cases (66%)
only if the incidence is lower than one symptomatic case per 100,000 inhabitants.
This suggests that surveillance efforts need to be improved when viral circulation is
low.

When strategies such as vaccinations or medical treatments are not available
or sufficient, performing a surveillance system is the only option to avoid non-
pharmaceutical restrictions. In a previous work, we found that it is necessary to test
at least 50% of COVID-19 cases to control local diffusion without putting restrictions
in place [81]. Our results, therefore, underlined the importance of improving the
performance of the surveillance system even when the positive rate was not alarm-
ing. In fact, as expected, at the end of June in France, a detection rate lower than 40%
and the relaxation of social distancing involved the resurgence of viral circulation in
most regions. This growing incidence strained the testing system and led to the 2nd
wave.

In literature static contact matrices have been largely embedded into transmis-
sion epidemic model to describe social mixing [89, 91, 93, 95, 191, 192]. In this work,
we introduced a method for parametrizing contact matrices and thus embedding
into models those changes in time and space of social and mobility behaviour which
were due to the ongoing epidemic. Using static matrices from survey data for a
pre-pandemic scenario, we parametrized them through mobility and behavioural
data in order to model the effective social mixing across age groups during and on
emergence from the first lockdown in France. More specifically, we assessed varia-
tions in social contacts due to control strategies in terms of partial closure of school,
recommendations on working remotely, and avoiding mass gatherings.

Google mobility reports [121] provide the variation in each region of people go-
ing to work compared to a pre-pandemic scenario. We used such information to re-
duce contact at work and increase contact at home accordingly. We also parametrized
adaptive behaviours of individuals to the epidemic in terms of senior isolation and
avoidance of physical contact. Integrating this information into the epidemic mod-
els allowed us to reproduce reliable outputs on new infections and thus assess the
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efficacy of the testing system.
In order to assess the impact of using parametrized contact matrices compared

to static ones which do not take behavioural changes into account, we performed a
model selection analysis comparing fitted simulated outputs using both approaches.
We found that accounting for changes in contact patterns over time better describes
the epidemic trajectory (See Supplementary Material of the paper). Parametrizing
contact matrices through real-time data is thus extremely powerful in developing
more realistic transmission models.

Given the reliability of simulated output provided by dynamical matrices, the
use of parametrized social contacts in specific settings may be used in the epidemic
model for doing predictions and scenario analysis. For instance, they may be used to
reproduce social mixing during potential targeted intervention scenarios (e.g. school
closure, required teleworking) and to inform predictive epidemic models in order to
assess the expected efficacy of different social or travel restrictions [124, 125, 193].

There are however some limitations. We developed region-based models, not
taking into account potential re-seeding events caused by mobility to/from other
regions. However, given the strong reductions in mobility in France during the first
lockdown and the limited individual displacements in May-June, in this context,
inter-regional trips were negligible [31]. Moreover, foreign importations were ne-
glected, as France reopened its borders with the European Member States in June,
and the Schengen area remained closed till July.

To conclude, as static contact matrices have been computed in several countries
over the world [89, 95], dynamical matrices could be parametrized over time in such
countries and applied to specific epidemic contexts. Since the approach is fully data-
driven, the availability of mobility and behavioural data on a large scale becomes
the fundamental ingredient to parametrize social contacts. Mobility data such as
Google and Apple mobility reports, however, are available for all countries in the
world, providing daily positioning indicators in different settings and it may thus
make possible the parametrization of social mixing across countries.
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Chapter 7

Conclusions and Perspectives

Over the previous Chapters, I discussed how mobility can be inferred by several
sources of data and can be integrated into mathematical models to identify the main
mechanisms that drive epidemic transmission and to support the management of an
health crisis. In Chapter 2, 3 and 4, particular attention is dedicated to the extrac-
tion of mobility fluxes from mobile phone data and their integration into epidemic
models. In Chapter 5 and 6, I presented two of the published works in which we
integrated air traffic and mobile phone data into epidemic models to help govern-
ments and health authorities to fight the COVID-19 pandemic.

In the first work, during the early stage of the COVID-19 pandemic, we assessed
the risk of global epidemic importation of COVID-19 into Europe, due to air traf-
fic connections with the most affected areas in China. We were interested in un-
derstanding the risk of carrying the virus to other geographically-distant countries,
and we looked at the international travel before and after the travel ban in Hubei
province. Air traffic data have thus been integrated into a probabilistic model to
compute the importation risk.

In the second work, we focused on the assessment of testing policy during the 7
weeks following the first national lockdown in France, estimating the rate of under-
detection of COVID- 19 cases. We used positioning indicators from mobile phone
data and behavioural data to parametrize social mixing. Moreover, virological and
surveillance data were used for model calibration and validation and to compute the
rate of detection. Our work highlights the importance of merging real-time mobility,
epidemiological and other types of behavioural data in order to improve predictive
power, accounting for mobility and social changes due to mobility restrictions, and
to spontaneous adaptive behaviours to the epidemic like risk aversion.

The rapidly evolving situation during the COVID-19 pandemic has highlighted
the importance of mobility data to monitor individual behaviours and to inform
epidemic models. In recent decades, many network operators have started to share
their data for the epidemiological studies of various infectious disease epidemics, in-
cluding e.g. malaria, cholera, Ebola; researchers also validated them as a good proxy
for human mobility. During the COVID-19 emergency we witnessed a data-sharing
revolution in which network operators such as Orange, Vodafone, Telefonica, big
companies like Google, Apple, Facebook, or small ones as Cuebiq, SafeGraph, Un-
acast, started providing their aggregated mobility data (Call Detail Records, signal-
ing and location history data) extracted from mobile phone traces in real-time to
support the outbreak response.

Thanks to the mobile phone data availability, and the past 20 years development
of mathematical and computational frameworks to integrate mobility data into mod-
els, researchers were therefore able to provide a rapid response to the global heath
emergency.
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The rapid and wide availability of mobile phone data, however, has also opened
many new challenges. Firstly, given the high-resolution in space and time of indi-
vidual displacements extracted from mobile phone data, it becomes important to
assess the level of detail of such information that is relevant in modeling epidemic
transmission. In an effort to gain better knowledge of this, I assessed the appro-
priate definition of the mobility process that is relevant to epidemic spread and the
resolution of mobility fluxes extracted from Call Detail Records (CDRs) needed to
inform the transmission models. The results which I presented in Section 4.5 show
how preserving displacements on the individual trajectories does not capture the
epidemiological link between different locations. Moreover, we found that on the
national scale commuting mobility is the dominant driver of disease diffusion. In
fact, tracking individual activities beyond home and work/school locations (e.g.,
leisure activities) does not add relevant epidemiologically information.

This work was specifically on CDRs, however during COVID-19 emergency, data
based on GPS tracks like location history data from mobile apps started emerging
as new powerful sources of mobile phone data. These new data allow the tracing
of individual trajectories in even more detail, capturing positioning with a precision
in the range of meters over time, contrary to CDRs which capture positioning only
when individuals make a call/SMSs and at cell tower resolution. The increasing
availability and detail provided by mobile phones thus require further investigation
into the process of integration of mobile phone data into models. During COVID-19,
however, the higher resolution of such type of data allowed studying individuals’
movements and positioning in specific places (e.g. at home, at work, in places of
entertainment, transport ) for studying the compliance of mobility restrictions and
to inform transmission models [106, 121, 122, 194, 195].

Moreover, the mobile phone data extensive sharing resulted in many controver-
sies on privacy issues. In fact, sharing and dealing with such sensitive data captur-
ing individuals’ behaviour involves several risks. Risks which might compromise
the security of citizens. During the COVID-19 pandemic, mobile phone data have
been shared at the national level through ad hoc legal agreements between national
network operators/app companies and researchers or shared by companies (e.g.,
Google, Apple) in online platforms which provide periodical mobility indicators.
However, many data providers are still reluctant to share their data, even when ag-
gregated. To drastically reduce concerns about sharing data, standard protocols for
sharing them can therefore be envisioned which will strengthen privacy and con-
fidentiality, while at the same time providing data at the resolution needed for in-
depth epidemiological studies.

To conclude, collaborative efforts are still needed to exploit the full potential of
mobile phone data for crisis to come.

Publication issued from my thesis

• Pullano, G. et al. (2020). Novel coronavirus (2019-nCoV) early-stage importa-
tion risk to Europe, January 2020. Eurosurveillance, 25(4), 2000057.

• Pullano, G. et al. (2020). Underdetection of cases of COVID-19 in France threat-
ens epidemic control. Nature https://doi.org/10.1038/s41586-020-03095- 6.
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• Gilbert, M., Pullano, G., Pinotti, F., Valdano, E., Poletto, C., Boëlle, P. Y., ... &
Colizza, V.. Preparedness and vulnerability of African countries against im-
portations of COVID-19: a modelling study. The Lancet, 395(10227), 871-877,
19/02/2020.

• Pinotti, F., Di Domenico, L., Ortega, E., Mancastroppa, M., Pullano, G., Val-
dano, E., ... & Colizza, V. (2020). Tracing and analysis of 288 early SARS-CoV-2
infections outside China: A modeling study. PLoS Medicine, 17(7), e1003193.

• Pullano, G., Valdano, E., Scarpa, N., Rubrichi, S., & Colizza, V. (2020). Evalu-
ating the effect of demographic factors, socioeconomic factors, and risk aver-
sion on mobility during the COVID-19 epidemic in France under lockdown: a
population-based study. The Lancet Digital Health, 2(12), e638-e649

• Di Domenico, L., Pullano, G., Sabbatini, C. E., Boëlle, P. Y., & Colizza, V. (2020).
Impact of lockdown on COVID-19 epidemic in Île-de-France and possible exit
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