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Résumé: Une des caractéristiques visuelles du
cerveau est son aspect plissé. Il est en effet con-
stitué de circonvolutions appelées gyri, qui sont
délimitées par des sillons appelés sulci. À l’instar
des empreintes digitales, les motifs du plissement
cortical, c’est-à-dire l’arrangement, les caractéris-
tiques et la forme des sillons sont propres à chaque
individu, même s’ils s’inscrivent dans un schéma
général propre à chaque espèce. Certains motifs
ont été corrélés à des fonctions cognitives comme
le contrôle inhibiteur dans la région cingulaire. De
plus, des motifs rares ont été corrélés à des trou-
bles neuro-développementaux comme le « Power
Button Sign » qui est associé à un certain type
d’épilepsie. Les avancées de l’apprentissage pro-
fond et en particulier non supervisé constituent
une réelle opportunité pour analyser les motifs
du plissement cortical, répondant au défi des
grandes bases de données et de la variabilité inter-
individuelle. Ce travail de thèse a pour but de
développer une méthode permettant d’identifier
des motifs rares ou anormaux.

À partir d’IRM cérébrales, des squelettes et des
cartes de distances correspondant à un moule en
négatif du cerveau sont générés. Ils permettent
de se concentrer sur la morphologie du plissement.
La variabilité inter-individuelle est modélisée par
un beta-VAE entraîné uniquement sur des sujets
témoins de la cohorte HCP.

À partir de cette représentation, des motifs car-
actéristiques de la population saine peuvent être
identifiés. La première étude est faite dans la ré-
gion cingulaire. Plus spécifiquement un cluster-
ing est appliqué sur l’espace latent. Des motifs
représentatifs de chacun des clusters sont générés

et permettent de caractériser les différents mo-
tifs caractéristiques. Des motifs décrits dans la
littérature ont été retrouvés ce qui suggère que
l’approche est pertinente.

Une fois des motifs caractéristiques identifiés,
les motifs plus rares peuvent être analysés. Dans ce
cas, le réseau est appliqué dans la région du sillon
central à des cohortes comportant des sujets sains
et des sujets avec des motifs rares ou à des don-
nées synthétiques présentant des anomalies. Ces
dernières permettent de mieux qualifier les dévia-
tions identifiées. L’identification de motifs rares se
fait dans l’espace latent ou sur la base de l’erreur
de reconstruction. Pour évaluer la généralisation,
cette approche est appliquée à deux autres régions
comportant des motifs anormaux. Les résultats
ont montré que l’espace latent et les erreurs de
reconstruction apportent des informations complé-
mentaires, adaptées à divers types de déviations.
Le pouvoir génératif du beta-VAE permet de mieux
comprendre les propriétés encodées dans l’espace
latent. La visualisation des erreurs de reconstruc-
tions aide à localiser les caractéristiques atypiques
identifiées. Enfin, l’application de la méthode aux
deux autres cohortes indique une bonne générali-
sation, malgré un léger effet site.

Ces résultats prometteurs demandent à être ré-
pliqués avec davantage de sujets contrôles et de
sujets présentant des motifs rares afin d’être confir-
més. L’approche que nous proposons pourrait ainsi
constituer une première étape vers l’identification
de biomarqueurs et vers un modèle systématique à
l’échelle du cerveau. Enfin, l’intégration d’autres
modalités comme la cytoarchitectonie ou la con-
nectivité enrichirait l’approche proposée.
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Abstract: One of the visual characteristics of the
brain is its folded appearance. It is composed of
convolutions called gyri, which are delimited by fur-
rows called sulci. Like fingerprints, the patterns of
cortical folding, i.e. the arrangement, character-
istics and shape of the sulci, are unique to each
individual, although they do fit into a general or-
ganization in each species. Some patterns have
been correlated with cognitive functions such as
inhibitory control in the cingulate region. In ad-
dition, rare patterns have been linked with neu-
rodevelopmental disorders such as the "Power But-
ton Sign" which is associated with a certain type
of epilepsy. Advances in deep and especially un-
supervised learning provide a real opportunity to
analyze cortical folding patterns, addressing the
challenge of dealing with large databases and high
inter-individual variability. The aim of this thesis is
to develop a method to identify rare or abnormal
patterns.

From brain MRI, skeletons and distance maps
corresponding to a negative cast of the brain are
generated. They allow the deep network to focus
on the folding morphology. Inter-individual vari-
ability is modeled by a beta-VAE trained only on
control subjects from the HCP cohort.

From this normal representation, typical pat-
terns of the healthy population can be identified.
This first study is done in the cingulate region.
More specifically, clustering is applied to the la-
tent space. Representative patterns of each of the
clusters are generated and allow us to characterize
the different typical patterns. Patterns described

in the literature were found, which suggests that
the approach is relevant.

Once characteristic patterns have been identi-
fied, rare patterns can be analyzed. In this case,
the network is applied in the central sulcus area
to cohorts with healthy subjects and subjects with
rare patterns or to synthetic data with anoma-
lies. The latter allows for a better qualification
of the identified deviations. The identification of
rare patterns is done in the latent space and on
the basis of the reconstruction error. To evalu-
ate the generalization, this approach is applied to
two other regions with abnormal patterns. The re-
sults showed that both the latent space and the
reconstruction errors provided complementary in-
formation and were more suitable for certain types
of deviations. The generative power of the beta-
VAE allows a better understanding of the proper-
ties encoded in the latent space. The visualization
of reconstruction errors helps to localize the iden-
tified atypical features. Finally, the application of
the method to the two other cohorts indicates a
good generalization, despite a slight site effect.

These promising results need to be replicated
with more control subjects and subjects with rare
patterns in order to be confirmed. The approach
we propose could thus constitute a first step to-
wards the identification of biomarkers and towards
a systematic model at the brain scale. Finally, the
proposed approach would benefit from the integra-
tion of other modalities such as cytoarchitecture or
connectivity.
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Introduction

Context

During gestation, the human brain folds resulting in circumvolutions composed
of ridges of white matter, the gyri, and furrows, the sulci. The underlying mecha-
nisms are still an area of research but two processes have been highlighted includ-
ing mechanical and biocellular explanations (Llinares-Benadero and Borrell, 2019).
Folding patterns have been intriguing for a long time and their study is not recent.
Indeed, the description of the sulci dates back to the 19th century (Cunningham,
1890). In the human population, stability of the folding patterns is observed with
an overall similarity of location, shape and arrangements (Ono et al., 1990). This
stability is important enough to enable to define a nomenclature of sulci and to
develop methods that automate sulci recognition (Rivière et al., 2002; Perrot et al.,
2011; Borne et al., 2020). Despite this homogeneity, each brain displays a unique
cortical folding, acting as a fingerprint and the inter-individual variability of folding
is very important (Wachinger et al., 2015).

The appearance of non-invasive methods like Magnetic Resonance Imaging
(MRI) has provided new tools for visualization and studying the link with brain
function for example.

On the one hand, some typical folding patterns - whose characteristics can be
observed in most people - have been described. For example, the central sulcus
is usually composed of one or several knobs. In return, other patterns have been
identified as very rare, such as an interruption of the central sulcus which seems
to concern less than 1% of the population.

On the other hand, some folding patterns have been linked with function. In
particular, the main folds have been proposed as landmarks for the cytoarchitec-
tonics zones (Amunts et al., 2007). Furthermore, some sulcal areas have been
correlated to functions such as reading and hand motricity (Yousry et al., 1997;
Sun et al., 2016). In return, certain neuro-developmental disorders including fo-
cal cortical dysplasia of type 2, a common cause of drug-resistant epilepsy or
schizophrenia, were shown to be linked with specific cortical folding configurations
(Provost et al., 2003; Mellerio et al., 2014).

The study of folding patterns is thus particularly interesting as it could lead
to the discovery of new biomarkers. Another interesting characteristic of fold-
ing patterns is that after their formation, during pregnancy, they remain stable
throughout life (Cachia et al., 2016). Hence, they can provide a unique insight
into the neuro-developmental processes that occurred, acting as pieces of evidence
of various events of brain development. Therefore, studying folding patterns can
lead to several impacts. First, it can increase our current knowledge of the brain
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and potentially enable to correlate functions to structures more easily. In a second
step, identifying rare patterns may lead to a better understanding of perturba-
tions that might have occurred during the development and hopefully, to foster
the emergence of biomarkers of disorders.

Having large databases to identify typical and rare folding patterns, potentially
leading to biomarker discovery is capital. Nevertheless, the high inter-individual
variability hinders the identification of these patterns. Initially performed visually,
the advances of machine learning and specifically, unsupervised deep learning con-
stitute a real opportunity to address this challenge. Just like AlphaFold (Jumper
et al., 2021) has revolutionized the study of protein folding based on deep learning,
we hope that deep learning models may stimulate the deciphering of folding pat-
terns. As a matter of fact, such frameworks could help learn a representation of the
folding of the population in order to describe both the main typical configurations
and the patterns deviating from the modelled norm that human perception cannot
offer.

Contributions and thesis organization

This work proposes to use an unsupervised deep learning approach to model
the folding inter-individual variability of a healthy population. From this learned
representation, we first analyze folding patterns that seem characteristic of a con-
trol population before describing what happens at the margins of the modelled
norm, looking for rare patterns.

This work has led to several contributions. First, we developed a publicly
available preprocessing pipeline to work on specific sulcal regions and focus on the
folding characteristics. Then, for the first time, we applied a deep learning frame-
work, a β − V AE, to model the control folding variability. Based on this normal
representation, we first identify typical folding patterns, before trying to detect rare
folding patterns. To this end, we generated several datasets of synthetic anoma-
lies. These fake anomalies enable to better describe the abnormal features that our
framework can detect, ranging from subtle variations, potentially embedded in the
inter-individual variability, to unlikely configurations. Our method has been tested
on other regions and disorders. We hope in the near future that our framework
can be systematically and easily applied to many other cohorts of patients in order
to identify specific rare patterns.

This thesis is organized into four main parts. Part I proposes a state-of-the-art
on cortical folding patterns and deep learning frameworks to identify outliers before
formulating the questions driving this thesis. Then part II presents the general
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material and methods that will be used to model the inter-individual variability
of folding. The next two parts (part III and IV) present two applications: the
identification of typical folding patterns and the identification of rare or abnormal
patterns. Last, we conclude this thesis by drawing the main outputs and presenting
some perspectives for future works.
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Part I

Background

This first part aims to place this thesis subject in a broader context and how
it relates to the state-of-the-art. Specifically, chapter 1 introduces the cortical
folding patterns and their characteristics. Then, chapter 2 presents an overview of
deep learning, the anomaly detection subfield, the associated challenges and some
medical applications. This part ends with the problem formulation, the challenges
and our proposed strategy.
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1 - Cortical Folding Patterns

1.1 . From the macroscopic to the microscopic scale: overview
of the brain anatomy

After several centuries, the brain is still a fascinating object of study. The
brain is composed of three parts: the cerebrum, the cerebellum and the brain stem.
The cerebrum is composed of two hemispheres that are connected via the corpus
callosum. The hemispheres are divided into four main lobes: frontal, parietal,
temporal and occipital. The cerebrum consists in an outer layer, the grey matter,
also called the cerebral cortex and an inner layer, the white matter. One striking
visual characteristic of the human brain is its convoluted surface that resembles
a nut. Indeed, the cerebral cortex is folded forming circumvolutions. It results in
gyri, ridges of white matter, that are delimited by furrows, the sulci (Fig.1.1).

Figure 1.1: Folded cortex with gyri and sulci. The blue ribbons are abstractentities representing the sulci which are filled with cerebrospinal fluid.
The cortex is composed of several layers. The different layers are characterized

by varying densities of the cells populations. Neuronal cells are located in the
cortex. The neurons communicate between each other via the axons, up to the
white matter. The white matter is composed of fibers that enable to connect
various areas of the cortex.

1.2 . Description and formation of the cerebral sulci

Cortical folding is observed in several species and has been proved to be "an
ancestral mammalian trait" (Lewitus et al., 2014). However, the degree of corti-
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cal folding (represented by the gyrification index GI) varies across mammals, and
some mammalian species, such as the mouse, are lissencephalic, i.e., their brain
is not folded. Therefore, folding is not a structural necessity for brain function.
In the human brain, studies have managed to describe three successive folding
waves that result in primary, secondary and tertiary folds respectively (Chi et al.,
1977). The primary folds are the most stable across the population and are located
at stereotyped locations (Llinares-Benadero and Borrell, 2019). The existence of
these stereotyped locations could be explained by the concept of sulcal roots. Sul-
cal roots are abstract entities representing the seeds where the first folds form
(Régis et al., 2005). Although it is possible to identify some sulcal roots during
the development in utero, it is not straightforward to visualize them all, therefore
the term sulcal pits was introduced. Sulcal pits are the deepest local points along
the bottom lines of the sulci (Lohmann et al., 2008; Im et al., 2010; Auzias et al.,
2015; Im and Grant, 2019; Mangin et al., 2019). Sulcal roots and sulcal pits are
very interesting objects to understand the folding dynamics in particular (Mangin
et al., 2019).

The study of the mechanisms involved in the folding process is still an active
field of research where historically, two main hypotheses on the folding determinants
have been proposed.

The first current gathers several researchers that propose explanations based
on mechanical factors. The first theory hypothesized that the cortex had to fold
due to volume constraints: gyrations enabled to increase the brain surface (Clark,
1945). If this first explanation was quickly discarded, many new mechanistic expla-
nations were formulated. One of the major theories was proposed in 1997 by Van
Essen. It introduced the idea that, in the developing brain, the axons could exert
a tension between the connected cortical areas that would draw the regions closer
together, leading to the formation of the gyri (Van Essen, 1997). This model was
however refuted with microdissections showing that if axons were effectively under
tension, their orientation was not consistent and could not account for forces that
would result in the folded cortex (Xu et al., 2010). Another important theory pro-
posed that cortical folding was caused by differential growths of the cortex layers.
An outer shell would have a faster tangential expansion than an inner layer (Rich-
man et al., 1975). This theory was supported by morphogenetic models based on
computer simulations that were able to reproduce characteristics of cortical fold-
ing (Toro and Burnod, 2005; Tallinen et al., 2014). It was later demonstrated by
experiments based on a compound gel matrix which is summarized in Fig.1.2A.
Based on a 3D MRI of a fetal brain serving as template, a gel brain was made.
Another material, with different properties was added to model the grey matter
layer. After immersion in a solvent, the composite gel started to swell at the surface
which led to the formation of sulci and gyri. With specific mechanical properties
of brain tissues, the outer shell formed very similar folds to those of the human
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brain (Tallinen et al., 2016).
The second hypothesis relies on genetic factors. Diverse observations supported

this hypothesis. First, several gyrencephalic species, i.e. that have a folded cortex,
display similarities in terms of location and shape of the folds. In addition, within a
species, the first folds to form are located in stereotyped areas. Such considerations
tend to support hypotheses based on a biological and genetic explanation of the
folding process (Llinares-Benadero and Borrell, 2019). Studies on the biological
origin of the folds mainly pointed out cellular mechanisms such as the neurogene-
sis and the neuron migration. Specifically, the neurogenesis has been found to be
more important in regions that will constitute gyri (Reillo et al., 2011; Lukaszewicz
et al., 2006). This contrasted neurogenesis is particularly marked in the inner and
outer subventricular zones (ISVZ and OSVZ respectively). The consequence is
that there are different densities of immature neurons across the cortex before the
folding, with more neurons in the regions of future gyri. The other main event
involved in cortical folding is the neurons tangential dispersion during their radial
migration. The neurons migrate radially along radial glial fibres (RGFs) but con-
trary to lissencephalic species whose RGFs are parallel, the RGFs of gyrencephalic
species vary across regions and are diverging in future gyri (Fig.1.2B). These two
cellular mechanisms are regulated by genetic processes in both space and time.
Indeed, spatial patterns of gene expression define a protomap (Rakic, 1988) of the
primary folds, leading to the stereotyped locations mentioned earlier. In addition,
like the spatial protomap, temporal variations of gene expression in the ventricular
zone define a critical period of cells formation that will be crucial for the folding
processes (Martínez-Martínez et al., 2016; Borrell, 2018).

These cellular explanations enable to bring light on some parts that the mech-
anistic model did not explain, however they are not sufficient: two monozygote
twins have a more similar folding pattern than two individuals (Lohmann et al.,
2008) but they do not present the exact same folding, suggesting that forces other
than genetics are involved. Ultimately, and although they have been historically
presented as opposites, folding processes appear to be a combination of both me-
chanical and biological approaches as suggests a recent review (Llinares-Benadero
and Borrell, 2019).

1.3 . Perturbations in the cortex development processes may
lead to folding anomalies

The previous mechanisms explained the folding formation. However, in the
course of mechanical and biological processes, certain disturbances may occur,
leading to malformations of the cerebral cortical development and to abnormal
or rare folding configurations in particular. The term malformation of cortical
development was introduced to define a group of disorders in "children with devel-
opmental delay and young people with epilepsy" (Barkovich et al., 2012). These
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Figure 1.2: Folding processes theories. A. Simulation of the folding processwith a compound matrix gel (upper row) and with computer modelling. Courtesy of(Tallinen et al., 2016). B. Cellular mechanisms involved in the gyrification. Courtesyof (Llinares-Benadero and Borrell, 2019)

disorders were then categorized according to the developmental steps that were
disturbed (Barkovich et al., 1996). Initially proposed in 1996, this classification is
constantly evolving due to the progressive increase in the understanding of biolog-
ical processes and is therefore regularly updated. So far, three classes have been
proposed: the malformations resulting from events occurring (1) during neuronal
and glial proliferation, (2) during neuronal migration or (3) after the migration of
the neurons. The perturbations occurring at these steps may affect the folding
patterns in various ways.

The first category gathers malformations resulting from abnormal neuronal
proliferation. In this case, the proliferation may be reduced, increased or abnor-
mal. For instance, reduced proliferation can lead to microcephaly. In particular,
the gene WDR62 seems to play a role in the proliferation and the migration of neu-
ronal precursors and its mutation may result in microcephaly and simplified gyral
patterns (Yu et al., 2010). On the contrary, an abnormal proliferation can express
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by an increased proliferation which may result in megalencephaly. Specifically,
megalencephaly can occur in association with polymicrogyria which presents ab-
normal folding configurations made of multiple small gyri and shallow sulci. In the
case of abnormal proliferation, the development may result in overgrowth normal
cells and in the production of abnormal cells in different organs. Specifically, focal
cortical dysplasia (FCD) of type 2 is now considered as resulting from abnormal
proliferation.

The second category includes malformations due to abnormal neuronal mi-
gration. It includes heterotopia which is characterized by the presence of a specific
type of tissue in a non-physiological area. In such a case, the neurons do not cor-
rectly migrate and can remain between the ventricle and the pia. Heterotopia can
lead to folding perturbations such as simplified gyral patterns (Sicca et al., 2003;
Deleo et al., 2020). Gyral patterns may be also affected by abnormal transmantle
migration and result in lissencephaly. On the other hand, when a large number of
neurons are located regionally in the deep cerebral white matter, called subcortical
heterotopia, the affected area is abnormally small and the cortex is thin and can
be microgyric.

The final category describes malformations that may result from events occur-
ring after the migration. This is the case of some polymicrogyria and schizen-
cephaly (characterized by abnormal clefts in the hemispheres). It also concerns
certain FCDs which could be caused by an injury to the cortex such as severe
prematurity, asphyxia or bleeding. These examples also demonstrate folding ab-
normalities.

To summarize, malformations of cortical development can occur at various
stages of the brain development and they seem to result from two main causes:
genetic mutations and in utero infections. The neuronal outcomes are extremely
variable ranging from no symptoms to severe ones. Exhaustive definitions and
brain MR images illustrating each condition are presented in (Oegema et al., 2020;
Severino et al., 2020). As seen previously, the folding pattern is a result of the
brain development. In case of perturbations due to genetic mutations or exterior
events, it is affected and therefore, its study enables to have insights on the neuro-
development processes.

1.4 . Folding patterns as neuro-developmental markers

The folding process results in approximately 64 sulci per hemisphere. Histori-
cally, neuroanatomists have started to study the sulcal shapes and characteristics
based on observations made on specimens. In the human population, due to the
folding processes detailed previously, a stability of the folding patterns is observed
with an overall similarity of location, shape and arrangements (Ono et al., 1990).
This stability is important enough to enable to define a nomenclature and to de-
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velop methods that automate sulci recognition (Rivière et al., 2002; Perrot et al.,
2011; Borne et al., 2020). Despite this homogeneity, each brain displays a unique
cortical folding, acting as a fingerprint (Wachinger et al., 2015). In particular,
secondary and tertiary folds are highly variable.

Let us define some relevant terms for our study of cortical folding patterns. In
our context we have the following definitions:

• Shape: Elementary building block that can be combined to define patterns.
For instance a knob or a flat segment (first row of Fig.1.3).

• Pattern: Combination, arrangements of elementary shapes of one or several
folds. For instance, several patterns exist in the central region, such as
a single knob configuration, a double knob configuration or a rather flat
one (see Fig.1.3). It is important to note that in our conception, folding
patterns exist in the population as a continuous manifold. Therefore, there
is a continuity from the single knob pattern, to the double knob pattern.
Similarly, in the actual sulcus representing the flat configuration, we can still
see a slight knob.

Figure 1.3: Schematic representation of typical shapes and patterns of the
central region. First row: schematic elementary shapes presenting a knob and aflat segment. Second row: Combination of the schematic shapes into patterns. Eachpattern is illustrated by a real example in blue. From left to right: single-knob pattern,double-knob pattern, flat pattern.

The folding variability is so complex that it has long been overlooked. How-
ever, thanks to advances in the neuroimaging field, studies have tried to charac-
terize sulci with elementary shapes that amount to building blocks of alternative
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patterns. These patterns can have various frequencies of appearance in the pop-
ulation. For instance, the central sulcus is typically composed of one or several
knobs (Yousry et al., 1997) (see Fig.1.3). Similarly, the mid-fusiform sulcus usu-
ally presents an omega pattern (Weiner et al., 2014). In contrast, some very rare
patterns have also been described, such as the interruption of the central sulcus
that is present in about only 1% of the population (Mangin et al., 2019).

Folding patterns are especially interesting objects to study as they are related
to function. The cerebral cortex is associated with many executive functions such
as motor functions or language. At the beginning of the 20th century, Brodmann
proposed a map of 52 regions based on the cortex cytoarchitecture. Modern tech-
niques enabled to show that these regions were consistent with functions (Amunts
et al., 2007). Certain areas adequately match anatomical landmarks such as gyri
and sulci but it is not valid for all areas and using only these landmarks to delineate
function areas may result in a lack of precision. Based on functional MRI (fMRI),
it has been shown that the central sulcus course corresponds to the border of areas
3 and 4 defined by Broadmann, i.e. the motor area and the sensory area (White
et al., 1997). Similarly, the visual cortex is located in the calcarine sulcus (Amunts
et al., 2000). However, it is not the case for all areas and even more when it
comes to secondary or tertiary folds that display a high inter-individual variability
(Amunts et al., 2007). More precisely, based on fMRI, some sulcus parts have been
correlated to specific functions. As already mentioned, the central sulcus divides
the motor and the sensory areas and distinct parts of the central sulcus have been
correlated with the tongue, foot and hand among others (Penfield and Boldrey,
1937; Mangin et al., 2019; Germann et al., 2020). Specifically, the central sulcus
main knob has been linked to the hand motricity and is called the "hand knob"
(Yousry et al., 1997). In the cingulate region, the cingulate sulcus patterns have
been associated to the inhibitory control (Borst et al., 2014). In return, specific
patterns were also correlated to neuro-developmental disorders. The Power But-
ton Sign (PBS), a rare configuration of the central sulcus (see Fig.1.4), may be
associated with focal cortical dysplasia of type 2 which may cause drug-resistant
epilepsy (Mellerio et al., 2014). Patterns in the superior temporal sulcus (STS),
central, intraparietal and frontal regions could be related to autism (Levitt et al.,
2003; Auzias et al., 2014; Hotier et al., 2017).

A major characteristic of folding patterns is that they constitute "trait features"
opposite to "state features" (Cachia et al., 2016). Unlike state features that can
evolve during lifespan, trait features remain fixed. For example, sulcal opening
is a state feature because it increases with the ageing process (Kochunov et al.,
2005; Jin et al., 2018). In return, the pattern of the cingulate sulcus area is a
trait feature because it is stable throughout the lifetime after infancy (see Fig.1.5)
(Cachia et al., 2016). This difference between trait and state features has also
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Figure 1.4: Power Button Sign. A rare folding pattern associated with FCD2, acommon cause of drug-resistant epilepsy. Courtesy of (Mellerio et al., 2014).

been demonstrated in the study of the effects of handedness on the central sulcus
shape. For example, forced dextrals show similarities to sinistrals in pattern, but
changes in elongation and opening occur when they are constrained to use the
right hand for writing (Sun et al., 2012).

Figure 1.5: Longitudinal study of folding patterns. Two patterns have beendescribed in the cingulate region: one long cingulate sulcus (upper row) and one longcingulate sulcus with a smaller parallel sulcus – the paracingulate sulcus– (bottomrow). The folding patterns remain stable. Courtesy of (Cachia et al., 2016)
As we have seen in the section 1.3, perturbations can occur during the folding

processes and lead to rare or abnormal folding configurations. Therefore, folding
patterns consitute a marker of potential disturbances. Since the patterns are trait
features, their analysis can provide insight into events that may have happened
during the development. Hence, deciphering sulcal complexity and having a better
understanding of the underlying shape variability is of great interest as folding
patterns could become biomarkers of neuro-developmental disorders.

1.5 . Methods to study cortical folding patterns
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Cortical folding can be analysed with diverse approaches depending on the
object of the study, whether it is about the folding and sulcal characteristics, or
about folding patterns as we defined them in section 1.4.

Many works have studied the global properties of folding and sulcal character-
istics. In this case, an approach is to extract from the MR images morphometric
features such as the depth, surface curvature or opening of each sulcus. Processing
softwares like BrainVISA/Morphologist or FreeSurfer enable to obtain these fea-
tures. They can then be used to perform statistical analysis in various applications.
For instance, they have been used to study the relationship between folding and
psychiatric disorders. The sulcation index, depth and length of the sulci have been
used to study folding abnormalities in a cohort of patients with Autism Spectrum
Disorder (ASD) (Auzias et al., 2014). More recently, the sulcal depth of some
secondary and tertiary sulci was linked to some characteristics of ASD patients
(Benitez et al., 2022). ASD is not the only psychiatric disorder studied, works
have also dealt with schizophrenia for instance (Penttilä et al., 2008). Another
feature that can be used to study the sulci is their positioning. It was indeed cor-
related to ASD (Levitt et al., 2003) and studied for schizophrenic patients (Plaze
et al., 2011).

However, these methods cannot completely tackle the study of folding patterns
as we define them. To do so, other strategies have been proposed. The most
obvious way is to work on folding patterns based on visual descriptions. This can
be done directly on the MR images but has the drawback of being in 2d slices. It
enabled to identify typical patterns in the mid-fusiform sulcus for example (Weiner
et al., 2014). It can also be performed based on the 3D reconstructions of the
folds. For instance, the PBS was identified based on such reconstructions (Fig.1.4)
(Mellerio et al., 2014).

With the advance of machine learning techniques, other methods have tried to
automate the identification of sulcal patterns characteristics. The first step is to
choose the way of representing the folds. Different strategies have been developed
in this end. A first approach consists in directly working on the folds. This can be
performed based on the folds extracted by BrainVISA/Morphologist. In this case,
the folds are materialized by a set of voxels. With this input, several methods
have been proposed. Each sulcus can be represented as 3D moment invariants, a
set of shape descriptors, patterns are then identified thanks to a clustering (Sun
et al., 2007). Rather than defining characteristics on each individual sulcus, the
pairwise dissimilarity of the sulci after their co-registration can be used to build a
dissimilarity matrix that represents the folding variability. From this matrix, it is
possible to apply dimension reduction algorithms to capture the main dimensions
which represent the principal shape features. This approach was used to study the
shape of the central sulcus in the developing brain (de Vareilles et al., 2022), to
identify typical folding patterns (Sun et al., 2009) and to characterize the effect of
handedness in this region (Sun et al., 2012). This method also enables to compare
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folding patterns across species among the primates (Foubet et al., 2022). Another
approach is based on sulcal pits. Sulcal pits can be extracted from various MRI
preprocessing softwares. Sulcal patterns are then described as a graph of sulcal
pits from which similarity matrices are computed. Such approaches were applied
to compare the heritability of folding patterns (Im et al., 2011) or identify typical
folding patterns (Meng et al., 2018).

Finally, aggregated representations, like averages, may be easier to character-
ize the folding patterns and the shapes, rather than analyzing and comparing all
the subjects. But the selected representation constitutes intrinsically a choice of
paradigm. As a matter of fact, on the one hand, we can consider that the set of
existing patterns is finite, leading to a certain number of defined patterns (note
that this number is still unknown). In such cases, clustering is particularly well
suited (Sun et al., 2007, 2009; Meng et al., 2018; Duan et al., 2019). On the
other hand, patterns can also be represented in a continuous way. In this case,
manifold-based analyses can be used (Sun et al., 2012; de Vareilles et al., 2022;
Foubet et al., 2022). To identify typical patterns among the wide inter-individual
variability, representative patterns may be used. The representative patterns can
be drawn from the subjects’ population, analysing the closest subjects to the cen-
troids for instance (Meng et al., 2018), or sulci averages can be used (Sun et al.,
2012, 2017; de Vareilles et al., 2022; Foubet et al., 2022).

This first chapter has described cortical folding and the current hypotheses
concerning the folding processes. Specifically, we pointed out that several events
occurring during neuro-development can affect these processes, potentially result-
ing in rare or even abnormal folding patterns. Since folding patterns are a trait
feature, they remain stable throughout life and constitute markers of brain de-
velopment that may lead to the discovery of biomarkers of neurodevelopmental
disorders. However, the inter-individual variability is tremendous making the iden-
tification of deviating patterns highly complex. Thanks to its representation power,
deep learning can prove to be a very effective way to model inter-individual vari-
ability in order to spot rare folding configurations. In particular, since we seek to
identify rare or abnormal folding patterns that we do not know about, or only know
about in very limited numbers, we address this situation as an anomaly detection
problem.
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2 - Deep Learning Frameworks for Identifying
Outliers

2.1 . Introduction to deep learning

In a few years, deep learning has become one of the major techniques used to
model and predict in various everyday life scenarios. The domains of application
are very diverse since the inputs, as well as the tasks offer many possibilities. For
instance, deep learning can be used to identify objects in images, translate texts
from one language to another or forecast events based on time series. Deep learning
is principally based on representation-learning methods (LeCun et al., 2015). The
latter are capital since the success of machine learning algorithms mainly depends
on the learned representations. Unlike some machine learning techniques that re-
quire hand-crafted features, the aim of representation learning is to "automatically
discover the representation needed for detection or classification" (LeCun et al.,
2015). This can be achieved by a combination of modules that learn increasing lev-
els of abstraction. In the case of images, having these successive layers enables to
detect edges, which can be then combined to make shapes and objects for instance.

Deep learning, and more globally machine learning can be split into different
forms: supervised, unsupervised and reinforcement learning. The most common
form is supervised but more and more works now concentrate on the opportunities
offered by unsupervised learning.

In a supervised setting, based on input data X = {x1, x2, ..., xn} and the
associated labels Y = {y1, y2, ..., yn} we wish to learn a function f that predicts
Ŷ = {ŷ1, ŷ2, ..., ŷn}. During the learning process, an objective function measures
the error between y and ŷ. The model’s parameters Θ are consequently updated to
reduce the error. Let us take an example of a classification setting where the aim
is to classify x-ray images between controls and patients. The images are fed into
a model which outputs a vector ŷ, that contains the scores for the two categories.
The difference between ŷ and the true scores y drives the learning process as the
model is optimized to have the smallest difference between the predicted and the
true scores. Such a framework has been widely used in many domains, including
medical applications.

In reinforcement learning, an agent learns from its environment. Given a set
of possible actions, the agent chooses one to do and obtains the corresponding
reward. The long-term goal of the agent is to maximize its global reward.

Unsupervised learning is inspired by the observations of biological learning:
from a lot of information that is not fully labeled, we are able to deduce knowl-
edge and predictions (Barlow, 1989). Thus, unsupervised learning may be used to
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extract the underlying causes of a phenomenon. Indeed, it can be seen as a way
of modelling the probability density of data (Hinton and Sejnowski, 1999). The
concept of unsupervised learning applied to images began with the purposes of
dimensionality reduction and compression (Hinton and Sejnowski, 1999). Unlike
supervised or reinforcement learning, in unsupervised learning settings, there are
no labels or rewards. The labels y are unknown and only the inputs are given to
the model. Unsupervised learning can be commonly used to discover patterns in a
dataset. The main examples of this type of learning are clustering and dimension-
ality reduction (Ghahramani, 2004).

In the last decade, deep learning has been widely used. Based on the historical
model of the multilayer perceptron (Hornik et al., 1989), many new frameworks
have been proposed. The escalation was particularly impressive for images. As
a matter of fact, with the introduction of convolutional neural networks (CNN),
image analysis, also known as computer vision has become a major field. CNNs
are particularly well suited for images. Their creation was inspired by the nat-
ural visual perception mechanisms (Fukushima and Miyake, 1982; LeCun et al.,
1989; Lecun et al., 1998). Very briefly, based on a succession of convolutional and
pooling layers, CNN models are able to detect and extract patterns of increasing
complexity. Therefore, they constitute very effective architectures to study im-
ages for examples. In the nineties, the first CNN was introduced and applied to
handwritten character recognition (Lecun et al., 1998). A major advantage of the
CNNs is their ability to generate accurate representations of an image with very
little or even no preprocessing step (Gu et al., 2018). Along with the improvement
of computational efficiency, more complex architectures have been introduced such
as transformers (Jaderberg et al., 2015) or diffusion models (Dhariwal and Nichol,
2021).

2.2 . Overview of anomaly detection

Apart from medical applications which will be discussed in a later section,
anomaly detection is widely studied in the deep learning community. The range of
domains covered extends from computer vision to time series analysis for example.
When analyzing the field, it seems that several words are used interchangeably.
Indeed, outlier may also be used, which raises the question of their difference.
In their review, Chalapathy and Chawla present anomalies and outliers as syn-
onyms: "Anomalies are also referred to as abnormalities, deviants, or outliers in the
data mining and statistics literature" (Chalapathy and Chawla, 2019). Hawkins
proposed a more precise definition in his monograph on applied probability and
statistics: "an outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different mecha-
nism" (Hawkins, 1980). Another definition introduces nuances between the two

18



terms: "’outlier’ refers to a data point that could either be considered an abnor-
mality or noise, whereas an ’anomaly’ refers to a special kind of outlier that is of
interest to an analyst" (Aggarwal, 2017). Fig.2.1 shows the corresponding illus-
tration. According to this vision, data would form a spectrum that ranges from
typical normal data to anomalies passing through some noise. At a given thresh-
old of noise, the points are considered as outliers. Consequently, both noise and
anomalies would then constitute outliers. In other works, the term "outlier" is used
to describe a small part of "normal" data that lies far away (Markou and Singh,
2006). The meaning that will be employed depends on the field of application.
For instance, the case of a production line where all samples are standardized will
be different from a medical application where each point corresponds to a patient.
In the latter, the term "anomaly" could rather be linked to the association with
a disorder. Therefore, the use of these two terms could be linked to the notion
of inter-individual variability: in a population with very few variations (like the
outputs of a production line) the use of "anomaly" may be different from the one
in a population that displays a high inter-individual variability.

Figure 2.1: From normal data to outliers. Schema representing the spectrumof data, from normal to outliers. Courtesy of (Aggarwal, 2017)
Another associated term is "novelty". In a review on the subject, novelty has

been defined as "the task of classifying test data that differ in some respect from
the data that are available during training" (Pimentel et al., 2014). However, in
this review, the use of the term "novelty" is linked to the absence of a category
of data during the training process. More specifically, the authors emphasize the
abundance of "normal" data which can be used to model a distribution. On the
contrary, in these works there is a lack of data describing "abnormalities". There-
fore, in this case, novelty detection seems to be a sub-part of anomaly detection in
which anomalies are not modelled during training. All in all, currently there is no
consensus on a precise definition. Nevertheless, although the three terms might be
used interchangeably, the methods to tackle these problems are usually common.

Anomalies can have several natures. Three different types of anomaly have
been proposed to encompass most of the applications: point anomalies, i.e. sam-
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ples that are abnormal with respect to the rest of data; contextual anomalies, i.e.
samples that are abnormal in a given context; collective anomalies, i.e. samples
that are abnormal due to their collective occurrence (Chandola et al., 2009).

Anomaly detection remains a challenging task for several reasons. The exten-
sive review of Pang and colleagues presents an overview of these challenges. First,
we may not know what are the characteristics of the anomalies. It is therefore
harder to detect them. In addition, the anomaly classes may be heterogeneous
and by definition, anomalies are scarce which may lead to class imbalance. The
interpretability of anomaly detection algorithms is also capital. Lastly, there can
be an effect of sampling: is a detected anomaly really an anomaly, or is it due to
a sampling effect (Dunning and Friedman, 2014) as illustrated by Fig.2.2?

Figure 2.2: Sampling effect on anomaly detection. The sampling can havea major impact on the definition of outlier. A. According to this sampling, the peakseems to constitute an anomaly. B. With a larger sample, what seemed to be ananomaly is in fact normal. Courtesy of (Dunning and Friedman, 2014)

These challenges have led to different methods to perform anomaly detection.
As a matter of fact, based on the availability or the potential scarcity of abnormal
examples, several learning strategies exist. First, if the anomalies are known and
are in sufficient number, supervised anomaly detection can be applied. Binary and
multi-class classification or segmentation can be used in supervised frameworks.
Nevertheless, in most cases we do not know what are the characteristics of the
anomalies (Dunning and Friedman, 2014) or we do not have enough abnormal
samples. In this case, unsupervised approaches are performed (Fernando et al.,
2022). Unsupervised anomaly detection techniques will be described in the next
section. Whether the learning is supervised or unsupervised, the output of the
algorithm can be either an "outlier score", i.e., a score that expresses the degree of
deviation of a point, or a binary label indicating whether the point is an anomaly
or not. It is common to obtain the binary labels based on the previous outlier score
on which a threshold is applied (Aggarwal, 2017).

2.3 . Unsupervised anomaly detection
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Unsupervised anomaly detection can be addressed by various approaches. Prior
to advances in deep learning, many "classical", i.e. shallow, machine learning algo-
rithms have been proposed. Different reviews present the diversity of the methods
that have been developed to tackle anomaly detection problems (Chandola et al.,
2009; Chalapathy and Chawla, 2019; Wang et al., 2019; Smiti, 2020). Very briefly,
they can be organized into several categories which include statistical methods,
distance-based methods and density-based methods. Statistical approaches con-
sist of detecting whether a point deviates from a distribution (Smiti, 2020). This
can be done with boxplots or histograms for instance (Goldstein and Dengel, 2012).
The second category is based on distances. Indeed, it is quite intuitive that a sam-
ple that is very far from its neighbours can be an outlier. Although distances are
difficult to deal with in high dimensions, several methods have been introduced,
such as Angle-Based Outlier Detection (ABOD) (Kriegel et al., 2008). ABOD
tackles the curse of dimensionality by comparing the angles between difference
vectors of the samples. The last category of methods corresponds to density-based
methods. One of the main techniques is the Local Outlier Factor (LOF) algorithm
(Breunig et al., 2000). Instead of a binary label, LOF assigns a degree of "outlier-
ness". The estimation is based on the comparison of the local density of a sample
with the local densities of its neighbours. One-class Support Vector Machine (OC-
SVM) (Schölkopf et al., 2001) can also be considered as a density-based method.
It extends the concept of SVM to the identification of outliers. It is possible to
combine the above methods to form ensemble methods, such as the isolation forest
(Liu et al., 2008), another widely used algorithm.

Nevertheless, the expansion of deep learning has extended to the anomaly de-
tection field and many deep anomaly detection methods have been introduced.
In a recent review, deep learning methods for anomaly detection were classified
into three paradigms as presented in Fig.2.3: the application of deep learning to
extract features that will be inputs to other classical outlier detection methods; the
learning of a feature representation of normality and finally, end-to-end anomaly
detection frameworks (Pang et al., 2020).

The first framework relies on feature extraction. Specifically, it gathers meth-
ods that achieve a dimensionality reduction to obtain relevant representations that
are then fed into shallow anomaly detection algorithms.

The second approach aims to detect anomalies by obtaining an accurate rep-
resentation of normality. Indeed, once normal characteristics have been modelled,
it is possible to evaluate whether samples share these characteristics or not. Such
frameworks can be driven by several objectives like data reconstruction, generative
modelling or self-supervised learning based on an auxiliary task.

One very common model in this framework is based on autoencoders (AE).
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Figure 2.3: Three frameworks in deep anomaly detection. Courtesy of (Panget al., 2020)

These models are composed of two parts: an encoder θ and a decoder ϕ. The
encoder learns to project an input x onto a latent space, also called bottleneck,
that corresponds to a feature representation comprising far fewer dimensions than
the input space. Then, the decoder reconstructs the encoded vectors z. These two
parts are optimized to reconstruct the inputs as well as possible. Since the bottle-
neck contains fewer dimensions and the objective is to minimize the reconstruction
error, the model learns to encode the most relevant features of the input. In other
words, the model encodes the characteristics that are common and shared by most
of the samples. Therefore, in an anomaly detection framework, the training is
usually performed on a control population only. The assumption is that only the
normal features will be encoded. The classic formulation is presented in equations
2.1 and 2.2.

z = θ(x,Θθ), x̂ = ϕ(z,Θϕ) (2.1)

(Θ∗
θ,Θ

∗
ϕ) = argmin

Θθ,Θϕ

x− ϕ(θ(x,Θθ),Θϕ) (2.2)
This formulation corresponds to a simple autoencoder but many other versions

have been proposed since, like denoising AE (Vincent et al., 2008) or variational
AE (Kingma and Welling, 2014). Owing to their easy-to-understand approach
and to their easy implementation on various kinds of data, AE have been widely
used for anomaly detection. The actual detection is usually performed based on
the reconstruction error which was initially proposed by (Hawkins et al., 2002).
Depending on the type of input data, the layers of the AE can be adapted to form
convolutional AE for images or long-term-short-memory (LSTM) AE for time series
for instance.

Generative Adversarial Networks (GAN) (Goodfellow et al., 2020) may also be
used to model the normality. In the classic framework, the objective is to generate
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Figure 2.4: Autoencoder framework.

realistic new data that have the same properties than the training set, based on
two components: a generator and a discriminator. The generator tries to create
the most realistic data from the latent space, in order to fool the discriminator that
has to determine whether a sample comes from the true data or from the generated
data. This model is also adapted in terms of anomaly detection since the generator
is usually trained only on control data which results in a latent space that encodes
typical features. The discriminator is then used as the anomaly detector. Based on
the development of GANs, other approaches have tried to combine the adversarial
approach and one-class classification in an end-to-end framework (Sabokrou et al.,
2018).

Recently, a new paradigm has emerged, namely self-supervised learning. The
assumption of self-supervised learning is to learn relevant feature representations
for a downstream task based on pretext tasks. The possible pretext tasks are very
diverse. The first proposed was classification of geometric transformations applied
to the data (Golan and El-Yaniv, 2018). Many works have also used inpainting
as a pretext task (Haselmann et al., 2018; Kang et al., 2021; Li et al., 2021a;
Pirnay and Chai, 2021; Xiang et al., 2021; Zavrtanik et al., 2021). In the anomaly
detection field, the downstream task is the identification of the anomalies.

However, a drawback of the previous models is that they have not been op-
timized for anomaly detection tasks. Autoencoders are trained to minimize the
reconstruction error and self-supervised frameworks are optimized to perform best
on the pretext task. Unlike these models, other interesting approaches have tried
to adapt the learning objective to be better suited with the detection of anomalies.
Deep support vector data description (SVDD) has been proposed to overcome
these limitations and is inspired by one-class classification (Ruff et al., 2018).
This model learns to map the data to a space where data points are included in
the smallest hypersphere. The projection is optimized to minimize the radius of
the hypersphere. Therefore, normal samples fall within the hypersphere whereas
anomalous points are projected outside.
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To recap, most of the unsupervised frameworks that were presented are based
on a training set composed of normal data only. Nevertheless, depending on the
task and on each specific case, it is possible that the training set used for modeling
the normal distribution contains outliers. The presence of these outliers in the
modeling of what is normal can have consequences on the performances. As a
matter of fact, the effects of a contaminated dataset were studied on a GAN
(Berg et al., 2019) and on a 3D convolutional AE (Behrendt et al., 2022). In the
first setting, they compare the drop in performance between a clean dataset and
a dataset containing 2% of anomalies. They deepen this analysis in the second
article, gradually increasing the injection from a clean set to 3%, 6% and 12%.
The consequences on the performances are major in both cases and starts at a
contamination of 3% already.

In addition, in many real life scenarios of anomaly detection it may be expected
to have outliers remaining in the train set. Therefore new approaches were intro-
duced to limit the consequences of a contaminated dataset. A possible way is to
identify the outliers during training and to remove them (Behrendt et al., 2022).
On the contrary, if the outliers are identified, they can also be used to maximise
their detection (Berg et al., 2019; Yu et al., 2021; Qiu et al., 2022). Such methods
address the limitations deriving from a training objective that is not optimized for
anomaly detection and constitute the last framework of Fig.2.3, namely end-to-
end anomaly detection. Another framework proposes to combine the principle of
GANs and of one-class classifications, gradually injecting outliers to make them
more separable (Sabokrou et al., 2018).

Depending on the framework, the actual detection of the anomalies is per-
formed based on the objective function. For example, with autoencoders the
anomaly score is usually derived from the reconstruction error (Pang et al., 2020).
In GANs, the anomaly score can be a combination of the reconstruction error
and of difference between the features (Schlegl et al., 2017; Zenati et al., 2019).
GANomaly uses a L1 distance between the encodings of the input and the encod-
ings of the reconstructed inputs (Akcay et al., 2019). In self-supervised settings,
the classification scores on the pretext tasks can be used as normality scores from
which the anomalies can be deduced (Golan and El-Yaniv, 2018). In the case of
SVDD, a threshold is applied on the distance to the center of the hypersphere.

2.4 . Application in medical imaging

In medical imaging, anomaly detection has many applications. First, from a
practical point of view, it can help the diagnosis. For instance, anomaly detection
can be applied to brain tumor segmentation (Menze et al., 2015), to the identifica-
tion of lesions (Baur et al., 2019; Simarro Viana et al., 2021) or to disease diagnosis
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(Schlegl et al., 2019; Pinaya et al., 2019; Tian et al., 2021; Muñoz-Ramírez et al.,
2022; Sato et al., 2022), It can also enable the discovery of new biomarkers (Schlegl
et al., 2017). This brief overview of applications highlights the diversity of the types
of input that can be used in anomaly detection frameworks which includes X-ray
radiography, magnetic resonance imaging or computed tomography scans for ex-
ample. In addition, these methods can be applied to various organs. Therefore,
deep anomaly detection methods constitute a major opportunity for the domain.

Most of the models mentioned previously can be applied to biomedical images.
One of the most widely used frameworks is based on autoencoders. Specifically, a
comparison of various architectures demonstrated the good performances achieved
by these models (Baur et al., 2020). However, medical imaging displays particular
characteristics that raise specific challenges. One of the main challenges is the
notion of variability. Unlike factory pieces that are stereotyped, each individual has
its own characteristics. Even more, individuals can be gathered in wider groups
such as age or gender for instance. These properties are particularly challenging
as they should not be modelled by an anomaly detection framework. Indeed, they
can introduce some noise that is usually not relevant regarding the features of
the studied medical condition. In addition, in case of an imbalanced population
(for instance much more females than males), they may introduce biases in the
learned representations and thus in the predictions. Criteria that are external to
the subjects can also impact the data: the machine used to obtain the images
can consequently affect the images and is referred as a scanner effect. Another
challenge which is present in global anomaly detection but emphasized in medical
applications is the dataset size. As a matter of fact, by definition anomalies are rare
events but when dealing with pathologies the size of the datasets is even smaller.
That is why, unlike anomaly detection in other areas, supervised learning is more
used and unsupervised learning is particularly challenging (Fernando et al., 2022).
Finally, the characteristics of medical images may differ from classical computer
vision: they may be 3D images which leads to a very high number of dimensions
for instance.
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3 - Problem Formulation

3.1 . Motivation and objective

In the previous chapters we have presented the main characteristics of cortical
folding patterns and covered their formation which can be prone to malformations
and lead to rare or abnormal folding patterns. As we have seen, since folding pat-
terns are a trait feature that appears during the neuro-development it can be used,
at a later time of life, as a testimony, a marker of the underlying processes occurring
during brain development and of the potential malformations. In addition, specific
cortical folding patterns have been associated with functions as well as disorders.
Their study is therefore particularly relevant in understanding brain development
and could help find biomarkers for certain neuro-developmental disorders.

The creation of large neuroimaging databases constitutes a first step in the
deciphering of the folding patterns. Having large databases enables to get a bigger
picture and thus a more accurate analysis of the patterns. Nevertheless, we men-
tioned the very high inter-individual variability of folding patterns and it is even
higher with a larger number of subjects. This makes it difficult to identify what
constitutes typical folding patterns or on the contrary rare or even abnormal pat-
terns. Advances in machine learning and especially deep learning are now opening
up new possibilities for studying folding patterns, identifying typical or rare pat-
terns, and hopefully, emerging sulcal biomarkers. With the opportunities offered
by representation learning that automatically learns good representations (LeCun
et al., 2015) and by the autoencoder framework that enables to encode the most
typical features in a latent space, the study of folding patterns may take a turn.

In this thesis, we aim to identify rare cortical folding patterns. Specifically, we
adopt an unsupervised deep learning approach to address this task. Since only a few
number of rare patterns have already been described, on small cohorts and usually
by visual inspection (Mellerio et al., 2014), we leverage the ability of unsupervised
frameworks to discover new patterns in the data. Furthermore, we seek to identify
novel rare folding configurations. Therefore, a supervised learning would not be
adequate and unsupervised learning is much better suited.

3.2 . Challenges and proposed strategy

Most of the unsupervised anomaly detection works propose a framework that
relies on the modelling of the normality (Pang et al., 2020). However, the task
difficulty depends on the input, and particularly on the variability observed. In our
case, the folding complexity is considerable. Our first challenge is to be able to
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effectively model the wide range of typical patterns. Several questions derive from
this challenge: how to represent the folding patterns? Which method to use to
model the variability?

Once the normal variability is encoded, another challenge is to identify the pat-
terns that deviate significantly from the norm and which constitute rare patterns.
This raises the question of what level of deviations may be identified. In addition,
since few rare patterns have been described, evaluation is challenging and must be
addressed.

Finally, in this work, we are interested in local patterns rather than global,
hemisphere-wide arrangements of the folds. However, as we have seen in part 1.3,
various regions of the cortex may be subject to malformations, therefore, it is in-
teresting to study the whole brain. Nevertheless, combining a local approach with
a whole-brain analysis constitutes another challenge.

To address these questions, we propose an unsupervised model that learns the
normal inter-individual variability on a control population. Once a representation
of the normality is obtained, two applications can be performed:

1. Based on the modelled normal inter-individual variability, we can focus on
this representation and identify typical patterns of the control popula-
tion.

2. On the contrary, we can focus on what happens at the margins of the
representation of the normal variability to identify rare patterns; we can
also project patient populations into this representation and analyze their
differences, hoping to discover specific rare patterns.

These two applications are illustrated on Fig.3.1

3.3 . Contributions

Part II of this work presents the general data and methods used. Both appli-
cations rely on a first step which is the modelling of the inter-individual variability.
Therefore, they share similarities in the data used and in the general methods
applied. In particular, the pre-processing is based on the same representation of
folding patterns. An unsupervised deep learning approach based on a β− V AE is
used in both applications.

Part III concerns the first application: the identification of typical folding pat-
terns. We introduce data and methods that are specific to this application. Specif-
ically, we studied the cingulate region which is of clinical interest. Then, although
the deep learning approach is shared with the second application, the methods
used to analyze the latent space are different.

Then, we move away from the typical folding characteristics to focus on the
rare configurations. Part IV presents our work on the identification of rare folding
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Figure 3.1: Two possible applications based on the approach. Anautoencoder-based model is trained on a dataset comprising only control subjectsto represent the normal folding variability. Once this variability is encoded (coloredpoints), it can be used to identify typical patterns (application I), or to identify rarepatterns (application II).

patterns. Several datasets were used. In order to be able to reliably assess our
methods, we generate datasets containing synthetic rare configurations. We also
evaluate our approach on actual rare patterns. We apply this approach to several
areas of the brain.

Finally, part V brings elements for discussing the methods and the results
obtained.
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Part II

General material and methods
to represent the

inter-individual variability

In the previous part we have seen that cortical folding patterns are unique
to each individual although they follow a global species-specific organization and
that unsupervised deep learning could be well adapted to study them. We also
presented our approach which consists in modelling the inter-individual variability,
and the two possible applications that derive from the learned representations: (1)
the identification of typical patterns in a control population, (2) the identification
of rare folding patterns.

This second part presents the databases and the general methods that are
shared by these two applications. The specific datasets and methods of each
application will be presented in parts III and IV. In this section, we first briefly
describe the common databases. Then we introduce the representation of cortical
folding that we used. Finally, we present the deep learning approaches that were
used to model the folding variability.
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4 - Databases

Modelling the inter-individual variability requires databases that have some
characteristics. This part introduces only the databases and methods common to
the two applications, i.e., that are used to model the normal variability. Therefore,
the subjects must be healthy controls and the two databases that will be described
in this section include only control subjects.

4.1 . The Human Connectome Project dataset

The Human Connectome Project (HCP) dataset (Van Essen et al., 2013) is
an open access database. Several releases have made available neuroimaging and
behavioral data of 1200 typically developing subjects.

When it comes to modelling the inter-individual variability, HCP has some
particularities. First, it comprises only subjects aged between 22 and 36 years old.
Compared to many datasets, this means that the subjects are rather young. This
has implications in terms of folding patterns. First, as explained in section 1.4,
as the subjects are young adults, the folding processes are over and the patterns
are already fixed. Moreover, the ageing should not have started to affect the brain
and specifically the opening of the sulci. A particularity of this dataset is that it
includes twins and their non-twin siblings. This has to be acknowledged since it has
been demonstrated that the folding patterns were partly heritable (Im et al., 2011;
Ahtam et al., 2021). Another specificity is the homogeneity of the data acquisition
method: all MR images were acquired on a single Siemens Skyra Connectom
scanner at an isotropic resolution of 0.7mm. This means that compared to most
databases, the HCP dataset is homogeneous and very clean, with no site effect for
instance.

4.2 . In-house dataset

In addition to the HCP dataset, for both applications we used an in-house
dataset that was described in (Borne et al., 2020). It is composed of 62 healthy
subjects aggregated from heterogeneous databases. The subjects are mostly men
between 25 and 35 years old. The resolution slightly differs between subjects, with
the majority of the subjects’ MRI having an approximate resolution of 0.93 x 0.93
x 1.20 mm.
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5 - Cortical Folding Representation

5.1 . BrainVisa/Morphologist pipeline

For the two databases that have been presented in the previous section, our
initial inputs are the T1-weighted MR images. Nevertheless, structural MR im-
ages hold numerous pieces of information beyond the morphology of cortical fold-
ing. Therefore, we first use the preprocessing software BrainVISA/Morphologist
(https://brainvisa.info/) on the raw images. BrainVISA provides tools for
various tasks including: Morphologist which performs brain segmentation and sul-
cal analysis or Anatomist which enables to visualize MR images with advanced
functionalities

Morphologist has been developed by the team and is subject to continuous
updates (Mangin et al., 1995; Rivière et al., 2002; Mangin et al., 2004a). It is
composed of several steps that include skull stripping, bias correction, segmenta-
tion of the brain and of the hemispheres, skeletonization of the grey matter and
the cerebrospinal fluid (CSF) union (Rivière et al., 2002). The main steps are
represented on Fig.5.1A. This leads to so-called skeletons, 3D images representing
only the folding and which correspond to a negative cast of the brain.

The skeleton is then segmented into simple surfaces (SS) depending on various
parameters such as topological properties and important local sulcal depth varia-
tions (Fig.5.1B) (Malandain et al., 1993; Mangin et al., 1995). For example, in
Fig.5.1B, small branches (SS2 and SS4) are represented as different simple surfaces
from the main ones, SS1 and SS3. The depth variation resulting from the buried
gyrus leads to two distinct simple surfaces (SS1 and SS3). Therefore, in this case,
the central sulcus is composed of four simple surfaces. The simple surfaces do
not comprise junctions. The junctions can be between two SS or between one SS
and the hull for instance. Each SS includes voxels which correspond to the folds
bottom lines. The skeleton is therefore composed of voxels of different natures:
they can be only part of simple surfaces, bottom lines or diverse junctions. These
various natures constituting the folds are modelled by specific voxel’s values leading
to quasi-binary skeletons, composed of several topological values.

The simple surfaces are then aggregated in a graph representation, called fold-
ing graph. Each simple surface corresponds to a node of the graph. The nodes bear
information such as the manually or automatically attributed label (for instance
"S.C._right" for the right central sulcus), the list of the corresponding voxels co-
ordinates in the native space or the size of the simple surface. The bottom line
voxels are another attribute of the nodes. The nodes are connected by edges which
hold other information like the list of the voxels corresponding to the junction be-
tween the two nodes. In addition, the folding graph contains global attributes such
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as transformations to referentials. Thanks to BrainVISA/Anatomist, the folding
graph can be visualized in 2D or 3D like in Fig.5.1A.5. and 7.

Figure 5.1: Overview of the BrainVISA/Morphologist pipeline’s main steps
and of the folds representation. A. Main steps of BrainVISA/Morphologist pipeline.1. Raw T1-wMRI, 2. Bias-corrected image, 3. Segmentation of the brain, 4. Segmenta-tion of the hemispheres and of the grey andwhitematter, 5. Skeleton representationof the folding graph, representing a negative cast of A.4. 6. Mesh representation ofthe white matter of the right hemisphere, 7. Folding graph that represents the folds(in green) as the negative cast of the white matter of the right hemisphere (whitemesh). B. Folds representation. 1. Example of a central sulcus, which is composed ofseveral elementary entities called simple surfaces (SS). (Orientation: A: Anterior, P:Posterior, S: Superior, I: Inferior). 2. Corresponding schematic representation of thesulcus represented in 1, which is formed by four simple surfaces. Depth variationcaused by the buried gyrus and the presence of two branches lead to the divisioninto four different simple surfaces. 3. Corresponding folding graph.

5.2 . Folding Graph Preprocessing

Based on the folding graphs produced by Morphologist, I developed, first on my
own and then in collaboration with the team, a preprocessing pipeline to preprocess
the folding graphs to make them easier to use in deep learning frameworks. This
pipeline is publicly available (https://github.com/neurospin/deep_folding).
The main steps and functionalities are presented in Fig.5.2.

5.2.1 . Skeletons, foldlabels and distance maps
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Figure 5.2: Deep Folding Preprocessing pipeline. The dashed line divides twofunctionalities that can be used independently or sequentially. Left: based on adataset with labelled sulci, a 3D mask can be learned. Right: based on a datasetwith unlabelled sulci, the folding graphs are used to generate raw skeletons andfoldlabel images. The skeletons can then be used to generate distance maps. Skele-tons, foldlabels and distance maps are resampled to the ICBMc2009 referential. If aregion of interest is studied, the dimensions of the adequate mask are used to cropthe hemisphere.

Based on the folding graphs of Morphologist, the pipeline enables to generate
two types of images: skeletons and "foldlabels" (Fig.5.2).

• Skeletons. The skeletons generated by the deep folding pipeline are different
from the skeletons of Morphologist. As a matter of fact, since Morphologist’s
skeletons are the result of the segmentation of the white matter and of the
union of grey matter and CSF, the brain hull is included. On the contrary,
using the folding graphs to generate the skeletons only translates the SS,
the bottom lines and the various junctions. Specifically, for each node and
each edge of the graph we write the corresponding voxels with the according
topological value. The result is a 3D image of the folds with five different
topological values: 30 for the folds bottom lines, 60 for the simple surfaces,
110 for the junctions, 120 for the buried gyri (pli de passage) and 100 for
the few remaining voxels. Images of skeletons are presented in Fig.5.2.

• Foldlabels. In some cases it can be more relevant to still have the division
into elementary SS. The foldlabel images enable to keep the segmentation
in SS. Indeed, each node of the graph is sequentially written in the image
with a specific number between 1000 and 2000, associated to each SS and
which serves to define it. Bottom lines and junctions are written with a
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number that corresponds to their associated SS. To ensure to be able to
link a bottom line with its associated SS, we add 5000 to the associated SS
value. For instance, if a SS is 1551, then its bottom line will be 6551. The
result corresponds to "raw foldlabel" in Fig.5.2.

• Distance maps. Skeleton-based images have proved to be relevant and
were the object of previous studies for fold recognition for instance (Borne
et al., 2020, 2021). However, they display some particularities that may
make them more difficult to handle. First, skeletons are quasi-binary images
representing the folding patterns; hence, they are very sparse images and
only very few voxels hold explicit sulcal information in skeletons. On aver-
age, sulci represent less than 5% of the voxels. Consequently, it could be
interesting to have a representation where the information devoted to folding
patterns is more distributed. In addition, skeleton images are not smooth,
the voxels that coincide with the sulci, correspond to abrupt changes in
intensity. This particularity makes the details of the skeleton harder to rep-
resent and reconstruct. When using AE-based models, it is also complex to
reconstruct folding patterns in skeletons as they are not continuous images,
so there is no notion of the proximity of a voxel to a sulcus. This makes the
reconstruction error and the gradient-based learning less efficient. Therefore,
we also generate distance maps. In particular, we convert the skeletons into
distance maps based on the Chamfer distance, which approximates the Eu-
clidean distance. Sulci are considered objects, and the further away a sulcus
is, the larger the value of a voxel is. Unlike skeletons or foldlabel images,
distance maps are "continuous" images with smooth variations. Another
advantage is that distance maps are built based on the whole hemisphere:
the value of a voxel depends on its neighbours. This may be particularly
interesting if we work on a region of interest (ROI). Indeed, they give, espe-
cially near the border of the ROI, information about objects outside the ROI,
which is not the case for ROI made of skeletons. An example of distance
map is shown in Fig.5.2.

These three inputs are generated in the native space with the same resolu-
tion as the initial T1-W MR images. Then they are affinely registered to the
ICBMc2009 space and resampled to an isotropic resolution of either 1 or 2 mm in
our applications. Since each individual is in its native space, using such a trans-
formation allows us to compare them. The affine transformations are obtained
based on the SPM12 normalization performed during Morphologist processing. It
is important to note that our registration is strictly affine. It involves only rotation,
translation and scaling towards a template referential. In particular, many methods
have proposed nonlinear warping strategies that may erase or distort local folding
characteristics. On the contrary, with our registration, the folding patterns remain
similar.
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5.2.2 . Focusing on a single region: crop definition

As we mentioned in section I, the perturbations that can lead to rare config-
urations can have an impact on cortical folding at different scales. The study of
folding patterns can therefore concern various scales ranging from the whole brain
to a local scale, i.e. focused on one or two sulci. In this thesis, we are interested in
capturing the local folding patterns variability, such as the hand knob. Indeed, it
is the morphology of the folds that we wish to study. Such characteristics can also
be considered at a wider scale; however, as a first step, it seemed easier to focus
on smaller regions. Thus, for our two applications, we work on sub-regions, i.e.
ROIs, of the brain. It is then necessary to define these ROIs. To study the specific
morphology of certain sulci, we chose to define our ROI based on the sulci nomen-
clature in order to encompass the whole sulcus of interest in our ROI, leading to a
ROI centred around one or more sulci.

To define each ROI, we learn a mask of the region over the previously described
in-house dataset as the sulci are manually labeled (Borne et al., 2020). The mask is
generated directly based on the folding graphs. In the graphs, the sulcus of interest
is represented as a set of simple surfaces. We initialize the mask as an empty volume
in the ICBMc2009 space. Then, for each subject, the voxels corresponding to the
sulcus of interest are registered to the ICBMc2009 space, resampled to the targeted
resolution, and increment the mask. The resulting mask is slightly dilated by 5
mm to include potential sulci locations not represented in this manually labelled
database. In the end, the mask is a 3D image where the voxels correspond to the
frequency of appearance of the sulcus of interest.

Once the mask is defined, we apply it to the dataset we wish to analyze,
for instance, the HCP dataset. The mask can be applied to any kind of input:
skeletons, foldlabels or distance maps. First, we crop the inputs of the HCP subjects
according to the mask bounding box in the ICBMc2009 space (see Fig.5.2). The
mask is applied later, on the fly during the training of our network. In the case of
a ROI comprising several sulci, we proceed sequentially: we define a mask for each
sulcus and we combine them before cropping the subjects.

It is important to note that the sulci labels are only used for obtaining the
mask coordinates but are not needed afterwards, once the masks are defined.

5.2.3 . Folds visualization

With our three types of input data, data visualization and shape characteriza-
tion can be performed directly on 2D slices. This results in visualizations like the
ones presented in Fig.5.2. However, having a 3D view of the folds is capital when
it comes to analyzing the folding patterns.

It is straightforward to visualize binary images on 3D: we can convert them
to meshes with various tools, like one developed by the team: https://github.
com/neurospin/dico_toolbox. Therefore, for skeleton and foldlabel data, it is
almost direct, we just binarize them. Unlike the skeleton and the foldlabel images,
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the distance maps are continuous. Therefore, we binarize our distance maps with
an empirically defined threshold of 0.4 and convert them to meshes

5.3 . Requirements on sulci labelling

The labelling of the sulci is not an easy task. Whether it is manual or auto-
matic, several challenges exist. In our effort to model the folding variability and
to identify typical and rare patterns, we want to be independent of the sulci la-
bels. Indeed, as we mentioned, the labelling is complex and can be prone to error.
Some very efficient tools have been developed and some of them are embedded
in BrainVISA/Morphologist pipeline (Borne et al., 2020). However, even if their
performance is high, they may still attribute wrong labels, especially in regions
which are highly variable and could be of interest. Therefore, it is capital that our
approach may be applied to any dataset independently of whether it is labelled or
not.

If we recap the previously introduced steps: Morphologist and our folding graph
preprocessing do not require labels to generate folding graphs and then skeletons,
foldlabels or distance maps. The only step that requires the labels is in the mask
definition. Hence, if we use our in-house dataset presented in section 4.2 to define
the different masks and thus ROIs, we will not need to have the labels for other
datasets.
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6 - Deep Learning Approach

Based on the skeletons and the distance maps, we now wish to model the
inter-individual folding variability. To do so, we use an approach that relies on
deep learning and specifically, on a β − V AE. Therefore, this section will present
the basics that support our deep learning approach.

6.1 . Convolutional Neural Networks

We quickly mentioned convolutional neural networks (CNNs or ConvNets) in
part I, we will now go deeper in how they work. CNNs are architectures particularly
well-suited to deal with images since they enable to successfully capture spatial
dependencies and thus to encode specific image properties. In this part, we will
consider a CNN applied to 3D images even though the approach is similar with
2D images. A CNN is usually composed of a succession of three main layers:
convolutional, pooling and fully-connected layer. Convolutional layer parameters
consist of learnable filters. The filters are smaller than the input. During training,
each filter slides across the input. For each location of the filter, a dot product is
computed between the filter parameters and the corresponding voxels. Depending
on the position of the layer in the network, the learned filters activate for different
image patterns. In particular, the first layers of the network focus on the big
picture while the deeper layers look at the details: the lower frequencies are learned
before the high frequencies. Convolutional layers enable parameter sharing and are
especially interesting to deal with images and high-dimensional data as it would be
difficult to connect each neuron to all other neurons like in fully connected layers.
In convolutional layers, each neuron is connected to only a local region of the input
volume. This can be regulated by a hyperparameter called the receiptive field. The
size of the output of a convolution layer depends on three other hyperparameters.
First, the depth of each output volume: it corresponds to the number of filters
associated with a layer. Each of them can focus on something different and thus
learn complementary information. The stride enables to indicate the step used
for the filters sliding, for instance through each voxel (stride=1) or skipping every
other voxel (stride=2). Last, padding adds voxels of a given value (usually 0)
around the image.

Between successive convolution layers, pooling layers are usually inserted. They
are used to gradually reduce the spatial size of the representation. The most
common applied function is MAX. However, it is possible to avoid using pooling
layers with a larger stride for example (Springenberg et al., 2015).

Many architectures based on convolutional layers have been introduced. The
first successful one was in 1989 (LeCun et al., 1989), later formalized as LeNet
(Lecun et al., 1998). Since then, the architectures have been complexified and
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have led to major advances in the field. The most famous architectures are AlexNet
(Krizhevsky et al., 2012) or more recently ResNet (He et al., 2016) and densenet
(Huang et al., 2017).

Now that we introduced the CNNs, let us go back to some of their characteris-
tics that are important. Indeed, each model bears biases: choosing an architecture
comes with applying a prior to the space. In particular, several biases are associ-
ated with CNN. They introduce an equivariance to translation resulting from the
weight sharing and there is a locality bias: pixels that are close, are connected to
each other.

In the task of modelling the inter-individual variability of folding patterns,
convolutional layers and convolutional networks are well adapted for several reasons.
First, thanks to their architecture, they enable to be computationally efficient which
is capital as we deal with 3D images. In addition, their ability to explicitly handle
the geometry is really interesting when dealing with images. Last, they are known
to have a good generalization power.

Convolutional layers can be used in various models, including the autoencoder
family. In this case, specific operators can be used. For example, the reconstruction
of the latent projection requires increasing the dimensions. To this end, upsampling
techniques or transposed convolutions can be used. Upsampling techniques include
several methods such as nearest neighbours or linear interpolations. In return,
transposed convolutions upsample an input thanks to learnable parameters.

6.2 . Autoencoder framework

6.2.1 . General framework
We briefly introduced the general context of autoencoders in part I. This type

of model is widely used for images. One of the most famous autoencoders, the
UNet (Ronneberger et al., 2015) which was later adapted to 3d images (Milletari
et al., 2016), was designed for segmentation purposes. Such models and their
more complex counterparts are also spread in the outlier detection domain. As
a reminder, a basic autoencoder is a neural network composed of two parts: the
encoder and the decoder. The encoder maps an input x to a vector z in the latent
space. The latent vector is then reconstructed by the decoder which outputs x′.
The optimization criterion is ||x′−x||. Depending on the type of the input, several
metrics can be used. If dealing with images, L1, L2 or the cross-entropy are usually
employed.

The latent space Z, also called information bottleneck, is supposed to encode
the main properties of the input space. Based on this assumption, it could be
interesting to sample vectors in the latent space and to pass them through the
decoder to obtain new samples. However, due to the absence of constraints in the
latent space, this usually leads to absurd samples.

6.2.2 . Overview of the VAE
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To address this issue, generative models can be used, such as the variational
autoencoder (VAE) (Kingma and Welling, 2014). VAE are stochastic networks
and in some way, are closer to bayesian models than to AE. Unlike classic AE, they
map the input as a distribution pθ which is parameterized by θ. Let us introduce
some notations:

• x is the input,

• pθ(z) is called the prior distribution,

• pθ(x|z) is the likelihood,

• pθ(z|x) is the posterior distribution.

A V AE involves two variables: x which is observed and z which is not. z
is sampled from the prior distribution pθ(z) while x can be generated from the
conditional distribution pθ(x|z).

However, pθ(z|x) is intractable so an approximation is used: qϕ(z|x). These
distributions can correspond to an AE framework: qϕ(z|x) acts as a probabilistic en-
coder and pθ(x|z) as a generative model similar to a probabilistic decoder. The ap-
proximation qϕ(z|x) should be close to the real distribution pθ(z|x). The Kullback-
Leibler Divergence DKL (Kullback and Leibler, 1951) is used to quantify the differ-
ence between the two distributions. We seek to minimize DKL(qϕ(z|x)||pθ(z|x)).
If we expand the equation we have:

DKL(qϕ(z|x)||pθ(z|x)) = log pθ(x)+DKL(qϕ(z|x)||pθ(z))−Ez∼qϕ(z|x)log pθ(x|z)(6.1)
which is equivalent to:

log pθ(x)−DKL(qϕ(z|x)||pθ(z|x)) = Ez∼qϕ(z|x)log pθ(x|z)−DKL(qϕ(z|x)||pθ(z))(6.2)
The left term of equation 6.2, corresponds to the objective. Indeed, we seek

to maximize the log-likelihood of generating real data and that the approximation
qϕ is the closest to pθ(z|x). This leads to:

LV AE(θ, ϕ) = −log pθ(x) +DKL(qϕ(z|x)||pθ(z|x)) (6.3)

LV AE(θ, ϕ) = −Ez∼qϕ(z|x)log pθ(x|z) +DKL(qϕ(z|x)||pθ(z)) (6.4)

θ∗, ϕ∗ = argmin
θ,ϕ

LV AE (6.5)
In Variational Bayesian methods, this is the variational lower bound, also called

evidence lower bound (ELBO) because the KL divergence is never negative. There-
fore we have:
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−LV AE = log pθ(x)−DKL(qϕ(z|x)||pθ(z|x)) ≤ log pθ(x) (6.6)
During the training process, samples are supposed to be drawn according to

z ∼ qϕ(z|x). However, this sampling would not enable the backpropagation of the
gradient. Therefore, the reparameterization trick has been proposed (Kingma and
Welling, 2014). Simply put, it expresses z as a deterministic variable: z = Tϕ(x, ϵ).
In this case, ϵ is an auxiliary independent random variable and Tϕ is a differentiable
transformation function that converts ϵ to z. Usually, qϕ(z|x) is a Gaussian. Finally,
we obtain:

z ∼ qϕ(z|x) = N (z;µ, σ2I)

z = µ+ σ ⊙ ϵ, where ϵ ∼ N (0, I)
(6.7)

where N is a Gaussian of mean µ and standard-deviation σ, and I is the identity.

One advantage of the VAE is that the latent space, due to the constraint of
following a Gaussian distribution, is supposed to be composed of disentangled di-
mensions. This is especially interesting for interpretability purposes. To emphasize
the learning of more disentangled representations, the β − V AE was introduced
(Higgins et al., 2016). It consists of a modification of the classic VAE to weight
DKL:

LBeta−V AE = −Ez∼qϕ(z|x) log pθ(x|z) + βDKL(qϕ(z|x)||pθ(z)) (6.8)
Higher values of β would lead to more disentangled representations (Higgins

et al., 2016; Burgess et al., 2018). In case of β = 1, the β − V AE is a classic
V AE.

6.2.3 . VAE as a generative model
In addition, unlike UNet or VNet which do not have guarantees regarding data

generation since there is no constraint on the latent space, VAE models have the
advantage of being generative. Indeed, as the latent space is a distribution, it
is possible to generate new samples from the latent space. This is particularly
interesting for interpretability purposes. As a matter of fact, with such models, it
may be possible to understand causal relationships between characteristics in the
data, their projection in the latent space and the generated output. This is capital
when it comes to attempting to decipher biological processes. For instance, if a
model performs classification between patients and healthy controls, we wish to
understand the reasons why one subject was predicted as a patient. It can enable to
trust the model, i.e., the features involved in the decision have a clinical meaning,
or it can allow discovering biomarkers. A recent work presented a bi-directional
approach to characterize the impact of variations in specific regions of the inputs
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in the latent space, and on the contrary, how perturbations in the latent space
could impact specific regions of the output (Liu et al., 2020).

The generation of new samples is performed once the model is trained. We
sample a vector from the learned latent distribution which is then passed to the
decoder and reconstructed. This method can be used to study the different latent
dimensions. For instance, one can sample a latent vector with all the dimensions
worth their average and then interpolate along the axis of one specific dimension.

6.3 . Implementation of the beta-VAE

For our two applications, namely the identification of typical folding patterns
and of rare ones, I used a β − V AE to model the inter-individual variability of
folding.

Indeed, in neuroimaging applications, many works have used autoencoder frame-
works (Chen and Konukoglu, 2018; Atlason et al., 2019; Baur et al., 2020). More
widely, in medical images, GAN have been demonstrated to efficiently work in
anomaly detection tasks in optical coherence tomography images (OCT) (Schlegl
et al., 2017, 2019). This method was then transposed to brain images (Simarro Viana
et al., 2021). In return, VAE-based models have also been widely used (Zimmerer
et al., 2019a,b) and a comparison of AE models showed that VAE was one of the
most efficient to detect anomalies in brain MR images (Baur et al., 2020).

Therefore, I used a β − V AE to model cortical folding characteristics. The
input x corresponds to our input data previously described and can be skeletons,
foldlabels or distance maps. β > 1 was preferred in order to favour the disentan-
glement of the latent dimensions. For both applications, the global architecture
was identical. It consisted in fully convolutional encoder and decoder of depth 3
(see Fig.6.1). Several hyperparameters were tuned:

• L: the latent space size,

• β: the weighing coefficient of DKL.

• lr: the learning rate.

The methods used to tune the hyperparameters depend on the objective and
thus will be described later in part III and IV.

In addition to the β−V AE, I supervised a 6-months internship whose subject
was to apply GAN to the identification of rare folding patterns. For the time of the
internship, the results were not convincing and I preferred improving our approach
with the β−V AE. This work does not present the results obtained with the GAN
but are available at neurospin-projects/2021_adneves_skelegan/internship_report.
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Figure 6.1: β−V AE architecture. Illustration of the β−V AE architecture used.The encoder and the decoder are fully convolutional. The depth is 3.
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Part III

Identifying typical patterns

This part concerns the first application presented previously in 3.2. Based on
the general methods described in the previous section, we aim to identify typical
cortical folding patterns from the learned representation of the normal variability.
We will first briefly introduce the context of this application. We will then present
the specific material and methods before discussing the results.
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7 - Introduction

7.1 . Motivations

The attempts to describe and classify local folding patterns into categories
are numerous and have led to several propositions. In 2004, a research program
including the construction of an "alphabet of the folding patterns" was described
(Mangin et al., 2004b). The use of the term alphabet is not coincidental. In this
analogy, the sulci would constitute the words of a text. We can easily imagine that
several people writing manually the same text would produce very different-looking
scripts. Similarly, neurodevelopment results in varying patterns among the popu-
lation. The different shapes and patterns of each sulcus would be similar to the
various ways of manually writing: some words may be divided into several parts for
certain authors for instance. Comparing with numbers is more visual, especially
with the number 7 which can be associated with two classes, i.e. patterns: with or
without a central bar (Fig.7.1). This example highlights another peculiarity: the
two classes represent the main diverging characteristics, however, no two examples
are strictly identical within a class. Similarly, the components of the folding pat-
terns alphabet would encompass the main divergent features of a region, but the
elements associated with each class would still exhibit their own uniqueness such
as the digit 7, where on the right side, although both do not have a center bar,
one is more rounded at the top.

Creating a dictionary of the typical patterns displayed by the normal population
aims to use the patterns as ideograms that bring together the diversity of the
folding. Adding this layer to analyze the patterns enables simplifying and reducing
the folding variability: instead of dealing with as many sulci as individuals, we
deal with a finite number of patterns. Having such a dictionary may serve several
purposes. First, the patterns could be used for registration in the context of
folding studies (Sun et al., 2009). The second purpose is to use the dictionary of
normal patterns to study neurodevelopmental disorders that could result in rare or
abnormal configurations. This goal corresponds to the second application of this
thesis which I will discuss in part IV.

7.2 . Challenges and strategy

Identifying the main typical folding patterns is a challenging task. First, the
folding variability is massive and thus requires tools powerful enough to account
for it. In addition, currently, there is no gold standard in terms of a dictionary of
patterns. Indeed, in the 90s, the different patterns were determined visually, based
on dozens of specimens (Ono et al., 1990). Since then, several methods have
tried to automatically identify the main cortical folding patterns (Sun et al., 2009,
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Figure 7.1: Two patterns of the digit 7 from the MNIST dataset. Left: thedigits seven are written with a central bar. Right: Two examples of the digit sevenwithout a central bar. Within the two patterns, each digit exhibits its own specificity:in the left part: the position of the bar and the angle of the main part; in the right,the rounding of the digit or the line’s thickness.

2012; Meng et al., 2018; Duan et al., 2019; de Vareilles et al., 2022). However,
these methods are applied to different brain areas which makes it more difficult to
compare their results for a consensus to emerge. Therefore, the evaluation of our
method is complex.

To address this task and its associated challenges we proposed, for the first
time, an unsupervised deep learning approach. This work was done in collaboration
with Joël Chavas and led to a publication at MICCAI 2022 for which we are co-
first authors: Guillon, L., Chavas, J., Pascucci, M., Dufumier, B., Rivière, D.,
Mangin, J.-F. Unsupervised Representation Learning of Cingulate Cortical Folding
Patterns, in: MICCAI 2022, Lecture Notes in Computer Science. Springer Nature
Switzerland, Cham, pp. 77–87 (Guillon et al., 2022). The validation strategy was
developed later by Aymeric Gaudin, a trainee in the team, and his supervisor Joël
Chavas.
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8 - Specific Material and Methods

8.1 . The cingulate region

As we already mentioned previously, we are interested in identifying local pat-
terns. For this application, we chose to study the cingulate region of the right
hemisphere.

The cingulate area is composed of two main sulci, the cingulate sulcus and in
some cases the paracingulate sulcus. Fig.8.1 presents the folding morphology of
the region. The cingulate is present in each individual although its morphology
has been found to be highly variable. Regarding the paracingulate sulcus, a study
showed that it was present in almost 70% of cortices but there is an asymmetry
as it is more frequent in the left than in the right hemisphere (Yücel et al., 2001).

The presence of these sulci has led to the definition of two patterns as pre-
sented in Fig.8.1B: the single type without a paracingulate sulcus and the double
parallel type with it (Ono et al., 1990; Cachia et al., 2014). These two sulci are of
interest as it has been demonstrated that subjects with poor inhibitory control and
schizophrenic patients seemed to have more symmetric patterns between the two
hemispheres than controls (Provost et al., 2003; Yücel et al., 2003; Borst et al.,
2014; Cachia et al., 2014).

Nevertheless, these two patterns were not the only ones identified in the region.
In another study, four different patterns were described (Meng et al., 2018). The
patterns they proposed seem to be more fine-grained: they go beyond the presence
or the absence of a paracingulate and introduce for instance interruptions of the
cingulate. More recently, the same team improved their methodology and proposed
five patterns (Duan et al., 2019).

Using this region is particularly relevant for our application and to evaluate our
method. First, this region is sufficiently variable to justify the use of our methods.
If a region was too stable, one could argue that it would not be appropriate.
On the contrary, a region displaying a massive variability could result in many
patterns and in a difficult assessment for this first attempt. Moreover, although
there is no ground truth regarding the patterns existing in that area, the patterns
proposed by the different studies cited previously enable to compare our results.
Finally, as we mentioned, the cingulate region has a clinical interest in psychology
and psychiatry. In addition, perturbations occurring during neurodevelopment,
can affect this region. For example, patients with corpus callosum dysgenesis
demonstrate a very different configuration (Bénézit et al., 2015).

In this application aiming at identifying typical patterns, we have a two-fold
goal: to summarize the variability into main patterns based on a latent represen-
tation, and, within this representation, to be able to detect the presence of the
paracingulate sulcus. Indeed, since the presence of the paracingulate constitutes a
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Figure 8.1: Folding morphology of the Anterior Cingulate Cortex (ACC).A. Description of typical folding structures in our ROI using the icbm152 averagetemplate. The cingulate region is composed of two main sulci: the cingulate sul-cus (whose anterior part is in red), which is doubled with paracingulate pits (greencrosses) that may be discontinuous or join to form the paracingulate sulcus, lead-ing to numerous combinations. B. Two configurations deriving from the presence ofthe paracingulate. In the ’single’ type, there is no paracingulate, whereas in the ’dou-ble parallel’ type both the cingulate and the paracingulate are present. Courtesy of(Cachia et al., 2014).

major pattern in the region, assessing whether our latent representation contains
features enabling to detect it could be a good proxy to validate our method.

To answer these questions, we used several datasets. First, we learned the
folding normality on the HCP dataset which was presented in section 4.1. Then,
to be able to assess our method on the detection of paracingulate sulci we need
labels of their presence. To this end, we used a specific dataset which consists
in an aggregation of several databases which were labelled w.r.t the presence or
the absence of a paracingulate sulcus (Rapoport and Gogtay, 2011; Cachia et al.,
2014; Chakravarty et al., 2015; Cachia et al., 2016; Tissier et al., 2018; Delalande
et al., 2020). We will refer to this dataset as "ACC".

8.2 . Data preprocessing

Since the variability is already very important (see Fig.8.2), we used only the
right hemispheres. As presented in part II which detailed the general methods, our
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Figure 8.2: Folding variability of the Anterior Cingulate Cortex (ACC). 3Dcrops of the ROI obtained with our Deep Folding preprocessing pipeline. Each cropcorresponds to one subject.

input is the skeletons obtained from the folding graphs of BrainVISA/Morphologist.
As a reminder, these images are 3D quasi-binary images which represent a negative
cast of the brain. We focus on the subregion of the anterior part of the cingulate
and the paracingulate. In order to do so, we used our deep folding pipeline and
more specifically the part that generates masks of specific sulci (see part 5.2). We
ended up with two masks: one for the paracingulate and one for the anterior part
of the cingulate sulcus. The two masks allowed us to define our ROI. In this case,
the masks were applied prior to training. Our final input is a 2-mm resolution 3D
crop of dimension 20x40x40 with integer values that represent local topologies.
Fig.8.2 shows examples of our final inputs.

8.3 . Learning cingulate region representations

We compared two unsupervised deep learning models: the β−V AE previously
introduced and another framework based on contrastive learning which was done
by my colleague Joël Chavas. These two models are trained on a population
representing the normal variability, i.e. HCP. The aim is to learn to encode the
most typical features in the latent space.

• β−V AE. I will briefly remind the main characteristics of this model, a more
in-depth presentation is made in part 6.8. β − V AE (Kingma and Welling,
2014; Higgins et al., 2016) is an autoencoder-based model which has the
particularity of encoding inputs as distributions. Samples are drawn from this
distribution and then reconstructed. The objective function is a combination
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of the reconstruction error and the matching of two distributions using the
Kullback-Leibler divergence. β − V AE is trained to minimize:

L(θ, ϕ; x, z, β) = −Eqϕ(z|x)[log pθ(x|z)] + βDKL(qϕ(z|x)||p(z)) (8.1)
The first part of the equation can be associated with the reconstruction
error. In our case, as we train the β − V AE on the binarized skeletons,
we used the cross-entropy loss. We chose p(z) to be a reduced centered
Gaussian distribution.

• Sim-CLR. This model is an instance discrimination contrastive model (Chen
et al., 2020). The main hypothesis is that two modified versions (views) of
one image should be encoded closer in a latent space than the views of
another image. For each sample x of a batch of size N, at each epoch,
two views xi and xj are generated and fed into the model for which the
model outputs are respectively zi and zj . The model is trained to bring
together views from the same image in the latent space, that is to minimize∑N

i=1 ℓi,j=pos(i)+
∑N

j=1 ℓj,i=pos(i), ℓi,j being the loss function for a positive
pair of examples (τ is a temperature parameter) :

ℓi,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1,k ̸=i exp(sim(zi, zk)/τ)
, (8.2)

In the version of SimCLR implemented by J. Chavas, the view generation
is designed specifically for our inputs and leverages their characteristics.
Indeed, it uses the discrete topology of the fold skeleton and of the bottom
line in particular (described in part 5.1). Fig.8.3 presents visually the bottom
lines. Based on this organization, the bottom line can permit to define
an augmentation that relies on the topology of the skeleton: the bottom
lines (red part in Fig.8.3) remain in all views but the inner part of some
folds (orange part in Fig.8.3) are removed. More specifically, the first view
combines random rotations between [-10,10]°, over all axes and a 60% rolling
cutout with only the bottom lines kept inside the cutout volume. The
second view combines again random rotations between [-10,10]° over all
axes followed by a 60% rolling cutout but with the whole skeleton conserved
inside the cutout, whereas only bottom values are kept outside the cutout
volume. An example is shown in Fig.8.4. All views are then binarized.
This topology-based augmentation forces the model to learn the sheet-based
structure of the fold-based skeleton.

For interpretability purposes, we added a decoder to SimCLR. To reconstruct
the latent codes, we freezed SimCLR weights and trained a decoder whose
input layer is the representation space. The decoder backbone is the one of
the β − V AE decoder, and the loss is the cross entropy.
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Figure 8.3: Illustration of folds’ bottom lines. Orange represents the skeletonof the ROI. Red represents the corresponding bottom line. Grey is the white matter.Skeleton is represented here on 1 mm resolution. Note that the skeleton includes itsbottom line, we use two colors to facilitate understanding.

Figure 8.4: Examples of two augmented views. In the two examples the arrowsindicate the cutout where the "walls" of the folds have been deleted but the bottomlines remain.

As indicated in part 6.8, our β-VAE comprises fully convolutional encoder and
decoder of symmetrical architectures with three convolutional blocks and two fully
connected layers. The backbone of the SimCLR model implemented by J. Chavas
is the DenseNet (Huang et al., 2017), followed by two fully connected projection
overheads based on (Dufumier et al., 2021). To adapt to our smaller input, the size
of the DenseNet network was reduced down to two dense blocks. The latent space
corresponds to the representation space of the SimCLR model, which has a better
representation quality than output space. Indeed, the contrastive loss could result
in a loss of information in the output space useful for the downstream task (Chen
et al., 2020).

8.4 . Latent space analysis

Our aim is to identify typical patterns. Therefore, once a condensed normal
representation is learned, we have to effectively decipher the main features of this
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representation.

8.4.1 . Characterizing folding patterns
To identify folding patterns, once the model is trained, all subjects are encoded

to the latent space of both models and reduced to a 2-dimensions space with t-SNE
algorithm (van der Maaten and Hinton, 2008). The reduction to two dimensions
enables to get more hints of the learned representations and to analyze subjects
groups more easily. As we wish to identify a finite number of patterns, we perform
a clustering with hierarchical affinity propagation (AP) algorithm (Frey and Dueck,
2007) in the 2-dimensions space. One advantage of AP is that the number of ex-
pected clusters does not have to be precised. However, it may output a very large
number of clusters, making it difficult to understand from an anatomical point of
view. Hence, following the method used in (Meng et al., 2018), we applied the
algorithm in an iterative way until a maximum number of five clusters. We stress
out that the maximum of five clusters is an arbitrary number and that it has no
biological meaning beyond facilitating our understanding.

Once the clustering is performed we have a finite number of clusters where
each, hopefully, corresponds to a pattern. The analysis of the main anatomical
characteristics of the clusters can be done either on the latent codes or on the
input space. Indeed, for each subject of the clusters we have its skeleton in the
input space and its corresponding latent representation.

Based on the latent codes. This first method enables to understand the
encoded characteristics in the latent dimensions. More specifically, as the num-
ber of dimensions is much smaller than that of the input space, we hypothesized
that the latent features enabling to cluster the space condense the variability of
the folding characteristics. For the β − V AE, we leveraged the generative power
and sampled the latent representation corresponding to each clusters’ centroid and
then decoded the images. In order to better understand the characteristics of each
cluster, we travelled between them through the latent space to analyse variations
across dimensions. For SimCLR, if it has not been originally introduced as a gen-
erative model, recent work demonstrates some links between contrastive learning
and data-generating processes (Zimmermann et al., 2021). Nevertheless, here, we
did not investigate the generative properties of SimCLR and we only reconstructed
the latent representation of the nearest subject of each cluster centroid.

Based on the input space. The second method is performed in the input
space, based on the skeletons. The clustering enables to obtain labels for all the
subjects. We can then compute a local per -cluster averaging pattern in the input
space (Sun et al., 2012). This method was adapted from the Statistical Probability
Anatomical Map (SPAM) strategy. Specifically, all samples are aligned with one
chosen as template. They are then summed to obtain a SPAM, also called ’local
average’. The SPAMs are thresholded at the same level to be able to visualize in
3D. The threshold is chosen to prevent holes in the generated shapes. All in all,
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we use the input skeletons of the subjects constituting each cluster to generate
local per-cluster average pattern.

These two methods are both interesting and bring complementary information.
As a matter of fact, the reconstructions based on the latent space comprise only
encoded features. Decoding them enables to get an insight into what our models
have retained as essential information to model the normal cingulate variability.
In addition, the latent reconstructions are usually simplified representations which
makes them easier to interpret. In return, the SPAMs are simplified representations
of the real inputs. Thus, in a way, they effectively represent normal variability.
However, since they are computed based on the input, they may be more sensitive
to the diversity of folding and harder to interpret. In addition, they may serve to
validate our latent representations depending on whether the patterns are similar
or not.

8.4.2 . Ensuring representation generalization
When working on the characterization of typical folding patterns, a major

question is whether the patterns found in one population can be recovered in
another population. To test the generalization ability of our latent representations,
we divided the HCP dataset in halves (HCP_1 and HCP_2) and trained both
models (β-VAE and SimCLR) twice, on the two different subsets, leading to two
encoders per model. These two encoders are referred as E1 and E2. We then
encoded the first part of HCP (HCP_1) with the two encoders leading to two
sets of embeddings per model. As mentioned previously, the different embeddings
are reduced to a lower dimension space with t-SNE. E1 embeddings are clustered
and we report the cluster labels to E2 embeddings. Fig.8.5 illustrates the different
steps.

The generalization ability is assessed both visually and quantitatively: visually,
we evaluate if the first visualization remains localized in the second visualization,
meaning that the learned representations are not dependent on the training data
but have captured some general features; quantitatively we measure the adjusted
mutual information score (AMI) (Vinh et al., 2010). This metric assesses the
similarity between two clusterings. In particular, we compute the AMI based on the
cluster labels obtained on HCP_1’s projection with E1 and on HCP_1’s projection
with E2 where we apply another clustering.

8.5 . Quantitative assessment: detection of the paracingulate

In addition to these analyses, we wanted to quantitatively assess our method
for the identification of patterns. In particular: do the learned features enable
to detect the presence of a paracingulate sulcus? To do so, we used the dataset
labelled on the presence of the paracingulate sulcus (ACC). First, we divided this
dataset into train and test sets. We trained five different models for both the
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Figure 8.5: Pipeline to identify typical folding patterns. HCP dataset is splitinto two parts HCP_1 and HCP_2. Both models (β−V AE and SimCLR) are trained onthe two halves HCP_1 and HCP_2. The inference is performed on all four models onHCP_1.

β − V AE and SimCLR on HCP_1. Then, we encoded the ACC sets and trained
250 linear Support Vector Machines (SVM) with cross-validation to classify be-
tween paracingulate and no paracingulate. The number of SVM (250) has been
chosen arbitrarily. The metric used to assess the performances was the area under
the receiver operator Curve (AUC).

Note that the development of the quantitative assessment was done by A.
Gaudin under the supervision of J. Chavas. I adapted the scripts of the β−V AE,
trained the β − V AE and generated the embeddings of the ACC dataset for this
model.

8.6 . Training strategy

As presented earlier, the training of the β−V AE and of SimCLR was performed
on the first half of the HCP dataset (HCP_1), which represents a total of 550
subjects. 80% of the subjects were used for training and the remaining 20% were
used for validation (see Fig.8.5).

To find the best hyperparameters (size of the latent space for both models,
β value for β-VAE and temperature τ for SimCLR), we performed a gridsearch
where the best combination was chosen based on the highest silhouette score on
the latent space that corresponded to decent loss value and reconstruction abilities
for β-VAE. As a matter of fact, the silhouette score indicates whether the samples
are projected in a clustered way or uniformly distributed. The best value is 1 and
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the worst -1. 0 indicates the absence of clusters or overlapping clusters. Choos-
ing the hyperparameters leading to a higher silhouette score pushes toward a more
clustered representation. We considered the reconstruction quality as an important
criterion since we want to interpret the representations based on reconstructions
and generations.

We obtained β=2 (tested range 1-8) and τ=0.1 (tested range 0.01-0.3), as
well as a latent size of 4 (tested range 2-150) for both models, which enabled to
balance between the model performance and the clustering quality. Training of
300 epochs lasted for approximately 1 hour and 2 hours for β-VAE and SimCLR
respectively, on an Nvidia Quadro RTX5000 GPU.
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9 - Results

9.1 . Latent space structure

Fig. 9.1 (a) and (b) presents the clustering results. The silhouette score with
AP on the latent space is 0.17 and 0.42, respectively for β-VAE and SimCLR. It
becomes 0.43 and 0.44 when applied to the t-SNE space, indicating a tendency
towards a clustered distribution with close clusters. This range of scores is common
when dealing with complex data such as neuroimaging modalities (Lebenberg et al.,
2019). For both models, four clusters were identified but the organization of the
latent space is different: β-VAE latent space seems to distinguish four groups of
subjects, separated only by a thin boundary whereas SimCLR latent space is more
structured and could be interpreted as a manifold, consistent with the biological
reality of folding patterns.

In Fig. 9.2, interpolating from one cluster to another shows that the latent
space learned by the β−V AE is continuous and regular, and we can progressively
see the change of patterns.

9.2 . Deciphering the patterns

Both models were able to produce reconstructions that are compliant with the
inputs, presenting a simplified version of the scene which enables to focus and bring
out the most important features (Fig. 9.1 (a) and (b)).

For SimCLR, the black cluster seems to be the only pattern having a continuous
paracingulate. The brown and orange clusters could correspond to a long cingulate
and a marked callosal sulcus. Similarly, the yellow reconstruction seems to present
a callosal and a cingulate sulcus. In addition, on top, there is a paracingulate
which is not continuous but rather composed of independent pits as in Fig.8.1A.
Based on the latent space organization, similar to a manifold, it is interesting to
analyze the reconstructions in terms of evolution. The curvature of the longest
sulcus becomes more bent from the black to the yellow cluster. From the black
to the orange, we also witness the progressive disappearance of the paracingulate
and a more marked presence of the callosal sulcus.

In the case of the β − V AE, cluster 0 (green) shows another pattern: a split
anterior cingulate sulcus. This is even more visible thanks to the interpolations in
Fig.9.2. Cluster 1 (blue) presents a cingulate doubled with a long paracingulate,
while the pink has a shorter paracingulate and we can discern a piece of callosal
sulcus. Lastly, the indigo presents a slight paracingulate split composed of sev-
eral pits. Linking these visual descriptions to the clustering, it seems that the two
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(a) SimCLR representation.

(b) β − V AE representation.
Figure 9.1: SimCLR and β-VAE latent spaces analysis. (a) t-SNE representa-tion of SimCLR latent space. Insets are decoded latent codes of nearest neighboursfor each cluster centroid. (b) t-SNE representation of β-VAE latent space. Insets aredecoded latent codes of cluster centroids and of interpolations between cluster cen-troids.
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Figure 9.2: Travelling through β-VAE latent space from one cluster to an-
other. The extreme left and right columns represent patterns generated from thecentroids latent codes, the colours refers to Fig.9.1. Between centroids patterns, newsamples obtained travelling through β − V AE latent space illustrate the variationsfrom one cluster’s particularities to another.

upper clusters display a paracingulate whereas, the other two at the bottom do not.

It is interesting to compare these decoders’ outputs with the SPAMs, i.e. cluster
averages, based on the input space (figure 9.3). First, for both models, we can
notice that the callosal sulcus (lowest sulcus) is similar in all averages. Therefore,
it seems that it may not present very different appearances in the population and
its variability may not be driving the clustering.

For SimCLR model, the black cluster average could correspond to a simple an-
terior cingulate. Subjects of the brown cluster could have a sketch of the paracin-
gulate sulcus. The orange average is harder to interpret due to its thickness which
can be due to either the presence of two sulci which are aggregated or to the
variability of the position of the cingulate among the subjects. Finally, the yel-
low average includes a sketch of a sulcus parallel to the anterior cingulate, but in
the left part of the ROI. Both methods, cluster averages and decoders, represent
something different: in the first case, it is the geometrically-aligned average of all
subjects in a cluster; in the latter case, it is the reconstruction of one representative
subject from the latent space. According to our observations, they can converge
either to the same (orange and yellow cluster) or to an apparently different (black
cluster) representation.

For the β-VAE, we can also identify specificities for all the averages. Blue
average seems to be the simplest pattern, a long cingulate without paracingulate
or vertical branches. Indigo presents a sulcus parallel to the cingulate divided into
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several pieces that may look like a sketch of the paracingulate sulcus. In return,
the pink average includes several branches, vertical to the cingulate, that could
not merge to create a parallel sulcus. Lastly, the green shows another pattern: a
split anterior cingulate sulcus. When comparing to the β − V AE reconstructions,
we find a similar shape for the green average (cluster 0): a cingulate split in two.
Conversely, for the blue cluster, based only on the average pattern, we interpreted
a simple cingulate, but in the light of the reconstructions, the swollen anterior part
could represent a paracingulate. Cingulate and paracingulate could be merged in
the average representation due to positional variations among subjects. The indigo
average is also consistent with the reconstruction. For the pink average, it seems
to be a little bit different as it presents more vertical branches contrary to the
reconstruction which displays a continuous paracingulate.

Figure 9.3: Representative patterns as cluster averages (SPAMs). Local av-erage sulci obtained for each cluster with β-VAE and SimCLR encodings respectively.Colors match cluster colors of Fig. 9.1.

9.3 . Generalization abilities

Fig. 9.4 presents the visual assessment of the generalization. Part A. corre-
sponds to the clusterings of Fig.9.1: HCP_1 is used to train the models and is
then encoded to the latent space before applying the clustering algorithm. Part
B. shows the same dataset but projected on the latent space learned on HCP_2.
The cluster labels of part A. have been transferred to part B.

The comparison of the two clusterings (Fig. 9.4A. and B.) shows that some
clusters remain more stable than others. With β-VAE embeddings, subjects of the
blue cluster are still grouped. The pink and indigo clusters remain rather localized.
On the contrary, the green cluster spans from the bottom to the left-hand corner
through the pink and indigo clusters.

With SimCLR, the subjects of the black and brown clusters stay rather grouped.
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It is also the case for the orange cluster even if a part is closer to a yellow area.
In return, the yellow cluster is split in two. But overall, clusters’ subjects seem to
remain close to each other. It is interesting to note that the proximity order of the
clusters seems to be kept: ranging from black, brown and orange. It is less obvious
for the yellow cluster but in A., it appeared to start from the orange cluster and then
to expand towards the black one. The split in half could result from this behaviour.

These observations are confirmed by the AMI score, which is 0.37 for the
β − V AE and 0.31 for SimCLR.

Both visually and quantitatively, the generalization seems slightly better for
the β − V AE than for SimCLR.

Figure 9.4: Visual assessment of the generalization ability. For both mod-els, training is made on HCP_1 (model 1) and HCP_2 (model 2). The inference onHCP_1 leads to two encodings in the latent space obtained respectively with model1 and model 2. To visualize the stability of the model and of its analysis, the t-SNErepresentation of model 1 is clustered (A.) and we report the labels on the t-SNE rep-resentation of model 2 (B.)

9.4 . Detection of the paracingulate

We now analyze whether the learned latent codes are relevant to detect one
pattern described in the region: the ’double parallel type’, in other words, the
presence of a paracingulate sulcus. For this experiment, the dataset used was the
labelled dataset ACC (8.1). Training SVM based on the latent codes to detect the
presence of a paracingulate enables to assess whether our models have encoded
features relevant for this type of patterns. The results are presented in table 9.1.
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Model Latent space size4 10 30
SimCLR 0.50 (0.44) 0.51 (1.5) 0.46 (1.7)
β − V AE 0.63 (8.1) 0.69 (3.3) 0.63 (1.5)PCA 0.54 0.55 0.58

Supervised CNN(Borne et al., 2021) 0.91 (0.03)

Table 9.1: Classification performances of the presence of a paracin-gulate sulcus. Mean AUC (standard deviation) in % of the five different trainedmodels. The standard deviation of the PCA was negligible so it is not reported.

We display the results for several sizes of latent space. We also compare the perfor-
mances with a PCA and the supervised convolutional network proposed in (Borne
et al., 2021). The setting of this supervised CNN is different but it establishes a
reference. We expect our models to perform better than a PCA. On the contrary,
the supervised CNN serves as an upper bound on the performance we could obtain.

First, we observe that in all cases, as we could have expected, the supervised
model performs best. Furthermore, surprisingly, the β − V AE outperforms mas-
sively SimCLR and especially for latent spaces of larger sizes. For example, with
10 latent dimensions, the performance is 0.51 for SimCLR compared to 0.69 for
the β − V AE. In addition, SimCLR learned features lead to equivalent or worse
results than a simple PCA.

It is interesting to note that the latent space size has an impact on the perfor-
mances and that this effect is different depending on the model. With SimCLR,
similar performances are obtained for 4 and 10 dimensions but a decrease is ob-
served for 30 dimensions, whereas for the β − V AE, the AUC is the best for 10
dimensions and there are equivalent results for sizes of 4 and 30.

These results suggest that the latent space of the β − V AE could be more
suited to detect paracingulate sulci.
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10 - Discussion and Conclusion

This part presented the methodology I developed in collaboration with J.
Chavas and later A. Gaudin to identify the most typical patterns of the cingu-
late region. More specifically, based on the preprocessing presented in part 5.2, we
compared two unsupervised deep learning models: a β − V AE and SimCLR. We
proposed a method to learn a representation of the normal variability in a latent
space of fewer dimensions than the input space. From this representation, we were
able to identify four main patterns in the cingulate region. We also assessed the
generalization ability. Finally, thanks to the work of A. Gaudin, we were able to
quantitatively evaluate our learned representations on their ability to detect the
paracingulate, a pattern described in the literature.

10.1 . Comparison of the two models

Our two models presented different behaviours demonstrating particular prop-
erties. Although the clustering gave four clusters for both models, the reduced
latent space is very different.

For SimCLR, we obtained four clusters which can be interpreted as different
patterns: a configuration with a long cingulate and a paracingulate (black cluster),
a long cingulate with pits of paracingulate for the brown cluster, a similar pattern
for the yellow cluster but with a longer cingulate sulcus, and a complete absence of
paracingulate sulcus for the orange cluster. However, the small differences between
the yellow and the brown cluster could question this division into four patterns and
we could wonder whether three patterns would not be more accurate. In addition,
even if the structure of the latent space can remind a manifold organization, the
clustering, especially between the black and the brown clusters, does not seem
visually obvious. Therefore, the learned latent space could be not so well adapted
for modelling the folding variability. This is also suggested by the classification
performances which are worse than a PCA. One possible reason is the backbone
used for the SimCLR model which could be too complex for our type of data and
the task. This hypothesis is confirmed by some recent works by A. Gaudin and J.
Chavas. Using the same encoder architecture as the β − V AE achieves at least
as good performances as the β − V AE. Another important element is the fact
that, contrary to the β−V AE where the reconstructions are the actual centroids,
i.e. points that correspond to the average of the subjects of the cluster over all
the latent dimensions, for SimCLR it is the reconstruction of one subject only, the
closest to the centroid. Therefore, they are less representative than the patterns
of the β − V AE. To have more robust representations, a way could be to take
inspiration from the SPAMs and generate equivalent representations but on the
reconstructions rather than on the input skeletons.
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Regarding the patterns identified thanks to the β−V AE, the four demonstrate
their own characteristics and some are similar to patterns described in the literature.
In particular, a split of the cingulate sulcus was described as one of the patterns
in several works (Meng et al., 2018; Duan et al., 2019). Two long parallel sulci
were also identified (Duan et al., 2019). In addition, the generative power of the
β−V AE is a major advantage as we can sample from the latent space. Indeed, it
can be very powerful to help interpret the encoded features and what characterizes
each pattern.

Therefore, the reconstructions of the β−V AE seem to be better suited for the
identification of typical patterns, at least with the current framework of SimCLR.

10.2 . Representations based on the latent and the input space

It is particularly interesting to have visualizations based on the latent space
and on the input space. As a matter of fact, as we already mentioned, the local
averages are generated based on the inputs. Therefore they correspond directly to
the normal variability. However, they may be difficult to analyze as all subjects
of a cluster are equally weighted in the computation of the average. In case of
high variability within a cluster, the average will therefore be blurrier. This can
explain the thick appearance of some averages such as the orange or the blue
ones. Indeed, having a thick representation may mean that the position is different
among subjects: the cingulate may be located lower; it could also mean that some
subjects have two parallel sulci but due to variations in the positions, it does not
appear clearly. In our work, the local averages are rather difficult to interpret. In
order to improve the representation we could weight the subjects depending on
their distance to the centroid as it is done in other works (Sun et al., 2007, 2017;
de Vareilles et al., 2022; Foubet et al., 2022).

In return, the reconstructions seem to be more precise and easier to interpret.
Although in the case of SimCLR, they are just the reconstructions of one subject
and thus do not enable to get a shared representation, it is interesting to contrast
the β − V AE reconstructions with the local averages. With the β − V AE, the
reconstructions are the local averages of the encoded normal variability. We said
previously that at least three out of four patterns were consistent across the two
visualizations. This means that our model managed to effectively encode the main
characteristics of the variability of the inputs.

Therefore, these two visualizations appear to be complementary and the SPAMs
enable to validate the learned characteristics of our model.

10.3 . Accurately representing the folding variability

We already presented the two main approaches to study the folding patterns,
namely based on a finite number of patterns, i.e. usually based on a clustering or,
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on the contrary, based on manifold analyses. In this work, we chose to apply a
clustering in order to interpret the patterns more easily. However, we introduced
important biases regarding how the latent spaces should be structured (aiming at
a higher silhouette score in the gridsearch) and imposing a maximum number of
clusters. Indeed, the maximum number of clusters was mainly for practical reasons
and does not have a biological meaning. If we had chosen a higher maximum
number of clusters, it would have been tricky to analyse but it could have been
closer to reality. In addition, according to the distribution of SimCLR latent space,
a finer clustering, with a higher granularity could be of interest.

We did not investigate whether the latent space could constitute a manifold.
In such a case, other models and another criterion for the gridsearch would be
more suited. However, even if we targeted a clustered representation, the inter-
polations thanks to the β − V AE show that the latent space is continuous and
that the patterns gradually change from one cluster to another one which is totally
compatible with the hypothesis of a manifold.

10.4 . Perspectives

This part proposed several method contributions that can be useful for the
community. We introduced topology-based augmentations in the SimCLR setting,
which is directly applicable for studies working on skeletons or similar inputs (Har-
rison et al., 2021; Rao et al., 2021). Moreover, we used for the first time local
average folding patterns (Sun et al., 2012) in a deep learning pipeline. Our work
also finds a structured latent space for the cingulate region with both models,
β − V AE and SimCLR and we were able to highlight at least four patterns that
are consistent with the literature. The organization obtained with SimCLR seems
more conforming with the anatomical reality of folding patterns and can be linked
to folding manifolds (Mangin et al., 2016). In return, the generative aspect of the
β − V AE is a real lever to understand the learned representations and ease the
analysis of this complex region.

To encourage a structured and well-separated latent space, we could introduce
in the future cluster objectives in the learning phase both for generative models
(Danks and Yau, 2021), and for contrastive models (Caron et al., 2018, 2021; Li
et al., 2021b).

Finally, we found both cluster averages and decoder outputs to be similar to
known cingulate patterns that correlate with executive functions and psychiatric
disorders (Cachia et al., 2016). This similarity makes us believe that such latent
space structures could correlate with medically relevant parameters. Our study is
therefore a first step towards the systematization of the search for main region-
specific patterns to then analyze their potential correlations with human cognition
and disease.
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Part IV

Identifying rare or abnormal
patterns

In the previous part, we characterized typical patterns of the cingulate region.
This part now concerns our second application where we aim to identify rare or
abnormal cortical folding patterns based on the learned representation of the normal
variability. First, we will introduce the context of this application before presenting
the specific material and methods and discussing the results.
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11 - Introduction

11.1 . Motivations

Neurodevelopment involves many events and processes at different scales. In
terms of morphology, they ultimately lead to the uniqueness of each brain and to
folding patterns that can be similar to a fingerprint (Wachinger et al., 2015). In
some cases, neurodevelopment can be affected by phenomena leading to malfor-
mations and rare or abnormal folding patterns. The resulting rare and abnormal
patterns may be associated with disorders. Since the folding patterns are a trait
feature, i.e. they remain stable throughout life (Cachia et al., 2016), they may
be seen as a marker of the different neurodevelopmental processes involved and
rare or abnormal folding patterns could act as a signature of certain pathologies.
This is all the more interesting as currently, some disorders’ diagnoses only rely
on survey assessments. In these cases, having a morphologic landmark would be
a real improvement. In addition, we usually do not have access to all the steps
constituting the chronology of brain development and folding. Recent works have
studied extremely preterm newborns and followed longitudinally the development
of folding patterns (de Vareilles et al., 2022). This is very helpful in order to better
understand brain formation. However, gathering such cohorts is a very complex
task. To a lesser extent, studying rare and abnormal patterns in adults and what
possibly caused them can help understand both folding formation and potential
neurodevelopmental disorders. Therefore, identifying rare or abnormal folding pat-
terns may lead to the discovery of new biomarkers, provide a better understanding
of the folding processes and increase our knowledge of the brain.

11.2 . Challenges and strategy

The identification of rare folding patterns has not been deeply investigated
so far. Most studies focus on shape descriptors and try to correlate them with
psychiatric disorders for instance. However, we are interested in patterns rather
than shape descriptors, as these are trait features. Several works have focused on
patients suffering from epilepsy and tried to identify specific patterns. In the basal
temporal lobe, the different patterns described by Ono (Ono et al., 1990) were
used to categorize the patterns and compare their distribution between controls
and patients but no new pattern was introduced (Kim et al., 2008). In return,
another study brought to light an abnormal configuration in the central region,
the PBS (Mellerio et al., 2014). The identification of this pattern was performed
visually on a small cohort. The comparison between patients and controls enabled
to identify the PBS and to determine whether the pattern was rare and specific
to the cohort’s patients. However, the major difficulty when doing it visually and
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trying to see the difference between controls and patients is that it may result
in a kind of overfitting on a small cohort and on a pattern. Indeed, usually, the
patterns are not easy to identify which may lead to biases in the identification.
In particular, the patterns may be hard to describe and identify due to the high
inter-individual variability. In addition, patterns specific to patients of a given
cohort may be present in controls of other cohorts. This may be suggested by the
results in the automatic detection of the PBS in the HCP dataset (Borne et al.,
2021). The CNN-based model proposed in this study identified 30% of PBS in the
hemispheres of this all control population. Although some of these hemispheres
were wrongly classified, it highlights that (1) the PBS is also present in a healthy
population and that (2) its identification is not a trivial problem.

Using an automatic strategy on a wider dataset may constitute an opportunity
to address these problems. Indeed, we hope that an automatic model is able to
not overfit on a specific pattern. In addition, it has the advantage of being capable
to study more subjects. This is capital since the folding is highly variable and a
large sample is required to effectively model the normal variability and thus try to
avoid generalization shortcomings. Nevertheless, several challenges remain.

First, it is essential to define the types of patterns we are looking for. In
particular, in part 2.2, we have seen that the definition of anomaly, outlier or noise
is not obvious and may depend on the application. In this thesis, we call a pattern
"rare" if it deviates from the modelled norm and is present in a control population.
In other words, a rare pattern is found in a healthy population and is not associated,
given the state of the art, with a disorder. In return, an abnormal pattern also
deviates from the norm but is associated with a disorder. Nevertheless, abnormal
patterns may also occur in the healthy population because of resiliency. We stress
out that rare patterns are not necessarily abnormal and associated with some
disorders. However, whether they have a link with pathologies or not, rare patterns
are interesting objects to study as they can constitute traces of neurodevelopmental
processes.

A major difficulty in identifying deviating patterns is linked to the ground truth.
Indeed, we seek to identify local rare folding patterns but very few have been de-
scribed and not in all the brain areas. In the absence of a known rare pattern, it
is hard to assess our methodology. Moreover, within a rare configuration, there
exists a wide diversity of arrangements. This lack of homogeneity makes it hard
to evaluate the difficulty of identification of one specific rare pattern for example.
In a region where a rare pattern has been described, it is also possible that there
are other rare patterns which have not been accounted for. This would hinder the
detection performances. Last, as we deal with rare patterns, we do not have many
of them, which makes the assessment difficult.

To address these questions, we proposed to design synthetic benchmarks of rare
patterns. Having synthetic benchmarks is an effective way to assess our method-
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ology more reliably. It also enables to study the granularity of deviations that can
be detected. We mentioned that rare patterns could deviate for different reasons
which could lead to a complex assessment and interpretation. Synthetic bench-
marks are a way to precisely control the degree of deviations and therefore to gain
insight into what may be identified as deviating. Here, we define granularity as the
characteristics and properties of the deviations, such as their size or nature. The
analysis of the granularity that can be identified aims to characterize the abnormal
features that can be detected and at what level of detail.

In anomaly detection works based on VAE, in most cases, outliers are detected
based on the reconstruction error. In this work, we also seek to describe which space
is the most relevant to identify deviating patterns: is it based on the reconstruction
error, in the input space, that is to say in our case, the folding space, or is it the
latent space?

Based on the previously described preprocessing we model the inter-individual
variability with a β − V AE. We then investigate the detection power of our
methodology both on the latent space and on the folding space, using either our
synthetic outliers or actual rare patterns. Finally, we assessed the generalization
of our approach on other datasets presenting abnormal folding patterns in other
regions. Fig.11.1 shows the main steps of the developed framework.

In this part, I first introduce the specific data and methods used, including
the synthetic benchmarks generation, training strategy, identification of outliers
on both latent and folding space, and generalization. Then I present the results
before discussing them.

This part is based on an article submitted to the journal Medical Image Analysis:
’Identification of rare cortical folding patterns with unsupervised deep learning’.
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Figure 11.1: Whole framework for identifying rare folding patterns. Train-ing is performed on the HCP dataset based on the 3D cropped distance maps. Atinference stage, controls and subjects with rare patterns (synthetic benchmarks andinterrupted central sulci) are encoded to the latent space and reconstructed. Basedon their projection and the reconstruction error, we compare the latent and the fold-ing space. To test the generalization ability, we train another β − V AE on a newregion (here the cingulate) on the HCP controls with the hyperparameters definedat the training stage of the central sulcus region. Finally, we try to identify existingabnormal patterns (children with CCD in the figure).
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12 - Specific Material and Methods

12.1 . The central sulcus region

Folding mechanisms may lead to both global and regional anomalies and these
two scales have led to correlations with function disorders (Fernández et al., 2016).
In this thesis, we focus on regional patterns rather than on a global representation.
Specifically, in this part, we concentrate on the central sulcus (CS) which is a
good candidate for our work. Indeed, it is one of the first folds to appear and it
is stable enough to be a first step in modelling inter-individual variability. More
importantly, usually long and continuous, the central sulcus can be interrupted in
very rare cases (less than 1%), making interrupted central sulci relevant patterns to
assess our method. Finally, this region is of clinical interest as it is linked to hand
motricity and asymmetries have been described (Sun et al., 2012; Bo et al., 2015).
For this application, we model the inter-individual variability on the HCP dataset
(see section 4.1). Examples of central sulci in HCP are presented in Fig.12.1.

Figure 12.1: Central sulcus region variability. A. Localization of the studiedregion of interest (ROI) on a 3D view of one right hemisphere. The colored ribbonsrepresent sulci, defined as a negative cast of the furrows. The central sulcus is red. B.Examples of non-interrupted central sulci. C. Examples of interrupted central sulci.

The long-term goal of this work is to identify rare folding patterns that have not
been characterized yet. However, we first need to assess our method. To do so, we
decided to work on a rare pattern already described, the interrupted central sulci.
A previous study identified in the HCP dataset seven sulci in the right hemisphere
and two in the left (Auzias et al., 2015; Mangin et al., 2019). The identification
was based on the depth profiles of the sulcal pit maps, which are defined as the
locally deepest points of the cortical surface (Lohmann et al., 2008), and it was
then visually confirmed. We chose to work on the right hemisphere rather than on
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the left in order to have the highest number of rare patterns. Four examples of
interrupted central sulci are shown in Fig.12.1C.

12.2 . Data preprocessing

In this application, we used distance maps as input data. They are ob-
tained thanks to our preprocessing pipeline based on the folding graphs of Brain-
VISA/Morphologist (see section 5.2 and Fig.5.2). As a reminder, distance maps
are continuous images deriving from the skeletons where voxels’ value correspond
to their distance to the nearest fold. To focus on the central sulcus region, we
defined a mask of the right central sulcus. Therefore, the sulci labels are not
needed. We then affinely registered the distance maps to the ICMBc2009 space
and cropped them according to the mask bounding box. In the end, our input
data are 3D crops of the central sulcus region of dimensions 78 x 63 x 88 and
isotropic resolution of 1mm. The mask is applied on the fly during the training
of the network. Fig.12.1B. and C. show examples of our masked input crops as
meshes.

12.3 . Learning central region representations

We used a β − V AE to model the inter-individual variability. As a reminder,
this model is based on an auto-encoder framework where the input is projected as
a distribution into a latent space of fewer dimensions. More details are presented
in part 6.8. In this case, as distance maps are continuous images, we used the
Mean Squared Error (MSE) as the reconstruction error.

12.3.1 . Preprocessing
For this application, we use distance maps rather than skeletons. Therefore,

the input data of the model are the previously defined, just cropped, then masked
distance maps. Contrary to the previous application, we do not apply the mask
before feeding the data to the model, but rather on the fly during training. For
augmentation purposes, random rotations between [-10°, 10°], centered on the
mask center, are drawn from a uniform distribution at each epoch and applied to
the whole image, before applying the mask that strictly remains at the same posi-
tion. Such rotations are also sought to limit the edge effects. More precisely, the
central sulcus is surrounded by two main folds, the precentral and the postcentral
sulci. Parts of these sulci are included in the ROI. Therefore, rotating the distance
map under the mask enables to capture a wider context and to try to limit their
influence.

We observe that skeleton voxels equal 0 in the initial distance maps X and
the values increase with the distance to a sulcus, possibly ranging up to 10 mm.
Potential reconstruction errors near the sulci would be minor compared to the
voxels located far from them at the edge of the mask, whereas we wish the model
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to concentrate more on the sulci. Thus, to limit the impact of distance variability
far from the sulci, we perform a normalization according to equation 12.1, resulting
in values between [0, 1], with the highest values on the folds and a saturation at
about 4-5 mm which corresponds to half of the typical width of gyri. An example
is shown in appendix A. Finally, we apply a small padding, resulting in samples of
dimensions 80 x 80 x 96.

Xnorm = 1− [2
1

1 + e−X
− 1] (12.1)

12.3.2 . Training strategy

Dataset was split into train, validation, and test sets of respectively 640, 161,
and 200 subjects. Training is only performed on control data, all identified inter-
rupted central sulci (CS) were added to the test set. The interrupted central sulci
were identified based on the detection of the two main sulcal pits of the central
sulcus, between which a depth profile was computed to determine the depth of
the "pli de passage frontal-moyen" (PPFM), usually a buried gyrus in the sulcus.
Subjects with a shallow PPFM were then manually inspected to determine whether
the surrounding central sulci were interrupted (Mangin et al., 2019). However, we
point out that there may remain some undetected interrupted central sulci in the
training set as all subjects were not individually inspected.

To model the normal inter-individual variability, we used the same convolutional
β−V AE of depth 3 presented in section 6.8. In order to choose the best values for
β and latent space dimension L, we performed a gridsearch (β=2-10, L=4-150).
To assess each parameter configuration, we used two criteria. Our first criterion is
the reconstruction quality. Indeed, we seek to leverage the reconstruction and gen-
erative power of the β−V AE, hence the reconstruction quality must be sufficient.
Our second criterion is the detection power on a proxy for the interrupted central
sulci. The pre-central and post-central sulci demonstrate some similarities with
the central sulcus in terms of orientation, size, and shape. However, they tend to
be more interrupted and to present a higher number of ramifications. Therefore,
we used the HCP dataset crops of these two other regions as fake outliers. We
selected only pre- and post-central sulci which presented some ambiguities with the
central sulcus based on the procedure described in appendix B. Finally, our am-
biguous set was composed of 28 precentral sulci and 18 postcentral sulci. For each
hyperparameter combination, we trained a β−V AE on the train set, then a linear
SVM was trained to classify between the latent codes of the validation samples
and of the pre- or post-central sulci. We kept the hyperparameters that led to the
best classification results and good reconstructions (based on reconstruction error
and visual inspection). To avoid overfitting we applied an early-stopping strategy.

12.4 . Synthetic rare patterns generation
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One of the challenges of our work is the lack of consensual rare patterns to
evaluate our methodology. In addition, it would be interesting to be able to quantify
the degree of deviation that our model is able to detect. Therefore, several sets
of synthetic rare patterns were generated to be used as benchmarks: Deletion
benchmark and Asymmetry benchmark.

12.4.1 . Deletion benchmark
Our first benchmark consists of subjects for whom we have erased one simple

surface (SS). As a reminder, a simple surface is an elementary fold segmented
based on topological and depth properties (see section 5.1).

Erasing small simple surfaces could be a good proxy to simulate rare patterns
because some fold branches may be missing in some people, or a sulcus may be
shorter or absent. Large simple surfaces are less likely to be missing but allow us
to assess the degree of deviation that can be detected.
Deleting simple surfaces directly on the distance maps would not be interesting as
the voxels next to the simple surface indicate the SS position. To tackle this issue,
the suppression was done during the generation of the raw skeletons. The distance
map is then computed based on the pruned skeletons.

To analyze the granularity of anomaly that can be detected by our method,
we generated several benchmarks which vary according to the size of the deleted
simple surface (SS). As such, we created four sets where SS size was between
200-500 voxels, 500-700 voxels, 700-1000 voxels, and simple surfaces of more than
1000 voxels. In the following, we name each set with the minimum number of
voxels: for instance, 200 corresponds to the benchmark where simple surfaces of
size between 200 and 500 were erased. To be deleted, simple surfaces must have
a number of voxels included inside the mask corresponding to the range of the
different sets. If several simple surfaces meet the criteria, one is randomly chosen
to be erased. Otherwise, a subject may not have a simple surface satisfying the
requirements. In such cases, the subject is not included in the benchmarks. Finally,
from the 200 test subjects, benchmark 200 contains 180 subjects; benchmark 500,
68; benchmark 700, 108 and benchmark 1000, 151 subjects.

To have a better representation of the amount of deleted sulci, Fig.12.2 shows
the simple surface sizes distribution in the central sulcus region. The figure shows
that our crops contain a large majority of very small simple surfaces (less than
500 voxels) and far fewer large simple surfaces. The smaller simple surfaces are
mostly part of the precentral and postcentral sulci, representing more than 85% of
the surfaces between 200 and 500 voxels. On the contrary, larger simple surfaces
correspond to the central sulcus. Therefore, beyond deleting simple surfaces of
varying sizes, the nature of the sulci and thus the location, are also different,
especially between the set 200 and the others. The right part of Fig.12.2 shows
the number of voxels corresponding to skeletons in our crops. It demonstrates the
progressive intensity of anomalies when deleting simple surfaces from 200 voxels
to more than 1000 voxels. Indeed, when simple surfaces of more than 1000 voxels
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are deleted, it corresponds to a third or a quarter of the skeleton crop. Distance
maps are then generated according to 5.2. An example is presented in Fig.12.3.

Figure 12.2: Skeleton’s description of the test set. Left: Stacked histogramrepresenting the distribution of simple surfaces sizes for the test subjects for thethree main sulci of our crop, the central sulcus (S.C._right), the precentral sulcus(S.Pe.C._right) and the postcentral sulcus (S.Po.C._right). (Note: The labeling used isautomatic and therefore not entirely reliable, but these labels are sufficient to drawconclusions regarding the SS size distribution.) Right: Distribution of the number ofskeletons’ fold voxels for the test subjects when the mask is applied to the crops.

12.4.2 . Asymmetry benchmark
Our second benchmark leverages the asymmetries described in the central sul-

cus region which concern several folding features in particular (Sun et al., 2007;
de Vareilles et al., 2022; Foubet et al., 2022). Using crops of the left hemisphere
as outliers enables to assess whether we can identify shape variations. In practice,
this benchmark corresponds to the equivalent crop but in the left hemisphere. Left
hemisphere distance maps are generated according to the same methodology as
the right. Like our control crops of the right hemisphere, we computed a left
central sulcus mask on the labeled dataset. To enforce the exact same crop size,
we adapted the mask to match the adequate dimensions by adding or deleting a
few voxels. Once the crops were obtained, they were flipped. During training,
the right central sulcus mask was applied on the fly. We emphasize that we did
not use the interhemispheric plane-symmetric coordinates but a mask specifically
designed for the left central sulcus. This is especially important since there is a
slight asymmetry in the position of the central sulcus between the two hemispheres
(Davatzikos and Bryan, 2002). An example is presented in Fig.12.4.

12.5 . Identifying outliers

Once the model has learned a representation of the inter-individual variability,
outliers identification can be performed at two levels. Traditionally, anomaly de-
tection with AE is done based on the reconstruction error and an error map can be
obtained comparing the input and the output (Schlegl et al., 2017; Pinaya et al.,
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Figure 12.3: Deletion benchmarks. Visualization of original sulcal pattern and itsaltered versions from the four deletion benchmarks showing patternswith increasingsimple surface size deleted. Upper row: Mesh visualization. Middle and bottom rows:distance maps on axial view, visualization at depths 15 and 37.

2018; Schlegl et al., 2019). But one can also wonder about the distribution of
outliers in the latent space. Are the outliers distributed differently? To answer
this question, we investigated the detection power in the outliers’ distribution in
the latent space and based on the reconstruction errors performed in the input
space—which we call folding space in our case, as we study folding patterns. For
both approaches, control test images and outlier images (deletion benchmarks,
asymmetry benchmark and interrupted sulci) are encoded and reconstructed by
our trained model.

A specification on data

As mentioned in 12.3.2, our control test set comprises 200 subjects. However,
when studying our different outliers sets, data subsets were different since some
subjects did not have any SS meeting the benchmark’s criteria.

• Deletion benchmarks: to avoid any bias, we used only control subjects
with a simple surface meeting the benchmark’s criteria for each benchmark.
Therefore, for benchmark 200, we used 90 controls that have a simple sur-
face between 200 and 500 voxels but that has not been erased, and 90
benchmark subjects, for whom simple surfaces were actually erased. Re-
sulting in n200

control = n200
deletion = 90, n500

control = n500
deletion = 34, n700

control =
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Figure 12.4: Asymmetry benchmark. Visualization of the original sulcal patternand its flipped contralateral version for two subjects.

n700
deletion = 54 and n1000

control = 75 and n1000
deletion = 76.

• Asymmetry benchmark: all subjects have their asymmetric counterpart.
Hence, 100 subjects were randomly picked among the subjects from the test
set for whom we took their asymmetric version. Resulting in ncontrol =

nasymmetry = 100.

• Interrupted central sulci: the whole test set is used as control data, leading
to ncontrol = 200 and ninterrupted = 7.

12.5.1 . On the latent space

A hint from the visualization

For both of our benchmarks and the interrupted central sulci, we first sought to
have a visualization of data distribution in the latent space. Therefore we pro-
jected encoded data into a smaller space of two dimensions with UMAP algorithm
(McInnes et al., 2018, 2020). This projection enables us to get a first hint as to
how outliers are represented.

Assessing the detection power on the benchmarks

However, the UMAP algorithm drastically reduces dimensions, leading to some
information loss. We tried to assess whether relevant information regarding folding
patterns was encoded in the latent space. Therefore, we trained linear support-
vector machines (SVM) (Pedregosa et al., 2011) on the latent codes with stratified
cross-validation to classify between control data and benchmark. Performance is
assessed based on the ROC curve.
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Quantifying the marginality of interrupted central sulci

As interrupted central sulci are very few, we cannot use classification as we did for
the benchmarks. Classic machine learning out-of-distribution (OOD) algorithms
are more suited. Therefore, to quantify whether the interrupted sulci are likely
to be detected from their location in this reduced space, we applied two classic
algorithms, One-Class SVM (OCSVM) (Schölkopf et al., 2001; Pedregosa et al.,
2011), and isolation forest (Liu et al., 2008; Pedregosa et al., 2011) based on the
data coordinates in the UMAP space. Applying the OOD algorithm in the UMAP
space may lead to a loss of information but is easier as there are fewer dimensions
and allows us to understand more easily the decision boundary based on the 2D
representation. However, interrupted central sulci may not be the rarest pattern,
and other folding configurations may be very scarce. Therefore, we also looked at
control subjects repeatedly predicted as outliers by these algorithms.

Travelling through the latent space

Finally, to better understand the encoded properties and the learned representa-
tions, we leverage the generative power of the β − V AE. We computed average
representations from different sets of data points, taking the mean for each dimen-
sion of the latent space. We then reconstructed these vectors. To further analyze
the latent space, we traveled through it, going from one point, either the average
pattern or a subject, to another point in the latent space, linearly interpolating
vectors and reconstructing them.

12.5.2 . On the folding space

Outlier identification in the folding space relies on the model’s error. The
reconstruction errors’ distributions were compared visually and assessed with the
Kolmogorov-Smirnov test for the benchmarks and with the Mann-Whitney U-test
for interrupted central sulci. For both cases, the null hypothesis was that the two
distributions were identical.
The other strength of analyzing this space rather than the latent space is that the
model’s errors can help understand and locate the rare patterns’ characteristics.
To localize the errors, we commonly look at the residuals, which are the difference
between the input and the reconstruction of the model. This corresponds to what
the model has missed or added. To differentiate these two types of errors, we
looked at them independently, computing the difference between the input and the
output, i.e., the model’s omissions, and between the output and the input, i.e.,
the model’s additions. It is particularly interesting in the case of interrupted sulci,
as we could expect that the model makes them continuous.

12.6 . Generalization to other regions
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To assess the reproducibility in other regions and to ensure that our framework
is not limited to the central sulcus, we transposed our methodology to two other
regions for which an abnormal pattern has been described.

On the one hand, the isolated corpus callosum dysgenesis (CCD) leads to
a cortex anomaly located in the cingulate region. This disorder is a congenital
malformation that results in a complete or partial absence of the corpus callosum.
The corpus callosum is composed of fibers that connect the two hemispheres.

On the other hand, focal cortical dysplasia of type 2 (FCD2) is a major source
of drug-resistant epilepsy and is usually associated with anomalies of gyration and
sulcation that may be localized in various areas of the brain. Specifically, in the
central region, the Power Button Sign (PBS) has been proposed as a qualitative
criterion to diagnose FCD2 (Mellerio et al., 2014).

12.6.1 . Children with CCD

The dataset includes 7 children between 9 and 13 years old presenting an
isolated CCD and 7 matched control children (Bénézit et al., 2015). Among the
patients, 3 present a complete agenesis, 3 a partial agenesis, and one a hypoplasia,
corresponding to "a homogeneous reduction of the callosal size" (Tovar-Moll et al.,
2007). In this case, the corpus callosum is completely formed, but abnormally small
(Bodensteiner et al., 1994). For all children, the CCD was not associated with other
malformations or developmental disorders. As presented before, we used T1-w MR
images obtained from a Siemens Tim Trio 3T scanner with an isotropic resolution
of 1mm.

The described anatomical anomalies associated with CCD include "sulci radi-
ating on hemisphere medial surface, complete or partial absence of the calloso-
marginal sulcus and of the cingulate gyrus" (Bénézit et al., 2015). Therefore, we
transposed our method to the cingulate sulcus region. Using the same methodol-
ogy as presented before, we computed a mask of the cingulate sulcus (gathering
the calloso-marginal anterior and posterior fissure in the BrainVISA nomenclature),
resulting in crops of dimensions 30 x 128 x 125 and 30 x 130 x 108, which were
padded up to 32 x 128 x 128 and 32 x 136 x 112 respectively for the right and left
hemispheres. Since the corpus callosum connects the two hemispheres, CCD can
be studied equally in both hemispheres. Therefore, we conducted our experiments
in the right and in the left hemisphere.

12.6.2 . Patients suffering from FCD2

The dataset includes 19 controls and 29 patients who can have either a positive
or a negative MRI (Mellerio et al., 2014). This distinction was proposed by Mellerio
et al. (Mellerio et al., 2012): a subject presents a positive MRI if "at least one
of the cardinal MR signs of FCD2 (ie, cortical thickening, blurring, cortical and/or
subcortical signal changes, transmantle sign) was present" (Mellerio et al., 2014).
12 subjects have a negative MRI and 17 subjects a positive one in the dataset.
In addition, the identified lesions may be located either in the right or in the
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Characteristics ctrl + / right + / left - / right - / leftN 19 8 9 7 5Age 31 (22-53) 21 (11-40) 34 (20-67) 16 (7-42) 18 (7-29)N 1.5T scanner 19 5 6 7 4
Table 12.1: Characteristics of the dataset of patients suffering fromFCD2. + and - indicate whether the MRI is positive or negative. Right and left corre-spond to the side of the lesion. The age is given as average age (min-max).

left hemisphere, based on histological analyses. Table 12.1 provides the number
of subjects of each group. Although we only apply our framework to the right
hemisphere as a first step, it is also interesting to analyze patients with the lesion
located in the left hemisphere. Indeed, we can expect these patients to behave
more like controls. For all subjects, we used the T1-w MR images. The majority
was obtained with a GE Healthcare Signa 1,5 T scanner with a resolution of 0.98
x 0.98 x 1.40 mm. The other subjects were scanned with a 3T scanner with a
resolution of 1 x 1 x 1.2 (see Table 12.1).

The subjects were included in the original study because their epilepsy was
localized in the central region. The consequence of the FCD2 in terms of folding
patterns is still an area of research. According to Mellerio et al., patients demon-
strate more side branches of the central sulcus and more often a PBS (Mellerio
et al., 2014). The PBS is characterized by a precentral branch pointing between
the central sulcus and one of its ascending branches (see fig.1.4). Hence, in this
case, we worked on a region gathering both the central and the precentral sulcus
(in the BrainVISA nomenclature, the precentral sulcus is divided into five entities:
the median, marginal, superior, intermediate and inferior precentral sulci). We
computed a mask for each of these sulci, merged them and cropped the distance
maps, resulting in images of dimensions 78 x 86 x 99 in 1mm resolution.

12.6.3 . Transposition of the method
For these two ROIs, we transposed the method in the same way. Specifically,

we trained our β − V AE on the HCP dataset to model the inter-individual vari-
ability. We used the same data split as before for the central region. Although
we trained the model on new regions, we used the hyperparameters obtained with
the gridsearch on the central sulcus region for training. Choosing these parameters
may lead to sub-optimal performances but enables us to have a first validation
of our methodology. Analyses of the latent and the folding spaces are performed
following the method described above for the central sulcus.
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13 - Results

13.1 . Training results

Each training lasted for approximately 1 hour on an Nvidia Quadro RTX5000
GPU. We obtained with our gridsearch β = 2 and L = 75.

13.2 . Assessment on synthetic known anomalies

13.2.1 . On the latent space
UMAP latent space visualizations for the four deletion benchmarks are pre-

sented in Fig. 13.1. For the benchmark 200, benchmark data are rather homoge-
neously distributed among control data, suggesting that simple surfaces of sizes
between 200 and 500 voxels are too subtle to be encoded differently. Indeed, as
shown in Fig. 12.3, small, simple surfaces can correspond to tiny branches that
display a high variability in the population. Therefore these synthetic anomalies
may be included in the normal variability. The distribution of benchmark 500
seems to be not completely similar to the control’s, but the restricted number of
subjects makes it hard to conclude. However, the trend becomes more pronounced
for benchmarks 700 and 1000 where fake anomalies are gradually gathered and
their distributions are different from the controls. These results are confirmed by
the ROC curves (Fig.13.1). Even when using all the latent dimensions, classifica-
tion results are very poor for benchmark 200 (AUC = 0.51), supporting that the
deleted branches may be too melted into the inter-individual variability. Classifica-
tion performances are also very low for benchmark 500 (AUC = 0.70). They start
to be slightly better for benchmark 700 (AUC = 0.81) but are very good only for
benchmark 1000 (AUC = 0.96).

For the asymmetry benchmark, UMAP visualization demonstrates a good sep-
aration between the right and the left hemisphere (Fig.13.2A), which is verified
by the classification of the whole latent space (AUC=0.82). These results sug-
gest that specific shape features are encoded among other properties in the latent
space.

To better understand the asymmetry characteristics encoded by the model, we
leveraged the generative power of our β − V AE. Fig. 13.2B. and C. show the
average patterns for the right (green) and the left hemisphere (blue) as encoded
by our model. The hand knob of the right central sulcus seems to be slightly
higher and shallower than in the left hemisphere. Moreover, the double-knob
configuration appears more prominent in the left hemisphere. To further highlight
the main differences between the two hemispheres, we selected the most important
dimensions for the classifier, here dimensions 9 and 36. In Fig. 13.3A., control and
benchmark data are represented according to these two dimensions. Even if the
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Figure 13.1: Deletion benchmarks results. For each row, controls are repre-sented in green and benchmark data in pink. Left column: UMAP projection of bench-mark and control data. Middle column: ROC curves of classification of control andbenchmark data. Right column: reconstruction error distributions and p-value of theKolmogorov-Smirnov test with the null hypothesis that the two samples come fromthe same distribution.

separation is not well marked, we can observe a trend represented by the arrow.
We tried to understand the features encoded by the 9th dimension. We took
the average for all 75 dimensions of the latent space, and we traveled from the
minimum to the maximum of the 9th dimension and reconstructed the resulting
vectors. Fig. 13.3B. 1, 2, and 3 represent the reconstructions. These interpolations
confirm the trend observed previously. We observe a double-knob configuration in
the left hemisphere. The view from underneath and the side view enable visualizing
the pli de passage frontal moyen (PPFM). A pli de passage is a gyrus that connects
two gyri and which is buried in the depth of some furrows (Mangin et al., 2019).
Fig.5.1B.1. and 2. propose a visualization of a "pli de passage" located in the
central sulcus, the PPFM. According to the different views from Fig.13.3B. 1, 2
and 3, it seems that the PPFM is smaller in the right hemisphere and located
higher in the central sulcus.

13.2.2 . On the folding space

88



(a) UMAP projection of asymmetry benchmark and control data, ROC curvesof classification of control and benchmark data, and reconstruction error dis-tributions.

(b) A. Averages for the control subjects, i.e. right hemispheres (in green), andfor the highlighted asymmetry subjects, i.e. left hemispheres (in blue). Theseaverages are also placed on the UMAP dimensions. B. 1. and 2. Respectivelyside and bottom views of the averages of A. The single star indicates a single-knob configuration, and the two stars indicate the second knob of a double-knob configuration. B. 3. Superposition of the two averages respectively inupper and bottom view.
Figure 13.2: Asymmetry benchmark results. Controls are represented in greenand benchmark data in blue.
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Figure 13.3: Travelling through the 9th dimension of the latent space. A.Visualization of controls and asymmetry benchmark according to the most impor-tant features of the classifier. B. Interpolations along the 9th dimension. 1, 2, and 3,respectively correspond to the upper, bottom and side view of these interpolations.C. Superposition of extreme interpolations.

We then investigated whether the folding space, i.e, reconstruction errors, was
relevant for identifying outliers. For deletion benchmarks, we observe a similar
trend as in the latent space. For deletion 200, we cannot see a difference of
distributions (p-value = 0.38). However, from deletion 500 we can see a stall with
the deletion benchmarks having significantly higher reconstruction errors (p-values
of 0.044, 5.3e-14 and 1.2e-24 for benchmarks 500, 700 and 1000 respectively)
(Fig. 13.1). On the contrary, for the asymmetry benchmark, there is no significant
difference, nor a trend, in the reconstruction error distributions (Fig. 13.2).

13.3 . Application on the case of interrupted central sulcus

13.3.1 . On the latent space

The UMAP projection from the latent space is shown in Fig. 13.4A. On this
distribution, we can observe that most interrupted central sulci are at the margin
of the point cloud except for one. Thus, it appears that the representation learned
by our model enables to project rare patterns at the margin of the population.
Interestingly, when we look at the pattern of each one of the interrupted sulci,
it seems that a specific pattern, the "T-shape" pattern (Mangin et al., 2019)
is specifically located on one side of the representation. Fig. 13.4B. shows the
assessment of the marginality of the interrupted sulci based on an OCSVM and

90



isolation forest. Error margins correspond to various UMAP projections, suggesting
that the ability to detect interrupted central sulci (CS) in the UMAP space is
very dependent on the UMAP projection. Interrupted CS detection is within the
confidence interval, but the curves are close to the superior bound suggesting a
tendency. However, interrupted CS positions in the UMAP space are not enough
to detect them: detecting 5 interrupted CS out of 7 would lead to more than 40%
of false positives. Nevertheless, some other patterns considered as controls and
detected as outliers might also be rare.

Fig. 13.5 presents the controls’ patterns most often predicted as outliers by
the OCSVM. First, we note that the outliers are logically located at the border of
the distribution. Moreover, we observe distinct patterns in different regions of the
UMAP space. Analyzing the corresponding crops’ meshes, we first observe that
the subjects share some of the characteristics of the control population (like the
presence of a knob for instance). We visually highlighted the subjects of the four
regions where we note similarities within the groups. Group B seems to demonstrate
a very wide open knob. In addition, the knobs are well defined by the upper and
the bottom part of the sulcus. On the contrary, the sulci of group C appear to
have larger knobs than usual but they show more continuity with the upper and
the bottom parts. The pattern of group D seems to correspond to a rather flat
central sulcus with a close, long and continuous postcentral sulcus. The shape
characteristics of A are less obvious but the sulci give the impression of having
several small knobs, two or even three in the two bottom cases and a small part of
the precentral inferior opposite to an upper part of the postcentral sulci. Fig. 13.6
provides a better understanding of these features. For each pattern, we go from
the centroid to one of the subjects in each group by interpolating and generating
samples. Fig. 13.6A. presents the interpolations from the centroid to the several-
knobs pattern. We gradually see the upper part of the hand knob curving and
becoming more pronounced until forming a first knob at the top of the sulcus.
Another knob in the bottom part appears similarly. Likewise, patterns B, C and D
vary progressively until they match the centroid’s shape.

13.3.2 . On the folding space
When analyzing the detection power on interrupted CS in the folding space, we

first note that the reconstruction errors’ distributions seem to be different between
HCP controls and interrupted CS (p-value = 0.0011). This result suggests that
our model has more difficulties to reconstruct the input and that reconstruction
error could constitute a relevant metric to detect rare or abnormal patterns. How-
ever, having only seven subjects strongly limits our conclusions and this should be
replicated with more data.

Observing the reconstructions and the residual maps of Fig. 13.7 gives clues
into the way our model has encoded the interrupted CS. First, we can note that
the reconstruction quality is quite good visually. The model’s omissions appear
to be quite noisy (blue small fold pieces). The arrow points out an omission
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(a) Interrupted central sulci shape distribution in the UMAP space. The 3Dfolding patterns of the subjects are positioned according to their location inthe UMAP space. For instance, the pattern located in the lower left cornercorresponds to subject 510225 in the UMAP representation. Subjects withinterrupted sulci on the upper left of the UMAP visualization seem to corre-spond to an interruption with a T-shape pattern.

(b) A. Outlier detection performances usingOCSVMand isolation forest on theinterrupted CS. B. Controls and interrupted CS reconstruction error distribu-tions.
Figure 13.4: Interrupted central sulci on UMAP space. Controls are repre-sented in green and interrupted CS in red.
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Figure 13.5: Control subjects identified as outliers. A, B, C and D correspondto groups of visually similar patterns. The UMAP projection is the same as the onein Fig.13.4. Control subjects identified as outliers are in pink and subjects with inter-rupted central sulci are still represented in red.

beyond the noise which corresponds to a perpendicular branch pointing toward the
frontal cortex. Such a pattern might be an atypical configuration. It is interesting
to note that in six out of seven cases, the model transformed interrupted sulci
into continuous patterns. This is highlighted by the "output-input" visualizations.
Unlike the omissions, the model additions are rather localized. Moreover, the
asterisks show where the model has filled the interrupted sulci. Such visualization
could be useful to identify rare patterns like interruptions or perpendicular branches.

13.4 . Application to corpus callosum dysgenesis

13.4.1 . On the latent space

We first compare distributions of CCD children (n=7) with control children
(n=7) acquired in the same conditions and with HCP adult subjects (n=200).
UMAP projections, presented in Fig.13.8A., give different results depending on the
hemisphere. For the right hemisphere, it seems that most children controls are
included in the distribution of adult controls (hcp_test in green). Five out of the
seven subjects having a CCD are located at the margin of the controls, suggesting
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Figure 13.6: Travelling through the latent space from the centroid to the
margin of the UMAP space. The centroid is the centroid of HCP controls. Then,for each row, interpolations between the centroid and one of the patterns of eachgroup are computed and then reconstructed.
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Figure 13.7: Reconstructions and residuals for all seven interrupted sulci.A. For all rows, distance maps are converted to meshes for an easier visualization.First row: input data. Second row: reconstruction of the model. Third row: Recon-struction of the model with the difference between the input and the output, i.e. themodel’s omissions (in blue). The purple arrow highlights an omission correspond-ing to a perpendicular branch pointing toward the frontal cortex. Last row: Recon-struction of the model with the difference between the output and the input, i.e. themodel’s additions (in purple). B. Rotated view of the reconstructions representedwith asterisks in the last row of A.

that their latent representation differs from the average cingulate sulcus pattern.
However, two subjects, one with a complete and one with a partial agenesis, are
in the middle of the controls. In the left hemisphere, only three control children
are clearly in the control adult distribution. The other four are closer to the CCD
subjects but they seem to be still distinct. Indeed, CCD subjects are gathered
very close to each other. This could be due to the fact that there may be an
age effect between children’s and adults’ brains or a site effect (different scanners,
resolution), which we tried to reduce by using skeleton-based images but which
may still remain. Nevertheless, we can still observe a difference in distribution
between control children and CCD subjects.

13.4.2 . On the folding space

Regarding reconstruction error distributions (Fig.13.8B.), we observe for both
hemispheres that control children seem to have the same distribution as adult
controls, which is confirmed by Fig.13.8C. (p-value=0.034 and 0.017 respectively
for right and left hemisphere). On the contrary, CCD subjects present higher
reconstruction errors that are significantly different from both HCP controls (p-
value=3.6e-06 for the two hemispheres) and children controls (p-value=0.0011
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Figure 13.8: Results on corpus callosumdysgenesis (CCD) subjects. First row:right hemisphere. Bottom row: left hemisphere. For both rows: A. UMAP projectionsof CCD subjects, control children and HCP test. B. Reconstruction error distributionsfor the CCD subjects, control children andHCP test. C. Reconstruction error variationsfor the CCD subjects, control children and HCP test. Significant differences betweenpopulations according to the Mann-Whitney test are indicated with an asterisk.

for the two hemispheres). Therefore, it seems that there is a complete individual
separability of the CCD patients which is very promising and should be replicated
with more data.

The reconstructions presented in Fig.13.9 highlight the singularities of CCD.
The model’s additions mostly make the cingulate more continuous than initially.
The model’s omissions are mainly small branches perpendicular to the cingulate
sulcus that are radially oriented.

13.5 . Application to patients suffering from FCD2

13.5.1 . On the latent space
Fig.13.10A. presents the latent representation projected to the UMAP space

of patients with positive MRI and lesion in the right or left hemisphere (respec-
tively +/right and +/left), patients with a negative MRI and lesion in the right
or left hemisphere (respectively -/right and -/left), controls acquired in the same
conditions and HCP subjects. We first notice that similar to what we observed
with the CCD subjects, the controls do not have the same distribution as HCP
controls: they are more located at the margin and seem to represent a transition
towards the patients. For patients with positive MRI, those with lesions in the left
hemisphere (represented with crosses) do not appear to be distributed like controls.
This suggests that they may still have characteristics differing from the controls. 5
out of the 8 patients with positive MRI and right lesion are at the complete margin
of the point cloud and beyond the controls of the same database. -/right subjects
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(a) CCD subjects.

(b) One control subject from the same cohort.
Figure 13.9: Right cingulate sulcus reconstructions and residuals for the
CCD subjects and one control. Each row corresponds to a subject. For allcolumns, distance maps are converted to meshes for easier visualization. First col-umn: input data. Second column: reconstruction of themodel. Third column: Recon-structions of themodel with the difference between the input and the output, i.e. themodel’s omissions. Last column: Reconstructions of the model with the differencebetween the output and the input, i.e. the model’s additions. The arrows highlightinteresting features added or missed by the model.
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seem to be equally projected at the margin or in the HCP distribution. Last, with
the exception of one subject, the projection of -/left patients is quite similar to
that of controls.

To try to decipher the pattern characteristics of the two groups of patients with
the lesion in the right hemisphere, we generated the average patterns. The insets
of Fig.13.11 show the three average patterns for the patients having a positive
MRI (indigo), the patients with a negative MRI (blue) and the associated controls
(orange). The control pattern is composed of the central sulcus (on the left side)
and of the precentral sulcus (on the right side). Like the average pattern based
on HCP test subjects, the central sulcus of these control subjects is composed of
a knob. The precentral sulcus seems rather continuous. The pattern of patients
with a positive MRI presents a central sulcus with a wider knob. In addition, we
can observe a branch that links the central sulcus to the precentral. Last, the
pattern of patients with a negative MRI (blue) shows a central sulcus with a quite
small knob. Unlike the control precentral which is quite flat, the precentral of both
groups of patients seems curvier, especially for the patients with a negative MRI.

For both groups, we then travelled along the axis from the control centroid to
each patient group centroid and beyond (as represented by the arrows). Samples
between the insets are linear interpolations which are then reconstructed. The
furthest samples are likely to be unrealistic as they were sampled from less repre-
sented areas. Going from the control centroid towards the patients with positive
MRI, we see the hand knob progressively widening and its bottom part merging
with the precentral sulcus. Interestingly, the average pattern of the +/right sub-
jects may even suggest an intermediate PBS pattern. Interpolations beyond are
more complex to analyse and seem to present merged central and precentral sulci.

From the control centroid to the patients with a negative MRI, the central
sulcus seems to flatten and present a very slight knob in the average pattern. The
precentral slightly curves and shows more branches. Beyond the average of -/right
patients, the interpolations display unlikely configurations with a CS presenting
several interruptions and a long precentral with several branches.

13.5.2 . On the folding space
Regarding the reconstruction error, contrary to CCD subjects, all the samples

from the cohort are included in the range of HCP subjects (Fig.13.10B.). This
could be due to the lower resolution of most subjects. However, the distribu-
tion of both groups of patients seems to be different from that of the controls
(Fig.13.10B. and C.). In Fig.13.10B., all patients with negative or positive MRI
were considered, whether their lesion is located in the left or in the right hemi-
sphere. Fig.13.10C. presents the details for each group. Both figures suggest that
patients with negative MRI have higher reconstruction errors and thus are more
difficult to reconstruct. This is confirmed by the p-values reported in table 13.1.
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Figure 13.10: Results on patients suffering from FCD2. A. UMAP projection ofpatients with a positive MRI (indigo), patients with a negative MRI (blue), controls ofthe same dataset (orange) and HCP test subjects (green). The crosses correspond tosubjects with a lesion in the left hemisphere. B. Reconstruction error distributions forthe four groups (patients with negative or positive MRI, controls and HCP subjects).C. Reconstruction error variations for the different groups. Patients of each grouphave been separated depending on the lesion’s location.

We do not observe a difference in the distributions between HCP subjects and
controls (adjusted p-value=0.41). -/right patients are the only group with a distri-
bution significantly different from that of the controls (adjusted p-value=0.0020).
For +/right patients, it seems that their reconstruction errors tend to have a dif-
ferent distribution but it is not significant. It is interesting to note that although
patients with a lesion located in the left hemisphere present fewer differences with
the controls than patients with a lesion in the right hemisphere, they are still not
similar to controls. A potential explanation is that the events perturbing the neuro-
development and resulting in a lesion in the left hemisphere may have had other
consequences, less marked, in other areas of the brain. Nevertheless, as we deal
with only a small number of patients this should be replicated with more data in
order to conclude.

Fig.13.12 presents the reconstructions for the controls and patients with posi-
tive and negative MRI (and a lesion located in the right hemisphere). Contrary to
the previous results there is no row for the model’s addition (output-input) because
no error was important enough to appear.

First, we can notice for the controls that despite being simplified versions of
the inputs, the reconstructions are quite good. It seems that the main omissions
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Figure 13.11: Travelling through the latent space from the control cen-
troid to the centroid of each group of patients and beyond. The insets arethe centroid-generated patterns. We travel through the latent space from the con-trol centroid to each patient group centroid and beyond as illustrated by the arrows.The intermediate patterns between the insets correspond to interpolations along thearrows. First row: From controls to +/right patients. Second row: From controls to-/right patients. Only patients with lesions located in the right hemisphere were usedto generate the averages. Colours match Fig.13.10: controls are represented in or-ange, patients with positive MRI in indigo and patients with negative MRI in blue.

by the model are small branches of the central and precentral sulci.
Fig.13.12 (b) shows the reconstructions of patients with a positive MRI. Sim-

ilar to the controls, the model’s omissions include small branches. However, one
important feature is also the connection between the central and the precentral
sulci which is partly or entirely missing in all examples. Therefore, a connection be-
tween these two sulci may be a rare feature. This could be confirmed by Fig.13.7A.
where a perpendicular branch from the CS to the precentral was missing in the
reconstruction.

The reconstructions of patients with a negative MRI are shown in Fig. 13.12
(c). First, it visually confirms the results of Fig.13.10: the reconstruction quality
is lower. As with patients with positive MRI a connection between the central and
the precentral sulci is missing in some cases. In the second column, we can notice
that the subject presents a PBS that the model cannot correctly reconstruct.
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(a) Control subjects.

(b) Patients with a positive MRI.
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(c) Patients with a negative MRI.
Figure 13.12: Right central region reconstructions and residuals for the pa-
tients suffering from FCD2 and controls. Each column corresponds to a subject.For all rows, distance maps are converted to meshes for easier visualization. Firstrow: input data. Second row: reconstruction of the model. Third row: Reconstruc-tions of the model with the difference between the input and the output, i.e. themodel’s omissions. Note that all patients represented have the lesion located in theright hemisphere.
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Groups p-value Adjusted p-valueHCP vs controls 0.083 0.41controls vs +/right 0.014 0.069controls vs -/right 0.00040 0.0020controls vs +/left 0.025 0.12controls vs -/left 0.0095 0.047

Table 13.1: Significativity of Mann-Whitney U test. The null hypothesis isthat two samples have the same distribution. Adjusted p-values were corrected withthe Bonferroni method.
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14 - Discussion

This part proposed a methodology to study rare folding patterns which was
applied to the central sulcus region and to a described rare pattern, interrupted
central sulci. Specifically, we represented folding patterns with distance maps and
leveraged the generative power of the β−V AE to have a better understanding of
the learned representations. In addition, we proposed a way to study the granularity
of deviations that can be identified and we brought to light several rare patterns
in the region. We also compared the identification power of both the latent space
and the folding space. Finally, we assessed the generalization of our methodology
on developmental anomalies in two other regions.

14.1 . Latent space and folding space, two complementary in-
formation

In many anomaly detection works applied to medical images, the detection
is performed based on the reconstruction error rather than in the latent space
(Schlegl et al., 2019; Baur et al., 2020; Tschuchnig and Gadermayr, 2021; Behrendt
et al., 2022). However, both of these spaces have their interest and could bring
complementary information. In our work, we studied four types of rare patterns,
two synthetic types, deletion and asymmetry benchmarks, and two actual rare
patterns. These four categories differ from control data by their own characteristics
and thus help to study the granularity detected, that is to say, the typology of rare
features that can be identified. For instance, the asymmetry benchmark includes
more double-knob configurations. Depending on the size of the deleted simple
surface, deletion benchmarks represent different features: benchmarks 200 and
500 represent mainly a missing branch with increasing size, which may represent
the normal variability of branches. Benchmark 700 could look like an interrupted
sulcus in some cases or in others, like benchmark 1000, an unlikely configuration.
Interrupted central sulci present a clear interruption and a rare arrangement of
the shapes forming the central sulcus. Last, CCD subjects demonstrate a missing
sulcus or missing sulcal parts and branches with different orientations. For patients
suffering from FCD2, although PBS has been described, it is not present in all
patients and is not specific, so in this case, we do not know whether there is a rare
pattern and if so, what the pattern would be.

These different kinds of known deviations from the norm provide clues to the
characteristics of rare patterns that can be identified respectively in the latent
space or in the folding space of our model. As a matter of fact, the identification
performances in the latent and in the folding space vary depending on the kind of
patterns. For deletion benchmarks, the folding space, based on the reconstruction
error, seems to enable the identification of unusual patterns from smaller modifi-
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cations: different distributions are observed from 500 deleted voxels. Whereas in
the latent space, the detection requires at least 1000 deleted voxels. Likewise, for
the interrupted central sulci, despite the small number of samples, their detection
seems to be easier on the basis of reconstruction error than in the latent space.
Similar results were obtained on CCD subjects even if the latent representation
was encouraging. In return, the error distribution of the asymmetry benchmark is
not different from that of the controls, but the benchmark is well detected in the
latent space. Therefore, the latent space could be more sensitive to shape arrange-
ments than the folding space. The lack of difference in the error distributions may
be due to the fact that the voxel-to-voxel differences between the right and left
central sulci are local and subtle and could be embedded in the normal variability.
In addition, the reconstruction error is for the entire image. Therefore, in the case
of small and very local deviations from the norm, the reconstruction error alone is
likely to be insufficient. A way to limit such effects could be to use a more local
error, applied to sub-regions or patches for instance.

The difference in the outlier detection performance may also lie in the way
our model encodes the outliers. Based on our results, we can consider several
cases. First, a rare configuration is represented by several samples present in the
training set. This would be the case with the asymmetry benchmark. Indeed, there
are more double-knob configurations in the left hemisphere but single and double-
knob patterns coexist on both sides. In such a case, the distribution support of
the left and right hemispheres are the same, but the densities differ, which could
lead to a projection of the outlier at the margin of the latent space but to a good
reconstruction. Second, the rare configuration is almost never represented in the
training set and the model has not detected and thus encoded its local specificity.
Then, the subject would be encoded with a "default" representation and projected
in the middle of the other subjects. This would be consistent with the results
we described in a previous article (Guillon et al., 2021), where major anomalies
(different parts of the brain from the one considered in the train set) were projected
in the middle of the point cloud and reconstructed as the average reconstruction.
It could be the case of the benchmark deletion 500 and the interrupted central
sulcus projected in the point cloud. Last, the outlier configuration is almost never
represented in the training set but the model has detected the rare characteristic.
The subject is then projected at the margin of the point cloud and the decoder
has not learned this part of the latent space leading to a poor reconstruction
(interrupted central sulci, CCD subjects).

Nevertheless, in all cases, a strength of the folding space is the possibility to
localize the reconstruction errors and, in some cases, the unusual features. If not
too noisy, reconstruction errors can be very informative. For example, in the case of
interrupted central sulci, looking at the model’s addition permits clearly localizing
what is atypical in a subject (Fig.13.7). Similarly, in the case of the CCD subjects,
the reconstruction errors highlight the presence of radial small branches that are
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typical of this brain disorder (Bénézit et al., 2015). The reconstructions of patients
suffering from FCD2 may suggest that a connection between the central and the
precentral sulci could be a rare pattern. But some noise remains, and it might be
interesting to add an additional constraint to represent only errors that correspond
to a minimum number of contiguous voxels. This could lead to a good explanation
of the abnormality which is of major importance in the field, especially when applied
to medical images. Other explanation methods exist, directly on the network such
as Grad-CAM (Selvaraju et al., 2020) or on an OC-SVM applied on the learned
features (Sohn et al., 2022) for instance; but the use of the reconstruction error is
immediate and easy to implement. Hence, the latent space and the folding space,
based on reconstruction error, can provide complementary information and both
can be used to identify rare patterns.

14.2 . Data size limitations and unknown number of rare pat-
terns

The method should be further qualified because of the low number of our
examples of rare patterns. While the study of a known rare pattern is interesting
and important, having only seven samples severely limits our conclusions. Similarly,
the poor results of benchmarks 500 and 700 in the latent space could be due to
their small size, and having larger benchmark datasets could lead to increased
performances.

Also, we assessed our method in the CS area on the benchmarks and on an
existing rare pattern, but because few rare patterns have been described in this
region, there may be other rare configurations in what we consider the control
population. For instance, three morphologic variants in the central sulcus region
have been introduced, representing 2.9%, 7.0% and 1.8% of the studied population,
opposed to 78.2% of "omega" shape, i.e. the central sulcus knob and 10.1% of
"epsilon" shape which corresponds to the double-knob configuration (Caulo et al.,
2007). This multiplication of rare patterns in the populations would make the
identification of interrupted central sulci more difficult.

14.3 . Relevance of synthetic benchmarks

Moreover, we can wonder about the relevance of our synthetic benchmarks.
Although synthetic rare patterns are of high interest as they enable to quantify the
performances on different degrees of deviations from the norm, few works have
been interested in them to our knowledge (Meissen et al., 2022). But the use of
fake deviations raises the question: do they constitute adequate rare patterns? Few
studies introduced rare folding patterns based on the arrangement of their shapes
such as the PBS (Mellerio et al., 2014), an interrupted central sulcus (Mangin
et al., 2019) or a flat central sulcus (Sun et al., 2017). Here, we emphasize their
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advantage in the study of our understanding of the brain: they are evidence of
neurodevelopmental processes and then stable throughout life. But other abnormal
sulcal features have been studied and found to be important and correlated with
neurodevelopmental disorders, such as the depth, which demonstrated anomalies
in autism spectrum disorder (Nordahl et al., 2007; Dierker et al., 2015) or Williams
syndrome (Essen et al., 2006) for instance. Despite being another subject of study,
a benchmark corresponding to central sulcus depth variations could be interesting
to assess whether our framework can be extended to detect such anomalies.

Regarding the current benchmarks we use, we said that small erased SS could
remain undetected as this deletion could be embedded in the normal variability.
However, there may be several categories of deletion deviations. Some may be
minor, as a small SS representing a tiny branch. On the opposite, some small SS,
for instance one corresponding to depth change, representing the presence of a pli
de passage, and thus leading to an interrupted central sulcus would be expected
to be a major feature of the topology. Hence, our criterion, only based on the size
of the SS may be insufficient and it could be interesting to add another one, such
as topological criteria.

In any case, having an unusual feature (e.g., a missing simple surface or unusual
depth) that can be incrementally increased, or comparing several types of features,
helps characterize the detection power of a model and the features likely to be
detected.

14.4 . Learning relevant representations

When dealing with sulcal patterns and their high complexity, it may be easier
to use representations of the folding which attempt to gather several subjects with
similar patterns. Local averages of sulci, also called moving averages, enable to
concentrate on the main features of the different patterns and are thus very use-
ful to analyze folding patterns (Sun et al., 2012; de Vareilles et al., 2022; Foubet
et al., 2022). From a graph-based representation of the sulci, the identification of
patterns can be done after computing similarity and applying a clustering (Meng
et al., 2018). Our approach proposes another method to learn sulcal representa-
tions. From our cropped distance maps, the β−V AE learns a mapping to a latent
representation which can then be reconstructed. Therefore, rather than explicitly
computing pairwise similarity between the subjects, gathering them, and then an-
alyzing the patterns, we hope that our β − V AE directly learns shapes that can
be combined and arranged in patterns. The representations learned by our model
seem to be relevant and consistent with some morphological characteristics of the
central sulcus area.
First, the reconstruction of the average representation of the right central sulcus
is composed of an upper knob whereas the left average tends more towards a
double-knob configuration (respectively green and blue sulci in Fig.13.2B). This is
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one of the main known asymmetries in terms of patterns and it appears early in
the development. It has been detected in infants of 30 weeks postmenstrual age
(de Vareilles et al., 2022) and in adults (Sun et al., 2012).
We also observed differences in terms of curvature of the hand-knob, with a hand-
knob more pronounced in the left hemisphere than in the right (Fig.13.2B.). Con-
sidering that we study a right-handed population, this could be related to handed-
ness. With the lateralization of the hand motricity, we expect the motor area of
the right hand in the left hemisphere and particularly the precentral gyrus to be
more developed for right-handed subjects, pushing backward the upper part of the
central sulcus which would result in a knob more pronounced. This interpretation
is consistent with a study on one-handed subjects that showed that subjects born
without a hand had a flatter central sulcus contralateral to the missing hand (Sun
et al., 2017).

Another interesting property that was successfully encoded is the PPFM. This
pli de passage was first described in 1888 (Broca and Pozzi, 1888) and has been
a source of growing interest due to its link with the motor hand area (Boling
and Olivier, 2004) and in the context of understanding the formation of the knob
regarding evolutionary questions (Hopkins et al., 2014). Our model was able to en-
code the PPFM in the latent space as well as its asymmetry characteristics. Indeed,
we observed that the PPFM is smaller in the right hemisphere which corresponds
to central sulcus depth variations described in (Amunts et al., 1996). This is also
consistent as the PPFM has been correlated to the hand. Therefore, right-handed
subjects tend to have a more developed hand area in the left hemisphere and thus
a larger PPFM.
Hence, our latent space has learned relevant normal characteristics that are consis-
tent with the region’s morphology. It has also enabled to propose four other groups
of likely rare patterns (Fig.13.5). The pattern representing a rather flat central sul-
cus is indeed a non-typical configuration. Less than 2% of the studied subjects
were reported to have such a configuration in (Caulo et al., 2007). Moreover,
flat central sulci appeared as the most important feature when comparing controls
to congenital one-handed subjects who tended to demonstrate flatter central sulci
(Sun et al., 2017), confirming that flat central sulci are less frequent patterns. The
groups representing large knobs and wide open knobs (Fig.13.5B. and C.) are also
an atypical configuration that is present at one extremity of the axis representing
the most extreme variations in Human and is closer to configurations we observe
in Chimpanzees (Foubet et al., 2022).

14.5 . Generative power of β−V AE and comparison with other
strategies

Since our proposed framework is able to encode relevant features regarding
folding patterns, the generative power of the β − V AE can be exploited. Indeed,
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reconstructions and interpolations are tools to understand the folding variability.
We have just mentioned that the learned patterns were relevant and consistent with
those obtained by other methods, but our method has the advantage of being able
to reconstruct and interpolate. For instance, interpolations along the main axis of
asymmetry variations highlight the evolution from a right to a left hemisphere. It
can also be useful to understand the folding process and in particular the formation
of interrupted central sulci. As a matter of fact, on Fig.13.6C., an interruption
of the central sulcus happens when interpolating from the central subject to one
control outlier. When observing the PPFM, we can see that the PPFM increases
until reaching the surface of the brain and thus interrupting the central sulcus.
Jointly, the inferior sulcal part connects to the precentral sulcus. Such observations
may provide additional clues in our understanding of the folding processes.

But other deep learning models could be interesting to study folding patterns.
For instance, β − V AE reconstructions are known to be blurry contrary to GAN’s
or more recently, diffusion models. Currently, this shortcoming is limited as we
seek to have a simpler representation of folding patterns, still, for more subtle
details, another model may be better suited. In addition, in the anomaly detection
field, models that add constraints on controls distribution are quite appealing. For
instance, deep One-Class Classification and its derivatives have been proposed to
push control data into the smallest hypersphere in the latent space (Ruff et al.,
2018). This could help increase the detection performance in the latent space.
Nevertheless, no matter the architecture or the framework, an important limit to
understanding what our model has really encoded is the high number of latent
dimensions.

One can also wonder about the representation of the folding patterns. Previ-
ously, we mentioned two main strategies: clustering and manifold. Usually, these
two approaches are applied to a continuous space. Nevertheless, if we consider
sulcal shapes as symbolic entities that can be combined and arranged, we could
represent folding patterns based on a discrete space rather than a continuous one.
As such, VQ-VAE (van den Oord et al., 2017) seems to be an interesting repre-
sentation to compare with our present results.

Finally, this framework of outlier detection based on training on control subjects
alone may be sensitive to outliers present in the training set. Having a contaminated
dataset could severely limit the detection performances, at least in the folding
space which is based on the reconstruction error. It has been reported in a brain
tumor detection problem that having 3% of outliers in the training set (about
1000 samples) leads to a decrease of 5% of the AUROC and to a 13% decrease
if the contamination reaches 12% of the training set (Behrendt et al., 2022).
Therefore, one serious shortcoming of our paradigm is that we do not know the
outliers we are looking for. Applying our framework to a control population alone
in order to bring out rare patterns may limit the different patterns that can be
identified. A way to tackle this issue and to increase the patterns detected would
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be to exploit the presence of outliers in the training set as proposed in (Qiu et al.,
2022). In their technique, the authors introduce an iterative joint training where
they assign labels (anomalous or control) to the examples, and then optimize the
network’s parameters to better identify the anomalies. Such a method could also
enable to project the outliers more at the margin of the latent space. The impact
of the presence of outliers during training on the latent space has not yet been
investigated to our knowledge. If, as we suggested before, outliers present in the
training phase are encoded at the margin of the distribution, i.e. in a different
area of the latent space, it could be interesting to deepen our analysis, based on
clustering for instance.

14.6 . Generalization of the approach: towards an analysis of
the whole brain?

This work has shown that our approach had successfully encoded some relevant
features of the folding patterns in the central sulcus region but it is attractive to
think about the behaviour and results we could obtain in other parts of the brain.
Here, we assessed the generalizability of the framework on two other datasets and
regions. Our results suggest that our method can well transpose in other brain
regions. Specifically, even if we use the hyperparameters (β and L) optimized
for another area, the learned representations still enable us to distinguish between
control and outlier subjects. This is all the more interesting that in the case of the
CCD subjects, the two studied regions are rather different. The central sulcus is
one of the first folds to form and is rather stable, contrary to the cingulate region
that is more variable (Sun et al., 2009). Therefore, it seems that no matter the
folding variability of the zone, our framework can be applied. This encouraging
result raises a question regarding the procedure to adopt to extend our analysis
to the whole brain. A way could be to define a set of regions, consistent with
the cytoarchitecture and function and to train our β − V AE on each region. In
particular, some areas seem to be interesting from a clinical point of view (Provost
et al., 2003; Yücel et al., 2003; Gervais et al., 2004; Borst et al., 2014; Hotier et al.,
2017). Our future works may thus focus on proposing an adequate methodology
to tackle the whole brain.

On the other hand, when we applied this framework to CCD subjects and pa-
tients suffering from FCD2, we also operated a domain shift. Indeed, for the CCD
subjects, the dataset to explore included exclusively children while the β − V AE

was trained on young adults. Despite folding patterns being reported as trait fea-
tures (Cachia et al., 2016), such an age variation may have an impact. In addition,
beyond dealing with children, the site and the scanner are different. Similarly, in
the case of patients with FCD2, the subjects were not homogeneous in terms of
age and scanners. Such differences have been reported to affect the generalizability
and the performances on various targeted tasks. In terms of distributions in the
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latent space, despite the fact that the distribution of the controls does not seem
to completely overlap the distribution of the HCP controls, the patients still seem
to present a different distribution than both controls’ populations. Moreover, the
domain shift does not seem to have an effect on the folding space where controls
reconstruction errors are not significantly different from HCP contrary to CCD sub-
jects that have significantly higher reconstruction errors. The results of patients
suffering from FCD2 are more complex to interpret as the consequence, in terms of
folding remains unclear. Still, the reconstruction errors of the controls are similar
to HCP subjects and patients seem to have higher reconstruction errors. It is par-
ticularly interesting for -/right patients as their MRI does not present visual signs
of FCD2. However, having only fewer than a dozen of subjects makes it difficult
to conclude on the importance of these age and site effects for our task. We will
explore these questions in further studies.

14.7 . Perspectives

This part proposed a framework to identify rare and abnormal folding patterns
based on the modelling of inter-individual variability. With a new representation
of folding patterns, we proposed a model that was able to encode relevant folding
characteristics. The use of synthetic rare patterns enlightened the identification
power of our model on both the latent space and the folding space. Finally,
we successfully generalized our approach to other clinical brain disorders in other
regions. Our results open up several avenues of work such as the definition of new
synthetic benchmarks that match the characteristics of other known anomalies,
the use of other deep learning models that exploit the presence of outliers in the
training set, or the use of our framework to better understand the folding process.
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Appendices

A - Visualization of an example of input nor-
malization

Figure A.1: Crops without (left) and with (right) the normalization applied.Example of an input crop without and with the normalization applied and presentedin section 12.3.1
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B - beta-VAE hyperparameter selection

We seek to choose the best values for the Kullback-Leibler divergence weight
(beta) and the number of dimensions of the latent space (L) in the task of identi-
fying interrupted central sulci. To select the best values we used two criteria, the
reconstruction quality and the detection power on a proxy for interrupted central
sulci. The precentral and postcentral sulci have some similarities with the central
sulcus regarding orientation, size and shape. In addition, they are usually more
interrupted and have more ramifications which make them a good proxy in the
task of interrupted central sulci detection. However, due to the interruptions and
the ramifications, the classification between a central sulcus and a pre or postcen-
tral sulcus may be very easy for some subjects. In order to make the classification
task non trivial and thus informative, we selected the subjects for whom the task
is harder, i.e. that have a pre or a postcentral sulcus that looks like the central
sulcus. Therefore, our hyperparameter selection method is based on three steps:

• generating the pre and post central sulci crops

• identifying the precentral and postcentral sulci that present some ambiguities
with the central sulcus,

• the actual gridsearch.

These three steps are detailed in the following:
1) Generation of the pre and post central sulci crops. To obtain crops of

these two other sulci, like presented in the section 5.2. for the central sulcus, we
generated distance maps of the whole hemisphere based on the folding graph of the
HCP subjects. Then, like for the central sulcus, we learned masks of the precentral
and of the postcentral sulci. In order to have the same image dimensions as the
ones for the central sulcus, we adapted the mask to the adequate dimensions by
adding or deleting a few voxels. Therefore, we obtain 3D crops of the precentral
sulcus and of the postcentral sulcus.

2) “Ambiguous” precentral and postcentral sulci identification. The aim
of this second step is to identify “ambiguous” precentral and postcentral sulci. In
order to do this, we trained a beta-VAE (L = 150 and beta = 1) on the train set
described in section 12.3.2 (only control central sulcus crops). Once the model
was trained, we encoded all the training central sulci and all the precentral and
postcentral sulci. We then trained two linear SVM to classify the latent codes be-
tween the central and precentral sulci, and between central and postcentral sulci.
All precentral and postcentral sulci that were wrongly predicted as central sulci
were considered as ambiguous. We repeated these steps five times in order to in-
crease the robustness. We found 28 ambiguous precentral sulci and 18 ambiguous
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postcentral sulci.

3) Gridsearch. Once we identified ambiguous subjects, we consider them as
a proxy for interrupted central sulci, i.e. as the rare patterns to detect. We then
performed the gridsearch to find the best hyperparameter configuration to detect
them. We trained a beta-VAE on the train set described in 12.3.2 (only control
central sulcus crops) for each configuration. Next we encoded the central sulci
of the validation set and the ambiguous pre and postcentral sulci. We trained a
linear SVM to classify between the latent codes of the validation samples and of
the outliers which are composed of the pre and post central sulci.
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Part V

General discussion and
conclusion

In the previous parts, we have presented our approach which consists in learning
the normal folding variability thanks to an unsupervised deep learning model. Based
on this representation, we characterized typical patterns of the cingulate region and
identified rare or abnormal cortical folding patterns in the central region. This part
proposes a summary before discussing several aspects of this thesis.
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General discussion and conclusion

Contributions

In this manuscript, we have discussed cortical folding patterns, their forma-
tion and their relation with brain functional architecture. In particular, the folding
processes can be subject to perturbations which may lead, from a morphological
point of view to rare and abnormal patterns that can translate to a wide range of
disorders from no symptoms to heavy ones. Moreover, contrary to many markers,
folding patterns have the advantage of being trait features, i.e., to remain stable
throughout life. Therefore, they give a unique insight into the neuro-developmental
processes and constitute an opportunity to study the neuro-development and po-
tentially lead to the discovery of biomarkers.

In the meantime, the study of folding patterns has taken a turn with the
emergence of large neuroimaging databases. However, to be able to analyse such
databases requires specific methods. Unsupervised deep learning constitutes an op-
portunity to address two challenges: it enables to efficiently study large databases
and to bring out representations without any supervision, i.e. without having to
know in advance what the typical patterns are.

We presented here a work in three main steps. First, we learned a represen-
tation of the folding inter-individual variability. Based on this representation, we
proposed two applications: (1) the characterization of typical folding patterns and
(2) the identification of rare or abnormal folding patterns. To this end, we used a
pre-processing that allows us to focus on the folding information and to work with
local patterns. We then trained a β − V AE with our particular type of data to
learn the folding variability of a control population.

In the first application, we worked on a specific region, the cingulate area
which is of clinical interest. We then compared the learned representations of the
β−V AE and of another unsupervised model, SimCLR. Specifically, in both cases,
we performed clustering on the latent space which led to four main patterns, some
of which have already been described in the literature. The classification of a spe-
cific pattern, the paracingulate, on the basis of the latent representations ensured
that the latent codes contain relevant folding information. Therefore, this appli-
cation showed that our framework could be useful to study folding patterns and
could lead to the identification of typical patterns.

The second application aimed to identify rare and abnormal folding patterns.
We started by focusing on the central sulcus region where a rare configuration
was described. We trained our β − V AE to learn a representation of the central
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sulcus area. To better qualify the ability to identify rare patterns we generated
several benchmarks, each with its own type of deviations. We showed that both
the latent space and the folding space, i.e., based on the reconstruction errors,
provided information and seemed to be more useful depending on the types of
deviations. The learned representations were relevant and we found some char-
acteristics described in the literature. We also found another asymmetry feature
that has not yet been reported. In addition, our framework enabled to identify rare
patterns within the population. Finally, we evaluated the generalization abilities
with two other datasets of patients. In both cases, although it seems that there is a
database effect, we are still able to distinguish between patients and controls of the
same database based on the folding space. This application has also highlighted
the strength of using a generative model to better understand what the model has
encoded and to locate the deviations.

Considerations on the size of the latent space

These two applications are complementary: once we have characterized typical
folding patterns of a region, it is easier to identify potential deviations. When
comparing the two applications, it is interesting to note that although the archi-
tecture of the β − V AE is the same, the latent space size is very different: 4
for identifying typical patterns, as opposed to 75 for rare patterns. Of course, it
has to be noted that the regions considered are different and more importantly, in
the works presented here, the resolutions used are different: 2mm when identifying
typical patterns versus 1mm when applied to rare patterns. However, in a previous
work where we aimed to identify abnormal patterns in the superior temporal sulcus
branches, we also worked in 2mm resolution with dimensions of the crop similar to
the one we used to study typical patterns of the cingulate region (Guillon et al.,
2021). In this case, a gridsearch with latent space sizes between 8 and 100 led
to use 100 dimensions in the latent space, suggesting again that a larger number
of dimensions in the latent space is better suited when looking for outliers. We
should also remind that the gridsearch criteria are different. In the first applica-
tion, we considered a latent space size leading to a clustered space, based on the
silhouette score. Whereas for the second application, we used the latent space
size that resulted in the best classification score on a proxy for abnormal patterns.
Nonetheless, it could suggest that the number of latent dimensions may depend on
the nature of the task and that the identification of typical patterns would require
fewer latent dimensions than for outlier detection applied to folding patterns.

The comparison with other works is difficult since the input type is an important
element. Indeed, the input dimensions may be closely related to the size of the
latent space. Still, we can notice that large latent space sizes have been used in the
anomaly detection field. When comparing different AE structures for brain anomaly
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detection including the β−V AE, the latent space size was set at 128 (Baur et al.,
2020). More recently, a work studying abnormal shapes of the pancreas with a
β−V AE compared the performances for different latent dimensions (16, 64, 256,
1024) and suggested that a larger latent space led to better outlier identification
(Vétil et al., 2022). In return, when working on the characterization of typical
patterns, smaller sizes were chosen: 2 for a β − V AE used to characterize brain
activity patterns in resting-state functional MRI (Gomez et al., 2022) or 8 in a
β − V AE used to perform generative modelling of mice brain (Liu et al., 2020).

An explanation for these different sizes could be directly linked to the task, i.e.
either identifying typical or rare patterns, and to the role of the latent space. In
particular, in an idealistic case, we wish that each dimension of the latent space
corresponds to a folding feature. Therefore, when identifying typical patterns,
having fewer dimensions would mean that fewer features are encoded and that
the variability is expressed only based on certain characteristics. Having fewer
features seems to be easier to then perform clustering and find patterns. Indeed,
with more features, the variability expressed is increased and identifying what is
common between subjects tends to be more complex. In return, in the scope of
identifying rare or abnormal patterns, having more features leaves more "degrees
of freedom" to encode the variability, which is important in order to encompass the
whole range of normal variability. Nevertheless, having a larger number of latent
dimensions raises new challenges such as the methods to identify deviations in high
dimensionality and the interpretation is harder.

Modelling of cortical folding variability

We mentioned in the background that several methods to study and decipher
the folding patterns have been proposed. Specifically, some works introduced
manifold-based analyses that correspond to a continuous approach (Sun et al.,
2012, 2017; de Vareilles et al., 2022; Foubet et al., 2022). Based on the dimensions
of an Isomap, the continuous shape variations are studied along each dimension.
This enables to identify tendencies and one or two varying features per dimension.
Another approach introduced consists in clustering the subjects and then analyzing
average patterns (Meng et al., 2018; Duan et al., 2019). In this work, we used two
different approaches. On the one hand, we applied clustering to identify typical
patterns and on the other hand, we used a continuous representation to characterize
rare patterns. In the latter, clustering does not appear to be particularly well
suited to identify outliers. Indeed, as a first hypothesis, we would seek to obtain a
representation with only one group of subjects, solely composed of controls, where
outliers are positioned at the margin of this representation or farther. Furthermore,
we just mentioned that based on our work, it seems that bigger latent spaces are
more effective for outlier detection but clustering may be a harder task with more
dimensions.
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For identifying typical patterns, performing clustering could be more relevant
and is a subject of discussion (de Vareilles et al., 2022). Indeed, if we compute the
averages of each cluster, either based on the latent representations which are then
reconstructed or based on the local averages of the input space, clustering has the
advantage of automatically proposing patterns (see Part III). However, in this case,
the choice of the number of clusters is important and arbitrary constraints such
as the one we used constitute a hard shortcoming. To address this issue we could
consider models that perform clustering during training such as Deep cluster (Caron
et al., 2018) or SwAV (Caron et al., 2021). In any case, to perform clustering
does not necessarily imply that the space is not continuous. On the contrary,
we may expect to see continuous variations going from one cluster to another. In
particular, the encoded representation could correspond to a distribution where the
clusters are regions of higher densities. In terms of patterns, this was shown when
we travelled through the latent space (Fig.9.2). Hence, when identifying typical
patterns, choosing clustering may not be contradictory with a continuous approach
and could propose an easier way to characterize patterns, rather than individual
shape characteristics. Therefore, presenting these two approaches as opposites
may not be completely accurate. Indeed, as we noted, even when our latent space
is optimized to be the most clustered possible, it still shows continuous variations
among the clusters, taking advantage of both representations. Therefore, instead
of choosing a paradigm between clustering and continuous approaches, another
possibility could be to use a method combining both.

Representing cortical folding

The study of folding is complex and can be addressed with many approaches
that rely on different objects of interest such as sulci, sulcal pits or gyri for instance.
In this work we based our analysis on sulci that we modelled as skeletons or as their
continuous counterparts, the distance maps. Even if the distance map is derived
from the skeleton, the difference between these two types of data has consequences
for the training of the β−V AE and the analysis of the latent space: the skeleton
is binary, we do not use the same reconstruction loss and the visualization in 3D
requires additional steps for distance maps. The main advantages of the distance
map are that there is a notion of proximity to a sulcus on the voxels and that
we threshold the images to analyse the reconstructions or the generated patterns
which enables to have less blurry images (see Appendix C).

Nevertheless, other modelling methods could be relevant and are the subject
of several works. In particular, when it comes to modelling shapes, there are
different possibilities for representing 3D outputs, including based on voxels like
we currently do, points cloud or meshes. A quite recent proposition is based on
implicit fields, where a shape is defined by sets of points inside and outside the
shape. Such a framework has been applied to unsupervised anomaly detection
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in brain images with an auto-decoder architecture (Naval Marimont and Tarroni,
2021) and to supervised and unsupervised classification of complex anatomical
shapes (Juhl et al., 2021). Both these applications seem promising and could be
a new way to model and study folding patterns.

On the other hand, taking a step back, it is interesting to think that this
whole work investigates objects representing the shape of the void. Although we
represent the sulci as 3D objects, they are constructions actually filled with cere-
brospinal fluid. Nevertheless, these objects are proxies for various brain structures.
In particular, the sulci represent the "walls" of the gyri and different patterns, like
the presence of an additional sulcus, can correspond to a change in the cytoar-
chitectonic organization. As an example, in the cingulate area, the presence of a
paracingulate sulcus leads to a different distribution of the cytoarchitectonic areas
(Amiez et al., 2021). Moreover, around the sulci, there are diverse types of fibres.
For instance, five U-shape bundles of the central sulcus have been identified (Pron
et al., 2021). The shape of the sulci may also depend on the presence and the
characteristics of pli de passage, which have been associated with specific U-shape
fibres in the Superior Temporal Sulcus (Bodin et al., 2021). Therefore, the sulcal
object as we consider it, is at the intersection of diverse modalities and enables
to study the effects of multiple aspects at the same time. However, it could be
attractive to relate our findings to the cellular organization of the cortex and to
connectivity. For the latter, we could consider applying a similar framework to
model the inter-individual variability of bundles of fibres around the sulci in order
to identify typical or rare patterns.

Impact of the size of the dataset

A potentially important shortcoming of this work is the size of the dataset.
For both applications, we used the HCP dataset to learn a representation of the
folding variability which resulted in 551 subjects used to identify typical patterns
and 640 subjects for rare patterns. Compared to other works, we are lucky to deal
with these numbers of subjects but given the inter-individual variability of folding
patterns having more subjects would enable to have a more accurate representation.
I have not had the time to study the effect of the training set size but this was
done in a work following up on what was presented in part III (Chavas et al., 2023).
Specifically, they study the impact of the training set size (from n=20 to n=551
which is the configuration of part III) on the classification performances of the
presence of a paracingulate sulcus. As we could expect, they demonstrate that
better performances are obtained with greater sizes. It is worth noticing that it
seems that the curve does not reach the ceiling yet. Recently, a training with 21072
subjects of the UK BioBank dataset demonstrated slightly better performances.
Therefore, we would benefit from having more samples. In outlier detection works,
the size of the dataset may even be more important. We mentioned the sampling
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effect in part IV and the figure 2.2 was particularly expressive. With too little
data, the risk is to consider control patterns as outliers due to their undersampling.
Several dataset sizes (from 300 subjects to 1200) were compared in outlier detection
of the pancreas’ shape. The results suggested that in most cases, the more subjects,
the better the performances (Vétil et al., 2022).

Last, the number of outlier samples is also capital. In this work, we had only
a few subjects: 7 interrupted central sulci, 7 CCD patients and between 4 to 7
patients in the different groups of subjects suffering from FCD2. Having so few
outliers severely hinders a reliable conclusion on our results. Therefore, in future
works, having more subjects will be capital.

Dataset limitations

We just mentioned the size of the dataset but other considerations regarding
our dataset should be acknowledged. First, for training, we used only one cohort,
HCP. When our analyses are performed on the same cohort this has the advantage
of not being confronted with the site effect. However, when we apply our framework
to other cohorts such as the children with CCD or the patients suffering from FCD2
we observe that the distribution of the cohorts’ controls is different from the HCP
controls. In order to limit this effect, we are currently trying to incorporate controls
from other databases in the training.

Moreover, the HCP dataset has some particularities since some subjects are
related or even twins. Yet, folding patterns have been shown to be partly heritable
(Im et al., 2011; Pizzagalli et al., 2020). In this work, we did not apply a specific
methodology to deal with this specificity and we hypothesized that the folding
proximity of twins could be embedded in the inter-individual variability. Neverthe-
less, to validate this hypothesis, we should replicate our work with another cohort
without twins, such as UK BioBank.

Towards a new model

In our second application on the identification of rare cortical folding patterns,
we used a β − V AE which led to promising results. In future works, we wish to
deepen another version of this model. Indeed, inspired by the impressive results
of self-supervised learning and by some ideas of natural language processing, we
started experiments where we added an objective to our β−V AE. Specifically, we
introduced an inpainting objective where a random large simple surface is erased
before feeding the input to the β − V AE. The output of the model is compared
to the whole image that comprises the previously erased simple surface. Similar
frameworks were used in anomaly detection for natural images (Pirnay and Chai,
2021; Zavrtanik et al., 2021). A comparable approach was introduced as Context-
Encoding VAE (CeVAE) and applied to brain anomaly detection (Zimmerer et al.,
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2018, 2019b). Such works seemed promising but currently, adding this objective
does not lead to better results (see Appendix D). Future works will try to improve
this ongoing framework.

Perspectives

This work is promising but calls for exploring many new directions. Indeed,
beyond what we mentioned previously, future works could cover several aspects.
The first follow-up of this work would be to systematize our method to identify rare
folding patterns to the whole brain, covering different regions which are implied
in various functions, and to other cohorts of patients. We hope that specific rare
patterns could emerge from a cohort of patients.

Regarding the methodology, other unsupervised deep learning models would be
interesting to try, such as those offering a clustering during training (Caron et al.,
2018, 2021) to identify typical patterns for instance. Similarly, models introducing
an objective in the latent space in favour of outlier detection (like deep SVDD (Ruff
et al., 2018) for example) could be interesting to gather control samples closer
together in the latent space. For both our applications, the VQ-VAE (van den
Oord et al., 2017) seems also particularly interesting. The main difference with a
classic β − V AE is the learned representation which is discrete. If we consider
cortical folding best represented by a manifold with continuous variations from one
pattern to another, a continuous latent space seems better suited. However, if
we consider the patterns as an alphabet, like in the research program presented in
2004 (Mangin et al., 2004b), a discrete latent space could be promising, similar to
letters that can be arranged, each one of the components representing a particular
shape which are then combined to form the patterns.

Another interesting line of research would be on the outliers detected. In part
IV, we visually proposed four groups of outliers based on the latent distribution and
tried to draw the characteristics of each group. We are then attracted to automate
this approach by applying a clustering for instance. Specifically, in chapter 1.3, we
mentioned that several events could occur during brain development and lead to
folding anomalies. It would be thus interesting to try to link the groups of outliers
with their potential origin.

Last, as we have seen, sulcal objects are particularly relevant to investigate
since they are at the interface of several modalities. The study of the link between
this work and connectivity, function and cytoarchitecture would be enlightening to
increase our knowledge of the brain, its development and the potential disorders.

In conclusion, cortical folding patterns show a very high inter-individual vari-
ability that results from the neuro-developmental processes. The characterization
of both typical and rare folding patterns can help to decipher the complexity of fold-
ing and to better understand brain formation. Unsupervised deep learning methods
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appear to be an effective way to tackle this challenging task. This approach is a
first step towards a more systemic and systematic framework that would benefit
from integrating other modalities such as connectivity and cytoarchitecture.
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Appendices

C - Comparison between skeleton and dis-
tance map

In this work, we studied cortical folding patterns based on two types of input.
First, we used binary skeleton images (Fig. C.1 A.) to identify typical patterns
that we then converted to distance maps (Fig. C.1 B.) to characterize rare folding
patterns. We proposed distance maps in order to limit some shortcomings of the
skeletons (see Chapter 5.2). To assess whether the distance maps are indeed more
suited we compared the results obtained using skeletons and distance maps. Sim-
ilar to Part IV we analyzed both the latent and the folding space on our deletion
and asymmetry benchmarks. Note that the deletion benchmarks are slightly dif-
ferent from those presented in Part IV as the method to generate them was later
improved (the latest version is used in Part IV).

In the latent space, the fake anomalies seem to be distributed more differently
when using distance maps than skeletons for deletion 700 and 1000 (Fig. C.2).
For smaller deleted SS, it seems that there is no difference. Regarding the ROC
curves, they are slightly better with skeletons for small erased SS (deletion 200 and
500) but the results are equivalent for deletion 700 and a bit better with distance
maps for deletion 1000. In the case of benchmark 200, we are not particularly
interested in having the small deleted SS identified because they mainly concern
the inter-subject variability of small branches instead of actual rare configurations.
In addition, these SS generally correspond to the precentral or postcentral sulci,
which are not our object of interest. This could be due to the fact that in distance
maps, unlike skeletons, some isolated branches located at the edges of the crop

Figure C.1: Skeletons and distance maps. A. Skeleton. B. Distance maps inlevels of grey or in colours for easier visualization. Note that only a slice is representedfor visualization but both the inputs are 3D volumes.

125



may be more related to the rest of the crop due to the information on the distance
to the nearest sulcus held by all voxels, particularly thanks to the applied rotations.
Note that for benchmark 500, like in Part IV, we have only 34 subjects in each
class which limits reliable conclusions. In return, in the folding space, we observe
greater differences between the distributions of the reconstruction errors of controls
and benchmarks using distance maps than skeletons (Fig.C.4). For benchmark
asymmetry, results are roughly similar using both inputs (Fig. C.5a). However,
we observe that the averages generated based on the distance maps (Fig. C.5 b)
are much more precise. On the contrary, those based on the skeletons are thicker
which makes it difficult to analyze properly the differences. To conclude, distance
maps seem to lead to equivalent or better results, particularly in the folding space.
Furthermore, to visualize the distance maps in 3D a threshold has to be applied,
which allows for better-quality images. Future works could improve the distance
maps generation process. Indeed, the current method works but could be improved
by generating the distance maps on the fly by convolving a Gaussian directly over
the skeletons.
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Figure C.2: Comparison of UMAP projections of deletion benchmarks for
skeletons and distance maps. For both columns, each row corresponds to onebenchmark. Left: UMAP projections obtained with distance maps as input. Right:UMAP projections obtained with skeletons as input.
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Figure C.3: Comparison of ROC curves of deletion benchmarks for skele-
tons and distance maps. For both columns, each row corresponds to one bench-mark. Left: ROC obtained with distance maps as input. Right: ROC obtained withskeletons as input.
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Figure C.4: Comparison of reconstruction error distributions of deletion
benchmarks for skeletons and distance maps. For both columns, each rowcorresponds to one benchmark. Left: Reconstruction error distributions obtainedwith distance maps as input. Right: Reconstruction error distributions obtained withskeletons as input.
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(a)UMAPprojection of benchmark and control data, ROC curves of classifica-tion of control and benchmark data, and reconstruction error distributions.

(b) Averages for control subjects i.e. right hemispheres (ingreen), and for the asymmetry subjects, i.e. left hemispheres(in blue). 1. Averages obtained using distance maps as inputsand 2. using skeletons as inputs.
Figure C.5: Comparison of asymmetry benchmark results for distance
maps and skeletons. Controls are represented in green and benchmark data inblue. 130



D - Current inpainting-based model

Recently, I have started working on an improved version of our framework
based on the β − V AE presented earlier. However, I have not had the time to
fully formalize the approach and perform extensive analyses, so only the preliminary
method and results are presented here.

Methods

This new model is inspired by self-supervised learning and some natural lan-
guage processing applications where a missing word is predicted based on the
surrounding words. The hypothesis is that it is possible to predict the shape of
a fold based on the neighbouring folds. For instance, if the upper part of the
central sulcus, which contains the hand knob, is missing, a model trained to learn
the control representation of this area should be able to add this upper part. In
the anomaly detection field, inpainting has been used in order to improve the rep-
resentations learned (Pirnay and Chai, 2021; Zavrtanik et al., 2021). In medical
applications, a framework combining a VAE with an inpainting task was introduced
to increase the performances of brain anomaly detection (Zimmerer et al., 2018,
2019b).

Here, we propose to add to the β − V AE framework presented in II a specific
inpainting objective. In particular, rather than masking a random patch, we erase a
simple surface (SS) of an input and the model is trained to reconstruct the original
image. This additional objective acts as a pretext task, where the downstream task
is the learning of a control representation.

To avoid any confusion, we will call our usual masked crops (see Part II) our
region of interest (ROI). Simply put, the only difference with the previous frame-
work is that instead of the usual ROI, one simple surface of this ROI is masked
and the reconstruction is compared with the unmasked ROI. Specifically, during
training, for each sample, one random SS is erased with a probability of 80%. To
be deleted, SS must comprise at least 300 voxels inside the ROI. At inference,
similar to (Zavrtanik et al., 2021), we iteratively mask all the SS of more than 300
voxels in the ROI, encode these altered images and reconstruct them. We retain
the maximal reconstruction error to try to distinguish control subjects and rare
configurations. Our assumption is that if a SS highly deviates from the modelled
norm, the reconstruction error will be higher.

We tested this framework on the same central region crop as before. To assess
the method, we used our benchmarks and tested on interrupted central sulci.
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Preliminary results

Our preliminary results are presented in Fig.D.1. First, regarding our deletion
benchmarks, it seems that deletion 200 and 500 correspond to slightly higher re-
construction errors than in the classic framework. Nevertheless, we observe less
difference between the distributions for deletion 700. For deletion 1000 and the
asymmetry benchmark, the results are quite similar for the two frameworks. Al-
though it is harder to conclude for the interrupted central sulci as there are only
a few of them, it appears that their reconstruction errors are more similar to the
controls.

Figure D.1: Current results obtained with our inpainting-based model. A.Benchmark deletion results. B. Asymmetry benchmark results. C. Results on inter-rupted central sulci. In each case, the histograms represent the reconstruction errordistribution. The p-value indicated corresponds to the Kolmogorov-Smirnov test withthe null hypothesis that the two samples come from the same distribution.

Therefore, regarding deletion benchmarks, it seems that the inpainting-based
model is better suited to identify the deviations of small branches that contain less
than 700 voxels. However, the difference between the distributions of the recon-
struction errors of controls and benchmarks is not massive. In the current state of
the approach, it appears that our approach without adding this objective leads to
better performances. Additional work is required to conclude.

I did not have the time but several aspects could be further studied. In partic-
ular, rather than taking the maximal reconstruction error, it could be interesting
to compare the individual distributions of the reconstruction errors according to
the size of the deleted SS. Using distributions rather than a maximal error would
also have the advantage of normalizing the error by the size of the associated SS.
Indeed, one could expect that a bigger SS leads to a higher reconstruction error
since it is composed of more voxels. Last, locating and analyzing the erased SS
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that led to the maximal error could constitute a direct way of locating the deviating
pattern.
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Résumé étendu en français

Introduction

Une des premières caractéristiques visuelles du cerveau est son aspect plissé,
similaire à une noix. Il est en effet constitué de circonvolutions appelées gyri, qui
sont délimitées par des sillons, appelés sulci. À l’instar des empreintes digitales,
les motifs du plissement cortical, c’est-à-dire l’arrangement, les caractéristiques et
la forme des sillons est propre à chaque individu (Ono et al., 1990). Les neu-
roanatomistes se sont intéressés à la caractérisation des sillons, d’abord à partir de
specimens, puis grâce aux avancées de neuro-imagerie. Ces études ont permis de
proposer une nomenclature des sillons et plus tard, d’entraîner des modèles à re-
connaître automatiquement les différents sillons (Rivière et al., 2002; Perrot et al.,
2011; Borne et al., 2020). Cette nomenclature et les performances des modèles
suggèrent que même si chaque cerveau possède des motifs de plissement propres,
une stabilité est observée.

Le développement de techniques non-invasives telles que l’imagerie par réson-
nance magnétique (IRM) a permis d’aller plus loin dans l’étude des sillons. Par
exemple, des outils de visualisation ont facilité la description des motifs locaux de
plissement. En outre, l’IRM fonctionnelle a permis d’étudier le lien entre les formes
des sillons et diverses fonctions cognitives. Ainsi, certains motifs de sillons typiques
ont pu être corrélés à la dexterité manuelle ou à la lecture par exemple (Yousry
et al., 1997; Sun et al., 2016). Au contraire, des motifs rares ont également été
décrits, comme l’interruption du sillon central. Certains ont même été corrélés
à des troubles du neuro-développement. Par conséquent, l’étude des motifs des
sillons corticaux est particulièrement intéressante.

De par la très grande variabilité inter-individuelle observée dans les motifs de
plissement, la création de grandes bases de données est absolument nécessaire
que ce soit pour identifier des configurations de sillons typiques ou rares. Néan-
moins, analyser une multitude de données peut s’avérer compliqué. Les avancées
de l’apprentissage automatique et de l’apprentissage profond en particulier, con-
stituent une réelle opportunité pour faire face à un gros flux de données et à la
grande variabilité. En effet, de tels modèles pourraient apprendre une représenta-
tion du plissement cérébral dans l’objectif de décrire à la fois des configurations
typiques ainsi que des des configurations rares, pouvant mener à l’identification de
biomarqueurs.

Ce travail de thèse propose d’utiliser une méthode d’apprentissage automatique
profond, non-supervisé pour modéliser la variabilité inter-individuelle des motifs de
plissement d’une population contrôle. À partir de cette représentation apprise,
nous cherchons à identifier des configurations de sillons caractéristiques avant de
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nous intéresser aux marges de la représentation pour identifier des configurations
rares.

Contexte

Le plissement cérébral n’est pas propre au cerveau humain, d’autres espèces
possèdent la caractéristique d’avoir un cerveau plissé qui est un trait ancestral
des mammifères (Lewitus et al., 2014). Cependant, l’intensité de plissement varie
d’une espèce à l’autre. Chez l’humain, des études ont montré l’existence de trois
vagues de plissement successives qui conduisent respectivement aux plis primaires,
secondaires et tertiaires (Chi et al., 1977). L’étude des mécanismes impliqués est
toujours un champ actif de recherche où historiquement, deux hypothèses princi-
pales ont été proposées. La première repose sur des considérations mécaniques et
notamment sur des vitesses d’expansion différentes selon les couches du cortex.
La deuxième hypothèse est fondée sur des mécanismes biologiques impliquant pro-
cessus cellulaires et génétiques. Finalement, bien que ces deux propositions aient
été opposées, les processus de plissement pourraient s’avérer être une combinai-
son des approches mécanique et biologique comme le propose une revue récente
(Llinares-Benadero and Borrell, 2019).

Cependant, au cours de ces processus, des perturbations peuvent se produire
et engendrer divers types de malformations. Ces-dernières se traduisent par un
éventail de symptômes de gravité variable. Les perturbations peuvent également
conduire à des motifs de plissement rares et anormaux, tels que la lissencéphalie
(cerveau plat) ou la dysplasie corticale focale (FCD).

Les processus de plissement aboutissent à la formation d’environ 64 sillons
par hémisphère. Au sein de la population humaine, une stabilité des motifs de
plissement est observée avec des localisations, formes et arrangements globalement
similaires (Ono et al., 1990). Dans le cadre de cette thèse, il est important de
définir les termes suivants : (1) forme d’un sillon : élément de base pouvant être
arrangé pour former des motifs. Par exemple un arc de cercle ou un segment (voir
figure 1.3); (2) motif : combinaison, arrangement de formes élémentaires d’un
ou plusieurs plis. Par exemple, plusieurs motifs existent dans la région centrale
comme une configuration avec une seule bosse, deux bosses, ou un sillon plat.

Grâce aux avancées de neuro-imagerie, des études se sont penchées sur la
caractérisation des formes et motifs de plissement. Ainsi le sillon central comporte
généralement une ou plusieurs bosses (Yousry et al., 1997). De même le sillon mi-
fusiforme présente souvent un motif d’oméga (Weiner et al., 2014). Au contraire,
des motifs rares ont été identifiés tels que l’interruption du sillon central. L’étude
des sillons est particulièrement intéressante à cause de leur lien avec des fonctions
cérébrales. En effet, certains motifs ou formes ont été corrélés à des fonctions
comme la bosse du sillon central à la latéralité manuelle. Au contraire, des motifs
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de sillons ont aussi été associés à des troubles du neuro-développement comme le
"Power Button Sign" (PBS) qui a été corrélé à des cas de dysplasie corticale focale
(Mellerio et al., 2014). Par conséquent, l’étude des motifs de plissement cérébral
peut être intéressante pour faire émerger des biomarqueurs. Enfin, les motifs de
plissement ont l’avantage d’être des propriétés traits, c’est-à-dire qu’ils sont stables
au cours de la vie, ce qui en fait des témoins des processus du neuro-développement.

Cependant, l’étude des méthodes de plissement nécessite d’avoir et d’analyser
de très grandes bases de données. Depuis quelques années, l’apprentissage profond
a révolutionné de nombreux domaines. Spécifiquement, l’apprentissage profond
non supervisé est utilisé pour apprendre et faire émerger des représentations dans
des données. Ce type d’approche est notamment utilisé dans le domaine de la
détection d’anomalie où de nombreux modèles ont été proposés. Une approche
très répandue fait appel aux auto-encodeurs (AE). Ces modèles ont la particularité
de réduire une image d’entrée à une représentation de plus petite dimension dans
un espace appelé "espace latent", avant de la reconstruire en conservant le plus de
détails possible. De nombreuses variantes d’AE ont été proposées comme l’auto-
encodeur variationnel (VAE) (Kingma and Welling, 2014). Dans ces méthodes,
le modèle est entraîné uniquement sur des sujets contrôles. L’hypothèse est que
le modèle va apprendre uniquement des caractéristiques communes et ne sera pas
capable de reconstruire des anomalies. Les applications de détection d’anomalie
sont très étudiées dans le domaine de l’imagerie médicale et permettent notam-
ment d’identifier des tumeurs dans divers organes.

Les processus du neuro-développement peuvent conduire à des motifs de plisse-
ment rares ou anormaux, qui en tant que caractère trait, peuvent être utilisés
comme des témoins ou des marqueurs des événements sous-jacents impliqués. De
plus, ils ont été associés aussi bien à des fonctions cognitives qu’à des patholo-
gies. Leur étude est donc particulièrement pertinente pour aider à comprendre le
développement du cerveau et à découvrir des biomarqueurs pour certains troubles
neuro-développementaux. Cette thèse a pour objectif d’identifier des motifs de
plissement anormaux avec une méthode d’apprentissage profond non-supervisée.
Dans un premier temps, nous allons chercher à modéliser la variabilité inter-
individuelle du plissement, puis nous analyserons les motifs typiques avant de nous
intéresser aux marges de la représentation pour caractériser des motifs rares.

Méthodes générales

La base de données que nous avons utilisée pour modéliser la variabilité de
plissement des sujets est la base HCP dont nous utilisons les IRM T1 comme
données d’entrée. Cette base est composée d’environ 1000 sujets. Les images
IRM T1 sont riches de beaucoup d’information, au-delà de la morphologie des
sillons corticaux. Par conséquent, nous avons d’abord traité nos données avec le
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logiciel BrainVISA/Morphologist qui permet d’obtenir un graphe de sillons. Nous
avons ensuite développé un pré-traitement qui génère deux types d’image 3D à
partir des graphes, les squelettes, qui correspondent à un moule en négatif du
cerveau avec uniquement les informations concernant les sillons; et les cartes de
distances qui sont générées à partir des squelettes. Les cartes de distances sont
des images continues où la valeur de chaque voxel correspond à la distance au plus
proche sillon. Comme nous nous intéressons à des motifs de plissement locaux,
nous avons défini des régions d’intérêt autour de sillons d’intérêt. Pour cela un
masque de la zone d’intérêt est appris sur une base de données dont les sillons ont
été étiquetés. Le masque est ensuite appliqué sur des données sans étiquettes de
sillons. Par conséquent, nous n’avons pas besoin d’avoir des données labellisées
pour notre approche.

Pour apprendre la variabilité du plissement nous avons entraîné un β − V AE

(Higgins et al., 2016). Les VAE (Kingma and Welling, 2014) font partie de la
famille des auto-encodeurs mais ont la particularité de projeter les données sous
forme de distribution dans l’espace latent. Le β − V AE est uniquement entraîné
sur des sujets considérés comme contrôles afin d’apprendre une représentation de
la diversité des motifs de sillons normale. Cette thèse propose deux applications
à partir des représentations apprises : la caractérisation de motifs typiques de la
population et l’identification de motifs rares.

Identification de motifs typiques

Méthodes spécifiques

Pour cette première application nous nous sommes intéressés à la région du
cingulaire. Cette dernière est composée de deux sillons principaux, le cingulaire et,
dans certains cas, le paracingulaire. La zone du cingulaire a un intérêt clinique et
a été associée à des cas de faible contrôle inhibiteur et de schizophrénie (Provost
et al., 2003; Yücel et al., 2003; Borst et al., 2014; Cachia et al., 2014). Dans cette
partie, en plus de la base HCP, nous avons utilisé une autre base dans laquelle la
présence du sillon paracingulaire est labellisée.

Le pré-traitement décrit précédemment a été appliqué : nos données d’entrée
sont des squelettes binaires correspondant à la région cingulaire, la résolution est de
2mm. Les représentations de la région sont apprises par deux modèles, le β−V AE

et SimCLR (Chen et al., 2020) et la caractérisation des motifs typiques se fait dans
l’espace latent. Pour cela, nous avons réduit tout d’abord cet espace à 2 dimensions
à l’aide d’un t-SNE, puis nous avons appliqué un clustering. Ensuite, à partir de
l’espace latent, les motifs représentatifs des centroïdes de chacun des clusters sont
reconstruits et analysés; dans l’espace d’entrée, des sillons "moyens" sont générés
à partir des squelettes d’entrée des sujets constituant chacun des clusters. Afin
d’avoir une évaluation quantitative de la qualité de nos représentations latentes,
un classifieur est entraîné à prédire la présence d’un sillon paracingulaire à partir
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des représentations latentes.

Résultats
La taille d’espace latent retenue est de quatre dimensions. Pour les deux

modèles, quatre clusters sont obtenus mais l’organisation de l’espace latent est très
différente. Le décodage des motifs caractéristiques des clusters a mis en lumière
différents motifs. La qualité des motifs obtenus avec SimCLR est moins bonne
qu’avec le β − V AE. Dans les deux cas, un motif représentant le cingulaire et un
paracingulaire est observé. Avec le β−V AE, un autre type de motif décrit dans la
littérature a été obtenu : un long cingulaire interrompu. Les motifs représentatifs
générés à partir des squelettes d’entrée sont plus difficiles à analyser à cause du
rendu moins fin mais on retrouve certains des motifs de l’espace latent.

L’étude de la généralisation suggère que certains clusters sont plus stables que
d’autres. Dans l’ensemble les sujets d’un cluster semblent rester proches.

Les performances de classification de la présence d’un paracingulaire sont très
différentes entre le β − V AE et SimCLR, avec des résultats de 63% et 50%
respectivement ce qui suggère que l’espace latent du β − V AE est plus pertinent
que celui de SimCLR pour détecter le sillon paracingulaire.

Conclusion
Les deux modèles que nous avons implémentés conduisent à un espace latent

structuré à partir duquel plusieurs motifs ont émergé. L’espace latent du β−V AE

semble plus pertinent pour l’identification de sillons typiques dans la région cingu-
laire et conduit à des motifs décrits dans la littérature. Une explication possible
quant aux moins bons résultats de SimCLR est liée à son architecture, qui pour-
rait être trop complexe pour notre type de données et la tâche. Cette hythèse
est confirmée par les travaux récents de l’équipe : utiliser la même architecture
d’encodeur que pour le β − V AE conduit à des performances quasiment équiva-
lentes à celles du β−V AE. L’aspect génératif du β−V AE est un réel atout pour
comprendre les représentations apprises et faciliter l’analyse de régions complexes.
Pour encourager l’espace latent à être structuré et à être plus facilement cluster-
isé, un objectif de clustering pourrait être ajouté au cours de l’entraînement. Les
futurs travaux s’efforceront d’analyser de potentielles corrélations entre les motifs
identifiés et des mesures de cognition ou de pathologies.

Identification de motifs rares et anormaux

Méthodes spécifiques
Nous avons choisi d’étudier la région centrale pour cette application. En effet,

le sillon central est l’un des premiers sillons à se former et il est assez stable
pour constituer une première étape dans la modélisation de la variabilité inter-
individuelle. En outre, généralement long et continu, ce sillon peut être interrompu
dans de rares cas (moins de 1%), ce qui fait des sillons centraux interrompus de
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bons candidats pour l’étude des motifs rares.
Les données sont pré-traitées pour obtenir des cartes de distances comme in-

diqué précédemment. Nos données d’entrée sont donc des images continues 3D
où chaque voxel a pour valeur sa distance au plus proche sillon. Dans ce travail,
nous nous sommes concentrés uniquement sur l’hémisphère droit.

Pour apprendre une représentation de la région, un β − V AE est entraîné
sur la cohorte HCP de laquelle les sillons interrompus ont été exclus. Une des
difficultés de ce travail est le manque de motifs identifiés comme rares. De plus,
il est intéressant de pouvoir quantifier le type de déviations que notre approche
permet d’identifier. Pour y répondre, plusieurs ensembles de données synthétiques
ont été générés : dans le premier nous avons supprimé des parties de sillons de
taille croissante (ensembles suppression), le second correspond à la même région
d’intérêt mais dans l’hémisphère gauche (ensemble asymétrie).

L’identification de patterns rares se fait à deux niveaux, dans l’espace latent
et dans l’espace des images que nous appelons "espace des sillons", c’est-à-dire
à partir de l’erreur de reconstruction. En ce qui concerne l’espace latent, pour
avoir une première visualisation de la distribution, nous réduisons cet espace à
deux dimensions. Pour quantifier la qualité des représentations de l’espace latent,
des classifieurs sont entraînés à distinguer les sujets contrôles des anomalies syn-
thétiques. La génération de nouvelles données échantillonnées à partir de l’espace
latent permet de mieux comprendre les propriétés encodées. Dans l’espace des
sillons, nous avons comparé la distribution des erreurs de reconstruction. Enfin,
pour tester la généralisation de notre approche, nous avons appliqué ce modèle à
deux autres régions où des patterns anormaux ont été décrits : des patients sans
corps calleux et des patients souffrant de FCD.

Résultats
L’espace latent obtenu est composé de 75 dimensions. Concernant les ensem-

bles de données synthétiques, des résultats différents ont été obtenus selon le type
de déviations (suppression de branches ou asymétrie) et selon l’espace. En partic-
ulier, pour l’ensemble suppression, dans l’espace latent, plus la taille de la surface
supprimée est grande, plus on observe des distributions différentes et de meilleures
performances de classification. Similairement, dans l’espace des sillons, les erreurs
de reconstructions sont de plus en plus importantes. Pour l’ensemble asymétrie,
on observe des distributions différentes dans l’espace latent, en revanche aucune
différence n’est observée en comparant les erreurs de reconstruction. La génération
de motifs moyens permet d’identifier des caractéristiques typiques des sillons cen-
traux droit et gauche, comme une plus grande fréquence de motifs présentant deux
bosses dans l’hémisphère gauche. Concernant les sillons interrompus, ces-derniers
semblent avoir tendance à être distribués à la marge des contrôles. Les erreurs de
reconstruction semblent également être distribuées différemment mais il est difficile
de conclure étant donné le faible nombre de sujets (n=7). La reconstruction et
la localisation des erreurs permettent d’indiquer la caractéristique atypique. Par
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exemple, dans six cas sur sept le modèle a reconstruit les sillons interrompus en
remplissant l’interruption.

Les deux applications aux autres régions montrent que les patients ayant des
anomalies de plissement semblent avoir une distribution différente dans l’espace
latent et dans l’espace des sillons, suggérant une bonne généralisation de notre
approche. Là encore, la localisation des erreurs de reconstruction souligne les
caractéristiques atypiques.

Conclusion
Cette partie a proposé une méthode pour étudier les motifs de plissement cor-

ticaux rares dans la région centrale et a été appliquée à un motif décrit, le cas de
sillons centraux interrompus. Avec la génération de données synthétiques, nous
avons proposé une approche pour analyser le type de déviations pouvant être iden-
tifiées par notre modèle. Les résultats ont montré que l’espace latent et l’espace
des sillons apportaient des informations complémentaires. Enfin, nous avons évalué
la généralisation de notre approche grâce à l’étude de deux anomalies situées dans
d’autres régions. Cette partie ouvre la voie à de nouveaux travaux qui pourraient
s’intéresser à la définition de nouveaux ensembles de données anormales synthé-
tiques ou l’utilisation de méthodes d’apprentissage profond exploitant la présence
d’anomalies pendant l’entraînement.

Conclusion générale

J’ai présenté dans cette thèse un travail en trois étapes principales. D’abord
une représentation de la variabilité inter-individuelle du plissement est apprise. À
partir de cette représentation, deux applications sont proposées, l’identification de
motifs caractéristiques et l’identification de motifs rares. Ces deux applications
ont permis de montrer la pertinence de l’apprentissage profond non supervisé pour
l’étude du plissement cortical.

Ce travail soulève plusieurs points à mentionner.
Tout d’abord il est intéressant de noter les différentes tailles d’espaces latents

entre nos deux applications : 4 dans le premier cas pour identifier les motifs typ-
iques, contre 75 pour les motifs rares. Cette différence de taille d’espace latent se
retrouve dans d’autres travaux (Baur et al., 2020; Vétil et al., 2022). La détec-
tion d’anomalies semble donc nécessiter davantage de dimensions. Une hypothèse
explicative concerne l’encodage dans l’espace latent. En particulier, dans le cas
idéal, chaque dimension latente correspondrait à une caractéristique. Ainsi, lors
de l’identification de motifs typiques, un plus faible nombre de dimensions cor-
respondrait à moins de caractéristiques différentes encodées. La variabilité serait
donc exprimée sur un sous-ensemble de caractéristiques seulement. Dans ce cas,
le clustering en serait facilité. Au contraire, pour identifier les motifs rares, avoir
plus de caractéristiques pour exprimer la variabilité permettrait d’englober tout
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l’éventail des particularités de la population plus facilement. Néanmoins, avoir
plus de dimensions latentes complique l’analyse de cet espace.

L’étude du plissement est complexe et peut être réalisée avec différentes ap-
proches et différents objets d’étude. Dans cette thèse nous avons analysé les sillons
en les modélisant avec des images de squelettes ou leur version continue, les cartes
de distances. Ces deux types de données semblent mener à de bons résultats
comme le montrent nos deux applications mais les cartes de distances présentent
certains avantages. En effet, elles permettent d’introduire des notions de prox-
imité au sillon. De plus, la méthode pour les visualiser conduit à des motifs de
meilleure qualité. En prenant du recul, il est intrigant de penser que cette thèse
analyse des objets représentant la forme du vide. Néanmoins, les objets sulcaux
tels que nous les manipulons constituent des proxys pour diverses structures du
cerveau. Le sillon représente les murs des gyri. La présence d’un sillon additionel
peut conduire à un changement dans l’organisation cytoarchitecturale par exemple
(Amiez et al., 2021). Enfin, de nombreuses fibres sont présentes autour des sillons.
Par conséquent, les objets que nous considérons sont à l’intersection de plusieurs
modalités et permettent l’analyse de multiples aspects. Il serait attractif que de
prochains travaux lient nos résultats à l’organisation cellulaire du cortex et aux
fibres.

Une limite potentiellement importante de cette thèse réside dans la taille des
bases de données utilisées. En effet, des travaux ont montré que les représenta-
tions apprises étaient meilleures avec davantage de données (Chavas et al., 2023).
Avoir davantage de données représentant des motifs rares est également essentiel
pour conclure de façon plus fiable. Dans ce travail nous avions peu de sujets avec
des motifs rares ou anormaux, seulement 7 sujets avec des sillons interrompus, 7
patients sans corps calleux et entre 4 et 7 patients souffrant de FCD. D’autres
travaux avec davantage de sujets seront nécessaires pour valider notre approche.

De plus, la base de données que nous avons utilisée, HCP, comporte la partic-
ularité d’avoir des sujets de la même famille, y compris des jumeaux. Or il a été
montré que les motifs de plissement corticaux étaient en partie héritable (Im et al.,
2011). Dans cette thèse nous n’avons pas appliqué de méthodologie particulière par
rapport à cette caractéristique en faisant l’hypothèse que la proximité des motifs
de jumeaux pouvait être inclue dans la variabilité inter-individuelle. Néanmoins, il
serait nécessaire de répliquer nos travaux avec d’autres cohortes pour valider cette
hypothèse.

Pour conclure, les motifs de plissement cortical présentent une très grande
variabilité inter-individuelle qui découle des processus du neuro-développement. La
caractérisation de motifs typiques et rares de plissement peut aider à déchiffrer
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la complexité du plissement et à mieux comprendre la formation du cerveau. Les
méthodes d’apprentissage profond non supervisé semblent être un moyen efficace
pour répondre à cette tâche. L’approche que nous proposons est une première
étape vers un modèle systématique à l’échelle du cerveau, qui bénéficierait de
l’intégration d’autres modalités comme la cytoarchitecture et la connectivité.
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