N

N

On the Environmental Impact of Deep Generative
Models for Audio

Constance Douwes

» To cite this version:

Constance Douwes. On the Environmental Impact of Deep Generative Models for Audio. Artificial
Intelligence [cs.Al]. Sorbonne Université, 2023. English. NNT': 2023SORUS074 . tel-04100243

HAL Id: tel-04100243
https://theses.hal.science/tel-04100243
Submitted on 17 May 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-04100243
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE SORBONNE UNIVERSITE

Spécialité Informatique
ED130 - Ecole doctorale Informatique, Télécommunications et Electronique (Paris)
Sciences et Technologie de la Musique et du Son (UMR g912)
Institut de Recherche et de Coordination Accoustique Musique

Equipe Représentations musicales.

ON THE ENVIRONMENTAL IMPACT OF DEEP GENERATIVE
MODELS FOR AUDIO

CONSTANCE DOUWES

SUPERVISED BY: PHILIPPE ESLING
DIRECTED BY: JEAN-PIERRE BRIOT

Defended on March, 2023

JURY :

Nick Bryan-Kinns (Reviewer)
Sébastien Loustau (Reviewer)
Emma Strubell
Peter Bryzgalov
Geoffroy Peeters
Evripidis Bampis
Philippe Esling (Supervisor)
Jean-Pierre Briot (Director)

Constance Douwes: On the environmental impact of deep generative models for audio ,
PhD candidate, © January 2023

We can’t save the world by playing by the rules, because the rules have to be
changed. Everything needs to change and it has to start today.

— Greta Thunberg, at the TEDxStockholm on November 24, 2018.

ABSTRACT

In this thesis, we investigate the environmental impact of deep learning models
for audio generation and we aim to put computational cost at the core of the eval-
uation process. In particular, we focus on different types of deep learning models
specialized in raw waveform audio synthesis. These models are now a key compo-
nent of modern audio systems, and their use has increased significantly in recent
years. Their flexibility and generalization capabilities make them powerful tools
in many contexts, from text-to-speech synthesis to unconditional audio genera-
tion. However, these benefits come at the cost of expensive training sessions on
large amounts of data, operated on energy-intensive dedicated hardware, which
incurs large greenhouse gas emissions. The measures we use as a scientific com-
munity to evaluate our work are at the heart of this problem. Currently, deep
learning researchers evaluate their works primarily based on improvements in ac-
curacy, log-likelihood, reconstruction, or opinion scores, all of which overshadow
the computational cost of generative models. Therefore, we propose using a new
methodology based on Pareto optimality to help the community better evaluate
their work’s significance while bringing energy footprint — and in fine carbon emis-
sions — at the same level of interest as the sound quality.

In the first part of this thesis, we present a comprehensive report on the use of
various evaluation measures of deep generative models for audio synthesis tasks.
Even though computational efficiency is increasingly discussed, quality measure-
ments are the most commonly used metrics to evaluate deep generative models,
while energy consumption is almost never mentioned. Therefore, we address this
issue by estimating the carbon cost of training generative models and comparing
it to other noteworthy carbon costs to demonstrate that it is far from insignificant.

In the second part of this thesis, we propose a large-scale evaluation of per-
vasive neural vocoders, which are a class of generative models used for speech
generation, conditioned on mel-spectrogram. We introduce a multi-objective anal-
ysis based on Pareto optimality of both quality from human-based evaluation and
energy consumption. Within this framework, we show that lighter models can per-
form better than more costly models. By proposing to rely on a novel definition
of efficiency, we intend to provide practitioners with a decision basis for choosing
the best model based on their requirements.

In the last part of the thesis, we propose a method to reduce the inference costs
of neural vocoders, based on quantizated neural networks. We show a significant
gain on the memory size and give some hints for the future use of these models
on embedded hardware.

Overall, we provide keys to better understand the impact of deep generative
models for audio synthesis as well as a new framework for developing models
while accounting for their environmental impact. We hope that this work raises
awareness on the need to investigate energy-efficient models simultaneously with
high perceived quality.

vi

RESUME

Cette these étudie I'impact environnemental des modeles d’apprentissage profond
pour la génération audio et vise a mettre le cotit de calcul au coeur du proces-
sus d’évaluation. En particulier, nous nous concentrons sur différents types de
modeles d’apprentissage profond spécialisés dans la synthese audio de formes
d’onde brutes. Ces modeles sont désormais un élément clé des systéemes audio mo-
dernes, et leur utilisation a considérablement augmenté ces dernieres années. Leur
flexibilité et leurs capacités de généralisation en font des outils puissants dans de
nombreux contextes, de la synthese de texte a la parole a la génération audio incon-
ditionnelle. Cependant, ces avantages se font au prix de sessions d’entrainement
cotiteuses sur de grandes quantités de données, exploitées sur du matériel dédié
a forte consommation d’énergie, ce qui entraine d’importantes émissions de gaz
a effet de serre. Les mesures que nous utilisons en tant que communauté scien-
tifique pour évaluer nos travaux sont au cceur de ce probleme. Actuellement, les
chercheurs en apprentissage profond évaluent leurs travaux principalement sur
la base des améliorations de la précision, de la log-vraisemblance, de la recons-
truction ou des scores d’opinion, qui occultent tous le cofit de calcul des modeles
génératifs. Par conséquent, nous proposons d’utiliser une nouvelle méthodologie
basée sur l'optimalité de Pareto pour aider la communauté & mieux évaluer leurs
travaux tout en ramenant I'empreinte énergétique — et in fine les émissions de
carbone — au méme niveau d’intérét que la qualité du son.

Dans la premiére partie de cette theése, nous présentons un rapport complet
sur 'utilisation de diverses mesures d’évaluation des modeles génératifs profonds
pour les taches de synthese audio. Bien que 1'efficacité de calcul soit de plus en
plus abordée, les mesures de qualité sont les plus couramment utilisées pour éva-
luer les modeles génératifs profonds, alors que la consommation d’énergie n’est
presque jamais mentionnée. Nous abordons donc cette question en estimant le
cotit en carbone de la formation des modeéles génératifs et en le comparant a
d’autres cofits en carbone notables pour démontrer qu’il est loin d’étre insigni-
fiant.

Dans la deuxiéme partie de cette thése, nous proposons une évaluation a grande
échelle des vocodeurs neuronaux pervasifs, qui sont une classe de modéles généra-
tifs utilisés pour la génération de la parole, conditionnée par le mel-spectrogramme.
Nous introduisons une analyse multi-objectifs basée sur 1’optimalité de Pareto a
la fois de la qualité de I'évaluation humaine et de la consommation d’énergie.
Dans ce cadre, nous montrons que des modeéles plus légers peuvent étre plus
performants que des modeles plus cotiteux. En proposant de s’appuyer sur une

vii

nouvelle définition de l'efficacité, nous entendons fournir aux praticiens une base
de décision pour choisir le meilleur modéle en fonction de leurs exigences.

Dans la dernieére partie de la thése, nous proposons une méthode pour réduire
les cofits associés a I'inférence des modele génératif profonds, basée sur la quanti-
fication des réseaux de neurones. Nous montrons un gain notable sur la taille des
modeéles et donnons des pistes pour 1'utilisation future de ces modéles dans des
systémes embarqués.

En somme, nous fournissons des clés pour mieux comprendre I'impact des mo-
deles génératifs profonds pour la synthése audio ainsi qu'un nouveau cadre pour
développer des modeles tout en tenant compte de leur impact environnemental.
Nous espérons que ce travail permettra de sensibiliser les chercheurs a la nécessité
d’étudier des modeles efficaces sur le plan énergétique tout en garantissant une
qualité audio élevée.

viii

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my supervisor
Philippe Esling, who believed in me from the very beginning of this journey. With-
out his friendly guidance and dedication, none of my achievements over the past
three years would have been possible. I am also deeply grateful for his invaluable
advice and expertise that allowed me to improve my competencies in many fields.

I also want to thank Jean-Pierre Briot for his reliable direction and support. His
constructive feedback and encouragement were crucial in helping me complete
this thesis. I would also like to extend my appreciation to the entire ACIDS team,
Axel Chemla-Romeu-Santos, Antoine Caillon, Giovani Bindi, Ninon Devis, Tristan
Carsault, Mathieu Prang, Adrien Bitton, David Genova, Nils Demerle and Sarah
Nabi. It has been an honor to be a part of such a talented and supportive group.

I take this opportunity to thanks all the friends I made at Ircam; this journey
would have been totally different without their kindness and all those laughter,
which have been a constant source of strength for me. Special mentions go to
Claire, who helped me find the deepest motivation to write this manuscript along-
side hers, to Victor for his thorough reviewing and graphic advisor with his keen
eye, to Yann for our non-verbal communication skills that helped me more than
once, to Vincent, always at the forefront of all the stories and adventures that hap-
pened to me, to Paul that have been the best office partner anyone could ask for,
and finally to Pablo, who always found a way to help me at the most challenging
times.

Last but not least, I want to thank my family for their unconditional love and
carry support. They have always believed in me and helped shape me into the
person I am today. For my mother, who has always pushed me and is the reason I
managed to go that far in my studies. For my two older sisters, who have been a
constant source of inspiration and motivation from the beginning of my childhood
to my adult growth.

Thank you all for everything.

ix

CONTENTS

List of Figures xiv
List of Tables xvii
Acronyms Xviii
1 INTRODUCTION AND MOTIVATIONS 1
1.1 The digital anthropocene 1

1.2 Computational trends and impacts of AI 3
1.2.1 History of Al technologies 3

1.2.2 The pursuitofaccuracy 3

1.2.3 Generativemodels Lo L 4

1.3 Soundsynthesis L L 7
1.3.1 Musicrepresentation L L 7

1.3.2 Synthesis technologies 9

1.4 Deep audiosynthesis 10
1.4.1 Overview 10

142 Challenges. 11

1.5 Outline L 11

I BACKGROUND 15
2 BACKGROUND OF MACHINE LEARNING 17
2.1 General approach of machine learning 17
2.1.1 Basicdefinitions Lo 17

2.1.2 Modelcapacity o oL 19

2.1.3 Overfitting, underfitting, early stopping 20

2.1.4 Types of learning algorithm 21

2.2 Neuralnetworks L L 21
2.2.1 Artificialneurono Lo L oo L L 21

2.2.2 Multi-layer perceptron 22

2.2.3 Backpropagation 23

2.2.4 Recurrent Neural Networks 24

2.2.5 Convolutional Neural Networks 24

2.3 Deep Generativemodels 26
2.3.1 Auto-regressive models 0 L 26

2.3.2 Variational Auto-Encoder, 28

2.3.3 Generative Adversarial Networks 30

23.4 Flow-basedmodels 31

2.3.5 Diffusion-based models 32

2.4 Generative audio synthesis 34

3 BACKGROUND ON EVALUATION METRICS 37
3.1 Measuresof quality L L L 37

Xi

xii CONTENTS

49
51

3.1.1 Automaticmetrics o o 0oL
3.1.2 Perceptivemetrics, .
3.2 Measures of efficiency
3.2.1 Computationcosts, .
3.22 Energycost oL
3.3 Multi-objective evaluation 0 0L
II CONTRIBUTIONS
4 TOWARDS A NEW METHODOLOGY
4.1 Distribution of Evaluation metrics
4.2 Estimations of carboncosts Lo L.
421 Models
422 Trainingcosts
4.3 Proposed Methodology
4.3.1 Inter-modelstudy
4.3.2 Intra-modelstudy
4.4 Conclusion L

5 LARGE-SCALE BENCHMARK EVALUATION

5.1 Neural vocoders benchmark
51.1 Models
5.1.2 Dataset
513 Training L

5.2 Large-Scale Evaluation

5.2.1 Monitoring convergence
522 Synthesisquality
5.2.3 Energyefficiency
5.2.4 Paretoanalysis

70
73
73
74
74
75

53 Conclusion
6 PERSPECTIVES : LOWERING THE ENERGY COST
6.1 Motivations o
6.2 Formalism
6.2.1 Types of quantization
6.3 Application to neural vocoders oL
6.3.1 Experiments, .
632 Results
6.4 Embedding deep generativeaudio
6.5 Conclusion
7 CONCLUSION
7.1 Summary and main contributions
72 Futureworks
7.3 Overall conclusion
III APPENDIX

A APPENDIX

78
8o
81
81
82
83

85
87

CONTENTS xiii

B APPENDIX 89

BIBLIOGRAPHY 97

LIST OF FIGURES

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5
Figure 6
Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Xiv

400,000 years records of past atmospheric carbon dioxide
levels as reconstructed from the trapped bubbles of gas in
four ice cores records from Antarctica. Figure taken from

the Global Warming Art, Rohde, 2005. 2
AlexNet to AlphaGo Zero: A 300,000x increase in computa-
tion resources. Figure taken from Lohn and Musser, 2022. . 5

Examples from several outputs from DALL-E 2 (Ramesh et
al., 2022), where the first raw corresponds to the input text
description "Neural audio synthesis", while the bottom row
depicts "A synthesizer eating the planet”. 7
Standard representations used in music generation, com-
puted from the Dance of the Sugar Plum Fairy by Tchaikovsky. 13

Machine learning concept. L oL 17
Effect of the learning rate on the convergence of gradient
descent. 18

Three different parametric functions showing either under-
fitting, overfitting or good generalization for a regression

task. . . oL 19
Separation of the dataset and typical evolution of the corre-
sponding losses on each subset to avoid overfitting. 20

A biological neuron (left) approximated by an affine trans-
formation and an activation function, called artificial neu-

ron (right). o 22
Representation of three popular activation functions. 22
A multi-layer perceptron with two hidden layers. 23

Example of the backpropagation algorithm for an extremely
simple network with only one-dimensional data and no
biasterm. 24
A Recurrent Neural Network and its unfolded version. At
timestep t, the network is fed with both the input and the
hidden state output attime t—1. 25
Convolutional layers inside a Convolutional Neural Net-
work (CNN). The kernels are convolved along M-th features

maps of the layer | — T and outputs N features maps. 25
Schema of a 2D convolution where padding = o and stride
T 26

Organization of different generative models based on how
the model addresses maximum likelihood and whether the
density distribution is expressed explicitly or implicitly. . . 27

Figure 17

Figure 18
Figure 19

Figure 20

Figure 21
Figure 22
Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29
Figure 30

Figure 31
Figure 32

List of Figures

At the left side, the representation of a stack of causal con-
volution layers with 3 hidden layers and at the right side
the same thing but with a a dilatation factor in 2" where 1

is the number of thelayer. 28
Architecture of an Auto-Encoder. 29
Representation of the architecture of the Variational Auto-

Encoder. 30
Overview of a Generative Adversarial Networks (GAN) ar-

chitecture 31
Ilustration of chaining transforms inside normalizing flows. 32
Ilustration of the diffusion process as a generative model. . 33

Summary of all generative models metrics based on our tax-
onomy. Green boxes depict evaluation sources, while blue
ones exhibit the reliance on external models that require

training. L oo o 38
Snapshot of the instant emission intensity world-wide map
(in gCOzeq/kWh) on September 21,2022 45

Example of a Pareto front where we seek to minimize two
functions f1(x) and f2(x). Red points are Pareto optimal
solutions while white ones are non optimal. 46
Distribution of commonly-used measures to compare and
evaluate generative audio models. In blue (left) those that
refer to the quality of the generated samples, and in green
(right) those that refer to their efficiency.. 52
Example of two Pareto fronts (in red). The objective is to
minimize the quality score (%MOS) along with the energy
efficiency of either the training (top) with the measure of
the carbon emission (kgCO,e) per training, or the inference
(bottom) with the number of parameters. 57
Representation of three Pareto space for optimizing qual-
ity (MOS) and energy of either the training cost (top) or
the inference cost (middle and bottom) of generative audio
models. WF; stands for WaveFlow i. In red, all optimal so-
lutions, while in red dominated ones. 59
Scheme of a simplified neural vocoder 61
Mean Opinion Score estimation using MOSNet throughout
the training procedure in the validation step computed at
the end of each epochs. The x-axis is the training time in

Screenshot of the Mean Opinion Score (MOS) survey. 66
Correlations between quality metrics computed from a pre-
trained classifier and perceptive MOS score. 68

XV

Xvi

List of Figures

Figure 33

Figure 34

Figure 35

Figure 36

Figure 37

Figure 38

Figure 39

Figure 40

Figure 41

Figure 42

Figure 43

Figure 44

Correlation between GFLOPs and (left) the number of pa-
rameters of the network, (right) the energy required gener-

ate 100s, inmJ. oL 70
Representation of Pareto Frontier for efficiency vs quality.

The objective is to maximize the quality (MOS) and mini-
mize the energy cost of inference (top) and the number of
GLFOPs (bottom). 71
Example of quantization, where the continuous values are
clamped between xin and Xmax. These values are mapped

to discrete values in the range [0, 2b — 1] where here, b = 3.
Figure from Menghani, 2021. 74
Evolution of the validation loss from the diffwave model
when train in full precision (plain lines) and with fake-
quantization modules (dotted lines). 77
Evolution of the metrics computed in the validation phase

of the diffwave model in Quantization-Aware Training mode.

In plain lines, results from the full precision model and in
dotted lines, results from the fake quantized model. The
x-axis represents the time (expressed in hours).. 78
Representation of the spectrograms from the original and
reconstruction from (b) the full precision network and (c)

the model with fake quantized modules. 79
Evolution of the metrics computed in the validation phase

of the diffwave model training. The x-axis represents the

time (expressed inhours). 90
Evolution of the metrics computed in the validation phase

of the wavegrad model training. The x-axis represents the

time (expressed inhours). 91
Evolution of the metrics computed in the validation phase

of the melgan model training. The x-axis represents the time
(expressed inhours). L. 92
Evolution of the metrics computed in the validation phase

of the hifigan model training. The x-axis represents the time
(expressed inhours). L. 93
Evolution of the metrics computed in the validation phase

of the waveflow model training. The x-axis represents the

time (expressed inhours). 94
Evolution of the metrics computed in the validation phase

of the waveglow model training. The x-axis represents the

time (expressed inhours). 95

LIST OF TABLES

Table 1

Table 2
Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

All models considered in this work, including their publica-

tion date, generation strategies and reference applicability
(speech, musicorboth)., 35
MOSrating 42
Approximated energy consumption for training several state-
of-art generative audio models. Power is expressed in Watts

andenergyinkWh. 0L, 54
Estimated COz2 emissions from familiar consumption, from
Strubell, Ganesh, and McCallum, 2020b 54

Comparative Mean Opinion Scores ratios (7%MOS) and num-

ber of parameters of several state-of-the-art neural audio
synthesismodels. 56
Subjective score (MOS) for multiple configuration from Ping

et al., 2020 and their number of parameters. E¢;qin and

Egen stands respectively for the amount of energy required

for a whole training, and the amount of energy to produce

100 seconds of raw audio at 22.05 kHz. h is the squeezed
height and r the residual channels, for more information

see Pingetal,2020.. 58
Perceptual (Mean Opinion Score) and reconstruction (Dsrrr)
qualities of neural vocoders conditioned on mel-spectrogram.

(*) indicate configurations that we suggest in addition to
those of the original papers. 67
Comparison of computation and energy footprints of vari-

ous generative models for speech synthesis conditioned on
mel-spectrogram. (*) indicate configurations that we sug-

gest in addition to those of the original papers. 69
Impact on memory sizes of quantizing both weights and
activations of pervasive neural vocoders. (*) indicate config-
urations that we suggest in addition to those of the original

Papers. e 76
Properties of different Arduino micro-controllers and Rasp-
berry Pi embedded platform, 8o
Occurrences of evaluation metrics used in neural audio syn-
thesis research literature. 88

XVvii

ACRONYMS

ML Machine Learning

DL Deep Learning

NLP Natural Language Processing
NN Neural Networks

RNN Recurrent Neural Networks
LSTM Long-Short Term Memory

GRU Gated Recurrent Unit

MLP Multi-Layer Perceptron

ReLU Rectified Linear Unit

CNN Convolutional Neural Network
AE Autoencoders

VAE Variational Autoencoders
VQ-VAE Vector Quantized-Variational AutoEncoder
GD Gradient Descent

SGD Stochastic Gradient Descent
MSGD Mini-Batch Gradient Descent
ReLU Rectified Linear Unit

MSE Mean Squared Error

KL Kullback-Leibler

AR Auto-regressive

ELBO Evidence Lower Bound

NF Normalizing Flows

GAN Generative Adversarial Networks
DM Diffusion-based models

VI Variational Inference

Al Artificial Intelligence

GPU Graphics Processing Unit

TPU Tensor Processing Unit

IS Inception Score

MS Mode Score

Xviii

AM
FID
FAD
NDB
MOS
FLOP
MIPS
TTS
STFT
SNR
RTE
SDR
SIR
SAR
PESQ
PUE
QAT

Activation-Maximization

Fréchet Inception Distance

Fréchet Audio Distance

Number of Statistically-Different Bins
Mean-Opinion Score

Floating-Points Operations

Million Instructions per Second
Text-To-Speech

Short-time Fourier Transform
Signal-to-Noise Ratio

Real-time Factor

Signal-to-Distortion Ratio
Signal-to-Interference Ratio
Signal-to-Artifact Ratio

Perceptual Evaluation of Speech Quality
Power Usage Effectiveness

Quantization Aware Training

ACRONYMS

Xix

INTRODUCTION AND MOTIVATIONS

1.1 THE DIGITAL ANTHROPOCENE

The anthropocene is a concept that has gained increasing attention in recent years,
particularly among scientists and environmentalists. It refers to a new geological
epoch, in which the influence of human activity on the Earth global ecosystem has
become the dominant source of impact. The inception point of this major shift is
traced to the 19™ century industrial revolution, when humans began to harness
and consume vast amounts of energy and resources on a global scale. Since then,
the impact of human activities on the planet has been far-reaching, including the
alteration of land, water, and air resources (Steffen et al., 2015). The widespread
adoption of industrial technologies and practices has profoundly transformed our
daily lives and our interactions with the world that surrounds us. One of the
earliest prediction regarding the potential consequences of this increased human
impact on the planet came from McGinnis et al., 1973 with "The Limits of Growth",
where they argued that economic and population growth would lead to a collapse
of global systems. Although those predictions have been disputed since, it is now
clear that the increasing impact of human activities on the planet has raised serious
concerns about the long-term sustainability of our current way of life.

More recently, the proliferation of digital devices has further transformed these
intricate relationships between humans and their surroundings. Today, digital tech-
nologies are ubiquitous in our daily lives, from the smartphones we use to com-
municate and access information, to the computers and other devices we use in
our homes and workplaces. The widespread adoption of these technologies has
been driven by the decreasing cost of silicon, a key component in many digital
devices. Furthermore, advances in semiconductor manufacturing have allowed to
pack as many as 1.5 billion transistors onto a single microchip, enabling the de-
velopment of increasingly powerful and sophisticated devices. Nonetheless, the
global shortage of computer chips in 2021 has brought attention to the issue of our
limited world resources. It has been partly driven by the high demand due to the
pandemic situation, but also by an unprecedented drought in Taiwan, the world
leading producer of chips. These events raise concerns about the sustainability
of our current technological practices and the potential for future environmental
disaster caused by climate change (Krinner et al., 2013).

Climate change is a major global challenge that is caused, in part, by human ac-
tivities such as burning fossil fuels and deforestation. These activities release large
amounts of greenhouse gases into the atmosphere, trapping heat and contributing

INTRODUCTION AND MOTIVATIONS

to global warming. The concentration of carbon dioxide (one of the major green-
house gases) in the atmosphere has significantly increased over the past century
Soon et al., 1999, as shown in Figure 1. This situation is expected to worsen un-
less drastic actions are taken to reduce emissions. The Paris Agreement, adopted
at the COP21 conference in 2015, aims precisely to address climate change by es-
tablishing a global framework to limit temperature increases and greenhouse gas
emissions, including the overarching goal of achieving zero net emissions by 2050.

To achieve this goal, despite the ever-growing use of digital technologies, it is
crucial to account for the technological carbon footprint, from the production of
devices to their daily use. Digital technologies are a significant contributor cur-
rently representing around 6% of global greenhouse gas emissions. However, this
number is expected to increase as the use of digital technologies continues to grow.
One factor contributing to this trend is the so-called "rebound effect," in which the
use of more energy-efficient technologies leads to an increase in overall energy
consumption rather than a reduction. This illustrates the need for more sustain-
able approaches to the production and use of these technologies, in order to min-
imize their impact on the planet and its resources. Moreover, the increasing use
of Artificial Intelligence (Al) algorithms in the digital world, mostly based on ML
techniques, require large amounts of data and computing power to produce rel-
evant results. This can result in significant energy consumption and greenhouse
gas emissions, which we discuss in the following sections.

Carbon Dioxide Variations

400
400 -

Ew The Industrial Revolution Has
Caused a Dramatic Rise in CO, //
300

I

I

1

I

1

1
1000 1200 1400 1600 1800 2000 I,

\

|

i\
\!

|l

1350

Year (AD) 300

Ice Age
Cycles

-1 250

(Awdd) uonnenyuasuo)ly o)

- 200

400 300 200 100 0
Thousands of Years Ago
Figure 1: 400,000 years records of past atmospheric carbon dioxide levels as reconstructed

from the trapped bubbles of gas in four ice cores records from Antarctica. Figure
taken from the Global Warming Art, Rohde, 2005.

1.2 COMPUTATIONAL TRENDS AND IMPACTS OF Al

1.2 COMPUTATIONAL TRENDS AND IMPACTS OF Al
1.2.1 History of Al technologies

The concept of Al was born in 1950, when Alan Turing wondered whether a
machine could think in his article "Computing Machinery and Intelligence" (Turing,
1950). Since then, Al refers to the development of computer systems that are able
to perform tasks that normally require human intelligence, such as recognizing
patterns, learning from experience, and making decisions. One of the earliest ex-
periments in the development of Al was the creation of the perceptron by Rosenblatt,
1957. This machine was able to recognize simple patterns and classify them based
on their characteristics. This architecture laid the foundation for the current trend
of Machine Learning (ML) algorithms. Later on, the concept of back-propagation
was introduced by Rumelhart, Hinton, and Williams, 1986, which allowed neural
networks to learn from their mistakes and improve their accuracy by adjusting
the weights of the connections between neurons. This marked a significant step
forward in the development of Al, as it allowed machines to learn and adapt to
new data in a more efficient way.

Another important development in the field of Al was the discovery of recep-
tive fields in the cat visual cortex by Hubel and Wiesel, 1959. This work provided
insight into how the brain processes visual information and influenced the de-
velopment of artificial neural networks. Then, Fukushima, 1980 introduced the
NeoCognitron, which was one of the first artificial neural networks to recognize
complex patterns and perform image recognition tasks. Later, Lecun et al., 1998
developed LeNet, which was one of the first successful applications of artificial
neural networks for image recognition. However, one core limitation to further
studies in that field came from the lack of data and computational power available
at that time. The success of AlexNet (Krizhevsky, Sutskever, and Hinton, 2012),
as well as the development of Deep Learning (DL) algorithms such as AlphaGo by
Silver et al., 2016, which was able to beat human champions at the complex board
game Go, led the way for the widespread adoption of deep learning in a large
variety of applications.

1.2.2 The pursuit of accuracy

Nowadays, DL has become a common tool in many scientific discipline, with most
notable applications in computer vision, natural language processing, and even
healthcare. This rapid progress has been driven by the never-ending quest for
improved quality and performance in DL systems, as researchers and practitioners
seek to develop more accurate and efficient models that can solve increasingly
complex tasks. One key factor in this progress has been the exponential increase
in computational power, with the overall computation rate increasing by a factor
of 300,000 from 2012 to 2018 (Lohn and Musser, 2022) (see Figure 2). This increase

INTRODUCTION AND MOTIVATIONS

has been made possible by the development of more efficient hardware, such as
Graphics Processing Unit (GPU)s and Tensor Processing Unit (TPU)s, which are
specifically designed for DL tasks. These hardware accelerators have significantly
improved the speed and efficiency of DL algorithms, allowing them to process and
analyze increasingly large amounts of data.

However, even with these advances, the demand for computational power con-
tinues to grow (Thompson et al., 2020), driven in part by the rebound effect, which
dictates that as the efficiency of technologies increases, their overall use tends to
increase as well. This means that even as hardware becomes more efficient, the de-
mand for data and computation continues to grow. As a result, data centers, which
are used to store and process the vast amounts of data required by DL algorithms,
have become increasingly common, and the electricity and cooling requirements
of these centers have also grown significantly. As such, it is important to consider
the full life cycle of these technologies, including their environmental and carbon
footprint (Gupta et al., 2022; Strubell, Ganesh, and McCallum, 2020a). Despite ma-
jor advances in manufacturing energy-efficient hardware, the computational cost
of DL remains humongous and continuously rising (Sevilla et al., 2022). Although
part of the current research effort is concerned with the true cost of deep models
(Henderson et al., 2020), taking into account the environmental impact of these
models is mostly overlooked against this never-ending quest for accuracy. Further-
more, as computation is frequently performed on remote servers such as cloud
services, researchers may lose sight of the actual energetic footprint of their work.
For these reasons, the domain of green computing (Schwartz et al., 2020) attempts
to raise awareness on these questions, trying to provide qualitative and quantita-
tive measures of the actual consumption of designing, training, and using deep
models.

Generally speaking, there are two phases in the development of DL models:
training and inference. During the training phase, a model is presented with a large
dataset and uses it to learn the relationships between the input data and the de-
sired output by adjusting the weights of the connections between neurons. This
process is repeated multiple times, with the model learning from its mistakes
and improving its accuracy at every iteration. The training phase can be time-
consuming, as it requires large amounts of data and computational resources.
Once the model is trained, it can be used for inference, which is the process of
applying the model to new data in order to make predictions. This phase can be
done on multiple type of devices including GPUs, CPUs, and embedded systems,
depending on the requirements of the task it has been conceived for.

1.2.3 Generative models

More recently, deep generative models have been introduced, which are capable
of generating new data based on a given input. These models have the potential

1.2 COMPUTATIONAL TRENDS AND IMPACTS OF Al

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute (Log Scale)

Petaflop/s-days
let+s

AlphaGoZero
le+3

AlphaZero

le+2 Neural Machine

Translation
Neural Architecture
Search

le+l
Xception TI7 Dota 1vl
le+0
DeepSpeech2

GG
Seq2Seq ResNets

Visualizing and
le-2 Understanding Conv GoogleNet
AlexNet Nets

le-3 Dropout
3.4-month doubling

DQN

2012 2013 2014 2015 2016 2017 2018

Figure 2: AlexNet to AlphaGo Zero: A 300,000x increase in computation resources. Figure
taken from Lohn and Musser, 2022.

to revolutionize many fields, such as art, music, and Natural Language Processing
(NLP), by allowing machines to create new and unique artifacts. These are powerful
tools becoming increasingly accessible to the general public. Among them, the
recent GPT-3 model by Brown et al., 2020, a language generation model, is able
to produce all kinds of texts and even code, and has received a lot of attention
in the media due to its impressive performances on a wide range of tasks and
its potential to revolutionize the field of natural language processing. Here his an
example of the output of chatGPT?, fed by our input : "Write a poem about deep
learning destroying the planet".

Deep learning, a force so strong

It's destroying our planet, it won’t be long
Artificial intelligence, a threat we must face
But do we have the power to change our fate?

We thought we were clever, we thought we were wise
But now we see the error of our ways, we realize
We thought we could control it, but it’s too late

1 https://chat.openai.com/

https://chat.openai.com/

INTRODUCTION AND MOTIVATIONS

Deep learning has become our ultimate fate

It’s taken over the world, it’s all we see

We can't escape it, it's constantly with me

It’s changing the way we live, it's changing the way we think
It’s tearing us apart, it’s causing us to shrink

We've become reliant on it, we can’t live without

But at what cost? Our planet’s on the brink of drought
We've destroyed the environment, we’ve polluted the air
We're killing ourselves, we don't even care

But it’s not too late, we can still turn it around

We can still save our planet, we can still be profound

We can unplug from deep learning, we can find another way
We can rebuild our world, we can make a brand new day

So let’s take a stand, let’s make a change

Let’s not let deep learning destroy the earth, let’s rearrange
Our priorities, our values, and our goals

We can create a brighter future, let’s save our home

In the area of computer vision, generative models have also yield impressive
results, and are now able to generate a wide variety of high-resolution images.
They have been used in several applications, such as creating realistic images for
movies and video games. One of the most notable model is the DALL-E 2 model
from Ramesh et al., 2022, that is capable of generating images from textual descrip-
tions (see Figure 3).

While generative models achieve impressive results, they usually come with
a significant computational cost. This is due to the high dimensionality of the
output generated by these models, which requires a large amount of processing
power and energy to generate. For instance, training a model like GPT-3 has been
estimated to require the amount of energy equivalent to traveling 703,808km by car
(Anthony, Kanding, and Selvan, 2020), which is about twice the distance between
Earth and the Moon. Inference, or using these trained models to generate new
outputs, also requires a significant amount of computational resources. According
to OpenAI?, more than 3 million people are already using DALL-E to extend their
creativity and speed up their workflows, generating over 4 million images a day.

2 https://openai.com/api/

https://openai.com/api/

1.3 SOUND SYNTHESIS

Natninnal Shdican Stupical Nacizllaya Neib Aryegare Spps Seurri
umguol Otate n adarrtiraomyuindk EEnzd%ﬂggsz;mx:; éo’:;l::l:nsmﬁ alels- Nad!
Noivany Rurrigo Neat eim Rnies Hw::: :j::: ;:::E:‘l:hu

ccadi IEtsshivmuhg con

Thatvodonde coalififte

L@uxi)—”‘n ooo’oAn

it

Btopiesehe Negemdiyare wihartrn
egrmatsa

Figure 3: Examples from several outputs from DALL-E 2 (Ramesh et al., 2022), where
the first raw corresponds to the input text description "Neural audio synthesis",
while the bottom row depicts "A synthesizer eating the planet".

Deep generative models have also achieved impressive results in the domain
of audio synthesis, specifically for waveform synthesis. These models are now
routinely used for speech synthesis in virtual assistants such as Apple Siri and
Amazon Alexa, while their use is consistently increasing in the context of music
generation. However, researchers are currently focusing on improving the quality
of real-time raw waveform synthesis, which requires a significant amount of com-
putational power as waveform is a high-dimensional input data. In the following
section, we expose the process of audio synthesis and explore how deep learning
techniques can be applied to it.

1.3 SOUND SYNTHESIS
1.3.1 Music representation

Music can be represented in multiple ways. The most well-known example of a
musical representation is the musical score that evolved for several hundred years,
and still provides the current ground for musical notation. Indeed, it has been the
most reliable and efficient way of transmitting western music, mostly based on
pitch and note duration information. However, in the 20t century, a lot of research
has been carried out on new ways of representing music, where technological

INTRODUCTION AND MOTIVATIONS

improvements encouraged the development of new notations. In this section, we
introduce the three most common representations and discuss their interests and
limitations for audio generation.

SYMBOLIC REPRESENTATIONS One common way to represent music is through
symbolic formats such as music sheets (see Figure 4a) or MIDI data. These for-
mats are useful because they are lightweight and compressed, making them easy
to store and manipulate. In these formats, each element of a musical piece is tran-
scribed as rhythm information, notes, and instrumentation. However, there is one
major drawback to using symbolic representations for music generation: they re-
quire one or more interpreters to convert the symbolic information into actual
sound and a lot of information (timbre, fine-grained temporal organization) is
lost.

TIME-FREQUENCY REPRESENTATIONS Another way to represent audio is to
use time-frequency representations such as spectrograms (see Figure 4c) or mel-
spectrograms (see Figure 4d). These representations are useful because they pro-
vide lossless compression of audio data, while making it easier to understand and
manipulate. However, one drawback of using time-frequency representations is
that they typically involve complex numbers, which can be difficult for standard
machine learning models. As a result, many approaches to audio synthesis using
time-frequency representations only use the real part of the representation, requir-
ing an additional step to generate the complex part of the signal (known as the
phase). Signal processing methods such as the Griffin-Lim algorithm (Griffin and
Lim, 1984) have been used to approximate the phase, but this can be a tedious
and time-consuming process. Modern optimization techniques have made it eas-
ier to work with complex numbers in machine learning models, but this remains
an active area of research in the field of audio synthesis.

RAW WAVEFORM The most accurate representation of audio information is the
pressure waveform, which is the physical manifestation of sound as a series of
pressure fluctuations over time (see Figure 4b). This is the usually way in which
audio data is stored in basic file formats such as .wav files. In the past, classic
methods for directly synthesizing waveforms have typically relied on recombin-
ing pre-recorded chunks of audio data. Though, the dimensionality of audio time
series is dauntingly high. First, raw waveform data, which is usually recorded at
a sample rate of 44100 samples per second. Second, each audio sample has to be
encoded as 16-bit or 24-bit integers to perceptually represent the dynamical range
of the signal.

In this work, we will focus on the waveform representation for audio synthe-
sis. Although spectrograms were most commonly used to perform audio analysis
and synthesis, they still lack performance when applied to real-time synthesis es-
pecially due to phase reconstruction issues. Thus, working directly on waveform

1.3 SOUND SYNTHESIS

generation could improve the quality of generation results while removing any
form of post-processing.

1.3.2 Synthesis technologies

Audio synthesis has been a field of interest for over a century now, opening in-
teresting avenues for both musicians and scientists alike (Briot, Hadjeres, and Pa-
chet, 2019). It can be defined as the process of generating sound using analog
or digital devices. Researches in this field were mainly motivated by the will to
expand the amount of freedom and exploration in sounds and creative expres-
sion. The tremendous success of synthesizers in the late ‘60s shaped the sound
of new generations so much that synthesizers are among the most widely used
instruments in nowadays modern musical production. Moreover, continuous tech-
nological improvements in terms of computational resources and descending costs
of computer technology made synthesizers affordable to the general public, which
greatly stimulated researches in synthesis techniques. Here, we propose a simpli-
fied classification of the most noticeable audio synthesis approaches, relying on
the classification proposed by Smith III, 1991.

SPECTRAL MODEL The spectral model, developed by Joseph Fourier in 1807, is
a way of representing a sound pressure wave as a sum of sinusoids. This is done
by decomposing the sound wave into its individual components, each with its
own amplitude and phase over time. This process is known as harmonic analysis.
By adding together sinusoids or pure tones, it is possible to generate a wide range
of sounds through the process of additive synthesis. On the other hand, subtractive
synthesis involves starting with a spectrally rich sound, such as broadband noise,
and removing specific frequencies to shape the sound spectrum.

PHYSICAL MODEL The acoustic modeling of musical instruments allows both
the analysis and understanding of existing instruments, but also the numerical
simulation of their sound generation. For example, one could model how the
strings of a guitar are vibrating, and how this movement is coupled with those
of the neck and the soundboard. An example of application is the modal methods
(Eckel, 1995), which aims to describe instruments as a group of oscillators with
various resonance frequencies.

ABSTRACT ALGORITHM Abstract models are computational methods that are
not based on replicating existing physical phenomena. An example of abstract
model is the Frequency Modulation (FM) synthesis, which was introduced by
Chowning, 1973. FM synthesis involves the use of chained oscillators, or sinusoidal
wave generators, to create sound. Unlike spectral models, FM synthesis relies on
modulating the frequency of an oscillator using the output of another oscillator.
This allows for the creation of a wide range of sounds, including complex timbres
and harmonically-rich tones.

10

INTRODUCTION AND MOTIVATIONS

SAMPLING Finally, the class of processed recording involves analyzing recorded
sounds in order to use them in the synthesis process. The most basic example of
a waveform-based method is sampling-based synthesis, which involves using pre-
recorded sounds and processing them to create new sounds. Concatenative syn-
thesis and granular synthesis (Roads, 1978) are more advanced waveform-based
methods that build upon the principles of sampling. Concatenative synthesis in-
volves slicing recorded sounds into smaller segments, or samples, and recombin-
ing them to create new sounds. Granular synthesis is similar, but it involves slic-
ing the samples into even smaller segments called "grains" and recombining them
based on transition models.

1.4 DEEP AUDIO SYNTHESIS
1.4.1 QOverview

As previously discussed, deep generative models have recently made significant
progress in waveform synthesis. Hence, they have become a powerful tool for
synthesizing high-quality speech and music. There are two main types of deep
generative models for synthesis: unconditional models (i.e. autonomous) or condi-
tional models based on extraneous inputs (e.g. text description, style or lyrics).
In speech synthesis, deep generative models are used to create natural-sounding
voices for virtual assistants or other applications3. These belong to the field of
Text-To-Speech (TTS) techniques, which have been a major focus in recent years
(Ning et al., 2019). Besides TTS techniques, deep learning is now used for voice
conversion with the ability to alter the pitch, speed, and other characteristics of a
voice (Chen et al., 2014). A famous example is audio deep fakes, where a person’s
voice can be manipulated to say something that they did not actually say.

Generative models are also used to synthesize music, either by creating en-
tirely new compositions or by manipulating existing audio to create novel sounds
(Hernandez-Olivan, Hernandez-Olivan, and Beltran, 2022). In addition to synthe-
sizing waveforms from scratch, deep generative models can also be used for tasks
such as timbre transfer, which involves transferring the timbre of one waveform to
another, and timbre interpolation (Esling, Chemla—Romeu-Santos, and Bitton, 2018),
which involves creating a new waveform that is a blend of two or more existing
waveforms. Another application of deep generative models is inpainting, which
involves filling in missing or corrupted parts of a waveform (Bazin and Hadjeres,
2019). Generative models also have the potential of creating new interactions with
instruments while adding more tools for musicians to produce music, such as the
automatic search of synthesizer parameters (Esling et al., 2020b) or for pure drum
sound synthesis (Aouameur, Esling, and Hadjeres, 2019) and even effects model-
ing (Ramirez and Reiss, 2019). Deep learning has also led to successful approaches

3 https://uberduck.ai/

https://uberduck.ai/

1.5 OUTLINE

to produce raw audio from MIDI data (Renault, Mignot, and Roebel, 2022) which
has the potential to save time and resources and also allows for more experimen-
tation and iteration in the composition process. Overall, the applications of deep
generative models for audio synthesis are blooming and gradually getting into the
hands of end users, even on mobile devices. Hence, the potential energetic impact
of using those technologies is a significant issue for the future and will be the
focus of this work.

1.4.2 Challenges

One of the main limitations of neural audio synthesis is the high dimensionality of
the output data, which requires the use of complex and resource-intensive neural
network architectures. Moreover, the disparity of proposed models in the literature
and the training time needed for them to converge questions the real relationships
and effectiveness of different methods. Hence, this raises a critical question of
finding the best compromise between energetic and environmental concerns and
the quality of the generated results. Moreover, research institutes and individuals
can lack sufficient resources, due to the demand of countless types of specialized
hardware (GPUs, TPUs), often running continuously for several days and even up
to weeks. Hence, obtaining a quality similar to that of state-of-the-art models is
becoming an unattainable goal, both financially and ecologically.

1.5 OUTLINE

Currently, the evaluation of deep models is almost exclusively focused on the
quality of the generated audio without consideration for the energy consumption
of such models. This is a significant limitation, as the energy consumption of a
model has important implications for its deployment in real-world applications.
Thus, this thesis aims to propose new evaluation procedures for deep generative
models for audio that take into account the models” energy footprint. By integrat-
ing energy consumption into the evaluation procedure, this thesis aims to enable
a more comprehensive assessment of deep generative models for audio.

First, Chapter 2 presents the essential background theory in machine learning
used throughout this thesis. We introduce the core concepts of machine learn-
ing techniques in Section 2.1 with a focus on deep learning and neural networks
in Section 2.2. Then, we detail different variants of generative models and their
respective properties in Section 2.3. Finally, we review a large set of generative
models specifically designed for audio and waveform generation in Section 2.4.

In Chapter 3, building on the theoretical background presented, we expose a
wide range of evaluation metrics for deep generative models. We address quality
metrics in Section 3.1 as well as efficiency measures in Section 3.2. We conclude

11

12

INTRODUCTION AND MOTIVATIONS

by introducing the concept of Pareto optimality for multi-objective evaluation in
Section 3.3, which is central to this thesis.

In Chapter 4, we expose our first contribution by first presenting a review of the
use of evaluation metrics in the literature in Section 4.1. Then, we raise the lack of
energy footprint measurements and provide a first estimation for training state-of-
the-art models in Section 4.2. Additionally, we propose a new methodology based
on Pareto optimality to include the costs alongside the quality of the generated
sound in Section 4.3.

In Chapter 5, we conduct a broad benchmark of neural vocoders to understand
the current trends and impact of deep audio models in Section 5.1. We use our
methodology to compare the generation quality and energy efficiency of many
models and configurations in Section 5.2. Within this framework, we show that
this energy footprint must be linked to the model perceptual quality and that,
small models can perform better than larger and more costly models.

In Chapter 6, we expose a first attempt to reduce the inference cost of neu-
ral vocoders through quantization techniques. We motivate this technique in Sec-
tion 6.1 and expose the formalism in Section 6.2. Then, we run experiments on a
neural vocoder benchmark with a particular focus on quantization-aware training
in Section 6.3 and discuss the embeddability of these systems for audio synthesis
in Section 6.4.

Finally, in Chapter 7 we present our conclusions and avenues and directions for
future work.

1.5 OUTLINE

e

(Sl imuaan s mis=—Ememtaii
g ' :

's o =S

N
e

(a) Music sheet

0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3

Amplitude

~
[«
©

0 1 2 3 4 5 6
Time

(b) Waveform

Frequency
N »H [oo}
o o o o
o o o o
o o o o

(c) Spectrogram (dB)

(d) Mel-Spectrogram (dB)

Figure 4: Standard representations used in music generation, computed from the Dance of
the Sugar Plum Fairy by Tchaikovsky.

Part I

BACKGROUND

BACKGROUND OF MACHINE LEARNING

In this chapter, we discuss the essential background and theory used throughout
this thesis. First, we introduce the core concepts of machine learning (Section 2.1)
with a focus on deep learning and neural networks (Section 2.2). Then, we describe
the different families of neural generative models proposed in the literature (Sec-
tion 2.3). Finally, we present the major generative models proposed specifically for
audio and waveform generation. (Section 2.4).

2.1 GENERAL APPROACH OF MACHINE LEARNING
2.1.1 Basic definitions

Let us consider two sets X and Y linked by a complex relationship (e.g. a name to
an object, or a cause to a consequence). Most of the time, we do not have access
to the mathematical form of this relationship, but rather to the observation of its
elements through the pair (x,y), where x € X is the input data, and y € Y is its
associated output. The goal of ML is to approximate this unknown relationship as
a parametric function that maps inputs x to outputs y.

X=?j=y

— fo € Fo

Figure 5: Machine learning concept.

As a result, machine learning consists in modeling the relationship between
(usually complex and high-dimensional) inputs x € R* and outputs y € RY,
by observing a set of data examples D = {(x1,y1),- -, (xn,yn)}. Finding such
a model is often done by searching for the best parametric function fg among a
family of functions JFg in order to approximate the underlying relationship. The
learning process consists in adjusting the parameters 0 € ©, such that the output
of our model fg(x) = ¥ closely matches the desired output y.

L0ss FUNCTION To learn from input/output pairs, ML models need to define
a suitable loss function £ that measures the error between the predicted output
y and the target output y. By minimizing £, it reduces the distance between the
parametric function fg and the true underlying function f, by finding the optimal
value of the parameters 0 that verifies

17

18

BACKGROUND OF MACHINE LEARNING

0= argmin £(x,y, 0, fo) V(x,y) € D (1)
0

Defining a meaningful loss function is important because it determines how well
the model is able to make predictions. A good loss function should be able to ac-
curately penalize the model for incorrect predictions, while not overly penalizing
it for predictions that are only slightly wrong. It is worth noting that choosing an
appropriate loss function is problem-dependent and can have a significant impact
on the model performances.

GRADIENT DESCENT The vast majority of ML algorithms rely on gradient-based
optimization techniques to converge efficiently to local minima. Hence, the Gradient
Descent (GD) and its variants are the most standard methods employed to optimize
the model and find the lowest value of the loss £. It consist in computing the gra-
dient of the loss given the parameters Vg, in order to iteratively adapt the value
of the parameters through

1
Ony1=0n—m) D) VoL (Y, 6, fo) (2)
xyeD

with 1 a meta-parameter, called the learning rate. This update rule can be inter-
preted as applying a slight change to the parameters value in the opposite direc-
tion of the gradient of the loss, with 1 being the magnitude taken in that step. As
depicted in Figure 6, an adequate learning rate and a convex loss function leads
to a fast and easy convergence.

Too high Too low Adequate
A 1 < Topt A 7 > Topt A 71 = Nopt

4
\/
4

Figure 6: Effect of the learning rate on the convergence of gradient descent.

However, most of the learning processes usually correspond to non-convex func-
tions, resulting in the convergence of the parameters towards a local minima.
Moreover, computing the loss throughout the entire dataset can be particularly
computationally expensive for large datasets.

2.1 GENERAL APPROACH OF MACHINE LEARNING

To overcome this issue, the Stochastic Gradient Descent (SGD) computes the
same derivatives but only considering a single element of the dataset at a time
to apply the update rule. However, as the gradient may wodely differ from one
example to another, it is preferable to consider subsets of the data rather than sin-
gle examples. This process, called the Mini-Batch Gradient Descent (MSGD), allows
to parallelize computation and thus speeds up the computation of the GD, while
keeping the benefits of SGD. The subsets used are called mini-batches and a whole
pass over all mini-batches of a dataset is called an epoch.

2.1.2 Model capacity

A key ingredient for the correct functioning of a ML algorithm is the choice of
the family of parametric functions Fg from which the model is selected. For more
clarity, we illustrate this concept in Figure 7 by taking the case of a regression task,
where the parametric functions can be chosen inside the family of polynomials of
degree p

. — i —
Fp {fo(x) = Z aix', 0 ={aikicop} (3)
0<igp
Underfit Overfit Optimal fit
4 L] 4 L\ 4 [4
Fi . Is 4 F2 ”
& 7 g
o o e
L] o 7]
2 2 2
L] .. D "c > ‘.

® Training data

Figure 7: Three different parametric functions showing either underfitting, overfitting or
good generalization for a regression task.

If the function is too simple (case p = 1), the model may underfit, meaning that
the corresponding model is not complex enough to capture the underlying struc-
ture of the observations. Conversely, the model can also overfit (case p = 8§), i.e.,
it fits all the training points rigorously, even if the observations include noise. In
both cases, the model is unable to generalize to new input data. Therefore, the ca-
pacity of the model must be selected carefully in order to match with the inherent
complexity of the input data (case p = 2). The selection of the model’s capacity is
critical when dealing with high-dimensional datasets with strong nonlinear rela-
tionships, as it is far from trivial to find a coherent complexity that can accurately
represent the data. Over-parameterization is a common issue that can arise when
the model’s capacity is too large, causing it to fit the noise in the data rather than

19

20

BACKGROUND OF MACHINE LEARNING

the underlying patterns. On the other hand, under-parameterization can occur
when the model’s capacity is too small, causing it to miss important features in
the data.

2.1.3 Qverfitting, underfitting, early stopping

In machine learning, variance and bias are two important concepts that describe
the behavior of a model. Variance refers to the degree to which the model’s pre-
dictions vary based on the training data, while bias refers to the degree to which
the model’s predictions deviate from the true values. Overfitting occurs when a
model has a high variance and low bias, meaning that it has learned highly specific
patterns in the training data that do not generalize well to unseen data. This can
happen if the model is trained for too many epochs, causing it to fit the training
data too closely. On the other hand, underfitting occurs when a model has a high
bias and low variance, meaning that it is unable to capture the complex patterns
in the training data. This can happen if the model is not complex enough or if it is
trained for too few epochs. Hence, to ensure that a model has good generalization
performance, it is common to split the dataset into three disjoint subsets:

e the training set is used to update the parameters and train the model.

¢ the validation set measures the accuracy of the model on unseen data to pre-
vent it from overfitting.

* the test set serves as a final evaluation of the performance of the model.

The early stop criterion is a technique employed to reduce overfitting. The training
is halted once the validation loss stops improving, while the training loss continues
to decrease, as illustrated on Figure 8.

Training -
Valid Early stopping
':>|:| set '
! Test
‘ Underfit ' Overfit
— 1
S !)
~Evaluate-, : Valid
[=— Train | 3 | :
set 1
|
l
Dataset 3 U Test set : Train

Epochs

Figure 8: Separation of the dataset and typical evolution of the corresponding losses on
each subset to avoid overfitting.

2.2 NEURAL NETWORKS

2.1.4 Types of learning algorithm

There are several types of learning algorithms that can be used depending on the
nature of the task that we aim to solve.

SUPERVISED LEARNING The supervised learning approach seeks to predict a spe-
cific information based on paired data, the most representative examples being
classification and regression tasks. Hence, supervised models rely on labeled train-
ing datasets, which can be expensive to build, since they require a large number of
human annotations. The advantage of that learning mechanism is that there is usu-
ally a direct way to measure the accuracy of the models, as there is straightforward
correspondence between input and output data.

UNSUPERVISED LEARNING In contrast, in the unsupervised learning approach,
the model has no extraneous or paired information but rather only a whole set of
raw data. Hence, models attempt to learn the underlying structures and patterns
directly from the data. As a result, evaluation is usually forced to rely on indirect
qualitative metrics. Clustering and generative tasks are two well-known examples
of unsupervised learning, the latter being the subject of Section 2.3.

SEMI-SUPERVISED LEARNING Semi-supervised learning approaches are a com-
bination of supervised and unsupervised approaches that usually leverages only
a small amount of labeled data, while still relying on large amounts of unlabeled
data. Hence, it can significantly enhance learning accuracy while using less labeled
data. Nevertheless, these approaches can prove harder to define depending on the
task at hand.

SELF-SUPERVISED LEARNING In self-supervised learning methods, the goal is to
learn underlying structure directly from the data (similar to unsupervised learn-
ing), but by using a proxy task akin to supervised learning methods such as classi-
fication. One representative method for this is contrastive learning, which aims to
learn meaningful representations of a dataset by comparing pairs of samples and
predicting whether they are similar or dissimilar.

2.2 NEURAL NETWORKS
2.2.1 Artificial neuron

Neural Networks (NN) are a subfield of ML that automatically learn complex pat-
terns from data by taking inspiration from biological neurons (see Figure 9 left).
These are composed of dendrites connected to a cell body where each dendrite
transmits an incoming electrical impulse. The cell body accumulates all of the im-
pulses potential and sends an electrical impulse through its axon when the electri-

21

22

BACKGROUND OF MACHINE LEARNING

cal charge exceeds a threshold. Similarly, an artificial neuron receives a set of inputs
X = {x1,%2,%X3,...,Xn} and outputs a value y called activation by computing

n
y =0 wixi+b) = o(w' -x+b) @
i=1
where w = {w, w2, w3,..., Wy} is the set of parameters called weights, o the
threshold called the activation function, and b the bias term. The diagram of the
perceptron and its analogy with the biological neuron is presented in Figure 9.

72 ——()

b

Figure 9: A biological neuron (left) approximated by an affine transformation and an acti-
vation function, called artificial neuron (right).

Cell Body

Dendrites

Usually, the functions used for the activation operator are
e the sigmoid: o(x) =1/(1+e™)
e the hyperbolic tangent: o(x) = tanh(x)
e the Rectified Linear Unit (ReLU): o(x) = max(0,x)

Each of those functions are represented on Figure 10. Through the linear combina-
tion of input values and the application of such functions, each neuron performs
a non-linear transformation of its input.

Sigmoid Tanh

Figure 10: Representation of three popular activation functions.

2.2.2 Multi-layer perceptron

In order to model more complex and refined processes, a NN uses a composi-
tion of perceptrons arranged in layers. A standard structure is the linear or fully-
connected layers, also called Multi-Layer Perceptron (MLP), where each adjacent

2.2 NEURAL NETWORKS

layer is densely connected but shares no connection within the same layer (Fig-
ure 11). The input vector x is the first layer, and the output vector ¥ is the last layer
of the network, while layers in between are called hidden layers. The number of
layers represents the depth of the network and the number of neurons its size.

Hidden Layers

Depth
Figure 11: A multi-layer perceptron with two hidden layers.

Considering a network of depth L, we denote h! € RNt the value of the activa-
tion at the 1-th layer of size Ny characterized by

h! = g(W'- h ! 4+ 1Y) (5)

with W' € RNNu-1 the corresponding weight matrix parameters and b' the
bias term, where ¥ = h and x = h®. By denoting 0; = {W', b'} the layer param-
eters and 0 = UL] 01 the parameters of this network, a NN can be defined as a
parametric function, whose goal is to find the best approximation § = fg(x) ~y.

2.2.3 Backpropagation

The optimization of the model is done by updating its parameters to minimize the
error £(fg(x),y). To do so, the backpropagation algorithm, introduced by Rumelhart,
Hinton, and Williams, 1986, is based on the chaine rule of derivation, where each
derivative is expressed as a function of the derivative of the previous layer

oht ~ ont ., Ohl7!
39 () = 5= (1 (0)—55—(0) (6)

The gradient of the loss given the parameter 0y from the k-th layer is thus

L+1 T
(00 = [T 5oy (" (0)))
r=k

ohr—1

The computation of the outputs is called the forward pass and the computation of
the derivatives the backward pass. An illustration of backpropagation with a simple
network is depicted in Figure 12.

24

BACKGROUND OF MACHINE LEARNING

01 = W1T yl*U(O 02 = Wal1 y2 = 0(02) ,Cy yz

Forward

1
01 y1.02 .y2‘ ’
X —»

Backward
do1 /dwy 0y1/d01 002 /dws 0y2 /609 0L /by

Figure 12: Example of the backpropagation algorithm for an extremely simple network
with only one-dimensional data and no bias term.

2.2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a particular type of NN aimed at model-
ing sequential data. In contrast with classic NN where all inputs and outputs
are independent of each other, RNN have the ability of modeling correlations be-
tween previous computations thought recurrent connections. They have proven to
be particularly efficient for learning temporal problems as they introduce a form
of "memory" mechanism. In the following, we focus on a simple RNN containing a
single, self-connected hidden layer, as shown in Figure 13.

Considering the sequence input x = {x7,X2,...,%Xt—1,%Xt,..., X7} and hy the
hidden state of the network at time t. The network is fed with the previous hidden
state h¢_1 and the current input x;. Each hidden state is updated as follows

hy = o(U-x¢ +W-h¢_q +by) (8)

where U is the weight matrix that connects input and hidden units, W is the weight
matrix that connects hidden units together, and by, the bias. Therefore, h can be
seen as a memory, since it keeps information from previous steps.

Thanks to the memory h, the system has a knowledge of the context and should
be able to predict the next steps of a given sequence. However, these models do
not necessarily adapt well to situations that require a longer context because of
problems such as vanishing or exploding gradients (Bengio, Simard, and Frasconi,
1994). Therefore, RNNs are usually restricted to perform well on short-term de-
pendencies. More advanced types of RNNs, like Long-Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho et al.,
2014) tackle this issue and can capture longer-term dependencies by resetting or
updating their memory content.

2.2.5 Convolutional Neural Networks

CNN are widely known for image, audio and time series processing, especially
given their impressive results for classification and recognition tasks (LeCun and
Bengio, 1998). They are composed of convolutional layers, where each layer consists

2.2 NEURAL NETWORKS

Ouput y Ytt+1

Yt—1 Yt
14 14 14 \%
. w w w w w
Hidden = cii—p
of A

Input X Ti—1 Tt Tyt1

Figure 13: A Recurrent Neural Network and its unfolded version. At timestep t, the net-
work is fed with both the input and the hidden state output at time t — 1.

in a set of N filters called kernels, which are convolved across the input. The set
of kernels of the l-th layer is denoted as {k}m}neﬂ,N 1, and when convolved across
a d-dimensional input x, produces N d-dimensional outputs (one for each kernel)
called feature maps, denoted as {a}, },c(1 n) and defined by

M
ah =) khxxm+bh (9)
m=1

where « is the 2-dimensional convolution operator, b}l the biases, and M the
number of input feature maps. The overall application of this operation is de-
picted on Figure 14. While learning in a convolutional layer consists in finding the
optimal kernels, several parameters can be tuned when defining the overall archi-
tecture such as the size of the kernels, their number, the stride parameter (step size
when sliding the kernel over the input) and the padding of both the input and the
output (see Figure 15).

Layer! — 1 Layer [

Figure 14: Convolutional layers inside a CNN. The kernels are convolved along M-th fea-
tures maps of the layer 1 — 1 and outputs N features maps.

26

BACKGROUND OF MACHINE LEARNING

Input
O] Kernel
| a b | c d — e
| I I I Output
|] | w T | l- ——————— -
. | |
: e f : g h :) |
P | S| | | | aw+bz+ || bwHcz+ cw + dz+
|l Y N ey+re |l Syt 9y +hz
i j k 1 beedb== | I
I I
ew+ fa+ fw+ gz+ gw + ha+
W+ jz Jjy+kz ky + 1z

Figure 15: Schema of a 2D convolution where padding = o and stride = 1.

2.3 DEEP GENERATIVE MODELS

Generative models are a specific type of unsupervised learning techniques (Sec-
tion 2.1.4) in which the goal is to generate novel data based on the observation of
existing examples. Usually, they aim to model the unknown underlying data dis-
tribution p,(x). This is addressed by defining a parametric family pg(x) that best
approximates the real one, so that examples from the dataset are highly probable,
whereas irrelevant data are less probable. Hence, this can be summarized as the
following optimization problem

min d(pr(x), pe(x)) (10)

A commonly used objective function d to evaluate the quality of the model is
the Kullback-Leibler (KL) divergence Dx1, that measures the similarity between
two distributions, generally defined by

B pr(x)
Dxrlpr | Pe) = gpr(X) log <pe(x)) (11)

Equivalently, minimising the KL divergence can be thought of as maximising
the log-likelihood of data points with respect to the model distribution pg(x). De-
pending on the likelihood formulation and the density distribution expression,
generative models can be separated into different large families, as proposed in
Figure 16. Each of them are detailed below, with a focus on the architectures that
are most frequently used for audio generation that are at the heart of our work.

2.3.1 Auto-regressive models

Auto-regressive (AR) models were initially developed for time series data, in order
to predict the continuation of a sequence based on its first observations. It uses

2.3 DEEP GENERATIVE MODELS

Generative models

!

Maximum Likelihood

N

Explicit density Implicit density
Approximate Tractable Direct
m VAEs m Autoregressive = GANs
= Diffusion m Normalizing flows

Figure 16: Organization of different generative models based on how the model addresses
maximum likelihood and whether the density distribution is expressed explic-
itly or implicitly.

the chain rule of probability to decompose a distribution over an n-dimensional
vector X = {Xx1,---,Xn} by assuming that the current time step only depends on
the previous ones, so that the overall density can be explicitly expressed as

n

p(x) ZHP(X1|X1/"' S Xi-1) (12)

i=1

As a result, it is possible to directly maximise the likelihood of the data by
training a neural network to model p(xilx1,...,xi—1) by minimising the negative
log-likelihood

.
—logp(x) =—) logp(xilx1, .., xi 1) (13)

i=1

RNN are good candidates to define AR models, where each conditional probabil-
ity can be modeled by p(x¢ | x<¢) = g(h¢). However, as exposed previously, these
usually fail to model long-term dependencies. Hence, Mehri et al., 2017 proposed
the SampleRNN model, which is designed to process sequential data at multiple
temporal resolutions. The model is organized into tiers, with each tier working at a
different level of temporal resolution. The receptive field of a tier is defined as the
length of the sequence that the tier is able to see, and each tier is conditioned by the
tier below it. This hierarchical structure allows SampleRNN to process long-term
dependencies in the data and generate high-quality audio samples.

Unlike SampleRNN, the WaveNet model proposed by Oord et al., 2016 rely on
CNN which, to some extent, can be assimilated to a form of recurrence. Hence,

27

28

BACKGROUND OF MACHINE LEARNING

the conditional probability distributions are modeled by multiple stacks of con-
volutional layers. Causal convolutions, as shown in Figure 17 (left), ensure that
conditional probabilities p(xi41lx1,...,%i) emitted at time i are not dependent
on future time-steps. Thanks to stacks of these convolutions, the model can have
an increasing receptive field, which allows to model longer-term dependencies in
the sequence. Nevertheless, increasing this receptive field incurs a concomitant in-
crease of the number of layers and, therefore, of the computational cost. Instead,
the key aspect of WaveNet is to use dilated convolutions to address this issue, as
depicted in Figure 17 (right).

) Output
Dilatation = 8

Hidden layer
Dilatation = 4

Hidden layer
Dilatation = 2

Hidden layer
Dilatation = 1

) Input

Figure 17: At the left side, the representation of a stack of causal convolution layers with 3
hidden layers and at the right side the same thing but with a a dilatation factor
in 2! where 1 is the number of the layer.

However, the big drawback of these architectures occurs at the inference (gen-
eration) phase, as the model must wait for each sample to be computed before
predicting the next one, which implies a rather tedious process that prevents real-
time generation. Nevertheless, AR models represent an important class of algo-
rithms capable of generating high-quality audio of arbitrary duration and are still
the subject of ongoing studies. Recent works are in fact moving in the direction of
building more computationally-efficient architectures, such as the SaShiMi model
proposed by Goel et al., 2022.

2.3.2 Variational Auto-Encoder

Variational Autoencoders (VAE) explicitly model the input density by relying on
latent variables. It takes inspiration from the Autoencoders (AE) but extends them
so that it can be used as a generative model using Variational Inference (VI).

AE were first introduced to compress data into a lower-dimensional space of
the input data. As its name suggests, they aim to learn an efficient encoding z,
also called latent code, of unlabeled input data x. A major way to learn an efficient
encoding is to simultaneously learn a decoding function allowing to reconstruct
x from z. Hence, the architecture of an AE (Figure 18) is composed of an encoder
that computes z = fg(x) and a decoder, mirror of the encoder, that produces
X = go(z). The training of an AE consists in finding the optimal parameters (¢, 0)
by evaluating the reconstruction error £ between x and X.

2.3 DEEP GENERATIVE MODELS

Latent Code
Output

Encoder

fo()

7 Decoder

—> —X

9o(-)

Figure 18: Architecture of an Auto-Encoder.

The relationship between data input x and latent encoding vector z can be fully
defined by the prior distribution pg(z), the likelihood pg(x|z) and the posterior
distribution pg(z | x). The full probability density can be expressed as

p(x) =J p(x|2)p(2)dz (14)

For most models, this integral is too hard to compute, as it is usually intractable
to integrate over all possible values of the latent code z. The idea of VI is to solve
this problem by assuming a simpler approximate distribution q(z|x) € Q from a
family Q of approximate densities. Hence, the goal is to minimize the difference
between this approximation and the real distribution

Dxr[q(z|x) [p(z]%)] = E,q(z)x) [log(q(z]x) —log(p(z]x)] (15)

The Bayes’ rule allows us to replace p(z|x) and obtain

D1 [q(z|x) I p(z|x)] =B, q(z]x) [logq(z |x) —logp(x|z) —logp(z) +logp(x)]
(16)

By re-arranging terms, we get
logp(x) = Dxr[a(z]x) | p(z]x)] = E;-q(z|x [log p(x|2)] — D [q(z]x) || p(2)]
(17)

This formulation describes the quantity to maximize logp(x) minus the error
we make by using an approximate q instead of p. Therefore, we can optimize this
alternative objective, called the Evidence Lower Bound (ELBO)

L£(6,) =E, q(zx [logpe(x|2z)] =Dk [de(z|X) || pe(z)] (18)

reconstruction regularisation

This equation involves q¢(z | x) which encodes the data x into the latent repre-
sentation z and a decoder pg (x| z), which allows generating a data vector X given a

29

30

BACKGROUND OF MACHINE LEARNING

S /
Encoder Decoder
Latent Space

Input Output
X —> — x

Figure 19: Representation of the architecture of the Variational Auto-Encoder.

latent configuration z. Hence, this structure defines the VAE, whose architecture is
represented on Figure 19.

The VAE objective can be interpreted intuitively. The first term increases the like-
lihood of the data generated given the latent logp(x|z), which is equivalent to
minimizing the reconstruction error. The second term represents the error made
by using a simpler posterior distribution q¢,(z|x) compared to the true prior pg(z).
Therefore, this regularizes the choice of approximation q so that it remains close
to the true posterior distribution. Recent work of Esling, Chemla—Romeu-Santos,
and Bitton, 2018 have successfully applied VAE in the audio domain using a spec-
tral representation of the raw waveform. They show particular advantages for the
controllability of the latent space and are also capable of inferring a latent variable
from unseen data. However, the generated samples tend to be slightly blurry. More
recent works have addressed this issue by using a special type of Variational Au-
toencoder (VAE) called the Vector Quantized VAE (VQ-VAE), such as the JukeBox
model (Dhariwal et al., 2020). This model leverages the use of variational inference
for audio generation and is currently one of the most popular models in the field.

2.3.3 Generative Adversarial Networks

GAN were introduced by Goodfellow et al., 2014 and are implicit generative models
that consist of two competing neural networks, a generator and a discriminator. As
depicted in Figure 20, the generator G outputs fake samples given a noise variable
input z, with the objective to approximate the real data distribution. Concurrently,
the discriminator D seeks to discriminate between fake and real samples by esti-
mating the probability that a sample comes from the real dataset.

On one hand the discriminator is trained to maximize the probability that x ~
p(x) came from the dataset, so to maximize E,_, x)[log D(x)]. The discriminator is
also expected to output a probability close to zero given a fake sample x ~ p.(z), by
maximizing E, ,,_(,) [logU —D(G(z)))] . On the other hand, the generator wants to

2.3 DEEP GENERATIVE MODELS

fool the discriminator, so to minimize these two former quantities. Consequently,
D and G are playing a min-max game, corresponding to the following objective

rrgnmeL(D, G) = Expiarax) [logD(x)] +E, p,(2) [logﬂ — D(G(z)))] (19)

Although this objective can be understood intuitively, GAN are consequently un-
stable to train due to two significant issues. The first issue, called the vanishing
gradient, occurs when the discriminator is too efficient compared to the generator
and produces no error, causing the loss to drop to zero, thus preventing the gen-
erator from accurately producing realistic samples. The second issue is the mode
collapse, in which the generator is stuck and produces a low variety of samples
while still fooling the discriminator.

Real

x ~ p(x)
Fake / Real ?

z ~ p.(2) Fake
X ~ Pg (x)

Figure 20: Overview of a GAN architecture

Aside their training instability, GAN have shown remarkable effectiveness in gen-
erating high-quality samples such the work of Donahue, McAuley, and Puckette,
2019 with WaveGAN, whose synthesis speed is orders of magnitude faster than
that of AR models. Other models have also been developed recently, for example,
GanSynth, which will be studied in more detail in the Section 4.2.1, as well as Mel-
GAN (Kumar et al., 2019) and HiFi-GAN (Kong, Kim, and Bae, 2020), which will
be discussed in Section 5.1.1. Nevertheless, GAN lack latent expressiveness, which
make them unreliable to control. To address that issue, the combination of VAE
and adversarial learning is explored in Caillon and Esling, 2021, with the RAVE
model resulting in an expressive and controllable latent space and high-quality
audio synthesis.

2.3.4 Flow-based models

Normalizing Flows (NF) models aim to explicitly learn the data distribution. The
main idea is to start from a simple probability distribution (e.g. a Uniform or
Gaussian distribution) and approximate a complex multimodal density by trans-
forming the simpler density through a sequence of invertible nonlinear transforms.
Formally, given a random variable z € R¢ following the distribution p(z), and f
an invertible and differentiable function f : R4 — RY. We introduce another random
variable x mapped to z, such that x = f(z) and through the change of variable rule,
the resulting probability density is

31

32

BACKGROUND OF MACHINE LEARNING

-1 —1

of of
det I deta

where the last equality is obtained through both the inverse function theorem
and the property of Jacobians of invertible functions. Then, by repeating this oper-
ation, we can model more complex distributions, as depicted in Figure 21. Starting
with a random vector zy with distribution py, we can apply a series of mappings
fi, i€ 1,...,k with k and obtain a final distribution zyx ~ pk(zx) leading to

(20)

p(x) = p(z) =p(2)

z = frofr_10..0f1(zg) =x

k —1 k —1
of; of; (21)
_ —1 —1 i _ 1
pr(z) = pol(fy o..of (z1)) i|_|1 det oz —Po(Zo)il_ll de’tazi
Hence, the exact log-likelihood of the input data is evaluated as
i of;
_ o 1
logp(x) =logpo(zo) i_E : log |det % (22)

. fi(zi) C fos (22) @
= X

Zy ~ po(Zo) Z; ~ pi(Zi) ZR ~ pK(ZK)
Figure 21: Illustration of chaining transforms inside normalizing flows.

In the specific context of neural audio synthesis, flows have been initially in-
troduced as student models learned through distillation from large pre-trained
WaveNets such as Parallel WaveNet (Ping, Peng, and Chen, 2019). Instead, more re-
cent works directly incorporate WaveNet as a core component of the flow, remov-
ing the need for two-stage learning procedures. The authors of FloWaveNet (Kim
et al., 2019) embed a non-causal WaveNet, which constitutes the building block
of their flow architecture. Other types of architectures were recently introduced
as WaveGlow (Prenger, Valle, and Catanzaro, 2019) or WaveFlow (Ping et al., 2020)
trained directly by maximum likelihood on waveform data and will be both pre-
sented in Section 5.1.1.

2.3.5 Diffusion-based models

Diffusion-based models (DM) were originally proposed by Sohl-Dickstein et al.,
2015 based on non-equilibrium thermodynamics. In their simplest form, DM define

2.3 DEEP GENERATIVE MODELS

a Markov chain of forward diffusion steps where data is iteratively corrupted by
noise. Then, the aim is to learn the reverse denoising diffusion process to construct
desired data samples from noise. Based on a series of latent variables xj,--- ,xT
that have the same dimensionality as a given input data, which is labeled as xo ~
q(xo), the forward diffusion process q(x; | x¢—1) consists in gradually adding noise
to the data, destroying the signal up to full noise. The step sizes are controlled by
a variance schedule {B¢ € (0, 1)}}. +_1, so that

.
qlxe [xe—1) =N(xe; /T Bexe—1, B qlxirIx0) = [[alxe Ixe—1) (23)
t=1

One important property of this forward process noted by Ho, Jain, and Abbeel,
2020 is that we can perform sampling at any arbitrary timestep t, such that

q(xt | x0) = N(xt; vV/&Xo, (1 — &)T) (24)

where oty =1 — B¢ and &; =]_[221 s

Oppositely, the reverse (parametric) diffusion process po(xt—1 | X¢) must learn
how to denoise local perturbations in order to invert this diffusion process. Hence,
learning involves estimating a large number of small perturbations, which is more
tractable than trying to directly estimate the full distribution with a single poten-
tial function, as illustrated in Figure 22.

Xt Xt— 1

Figure 22: [llustration of the diffusion process as a generative model.

The generative distribution is trained to perform the reverse trajectory, start-
ing from Gaussian noise to gradually remove local perturbations. Therefore the
reverse process starts with a tractable distribution p(x1) = 7(x7) described as

Po(xo:1) = 7(xT) H (xt—1 %) (25)

Each of the transitions in this process can simply be defined as conditional
Gaussians (note that this is reminiscent of the definition of VAE). Therefore, during
learning, only the mean and covariance for a Gaussian diffusion kernel needs to
be trained so that

Po(xt—1 Ixt) = N(X¢—1, Htheta(Xt, 1), 0o (X, 1)) (26)

33

34

BACKGROUND OF MACHINE LEARNING

DM are learned via maximum likelihood through the optimization of a varia-
tional lower bound, even though effective simplifications have been introduced to
the standard training objective (Ho, Jain, and Abbeel, 2020). As a relatively recent
class of models, they are yet to be extensively studied for audio generation. The
seminal works are those of Kong et al., 2020 with Diffwave and Chen et al., 2020
with WaveGrad, in which a denoising diffusion model is learned through dilated
convolutional architectures.

2.4 GENERATIVE AUDIO SYNTHESIS

In the specific audio context, there are other models that we could not classify in
the previous section due to their specific architectures. For example, the Symbol-
to-Instrument Neural Generator (SING) (Défossez et al., 2018) relies on an overlap-
add convolutional architecture, which constructs sequences of overlapping audio
segments and uses a sequential embedding to produce audio. The model is limited
to producing individual pitched instrumental notes of fixed duration. Similarly,
the WaveNet AE from Engel et al., 2017 proposes using a WaveNet-style autoen-
coder architecture to model the underlying structure of audio signals, allowing
for more accurate and detailed synthesis and manipulation of audio. Several mod-
els, like Neural Source-Filter (NSF) (Wan et al., 2020) and Differentiable Digital
Signal Processing (DDSP) (Engel et al., 2017), have extended this idea by using
stronger assumptions and inductive biases from digital signal processing to model
different types of signals. The NSF model splits the generation between successive
source and filtering modules, mimicking traditional source-filter models. Hence,
a sinusoidal (voiced) and noise (unvoiced) excitation are fed into separate filter
modules, allowing to model different signals. The DDSP model implements a har-
monic additive synthesizer and a filtered noise synthesizer, allowing to control the
synthesis process based on frequency, loudness, and latent features from the input
waveform.

We provide in Table 1 a summary of all the end-to-end waveform synthesis
models that are considered in this thesis. Among those 18 models, some of them
have been specifically designed to generate either speech or music, while some are
able to model both. Nonetheless, these models all target audio content learning.
We decided to omit TTS synthesis as it is not the primary target of this work.
However, they do represent an important class of neural audio synthesis tasks.

2.4 GENERATIVE AUDIO SYNTHESIS

Date Model Type Speech Music
avr.-17 WaveNet AE AE J
oct.-18 SING AE+AR o

nov.-1i9 NSF - |
janv.-20 DDSP AE .
sept.-16 WaveNet AR . .
févr-17 SampleRNN AR . .
févr.-22 Sashimi AR . .
mai-20 Jukebox (VQ)-VAE o
déc.-21 RAVE VAE+GAN . J
févr-19 WaveGan GAN . o
avr.-19 GanSynth GAN .
déc.-19 MelGAN GAN . o
oct.-20 Hifi-GAN GAN .
oct.-18 WaveGlow Flow .
mai-19 FloWaveNet Flow .
janv.-20 WaveFlow Flow .
mars-21 Diffwave Diffusion J
oct.-20 WaveGrad Diffusion .

Table 1: All models considered in this work, including their publication date, generation
strategies and reference applicability (speech, music or both).

35

BACKGROUND ON EVALUATION METRICS

In the previous chapter, we have discussed deep learning model concepts and
reviewed various types of generative modeling techniques. However, a critical as-
pect of research studies is to find robust and adequate evaluation measures in
order to compare the performance of various models. Hence, this chapter focuses
on an analysis of various methods used by practitioners to evaluate deep genera-
tive models. In Section 3.1, we present quality metrics that are used to evaluate the
artifacts produced by the model. Then, in Section 3.2, we present several measures
of efficiency that are used to account for the computational costs of deep models.
Finally, we end this chapter by discussing the concept of Pareto optimality (Sec-
tion 3.3), which is the central concept in multi-objective evaluation.

3.1 MEASURES OF QUALITY

Given the complexity of their goals, generative models still lack universal metrics
for the assessment of their quality or accuracy (Theis, Van Den Oord, and Bethge,
2016). Indeed, most objective metrics often do not capture the precise perceptual
characteristics of the generated content. As a result, models that produce high-
quality outputs may receive low scores on these metrics, while the best metrics are
usually hand-crafted and often problem-specific. In this work, we refer to automatic
metrics for evaluation measures that can be computed without the need for human
intervention, and perceptual metrics, which rely at least to some extent on human
judgments to be computed.

3.1.1 Automatic metrics

On the one hand, some of the quality metrics depend on the definition of the
model. Sometimes, it can correspond to the training criterion of the model such as
the log-likelihood for models trained to maximize it, or the reconstruction error for
models that are trained to reconstruct the data. On the other hand, there are indi-
rect quality metrics for generative models that rely on embeddings from learned
representations (e.g. external classifiers) to evaluate the diversity of samples along
with the generalization ability of a model. We summarize all of these different fam-
ilies of metrics in Figure 23 and we explain our notations along their definition in
the following.

LIKELIHOOD As discussed earlier, generative models aim to model the real dis-
tribution of the data p,(x) by optimizing an approximate generative distribution

37

38

BACKGROUND ON EVALUATION METRICS

Classifier

Dip(y) [p(¥)]

Dp(x) | pg(X)l—‘
Latent Likelihood y
SO >~«~pg<x>sf

Distribution

Xive X Reconstrugtlon Xz E X (I)(i)
I D(x;, X;)—— (I)(x)
Dataset
e e e Dla(x) | B(x)
Distribution

Figure 23: Summary of all generative models metrics based on our taxonomy. Green boxes
depict evaluation sources, while blue ones exhibit the reliance on external mod-
els that require training.

Pg(x). Hence, relying on the log-likelihood to evaluate a model might appear as a
logical choice as it allows to evaluate their ability to explain the real (test) data x;
using a density estimated from the generated data such that

=5 2 logpylx) @)

However, for most of models, p4(x;) is not tractable to compute. Hence, approx-
imation of this quantity has been proposed by relying on Kernel Density Estimation
(KDE) (Kendall and Stuart, 1953) or Parzen window estimation (Parzen, 1962). How-
ever, these approximations come with two major shortcomings. First, performing
kernel estimation is extremely complicated in the high-dimensional setup of the
inputs x;. Second, it has been demonstrated in Theis, Van Den Oord, and Bethge,
2016 that they produce uninformative assessments that do not match the actual
quality of the generated samples (i.e., high likelihood models can have low sam-
ple quality and conversely).

RECONSTRUCTION As we mentioned earlier, a common metric for objective
evaluation is the reconstruction error, specifically for models that are trained to
reconstruct input data, so that X; ~ x;. It usually involves the computation of a
distance D, (X, x;). For instance, it is frequent to use the Euclidean distance and
compute the Mean Squared Error (MSE) as follows

Dk (xi, %) = xi —%; [|3 (28)

While this metric is rather consistent with the one-by-one pixel differentiation
(in the computer vision domain), in the particular context of audio this could
lead to significant discrepancy due do phase distortions. Indeed the human ear

3.1 MEASURES OF QUALITY

is unable to make the difference between two signals shifted in phase, however
it leads to a high MSE. An alternative is to compare the log-differences of the
Short-time Fourier Transform (STFT) to the reference signal and its reconstruction,
generally expressed as

Dsrer (xi, %) = Uxi) — U%:) ||h (29)
with 1(x) = log (e + ISTFT[xi]IZ) (30)

where € acts as a trade-off between low and high energy coefficients of the
spectrogram. However, these distances can only be computed based on existing
samples, and not on completely unconditional generated samples which appears
limiting for GAN models that are not able to perform reconstructions.

cLASSIFIER While reconstruction and likelihood can be used to evaluate the
quality of a generation directly in the data domain, some techniques also propose
to use alternate low-dimensional embeddings as a proxy for specific high-level
attributes. It consists in an external pre-trained classifier €, that produces a set of
labeled data § based on the generated samples X, such that § = C(X).

A well-known approach using a classifier is the Inception Score (IS), proposed
by Salimans et al., 2016 and was proven to be a great evaluation method for GAN
models. The 1S method relies on one key element: a classifier, which is used to as-
sign a class label to each generated sample. The underlying assumption is that a
successful generative model should produce examples examples that are classified
with high confidence (as a proxy to quality) and from all classes evenly (as a proxy
to diversity), such that the distribution of classes among the generated samples is
uniform. Formally, the conditional probability p(¥|X) must have a low entropy
(single images classified with high confidence) and the marginal probability p(¥)
must have a high entropy (i.e., the model generates all classes with a probabil-
ity equivalent to the original label distribution) Hence, the IS is based on the KL
divergence between the two distributions, and is expressed by

15 = exp [Ex [Pt [p(319) || p(3)]]]. G1)

However, several limitations exist. First, this measure is both biased by the ac-
curacy of the classifier used, and also by the dataset it has originally been trained
on. Second, it does not capture intra-class diversity, as the generative models could
easily generate the same image in each class. Several extensions of this idea were
proposed, such as the modified-1S, which encourages the diversity within samples
generated inside a particular category

m-IS = exp [Ex, [Ex, [Dr [p(71%:) | p(¥1%;)]]]. (32)

39

40

BACKGROUND ON EVALUATION METRICS

In the same line of thought, the Mode Score (MS) was proposed by Che et al,,
2017 as an extension that could take into account the prior distribution of the
original data labels

MS = exp [Ex[Dkr [p(§1%) || p(ye)]]] — Dkilp(3) || plye)] (33)

where p(y¢) denotes the marginal distribution of the classifier training data labels.

Finally, the Activation-Maximization (AM) Score (Zhou et al., 2018) aims to inte-
grate both aspects by using the KL divergence between the distributions of training
and generated labels, along with the entropy of the predictions

AM = D [p(¥) |l p(ye)] + Ex[H(y[%)]. (34)

DISTRIBUTION The use of distribution metrics relies on the strong hypothesis
that the distribution of samples generated py(X) by a successful model should
closely match the distribution of real samples p.(x). Instead of working on these
direct distributions, distribution metrics use embeddings, which are projections of
the data in a lower-dimensional space we denote @ (x). Then, the idea is either to
compare the samples in this space as D, (P (x), @ (X)) or directly their distribution
with D4[P(x) || ©(X)].

The Fréchet Inception Distance (FID) proposed by Heusel et al., 2017 is con-
structed on this idea of comparing the embeddings obtained from a pre-trained
classifier. To do so, it first fit multivariate Gaussians to the two embedded repre-
sentations (real and generated), leading to the approximation ®(x) ~ N (p,, Z,)
and ®(x) ~ N (ug, X4). Finally, the quality is assessed trough the computation of
the Fréchet distance between the two distributions, giving

FID = [[jtr — pgll3 + tr (zr+zg -2 (ZTZQ)> (35)

where tr (-) is the trace operator. The FID has shown to be strongly correlated to
human evaluations, while being more robust to noise than IS. It also seems that
FID is able to detect intra-class mode collapses (unlike IS).

The FID has been successfully applied to the audio domain by Kilgour et al.,
2019, where they present the Fréchet Audio Distance (FAD). It relies on the exact
same approach, but the classifier is a VGGish model trained on audio data instead
of the Inception model. The FAD has been shown to be sensitive to a large set of
common distortions (different types of noises, clicks, reverberation and pitch and
speed changes) and appears to also be strongly correlated to human evaluations.

DATASETS Dataset-based metrics compare properties between sets {x;} and {X;}
in the data domain directly. Hence, Richardson and Weiss, 2018 proposed the
Number of Statistically-Different Bins (NDB) based on the computation of a z-test
between the two datasets, i.e., a test determining whether two samples are drawn

3.1 MEASURES OF QUALITY

from the same population. The underlying assumption is that if two sets of sam-
ples are drawn from the same distribution, then the number of samples that falls
into a given bin should be equivalent. Formally, we can define the indicator func-
tion I (x) of bin B such as I'g (x) = 1 if the sample x falls into that bin and Iz (x) = 0
otherwise. Given the sets of real x; and generated X; samples, if they are drawn
from similar distributions, it is expected that

1 1
N—rZHB(xi) ~ Ny Zﬂg(ij) (36)
i j

with N; and Ny the number of samples from the real and generated sets re-
spectively. To perform binning, Richardson and Weiss, 2018 proposed the use of
what they called Voronoi cells, based on K-means clustering, to ensure that each
bin contains samples.

SIGNAL-BASED As our work is centered on audio signals, it is possible to extract
signal processing metrics. Here, we present quality evaluation metrics used for
blind audio source separation as proposed by Vincent, Gribonval, and Févotte,
2006. We reformulate the problem with our previous notations and define X =
X + €interf T €noise + €artif the reconstructed signal, with ejnterf, €noise and e,is the
error of respectively interference, noise and artifacts. According to this notation,
we could reformulate the Signal-to-Distortion Ratio (SDR) as

I 2
SDR = 101lo ’ (
810 | @interf 1 €noise 1 €artif H2 37)
the Signal-to-Interference Ratio (SIR)
_ E3E
SIR = 10log; 5 (38)
H €interf ||
the Signal-to-Noise Ratio (SNR)
, 2
SNR = 10log, , I+ Cintert |7 (39)
H €noise H
the Signal-to-Artifact Ratio (SAR)
, . 2
SAR21010g1O ” X + €noise T €interf || , (40)

H €artif HZ
3.1.2 Perceptive metrics

In parallel, previous works have relied on perceptual evaluations of generated sam-
ples to assess model quality. Indeed one of the core goals of generative models for
audio, is to produce sound artifacts that are of sufficient quality to be indistin-
guishable from real ones, even when judged by human evaluators.

41

42

BACKGROUND ON EVALUATION METRICS

MEAN OPINION SCORE The Mean-Opinion Score (MOS) is one of the most pop-
ular evaluation approach used in listening experiments (Faviola Rodrigues, Riley,
and Lujén, 2018). It consists in asking participants to rate the sound they hear on a
5-point scale, ranging from bad quality to excellent quality (see Table 2).The final
score is computed through

N
1
MOS = Z1 Rn (41)
n=

where R, is one rating and N is the number of trials. Therefore, the MOS provide
an absolute grade for each sound rather than a comparative one. For example,
a person may give the same rating to two sounds separately, but this does not
indicate preference for one or the other.

Rate Quality

5 Excellent

4 Good
3 Fair
2 Poor
1 Bad

Table 2: MOS rating

PESQ Perceptual Evaluation of Speech Quality (PESQ) is a metric proposed by
Rix et al., 2001 specifically designed for testing voice quality on low bandwidth
devices, like mobile phones and smartphones. It does not require any human in-
tervention and aims to predict the MOS through an algorithm based on psycho-
acoustic modeling (Herre and Dick, 2019). It produces a score from 1 to 4.5, align-
ing with the MOS except the range from 4.5 to 5 which is not addressed. Although
this metric has many advantages such as reproducibility and efficiency, its speech-
based nature makes it unsuitable for other types of audio signals.

3.2 MEASURES OF EFFICIENCY

Although evaluating the quality of a given model is a central point in current re-
search, it is also essential to cover the model efficiency in terms of computation cost
and thus on energy and environmental cost. This is a major challenge with modern
deep learning that tends to be resource-intensive. In this context, we distinguish
two modes of evaluation: computing the efficiency for training a model until con-
vergence or computing the efficiency for inferring new samples by the model. In
the following, we present metrics related to the computational cost, and then met-
rics specific to the energy and environmental cost.

3.2 MEASURES OF EFFICIENCY

3.2.1 Computation costs

NUMBER OF PARAMETERS The most straightforward metric of efficiency is the
total number of model parameters (i.e., number of weights) as it is quite easy
to determine and usually directly correlated with computational complexity. A
very recent and successful approach in audio generation precisely attempted to
reduce this number of parameters by using the lottery ticket hypothesis (Esling et al.,
2020a). Lighter models require less memory space (especially crucial for embed-
ded devices) but also incur less energy consumption. Nonetheless, the number
of parameters does not accurately reflect power consumption as some operations
consume more than others.

FLOATING-POINTS OPERATIONS The best way to overcome this inaccuracy
in power consumption is to consider the number of Floating-Points Operations
(FLOP)of a model, as proposed in Schwartz et al., 2020. It is the total number of
operations to compute a task (e.g., of producing one sample or of a whole train-
ing) and depends on the size of the input/output that we consider. We provide an
example of an affine function (such as the sum in a perceptron) with dot product
y = x-w+ b where x and w are two vectors of size n. We have

Y=Wo*kX0+W1*X] +W2*X2+...+Wn_ 1Xp_1+Db (42)

The above formula has n multiplications and n — 1 additions, plus 1 addition
for the bias term, thus it uses 2n FLOP. We can extend this calculation to every
types of neural layers, including activation layers, which count as zero parameters
but not zero FLOP.

REAL-TIME FACTOR Another metric of efficiency if the Real-time Factor (RTF),
a ratio that measures how much a process can be used in real-time setups. Consid-
ering that it takes a time T, to process an input of duration Tiy,p,, the real time
factor is defined as

T

RTF = -PTe¢ (43)
Tin'p

If, for example, it takes 8 hours of computation time to produce a sample of du-

ration 2 hours, the real-time factor is 4. When the real-time factor is 1 or less, it

implies that the processing can be performed in real-time. Even though this met-

ric is by essence hardware-dependent, it provides a first step in the direction of

assessing computational efficiency quite simply.

3.2.2 Energy cost

Measuring the exact energy consumption of any type of computer software is an
extremely challenging task, as it is usually intertwined with other processes (e.g.

43

44

BACKGROUND ON EVALUATION METRICS

cache hits and misses, memory accesses). First, we present general notions sur-
rounding energy and power measurement in order to clarify these concepts. The
energy E (in Joules) is defined as the effort to perform a task during a certain
period of time T (in seconds). This can be expressed as the integral of the instanta-
neous power p(t) during that period as

]
E= J plt)dt (44)
0

The resulting average power (in Watts) is defined as

E
Pavg = (45)

Although we have access to power and energy metrics in some areas of electron-
ics (e.g., with powermeters), measuring the energy consumption of any kind of
computer program is already a challenging task, since there are many variables in-
volved (e.g. cache hits, cache misses, DRAM accesses). To approximate the energy
and carbon cost of training models, Strubell, Ganesh, and McCallum, 2020b de-
cided to sample GPU, CPU and DRAM power consumption, respectively named
Pg, Pe, and py, using the NVIDIA System Management Interface and the Intel’s
Running Average Power Limit. The sum of these three components is then mul-
tiplied by the Power Usage Effectiveness (PUE) coefficient, which estimates addi-
tional energies required to sustain the computing infrastructure (mainly cooling).
They relied on a PUE coefficient of 1.58 as it is the 2018 global average for data
centers, and end up with the following formula for the total average power

Pavg =PUE- (pc +pr +9gpg) (46)

with g the total number of GPUs used for training. The energy consumed is
obtained as the multiplication of this total average power by the training time in
seconds according to Equation (45). A popular metric for energy measurement
is the kiloWatt-hour (kWh). As its name suggests, it is the multiplication of the
power in kilo-Watts by the time in hours, given that 1 kWh = 3600 kJ.

CARBON cosT Finally, to link kilowatt-hour and CO; equivalent, Strubell et al.
use the carbon emission intensity factor (in kgCOeq/kWh). This factor is location-
dependent, but can be captured in real-time thanks to the online electricity map®.

1 https://www.electricitymap.org/map

https://www.electricitymap.org/map

3.2 MEASURES OF EFFICIENCY 45

Intensité carbone (gCO,eq/kwh)
|
[200 400 600 800

L

Figure 24: Snapshot of the instant emission intensity world-wide map (in gCOzeq/kWh)
on September 21, 2022

Recently, Lacoste et al., 2019 proposed an online tool called the Machine Learning
Impact Calculator?, which estimates carbon emissions produced while training deep
leaning models according to the overall time, hardware and geographic position.
In the same spirit, Anthony, Kanding, and Selvan, 2020 developed an open-source
Python package called Carbontracker3, which tracks energy consumption of one
epoch and predicts what the entire training will consume. This provides a more
accurate estimation while being user-friendly. Other methods exist to account for
the on-device consumption, like the pyJoules* python package that monitors GPU,
CPU and DRAM energy usage.

2 https://mlco2.github.io/impact/
3 https://github.com/1fwa/carbontracker
4 https://github.com/powerapi-ng/pyJoules

https://mlco2.github.io/impact/
https://github.com/lfwa/carbontracker
https://github.com/powerapi-ng/pyJoules

46

BACKGROUND ON EVALUATION METRICS

3.3 MULTI-OBJECTIVE EVALUATION

Even though we are now equipped with evaluation strategies that could account
for either quality or energy, we can still only wonder how these could be linked. A
quite straightforward hypothesis is that increasing the size of the network or the
training time of the learning procedure often improve their quality at the expanse
of larger energy costs. As these objectives seem to be conflicting, we propose to
introduce the use of multi-objective evaluation criteria, also known as the Pareto
principle, named after the Italian economist Vilfredo Pareto. Formally, we consider
a multi-objective optimization problem as

min {f1 (X)/ fz (X)/ ey fk(X)} (47)
xeX

where k is the number of objective functions and x the feasible solutions.

A feasible solution x4 € X is said to dominate another feasible solution x, € X,
notated xq < xp, if :

e Vice {1,...,k},fi(xa) < fi(xb)
L4 3] € {1,...,k},fj(xa) < f)"(Xb)

A solution x* € X is a Pareto optimal solution if there are no % such that & < x*.
The set of all these optimal solutions is called the Pareto front. An example is given
on figure 25, red points are representing Pareto optimal solutions, and white ones
non-optimal solutions.

X
f2() ® Pareto optimal
o) o) O Non-Pareto optimal
[J
o O o (o]
o
j o O o o o
[]
[e) (0]
[] o O o
[]
[]
® o o °
fi(z)
-

Figure 25: Example of a Pareto front where we seek to minimize two functions f;(x) and
f2(x). Red points are Pareto optimal solutions while white ones are non opti-
mal.

Now, consider two generative audio models A and B. Pareto optimality can be
used to measure the dependency of two main factors: quality (f1) and energy (f>).
For example, if A and B have the same perceptual quality, but A consumes less
than B (so A dominates B), if there is no better solution than A, the model is Pareto
optimal. Conversely, if A and B have the same energy footprint, but B produces a
better sound quality, then B is optimal.

3.3 MULTI-OBJECTIVE EVALUATION

Then, if energy consumption is less important than sound quality, the goal is
to find a generative model that produces the best quality while also consuming as
little energy as possible. In this case, the Pareto optimal models will be those that
produce the highest sound quality while consuming the least energy. These models
would be located on the lower right portion of the Pareto front. On the other
hand, in the case where sound quality is less important than energy consumption,
the goal is to find a model that consumes the least energy while also producing
acceptable sound quality. In this case, the Pareto optimal models will be those that
consume the least energy while producing the least worse sound quality. These
models would be located on the upper left portion of the Pareto front. Note that
Pareto optimality doesn’t necessarily mean that a model is the best in terms of
both quality and energy, but it means that there’s no other model that’s better in
one aspect and not worse in the other aspect.

47

PartII

CONTRIBUTIONS

TOWARDS A NEW METHODOLOGY

In the previous chapter, we discussed various strategies for the assessment of deep
generative models for audio. Here, we propose an in-depth investigation of their
use in the literature, as well as a first attempt to include carbon costs of training
models inside the evaluation procedure. First, we present a vast review of the use
of evaluation metrics in the literature (Section 4.1). Second, we address the lack
of literature training costs by providing a first estimation for training state-of-the-
art models based on their training details (Section 4.2). Third, we propose a new
methodology based on Pareto Optimality to include the costs alongside the quality
of the generated sound (Section 4.3).

4.1 DISTRIBUTION OF EVALUATION METRICS

In this section, we aim to provide an exhaustive review of evaluation metrics used
in the neural audio synthesis research literature and provide an analysis of differ-
ent trends regarding evaluation. Specifically, we report on nineteen publications
that perform end-to-end waveform synthesis (e.g., we do not include spectrogram
or text-to-speech synthesis). Then, based on the taxonomy presented in Section 3,
we sort relevant evaluation metrics in two main categories : quality and efficiency.
Inside the quality class, we retain six metrics : (1) the MOS or any other perceptual
metrics, (2) the likelihood and its derivatives (e.g., negative log-likelihood), (3) the
reconstruction scores (all distances between two samples), (4) the IS, (5) the FID and
(6) the NDB as exposed in the previous section. To evaluate efficiency we retain (1)
the RTF or other time-based inference metrics, (2) the number of parameters, (3)
the training time , (4) the memory size and (5) the number of floating points oper-
ations. Other metrics can be used for evaluation, but they are too specific for this
broad analysis. We display our analysis on Figure 26" and recall the meaning of
the acronyms used.

The first result of this analysis shows that the MOS is the most popular quality
metric used for evaluation, although it is entirely based on human judgments. Fur-
thermore, other objective quality measures are largely less frequently encountered.
Regarding efficiency, the RTF seems to be the reference metric for efficiency, as it is
quite important in the field of neural audio synthesis to process sound in real-time.
Unfortunately, there are no study mentioning the number of FLOP, authors only
indicate the number of parameters of the model. Finally, although some studies

1 All details are provided in Appendix A

51

52 TOWARDS A NEW METHODOLOGY

do mention the training time, energy consumption has simply never been taken
into account, neither for training nor for inferring new sample.

MOS Mean Opinion Score
Recon. Reconstruction RTF Real-Time Factor
LL Log-Likelihood Param. Number of parameters
IS Inception Score Train. Time Training Time
FID Fréchet Inception Distance Mem Memory Size
NDB Number of Statistically Different Bins FPO Floating Points Operation
Quality Efficency
= 90 E
= 80 [T
&
570
& 60
o,
e 50
]
é}‘ 40
,g 30
= 20
; i i =

e

MOS Recon. FID NDB RTF Param. Tr‘am Mem FPO

Figure 26: Distribution of commonly-used measures to compare and evaluate generative
audio models. In blue (left) those that refer to the quality of the generated
samples, and in green (right) those that refer to their efficiency.

4.2 ESTIMATIONS OF CARBON COSTS
4.2.1 Models

After this literature review, we perform the first study on the environmental im-
pact of neural audio synthesis techniques. Therefore, we selected models for which
we had enough information to estimate their energy consumption for training, in-
cluding the hardware used to train the model, such as the type of GPU and total
training time (in hours). We found out that only seven of them specified all infor-
mation for both criteria. Here, we present a short description of these models and
the details of their training procedure according to the original papers:

e SampleRNN introduced by Mehri et al., 2017 is an auto-regressive model
predicting one sample at a time. It is composed of hierarchical recurrent
layers working at different temporal scales. This model is trained for "about
one week" on a GeForce TITAN X on three different datasets containing
speech, vocal sounds and piano sonatas.

¢ SING proposed by Défossez et al., 2018 is a convolutional audio synthesizer
that generates waveform given desired categorical examples. The training is
composed of three parts: first, an auto-encoder is trained for 12 hours, then a

4.2 ESTIMATIONS OF CARBON COSTS

sequence generator for 10 hours and finally an end-to-end fine-tuning for 30
hours. All parts are trained on 4 NVIDIA P1oo GPU on the NSynth dataset.

* WaveGAN from Donahue, McAuley, and Puckette, 2019 is a GAN that per-
forms raw waveform synthesis using transposed convolutions acting as up-
sampling modules. The network is trained on a single NVIDIA Pioo GPU

and converges within 4 days on the Speech Commands Zero Nine (SCog) dataset.

* GANSynth by Engel et al., 2019 also uses GAN to generate log-magnitude
spectrograms and instantaneous frequencies instead of modeling the raw
waveform directly. The training lasts for 4.5 days on a NVIDIA Vioo GPU
on a subset of the NSynth dataset.

* FloWaveNet proposed by Kim et al., 2019 is a flow-based model for parallel
waveform speech synthesis using the WaveNet architecture as an inverse
transformation function. The training requires 11.3 days on a NVIDIA Tesla
V100 GPU and operates on the L]Speech dataset.

* JukeBox from Dhariwal et al., 2020 synthesizes sound thanks to a multi-scale
Vector Quantized-Variational AutoEncoder (VO-VAE) trained for 3 days on
246 NVIDIA V100 on a large dataset composed of 1.2 million songs where
they also perform data augmentation. They also train a prior model and a
lyric conditioner, which we did not consider as we solely aim to evaluate the
cost of neural synthesizer modules.

* RAVE by Caillon and Esling, 2021 is a promising neural synthesizer and is
based on a two-stage learning procedure, where the first part consists in
training a VAE, then fine-tuning with a GAN. The total has been trained 6
days on a single TITAN V GPU, on a dataset composed of 30 hours of raw
recordings of strings in various configurations.

Although we selected these seven models for the availability of their training
details and not for their specific architecture, we believe that they form a represen-
tative set of the current state of research in generative models.

4.2.2 Training costs

Here, we want to estimate the carbon emissions of various training procedures for
each of the selected models. Since we did not have access to all of the previously-
mentioned specific hardware, some hypotheses had to be taken into account. First,
we make the assumption of the worst-case scenario, as does the Machine Learning
Impact Calculator: we take the maximum power consumption pmax for each of
the GPUs according to their technical specifications, and multiply it by g, the
number of GPUs used for training and by t in hours, to get the kilo-Watt hours
consumption. We assume that the models are optimal and take most of the GPU
resources. A further justification for our hypothesis is that we omit DRAM, CPU
and additional energies for cooling while training.

53

54

TOWARDS A NEW METHODOLOGY

Second, as carbon emissions are location-dependent, we selected a carbon in-
tensity factor of 0.437kgCO,eq/kWh as it is the global yearly average of 2018 to
convert kilowatt-hours to carbon emissions. We finally obtain the following for-
mula to estimate the carbon emission of an entire training as

CO2e =0,437 X g X Prmax Xt (48)

4.2.2.1 Results

Estimations of training costs are shown in Table 3. We summarize the training
details, and display the corresponding kilo-Watt hours and carbon footprint esti-
mations for each of the seven studied models.

Model Hardware Power Hours kWh kgCOzeq
FloWaveNet 1 Tesla V1ioo 300 W 272 81.6 35.66
Jukebox 256 Tesla Vioo 300 W x 256 72 5529.6 2416.44
GANSynth 1 Tesla V100 300 W 108 324 14.16
WaveGAN 1 Tesla P1o0 250 W 26 24 10.49
RAVE 1 TITAN V 250 W 168 42 18.35
SampleRNN 1 GTX TITAN X 250 W 168 42 18.35
SING 4 Tesla P1oo 250 W x 4 52 52 22.72

Table 3: Approximated energy consumption for training several state-of-art generative au-
dio models. Power is expressed in Watts and energy in kWh.

Consumption IbsCOz2eq kgCOzeq
Air travel, 1 passenger, NY <+ SF 1984 899.9
Human live, avg, 1 year 11023 4999.9
American live, avg, 1 year 36156 16400.1
Car, avg incl. Fluel, 1 lifetime 126000 57152.6

Table 4: Estimated COz2 emissions from familiar consumption, from Strubell, Ganesh, and
McCallum, 2020b

As we can see, the energy consumption of training neural synthesis models
ranges from 24 kWh to 5529.6 kWh, and the corresponding carbon footprint esti-
mation from 10.49 kgCO,eq to 2416.5 kgCO,eq. To provide clearer comparisons,
we display a set of well-known carbon costs in Table 4 adapted from Strubell,
Ganesh, and McCallum, 2020b in our metric system (i.e. 1 lbs = 0.45359237 kg).

2 https:/ /www.carbonfootprint.com

https://www.carbonfootprint.com/docs/2018_8_electricity_factors_august_2018_-_online_sources.pdf

4.3 PROPOSED METHODOLOGY

First, we can clearly see that the carbon cost of all of the training procedures is
quite high and should not be overlooked. Second, the particular example of Juke-
box questions the effectiveness and worthiness of such extensive training, as it is
almost on par with the emissions of a human being for a whole year. Furthermore,
these estimations do not include the total amount of energy used upstream to train
and test all the different versions to find adequate architectures and configurations,
or any other ablation studies. It only considers the baseline model as published,
generally used as is in the publication.

To confirm that our predictions are close to the real energy demand, we measure
the consumption of training SING (auto-encoder, sequence generator, and fine-
tuning) on a single TITAN X with the same configuration as the original paper.
We use Carbontracker Anthony, Kanding, and Selvan, 2020 to predict the energy
consumption of the whole learning process by only computing one epoch and
multiplying it by the number of epochs from the paper. We found out the training
consumes 64.8 kWh, which is slightly higher than our initial estimation of 52 kWh,
but stays within the same range.

At this point, we believe that comparing models purely on the basis of these esti-
mations is questionable, and argue that the real energy should have been recorded.
Moreover, the estimations presented in Table 3 are linearly dependent on the train-
ing time, which is itself linearly dependent on the number of epochs before con-
vergence and thus on the accuracy of the model. In other words, although heavy
models trained on large datasets may consume more, they are often more accurate,
but is this gain worth the additional energy consumption? As a result of this rea-
soning, we advocate using a multi-criteria evaluation based on Pareto optimality
(Section 3.3) to find the best compromise between quality and energy consump-
tion, which is the purpose of the next section.

4.3 PROPOSED METHODOLOGY

As we just discussed, although heavy models trained on large datasets emit more
carbon, they are often more accurate. Therefore, we propose a new methodology
that considers the best trade-off between quality and energy consumption. In the
following, we rely on our previous estimations and start with an inter-model study
(e.g. different neural synthesis models), and then conduct an intra-model study
(e.g. same models but alternative configurations) on the Waveflow model.

4.3.1 Inter-model study

As discussed earlier, measuring the quality of generative models remains a daunt-
ing task. The plurality of metrics used in the literature (Section 3.1) comes with
the diversity of architectures proposed (Section 2.3). The most popular and rel-
evant measure across the audio generation literature is the MOS, as exposed in

55

56

TOWARDS A NEW METHODOLOGY

Section 4.2. Hence, the first part of this study consists in gathering all the MOs
from the literature we dispose of. As SampleRNN and GANSynth use pairwise
comparison instead of MOS, we withdraw them from the study. We also exclude
Jukebox, that only uses objective reconstruction scores for its evaluation. We sum-
marize in Table 5 the MOS of the models MOSy and those of the ground truth
MOSgT reported in each original paper. As models are compared across differ-
ent experimental setups, we propose to compute the %MOS = MOSMm /MOScT
for our quality metric, to have a relatively reasonable point of comparison. Note
that the better the quality, the closer %MOS is to 1. We also add the number of
parameters used by each model to infer new samples according to their original
architectures for the inference efficiency metric.

Model MOSgT MOS\n %MOS Param.
FloWaveNet 4.67 3.95 085 186 M
RAVE 4.21 3.01 0.71 178 M
SING 3.86 3.55 0.92 64 M
WaveGAN 2.3 3.9 0.59 89 M

Table 5: Comparative Mean Opinion Scores ratios (%MOS) and number of parameters of
several state-of-the-art neural audio synthesis models.

We display in Figure 277 the multi-objective space, where we plot the Pareto front
for training (up) and for inference (bottom). We reverse the quality axis to have the
optimal point at the bottom left corner for both fronts. Therefore we can highlight
models that are Pareto efficient (with a red circle). On the one hand, we see that
RAVE, SING and WaveGAN are Pareto optimal in training, whereas FloWaveNet
is not (as it is dominated by SING and RAVE). Note that we would have the same
conclusions if we had considered the energy cost instead of the carbon cost, as it is
linearly related by the carbon intensity factor. On the other hand, WaveGAN and
FloWaveNet are both dominated by RAVE and SING in inference, which indicates
that those optimal models are to be preferred for the deployment of corresponding
audio applications on a large scale, depending on whether we are looking for more
quality (SING) or more efficiency (RAVE). Since our goal is to propose a new tool
for sustainable evaluation of models, we did not retrain the models to make our
work more consistent and greener. Therefore, we would like to clarify that we rely
on approximations and hand-crafted measures of quality; these figures support
our overall approach, and warrants more extensive and reliable analyses.

4.3.2 Intra-model study

Since the training energy consumption is highly dependent of the dataset on which
the model was trained on, and the MOS of the experimental setup, we propose to
conduct an intra-model study. Therefore, we rely on a single model that provides

4.3 PROPOSED METHODOLOGY 57

0.51
O Pareto-efficient
W AN

@eo
o
S

0.7 RAVE
3 ©
Frd
'r__u 0.8
> FlowaveNet
I o

0.91 @SING

1.0

0 5 10 15 20 25 30 35 40 45
Efficiency (kgCO,e per training)

0.5

(o) WaveGAN

o
o

o
~

@RAVE

Quality (%MOS)
o
)

o FloWaveNet

o
©

@SING

0 50 100 150 200 250
Efficiency (Parameters in M)

1.0

Figure 27: Example of two Pareto fronts (in red). The objective is to minimize the quality
score (%MOS) along with the energy efficiency of either the training (top) with
the measure of the carbon emission (kgCO,e) per training, or the inference
(bottom) with the number of parameters.

58

TOWARDS A NEW METHODOLOGY

a large number of MOS for a wide range of configurations : WaveFlow (Ping et al.,
2020). We rely on a PyTorch implementation3, and use the same configurations as
the original paper for all of our experiments.

To measure the energy consumption of each of the learning procedure, we train
models on 4 TITAN V with a batch size of 8. As previously, we use Carbontracker
to predict the training energy and carbon cost for each configuration. We compute
the number of iterations per epoch and derive the number of epoch needed since
the original paper does not specify the number of epochs but rather the number of
steps: lighter models (res. channels 64 and 96) are trained for 3M steps, medium
ones (res. channels 128 and 96) for 2M and the heaviest one (res. channels 256) for
1M. We summarize in Table 6 the MOS from the original paper Ping et al., 2020
along with the number of parameters for each of the five configurations studied.
We also include our measurement of the energy Erqin in kWh required to train as
it does not depend on the location of the experiments, and the energy to generate
10 audio clips of 10 seconds at 22.05 kHz on a single TITAN V GPU Eger, in Wh.

Model Param. MOS Eirqin (kWh) Egen (Wh)
WaveFlow 1 (h =8, r = 64) 5901 M 4.26 407.7 1.349
WaveFlow 2 (h =16, r = 64) 5901 M 4.32 437.6 1.382
WaveFlow 3 (h=16,1=96) 1278 M 4.34 725.4 2.382
WaveFlow 4 (h =16, 1 =128) 2225M 4.38 644.8 2.512
WaveFlow 5 (h =16, 1 =256) 86.18 M 4.43 1011.2 3.871

Table 6: Subjective score (MOS) for multiple configuration from Ping et al., 2020 and their
number of parameters. Ei;qin and Egen stands respectively for the amount of
energy required for a whole training, and the amount of energy to produce 100
seconds of raw audio at 22.05 kHz. h is the squeezed height and r the residual
channels, for more information see Ping et al., 2020.

We display in Figure 28 three multi-objective space. The one on the top accounts
for training efficiency, while the two others account for generation efficiency, one
with the number of parameters, and the other with the real on-device energy
consumption. As before, we highlight Pareto optimal models with a red circle. The
multi-objective analysis shows that the third configuration of Waveflow, WF3, is
dominated by others in training. However, it seems like in the inference fronts, this
configuration is Pareto-optimal. If we take a closer look at the difference between
the parameters front and the energy front, we can see that the gaps between the
models are increasing. This justifies that taking into account the energy rather
than counting the number of parameters is highly valuable. Still, in the last energy
front, all models are optimal, which shows that internally to a model, the linear
relationship between accuracy and energy cost might hold.

3 https://github.com/LOSG/WaveFlow

https://github.com/L0SG/WaveFlow

4.3 PROPOSED METHODOLOGY

O Pareto-efficient
4.25 @ WF;
3 4.30
) WF,
E @ [o) WF3
2435
[WF.
>S5 4
] ©)
4.40
@ WFs
4.45
400 500 600 700 800 900 1000
Efficiency (Energy per training in kWh)
4.25 o Wk
x 4.30
¢ | o
= @WF3
2435
S WF
> 4
2 ©
4.40
@WF5
4.45
0 20 40 60 80
Efficiency (Parameters in M)
4.25 @WF1
0 4.30
o @WFZ
£ @V
2435
© WF.
> 4
2 ©
4.40
@WFS
4.45

15 200 25 30 35 40
Efficiency (Energy to generate 100s in Nh)

Figure 28: Representation of three Pareto space for optimizing quality (MOS) and energy
of either the training cost (top) or the inference cost (middle and bottom) of

generative

audio models. WF; stands for WaveFlow i. In red, all optimal solu-

tions, while in red dominated ones.

59

60

TOWARDS A NEW METHODOLOGY

4.4 CONCLUSION

In this chapter, we presented the first comprehensive cartography of evaluation
metrics in the deep audio literature. By collecting specificities from existing gen-
erative audio model papers, we approximate the energy consumption of these
models by considering factors such as hardware and training time. We highlight
the need to link this calculation to the quality of the models and propose using a
new evaluation metric based on Pareto optimality, which gives equal importance
to both model quality and energy consumption. We illustrate this concept through
an inter-model analysis based on well-known neural synthesizer, and an intra-
model analysis focusing on the WaveFlow model. Our results show that this 2D
representation facilitates the overall evaluation of research across multiple objec-
tives, allowing for the rapid identification of optimal Pareto models. Furthermore,
it provides more comprehensive and visual evaluations. As far as we know, this
is the first study on energy consumption for neural audio generation and a pi-
oneering attempt to include energy efficiency in the entire evaluation procedure.
However, we acknowledge that this study is only a preliminary analysis and that
further research is warranted. Indeed, several factors can impact the accuracy of
our results, such as the approximations of training costs and handcrafted metrics
used for quality assessment. Additionally, a denser evaluation with more refer-
ence methods would be beneficial for this evaluation, which will be the focus of
the next chapter.

LARGE-SCALE BENCHMARK EVALUATION

One of the major limitations in understanding the current impact of deep audio
models is the lack of comprehensive benchmark analysis of generative models
for audio. In this chapter, we aim to address this limitation by conducting a full
benchmark analysis of neural vocoders, whose goal is to synthesize waveforms
from spectral representations such as mel-spectrograms (see Figure 29). We aim
to show that our proposed multi-objective Pareto optimality criterion can provide
a more comprehensive comparison of generation quality and energy efficiency
across a large number of models and configurations. In Section 5.1, we describe
the experiments we conducted, and in Section 5.2, we present the results of our
large-scale evaluation.

5.1 NEURAL VOCODERS BENCHMARK
5.1.1 Models

In order to account for the energy cost inside the evaluation of neural vocoders,
we consider six state-of-the-art models belonging to three major families of genera-
tive models discussed in Section 2.3: GAN, NF and diffusion-based models. Within
these groups, we respectively consider MelGAN (Kumar et al., 2019) and HiFi-GAN
(Kong, Kim, and Bae, 2020), WaveGlow (Prenger, Valle, and Catanzaro, 2019) and
WaveFlow (Ping et al., 2020) and, finally, WaveGrad (Chen et al., 2020) and DiffWave
(Kong et al., 2020). The choice of these models was dictated by their impact in
the community and their rather recent introduction. At the time of these experi-
ments, all of these models have been introduced within the previous three years.
Our choice to exclude autoregressive models is due to their prohibitively long

Input audio Output audio
A Mel spectrogramm Neural vocoder A
! l
I
bmmmmmmmmmmm e m e Reconstruction -------------------- !

Figure 29: Scheme of a simplified neural vocoder

61

62

LARGE-SCALE BENCHMARK EVALUATION

inference time (hence rarely used in applications). For each of these six models,
we consider three different configurations: small, medium and large configuration.
Most variants of these architectures were already proposed in the original papers,
while others are our own suggestion following the same logic as in the considered
papers (e.g. channel or depth variations). Here, we present a short description of
those models where we detail the architectures and configurations used.

e MelGAN (Kumar et al., 2019) uses a multi-scale architecture for the discrimi-
nator, with three identical convolutional neural networks operating at three
different time scales (raw audio, 2x and 4x downsampling respectively). The
generator alternates upsampling layers and residual blocks with dilated con-
volutions in order to increase the induced receptive fields and obtain better
long-range audio modeling. In our experiments, we took the default config-
uration proposed in the paper as our medium configuration (4.27M param-
eters), while we propose the large and small configurations based on varia-
tions of the number of channels and residual layers in the generator. The
final small model has 1.03M parameters, and the large has 18.21M.

* HiFi-GAN was proposed by Kong, Kim, and Bae, 2020 as a follow-up to the
MelGAN model. They show that the introduction of a multi-period discrim-
inator in addition to the multi-scale discriminator helps modeling highly
periodic signals. This new discriminator combined with an improved gen-
erator architecture yields state-of-the-art results in spectrogram inversion,
both computationally and perceptually. In our study, we chose to keep the
three configurations proposed by the original paper, namely V1 (13.92M),
V2 (0.92M) and V3 (1.46M) which we use for our large, small and medium
configurations respectively. Although the small and medium versions have
a close number of parameters, they still lead to very different quality. There-
fore we still consider both of these models.

* WaveGrad follows the original diffusion training scheme and was introduced
by Chen et al., 2020, inspired by a U-Net inspired architecture for spectro-
gram to waveform inversion. They show that conditioning the model on a
continuous noise level instead of the discrete iteration index allows the use of
various noise schedules during inference. This reduces the number of denois-
ing iterations down to 6 while still synthesizing high-quality audio signals.
They compare two network size variations: base (15M) and large (23M). We
attempt to consider both, however the large architecture appeared too unsta-
ble in training. Thus, we propose two other configurations based on the base
model (our medium) with a variation of channel dimensions but keeping the
same number of layers (small and large).

* DiffWave proposed by Kong et al., 2020 employs an architecture inspired
by previous works on source separation. Mel-spectrograms are first upsam-
pled to the length of the desired waveform through the action of transposed
2D-convolutions. Then, they employ a WaveNet-like network composed of

5.1 NEURAL VOCODERS BENCHMARK

a stack of layers with residual channels, based on non-causal bidirectional
dilated convolutions. We use the two configurations provided in the original
paper (Base 2.64M and Large 6.91M), and add our own medium configuration
based on varying the size of residual channels.

* WaveGlow (Prenger, Valle, and Catanzaro, 2019) was among the first flow-
based model trained directly by maximum likelihood on waveform data.
They build their model on top of Glow Kingma and Dhariwal, 2018 and
WaveNet, alternating affine coupling layers and 1 x 1 invertible convolutions:
the transformation inside the coupling layer, which they refer to as squeezing
employs a WaveNet-like architecture that takes as input the first half of the
input channels and the mel-spectrogram. As they only propose one imple-
mentation in the original publication, we took the configurations used in
WaveFlow that we present in the following.

* WaveFlow (Ping et al., 2020) extends the previous works on single-architecture
and single-loss flow models. They argue that the application of the (channel-
wise) squeeze operation introduced in WaveGlow may lead to the loss of tem-
poral order information. Instead, they propose to squeeze the input wave-
form x € R™ into an h-row matrix X € R™" and employ 2D dilated
convolutions (with causal constraints enforced on the height dimension).
They tested lots of configurations but only four were used for real evalua-
tion. Among them, we took the three smaller configurations (small 5.91 M,
medium 12.78 M and large 22.25 M) because of training time constraints.

5.1.2 Dataset

We train and evaluate all models on one of the reference datasets in speech gen-
eration, namely the L]Speech dataset (Ito, 2017). It is a publicly available dataset
of 13,100 short audio clips of a single speaker reading passages of different texts,
totaling more than 24 hours of audio data. The passages were selected to include
a variety of different styles and genres, such as poetry, children’s books, and sci-
entific articles. The recordings are in the WAV format and have a sample rate of
22,050 Hz. In our experiments, we apply the preprocessing strategy which is the
most commonly used across the tested models (WaveGlow, MelGan and Wave-
Flow). Hence, after downsampling the data to 16,000 Hz, we keep only the first
N = 2'* samples from each clip and then extract an 8o-bands mel-spectrogram s
from this audio with a FFT of size 2048 and a hop size of 256. We then perform
min-max normalization on each spectrogram s as follows

/ S —mop

S —m—|————F——
Mp —mop

(49)

where the minimum mp = ming, cp s; and maximum Mo = maxs, cp Si are com-
puted across the entire dataset D. Finally, we split the data between training (80%)
and testing (20%) sets.

63

64

LARGE-SCALE BENCHMARK EVALUATION

5.1.3 Training

All models are trained with a maximum time budget of 120 hours on a single
NVIDIA RTX Aso00 GPU. We believe that this training time is a consistent up-
per bound to ensure that all models converge, although certain models such as
diffusion, converge faster than flow models. Furthermore, the choice of using a
single GPU allows both to simplify the energy consumption cost, and also repre-
sent the minimal computational capacities of research institutions. The batch size
is automatically scaled to maximize the GPU memory usage in order to enhance
parallelization and minimize the convergence time. For all models, we use the
ADAM optimizer Kingma and Ba, 2015 and rely on the respective learning rate of
each of the tested models in their original implementations. All code is available
here : https://github.com/ConstanceDws/neural-audio-energy.

5.2 LARGE-SCALE EVALUATION
5.2.1 Monitoring convergence

First, we aim to ensure that all of the evaluated models have converged correctly.
To do so, we rely on metrics from the Speechmetrics® toolbox in order to monitor in-
training convergence. We display the results in Figure 30 for the MOSNet metric
(Lo et al., 2019, which is a neural network predicting the MOS scores, which aims
to emulate MOS scores on speech. We also provide the full range of metrics used
to monitor convergence in Appendix B.

1 https://github.com/aliutkus/speechmetrics

https://github.com/ConstanceDws/neural-audio-energy
https://github.com/aliutkus/speechmetrics

3.1
3.0
29
2.8
2.7
2.6
2.5
24

2.3

3.2

3.0

2.8

2.6

2.4

3.0

2.8

2.6

24

2.2

2.0

1.8

1.6

DIFFWAVE
0 24 48 72 96 120
HIFIGAN
St P N FFANSON R N O
0 24 48 72 96 120
WAVEFLOW
PN S N\\a-/’\
P eaa®
0 24 48 72 96 120

3.25

5.2 LARGE-SCALE EVALUATION

WAVEGRAD

T e e

7.

3.007/

2.75

2.50

2.25

2.001

1.754

1.50+

3.4
3.2
3.0
2.8
2.6
2.4
2.2
2.0
1.8

2.8+

2.6

2.4

2.2

2.0

1.8

I

= large

medium

small
0 24 43 72 9% 120
MELGAN

AM"’".—swh eie
r" D Py

0 24 48 72 9% 120
WAVEGLOW

|

0 24 48 72 9% 120

Figure 30: Mean Opinion Score estimation using MOSNet throughout the training proce-
dure in the validation step computed at the end of each epochs. The x-axis is

the training time in hours.

As we can see on Figure 30, the speed of convergence clearly differs from one
model to another. Some models like WaveGrad tend to reach a plateau quite quickly
after only a few hours of training, while other models such as WaveFlow have a
more steady curve of improvement across the entire training time budget. While
being an excellent indicator for monitoring, the MOSNet estimation is not fully
reliable for perceptual quality evaluation, since it was trained on voice conversion
types of sound instead of generative models samples, which may produce different
types of artifacts.

65

66

LARGE-SCALE BENCHMARK EVALUATION

5.2.2 Synthesis quality

In order to provide a more accurate estimation of perceptual audio quality, we per-
formed a human-based perceptual quality evaluation based on the pymushra®> web
application. Participants were asked to rate the naturalness of sounds, by grading
each samples between 1 ("bad") and 5 ("perfect"). In this analysis, we include both
the ground truth data (from the test set) and each model reconstruction. A total
of 41 participants undertook the complete test, the majority of whom were audio
professionals. We present the results of this MOS evaluation in Table 7, alongside
the STFT reconstruction quality, denoted as Dsrrr. We also compute the Incep-
tion Score (IS), the Activation Maximization Score (AM) and the Fréchet Inception
Distance (FID) using a pre-trained Vggish3 classifier.

Perceptual test - audio quality

Play Pause

SSHRA by Z Fraunhofer

Figure 31: Screenshot of the Mean Opinion Score (MOS) survey.

As we can see, there are large discrepancies between the MOS and Dstrr when
evaluating the generation quality. This underlines the need for human-based eval-
uation, as slight reconstruction artifacts can have a large perceptual impact. In-
deed, although the DiffWave model have the lowest Dsrrr reconstruction error, it
exhibits quite low MOS scores. Overall, the WaveGrad and HiFi-GAN models (all
configuration included) have largely higher MOS scores than other models. On the
other hand, WaveGlow has rather poor MOS results, which could be explained by
the lack of sufficient training time when compared to the original paper. Across

2 https://github.com/nils-werner/pymushra
3 https://github.com/tensorflow/models/tree/master/research/audioset/vggish

https://github.com/nils-werner/pymushra
https://github.com/tensorflow/models/tree/master/research/audioset/vggish

5.2 LARGE-SCALE EVALUATION

Model MOS(1) Dsrer () IS(M) AM() FID ()
Ground truth 4.34 (£0.005) 0 1.0048 4.7590 ~10 >
MelGAN* sMALL 1.37 (£0.004) 0.1496 1.0043 4.8119 3.9202
MelGAN MEDIUM 2.12 (40.007) 0.1199 1.0037 4.7917 1.4035
MelGAN* LARGE 2.22 (£0.007) 0.1146 1.0038 4.7872 1.1023
HiFi-GAN smALL 3.90 (£0.007) 0.0804 1.0042 4.7831 1.0486
HiFi-GAN MEDIUM 3.59 (£0.008) 0.0791 1.0044 4.769 0.4773
HiFi-GAN LARGE 4.12 (+0.007) 0.0712 1.0045 4.7654 0.2232
WaveGrad* sMALL 3.24 (+0.007) 0.0758 1.0047 4.7881 2.0988
WaveGrad MEDIUM 3.66 (1-0.008) 0.0736 1.005 4.7748 1.3816
WaveGrad LARGE 3.59 (£0.007) 0.0709 1.0047 4.778 1.5758
DiffWave sMALL 1.89 (£0.006) 0.0838 1.004 4.7934 4.86
DiffWave MEDIUM 2.18 (£0.006) 0.0725 1.0042 4.7918 5.3131
DiffWave LARGE 2.41 (£0.007) 0.0698 1.0042 4.7949 5.6829
WaveFlow sMALL 1.50 (£0.005) 0.1192 1.0038 4.8041 2.7953
WaveFlow MEDIUM 2.44 (£0.010) 0.1059 1.0037 4.7885 1.2247
WaveFlow LARGE 2.77 (£0.008) 0.1180 1.0038 4.789 1.2211
WaveGlow sMALL 1.07 (£0.002) 0.1518 1.0033 4.8411 8.3917
WaveGlow MEDIUM 1.52 (+0.004) 0.1177 1.0035 4.8143 3.7899
WaveGlow LARGE 1.80 (£0.006) 0.1136 1.0037 4.8092 3.1702

Table 7: Perceptual (Mean Opinion Score) and reconstruction (Dgrpr) qualities of neural
vocoders conditioned on mel-spectrogram. (*) indicate configurations that we sug-
gest in addition to those of the original papers.

all models, it appears that increasing the size of the architecture consistently in-
creases the quality of the corresponding generation, which is coherent with the
current trend in the scientific literature and was expected at this point of the study.
We also plot the correlations between our perceptual results and the three met-
rics from the pre-trained classifier on Figure 32. Surprisingly, we find that AM
and MOS were notably highly correlated, while the other two metrics show less
correlation but still confirm their use in the evaluation of audio generative models.

5.2.3 Energy efficiency

In order to better understand the tradeoff between increased size (and quality)
of the models and their corresponding energetic impact, we compute the num-

67

LARGE-SCALE BENCHMARK EVALUATION

O MelGAN [Wavegrad \/ WaveFlow Sl Vo i
QO HiicaN > Diffwave /\ WaveGlow { ma edum == tane
r=-0.8935606483734693 r=-0.7041916712371933

MOS

AM FID

1.0

1.00325 1.00350 1.00375 1.00400 1.00425 1.00450 1.00475 1.00500
IS

Figure 32: Correlations between quality metrics computed from a pre-trained classifier
and perceptive MOS score.

ber of parameters as well as the number of floating point operations per second
of generated content. We then record the energy for our models to generate 10
audio clips of 10 seconds at 16 kHz on a single NVIDIA RTX Asooo GPU us-
ing the pyJoules package* that estimates energy consumption of the CPU, RAM
and integrated GPU. We also include the Real-Time Factor (RTF) from producing
those samples for both GPU and CPU5. For flows models, we remove the weight
normalization layers as they slow down the audio generation without impacting
the corresponding inference quality. We summarize all of these energy footprint
metrics in Table 8.

By analyzing energy footprint and GFLOPs, we observe significant differences
among various generative models. GANs tend to be highly efficient, while diffu-
sion models have an inference energy cost around 100 times higher. The RTFs also
confirm these conclusions; GANSs are already real-time on CPU, while diffusion-
based models are not yet real-time. It's important to note that these figures depend

4 https://pyjoules.readthedocs.io/en/latest/
5 Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz

https://pyjoules.readthedocs.io/en/latest/

5.2 LARGE-SCALE EVALUATION

Model # Param # GFLOPs Eg., (mJ) RTF GPU/CPU
MelGAN* sMALL 1.03M 1.39 49.08 X 0.008 / 0.01
MelGAN MEDIUM 4.27M 7.02 69.46 X 0.009 / 0.02
MelGAN* LARGE 18.21M 33.98 95.14 X 0.01 / 0.11
HiFi-GAN sMALL 0.928M 2.56 59.28 X 0.008 / 0.02
HiFi-GAN MEDIUM 1.46M 3.22 64.59 X 0.009 / 0.02
HiFi-GAN LARGE 13.94M 40.57 96.61 X 0.010 / 0.04
WaveGrad* sMALL 4.18M 890.44 3398.11 X 0.157 / 2.23

WaveGrad MEDIUM 17.12M 3498.64 5439.46 X 0.247 / 3.82
WaveGrad* LARGE 33.91M 8522.08 7833.62 X 0.348 / 4.45

DiffWave sMALL 1.23M 79.43 769.82 X 0.041 / 1.14
DiffWave MEDIUM 2.62M 255.78 1458.17 X 0.070 / 3.47
DiffWave LARGE 6.89M 899.61 2937.61 X 0.135 / 5.47
WaveFlow sMALL 5.95M 852.85 599.95 X 0.033 / 0.34

WaveFlow MEDIUM 12.86M 3419.39 1102.88 X 0.055 / 0.62
WaveFlow LARGE 22.39M 6063.60 1408.01 X 0.069 / 1.05

WaveGlow sMALL 17.56M 45.84 181.98 X 0.015 / 0.13
WaveGlow MEDIUM 34.76M 116.21 496.72 X 0.019 / 0.21
WaveGlow LARGE 87.73M 333.04 283.07 X 0.028 / 0.51

Table 8: Comparison of computation and energy footprints of various generative models
for speech synthesis conditioned on mel-spectrogram. (*) indicate configurations
that we suggest in addition to those of the original papers.

heavily on the hardware, and results on other types of processors such as embed-
ded devices can be significantly different due to their lighter architectures. We also
confirm that GFLOPs are positively correlated to the energy cost, while the num-
ber of parameters is not a good indicator of efficiency, as shown by the absence of
correlation in Figure 33.

5.2.4 Pareto analysis

In order to fully understand the tradeoff between quality and energy impact, we
display our proposed multi-objective analysis in Figure 34. We separate this analy-
sis between the inference energy costs (top), the hardware-agnostic metric GFLOPs
(bottom). In both cases, we plot different models depending on their correspond-
ing MOS evaluation. We depict the optimal Pareto models, which are circled in
red. A first noticeable result of this study is that our multi-objective analysis pro-
duces coherent results, since we can directly find optimal models with low energy

69

70

LARGE-SCALE BENCHMARK EVALUATION

O MelGAN [Wavegrad \/ WaveFlow Smal Vodi L
. . mal edium e | grge
Q HiiGaN > Difwave A\ WaveGlow 9
r=0.02835060017452813 r=0.980432412809326
6000] 35001
3000
5000
2500
4000
8 = & 20001
S 3000 Q
5 b 1500
2000 o 1000
1000 500
2 A
0 @ o0 A 01
0 20 40 60 80 0 1000 2000 3000 4000 5000 6000 7000 8000
Parameters (M) Energy to generate 100s

Figure 33: Correlation between GFLOPs and (left) the number of parameters of the net-
work, (right) the energy required generate 100s, in m].

consumption but high quality score. A second result of this analysis is that only
few models are included inside the Pareto front, with the vast majority of models
being dominated in both aspects simultaneously. This means that our proposed
multi-objective approach allows to efficiently discriminate between different mod-
els on both their audio quality and energy impact. A third key component of this
study is that the hardware-agnostic metric and the GPU metric are consistent, with
slight shifts showing that energy and GFLOPs are not linearly correlated.

If we take a closer look at the per-model inference tradeoff (by considering only
the same symbol), we can see that it also forms what we can call sub-Pareto front,
from lighter to larger configurations (from light green to dark blue), but it is only
when we look at the big picture that it reveals disparities of generative models
architectures and configurations. Hence, our analysis allows to raise attention and
provide new keys for researchers to evaluate their models within the context of
a multi-objective analysis rather than comparing quality and efficiency separately.
Furthermore, we believe that it is through this research effort that we will be able
to achieve a more sustainable computing.

5.3 CONCLUSION

In this chapter, we proposed a large-scale evaluation of neural vocoders while
integrating their energy footprint. We relied on six stat-of-the-art models and eval-
uate their quality according to three different configurations from lighter to larger
architectures. Then, we proposed a multi-objective analysis of both quality from
human-based evaluation (MOS) and energy consumption. Within this framework,
we showed that this energy footprint must be linked to the model perceptual qual-
ity and that, small models can perform better than larger and more costly mod-
els. We believe this is the first attempt to integrate both energy consumption and
quality in neural audio synthesis models, taking a step forward against blind eval-

5.3 CONCLUSION

O MelGAN [0 Wavegrad Y/ WaveFlow
(O HifiGAN > Diffwave A\ WaveGlow

{ Small Medium e Large HQ Pareto-efficient }
1.04 A
1.51 @ A v
0 2.0 A0
o ° o o
= v ®
2 \4
© 3.0
S o
3.5 o) o 5]
4.0 @ @
102 10° 10°

Efficiency (Energy to generate 100s in mj)

Quality (MOS)
5 b3
<
< >

<

w
w
(]
o
5]

®

10t 10? 10°
Efficiency (GFLOPs per second)

=
oA
E)

Figure 34: Representation of Pareto Frontier for efficiency vs quality. The objective is to
maximize the quality (MOS) and minimize the energy cost of inference (top)
and the number of GLFOPs (bottom).

uations that only take into account audio quality. This, in the future, can become
increasingly important, since lightweight models are fundamental for real-time
embedded systems. It should be noted that our approach is generic and could be
applied to any type of model or input data.

71

PERSPECTIVES : LOWERING THE ENERGY COST

In the previous chapters, we have proposed a new methodology to put compu-
tational costs at the same level as quality and we have conducted a validation of
these concepts trough a large-scale evaluation of neural vocoders. In this chapter,
we intend to lower the inference cost of those networks by applying compression
techniques through the use of quantization. First, we present the motivation of
this technique in Section 6.1 and expose its formalism in Section 6.2. Second, we
run experiments on our neural vocoders benchmark and apply the method of
quantization-aware training in Section 6.3. Third, we conclude this chapter with a
discussion on the possibilities to embed these systems, which can be valuable for
audio synthesis, and present other types of compression techniques in Section 6.4.

6.1 MOTIVATIONS

In deep learning, there are several ways to compress neural networks (Menghani,
2021). Quantization is one of these techniques and consists in reducing the pre-
cision of a model weights and activations. This is typically done by storing the
model parameters as lower-precision numbers, such as 16-bit or 8-bit integers in-
stead of 32-bit (or 64-bit) floating-point numbers. The benefits of this quantification
is that it leads to more efficient memory usage and computation time, as lower bit-
precision implies fewer bits to store and manipulate. Hence, this and can also
directly lead to a reduction in energy consumption. Additionally, faster inference
time is also beneficial for real-time applications like audio synthesis. By reducing
the computational requirements of the model, quantization allows the model to
be more easily deployed on embedded devices, making it possible to create more
powerful tools for audio synthesis.

One of the main inconvenient of quantized neural networks is that they suf-
fer from a loss of performance compared to full precision networks. Indeed, re-
ducing the bit-precision of the weights and activation introduces quantization er-
rors, which can degrade the performance of the network. Also, the energy savings
from using quantized neural networks can depend on the specific application and
the details of the implementation. In some cases, the trade-off between accuracy
and efficiency might even worsen, and the energy savings may not be significant
enough to justify the use of quantized neural networks. Therefore, our proposed
methodology based on Pareto optimality could help us find suitable models for a
given task and will be the subject of our experiments in the following.

73

74

PERSPECTIVES : LOWERING THE ENERGY COST

Quantized Value

A

xmam

>
Floating Point Value

\4

Figure 35: Example of quantization, where the continuous values are clamped between
Xmin and Xmax. These values are mapped to discrete values in the range
[0,2Y — 1] where here, b = 3. Figure from Menghani, 2021.

6.2 FORMALISM

Formally, let us consider a floating-point value x € [Xmin, Xmax] , that we want to
quantize to b-bit integer x4 € [0,2° —1]. The quantization process is done using
the formula

quantize(x) = xq = round (%x + z) (50)

where s is a positive floating-point value called the scale, and z is an integer
called the zero point. The scale s determines the range of values that can be repre-
sented by the quantized values, and is defined by

_ Xmax — Xmin

26 1 (51)

The zero point z is an integer, which defines what quantification value is as-
signed to x = 0.0. It is chosen to ensure an equal spacing between the quantization
levels within the range of floating-point values. Then, the dequantization process
transforms the value x4 back to a floating-point value x such that

dequantize(xq) = x = s(xq —z) (52)

An example of quantization is shown in Figure 35.

6.2.1 Types of quantization

There are three main types of quantized neural networks available in PyTorch,
which is our main development framework

63 APPLICATION TO NEURAL VOCODERS

1. Dynamic quantization: only the weights are quantized in the training, while
activations are quantized during inference, which is useful for models such
as LSTM, where the execution time is dominated by loading weights from
memory rather than computing the matrix multiplications.

2. Static quantization: both weights and activations are quantized before infer-
ence. Thus, this requires calibration with a representative dataset to opti-
mize quantization parameters (scale and bias). This is typically used for CNN
where both memory and computation savings are important.

3. Quantization Aware Training (QAT): this is a method that takes into account
the effects of quantization during training, resulting in higher accuracy com-
pared to other quantization methods. In QAT, all calculations are done in
floating point, with fake quantization modules simulating the effects of quan-
tization by clamping and rounding from this operation

x = dequantize(quantize(x)) (53)

After training, weights and activations are quantized, with CNNs being a
typical use case.

For more details on quantization, please refer to the supporting web page"’.

63 APPLICATION TO NEURAL VOCODERS

Quantization has not yet been widely applied to generative models. However, a
few studies in the field of computer vision have demonstrated its potential to
significantly reduce model size while maintaining a high level of quality (Andreev,
Fritzler, and Vetrov, 2021; Wan et al., 2020). Despite this promising research, there
have been no studies on the use of quantization for generative models for audio
synthesis. Therefore, this is a first effort in the literature to explore the potential of
this technique for audio synthesis.

6.3.1 Experiments

First, we rely on our benchmark of neural vocoders from the previous chapter as
a baseline and try to apply static quantization. Indeed, most of our networks use
CNN and, thus, are not suitable for dynamic quantization. In Table 9, we show the
gains in memory size of performing quantization in int8 on neural vocoders. As
we can see, quantization is able to reduce the memory size by a factor of approx-
imately 4. Quantization is usually believed to speed up inference by a factor of
2-4 (Krishnamoorthi, 2018), depending on the hardware, so we also tried to com-
pute potential gains in inference speed. Unfortunately, the quantization back-end

1 https://pytorch.org/blog/introduction-to-quantization-on-pytorch/

75

https://pytorch.org/blog/introduction-to-quantization-on-pytorch/

76

PERSPECTIVES : LOWERING THE ENERGY COST

in PyTorch is still in development and we found out that it was limited to sim-
ple models based on a succession of simple layers. More advanced models, such
as our neural vocoders, have intricate layers that are currently not supported by
Pytorch quantization. This means that we were not able to use quantized models
from our benchmark in inference, and thus to measure the latency improvements
they may offer. However, as the feature is still under development, it is likely that
it will be improved in the coming months, allowing the use of quantized models
in more complex cases.

Model Size fp32 Size int8
MelGAN* sMALL 4.2MB. 1.1MB.
MelGAN MEDIUM 17.1MB. 4.3MB.
MelGAN* LARGE 72.9MB. 18.3MB.
HiFi-GAN MEDIUM 3.8MB. 1MB.
HiFi-GAN sMALL 5.9MB. 1.5MB.
HiFi-GAN LARGE 55.8MB. 14.1MB.

WaveGrad* sMALL 16.8MB. 16.3MB.
WaveGrad MEDIUM 42.5MB. 41.1MB.
WaveGrad* LARGE 68.5MB. 66.1MB.

DiffWave sMALL 5MB. 1.4MB.
DiffWave MEDIUM 11MB. 2.8MB.
DiffWave LARGE 27.6MB. 7.1MB.
WaveFlow sMALL 24MB. 6.3MB.
WaveFlow MEDIUM 51.7MB. 13.2MB.
WaveFlow LARGE 89.8MB. 22.8MB.

WaveGlow sMALL 70.6MB. 18MB.
WaveGlow MEDIUM 139.4MB. 35.3MB.
WaveGlow LARGE 351.7MB. 88.5MB.

Table 9: Impact on memory sizes of quantizing both weights and activations of pervasive
neural vocoders. (*) indicate configurations that we suggest in addition to those
of the original papers.

Despite those challenges, we wanted to investigate the impact of applying a
fake quantization technique during the training, as developed in the QAT method.
Specifically, we were interested in the effect this method could have on generative
audio models and the potential loss of precision resulting from the quantization/d-
equantization process. Therefore, we keep our training routine of Section 5.1, with
the exact same configurations and adapt it to automatically insert the fake quan-
tization module between all layers of the models thanks to the PyTorch-lightning

https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.callbacks.QuantizationAwareTraining.html#pytorch_lightning.callbacks.QuantizationAwareTraining
https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.callbacks.QuantizationAwareTraining.html#pytorch_lightning.callbacks.QuantizationAwareTraining

63 APPLICATION TO NEURAL VOCODERS

Callback module. We also reduce the training time to 2 days only (instead of 5
days). This not only allows for faster experimentation, but also has the advantage
of reducing energy consumption.

6.3.2 Results

During our experiments, only the DiffWave model achieved stable training with
quantization modules and, thus, will be the focus of the following analysis. We
depict in Figure 36 the evolution of the validation loss from the different trainings.

0.131 = |arge medium small === fakeQ

0.121
0.111
0.101
0.09 \

0.08~\\
00Tl SSsssssses

Validation loss

0.06 TTT—— —

Time (in hours)

Figure 36: Evolution of the validation loss from the diffwave model when train in full
precision (plain lines) and with fake-quantization modules (dotted lines).

As expected, the validation loss is higher in all three configurations using fake
quantization modules rather than the full precision model. However, when looking
at the monitored metrics during training from Figure 37, we were surprised to find
that applying these fake quantization modules improves metrics such as MOSNet
and the Narrow Band PESQ (NBPESQ) metric. This can be interpreted by the fact
that adding these fake quantization modules simplifies the learning problem, as it
implicitly turns regression (continuous) into classification (discrete), which could
allow the model to better generalize and improve overall performance.

To confirm our intuition, we compare the spectrogram of the original signal
(Figure 38a) to the full-precision (Figure 38b), and fake-quantized (Figure 38c)
reconstructions signals. As we can see, although the fake quantization model has
more background noise the overall spectrogram is visually closer to the original
one. This confirms that fake quantized model can rightfully obtain higher MOSNet
and NBPESC scores. Through a listening inspection, we can hear that results are
more blurry, but the voice comprehensibility seem enhanced. Unfortunately, due
to issues with the PyTorch Backend, we were unable to generate samples using the
full quantized model following this QAT. However, based on this promising pre-
liminary results, we believe it is worthwhile to continue exploring this approach,

77

https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.callbacks.QuantizationAwareTraining.html#pytorch_lightning.callbacks.QuantizationAwareTraining
https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.callbacks.QuantizationAwareTraining.html#pytorch_lightning.callbacks.QuantizationAwareTraining
https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.callbacks.QuantizationAwareTraining.html#pytorch_lightning.callbacks.QuantizationAwareTraining

78

PERSPECTIVES : LOWERING THE ENERGY COST

MOSNET NBPESQ
N
- 2.5
3.2 POTeg
4
3.0 Z 2.0
v
2.8 Il
13 large
2.6 ’ 1.0 medium
2.4 05 small
) fakeQ
2.2
0.01
2.0
0 24 48 0 24 48
SDR SPECTRAL DISTANCE
0.0 0.221
0.201
-0.5
0.181
-1.0
0.16 14
-15 0.141 4
-2.07 L\ 0.121
\4“vn\\
-2.5 \,/‘\\w.:k'\‘f-o.g »_v,.“’"‘—n. 2, / 0.10
SRR/
‘ ‘ 0.081
0 24 48 0 24 48

Figure 37: Evolution of the metrics computed in the validation phase of the diffwave
model in Quantization-Aware Training mode. In plain lines, results from the
full precision model and in dotted lines, results from the fake quantized model.
The x-axis represents the time (expressed in hours).

and we are optimistic that with further development, we will be able to produce
high-quality samples using quantized model.

64 EMBEDDING DEEP GENERATIVE AUDIO

As discussed earlier, one of the goal of quantization approaches is that we could
obtain deep audio models that fit on embedded hardware, such as Arduino and
Raspberry Pi, both of which are popular platforms for building electronic projects.
Arduino are microcontroller boards, which means that they are designed to ex-
ecute a single program repeatedly. They are well-suited for projects that require
real-time processing or interaction with physical devices such as sensors or motors.
Raspberry Pi, on the other hand, is a single-board computer, which means it is a
fully-functional computer that can run an operating system and execute multiple
programs. As a result, Raspberry Pi is better suited for projects that require more
computing power or that need to run more complex software. Both platforms have
very strong computational constraints, as summarized in Table 10?.

2 These properties were gathered from the user manuals and the FLOPS are inferred from the listed
CPU properties

64 EMBEDDING DEEP GENERATIVE AUDIO

Time

(a) Original

Time

(b) Reconstruction (Full Precision)

Time

(c) Reconstruction (Fake Quantized)

Figure 38: Representation of the spectrograms from the original and reconstruction from
(b) the full precision network and (c) the model with fake quantized modules.

In those specifications, the clock frequency is a measure of the speed at which
the device can execute instructions, the GFLOPS is a measure of the number of
floating-point operations that can be performed in one second, RAM is the mem-
ory used for temporary storage of data currently in use by the device, and the
Drive is a type of storage device used for long-term storage of data.

When comparing those properties to the GFLOPs from Table 8, it appears that
our neural vocoder models are still quite far from being able to run on highly-
constrained hardware such as Arduino. Specifically, the memory and FLOPS usage
is significantly higher than what the platform can handle. However, it seems that
all models could fit on a Raspberry Pi in terms of size, but they may not be able
to produce real-time sound synthesis. For example, the Mel GAN medium model
uses 7.02 GFLOPs to generate 1 second of audio. On a Raspberry Pi 4, it would
take 7.02/9.92 ~ 0.7 seconds, which allows to perform real-time synthesis. Other
models such as Hifi-GAN large would take 40.47/9.92 ~ 4 seconds to produce 1

79

8o

PERSPECTIVES : LOWERING THE ENERGY COST

Model CPU FLOPS RAM Drive
Arduino
ATMega1280 16 MHz 128K. 8 KB 128 KB
ATMega2560 32 MHz 256K. 16 KB 256 KB
Raspberry Pi
RPi 1B 700 MHz 213M. 512MB 256MB
RPi 2B 900 MHz 1.47G. 1GB 1GB
RPi 3B 1.2 GHz 3.62G. 1GB 32GB

RPi 4B 1.5/1.8 GHz 9.92G. 1-2-4-8GB Micro-SD

Table 10: Properties of different Arduino micro-controllers and Raspberry Pi embedded plat-
form

second of audio, making them unusable in real-time setups. Quantization could
potentially address this issue as it allows for a 2-3x reduction in inference time, but
the corresponding Million Instructions per Second (MIPS) (i.e. the similar metric
but for integers) depend on the types of operations and algorithm optimization,
thus making it difficult to compute theoretical inference times.

6.5 CONCLUSION

In this chapter, we attempted to apply quantization to both the weights and ac-
tivations of our neural vocoder benchmark, but we were limited by the PyTorch
quantization back-end, which does not support the use of complex models such
as our neural vocoders. Then, we explored the impact of using a fake quantization
technique during training on the diffwave model and found that it considerably
improved the comprehensibility of the voice, while adding background noise to
the generated samples. Finally, we discussed the possibility of embedding these
models in constrained architectures such as Arduino and Raspberry Pi, by test-
ing their properties against the requirements of the architectures. We believe that
further development of this quantization approach could produce high-quality
samples, while lowering the cost of inference and increasing the potential for em-
bedding deep audio models into highly constrained platforms.

CONCLUSION

To conclude our work, we begin by summarizing all of our contributions in Section
7.1. We then present the various axes for future work arising from our research in
Section 7.2. Finally, in Section 7.3, we provide an overall conclusion on the work
conducted throughout this thesis.

7.1 SUMMARY AND MAIN CONTRIBUTIONS

First, in Chapter 1, we introduced the manuscript by discussing the challenges
raised by the widespread adoption of digital technologies, specifically Al algo-
rithms, on the environment. In this work, we focused on neural audio synthesis
and the specifics of generative models for audio that are now widely used for voice
and music applications but have not yet been assessed in terms of computational
costs and environmental impact. In 2, we exposed the core concepts or machine
learning starting from the general theoretical notions up to more sophisticated
tools such as generative models and their application to audio synthesis. We in-
dicated the need of having robust and adequate evaluation measures to compare
the performance of models and presented an exhaustive review of quality and ef-
ficiency metrics used in the literature in 3. We ended this background theory part
with a presentation of multi-objective evaluation from Pareto, a core component
we use in the manuscript.

We presented our first key contribution in Chapter 3, where we performed a
large-scale analysis of the use of evaluation metrics in the generative audio models
literature. Since carbon emissions were never addressed before, we evaluated the
energy cost (and thus the carbon cost) of training state-of-the-art models by consid-
ering factors such as hardware and training time. We emphasized the importance
of linking energy footprint with model quality and proposed a new methodology
based on Pareto optimality, which considers both factors equally. Our results val-
idated that this 2D representation makes it easier to identify optimal models on
both criteria simultaneously.

Then, in Chapter 5, we exposed our second key contribution with a large-scale
experiment on generative models for voice generation, known as neural vocoders.
We considered six state-of-the-art models using three different configurations and
developed a consistent environment to run our experiments and monitor train-
ing convergence. We performed a human-based perceptual quality evaluation and
computed a wide range of quality and efficiency metrics. Through the application
of our multi-objective method, we founded that our approach allows for the iden-

81

82

CONCLUSION

tification of optimal models facilitating the overall evaluation of research across
multiple objectives simultaneously.

Finally, in Chapter 6, we presented one perspective to lower the energy cost
based on quantizated neural networks. We explored the impact of using fake quan-
tization modules during training and found that it can considerably improve the
intelligibility of the voice while adding background noise to the generated sam-
ples. We also discussed the possibility of embedding these models in constrained
architectures.

7.2 FUTURE WORKS

In future works, it would be interesting to expand the scope of our evaluation
and include a wider range of generative audio models and applications, such as
unconditional generative models and other types of audio signals other than voice.
Additionally, to further validate the results from quantization on neural vocoders,
it would be beneficial to conduct a more in-depth analysis of energy consump-
tion by testing on real embedded hardware and applying our methodology to
find models that maximize quality under the constraints of the target platform.
Similarly, it would be interesting to scrutinize the energy savings of other com-
pression techniques, such as pruning, as a follow-up of our work Esling et al.,
2020a. A possible experiment could be to evaluate the impact of combining these
two compression techniques on the Pareto optimality of neural audio synthesis.
Furthermore, one other potential topic of interest is the exploration of newer neu-
ral network architectures, such as spiking neural networks, that have the potential
to consume a largely smaller amount of energy. However, it is important to keep
in mind the potential rebound effect which can offset the energy savings.

As we highlighted along this thesis, the evaluation of generative audio models
is a complex task that should take into account both the quality of the generated
audio and the energy consumption of the model. However, we focused on the
training and inference costs of deep neural networks, omitting the entire life cycle
of the technology, specifically the cost of producing the hardware. This includes,
graphics processing units for training and embedded systems for inference. This
aspect represents a significant contributor to the environmental impact of Al Fur-
ther experiments on this aspect would be worth conducting to fully understand
and mitigate the environmental impacts of deep generative models for audio syn-
thesis.

7.3 OVERALL CONCLUSION

7.3 OVERALL CONCLUSION

The goal of this thesis was to evaluate the environmental impact of deep genera-
tive models for audio synthesis, specifically by examining the energy consumption
of some generative models and integrate those measurements in the evaluation
procedure. While the field of audio synthesis alone is not a major environmen-
tal concern, it is crucial to work towards more sustainable practices. Therefore,
we hope that our proposed evaluation method and results will provide a useful
guide for future researches in this field. The multi-objective evaluation approach
presented in the thesis is intended to be adaptable to other scientific fields, and to
encourage more environmentally-friendly research.

83

Part II1

APPENDIX

APPENDIX

87

APPENDIX

88

Model

Quality
MOS | Recon | LL | 1S | FID | NDB

RTF 7 Param 7 Train. Time 7 Size 7 FPO

Efficiency

DDSP

Diffwave

FloWaveNet

GanSynth

Hifi-GAN

Jukebox

MelGAN

NSF

Parallel WaveNet

RAVE

SampleRNN

Sashimi

SING

WaveFlow

WaveGan

WaveGlow

WaveGrad

WaveNet

WaveNet AE

Table 11: Occurrences of evaluation metrics used in neural audio synthesis research literature.

APPENDIX

89

90 APPENDIX

DIFFWAVE

SPECTRAL DISTANCE NBPESQ
0.22
251
0.20
0.18 2.0
016 1.51 = large
0.14 .
Lol medium
0.12 :
small
0.10 051
0.08
. : : . . 0.0 : ; ; : :
0 24 48 72 % 120 0 24 48 72 96 120
SDR SAR
0.0 .
0.0 L TR R
P/MM
—-0.51 —2.57
-1.0 —5.01
-7.51
-15
~10.01
-2.0 _125]
_ { ~15.01
2.5 \N"W;‘\’"\ ot ﬂ/\.,'
a0 o> "\V/ ~17.54
0 24 48 72 96 120 0 24 48 72 96 120

Figure 39: Evolution of the metrics computed in the validation phase of the diffwave
model training. The x-axis represents the time (expressed in hours).

APPENDIX

WAVEGRAD

SPECTRAL DISTANCE NBPESQ
0.301 3.0 eesEmm——
0251 2-5’/
0.20 2'07} = large
151 medium
0-15'\ small
\ 1.0
0101 N ‘
= = - 0.5
0 24 48 72 9% 120 0 24 48 72 96 120
SDR SAR
-1.00 0.0 e —
4
-1.25 —25
-1.50 —5.01
~1.754 =7.51
—2.001| ~10.01
-2.257] —-12.51
W
-2.50 V‘\\'\"r‘ WY o Zilhad i | - 1
dhaad) T TR T I | 15.0
e SN VIPn (W s
0 24 48 72 96 120 0 24 48 72 9% 120

Figure 40: Evolution of the metrics computed in the validation phase of the wavegrad
model training. The x-axis represents the time (expressed in hours).

92 APPENDIX

MELGAN

SPECTRAL DISTANCE NBPESQ
2.25
0.401 2.00
0.351 175
0.301 1.50
\ 1.251]
0.25)
‘ 1.00 f
0.20
0.75 \‘
0.15 1 .
0.50
0 24 48 72 96 120 0 24 48 72 96 120
SDR SAR
_2.0’
M 4 M
4 v
_2.5’
Jf
-3.01 {
-8 |
_3.5’
|
—a0] -10 /
—4.5 -12
0 24 48 72 96 120 0 24 48 72 96 120

Figure 41: Evolution of the metrics computed in the validation phase of the melgan model
training. The x-axis represents the time (expressed in hours).

0.16

0.12

0.10

0.08

-2.0

=22

-2.4

-2.

o

-2.8

APPENDIX 93

HIFIGAN

SPECTRAL DISTANCE
0 24 48 72 96 120
SDR

N AU
0 24 48 72 96 120

NBPESQ
3.01
2.5
= large
2.01 .
medium
151 small
1.01
0 24 48 72 9% 120
SAR
) WW
—44
_67
_87
—10]
-12
0 24 48 72 926 120

Figure 42: Evolution of the metrics computed in the validation phase of the hifigan model
training. The x-axis represents the time (expressed in hours).

94

WAVEFLOW

APPENDIX
SPECTRAL DISTANCE
0.40
0.35
0.30
0.25
i
\
0.20
0.15
0.10 s . . T T
0 24 48 72 96 120
SDR
2
o/
2 eeemsseeo o
-4
“6
_8 |
-10
-12
-14
0 24 48 72 96 120

NBPESQ

2.50

2.254

1.751 large
1.501 medium

1.251 small
1.001

0.754

SAR

P A “\F/'\“i“\'

—101
—121
—144

~16

Figure 43: Evolution of the metrics computed in the validation phase of the waveflow

model training. The x-axis represents the time (expressed in hours).

APPENDIX 95

WAVEFLOW

SPECTRAL DISTANCE NBPESQ
2.50]
0.40
2.251
0.35
2.00]
0.30
1.751 large
0.25 Y 1.50 medium
0.20 1.251 small
0.15 1.00
0.10 : : : : : 0-75 ‘ : , ‘ :
0 24 48 72 96 120 0 24 48 72 96 120
SDR SAR
2 —21
e ba W .
o '\ ol PP S o N
-2 \\"\f—w" — s] -6
_4 _8,
-6 " ~101
-8
_12,
-10
Z14]
-12
_161
-14
0 24 48 72 96 120 0 24 43 72 9% 120

Figure 44: Evolution of the metrics computed in the validation phase of the waveglow
model training. The x-axis represents the time (expressed in hours).

BIBLIOGRAPHY

Andreev, Pavel, Alexander Fritzler, and Dmitry Vetrov (2021). “Quantization of
Generative Adversarial Networks for Efficient Inference: a Methodological
Study.” In: (cit. on p. 75).

Anthony, Lasse F. Wolff, Benjamin Kanding, and Raghavendra Selvan (2020). “Car-
bontracker: Tracking and Predicting the Carbon Footprint of Training Deep
Learning Models.” In: arXiv (cit. on pp. 6, 45, 55).

Aouameur, Cyran, Philippe Esling, and Gaetan Hadjeres (2019). “Neural drum
machine: An interactive system for real-time synthesis of drum sounds.” In:
Proceedings of the 10th International Conference on Computational Creativity, ICCC
2019, pp. 92—99 (cit. on p. 10).

Bazin, Théis and Gaétan Hadjeres (2019). “NONOTO: A model-agnostic web in-
terface for interactive music composition by inpainting.” In: Proceedings of the
10th International Conference on Computational Creativity, ICCC 2019, pp. 89-91
(cit. on p. 10).

Bengio, Yoshua, Patrice Y Simard, and Paolo Frasconi (1994). “Learning long-term
dependencies with gradient descent is difficult.” In: IEEE transactions on neural
networks 5 2, pp. 157-166 (cit. on p. 24).

Briot,] P, G Hadjeres, and F D Pachet (2019). Deep Learning Techniques for Music
Generation. Computational Synthesis and Creative Systems. Springer Interna-
tional Publishing. 1sBN: 9783319701622 (cit. on p. 9).

Brown, Tom B. et al. (2020). “Language models are few-shot learners.” In: Advances
in Neural Information Processing Systems 2020-Decem (cit. on p. 5).

Caillon, Antoine and Philippe Esling (2021). “RAVE: A variational autoencoder for
fast and high-quality neural audio synthesis.” In: (cit. on pp. 31, 53).

Che, Tong, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li (2017).
“Mode regularized generative adversarial networks.” In: 5th International Con-
ference on Learning Representations, ICLR 2017 - Conference Track Proceedings,
pp- 1—13 (cit. on p. 40).

Chen, Ling Hui, Zhen Hua Ling, Li Juan Liu, and Li Rong Dai (2014). “Voice con-
version using deep neural networks with layer-wise generative training.” In:
IEEE/ACM Transactions on Audio Speech and Language Processing 22.12, pp. 1859~
1872 (cit. on p. 10).

Chen, Nanxin, Yu Zhang, Heiga Zen, Ron]. Weiss, Mohammad Norouzi, and
William Chan (2020). “WaveGrad: Estimating Gradients for Waveform Gener-
ation.” In: pp. 1-15 (cit. on pp. 34, 61, 62).

Cho, Kyunghyun, Bart van Merriénboer, Dzmitry Bahdanau, and Yoshua Bengio
(2014). “On the properties of neural machine translation: Encoder-decoder
approaches.” In: Proceedings of SSST 2014 - 8th Workshop on Syntax, Semantics

97

98

BIBLIOGRATPHY

and Structure in Statistical Translation, pp. 103—111. ISBN: 9781937284961 (cit. on
p- 24).

Chowning, John M (1973). “The synthesis of complex audio spectra by means of
frequency modulation.” In: Journal of the audio engineering society 21.7, pp. 526—
534 (cit. on p. 9).

Défossez, Alexandre, Neil Zeghidour, Nicolas Usunier, Léon Bottou, and Francis
Bach (2018). “Sing: Symbol-to-instrument neural generator.” In: Advances in
Neural Information Processing Systems 2018-Decem.Nips, pp. 9o41-9051 (cit. on
PP- 34, 52).

Dhariwal, Prafulla, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford,
and Ilya Sutskever (2020). “Jukebox: A Generative Model for Music.” In: (cit.
on pp. 30, 53).

Donahue, Chris, Julian McAuley, and Miller Puckette (2019). “Adversarial au-
dio synthesis.” In: 7th International Conference on Learning Representations, ICLR
2019, pp. 1-16 (cit. on pp. 31, 53).

Eckel, Gerhard (1995). “Sound synthesis by physical modelling with Modalys.” In:
Proc. ISMA’95, pp. 478—482 (cit. on p. 9).

Engel, Jesse, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris Don-
ahue, and Adam Roberts (2019). “Gansynth: Adversarial neural audio syn-
thesis.” In: 7th International Conference on Learning Representations, ICLR 2019,
pp- 1-17 (cit. on p. 53).

Engel, Jesse, Cinjon Resnick, Adam Roberts, Sander Dieleman, Mohammad Norouzi,
Douglas Eck, and Karen Simonyan (2017). “Neural audio synthesis of musical
notes with WaveNet autoencoders.” In: 34th International Conference on Machine
Learning, ICML 2017 3, pp. 1771-1780 (cit. on p. 34).

Esling, Philippe, Axel Chemla—Romeu-Santos, and Adrien Bitton (2018). “Gener-
ative timbre spaces: Regularizing variational auto-encoders with perceptual
metrics.” In: DAFx 2018 - Proceedings: 21st International Conference on Digital
Audio Effects, pp. 369-376 (cit. on pp. 10, 30).

Esling, Philippe, Ninon Devis, Adrien Bitton, Antoine Caillon, Axel Chemla-Romeu-
Santos, and Constance Douwes (2020a). “Diet Deep Generative Audio Models
With Structured Lottery.” In: Proceedings of the International Conference on Digital
Audio Effects, DAFx 1, pp. 317-324 (cit. on pp. 43, 82).

Esling, Philippe, Naotake Masuda, Adrien Bardet, Romeo Despres, and Axel Chemla-
Romeu-Santos (2020b). “Flow synthesizer: Universal audio synthesizer control
with normalizing flows.” In: Applied Sciences (Switzerland) 10.1, pp. 1—11 (cit. on
p- 10).

Faviola Rodrigues, Crefeda, Graham Riley, and Mikel Lujan (2018). “SyNERGY:
An energy measurement and prediction framework for Convolutional Neural
Networks on Jetson TX1.” In: Proceedings of the International Conference on Paral-
lel and Distributed Processing Techniques and Applications (PDPTA), pp. 375-382
(cit. on p. 42).

BIBLIOGRATPHY

Fukushima, Kunihiko (1980). “Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in position.”
In: Biological Cybernetics 36.4, pp. 193—202 (cit. on p. 3).

Goel, Karan, Albert Gu, Chris Donahue, and Christopher Ré (2022). “It's Raw!
Audio Generation with State-Space Models.” In: pp. 1-23 (cit. on p. 28).

Goodfellow, Ian J., Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio (2014). “Generative
adversarial nets.” In: Advances in Neural Information Processing Systems. Vol. 3.
January (cit. on p. 30).

Griffin, Daniel and Jae Lim (1984). “Signal estimation from modified short-time
Fourier transform.” In: IEEE Transactions on acoustics, speech, and signal process-
ing 32.2, pp. 236—243 (cit. on p. 8).

Gupta, Udit, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien Hsin S. Lee, Gu Yeon
Wei, David Brooks, and Carole Jean Wu (2022). “Chasing Carbon: The Elusive
Environmental Footprint of Computing.” In: IEEE Micro 42.4, pp. 37—47 (cit.
onp. 4).

Henderson, Peter, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and
Joelle Pineau (2020). “Towards the systematic reporting of the energy and car-
bon footprints of machine learning.” In: Journal of Machine Learning Research
21, pp. 1-25 (cit. on p. 4).

Hernandez-Olivan, Carlos, Javier Hernandez-Olivan, and Jose R. Beltran (2022).
“A Survey on Artificial Intelligence for Music Generation: Agents, Domains
and Perspectives.” In: pp. 126 (cit. on p. 10).

Herre, Jiirgen and Sascha Dick (2019). “Psychoacoustic models for perceptual au-
dio coding-A tutorial review.” In: Applied Sciences (Switzerland) 9.14 (cit. on
p- 42).

Heusel, Martin, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter (2017). “GANSs trained by a two time-scale update rule con-
verge to a local Nash equilibrium.” In: Advances in Neural Information Processing
Systems 2017-Decem.Nips, pp. 6627-6638 (cit. on p. 40).

Ho, Jonathan, Ajay Jain, and Pieter Abbeel (2020). “Denoising diffusion proba-
bilistic models.” In: Advances in Neural Information Processing Systems 2020-
Decem.NeurlPS 2020, pp. 1—25 (cit. on pp. 33, 34).

Hochreiter, Sepp and Jiirgen Schmidhuber (1997). “Long Short-Term Memory.” In:
Neural Computation 9.8, pp. 1735-1780 (cit. on p. 24).

Hubel, D H and T N Wiesel (1959). “Receptive fields of single neurones in the cat’s
striate cortex.” In: The Journal of Physiology 148.3, pp- 574-591 (cit. on p. 3).

Ito, Keith (2017). The L] Speech Dataset. URL: https://keithito.com/LJ- Speech-
Dataset/ (cit. on p. 63).

Kendall, Maurice G and Alan Stuart (1953). “The Advanced Theory of Statistics,
Vol. 1: Distribution Theory.” In: Journal of the Royal Statistical Society, Series B
15, pp- 187—236 (cit. on p. 38).

Kilgour, Kevin, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi (2019).
“Fréchet audio distance: A reference-free metric for evaluating music enhance-

99

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/

100

BIBLIOGRATPHY

ment algorithms.” In: Proceedings of the Annual Conference of the International
Speech Communication Association, INTERSPEECH 2019-Septe, pp. 2350-2354
(cit. on p. 40).

Kim, Sungwon, Sang Gil Lee, Jongyoon Song, Jaehyeon Kim, and Sungroh Yoon
(2019). “FloWaveNet: A generative flow for raw audio.” In: 36th International
Conference on Machine Learning, ICML 2019 2019-June, pp. 5852—5860 (cit. on
pp- 32, 53)-

Kingma, Diederik P. and Jimmy Lei Ba (2015). “Adam: A method for stochastic
optimization.” In: 3vd International Conference on Learning Representations, ICLR
2015 - Conference Track Proceedings, pp. 1-15 (cit. on p. 64).

Kingma, Diederik P. and Prafulla Dhariwal (2018). “Glow: Generative flow with
invertible 1x1 convolutions.” In: Advances in Neural Information Processing Sys-
tems 2018-Decem, pp. 10215-10224 (cit. on p. 63).

Kong, Jungil, Jaehyeon Kim, and Jaekyoung Bae (2020). “HiFi-GAN: Generative
adversarial networks for efficient and high fidelity speech synthesis.” In: Ad-
vances in Neural Information Processing Systems 2020-Decem.NeurlPS (cit. on
pp- 31, 61, 62).

Kong, Zhifeng, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro (2020).
“DiffWave: A Versatile Diffusion Model for Audio Synthesis.” In: pp. 1-17 (cit.
on pp. 34, 61, 62).

Krinner, Gerhard et al. (2013). “Long-term climate change: Projections, commit-
ments and irreversibility.” In: Climate Change 2013 the Physical Science Basis:
Working Group I Contribution to the Fifth Assessment Report of the Intergovernmen-
tal Panel on Climate Change 9781107057, pp. 1029—1136 (cit. on p. 1).

Krishnamoorthi, Raghuraman (2018). “Quantizing deep convolutional networks
for efficient inference: A whitepaper.” In: (cit. on p. 75).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey Hinton (2012). “ImageNet Classi-
fication with Deep Convolutional Neural Networks.” In: Neural Information
Processing Systems 25 (cit. on p. 3).

Kumar, Kundan, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen
Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron Courville
(2019). “MelGAN: Generative adversarial networks for conditional waveform
synthesis.” In: Advances in Neural Information Processing Systems 32.NeurIPS
2019 (cit. on pp. 31, 61, 62).

Lacoste, Alexandre, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres
(2019). “Quantifying the Carbon Emissions of Machine Learning.” In: (cit. on
p- 45)-

LeCun, Yann and Yoshua Bengio (1998). “Convolutional networks for images,
speech, and time series.” In: (cit. on p. 24).

Lecun, Y, L Bottou, Y Bengio, and P Haffner (1998). “Gradient-based learning
applied to document recognition.” In: Proceedings of the IEEE 86.11, pp. 2278—
2324 (cit. on p. 3).

Lo, Chen Chou, Szu Wei Fu, Wen Chin Huang, Xin Wang, Junichi Yamagishi, Yu
Tsao, and Hsin Min Wang (2019). “MosNet: Deep learning-based objective

BIBLIOGRATPHY

assessment for voice conversion.” In: Proceedings of the Annual Conference of
the International Speech Communication Association, INTERSPEECH 2019-Septe,
PpP- 1541-1545 (cit. on p. 64).

Lohn, Andrew and Micah Musser (2022). Al and Compute. URL: https://blog.
openai.com/ai-and-compute/ (cit. on pp. 3, 5).

McGinnis, Robert, Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, and
William W. Behren (1973). The Limits to Growth: A Report for the Club of Rome’s
Project on the Predicament of Mankind. Vol. 10. 2. New York : Universe Books,
[1972], p. 295 (cit. on p. 1).

Mehri, Soroush, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain,
Jose Sotelo, Aaron Courville, and Yoshua Bengio (2017). “Samplernn: An un-
conditional end-to-end neural audio generation model.” In: 5th International
Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings,
pp- 1—11 (cit. on pp. 27, 52).

Menghani, Gaurav (2021). “Efficient Deep Learning: A Survey on Making Deep
Learning Models Smaller, Faster, and Better.” In: 1.1, pp. 1-43 (cit. on pp. 73,
74)-

Ning, Yishuang, Sheng He, Zhiyong Wu, Chunxiao Xing, and Liang Jie Zhang
(2019). “Review of deep learning based speech synthesis.” In: Applied Sciences
(Switzerland) 9.19, pp. 1-16 (cit. on p. 10).

Oord, Aaron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu (2016).
“WaveNet: A Generative Model for Raw Audio.” In: pp. 1-15 (cit. on p. 27).

Parzen, Emanuel (1962). “On Estimation of a Probability Density Function and
Mode.” In: The Annals of Mathematical Statistics 33.3, pp. 1065-1076 (cit. on
p- 38).

Ping, Wei, Kainan Peng, and Jitong Chen (2019). “Clarinet: Parallel wave genera-
tion in end-to-end text-to-speech.” In: 7th International Conference on Learning
Representations, ICLR 2019 (cit. on p. 32).

Ping, Wei, Kainan Peng, Kexin Zhao, and Zhao Song (2020). “WaveFlow: A com-
pact flow-based model for raw audio.” In: 37th International Conference on Ma-
chine Learning, ICML 2020 PartF16814, pp. 7662—7672 (cit. on pp. 32, 58, 61,
63).

Prenger, Ryan, Rafael Valle, and Bryan Catanzaro (2019). “Waveglow: A Flow-
based Generative Network for Speech Synthesis.” In: ICASSP, IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing - Proceedings 2019-
May, pp. 3617-3621 (cit. on pp. 32, 61, 63).

Ramesh, Aditya, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen
(2022). “Hierarchical Text-Conditional Image Generation with CLIP Latents.”
In: Figure 3 (cit. on pp. 6, 7).

Ramirez, M A Martinez and] D Reiss (2019). “Modeling Nonlinear Audio Effects
with End-to-end Deep Neural Networks.” In: ICASSP 2019 - 2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 171—
175. ISBN: 2379-190X VO - (cit. on p. 10).

101

https://blog.openai.com/ai-and-compute/
https://blog.openai.com/ai-and-compute/

102

BIBLIOGRATPHY

Renault, Lenny, Rémi Mignot, and Axel Roebel (2022). “Differentiable Piano Model
for Midi-To-Audio Performance Synthesis.” In: Proceedings of the International
Conference on Digital Audio Effects, DAFx 3, pp. 232—239 (cit. on p. 11).

Richardson, Eitan and Yair Weiss (2018). “On GANs and GMMSs.” In: Advances in
Neural Information Processing Systems 2018-Decem.Nips, pp. 5847-5858 (cit. on
PP 40, 41).

Rix, A. W.,, J. G. Beerends, M. P. Hollier, and A. P. Hekstra (2001). “Perceptual
evaluation of speech quality (PESQ) - A new method for speech quality as-
sessment of telephone networks and codecs.” In: ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings 2, pp. 749-752
(cit. on p. 42).

Roads, Curtis (1978). “Automated granular synthesis of sounds.” In: Comput. Mu-
sic J. 2.2, pp. 61-62 (cit. on p. 10).

Rohde, Robert A (2005). Global warming art project (cit. on p. 2).

Rosenblatt, F. (1957). The Perceptron - A Perceiving and Recognizing Automaton (cit.
onp. 3).

Rumelhart, David E, Geoffrey E Hinton, and Ronald] Williams (1986). “Learning
representations by back-propagating errors.” In: Nature 323.6088, pp. 533-536
(cit. on pp. 3, 23).

Salimans, Tim, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen (2016). “Improved techniques for training GANs.” In: Advances
in Neural Information Processing Systems, pp. 2234—2242 (cit. on p. 39).

Schwartz, Roy, Jesse Dodge, Noah A. Smith, and Oren Etzioni (2020). “Green AI”
In: Communications of the ACM 63.12, pp. 54-63 (cit. on pp. 4, 43).

Sevilla, Jaime, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn,
and Pablo Villalobos (2022). “Compute Trends Across Three Eras of Machine
Learning.” In: Proceedings of the International Joint Conference on Neural Networks
2022-July (cit. on p. 4).

Silver, David et al. (2016). “Mastering the game of Go with deep neural networks
and tree search.” In: Nature 529.7587, pp. 484—489 (cit. on p. 3).

Smith III, Julius O (1991). “Viewpoints on the history of digital synthesis.” In:
Proceedings of the International Computer Music Conference. INTERNATIONAL
COMPUTER MUSIC ACCOCIATION, p. 1. ISBN: 1026-1087 (cit. on p. 9).

Sohl-Dickstein, Jascha, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli
(2015). “Deep unsupervised learning using nonequilibrium thermodynamics.”
In: 32nd International Conference on Machine Learning, ICML 2015 3, pp. 2246~
2255 (cit. on p. 32).

Soon, Willie, Sallie L. Baliunas, Arthur B. Robinson, and Zachary W. Robinson
(1999). “Environmental effects of increased atmospheric carbon dioxide.” In:
Climate Research 13.2, pp. 149-164 (cit. on p. 2).

Steffen, Will, Wendy Broadgate, Lisa Deutsch, Owen Gaffney, and Cornelia Lud-
wig (2015). “The trajectory of the anthropocene: The great acceleration.” In:
Anthropocene Review 2.1, pp. 81-98 (cit. on p. 1).

BIBLIOGRATPHY

Strubell, Emma, Ananya Ganesh, and Andrew McCallum (2020a). “Energy and
policy considerations for modern deep learning research.” In: AAAI 2020 -
34th AAAI Conference on Artificial Intelligence, pp. 1393-13696 (cit. on p. 4).

Strubell, Emma, Ananya Ganesh, and Andrew McCallum (2020b). “Energy and
policy considerations for modern deep learning research.” In: AAAI 2020 -
34th AAAI Conference on Artificial Intelligence 1, pp. 1393-13696 (cit. on pp. 44,
54).

Theis, Lucas, Adron Van Den Oord, and Matthias Bethge (2016). “A note on the
evaluation of generative models.” In: 4th International Conference on Learning
Representations, ICLR 2016 - Conference Track Proceedings, pp. 1—10 (cit. on pp. 37,
38).

Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso
(2020). “The Computational Limits of Deep Learning.” In: (cit. on p. 4).

Turing, Alan (1950). “Machinery and Intelligence.” In: Mind 59.236, pp. 433—460
(cit. on p. 3).

Vincent, Emmanuel, Rémi Gribonval, and Cédric Févotte (2006). “Performance
measurement in blind audio source separation.” In: IEEE Transactions on Audio,
Speech and Language Processing 14.4, pp. 1462—1469 (cit. on p. 41).

Wan, Diwen, Fumin Shen, Li Liu, Fan Zhu, Lei Huang, Mengyang Yu, Heng Tao
Shen, and Ling Shao (2020). “Deep quantization generative networks.” In: Pat-
tern Recognition 105 (cit. on pp. 34, 75).

Zhou, Zhiming, Han Cai, Shu Rong, Yuxuan Song, Kan Ren, Weinan Zhang, Yong
Yu, and Jun Wang (2018). “Activation Maximization Generative Adversarial
Nets.” In: 6th International Conference on Learning Representations, ICLR 2018 -
Conference Track Proceedings, pp. 1-24 (cit. on p. 40).

103

104 BIBLIOGRAPHY

	Dedication
	Abstract
	Resume
	Acknowledgments
	Contents
	List of Figures
	List of Figures

	List of Tables
	List of Tables

	Acronyms
	Acronyms

	1 Introduction and motivations
	1.1 The digital anthropocene
	1.2 Computational trends and impacts of AI
	1.2.1 History of AI technologies
	1.2.2 The pursuit of accuracy
	1.2.3 Generative models

	1.3 Sound synthesis
	1.3.1 Music representation
	1.3.2 Synthesis technologies

	1.4 Deep audio synthesis
	1.4.1 Overview
	1.4.2 Challenges

	1.5 Outline

	Background
	2 Background of Machine Learning
	2.1 General approach of machine learning
	2.1.1 Basic definitions
	2.1.2 Model capacity
	2.1.3 Overfitting, underfitting, early stopping
	2.1.4 Types of learning algorithm

	2.2 Neural networks
	2.2.1 Artificial neuron
	2.2.2 Multi-layer perceptron
	2.2.3 Backpropagation
	2.2.4 Recurrent Neural Networks
	2.2.5 Convolutional Neural Networks

	2.3 Deep Generative models
	2.3.1 Auto-regressive models
	2.3.2 Variational Auto-Encoder
	2.3.3 Generative Adversarial Networks
	2.3.4 Flow-based models
	2.3.5 Diffusion-based models

	2.4 Generative audio synthesis

	3 Background on evaluation metrics
	3.1 Measures of quality
	3.1.1 Automatic metrics
	3.1.2 Perceptive metrics

	3.2 Measures of efficiency
	3.2.1 Computation costs
	3.2.2 Energy cost

	3.3 Multi-objective evaluation

	Contributions
	4 Towards a new methodology
	4.1 Distribution of Evaluation metrics
	4.2 Estimations of carbon costs
	4.2.1 Models
	4.2.2 Training costs

	4.3 Proposed Methodology
	4.3.1 Inter-model study
	4.3.2 Intra-model study

	4.4 Conclusion

	5 Large-scale benchmark evaluation
	5.1 Neural vocoders benchmark
	5.1.1 Models
	5.1.2 Dataset
	5.1.3 Training

	5.2 Large-Scale Evaluation
	5.2.1 Monitoring convergence
	5.2.2 Synthesis quality
	5.2.3 Energy efficiency
	5.2.4 Pareto analysis

	5.3 Conclusion

	6 Perspectives : Lowering the energy cost
	6.1 Motivations
	6.2 Formalism
	6.2.1 Types of quantization

	6.3 Application to neural vocoders
	6.3.1 Experiments
	6.3.2 Results

	6.4 Embedding deep generative audio
	6.5 Conclusion

	7 Conclusion
	7.1 Summary and main contributions
	7.2 Future works
	7.3 Overall conclusion

	Appendix
	A Appendix
	B Appendix
	Bibliography

